
Ca r d if f
UNIVERSITY

PRIFYSGOL
CaeRDY|§>

THE BEES ALGORITHM

A Novel Optimisation Tool

A thesis submitted to the Cardiff University

In candidature for the degree of

Doctor o f Philosophy

By

Afshin Ghanbarzadeh, B.Sc., M.Sc.

Manufacturing Engineering Centre

Cardiff University

United Kingdom

2007

UMI Number: U585010

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585010
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

In the name of Allah,

The Most Gracious, The Most Merciful

DEDICATION

This work is entirely dedicated to my family

To my wife: To my parents:

Elham Tahanpesar Mohammad-Ali Ghanbarzadeh
Kobra Nasri

To my brothers:

Ehsan and Amir
Ghanbarzadeh

To my children:

Armin and Arezoo
Ghanbarzadeh

ACKNOWLEDGEMENTS

I would like to express my special gratitude to the supervisor of my studies,

Professor D.T. Pham, for his encouragement, invaluable guidance and strong support

throughout my studies. I consider myself very lucky to have him as my study

supervisor.

I wish to express my sincere thanks to the Cardiff University, especially the

Manufacturing Engineering Centre for the use of the facilities to pursue this research

work.

Grateful acknowledgement for my funding and support must be made to my home

country Iran and the Iranian Ministry of Research Science and Technology.

I wish to thank my friends in the Cardiff Bay Bees, exceptional thanks go to Marco

Castellani for reviewing the thesis and for sharing his knowledge with every one in

Bay.

Naturally I owe my parents a great dept of gratitude for all the love and consistent

support they have given me. I also want to express my warmest thanks to my

parents-in-law for their help and support.

In would like also to thank my brothers, Ehsan and Amir for their encouragement.

My final and most heartfelt acknowledgment must go to my wife Elham. Her love,

support, encouragement and companionship turned my time in Cardiff into a

pleasure. I also should mention my lovely twin kids, Armin and Arezoo, for their

understanding and tolerance of their father’s absences on evening and weekends that

were devoted to this thesis.

v

ABSTRACT

This work introduces the Bees Algorithm, a new optimisation algorithm inspired by

the foraging behaviour of honey-bees. In its basic version, the Bees Algorithm

performs a kind of neighbourhood search combined with global random search and

can be used for both continuous and discrete optimisation problems.

An improved version of the Bees Algorithm including replacing global random

search with interpolation and extrapolation, shrinking neighbourhood size, and

abandoning sites with no new information was developed. The improved version

could solve benchmark function optimisation problems with less sampling o f the

search space.

The Bees Algorithm has been applied to mechanical design optimisation. Two

standard mechanical design problems, the design of a welded beam structure and the

design of coil springs, were used to benchmark the Bees Algorithm against other

optimisation techniques.

Computer-aided preliminary design can be regarded as a special case of

optimisation, where the goal is to generate as many solutions as possible above a

predefined performance threshold. The higher the number of solutions satisfying the

preliminary selection criteria, the greater is the chance to produce a good final

solution. An adapted version of the Bees Algorithm for discrete function

optimisation was developed and tested on a simple machine design task, preliminary

gearbox design. The test consists of finding alternative gearbox configurations that

approximately produce the required output speeds using one of the available input

speeds. Experimental results show that the Bees Algorithm outperforms random

search and a genetic optimisation algorithm.

A modified version of the Bees Algorithm was used to search for multiple Pareto

optimal solutions in a multi-objective optimisation design problem. Compared to

two non-dominated genetic algorithms, the Bees Algorithm was able to find more

trade-off solutions.

Finally, the Bees Algorithm was employed to train Radial Basis Function (RBF)

neural networks for two different problems. Despite the high dimensionality o f the

problems - each bee represented 2345 parameters in the control chart pattern

recognition case and 1581 parameters in the wood defect classification case - the

algorithm successfully trained very accurate classifiers. Although the accuracies

achieved were marginally lower than those obtained with conventional RBF training

methods, the total output errors were less than those for conventionally RBF-trained

networks with same number of hidden neurons.

CONTENTS

DECLARATION.. II

DEDICATION.. IV

THIS WORK IS ENTIRELY DEDICATED TO MY FAMILY......................... IV

ACKNOWLEDGEMENTS.. V

CONTENTS.. VIII

LIST OF FIGURES... XI

LIST OF TABLES... XIII

ABBREVIATIONS..XIV

NOMENCLATURE...XV

1. INTRODUCTION...2

1.1 Motivation...2

1.2 Research Objectives.. 3

1.3 Thesis Organisation...4

2. SWARM-BASED OPTIMISATION... 7

2.1 Evolutionary Algorithms (EAs)...8
2.1.1 Evolutionary Strategies (ESs)...9
2.1.2 Evolutionary Programming (EP)..11
2.1.3 Genetic Algorithms (GAs).. 12
2.1.4 Differential Evolution (DE).. 15

2.2 Ant Colony Optimisation..16
2.2.1 Ant Colony Optimisation applications...21

2.3 Particle Swarm Optimisation (PSO).. 23
2.3.1 Particle Swarm Optimisation applications.. 28

2.4 Honey-bees inspired Algorithms...29

3. THE BEES ALGORITHM..33

3.1 Preliminaries...33

3.2 The basic Bees Algorithm...33
3.2.1 The foraging process in nature..34
3.2.2 The basic Bees Algorithm... 36

3.3 Experiments using the basic Bees Algorithm..41

3.4 Mechanical design optimisation using the basic Bees Algorithm... 51
3.4.1 Welded beam design problem...52
3.4.2 Coil spring design problem... 61

3.5 Improved version of the Bees Algorithm... 69

3.6 Experiments using improved version of the Bees Algorithm... 73

3.7 Summary..75

4. PRELIMINARY DESIGN AND MULTI-OBJECTIVE OPTIMISATION
USING THE BEES ALGORITHM...77

4.1 Preliminaries... 77

4.2 Preliminary Design.. 77

4.3 The Multi-Solution Bees Algorithm..78

4.4 Preliminary gearbox design... 82
4.4.1 Problem statement.. 82
4.4.2 Evaluation function..85

4.5 Genetic Algorithms.. 87

4.6 Results of preliminary design.. 87
4.6.1 Solution acceptance criteria.. 88
4.6.2 Parameters of the Bees Algorithm... 88
4.6.3 Parameters of the Genetic Algorithm... 91
4.6.4 Results of the preliminary gearbox design...91

4.7 Multi-Objective optimisation.. 93
4.7.1 Pareto ranking and Pareto optimality...95

4.8 The multi-objective Bees Algorithm.. 97

4.9 Welded beam design problem with two objective functions...101

4.10 Results for the welded beam design problem with two objective functions......................... 103

4.11 Summary 105

5. TRAINING RADIAL BASIS FUNCTION NEURAL NETWORKS USING
THE BEES ALGORITHM.. 108

5.1 Preliminaries... 108

5.2 Radial Basis Function (RBF) network..108
5.2.1 Network structure...108
5.2.2 RBF network training procedure.. 112

5.3 Control chart pattern (CCP) recognition experiments...115
5.3.1 Control chart pattern.. 115
5.3.2 Control chart pattern simulator... 117
5.3.3 RBF network configuration for control chart pattern.. 120
5.3.4 The Bees Algorithm parameters for control chart pattern...120
5.3.5 Results of control chart pattern recognition using the Bees Algorithm..................................122

5.4 Identification of wood defects using the Bees algorithm...125
5.4.1 Birch wood veneer boards...127
5.4.2 RBF network configuration for identification of wood defects... 133
5.4.3 The Bees Algorithm parameters for identification of wood defects..133
5.4.4 Results of the identification of wood defects using the Bees Algorithm................................ 137

5.5 Summary..139

6. CONCLUSION..143

6.1 Contributions..143

6.2 Conclusions... 144

6.3 Future work.. 146

REFERENCES.. 148

x

19

27
37
38
39
43
43

45
45

56
59
64
67
71
72
80
81
84
96
99

100
104

104

110
116
124

LIST OF FIGURES

F igu re

2.1 Pseudo code of the simple Ant Colony Optimisation

2.2 Flowchart of Particle Swarm Optimisation
3.1 Pseudo code of the basic Bees Algorithm
3.2 Flowchart of the basic Bees Algorithm
3.3 Graphical illustration of the Bees Algorithm
3.4 Inverted Shekel’s Foxholes
3.5 Evolution o f fitness with the number of points visited

(Inverted Shekel’s Foxholes)
3.6 2D Schwefel’s function
3.7 Evolution o f fitness with the number of points visited

(Inverted Schwefel’s Function)
3.8 A welded beam
3.9 Evolution of the lowest cost in each iteration
3.10 A coil spring
3.11 Evolution of the lowest mass in each iteration
3.12 Pseudo code o f the improved Bees Algorithm
3.13 Flowchart o f the improved Bees Algorithm
4.1 Pseudo code o f the multi-solution Bees Algorithm
4.2 Flowchart of the multi-solution Bees Algorithm
4.3 An example of a gearbox
4.4 Pareto ranking o f candidate solutions
4.5 Pseudo code of the multi-objective Bees Algorithm
4.6 Flowchart o f the multi-objective Bees Algorithm
4.8 Non-dominated solutions obtained using the Bees

Algorithm
4.9 Non-dominated solutions obtained using the two different

versions of genetic algorithms
5.1 Topology of an RBF network.
5.2 Six main classes of control chart patterns
5.3 Typical plot of classification accuracy versus number of

training iterations
5.4 Wood Veneer. An example of a Wood Veneer sheet

containing several defects

xi

Inspection Rig. The inspection rig for wood defect
detection
Wood veneer defect types. There are 12 distinct types of
defect that need to be identified by the neural network
plus clear wood
Generic Automated Visual Inspection system for wood
defect identification

48
49
49
56

60

64

68

74
74

90
90
92

102

121
121
123
123
131
134
135

136
138
138

LIST OF TABLES

T ab le

3.1 Test Functions
3.2 Results for test functions
3.3 The Bees Algorithm parameters
3.4 Parameters of the Bees Algorithm for the welded beam

design problem
3.5 Results for the welded beam design problem obtained

using the Bees Algorithm and other optimisation
methods

3.6 Parameters of the Bees Algorithm for the coil spring
design problem

3.7 Results for the coil spring design problem obtained
using the Bees Algorithm and other optimisation
methods

3.8 The improved Bees Algorithm parameters
3.9 Results of the improved Bees Algorithm for test

functions
4.1 Parameters of the Bees Algorithm
4.2 Parameters of the Genetic Algorithm
4.3 Number of solutions for different output speeds

4.4 Parameters o f the multi-objective Bees Algorithm for
the welded beam design problem

5.1 Representation of the output categories.
5.2 Parameters of the Bees Algorithm.
5.3 RBF classification results.
5.4 Comparison with conventional RBF training.
5.5 Feature selected for training of neural network
5.6 Representation of the output categories
5.7 Pattern classes and the number of examples used for

training and testing
5.8 Parameters of the Bees Algorithm
5.9 RBF classification results
5.10 Comparison with conventional RBF training and MDC

xiii

ABBREVIATIONS

ACO Ant Colony Optimisation

ANTS Ant Colony System

AVI Automated Visual Inspection

B A Bees Algorithm

CAD Computer Aided Design

CCD Charge-Coupled Device

CCP Control Chart Pattern

DE Differential Evolution

DNA DeoxyriboNucleic Acid

EA Evolutionary Algorithms

EP Evolutionary Programming

ES Evolutionary Strategy

FEA Finite Element Analysis

GA Genetic Algorithm

MDC Minimum Distance Classifier

NE SIMPSA stochastic simulated annealing optimisation procedure

NN Neural Network

NSGA Non-dominated Sorting Genetic Algorithm

PSO Particle Swarm Optimisation

RBF Radial Basis function

SIMPSA the deterministic Simplex method

SPC Statistical Process Control

SQP Sequential Quadratic Programming

xiv

NOMENCLATURE

CHAPTER 2
or, P control parameter
A r, amount o f pheromone deposited

Desirability of the corresponding link, (i,j)
/ / , A number of individuals
P rate of pheromone evaporation
Tij pheromone intensity of the corresponding link, (i ,j)

<Px > ^2 weights

C\ ’ C2 acceleration coefficients

nj number of jobs

nM number of machines

yg global best found by the swarm

Pi best position found by particle i

Pij probability of moving from node i to node j

o r n-dimensional search space

k velocity o f particle i

w inertia weight

x i position of particle i

CHAPTER 3

r weight density
s beam end deflection
A minimum spring deflection
P mass density
a maximum normal stress in beam

allowable normal stress for beam material
T maximum shear stress in weld
T' primary stress
Tn secondary stress
*d allowable shear stress
CO frequency of surge waves
*>0 lower limit on surge wave frequency

XV

b beam width
Unit volume of weld material cost

C2 Unit volume o f bar stock cost

d wire diameter
D mean coil diameter
D0 limit on outer diameter o f the coil

e number of top-rated (elite) sites
F load
f / Cost function including setup cost
f(x) objective function
g gravitational constant

Si constraint i
G shear modulus
h weld thickness
1 weld length
L fixed distance from load to support
m number of sites selected
M mass
n number o f scout bees
N number active coils
nep number of bees recruited for the best e sites
ngh initial size of each patch
nsp number of bees recruited for the other (m-e) selected

sites
P applied axial load
Pc bar buckling load

Q number o f inactive coils
t beam thickness
X a scalar or a vector
Xie position of an elite bee in the ith dimension

CHAPTER 4

A1 , A2 coefficients
cj(X) equality constraints
F fitness
m objective functions
hk(X) inequality constraints
MaxAllowedF itness maximum allwed fitness
MAXRATIO maximum single-stage transmission ratio
Ni number of teeth of gear i
NoOfShafts number of shafts

xvi

CHAPTER 5

m mean value o f the process variable being monitored
cr standard deviation o f the process
cr. spread o f the function i .
a amplitude of cyclic variations
c. centre of basis function i
d desirable output
g magnitude of the gradient o f the trend
k parameter determining the shift position

K)T outputs of the hidden neurons

r normally distributed random number
s magnitude of the shift
t discrete time at which the pattern is sampled
T period of a cycle
w.. weight of connection from hidden neuron i to output

j
||x - ct | norm o f (jc - ct)

jq to xN input layer neurons
“ scaled pattern value

y(t) sample value at time t
y x to y p network outputs

v maximum allowed valueyrnax

^min
minimum allowed value

xvii

CHAPTER 1

INTRODUCTION

1

1. INTRODUCTION

Optimisation algorithms are search methods where the goal is to find a solution to a

problem, such that a given quantity is maximised or minimised, possibly subject to a

set of constraints. Although this definition is simple, it hides a number of complex

issues. For example, the solution may consist o f a combination of different data

types, nonlinear constraints may restrict the search area, the search space may be

convoluted with many candidate solutions, the characteristics o f the problem may

change over time, or the optimisation problem may have conflicting objectives or

constraints. This is just a short list o f issues, given to illustrate some of the

complexities an optimisation algorithm may have to face.

1.1 Motivation

Studies of social animals and social insects have resulted in a number o f

computational models of swarm intelligence. Biological swarm systems that have

inspired computational models include ants, termites, bees, fish schools, and bird

flocks (Engelbrecht 2005). Within these swarms, individuals are relatively simple in

structure, but their collective behaviour is usually very complex. The collective

behaviour of a swarm of social organisms emerges from the behaviours of the

individuals of that swarm.

An objective o f computational swarm intelligence models is to represent the simple

behaviours of individuals, and the local interactions with the environment and

2

neighbouring individuals, in order to obtain more complex behaviours that can be

used to solve complex problems.

Researchers have developed computational problem-solving methods based on

biology. Genetic Algorithms, Particle Swarm Optimisation, and Ant Colony

Optimisation are examples of these types of methods.

This work introduces a new optimisation algorithm inspired by the foraging

behaviour of honey-bees. The proposed algorithm which is called the Bees

Algorithm can be used as an alternative to current optimisation procedures. As each

optimisation algorithm can produce good results for some problems and poor results

for other problems in comparison with other methods, creating a new algorithm can

give users a tool which is better adapted to their particular cases.

1.2 Research Objectives

The overall aim of this thesis was to develop, improve and test a new swarm-based

tool for optimisation problems.

The following objectives were set to achieve the aim.

• Survey current swarm-based optimisation algorithms.

• Develop a new optimisation tool mimicking the behaviour of social insects

which operate in swarms.

3

• Adapt the optimisation tool for different categories of optimisation problems,

namely, continuous or discrete, constrained or unconstrained, single or multi­

objective optimisation problems.

• Validate the optimisation algorithm by applying it to different benchmark

optimisation problems and compare results with other methods to evaluate

the overall performance of the algorithm.

1.3 Thesis Organisation

The remainder o f thesis is organised as follows:

Chapter 2 surveys current swarm-based optimisation techniques including those

inspired by the behaviour of bees.

Chapter 3 describes the basic Bees Algorithm and its application to function

optimisation and mechanical design optimisation problems which are constrained

optimisation problems. Also, an improved version of the Bees Algorithm is

introduced.

Chapter 4 presents adapted versions of the Bees Algorithm for multi-solution and

multi-objective optimisation problems. The modified algorithm for multi-solution

optimisation problems is applied to a preliminary design problem. The multi­

objective version o f the Bees Algorithm is applied to a mechanical design

optimisation problem with two objective functions.

4

Chapter 5 describes the Radial Basis Function neural network and how the Bees

Algorithm has been used to train the network instead of standard methods of

training. Two examples of employing Radial Basis Function neural networks trained

with the Bees Algorithm, control chart pattern recognition and wood defect

classification, are presented in this chapter.

Chapter 6 summarises the conclusions and contributions o f the research, and gives

suggestions for further investigations.

5

CHAPTER 2

SWARM-BASED

OPTIMISATION

2. SWARM-BASED OPTIMISATION

A recent trend is the introduction o f non-classical stochastic search optimisation

algorithms. Swarm algorithms mimic different nature’s problem-solving strategies to

drive their search towards an optimal solution. One of the most striking differences

between swarm algorithms and direct search algorithms such as hill climbing is that

the former use a population of solutions for every iteration, instead of a single

solution. That is, a population of solutions is processed at every iteration, and the

outcome is also a population of solutions. If an optimisation problem has a single

optimum solution, all population members of a swarm algorithm can be expected to

converge to that solution. However, if an optimisation problem has multiple optimal

solutions, a swarm algorithm can be used to capture multiple optimal solutions in its

final population. Swarm algorithms include Ant Colony Optimisation (ACO)

(Dorigo and Stiitzle 2004), Evolutionary Algorithms (EA) (Fogel 2000) and Particle

Swarm Optimisation (PSO) (Eberhart et al. 2001).

Common to all population based search methods is a strategy that generates

variations of the tuning parameters. Most search methods use a greedy criterion to

make this decision, which accepts the new parameter if and only if it produces better

solutions than the old search parameter.

7

2.1 Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) are inspired by Darwin’s evolution theory. Natural

selection and adaptation in Darwinian evolution are the key sources of inspiration,

driving the EAs candidate solutions towards the optimum by ’survival of the fittest’.

An EA consists of a population of individuals each having a fitness value, and a

genome encoding the main features of the candidate solution to the given problem.

General to all EAs is also a selection pressure mechanism that removes poor

individuals from the population, thus allowing good individuals to control the

evolutionary process. EAs also modify the individuals to refine the population of

candidate solutions. EAs have been described by several researchers including

Michalewicz (Michalewicz 1996; Michalewicz and Fogel 2004), Goldberg

(Goldberg 1989), etc.

Historically EAs were bom in the 1960s, when two independent research teams

developed Evolutionary Strategies (Rechenberg 1965) and Evolutionary

Programming (Fogel et al. 1966). Standard Evolutionary Strategies evolve a

population of individuals using a selection procedure and a search operator

mimicking genetic mutation, and they were originally developed to solve numerical

optimisation problems. Evolutionary Programming traditionally used a

representation tree to develop automata recognising strings in formal languages.

However, it was only ten years later that EAs gained worldwide popularity following

the creation of Genetic Algorithms by (Holland 1992). The following will describe

the different EAs.

Differential Evolution (DE) is another search strategy very similar to standard

evolutionary algorithms.

2.1.1 Evolutionary Strategies (ESs)

Evolutionary Strategies are probably the first successful implementation of

evolutionary search. The first experiments were conducted in 1964 by Rechenberg

(Rechenberg 1965) at Technical University of Berlin, and were mainly aimed at

solving hydrodynamic problems such as shape optimisation of a bent pipe or a

supersonic flow nozzle (Rechenberg 1965). The algorithm was further developed

and brought to its current form by (Schwefel 1981).

In ESs solutions in the n-dimensional search space o f real parameters fH" is

represented by two n-dimensional real vectors, the parameters and their standard

deviations. Often a third n-dimensional vector of rotation angles is added. Even if the

analogy is not commonly used in ESs, chromosomes can be associated to vectors

and genes to vector components.

Rechenberg’s first algorithm was based on a population o f one individual that was

made to compete with one mutated offspring. The random mutation operator had

usually a Gaussian magnitude distribution. The best solution survived to the next

9

generation. This kind of strategy is called (1+1)-ES. Subsequent implementations

enlarged the population size to // individuals competing with A(A > ju) offsprings

for survival. An empirical law was devised indicating an optimal number of

generated offsprings between five and six times n (Back 1996). The improved

strategy takes the name (ju + A) -ES.

In Schwefel’s algorithm, the mutation step size of each gene (standard deviation) is

encoded into the genotype and submitted to the evolutionary process. Moreover, to

improve the robustness o f the algorithm to noisy fitness evaluations, the lifespan of

each individual has been reduced to one generation. This evolutionary scheme is

called generational replacement (Davis 1991), and the corresponding ES

formulation is called (/^, X) -ES , /i individuals generate X offspring out o f which the

best ju will be chosen as the new population.

Further improvements introduced a recombination operator modelled on biological

crossover and mixing the genetic material of two randomly selected parents. The two

most common procedures generate an offspring whose genetic information is

randomly picked or averaged from the parents’ genes. A rotation chromosome has

also been used to bias the generation of new solutions in the search space along

directions other than the co-ordinate axes.

10

2.1.2 Evolutionary Programming (EP)

L.J. Fogel, Owens and Walsh introduced the first EP in 1966 to train a finite-state

machine to predict repeating cycles o f output symbols (Fogel et al. 1966). //

offsprings were generated from a population o f n solutions by mutating each parent

once. The prediction accuracy of each individual measured its adaptation and the

survival probabilities were allocated consequently. A stochastic tournament selection

procedure (Goldberg and Deb 1991) was used to select the new generation from the

batch o f parents and offspring.

In early EP algorithms, a candidate solution is represented by an n-dimensional

vector defined in the search space, and the mutation operator modifies each

individual by an amount proportional to the square root o f its fitness. In the early

nineties, D.B. Fogel (L.J. Fogel’s son) further developed EP mainly focusing on the

improvement of the mutation procedure. In a way similar to ESs, he introduced a

second vector defining the mutation step size into the genotype o f the solution. The

mutation operator is therefore adaptively tuned along each dimension of the search

space.

Genetic Programming (GP) was developed by Koza (Koza 1992) inspired by EP. GP

uses a tree encoding similar to the original EP, but has been more commonly applied

to evolve parse trees o f equations or statements.

11

2.1.3 Genetic Algorithms (GAs)

The formulation of GAs was made about a decade after the first ESs and EPs

applications. Nonetheless, as opposed to their predecessors, GAs almost immediately

achieved considerable popularity placing the evolutionary approach at the forefront

o f research in optimisation. Such success can be partly attributed to a comprehensive

theoretical background and increased availability of computing power.

The theoretical basis of GAs lies in the concept of schema (plural schemata)

(Holland 1975). Schemata represent solution templates where each location can be

defined or left unspecified. The larger the number of uninstantiated locations is, the

greater the number of potential solutions that a schema represents. Schemata leading

to higher fitness individuals are propagated through the generations and their number

is increased as an effect of the selection process. The ability to process several

possible solutions through a single schema is believed to determine the search power

o f GAs and is given the name implicit parallelism (Goldberg 1989; Grefenstette and

Baker 1989). High fitness schemata whose uninstantiated locations occupy a short

and compact portion of the encoding are considered to be the building blocks

(Goldberg 1989) of the optimisation process. GAs are designed to multiply and

differently recombine these building blocks in order to grow the final optimal

solution (ibuilding blocks hypothesis) (Goldberg 1989). The schemata theorem

(Holland 1975) allows the estimation in a probabilistic way of the number o f criteria

schema instances that are transmitted to the following generations.

12

Over more than 30 years of research, several modifications have been proposed to

the original GA structure defined in (Holland 1975). Unless otherwise stated this

subsection will explain Holland’s original algorithm, often referred as the canonical

GA.

GAs encode candidate solutions as binary strings. Each string (chromosome) is built

by chaining a number of sub-strings, each sub-string representing one of the

candidate solution’s features. Biological genes are in this case equivalent to the sub­

strings encoding the parameters, while each binary digit can be related to the

nucleotides composing the DNA. In most of the cases, one individual is fully

described by a single bit-string, thus leading to the identification o f the genotype

with one single chromosome. Several other encoding procedures have been explored

leading to a debate on the most appropriate choice. Holland showed that binary

coding allows the maximum number of schemata to be processed per individual

(Holland 1975). On the other hand, the mapping to binary coding introduces

Hamming cliffs onto the search surface. Moreover, non-binary representations may

be more natural for some problem domains and may reduce the computational

burden of the search. The canonical binary-coded GA as described here is now rarely

used for continuous function optimisation as it has been shown that solutions are too

easily disrupted (the Hamming cliff issue). Therefore researchers tend to use less

disruptive coding such as Gray coding (Michalewicz 1996).

13

Similarly to the other EAs, canonical GAs use generational replacement. Popular

alternatives are elitism and steady-state replacement (Davis 1991). In the first case,

the best solution(s) are directly copied into the new population while in the second

case only a fraction of the population is replaced at each generation. Both variants

aim to improve the preservation o f good genetic material at the expense of a reduced

search space exploration. A comparison between the behaviour o f generational and

steady-state replacement is given in (Syswerda 1991).

Individuals are selected for reproduction with a probability depending on their

fitness. Canonical GAs allocate the mating probability o f each individual

proportionally to its fitness (proportional selection) and draw the parents set (mating

pool) through the roulette wheel selection procedure (Goldberg 1989). Other popular

selection schemes are fitness ranking (Baker 1985) and tournament selection

(Goldberg and Deb 1991). For a comparison of selection procedure, the reader is

referred to (Goldberg and Deb 1991).

Crossover is the main search operator in GAs, creating offsprings by randomly

mixing sections of the parental genome. The number o f sections exchanged varies

widely with the GA implementation. The most common crossover procedures are

one-point crossover, two-point crossover and uniform crossover (Davis 1991). In

canonical GAs, a crossover probability is set for each couple. Couples not selected

for recombination will generate two offsprings identical to the parents.

14

A small fraction of the offsprings are randomly selected to undergo genetic mutation.

The mutation operator randomly picks a location from a bit-string and flips its

contents. The importance of this operator in GAs is however secondary, and to the

main aim of mutation is the preservation o f the genetic diversity of the population.

GAs require the tuning of some parameters such as the mutation rate, crossover rate

and replacement rate in the case o f steady-state replacement. This task is often not

trivial as the chosen values may strongly influence the search process (Grefenstette

1986; Schaffer et al. 1989). Moreover, the optimal value for the GA parameters may

vary according to the evolution o f the search process. For all these reasons, several

adaptive schemes have been investigated. A survey of adaptation in GAs is given in

(Hinterding et al. 1997). (Back 1993) proposed an off-line tuning approach giving an

optimal mutation rate schedule.

Problem-specific operators are sometimes employed in addition to the canonical

ones. The introduction of such operators results an increase in the search power of

the algorithm but a loss of general applicability. This issue is analysed in

(Michalewicz 1993).

2.1.4 Differential Evolution (DE)

Differential Evolution (DE) is a population-based search strategy very similar to

standard evolutionary algorithms (Price et al. 2005). The main difference is in the

reproduction step where an offspring is created from three parents using an

15

arithmetic crossover operator. DE is defined for individuals represented by floating­

point numbers.

DE does not make use of a mutation operator that depends on some probability

distribution function, but introduces a new arithmetic operator which depends on the

differences between randomly selected pairs o f individuals (Price et al. 2005).

After completion o f the reproduction process, the next step is to select the new

generation. Each parent in the current population is replaced with its offspring if the

fitness o f the offspring is better, otherwise the parent is carried over to the next

generation.

2.2 Ant Colony Optimisation

In the early 1990s, Ant Colony Optimisation (ACO) was introduced by M.Dorigo

and colleagues as a novel nature-inspired metaheuristic for the solution of

combinatorial optimisation problems (Dorigo et al. 1996). The inspiring source of

ACO is the foraging behaviour o f real ants. When searching for food, ants initially

explore the area surrounding their nest in a random manner. When an ant finds a

food source, it carries some of it back to the nest. During the return trip, the ant

deposits a chemical pheromone trail on the ground. The quantity of pheromone

deposited guides other ants to the food source (Dorigo and Stiitzle 2004). As shown

by (Deneubourg et al. 1990), indirect communication between the ants via

pheromone trails enables them to find the shortest paths between their nest and food

16

sources. The indirect communication mechanism where ants modify their

environment to influence the behaviour o f other ants is referred to as stigmergy. This

characteristic of real ant colonies is exploited in artificial ant colonies in order to

solve combinatorial and continuous optimisation problems.

Although an ant colony exhibits complex adaptive behaviour, a single ant exhibits a

very simple behaviour. An ant can be seen as a stimulus-response agent (Nilsson

1998), the ant observes pheromone concentrations and produces an action based on

the pheromone-stimulus. An ant can therefore abstractly be considered as a simple

computational agent. An artificial ant algorithmically models the simple behaviour

of real ants.

The simple ACO can be formulated as follows (Dorigo and Stiitzle 2004). Let us

define a combinatorial optimisation problem that entails the minimisation o f a given

cost function. A candidate solution is defined as a sequence o f parameters, and can

be visualised as a path through several nodes, each node corresponding to one o f the

solution’s parameters. The probability of moving from node i to node j is given in

equation (2.1).

P (2 . 1)

17

Where rtj represent the a posteriori effectiveness of the move from node i to node

j , as expressed in the pheromone intensity of the corresponding link, (z,y); rjfj

represents the a priori effectiveness of the move from i to j (i.e. the attractiveness,

or desirability, o f the move), computed using some heuristic. The pheromone

concentrations, , indicate how profitable was in the past to make a move from i

to j , serving as a memory of previous best moves, a is the parameter to control the

influence of z\., and p controls the influence of rj- . Pheromone intensity on each

link (i , j) is updated by ants using equation (2.2).

Tii = P Ti j+ ̂ Tij (2 -2)

Where p is the rate of pheromone evaporation, and A riy is the amount of

pheromone deposited. Pseudo code of the AS is shown in Figure 2.1.

18

1- Procedure ACOM etaHeuristic.

2- While (stopping criterion not met)

3- Generate solutions

4- Pheromone update using equation (2.2)

5- Daemon Action, move according probability calculated with equation (2.1)

6- End While.

7- End Procedure

Figure 2.1. Pseudo code of the simple Ant Colony Optimisation

19

Most of the early research in ACO has focused on the development of algorithmic

variants that improve in performance over the simple ACO. The reader is referred to

the following sources for further material on:

• Ant System (Bonabeau et al. 1999; Dorigo et al. 1996)

• Ant Colony Optimisation (Bell and McMullen 2004; Blum 2005; Dorigo and

Blum 2005; Socha and Dorigo 2008)

• Elitist Ant System (Dorigo et al. 1996)

• Ant-Q (Gambardella and Dorigo 1995)

• Ant Colony System (Cheng and Mao 2007b; Dorigo and Gambardella 1997b;

Ellabib et al. 2007)

• Max-Min Ant System (Pitakaso et al. 2007; Stiitzle and Hoos 2000)

• Rank Based Ant System (Bullnheimer et al. 1999)

• Hyper Cube - ACO (Blum and Dorigo 2004)

20

2.2.1 Ant Colony Optimisation applications

ACO algorithms can be applied to optimisation problems for which the following

problem dependent aspects can be defined (Bonabeau et al. 1999; Dorigo et al.

1996):

1. A search space that can be described by graphical representation.

2. A feedback process to update pheromones.

3. To be able to determine desirability of different links in representation

graph.

4. A method to construct feasible solutions.

ACO has been applied to variety of problems, some of them are listed in this section.

The Travelling Salesman Problem is a very well known combinatorial problem and

is one of the first problems to which ACO algorithms were applied (Agarwal et al.

2005; Bontoux and Feillet 2008; Cheng and Mao 2007a; Dorigo and Gambardella

1997a; Duan and Xiufen 2007; Garcia-Martinez et al. 2007; Jun and Gui-Rong 2004;

Pan and Wang 2006; Shang et al. 2007; Tsai et al. 2004; Xuemei et al. 2006).

ACO algorithms were used to solve Vehicle Routing Problems. The classic static

Vehicle Routing Problem is defined with the objective o f finding the minimum cost

21

vehicle route such that every customer is visited once only, and by only one vehicle.

For every vehicle, the total demand should not exceed the capacity of the vehicle, the

tour of each vehicle starts and ends at a unique place, and the total tour length should

not be more than a predefined length (Chen et a l 2007b). The objective function can

be designed so as to minimise the total travel time, minimise the total travel length,

maximise customer satisfaction, minimise the number o f needed vehicles, or as a

multi-objective optimisation problem including a combination of the above

requirements (Bell and McMullen 2004; Chen et al. 2006; Chen et al. 2007a; Chen

et al. 2007b; Donati et al. 2008; Hu et al. 2006; Lin Wei and Cai Tian 2006; Liu and

Cai 2005; Mazzeo and Loiseau 2004; Tao et al. 2006; Wang and Shen 2007; Xiaoxia

and Lixin 2005; Xuan et al. 2005; Zhishuo and Yueting 2006).

Another application of ACO is the Job-Shop Scheduling Problem. In this problem, a

set of nM machines and rij jobs are given, where each job consists o f an ordered

sequence o f operations. The problem is to assign the operations to time intervals

such that the maximum completion times of all operations is minimised, subject to

the constraint that no two jobs are processed at the same time on the same machine.

If there is only one machine, the problem is called Single-machine Job Scheduling

problem. ACO has been used to solve Job-Shop Scheduling problems (Heinonen

and Pettersson 2007; Jain and Sharma 2005; Liao and Juan 2007; Rossi and Dini

2007; Seckiner and Kurt 2008; Zhou et al. 2004).

22

There are many other applications o f ACO, and the reader is referred to an overview

article by (Blum 2005).

2.3 Particle Swarm Optimisation (PSO)

The Particle Swarm Optimisation algorithm was first proposed by Eberhart and

Kennedy (Kennedy and Eberhart 1995), inspired by the natural flocking and

swarming behaviour of birds and insects. The concept o f PSO gained in popularity

due to its simplicity. Like other swarm-based techniques, PSO consists of a number

of individuals refining their knowledge of the given search space. The individuals in

a PSO have a position and a velocity and are denoted as particles. The PSO

traditionally has no crossover between individuals, has no mutation and particles are

never substituted by other individuals during the run. The PSO algorithm works by

attracting the particles to search space positions of high fitness. Each particle has a

memory function, and adjusts its trajectory according to two pieces of information,

the best position that it has so far visited, and the global best position attained by the

whole swarm. If the whole swarm is considered as a society, the first piece of

information can be seen as resulting from the particle’s memory of its past states,

and the second piece of information can be seen as resulting from the collective

experience of all members of the society. Like other optimisation methods, PSO has

a fitness evaluation function that takes each particle’s position and assigns it a fitness

value. The position of highest fitness value visited by the swarm is called the global

23

best. Each particle remembers the global best, and the position of highest fitness

value that has personally visited, which is the called the local best.

Many attempts were made to improve the performance of the original PSO algorithm

and several new parameters were introduced such as the inertia weight (Engelbrecht

2005). The canonical PSO with inertia weight has become very popular and widely

used in many science and engineering problems (Brits et al. 2007; Liu et al. 2007;

Pan et al. 2006; Yang 2007).

In the canonical PSO, each particle i has position x{ and velocity vt that is updated

at each iteration according to equation (2.3).

V, = WV, + C l(3„ (p t - x ^ + c ^ , (p g (2.3)

Where w is the inertia weight described in (Shi and Eberhart 1998a; Shi and

Eberhart 1998b), p t is the best position found so far byparticle p t , and p g is the

global best so far found by the swarm. <p{ and (p2 are weights that are randomly

generated at each step for each particle component, q and c2 are positive constant

parameters called acceleration coefficients (which control the maximum step size the

particle can achieve). The position of each particle is updated at each iteration by

adding the velocity vector to the position vector.

x ,= x t +v, (2.4)

24

The inertia weight w (which is a user-defined parameter), together with q and c2,

controls the contribution of past velocity values to the current velocity of the

particle. A large inertia weight biases the search towards global exploration, while a

smaller inertia weight directs toward fine-tuning the current solutions (exploitation).

Suitable selection of the inertia weight and acceleration coefficients can provide a

balance between the global and the local search (Engelbrecht 2005).

Figure 2.2 shows a flowchart of PSO. The PSO algorithm is composed of 5 main

steps:

1. Initialise the position vector jc and associated velocity v o f all particles in

the population randomly. Then set a maximum velocity and a maximum

particle movement amplitude in order to decrease the cost of evaluation

(WHY?) and to get a good convergence rate.

2. Evaluate the fitness of each particle via the fitness function. There are many

options when choosing a fitness function and trial and error is often required

to find a good one.

3. Compare the particle’s fitness evaluation with the particle’s best solution. If

the current value is better than previous best solution, replace it and set the

current solution as the local best. Compare the individual particle’s fitness

with the population’s global best. If the fitness of the current solution is

25

better than the global best’s fitness, set the current solution as the new global

best.

4. Change velocities and positions by using equations (2.3) and (2.4).

5. Repeat step 2 to step 4 until a stopping criterion is satisfied or a predefined

number of iterations is completed.

26

R
ep

ea
t

Initialise a population o f Particles

Evaluate the Fitness o f the Population

Update the position and velocity

Solution is final global best or stops when a
predefined criterion is satisfied

Comparison and replacement

Figure 2.2. Flowchart o f Particle Swarm Optimisation

27

2.3.1 Particle Swarm Optimisation applications

PSO has been applied to various categories o f problem. Some of the most common

applications are named in this sub-section.

One of the first applications of PSO was in the training of feed-forward neural

networks (Eberhart and Kennedy 1995; Kennedy 1997; Niu and Xing 2007; Pham

and Sholedolu 2006; Su et al. 2007).

Another application of PSO is clustering. The main objective of clustering is to

group together similar data points. Clustering algorithms make use o f a distance

metric, such as Euclidean distance, to define the similarity between two data points.

Based on these similarity measures, clustering can be formulated as an optimisation

problem where the objective is to simultaneously maximise inter-cluster distance and

to minimise intra-cluster distances. Omran and his colleagues used the basic PSO for

clustering (Omran et al. 2004, 2005; Omran et al. 2002).

PSO has been used in different design applications like: antenna design (Jin and

Rahmat-Samii 2005; Nanbo and Rahmat-Samii 2007), beam design (Eric and Babak

2006; Kathiravan and Ganguli 2007; Suresh et al. 2007), combinational circuits

(Venayagamoorthy et al. 2007), structural design (Perez and Behdinan 2007).

2 8

2.4 Honey-bees inspired Algorithms

The swarming behaviour of honey-bees has been used in different applications -

mostly in discrete space optimisation problems. BeeHive, BeeAdHoc and the Bee

Algorithm (Tovey Spring 2004; Wedde et al. 2005; Wedde et al. 2004) are some of

the algorithms inspired from bee swarming behaviour. A model mimicking the

allocation of bees to different flower patches to maximise the nectar intake is

described in (Tovey Spring 2004). This was subsequently applied to distribute web

applications at hosting centres. Another model borrowing from the principles of bee

communication was presented (Wedde et al. 2004). According to this model,

artificial bee agents are used in packet switching networks to find suitable paths

between nodes by updating the routing table. Two types o f agents are used - short

distance bee agents which disseminate routing information by travelling within a

restricted number of hops, and long distance bee agents which travel to all nodes of

the network. Even though the Wedde’s algorithm is claimed to model honey-bees

behaviour, it only loosely follows their natural behaviour.

Yang (Yang 2005) describes a virtual bee algorithm where the objective function is

transformed into virtual food.

The foraging behaviour of honey-bees was used to solve a number of combinatorial

problems (Teodorovic et al. 2003; Teodorovic and Dell'orco 2005; Tereshko 2000;

Tereshko and Lee 2002).

29

Karaboga and his colleagues introduced the Artificial Bee Colony (ABC) algorithm

as an optimisation tool (Karaboga and Akay 2007; Karaboga and Basturk 2008). In

Karaboga’s algorithm, a colony is divided to three groups; employed bees, onlookers

and scouts. An onlooker waits in the dance area and decides to choose a food source.

Bees visiting food sources are employed bees, while scout bees perform random

search. In ABC half of the colony are onlooker bees and the other half are employed

bees. Each employed bee becomes a scout bee when the food source is exhausted.

The ABC steps are as follow:

1. Initialise.

2. Repeat

• Move the employed bees onto their food sources in and determine

their nectar amounts.

• Move the onlookers onto their food sources in and determine their

nectar amounts.

• Move the scouts for searching new food sources.

• Memorise the best food sources found so far.

3. Until (requirements are met)

30

In the ABC algorithm, each search cycle consists of three steps. In the first step, the

employed bees are sent to the food sources and measure their nectar amount. In the

second step, each onlooker bee selects a food source based on the quality feeback

given by the employed bees. Each onlooker bee visits the selected food source and

determines its nectar amount. In the third step, the scout bees are sent to randomly

selected food sources.

The Bees Algorithm that is proposed in this thesis is different from Karaboga’s

algorithm, although both algorithms are inspired by the foraging behaviour of honey­

bees. The proposed Bees Algorithm is described in the next chapter, where a

comparison is also made on different benchmarks between the proposed Bees

Algorithm and other optimisation methods.

31

CHAPTER 3

THE BEES ALGORITHM

32

3. THE BEES ALGORITHM

3.1 Preliminaries

An optimisation algorithm can be defined as a numerical method for finding a value

x such that f(x) is as small (large) as possible, for a given function f, possibly with

some constraints on x. Here, x can be a scalar or a vector of continuous or discrete

values. If x is continuous, the algorithm can be seen as a numerical analysis method.

However, classical optimisation methods encounter great difficulty when faced with

the challenge of solving hard problems within an acceptable time and level of

precision.

Many complex multi-variable optimisation problems cannot be solved exactly within

polynomially bounded computation times. This generates much interest in search

algorithms that find near-optimal solutions in reasonable running times. The swarm-

based algorithm described in this chapter is a search algorithm capable of locating

good solutions efficiently. The algorithm is inspired by the food foraging behaviour

of honey-bees and could be regarded as belonging to the category of “intelligent”

optimisation tools (Pham et al. 2005).

3.2 The basic Bees Algorithm

One of the most familiar insects in the world is the honey-bee. Honey-bees are a

subset of the larger family of bees. Honey-bees live in social units called colonies. A

33

honey-bee colony consists o f a single queen, who is usually the mother of all other

colony members, a number ranging from zero to a few thousands of semi-sterile

female workers and, from zero to a few thousand males (drones) depending on the

time of year (Ribbands 1953). When honey-bees emerge from their cell as adults,

they normally clean the cell, then as they age they feed larvae (nursing behaviour),

process and store food, secrete wax, construct combs, and guard the entrance. The

most pronounced change in behaviour occurs when honey-bees are about three

weeks old when they begin foraging. At this time, they cease performing most of

other tasks within the nest and usually remain a forager for the rest o f their lives

(Richards 1961). In this study, the foraging behaviour o f honey-bees will be

discussed, and the term “bee” is referred to “honey-bee”.

3.2.1 The foraging process in nature

A colony of honey-bees can extend itself over long distances (more than 10 km) and

in multiple directions simultaneously to exploit a large number of food sources

(Seeley 1996; Von Frisch 1976). A colony prospers by deploying its foragers to

fields that are rich of food sources. In principle, flower patches with plentiful

amounts of nectar or pollen that can be easily collected should be visited by many

bees, whereas patches with less nectar or pollen should receive less bees (Bonabeau

et al. 1999; Camazine et al. 2003).

The foraging process begins in a colony by scout bees being sent to search for

promising flower patches. Scout bees move randomly from one patch to another.

34

During the harvesting season, a colony continues its exploration, keeping a

percentage of the population as scout bees.

When they return to the hive, those scout bees that found a patch of sufficient quality

(measured as the level of some constituents, such as sugar content) deposit their

nectar or pollen and go to the “dance floor” to perform a dance known as the

“waggle dance” (Seeley 1996). This dance is the means to communicate to other

bees three pieces of information regarding a flower patch: the direction in which it

will be found, its distance from the hive, and its quality rating (or fitness) (Camazine

et al. 2003; Von Frisch 1976). This information helps the bees watching the dance to

find the flower patches. After the waggle dance, the dancer (i.e. the scout bee) goes

back to the flower patch with follower bees recruited from the hive. The number of

follower bees depends on the overall quality of the patch. Flower patches with large

amounts of nectar or pollen that can be collected with less effort are regarded as

more promising and attract more bees (Bonabeau et al. 1999; Seeley 1996). It this

way, the colony gathers food quickly and efficiently.

During the harvesting season, a colony of bees keeps a percentage of its population

as scouts (Von Frisch 1976) and uses them to explore the field surrounding the hive

for promising flower patches. The foraging process begins with the scout bees being

sent to the field where they move randomly from one patch to another.

35

3.2.2 The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging

behaviour of honey bees to find the optimal solution. Figures 3.1 and 3.2 show the

pseudo code and the flowchart for the basic Bees Algorithm.

The algorithm requires a number of parameters to be set, namely: the number of

scout bees (n), the number of sites selected for neighbourhood search (out of n

visited sites) (m), the number of top-rated (elite) sites among m selected sites (e), the

number of bees recruited for the best e sites (nep), the number of bees recruited for

the other (m-e) selected sites (nsp), the initial size of each patch (ngh) (a patch is a

region in the search space that includes a visited site and its neighbourhood), and the

stopping criterion. The algorithm starts with the n scout bees being placed randomly

in the search space. The fitnesses of the sites visited by the scout bees are evaluated

in step 2.

36

1 - Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Recruit bees for selected sites (more bees for best e sites) and evaluate

fitnesses.

7- Select the fittest bee from each patch.

7- Assign remaining bees to search randomly and evaluate their fitnesses.

8- End While.

Figure 3.1. Pseudo code of the basic Bees Algorithm

37

N
eighbourhood

S
earch

Assign the (n-m) Remaining Bees to Random
Search

Select the Representative Bee from each Patch

Initialise a population of n Scout Bees

Determine the Size of the Neighbourhood
_____________ (Patch Size)_____________

Recruit Bees for Selected Sites
(more Bees for the Best e Sites)

New Population of scout Bees

Evaluate the Fitness o f the Population

Select m Sites for Neighbourhood Search

Figure 3.2. Flowchart o f the basic Bees Algorithm

38

Graph 1. Initialise population with random solutions and
evaluate the fitness.

* *

Graph 5. Recruit bees around selected sites.

i i k

Graph 2. Select elite bees
Graph 6 . Select the fittest from each site 44 ”

aM / v
k

a M / v
Graph. 3. Select sites for neighbourhood search44"”

and44-”.
Graph 7. Assign remaining bees to search randomly and

evaluate their fitness

!a\/W
Graph 4. Define neighbourhood range. Graph 8. N ew population with “previous elite bee”,

representative bees and randomly distributed bees

Figure 3.3. Graphical illustration of the Bees Algorithm.

39

In step 4, the m sites with the highest fitnesses are designated as “selected sites” and

chosen for neighbourhood search. In steps 5 and 6, the algorithm conducts searches

around the selected sites, assigning more bees to search in the vicinity of the best e

sites. Selection of the best sites is made according to their associated fitness.

Alternatively, the fitness values are used to determine the selection probability of the

sites. Searches in the neighbourhood of the best e sites - those which represent the

most promising solutions - are made more detailed. As already mentioned, this is

done by recruiting more bees for the best e sites than for the other selected sites.

Together with scouting, this differential recruitment is a key operation of the Bees

Algorithm.

In step 6, for each patch, only the bee that has found the site with the highest fitness

(the “fittest” bee in the patch) will be selected to form part o f the next bee

population. In nature, there is no such a restriction. This restriction is introduced here

to reduce the number of points to be explored. In step 7, the remaining bees in the

population are assigned randomly around the search space to scout for new potential

solutions.

At the end of each iteration, the new population of a colony is composed of two

parts: the representatives from the selected patches, and the scout bees assigned to

conduct random search. These steps are repeated until a stopping criterion is met.

Figure 3.3 illustrates the Bees Algorithm.

40

In the basic Bees Algorithm, a greedy selection procedure is applied. Stochastic

selection (roulette wheel selection) was also studied. However, in the test functions

investigated, it was found that greedy selection gives better results than stochastic

selection, and for this reason it was chosen as the selection procedure for the Bees

Algorithm (Pham et al. 2005). In special cases where stochastic selection might be

found to give the best results, the roulette wheel procedure can substitute the

standard greedy procedure.. Similarly, a fixed number o f bees are recruited for local

search around each selected site (more for e best). Other ways of determining the

number of bees recruited for each selected site can be considered. Alternative

recruitment methods like recruitment proportional to the site fitness, or

probabilistical recruitment, are explained in (Pham et al. 2005).

Clearly, the Bees Algorithm as described above is applicable to combinatorial,

continuous, and discrete optimisation problems. In this thesis, continuous and

discrete optimisation problems are used to investigate the Bees Algorithm. The

solution of combinatorial optimisation problems differs only in the way

neighbourhoods are defined.

3.3 Experiments using the basic Bees Algorithm

Two standard functional optimisation problems were used to test the basic Bees

Algorithm and establish the correct values of its parameters. Other eight problems

were used for benchmarking the algorithm. As the Bees Algorithm searches for the

41

maximum, functions to be minimised were inverted before the algorithm was

applied.

Shekel’s Foxholes (Figure 3.4), a 2D function from De Jong’s test suite, was chosen

as the first function for testing the algorithm.

25
/ (*) = 119.998- £

W j + X {xi-ay)
1=1

(3.1)

a . . =
V

f - 3 2 -16 0 16 32 ... 0 16 32A
-32 -32 -32 -32 -32 ... 32 32 32

-65.536 < xt < 65.536

For this function,

^ = (- 3 2 , - 3 2)

/ (i e max) = 119 .998

42

Figure 3.4. Inverted Shekel’s Foxholes (Pham et al. 2005)

Inverted Shekel's Foxholes

120
115 -
 ̂fic ^ -----------1U0
QC /
yo

C /2 QC /
c/2 00o_ 7 c /C /0

tIC /
(JU, 00 I

00

A C40
QCoO
oc IZO

c
i i

) 500 1000 1500 2000
Visited Points (Mean number of function evaluations)

Figure 3.5. Evolution of fitness with the number o f points visited (Inverted Shekel’s

Foxholes)

The following parameter values were set for this test: population n= 45, number of

selected sites m=3, number of elite sites e= l, initial patch size ngh=3, number bees

around elite points nep=7, number o f bees around other selected points nsp=2. Note

that ngh defines the initial size o f the neighbourhood in which the follower bees are

placed. For example, if x is the position of an elite bee in the ith dimension, the

follower bees is placed randomly in the interval xje ± ngh in that dimension at the

beginning of the optimisation process. As optimisation proceeds, the size of the

neighbourhood search is gradually decreased to facilitate the fine tuning of the

solution.

Figure 3.5 shows the fitness values obtained as a function of the number of points

visited. The results are averages for 100 independent runs. It can be seen that after

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the

optimum.

44

■I era
sen

Figure 3.6 2D Schwefel’s function (Pham et al. 2005)

Inverted Schwefel's Function (6 Dimensions)

2550
2450
2350
2250
2150

^ 2050
£ 1950

1850
1750
1650
1550

500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,0000

Visited Points (Mean number o f function evaluations)

Figure 3.7 Evolution of fitness with the number o f points visited (Inverted

Schwefel’s Function)

45

To test the reliability o f the algorithm, the inverted Schwefel’s function with six

dimensions (equation (3.2)) was used. Figure 3.6 shows a two-dimensional view of

the function to highlight its multi modality.

The following parameter values were set for this test: population n=500, number of

selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of

bees around elite points nep=50, number of bees around other selected points

nsp=30.

Figure 3.7 shows how the fitness values evolve with the number of points visited.

The results are averages for 100 independent runs. It can be seen that after

approximately 3,000,000 visits, the Bees Algorithm was able to find solutions close

to the optimum.

(3.2)

-500 <x, <500

For this function:

xmax = (420.9,420.9,420.9,420.9,420.9,420.9)

/ (i U) - 2513.9

46

The Bees Algorithm was applied to the eight benchmark functions given in (Mathur

et al. 2000) and the results compared with those obtained using other optimisation

algorithms. The test functions and their optima are shown in Table 3.1.

Table 3.2 presents the results obtained by the Bees Algorithm and those by the

deterministic Simplex method (SIMPSA) (Mathur et al. 2000), the stochastic

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al. 2000), the

Genetic Algorithm (GA) (Mathur et al. 2000) and the Ant Colony System (ANTS)

(Mathur et al. 2000).

Again, the numbers of points visited shown are averages for 100 independent runs.

Table 3.3 shows the empirically derived Bees Algorithm parameter values used with

the different test functions (Pham et al. 2006).

47

No Function Nam e Interval Function G lobal Optim um

1 De Jong
[-2.048,
2.0481 m a x F = (3905 .93) - 1 0 0 (* - x 2) 2 - (1 - X]) 2

X (l , l)
F=3905.93

2
Goldstein &
Price [-2, 2]

min F = [1 + (X] + X2 +1)2 (19-14 X) + 3 -14 Xl + 6 X] + 3 **)]

X[30 + (2 Xl -3 x 2)2(18-32JKJ, +12^ + 48 ̂ -36 + 27 j^)]
X(0,-1)
F=3

3 Branin [-5, 10]

nuii F = a(jc2 - b x * + c Xx - d f + e (l - /) c o s ^) + e

a = l , b = — f —) ,c = - X 7 , d = 6,e = 1 0 , f = - X —
4 ^22) 22 8 22

X (-22 /7 ,12.275)
X (22/7,2.275)
X (66/7,2.475)
F=0.3977272

4 Martin & Gaddy [0, 10] ™ n ^ = (X l - X 2) 2 + (U + X 2 - 1 0) / 3) 2
X(5,5)
F=0

5 Rosenbrock
(a) [-1-2, 1.2]
(b) [-1 0 ,1 0] m in F = 1 0 0 (JCla - JC2) 2 + (l - j p ,) 2

X (l , l)
F=0

6 Rosenbrock [-1.2, 1-2] m inF = Z < 10« X - - X i+1)2 + (1- X ') 2 }
i=1

II
A

©

~

7 Hyper sphere [-5.12, 5.12] m in F = 2 x , 2
i=i

X (0,0,0,0,0,0)
F=0

8 Griewangk [-512, 512]
l

X (0,0,0,0,0,0,0,0,0,0)
F=10

mHx t* ™* / \

(10 V 10 (* \ }
- n « (£) ♦ >]

Table 3.1 Test Functions (Mathur et al. 2000)

48

SIMPSA NE SIMPSA GA ANTS Bees Algorithm

func uc
ce

ss

%

mean no. o f uc
ce

ss

%

mean no. o f

V i
t / 1aoo3 mean no. o f ;u

cc
es

s%

mean no. o f uc
ce

ss

%

mean no. o f
no C/3 evaluations C/3 evaluations evaluations evaluations GO evaluations

1 * * * * * * * * * * * * * * * * 100 10160 100 6000 100 868
2 * * * * * # * * * * * * * * * * 100 5662 100 5330 100 999
3 * * * * * * * * * * * * * * * * 100 7325 100 1936 100 1657
4 * * * * * * * * * * * * * * * * 100 2844 100 1688 100 526

5a 100 10780 100 4508 100 10212 100 6842 100 631
5b 100 12500 100 5007 * * * * * * * * 100 7505 100 2306
6 99 21177 94 3053 * * * * * * * * 100 8471 100 28529
7 * * * * * * * * * * * * * * * * 100 15468 100 22050 100 7113
8 * * * * * * * * * * * * 100 200000 100 50000 100 20998

**** Data not available

Table 3.2 Results for test functions

fun
no

n m e nsp nep ngh (initial)

1 10 3 1 2 4 0.1

2 20 3 1 1 13 0.1

3 30 5 1 2 3 0.5

4 20 3 1 1 10 0.5

5a 10 3 1 2 4 0.1

5b 6 3 1 1 4 0.5
6 20 6 1 5 8 0.1

7 8 3 1 1 2 0.3

8 50 5 2 10 20 5

Table 3.3 The Bees Algorithm parameters

49

The optimisation stopped when the difference between the maximum fitness

obtained and the global optimum was less than 0.1% of the optimum value, or less

than 0.001, whichever was smaller. In case the optimum was 0, the solution was

accepted if it differed from the optimum by less than 0.001. If a solution is found

that satisfies one of these conditions, the algorithm is said to have succeeded in

locality the optimum.

The first test function was De Jong’s, for which the Bees Algorithm could find the

optimum 7 times faster than ANTS and 11 times faster than GA, with a success rate

of 100%. The second function was Goldstein and Price’s, for which the Bees

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again

with 100% success. With Branin’s function, there was a 15% improvement

compared with ANTS and 77% improvement compared with GA, also with 100%

success.

Functions 5 and 6 were Rosenbrock’s functions in two and four dimensions

respectively. In the two-dimensional function, the Bees Algorithm delivers 100%

success and good improvement over the other methods (at least twice fewer

evaluations than the other methods). In the four-dimensional case, the Bees

Algorithm needed more function evaluations to reach the optimum with 100%

success. NE SIMPSA could find the optimum with 10 times fewer function

evaluations but the success rate was only 94% and ANTS found the optimum with

100% success and 3.5 times faster than the Bees Algorithm. Test function 7 was a

50

Hyper Sphere model o f six dimensions. The Bees Algorithm needed half of the

number of function evaluations compared with GA and one third o f that required for

ANTS. The eighth test function (Griewangk test function) was a ten-dimensional

function. The Bees Algorithm could reach the optimum faster than GA and ANTS

and its success rate was 100% (Pham et al. 2006).

3.4 Mechanical design optimisation using the basic Bees Algorithm

This section describes the application o f the Bees Algorithm to mechanical design

optimisation.

Researchers have used the design o f welded beam structures (Rekliatis et al. 1983)

and coil springs (Arora 2004) as benchmarks to test their optimisation algorithms.

The welded beam design problem involves a nonlinear objective function and eight

constraints, and the coil spring design problem, a nonlinear objective function and

four constraints. A number o f optimisation techniques have been applied to these

two problems. Some of them, such as geometric programming (Ragsdell and Phillips

1976), require extensive problem formulation; some (see, for example, (Leite and

Topping 1998)) use specific domain knowledge which may not be available for other

problems, and others (Ragsdell and Phillips 1976) are computationally expensive or

give poor results.

The Bees Algorithm has been applied to different unconstrained function

optimisation in the previous section.

51

As described, the Bees Algorithm is suitable for unconstrained optimisation

problems. If a problem involves constraints, a simple technique can be adopted to

enable the optimisation to be applied. The technique involves subtracting a large

number from the fitness of a particular solution that has violated a constraint in order

drastically to reduce the chance o f that solution being found acceptable. This was the

technique adopted in this work. As both design problems were minimisation

problems, a fixed penalty was added to the cost o f any constraint-violating potential

solution.

3.4.1 Welded beam design problem

A uniform beam of rectangular cross section needs to be welded to a base to be able

to carry a load of 6000 I b f . The configuration is shown in Figure 3.8. The beam is

made of steel 1010.

The length L is specified as 14 in.. The objective of the design is to minimise the

cost of fabrication while finding a feasible combination of weld thickness h, weld

length 1, beam thickness t and beam width b. The objective function can be

formulated as (Rekliatis et al. 1983):

min / = (1 + q)h2l + c2tb(L + /) (3.3)

where

52

/ = Cost function including setup cost, welding labour cost and material cost;

q = Unit volume of weld material cost = 0.10471 $ / i n f ;

c2 = Unit volume of bar stock cost = 0.04811 $ / in.3;

L = Fixed distance from load to support = 14 in.;

Not all combinations of h, 1, t and b which can support F are acceptable. There are

limitations which should be considered regarding the mechanical properties o f the

weld and bar, for example, shear and normal stresses, physical constraints (no length

less than zero) and maximum deflection. The constraints are as follows (Rekliatis et

al. 1983):

g i = ^ ~ r ^ ° (3-4)

g2 = V j - V > Q (3-5)

g3 = b - h > 0 (3.6)

g4 =l> 0 (3.7)

gs =t> 0 (3.8)

g6 = Pc - F > 0 (3.9)

53

g7 = /z — 0.125 > 0 (3.10)

g8 = 0 . 2 5 - £ > 0 (3.11)

where

vd = Allowable shear stress of weld = 13600 P s i ;

t = Maximum shear stress in weld;

crd = Allowable normal stress for beam material = 30000 P s i ;

cr = Maximum normal stress in beam;

Pc = Bar buckling load;

F = Load = 6000 /6 /;

8 = Beam end deflection.

The first constraint (g L) ensures that the maximum developed shear stress is less

than the allowable shear stress of the weld material. The second constraint (g 2)

checks that the maximum developed normal stress is lower than the allowed normal

stress in the beam. The third constraint (g3) ensures that the beam thickness exceeds

that of the weld. The fourth and fifth constraints (g4 and g 5) are practical checks to

54

prevent negative lengths or thicknesses. The sixth constraint (g6) makes sure that the

load on the beam is not greater than the allowable buckling load. The seventh

constraint (g7) checks that the weld thickness is above a given minimum, and the

last constraint (g 8) is to ensure that the end deflection of the beam is less than a

predefined amount.

Normal and shear stresses and buckling force can be formulated as (Rekliatis et al.

1983; Shigley 1973):

2.1952
<r = — 7-— (3.12)

(3.13)

where

6000 (Primary stress)

6000(14+ 0.5/)-y/0.25(/2 + (h + t f)

2 |o .707w (/2/12 + 0.25 (h + t f)}
(Secondary stress) (3.14)

Pc = 64746.022(1 - 0.0282346l)rf>: (3.15)

55

Figure 3.8 A welded beam

Bees Algorithm parameters Symbol Value
Population n 80
Number of selected sites m 5
Number of top-rated sites out of m selected sites e 2
Initial patch size ngh 0.1
Number of bees recruited for best e sites nep 50
Number of bees recruited for the other (m-e) selected sites nsP 10

Table 3.4 Parameters of the Bees Algorithm for the welded beam design problem

56

As there are no specific rules for selecting parameters in the Bees Algorithm, the

user needs to try different sets o f parameters until acceptable results are obtained.

The empirically chosen parameters for the Bees Algorithm are given in Table 3.4

with the stopping criterion of 750 generations. The search space was defined by the

following intervals (Deb 1991):

0.125<h< 5 (3.16)

0.1 < / < 10 (3.17)

0 .1</<10 (3.18)

0.1 < 6 <5 (3.19)

With the above search space definition, constraints g4, g 5 and g n are already

satisfied and do not need to be checked in the code.

Figure 3.9 shows how the lowest value of the objective function changes with the

number of iterations (generations) for three independent runs of the algorithm. It can

be seen that the objective function decreases rapidly in the early iterations and then

gradually converges to the optimum value.

A variety of optimisation methods have been applied to this problem by other

researchers (Deb 1991; Leite and Topping 1998; Ragsdell and Phillips 1976). The

57

results they obtained along with those of the Bees Algorithm are given in Table 3.4.

APPROX is a method of successive linear approximation (Siddall 1972). DAVID is

a gradient method with a penalty (Siddall 1972). Geometric Programming (GP) is a

method capable o f solving linear and nonlinear optimisation problems that are

formulated analytically (Ragsdell and Phillips 1976). SIMPLEX is the Simplex

algorithm for solving linear programming problems (Siddall 1972).

As shown in Table 3.5, the Bees Algorithm produces better results than almost all

the examined algorithms including the Genetic Algorithm (GA) (Deb 1991), an

improved version of the GA (Leite and Topping 1998), SIMPLEX (Ragsdell and

Phillips 1976) and the random search procedure RANDOM (Ragsdell and Phillips

1976). Only APPROX and DAVID (Ragsdell and Phillips 1976) produce results that

match those of the Bees Algorithm. However, as these two algorithms require

information specifically derived from the problem (Leite and Topping 1998), their

application is limited. The result for GP is close to that of the Bees Algorithm but

GP needs a very complex formulation (Ragsdell and Phillips 1976). In this

experiment, the number of function evolutions in the Bees Algorithm was as same in

the population-based algorithms were used to compare the results. Of course the

number of function evaluations is not applicable for analytical methods. For this

optimisation problem, in order to compare the results of the Bees Algorithm and

those of the GA and improved GA, the maximum number of function evaluations

was set to be the same as those previously adopted for the latter.

58

C
os

t

10

8

6

4

2

0
30 45 60 750 15

Generation x 10-1

BA Run 1

BA Run 2

BA Run 3

Optimum

Figure 3.9 Evolution o f the lowest cost in each iteration

59

Methods
Design variables

Cost
h / t b

APPR O X
(Ragsdell and
Phillips 1976)

0.2444 6.2189 8.2915 0.2444 2.38

D A VID (Ragsdell
and Phillips 1976)

0.2434 6.2552 8.2915 0.2444 2.38

G P (Ragsdell and
Phillips 1976)

0.2455 6.1960 8.2730 0.2455 2.39

G A (Deb 1991)
Three

independent
runs

0.2489 6.1730 8.1789 0.2533 2.43

0.2679 5.8123 7.8358 0.2724 2.49

0.2918 5.2141 7.8446 0.2918 2.59

IM PRO VED GA
(Leite and

T opping 1998)
Three

independent
runs

0.2489 6.1097 8.2484 0.2485 2.40

0.2441 6.2936 8.2290 0.2485 2.41

0.2537 6.0322 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and
Phillips 1976)

0.2792 5.6256 7.7512 0.2796 2.53

RA NDO M
(Ragsdell and
Phillips 1976)

0.4575 4.7313 5.0853 0.6600 4.12

BEES
ALG O RITH M

Three
independent

runs

0.24429 6.2126 8.3009 0.24432 2.3817

0.24428 6.2110 8.3026 0.24429 2.3816

0.24432 6.2152 8.2966 0.24435 2.3815

Table 3.5 Results for the welded beam design problem obtained using the Bees

Algorithm and other optimisation methods

60

3.4.2 Coil spring design problem

The problem is to design a coil spring to carry a specific axial load. Figure 3.10

shows a coil spring in tension. The parameters which should be optimised are the

wire diameter d , the mean coil diameter D , and the number active coils N . The

objective function is the mass (M) of the spring which should be minimised (Arora

Q = Number of inactive coils (i.e. end coils performing no energy storage function)

2004).

min M =—(N + Q)n2D d2 p
4

(3.20)

where

g = Gravitational constant = 386 i n / s 2 ;

y = Weight density of spring material = 0.285 Ibf/ in .3 ;

p = Mass density of material (/ / g) = 7.38342 x 10*4 Ibf - s2 / in .4 ;

The constraints can be formulated as (Arora 2004):

(3.21)

61

8io
SPD
7td

(4 D - d) 0.615 d
4 { D - d) D

- T d < 0

gn =a)0-(o< 0

gn = D + d - D 0 <0

In this problem,

P = Applied axial load =10 I b f ;

G = Shear modulus = 1.15 x 107 Ibf / in .2 ;

A = Minimum spring deflection =0.5 in.;

Td = Allowable shear stress = 80000 Ibf / in.2 ;

a)0 = Lower limit on surge wave frequency = 100H z ;

co = Frequency of surge waves = — - —r J —
2ttND \ 2 p

D0 = Limit on outer diameter of the coil =1.5 in. ;

Using these values, the above constraints can be rewritten as:

62

(3.22)

(3.23)

(3.24)

d 3n
g9 =1.0 - < 0 (3.25)

9 71875*/ V J

D U D - d) 2.46
#10 = ------ —T7— —T + T - 1 -0 < o (3.26)

12566d3(D - d) 12566d2 J

i n 140.54*/ _
g n =1.0-------- r-----< 0 (3.27)

11 D N

g n = ^ f ~ 1 0 < 0 (3.28)

The first constraint (g 9) makes sure that the deflection o f the coil spring is greater

than the specified minimum value. The second constraint (g 10) checks that the

maximum shear stress in the coil spring is less than the allowable shear stress. The

third condition (gn) checks that the frequency of surge waves is greater than the

given lower limit. Finally, the fourth constraint (g 12) controls the outer diameter of

the spring.

63

Figure 3.10 A coil spring

Bees Algorithm parameters Symbol Value
Population n 60
Number of selected sites m 5
Number of top-rated sites out of m selected sites e 2
Initial patch size ngh 0.1
Number of bees recruited for best e sites nep 40
Number of bees recruited for the other (m-e) selected sites nsp 10

Table 3.6 Parameters of the Bees Algorithm for the coil spring design problem

64

The parameters used for the Bees Algorithm are given in Table 3.6 with the stopping

criterion of 1500 generations. The search space was defined using the following

intervals (Leite and Topping 1998):

0.05 <</< 0.2 (3.29)

0.25 <D< 1.3 (3.30)

2 < A < 1 5 (3.31)

Figure 3.11 shows the evolution of the best value of the objective function with the

number of iteration (generations) for three independent runs. Again, it can be seen

that the objective function decreases rapidly in the early iterations and then gradually

converges to the optimum value.

The coil spring design problem has been solved by other researchers using

Sequential Quadratic Programming (SQP) methods in a batch environment and in an

interactive mode (Arora 2004) and using an improved Genetic Algorithm (Leite and

Topping 1998). The results obtained by those optimisation tools are given in Table

3.7 together with the outputs of three independent runs of the Bees Algorithm. For

this optimisation problem, in order to compare the results of the Bees Algorithm and

those of improved GA, the maximum number of function evaluations was set to be

the same as those previously adopted for the latter.

65

It can be seen that the Bees Algorithm gives better solutions than the improved GA

and the interactive solution process. Only the result from the batch-mode SQP is

comparable with that of the Bees Algorithm. However, as SQP methods need

information on derivatives of variables, the range of problems that can be solved by

these methods is limited.

6 6

0.04

0.035

0.03 BA Run 1

 BA Run 2

BA Run 3

 Optimum

0.025

0.02

0.015

0.01
100 150

Generation x 10

Figure 3.11 Evolution of the lowest mass in each iteration

67

Methods
Design variables Mass M

* y 2K / pn Jd D N

SQ P (batch) (Arora
2004) 0.051699 0.35695 11.289 0.0126787

SQP (interactive)
(Arora 2004)

0.05340 0.3992 9.1854 0.0127300

IM PRO VED GA
(Leite and Topping

1998)
Best three solutions

not violating
constraints

0.05235 0.3721 10.48 0.01272

0.05323 0.3947 9.383 0.01273

0.05396 0.4132 8.697 0.01287

BEES ALG O RITH M
Three independent

runs

0.051759 0.35839 11.207 0.012680

0.051807 0.35956 11.139 0.012680

0.051779 0.35886 11.179 0.012681

Table 3.7 Results for the coil spring design problem obtained using the Bees

Algorithm and other optimisation methods

6 8

3.5 Improved version of the Bees Algorithm

In the basic version of the Bees Algorithm, there is no interaction between bees and

only selected bees recruit from other bees. Other bees (those who have not been

selected) are discarded in each iteration and will be replaced with new random

placed bees. The first modification in the basic Bees Algorithm is not to discard the

unselected bees and try to improve them by mating them with the selected ones. The

mating method used here is interpolation or extrapolation. With this mating method,

each unselected bee in the last stage of the algorithm chooses one of the selected

bees and randomly carries out interpolation or extrapolation with it to go to a new

position. In the case of interpolation, the new position will be located between the

current position of an unselected bee and that of a selected bee. In the case of

extrapolation, the line segment joining the two bees is extended at both ends by half

of its length. The new position is a point randomly chosen in either of the extended

sections. Thus, instead of the unselected bees being discarded and repositioned

randomly, they will move using information from the selected bees. O f course at this

stage, there will be no comparison between the fitnesses of the old and new positions

of the unselected bee and it moves to its new position.

Another modification is the addition of two procedures to the basic Bees Algorithm.

In the first procedure, a large patch size is initially chosen. For each patch, the initial

size is kept unchanged as long as the recruited bees can find better solutions in the

69

neighbourhood. If the neighbourhood search does not yield any progress, the patch

size is decreased. This strategy aims to make the local search more exploitative,

searching more thoroughly the area around the local optimum. Henceforth, this

procedure will be called the “shrinking method”. There are different ways of

reducing the neighbourhood size. In this work, at each stage of shrinking, the

neighbourhood was shrunk to half o f the previous size.

The second procedure is applied when no improvement is gained using the shrinking

method (in this work, after the neighbourhood has been shrunk three times). In this

case, it is assumed that the patch is centred on a local peak of performance of the

solution space. Once the neighbourhood search has found a local optimum, no

further progress is possible. Consequently, the location o f the peak is recorded and

the exploration of the patch is terminated. This procedure is called henceforth

“abandon sites without new information”.

The pseudo code and flowchart of the improved version o f the Bees Algorithm are

shown in Figures 3.12 and 3.13.

70

1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Determine the patch size.

6- Recruit bees for selected sites (more bees for the best e sites) and

evaluate fitnesses.

7- Select the fittest bee from each patch.

8- Abandon sites without new information.

9- Assign remaining bees to interpolate or extrapolate with selected bees

and evaluate their fitnesses.

10 End While.

Figure 3.12 Pseudo code of the improved Bees Algorithm

71

N
eighbourhood

S
earch

Initialise a population o f n Scout Bees

Select the R epresentative Bee from each Patch

A bandon Sites w ithout N ew inform ation

N ew Population o f scout Bees

Evaluate the Fitness o f the Population

Select m Sites for N eighbourhood Search

D eterm ine the Size o f the N eighbourhood
__________(Shrinking i f needed)__________

R ecruit B ees for Selected Sites
(m ore Bees for the B est e Sites)

A ssign the (n-m) R em aining Bees to
Interpolate or E xtrapolate w ith selected bees

Figure 3.13 Flowchart o f the improved Bees Algorithm

72

3.6 Experiments using improved version of the Bees Algorithm

The eight benchmark test functions used in section 3.2.3 (Table 3.1), were tested

using empirically chosen parameters o f the improved Bees Algorithm. Table 3.8

shows the parameters used in the algorithm, and it can be seen that the same

parameters were used for all the test functions. It shows that, the improved version is

more robust and values of the parameters are not so critical and a reasonable setting

gives good results. Results are shown in Table 3.9.

For the tested function, the improved Bees Algorithm gives better answers and a

good improvement in results can be observed.

73

fun
no

n m e nsp nep ngh (initial)

1 20 6 1 5 8 0.1

2 20 6 1 5 8 0.1

3 20 6 1 5 8 0.1

4 20 6 1 5 8 0.1

5a 20 6 1 5 8 0.1

5b 20 6 1 5 8 0.1
6 20 6 1 5 8 0.1

7 20 6 1 5 8 0.1

8 50 6 1 5 8 0.1

Table 3.8 The improved Bees Algorithm parameters

func
no

Basic Bees Algorithm Improved B ees Algorithm

Su
cc

%

mean no. o f
evaluations Su

cc

%

mean no. o f
evaluations

1 100 868 100 829

2 100 999 100 920

3 100 1657 100 977

4 100 526 100 527

5a 100 631 100 105
5b 100 2306 100 338
6 100 28529 100 28210

7 100 7113 100 1477

8 100 20998 100 14429

**** Data not available

Table 3.9 Results of the improved Bees Algorithm for test functions

74

3.7 Summary

This chapter presented a new optimisation algorithm. Experimental results on multi­

modal functions in n-dimensions show that the proposed algorithm has remarkable

robustness, producing a 100% success rate in all cases. The algorithm converged to

the maximum or minimum without becoming trapped at local optima. The algorithm

generally outperformed other techniques that were compared with it in terms of

speed of optimisation and accuracy of the results obtained.

Two different constrained optimisation problems were solved using the Bees

Algorithm. In each case, the algorithm converged to the optimum without becoming

trapped at local optima. The algorithm generally outperformed other optimisation

techniques in terms of the accuracy o f the results obtained.

In addition to the basic Bees Algorithm, an improved version of the Bees Algorithm

was described. A comparison between the results obtained by the Basic version and

the improved version were also presented.

Indeed, the Bees Algorithm can solve a problem without any special domain

information, apart from that needed to evaluate fitnesses.

75

CHAPTER 4

PRELIMINARY DESIGN AND

MULTI-OBJECTIVE OPTIMISATION

USING THE BEES ALGORITHM

76

4. PRELIMINARY DESIGN AND MULTI-OBJECTIVE

OPTIMISATION USING THE BEES ALGORITHM

4.1 Preliminaries

This chapter describes two adapted versions o f the Bees Algorithm for solving multi­

solution and multi-objective optimisation problems. Preliminary design is a multi­

solution problem. In the first section, a first adapted version of the Bees Algorithm

will be presented to solve the problem preliminary design. In the second section, a

second version of the Bees Algorithm will be presented for multi-objective function

optimisation problems. The results will be compared with the results obtained by a

genetic algorithm and random search.

4.2 Preliminary Design

Until now, research efforts in computer aided design (CAD) have mainly focused on

detailed design. Effective computing tools have been developed for tedious and time

consuming tasks such as finite element analysis (FEA), simulation, and draughting

for the later design phases. The initial creative part o f the design process is still

carried out almost exclusively by humans.

77

There is now increasing interest in the automation of creative design. A desirable

feature for a computer-based creative design system is the ability to generate

multiple conceptual solutions. The more candidate solutions the system produces,

the greater the chance is of finding the optimal solution (Pham and Yang 1993a, b).

Preliminary design can be regarded as an optimisation task, where the goal is to

generate as many solutions as possible that meet pre-defined quality criteria. This

section presents a new preliminary design system based on the Bees Algorithm

(Pham et al. 2006), an optimisation tool recently developed by the authors. In the

proposed study, the Bees Algorithm is used to generate the largest possible number

of acceptable solutions. Preliminary gearbox design is chosen as a case study for the

proposed algorithm. The results obtained by the Bees Algorithm are compared with

the results obtained by a basic random search procedure, and the results obtained by

the popular Genetic Algorithm (Fogel 2000) optimisation technique.

4.3 The Multi-Solution Bees Algorithm

In chapter 3, the Bees Algorithm for finding the optimum solution in a given search

space was described. If a problem requires the discovery of the largest possible

number of solutions that satisfy a given quality criterion, a filtering method can be

adopted in order to capture all non-identical satisfactory individuals generated after

the evaluation process.

78

Figures 4.1 and 4.2 show the pseudo code and the flowchart for the multi-solution

Bees Algorithm. The algorithm is like the one described in chapter 3, only step 4 has

been added to the algorithm to select and store satisfactory solutions. In step 4, after

fitness evaluation of the population, those candidate solutions that satisfy the quality

criterion will be added to the solution set. In order to avoid duplicates in the solution

set, only solutions which were not previously included will be added to the solution

set.

79

1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- Select the solutions that satisfy the criterion and add them to the solution set

4- While (stopping criterion not met)

//Forming new population.

5- Select sites for neighbourhood search.

6- Determine the patch size.

7- Recruit bees for selected sites (more bees for best e sites) and

evaluate fitnesses.

8- Select the fittest bee from each patch.

9- Abandon sites without new information.

10- Assign remaining bees to search randomly and evaluate their

fitnesses.

11-End While.

Figure 4.1. Pseudo code of the multi-solution Bees Algorithm

80

N
eighbourhood

S
earch

N ew Population o f scout Bees

Select the R epresentative Bee from each Patch

Initialise a population o f n Scout Bees

E valuate the Fitness o f the Population

A bandon Sites w ithout N ew inform ation

A ssign the (n-m) R em aining Bees to Random
Search

A dd satisfactory solutions to Solution Set

Select m Sites for N eighbourhood Search

D eterm ine the Size o f the N eighbourhood
______________ (Patch Size)______________

R ecruit Bees for Selected Sites
(m ore Bees for the B est e Sites)

Figure 4.2. Flowchart o f the multi-solution Bees Algorithm

81

4.4 Preliminary gearbox design

4.4.1 Problem statement

Gearbox design is a well defined and documented machine design task. A gearbox is

a power transmission device linking a power supplier and a power consumer in a

mechanical system. The power supplier can be a motor or an engine working at one

or more discrete speeds within a limited range. The power consumer can be any

machine which may need different speeds and torques. To match the input speed

with the required output speed/torque, a gearbox is used. The gearbox obtains the

desired speed conversion ratio through simple mechanisms like gear pairs and shafts.

Figure 4.3 shows a schematic o f a gearbox in a typical application.

The proposed preliminary gearbox design task entails the creation of the largest

possible number of distinct gearbox configurations that approximately produce the

required output speeds (it is assumed that designers have a small number of

alternative motors at their disposal).

4.4.1.1 Assumptions

For the sake of simplicity several assumptions are made:

1. Only one input speed is chosen for the gearbox.

2. Only one output speed is required from the gearbox.

3. Only parallel shafts are used in the gearbox.

8 2

4. The power transmission between two adjacent shafts is accomplished only by

pairs of gears.

4.4.1.2 Parameters

The following parameters are known:

a. the speed of the motor (700, 1000, 1500 or 3000 rpm);

b. the required output speed (pre-specified in revolutions per minute).

The following parameters are to be computed:

a. number of shafts;

b. number of teeth for each gear.

4.4.1.3 Constraints

1. The minimum number of teeth o f a gear is 18, and the maximum number of

teeth is 274.

2. The maximum transmission ratio for each gear pair is 5.0.

3. The maximum number of shafts, including the input and output shafts, is 8.

83

Gear

Shaft

Bearing

Coupling

Gearbox

Motor

Conveyor belt

TTT

Figure 4.3. An example of a gearbox

84

4.4.2 Evaluation function

Candidate solutions are evaluated according to a positive-valued fitness function F

that incorporates the main design specifications. The parameters considered in the

fitness function are listed below:

1. The number of shafts (NoOfShafts) generated must not exceed 8:

if NoOfShafts > 8, then F = 0.0 (4.1)

2. For a reduction gearbox, the number o f teeth of the driven gear must be larger

than the number of teeth o f the driving gear for each gear pair. Otherwise, the

candidate solution is considered invalid and its fitness F is calculated as:

F = 28.0 - 2.0 * W rongPair ^ 2)

where WrongPair is the number of invalid gear pairs.

3. The transmission ratio achieved by one pair o f gears must not exceed the

maximum single-stage transmission ratio (MAXRATIO) by more than a given

percentage. The tolerance is set to 15% of the MAXRATIO value. Solutions

containing gear pairs exceeding the tolerance limit are penalised according to the

following formula:

F - Original *(1.0-0.1 SumOfExcess) (4.3)

where (SumOfWxcess) is the sum of the transmission ratio overshootings of all the

gear pairs exceeding the MAXRA TIO limit.

4. In order to make the gearbox design compact, the number o f shafts (.NOfShafts)

should be as low as possible.

85

5. The difference between the total transmission ratio of the gearbox and the required

ratio (RatioDifferrence) should be as small as possible.

6. Fitness values should be positive. Candidate solutions satisfying constraints 1 to 3

(that is, valid solutions) but having negative fitness are assigned a positive fitness

value of 27. This figure is slightly higher than the maximum fitness attainable by an

invalid solution. Accordingly, valid candidate solutions are considered fitter than

invalid solutions.

Taking into account specifications 3, 4 and 5, the overall fitness function is as

follows:

F =

0.0, If NoOfShafts >8;

28.0 - 2 * WrongPair, If WrongPair * 0;
{MaxA llowedFitness
—[JF * (4*4)

+W2 * 3(])([{F>= 0;

2 7 0 ’ If F<0;

where MaxA llowedFitness is set to 5000 and is the maximum fitness value

obtainable by a candidate solution. W1 and W2 are penalty weights, while A1 and A2

are coefficients. Wl, W2, A1 and A2 are experimentally optimised in order to yield a

fitness function that is effective over a wide range of output speeds. Their final

values are set to:

(Wl W2 A{ A2) = (0.286 1.0 0.7925 1.0) /45)

8 6

4.5 Genetic Algorithms

In order to assess the performance of the proposed design technique, the results

produced by the Bees Algorithm are compared with those obtained by random

search and by a genetic optimisation procedure.

Genetic Algorithms (GAs) are population-based stochastic search algorithms that

aim to find an acceptable solution when time or computational requirements make it

impractical to find the best one. GA has been described in chapter 2.

4.6 Results of preliminary design

The results obtained by the Bees Algorithm are compared with those found by a GA

and a random search procedure. The random search results are used for baseline

evaluation of the performance of the Bees Algorithm and the GA.

Since all the variables in this problem are discrete, candidate solutions are encoded

using integer-valued strings. The three search algorithms use the same integer-based

encoding scheme for representing the solutions, and the same fitness evaluation

procedure, which is described in sub-Section 4.2. The Bees Algorithm and the GA

use the same random technique for population initialisation. This technique is used

also in the random search procedure to generate new solutions. Finally, the Bees

Algorithm neighbourhood search operator and the GA mutation operator share the

same procedure for modifying the candidate solutions. According to this procedure,

87

the transmission ratio of randomly picked gear pairs is changed by randomly altering

their number of teeth. The main search parameters are set so as the three search

algorithms sample the same number o f candidate solutions over the total

optimisation process.

4.6.1 Solution acceptance criteria

A “filtering” method is employed to capture all nonidentical satisfactory individuals

generated during the evaluation process. The total number of acceptable solutions is

the measure used to assess the performance o f the design method under evaluation.

The filtering criteria for deciding whether a solution is acceptable are:

1. The output speed is within ± 10 percent of the required output speed.

2. The fitness measure is above or equal to a pre-defined threshold.

4.6.2 Parameters of the Bees Algorithm

The main parameters characterising the Bees Algorithm are empirically chosen. They

are detailed in Table 4.1. The search space is defined as:

2 < NoOfShafts <8 (4.6)

18 < Af. < 274 (4.7)

where A, is the number of teeth o f gear i. The total number of gears varies according

to the number of shafts. Since each shaft is made of a gear pair, the total number of

gears is equal to 2 * NoOfShafts .

8 8

The initial patch size for the first variable (.NoOfShafts) is set to 2. For the remaining

variables (Ni) is set to 10.

89

Bees Algorithm parameters Symbol Value
Population n 33
Number of selected sites m 3
Number of top-rated sites out o f m selected sites e 2
Initial patch size ngh 2/10
Number of bees recruited for best e sites nep 50
Number of bees recruited for the other (m-e) selected sites nsp 20
Number of iterations g 300

Table 4.1. Parameters o f the Bees Algorithm

Genetic Algorithm parameters Symbol Value
Population n 150
Generations g 300
Crossover rate cr 1.0
Mutation rate mr 0.25

Table 4.2. Parameters of the Genetic Algorithm

90

4.6.3 Parameters of the Genetic Algorithm

The main parameters characterising the GA are empirically chosen. They are

detailed in Table 4.2.

4.6.4 Results of the preliminary gearbox design

Table 4.3 gives the average number of solutions obtained by the Bees Algorithm

(BA), the Genetic Algorithm (GA), and the Random Search Algorithm (Random).

The results are calculated over 100 independent runs.

Table 4.3 shows that the Bees Algorithm outperforms the genetic and random search

algorithms in terms of acceptable solutions found. In some cases, the number of

acceptable solutions produced by the Bees Algorithm is over one order o f magnitude

larger than the number of solutions produced by the GA.

91

Fitness
Threshold Method Required Output Speed (rpm)

30 50 75 100

4992
Random 20 88 142 164

GA 61 672 871 811
BA 3453 4012 3973 3804

4993
Random 17 71 127 151

GA 54 611 756 791
BA 3275 3885 3830 3786

4994
Random 10 46 87 118

GA 41 345 559 626
BA 2654 3329 3492 3600

4995
Random 1 6 11 15

GA 7 45 74 94
BA 427 613 689 755

Table 4.3. Number of solutions for different output speeds

92

4.7 Multi-Objective optimisation

The goal of an optimisation problem can be stated as finding the combination of

parameters (independent variables) which maximises or minimises the value of one

or more dependent variables possibly subject to some constraints on the independent

variable ranges. The values to be optimised are called objective functions. If there is

only one function to optimise, the task is a single function optimisation problem. If

more than one function should be optimised, the task is a multi-objective

optimisation problem.

There is now increasing interest in multi-objective function optimisation as most

engineering design problems involve multiple and often conflicting objectives. There

are two ways of solving multi-objective optimisation problems. The first possibility

is to form a linear combination of the different objective functions. The contribution

of each function is associated to a weight, and each function is optimised using

methods developed for single objective function problems. The other way of solving

a multi-objective problem - the genuine way - is to consider all objective functions

simultaneously. The following two main drawbacks are of concern when converting

a multi-objective optimisation problem into a single objective optimisation problem.

The first shortcoming is that not all the solutions are usually found. The second

drawback is that the weight assigned to some objective functions may not be

suitable, and the overall linear combination of functions may lack of significance. In

multi-objective optimisation tasks, the goal is not to find a single optimal solution,

93

but to compute the set o f all non-dominated solutions, that is, the Pareto optimal set.

A solution belonging to the Pareto set is not better than any other solution belonging

to the same set. For this reason, they are not comparable and each of them is called a

feasible solution. Different techniques to solve multi-objective function optimisation

tasks and their characteristics are explained in (Deb 2001).

A maximum of a function / is a minimum of -f. Thus, the general optimisation

problem may be stated mathematically as:

minimise f^ X) , i = l ,2,...,/
subject to c / X) = 0, y = l,2 ,...,p (4 g)

hk(X) > 0 , k = \,2,. .-,q
X = (xv x2,...,xn)r

Where f(X) are the / objective functions, X is the column vector o f the n independent

variables, c/X) are p termed equality constraints, and h /X) are q inequality

constraints. Taken together, f(X), c /X) and h /X) are known as the problem

function(Deb 2001).

The word 'minimise' means that we want to minimise all the objective functions

simultaneously. If there is no conflict between the objective functions, then a

solution can be found where every objective function reaches its optimum. To avoid

such trivial cases, it is assumed that there is not a single solution that is optimal with

94

respect to every objective function. This means that objective functions are at least

partly conflicting. They may also have different units.

4.7.1 Pareto ranking and Pareto optimality

An individual’s Pareto rank corresponds to the number o f individuals in the current

population by which it is dominated. For example in Figure 4.4, the solutions which

are shown by red circles are not dominated by any other solutions, so their rank is

zero. The blue ones are dominated by one other solution so their rank is 1 and in the

same way the rank of solution shown by green circle is 5.

The predominant solution concept in defining solutions for multi-objective

optimisation problems is that of Pareto optimality (Arora 2004). A solution in the

feasible solution space is called Pareto optimal (or non-dominated solution) if there

is no other feasible solution in the solution space that reduces at least one objective

function without increasing another one. According to the Pareto ranking definition,

the ranks of all non-dominated solutions are zero.

95

Figure 4.4. Pareto ranking o f candidate solutions

4.8 The multi-objective Bees Algorithm

Figures 4.5 and 4.6 show the pseudo code and the flowchart for the multi-objective

Bees Algorithm. Likewise the Bees Algorithm for solving single objective function

problems, the multi-objective Bees Algorithm requires a number of parameters to be

set, namely: number of scout bees (n), number o f sites selected for neighbourhood

search (out of n visited sites) (m), number o f bees recruited for the selected sites

(nsp), the initial size of each patch (ngh) (a patch is a region in the search space that

includes the visited site and its neighbourhood), and the stopping criterion.

The algorithm starts with n scout bees randomly distributed in the search space. The

fitness of the sites (i.e. the performance of the candidate solutions) visited by the

scout bees are evaluated in step 2.

In step 4, the m non-dominated sites are designated as “selected sites” and chosen for

neighbourhood search. If there are more than m non-dominated sites in the

population, the first m will be selected since it is not possible to differentiate

between them. If there are less than m non-dominated sites, from the dominated ones

which have been dominated only once, the rest will be selected and this procedure is

repeated until a sufficient number of sites have been selected. In step 5, a large patch

size is chosen initially. For each patch, the initial size is kept unchanged as long as

the recruited bees can find better solutions in the neighbourhood. If the

neighbourhood search does not yield any progress, the patch size is decreased. This

97

strategy aims at making the local search more exploitative, searching more densely

the area around the local optimum. Henceforth, this step will be called the

“shrinking method”.

In step 6, the algorithm searches around the selected sites. In the basic version of the

Bees Algorithm, more bees were chosen to search in the vicinity of the best e sites.

In selection of the best sites was made according to the fitness associated with. In the

multi-objective optimisation version o f the Bees Algorithm, sometimes it is not

possible to rank the solution candidates, so all the selected sites have the same

number of recruited bees to search around the neighbourhood. In step 7, the

representative bee will be the original one unless it is dominated by one of the

recruited bees; in that case the representative will be the new non-dominated bee.

Step 8, has been added to the basic Bees Algorithm to enable it to deal with multi­

objective optimisation problems. If the representative is a non-dominated solution, it

will be added to the Pareto optimal set. In addition, if this solution is dominating the

other solutions in the created Pareto optimal set, the dominated solutions will be

removed from the set.

98

1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Determine the patch size.

6- Recruit bees for selected sites and evaluate fitnesses.

7- Select the representative bee from each patch.

8- Create or Amend the Pareto optimal set.

9- Abandon sites without new information.

10- Assign remaining bees to search randomly and evaluate their

fitnesses.

11-End While.

Figure 4.5. Pseudo code of the multi-objective Bees Algorithm

99

C£2
O’

N ew Population o f scout Bees

Create or A m end Pareto Optimal Set

Initialise a population o f n Scout Bees

Evaluate the Fitness o f the Population

Assign the (n-m) Rem aining Bees to Random
Search

Select m Sites for N eighbourhood Search

Determine the Size o f the N eighbourhood
______________(Patch Size)______________

Recruit Bees for Selected Sites

Select the Representative Bee from each Patch

Abandon Sites w ithout New information

Figure 4.6. Flowchart o f the multi-objective Bees Algorithm

100

In step 9, in the case when no improvement is gained using the shrinking method, it

is assumed that the patch is centred on a local peak of performance of the solution

space. Once the neighbourhood search has found a local optimum, no further

progress is possible. Consequently, the exploration of the patch is terminated.

Henceforth this step is called “abandon sites without new information”. In step 10,

the remaining bees in the population are placed randomly around the search space to

scout for new potential solutions.

At the end of each iteration, the colony has two parts to its new population:

representatives from the selected patches, and scout bees assigned to conduct

random searches. These steps are repeated until a stopping criterion is met.

4.9 Welded beam design problem with two objective functions

This problem is the same as the problem described in 3.4.1. However, the objective

functions are formulated as (Rekliatis et al. 1983) :

min f x = (1 + cx)h2l + c2tb(L + /) (4.9)

min f 2 =S (4.10)

Also, constraint g8 is now converted into a fitness function.

101

Bees Algorithm parameters Symbol Value

Population n 150

Number of selected sites m 30

Initial patch size ngh 0.1

Number of bees recruited for selected
sites nsp 50

Number of iterations g 1000

Table 4.4. Parameters of the multi-objective Bees Algorithm for the welded beam

design problem

1 0 2

4.10 Results for the welded beam design problem with two objective functions

The empirically chosen parameters for the Bees Algorithm are given in Table 4.4.

Figure 4.8 shows the non-dominated solutions obtained using the Bees Algorithm.

The total number is 215 non-dominated solutions distributed along the Pareto front.

Deb has investigated this problem using the non-dominated sorting GA (or NSGA)

and a fast elitist NSGA, called NSGA-II (Deb et al. 2000), for finding multiple

Pareto optimal solutions (Figure 4.9).

In comparison with the number of solutions found by the non-dominated sorting

genetic algorithms, the Bees Algorithm can find more non-dominated solutions.

NSGA-II found the best cost solution with a cost of 2.79 units(Deb et al. 2000). The

multi-objective Bees Algorithm could find a quantity of 2.39 units cost, which is

closer to the best solution (with a cost of 2.38 units) found using the single objective

Bees Algorithm in chapter 3.

103

Two objective functions vs each other
0014

0012

0.01

g 0 008

0 004

0.002

F1 (C o s t)

Figure 4.8. Non-dominated solutions obtained using the Bees Algorithm

Q.C09 i i i i i
4 <JSGA-II ' t-

NSGA «

o .ooe

f

“

0.007
4
+

"

0.006 ♦

4

4
0 .005 1

4*

*

0 .004

* 4
0 .003 V H “

0.002
%

* -

0.001

0 _________ 1__________1__________ 1--------------- 1----------------L

« I | I H 1 1 III n r p o t l

i i

D 5 10 15 20 25 30 35 43
Coe:

Figure 4.9. Non-dominated solutions obtained using the two different versions of

genetic algorithms (Deb et al. 2000)

104

4.11 Summary

In tasks like the preliminary design of engineering artefacts, it is often necessary to

generate as many alternative solutions as possible. An adapted version of the Bees

Algorithm is used to find multiple solutions for the test case of preliminary gearbox

design. The results for the Bees Algorithm have been compared with those obtained

using random search and a GA. Under the same sampling conditions, experimental

evidence proves that the Bees Algorithm finds a much larger number of solutions

than the other two methods.

The second section of this chapter has described a modified version of the Bees

Algorithm, and its application to the search for multiple Pareto optimal solutions in a

mechanical engineering problem. Compared to two non-dominated genetic

algorithms, the Bees Algorithm was able to find more trade-off solutions (Deb et al.

2000).

The Bees Algorithm can be used as multi-objective optimiser tool for complex

engineering multi-objective optimisation problems.

The Bees Algorithm is capable o f solving multi-solution problems and multi­

objective function optimisation problems without any special domain knowledge,

apart from the information needed to evaluate the fitness of the solutions. In this

105

respect, the Bees Algorithm shares the advantages of general-purpose optimisation

algorithms such as GAs.

106

CHAPTER 5

TRAINING RADIAL BASIS FUNCTION

NEURAL NETWORKS USING

THE BEES ALGORITHM

107

5. TRAINING RADIAL BASIS FUNCTION NEURAL

NETWORKS USING THE BEES ALGORITHM

5.1 Preliminaries

Artificial neural networks are computational models of the brain (Pham and Liu

1995). There are many types of neural networks representing the brain’s structure

and operation with varying degrees of sophistication. The Radial Basis Function

(RBF) network is a popular type of network that is very useful for pattern

classification problems (Bishop 1995). This chapter presents the use of Radial Basis

Function (RBF) networks for identification patterns recognition in control charts and

of wood defects. The RBF networks were trained, employing the Bees Algorithm

instead of the standard training algorithms. The chapter includes explanations o f the

RBF network, the standard RBF training method, the training procedure based on the

Bees Algorithm, results of control chart pattern recognition experiments, and

identification of wood defects with RBF networks trained using the Bees Algorithm

and the conventional RBF procedure.

5.2 Radial Basis Function (RBF) network

5.2.1 Network structure

As the name implies, this network makes use of radial functions. Figure 5.1 shows

the structure of a RBF network which consists of three layers of neurons.

108

The input layer neurons receive the input pattern (xx to xN). The hidden layer

neurons provide a set o f activation functions that constitute an arbitrary “basis” for

the input patterns in the input space to be expanded into the hidden space by way of

non-linear transformation. At the input o f each hidden neuron, the distance between

the centre of each activation (basis) function and the input vector is calculated.

Applying the basis function to this distance produces the output o f the hidden

neuron. The RBF network outputs y x to y p are formed by the neurons in the output

layer as weighted sums of the hidden layer neuron activations.

109

Hidden Layer

Input Layer Output Layer

x.1

W;
X;

x,N

n h

Figure 5.1. Topology o f an RBF network.

1 1 0

The basis function is generally chosen to be a standard function which is positive at

its centre x = 0, and decreases uniformly to zero at the sides. A common choice is

the Gaussian distribution function:

= exp ' I ' '
v ’ 2 ,

(5-1)

This function can be shifted to an arbitrary centre, x = c, and stretched by varying its

spread a as follows:

K|l£z£)| = eXp
2a 2

(5-2)

The outputs o f the RBF network y. are given by:

y t=lLwi>K
i=l V a i /v*

(5-3)

where w.. is the weight of connection from hidden neuron i to output j , c(the

centre of basis function i , and cr is the spread of the function i . p - c. || is the norm

of (jc-c,) . There are various ways to calculate the norm. The most common is the

Euclidean norm given by:

||jc- cJ = a / (* | -c,tf +(x2 -C j2) 2 ++ (XA, - c mf (5-4)

This norm gives the distance between the two points Xand cf in the N-dimensional

input space. All points jc that are the same radial distance from c{ give the same

value of the norm. The purpose of training an RBF network is to determine the

111

connection weights wj t , RBF centres c, ,and spreads cr, that enable the network to

produce the correct outputs y } corresponding to the input patterns x .

5.2.2 RBF network training procedure

The training of an RBF network involves the minimisation of an error function. The

error function defines the total difference between the actual output and the desired

output of the network over a set of training patterns (Jain and Dubes 1988). Training

proceeds by presenting to the network a pattern of known class taken from the

training set. The error component associated with that pattern is the sum of the

squared differences between the desired and actual outputs of the network for the

presented pattern. The procedure is repeated for all the patterns in the training set.

The error components for all the patterns are summed to yield the error function for

the RBF network. After training, the percentage of training patterns which the

network can recognise correctly is called the training accuracy, and the percentage of

test patterns correctly classified is called the test accuracy.

5.2.2.1 Standard RBF network training procedure

According to the standard procedure for training RBF networks, after the number of

hidden neurons (h) has been set, the following steps will be taken:

1. Choose the RBF centres c ,. Centre selection can be performed by trial and error,

self-organisation or supervised training.

1 1 2

2. Choose the spreads <rt. . Several heuristic methods are available. A popular

method is to set cr, equal to the distance to the centre nearest to ci .

3. Calculate the neuron weights w.f. When c(and wj{ are set, the outputs of the

hidden neurons (/CL, ,A'A)r can be calculated for any pattern of inputs

x — (^ , Xjy). Assuming there are s input patterns x in the training set, there will

be 5 sets of hidden neuron outputs that can be calculated. These can be assembled

into a h xs matrix:

K =

k\ k\
k\ k \

.... k[

.... K

.... ki

(5-5)

h J h X s

The output of the RBF network (_y) is given by equation (5-6).

y = K t .wt (5-6)

where

w

Wu W12

w21 W22

W*1

w.Ip
.... w.2 P

w.*p

(5-7)

y is the matrix of the actual outputs corresponding to the training inputs x . Ideally,

y should be equal to d , the desired or target outputs. Unknown coefficients wn can

113

be calculated from equation (5-8) in order to minimise the sum of the squared

differences between y and d .

wT =(K.Kt)~' ,K.d (5-8)

5.2.2.2 RBF network training using the Bees Algorithm

When the Bees Algorithm is used, each bee represents an RBF network with a

particular set of basis function centres, spreads and weight vectors. The aim of the

algorithm is to find the bee producing the smallest value of the error function.

The RBF network training procedure using the Bees Algorithm comprises the

following steps:

1. Generate an initial population o f bees.

2. Apply the training data set to determine the value o f the error function associated

with each bee.

3. Based on the error value obtained in step 2, create a new population of bees

comprising the best bees in the selected neighbourhoods and randomly placed

scout bees.

4. Stop if the value of the error function has fallen below a predetermined threshold

or after a set number of iterations.

5. Else, return to step 2.

114

53 Control chart pattern (CCP) recognition experiments

53.1 Control chart pattern

Statistical Process Control (SPC) employs statistical means such as control charts to

show how consistently a process is performing and whether it should be adjusted

(Montgomery 2000). SPC control charts enable a manufacturing engineer to

compare the actual performance of a process with customer specifications and

provide a process capability index to guide and assess quality improvement efforts.

By means of simple rules, it is possible to determine if a process is out of control and

needs corrective action. However, incipient problems could be detected before the

process goes out of control from the type of patterns displayed by the control charts.

There are six main classes of patterns in control charts, normal, cycle, upward trend,

downward trend, upward shift, and downward shift, as illustrated in Figure 5.2.

Specifically, control chart pattern recognition is a process of recognising an

unknown CCP and assigning it to one o f the prescribed pattern classes. Normally,

patterns of the same category share common properties.

115

Normal C y clic

Decreasing trend Increasing trend

Downward shift Upward shift

Figure 5.2. Six main classes o f control chart patterns.

11 6

Cyclic patterns occasionally appear on the control chart. Cyclic patterns may result

from systematic environmental changes such as temperature, operator fatigue,

regular rotation of operators and/or machines, or fluctuation in voltage or pressure or

some other variable in the production equipment. Shift patterns may result from the

introduction of new workers, methods, raw materials, or machines; a change in the

inspection method or standards; or a change in the skill, attentiveness, or motivation

of the operators. Sometimes an improvement in process performance is noted

following the introduction o f a control chart program, simply because of

motivational factors influencing the workers. Trend patterns or continuous

movement in one direction are usually due to a gradual wearing out or deterioration

of a tool or some other critical process component. In a chemical process they often

occur because of settling or separation o f the components of a mixture. They can

also result from human causes, such as operator fatigue or the presence of

supervision. Finally, trends can result from seasonal influences, such as temperature.

53 .2 Control chart pattern simulator

The following expressions were used to generate the different patterns for a control

chart. This data set is used in this thesis. The total number of generated patterns is

1500 and each pattern is a time series comprising 60 points. 498 patterns (83 in each

class) were used for training an RBF network and 1002 patterns (167 in each class)

were employed for testing the trained network.

117

1. Normal patterns:

y(t) = fJ. + r(t) a (5-9)

2. Cyclic patterns:

y(t) - /j + r (t) o + asin(2n t/j,) (5-10)

3. Increasing or decreasing trends:

y(t) = n + r(t) a ± g t (5-11)

4. Upward or downward shifts:

y(t) = /u + r{t) <r±ks (5-12)

where

fi = mean value of the process variable being monitored

a = standard deviation o f the process

a = amplitude of cyclic variations (taken as 15 or less)

g = magnitude of the gradient o f the trend (taken as being in the range 0.2 to 0.5)

k = parameter determining the shift position (k=0 before the shift position; k=l at the

shift position and thereafter).

r = normally distributed random number (between -3 and 3)

s = magnitude of the shift (taken as being in the range of 7.5 to 20)

t = discrete time at which the pattern is sampled (taken as being within the range 0 to

T = period of a cycle (taken as being in the range 4 to 12 sampling intervals).

y(t) = sample value at time t.

59).

118

This pattern simulator is taken from Pham and Oztemel (Pham and Oztemel 1992).

In this thesis, the data were scaled before presenting them to the network.

53.2.1 Procedure scaling data

Although the input data to a node can theoretically take any value, restricting it to

fall within a fixed range produces more efficient training. Scaling is an application-

specific transformation that constrains input data into a fixed range. The most

important issue in scaling is the range of output values dictated by the scaling

transformation. Scaling has two advantages. The first advantage is that scaling takes

care of the distribution of the training data and the effect o f outliers. The second

advantage is that scaling ensures that errors or variations of different variables

contribute the same proportion to the change in network weights. In this thesis, by

applying the scaling method mentioned below, the original inputs were scaled to

continuous values between 0 and 1. The actual data sets were scaled values of y(t).

Scaling was performed using the following expression:

y(t) = y(t) (5-13)
Tm ax Tmin

where

y = scaled pattern value (in the range 0 to 1)

^min= minimum allowed value (taken as 35)

Tmax= maximum allowed value (taken as 125)

119

This scaling method is taken from Pham and Oztemel (Pham and Oztemel 1992)

with some modification on the minimum and maximum allowed value.

53.3 RBF network configuration for control chart pattern

The RBF network configuration used involves three layers: an input layer, a hidden

layer and an output layer. The input layer has 60 neurons, one for each point in a

pattern. The hidden layer consists of 35 neurons. The output layer comprises 6

neurons, one for each of the six classes as shown in Table 5.1. Therefore, each bee

defines a 2345-dimensional vector (60*35+6*35+35).

53.4 The Bees Algorithm parameters for control chart pattern

Table 5.2 shows the parameter values adopted for the Bees Algorithm. The values

were empirically set.

1 2 0

Pattern Class Outputs
1 2 3 4 5 6

Normal 1 1 0 0 0 0 0

Increasing trends 2 0 1 0 0 0 0

Decreasing trends 3 0 0 1 0 0 0

Upwards shifts 4 0 0 0 1 0 0

Downwards shifts 5 0 0 0 0 1 0

Cyclic 6 0 0 0 0 0 1

Table 5.1. Representation o f the output categories.

Bees Algorithm parameters Symbol Value

Population n 200

Number of selected sites m 10

Number of elite sites out of m
selected sites e 2

Initial patch size ngh 0.1

Number bees for elite sites nep 80

Number of bees for other
selected sites nsp 20

Table 5.2. Parameters of the Bees Algorithm.

121

5.3.5 Results of control chart pattern recognition using the Bees Algorithm

Table 5.3 presents the classification results obtained for ten independent runs of the

Bees Algorithm. The results o f the ten runs are used to measure the repeatability and

reliability of the algorithm.

A typical plot of the solution o f the classification accuracy during the training phase

is shown in Figure 5.3. The algorithm converges to the target accuracy after around

8000 iterations. As each iteration requires to apply 498 patterns to 510 different RBF

networks, and calculate the error for each o f them, running the algorithm on one sole

computer would take weeks of processing time. In this work, a program called

Condor was used to speed up the optimisation process. Condor is a program which

enables the use of idle computers connected to a given network. In this thesis, the

code for training RBF network was divided into 30 sub programs that were sent by

Condor from a local machine to 30 free computers on Cardiff University computer

network. The final results were retrieved and assembled by Condor on the local

computer. In this thesis, each run took only two days using the Cardiff University

Condor pool.

1 2 2

Number of
runs

Training
accuracy

Test
accuracy

1 99.35% 98.79%
2 99.65% 99.15%
3 99.14% 98.51%
4 99.83% 99.46%
5 99.82% 99.44%
6 99.57% 98.99%
7 99.84% 99.43%
8 99.43% 98.84%
9 99.81% 99.45%
10 99.45% 98.95%

Max 99.84% 99.46%
Min 99.14% 98.51%

Mean 99.59% 99.10%

Table 5.3. RBF classification results.

Pattern
recognition

No o f
hidden

neurons
Error Training

Accuracy
Test

accuracy

RBF
(MATLAB) 35 32.6 100 99.6

RBF
(MATLAB) 175 9.3 100 99.7

RBF
(MATLAB) 498 0.02 100 99.8

RBF (Bees
Algorithm) 35 8.9 99.6 99.1

Table 5.4. Comparison with conventional RBF training.

123

100

>*

2000 4000

Number of Training Iterations

6000 8000

Figure 5.3. Typical plot o f classification accuracy versus number of training
iterations.

The average for the ten runs is given in Table 5.4 against the classification results for

RBF networks trained using the standard algorithm implemented in the MATLAB

(MAtrix LAB oratory) software. It can be seen that the test and training accuracies in

the case of the Bees Algorithm are very close to those for the standard RBF

procedure. The value o f the error function (which is the optimisation criterion for the

Bees Algorithm) is smaller for a Bees-Algorithm-trained RBF network than the error

value calculated for an RBF network created using the standard procedure and

having a five times larger hidden layer.

5.4 Identification of wood defects using the Bees algorithm

This section presents another application of the Bees Algorithm to the problem of

identifying defects in plywood veneer. An example of a sheet of wood veneer is

shown in Figure 5.4. The sheet contains several defects. These defects create quality

problems when the sheets are bonded together. Researchers have developed systems

for automatically detecting and identifying defects in plywood veneer. Such systems

generally involve the use of image processing techniques, such as feature extraction

to capture the essential characteristics of the defects and a classifier to recognise

these defects.

125

Figure 5.4. Wood Veneer. An example of a Wood Veneer sheet containing several

defects

5.4.1 Birch wood veneer boards

Birch wood veneer boards, which are made by bonding together several thin

plywood sheets, are used in many applications including flooring, furniture and

vehicle sides. For different applications, there are different quality requirements. The

quality of a board depends upon the quality of the sheets from which it is made.

Therefore, the sheets need to be graded into quality categories during the production

process. The grade of a sheet depends upon the number, size and type of defects

present.

A board containing serious defects has a lower strength than a board which is free

from defects. Also, the presence o f certain defects on the surface of a board reduces

its aesthetic appearance. It is important that a high grade sheet is not used for a low

quality board because then revenue will be lost. Conversely, if a low grade sheet is

utilised in a high quality board then customers will be dissatisfied. Producing

consistently high quality products at economic price is important in market.

The major problem of grading wood sheets is their very high rate of production. On

a typical line, they travel at speeds o f 2-3 m/s. This makes reliable inspection by

human operators very difficult and, in addition, operators quickly become tired and

uninterested. Two independent studies have been carried out to determine the

accuracy of human operators in grading wood boards. Huber and his colleagues

(Huber et al. 1985) tested six willing rough mill employees and found that their

127

accuracy was 68%. Polzleitner and Schwingshakl (Polzleitner and Schwingshakl

1992) carried out four independent trials on human graders and observed an average

performance o f 55%.

In this study, using a charge-coupled device (CCD) matrix camera, the wood veneer

defects were captured and stored on a digital computer. The wood veneer data

acquisition rig is shown in Figure 5.5. These images were converted into grey level

histograms after applying segmentation and image processing algorithms. From the

first and second order statistical features extracted from the histogram, 17 features

were selected for training the Neural Network. These are shown in Table 5.5.

Twelve wood veneer defects and clear wood examples are shown in Figure 5.6.

Several examples of each class o f defects were used for training and testing the

neural networks. Automated Visual Inspection (AVI) systems for identifying defects

using neural networks have been proposed by Pham and Alcock (Pham and Alcock

1996) and Packianather and Drake (Packianather and Drake 2005). The generic

process for the visual inspection o f wood defects is given in Figure 5.7.

The wood panels are automatically moved to the image capture area by a conveyor

belt. The system uses a Hamamatsu monochrome CCD matrix camera (resolution

739 x 575 pixels) to take images of the wood veneer. Uniform illumination is

provided by a back light (58W fluorescent lamp) and front lighting system (halogen

lamps: edges 500W and middle 300W). Basic image processing functions (e.g.

thresholding and filtering) are implemented in hardware. Image segmentation

128

algorithms are used to detect the boundaries of the sheet and open defects and defect

detection algorithms are used to find potential defect areas.

129

Figure 5.5. Inspection Rig. The inspection rig for wood defect detection

130

Feature
No. Feature Description

1 Mean grey level (m)

2 Median grey level below which 50% o f the values fall

3 Mode grey level the most frequent value

4 Standard deviation o f the grey
levels (s)

the spread

5 Skewness direction, extent o f departure from symmetry

6 Kurtosis measures the “peakedness ” o f the histogram

7 Number of pixels with a grey level
<80

number o f dark pixels

8 Number of pixels with a grey level
>220

number o f bright pixels

9 Grey level (p) for which there are
20 pixels below p

lowest grey level p- The grey level p is used as the
lowest grey level to allow for potential noise pixels

10 Grey level (s) for which there are
20 pixels above s

highest grey level - The grey level s is used as the
highest grey level to allow for potential noise

pixels

11 Histogram tail length on the dark
side (q-p)

q is the grey level below which there are 2000
pixels

12 Histogram tail length on the bright
side (s-r)

r is the grey level above which there are 2000
pixels

13 Number of edge pixels after
thresholding a segmented window

at mean value

defined to detect dark and bright defects

14 Number of pixels after
thresholding at m-2s

15 The number o f edge pixels for
feature 14

f l 4 and f l 5 defined to detect dark defects

16 Number of pixels after
thresholding at m+2s

17 Calculate the number o f edge
pixels for feature 16

f l 6 an dfl 7 defined to detect bright defects

Table 5.5 Feature selected for training of neural network

131

Bark Clear Colored Curly
Wood Streaks grain

Discoloration Holes Pin Rotten Roughness
knots

Sound Splits Streaks Worm
knots holes

■
Figure 5.6. Wood veneer defect types. There are 12 distinct types o f defect that need

to be identified by the neural network plus clear wood

Veneer

Classifier

Image

Feature

Image

Defect_l Defect_n Defect_free

Figure 5.7. Generic Automated Visual Inspection system for wood defect

identification

132

5.4.2 RBF network configuration for identification of wood defects

An RBF network configuration similar to the one used for the control chart pattern

problem was used, this configuration involves three layers: an input layer, a hidden

layer and an output layer. The input layer has 17 neurons, one for each feature in a

pattern. The hidden layer consists of 51 neurons. The output layer comprises 13

neurons, one for each o f the 13 classes shown in Table 5.6. Therefore, each bee

defines a 1581-dimensional vector (17*51+13*51+51).

For the particular application studied here, 232 examples (both defects and clear

wood) were employed. This represents the complete set of examples available to the

authors. Each example is a vector containing 17 features. Table 5.7 shows thirteen

different classes o f vectors and the number of examples in class. The initial

classification of these examples was performed by a human inspector. For the

proposed neural network classification experiments, for each class, 80% (185 in

total) of the examples were selected randomly to form the training set and the

remaining 20% (47 in total) formed the test set.

5.4.3 The Bees Algorithm parameters for identification of wood defects

Table 5.8 shows the parameter values adopted for the Bees Algorithm. The values

were empirically set.

133

Pattern Class Outputs
1 2 3 4 5 6 7 8 9 10 11 12 13

Bark 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Clear wood 2 0 1 0 0 0 0 0 0 0 0 0 0 0

Coloured streaks 3 0 0 1 0 0 0 0 0 0 0 0 0 0

Curly grain 4 0 0 0 1 0 0 0 0 0 0 0 0 0

Discoloration 5 0 0 0 0 1 0 0 0 0 0 0 0 0

Holes 6 0 0 0 0 0 1 0 0 0 0 0 0 0
Pin knots 7 0 0 0 0 0 0 1 0 0 0 0 0 0

Rotten knots 8 0 0 0 0 0 0 0 1 0 0 0 0 0
Roughness 9 0 0 0 0 0 0 0 0 1 0 0 0 0
Sound knots 10 0 0 0 0 0 0 0 0 0 1 0 0 0

Splits 11 0 0 0 0 0 0 0 0 0 0 1 0 0

Streaks 12 0 0 0 0 0 0 0 0 0 0 0 1 0
Wormholes 13 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.6. Representation o f the output categories

134

Pattern Class Total Used for training Used for Testing

Bark 20 16 4

Clear wood 20 16 4

Colored streaks 20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 8 6 2

Total 232 185 47

Table 5.7. Pattern classes and the number o f examples used for training and testing

135

Bees Algorithm parameters Symbol Value

Population n 250

Number of selected sites m 15

Number of elite sites out of m
selected sites e 3

Initial patch size ngh 0.1

Number bees for elite sites nep 80

Number of bees for other
selected sites nsp 50

Table 5.8. Parameters of the Bees Algorithm

136

5.4.4 Results of the identification of wood defects using the Bees Algorithm

The training and test data set were chosen randomly from the complete data set. Five

different training and test sets were generated. Table 5.9 presents the mean

accuracies achieved in five runs for each data set. In total, twenty five experiments

were implemented.

The average of the twenty five runs is given in Table 5.10 against the classification

results obtained by RBF networks trained using the standard algorithm implemented

in the MATLAB software. The results obtained by the Bees Algorithm were also

compared to the results obtained by a Minimum Distance Classifier (MDC).

In order to build an MDC for a given set o f patterns, the discriminate function must

be determined (Packianather and Drake 2005). This function is used by the classifier

to compute the discriminant values for a given pattern. These scalar values are

passed on to the maximum selector for class assignment. The given pattern is

classified as class Y if and only if the i th discriminant function has the largest value

(Packianather and Drake 2005)

137

Number of Data
set

Mean Training
accuracy

Mean Test
accuracy

1 84.6% 73.5%
2 88.6% 76.7%
3 87.6% 75.3%
4 85.3% 74.2%
5 88.4% 75.9%

Table 5.9. RBF classification results

Pattern recognition Error Test accuracy

RBF (MATLAB) 28.5 76.43%

MDC - 63.12%

RBF (Bees Algorithm) 11.6 75.12%

Table 5.10. Comparison with conventional RBF training and MDC

138

It can be seen that the test and training accuracies in the case of the Bees Algorithm

are very close to those for the standard RBF procedure. Both the algorithms were

applied to NNs having the same number of hidden neurons (51 hidden neurons. The

value of the error function (which is the optimisation criterion for the Bees

Algorithm) is smaller for a Bees-Algorithm-trained RBF network than for an RBF

network.

The results also show that the neural network based classifier has better

generalisation capability compared to the Minimum Distance Classifier.

As in the control chart pattern recognition, task of training RBF network for

identification o f wood defects takes around 100,000 iterations. In this application,

the Condor program facility was used to run twenty sub-programs simultaneously

and reduce the running time from three weeks to two and half days.

5.5 Summary

The first section o f this chapter described the Radial Basis Function (RBF) network,

its standard training method, and a new method based on the Bees Algorithm.

The application o f the Bees Algorithm for the training of RBF networks for control

chart pattern recognition was explained. Despite the high dimensionality of the

problem - each bee represented 2345 parameters that had to be determined - the

algorithm trained very accurately the classifiers. The accuracy achieved is

139

marginally lower than the accuracy obtained with conventionally RBF training

methods. However the comparison of the classification accuracies is in this case not

totally fair to the Bees Algorithm since the optimisation criterion used by the Bees

Algorithm is the total output error value rather than the classification accuracy and

these two quantities are not necessarily correlated because of the way they are

computed. Experimental evidence demonstrates that the Bees Algorithm produces

RBF networks with a lower total output error than conventional RBF training

algorithms, even when the standard training algorithm was applied to RBF networks

having five times more hidden neurons.

In the last part o f the chapter, an application o f the Bees Algorithm to the training of

RBF networks for the identification o f defects in wood veneer sheets was presented.

The accuracy obtained was slightly lower than the accuracy obtained from

conventionally-trained RBF networks, but the error value was less than the error

value produced by conventionally-trained RBF networks. The study confirms the

suitability o f the neural network approach in the identification of defects in wood

veneer sheets.

In terms of processing time, MATLAB was able to train RBF networks in less than

10 seconds using a Pentium IV machine and the Bees Algorithm needed 3 days in

the case of Control Chart Pattern Recognition on the Condor facility. Although

MATLAB was much faster than the Bees Algorithm, the Bees Algorithm was able to

140

train much simpler RBF networks which could be implemented more cheaply in

hardware if required.

141

CHAPTER 6

CONCLUSION

AND FUTURE WORK

142

6. CONCLUSION

This chapter summarises the main contributions of this work and the conclusions

reached. It also provides suggestions for future work.

6.1 Contributions

This research has introduced a novel swarm-based tool for solving problems.

The specific contributions were:

• Explaining the Bees Algorithm and its application to function optimisation;

• Using the Bees Algorithm for constrained optimisation problems;

• Employing the Bees Algorithm for multi-solution optimisation problems

when the task is to obtain as many different solutions as possible which

satisfy predefined conditions;

• Using the Bees Algorithm for multi-objective optimisation problems;

• Introducing a new method o f training RBF networks using the Bees

Algorithm.

143

6.2 Conclusions

The objectives stated in chapter 1 have all been achieved.

This thesis has presented a new optimisation algorithm called the Bees Algorithm.

Experimental results on multi-modal functions in n-dimensions show that the

proposed algorithm has remarkable robustness, producing a 100% success rate in all

cases. The algorithm converged to the maximum or minimum without becoming

trapped at local optima. The algorithm generally outperformed other techniques that

were compared with it in terms o f speed o f optimisation and accuracy o f the results

obtained.

Two different constrained mechanical design optimisation problems were solved

using the Bees Algorithm. In each case, the algorithm converged to the optimum

without becoming trapped at local optima. Again, the algorithm generally

outperformed other optimisation techniques in terms o f the accuracy o f the results

obtained.

The version of the Bees Algorithm with enhancements, such as replacing global

random search with interpolation and extrapolation, shrinking neighbourhood size,

and abandoning sites with no new information, required less tuning and search space

sampling than the original algorithm for the problems tested.

144

An adapted version o f the Bees Algorithm is used to find multiple solutions for the

test case of preliminary gearbox design. The results for the Bees Algorithm have

been compared with those obtained using random search and a GA. Under the same

sampling conditions, experimental evidence shows that the Bees Algorithm can find

a much larger number of solutions than the other two methods.

The Bees Algorithm was used as a multi-objective optimiser tool for complex multi­

objective optimisation problems. The tool was used to search for multiple Pareto

optimal solutions in a mechanical engineering problem. Compared to two non­

dominated genetic algorithms, the Bees Algorithm was able to find more trade-off

solutions.

The application of the Bees Algorithm to the training of RBF networks for control

chart pattern recognition and wood defect classification was explained. Despite the

high dimensionality o f the problem - each bee represented 2345 parameters (or 1581

parameters) that had to be determined - the algorithm succeeded in training very

accurate classifiers. The accuracy achieved is marginally lower than that obtained

with conventionally RBF training methods. However the comparison of the

classification accuracies is in this case not totally fair to the Bees Algorithm since

the optimisation criterion used by the Bees Algorithm is the total output error value

rather than the classification accuracy. Experimental evidence demonstrates that the

Bees Algorithm produces RBF networks with a lower total output error than

145

conventional RBF training algorithms, even when the standard training algorithm

was applied to RBF networks having five times more hidden neurons.

6 3 Future work

There are a number of issues which can be investigated in order to improve the Bees

Algorithm and widen its application potential.

1. Investigate different kinds of neighbourhood search, e.g. using Gaussian

distribution over the patch size rather the uniform distribution used in this

research and employing different shrinking methods, for example,

exponential shrinking.

2. Investigate other types o f selection methods, e.g. probabilistic selection

according to the fitness or rank o f candidate solutions.

3. Decrease the number o f parameters in the Bees Algorithm. This would

involve making some o f the parameters dependent on others, for example, the

neighbourhood size ngh could be set as a percentage of the size of the search

space.

4. Apply the Bees Algorithm to combinatorial optimisation problems, such as

Vehicle routing, Job Shop Scheduling and Printed Circuit Board Assembly

Machine sequencing.

146

Investigate the effects of noisy fitness functions on the performance of the

Bees Algorithm and adapt the algorithm to solve problems such as non-linear

time-series prediction.

REFERENCES

Agarwal, A., Meng-Hiot, L., Meng-Joo, E. and Chan Yee Chew, A. C. Y. C. ACO
fo r a new TSP in region coverage. Proc Intelligent Robots and Systems, 2005. (IROS
2005). 2005IEEE/RSJInternational Conference on. 2005 p. 1717-1722.

Arora, J. S. 2004. Introduction to Optimum Design. New York: Elsevier.

Back, T. optimal mutation rates in genetic search. Proc 5rd Int. Conf. on Genetic
Algorithm. 1993. San Mateo: Morgan Kaufmann, p. 2-9.

Back, T. 1996. Evolutionary algorithms in theory and practice. Oxford: Oxford
University Press.

Baker, J. E. Adaptive selection methods fo r genetic algorithms. Proc Int. Conf. on
Genetic Algorithms and Their Applications. 1985 p. 101 — 111.

Bell, J. E. and McMullen, P. R. 2004. Ant colony optimization techniques for the
vehicle routing problem. Advanced Engineering Informatics 18(1), p. 41-48.

Bishop, C. M. 1995. Neural Networks fo r Pattern Recognition. Oxford: Clarendon
Press.

Blum, C. 2005. Ant colony optimization: Introduction and recent trends. Physics o f
Life Reviews 2(4), p. 353-373.

Blum, C. and Dorigo, M. 2004. The hyper-cube framework for ant colony
optimization. Systems, Man, and Cybernetics, Part B, IEEE Transactions on 34(2),
p. 1161-1172.

Bonabeau, E., Dorigo, M. and Theraulaz, G. 1999. Swarm Intelligence: from Natural
to Artificial Systems. New York: Oxford University Press.

Bontoux, B. and Feillet, D. 2008. Ant colony optimization for the traveling
purchaser problem. Computers & Operations Research 35(2), p. 628-637.

Brits, R., Engelbrecht, A. P. and van den Bergh, F. 2007. Locating multiple optima
using particle swarm optimization. Applied Mathematics and Computation 189(2), p.
1859-1883.

Bullnheimer, B., Hartl, R. F. and Strauss, C. 1999. A new rank based version of the

148

Ant System: A computational study. Central European Journal fo r Research and
Economics 7(1), p. 25-38.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraula, G. and
Bonabeau, E. 2003. Self-Organization in Biological Systems. Princeton: Princeton
University Press.

Chen, B., Song, S.-m., Chen, X. and Shan Zhizhong, A. S. Z. A Multi-Ant Colony
System fo r Vehicle Routing Problems. Proc Control Conference, 2006. CCC 2006.
Chinese. 2006 p. 1737-1740.

Chen, B., Song, S. and Chen, X. A Multi-Ant Colony System fo r Vehicle Routing
Problem with Time-Dependent Travel Times. Proc Automation and Logistics, 2007
IEEE International Conference on. 2007a p. 446-449.

Chen, P., Huang, H. and Dong, X. An Ant Colony System Based Heuristic Algorithm
fo r the Vehicle Routing Problem with Simultaneous Delivery and Pickup. Proc
Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference
on. 2007b p. 136-141.

Cheng, C.-B. and Mao, C.-P. 2007a. A modified ant colony system for solving the
travelling salesman problem with time windows. Mathematical and Computer
Modelling 46(9-10), p. 1225-1235.

Cheng, C. B. and Mao, C. P. 2007b. A modified ant colony system for solving the
travelling salesman problem with time windows. Mathematical and Computer
Modelling 46(9-10), p. 1225-1235.

Davis, L. 1991. Handbook o f genetic algorithms. New York: Van Nostrand
Reinhold.

Deb, K. 1991. Optimal Design o f a Welded Beam via Genetic Algorithm. AIAA
Journal 29(11), p. 2013-2015.

Deb, K. 2001. Multi-Objective Optimization using Evolutionary Algorithms.
Chichester, UK: Wiley.

Deb, K., Pratap, A. and Moitra, S. 2000. Mechanical Component Design for
Multiple Objectives Using Elitist Non-Dominated Sorting GA.Kanpur, India: Indian
Institute of Technology, p. 10

Deneubourg, J. L., Aron, S., Goss, S. and Pasteels, J. M. 1990. The self-organizing
exploratory pattern o f the argentine ant. Journal o f Insect Behavior 3, p. 159-168.

Donati, A. V., Montemanni, R., Casagrande, N., Rizzoli, A. E. and Gambardella, L.

149

M. 2008. Time dependent vehicle routing problem with a multi ant colony system.
European Journal o f Operational Research 185(3), p. 1174-1191.

Dorigo, M. and Blum, C. 2005. Ant colony optimization theory: A survey.
Theoretical Computer Science 344(2-3), p. 243-278.

Dorigo, M. and Gambardella, L. M. 1997a. Ant colonies for the travelling salesman
problem. Biosystems 43(2), p. 73-81.

Dorigo, M. and Gambardella, L. M. 1997b. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary Computation,
IEEE Transactions on 1(1), p. 53-66.

Dorigo, M., Maniezzo, V. and Colomi, A. 1996. Ant system: optimization by a
colony of cooperating agents. Systems, Man, and Cybernetics, Part B, IEEE
Transactions on 26(1), p. 29-41.

Dorigo, M. and Sttitzle, T. 2004. Ant Colony Optimization. Cambridge: MIT Press.

Duan, H. and Xiufen, Y. H ybrid Ant Colony Optimization Using Memetic Algorithm
fo r Traveling Salesman Problem. Proc Approximate Dynamic Programming and
Reinforcement Learning, 2007. ADPRL 2007. IEEE International Symposium on.
2007 p. 92-95.

Eberhart, R. C. and Kennedy, J. A new optimiser using particle swarm theory. Proc
Sixth Int. Symp. on Micromachine and Human Science. 1995 p. 39-43.

Eberhart, R. C., Shi, Y. and Kennedy, J. 2001. Swarm Intelligence. San Francisco:
Morgan Kaufmann.

Ellabib, I., Calamai, P. and Basir, O. 2007. Exchange strategies for multiple Ant
Colony System. Information Sciences 177(5), p. 1248-1264.

Engelbrecht, A. P. 2005. Fundamentals o f computational swarm intelligence.
Hoboken, N.J.: Wiley.

Eric, O. and Babak, F. A Particle Swarm Algorithm fo r Multiobjective Design
Optimization. Proc 18th IEEE International Conference on Tools with Artificial
Intelligence. 2006 p. 765-772.

Fogel, D. B. 2000. Evolutionary Computation: Toward a New Philosophy o f
Machine Intelligence. 2nd ed. New York: IEEE Press.

Fogel, L. J., Owens, A. J. and Walsh, M. J. 1966. Artificial intelligence through
simulated evolution. New York: Wiley.

150

Gambardella, L. M. and Dorigo, M. Ant-Q: A reinforcement learning approach to
the traveling salesman problem. Proc The 11th Int. Conf. on Machine Learning 1995
p. 252-260.

Garcia-Martinez, C., Cordon, O. and Herrera, F. 2007. A taxonomy and an empirical
analysis of multiple objective ant colony optimization algorithms for the bi-criteria
TSP. European Journal o f Operational Research 180(1), p. 116-148.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Reading: Addison-Wesley Longman.

Goldberg, D. E. and Deb, K. 1991. A comparison o f selection schemes used in
genetic algorithms. In: Rawlins, G.J. ed. Foundations o f Genetic Algorithms (FOGA
1). p. 69-93.

Grefenstette, J. J. 1986. Optimization o f Control Parameters for Genetic Algorithms.
Systems, Man and Cybernetics, IEEE Transactions on 16(1), p. 122-128.

Grefenstette, J. J. and Baker, J. E. How genetic algorithms work: A critical look at
implicit parallelism. Proc 3rd Int. C onf on Genetic Algorithms. 1989 p. 20-27.

Heinonen, J. and Pettersson, F. 2007. Hybrid ant colony optimization and visibility
studies applied to a job-shop scheduling problem. Applied Mathematics and
Computation 187(2), p. 989-998.

Hinterding, R., Michalewicz, Z. and Eiben, A. E. Adaptation in evolutionary
computation: a survey. Proc IEEE International Conference on Evolutionary
Computation. 1997 p. 65-69.

Holland, J. H. 1975. Adaptation in natural and artificial systems. University of
Michigan Press.

Holland, J. H. 1992. Adaptation in natural and artificial systems. 1st MIT Press ed.
Cambridge: MIT Press.

Hu, X.-p., Ding, Q.-l., Li, Y.-x. and Song Dan, A. S. D. An Improved Ant Colony
System and Its Application. Proc Computational Intelligence and Security, 2006
International Conference on. 2006 p. 384-389.

Huber, H. A., McMillin, C. W. and McKinney, J. P. 1985. Lumber Defect Detection
Abilities of Furniture Roughmill Employees. Forest Products Journal 35(11-1), p.
79-82.

Jain, A. K. and Dubes, R. C. 1988. Algorithms fo r Clustering Data. NJ: Prentice

151

Hall.

Jain, P. K. and Sharma, P. K. Solving job shop layout problem using ant colony
optimization technique. Proc Systems, Man and Cybernetics, 2005 IEEE
International Conference on. 2005 p. 288-292 Vol. 281.

Jin, N. and Rahmat-Samii, Y. 2005. Parallel particle swarm optimization and finite-
difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch
antenna designs. IEEE Transactions on Antennas and Propagation 53(11), p. 3459-
3468.

Jun, O. and Gui-Rong, Y. A multi-group ant colony system algorithm fo r TSP. Proc
Machine Learning and Cybernetics, 2004. Proceedings o f 2004 International
Conference on. 2004 p. 117-121 vol. 111.

Karaboga, D. and Akay, B. Artificial Bee Colony (ABC) Algorithm on Training
Artificial Neural Networks. Proc IEEE 15th Signal Processing and Communications
Applications. 2007 p. 1 -4.

Karaboga, D. and Basturk, B. 2008. On the performance of artificial bee colony
(ABC) algorithm. Applied Soft Computing 8(1), p. 687-697.

Kathiravan, R. and Ganguli, R. 2007. Strength design o f composite beam using
gradient and particle swarm optimization. Composite Structures 81(4), p. 471-479.

Kennedy, J. The particle swarm: social adaptation o f knowledge. Proc IEEE
International Conference on Evolutionary Computation 1997 p. 303-308.

Kennedy, J. and Eberhart, R. Particle swarm optimization. Proc Neural Networks,
1995. Proceedings., IEEE International Conference on. 1995 p. 1942-1948
vol. 1944.

Koza, J. R. 1992. Genetic programming : on the programming o f computers by
means o f natural selection. Cambridge: MIT Press.

Leite, J. P. B. and Topping, B. H. V. 1998. Improved Genetic Operators for
Structural Engineering Optimization. Advances in Engineering Software 29(7-9), p.
529-562.

Liao, C.-J. and Juan, H.-C. 2007. An ant colony optimization for single-machine
tardiness scheduling with sequence-dependent setups. Computers & Operations
Research 34(7), p. 1899-1909.

Lin Wei, D. and Cai Tian, X. Ant Colony Optimization fo r VRP and Mail Delivery
Problems. Proc Industrial Informatics, 2006 IEEE International Conference on.

152

2006 p. 1143-1148.

Liu, X., Liu, H. and Duan, H. 2007. Particle swarm optimization based on dynamic
niche technology with applications to conceptual design. Advances in Engineering
Software 38(10), p. 668-676.

Liu, Z. and Cai, Y. Sweep based multiple ant colonies algorithm fo r capacitated
vehicle routing problem. Proc e-Business Engineering, 2005. ICEBE 2005. IEEE
International Conference on. 2005 p. 387-394.

Mathur, M., Karale, S. B., Priye, S., Jayaraman, V. K. and Kulkami, B. D. 2000. Ant
Colony Approach to Continuous Function Optimization. Ind. Eng. Chem. Res.
39(10), p. 3814-3822.

Mazzeo, S. and Loiseau, I. 2004. An Ant Colony Algorithm for the Capacitated
Vehicle Routing. Electronic Notes in Discrete Mathematics 18, p. 181-186.

Michalewicz, Z. 1993. A hierarchy o f evolution programs: An experimental study.
Evolutionary Computation 1(1), p. 51-76

Michalewicz, Z. 1996. Genetic algorithms + data structures = evolution programs.
3rd rev. and extended ed. Berlin: Springer-Verlag, [1999].

Michalewicz, Z. and Fogel, D. B. 2004. How to solve i t : modern heuristics. 2nd ed.
Berlin: Springer.

thMontgomery, D. C. 2000. Introduction to Statistical Quality Control. 4 ed. New
York: Wiley.

Nanbo, J. and Rahmat-Samii, Y. 2007. Advances in Particle Swarm Optimization for
Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective
Implementations. IEEE Transactions on Antennas and Propagation 55(3), p. 556-
567.

Nilsson, N. J. 1998. Artificial Intelligence : a new synthesis. San Francisco: Morgan
Kaufmann.

Niu, D. and Xing, M. Research on Neural Networks Based on Culture Particle
Swarm Optimization and Its Application in Power Load Forecasting. Proc Third
International Conference on Natural Computation. 2007 p. 270-274.

Omran, M. G., Engelbrecht, A. P. and Salman, A. 2004. Image classification using
particle swarm optimization. In: Tan, K.C. et al. eds. Recent Advances in Simulated
Evolution and Learning, Advances in Natural Compputation. Vol. 2. World
Scientific, p. 347-365.

153

Omran, M. G., Engelbrecht, A. P. and Salman, A. 2005. Particle swarm optimization
method for image clustering. Int. Journal on Pattern Recognition and Artificial
Intelligence 19(3), p. 297-322.

Omran, M. G., Salman, A. and Engelbrecht, A. P. Image classification using particle
swarm optimization. Proc Fourth Asia-Pasific Conf. on Simulated Evolution and
Learning. 2002 p. 370-374.

Packianather, M. and Drake, P. R. Identifying defects on plywood using a minimum
distance classifier and a neural network. Proc 1st Int Virtual Conf on Intelligent
Production Machines and Systems (IPROMS 2005). 2005. Oxford: Elsevier, p. 543-
548.

Pan, H., Wang, L. and Liu, B. 2006. Particle swarm optimization for function
optimization in noisy environment. Applied Mathematics and Computation 181(2),
p. 908-919.

Pan, J. and Wang, D. An Ant Colony Optimization Algorithm fo r Multiple Travelling
Salesman Problem. Proc Innovative Computing, Information and Control, 2006.
ICICIC '06. First International Conference on. 2006 p. 210-213.

Perez, R. E. and Behdinan, K. 2007. Particle swarm approach for structural design
optimization. Computers & Structures 85(19-20), p. 1579-1588.

Pham, D. T. and Alcock, R. J. 1996. Automatic detection o f defects on birch wood
boards. Proc. I Mechl E, Part E, J. o f Process Mechanical Engineering 210(15), p.
45-52.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. 2005.
Technical Report MEC 0501-The Bees Algorithm.Cardiff: Manufacturing
Engineering Centre, Cardiff University.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. The Bees
Algorithm, A Novel Tool fo r Complex Optimisation Problems. Proc 2nd Int Virtual
Conf on Intelligent Production Machines and Systems (IPROMS 2006). 2006.
Oxford: Elsevier, p. 454-459.

Pham, D. T. and Liu, X. 1995. Neural Networks fo r Identification, Prediction and
Control. London: Springer.

Pham, D. T. and Oztemel, E. 1992. Control Chart Pattern Recognition Using Neural
Networks. Journal o f Systems Engineerings p. 256-262.

Pham, D. T. and Sholedolu, M. Multi-layer perceptron network training fo r Control

154

Chart Pattern Recognition using the particle swarm optimisation algorithm. Proc
5th CIRP International Seminar on Intelligent Computation in Manufacturing
Engineering (CIRP ICME '06). 2006. Ischia, Italy, p. 717-722.

Pham, D. T. and Yang, Y. 1993a. A genetic algorithm based preliminary design
system. Proc. Instn Mech. Engrs, Part D 207, p. 127-133.

Pham, D. T. and Yang, Y. 1993b. Optimization of multi-modal discrete function
using genetic algorithms. Proc. Instn Mech. Engrs, Part D 207, p. 53-59.

Pitakaso, R., Almeder, C., Doemer, K. F. and Hartl, R. F. 2007. A MAX-MIN ant
system for unconstrained multi-level lot-sizing problems. Computers & Operations
Research 34(9), p. 2533-2552.

Polzleitner, W. and Schwingshakl, G. 1992. Real-time surface grading o f profiled
wooden boards. Industrial Metrology 2(3-4), p. 283-298.

Price, K. V., Stom, R. M. and Lampinen, J. A. 2005. Differential evolution, springer,
p. 538.

Ragsdell, K. M. and Phillips, D. T. 1976. Optimal Design of a Class of Welded
Structures Using Geometric Programming. ASME Journal o f Engineering for
Industry 98(3), p. 1021-1025.

Rechenberg, I. 1965. Cybernetic solution path o f an experimental problem. Royal
Aircraft Establishment, Famborough p. Library Translation 1122.

Rekliatis, G. V., Ravindrab, A. and Ragsdell, K. M. 1983. Engineering Optimisation
Methods and Applications. New York: Wiley.

Ribbands, C. R. 1953. The Behaviour and Social Life o f Honeybees. Norwich:
Jarrold and Sons Limited.

Richards, O. W. 1961. The Social Insects. New York: Harper and Brothers.

Rossi, A. and Dini, G. 2007. Flexible job-shop scheduling with routing flexibility
and separable setup times using ant colony optimisation method. Robotics and
Computer-Integrated Manufacturing 23(5), p. 503-516.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J. and Das, R. A study o f control
parameters affecting online performance o f genetic algorithms fo r function
optimization. Proc Third international conference on Genetic algorithms 1989:
Morgan Kaufmann, San Francisco, CA, p. 51-60.

Schwefel, H. P. 1981. Numerical optimization o f computer models. Chichester:

155

Wiley.

Seckiner, S. U. and Kurt, M. 2008. Ant colony optimization for the job rotation
scheduling problem. Applied Mathematics and Computation 35(4).

Seeley, T. D. 1996. The Wisdom o f the Hive: The Social Physiology o f Honey Bee
Colonies. Cambridge, Massachusetts: Harvard University Press.

Shang, G., Lei, Z., Fengting, Z. and Chunxian, Z. A. C. Z. Solving Traveling
Salesman Problem by Ant Colony Optimization Algorithm with Association Rule.
Proc Natural Computation, 2007. ICNC 2007. Third International Conference on.
2007 p. 693-698.

Shi, Y. and Eberhart, R. A modified particle swarm optimizer. Proc IEEE
International Conference on Evolutionary Computation. 1998a. Anchorage, Alaska,
p. 69-73.

Shi, Y. and Eberhart, R. Parameter selection in particle swarm optimization. Proc
Seventh Annual Conference on Evolutionary Programming. 1998b. New York, p.
591-600.

Shigley, J. E. 1973. Mechanical Engineering Design. Ney York: McGraw-Hill.

Siddall, J. N. 1972. Analytical Decision-making in Engineering Design. New Jersey:
Prentice-Hall.

Socha, K. and Dorigo, M. 2008. Ant colony optimization for continuous domains.
European Journal o f Operational Research 185(3), p. 1155-1173.

Stiitzle, T. and Hoos, H. H. 2000. Max-Min Ant System. Future Generation
Computer Systems 16(8), p. 889-914.

Su, R , Kong, L., Song, S., Zhang, P. A. Z. P., Zhou, K. A. Z. K. and Cheng, J. A. C.
J. A New Ridgelet Neural Network Training Algorithm Based on Improved Particle
Swarm Optimization. Proc Third International Conference on Natural Computation.
2007 p. 411-415.

Suresh, S., Sujit, P. B. and Rao, A. K. 2007. Particle swarm optimization approach
for multi-objective composite box-beam design. Composite Structures 81(4), p. 598-
605.

Syswerda, G. 1991. Reproduction in generational and steady state Genetic
Algorithm. In: Ratlines, G. ed. Foundations o f Genetic Algorithms. Los Altos,CA:
Morgan Kaufmann, p. 94-101.

156

Tao, Z., Shanshan, W., Wenxin, T. and Yuejie Zhang, A. Y. Z. ACO-VRPTWRV: A
New Algorithm fo r the Vehicle Routing Problems with Time Windows and Re-used
Vehicles based on Ant Colony Optimization. Proc Intelligent Systems Design and
Applications, 2006. ISDA '06. Sixth International Conference on. 2006 p. 390-395.

Teodorovic, acute, Dus, caron and an 2003. Transport modeling by multi-agent
systems: a swarm intelligence approach. Transportation Planning and Technology
26(4), p. 289-312 .

Teodorovic, D. and Dell'orco, M. 2005. Bee colony optimization - A cooperative
learning approach to complex transportation problems. Advanced OR and AI
Methods in Transportation, p. 51-60

Tereshko, V. 2000. Reaction-Diffusion Model o f a Honeybee Colony’s Foraging
Behaviour .Parallel Problem Solving from Nature PPSN VI. p. 807-816.

Tereshko, V. and Lee, T. 2002. How Information-Mapping Patterns Determine
Foraging Behaviour o f a Honey Bee Colony. Open Systems & Information Dynamics
9(2), p. 181-193.

Tovey, C. A. Spring 2004. The Honey Bee Algorithm: A Biologically Inspired
Approach to Internet Server Optimization. Engineering Enterprise Magazine, p. 13-
15.

Tsai, C.-F., Tsai, C.-W. and Tseng, C.-C. 2004. A new hybrid heuristic approach for
solving large traveling salesman problem. Information Sciences 166(1-4), p. 67-81.

Venayagamoorthy, G. K., Smith, S. C. and Singhal, G. 2007. Particle swarm-based
optimal partitioning algorithm for combinational CMOS circuits. Engineering
Applications o f Artificial Intelligence 20(2), p. 177-184.

Von Frisch, K. 1976. Bees: Their Vision, Chemical Senses and Language. Revised
Edition ed. Ithaca, N.Y.: Cornell University Press.

Wang, H. and Shen, J. 2007. Heuristic approaches for solving transit vehicle
scheduling problem with route and fueling time constraints. Applied Mathematics
and Computation 190(2), p. 1237-1249.

Wedde, H. F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J. and
Jeruschkat, R. 2005. BeeAdHoc: an energy efficient routing algorithm for mobile ad
hoc networks inspired by bee behavior .Proceedings o f the 2005 conference on
Genetic and evolutionary computation. Washington DC, USA: ACM Press, p. 153-
160.

Wedde, H. F., Farooq, M. and Zhang, Y. 2004. BeeHive: An Efficient Fault-Tolerant

157

Routing Algorithm Inspired by Honey Bee Behavior. 3172 ed., p. 83-94.

Xiaoxia, Z. and Lixin, T. CT-ACO - hybridizing ant colony optimization with cyclic
transfer search fo r the vehicle routing problem. Proc Computational Intelligence
Methods and Applications, 2005ICSC Congress on. 2005 p. 6 pp.

Xuan, T., Xuyao, L., Chen, W. N. and Jun Zhang, A. J. Z. Ant Colony System fo r
Optimizing Vehicle Routing Problem with Time Windows. Proc Computational
Intelligence fo r Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce,
International Conference on. 2005 p. 209-214.

Xuemei, S., Bing, L. and Hongmei, Y. Improved Ant Colony Algorithm and its
Applications in TSP. Proc Intelligent Systems Design and Applications, 2006. ISDA
'06. Sixth International Conference on. 2006 p. 1145-1148.

Yang, I. T. 2007. Performing complex project crashing analysis with aid of particle
swarm optimization algorithm. International Journal o f Project Management 25(6),
p. 637-646.

Yang, X.-S. 2005. Engineering Optimizations via Nature-Inspired Virtual Bee
Algorithms./IF/A^C (2). Vol. 3562. Springer, p. 317-323.

Zhishuo, L. and Yueting, C. A Hybrid Ant Colony Algorithm fo r Capacitated Vehicle
Routing Problem. Proc Systems, Man and Cybernetics, 2006. SMC '06. IEEE
International Conference on. 2006 p. 3907-3911.

Zhou, P., Li, X.-p. and Zhang, H.-f. An ant colony algorithm fo r job shop scheduling
problem. Proc Intelligent Control and Automation, 2004. WCICA 2004. Fifth World
Congress on. 2004 p. 2899-2903 Vol.2894.

158

