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ABSTRACT

Prostaglandin derivatives form the most widely used medicinal treatments given 

to glaucoma patients to lower intraocular pressure. Prostaglandins are believed 

to increase matrix metalloproteinase (MMP) and tissue inhibitor of matrix 

metalloproteinase (TIMP) activity, leading to increased in aqueous outflow, via 

uveoscleral outflow pathway. However, the direct impact of MMPs on the tissues 

within uveoscleral pathway has not been determined. The aim of this project was 

to compare the direct effect of prostaglandins and MMPs on the tissues within 

the uveoscleral outflow pathway.

To determine the effect of known inducers of MMP activity, scleral fibroblasts and 

ciliary muscle cells were cultured in the presence of interleukin-1 a, tumour 

necrosis factor, transforming growth factor p and prostaglandin F2a (PGF2a). 

The effect of prostaglandin F2a and MMPs on the uveoscleral pathway tissue i.e. 

sclera, was assessed as a measure of permeability, molecular and 

supramolecular scleral collagen integrity and proteoglycan composition.

A significant induction of MMP 1, 2, 3 and 9 secretion and activity with cytokines 

and PGF2a, within human scleral fibroblast and ciliary muscle cell cultures 

(p<0.05). A 3-fold increase in scleral permeability was observed within 24 hour of 

incubation in PGF2a, whereas upto 10-fold increase was observed in MMP 

treated. The helical rise per residue (at ~1.5nm), lateral packing (at ~0.29nm) 

and D-spacing (at ~66nm) of scleral collagen was unaffected by MMP and 

PGF2a incubation. Significant change in aggrecan degradation was observed 

within scleral tissue incubated in MMP and PGF2a (p<0.05). However, no 

significant change in small leucine rich proteoglycans i.e. biglycan, decorin and 

lumican, within sclera occurred within sclera incubated in MMP or PGF2a.



The findings of this study will help to understand how aqueous drainage can be 

enhanced and also provide a mechanism to improve delivery of substances to 

the back of the eye, without adverse effect.
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Bablin Molik Role of MMPs in Uveoscleral Outflow

CHAPTER 1
INTRODUCTION 

1.0 General Introduction

Glaucoma is a disease leading to loss of vision (Olendoff, Jeryan et al. 1999; 

Quigley 1996). One cause of glaucoma is the malfunction of the aqueous 

humour drainage system resulting in the build up of intraocular pressure (IOP) 

(Forrester, Dick et al. 1999; Krohn 2004). Uveoscleral outflow is one of the 

drainage pathways. The uveoscleral pathway involves the flow of aqueous 

humour through the ciliary meshwork in the anterior chamber into the 

systemic blood supply via the scleral vasculature (Nilsson 1997). This study is 

focused on investigating whether metalloproteinases (MMPs) can affect the 

drainage system. Previously prostaglandins have been used as therapeutics 

for glaucoma (Drake 1996). Prostaglandins appear to increase MMP 

secretion and activation (Weinreb, Toris et al. 2002). MMPs are involved in 

extracellular matrix (ECM) degradation. It is, therefore, hypothesised that 

modulation of MMPs in the uveoscleral outflow pathway may facilitate 

aqueous outflow and hence lower intraocular pressure (IOP), without causing 

adverse effects. The use of MMPs to enhance tissue conductivity to improve 

drainage may also be the solution to allow drug delivery into the eye.

1.1 Glaucoma

Glaucoma is a condition characterised by the loss of retinal ganglion cells 

associated with vision field loss. In the commonest form of the disease, an 

elevated IOP is observed. If untreated, the optic nerve damage results in 

progressive, permanent vision loss, commencing with a reduction in 

peripheral sensitivity at the edge of the field of vision, progressing to tunnel 

vision and then to blindness (Moorthy, Mermoud et al. 1997).
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Glaucoma disease has many classifications due to the nature of the 

abnormalities. The different classifications can be grouped into four types:

1. Open/ Closed Angle Glaucoma

This relates to the anterior chamber angle being closed or open. In the case 

where the angle is closed, aqueous drainage is prevented/ diminished and 

IOP rises. In the case where the angle is open, the IOP rises due to other 

factors such as interference of normal trabecular drainage e.g. large proteins 

blocking drainage pathway.

2. Primary /  Secondary

Primary glaucoma states that the disease has no association with any other 

disease. Secondary glaucoma states that the disease was the result of 

another disease.

3. Congenital/ Infantile/ Juvenile/ Adult

This relates to the age of onset of glaucoma.

4. Acute/ Subacute/ Chronic

This relates to speed of onset. Acute glaucoma means a sudden occurrence 

with short duration. Chronic glaucoma persists for months or longer, and is 

less severe.

1.1.1 Abnormalities leading to Glaucoma

There are various abnormalities leading to various types of glaucoma. It is 

important for a clinician to identify the abnormality associated with glaucoma 

in order to give suitable treatment. Table 1.1 is a list of different types of 

glaucoma and their abnormalities/ causes, and Fig. 1.1 shows the changes in 

the anterior segment structure associated with different types of glaucoma.

3
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Type of 
Glaucoma

Type of Disorder Abnormality Risk factors/ causes

Primary 
open angle 
Glaucoma 
(POAG)

Normal Tension 
Glaucoma (NTG)

Glaucomatous optic disc 
damage and visual field loss 
in presence of an IOP within 
normal range.

Age, race, gender, family history, 
myopia, systemic hypertension, 
damage in the eye.

High Tension 
Glaucoma

Progressive optic nerve 
damage, with IOP higher 
than the nerve fibres can 
tolerate.

Age, race, gender, family history, 
myopia, systemic hypertension, 
damage in the eye.

Secondary 
open angle 
Glaucoma

Pseudoexfoliation 
(PXF) Syndrome

PXF block anterior segment 
structure

Diffuse deposition of whit- 
dandruff like flecks on the 
anterior segment structures of 
the eye.

Pigmentory 
Glaucoma (PDS)

PDS particles block 
trabecular spaces.

Build up of pigment particles that 
are dispersed from the posterior 
iris and carried through anterior 
segment by aqueous convection 
currents.

Uveitic Glaucoma Elevation of IOP leading to 
glaucomatous damage to the 
optic nerve

Chronic, recurrent or severe 
acute inflammation

Corticosteroid 
Induced Glaucoma

Permanent ocular tissue 
changes, such as posterior 
sub capsular cataracts.

Long term steroid therapy.

Glaucoma 
associated with 
Hyphema

Obstruction of trabecular 
meshwork.

Blood and blood particles 
obstruct drainage pathway.

Ghost cell 
Glaucoma

Ghost cells stay within 
vitreous cavity and obstruct 
trabecular meshwork.

Ghost cell formed during 
vitreous haemorrhage.

Primary
Angle
Closure
Glaucoma

Pupillary Block Appositional or synechial 
closure of the anterior 
chamber angle.

Hypermetropic, narrow angled 
eye. Restriction of aqueous 
outflow causes iris to be pushed 
forward to close angle.

Plateau Iris Closure of angle. Angle closed in association with 
a flat iris plane and a deep 
central anterior chamber.

Secondary
Angle
Closure
Glaucoma

Anterior Secondary 
Angle Closure 
Glaucoma

Iris pulled forward by a factor, 
and obstruct aqueous 
outflow.

Abnormal tissue bridging with 
the anterior chamber. Tissue 
could be fibrovascular 
membrane, descemet like 
membrane with endothelial 
layer, inflammatory precipitates 
and congenital fibrous.

Posterior 
Secondary Angle 
Closure Glaucoma

Pressure builds up behind 
the iris or lens cause the iris 
to be pushed into the anterior 
chamber angle, leading to 
obstruction of outflow.

Increased pressure in posterior 
chamber.

Table 1.1: Different types of glaucoma with their abnormalities and causes. Information 
gathered from (Eid and Spaeth 2000; Harvey 1997; Kanski, McAllister et al. 1996; Litwak 
2001).
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(a)

Canal of 
schlemm Ciliary

Cornea

Anterior
Chamber

Lens)

(b)

Obstructio
or clogging
within
trabecular
meshwork
and canal of
schlemm
region

(c)

Abnormal
bridge
formation
within
anterior
chamber
angle

(d)

Aqueous
forcing
peripheral

chamber
angle

(e)

Apposition 
of iris to 
the lens

■ Increased pressure in 
the posterior 
chamber pushes the 
lens-iris diaphagrm 
forward to close the 
anterior chamber

Fig. 1.1: Schematic drawings of different anterior segment defects causing glaucoma.

(a) Anterior orbital structure under normal condition, (b) Trabecular meshwork clogged up in 

open angle glaucoma, (c) Abnormal tissue bridge formed in closed angle glaucoma, (d) Iris 

tilted down on the lens, creating pupillary block, in closed angle glaucoma, (e) Posterior form 

of secondary angle closure glaucoma without pupillary block adapted from (Eid and Spaeth 

2000).

1.1.2 Methods Used to Treat Glaucoma

There are various methods used to treat glaucoma depending on the nature 

of the disease. The treatments may involve medicinal drug therapy or 

surgical intervention.

5



Bablin Molik Role of MMPs in Uveoscleral Outflow

1.1.2.1 Medical Treatment

Drugs can be given either singly or in combination to reduce IOP. For 

example Atrophine when given with pilocarpine had a great additive effect in 

enhancing uveoscleral outflow (Bill 1967). Recent studies have also shown 

that miotics thought to have lowered uveoscleral outflow, do actually have an 

additive effect in lowering IOP when given alongside Latanoprost (Toris, Aim 

et al. 2002).

AGENT MECHANISM OF ACTION COMPLICATION
Drugs

Beta Blockers
Timolol, Betaxolol, 
Carteolol, Levobunolol, 
Metipranolol

Reduction of aqueous production via 
B-receptor blockage on ciliary body.

Exacerbation of 
pulmonary disease, heart 
failure, badycardia

Cholinergics (miotics)
Pilocarpine, Carbachol, 
Echothiophate iodide, 
eserine

Increases trabecular meshwork outflow 
via stimulation of muscaronic receptors 
on ciliary muscle, which contracts and 
pulls the trabecular meshwork 
posteriorly, decrease uveoscleral 
outflow due blockage of space 
between ciliary muscle bundles.

Ocular stinging, dimming 
vision, spasm, 
gastrointentestinal upset, 
high concentration may 
narrow angle

Carbonic Anhydrase 
Inhibitors
Dorzolamide
(topical), Acetazolamide
(oral)

Reduce aqueous production via 
inhibiting carbonic anhydrase

Hyperaemia, sulfa 
sensitivity, metabolic 
acidosis, potassium 
depletion aplastic 
anaemia

Adregenic Agonists
Epinephrine, Dipivefrin
(pro-drug),
Apraclonodine

Decrease aqueous production via a- 
receptor stimulation on ciliary body, 
increase outflow through the trabecular 
meshwork via stimulation of b2 
receptors

Pupil dilation, 
hypertension, systemic 
tachycardia

Prostaglandins
Latanoprost

Increase uveoscleral outflow Hyperaemia, darkening 
iris, anterior uveitis

Osmotic Agents
Glycerol, Mannitol, 
Isosorbide

Increase osmotic gradient of 
extracellular fluid, causes water from 
the eye to drain out

Nausea, vomiting, 
hyperglycaemia, chest 
pains.

Alternative Treatment
Vitamin C, Vitamin B1 
(thiamine), chromium, 
Zinc, rutin

Reduce IOP Side effects could be 
seen if taken in excess

Marijuana Lower IOP carcinogenic agent
Solnum melonga 
(garden egg)

Lower IOP Still new, long term 
effects have not been 
seen

Xylopia aethiopica 
(African guinea pepper)

Lower IOP Still new, long term 
effects have not been 
seen

Table 1.2: Different medicinal treatments available currently. Information gathered from 
(Drake 1996; Igwe, Afonne et al. 2003; Igwe, Akunyili et al. 2003; Litwak 2001; Olendoff, 
Jeryan etal. 1999).
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1.1.2.2 Laser/ Surgery Treatment

Laser or surgical intervention involves opening up the drainage canals or 

making an opening in the iris to increase the outflow of aqueous humor 

(Wilkins, Shah et al. 1997). This type of treatment can become a first priority if 

medical treatment is unsuccessful due to the patient developing side effects 

or the medicine is contra-indicated in the patient (e.g. heart disease or 

asthma patients). Table 1.3 below outlines the laser and surgery treatments 

available to patients.

TYPE OF SURGERY METHOD USE

Argon Laser Trabeculoplasty 
(ALT)

Stimulation of trabecular 
meshwork cells to divide and 
alter meshwork protein. Clear 
meshwork pathway and 
hence increase outflow

Open angle glaucoma

Trabeculectomy Channel made through sclera 
from anterior chamber to 
sub-conjunctival space. From 
conjunctiva the aqueous is 
absorbed by capillaries or 
lymphatic in the cornea.

Open angle glaucoma

Laser Iridotomy Open up anterior chamber 
channel, allows normal flow 
of aqueous into anterior 
chamber

Acute closed angle glaucoma

Surgical Iridectomy Iris is pulled out, a small hole 
is created via cutting the iris, 
and then the iris is pushed 
back in, enhances outflow 
pathway.

Closed angle glaucoma

Cycloablative Ciliary processes are 
destroyed and hence 
aqueous humour production 
is reduced.

Only given when surgery is 
not working or is unsuitable

Table 1.3: Laser and surgical treatments available. Information gathered from (Moorthy, 
Mermoud etal. 1997; Wilkins, Shah etal. 1997).

However, these types of treatments do not always have a long lasting effect 

and may cause optical inflammatory (Wilkins, Shah et al. 1997).
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1.1.2.3 Current Research, Prostaglandin analogues

Many studies have been conducted in order to identify how IOP can be 

reduced within the eye. Many factors have been determined in various model 

studies, such as, myosin light chain kinase Inhibitor (ML-9) which can lower 

IOP in rabbit eye by increasing outflow facility (Honjo, Inatani et al. 2002), 

nitric oxide synthase inhibitor (L-NAME) found to cause ciliary 

vasoconstriction and thereby reduces aqueous production (Do, Kong et al. 

2006; Kiel, Reitsamer et al. 2001) and the renin angiotensin system (RAS) 

which allows angiotensin II production which activates the calcium-signalling 

system that can enhance potassium ion channel activity leading to loss of cell 

volume (Cullinane, Leung et al. 2002). These are a few out of many factors 

being investigated to find a more applicable and lasting treatment of 

glaucoma.

The main interest of this study was based upon the effect of prostaglandin 

and its derivatives on the uveoscleral outflow pathway, which leads to 

reduced IOP. Prostaglandins (PGs) belong to a group of local hormones, 

eicosanoids, derived from fatty acid (Aim 1998). They consist of a 20 carbon 

skeleton with a 5-carbon ring. Different prostaglandin synthase are involved in 

synthesising different forms of PGs, i.e. prostaglandin F synthase is involved 

in the formation of prostaglandin F2a (PGF2a) (Komoto, Yamada et al. 2006). 

Several cell surface G-protein coupled receptors have been identified, with 

different affinity to the various forms of PGs (Coleman, Smith et al. 1994).

Prostaglandin analogues like latanoprost (Xalatan), bimatoprost (Lumigen) 

and travoprost (Travatan) have been shown to lower intraocular pressure by 

30-35% (Wagner, Edwards et al. 2004). Latanoprost being the first 

prostaglandin based ocular hypotensive drug to be commercially available 

since 1996 (Linden and Aim 1999). These agents have been shown to be the 

most effective topical medication for reducing IOP. The ability of PGs in 

lowering IOP has been observed across various species (Lee, Podos et al. 

1984), via increasing aqueous outflow. The most thoroughly studied analogue 

is PGF2a. The esterification of PGF2a remarkably increases its lipid solubility
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(Villumsen, Aim et al. 1989). Thus an isopropylester form of PGF2a (PGF2a- 

IE) can penetrate cornea easily and become de-esterified during its passage. 

PGF2a has high affinity for FP receptor (Anthony, Lindsey et al. 2001; 

Crowston, Lindsey et al. 2004b). The binding of PGF2a to FP receptor causes 

an increase in uveoscleral outflow and thereby lowers IOP (Crawford and 

Kaufman 1987; Schachtschabel, Lindsey et al. 2000). PGs do not affect the 

trabecular meshwork drainage pathway (Kaufman 1986).

However, the hypotensive effect of topically applied prostaglandin analogues 

has various side effects (Hejkal and Camras 1999). Side effect such as 

anterior inflammation, irritation, darkening of the iris pigmentation, blurred 

vision and dry eyes (Cantor 2002; Linden and Aim 1999). This suggests the 

need to determine a more effective glaucoma treatment without any adverse 

effect.

1.1.3 Intraocular Pressure

The normal average IOP is approximately 15mmHg (Alimuddin 1956). IOP 

can vary dependent upon time of day, blood pressure level and respiration. 

Intraocular pressure (IOP) builds up due to aqueous humour production and 

the resistance to its outflow. This pressure helps maintain the shape of the 

eye and its optical transparency. There are three factors involved in 

determining IOP:

1 Rate of aqueous secretion.

2 Resistance encountered in the outflow channels.

3 Level of episcleral venous pressure.

Rate of outflow is proportional to the IOP minus the episcleral venous 

pressure:

Po = (F/C) + Pe OR F= C (Po-Pe)

Po = IOP in mmHg

F = Rate of aqueous outflow (normal 2pl/min)

C = Facility of aqueous outflow (normal 0.2pl/min)

Pe = Episcleral venous pressure (normal 10 mmHg) (Aihara, Lindsey et al. 

2003).
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IOP increases due to build up of surfactant like material in aqueous humour, 

reduction of space between muscle bundles or malformation of the trabeculae 

and excess extracellular matrix in the outer meshwork (Moorthy, Mermoud et 

al. 1997). Glaucoma is most commonly related to IOP above 25mm Hg 

(Blackmore and Jennett 2001).

1.2 Aqueous Humour & the Drainage Pathways in the Eye

Fig. 1.2 below shows the general structure of the anterior segment of the eye, 

where aqueous humour is produced and drained.

Fig. 1.2: Semi diagrammatic figure of the anterior segment. SL = Schwalbe’s line SS= 
scleral spur, IP= iris process, TM= trabecular meshwork, C= cornea, l= iris, SC= Schlemm’s 
canal, S= sclera, CB= ciliary body & CP= lens zonule (Bron, Tripathi et al. 2001).
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1.2.1 Aqueous Humour

Aqueous humour has two important functions. Firstly, it is the medium by 

which the necessary metabolites are transported to the avascular lens and 

cornea. It also removes toxic metabolic waste products of the cornea and iris. 

Secondly, it has a hydromechanical function in controlling the intraocular 

pressure.

1.2.2 Aqueous Humour Composition

99% of aqueous humour is water. Aqueous humour composition undergoes 

continuous exchange of ionic and soluble substances across the vitreous, 

lens, cornea and iris. Aqueous contains ions which preserves its electric 

neutrality and also buffers metabolic acids that it contains (Kong, Chan et al. 

2002).

Due to the existence of the blood aqueous barrier (BAB), large molecular and 

charged substances are unable to access the aqueous humour. Aqueous 

humour has a higher percentage of low molecular weight substances and a 

lower percentage of high molecular weight substances than plasma (Tripathi, 

Millard et al. 1989). Due to the barrier, large lipid molecules cannot enter the 

aqueous humour. However, minute amount of phospholipids have been 

detected in aqueous humour (Jahn, Leiss et al. 1983).

There is a large concentration of ascorbic acid present, which is believed to 

protect the eye from the harmful effects of sunlight (Koskela, Reiss et al. 

1989). Some amino acids are present in higher concentration than in plasma, 

such as, arginine, leucine, isoleucine, methionine, phenylalanine and valine, 

which are transported into the aqueous via ciliary epithelium (Durham, 

Dickinson et al. 1971; Hayasaka, Yamada et al. 1997)). Trace components 

present in the aqueous include sex hormones, plasminogen activator, 

cytokines such as fibroblast growth factor (FGF) and transforming growth 

factor p (TGF-p) (Tripathi, Millard et al. 1989).The existence of such factors 

and other chemokines, suggest the aqueous also plays a role in the immune 

response (El-Asrar, Struyf et al. 2004).
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Numerous enzymes are also present in the aqueous, such as antioxidants 

and lysosomal enzymes (Ferreira, Lerner et al. 2004). Studies have been 

carried out to test the presence of MMPs and their inhibitors in aqueous. The 

presence of MMP 1, 2, 3, 7 and 9 were detected (Huang, Adamis et al.

1996). Alongside this the presence of TIMP 1 and TIMP 2 was also 

established (Schlotzer-Schrehardt, Lommatzch et al. 2003).

1.2.3 Aqueous Production

The rate of aqueous humour production is 2pl/min (Brubaker 1982). However, 

this rate does fluctuate. The rate tends to be higher in daytime than at night 

time (Brubaker 1991). Normally the entire fluid is replaced every 100 minutes 

(Lawrence 1997).

Aqueous humour is formed in the epithelial cells in the ciliary body. The ciliary 

body is formed from ciliary muscles and ciliary processes surrounded by a 

microvasculature system. Ciliary processes project into the posterior chamber 

and the ciliary muscle is composed of bundles of smooth muscle cells 

embedded in connective tissue (Ockland 1998). Each ciliary process consists 

of a pigment layer which is continuous with the retinal pigment epithelium 

(RPE) and non pigment layer (NPE) which continues with the neuroretina. 

The BAB is formed by tight junctions between adjacent cells of the non 

pigment layer.

There are three main transport pathways used in order to produce aqueous:

1. Diffusion - The passive movement of solutes across the cell membrane in 

response to the concentration gradient. For example bicarbonate moves 

across BAB by diffusion (Eid and Spaeth 2000).

2. Ultrafiltration - This involves the passive movement of water and water 

soluble substance in response to the differential hydrostatic pressure in 

blood and the osmotic pressure in the ciliary body (Green and Pederson 

1972; Roepke and Hetherington 1940).
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3. Active transport -  This accounts for 80% of aqueous production (Kanski, 

McAllister et al. 1996) and is due to energy-dependent movement of 

solutes across the cell membrane. NPE ciliary cells undergo an active 

metabolic process that depends on several enzyme systems. The most 

important enzyme involved is Na+/ K+ ATPase. This secretes Na+ ions into 

the posterior chamber and at the same time K+ into NPE cells (Fig. 1.3). 

The high concentration of Na+ causes an osmotic pressure difference 

across the ciliary epithelium, due to which water and negative ions (e.g. 

bicarbonate and chloride ions) move out (Jacob and Civan 1996). Ascorbic 

acid and amino acids are also actively transported across the BAB (Kong, 

Chan et al. 2002).

P-adrenergc
receptor

Nonpig merited

HM-HCb3 C02+H,0

epithelium

Pig mented

Blood Vessel

Fig. 1.3: Ion and water transfer and active transport across ciliary epithelium cells, 
leading to aqueous production (Forrester, Dick etal. 1999).
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1.2.4 Aqueous Drainage

Primary aqueous is produced by the ciliary epithelium which enters the 

posterior chamber, where its concentration is altered to produce secondary 

aqueous, by either reabsorption or by addition of metabolites and other 

components from surrounding tissues. The secondary aqueous passes 

through the pupil into the anterior chamber and leaves the eye by two main 

routes: the Canal of Schlemm or the uveoscleral outflow pathway.

1.2.4.1 Canal of Schlemm

The route via the Canal of Schlemm is the conventional outflow pathway. It 

involves the movement of aqueous humour through the extracellular spaces 

between the trabecular meshwork into the Schlemm’s canal (consisting of 

collector channels, episcleral veins and anterior ciliary veins) and then enters 

the systemic circulation (Tripathi 1968). A basic illustration of the outflow 

pathway through TM into Schlemm’s canal is shown in Fig. 1.4.

Fig. 1.4: Aqueous outflow via trabecular meshwork and canal of schlemm. CC =
Collector channel, COS = canal of schlemm, GV = giant vacuole, CM = Cribriform meshwork, 
CSM = Cornescleral meshwork, UM = Uveal meshwork (reproduced from (Lawrence 1997).
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The trabecular meshwork (TM) via which the aqueous humour travels 

consists of three layers:

1. Uveal Meshwork

This is the innermost layer of the TM. It forms an irregular net-like structure 

compromising 1-3 layers of cord-like trabecular beams. Aqueous passes 

freely through the pores between the uveal trabecular (Bill and Svedbergh 

1972).

2. Corneoscleral Meshwork

This is formed from several layers of flattened trabecular sheets extending 

from scleral spur to the cornea. Perforations between successive sheets 

allows aqueous passage (Tripathi 1974a; Tripathi 1974b).

3. Cribriform Meshwork

This is the outermost layer beneath the Canal of Schlemm and it forms a 

sieve-like structure containing a network of elastic-fibres (Rohen, Futa et al. 

1981). Unlike the rest of the meshwork, this layer is not arranged in lamellae, 

but consists of trabecular cells meshed in a loose extracellular matrix (ECM). 

The space between the cells has a high concentration of elastin and type VI 

collagen, alongside which fibrilin-1, fibronectin, decorin, vitronectin, tenascin, 

veriscan and hyaluronic acid can also be found (Ueda, Wentz-Hunter et al. 

2002).

Aqueous humour passes from the anterior chamber through the 

intertrabecular and intratrabacular spaces, which are lined by the trabecular 

cells. These spaces get narrow closer towards the Canal of Schlemm. The 

trabecular cells are also phagocytic; they trap and remove debris from the 

aqueous humor as it percolates towards the Canal of Schlemm. They remove 

endogenous particulate matter e.g. melanin granules and cellular debris.

The Canal of Schlemm is an endothelial-lined channel filled with aqueous 

humor. It has a length of about 200-400pm and depth of 50- 60pm (Forrester,
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Dick et al. 1999). The wall of the Canal of Schlemm consists of elongated 

cells; 75|jm long and 4|jm wide. Between these cells and on the surface of 

these cells, there are pores. Aqueous humor passes through these pores 

(Sampaolesi and Argento 1977). The bulk aqueous humor outflow resistance 

occurs at this inner wall of the Schlemm’s canal (Johnson 2006; Johnson and 

Kamm 1983). The collapse of the Canal of Schlemm at high IOP, has been 

linked to primary open angle glaucoma (Nesterov 1970). A reduction in the 

number of these cells and giant vacuoles with age have been denoted in 

previous research (Grierson, Howes et al. 1984).

The canal has 25 to 30 collector channels and between 2 and 8 aqueous 

veins (Dvorak-Theobald 1934). The collector channels join intrascleral and 

episcleral venous plexi, which drain into conjunctival veins (Batmanov 1968).

The trabecular outflow pathway is largely a pressure-dependent route of 

aqueous humour drainage. This can be explained by the description of 

aqueous humor movement though the Canal of Schlemm. There are giant 

vacuoles at the inner wall of the Canal of Schlemm (0.5- 4.0 urn in diameter) 

within endothelial cells (Lawrence 1997). Many of these vacuoles have 

openings towards the TM side, and some have openings on both sides. 

Aqueous humor passes through the Canal of Schlemm via these vacuoles. 

The number and size of vacuole openings increases with IOP increase.

1.2.4.2 Uveoscleral outflow pathway

This pathway was first discovered in 1965 when labelled 131l-albumin was 

injected into the anterior chamber of cynomologus monkey and then 

recovered within the uveal tract and sclera (Weinreb 2000). A more recent 

publication involved the characterisation of this pathway using a dextran 

fluorescent label within the mouse (Lindsey and Weinreb 2002). As there is 

no epithelial barrier between the anterior chamber and the ciliary muscle, 

aqueous humor can move through the anterior surface of the ciliary body 

opposite the root of the iris and the scleral spur (Nilsson 1997). It then passes 

through the intracellular spaces between ciliary muscle fibres. These spaces
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have communication with supraciliary and suprachorodial spaces, which 

ultimately connect to episcleral vasculature (Bill 1965). They connect either 

via tortuous pathways between collagen fibrils of the sclera or more directly, 

through loose connective tissue around blood vessels and nerves which 

penetrate the sclera (Lawrence 1997). Fig. 1.5 is an illustration of this 

pathway.

Cornea
ibecular

Anterior
ChamberSclera

Iris Pupil
Ciliary
Muscle Processes

Lens

« Uveoscleral 
outflow

Fig. 1.5: Uveoscleral outflow pathway.

The uveoscleral outflow pathway is the non-conventional pathway which is 

not a pressure sensitive pathway (Aim 2000). The explanation for the 

uveoscleral outflow not being pressure sensitive is best understood if the 

pathway is considered as two routes, coupled in series. The first is from the 

anterior chamber to the suprachoridal space, the second from the 

suprachoridal space into the orbit (Aim 2000). IOP increases the pressure 

gradient in the suprachoridal space. However, the pressure gradient for the 

first part of the pathway will not increase; consequently the flow in the 

suprachoridal space will not increase. The flow through the sclera will 

increase, but the fact that total uveoscleral flow does not increase with higher 

IOP indicates that the first step, movement into the suprachoridal space, is 

the rate limiting step (Aim 2000).
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Uveoscleral pathway may serve as the functional equivalent of a lymphatic 

drainage pathway, providing an exit route from the uvea for larger proteins 

and other tissue constituents (Weinreb, Toris et al. 2002). Rerouting aqueous 

humour outflow from a compromised or obstructed trabecular meshwork may 

serve to prevent or dampen the IOP rise, and to rid the uvea of the excess 

protein and cellular debris.

The extent at which this pathway is used varies from 3% to 60%, in different 

species (Nilsson 1997). Recent studies suggest that this pathway may be a 

more important route of aqueous outflow than previously thought, possibly 

accounting for up to 50% in normal eyes of young people (Husain, Kaddour- 

Diebbar et al. 2002). With age, uveoscleral outflow decreases in humans. 

Compared to young primates the ciliary muscle of old primates shows build­

up of extracellular material and reduced space between space between 

muscle bundles (Weinreb, Toris etal. 2002).

1.3 Extracellular Matrix (ECM) in the Aqueous Drainage Pathway

ECM is the pericellular compartment that exists in tissues. It plays a vital role 

in cell shape formation; cell migration; differentiation and control on cell 

growth hormones. ECM consists of three main structural features:

1. Fibrous protein:

• Collagen: These are a large family of proteins with a triple helical structure 

which confers rigidity. They provide mechanical support to the ECM and 

surrounding cells.

• Elastin: These are a group of proteins with rubber-like elastic properties, 

which allows them to provide elasticity and resilience within ECM.

2. Glycoprotein:

A group of proteins covalently associate with carbohydrates to form 

glycoprotein. Glycoproteins are involved in mediating cellular interactions with 

collagenous structure and ECM organisation e.g. fibronectin & laminin. 

Fibronectin not only interacts with other ECM molecules to form a complex
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ECM structure but, it is also involved in cell adhesion and migration. Laminin 

acts as an adhesion protein in basement membrane.

3. Proteoglycans & Polysaccharides:

Proteoglycans have a complex structure consisting of a core protein linked to 

Glycosaminoglycans (GAGs) e.g. aggrecan. The large molecules of 

proteoglycans provide comprehensive force around the cell. GAGs are 

polysaccharides formed from linear heteropolysaccharide possessing a 

characteristic disaccharide repeat sequence. GAGs such as hyaluronic acid 

associate with water molecules in order to create osmotic pressure and form 

a gel-like layer within ECM.

1.3.1 ECM in Ciliary Muscle

The extracellular fibrils synthesised by ciliary muscle cells are 

characteristically deposited in the region of the elongated ends of the bipolar 

muscle cells (Tamm, Baur et al. 1992). The fibrils form an apparent close 

transmembrane association with the cytoplasmic myofilaments and may be 

regarded as miniature muscle cell-tendon junctions providing anchoring 

function. The interaction between ECM and muscle cells may play an 

important role in maintaining mechanical tension and supporting the shape 

changes of ciliary muscle during accommodation (Tamm, Baur et al. 1992). 

The major components of the ECM within ciliary muscle tissue are:

a) Collagen -  Type IV, I, II and VI collagen have been characterised within 

ciliary muscle tissue (Ockland 1998; Rittig, Lutjen-Drecoll et al. 1990; 

Tamm, Baur et al. 1992). They are believed to allow interaction and 

anchoring support within ciliary muscle cells.
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b) Glycoproteins - Laminins are found to form a pericellular network 

surrounding individual ciliary muscle cells. Alongside collagen IV, laminin 

is also essential for basal laminae function (Tamm, Baur et al. 1992). 

Fibronectin is a multi-functional glycoprotein which interacts directly with 

cells and ECM.

c) GAGs - Glycosaminoglycans in the connective tissue of ciliary muscle, 

involved in maintaining fluid homeostasis (Ockland 1998).

1.3.2 ECM of Sclera

Sclera is known to contain low cellularity within dense connective tissue. It 

plays a role in maintaining intraocular pressure and also in protecting 

intraocular structure and covers 80% of surface area of the globe (Svoboda, 

Gong et al. 1998). Scleral stability is vital for clear vision and is made possible 

by the organisation and viscoelastic properties of scleral connective tissue 

(Watson and Young 2004). The sclera is composed of three layers: the 

episclera (inner most layer), stroma and lamina fusca (adjacent to uvea). The 

episcleral layer consists of loosely arranged bundles of collagen, intermingled 

with fibroblasts, melanocytes, proteoglycans and glycoproteins and is rich in 

blood supply. The stromal layer has larger collagen bundles associated with 

few elastic fibres. The lamina fusca consists of smaller collagen bundles and 

more abundant elastic fibres and also of ciliary vessels and nerve passage 

routes (Foster 1994).

Collagen forms 75% of scleral dry weight consisting of collagen type I, III, V 

and VI. The most abundant collagen is type I collagen (Thale and Tillmann 

1993). Elastin forms less than 2% of scleral dry weight (Moses, Grodzki et al. 

1978). Proteoglycans form 0.7 to 0.9% of dry scleral dry weight (Rada, 

Shelton et al. 2006). The most abundant proteoglycans in sclera have been 

identified as chondroitin and keratan sulphates (Rada, Achen et al. 1997). 

Immunoassay and western blotting revealed the presence of aggrecan, 

biglycan and decorin as the major scleral proteoglycans (Rada, Achen et al.

1997).
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Changes in scleral connective tissue extracellular matrix have been 

associated with diseases such as rheumatoid arthritis, scleritis and more the 

commonly observed myopia (Watson and Young 2004). These diseases 

involve scleral thinning, via reduction of extracellular matrix components 

(Lachmann, Hazleman et al. 1978; Rada, Shelton et al. 2006). Selective 

connective tissue remodelling occurs within the scleral tissue in these disease 

states.

1.3.3 Age Related changes in ECM of Uveoscleral outflow pathway

The anterior part of the ciliary muscle exhibits an age-related increase in 

“plaque material”, which is even more pronounced in primary open angle 

glaucoma (Tamm, Baur et al. 1992). Type VI collagen is involved in forming a 

sheath which surrounds the anterior elastic tendon between the ciliary muscle 

and trabecular meshwork, these sheaths thicken with age and form part of 

this “plaque material”.

Scleral tissue reaches its maximum elasticity at the age of 12-13 years, after 

which a reduction in compliance and an increase in rigidity is observed, as a 

result of progressive cross-linking of lysine residues of collagen (Watson and 

Young 2004). A reduction in Type I and III collagen mRNA with age in mice 

eye has been reported, however immunoassays revealed a widespread 

distribution of protein, suggesting a slow turnover of matrix components 

(lhanamaki, Salminen et al. 2001). This stability of collagen molecules could 

be related to increased collagen glycosylation and its resistance to 

solubilisation observed with aging (Keeley, Morin et al. 1984). Collagen 

fibres become thicker and less uniform with age. A disruption in collagen 

causes calcium deposition which leads to hyaline plaques (Watson and 

Young 2004).

Uveoscleral outflow decreases with age. Compared to young primates ciliary 

muscle of old primates showed a build up of extracellular material and 

therefore there is a reduction in space between muscle bundles (Gabelt and 

Kaufman 2005). The plaque formation in the sclera can also reduce aqueous 

outflow. As there is a reduction in uveoscleral outflow, this would mean there
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is a reduction in exit route of large proteins and other tissue constituents. The 

build up of debris and large proteins would effect the trabecular meshwork 

and hence the conventional pathway. The phagocytic property of trabecular 

meshwork cells would be exceeded (Lawrence 1997). The reduction in 

aqueous outflow via both routes can cause a build up of IOP.

This project investigates possible methods to find lower IOP in glaucoma, via 

clearing blocked drainage pathway via ECM degradation.

1.4 ECM Degradation

ECM metabolism involves complex pathways in controlling ECM biosynthesis 

and degradation. These pathways are very tightly controlled in order to 

prevent disease states. The pathways involve numerous enzymes. ECM 

degradation involves different enzymes that specifically degrade certain 

components of the ECM. The main group of enzymes involved in matrix 

degradation are metalloproteinases (MMPs).

1.4.1 Matrix Metalloproteinases (MMPs) in the Uveoscleral Outflow 

Pathway
MMPs compromise a large ever growing family, with more than 20 proteolytic 

enzymes (Nelson, Fingleton et al. 2000). There are four main groups of 

MMPs involved in the site-specific cleavage of different ECM components; 

these are shown in Table 1.4.
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Enzyme MMP
Example

Function

Collagenases MMP-1 Unwind helical collagen fibre which forms 
denatured gelatin, which is susceptible to 
enzymatic cleavage by other MMPs and other 
protease.

Gelatinases MMP-2 & 
MMP-9

Gelatinases are involved in degrading 
basement membrane, and also have high 
enzymatic activity towards denatured collagen.

Stromelysins MMP-3 Stromelysins have broader substrate 
specificity. Substrates include fibronectin, 
proteoglycan, laminin and type IV collagen.

Membrane-type
MMPs

MMP-14 This group of MMPs are involved in cleaving 
collagen (I, II and III), fibronectin and laminin.

Table1.4: Different types of MMPs and their function (Wong, Sethi etal. 2002)

1.4.2 MMP Homology

The above groups are classified due to their substrate specificity and enzyme 

structure. All MMPs have a similar domain structure, with a “pre” region to 

target for secretion, a “propeptide” region to maintain latency, and an active 

catalytic region that contains the zinc-binding active site (Fig. 1.6) (Nelson, 

Fingleton et al. 2000). The majority of MMPs have additional domains, these 

additional domains are important in substrate recognition and in inhibitor 

binding. Substrate specificity by MMP is very selective as has been 

demonstrated in the case of the selective hydrolysis of the triple helical 

structure by MMP2 (Lauer-Fields, Sritharan et al. 2003).
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MMP- Matrilvsin

MMP-
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Collagenases, 
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Signal Peptide C  ̂ Fibronectin type II domain 

Propeptide
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Catalytic domain
Transmemberane domain
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Fig. 1.6: MMP domain structure (Wong, Sethi et al. 2002).

1.4.3 MMP Synthesis and Activation

MMPs are synthesised by cells and secreted into the ECM or remain 

membrane-bound (membrane type MMP) as an inactive zymogen (Nelson, 

Fingleton et al. 2000). A 5’ sequence of the proenzyme is critical in activating 

the enzyme (Gunja-smith, Nagase et al. 1989). The enzymes are activated by 

proteolytic processing, by other MMPs (e.g. stromelysin-1 can activate 

procollagenase) or by other proteases (e.g. plasmin activation of pro- 

stromelysins) (Nelson, Fingleton et al. 2000). MMPs are zinc-dependent 

enzymes and require calcium for full activity (Huang, Adamis et al. 1996).

1.4.4 Regulation of MMP action

Regulation of MMP action is very important in order to maintain tissue 

function. MMPs have been known to be involved in disease such as arthritis 

and cancer (Fossang, Last et al. 1996) (Nelson, Fingleton et al. 2000), where 

there is an imbalanced regulation of MMP action. MMP action can be 

regulated at three stages:

1) Transcription -  The activation of transcription regulatory elements are 

controlled by hormones, growth factors and inflammatory cytokines. These 

factors effect MMP gene expression by activating or deactivating c-Fos and c-
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Jun, transcription factors. These transcription factors can bind to TRE (TPA 

responsive element) or AP1 (activator protein 1), which cause MMP gene 

transcription (Wong, Sethi etal. 2002).

2) Activation o f pro-enzyme -  The activation of pro-enzyme may be 

achieved step-wise by proteinase enzymes (e.g. plasmin), on the cell surface 

by other MMPs (e.g. MT-MMP1 activate MMP2), or intracellularly by Golgi- 

associated proteinase (e.g. furin) (Wong, Sethi et al. 2002). Inhibition of the 

enzymes involved in MMP pro-enzyme activation can regulate MMP action.

3) Tissue inhibitors o f metalloproteinases (TIMPs) -  inhibitors that prevent 

MMP from performing its function. TIMPs can bind to Pro-MMP and the 

activated form of MMP. There are four different TIMPs (TIMP 1, 2, 3, 4) (Lan, 

Kumar et al. 2003). The concentration of MMP and TIMP in effect determines 

the rate of MMP activity (Lan, Kumar et al. 2003).

1.4.5 Distribution of MMPs and TIMPs in uveoscleral pathway

The distribution of MMPs and TIMPs in the iris and ciliary body has been 

established (Lan, Kumar et al. 2003). The presence of MMP1, 2, 3 & 9 and 

TIMP 1 - 4  were localised by immunoassay. The intensity of staining for MMP 

1, 2, 3 & 9 and TIMP 1 - 4  was greater in the ciliary body compared to the 

iris. Patterns of intensity of the staining in the (a) ciliary body: non-pigmented 

epithelium>ciliary muscle>pigmented epithelium>stromal cells and (b) in the 

iris was: anterior border>anterior epithelium> stromal cells> posterior 

epithelium (Lan, Kumar et al. 2003).

1.5 The Role of MMPs & TIMPs in IOP reduction in Uveoscleral Outflow

All the treatments given to glaucoma patients have associated risks and/ or 

side effects. Due to this, research is continuously being carried out to find 

safer and more effective agents to treat glaucoma. Previous studies have 

suggested that remodelling of ECM of the ciliary body may help contribute to 

reduction in IOP (Weinreb, Toris et al. 2002). The reduction in IOP with 

prostaglandin derivatives is observed within 6 hours and upto 33.4%
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reduction in IOP by three months (Hepsen and Ozkaya 2007). However, with 

a cyclodialysis cleft a greater reduction in IOP can be obtained within 2 days 

(Toris and Pederson 1985). Therefore, further study and understanding of 

ECM degradation within the aqueous drainage pathway is required to improve 

glaucoma treatment.

Latanoprost (a prostaglandin analogue), is a drug that brings about a 

significant increase in optical density in the iris root, ciliary muscle and 

adjacent sclera (Gaton, Sagara et al. 2001). Prostaglandins and their 

analogues show minimal effect on the BAB, and so limit adverse effects such 

as inflammation (Toris, Camras etal. 1997).

Prostaglandins bind to receptors. There are different receptor subtypes (EP, 

EP2, FP) to bind to in human sclera (Anthony, Lindsey et al. 2001). However, 

to lower IOP it binds to F2a receptor (Sagara, Gaton et al. 1999). Once bound 

to its receptor, it activates a G-protein activation cascade, which then 

enhances cyclic AMP production and increases intracellular calcium (Zhan, 

Camras et al. 1998) (Schachtschabel, Lindsey et al. 2000). The calcium 

released activates c-Fos (proto-oncogene) and c-Jun (associated 

transcription factor for apoptosis) (Lindsey, To et al. 1994) (Umihara, Lindsey 

et al. 2002). C-Fos and c-Jun form a hetrodimer, which bind to AP1. AP1 is a 

transcription regulatory element which then causes MMP gene transcription 

(Schachtschabel, Lindsey et al. 2000).

Prostaglandins induce the expression of MMP 1, MMP 2, MMP 3 and MMP 9 

within ciliary muscle (Weinreb and Lindsey 2002). MMP1 is involved in 

cleaving collagen I and III and MMP3 cleaves collagens IV, IX, XI and 

fibronectin (Weinreb and Lindsey 2002). The reduction of ECM components, 

within spaces between ciliary muscle fibre bundles, adjacent to the cells, 

increases permeability within the uveoscleral pathway (Kim, Lindsey et al. 

2001). Due to the increase in space within the ciliary muscle ECM and 

relaxation of the ciliary muscle, a reduction in hydraulic resistance in the 

uveoscleral outflow pathway is seen (Wong, Sethi etal. 2002). Prostaglandins
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also increase the ability of cells to convert plasminogen to plasmin, an 

enzyme required to activate MMP (Ockland 1998).

AP1 also binds to the TIMP gene (Anthony, Lindsey et al. 2002). Previous 

experiments carried out showed that prostaglandins are also involved in 

enhancing TIMP 1 gene expression (Anthony, Lindsey et al. 2002). TIMP 

induction is similar to that of MMP induction with prostaglandin treatment. 

This shows how prostaglandin action prevents total degradation of ECM 

within the uveoscleral pathway. TIMP 1 is believed to have a major role to 

play in regulating MMP activity in human ciliary muscle tissue (Anthony, 

Lindsey et al. 2002).

1.6 Drug Delivery in the Eye

Drug delivery in the eye involves the development of a controlled and 

optimised delivery of the drug to its target tissue in the eye. It order to obtain 

this, many properties of the drug should be considered, such as lipophilicity, 

solubility, molecular size and shape, charge and its degree of ionisation 

(Bourlais, Acar et al. 1998). These factors influence the route and rate of 

delivery. There are many barriers to be considered in drug delivery in the eye:

(1) Drug loss at ocular surface with lacrimal fluid (Urtti and Salminen 

1993).

(2) Corneal barrier: stroma being highly hydrophilic and corneal epithelium 

form tight junctions restricted drug permeability (Huang, Adamis et al. 

1996).

(3) Blood-occular barrier. This includes blood-aqueous barrier and blood- 

retina barrier (Urtti 2006).

90% of drug delivery to the eye involves the use of topically administered 

drug. The advantages of topical drug administration include patient simplicity 

and ease of manufacturing. Topical drug administration is accomplished by 

eye drops, but they have short contact time with the eye surface. The contact 

and duration of drug action can be improved by the use of, suspensions, 

ointments or gels and mucosadhesive polmers systems (Ali and Lehmussaari
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2006). However, peak concentration in the anterior chamber is reached after 

20-30minutes, but this concentration is often 2 orders of magnitude lower 

than the instilled concentration even for lipophilic compounds (Urtti, Pipkin et 

al. 1990). This suggests the need to administer a high concentration of drug 

in order maintain drug action.

In order to gain direct drug entry into the eye subconjunctival injections could 

be used. This involves injecting drug into subconjuctival area, underneath the 

eyelid. The drug then penetrates across the sclera. The sclera is more 

permeable to macromolecules and is not dependent upon drug lipophilicity, 

unlike the cornea (Jiang, Geroski et al. 2006). However, in reaching the 

posterior eye, drug has to pass through choroids and retinal pigment 

epithelium (RPE). Its most likely that drug loss occurs via the blood stream of 

the choroids, and the RPE forms a tight barrier to hydrophilic compounds 

(Pitkanen, Ranta et al. 2005).The delivery of drug directly into the vitreous via 

intravitreal administration, allows direct access to the vitreous and retina. 

However, again the movement of molecules from the vitreous into the 

choroids is hindered by RPE barrier. The vitreous itself restricts the 

movement of large molecules, especially positively charged (Pitkanen, 

Ruponen et al. 2003).

1.6.1 Posterior Drug delivery

Choroidial neovascularisation in diseases such as glaucoma, age-related 

macular degeneration (AMD) and diabetic retinopathy require the delivery of 

drugs to the posterior pole. The treatments include monoclonal antibodies 

and aptamer oligonucleotides against the neovascular growth in AMD, 

antiviral for retinitis and neuroprotective agents for retinal degeneration for 

glaucoma. However, drug targeting and delivery to the posterior segment of 

the eye has proved difficult with many complications (Geroski and Edelhauser 

2000; Kimura, Yasukawa et al. 2001). Topically administered drug does not 

reach posterior eye, systemic application causes adverse effect in non­

targeted tissue and intravitreal application is an invasive method to deliver
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drug (Ranta and Urtti 2006). This implies the need to develop a less invasive 

and longer acting drug delivery system.

1.6.2 Implication of study in drug delivery

The sclera and cornea form the main barrier in delivering an external factor to 

the back of eye. Due to the large scleral surface area, with variable thickness 

and its high permeability to macromolecules, sclera is a good target tissue via 

which factors could be delivered into posterior eye (Geroski and Edelhauser 

2000). The manipulation of tissue involved in the uveoscleral outflow, i.e. 

sclera, to increase aqueous drainage via ECM degradation, could also play a 

role in improved drug delivery. An increase in scleral permeability could 

enhance drug delivery into the eye.
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1.7 Aims of the Project

Previous studies have linked MMP expression to glaucoma as its level rises 

when prostagtandin treatment is applied (Gaton, Sagara et al. 2001). 

However, this may be a side effect of prostaglandin action. Based on the 

knowledge and understanding obtained my hypothesis is that direct action of 

MMP could improve uveoscleral outflow and drug delivery to the posterior 

pole. The aims of the project are:

• To identify methods suitable to analyse the effect of different inducers of 

MMPs (i.e. growth factors and prostaglandin) on MMP and TIMP levels 

within the human uveoscleral outflow pathway (ciliary muscle cells and 

scleral fibroblasts).

• To determine the impact of MMP upregulation on tissue permeability.

• To determine the effect of MMP upregulation on tissue structure.
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CHAPTER 2
METHODS
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CHAPTER 2
METHODS 

2.1 Materials

Chemical reagents -  chemicals used are listed in appendix (section 8.1) 

together with their source.

Solutions and media -  solutions and media used are listed in appendix 

(section 8.2). All cell culture solutions and media were prepared using double 

distilled water and were either sterilised using filtration through a 0.2um filter 

or autoclaved.

Cell culture materials and equipment -  materials used for culture, if not 

filter sterilised, were autoclaved prior to use apart from disposable items, 

which were purchased sterile. All culture manipulations were carried out 

aseptically, in a class II biological safety cabinet. Cell cultures were 

maintained at 37°C in a standard incubator within a humidified atmosphere 

containing 5% CO2 and 95% O2 air unless otherwise stated.

2.2 Characterisation of the Uveoscleral Outflow Pathway

Anterior chamber sections were viewed in order to locate the structures 

involved the uveoscleral outflow pathway. The immunolocalisation of PGF2a 

receptors and MMP 2 was conducted on cells cultured from the uveoscleral 

pathway.

2.2.1 Source of Tissue

All samples were obtained following consent for research purposes in 

accordance with the ethical guidelines of United Kingdom Transplant Service 

(UKTS) and the declaration of Helsinki. Initial human donors for 

immunolocalisation assays were obtained from National Disease Research 

Interchange (NDRI) Philadelphia, USA (see appendix for donor details). The 

globes were enucleated and fixed in 10% neutral buffered formalin (NBF) 

within 12 hours post-mortem. The remaining experiments involved the use of
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human donor eye globes, aged 50-89 years (see appendix for donor details, 

section 8.3), and obtained within 48 hours post mortem from the Corneal 

Transplant Service Eye Bank (Bristol, UK) after corneal removal for transplant 

purposes. Globes were transported at 4°C in moist chambers. All donors were 

considered normal, without any previous ocular disease. Bovine skin was 

obtained from the abattoir within 6 hours of death, and transported on ice.

2.2.2 Wax Sections of Human Anterior Chamber

The cornea was removed and the anterior segment was detached from 

human donors and fixed in neutral buffered formalin (NBF). The anterior 

segment was sectioned into 4 quarters and wax embedded. Wax embedding 

involved immersing the tissue sections through a series of increasing alcohol 

concentrations: first 30 minutes in 50% alcohol in ddH20, followed by 1 hour 

in 70% alcohol, 1 hour in 90% and 1 hour in 100% alcohol. After a further 30 

minutes in 100% alcohol the tissue sections were immersed in a solution 

contained 50% alcohol and 50% xylene for 30 minutes. The tissue then 

underwent two successive 30 minutes washes in 100% xylene. The tissue 

sections were then placed into hot vials containing wax and placed into an 

incubator 60°C for 1 hour followed by another 30 minutes in fresh wax. The 

tissue sections were then placed into moulds containing warm wax and 

placed on a cold plate for 30 minutes to set. Wax embedded tissue blocks 

were stored at 4°C before undergoing sectioning via a microtome (HM 325, 

Microm, Germany). Sections were cut at 7jim and transferred onto superfrost 

plus slides (Lamb Laboratories).

2.2.3 Morphological staining of anterior chamber

Two different morphological staining methodologies were applied to human 

anterior chamber wax sections (1) Toluidine Blue: quick and stained all 

general structures blue and (2) Haematoxylin and Eosin stain (H&E stain): 

haematoxylin stained nucleic acid blue and eosin stained cytoplasmic 

components, in cells, pink. The wax tissue sections were cleared in xylene 

and rinsed in industrial methylated spirit (IMS) before being stained. The
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washes involved two 5 minutes xylene, two 1 minute washes in 100% IMS, 

followed by 1 minute in 90%, 70% and 50% IMS.

Toluidine blue involved staining sections very briefly (30 seconds) in toluidine 

blue stain and thereafter rinsed in tap water for 10 minutes. Whereas H&E 

stain involved 5 minutes in Haematoxylin, 10 minutes wash in running tap 

water, 2 minutes in Eosin and a further 10 minutes wash in running tap water. 

The sections were then dehydrated in graded alcohols (1 minute 50%, 70%, 

90% IMS followed by two 1 minute washes in 100% IMS). The sections then 

underwent two 5 minutes washes in xylene. The sections were mounted using 

histomount and the slides were viewed by a Leica DMRA2 microscope. 

Images were captured using Q-Win Leica image analysis software.

2.2.4 Human Scleral Fibroblast (HSF) Cell Culture

Muscles and fat were removed from human donors in order to expose the 

sclera. The scleral tissue was then removed with the help of forceps and 

scissors. After scraping clean the internal and external surface of the sclera 

with a scalpel blade it was dipped in and out of 3% betadine followed by PBS. 

The sclera was then cut with a scalpel into small explants, 1mm2 

approximately. The explants were placed into six well plates. Foetal calf 

serum (FCS) was applied to each explant. The plates were left in the 

incubator overnight at 37°C under standard conditions (5% CO2/ 95%C>2) to 

allow explants to adhere to the surface of the plate.

The following day, medium was added to each well and explants were 

cultured for a further week. Medium for scleral fibroblast culture consisted of 

1:1 Ham’s F-10 and DMEM containing 20% FCS, 1% antibiotics cocktail 

(containing 10mg/ml streptomycin sulphate, 10mg/ml kanamycin, 6mg/ml 

penicillin-G,), 2mM glutamine and 2.5mg/ml amphotericin B. Culture media 

was renewed every 3 to 4 days. Once the outgrowth of cells was detected the 

explants were removed. Cells were fed with fresh media every 3 or 4 days. 

Fig. 2.1 demonstrates the outgrowth of scleral fibroblasts from explants. 

When confluent (approximately 30-50 days) cells were sub-cultured and
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placed into 25ml culture flasks (see section below). Following sub-culture the 

medium was changed twice weekly.

2 weeks0 week

3 weeks 4 weeks

Fig. 2.1: Human scleral fibroblasts growth from explants cultured. The fibroblasts grew 

out of explants by 2 weeks, and achieved confluence by 4 weeks.

2.2.5 Human Ciliary Muscle Cell Culture

After removing the cornea, the iris, ciliary body (including the ciliary muscle) 

and lens were carefully dissected from the globe using of forceps and 

scissors. Ciliary muscle was then carefully dissected from the tissue. Small 

explants of ciliary muscle were cultured in six well plates in 250fxl media: 

containing 1:1 DMEM and Ham’s F12 with 10% FCS medium, 1% antibiotics 

cocktail (containing 10mg/ml streptomycin sulphate, 10mg/ml kanamycin, 

6mg/ml penicillin-G,), 2mM glutamine and 2.5mg/ml amphotericin B. The cells 

were cultured at 37°C under standard incubator conditions (5% CO2), 

overnight. The next day medium was added to cover the well. Following 

outgrowth of cells at approximately, 1 week, the explants were removed and 

the media was changed twice a week (Fig 2.2). When confluent 

(approximately 20-40 days) cells were sub-cultured and placed into 25ml
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culture flasks (see section below). Following sub-culture the media was 

changed twice weekly.

0 w eek

2 w eeks 3 w eeks
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*

Fig. 2.2: Human ciliary muscle cell growth from explants cultured. The cells grew out by 

1 week of culture, and achieved confluence by 3 weeks.

2.2.6 Sub-Culture of confluent cells

Once cells reached confluence, media was removed by an aspirator and the 

cells were washed briefly in 1X PBS. 2ml of 0.25% trypsin and 0.02% EDTA 

solution (see appendix, section 8.2) was added to cells and incubated at 37°C 

until the cells had detached from the culture dish (approximately 1 minute). 

1ml of culture media containing FCS was added to inhibit trypsin activity. The 

cell suspension was centrifuged (600 series, Centurion Scientific Ltd, UK) for 

7minutes at 15, 000 rpm (2268g) at 10°C. The supernatant was removed and 

the pellet of cells re-suspended in 5ml medium and then split into culture 

dishes in a ratio of 1:3 or 1:2, depending on the requirement of the following 

procedures.

36



Bablin Molik Role of MMPs in Uveoscleral Outflow

2.2.7 Freezing cells

Following generation of primary cell lines, the cells were stored frozen in liquid 

nitrogen, at approximately -196°C, until required. Cells were detached as 

described for sub culturing with trypsin. Each cell pellet was re-suspended in 

1ml of freezing solution (90% FCS and 10% filtered DMSO) and then placed 

in cryovials. The cryovials were placed in a freezing chamber containing 

isopropanol and left at -80°C overnight before storing in liquid nitrogen.

2.2.8 Thawing Cells

When required, cells were taken from -80°C or liquid nitrogen storage and 

allowed to thaw at room temperature. 3ml of the appropriate medium was 

placed in a centrifugation tube and the cells were added to the medium and 

centrifuged for 7 minutes at 15,000rpm (2268g) at 10°C. The supernatant was 

removed and the cell pellet was re-suspended in medium and seeded into 

appropriate cell culture vessels.

2.2.9 Confirmation of Ciliary Muscle Cell Phenotype

Immunoassays with actin and desmin antibodies were used to confirm the 

presence of ciliary muscle cells (Weinreb, Kashiwagi et al. 1997) in cells 

cultured from human donors. The cells were sub-cultured (see section 2.2.6) 

and 3x103 cells were plated on in 4-well slides and cultured for 48 hours at 

37°C under standard incubator condition (5% CO2).

Cells were washed three times (10 minutes, each) with 1x PBS pH 7 

(appendix, section 8.2) and then fixed in 1% paraformaldehyde (PFA) for 

three minutes. The cells were washed further (three times, 10 minutes each 

wash) before permeabilisation of cell membrane with 0.1% Triton-X-100 (15 

minutes). After washing the cells in 1x PBS, the cells were incubated 

overnight in a primary antibody solution containing either mouse monoclonal 

anti-human a-smooth muscle actin (1A4 clone) or monoclonal antihuman 

desmin (D33 clone) at room temperature in a moist chamber. To determine 

which antibody concentrations were optimal for cell identification, cells were 

subjected to different dilutions of primary antibodies. Antibody concentrations
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were tested by exposure to a range of primary antibody dilutions (1:100, 

1:200 and 1:400 for a-smooth muscle actin and 1:100, 1:200 and 1:500 for 

desmin localisation).

Following incubation, the cells were washed three times in 1X PBS (10 

minutes per wash). The cells were then incubated for 90 minutes in anti­

mouse secondary antibody, Alexa Fluor 488 (Molecular Probes) at a dilution 

of 1:1000 in PBS). 2pg/ml bisbenzimide (Hoechst 33345) was added to the 

secondary antibody solution, in order to localise cell nuclei. The cells were 

washed again three times in 1x PBS. The cells were then mounted in gelvatol 

(see appendix, section 8.2) and viewed by a Leica DMRA2 microscope and 

images captured using Q-Fluoro and Q-win Leica image analysis software.

2.2.10 Detection of PGF2a receptor and MMP 2 in HSF and HCM cell 

cultures

Cultured HSFs and HCM cells (as described in sections 2.2.4 and 2.2.5) were 

placed on 4-wells slides as described in the previous section (2.2.9) and 

maintained for 48 hours at 37°C under standard incubator conditions (5% 

CO2). The cells then underwent a few optimization steps before being stained 

with primary and secondary antibodies.

The optimization involved three 10 minutes washes in PBS followed by 3 

minutes in 1% PFA. The cells were washed again three times (10 minutes, 

each) before permeabilisation of cell membrane with 0.1% Triton-X-100 for 15 

minutes. After washing the cells three times with 1x PBS, the cells were 

placed in 2% donkey serum for 20 minutes.

Once the cells underwent a further 3 washes in PBS they were placed in 

primary antibodies overnight at 4°C. Cells were stained as described in 

section 2.2.4. The primary antibodies were rabbit polyclonal PGF2a receptor 

and mouse monoclonal MMP 2 antibodies. Both were optimised to be most 

effective at 1:100 dilutions in PBS. The negative controls involved sections 

being maintained in PBS overnight. Secondary antibody staining used Alexa
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Fluor® 488 donkey anti-rabbit IgG (H+L) for slides with rabbit polyclonal 

PGF2a receptor primary and a negative control, and Alexa Fluor 488 donkey 

anti-mouse IgG (H+L) for slides with mouse monoclonal MMP 2 primary 

antibody and a negative control. The slides were incubated at room 

temperature for 2 hours with the secondary antibody. Thereafter, slides were 

washed three times in PBS for 10 minutes and mounted with gelavatol. The 

slides were viewed by a Leica DMRA2 microscope and images captured 

using Q-Fluoro Leica image analysis software.

2.2.11 Cell Counting

Cell counts were conducted in order to make sure sufficient and equal cell 

number was used for zymographical analysis. The cells were sub-cultured as 

above (see section 2.2.6) and the cell pellet re-suspended in appropriate 

(5ml) media. With a cover-slip in place, 16pl droplet of cell suspension was 

loaded into each of the two chambers of a Modified-Fuchs-Rosenthal 

Haemocytometer (Weber, UK) (Kouri, Gyory et al. 2003). Each chamber 

consisted of 9 large squares with triple line boundaries. The cells were 

counted in the central and four corner squares per chamber. The 

concentration of cells was calculated using the following:

Cell concentration = Total number of cells counted
= X103 per ml

2 (dilution factor X 10'3)

2.2.12 Serum-Free Cell Culture

FCS is known to effect the level of MMPs and TIMPs in the medium (Kim, 

Lindsey et al. 2001). Cells were cultured in culture medium containing 1X ITS 

(1.0 mg/ml insulin from bovine pancreas, 0.55 mg/ml human transferrin 

(substantially iron-free), and 0.5pg/ml sodium selenite). This medium was 

enhanced by the addition of 0.2mmol/L ascorbic acid (Hadri, Moldes et al. 

2002).
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2.2.12.1 Preparation of MMP-enriched medium, HSF and HCM cell 

conditioned medium

MMP enriched medium (MMP-EM) was bovine skin fibroblast cell-conditioned 

medium. These cells were cultured in 10% FCS DMEM-glutamax medium 

containing 1% antibiotic cocktail (compromising 10mg/ml streptomycin 

sulphate, 10mg/ml kanamycin, 6mg/ml penicillin-G,), 2mM glutamine and 

2.5mg/ml amphotericin B until confluency. The serum containing medium was 

then replaced by serum-free medium of DMEM-glutamex containing 1% 

antibiotic cocktail, 2mM glutamine, 2.5mg/ml amphotericin B and 1X ITS. The 

cells were grown in this medium for 5 days. The medium was collected, this 

medium was known as the MMP-enriched media (MMP-EM), and stored at -  

20°C. The cells were then re-cultured in serum containing medium, and 

allowed to settle for 24 hours before being sub-cultured (section 2.2.6). The 

process was repeated until sufficient conditioned media was collected.

Human scleral fibroblasts and ciliary muscles cells at passage 3 were cultured 

in serum-free medium (as described in section 2.2.12) and the medium was 

collected after 72 hours. The medium was analysed for MMP and TIMP 

activity via zymography and reverse zymography, respectively.

2.2.13 Zymography to detect Gelatinases, Stromelysins and TIMP 

activity in cell cultures

Zymography was performed similar to the method described by Kleiner and 

Stetler-Stevensen (Kleiner and Stetler-Stevensen 1994).

2.2.13.1 Preparation of Samples for zymography

50pl of sample was placed in 2X sample buffer (see appendix section 8.2) in 

a 1:1 ratio or 6x sample buffer in a ratio of 1:3 sample buffer: sample. The 

samples were denatured at 60°C for 30 minutes on a heat block.
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2.2.13.2 Detection of MMPs by Zymography

Gelatin gels were set in order to detect gelatinase activity (i.e. MMP2 and 9). 

7.5% gelatin resolving gel was prepared containing 1ml 7.25mg/ml gelatin 

(see appendix, section 8.2).

Casein gels were used to detect stromelysin activity (i.e. MMP 3 and 7). 12% 

casein resolving gel was prepared containing 1.5mg/ml casein (see appendix, 

section 8.2). The appropriate casein concentration for optimal results was 

determined by using resolving gel containing 1.5mg/ml (Ando, Twining et al. 

1993) or 0.5mg/ml casein.

4% stacking gel was prepared (see appendix, section 8.2) and placed on the 

resolving gel. 10pl of sample was loaded into each well and the gel was run in 

1X Lammeli buffer (appendix, section 8.2) at 100V for approximately 90 

minutes. The gel was removed from the tank and washed in 2.5% Triton X- 

100 three times, 10 minutes per wash, in order to displace SDS and allow 

proteins to re-nature. The gel was then left in MMP proteolysis buffer in order 

to allow enzyme activation.

Gelatin gel proteolysis buffer

50mM Tris pH 7.8, 50mM CaCI2, 0.5M NaCI, gel incubation at 37°C overnight 

(Kleiner and Stetler-Stevensen 1994).

Casein gel proteolysis buffer

To determine optimal enzyme activity in casein gel, different buffers 

containing different pH, CaCI2 or NaCI concentrations were tested.

• 50mM Tris pH 7.8, 50mM CaCI2, 0.5M NaCI, gel incubation at 37°C 

overnight (Kleiner and Stetler-Stevensen 1994).

• 50mM Tris pH 7.5, 10mM CaCI2 as, gel incubation at 37°C overnight, as 

suggested by Ando et al (Ando, Twining et al. 1993).

• 50mM Tris pH 8.0, 5mM CaCI2, 0.02% sodium azide, gel incubation at 

37°C for 48 hours, as suggested by Ando et al (Ando, Twining et al. 1993).
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Following activation, the gel was rinsed briefly with water and then placed in 

Coomassie brilliant blue R stain (see appendix, section 8.2) for 40 minutes, 

and then destained in methanol and acetic acid solution (see appendix, 

section 8.2). The destain solution was changed successively at 1, 15, 30 and 

60 minutes, until lysis bands appear white on a dark blue background. Gel 

band intensities were analysed and quantified by laser scanning densitometry 

using Epson expression 1680 Pro scanner and Labworks 45 software.

2.2.13.3 Detection of TIMP by Reverse Zymography

Samples were prepared as described in section 2.2.9.4 for zymography.

To determine optimal conditions different percentage gels were tested 

according to previous studies; 12% resolving gel (Zhang, Moses et al. 2003), 

15% resolving gel (Mandler, Dencoff et al. 2001) and 10% resolving gel 

(Singer, Marbaixe ta l. 1999).

The resolving gel contained 1ml MMP-EM (medium containing protease (see 

section 2.2.9.3)) along with gelatin (substrate). The optimal gelatin 

concentration within the resolving gel was determined following incorporation 

of either 350pl of 20mg/ml (Bris 2003) or 1ml of 2.2mg/ml gelatin (Oliver, 

Leferson et al. 1997) into a 12% resolving gel. A 4% stacking gel was 

prepared (see appendix, section 8.2) and placed on the resolving gel.

10pl of sample was loaded into each well and the gel was run in 1X Lammeli 

buffer (appendix, section 8.2) at 100V for approximately 90 minutes. The gel 

was removed from the eletrophoretic tank and washed in 2.5% Triton X-100 

three times, 10 minutes per wash, in order to displace SDS and allow the 

proteins to re-nature.

The gel was then left in MMP proteolysis buffer for 24 hours at 37°C. Different 

pHs of proteolysis buffers were tested to determine optimal results: 50mM 

Tris, 0.2M NaCI, 5mM CaCk, pH8 (Zhang, Moses et al. 2003) and 50mM tris, 

0.2mM NaCI and 5mM CaCI2, pH7.6 (Mandler, Dencoff et al. 2001).
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The gel was briefly rinsed in destain (Bris 2003) and then stained and 

destained in the same manor as described in section 2.2.1.3. Dark blue 

bands were observed where TIMPs had inhibited gelatin degradation activity 

by the protease incorporated within the gel matrix. Gel band intensities were 

analysed and quantified by laser scanning densitometry using Epson 

expression 1680 pro scanner and Labworks 45 software.

2.2.13.4 Sensitivity of band intensity to sample concentration

The effect of sample concentration on band intensity of zymograms and 

reverse zymograms was analysed. MMP-enriched media was serially diluted 

in DMEM. The diluted samples were placed in sample buffer and run on 

gelatin, casein and reverse zymogram. The results obtained were recorded by 

scanning densitometry of the zymograms by Epson Expression 1680 pro 

scanner. Gel band density was analysed with the use of Labworks45 analysis 

software.

2.2.14 Detection of MMP 1 using Enzyme-Linked ImmunoSorbent Assay 

(ELISA)

Media samples collected from cell cultures underwent ELISA assay in order 

to detect MMP 1 concentration. ELISA was conducted using a MMP-1 Biotrak 

ELISA kit according to manufacturer’s instructions (Amersham, UK). In brief, 

a standard curve was created by serially diluting MMP-1 standard (200 ng/ml) 

to produce concentrations 0, 6.25, 12.5, 25, 100, 200 ng/ml. Duplicate 100pl 

aliquots of standards and samples were loaded into anti-MMP-1-coated wells 

in a microplate, and incubated at 20-25°C for 2 hours. After washing the wells 

with wash buffer three times, 100pl antiserum was applied to each well and 

the plate was left at 20-25°C for a further 2 hours. 100pl peroxidase 

conjugate was applied to each well after three washes and incubated at 20- 

25°C for an hour. After three further washes 100pl tetramethylbenzidine TMB 

substrate was applied to each well and the plate was placed on a shaker at 

room temperature for 30 minutes. 100pl of 1M sulphuric acid was applied to 

each well to stop the enzyme substrate reaction and plate was read at 450nm 

(Multiskan Ascent 354 model; Labsystems).
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2.3 The effect of different MMP inducers on cells involved in uveoscleral 

outflow MMP secretion

HSFs and HCM cells were cultured and different growth factors were applied. 

The media collected was analysed using zymography and reverse 

zymography techniques. The effect of different test factors: transforming 

growth factor p i (TGF- p i), tumor necrosis factor-a (TNF- a), interleukin-1 a 

(IL-1a) and PGF2a on MMP activity was studied.

2.3.1 Cell Culture

HSFs and HCM cells were cultured as described previously in section 2.2.5 

and 2.2.6, respectively. After undergoing 3rd passage the cells were plated on 

24 well plates. 1ml of 3x103 cells was aliquoted into each well of a 24 well 

plate. Each cell-line occupied duplicate wells, for each test factor and control, 

and for each time time-point studied. The cells were maintained at 37°C 

under standard incubator conditions (5% CO2) in serum containing medium 

for 48 hours in order to ensure the cells had attached, followed by 24 hours in 

serum-free medium.

After the 24 hours the serum-free medium was removed and replaced with 

serum-free medium containing the test factors. The concentration of test 

factors included 10ng/ml TGF- p1, 25ng/ml TNF-a, 25ng/ml IL1a and 100nM 

PGF2a, as reflected in previous literature (Hosseini, Rose et al. 2006; Kim, 

Shang et al. 2004). Negative controls involved cells cultured in serum-free 

medium without any test factors. 1ml media from cultured cells was collected 

after 24, 48 and 72 hours and stored at -20°C until used experimentally.

2.3.2 Zymography

MMP secretion into media collected was detected by Zymography as 

described in the above sections 2.2.13.-2.2.13.2. The results obtained were 

recorded by scanning densitometry of the zymograms by Epson Expression 

1680 pro scanner. Gel band density was analysed with the use of Labworks 

45 analysis software.
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2.4 The effect of MMP and PGF2a on Scleral Permeability

An Ussing chamber was used in order to analyse scleral tissue permeability, 

via monitoring the flow of fluorescence dextran across the sclera.

2.4.1 Scleral tissue culture

Following removal of all ocular components, including optic nerve and 

extraocular muscles, the sclera was dissected into four equal sized (1cm2) 

explants, which were scraped clean on both sides. Each scleral explant was 

immersed in 3% betadine for 30 seconds, and then thoroughly rinsed in 

sterile PBS (pH7.4).

The explants were cultured in MMP-EM, serum-free DMEM containing 100nM 

17-phenyltrinor-PGF2a (Cayman Chemical Co, Ml) or control medium (serum- 

free DMEM) for varying time periods from 0-72 hours at 37°C, under standard 

incubator conditions. Scleral explants were removed from media following 

appropriate incubation periods up to 72 hours.

2.4.2 Determination of scleral permeability using Ussing chamber

Each scleral tissue explant was clamped into an Ussing-system (WPI labs- 

model, UK). Phenol red-free HBSS medium (Gibco, UK) was loaded into both 

sides of the chamber via the reservoir. The orbital side of the chamber was 

supplemented with 0.25mg/ml rhodamine dextran beads (10, 40 or 70KDa) 

(Invitrogen, Molecular Probes, UK). 1ml media samples were extracted at 30 

minutes and 4 hours from the uveal side and stored at -80°C prior to 

spectrophotometry.

2.4.2.1 Use of Spectrophotometer & Spectrofluorometer

Two blanks, cuvettes (1ml sample cuvette were used) with HBSS, were 

placed in the spectrophotometer (U-2800 Spectrophotometer, Digilab Hitachi, 

Jencons) to account for any background and produce a relevant blank at 

excitation and emission wavelengths of 550 and 580nm, at room temperature, 

respectively. One cuvette was loaded with sample and the absorption profile 

was produced blank to sample absorption. This was carried out to ensure that
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the absorbance peaks attained were under 0.1, as this is the maximum range 

of absorbance for the spectrofluorometer at which relevant readings could be 

attained. Absorption profiles were produced with a UV solution 2.0 software.

In cases where absorption of a sample indicated more than 0.1 nm peak, the 

sample was diluted and accounted for when conducting the calculations to 

determine fluorescence concentration. Samples were then placed in the 

spectrofluorometer (Digilad Hitachi F-4500, Jencons). Absorbance peak 

profiles were produced with excitation and emission wavelengths of 550 and 

580nm at room temperature, respectively. Example figure has been shown in 

Fig 2.3.
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Fig. 2.3: Spectrofluorescence reading from the uveal side of 24 hours prostaglandin 

incubated tissue, after 4 hours in the Ussing chamber.
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2.4.2.2 Standard Absorbance-Concentration for Spectrofluorometry

Standard absorbance-concentration curves were obtained by

spectrofluorometry, using serial dilutions of rhodamine-dextran in phenol red- 

free HBSS medium. 0.25mg/ml rhodamine dextran bead suspensions (10, 40 

or 70KDa) were diluted 1:1 in HBSS medium serially. Standard curves were 

produced using absorbance readings obtained from the different 

concentration of dextran beads. These curves were used to obtain sample 

concentrations from absorbance readings (standard curve obtained for 40kDa 

is included in Fig. 2.4).
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Fig. 2.4: Standard curve of 40kDa dextran bead concentration in relation to 

fluorescence reading (580nm).
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2.4.2.3 Calculating Permeability coefficient (Pc)

The diffusion of dextran beads from orbital to uveal scleral side of the 

chamber was quantified as a measure of the permeability coefficient (Pc) 

using equation (Kim, Lindsey etal. 2001):

Pc (cm/sec) = ((Cut - Cu0.5) V-1) (AtC0)"1

Where:

Cuo.5 is the concentration of dextran beads at 30 minutes 

Cut is the concentration of dextran beads at t hours (4 hours).

Co is the initial rhodamine dextran concentration (25mg/ml).

A is the surface area of exposed sclera (0.65cm2).

V is the volume of each chamber (0.75ml). 

t is duration of steady state flux converted from hours to second

2.5 Effect of PGF2a and MMP on scleral collagen architecture

Human scleral tissue was incubated with MMP-EM or PGF2a. Separate 

experiments were conducted which involved scleral tissue being treated in 

human scleral fibroblasts conditioned medium (HSF-CM) or human ciliary 

muscle cells conditioned medium (HCM-CM). Specific MMP effect on the 

scleral tissue was also studied, by incubating sclera in MMP-1, MMP-2 or

MMP-7. Scleral tissue incubated in serum-free medium without any factors

acted as a negative control and positive control included medium containing 

collagenase. X-ray diffraction was conducted on the scleral tissue samples, in 

order to determine the effect of each incubation on scleral architecture.

2.5.1 Scleral tissue culture

Human scleral tissue was extracted in the same manner as described in 

section 2.4.1. However, all tissue explants were cut to an approximate size of 

1cm2. The explants were cultured, in triplicate, in MMP-EM, HSF-CM, HCM- 

CM, serum-free DMEM containing 100nM 17-phenyltrinor-PGF2a, control 

medium (serum-free DMEM) , control medium containing 20nM MMP-1, 

MMP-2 or MMP-7 or control medium containing 2% collagenase for varying
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time periods from 0-72 hours at 37°C, under standard incubator conditions. 

Sclera was removed from media following appropriate incubation periods (0, 

3, 6, 12, 24, 48 or 72 hours) and stored at -80°C.

2.5.2 X-ray Diffraction

The treated scleral tissue was thawed and under moist condition placed into 

appropriate sample holders for x-ray diffraction beam passage. An example of 

X-ray diffraction is shown in Fig. 2.5. The incoming x-ray beam hits the 

sample, and is scattered from the interaction with electrons within the sample. 

The scattered beam is collected on the detector. X-ray diffraction images 

were viewed using FibreFix software (CCP13). The 2D x-ray diffraction image 

exhibited isotopic scattering and diffraction peaks which were visible as rings. 

It was therefore appropriate to convert the information into a linear intensity 

profile of intensity to reciprocal scattering vector. This allowed direct 

comparison of scattering (Goh, Hiller et al. 2005). PeakFit4 (AISL software) 

the one-dimensional peak fitting program was used to determine the peak 

size shapes and integrated intensity of linear profiles.
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Fig. 2.5: Example of x-ray diffraction, a) Diagram showing x-ray diffraction and beam scatter b) A 2D X-ra> 
diffraction image of Rat tail tendon (calibrant). c) A 1D linear trace of the 2D X-ray diffraction image of Rat tai 
tendon.

Wide angle diffraction was used to view collagen helical rise per residue and 

intermolecular lateral packing. Small angle x-ray diffraction images were 

taken to analyse D-periodicity. All image analysis was conducted by Clark 

Maxwell.

2.6 Effect of PGF2a and MMP on proteoglycans in human sclera

Western blotting was conducting in order to determine the proteoglycan 

composition in the sclera and any change in composition as a result of scleral 

incubation in MMP-EM or PGF2a.

2.6.1 Proteoglycan Extraction

Each tissue sample was freeze dried and weighed after incubation. The 

samples were placed in centrifuge tubes in 10ml extraction buffer containing 

4M guanidine HCI, 0.05M sodium acetate, 0.01 M EDTA, 0.1M 6-amino 

hexanoic acid, 0.005M benzamide HCI* and 0.5mM phenyl sulfonyl fluoride*
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pH6.8 (* represents chemicals added immediately prior to extraction). The 

samples were rotated at 20°C for 1 week. Any tissue remaining was kept 

frozen at -80°C and later underwent papain digestion.

2.6.2 Dialysis of proteoglycan extraction fluid

14cm length and 2.5cm width dialysis tubing per sample was soaked in milliQ 

water for 2 minutes. A knot was tied at one end of the tubing and sample was 

loaded into the tubing, after tying a knot on the other end of the tubing it was 

secured with an elastic band onto a 5 litre beaker filled with milliQ water. The 

beaker containing all tubings with samples was maintained at 20°C overnight 

with two changes of milliQ water.

2.6.3 Papain Digestion

Scleral tissue, remaining after proteoglycan extraction, was digested with 

papain to release all of the remaining proteoglycan within the tissue. The 

buffer consisted of 5mM L-cysteine hydrochloride, 5mM EDTA and 600pg/ml 

papain for 48 hours. Once all scleral tissue was digested into solution, 

samples stored at -80°C until undergoing the dimethylene blue (DMMB) 

assay.

2.6.4 Dimethylene Blue (DMMB) Assay

40pl of each standard: 10, 20, 30 and 40pl/ml shark cartilage chondroitin 

sulphate C in water was loaded into a 96 well plate in triplicate. 40pl of each 

sample was loaded onto the 96 well plate, in duplicate. To each well 200pl of 

DMMB solution (1,9 dimethyl methylene blue, ethanol, 1M sodium hydroxide, 

98% (v/v) formic acid and made up to 2 litres with double distilled water) was 

added. The plate was immediately read at 525 nm to provide GAG 

concentrations in pg/ml. In order for the antibodies to be detected it was 

necessary to have a minimum of 10pg of GAG per sample. The DMMB 

assay allowed the calculation of the appropriate volume to provide the 

appropriate GAG concentration using:

Concentration (pg/ml) = Weight (pg) / Volume (ml).
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2.6.5 Protein Assay

Protein assay was conducted using a BCA Kit (Sigma), in which 10pl of serial 

diluted standard (8 times) in duplicate wells of a 96 well plate. 1 OjllI samples 

were loaded into the remaining wells. A cocktail was prepared using buffers A 

and B. The ratio of buffer A: B was 1:50. To each well 200jal of A: B buffer 

cocktail was loaded. The plate was tap mixed and placed at 37°C incubator 

for 30 minutes. The plate was then read immediately at 555nm.

2.6.6 Deglycosylation

Deglycosylation was performed to reduce the size of the large proteoglycans 

e.g. aggrecan. This was a necessary step before performing western blotting, 

as large proteoglycans can not migrate through the gel matrix. 

Deglygosylation involved the addition of 10X Tris buffer (Appendix, section 

8.2) to each calculated volume of sample. 1jil keratanase I, 2pl keratanase II 

(AMS biotechnology) and 1pl chondroitinase ABC (Sigma) was added to each 

sample for every 10pg GAG.

2.6.7 Western Blotting

5X Sample buffer (2X sample buffer: 0.125M Tris HCI pH 6.8 with 4% SDS, 

20% glycerol and 0.01% bromophenol blue) was prepared and made to 1X 

sample by the addition of 3.5ml double distilled water then 0.5ml 

mercaptoethanol was added to 1 ml of 5X sample buffer. 200pil of 1X sample 

buffer was loaded into each sample bijoux; the samples were vortexed briefly, 

and then the samples were placed in boiling water for 10 minutes. The heat 

treatment completed the reduction reaction of p-mercaptoethanol. The 

samples were vortexed and then centrifuged briefly.

Tris-glycine (4-12% gradient gels; Invitrogen) were placed into clip-lock tanks 

and the tanks were loaded with running buffer (25mM Trizma, 192mM glycine 

and 0.1% SDS). 10jal molecular weight marker (Sigma) was loaded into the 

first well and 50pl of each sample into the remaining wells of each gel. The 

gels were run at 100V until the samples reached the bottom (approximately 1-

1.5 hour).
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Filter paper, nitrocellulose membranes with the blue cover and transfer blot 

sponges were cut to gel size (7.5cm by 8.5cm) and soaked in transfer buffer 

(25mM Trizma, 192mM glycine, 20% methanol). All the layers were arranged 

as shown in the figure below (Fig. 2.6). One layer of transfer sponge, 2 layers 

of filter paper was followed by gel (gel was removed from the plastic cover) 

and then the membrane (making sure to remove the blue cover without 

touching the membrane). Once the membrane was in place two more layers 

of filter paper, and one layer of transfer sponge was placed into the transfer 

tank and then the tank was clipped closed and placed into the wet tank.

Transfer tank 
Transfer sponge 
Filter paper 
Gel
Membrane

Fig. 2.6: The arrangement of different layers within the transfer tank.

The transfer tanks contained an ice block and were filled with transfer buffer. 

The transfer was set on a stirrer, at 100V for exactly an hour.

The membrane was removed and blocked for 30 minutes in 5% BSA in TSA 

(50mM Tris (pH 7.4), 200mM sodium chloride and 0.02% (w/v) sodium azide), 

on a rotator. The membranes were then left overnight at room temperature, 

on a rotator, in primary antibodies. The primary antibodies were diluted into 

10ml 1% BSA in TSA per membrane.
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Antibodies used included:

# 6B4*IGD- Aggrecan (Caterson, Flannery et al. 2000)

# Pr8A4 -  Biglycan (Roughley, White et al. 1993)

# Lum-1 -  Lumican (Bidanset, Guidry etal. 1992)

# 70.6 -  Decorin (Carlson, Liu et al. 2005)

After overnight incubation in primary antibody, the membrane was washed 

three times in TSA, 10 minutes per wash. 1pl of secondary anti-mouse IgG 

(H+L), alkali phosphate (AP), and was prepared in 7.5ml of 1% BSA in TSA. 

10ml of secondary mix was loaded onto each membrane and left on a rotator 

for an hour. After undergoing 3, 10minute washes in TSA, 10 ml of AP buffer 

(100mM trizma, 5mM MgCI2, 100mM NaCI pH 9.55) containing 33pl BCIP 

and 66pl NBT (Promega ) was loaded onto each membrane. The membranes 

were left on the rotator until the band colour developed. To prevent intense 

band staining, the membranes were washed for 5 minutes in tap water. 

Membranes were left on filter paper to dry and then scanned using Epson 

Expression 1680 pro scanner. Band staining on blots were analysed using 

Labworks 45 analysis software.
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CHAPTER 3
CHARACTERISATION OF THE 

UVEOSCLERAL OUTFLOW PATHWAY
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CHAPTER 3
CHARACTERISATION OF THE UVEOSCLERAL OUTFLOW PATHWAY 

3.1 Introduction
The anterior segment of the eye has two aqueous drainage pathways: via the 

trabecular meshwork and the uveoscleral outflow pathway (Fig. 3.1). The 

most common first line medication to treat glaucoma are prostaglandin 

derivatives, such as Latanoprost. This group of drugs act on the uveoscleral 

outflow pathway.

Cornea

Anterior
Chamber

:ular

Sclera

w Ciliary 
P races

Iris Pupil
b iliary
Muscle

Lens

Aqueous Flow 
•  •  T rabecular outflow 
.  m Uveoscleral outflow

Fig. 3.1: Schematic diagram of the aqueous humor cycle

Aqueous is formed by the ciliary process and secreted into the posterior 

chamber. It moves into the anterior chamber and exits the chamber via two 

pathways: trabecular and uveoscleral outflow.

Aqueous flow via the ciliary muscle and scleral tissue forms the main route of 

passage within the uveoscleral pathway which is influenced by prostaglandin. 

Previous studies have concluded that prostaglandin-based derivatives 

increase uveoscleral outflow, and reduce trabecular outflow (Gabelt and 

Kaufman 1989). Prostaglandins influence MMP secretion and activation
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within the uveoscleral outflow pathway (Husain, Jafri et al. 2005; 

Schachtschabel, Lindsey et al. 2000).

The activation of FP receptors with Prostaglandin F2alpha (PGF2a) is 

postulated to upregulate MMP expression in the uveoscleral outflow pathway 

(Gaton, Sagara et al. 2001; Schachtschabel, Lindsey et al. 2000). A reduction 

in extracellular matrix with PGF2a treatment within the pathway has been 

demonstrated (Lutjen-Drecoll and Tamm 1988), which may consequently be 

linked to its ability to influence scleral permeability (Kim, Lindsey et al. 2001; 

Weinreb 2001)

A number of factors have previously been shown to affect MMP activation 

and/or secretion. Amongst these are interleukin-1 a (IL-1a) (Fleenor, Pang et 

al. 2003), tumour necrosis factor-a (TNFa) (Li, Shang et al. 2003) and 

transforming growth factor-p (TGFp1)(Kim, Shang et al. 2004; Wick, Platten 

et al. 2001). IL1a was one of the first cytokines to be discovered. It is 

produced by macrophages, monocytes and dendritic cells and binds to 

cellular receptors in order to induce signalling pathways that initiate the 

immune response (Werman, Werman-Venkert et al. 2004). TNF is an 

inducer which promotes apoptotic cell death, cellular proliferation, 

differentiation, inflammation, tumorigenesis, and viral replication. TNF's 

primary role is in the regulation of immune cells (Old 1985). TGFpi is a 

polypeptide growth factor, involved in cellular transformation, cell growth, 

differentiation and apoptosis (Lawrence 1996). All three factors are involved 

in cellular action and have been related to activation of MMPs in order to 

perform their functions.

The current chapter highlights the effect of known inducers of MMP activity on 

human scleral fibroblasts (HSFs) and human ciliary muscle (HCM) cells. This 

understanding is important in order to target factors which may influence 

MMP activity and thereby increase aqueous drainage via the uveoscleral 

outflow pathway.
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3.2 Aims:
The aims of this chapter were to characterise:

• human anterior chamber morphology to distinguish different 

structures within the uveoscleral outflow pathway.

• the prescence of PGF2a receptor and MMP 2 in HSFs and HCM 

cells.

• the MMP and TIMP profile in MMP-Enriched Medium (MMP-EM).

• the MMP and TIMP profile produced by HSFs and HCM cells.

• the effect of MMP inducers on the MMP and TIMP profile secreted 

by HSFs and HCM cells
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3.2 Experimental Design

3.2.1 Morphology of the anterior chamber
The morphology of structures in the anterior chamber were distinguished in 

histological sections (n=3), following either haematoxylin and eosin or 

toluidine blue staining (section 2.2.3).

3.2.2 Identification of the presence of PGF2a receptor and MMP 2 in 

HSFs and HCM cells

The phenotype of HCM cells was confirmed, as described in section 2.2.10, 

by positive immunolabelling for both a-actin and desmin, known markers of 

ciliary smooth muscle cells (Weinreb, Kashiwagi et al. 1997). The phenotype 

of human fibroblasts was confirmed by visualisation of their spindle-shaped 

morphology.

Third passage HSFs and HCM cells were cultured in triplicate wells on 4-well 

slides (Scientific Laboratory Supplies, U.K.) for 48 hours. The 

immunofluorescent localisation of PGF2a receptor and MMP2 was performed 

as described in section (section 2.2.11).

3.2.3 The MMP and TIMP profile in MMP-Enriched Medium (MMP-EM)

Media was collected from triplicate cultures of BOVS-1 cells (bovine skin 

fibroblasts, see section 2.2.12.2 for culture method). Since this media is 

known to contain a cocktail of MMPs and TIMPs, for the purpose of this thesis 

it is called MMP-enriched media (MMP-EM). MMP and TIMP profiles in MMP- 

EM were analysed by zymography (gelatin gels for gelatinase activity, casein 

gels for stromelysin activity) and reverse zymography respectively (see 

sections 2.2.13.3-2.2.13.5). In addition, MMP1 activity in the media was 

determined by ELISA (see section 2.2.13.8). Medium not exposed to cells 

acted as a negative control.
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3.2.4 Sensitivity of Quantification

In order to detect the sensitivity of quantification methods MMP and TIMP 

levels were analysed in serially diluted MMP-EM in uncultured media. 

Following zymography and reverse zymography of samples (section 

2.2.12.6), gel band intensities were analysed and quantified by laser scanning 

densitometry using Epson expression 1680 Pro scanner and Labworks 45 

software.

3.2.5. MMP and TIMP profile of HSFs and HCM cells in culture.

Media were collected from third passage HSF and HCM cells from three 

different donors, cultured for 72 hours with and without FCS (see section 

2.2.12.1). MMPs and TIMPs secreted into this media by HSF and HCM cells 

were analysed following zymography and reverse zymography respectively 

(see sections 2.2.12.3-2.2.12.5) . Medium not exposed to cells acted as a 

negative control. MMP-enriched medium (MMP-EM) acted as a positive 

control. MMP1 in the media was assessed by ELISA (section 2.2.12.8). 

MMPs and TIMPs in serum-free media were quantified as described above in 

3.2.4.

3.2.6 The effect of known MMP inducers and PGF2a on MMP activation 

in HSF and HCM cell cultures

Fourth passage primary HSF and HCM cell cultures, from 4 different human 

donors, were seeded into 24 well plates at a cell density of 2 x 103 cells/ml (1 

ml was seeded per well). The cells were cultured in serum-containing media 

for 48 hours. Once the monolayer of cells had reached 90% confluency, cells 

in triplicate wells were treated with known regulators of MMP activity, 

including 25ng/ml IL1 a, 25ng/ml TNFa or 10ng/ml TGFpi in serum-free 

media. Concentrations were selected according to previous publications 

(Hosseini, Rose et al. 2006; Kim, Shang et al. 2004). 100nM PGF2a was also 

applied to cells in triplicate wells. Cells cultured in serum free media without 

any test factors were used as negative control.
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500|jl of medium was removed from each culture well after 24, 48 and 72 

hours incubation and stored at -80°C until required. On the day of analysis, 

protein concentration were determined using the Bicinchoninic acid (BCA) 

protein assay (see section 2.6.5) and samples of equal protein concentration 

were loaded onto gelatin and casein gels. Following zymography (section 

2.2.12), all gels were scanned using an Espon expression 1680 pro scanner 

and gel band max OD was measured using Labworks45 software. The data 

was entered into Excel 2003 to obtain charts and SPSS 14 in order to 

conduct statistical analysis of trends observed. ANOVA was conducted on 

parametric data and Kruskal Wallis test was contacted on non-parametric 

data.
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3.3 Results

3.3.1 Morphology of the human anterior chamber

In order to understand orientation of structure within the anterior chamber 

haematoxylin and eosin staining and toluidine blue staining was conducted on 

wax sections of human anterior chambers(Fig. 3.2-3.3).

Anterior
Chamber
Angle

Cfliasy-.

Fig. 3.2: Haematoxylin and eosin staining o f the anterior segment.

Haematoxylin (blue) being is a dye which stains nucleic acids of the cell 

nucleus; and eosin (pink) is more acidic and therefore has greater affinity for 

cytoplasmic components of cells. Fig. 3.2 above illustrates the structures 

involved in forming the anterior segment of the eye. Of particular interest to 

this study are the sclera and ciliary muscle, both important structures in the 

uveoscleral outflow pathway.

Toludine blue is another basic dye and has affinity for nucleic acid in the 

nucleus of all cells. It is a quick stain to identify orientation of sections. Fig.3.3 

demonstrates the staining of the anterior chamber with toluidine blue. Both of 

these histological stains identify that greater cellular activity, indicated by 

nuclear staining, exists within the cilliary body (including ciliary muscle and
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ciliary processes) compared to the scleral layer. The sclera comprises scleral 

fibroblasts surrounded by dense connective tissue.

' j / v  Anterior 
chamber

B L << V -

Fig. 3.3: Toluidine blue staining o f human anterior segment.

3.3.2 Presence of PGF2a receptor and MMP 2 in HSFs and HCM cells

The HCM cell phenotype was confirmed by immunopositive localisation of 

actin and desmin (Figs. 3.4a and b) within the cells. 1:200 dilution of primary 

antibodies was found to be the optimal concentration for immunolocalisation 

of these markers. Fig. 3.5 demonstrates the presence of PGF2a receptor and 

MMP 2 within HSFs and HCM cells.
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Actin

Desmin

n

Negative Control

(e)

10nm

Fig 3.4: Immunostaining o f human ciliary muscle cells, a-actin (green) (a) 1:200 
and (b) 1:400 and desmin (green) (c) 1:200 and (d) 1:500 nuclei staining (blue) 
negative control (e)
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HSF HCM

Fig. 3.5: Immunolocalisation of PGF2a receptor and MMP 2 in human scleral fibroblasts (HSF) 
and ciliary muscle cells (HCM) cultures. PGF2a receptor staining (A & E), negative control for anti­
rabbit (B & F), MMP 2 staining (C & G) negative control for anti-mouse (D & H).
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3.3.3 MMPs and TIMPs Profile in MMP-EM, HSF and HCM cells 

conditioned media

MMP 9 
86KDa 
MMP 2 
66KDa

MMP 10 
52KDa

MMP 3 
47KDa 

MMP 7 
19KDa

Casein Zymography

Reverse Zymography 2 iKDa

Fig 3.6: MMPs and TIMPs p ro file  in cond itioned  m edium , (a) gelatin zymogram, (b) casein zymogram  
and (c) reverse zymogram.Control: Uncultured media, M M P-EM , Conditioned HCM media (HCM), 
Conditioned HSF media (HSF) with (+) and without (-) serum and molecular weight marker

Gelatin zymography revealed the presence of gelatinase activity. MMP 2 in 

serum-free media of HSFs and HCM cells. However, MMP 2 and MMP 9 was 

detected in MMP-EM and HSF and HCM conditioned-medium with serum, as 

demonstrated in Fig. 3.6a.

Casein zymography confirmed the presence of stromelysins within samples. 

MMP 3 and MMP 7 in all samples of MMP-EM, HSF and HCM conditioned 

media. Other MMPs, such as MMP 10, were detected in conditioned media 

with serum (Fig. 3.6b).

Reverse zymogram revealed the presence of all four TIMPs in HSFs and 

HCM cells conditioned media with or without serum (Fig. 3.6c). However, in 

MMP-EM only TIMP 2 and 4 was detected.

The data demonstrated that the presence of serum influenced the TIMP and 

MMP expression profile of HSFs and HCM cells. This could influence

TIMP 2
23KDa

TIMP 1 
28KDa 
TIMP 4 
25KDa

C ontro l MMP-EM HCM(-) HCM(+) HSF(-) HSF(+) MW

Gelatin Zymography
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potential effect of treated cells. Further analysis of MMPs is therefore 

conducted in cells cultured in serum-free medium.

3.3.3.1 Sensitivity of laser scanning densitometry of zymograms and 

reverse zymograms.

Significant correlation between relative concentration and band intensity, in 

serum-free MMP-enriched medium, was demonstrated for MMP 2 (i^= 0.91), 

MMP9 (?= 0.85), MMP 3 (r^O.91), MMP 7 (^=0.94) and TIMP 2 (r^O.91) 

(Fig. 3.7). TIMP 4 (r2= 0.49) displayed poor correlation and therefore was not 

quantified in further experiments. This understanding was necessary before 

being able to quantify MMP and TIMP from zymograms.
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3.3.3.2 Quantification of MMPs in serum free media MMP-EM, HSF-CM 

and HCM-CM

Fig. 3.8 demonstrates large amounts of MMP 2 in serum-free MMP-EM, 

HSFs conditioned media (HSF-CM) and HCM cells conditioned media (HCM- 

CM). MMP 3, 7, and 9 were also detected in HSF-CM, HCM-CM and MMP- 

EM. MMPs were found in the active form in all conditoned media and hence 

these media could be used in order to detect action of MMPs.

100 i

90 J
0  HCM-CM 

0  HSF-CM 

■  MMP-EM

80

Inactive Active Inactive Inactive Inactive

MMP 2 MMP 9

Fig. 3.8: MMP profile of HCM-CM, HSF-CM and MMP-EM.
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MMP-EM HSF-CM HCM-CM

Fig. 3.9: MMP-1 detection in medium via ELISA.

MMP 1 was also detected in MMP-EM. HSF-CM and HCM-CM via ELISA as 

demonstrated in Fig. 3.9. Highest levels of MMP 1 were detected in MMP- 

EM.

3.3.4 Effect of growth factors on MMP secretion by Human Scleral 

Fibroblasts (HSFs)

MMP 2, 3 and 9 relative concentration were significantly increased following 

the addition of growth factors and changed with time in incubation (p<0.05). 

By contrast MMP 7, within human scleral fibroblast cell culture, did not 

increase (Fig. 3.12). No significant changes was observed in cell expression 

by different donors (p<0.05).

IL1-a and TGF|31 induced MMP 2 secretion and activity strongly throughout 

the time-points, with a maximum level induction after 72 hours of incubation 

(Fig. 3.10). IL1-a was the strongest inducer of MMP 2 within human scleral 

fibroblasts. TNF-a caused an induction with the first 24 hours, however a very 

rapid decline was observed after 48 hours (lower than control) and an 

induction again after 72 hours.

MMP 3 secretion and activity was slightly induced within 24 hours, followed by 

a stronger induction after 48 hours of incubation. IL1-a demonstrated a 3-fold 

increase in MMP 3 activity compared to control, whereas TGF (31 and TNF-a
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displayed a 2 fold and 1-fold increase compared to control, respectively (Fig. 

3.11). The secretion and activity of MMP 3 declined after 72 hours of 

incubation.

Although low levels of MMP 9 were detected within human scleral fibroblast 

medium, some significant changes were observed with growth factor 

induction and time in incubation. After 24 hours of incubation IL1 -a, TNF-a 

and TGF (31 induced MMP 9 activity (Fig. 3.13). Although the induction in 

MMP 9 activity remained fairly consistent after 48 hours incubation, a decline 

in inactive MMP 9 was observed. After 72 hours of incubation a minimal level 

of MMP 9 activity was observed.
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Fig. 3.10: The effect of growth factors on MMP 2 secretion by human scleral fibroblasts.
Data includes both active and inactive forms of MMP 2. (a) Gelatin zymograghy: Molecular 
weight marker (MW), Control (C), IL1a, TNFa and TGF(B. (b) Chart of relative MMP 2 
concentration with treatment.
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Fig. 3.11: The effect of growth factors on MMP 3 secretion by human scleral fibroblasts.
Data includes both active and inactive forms of MMP 3. (a) casein zymography: Molecular weight 
marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 3 concentration with 
treatment.
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Fig. 3.12: The effect of growth factors on MMP 7 secretion by human scleral fibroblasts.
Data includes both active and inactive forms of MMP 7. (a) Casein zymography: Molecular 
weight marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 7 
concentration with treatment.
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Fig. 3.13: The effect of growth factors on MMP 9 secretion by human scleral fibroblasts.
Data includes both active and inactive forms of MMP 9. (a) Gelatin zymography: Molecular 
weight marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 9 
concentration with treatment.
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3.3.5 Effect of growth factors on MMP secretion by human ciliary muscle 

cells
Significant differences in MMP 2 and 9 activity with growth factor action were 

observed in human ciliary muscle cell cultures (p<0.05). 

No significant difference in MMP 3 level was detected with growth factor 

treatments. MMP 2, 3 and 9 were influenced by incubation period (p<0.03). 

However, MMP 7 was unaffected by growth factor treatment or time of 

incubation. No significant change was observed between donors (p>0.05).

An increase in MMP 2 activity was observed after 24 hours of incubation. IL1- 

a action induced a large 4-fold increase in active MMP 2 compared to control, 

whereas TNF-a and TGF p i resulted in a 3-fold increase (Fig. 3.14). An 

increase in MMP 2 activity was observed after 48 hours followed by further 

increase after 72 hours of incubation. The greatest increase of MMP 2 

activity was followed by the addition of IL1-a after 48 hours of incubation, a 

decline in active MMP 2 was observed in samples treated with IL1-a for 72 

hours. However, TNF-a and TGF p1 increased MMP 2 activity throughout the 

time points.

No significant influence of growth factors was observed in MMP 3 activity. 

However, an induction after 24 hours incubation was enhanced after 48 hours 

of incubation (Fig. 3.15). A decline in MMP 3 activity was observed in all 

samples after 72 hours of incubation.

MMP 7 activity was unaffected by the addition of growth factors or by the 

duration of incubation. However a consistent level of active and inactive MMP 

7 was observed throughout all time points in all the samples (Fig. 3.16). The 

levels of active MMP 7 appeared to be about double that of inactive levels in 

all the samples. This was a significant observation in MMP 7 activity within 

ciliary muscle cell cultures (p<0.05).

Maximal induction of MMP 9 by all three growth factors was observed after 24 

hours incubation (Fig. 3.17). Although a higher level of MMP 9 was observed
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in growth factor treated samples than control after 48 hours incubation, both 

active and inactive MMP 9 levels declined after 48 hours. A further decline in 

MMP 9 levels was noted after 72 hours of incubation.
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Fig. 3.14: The e ffe c t o f  g ro w th  fa c to rs  on  MMP 2 se c re tio n  by hum an c ilia ry  m usc le  ce lls .
Data includes both active and inactive forms of MMP 2. (a) Gelatin zymography: Molecular 
weight m arker (MW), Control (C), IL1a, TNFa and TGF0. (b) Chart o f relative MMP 2 
concentration with treatment.
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Fig. 3.15: The effect of growth factors on MMP 3 secretion by human ciliary muscle cells.
Data includes both active and inactive forms of MMP 3. (a) Casein zymography: Molecular 
weight marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 3 
concentration with treatment.
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Fig. 3.16: The effect of growth factors on MMP 7 secretion by human ciliary muscle cells.
Data includes both active and inactive forms of MMP 7. (a) Casein zymography: Molecular weight 
marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 7 concentration with 
treatment.
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Fig. 3.17: The effect of growth factors on MMP 9 secretion by human ciliary muscle cells.
Data includes both active and inactive forms of MMP 9. (a) Gelatin zymography: Molecular 
weight marker (MW), Control (C), IL1a, TNFa and TGFp. (b) Chart of relative MMP 9 
concentration with treatment.
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3.3.6 Effect of Growth Factor on MMP-1 Secretion
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Fig. 3.18: Effect of growth factors on MMP-1 secretion by human scleral fibroblasts.

A consistent induction of MMP-1 secretion was detected in HSFs cultures with 

TGF(31 and IL1a (Fig. 3.18) (p<0.001). An increase in level of MMP-1 was 

detected with an increase in incubation time (p<0.001), with the effect of 

IL1a> TGF(3>control.
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Fig. 3.19: Effect of growth factors on MMP-1 secretion by HCM cells.

A dramatic increase in MMP-1 secretion was observed within 24 hours after 

the addition of TGFpl and IL1a (p<0.02).

3.3.7 Effect of prostaglandin on MMP secretion by human scleral 

fibroblasts

Both PGF2a action and time of incubation influenced the levels of MMP 2, 3, 

and 9 (p<0.05). However, no significant impact on MMP 7 was observed 

(p>0.05).

An increased level of inactive and active MMP 2 was observed in scleral 

fibroblasts cultured in the presence of PGF2a for 24 hours (Fig. 3.20). 

Although a reduction in MMP 2 level was observed in both control and PGF2a 

treated samples after 48 hours, a further increase was observed after 72 

hours. At all time-points PGF2a doubled the levels of inactive and active 

MMP 2 observed compared to control (p<0.05).

An induction of MMP 3 activity was observed after 24 hours of incubation with 

PGF2a treatment. However, after 48 hours the level of MMP 3 activity in both
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control and PGF2a treated cultures were similar (Fig. 3.21). A slow increase 

in MMP 3 activity was observed with time of incubation.

No relationship between PGF2a treatment and time in incubation was 

observed with MMP 7 activity. However a significant relationship between 

inactive and active MMP 7 was observed, there was a greater level of active 

than inactive MMP 7in all samples (p<0.05) (Fig. 3.22).

Low levels of MMP 9 activity were observed in all samples. No MMP 9 activity 

was detected in control samples after 24 hours of incubation. However MMP 

9 was detected, in both active and inactive forms, in the PGF2a treated 

cultures (Fig. 3.23). After 48 hours of incubation the level of MMP 9 in PGF2a 

treated samples remained similar to that observed after 24 hours. A decline in 

MMP 9 activity was observed after 72 hours of incubation.
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Fig. 3.20: PGF2a effect on human scleral fibroblasts conditioned medium MMP 2 
secretion and activation, (a) Gelatin zymography: Control (C) and PGF2a. (b) Chart of 
relative MMP 2 concentration with treatment.
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Fig. 3.21: PGF2a effect on human scleral fibroblasts conditioned medium MMP 3 secretion 
and activation, (a) Casein zymography: Control (C) and PGF2a. (b) Chart of relative MMP 3 
concentration with treatment.
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Fig. 3.22: PGF2a effect on human scleral fibroblasts conditioned medium MMP 7 secretion 
and activation, (a) Casein zymography: Control (C)and PGF2a. (b) Chart of relative MMP 7 
concentration with treatment.
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Fig. 3.23: PGF2a effect on human scleral fibroblasts conditioned medium MMP 9 
secretion and activation, (a) Gelatin zymograpghy: Control (C) and PGF2a. (b) Chart of 
relative MMP 9 concentration with treatment.
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3.3.8 Effect of Prostaglandin on MMP secretion by human ciliary muscle 

cells

PGF2a significantly increased the levels of active and inactive forms of MMP 

2, 3 and 9 in ciliary muscle cell cultures (p<0.05). By contrast MMP 7 levels 

were unaffected by PGF2a treatment and incubation time (p>0.05).

Consistent increases in MMP 2 activity were observed with time. A significant 

induction of MMP 2 with PGF2a was observed throughout the time points 

(Fig. 3.24). PGF2a doubled MMP 2 activity through out time points compared 

to control.

An increase in MMP 3 activity was observed after 24 hours incubation, which 

was enhanced after 48 hours of incubation (Fig. 3.25). The level of MMP 3 

decreased after 72 hours of incubation in both PGF2a treated and control 

samples compared to 48 hours of incubation. PGF2a treated samples had 

greater levels of MMP 3 compared to control throughout the time points.

Although MMP 7 was not influenced by PGF2a or incubation period, a 

consistently higher level of active MMP 7 was detected compared to inactive 

MMP 7 in all samples (Fig. 3.26). The relationship between active and 

inactive MMP 7 was significant (p<0.05).

Highest MMP 9 levels were detected after 24 hours of incubation. A decrease 

in MMP 9 level was detected in all samples after 48 hours of incubation, 

followed by a further decline after 72 hours of incubation. PGF2a treatment 

throughout the time course displayed a higher level of MMP 9 activity 

compared to control (Fig. 3.27).
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Fig. 3.24: PGF2a effect on human ciliary muscle conditioned medium MMP 2 secretion 
and activation, (a) Gelatin zymography: Control (C) and PGF2a. (b) Chart of relative MMP 2 
concentration with treatment.
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Fig. 3.25: PGF2a effect on human ciliary muscle conditioned medium MMP 3 
secretion and activation, (a) Casein zymography: Control (C) and PGF2a. (b) Chart of 
relative MMP 3 concentration with treatment.
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Fig.3.26: PGF2a effect on human ciliary muscle conditioned medium MMP 7 secretion and 
activation, (a) Casein zymography: Control (C) and PGF2a. (b) Chart of relative MMP 7 
concentration with treatment.
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Fig. 3.27: PGF2a effect on human ciliary muscle conditioned medium MMP 9 secretion 
and activation, (a) Gelatin zym ography: Contro l (C) and PG F2a. (b) C hart o f relative MM P 9 
concentra tion w ith treatm ent.
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3.3.9 Effect of Prostaglandin on MMP-1 activity
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Fig. 3.28: The effect of PGF2a on MMP-1 secretion by human scleral fibroblasts.

Media from serum free scleral fibroblast cultures, with or without PGF2a, 

displayed the prescence of MMP-1. An induction of MMP-1 secretion with 

PGF2a was observed at 48 hours. By 72 hours, the MMP-1 level declined in 

fibroblasts cultured in PGF2a.
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Fig. 3.29: The effect of PGF2a on MMP-1 secretion by human ciliary muscle cell.

MMP 1 was detected in serum free ciliary muscle cell cultures, with or without 

PGF2a. An induction in MMP-1 secretion was observed in cells treated with 

PGF2a throughout the timescale studied.
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3.4 Discussion

Morphological staining of anterior segment sections allowed the identification 

of structural features involved in the drainage of aqueous humor. 

Prostaglandin receptor agonists have been shown to cause morphological 

changes within anterior chamber, such as increased optical empty spaces 

between ciliary muscle the bundles (Richter, Krauss et al. 2003). These 

changes help in mediating an increase in uveoscleral outflow and thereby a 

lowering of IOP.

Ciliary muscle cells and scleral fibroblasts are both involved in the uveoscleral 

outflow pathway. Their involvement in the pathway made it necessary to study 

these cells further. Primary cells cultures were prepared of human ciliary 

muscle cells and scleral fibroblasts. In order to confirm cells cultured were 

ciliary muscle cells, after passage 1 cells were stained with a-actin and 

desmin (Weinreb, Kim et al. 1992). a-Actin is found in all smooth muscle 

cells and desmin is an intermediate filament found in different concentrations 

in smooth muscle cells. The presence of both of these factors confirmed that 

the cells cultured were smooth muscle cells extracted from the ciliary muscle 

section of the anterior chamber.

Previous studies have shown the importance of FP receptor in the IOP 

lowering effect of prostaglandin (Growston,* Lindsey et al. 2004). Although 

many prostaglandin receptor subtypes ( i.e. EP1, EP2, EP3, EP4 and FP) 

have been identified in ocular tissues (Schlotzer-Schrehardt, Zenkel et al. 

2002), FP receptor has been linked to effect prostaglandin on MMP gene 

expression (Weinreb, Lindsey et al. 2004). The current study confirmed the 

presence of PGF2a receptor within cells cultured from the uveoscleral outflow 

pathway. Previous research has shown a similar pattern of staining for MMPs 

and TIMPs (Lan, Kumar et al. 2003). Other research has identified the 

prescence of FP receptor in the sclera (Anthony, Lindsey et al. 2001) and the 

ciliary body (Mukhopadhyay, Geoghegan et al. 1997). However, the current 

study can link both FP receptor location to gelatinase localisation within cells 

cultured from the uveoscleral outflow pathway. This would mean that FP
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receptor activation may have an impact on MMP action within ciliary muscle 

and sclera and thereby influence the uveoscleral outflow pathway.

Bovine skin fibroblasts (BOVS-1) were cultured in order to obtain MMP- 

enriched medium (Blain, Gilbert et al. 2001). Conditioned-medium from HCM 

and HSF were also collected from HCM and HSF cultured in serum-free 

medium. The zymograms obtained from the conditioned-media confirmed the 

prescence of MMP 1, 2, 3 & 7 in HCM culture and MMP 2 and 7 in the HSF 

cultures. However, all four TIMPs were also present in the conditioned 

medium. The MMP-enriched medium (MMP-EM) had significant levels of 

MMP 1, 2, 9, 3 and 7 and TIMP 3 and 4. These results suggested that BOVS- 

1 cells were capable of producing more active MMPs than HCM and HSF. 

These studies confirmed the potential of MMP-EM being used in evaluating 

the effects of MMPs on tissue and also the ability of HSFs and HCM cells to 

produce MMPs. Blastp searches were conducted and 85-93% sequence 

homology was determined between human and bovine MMPs. This meant 

that the influence of MMP-EM on human scleral tissue was not limited due to 

MMPs being taken to bovine cell cultures.

As zymograms were to be used in order to quantify MMPs and TIMPs in 

samples, it was important to determine the relationship between band 

intensity and MMP and TIMP concentrations. After having optimised gelatin, 

casein and reverse zymography, MMP-EM samples were run at different 

dilutions on all relevant zymograms. The bands observed correlated with the 

changes in sample concentration. This meant that quantification of MMPs 

from zymograms was an appropriate method to use in order to test the effect 

of different factors on MMP activity concentration. However, due to the low 

level of correlation between band intensity and TIMP 4 concentration, TIMP 

analysis was not possible using reverse zymograms. In the future perhaps 

with the use of other techniques, such as ELISA, TIMP could be quantified.

The current study detected the effect of growth factors and PGF2a on MMP 

secretion and activity within cultured HSFs and HCM cells, the cells involved
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in the uveoscleral outflow pathway. The influence of growth factors and 

PGF2a on MMP secretion may relate to extracellular matrix modulation and 

hence lead to potential therapies to improve aqueous drainage via the 

uveoscleral outflow pathway.

MMP 2, 3 and 9 were affected by growth factors which appeared to influence 

MMPs to a different extent, depending on cell culture. Previous studies have 

suggested induction of MMP 3 and 9 by IL1a and TNFa at the protein level 

(Fleenor, Pang et al. 2003; Hosseini, Rose et al. 2006). The involvement of 

TGFpi in the induction of MMP 9 has also been demonstrated in other 

studies (Kim, Shang et al. 2004).

Although MMP 3 in scleral fibroblast culture was significantly affected by 

growth factors, this was not the case in the ciliary muscle cell culture. IL1a 

has demonstrated an induction of MMP 9 and stromelysin, with no influence 

on MMP 2 in trabecular meshwork cell cultures (Samples, Alexander et al. 

1993), whereas it has been shown to be involved in both secretion of proMMP 

2 and its activation in odentogenic keratocysts fibroblast (Kubata, Oka et al.

2001).

The influence of growth factors on MMP 2, 3 and 9 displayed a time 

dependent trend in induction and decline in both scleral fibroblast and ciliary 

muscle cultures. The action of the growth factor TNFa on MMP expression 

and secretion has been shown to occur in a time dependent manner in a 

previous study (Han, Tuan etal. 2000).

For all the MMPs studied, active forms were predominantly detected in both 

scleral fibroblasts and ciliary muscle cells cultures. This could be due to the 

time course selected, 24 hours being sufficient time in allowing MMP 

secretion and activation. In previous studies, 6 hours was sufficient in order 

for TGFpi to influence MMP secretion and activation (Kim, Shang et al. 

2004). Some previous studies have also suggested the major MMP induction 

occurs within 0-24 hours incubation (Pang, Hellberg et al. 2003), while
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another study suggested that peak MMP expression as a result of latanoprost 

treatment occurred after 6-12hours incubation period (Weinreb and Lindsey

2002). This may make it necessary to study earlier time points in order to 

understand the potency of the growth factor and prostaglandin effect, should 

it occur within the 0-24 hour time point.

A previous study measured the influence of antiglaucoma agents on the MMP 

and TIMP balance. The study suggested that a group of antiglaucoma drugs, 

(3-blockers, decreased MMP levels and increased TIMP levels. An opposite 

effect was observed by prostaglandin-derived antiglaucoma drugs, which 

were shown to increase MMP and decrease TIMP (Ito, Ohguro et al. 2006). 

The study by Ito et al. supports the findings in the current study regarding the 

induction of MMPs with PGF2a treatment. Another supporting evidence in the 

induction of MMPs with PGF2a was published (Weinreb, Kashiwagi et al. 

1997). This study demonstrated the induction of MMP 1, 2, 3 and 9 by PGF2a 

in human ciliary smooth muscle cells.

The effect of Latanoprost on mRNA expression of MMPs was detected within 

trabecular meshwork cultures in a previous study (Oh, Martin etal. 2006b). A 

similar study was conducted in order to understand the effect of Latanoprost 

on MMP expression in the ciliary body (Oh, Martin et al. 2006a). This study 

indicated there was an induction in mRNA for MMP 3 with latanoprost 

treatment, but a reduction in MMP 2 mRNA expression. However, in the 

current study MMP 2 activity was shown to increase with time in growth factor 

and PGF2a treated cultures of scleral fibroblasts and ciliary muscle cells. 

Similar results were obtained in a previous study, which suggested an 

induction of MMP-2 secretion and activity in a dose and time dependent 

manor (Husain, Jafri et al. 2005). As MMP 2 is expressed and secreted in a 

pro-active form, the detection of MMP 2 mRNA does not relate to its activity. 

This is why it is necessary to study MMP protein level expression rather than 

gene level expression.
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Studies have also been conducted to understand the influence of Latanoprost 

treatment on TIMPs within human ciliary muscle cultures. A study suggested 

the induction of TIMP 2 gene expression within the first 6 hours, and was 

undetected during later time points. TIMP 1 gene expression was induced at 

later time points (Anthony, Lindsey et al. 2002). This study suggests that 

Latanoprost not only induces MMP, but also acts as a control mechanism in 

order to prevent MMPs from causing tissue damage.
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CHAPTER 4

EFFECT OF PGF2a AND MMP 

ACTIVITY ON SCLERAL 

CONDUCTIVITY
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CHAPTER 4
EFFECT OF PGF2a AND MMP ACTIVITY ON SCLERAL CONDUCTIVITY

4.1 Introduction

PGF2a is the treatment of choice for the non-surgical reduction of IOP in 

glaucoma. The reduction of IOP via PGF2a has been associated with the up- 

regulation of MMP activity (Ito, Ohguro et al. 2006), resulting in the elevation 

of MMP 1, 2, 3 and 9 activity (Ito, Ohguro et al. 2006; Tamm, Baur et al. 

1992). Consistent with this, PGF2a treatment in vivo has lead to a reduction 

of extracellular matrix (ECM) (Crowston, Aihara et al. 2004; Gabelt and 

Kaufman 1989). Topical administration of prostanoid analogues in 

cynomologus monkey eyes has been associated with a reduction in Collagen 

type I, III and IV immunoreactivity in the ciliary muscle and adjacent sclera 

(Sagara, Gaton et al. 1999). This could explain the induction in uveoscleral 

outflow observed with PGF2a treatment. Taken together these findings 

suggest that direct MMP intervention within aqueous drainage pathway, could 

enhance IOP lowering effect in the eye.

In the previous chapter the effect of PGF2a on scleral fibroblast and ciliary 

muscle cells was demonstrated, resulting in the induction of MMP activity. 

Induced MMP 1, 2, 3 and 9 by human scleral fibroblasts and ciliary muscle 

cells, respectively, was observed.

Previously, enhanced scleral conductivity has been shown to occur as a result 

of the administration of prostaglandins and its analogues (PGF2a) (Kim, 

Lindsey et al. 2001), indicative of the effect of MMPs on scleral conductivity. 

In this study, the direct action of MMPs on scleral conductivity will be 

assessed and compared to that of PGF2a.
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4.1.2 Aims

The aims of this chapter are:

1. to determine the effect of a cocktail of MMPs (MMP-EM) on scleral 

conductivity. In order to observe effect of MMP, it was necessary to 

use media with most abundant level of MMP, therefore MMP-EM 

was most appropriate compared to serum free media from scleral 

fibroblast or ciliary muscle cells (see section 3.3.3.2).

2. to compare the effect of PGF2a with that of MMP-EM on scleral 

conductivity
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4.2 Experimental design

4.2.1 Source of sclera
Human donor eye globes (n=29), aged 50-89 years, were obtained with 48 

hours post mortem from the Corneal Transplant Service Eye Bank (Bristol, 

UK) after corneal removal for transplant purposes. All human tissue samples 

were obtained following consent for research purposes in accordance with the 

ethical guidelines of United Kingdom Transplant Service (UKTS) and the 

Declaration of Helsinki. All human donor details and usage are included in 

appendix (section 8.3). All globes were transported at 4°C in moist chambers. 

For each time point and each size dextran bead 3, donors were used.

4.2.2 Effect of MMP-EM and PGF2a on scleral permeability

4.2.2.1 Scleral explant culture

Isolated sclera (see section 2.4.1), with approximate diameters of 14mm, 

were scraped clean on both sides. Each scleral explant was immersed in 3% 

betadine for 30 seconds, and then thoroughly rinsed in autoclaved PBS 

(pH7.4).

The explants, in triplicate, were cultured in serum-free DMEM containing 

100nM 17-phenyltrinor-PGF2a (Cayman Chemical Co, Ml), in MMP-EM (as a 

source of MMPs), or control media (serum-free DMEM) for time periods 

ranging from 0-72 hours at 37°C, under standard incubator conditions. Initially 

24, 48 and 72 hours incubation was studied. However, as changes occurred 

at time points before 24 hours it became necessary to understand what was 

happening before the 24 hour time point, therefore 0, 3, 6, 12 hour time- 

points were also investigated.

4.2.2.2 Production of matrix metalloproteinase enriched medium (MMP- 

EM)

MMP-EM, known to contain MMPs 1, 2, 9, 3, and 7 and TIMPs 2 and 4 

(section 3.3.3) was produced as described in chapter 2 (section 2.2.12.1).

104



Bablin Molik Role o f MMPs in Uveoscleral Outflow

4.2.2.3 Setting up the Ussing Chamber

Since increased permeability was observed from 0 to 24 hours incubation, 0, 

12, 24 and 72 hour time-points were selected for later experiments. Scleral 

explants were removed from incubation media following appropriate 

incubation and clamped into the Ussing chamber. Experimental protocols for 

the Ussing chamber are as described in section 2.4.2.

The Ussing system (CHM2 model; WPI Labs, UK, (Fig. 4.1) included a 

reservoir for media and a chamber in which to clamp the tissue sample. 

Phenol red-free HBSS (Gibco, UK) was loaded into both sides of the chamber 

via the reservoir in order to completely fill the system. Rhodamine dextran 

beads (10, 40 or 70KDa) were added into HBSS media, at the orbital side, 

making a final concentration of 0.25mg/ml.

A heated water bath continuously supplied water at 42°C to the outer layer of 

the reservoir via a peristaltic pump (Millipore, UK), to maintain the reservoir 

medium at a constant temperature of 37°C. The distance between the water 

bath and the reservoir chamber was minimised to limit heat loss. The 

chamber medium was maintained at atmospheric air of 5% carbon dioxide via 

a gas cylinder connected to the reservoir.

Two Ussing systems were run in parallel so that control conditions (i.e. no test 

factor) could always be run alongside experimental tissue. In order to ensure 

that the flow of both water and gas supply to the reservoir was maintained at 

equal rates to both Ussing systems, adjustable clamps were applied to control 

the flow within tubing that was elevated using a clamp-stand. Black foil was 

used in order to cover the entire set of apparatus once the tissue was inserted 

and medium flow started. The black foil and lights were switched off to 

prevent light exposure and possible bleaching of the rhodamine dye. The gas 

bubbling within the reservoir caused the media to remain in constant motion 

from reservoir through to the chamber.
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Scleral tissue remained in the Ussing chamber for 4 hours, as indicated in a 

previous study (Kim, Lindsey et al. 2001). Media samples were collected from 

the uveal side chamber at 30 minutes and 4 hours post-running of the 

experiment. Samples were frozen at -80°C spectrofluorimetric analysis.

Circulating 
medium 
reservoir "

Thermal water 
bath

Ussing
chamber

Clamped
tissue

Air pressure

Fig. 4.1: Drawing of Ussing system. The tissue viability was maintained via flow of media, 

flow of 5% oxygen and 95% carbon dioxide 1 ■ "► and the flow of water at 37°C
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4.2.2.4 Determination of permeability coefficient

Samples collected at 30 minutes and 4 hours were placed in the 

spectrofluorometer (Digilab Hitachi F-4500, Jencons). Rhodamine dextran 

bead fluorescence, at each time point, was measured by spectrofluorimetry 

(Digilab Hitachi F-4500, Jencons) at room temperature, at excitation and 

emission wavelengths of 550 and 580nm, respectively.

4.2.2.5 Calculation of Permeability Coefficient

Standard curves (fluorescence versus concentration) were determined for 

each dextran bead size. Using these standard curves, experimental 

spectrofluorimetric readings were converted to concentration values. 

Permeability coefficients were calculated for each experiment and plotted as 

a function of treatment and treatment duration (section 2.4.2.3).

4.2.2.6 Statistical analysis

All experiments were repeated at least three times. Since the data did not 

follow a normal distribution, statistical analysis was conducted using non- 

parametric methods (Kruskall-Wallis and Mann-Whitney tests). All statistical 

analysis was performed using SPSS 13.0 (SPSS Corp).
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4.3 Results

4.3.1 Quantification of scleral permeability

The permeability coefficient (Pc) of different molecular weight dextran beads 

(10, 40, and 70kDa) (Fig 4.2) demonstrated that transcleral bead transit was 

inversely proportional to the molecular weight of the dextran bead, such that 

scleral permeability was least (0.02 +/- 6.0X10‘3 cm/sec) for a 70kDa bead 

and highest (0.15 +/- 7X1 O'2 cm/sec) for 10kDa beads (p<0.05). In view of the 

comparatively low permeability for the 40-70KDa particles, these particle 

sizes were selected to determine whether significant increases in scleral 

permeability could be achieved through indirect or direct action of MMP 

activation.

0.25 -r—------------   —...............— ..........................   -  - .....-  ■ -.-  ;

0.2

0    ,--------------  ,--------------  i

10 40 70
Size of dextran beads (kDa)

Fig. 4.2: Permeability coefficient of different sized dextran beads (10,40 and 70kDa).

4.3.2 The effect of PGF2a and MMP-EM on transcleral permeability

Incubation in MMP-EM or PGF2a increased scleral permeability to 40kDa 

beads within 3 hours of treatment (Fig 4.3a and b). MMP-EM resulted in a 

greater increase scleral permeability compared to treatment with PGF2a. A 

significant increase in scleral permeability as a function of time, with the final 

measurements made at 72 hours was not observed. When expressed as

42 0.15

0.1

a>
0.05
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percent increases in permeability relative to control samples, the difference 

between the effect to PGF2a and MMP was readily apparent (Fig 4.3b), 

throughout the time course of incubation from 6 to 72 hours (p<0.05).

Both PGF2a and MMP-EM increased scleral permeability to the 70KDa 

particles with the greatest increase seen after 12 hours incubation relative to 

controls (Fig 4.4). (Fig 4.4a and b). Time-dependent changes in permeability 

were observed in sclera incubated in both PGF2a and MMP-EM (Fig 4.4a, 

p<0.05). In contrast, no significant differences were observed in transcleral 

conductivity in control samples at any time point (Fig 4.4)

Scleral permeability for both 40 and 70kDa beads increased up to 10-fold with 

MMP-EM and 3-fold following PGF2a compared with control samples 

(p<0.01, Figs 4.3b and 4.4b). The percent change in permeability, compared 

to control samples, increased as a function of time for both MMP and PGF2a 

treated sclera, reaching a peak at 24 hours for 40kDa beads (Fig 4.3b) and 

12 hours for 70kDa beads (Fig 4.4b). Thereafter the percentage increase in 

scleral permeability declined for PGF2a and MMP-EM samples respectively 

although it continued to remain significantly above control levels (p<0.05).
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Fig. 4.3: Time dependent permeability of sclera to 40kDa dextran beads

a) Permeability coefficient of 40kDa dextran beads after incubation in serum free medium 

(control), MMP enriched medium (MMP) and serum free medium containing PGF2a (PGF2a) 

for 0-72 hours, b) Percentage increase in permeability compared to control.
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Fig. 4.4: Time dependent permeability of sclera to 70kDa dextran beads.

4a: Permeability coefficient of 70kDa dextran beads after treatment in serum free medium 

(control), MMP enriched medium (MMP) and serum free medium containing PGF2a (PGF2a) 

for 0, 6, 12 and 24 hours. 4b: percentage increase in permeability compared to control.
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4.4 Discussion
It is likely that MMP activity in the uveoscleral outflow pathway could be 

significantly modulated in order to harness a further enhancement of scleral 

conductivity (Gabelt and Kaufman 1989; Kim, Lindsey et al. 2001). To test 

this hypothesis, scleral conductivity was assessed in human scleral explants 

cultured in media containing a cocktail of MMPs (MMP1, 2, 3, 7 and 9) and 

compared to the change in scleral conductivity with that obtained following the 

use of PGF2a.

The principle finding in this study is that MMPs can produce significant 

increases in the permeability of human sclera for molecules with molecular 

weights up to 70kDa. These findings demonstrated that scleral permeability 

increased following incubation in a cocktail of MMPs and PGF2a treatment. 

The latter is compatible with previous studies that showed that tissue viability 

is sustained using this experimental system (Kim, Lindsey et al. 2001). A 

supporting study recently published, indicated induction of permeability of 

dextran beads into mouse ocular tissue by incubation in MMP containing 

media (Lindsey, Crowston et al. 2007).

Permeability was assessed as a function of the transcleral passage of dextran 

beads, and it was shown, as in other studies (Ambati, Canakis et al. 2000), 

that the size of beads (molecular weight) was inversely proportional to scleral 

permeability. Both MMP-EM and PGF2a treatment increased scleral 

permeability to all dextran beads (10, 40 and 70KDa), demonstrating the 

efficacy of the transcleral passage of large molecules up to at least 70kDa. 

Previous studies have demonstrated that the movement of small molecules 

are not largely effected by the transcleral passage (Toris, Gregerson et al. 

1987b). However, the movement of large molecules can be significantly 

improved by modification to the transcleral passage (Ambati, Canakis et al. 

2000).

There are several possible causes of the change in sclera conductivity. The 

most likely explanation is that the scleral extracellular matrix (ECM) is
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degraded as result of treatment by both PG and MMP-EM. The sclera is a 

microporous elastic tissue consisting of collagen fibrils and proteoglycans and 

approximately 70% water. The interfibrillar aqueous media created by the gel­

like proteoglycans can act as an important media via which passive solute 

diffusion in conducted. Changes in ECM matrix within the sclera are likely to 

be important with respect to the control of intraocular pressure.

ECM is synthesised by human ciliary muscle cells (Tamm, Baur et al. 1992). 

In the uveoscleral pathway, aqueous is thought to pass through the ciliary 

muscle to enter the suprachoroidal space and then exit the eye via the sclera. 

Although the sclera is relatively inert metabolically, its structure has a large 

impact in maintaining visual acuity by regulating the passage of various 

factors from the extraocular to intraocular compartments (Watson and Young 

2004). The importance of sclera in the uveoscleral outflow pathway was 

established in the 1980s, when Toris and Pederson (Suguro, Toris et al. 

1985) demonstrated the flow of fluorescent tracers through the ciliary muscle 

and sclera. They subsequently established that the uveoscleral outflow 

involved bulk fluid flow rather than diffusion. They determined that different 

sized tracers (MW: 4000, 40,000 and 150,000) were permitted to flow via this 

pathway (Pederson and Toris 1987; Toris, Gregerson etal. 1987a).

An increase in ECM deposition with age could compromise drainage through 

this pathway, a mechanism that has been postulated in the development of 

elevated intraocular pressure (Weinreb 2000). Since increase in age is one 

of the most significant risk factors in the development of AMD and glaucoma, 

the increase in ECM deposition with age could limit the treatment of such 

disease further. Previous studies have supported a correlation between 

PGF2a treatment and the reduction in matrix components, such as collagen, 

within the uveoscleral outflow pathway (Sagara, Gaton et al. 1999; 

Schachtschabel, Lindsey et al. 2000). PGF2a treatment of sclera has also 

been shown to make the tissue more permeable to macromolecules such as 

basic fibroblast growth factor (FGF-2) (Weinreb 2001). Since MMPs are 

enzymes involved in the breakdown of ECM and PGF2a has been shown to
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upregulate MMP expression in scleral fibroblasts (this study) and scleral 

explants (Weinreb and Lindsey 2002; Weinreb, Lindsey et al. 2004; Wong, 

Sethi et al. 2002), the increase in tissue permeability with PGF2a is not 

surprising. A key finding of the present study is that it reveals that the limited 

increase in scleral permeability that is induced by PGF2a. Greater increases 

in permeability can be achieved by the direct application of activated MMPs 

providing information on the potential increases in scleral permeability that 

can be achieved.

Previous studies have shown that the administration of the prostaglandin 

PGF2a significantly increased scleral permeability (Kim, Lindsey et al. 2001; 

Weinreb 2001). The findings of the present study extend these observations 

by establishing that with appropriate MMP activation scleral permeability can 

be significantly enhanced. Importantly, this study demonstrated that molecular 

weights exceeding 50kD can be transported across scleral tissue. This 

suggests that approaches directed at the manipulation of scleral architecture 

can be used to deliver further reductions in IOP and also be used as a 

technique for the enhanced delivery of novel therapeutic molecules for the 

treatment of retinal disease. This could potentially serve to lower IOP by 

augmenting aqueous drainage, but also shows that permeability can be 

enhanced to act as a conduit for the transcleral passage of large peptide 

drugs (Weinreb, Toris etal. 2002).

However, certain limitations in this model of study include scleral tissue 

permeability does not truly reflect the permeability of the anterior chamber. 

There are other tissues and other processes within the anterior chamber 

which may interfere with the drainage of aqueous humor within the anterior 

chamber. Future work needs to assess the effect of MMP-EM compared to 

PGF2a in perfusion chambers and animal models. MMP action generates a 

negative feedback process which leads to the activity of MMP inhibitors i.e. 

TIMP, which may in turn prevent further increase in scleral permeability. The 

decrease in permeability at the later time points could be due to tissue re­

engineering itself after the generation of the negative feed-back loop. MMPs
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are a group of enzymes with diverse functionality and mechanism of action. It 

would therefore be difficult to administer such enzymes in a cocktail version. 

A more workable model would involve identifying specific action of MMPs 

within the sclera which can be linked to upregulation of tissue permeability, 

which can be dealt with specifically.
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CHAPTER 5

X RAY DIFFRACTION: ANALYSIS OF 

TISSUE ARCHITECTURE
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CHAPTER 5
X RAY DIFFRACTION: ANALYSIS OF TISSUE ARCHITECTURE

5.1 Introduction

The application of prostaglandin derivatives to scleral fibroblasts resulted in 

increased levels of MMP1, 2, 3 and 9 (see chapter 3), implicated 

prostaglandins induce collagenase, gelatinase and stromelysin activity. The 

increased scleral conductivity identified in chapter 4, as a result of PGF2a and 

MMP application, is likely to be a consequence of either remodelling of the 

extracellular matrix or collagen destruction or a combination of the two.

Previous studies, using knockout mice, suggested that binding to the 

prostaglandin (FP) receptor is critical for the early effects of prostaglandins 

(Crowston, Lindsey et al. 2004a; Crowston, Lindsey et al. 2005). Studies 

using Ussing chambers to quantify the flow of large molecular weight 

molecules through the sclera have shown that significant increases in scleral 

permeability can be achieved by the administration of the prostaglandin 

PGF2a (Kim, Lindsey et al. 2001). Clinical experience with eyes, in which the 

suprachoroidal space is accessed directly (for example when a cyclodialysis 

cleft has been created), has shown that IOP can be reduced to a greater 

extent than is possible with treatment by topical prostaglandins. On the basis 

of these observations, it is likely that the dynamic range of the uveoscleral 

outflow pathway for the reduction of IOP is significantly greater than that 

achievable with existing medications. However, before applying novel 

therapeutic interventions targeted at the disruption of ocular connective 

tissue, in particular the sclera, it is important that the mode of scleral 

degradation is determined.

Collagen forms 75% of scleral dry weight, consisting of collagen types I, III, V 

and VI. The most abundant collagen is type I collagen, which is fibril forming 

collagen (Thale and Tillmann 1993). Collagen based tissue, such as sclera, is 

a hierarchically organised material where there is a close relationship 

between the molecular structure relating to the triple helical organisation
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within individual collagen molecules. The well-defined nanoscopic axial 

molecule and lateral side by side organisation stagger giving rise to the D- 

spacing. Locally associated collagen molecules and thence the organisation 

of discrete fibrillar structures, as shown in Fig. 5.1 produce a functional tissue. 

Degradation of the collagen structure can be difficult to determine 

enzymatically, as collagen molecules exists in large fibrillar forms and would 

be difficult to run down gel matrix. However, collagen, because of its well 

ordered fibrillar structure can be analysed by biophysical techniques such as 

x-ray diffraction.

X-ray diffraction techniques have provided valuable insight to the structure of 

collagen. In this study, x-ray diffraction techniques were applied to scleral 

tissue subjected to a range of agents (including prostaglandins), which either 

contain MMP or are known to induce their production and activation. It 

allowed the examination of a large area of tissue sample in its native state 

without any additional treatment. Since analysis was applied on tissue in their 

hydrated state, it prevented the formation of any artefacts due to tissue 

dehydration (Meek, Fullwood et al. 1991; Price, Lees et al. 1997). The wide 

angle x-ray patterns studied are related to the atomic and molecular structure. 

Small angle patterns are obtained from diffraction from the axial structure of 

the collagen fibrils, and diffraction from the interfibrillar arrangement 

(Goodfellow, Elliott et al. 1978).
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D-spacing

I.L.P

a‘ "Helical 
rise per 
residue

Supramolecular Molecular

SAXD WAXD

Fig. 5.1: A schematic diagram of collagen hierarchy. The supramolecular (observed by 

small angle x-ray diffraction (SAXD)) and the molecular level (observed by wide angle x-ray 

diffraction (WAXD)). A) Collagen microfibril with D-spacing; B) Collagen triple helix with 

intermolecular lateral packing (I.L.P); C) Collagen polypeptide chain with helical rise per 

residue labelled, not to scale.
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5.1.2 Aim:

To determine whether prostaglandins or matrix metalloproteinases induce 

changes in collagen structure.
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5.2 Experimental Design

5.2.1 Source of tissue
All samples were obtained following consent for research purposes in 

accordance with the ethical guidelines of United Kingdom Transplant Service 

(UKTS) and the declaration of Helsinki. Human donor eye globes, aged 55-83 

years, were obtained with 48 hours post mortem from the Corneal Transplant 

Service Eye Bank (Bristol, UK) after corneal removal for transplant purposes. 

All globes were transported at 4°C in moist chambers. Bovine skin was 

obtained from the abattoir with 6 hours of death, and transported on ice.

5.2.2 Production of matrix metalloproteinase enriched media (MMP-EM)

MMP-EM was derived from bovine skin explants as described previously in 

chapter 2 (see section 2.2.12.3). As determined in Chapter 3, MMP-EM is a 

cocktail of MMPs consisting of MMPs 1, 2, 3, 7, 9 and TIMPs 2 and 4.

5.2.3 Production of conditioned media from human scleral fibroblasts 

(HSF-CM) and human ciliary muscle cells (HCM-CM)

The protocols used to produce conditioned media from human scleral 

fibroblasts and ciliary muscle cells (both cells within the uveoscleral pathway) 

have been described in full in Chapter 2 (see section 2.2.12.2). Briefly, human 

scleral fibroblasts or ciliary muscle cells were cultured in serum free medium 

in the presence or absence of PGF2a for a period of 72 hours. The media 

collected from these cells contains MMPs, which were previously determined 

and described in chapter 3 HSF-CM and HCM-CM contained MMPs 1, 2, 3, 7 

and TIMPs 1-4.

5.2.4 Scleral tissue culture

Each human eye globe was immersed in 3% betadine for 30 seconds and 

then thoroughly rinsed in sterile PBS (pH7.4). The sclera was dissected into 

equal sized (1cm length, 1cm width) with approximate thickness 0.5-0.6mm 

from uveal area.
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The explants were then cultured in various serum free media containing 

100nM PGF2a, 100nM MMP 2, 9 or 7. Explants were also cultured in MMP- 

EM, HSF-M and HCM-M medium. The negative control was serum free 

medium (without any MMP or its inducers), and the positive control was 

media containing collagenase. The explants were cultured for 3, 6, 12, 24, 48 

and 72 hours. Each treatment was applied to triplicate scleral explants. 

Cultured explants were stored at -80°C until x-ray diffraction analysis.

5.2.5 X-ray Diffraction Analysis
The frozen scleral explants were transported to the synchrotron. The tissue 

sections were thawed and placed into a sample holder to obtain hydrated x- 

ray diffraction images with varying camera lengths (Wess and Orgel 2000). 

The different camera lengths provided information of the integrity of molecular 

and supramolecular hierarchies (Fig. 5.1).

5.2.5.1 Wide angle diffraction images obtained at station 14.1 technical 

details

Wide-angle x-ray diffraction (WAXD) images were taken on station 14.1 at 

SRS Daresbury (Daresbury, UK). Station 14.1, beamline was optimised for 

fibre diffraction. It has a focused x-ray beam at a wavelength of 1.488 , with a 

beam diameter of 200pm and a sample to detector distance of 25cm. This 

allowed features of collagen structure in the region of 0.22 and 3.0 nm to be 

observed. The sample holder (Fig. 5.2) has a computer controlled X-Y 

elevation stage for movement of the sample in specific and measurable 

directions (Maxwell, Wess et al. 2006). By moving the sample holder, it was 

possible to take 3 images, at 30 seconds exposure, at different positions of 

each sample piece. Blank sample cell images were taken in order to subtract 

background scatter from images. Calibration of sample to the Quantum 4 

ADSC detector distance was calculated using the characteristic diffraction 

peaks of calcite. Calcite had been standerised previously, and produces well- 

defined peaks for collagen.
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Slots into 
beamline 
position

Scleral tissue 
position

Fig. 5.2 Sample holder for wide angle x-ray diffraction.

5.2.5.2 Small angle diffraction at station 2.1 SRS Daresbury technical 

details

To observe the long-range interactions of collagen resulting from axial order 

(D-spacing), small angle X-ray scattering images were taken at SRS 

Daresbury, station 2.1. This station has a variable sample to camera 

(multiwire 2d area detector) length of 0.9 to 8.0 metres and is therefore 

capable of giving a spatial resolution from 1nm to 200nm. The sample to 

detector distance was set at 4.5 metres. A calibration factor (nm'1 per pixel) 

was obtained by analysis of rat tail tendon, meridional reflection in nm'1, 

determined from the known 1/67nm'1 periodicity, by the corresponding 

distance in pixels (Quantock and Meek 1988). Again the elevation and 

movement of computer controlled sample holder (Fig. 5.3) enabled 3 images 

at 30 seconds exposure, at different locations of each sample. Blank sample 

cell images were taken in order to deduct background scatter from images. 

Complete technical details of this beam line have been previously reported by 

(Grossmann 2002).
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Scleral tissue

Slots into position 
within the beamline

Fig. 5.3 Sample holder for small angle x-ray diffraction.

5.2.5.3 Analysis

X-ray diffraction involved placing treated scleral tissue in hydrated state and 

applying x-ray beam at the samples. Images were analysed according to 

techniques established by Maxwell et al. (2005). An example of x-ray 

diffraction is shown in section 2.5.2, chapter 2. The images displaying ring- 

formation due to beam scattering were viewed by FibreFix software (CCP13). 

Using PeakFit (AISL software) these images were converted into 1D linear 

profile.
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5.3 Results

5.3.1 WAXD Results

Wide angle x-ray diffraction allowed analysis of helical rise per residue and 

intermolecular lateral packing (Fig.5.4). The analyses of the linear profiles 

with Peakfit4 software allowed the determination of data in Table 5.1. A 

strong reflection at approximately 0.29nm relates to axial rise distance (helical 

rise per residue) between the amino acid residues along the collagen 

molecular triple helices. Molecule-molecule interaction (intermolecular lateral 

packing) was observed at ~1.5nm (Maxwell, Bell et al. 2006).

The analysis of the images showed that the intermolecular lateral packing and 

axial rise per residue were unchanged by PGF2a and MMP-EM treatment 

throughout the time course studied (Fig. 5.5). However, with collagenase 

treatment the diffraction peak corresponding to the specific helical rise per 

residue was not observed and total destruction of intermolecular lateral 

packing was observed (Fig. 5.4).
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0.0005
2 .92

q (nm ‘ )

Fig. 5.4: Wide angle x-ray diffraction of human sclera. A) 2D X-ray diffraction image of 

human sclera (control) at 12hrs. B) 2D X-ray diffraction image of human sclera treated with 

collagenase for 72 hrs. C) 1D Linear plots of intensity verses scattering angle (q (nnrf1) of the 

X-ray diffraction images of human sclera. Peak 1 indicated intermolecular lateral packing at 

1.2nm; Peak 2 illustrates the amorphous region and Peak 3 represents helical rise per residue 

at 0.29nm. Some unknown crystalline deposits were reflected as sharp peaks within the linear 

plots (M).

 Control
 C o lla g e n a se  trea ted

Peak 3
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MMP-EM 72hrs
 M MP-EM  24hrs
 MMP-EM  12hrs
— PG F2a 72hrs

0.01 — P G F2a24hrs

PG F2a 12hrs 

Control 72hrs 

Control 24hrs 

Control 12hrs 

'Control Ohrs

0 008

2.92 7.20 11.49 15.78 20.07 24.5

q (nm ‘1)

Fig 5.5: Scaled 1D linear plot o f intensity verses scattering angle o f w ide angle x-ray 

diffraction images. Linear plots represent control, MMP-EM and PGF2a treated human 

sclera after 12, 24 and 72 hours incubation. Each linaer plots were scaled, in order to clearly 

display prescence of relevant peaks.
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Hydrated Human Sclera Intermolecular Lateral 
Packing (nm) 

(± 0.0080 nm)

Axial rise per residue 
(nm)

(± 0.0003 nm)

0 hrs Control 1.52 0.288

12hrs control 1.55 0.288

12hrs PGF2a 1.51 0.288

12hrs MMP-EM 1.51 0.288

24hrs control 1.57 0.287

24hrs PGF2a 1.52 0.288

24hrs MMP-EM 1.52 0.288

72hrs control 1.51 0.288

72hrs PGF2a 1.50 0.287

72hrs MMP-EM 1.50 0.287

48hrs Collagenase Not visible Not visible

Table 5.1: Collagen intermolecular packing distance and axial rise per residue values 

for Human sclera samples. Standard deviation of error (I.L.P +/- 0.0080nm and axial rise per 

residue =/- 0.0003nm) represents maximal error observed between 3 images of each sample.

5.3.2 SAXD

Small angle 2D X ray diffraction images demonstrated a series of sharp 

Bragg reflections, caused by D-spacing diffraction (Fig. 5.6). These peaks 

reflect regular fluctuations in the electron density of collagen in the axial 

direction. Alterations in electron density along the fiber axis are reflected in 

changes to the intensity of these peaks (Maxwell, Bell et al. 2006). Peakfit4 

software was used to fit the data and refine the localisation of the peaks, so 

that a D-spacing value could be determined (Table 5.2). Scleral tissue treated 

with collagenase displayed no rings in the 2D diffraction image. The 

collagenase treatment caused total destruction of supramolecular structure of 

collagen, as demonstrated by the lack of peaks (Fig.5.6).
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Fig. 5.6: Small angle x-ray diffraction of human sclera. 2D X-ray diffraction image of 

human sclera (control) at Ohrs. A) The diffraction rings are due to the electron density 

contrast between the gap and overlap of the collagen quarter staggered array (D-spacing). B) 

2D X-ray diffraction image of human sclera treated with collagenase for 12 hrs. The absence 

of diffraction rings is due to the loss of collagen structural order. C) 1D Linear plots of intensity 

verses scattering angle of the X-ray diffraction images of human sclera.
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1400

—  MMP-EM 72hrs
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PGF2a 72hrs 
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Control 72hrs
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—  Control Ohrs
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Fig 5.7: Scaled 1D linear plot o f intensity verses scattering ang le  o f sm all ang le  x-ray  

diffraction  images. Control, MMP-EM and PGF2a treated human sclera after 12, 24 and 72 

hours. Each linaer plots were scaled, in order to clearly display prescence of relevant peaks.

No change is D-spacing was observed with PGF2a and MMP-EM treatment 

throughout the time course studied i.e. 0-72 hours (Fig. 5.7 and Table 5.2). 

No change in D-periodicity was observed with specific MMPs (MMP 1, 2 and 

7) (Fig. 5.8 and Table 5.3) or with MMP cocktails obtained from human scleral 

fibroblasts (HSF-CM) and ciliary muscle cell (HCM-CM) cultures (Fig. 5.9 and 

Table 5.4). The D-spacing value was approximately 66nm. A slightly higher D- 

spacing value, of approximately 67nm, was observed for scleral tissue treated 

in specific MMP and control.
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D-spacing (nm)

Incubation Time Untreated PGF2a MMP-EM

0 hrs 65.7 N/A N/A

12 hrs 65.5 65.9 65.7

24 hrs 65.8 65.9 65.7

72 hrs 65.7 65.7 65.6

Table 5.2: D-spacing values fo r human sclera. Standard deviation ±0.199, maximum error 

between 3 images of each sample.

250

HCM Control 12hrs 
HCM 24hrs 
HCM Control 72hrs 
HCM-CM 12hrs 
HCM-CM 24hrs 
HCM-CM 72hrs 
HSF Control 12hrs 
HSF Control 24hrs 
HSF Control 72hrs 
HSF-CM 12hrs 
HSF-CM 24hrs 
HSE-CM 72hrs

100

50

<r~
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q (n m 1)

200
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Fig 5.8: 1D linear plots o f small angle x-ray diffraction images o f scleral tissue

incubated in Control, HCM-CM and HSF-CM fo r 12, 24 and 72 hours.

HCM-M Sample, 

Incubation time

D-spacing

(nm)

(± 0.135)

HSF-CM sample, 

Incubation time

D-spacing

(nm)

(± 0.058)

Control 12 hours 65.6 Control 12 hours 65.8

Control 24 hours 65.8 Control 24 hours 65.8

Control 72 hours 65.7 Control 72 hours 65.6

HCM-CM 12 hours 65.6 HSF-CM 12 hours 65.7

HCM-CM 24 hours 65.8 HSF-CM 24 hours 65.8

HCM-CM 72 hours 65.7 HSF-CM 72 hours 65.7

Table 5.3: D-spacing values fo r Human Sclera treated with medium from HCM-CM and 

HSF-CM.
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80 ----------MMP1 24hrs

----------MMP2 24hrs

7 0 -
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--------- Control 72hrs
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3  ]
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0.17 0.32 0.48 0.63 0.78 0.93 1 08

q (nm‘1)

Fig 5.9: 1D linear plots of small angle x-ray diffraction images of scleral tissue treated 

in MMP1, 2 and 7 fo r 12, 24 and 72 hours.
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Incubation

Time

Control

D-spacing

(nm)

MMP1

D-spacing

(nm)

MMP2

D-spacing

(nm)

MMP7

D-spacing

(nm)

0 hrs 66.6 n/a n/a n/a

12 hrs 66.7 66.6 66.5 66.7

24 hrs 66.3 66.7 66.9 66.5

72 hrs 66.8 66.7 66.8 66.9

Table 5.4: D-spacing values for human sclera treated with MMPs
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6.4 Discussion

By dry weight 50-70% of the sclera is composed of collagen (Watson and 

Young 2004). The results obtained suggest that as collagen architecture is 

not disrupted by PGF2a or MMP-EM treatment, scleral collagen integrity over 

a number of length scales from atomic to mesoscopic are maintained after 

treatment. The previous chapter suggested an intensive increase in scleral 

permeability with MMP-EM treatment. The current suggests that although 

permeability is increased, the same treatment does not disrupt the collagen 

architecture within sclera at molecular and supramolecular levels.

Through the use of variable camera lengths it was possible to detect changes 

in the collagen structural hierarchy. PGF2a and MMP-EM treatment did not 

cause any changes in scleral collagen hierarchy. However, with collagenase 

treatment, total disruption of collagen architecture in terms of helical rise per 

residue, intermolecular lateral packing and D-spacing was observed. This 

demonstrated the feasibility of the analysis of structural changes in scleral 

collagen using x-ray diffraction methods.

Helical rise per residue is reflected by the diffraction pattern obtained due to 

amino acid sequence within the polypeptide chains that form the primary 

structure of the collagen molecule. The diffraction pattern observed due to 

molecule to molecule interaction within collagen fibrils reflected as the peak 

observed for intermolecular lateral packing.

The collagen molecules pack laterally and are staggered axially relative to 

their neighboring molecules by D _67 nm in tendon or _65.5 nm in skin. This 

arrangement is known as the Hodge-Petruska model (Goh, Hiller et al. 2005; 

Maxwell, Smiechowski et al. 2005; Obrink 1973). The D repeat is a 

characteristic feature of collagen. The stagger leaves a gap between linearly 

adjacent molecules as the molecular length (300 nm) is not an exact multiple 

of the D period, which results in a gap region and an overlap region within 

each D repeat. The gap region comprises 0.54 of D, and the overlap 

subsequently comprises 0.46 of D (Hodge 1989; Quantock, Meek et al.
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2001). It has previously been shown that changes in hydration state leads to 

the movement of water within the gap regions, and therefore cause changes 

in tissue imaging (Price, Lees et al. 1997; White, Hulmes et al. 1977). For 

this reason if was important that scleral tissue was analysed in the hydrated 

state.

From the 29 known collagen types, type I, II, III, V, and XI are capable of 

forming fibrils. Scleral tissue is mainly composed of Type I collagen (Thale 

and Tillmann 1993) Sagara et al. (1999) suggested that a decrease in 

collagen type I and III, as determined by immunoassaying occurs following 

direct treatment of cynomolgus monkey eyes with PGF2a for a 5-day period. 

Although some intensity'of staining changed for certain collagen types, the 

current study indicated that this does not cause denaturation of collagen 

architecture. This suggests scleral integrity was not affected by the application 

of either prostaglandins or MMPs. In scleral tissue, it has previously been 

demonstrated that there is a slow turnover of collagen molecules. Also an 

increase in glycosylation with aging is observed, which makes the molecules 

more stable and less soluble (lhanamaki, Salminen et al. 2001; Keeley, Morin 

et al. 1984). As the tissues used in this study were from donors of an age 

range related to glaucoma i.e. high age range, it is possible that this explains 

the resistance of collagen to MMP action.

Unlike the corneal collagen regular lamellae structure, scleral collagen 

structure is composed of a loosely entangled matrix of collagen fibrils (Thale, 

Tillmann et al. 1996). This organisation suggests that some preferred 

orientation is detected in x-ray diffraction images and relates to the 

broadening of peak. The organization and the structural features of sclera 

allow it to remain an order of magnitude more permeable to macromolecules 

than the cornea. Scleral permeability and its surface area make it the most 

favourable target tissue for drug delivery.

The treatment of sclera with MMP-EM and PGF2a may cause the scleral 

collagen organisation to become more loosely entangled allowing the
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increase in permeability, without causing major morphological changes which 

could cause adverse effects. It is important that any therapeutic measures 

applied to increase scleral permeability should not result in tissue destruction, 

which could possibly result in the development of staphylomata. These results 

suggest that that scleral collagen architecture is maintained although an 

increase in permeability is attained with MMP and PGF2a treatment.

Although collagen architecture does not change with treatment, a change in 

permeability has been observed in the previous chapter. It is important to 

understand how MMP-EM and PGF2a causes an increase in scleral 

permeability. It was suggested that although collagen fibrils may be intact, the 

spacing in between the fibrils may change. The main factors filling the space 

in between collagen fibrils are proteoglycans and water molecules. The next 

chapter focuses on understanding if changes in proteoglycan composition in 

sclera occur following the application of MMP-EM and PGF2a.

Scleral tissue treated with MMP and PGF2a did not show any change in 

helical rise per residue, lateral spacing and D-spacing. Whereas collagenase 

treatment distorted total collagen architecture, as was determined with the 

use of WAX and SAX analysis.
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CHAPTER 6
THE EFFECT OF MMP & PGF2a ON 

PROTEOGLYCANS IN HUMAN SCLERA

137



Bablin M olik Role o f  MMPs in Uveoscleral Outflow

CHAPTER 6
THE EFFECT OF MMP & PGF2a ON PROTEOGLYCANS IN HUMAN

SCLERA

6.1 Introduction

The connective tissue of the sclera imparts strength enabling it to perform its 

role in protecting the internal ocular tissue, yet remaining fairly elastic to 

withstand changes in intraocular pressure (Watson and Young 2004). The 

scleral connective tissue includes a strong meshwork of collagen with 

proteoglycans (Young 1985). Proteoglycans interact with collagen at specific 

locations along the collagen fibrils (Scott 1988).

Proteoglycans are a large group of glycoproteins that are heavily 

glycosylated (Grzesik, Frazier et al. 2002). They consist of a core protein and 

one or more covalently attached glycosaminoglycans (GAGs) chain(s) (Fig. 

6.1). These GAG chains are long, linear carbohydrate polymers that are 

negatively charged under physiological condition, due to the occurrence of 

sulphate and uronic acid groups.

Fig. 6.1: Schematic drawing of proteoglycan and glycosaminoglycan disaccharide. A.

Core protein (black) with attached glycosaminoglycan chains (red). B. Chondroitin and keratan 

sulphate disaccharide (Dudhia 2005).
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A number of proteoglycans have been identified within sclera; these include 

biglycan, aggrecan, decorin and lumican. Aggrecan is the most abundant 

large proteoglycan in the sclera consisting of a protein core >350kDa size 

(Rada, Achen et al. 1997). Aggrecan contains more than 100 chondroitin 

sulphate chains and more than 30 keratan sulphate chains (Doege, Sasaki et 

al. 1991). Lumican is known to interact with aggrecan within the sclera, and 

has a core protein size of 70-80kDa (Dunlevy and Rada 2004). A large group 

of small leucine-rich repeat proteoglycans within human sclera include the 

small proteoglycans: biglycan and decorin (Johnson, Young et al. 2006). Both 

biglycan and decorin have a protein core of approximately 45kDa. Decorin 

contains one chondroitin or dermatan sulphate GAG side chains, whereas 

biglycan contains two such chains (Fisher, Termine et al. 1989).

In chapter 4, sclera subjected to organ culture in a cocktail of MMPs or 

PGF2a resulted in an increase in scleral permeability. Chapter 5 showed that 

neither PGF2a nor the MMP cocktail appeared to have an effect on collagen 

intermolecular or supramolecular structure, suggesting that factors other than 

collagen degradation or changes in collagen architecture had influenced 

changes in scleral permeability. In the present chapter, the proteoglycan 

component of sclera will be analysed to determine if any changes in 

composition result as a function of MMP action either indirectly by PGF2a or 

by direct action of the MMPs in the MMP cocktail.
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6.1.2 Aims

The aims of the current chapter were to determine the effect of PGF2a and 

MMPs on:

1. The total sulphated GAG content in sclera.

2. Proteoglycans (aggrecan, lumican, decorin and biglycan) within sclera.
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6.2 Experimental Design

Proteoglycans were extracted from scleral tissue following incubation of tissue 

in media containing PGF2a or MMP-EM. The GAG concentration was 

measured in the extract, incubation media and in the remaining scleral tissue. 

Proteoglycan content was semi-quantified following Western blotting.

6.2.1 Tissue Culture
Scleral tissue was isolated from human donors (n=3) and prepared as 

described in section 2.3.1. Since ageing causes variation in proteoglycan 

composition (Dudhia 2005; Rada, Achen et al. 2000) and interaction (Dunlevy 

and Rada 2004; Kimura, Kabayashi et al. 1995), donors within a similar age 

range, 60-80 were used. Variation in proteoglycan composition due to scleral 

location has also been demonstrated (Rada, Achen et al. 2000), therefore all 

tissue explants were isolated from the uveal area of the sclera.

The scleral tissue was dissected into 1cm2 explants which were then cultured 

in triplicate either in MMP-EM, 100nM PGF2a in serum free DMEM:Ham’s 

F10 1:1 or control media (serum free DMEM:Ham’s F10 1:1) for 0, 24, 48 or 

72 hours (n=3 for each time point, see section 2.4.1).

6.2.2 Sulphated GAG content released into media, solubilised by 

Guanidine hydrochloride extraction and remaining in sclera.

6.2.2.1 GAG released into media

Media was collected following scleral culture and stored at -80°C. The GAG 

released into media during incubation was analysed using the DMMB assay 

(see section 2.6.4).

6.2.2.2 GAG Solubilised

Proteoglycans were extracted from scleral tissue explants in 4M guanidine 

hydrochloride (GuHCI) (see section 2.6.1). The solubilised extract was then 

dialysed (section 2.6.2) to remove any interfering ions. Total sulphated 

extracted GAGs was analysed using the DMMB assay (section 2.6.4).
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6.2.2.3 Determination of Total GAG

Following incubation and guanidine extraction, the remaining scleral tissue 

was digested with papain (see section 2.6.3), in order to calculate the total 

amount of sulphated GAGs.

Total GAGs = GAGs media + GAGs solubilised + GAGs remaining in tissue.

This allowed percentage GAGs released in media and GAGs solubilised by 

extraction to be calculated.

%GAGs released = (GAGs media / Total GAGs) X 100

%GAGs solubilised = (GAGs solubilised / GAGs solubilised + GAGs 

remaining in tissue) X 100

6.2.3 Analysis of Proteoglycan in Sclera

6.2.3.1 Identification of Proteoglycans in Sclera

The presence of different proteoglycans, namely aggrecan, biglycan, decorin 

and lumican within the human sclera, were identified following electrophoresis 

of solubilised proteoglycans and immunoblotting (section 2.6.4-2.6.7).

6.2.3.2 Quantification of Proteoglycan

6.2.3.3 Deglycosylation

Solubilised samples were deglycosylated (section 2.6.6) and then dialysed 

(section 2.6.2) to remove any free single sugars generated by 

deglycosylation. Samples were then dried in a Speedvac (Thermo Savant, 

U.K.) for 4 hours.

6.2.3.4 Western Blotting

Dried samples were re-suspended in sample buffer with 10% 

mercaptoethanol and heat-treated for 10 minutes (section 2.6.7). For the 

quantification of proteoglycan levels, samples containing equal protein 

concentrations of 50}ig (see section 2.6.5 for protein determination assay)
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were loaded onto 4-12% gradient gels and electrophoresed at 100V. Proteins 

were then transferred onto nitrocellulose membrane by blotting at 100V for 

one hour (see section 2.6.7). The membranes were blocked in 5% BSA 

before being probed with primary antibodies for aggrecan, biglycan, decorin 

and lumican overnight at room temperature. Following washes in TSA, the 

membranes were placed in secondary anti-mouse IgG (H+L), alkaline 

phosphatase (AP) and specific proteoglycan bands were visualised following 

the development of colour in AP buffer containing bromo-chloro-indolyl 

phosphate (BCIP) and nitroblue tetrazolium (NBT). The reaction was stopped 

by immersion in water and after drying the membrane the developed bands 

were subjected to laser scanning densitometry to identify intact and degraded 

proteoglycans. Membranes were scanned using an Epson expression 1680 

pro scanner and the gel band maximum OD was measured using Labworks 

45 software.

6.2.4 Data analysis
Data was entered into Excel 2003 to obtain charts and SPSS 14 in order to 

conduct statistical analysis of data. As data displayed non-parametric trends 

tests such as Spearmans-Rank correlation, Kruskal Wallis and Wilcoxon rank 

tests were applied.
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6.3 Results

6.3.1 Effect of PGF2a and MMPs on GAG composition

The percentage of GAGs released and the percentage of GAGs solubilised 

from tissue are shown in Figs. 6.2a-b.

(a )

30
□  Control

251 □  PGF2a

■ MMP-EM

24 48 72

Incubation time (hours)

(b)
□  Control
□  PGF2a

■ MMP-EM

0 24 48 72

Incubation time (hours)

Fig. 6.2: Percentage of GAG released in media and the percentage of GAG 
extracted from scleral tissue, (a) percenta of GAG released in media compared to 
total GAG; (b) percentage of GAG extracted from tissue compared to total GAG in 
tissue.
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Up-to 25% GAG was released into medium after 72 hours incubation (Fig. 6.2 

(a)). GAG release increased with time in incubation (p<0.001). There was 

significant changes observed in terms of tissue treatment (p<0.001). A 

significant increase of 4-9% and 9-11% in percentage GAGs released was 

observed for sclera incubated in MMP-EM and PGF2a, respectably, 

compared to control after 72 hours incubation.

By contrast, the amount of GAG solubilised from scleral tissue was not 

influenced by tissue incubation medium or time (Fig 6.2 (b)) (p>0.05). Overall 

35-46% GAGs was extracted from sclera.

6.3.2 Analysis of Proteoglycan within sclera

The presence of aggrecan, biglycan, decorin and lumican was detected in the 

solubilised GAG fraction. Fig. 6.3-6.6 includes (a) one of three immunoblotted 

membrane and (b) bar charts of, concluded results from 3 immunoblots, 

demonstrating relative levels of proteoglycans: aggrecan, biglycan, decorin, 

and lumican.

Intact aggrecan has a 170kDa molecular weight, whereas cleaved fragments 

were observed at 36-120kDa. Intact biglycan were observed above 36kDa, 

whereas cleaved unsulphated biglycan products were between 11 and 25 

KDa. Intact decorin has a molecular weight above 36kDa, and cleaved 

products of decorin were identified between 21-30 kDa. Intact lumican was 

attained above 65kDa, with lumican cleavage products with molecular weights 

of 19-61 kDa.

6.3.2.1 Effect of PGF2a and MMP-EM on Scleral Aggrecan

Fig. 6.3b illustrates the effects of PGF2a and MMP- EM on aggrecan in 

sclera. There were significant changes in aggrecan composition following 

culture with treatment of scleral tissue in PGF2a and MMP-EM (p<0.05). 

Upto 1.6+/-0.4, 0.6+/-0.3 and 0.4+/-0.1 relative levels of cleaved product 

observed for MMP-EM, PGF2a and control treated tissue respectably. A 

maximum aggrecan level in the extracted samples was observed after 48

145



Bablin Molik Role o f MMPs in Uveoscleral Outflow

hours of incubation. The percentage difference between intact and cleaved 

aggrecan was significantly different in all samples (p<0.05). Only cleaved 

aggrecan was observed in sclera incubated in MMP-EM. This suggests that 

the MMP cocktail cleaves aggrecan within 24 hours of incubation.

Intact

170kDa
150

10 0^  

75 "%#
Cleaved

0 24hrs 48lfS 72hrs

(b)

25

So1-5
o O

0.5

□Control 

□  PGF2a 

■  MMP-EM

o i -  -----
Intact Qeaved

A
Intact Cleaved Intact Qeawd Intact Cleaved

48 72

Incubation time (Hours)

Fig. 6.3: Effect o f PGF2a and MMP-EM on scle ra l aggrecan. (a) Im m u n o b lo t show ing in tac t and 
cleaved aggrecans. Samples: Control (C), PGF2a (PGF) and M M P-EM  (MMP). MW: Molecular weight 
marker, (b) Bar chart showing relative levels of intact and cleaved aggrecan.
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6.3.2.2 Effect of PGF2a and MMP-EM on Scleral Biglycan

Fig. 6.4b illustrates the effects of PGF2a and MMP- EM on biglycan in sclera. 

MMP-EM or PGF2a treatment or incubation time had no significant influence 

on level of intact or cleaved biglycan (p>0.05).
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Fig. 6.4: Effect o f PGF2a and MMP-EM on sc le ra l b ig lycan . (a) Im m u n o b lo t show ing  in tact and 
cleaved biglycans. Samples: Control (C), PGF2a (PGF) and M M P-EM  (MMP). MW: Molecular weight 
marker, (b) Bar chart showing relative levels of intact and cleaved biglycan.
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6.3.2.4 Effect of PGF and MMP-EM on Scleral Decorin

Fig. 6.5b illustrates the effects of PGF2a and MMP- EM on decorin in sclera. 

No significant changes in intact or cleaved decorin was observed with 

treatment or time-point (p>0.05).
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Fig. 6.5: Effect of PGF2a and MMP-EM on scleral decorin. (a) Im m unoblot showing intact and 
cleaved  decorins. Sam ples: Control (C ), P G F 2 a  (P G F )  and M M P -E M  (M M P ). M W : M olecular 
w eight marker, (b ) Bar chart showing relative levels o f intact and c leaved  decorin.
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6.3.3 Effect of PGF and MMP-EM on Scleral Lumican

Fig. 6.6b illustrates the effects of PGF2a and MMP- EM on lumican in sclera. 

No significant changes in lumican occurred due to treatment or time-point 

(p>0.05).
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Fig. 6.6: E ffect o f PGF2a and MMP-EM on s c le ra l lu m ica n . (a) Immunoblot showing intact and 
cleared lumicans. Samples: Control (C), P G F2a (P G F ) and M M P -E M  (M M P). MW : Molecular 
weight marker, (b) Bar chart showing relative levels o f intact and cleaved lumican.
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6.4 Discussion

Although proteoglycans represent a small proportion of scleral extracellular 

matrix (ECM), proteoglycans are essential in determining hydration (Naka, 

Morita et al. 2005), maintenance of structural integrity (Antoniou, Mwale et al.

2006), growth regulation (Su and Elam 2003), matrix organisation (Hamati, 

Britton et al. 1989) and cell adhesion (LeBaron and Athanasiou 2000). For 

these reasons, it is important to understand the effect of MMPs or PGF2a on 

proteoglycan content within human sclera. MMP-EM and PGF2a treatment 

caused an increase in GAGs released in a time dependent manor. This 

suggested that MMP-EM and PGF2a caused more GAGs being released 

from tissue compared to controls perhaps an indication that MMPs and 

PGF2a had an effect on tissue degradation. The percentage of GAGs 

solubilised from scleral tissue was not influenced by tissue incubation in 

MMP-EM and PGF2a, therefore the extracted GAG samples remaining at 

comparable levels after extraction. However, the relative levels of different 

proteoglycans, within these solubilised fractions are not known. The 

solubilisation of GAGs from scleral tissue not incubated in media, proved to 

be difficult with current methodology. This suggests the intense strength of 

scleral connective tissue. The incubation process allowed the connective 

tissue to loosen, and hence solubilisation of GAGs.

The current study suggested that MMPs and PGF2a can affect aggrecan 

composition within sclera. MMP caused a higher level of aggrecan cleavage 

within 24 hours of incubation. MMP induced permeability increase was at its 

peak after 24 hours of incubation, as shown in chapter 4. This suggests that 

the changes in aggrecan composition could be an influential factor in 

enhanced scleral conductivity.

Aggrecan is known to be involved in hydrating the collagen network, which 

provides compressibility and elasticity to the scleral tissue (Malfait, Liu et al. 

2002). The MMP cleavage site within aggrecan monomers occurs in between 

the C-terminal G1-G2 double globe region in between Asn341-Phe342 (Lark, 

William et al. 1995). Aggrecanase (Lark, Bayne et al. 1997) and A Disintegrin
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and Metalloproteinase with Thrombospondin (ADAM-TS) (Malfait, Liu et al. 

2002) have many cleavage sites within aggrecan monomers, one of which is 

within G1-G2 region in between Glu373-Ala374. Further study into fragment 

sequencing would determine the proteinases that play key roles in degrading 

aggrecan within sclera.

Although small leucine-rich proteoglycans (SLRP) such as biglycan, decorin 

and lumican only form a small proportion of the total scleral proteoglycan 

mass, they are however distributed in similar proportions to large 

proteoglycans (Johnstone, Markopoulos et al. 1993). Previous studies have 

demonstrated that SLRP are resistant to proteolytic cleavage compared to 

aggrecan (Sztrolovics, White et al. 1999). The fact that SLRP are less 

susceptible to proteolytic cleavage could explain why the application of MMP- 

EM and PGF2a on scleral tissue did not influence the small proteoglycan 

composition.

SLRP are involved in protecting collagen fibrils from collagenase action 

(Geng, McQuillan et al. 2006). They cover the collagen fibrils and prevent 

access of proteolytic enzymes to the collagen fibrils. Investigations have 

demonstrated the interaction of proteoglycan within the D-period of collagen 

fibrillar architecture (Young 1985), no change in SLRP suggests why change 

D-period was not observed in the previous chapter. The previous chapter 

demonstrated that collagen architecture remained intact even after 72 hours 

incubation in MMPs or PGF2a. This could be due to the accumulation of 

SLRP, which are unaffected by MMPs or PGF2a application, sustain their role 

in protecting the collagen fibrous structure within the scleral tissue.

The degradation of large aggrecan molecules identified with MMP and PGF2a 

would be sufficient in order to increase permeability. As the large aggrecan 

molecules have the potential interact with large amounts of water molecules, 

the depletion of aggrecan should empty spaces within the extracellular matrix 

and reduce resistance to aqueous outflow and drug inflow.
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As aggrecan degradation has been denoted as the appropriate method to 

increase tissue permeability, without causing tissue destruction, it would now 

be possible to use specific MMPs or aggrecanases which selectively cleave 

aggrecan within the tissue. Although MMP 3 is involved in aggrecan cleavage 

(Little, Flannery et al. 1999), it is also involved in the cleavage of other ECM 

components (Ashworth, Murphy et al. 1999). Aggrecanases, such as 

ADAMTS4 (Tortorella, Burn et al. 1999) and ADAMTS11 (Abbaszade, Liu et 

al. 1999) are enzymes which cleave aggrecan only. The use of such enzymes 

on scleral tissue could be tested in the future.
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CHAPTER 7
DISCUSSION
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CHAPTER 7
DISCUSSION 

7.1 Introduction

The basis of the current research project was to understand the impact of 

matrix metalloproteinases (MMPs) on the uveoscleral outflow pathway, which 

may in future contribute to the enhanced treatment of glaucoma. 

Prostaglandins derivatives (such as PGF2a) are the most commonly used 

drug in the control of intraocular pressure (IOP) in glaucoma. The ocular 

hypotensive effects of prostaglandin has been linked to their ability to induce 

MMPs expression (Oh, Martin et al. 2006a), reduce extracellular matrix 

(ECM) products (Lindsey, Kashiwagi et al. 1997), and thereby enhance 

uveoscleral outflow (Schachtschabel, Lindsey et al. 2000). These 

observations made it necessary to understand whether the induction of MMP 

expression was a direct effect of prostaglandins and if the direct effect of 

MMPs to the eye could be harnessed to further reduce IOP.

This study initially analysed the impact of MMP inducers on MMP secretion 

and activation by cells involved in the uveoscleral outflow pathway. The use of 

PGF2a and other inducers resulted in an increased MMP secretion and 

activation by human ciliary muscle cells (HCM cells) and human scleral 

fibroblasts (HSFs). The effect of the direct action of MMPs on the uveoscleral 

pathway is not fully understood. This study therefore has focussed on looking 

at the effect of PGF2a and MMPs on scleral integrity, since sclera is a major 

component of the uveoscleral outflow pathway. It is critical that while MMPs 

can be added to increase scleral conductivity, this should not compromise 

scleral integrity.

7.2 Induction of MMP secretion and activity in the uveoscleral outflow 

pathway

Current glaucoma treatments are focussed on the reduction of IOP, either via 

downregulation of aqueous formation or the upregulation of aqueous 

drainage. The main aim of this study was to investigate the mechanism of
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action of PGF2a and MMPs in augmenting aqueous outflow via the 

uveoscleral outflow pathway. MMPs are a group of biological enzymes which 

are involved in the degradation of ECM. There are many MMPs which have 

been grouped according to their structure and enzymatic activity (Murphy, 

Murphy et al. 1991). Collagenases (e.g. MMP 1) are known to cleave the 

triple helical structure of collagen at a specific location, thereby distorting the 

collagen structure and making it susceptible to further degradation. The 

gelatinases (e.g. MMP 2 and 9) act on basement membranes and have high 

specificity to denatured collagen. The stromelysins, such as MMP 3 and 7, 

have broader substrate specificity and have the ability to degrade a range of 

ECM products including collagen types IV, IX and X, laminin, proteoglycans 

and fibronectin (Girolamo, Lloyd et al. 1997). Membrane-associated MMPs 

(MT-MMPs) are so-called because they are membrane-bound and not 

secreted into the extracellular matrix (Takino, Sato et al. 1995).

This study firstly determined the MMP profile of cells within the uveoscleral 

outflow pathway. In vitro studies demonstrated the production of a 

collagenase (MMP 1), the gelatinases (MMP 2 and 9) and stromelysins (MMP 

3 and 7) by scleral fibroblasts and ciliary muscle cells. Since these cells are 

present within the uveoscleral outflow pathway, it is likely that if they are 

stimulated to produce such MMPs, their action is likely to affect the 

surrounding ECM.

Interleukin-1 a (IL-1a), tumour necrosis factor-a (TNFa) and transforming 

growth factor-p (TGF), have previously been shown to influence MMP 

activation. IL-1a has previously been shown to be involved in increasing 

aqueous outflow (Kee and Seo 1997). IL-1a, TNFa and TGFp have all been 

linked to the induction of MMP secretion and activity in various cell cultures 

(Hosseini, Rose et al. 2006; Kim, Shang et al. 2004). The current study 

measured the production of collagenase, gelatinase and stromelysin activity 

following the application of these growth factors within in vitro cultures of 

scleral fibroblast and ciliary muscle cells, the cells present in the uveoscleral 

outflow pathway. The therapeutic use of these cytokines have been limited,
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since they cause neurodestruction, (Yuan and Neufeld 2000), anterior 

subcapsular cataracts (Srinivasan, Lovicu et al. 1998), and lacrimal gland 

inflammation (Zoukhri, Macari et al. 2007). Such possible ocular 

complications and other as yet undetermined more problematic situations, 

need to be avoided in any ocular therapy.

Prostaglandin derivatives are well tolerated by glaucomatous eyes (Drake 

1996; Sharif, Kelly et al. 2003). Many studies have been conducted into 

understanding how these drugs lower IOP, and the main findings involve the 

upregulation of MMPs (Gaton, Sagara et al. 2001; Weinreb, Kashiwagi et al. 

1997) and degradation of ECM products (Lindsey, Gaton et al. 2001; Sagara, 

Gaton et al. 1999) within the uveoscleral outflow pathway (Gabelt and 

Kaufman 1989). The current study confirmed the induction of MMPs (MMP 1, 

2, 3 and 9) with a prostaglandin analogue (PGF2a) within in vitro cultures of 

human scleral fibroblasts and ciliary muscle cells. Previous studies have 

implicated MMPs in the destruction of scleral tissue leading to scleritis 

(Girolamo, Lloyd etal. 1997). This is a sight threatening inflammatory disorder 

caused by scleral matrix degradation (Okhravi, Odufuwa et al. 2005; Watson 

and Young 2004). Again this is an ocular complication to be avoided if direct 

MMP action on ocular structures is to be harnessed.

MMP activity is controlled at three levels: (i) gene expression, (ii) post- 

translational modification required to activate MMPs and (iii) the presence of 

MMP inhibitors i.e. tissue inhibitors of matrix metalloproteinase (TIMPs). 

Prostaglandin up-regulation of MMP activity can be controlled by a negative 

feedback effect which enhances TIMPs (Ito, Ohguro et al. 2006; Oh, Martin et 

al. 2006b), thereby preventing inflammation and scleritis. If MMP action is to 

be used in ocular therapy, a critical balance between MMPs and TIMPs must 

be maintained.
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7.3.1 The effect of PGF2a and MMPs on Scleral Integrity

Explant cultures of scleral tissues in the presence of PGF2a or MMPs 

resulted in increased scleral permeability after 3 to 24 hours of incubation. 

Interestingly, the MMP cocktail induced a greater increase in scleral 

permeability than the prostaglandin analogue (PGF2a).

Compatible with these findings previous studies have demonstrated that 

prostaglandins (PGF2a) were able to enhance scleral permeability (Kim, 

Lindsey et al. 2001; Weinreb 2001) and thereafter suggested that 

prostaglandins can induce MMPs expression and activity (Weinreb 2001). 

The current study is the first to show that the direct application of MMPs has 

greater effect on scleral conductivity than PGF2a.

The findings in chapter 4 suggest that scleral permeability can be increased in 

order to allow macromolecules with molecular mass up to 70kDa through and 

thereby drug delivery can be improvised. This suggests that tissue 

permeability can be enhanced for drug delivery, without making any chemical 

or physiological changes to the drug. A limitation to this study is that 

molecular weight of rhodamine dextran beads have been considered. The 

size, polarity and possible ionic charge of these molecules have not been 

considered. These factors will influence the transcleral passage of molecules.

The eye consists of two segments: the anterior segment (includes the cornea, 

anterior chamber, crystalline lens and ciliary body) and the posterior segment 

(includes the vitreous body, retina, and choroids). Age-related macular 

degeneration (AMD), diabetic retinopathy, posterior uveitis and retinitis due to 

glaucoma are leading posterior segment diseases which lead to vision loss 

(Olejnik and Hughes 2005). Drug delivery to the posterior segment of the eye 

has been limited via various factors. Currently four routes are used in drug 

delivery to the posterior segment including topical, systemic, intravitreal and 

transcleral (Geroski and Edelhauser 2000). There are limitations linked to all 

conventional drug delivery pathways including low drug delivery percentage, 

side effects such as retinal detachment and the requirement of periodical
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surgeries (Kimura, Yasukawa et al. 2001). Many studies are being conducted 

in order to improve drug delivery such as the use of transcleral iontophoresis 

(Myles, Neumann et al. 2005) and nanoparticles (Patil, Reshetnikov et al.

2007). The safety and the efficacy of such delivery systems still require 

further investigation.

Scleral tissue, which is the main protective layer of the eye, is considered the 

main barrier to the application of substances into the eye. However, due to 

the large surface area covering approximately 95% of the globe, it is 

considered a more advantageous media for drug delivery than the cornea. 

Due to different tissue thicknesses throughout the scleral surface area 

(1.0mm thickness around optic nerve, 0.53mm in corneoscleral limbus and 

0.39nm around the equator) (Watson and Young 2004), a safer and less 

invasive drug delivery route could be devised.

The data in chapter 4 has shown that an increase in scleral permeability can 

be harnessed, with MMP action, in order to allow high molecular weight 

molecules to gain intraocular access. Further work is required to determine 

the effect of increased scleral conductivity in the transport of novel therapeutic 

agents to the posterior pole for the treatment of diseases such as glaucoma 

and diabetes. If MMP actions are to be utilised, the integrity of the media 

through which drug delivery is to take place, first needs to be determined to 

avoid potential side effects.

7.3.2 Sclera retained its collagen architecture at molecular and 

supramolecular levels following MMP treatment

Collagenase, gelatinase and stromelysin activity (within MMP-EM) and 

induced by PGF2a did not influence collagen architecture at the molecular 

and supramolecular level, as determined by measurements of axial rise per 

residue, intermolecular lateral packing and D-periodicity. MMP collagenases 

(e.g. MMP 1) play a function in cleaving helical collagen structure, which 

dismantles the collagen molecular structure and leads to destruction of the 

collagen fibril. Specific MMPs (MMP 1, 2 and 7) and MMP directly secreted by
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human scleral fibroblast and ciliary muscle cell cultures were also tested, and 

also showed no effect on collagen molecular and supramolecular structure.

Thus, the application of MMPs enhanced scleral tissue permeability but did 

not result in degradation of the collagen architecture at the molecular and 

supramolecular levels. This is an important finding as collagen is a major 

component of the sclera (Keeley, Morin et al. 1984), and the disruption of 

scleral collagen architecture could lead to adverse effects, such as scleritis 

(Watson and Young 2004). Collagen architecture is influenced by different 

MMPs at different levels (Minond, Lauer-Fields et al. 2004) and can develop 

stability via interacting with other extracellular matrix components, such as 

proteoglycans (Dunlevy and Rada 2004). These factors suggest how 

collagen stabilises itself against proteolytic cleavage by MMPs.

7.3.3 Changes in Scleral Proteoglycans following MMP action

Proteoglycans form a small percentage of scleral by dry weight. However, 

they play vital roles in cell and matrix interactions. The presence of 

proteoglycans such as aggrecan, biglycan, decorin and lumican within the 

sclera was determined within this study.

The findings of the current study suggest that greater levels of cleaved scleral 

aggrecan were present in sclera subjected to the direct action of MMPs, 

compared to control and PGF2a treated tissue. Aggrecan is a large 

proteoglycan which embeds itself in between collagen fibrils. Due to the large 

amount of negatively charged glycosaminoglycans (GAGs) chains interacting 

with the aggrecan core, it generates an electrostatic repulsive force, which 

acts as a space-filling molecule and binds to a large amount of water 

molecules (Muir 1982). An increase in aggrecan is observed with age within 

sclera (Rada, Achen et al. 2000). Since age is a major risk factor to the 

development of glaucoma, it could be suggested that the accumulation of 

scleral aggrecan increases outflow resistance in the uveoscleral pathway, and 

thereby increase IOP. The accumulation of aggrecan has also been linked to 

increased axial length leading to myopia (Rada, Johnson et al. 2002).The loss
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of aggrecan may contribute to increased scleral permeability due to MMP 

activity.

However, it is important to keep the protease action under control, as the 

level of protease involvement will determine whether aggrecan degradation is 

destructive or non-destructive (Duirgova, Roughley et al. 2007; Maitre, 

Pockert et al. 2007; Muir 1982). Proteoglycans are the organisers of the 

intracellular matrix; excessive aggrecan degradation could cause tissue 

destruction. It is important to understand the mechanisms of aggrecan 

degradation within sclera via MMPs and PGF2a in order to ensure that scleral 

tissue function is maintained, especially if this was to be used as a method of 

ocular therapy. It is important to understand if MMP and PGF2a activity 

cleaves aggrecan at its side chains or within the core protein and if after the 

aggrecan degradation it disappears as debris or can re-build itself. Such 

knowledge will be required in order determine the best mode of ocular 

treatment via aggrecan degradation i.e. the efficiency of such treatment.

Small leucine rich proteoglycans (SLRPs), in the case of sclera biglycan, 

decorin and lumican, were unaffected by MMP or PGF2a throughout the 

incubation period, as determined in this study. These are small proteoglycans 

that perform various functions within tissue involving regulation of extracellular 

matrix and cell adhesion. They are known to have structural correlation, 

including a similar leucine rich internal repeat structure and cysteine- rich N 

and C-terminus (McEwan, Scott et al. 2006). SLRP interact with the surface 

of collagen and coat the fibril surface, thereby preventing collagenolytic 

proteolytic activities (Geng, McQuillan et al. 2006). Since the application of 

MMPs and PGF2a has no effect on collagen molecular and supramolecular 

structure, it is reasonable to suggest that the SLRP composition within sclera 

protect the collagen architecture against proteolytic cleavage.

The potential to increase scleral permeability without damaging the 

collagenous architecture, by the controlled removal of aggrecan could play a 

vital role in lowering eye pressure and improving ocular drug delivery.
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7.4 Conclusion

The initial aim of the project was to determine the effect of MMP inducers on 

the uveoscleral outflow pathway. Zymographical analysis allowed an 

understanding of how growth factors and prostaglandins induced MMP 

secretion and activation from human scleral fibroblasts and ciliary muscle 

cells. The controlled reduction of extracellular matrix components with 

induction of MMP activity within the uveoscleral outflow pathway could 

improve aqueous drainage and tissue permeability to drug delivery. Secondly, 

the Ussing chamber made it possible to analyse the direct impact of MMPs, 

as well as prostaglandin, on scleral conductivity. An increase in scleral tissue 

permeability was determined following the application of MMPs, that was 

greater than that achieved by prostaglandins alone.

Thus MMPs can enhance tissue permeability, but an understanding of the 

effect on scleral architecture and composition remained to be determined. To 

analyse the effect of MMPs on extracellular matrix components within scleral 

tissue, x-ray diffraction and western blotting was used. X-ray diffraction 

analysis of sclera indicated that neither MMPs nor PGF2a had an effect on 

collagen architecture. However biochemical analysis, using western blotting 

techniques, showed that scleral aggrecan composition was altered, although 

no changes in SLRPs were identified. These findings provided an 

understanding of scleral tissue modulation by the action of MMPs and 

PGF2a.

It has been postulated previously that PGF2a acts to lower IOP by induction 

of MMP activation in the uveoscleral outflow pathway (Schachtschabel, 

Lindsey et al. 2000), thereby augmenting aqueous outflow as a result of ECM 

degradation (Ito, Ohguro et al. 2006). The current study does agree with this 

mechanism, as the direct action of MMPs on sclera caused ECM modulation, 

which could be the reason behind increased tissue conductivity. The increase 

in scleral conductivity could harness aqueous outflow via the uveoscleral 

outflow pathway and thereby lower IOP. The safe use of MMPs to modulate 

scleral permeability is likely to benefit many clinically important therapeutics.
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This study indicates the potential for developing therapeutic drugs which 

involve matrix degradation without causing harm to the architectural 

arrangement of the tissue. This research could have a major impact on the 

pharmacological field, should it be possible to pre-treat sclera to improve 

permeability without adverse effect. It would become more manageable to 

administer drugs to treat posterior disease. The delivery of aptamer 

oligonucleotides against the neovascular growth in AMD, prolonged action 

anti-virals for treatment of CMV retinitis and neuroprotective agents to treat 

degenerations of the retina would become more applicable without any 

compromisation due to delivery difficulties. The delivery of such therapeutics 

via the transcleral pathway would prove to be less invasive and longer acting.
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7.5 Future prospects

The findings of this study suggest that direct application of MMPs to scleral 

tissue could improve aqueous drainage and drug delivery. However, MMPs 

are matrix degrading enzymes which would be difficult to control. The use of 

TIMPs as treatment to various diseases such as congestive heart failure and 

arthritis has been investigated for many years, but such biological factors tend 

to fail (Peterson 2004). Further work is required in the use of such treatment 

and to obtain the treatment with maximum therapeutic impact in glaucoma 

patients and drug delivery.

Future work will involve:

1) Quantification of changes in MMP, collagen and proteoglycan 

composition

As zymography, x-ray diffraction and Western blotting were semi- 

quantitative methods used to measure changes in protein levels; future 

work will use techniques such as ELISA and column chromatography to 

assess MMP, collagen and proteoglycan levels. ELISA involves the 

determination of antibody or antigen concentration in a sample. ELISA kits 

are available for biological proteins, such as MMPs. MMP-1 ELISA kit has 

been used in the current study. Column chromatography involves the 

passage of protein through a column that is designed to trap or slow up 

the passing of proteins based on size, charge or composition. With 

particular interest would be affinity chromatography, and gel filtration 

chromatography. Affinity chromatography involves a column of ligands, 

which sample proteins can bind to. A gel filtration column has a matrix of 

fine porous beads which allow the separation of proteins according to their 

size. Both ELISA and column chromatography would allow the 

determination of specific protein concentration in a protein sample.

2) Understanding the effect of prostaglandins on the uveoscleral 

outflow pathway

Prostaglandins may be involved in up or downregulation of other factors 

besides MMPs within the uveoscleral outflow pathway which may be
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involved in IOP reduction. Gene microarray analysis may help in 

determining such factors.

3) Determination of other inducers of MMPs

MMPs being a cocktail of biological factors with various influential affect it 

will be difficult to apply a cocktail of MMPs directly to tissue as a 

treatment, due to the diversity of its action. It would be important to 

determine the best suited method to induce MMP activity within the 

required location of the eye and with specific action within tissue, without 

causing adverse effects.

4) Determination of matrix degradation mechanism within scleral 

tissue

An understanding of the mechanism of matrix degradation is required to 

improve methods that could be used in order to improve treatment. This 

can be determined by further in depth study of the extracellular products 

produced as a result of MMP and PGF2a action on scleral tissue, using 

techniques such as polymerase chain reaction and western blotting.

5) Use of aggrecanase and chondroitinase to enhance tissue 

permeability

As aggrecan is a potential substrate for matrix degradation in order to 

clear uveoscleral outflow pathway for aqueous drainage an understanding 

of the use enzymes i.e. chondroitinase and aggrecanase on tissue 

permeability would be an important determination.

6) Determine if tissue treatment improves the delivery of drug 

molecules across scleral tissue.

The use of treatments such as an MMP cocktail as a pre-drug delivery 

mechanism could be tested. This would involve treating tissue with MMPs 

and then assessing its ability to allow the passage of drugs, such as 

Avastin and Lucentis, using the Ussing chamber.
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7) Understand the impact of MMP and PGF2a treatment on perfusion 

chamber cultures, in aqueous drainage.

The MMP and PGF2a treatments have been applied to scleral tissue. 

However, other factors may influence the effect of tissue when applied to 

perfused anterior chambers. The purfused chamber could be used to 

monitor how the treatments affect aqueous outflow, at various IOP. 

Therefore, further investigations are required of the MMP treatment on 

such models.
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8.0 APPENDIX

8.1 Chemicals &  Manufacturers 

Chemical
a-actin (mouse monoclonal 

antihuman a-smooth muscle actin 1A4) 

Acetone

Alexa Fluoro 488 donkey anti-mouse 

Alexa Fluoro 488 donkey anti-rabbit 

6-amino hexanoic acid 

Ammonium Persulphate 

Amphotericin B

Anti-mouse IgG (H+L), AP antibody

Ascrobic acid

BCA kit

BCIP

Betadine

40% Bisacrylamide/ acrylamide 

Benzamide hydrochloride 

Bisbenzamide

Bovine serum albumin (BSA) 

Bromphenol Blue 

Calcium chloride (CaCb)

Casein 

Chloroform 

Chodroitinase ABC 

Collagenase 

Coomassie brilliant blue 

Desmin (mouse monoclonal 

antihuman desmin D33)

DABCO

Dimethyl methylene blue (DMMB) 

DMEM

DMSO (Dimethyl sulfoxide)

Manufacturer

Sigma

Sigma

Molecular Probes

Molecular Probes

Sigma

Sigma

Gibco

Promega

Sigma

Sigma

Promega

Setan Healthcare group

Sigma

Sigma

Sigma

Sigma

Sigma

Sigma

Sigma

BDH

Sigma

Gibco

Sigma

Dako

Sigma

Sigma

Gibco

Sigma

185



Bablin Molik Role of MMPs in Uveoscleral Outflow

Donkey serum Gibco-invitrogen

EDTA BDH

Eosin BDH

Ethanol Sigma

Feotal calf serum Bio-Sera

40% Formaldehyde Sigma

98% Formic Acid BDH

Gelatin Sigma

Gelvacol Fisher

Glacial Acetic Acid Fisher

Glycerol Sigma

Glycine Sigma

Guanidine Hydrochloride Sigma

Haematoxylin BDH

Ham’s F10 Gibco

Ham’s F12 Gibco

HBSS Gibco

Hydrochloric Acid (HCI) Fisher

IMS BDH

lnterleukin-1 a R & D Systems

ITS (Insulin/ Transferrin/ selenium) Sigma

Kanamycin Sigma

L-cysteine hydrochloride Sigma

L-Glutamine Sigma

Liquid Nitrogen BOC

Keratanase I & II AMS Biotechnology

Magnesium Chloride BDH

Mercaphoethanol Sigma

Methanol BDH

MMP-1 Sigma

MMP-2 Sigma

MMP-7 Sigma

MMP-2 (mouse monoclonal) antibody Serotec
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MMP-1 ELISA kit Amersham

Molecular weight marker Sigma

NBT Promega

Papain Sigma

Paraformaldehyde Sigma

Penicilin-G Sigma

PGF2a Cayman chemicals

PGF2a receptor

(rabbit polyclonal) antibody Serotec

Phenyl Sulfonyl Flouride Sigma

Protein marker Sigma

Protein Assay BCA kit Sigma

Proteinase K Dako

Potassium Chloride (KCI) BDH

Potassium dihydro

orthophophate (KH2PO4) BDH

Recombinant human basic fibroblast 

growth factor R&D systems

Rhodamine dextran beads Invitrogen

Shark cartilage chondoritin sulphate Promega

Sodium azide BDH

Sodium Chloride (NaCI) BDH

Sodium dodecyl sulphate Sigma

Sodium hydroxide Sigma

Sodium Phosphate, monobasic, 

monohydrate Sigma

Sodium Phosphate, dibasic, anhydrase Acros Organic 

Streptomycins sulphate Sigma

TEMED Sigma

Toluidine Blue BDH

Transforming growth factor-pi R & D  Systems

Triton-X-100 Sigma

Tris Base Sigma
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Tris-glycine 4-12% gradient gel Invitrogen

Trypsin Sigma

Tumor necrosis factor-a R & D  Systems

Vinyl alcohol BDH

Xylene BDH
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8.2 Solutions

Alkali Phosphate (AP) buffer: 100mM trizma, 5mM Magnesium chloride 

(MgCI2), 100mM sodium chloride (NaCI), pH 9.55.

Antibiotics and Glutamine stock: Contained 1g Streptomycins sulphate, 1g 

Kanamycin, 600g Penicilin-G, 1.46g L-Glutamine in 100ml ddH20.

DMMB Solution: 16mg 1,9 Dimethyl methylene blue (DMMB), 25ml ethanol, 

1M sodium hydroxide and 4ml of 98% formic acid to a total volumne of 2L 

with ddH20.

Cell freezing solution: 9ml FCS and 1ml DMSO.

Fungisone stock: Contained 250ug/ml Amphotericin B.

Gelvatol

0.08g NaHP04and 0.03g KH2P04 was placed in 40ml ddH20  and the pH was 

adjusted to pH 7.2. 0.0327g of NaCI, 0.024g sodium azide and 0.6g DABCO 

were added. 10g of gelvacol was added and the solution was stirred to allow 

complete desolution. 20ml glycerol was added and stirred and the pH was 

adjusted to pH 6.7. The solution was centrifuged at 12000 rpm for 15minutes 

and then at 18000rpm for 25minutes. This solution was stored at 4°C.

10X Lammeli buffer: Prepared containing 100g SDS, 300g tris, 1.44Kg 

glycine in 10L of dH20.

10% Neutral Buffered Formuline (NBF): 40% Formaldehyde 100ml, 4g 

NaH2P04H20  (sodium phosphate, monobasic, monohydrate), 6.5g NaHP04 

(Sodium phosphate, dibasic, anhydrous) and 900ml ddH20.

4% Paraformaldehyde

8ug solid PFA was added to 100ml 1x PBS in a conical flask and placed on 

stirrer in fume hood for one 1hour at 65°C. Sodium hydroxide was added to
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the solution dropwise to make solution clear. The solution was filtered and 

aliquoted appropriately and acid/ alkali was added to make pH 7.4. The 

aliquots were kept at -20°C until required.

10% Phosphate Buffered Saline (PBS): 80g Sodium chloride (NaCI), 2.0g 

Patassium Chloride (KCI), 14.4g Sodium phosphate (Na2HP04), 2.4g 

Patassium phosphate (KH2PO4) was dissolved in 800ml ddH20. The pH was 

adjusted to pH 7.4 and the volumn was adjusted to 1L with the addition of 

ddH20.

Running buffer: 25mM Trizma, 192mM glycine and 0.1% SDS.

2X Sample Buffer: 0.125M Tris HCI pH 6.8, 4% SDS, 20% glycerol and 

0.01% bromophenol blue.

Transfer buffer: 25mM Trizma, 192mM glycine, 20% methanol.

Tris Saline (TSA): 50mM Tris pH 7.4, 200mM sodium chloride and 0.02% 

(w/v) sodium azide.

Trypsin-EDTA Solution (0.25% w/v stock): Contained 0.25g Trypsin 

(Sigma) and 0.02g EDTA (BDH) in 100ml 1x PBS.

Zymography destain: 7.5% glacial acetic acid and 10% methanol.

Zymography stain: Prepared containing 0.25% (w/v) coomassie brilliant 

blue, 10% glacial acetic acid and 45% methanol.
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REAGENTS RESOLVING GEL STACKING

GEL

7.5% Gelatin 12% Casein 12% Reverse

zymography

gel

4%

40% Bis/ acrylamide 2.72ml 3.3ml 3.3 ml 575ul

1M tris/HCI pH 8.8 3.63ml 2.5ml 2.5ml n/a

1M tris/HCI pH6.8 n/a n/a n/a 1.3ml

10% (w/v) SDS 100ul 100ul 10Oul 50ul

10% (w/v) APS 75ul 100ul 10Oul 37ul

dH20 6.16ml 3.85ml 2.85ml 4.075ml

Gelatin (7.25mg/ml) 1ml n/a n/a n/a

Gelatin (20mg/ml) n/a n/a 350ul n/a

Casein (1.5mg/ml) n/a 1ml n/a n/a

Conditioned medium 

(see section 5.3.1)

n/a n/a 1ml n/a

TEMED 15ul 15ul 15ul 7.5ul

Table 8.1: Zymography gel preparation.
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8.3 Human Tissue

8.3.1 NDRI
Donor Sex/ Age Date of death Cause of death

D1 Male, 90 20/10/2002 Coronary artery disease

D2 Male, 82 6/7/2001 Renal Failure

D3 Female, 81 11/4/2001 Intracranial haemorrhage

D4 Male, 66 25/7/1997 Cardio Respiratory arrest

Table 8.2: Tissue from NDRI detail.

8.3.2 Bristol Eye Bank
Date Donor (Ref, Age, Sex, 

Death)

Used for

07/06/05 D1, 71, female, SEPSIS HCM & HSF culture

14/06/05 D2, 60, male, Cancer HCM & HSF culture

D3, 78, male, cancer HCM & HSF culture

20/06/05 D4, 77, male, cardiac arrest HCM & HSF culture

D5, 69, female, cancer HCM & HSF culture

11/07/05 D6, 80, male, Stroke HCM & HSF culture

15/07/05 D7, 87, female, myocardial 

event

HCM & HSF culture

20/07/05 D8, 63, male, cancer HCM & HSF culture

D9, 79, male, haemorrhage HCM & HSF culture

21/07/05 D10, 53, female, cancer HCM & HSF culture

28/07/05 D11, 77, male, cancer liver HCM & HSF culture

D12, 63, female, colon 

cancer

HCM culture 

Ussing Chamber

D13, 57, male, celebrial 

infection

Western Blotting

D14, 77, male, renal failure Western Blotting

D15, 85 female, cardiac 

arrest

Western Blotting

29/07/05 D16, 66, female, CVA HCM & HSF culture 

1 globe sclera used for 

ussing chamber

01/08/05 D17, 79, male, stroke HCM cultured

D18, 56, male, cadio 

respiratory failure

HCM cultured

D19, 79, female, cancer HCM & HSF culture
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D20, 86, female, cancer HCM & HSF culture

D21, 57, male, brain damage HCM & HSF culture

23/08/05 D22, 79, female, CVA X ray diffraction

29/08/05 D23, F, 80, Hypoxia Ussing chamber

30/08/05 D24.M, 83, Pneumonia Ussing chamber

19/09/05 D25, 56, male, cardiac arrest X ray diffraction

D26, 60, male, cancer HCM & HSF culture 

Ussing Chamber

23/09/05 D27, 84, Female, multi organ 

failure

HCM & HSF culture

D28, 77, female, cancer HCM & HSF culture

27/09/05 D29, 80, female, cancer HCM culture 

Ussing chamber 

Western blotting

05/10/05 D30, 57, male, cancer Western blotting

D31, 64, female, 

haemorrhage

Ussing chamber 

Western blotting

12/10/05 D32, 83, male, malignant 

melanoma

Ussing Chamber

1/11/05 D33, 74, male, cancer rectum 

d/t: 31/10 9.44 

encun:31/10 10.30

X diffraction

14/11/05 D34, 72, male, lung cancer HCM culture 

Ussing Chamber

D35, 72 male, cardiac arrest HSF & HCM

D36, 66, male, cancer HCM culture 

Ussing chamber

05/12/05 D37, 59, male, stroke HCM & HSF culture

D38, 85, female, cancer HCM culture 

Ussing chamber

09/02/06 D39, Male, 88, SEPSIS Cultured HCM & HSF 

X ray diffraction

21/02/06 D40, Female, 80, cancer Ussing chamber

21/02/06 D41, Female, 75, CA 

oesophagus

Western blotting

22/2/06 D42, Female, 61, cardiac 

arrest

Ussing chamber

28/2/6 D43, Male, 75, cardiac& renal 

failure

Ussing chamber
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2/3/6 D44, Female, 62, CVA Ussing chamber

273/6 D45, Male, 79, stroke Western blotting, HCM and 

HSF culture

10/3/6 D46, Female, 60, renal failure X ray diffraction 

HCM & HSF culture

D47, Female, 72, Cancer 

stomach

X ray diffraction 

HCM & HSF culture

15/3/6 D48, Male, 40, ICB Ussing chamber

D49, Female , 84 Cancer 

bowel

Ussing chamber

D50, Male, 59, heart disease Culture HCM & MSF

28/3/6 D51, Male, 84, Pneumonia Ussing chamber

30/3/6 D52, Male, 66, Cancer 

prostate

Ussing chamber

17/5/5 D53, Male, 78, haemorrhage Cultured HCM HSF

25/5/6 D54, Female, 62, breast 

cancer

Western blotting

1/6/6 D55, male, 43, ICH Western blotting

D56, male, 61, cardiac arrest Western blotting 

Cultures: HCM & HSF

D57, Female, 94, SEPSIS Western blotting 

Cultures: HCM & HSF

12/6/6 D58, Male, 50, lung cancer Using blotting

14/6/6 D59, Male, 68, Myocardial 

infarction

Using chamber

15/6/6 D60, Male, 75, artery disease Ussing chamber

26/6/6 D61, Male, 78, cardiac arrest Ussing chamber

D62, Male, 72, cardiac arrest Ussing chamber

28/6/6 D63, Female, 86, cancer Ussing chamber

4/7/6 D64, Male, 70, renal failure Using chamber

5/7/6 D65, Female, 66, breast 

cancer

Ussing chamber

10/7/6 D66, Male, 81, giloma Using chamber 

HCM & HSF culture

12/7/6 D67, Female, 27, liver failure Culture HCM & HSF

D68, Female, 84, cardiac 

arrest

Ussing chamber

27/7/6 D69, Male, 83, CA prostate HCM and HSF cell culture

3/8/6 D70, Male, 63, Heart Disease HCM and HSF cell culture
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D72, Male, 75, Pneumonia HCM and HSF cell culture

15/8/6 D73, Male , 75 Oesophagus 

cancer

X ray diffraction

D74, Male, 65, respiratory 

failure

X ray diffraction

Table 8.3: Tissue from the Bristol Eye Bank details.

8.4 Raw data

8.4.1 Blastp Search for Bovine MMP protein sequence compared to 

human.

tr A6QPN5 Matrix metallopeptidase 2 (Gelatinase A, 72kDa 661
A6QPN5_BOVIN gelatinase, 72kDa AA

type IV collagenase) [MMP2] [Bos taurus align
(Bovine)]

S c o r e  =  1 2 9 0  b i t s  ( 3 3 3 8 ) ,  E x p e c t  =  0 . 0  
I d e n t i t i e s  =  6 0 1 / 6 5 9  ( 9 1 % ) ,  P o s i t i v e s  =  6 1 6 / 6 5 9  

( 9 3 % )

CLUSTAL FORMAT for T-COFFEE Version_l.37, CPU=0.00 sec, SCORE=35100, 
Nseq=2, Len=661

P08253|MMP2_HUMAN
MEALMARGALTGPLRALCLLGCLLSHAAAAPSPIIKFPGDVAPKTDKELAVQYLNTFYG 
A6QPN5|A6QPN5_BOVIN
MTEARVSRGALAALLRALCVLGCLLGRAAAAPSPIIKFPGDVAPKTDKELAVQYLNTFYG
★ +  • * * * • * : ★  . ' k ' k - i c i c ' k ' k ' k ' i r - k - k ' k ' k ' i e ' k ' k ' k ' k ' k ' k ' k ' i e ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k

P08253|MMP2_HUMAN
CPKESCNLFVLKDTLKKMQKFFGLPQTGDLDQNTIETMRKPRCGNPDVANYNFFPRKPKW 
A6QPN5|A6QPN5_BOVIN
CPKESCNLFVLKDTLKKMQKFFGLPQTGELDQSTIETMRKPRCGNPDVANYNFFPRKPKW

P08253|MMP2_HUMAN
DKNQITYRIIGYTPDLDPETVDDAFARAFQVWSDVTPLRFSRIHDGEADIMINFGRWEHG 
A6QPN5|A6QPN5_BOVIN
DKNQITYRIIGYTPDLDPQTVDDAFARAFQVWSDVTPLRFSRIHDGEADIMINFGRWEHG 
** + ***★*****■*•★*•*■★* . *★■*■*■*■ + ***■*■**■*•* + + ***•*•*■*•***** + •*• + * + ** + ★*****

P08253|MMP2_HUMAN
DGYPFDGKDGLLAHAFAPGTGVGGDSHFDDDELWTLGEGQVVRVKYGNADGEYCKFPFLF 
A6QPN5|A6QPN5_BOVIN
DGYPFDGKDGLLAHAFAPGPGVGGDSHFDDDELWTLGEGQVVRVKYGNADGEYCKFPFRF 
****■*•*****■*■*■*■•*■*** + * -*■*•*■**■*•*■*■*•*•****■*•■*■•*■*•*•************** + •*• + + * *
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P08253|MMP2_HUMAN
NGKEYNSCTDTGRSDGFLWCSTTYNFEKDGKYGFCPHEALFTMGGNAEGQPCKFPFRFQG 
A6QPN5|A6QPN5_BOVIN
NGKEYTSCTDTGRSDGFLWCSTTYNFDKDGKYGFCPHEALFTMGGNADGQPCKFPFRFQG
★  ★ ★ ★ ★  ' k ' k ' k ' k ' k ' k j c ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  •  ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  •  ' k ' k ' k ' k r k ' k ' k ' k ' k ' k ' k ' k

P08253|MMP2_HUMAN
TSYDSCTTEGRTDGYRWCGTTEDYDRDKKYGFCPETAMSTVGGNSEGAPCVFPFTFLGNK 
A6QPN5|A6QPN5_BOVIN
TSYDSCTTEGRTDGYRWCGTTEDYDRDKKYGFCPETAMSTVGGNSEGAPCVLPFTFLGNK
- k ' k ' k ' k ' k ' k ' k ' k ' k i r i e ' k ' k ' k r k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' i c ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' i e ' k ' k ' k ' k ' k ' k  • ★ ★ ★ ★ ★ ★ ★ ★

P08253|MMP2_HUMAN
YESCTSAGRSDGKMWCATTANYDDDRKWGFCPDQGYSLFLVAAHEFGHAMGLEHSQDPGA 
A6QPN5|A6QPN5_BOVIN
HESCTSAGRSDGKLWCATTSNYDDDRKWGFCPDQGYSLFLVAAHEFGHAMGLEHSQDPGA
★ •k-k-k'k-k'k'k'k'k'k'kic * +

P08253|MMP2_HUMAN
LMAPIYTYTKNFRLSQDDIKGIQELYGASPDIDLGTGPTPTLGPVTPEICKQDIVFDGIA 
A6QPN5|A6QPN5_BOVIN
LMAPIYTYTKNFRLSHDDIQGIQELYGASPDIDTGTGPTPTLGPVTPELCKQDIVFDGIS

' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  •  St- ★  ★  • ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  

•k'k'kJc'k'k'k'k'k'k'k'k'k'k • ★★★★★★★★★★ •

P08253|MMP2_HUMAN
QIRGEIFFFKDRFIWRTVTPRDKPMGPLLVATFWPELPEKIDAVYEAPQEEKAVFFAGNE 
A6QPN5|A6QPN5_BOVIN
QIRGEIFFFKDRFIWRTVTPRDKPTGPLLVATFWPELPEKIDAVYEDPQEEKAVFFAGNE

' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' J r ' J c j c ' k j c ' k - k ' k  ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

' k ' k ' k ' k ' k ' k - k ' k ' k ' k j c ' k ' k

P08253|MMP2_HUMAN
YWIYSASTLERGYPKPLTSLGLPPDVQRVDAAFNWSKNKKTYIFAGDKFWRYNEVKKKMD 
A6QPN5|A6QPN5_BOVIN
YWVYSASTLERGYPKPLTSLGLPPGVQKVDAAFNWSKNKKTYIFAGDKFWRYNEVKKKMD
★  ★  • ' k ' k ' k ' k ' k - k i c ' k ' i c ' k ' ^ ' k ' k ' k ' k ' k ' k - k ' k ' k ' k  -k •  ' k ' t e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

P08253|MMP2_HUMAN
PGFPKLIADAWNAIPDNLDAVVDLQGGGHSYFFKGAYYLKLENQSLKSVKFGSIKSDWLG 
A6QPN5|A6QPN5_BOVIN
PGFPKLIADAWNAIPDNLDAVVDLQGGGHSYFFKGAYYLKLENQSLKSVKFGSIKSDWLG

P08253|MMP2_HUMAN C 
A6QPN5|A6QPN5 BOVIN C
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sp P28053 Interstitial collagenase precursor (EC 4 69
MMP1_B0VIN 3.4.24.7) (Matrix AA

metalloproteinase-1) (MMP-1) (Fibroblast align
collagenase)
[MMP1] [Bos taurus (Bovine)]

S c o r e  =  5 1 . 3  b i t s  ( 1 1 0 ) ,  E x p e c t  =  2 e - 0 4  
I d e n t i t i e s  =  1 7 / 2 1  ( 8 0 % ) ,  P o s i t i v e s  =  1 9 / 2 1  

( 9 0 % )

Q u e r y :  2 6 3  S Q N P V Q P I G P Q T P K A C D S K L T  2 8 3

S b j c t :  2 6 3  S Q N P T Q P V G P Q T P E V C D S K L T  2 8 3

CLUSTAL FORMAT for T-COFFEE Version_l.37, CPU=0.00 sec, SCORE=21440, 
Nseq=2, Len=470

VIRT994 0 |Blast_submission MHSFPPLLLLLFWGVVSHSFPA-
TLETQEQDVDLVQKYLEKYYNLKNDGRQVEKRRNSGP
P28053IMMP1_B0VIN
MPRLPLLLLLLWGTGSHGFPAATSETQEQDVETVKKYLENYYNLNSNGKKVERQRNGGL

* * * * ★ * • * ★  *  ★  *  ★  *  *  * * * * * * * *

* • * ★ ★ ★ • * ★ * ★ •  • ★ • • ★ * • • * ★  *

VIRT9940|Blast_submission
VVEKLKQMQEFFGLKVTGKPDAETLKVMKQPRCGVPDVAQFVLTEGNPRWEQTHLTYRIE 
P28053|MMP1_B0VIN
ITEKLKQMQKFFGLRVTGKPDAETLNVMKQPRCGVPDVAPFVLTPGKSCWENTNLTYRIE

* * * * * * *  • * * * * . * * * * * * * * * *  . * * * * * * * * * * * * *
* * ★ *  ★ * • ★ ■ ★ * * ★ * *

VIRT9940|Blast_submission
NYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVSEGQADIMISFVRGDHRDNSPFDGPGG 
P28053IMMP1_B0VIN
NYTPDLSRADVDQAIEKAFQLWSNVTPLTFTKVSEGQADIMISFVRGDHRDNSPFDGPGG 
****** ***** • ***********************************************

VIRT9940|Blast_submission
NLAHAFQPGPGIGGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLSHSTDIGALMYPS 
P28 053|MMPl_BOVIN
NLAHAFQPGAGIGGDAHFDDDEWWTSNFQDYNLYRVAAHEFGHSLGLAHSTDIGALMYPS

* * * * * * * * *  * * * * * * * * *  • * *

* *  * ★ •  • ★ * ★ • * * * ★ * * * * ★ * * ★ ★ • * * ★ * * * ★ * * * * *

VIRT9940|Blast_submission
YTFSGDVQLAQDDIDGIQAIYGRSQNPVQPIGPQTPKACDSKLTFDAITTIRGEVMFFKD 
P28053|MMPl_BOVIN
YTFSGDVQLSQDDIDGIQAIYGPSQNPTQPVGPQTPEVCDSKLTFDAITTIRGEVMFFKD

* * * * * * * * *  * * * * * * * * * * * * *

* * * *  * * . * * * * * .  * * * * * * * * * * * * * * * * * * * * * *

VIRT9940|Blast_submission
RFYMRTNPFYPEVELNFISVFWPQLPNGLEAAYEFADRDEVRFFKGNKYWAVQGQNVLHG 
P28053|MMP1_B0VIN
RFYMRTNPLYPEVELNFISVFWPQLPNGLQAAYEVADRDEVRFFKGNKYWAVKGQDVLRG 
******** . ******************** . **** ***************** - ** . ** . *

VIRT9940|Blast_submission
YPKDIYSSFGFPRTVKHIDAALSEENTGKTYFFVANKYWRYDEYKRSMDPGYPKMIAHDF
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P28053|MMPl_BOVIN
YPRDIYRSFGFPRTVKSIDAAVSEEDTGKTYFFVANKCWRYDEYKQSMDAGYPKMIAEDF

+ ' k ' k ' k ' k ^ ' k - k ' k m ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k

k k k k k k k » k k k  k  k  k  k  k  k  k  k  k

VIRT9940|Blast_submission
PGIGHKVDAVFMKDGFFYFFHGTRQYKFDPKTKRILTLQKANSWFNCRKN 
P28053|MMPl_BOVIN
PGIGNKVDAVFQKGGFFYFFHGRRQYKFDPQTKRILTLLKANSWFNCRKN

★  ★  k k k k k k k k  k k k k k k k k  k k k k k k k

k k k k k k k k k k k

sp P5217 6 Matrix metalloproteinase-9 precursor (EC 712
MMP9_B0VIN 3.4.24.35) (MMP-9) (92 kDa AA

type IV collagenase) (92 kDa gelatinase) align
(Gelatinase B)
(GELB) [MMP9] [Bos taurus (Bovine)]

S c o r e  =  766 b i t s  ( 1 9 7 9 ) ,  E x p e c t  =  0 . 0
I d e n t i t i e s  =  3 5 4 / 4 4 4  ( 7 9 % ) , P o s i t i v e s  =  3 8 1 / 4 4 4  

(85%)
CLUSTAL FORMAT for T-COFFEE Version_l.37, CPU=0.00 sec, SCORE=31870, 
Nseq=2, Len=712

P14 780|MMP9_HUMAN
MSLWQPLVLVLLVLGCCFAAPRQRQSTLVLFPGDLRTNLTDRQLAEEYLYRYGYTRVAEM 
P52176|MMP9_BOVIN
MSPLQPLVLALLVLACCSAVPRRRQPTVVVFPGEPRTNLTNRQLAEEYLYRYGYTPGAEL

+  *  *  *  *  *  *  *  *  *  *  *  *  *  k  k  . k  k

k k k k k k k k k k k k k k  k  k  •

P14 7 80|MMP9_HUMAN
RGESKSLGPALLLLQKQLSLPETGELDSATLKAMRTPRCGVPDLGRFQTFEGDLKWHHHN 
P5217 6|MMP9_BOVIN
SEDGQSLQRALLRFQRRLSLPETGELDSTTLNAMRAPRCGVPDVGRFQTFEGELKWHHHN

. ★ ★ *  *  *

• k  •  •  k k k k k k k k k k k  •  k  k  •  k  k  k  •  k  k  k  k  k  k  k  •  +  • k  k  k  k  k  k  k

P14 780IMMP9_HUMAN
ITYWIQNYSEDLPRAVIDDAFARAFALWSAVTPLTFTRVYSRDADIVIQFGVAEHGDGYP 
P5217 6|MMP9_BOVIN
ITYWIQNYSEDLPRAVIDDAFARAFALWSAVTPLTFTRVYGPEADIVIQFGVREHGDGYP

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

• k k k k k k k k k  k  k  k  k  k  k  k

P14 7 80|MMP9_HUMAN
FDGKDGLLAHAFPPGPGIQGDAHFDDDELWSLGKGVVVPTRFGNADGAACHFPFIFEGRS 
P5217 6|MMP9_BOVIN
FDGKNGLLAHAFPPGKGIQGDAHFDDEELWSLGKGVVIPTYFGNAKGAACHFPFTFEGRS

k  k  k  k  •  k k k k k k k k k k  k k k k k k k k k k  •  k k k k k k k k k k  • k  k

k  k  k  k  k k k k k k k k  k  k  k  k  k

P14780|MMP9_HUMAN
YSACTTDGRSDGLPWCSTTANYDTDDRFGFCPSERLYTRDGNADGKPCQFPFIFQGQSYS 
P5217 6|MMP9_BOVIN
YSACTTDGRSDDMLWCSTTADYDADRQFGFCPSERLYTQDGNADGKPCVFPFTFQGRTYS

k k k k k k k k k k k  .  k k k k k k » k k * k  • k k k k k k k k k k k k k k k k k k k k k

k  k  k

P14 780|MMP9_HUMAN
ACTTDGRSDGYRWCATTANYDRDKLFGFCPTRADSTVMGGNSAGELCVFPFTFLGKEYST 
P5217 6|MMP9_BOVIN
ACTSDGRSDGYRWCATTANYDQDKLYGFCPTRVDATVTGGNAAGELCVFPFTFLGKEYSA
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k  k  k  • k k k k k k k k k k k k k k k k k  •  k  k  k  •  ★ ★ ★ ★ ★ ★  ★  • ★ ★

★  ★ ★  •  k k k k k k k k k k k k k k k k k  •

Pi4780 IMMP9_HUMAN
CTSEGRGDGRLWCATTSNFDSDKKWGFCPDQGYSLFLVAAHEFGHALGLDHSSVPEALMY 
P5217 6|MMP9_BOVIN
CTREGRNDGHLWCATTSNFDKDKKWGFCPDQGYSLFLVAAHEFGHALGLDHTSVPEALMY

★  k

k  k  k  k k k k k k k k k k k k k  k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k m k k k k k k k k

P14 7 80|MMP9_HUMAN PMYRFTEGPPLHKDDVNGIRHLYGPRPEPEPRPPTTTT---
PQPTAPPTVCPTGPPTV 
P5217 6IMMP9_BOVIN
PMYRFTEEHPLHRDDVQGIQHLYGPRPEPEPRPPTTTTTTTTEPQPTAPPTVCVTGPPTA

k  k  k  k  k k  k  k  k  k  •  ★ ★ ★  • k  k  •  k k k k k k k k k k k k k k k k k k

k k k k k k k k k k  k  k  k  k  k

P14 780|MMP9_HUMAN
HPSERPTAGPTGPPSAGPTGPPTAGPSTATTVPLSPVDDACNVNIFDAIAEIGNQLYLFK 
P52176|MMP9_BOVIN
RPSEGPTTGPTGPPAAGPTGPPTAGPSAAPTESPDPAEDVCNVDIFDAIAEIRNRLHFFK

. *  *  *  * * . * * * * * * . * * * * * * * * * * * * . *  *

k k k m k k k k k k k k  k  • k  • • k  k

P14 780|MMP9_HUMAN
DGKYWRFSEGRGSRPQGPFLIADKWPALPRKLDSVFEEPLSKKLFFFSGRQVWVYTGASV 
P52176 IMMP9_BOVIN
AGKYWRLSEGGGRRVQGPFLVKSKWPALPRKLDSAFEDPLTKKIFFFSGRQVWVYTGASL

* * * * * . * * *  *  *  * * * * * .

* * * * * * * * * * *  *  * . *  * . *  *  . * * * * * * * * * * * * * * * •

P14780|MMP9_HUMAN
LGPRRLDKLGLGADVAQVTGALRSGRGKMLLFSGRRLWRFDVKAQMVDPRSASEVDRMFP 
P52176|MMP9_BOVIN
LGPRRLDKLGLGPEVAQVTGALPRPEGKVLLFSGQSFWRFDVKTQKVDPQSVTPVDQMFP

P14780|MMP9_HUMAN
GVPLDTHDVFQYREKAYFCQDRFYWRVSSRSELNQVDQVGYVTYDILQCPED 
P52176|MMP9_BOVIN
GVPISTHDIFQYQEKAYFCQDHFYWRVSSQNEVNQVDYVGYVTFDLLKCPED

★  k k k » k k k *  k k k k k k k k  • k k k k k k k k  k  • k  k  k  k

k  k  k  k  k  • k  •  k  •  k  k  k  k

tr Q14 8N3 Matrix metallopeptidase 7 (Matrilysin, uterine) 2 67
Q14 8N3_BOVIN [MMP7] [Bos taurus AA

(Bovine)] align

S c o r e  =  4 1 9  b i t s  ( 1 0 7 6 ) ,  E x p e c t  =  e - 1 1 5
I d e n t i t i e s  =  1 9 8 / 2 6 7  ( 7 4 % ) ,  P o s i t i v e s  =  2 2 5 / 2 6 7

( 8 4 % )

CLUSTAL FORMAT for T-COFFEE Version_l.37, CPU=0.00 sec, SCORE=10760, 
Nseq=2, Len=267

P09237|MMP7_HUMAN
MRLTVLCAVCLLPGSLALPLPQEAGGMSELQWEQAQDYLKRFYLYDSETKNANSLEAKLK 
Q14 8N3|Q14 8N3_B0VIN
MRLVLLCAACLLPGSPALPLGPGPGGEGDPRWQLAQDYLKRFYSSDSKIKNANSLEVRLK

*  *  *  • * * *  * * * * * *  + * * *  _ * *  .  . * .  * * * * * * * * *  * * .

★ ★★★★★★
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P09237|MMP7_HUMAN
EMQKFFGLPITGMLNSRVIEIMQKPRCGVPDVAEYSLFPNSPKWTSKVVTYRIVSYTRDL 
Q148N3|Q148N3_BOVIN
RMEGFFHLPITGILSPRIIEIMEKPRSGVPDVAEFSLFPNHPKWTSKVVTYRIMSYTSDL

★  • ★ ★  k  k  k  k  k  • k  k » k k k k » k k k  k k k k k k k » k k k k k

k k k k k k k k k k k k  • k  k  k  k  k

P09237|MMP7_HUMAN
PHITVDRLVSKALNMWGKEIPLHFRKVVWGTADIMIGFARGAHGDSYPFDGPGNTLAHAF 
Q14 8N3IQ14 8N3_BOVIN
PHITVNQLVAKAFKIWSEAIPLTFKRLRWGTADIMIGFARRAHGDPYPFDGPGATLAHAF

★  ★ ★ ★ ★ • • ★ ★ • ★ ★ • • • ■ A 1 • k  k  k  ★ • • •  ★

k  k  k  k  ★ ★ ★ ★ ★ ★ ★  ★

P09237|MMP7_HUMAN
APGTGLGGDAHFDEDERWTDGSSLGINFLYAATHELGHSLGMGHSSDPNAVMYPTYGNGD 
Q148N3|Q148N3_BOVIN
APGPGLGGDAHFDEDERWTDGIGIGVNFLYVATHELGHSLGLSHSSDPNAVMYPTYSKED

+ ■*• *  *  + * * * * * • * • * ■ * • * * * *  + •*■*

P09237|MMP7_HUMAN PQNFKLSQDDIKGIQKLYGKRSNSRKK
Q148N3|Q148N3_BOVIN SKNFKLSQDDINGIQLLYGKRNDSRKK

. * * * * * *  + ★+ . * * *  + + *•*•* . * *  + *
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