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ABSTRACT

This work introduces the Bees Algorithm, a new optimisation algorithm inspired by 

the foraging behaviour of honey-bees. In its basic version, the Bees Algorithm 

performs a kind of neighbourhood search combined with global random search and 

can be used for both continuous and discrete optimisation problems.

An improved version of the Bees Algorithm including replacing global random 

search with interpolation and extrapolation, shrinking neighbourhood size, and 

abandoning sites with no new information was developed. The improved version 

could solve benchmark function optimisation problems with less sampling o f the 

search space.

The Bees Algorithm has been applied to mechanical design optimisation. Two 

standard mechanical design problems, the design of a welded beam structure and the 

design of coil springs, were used to benchmark the Bees Algorithm against other 

optimisation techniques.

Computer-aided preliminary design can be regarded as a special case of 

optimisation, where the goal is to generate as many solutions as possible above a 

predefined performance threshold. The higher the number of solutions satisfying the 

preliminary selection criteria, the greater is the chance to produce a good final 

solution. An adapted version of the Bees Algorithm for discrete function 

optimisation was developed and tested on a simple machine design task, preliminary



gearbox design. The test consists of finding alternative gearbox configurations that 

approximately produce the required output speeds using one of the available input 

speeds. Experimental results show that the Bees Algorithm outperforms random 

search and a genetic optimisation algorithm.

A modified version of the Bees Algorithm was used to search for multiple Pareto 

optimal solutions in a multi-objective optimisation design problem. Compared to 

two non-dominated genetic algorithms, the Bees Algorithm was able to find more 

trade-off solutions.

Finally, the Bees Algorithm was employed to train Radial Basis Function (RBF) 

neural networks for two different problems. Despite the high dimensionality o f the 

problems -  each bee represented 2345 parameters in the control chart pattern 

recognition case and 1581 parameters in the wood defect classification case - the 

algorithm successfully trained very accurate classifiers. Although the accuracies 

achieved were marginally lower than those obtained with conventional RBF training 

methods, the total output errors were less than those for conventionally RBF-trained 

networks with same number of hidden neurons.
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1. INTRODUCTION

Optimisation algorithms are search methods where the goal is to find a solution to a 

problem, such that a given quantity is maximised or minimised, possibly subject to a 

set of constraints. Although this definition is simple, it hides a number of complex 

issues. For example, the solution may consist o f a combination of different data 

types, nonlinear constraints may restrict the search area, the search space may be 

convoluted with many candidate solutions, the characteristics o f the problem may 

change over time, or the optimisation problem may have conflicting objectives or 

constraints. This is just a short list o f issues, given to illustrate some of the 

complexities an optimisation algorithm may have to face.

1.1 Motivation

Studies of social animals and social insects have resulted in a number o f 

computational models of swarm intelligence. Biological swarm systems that have 

inspired computational models include ants, termites, bees, fish schools, and bird 

flocks (Engelbrecht 2005). Within these swarms, individuals are relatively simple in 

structure, but their collective behaviour is usually very complex. The collective 

behaviour of a swarm of social organisms emerges from the behaviours of the 

individuals of that swarm.

An objective o f computational swarm intelligence models is to represent the simple 

behaviours of individuals, and the local interactions with the environment and
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neighbouring individuals, in order to obtain more complex behaviours that can be 

used to solve complex problems.

Researchers have developed computational problem-solving methods based on 

biology. Genetic Algorithms, Particle Swarm Optimisation, and Ant Colony 

Optimisation are examples of these types of methods.

This work introduces a new optimisation algorithm inspired by the foraging 

behaviour of honey-bees. The proposed algorithm which is called the Bees 

Algorithm can be used as an alternative to current optimisation procedures. As each 

optimisation algorithm can produce good results for some problems and poor results 

for other problems in comparison with other methods, creating a new algorithm can 

give users a tool which is better adapted to their particular cases.

1.2 Research Objectives

The overall aim of this thesis was to develop, improve and test a new swarm-based 

tool for optimisation problems.

The following objectives were set to achieve the aim.

• Survey current swarm-based optimisation algorithms.

• Develop a new optimisation tool mimicking the behaviour of social insects 

which operate in swarms.

3



• Adapt the optimisation tool for different categories of optimisation problems, 

namely, continuous or discrete, constrained or unconstrained, single or multi­

objective optimisation problems.

• Validate the optimisation algorithm by applying it to different benchmark 

optimisation problems and compare results with other methods to evaluate 

the overall performance of the algorithm.

1.3 Thesis Organisation

The remainder o f thesis is organised as follows:

Chapter 2 surveys current swarm-based optimisation techniques including those 

inspired by the behaviour of bees.

Chapter 3 describes the basic Bees Algorithm and its application to function 

optimisation and mechanical design optimisation problems which are constrained 

optimisation problems. Also, an improved version of the Bees Algorithm is 

introduced.

Chapter 4 presents adapted versions of the Bees Algorithm for multi-solution and 

multi-objective optimisation problems. The modified algorithm for multi-solution 

optimisation problems is applied to a preliminary design problem. The multi­

objective version o f the Bees Algorithm is applied to a mechanical design 

optimisation problem with two objective functions.

4



Chapter 5 describes the Radial Basis Function neural network and how the Bees 

Algorithm has been used to train the network instead of standard methods of 

training. Two examples of employing Radial Basis Function neural networks trained 

with the Bees Algorithm, control chart pattern recognition and wood defect 

classification, are presented in this chapter.

Chapter 6 summarises the conclusions and contributions o f the research, and gives 

suggestions for further investigations.

5
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2. SWARM-BASED OPTIMISATION

A recent trend is the introduction o f non-classical stochastic search optimisation 

algorithms. Swarm algorithms mimic different nature’s problem-solving strategies to 

drive their search towards an optimal solution. One of the most striking differences 

between swarm algorithms and direct search algorithms such as hill climbing is that 

the former use a population of solutions for every iteration, instead of a single 

solution. That is, a population of solutions is processed at every iteration, and the 

outcome is also a population of solutions. If an optimisation problem has a single 

optimum solution, all population members of a swarm algorithm can be expected to 

converge to that solution. However, if an optimisation problem has multiple optimal 

solutions, a swarm algorithm can be used to capture multiple optimal solutions in its 

final population. Swarm algorithms include Ant Colony Optimisation (ACO) 

(Dorigo and Stiitzle 2004), Evolutionary Algorithms (EA) (Fogel 2000) and Particle 

Swarm Optimisation (PSO) (Eberhart et al. 2001).

Common to all population based search methods is a strategy that generates 

variations of the tuning parameters. Most search methods use a greedy criterion to 

make this decision, which accepts the new parameter if and only if it produces better 

solutions than the old search parameter.
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2.1 Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) are inspired by Darwin’s evolution theory. Natural 

selection and adaptation in Darwinian evolution are the key sources of inspiration, 

driving the EAs candidate solutions towards the optimum by ’survival of the fittest’. 

An EA consists of a population of individuals each having a fitness value, and a 

genome encoding the main features of the candidate solution to the given problem. 

General to all EAs is also a selection pressure mechanism that removes poor 

individuals from the population, thus allowing good individuals to control the 

evolutionary process. EAs also modify the individuals to refine the population of 

candidate solutions. EAs have been described by several researchers including 

Michalewicz (Michalewicz 1996; Michalewicz and Fogel 2004), Goldberg 

(Goldberg 1989), etc.

Historically EAs were bom in the 1960s, when two independent research teams 

developed Evolutionary Strategies (Rechenberg 1965) and Evolutionary 

Programming (Fogel et al. 1966). Standard Evolutionary Strategies evolve a 

population of individuals using a selection procedure and a search operator 

mimicking genetic mutation, and they were originally developed to solve numerical 

optimisation problems. Evolutionary Programming traditionally used a 

representation tree to develop automata recognising strings in formal languages. 

However, it was only ten years later that EAs gained worldwide popularity following



the creation of Genetic Algorithms by (Holland 1992). The following will describe 

the different EAs.

Differential Evolution (DE) is another search strategy very similar to standard 

evolutionary algorithms.

2.1.1 Evolutionary Strategies (ESs)

Evolutionary Strategies are probably the first successful implementation of 

evolutionary search. The first experiments were conducted in 1964 by Rechenberg 

(Rechenberg 1965) at Technical University of Berlin, and were mainly aimed at 

solving hydrodynamic problems such as shape optimisation of a bent pipe or a 

supersonic flow nozzle (Rechenberg 1965). The algorithm was further developed 

and brought to its current form by (Schwefel 1981).

In ESs solutions in the n-dimensional search space o f real parameters fH" is 

represented by two n-dimensional real vectors, the parameters and their standard 

deviations. Often a third n-dimensional vector of rotation angles is added. Even if the 

analogy is not commonly used in ESs, chromosomes can be associated to vectors 

and genes to vector components.

Rechenberg’s first algorithm was based on a population o f one individual that was 

made to compete with one mutated offspring. The random mutation operator had 

usually a Gaussian magnitude distribution. The best solution survived to the next
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generation. This kind of strategy is called (1+1)-ES. Subsequent implementations 

enlarged the population size to //  individuals competing with A(A > ju) offsprings 

for survival. An empirical law was devised indicating an optimal number of 

generated offsprings between five and six times n  (Back 1996). The improved

strategy takes the name (ju + A) -ES.

In Schwefel’s algorithm, the mutation step size of each gene (standard deviation) is 

encoded into the genotype and submitted to the evolutionary process. Moreover, to 

improve the robustness o f the algorithm to noisy fitness evaluations, the lifespan of 

each individual has been reduced to one generation. This evolutionary scheme is 

called generational replacement (Davis 1991), and the corresponding ES 

formulation is called (/^, X) -ES , /i individuals generate X offspring out o f which the 

best ju will be chosen as the new population.

Further improvements introduced a recombination operator modelled on biological 

crossover and mixing the genetic material of two randomly selected parents. The two 

most common procedures generate an offspring whose genetic information is 

randomly picked or averaged from the parents’ genes. A rotation chromosome has 

also been used to bias the generation of new solutions in the search space along 

directions other than the co-ordinate axes.

10



2.1.2 Evolutionary Programming (EP)

L.J. Fogel, Owens and Walsh introduced the first EP in 1966 to train a finite-state 

machine to predict repeating cycles o f output symbols (Fogel et al. 1966). // 

offsprings were generated from a population o f n  solutions by mutating each parent 

once. The prediction accuracy of each individual measured its adaptation and the 

survival probabilities were allocated consequently. A stochastic tournament selection 

procedure (Goldberg and Deb 1991) was used to select the new generation from the 

batch o f parents and offspring.

In early EP algorithms, a candidate solution is represented by an n-dimensional 

vector defined in the search space, and the mutation operator modifies each 

individual by an amount proportional to the square root o f its fitness. In the early 

nineties, D.B. Fogel (L.J. Fogel’s son) further developed EP mainly focusing on the 

improvement of the mutation procedure. In a way similar to ESs, he introduced a 

second vector defining the mutation step size into the genotype o f the solution. The 

mutation operator is therefore adaptively tuned along each dimension of the search 

space.

Genetic Programming (GP) was developed by Koza (Koza 1992) inspired by EP. GP 

uses a tree encoding similar to the original EP, but has been more commonly applied 

to evolve parse trees o f equations or statements.
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2.1.3 Genetic Algorithms (GAs)

The formulation of GAs was made about a decade after the first ESs and EPs 

applications. Nonetheless, as opposed to their predecessors, GAs almost immediately 

achieved considerable popularity placing the evolutionary approach at the forefront 

o f research in optimisation. Such success can be partly attributed to a comprehensive 

theoretical background and increased availability of computing power.

The theoretical basis of GAs lies in the concept of schema (plural schemata) 

(Holland 1975). Schemata represent solution templates where each location can be 

defined or left unspecified. The larger the number of uninstantiated locations is, the 

greater the number of potential solutions that a schema represents. Schemata leading 

to higher fitness individuals are propagated through the generations and their number 

is increased as an effect of the selection process. The ability to process several 

possible solutions through a single schema is believed to determine the search power 

o f GAs and is given the name implicit parallelism (Goldberg 1989; Grefenstette and 

Baker 1989). High fitness schemata whose uninstantiated locations occupy a short 

and compact portion of the encoding are considered to be the building blocks 

(Goldberg 1989) of the optimisation process. GAs are designed to multiply and 

differently recombine these building blocks in order to grow the final optimal 

solution (ibuilding blocks hypothesis) (Goldberg 1989). The schemata theorem 

(Holland 1975) allows the estimation in a probabilistic way of the number o f criteria 

schema instances that are transmitted to the following generations.
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Over more than 30 years of research, several modifications have been proposed to 

the original GA structure defined in (Holland 1975). Unless otherwise stated this 

subsection will explain Holland’s original algorithm, often referred as the canonical 

GA.

GAs encode candidate solutions as binary strings. Each string (chromosome) is built 

by chaining a number of sub-strings, each sub-string representing one of the 

candidate solution’s features. Biological genes are in this case equivalent to the sub­

strings encoding the parameters, while each binary digit can be related to the 

nucleotides composing the DNA. In most of the cases, one individual is fully 

described by a single bit-string, thus leading to the identification o f the genotype 

with one single chromosome. Several other encoding procedures have been explored 

leading to a debate on the most appropriate choice. Holland showed that binary 

coding allows the maximum number of schemata to be processed per individual 

(Holland 1975). On the other hand, the mapping to binary coding introduces 

Hamming cliffs onto the search surface. Moreover, non-binary representations may 

be more natural for some problem domains and may reduce the computational 

burden of the search. The canonical binary-coded GA as described here is now rarely 

used for continuous function optimisation as it has been shown that solutions are too 

easily disrupted (the Hamming cliff issue). Therefore researchers tend to use less 

disruptive coding such as Gray coding (Michalewicz 1996).
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Similarly to the other EAs, canonical GAs use generational replacement. Popular 

alternatives are elitism and steady-state replacement (Davis 1991). In the first case, 

the best solution(s) are directly copied into the new population while in the second 

case only a fraction of the population is replaced at each generation. Both variants 

aim to improve the preservation o f good genetic material at the expense of a reduced 

search space exploration. A comparison between the behaviour o f generational and 

steady-state replacement is given in (Syswerda 1991).

Individuals are selected for reproduction with a probability depending on their 

fitness. Canonical GAs allocate the mating probability o f each individual 

proportionally to its fitness (proportional selection) and draw the parents set (mating 

pool) through the roulette wheel selection procedure (Goldberg 1989). Other popular 

selection schemes are fitness ranking (Baker 1985) and tournament selection 

(Goldberg and Deb 1991). For a comparison of selection procedure, the reader is 

referred to (Goldberg and Deb 1991).

Crossover is the main search operator in GAs, creating offsprings by randomly 

mixing sections of the parental genome. The number o f sections exchanged varies 

widely with the GA implementation. The most common crossover procedures are 

one-point crossover, two-point crossover and uniform crossover (Davis 1991). In 

canonical GAs, a crossover probability is set for each couple. Couples not selected 

for recombination will generate two offsprings identical to the parents.
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A small fraction of the offsprings are randomly selected to undergo genetic mutation. 

The mutation operator randomly picks a location from a bit-string and flips its 

contents. The importance of this operator in GAs is however secondary, and to the 

main aim of mutation is the preservation o f the genetic diversity of the population.

GAs require the tuning of some parameters such as the mutation rate, crossover rate 

and replacement rate in the case o f steady-state replacement. This task is often not 

trivial as the chosen values may strongly influence the search process (Grefenstette 

1986; Schaffer et al. 1989). Moreover, the optimal value for the GA parameters may 

vary according to the evolution o f the search process. For all these reasons, several 

adaptive schemes have been investigated. A survey of adaptation in GAs is given in 

(Hinterding et al. 1997). (Back 1993) proposed an off-line tuning approach giving an 

optimal mutation rate schedule.

Problem-specific operators are sometimes employed in addition to the canonical 

ones. The introduction of such operators results an increase in the search power of 

the algorithm but a loss of general applicability. This issue is analysed in 

(Michalewicz 1993).

2.1.4 Differential Evolution (DE)

Differential Evolution (DE) is a population-based search strategy very similar to 

standard evolutionary algorithms (Price et al. 2005). The main difference is in the 

reproduction step where an offspring is created from three parents using an

15



arithmetic crossover operator. DE is defined for individuals represented by floating­

point numbers.

DE does not make use of a mutation operator that depends on some probability 

distribution function, but introduces a new arithmetic operator which depends on the 

differences between randomly selected pairs o f individuals (Price et al. 2005).

After completion o f the reproduction process, the next step is to select the new 

generation. Each parent in the current population is replaced with its offspring if the 

fitness o f the offspring is better, otherwise the parent is carried over to the next 

generation.

2.2 Ant Colony Optimisation

In the early 1990s, Ant Colony Optimisation (ACO) was introduced by M.Dorigo 

and colleagues as a novel nature-inspired metaheuristic for the solution of 

combinatorial optimisation problems (Dorigo et al. 1996). The inspiring source of 

ACO is the foraging behaviour o f real ants. When searching for food, ants initially 

explore the area surrounding their nest in a random manner. When an ant finds a 

food source, it carries some of it back to the nest. During the return trip, the ant 

deposits a chemical pheromone trail on the ground. The quantity of pheromone 

deposited guides other ants to the food source (Dorigo and Stiitzle 2004). As shown 

by (Deneubourg et al. 1990), indirect communication between the ants via 

pheromone trails enables them to find the shortest paths between their nest and food
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sources. The indirect communication mechanism where ants modify their 

environment to influence the behaviour o f other ants is referred to as stigmergy. This 

characteristic of real ant colonies is exploited in artificial ant colonies in order to 

solve combinatorial and continuous optimisation problems.

Although an ant colony exhibits complex adaptive behaviour, a single ant exhibits a 

very simple behaviour. An ant can be seen as a stimulus-response agent (Nilsson 

1998), the ant observes pheromone concentrations and produces an action based on 

the pheromone-stimulus. An ant can therefore abstractly be considered as a simple 

computational agent. An artificial ant algorithmically models the simple behaviour 

of real ants.

The simple ACO can be formulated as follows (Dorigo and Stiitzle 2004). Let us 

define a combinatorial optimisation problem that entails the minimisation o f a given 

cost function. A candidate solution is defined as a sequence o f parameters, and can 

be visualised as a path through several nodes, each node corresponding to one o f the 

solution’s parameters. The probability of moving from node i to node j  is given in 

equation (2.1).

P (2 . 1)
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Where rtj represent the a posteriori effectiveness of the move from node i to node 

j , as expressed in the pheromone intensity of the corresponding link, (z,y); rjfj 

represents the a priori effectiveness of the move from i to j  (i.e. the attractiveness, 

or desirability, o f the move), computed using some heuristic. The pheromone 

concentrations, , indicate how profitable was in the past to make a move from i

to j  , serving as a memory of previous best moves, a  is the parameter to control the 

influence of z\., and p  controls the influence of rj- . Pheromone intensity on each 

link (i , j )  is updated by ants using equation (2.2).

Tii = P Ti j+ ̂ Tij (2 -2)

Where p  is the rate of pheromone evaporation, and A riy is the amount of 

pheromone deposited. Pseudo code of the AS is shown in Figure 2.1.

18



1- Procedure ACOM etaHeuristic.

2- While (stopping criterion not met)

3- Generate solutions

4- Pheromone update using equation (2.2)

5- Daemon Action, move according probability calculated with equation (2.1)

6- End While.

7- End Procedure

Figure 2.1. Pseudo code of the simple Ant Colony Optimisation
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Most of the early research in ACO has focused on the development of algorithmic 

variants that improve in performance over the simple ACO. The reader is referred to 

the following sources for further material on:

• Ant System (Bonabeau et al. 1999; Dorigo et al. 1996)

• Ant Colony Optimisation (Bell and McMullen 2004; Blum 2005; Dorigo and 

Blum 2005; Socha and Dorigo 2008)

• Elitist Ant System (Dorigo et al. 1996)

• Ant-Q (Gambardella and Dorigo 1995)

• Ant Colony System (Cheng and Mao 2007b; Dorigo and Gambardella 1997b; 

Ellabib et al. 2007)

• Max-Min Ant System (Pitakaso et al. 2007; Stiitzle and Hoos 2000)

• Rank Based Ant System (Bullnheimer et al. 1999)

• Hyper Cube -  ACO (Blum and Dorigo 2004)
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2.2.1 Ant Colony Optimisation applications

ACO algorithms can be applied to optimisation problems for which the following 

problem dependent aspects can be defined (Bonabeau et al. 1999; Dorigo et al. 

1996):

1. A search space that can be described by graphical representation.

2. A feedback process to update pheromones.

3. To be able to determine desirability of different links in representation 

graph.

4. A method to construct feasible solutions.

ACO has been applied to variety of problems, some of them are listed in this section.

The Travelling Salesman Problem is a very well known combinatorial problem and 

is one of the first problems to which ACO algorithms were applied (Agarwal et al. 

2005; Bontoux and Feillet 2008; Cheng and Mao 2007a; Dorigo and Gambardella 

1997a; Duan and Xiufen 2007; Garcia-Martinez et al. 2007; Jun and Gui-Rong 2004; 

Pan and Wang 2006; Shang et al. 2007; Tsai et al. 2004; Xuemei et al. 2006).

ACO algorithms were used to solve Vehicle Routing Problems. The classic static 

Vehicle Routing Problem is defined with the objective o f finding the minimum cost

21



vehicle route such that every customer is visited once only, and by only one vehicle. 

For every vehicle, the total demand should not exceed the capacity of the vehicle, the 

tour of each vehicle starts and ends at a unique place, and the total tour length should 

not be more than a predefined length (Chen et a l  2007b). The objective function can 

be designed so as to minimise the total travel time, minimise the total travel length, 

maximise customer satisfaction, minimise the number o f needed vehicles, or as a 

multi-objective optimisation problem including a combination of the above 

requirements (Bell and McMullen 2004; Chen et al. 2006; Chen et al. 2007a; Chen 

et al. 2007b; Donati et al. 2008; Hu et al. 2006; Lin Wei and Cai Tian 2006; Liu and 

Cai 2005; Mazzeo and Loiseau 2004; Tao et al. 2006; Wang and Shen 2007; Xiaoxia 

and Lixin 2005; Xuan et al. 2005; Zhishuo and Yueting 2006).

Another application of ACO is the Job-Shop Scheduling Problem. In this problem, a 

set of nM machines and rij jobs are given, where each job consists o f an ordered

sequence o f operations. The problem is to assign the operations to time intervals 

such that the maximum completion times of all operations is minimised, subject to 

the constraint that no two jobs are processed at the same time on the same machine. 

If there is only one machine, the problem is called Single-machine Job Scheduling 

problem. ACO has been used to solve Job-Shop Scheduling problems (Heinonen 

and Pettersson 2007; Jain and Sharma 2005; Liao and Juan 2007; Rossi and Dini 

2007; Seckiner and Kurt 2008; Zhou et al. 2004).
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There are many other applications o f ACO, and the reader is referred to an overview 

article by (Blum 2005).

2.3 Particle Swarm Optimisation (PSO)

The Particle Swarm Optimisation algorithm was first proposed by Eberhart and 

Kennedy (Kennedy and Eberhart 1995), inspired by the natural flocking and 

swarming behaviour of birds and insects. The concept o f PSO gained in popularity 

due to its simplicity. Like other swarm-based techniques, PSO consists of a number 

of individuals refining their knowledge of the given search space. The individuals in 

a PSO have a position and a velocity and are denoted as particles. The PSO 

traditionally has no crossover between individuals, has no mutation and particles are 

never substituted by other individuals during the run. The PSO algorithm works by 

attracting the particles to search space positions of high fitness. Each particle has a 

memory function, and adjusts its trajectory according to two pieces of information, 

the best position that it has so far visited, and the global best position attained by the 

whole swarm. If the whole swarm is considered as a society, the first piece of 

information can be seen as resulting from the particle’s memory of its past states, 

and the second piece of information can be seen as resulting from the collective 

experience of all members of the society. Like other optimisation methods, PSO has 

a fitness evaluation function that takes each particle’s position and assigns it a fitness 

value. The position of highest fitness value visited by the swarm is called the global
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best. Each particle remembers the global best, and the position of highest fitness 

value that has personally visited, which is the called the local best.

Many attempts were made to improve the performance of the original PSO algorithm 

and several new parameters were introduced such as the inertia weight (Engelbrecht 

2005). The canonical PSO with inertia weight has become very popular and widely 

used in many science and engineering problems (Brits et al. 2007; Liu et al. 2007; 

Pan et al. 2006; Yang 2007).

In the canonical PSO, each particle i has position x{ and velocity vt that is updated 

at each iteration according to equation (2.3).

V, =  WV,  + C l(3„ ( p t - x ^  +  c ^ , ( p g (2.3)

Where w is the inertia weight described in (Shi and Eberhart 1998a; Shi and

Eberhart 1998b), p t is the best position found so far byparticle p t , and p g is the

global best so far found by the swarm. <p{ and (p2 are weights that are randomly

generated at each step for each particle component, q  and c2 are positive constant

parameters called acceleration coefficients (which control the maximum step size the 

particle can achieve). The position of each particle is updated at each iteration by 

adding the velocity vector to the position vector.

x ,= x t +v, (2.4)
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The inertia weight w (which is a user-defined parameter), together with q  and c2,

controls the contribution of past velocity values to the current velocity of the 

particle. A large inertia weight biases the search towards global exploration, while a 

smaller inertia weight directs toward fine-tuning the current solutions (exploitation). 

Suitable selection of the inertia weight and acceleration coefficients can provide a 

balance between the global and the local search (Engelbrecht 2005).

Figure 2.2 shows a flowchart of PSO. The PSO algorithm is composed of 5 main 

steps:

1. Initialise the position vector jc and associated velocity v  o f all particles in

the population randomly. Then set a maximum velocity and a maximum 

particle movement amplitude in order to decrease the cost of evaluation 

(WHY?) and to get a good convergence rate.

2. Evaluate the fitness of each particle via the fitness function. There are many 

options when choosing a fitness function and trial and error is often required 

to find a good one.

3. Compare the particle’s fitness evaluation with the particle’s best solution. If 

the current value is better than previous best solution, replace it and set the 

current solution as the local best. Compare the individual particle’s fitness 

with the population’s global best. If the fitness of the current solution is
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better than the global best’s fitness, set the current solution as the new global 

best.

4. Change velocities and positions by using equations (2.3) and (2.4).

5. Repeat step 2 to step 4 until a stopping criterion is satisfied or a predefined 

number of iterations is completed.
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Figure 2.2. Flowchart o f Particle Swarm Optimisation
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2.3.1 Particle Swarm Optimisation applications

PSO has been applied to various categories o f problem. Some of the most common 

applications are named in this sub-section.

One of the first applications of PSO was in the training of feed-forward neural 

networks (Eberhart and Kennedy 1995; Kennedy 1997; Niu and Xing 2007; Pham 

and Sholedolu 2006; Su et al. 2007).

Another application of PSO is clustering. The main objective of clustering is to 

group together similar data points. Clustering algorithms make use o f a distance 

metric, such as Euclidean distance, to define the similarity between two data points. 

Based on these similarity measures, clustering can be formulated as an optimisation 

problem where the objective is to simultaneously maximise inter-cluster distance and 

to minimise intra-cluster distances. Omran and his colleagues used the basic PSO for 

clustering (Omran et al. 2004, 2005; Omran et al. 2002).

PSO has been used in different design applications like: antenna design (Jin and 

Rahmat-Samii 2005; Nanbo and Rahmat-Samii 2007), beam design (Eric and Babak 

2006; Kathiravan and Ganguli 2007; Suresh et al. 2007), combinational circuits 

(Venayagamoorthy et al. 2007), structural design (Perez and Behdinan 2007).
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2.4 Honey-bees inspired Algorithms

The swarming behaviour of honey-bees has been used in different applications -  

mostly in discrete space optimisation problems. BeeHive, BeeAdHoc and the Bee 

Algorithm (Tovey Spring 2004; Wedde et al. 2005; Wedde et al. 2004) are some of 

the algorithms inspired from bee swarming behaviour. A model mimicking the 

allocation of bees to different flower patches to maximise the nectar intake is 

described in (Tovey Spring 2004). This was subsequently applied to distribute web 

applications at hosting centres. Another model borrowing from the principles of bee 

communication was presented (Wedde et al. 2004). According to this model, 

artificial bee agents are used in packet switching networks to find suitable paths 

between nodes by updating the routing table. Two types o f agents are used -  short 

distance bee agents which disseminate routing information by travelling within a 

restricted number of hops, and long distance bee agents which travel to all nodes of 

the network. Even though the Wedde’s algorithm is claimed to model honey-bees 

behaviour, it only loosely follows their natural behaviour.

Yang (Yang 2005) describes a virtual bee algorithm where the objective function is 

transformed into virtual food.

The foraging behaviour of honey-bees was used to solve a number of combinatorial 

problems (Teodorovic et al. 2003; Teodorovic and Dell'orco 2005; Tereshko 2000; 

Tereshko and Lee 2002).
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Karaboga and his colleagues introduced the Artificial Bee Colony (ABC) algorithm 

as an optimisation tool (Karaboga and Akay 2007; Karaboga and Basturk 2008). In 

Karaboga’s algorithm, a colony is divided to three groups; employed bees, onlookers 

and scouts. An onlooker waits in the dance area and decides to choose a food source. 

Bees visiting food sources are employed bees, while scout bees perform random 

search. In ABC half of the colony are onlooker bees and the other half are employed 

bees. Each employed bee becomes a scout bee when the food source is exhausted. 

The ABC steps are as follow:

1. Initialise.

2. Repeat

• Move the employed bees onto their food sources in and determine 

their nectar amounts.

• Move the onlookers onto their food sources in and determine their 

nectar amounts.

• Move the scouts for searching new food sources.

• Memorise the best food sources found so far.

3. Until (requirements are met)
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In the ABC algorithm, each search cycle consists of three steps. In the first step, the 

employed bees are sent to the food sources and measure their nectar amount. In the 

second step, each onlooker bee selects a food source based on the quality feeback 

given by the employed bees. Each onlooker bee visits the selected food source and 

determines its nectar amount. In the third step, the scout bees are sent to randomly 

selected food sources.

The Bees Algorithm that is proposed in this thesis is different from Karaboga’s 

algorithm, although both algorithms are inspired by the foraging behaviour of honey­

bees. The proposed Bees Algorithm is described in the next chapter, where a 

comparison is also made on different benchmarks between the proposed Bees 

Algorithm and other optimisation methods.
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CHAPTER 3

THE BEES ALGORITHM
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3. THE BEES ALGORITHM

3.1 Preliminaries

An optimisation algorithm can be defined as a numerical method for finding a value 

x such that f(x) is as small (large) as possible, for a given function f, possibly with 

some constraints on x. Here, x can be a scalar or a vector of continuous or discrete 

values. If  x is continuous, the algorithm can be seen as a numerical analysis method. 

However, classical optimisation methods encounter great difficulty when faced with 

the challenge of solving hard problems within an acceptable time and level of 

precision.

Many complex multi-variable optimisation problems cannot be solved exactly within 

polynomially bounded computation times. This generates much interest in search 

algorithms that find near-optimal solutions in reasonable running times. The swarm- 

based algorithm described in this chapter is a search algorithm capable of locating 

good solutions efficiently. The algorithm is inspired by the food foraging behaviour 

of honey-bees and could be regarded as belonging to the category of “intelligent” 

optimisation tools (Pham et al. 2005).

3.2 The basic Bees Algorithm

One of the most familiar insects in the world is the honey-bee. Honey-bees are a 

subset of the larger family of bees. Honey-bees live in social units called colonies. A
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honey-bee colony consists o f a single queen, who is usually the mother of all other 

colony members, a number ranging from zero to a few thousands of semi-sterile 

female workers and, from zero to a few thousand males (drones) depending on the 

time of year (Ribbands 1953). When honey-bees emerge from their cell as adults, 

they normally clean the cell, then as they age they feed larvae (nursing behaviour), 

process and store food, secrete wax, construct combs, and guard the entrance. The 

most pronounced change in behaviour occurs when honey-bees are about three 

weeks old when they begin foraging. At this time, they cease performing most of 

other tasks within the nest and usually remain a forager for the rest o f their lives 

(Richards 1961). In this study, the foraging behaviour o f honey-bees will be 

discussed, and the term “bee” is referred to “honey-bee”.

3.2.1 The foraging process in nature

A colony of honey-bees can extend itself over long distances (more than 10 km) and 

in multiple directions simultaneously to exploit a large number of food sources 

(Seeley 1996; Von Frisch 1976). A colony prospers by deploying its foragers to 

fields that are rich of food sources. In principle, flower patches with plentiful 

amounts of nectar or pollen that can be easily collected should be visited by many 

bees, whereas patches with less nectar or pollen should receive less bees (Bonabeau 

et al. 1999; Camazine et al. 2003).

The foraging process begins in a colony by scout bees being sent to search for 

promising flower patches. Scout bees move randomly from one patch to another.
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During the harvesting season, a colony continues its exploration, keeping a 

percentage of the population as scout bees.

When they return to the hive, those scout bees that found a patch of sufficient quality 

(measured as the level of some constituents, such as sugar content) deposit their 

nectar or pollen and go to the “dance floor” to perform a dance known as the 

“waggle dance” (Seeley 1996). This dance is the means to communicate to other 

bees three pieces of information regarding a flower patch: the direction in which it 

will be found, its distance from the hive, and its quality rating (or fitness) (Camazine 

et al. 2003; Von Frisch 1976). This information helps the bees watching the dance to 

find the flower patches. After the waggle dance, the dancer (i.e. the scout bee) goes 

back to the flower patch with follower bees recruited from the hive. The number of 

follower bees depends on the overall quality of the patch. Flower patches with large 

amounts of nectar or pollen that can be collected with less effort are regarded as 

more promising and attract more bees (Bonabeau et al. 1999; Seeley 1996). It this 

way, the colony gathers food quickly and efficiently.

During the harvesting season, a colony of bees keeps a percentage of its population 

as scouts (Von Frisch 1976) and uses them to explore the field surrounding the hive 

for promising flower patches. The foraging process begins with the scout bees being 

sent to the field where they move randomly from one patch to another.
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3.2.2 The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging 

behaviour of honey bees to find the optimal solution. Figures 3.1 and 3.2 show the 

pseudo code and the flowchart for the basic Bees Algorithm.

The algorithm requires a number of parameters to be set, namely: the number of 

scout bees (n), the number of sites selected for neighbourhood search (out of n 

visited sites) (m), the number of top-rated (elite) sites among m selected sites (e), the 

number of bees recruited for the best e sites (nep), the number of bees recruited for 

the other (m-e) selected sites (nsp), the initial size of each patch (ngh) (a patch is a 

region in the search space that includes a visited site and its neighbourhood), and the 

stopping criterion. The algorithm starts with the n scout bees being placed randomly 

in the search space. The fitnesses of the sites visited by the scout bees are evaluated 

in step 2.
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1 - Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Recruit bees for selected sites (more bees for best e sites) and evaluate

fitnesses.

7- Select the fittest bee from each patch.

7- Assign remaining bees to search randomly and evaluate their fitnesses.

8- End While.

Figure 3.1. Pseudo code of the basic Bees Algorithm
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eighbourhood 
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earch

Assign the (n-m) Remaining Bees to Random 
Search

Select the Representative Bee from each Patch

Initialise a population of n Scout Bees

Determine the Size of the Neighbourhood 
_____________ (Patch Size)_____________

Recruit Bees for Selected Sites 
(more Bees for the Best e Sites)

New Population of scout Bees

Evaluate the Fitness o f the Population

Select m Sites for Neighbourhood Search

Figure 3.2. Flowchart o f the basic Bees Algorithm
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Figure 3.3. Graphical illustration of the Bees Algorithm.
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In step 4, the m sites with the highest fitnesses are designated as “selected sites” and 

chosen for neighbourhood search. In steps 5 and 6, the algorithm conducts searches 

around the selected sites, assigning more bees to search in the vicinity of the best e 

sites. Selection of the best sites is made according to their associated fitness. 

Alternatively, the fitness values are used to determine the selection probability of the 

sites. Searches in the neighbourhood of the best e sites -  those which represent the 

most promising solutions - are made more detailed. As already mentioned, this is 

done by recruiting more bees for the best e sites than for the other selected sites. 

Together with scouting, this differential recruitment is a key operation of the Bees 

Algorithm.

In step 6, for each patch, only the bee that has found the site with the highest fitness 

(the “fittest” bee in the patch) will be selected to form part o f the next bee 

population. In nature, there is no such a restriction. This restriction is introduced here 

to reduce the number of points to be explored. In step 7, the remaining bees in the 

population are assigned randomly around the search space to scout for new potential 

solutions.

At the end of each iteration, the new population of a colony is composed of two 

parts: the representatives from the selected patches, and the scout bees assigned to 

conduct random search. These steps are repeated until a stopping criterion is met.

Figure 3.3 illustrates the Bees Algorithm.
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In the basic Bees Algorithm, a greedy selection procedure is applied. Stochastic 

selection (roulette wheel selection) was also studied. However, in the test functions 

investigated, it was found that greedy selection gives better results than stochastic 

selection, and for this reason it was chosen as the selection procedure for the Bees 

Algorithm (Pham et al. 2005). In special cases where stochastic selection might be 

found to give the best results, the roulette wheel procedure can substitute the 

standard greedy procedure.. Similarly, a fixed number o f bees are recruited for local 

search around each selected site (more for e best). Other ways of determining the 

number of bees recruited for each selected site can be considered. Alternative 

recruitment methods like recruitment proportional to the site fitness, or 

probabilistical recruitment, are explained in (Pham et al. 2005).

Clearly, the Bees Algorithm as described above is applicable to combinatorial, 

continuous, and discrete optimisation problems. In this thesis, continuous and 

discrete optimisation problems are used to investigate the Bees Algorithm. The 

solution of combinatorial optimisation problems differs only in the way 

neighbourhoods are defined.

3.3 Experiments using the basic Bees Algorithm

Two standard functional optimisation problems were used to test the basic Bees 

Algorithm and establish the correct values of its parameters. Other eight problems 

were used for benchmarking the algorithm. As the Bees Algorithm searches for the
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maximum, functions to be minimised were inverted before the algorithm was 

applied.

Shekel’s Foxholes (Figure 3.4), a 2D function from De Jong’s test suite, was chosen 

as the first function for testing the algorithm.

25
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Figure 3.4. Inverted Shekel’s Foxholes (Pham et al. 2005)
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Figure 3.5. Evolution of fitness with the number o f points visited (Inverted Shekel’s
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The following parameter values were set for this test: population n= 45, number of 

selected sites m=3, number of elite sites e= l, initial patch size ngh=3, number bees 

around elite points nep=7, number o f bees around other selected points nsp=2. Note 

that ngh defines the initial size o f the neighbourhood in which the follower bees are 

placed. For example, if x is the position of an elite bee in the ith dimension, the 

follower bees is placed randomly in the interval xje ± ngh in that dimension at the 

beginning of the optimisation process. As optimisation proceeds, the size of the 

neighbourhood search is gradually decreased to facilitate the fine tuning of the 

solution.

Figure 3.5 shows the fitness values obtained as a function of the number of points 

visited. The results are averages for 100 independent runs. It can be seen that after 

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the 

optimum.
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To test the reliability o f the algorithm, the inverted Schwefel’s function with six 

dimensions (equation (3.2)) was used. Figure 3.6 shows a two-dimensional view of 

the function to highlight its multi modality.

The following parameter values were set for this test: population n=500, number of 

selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of 

bees around elite points nep=50, number of bees around other selected points 

nsp=30.

Figure 3.7 shows how the fitness values evolve with the number of points visited. 

The results are averages for 100 independent runs. It can be seen that after 

approximately 3,000,000 visits, the Bees Algorithm was able to find solutions close 

to the optimum.

(3.2)

-500 <x, <500

For this function:

xmax = (420.9,420.9,420.9,420.9,420.9,420.9)

/ ( i U ) - 2513.9 
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The Bees Algorithm was applied to the eight benchmark functions given in (Mathur 

et al. 2000) and the results compared with those obtained using other optimisation 

algorithms. The test functions and their optima are shown in Table 3.1.

Table 3.2 presents the results obtained by the Bees Algorithm and those by the 

deterministic Simplex method (SIMPSA) (Mathur et al. 2000), the stochastic 

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al. 2000), the 

Genetic Algorithm (GA) (Mathur et al. 2000) and the Ant Colony System (ANTS) 

(Mathur et al. 2000).

Again, the numbers of points visited shown are averages for 100 independent runs. 

Table 3.3 shows the empirically derived Bees Algorithm parameter values used with 

the different test functions (Pham et al. 2006).

47



No Function Nam e Interval Function G lobal Optim um

1 De Jong
[-2.048,
2.0481 m a x F  =  (3905 .93) - 1 0 0 ( *  - x 2) 2 - ( 1  - X]) 2

X ( l , l )
F=3905.93

2
Goldstein & 
Price [-2, 2]

min F = [1 + (X] + X2 +1)2 (19-14 X) + 3 -14 Xl + 6 X] + 3 **)] 

X[30 + (2 Xl -3  x 2)2(18-32JKJ, +12^ + 48 ̂  -36 + 27 j^)]
X(0,-1)
F=3

3 Branin [-5, 10]

nuii F  = a(jc2 -  b x * + c Xx -  d f  + e ( l -  / )  c o s ^ )  + e

a = l , b = — f — ) ,c = - X 7 , d  = 6,e = 1 0 , f = - X —  
4 ^22)  22 8 22

X (-22 /7 ,12.275) 
X (22/7,2.275) 
X (66/7,2.475) 
F=0.3977272

4 Martin & Gaddy [0, 10] ™ n ^  =  (X l - X 2) 2 + ( U  +  X 2 - 1 0 ) / 3 ) 2
X(5,5)
F=0

5 Rosenbrock
(a) [-1-2, 1.2]
(b) [-1 0 ,1 0 ] m in F  = 1 0 0 ( JCla - JC2) 2 + ( l - j p , ) 2

X ( l , l )
F=0

6 Rosenbrock [-1.2, 1-2] m inF = Z < 10« X - - X i+1)2 + (1- X ' ) 2 }
i=1

II 
A

 
© 

~

7 Hyper sphere [-5.12, 5.12] m in F  =  2 x , 2
i=i

X (0,0,0,0,0,0) 
F=0

8 Griewangk [-512, 512]
l

X (0,0,0,0,0,0,0,0,0,0) 
F=10

mHx t* ™* / \

(  10 V 10 (  * \  }
- n  « ( £ ) ♦ > ]

Table 3.1 Test Functions (Mathur et al. 2000)
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SIMPSA NE SIMPSA GA ANTS Bees Algorithm

func uc
ce

ss
 

%

mean no. o f uc
ce

ss
 

%

mean no. o f

V i
t / 1aoo3 mean no. o f ;u

cc
es

s%

mean no. o f uc
ce

ss
 

%

mean no. o f
no C/3 evaluations C/3 evaluations evaluations evaluations GO evaluations

1 * * * * * * * * * * * * * * * * 100 10160 100 6000 100 868
2 * * * * * # * * * * * * * * * * 100 5662 100 5330 100 999
3 * * * * * * * * * * * * * * * * 100 7325 100 1936 100 1657
4 * * * * * * * * * * * * * * * * 100 2844 100 1688 100 526

5a 100 10780 100 4508 100 10212 100 6842 100 631
5b 100 12500 100 5007 * * * * * * * * 100 7505 100 2306
6 99 21177 94 3053 * * * * * * * * 100 8471 100 28529
7 * * * * * * * * * * * * * * * * 100 15468 100 22050 100 7113
8 * * * * * * * * * * * * 100 200000 100 50000 100 20998

**** Data not available

Table 3.2 Results for test functions

fun
no

n m e nsp nep ngh (initial)

1 10 3 1 2 4 0.1

2 20 3 1 1 13 0.1

3 30 5 1 2 3 0.5

4 20 3 1 1 10 0.5

5a 10 3 1 2 4 0.1

5b 6 3 1 1 4 0.5
6 20 6 1 5 8 0.1

7 8 3 1 1 2 0.3

8 50 5 2 10 20 5

Table 3.3 The Bees Algorithm parameters
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The optimisation stopped when the difference between the maximum fitness 

obtained and the global optimum was less than 0.1% of the optimum value, or less 

than 0.001, whichever was smaller. In case the optimum was 0, the solution was 

accepted if it differed from the optimum by less than 0.001. If a solution is found 

that satisfies one of these conditions, the algorithm is said to have succeeded in 

locality the optimum.

The first test function was De Jong’s, for which the Bees Algorithm could find the 

optimum 7 times faster than ANTS and 11 times faster than GA, with a success rate 

of 100%. The second function was Goldstein and Price’s, for which the Bees 

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again 

with 100% success. With Branin’s function, there was a 15% improvement 

compared with ANTS and 77% improvement compared with GA, also with 100% 

success.

Functions 5 and 6 were Rosenbrock’s functions in two and four dimensions 

respectively. In the two-dimensional function, the Bees Algorithm delivers 100% 

success and good improvement over the other methods (at least twice fewer 

evaluations than the other methods). In the four-dimensional case, the Bees 

Algorithm needed more function evaluations to reach the optimum with 100% 

success. NE SIMPSA could find the optimum with 10 times fewer function 

evaluations but the success rate was only 94% and ANTS found the optimum with 

100% success and 3.5 times faster than the Bees Algorithm. Test function 7 was a
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Hyper Sphere model o f six dimensions. The Bees Algorithm needed half of the 

number of function evaluations compared with GA and one third o f that required for 

ANTS. The eighth test function (Griewangk test function) was a ten-dimensional 

function. The Bees Algorithm could reach the optimum faster than GA and ANTS 

and its success rate was 100% (Pham et al. 2006).

3.4 Mechanical design optimisation using the basic Bees Algorithm

This section describes the application o f the Bees Algorithm to mechanical design 

optimisation.

Researchers have used the design o f welded beam structures (Rekliatis et al. 1983) 

and coil springs (Arora 2004) as benchmarks to test their optimisation algorithms. 

The welded beam design problem involves a nonlinear objective function and eight 

constraints, and the coil spring design problem, a nonlinear objective function and 

four constraints. A number o f optimisation techniques have been applied to these 

two problems. Some of them, such as geometric programming (Ragsdell and Phillips 

1976), require extensive problem formulation; some (see, for example, (Leite and 

Topping 1998)) use specific domain knowledge which may not be available for other 

problems, and others (Ragsdell and Phillips 1976) are computationally expensive or 

give poor results.

The Bees Algorithm has been applied to different unconstrained function 

optimisation in the previous section.
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As described, the Bees Algorithm is suitable for unconstrained optimisation 

problems. If a problem involves constraints, a simple technique can be adopted to 

enable the optimisation to be applied. The technique involves subtracting a large 

number from the fitness of a particular solution that has violated a constraint in order 

drastically to reduce the chance o f that solution being found acceptable. This was the 

technique adopted in this work. As both design problems were minimisation 

problems, a fixed penalty was added to the cost o f any constraint-violating potential 

solution.

3.4.1 Welded beam design problem

A uniform beam of rectangular cross section needs to be welded to a base to be able 

to carry a load of 6000 I b f . The configuration is shown in Figure 3.8. The beam is 

made of steel 1010.

The length L is specified as 14 in.. The objective of the design is to minimise the 

cost of fabrication while finding a feasible combination of weld thickness h, weld 

length 1, beam thickness t and beam width b. The objective function can be 

formulated as (Rekliatis et al. 1983):

min /  = (1 + q  )h2l + c2tb(L + /) (3.3)

where
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/  = Cost function including setup cost, welding labour cost and material cost;

q  = Unit volume of weld material cost = 0.10471 $ / i n f ;

c2 = Unit volume of bar stock cost = 0.04811 $ / in.3;

L = Fixed distance from load to support = 14 in.;

Not all combinations of h, 1, t and b which can support F are acceptable. There are 

limitations which should be considered regarding the mechanical properties o f the 

weld and bar, for example, shear and normal stresses, physical constraints (no length 

less than zero) and maximum deflection. The constraints are as follows (Rekliatis et

al. 1983):

g i = ^ ~ r ^ °  (3-4)

g2 = V j - V > Q  (3-5)

g3 = b - h >  0 (3.6)

g4 =l>  0 (3.7)

gs =t>  0 (3.8)

g6 = Pc - F >  0 (3.9)
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g7 = /z — 0.125 > 0 (3.10)

g8 = 0 . 2 5 - £ > 0  (3.11)

where

vd = Allowable shear stress of weld = 13600 P s i ; 

t  = Maximum shear stress in weld;

crd = Allowable normal stress for beam material = 30000 P s i ; 

cr = Maximum normal stress in beam;

Pc = Bar buckling load;

F  = Load = 6000 /6 /;

8  = Beam end deflection.

The first constraint ( g L) ensures that the maximum developed shear stress is less 

than the allowable shear stress of the weld material. The second constraint ( g 2) 

checks that the maximum developed normal stress is lower than the allowed normal 

stress in the beam. The third constraint ( g3) ensures that the beam thickness exceeds

that of the weld. The fourth and fifth constraints ( g4 and g 5 ) are practical checks to
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prevent negative lengths or thicknesses. The sixth constraint ( g6) makes sure that the 

load on the beam is not greater than the allowable buckling load. The seventh 

constraint ( g7) checks that the weld thickness is above a given minimum, and the

last constraint ( g 8) is to ensure that the end deflection of the beam is less than a 

predefined amount.

Normal and shear stresses and buckling force can be formulated as (Rekliatis et al. 

1983; Shigley 1973):

2.1952 
<r = — 7-— (3.12)

(3.13)

where

6000 (Primary stress)

6000(14+ 0.5/)-y/0.25(/2 + (h + t f )

2 |o .707w (/2/12 + 0.25 (h + t f  )}
(Secondary stress) (3.14)

Pc = 64746.022(1 -  0.0282346l)rf>: (3.15)
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Figure 3.8 A welded beam

Bees Algorithm parameters Symbol Value
Population n 80
Number of selected sites m 5
Number of top-rated sites out of m selected sites e 2
Initial patch size ngh 0.1
Number of bees recruited for best e sites nep 50
Number of bees recruited for the other (m-e) selected sites nsP 10

Table 3.4 Parameters of the Bees Algorithm for the welded beam design problem
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As there are no specific rules for selecting parameters in the Bees Algorithm, the 

user needs to try different sets o f parameters until acceptable results are obtained. 

The empirically chosen parameters for the Bees Algorithm are given in Table 3.4 

with the stopping criterion of 750 generations. The search space was defined by the 

following intervals (Deb 1991):

0.125<h<  5 (3.16)

0.1 < / < 10 (3.17)

0 .1</<10  (3.18)

0.1 < 6  <5 (3.19)

With the above search space definition, constraints g4, g 5 and g n are already 

satisfied and do not need to be checked in the code.

Figure 3.9 shows how the lowest value of the objective function changes with the 

number of iterations (generations) for three independent runs of the algorithm. It can 

be seen that the objective function decreases rapidly in the early iterations and then 

gradually converges to the optimum value.

A variety of optimisation methods have been applied to this problem by other 

researchers (Deb 1991; Leite and Topping 1998; Ragsdell and Phillips 1976). The
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results they obtained along with those of the Bees Algorithm are given in Table 3.4. 

APPROX is a method of successive linear approximation (Siddall 1972). DAVID is 

a gradient method with a penalty (Siddall 1972). Geometric Programming (GP) is a 

method capable o f solving linear and nonlinear optimisation problems that are 

formulated analytically (Ragsdell and Phillips 1976). SIMPLEX is the Simplex 

algorithm for solving linear programming problems (Siddall 1972).

As shown in Table 3.5, the Bees Algorithm produces better results than almost all 

the examined algorithms including the Genetic Algorithm (GA) (Deb 1991), an 

improved version of the GA (Leite and Topping 1998), SIMPLEX (Ragsdell and 

Phillips 1976) and the random search procedure RANDOM (Ragsdell and Phillips 

1976). Only APPROX and DAVID (Ragsdell and Phillips 1976) produce results that 

match those of the Bees Algorithm. However, as these two algorithms require 

information specifically derived from the problem (Leite and Topping 1998), their 

application is limited. The result for GP is close to that of the Bees Algorithm but 

GP needs a very complex formulation (Ragsdell and Phillips 1976). In this 

experiment, the number of function evolutions in the Bees Algorithm was as same in 

the population-based algorithms were used to compare the results. Of course the 

number of function evaluations is not applicable for analytical methods. For this 

optimisation problem, in order to compare the results of the Bees Algorithm and 

those of the GA and improved GA, the maximum number of function evaluations 

was set to be the same as those previously adopted for the latter.
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Figure 3.9 Evolution o f the lowest cost in each iteration
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Methods
Design variables

Cost
h / t b

APPR O X
(Ragsdell and 
Phillips 1976)

0.2444 6.2189 8.2915 0.2444 2.38

D A VID (Ragsdell 
and Phillips 1976)

0.2434 6.2552 8.2915 0.2444 2.38

G P (Ragsdell and 
Phillips 1976)

0.2455 6.1960 8.2730 0.2455 2.39

G A (Deb 1991) 
Three 

independent 
runs

0.2489 6.1730 8.1789 0.2533 2.43

0.2679 5.8123 7.8358 0.2724 2.49

0.2918 5.2141 7.8446 0.2918 2.59

IM PRO VED GA  
(Leite and 

T opping 1998) 
Three  

independent 
runs

0.2489 6.1097 8.2484 0.2485 2.40

0.2441 6.2936 8.2290 0.2485 2.41

0.2537 6.0322 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and 
Phillips 1976)

0.2792 5.6256 7.7512 0.2796 2.53

RA NDO M
(Ragsdell and 
Phillips 1976)

0.4575 4.7313 5.0853 0.6600 4.12

BEES
ALG O RITH M

Three
independent

runs

0.24429 6.2126 8.3009 0.24432 2.3817

0.24428 6.2110 8.3026 0.24429 2.3816

0.24432 6.2152 8.2966 0.24435 2.3815

Table 3.5 Results for the welded beam design problem obtained using the Bees 

Algorithm and other optimisation methods
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3.4.2 Coil spring design problem

The problem is to design a coil spring to carry a specific axial load. Figure 3.10 

shows a coil spring in tension. The parameters which should be optimised are the 

wire diameter d ,  the mean coil diameter D ,  and the number active coils N . The 

objective function is the mass (M) of the spring which should be minimised (Arora

Q = Number of inactive coils (i.e. end coils performing no energy storage function)

2004).

min M  =—(N + Q)n2D d2 p
4

(3.20)

where

g = Gravitational constant = 386 i n / s 2 ;

y  = Weight density of spring material = 0.285 Ibf/ in .3 ;

p  = Mass density of material ( /  / g ) = 7.38342 x 10*4 Ibf -  s2 / in .4 ;

The constraints can be formulated as (Arora 2004):

(3.21)

61



8io
SPD
7td

(4 D - d )  0.615 d  
4 { D - d )  D

- T d <  0

gn =a)0-(o<  0

gn = D + d - D 0 <0

In this problem,

P  = Applied axial load =10 I b f ;

G = Shear modulus = 1.15 x 107 Ibf  / in .2 ;

A = Minimum spring deflection =0.5 in.;

Td = Allowable shear stress = 80000 Ibf / in.2 ;

a)0 = Lower limit on surge wave frequency = 100H z ;

co = Frequency of surge waves = — - —r  J —
2ttND \ 2 p

D0 = Limit on outer diameter of the coil =1.5 in. ;

Using these values, the above constraints can be rewritten as:
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d 3n
g9 =1.0 - < 0  (3.25)

9 71875*/ V J

D U D - d )  2.46
#10 = ------ —T7— —T +  T - 1 -0 < o (3.26)

12566d3( D - d )  12566d2 J

i n  140.54*/ _
g n =1.0-------- r-----< 0  (3.27)

11 D N

g n = ^ f ~  1 0 < 0  (3.28)

The first constraint ( g 9) makes sure that the deflection o f the coil spring is greater 

than the specified minimum value. The second constraint (g 10) checks that the 

maximum shear stress in the coil spring is less than the allowable shear stress. The 

third condition ( gn ) checks that the frequency of surge waves is greater than the

given lower limit. Finally, the fourth constraint (g 12) controls the outer diameter of 

the spring.
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Figure 3.10 A coil spring

Bees Algorithm parameters Symbol Value
Population n 60
Number of selected sites m 5
Number of top-rated sites out of m selected sites e 2
Initial patch size ngh 0.1
Number of bees recruited for best e sites nep 40
Number of bees recruited for the other (m-e) selected sites nsp 10

Table 3.6 Parameters of the Bees Algorithm for the coil spring design problem
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The parameters used for the Bees Algorithm are given in Table 3.6 with the stopping 

criterion of 1500 generations. The search space was defined using the following 

intervals (Leite and Topping 1998):

0.05 <</< 0.2 (3.29)

0.25 <D<  1.3 (3.30)

2 < A < 1 5 (3.31)

Figure 3.11 shows the evolution of the best value of the objective function with the 

number of iteration (generations) for three independent runs. Again, it can be seen 

that the objective function decreases rapidly in the early iterations and then gradually 

converges to the optimum value.

The coil spring design problem has been solved by other researchers using 

Sequential Quadratic Programming (SQP) methods in a batch environment and in an 

interactive mode (Arora 2004) and using an improved Genetic Algorithm (Leite and 

Topping 1998). The results obtained by those optimisation tools are given in Table 

3.7 together with the outputs of three independent runs of the Bees Algorithm. For 

this optimisation problem, in order to compare the results of the Bees Algorithm and 

those of improved GA, the maximum number of function evaluations was set to be 

the same as those previously adopted for the latter.
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It can be seen that the Bees Algorithm gives better solutions than the improved GA 

and the interactive solution process. Only the result from the batch-mode SQP is 

comparable with that of the Bees Algorithm. However, as SQP methods need 

information on derivatives of variables, the range of problems that can be solved by 

these methods is limited.
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Figure 3.11 Evolution of the lowest mass in each iteration
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Methods
Design variables Mass M

* y  2K /  pn  Jd D N

SQ P (batch) (Arora 
2004) 0.051699 0.35695 11.289 0.0126787

SQP (interactive) 
(Arora 2004)

0.05340 0.3992 9.1854 0.0127300

IM PRO VED GA  
(Leite and Topping 

1998)
Best three solutions 

not violating  
constraints

0.05235 0.3721 10.48 0.01272

0.05323 0.3947 9.383 0.01273

0.05396 0.4132 8.697 0.01287

BEES ALG O RITH M  
Three independent 

runs

0.051759 0.35839 11.207 0.012680

0.051807 0.35956 11.139 0.012680

0.051779 0.35886 11.179 0.012681

Table 3.7 Results for the coil spring design problem obtained using the Bees 

Algorithm and other optimisation methods
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3.5 Improved version of the Bees Algorithm

In the basic version of the Bees Algorithm, there is no interaction between bees and 

only selected bees recruit from other bees. Other bees (those who have not been 

selected) are discarded in each iteration and will be replaced with new random 

placed bees. The first modification in the basic Bees Algorithm is not to discard the 

unselected bees and try to improve them by mating them with the selected ones. The 

mating method used here is interpolation or extrapolation. With this mating method, 

each unselected bee in the last stage of the algorithm chooses one of the selected 

bees and randomly carries out interpolation or extrapolation with it to go to a new 

position. In the case of interpolation, the new position will be located between the 

current position of an unselected bee and that of a selected bee. In the case of 

extrapolation, the line segment joining the two bees is extended at both ends by half 

of its length. The new position is a point randomly chosen in either of the extended 

sections. Thus, instead of the unselected bees being discarded and repositioned 

randomly, they will move using information from the selected bees. O f course at this 

stage, there will be no comparison between the fitnesses of the old and new positions 

of the unselected bee and it moves to its new position.

Another modification is the addition of two procedures to the basic Bees Algorithm.

In the first procedure, a large patch size is initially chosen. For each patch, the initial 

size is kept unchanged as long as the recruited bees can find better solutions in the
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neighbourhood. If the neighbourhood search does not yield any progress, the patch 

size is decreased. This strategy aims to make the local search more exploitative, 

searching more thoroughly the area around the local optimum. Henceforth, this 

procedure will be called the “shrinking method”. There are different ways of 

reducing the neighbourhood size. In this work, at each stage of shrinking, the 

neighbourhood was shrunk to half o f the previous size.

The second procedure is applied when no improvement is gained using the shrinking 

method (in this work, after the neighbourhood has been shrunk three times). In this 

case, it is assumed that the patch is centred on a local peak of performance of the 

solution space. Once the neighbourhood search has found a local optimum, no 

further progress is possible. Consequently, the location o f the peak is recorded and 

the exploration of the patch is terminated. This procedure is called henceforth 

“abandon sites without new information”.

The pseudo code and flowchart of the improved version o f the Bees Algorithm are 

shown in Figures 3.12 and 3.13.
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1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Determine the patch size.

6- Recruit bees for selected sites (more bees for the best e sites) and 

evaluate fitnesses.

7- Select the fittest bee from each patch.

8- Abandon sites without new information.

9- Assign remaining bees to interpolate or extrapolate with selected bees 

and evaluate their fitnesses.

10 End While.

Figure 3.12 Pseudo code of the improved Bees Algorithm
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N
eighbourhood 

S
earch

Initialise a population o f  n Scout Bees

Select the R epresentative Bee from  each Patch

A bandon Sites w ithout N ew  inform ation

N ew  Population o f  scout Bees

Evaluate the Fitness o f  the Population

Select m  Sites for N eighbourhood Search

D eterm ine the Size o f  the N eighbourhood 
__________(Shrinking i f  needed)__________

R ecruit B ees for Selected Sites 
(m ore Bees for the B est e Sites)

A ssign the (n-m ) R em aining Bees to 
Interpolate or E xtrapolate w ith  selected bees

Figure 3.13 Flowchart o f the improved Bees Algorithm
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3.6 Experiments using improved version of the Bees Algorithm

The eight benchmark test functions used in section 3.2.3 (Table 3.1), were tested 

using empirically chosen parameters o f the improved Bees Algorithm. Table 3.8 

shows the parameters used in the algorithm, and it can be seen that the same 

parameters were used for all the test functions. It shows that, the improved version is 

more robust and values of the parameters are not so critical and a reasonable setting 

gives good results. Results are shown in Table 3.9.

For the tested function, the improved Bees Algorithm gives better answers and a 

good improvement in results can be observed.
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fun
no

n m e nsp nep ngh (initial)

1 20 6 1 5 8 0.1

2 20 6 1 5 8 0.1

3 20 6 1 5 8 0.1

4 20 6 1 5 8 0.1

5a 20 6 1 5 8 0.1

5b 20 6 1 5 8 0.1
6 20 6 1 5 8 0.1

7 20 6 1 5 8 0.1

8 50 6 1 5 8 0.1

Table 3.8 The improved Bees Algorithm parameters

func
no

Basic Bees Algorithm Improved B ees Algorithm

Su
cc

 
%

mean no. o f  
evaluations Su

cc
 

%

mean no. o f  
evaluations

1 100 868 100 829

2 100 999 100 920

3 100 1657 100 977

4 100 526 100 527

5a 100 631 100 105
5b 100 2306 100 338
6 100 28529 100 28210

7 100 7113 100 1477

8 100 20998 100 14429

**** Data not available

Table 3.9 Results of the improved Bees Algorithm for test functions
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3.7 Summary

This chapter presented a new optimisation algorithm. Experimental results on multi­

modal functions in n-dimensions show that the proposed algorithm has remarkable 

robustness, producing a 100% success rate in all cases. The algorithm converged to 

the maximum or minimum without becoming trapped at local optima. The algorithm 

generally outperformed other techniques that were compared with it in terms of 

speed of optimisation and accuracy of the results obtained.

Two different constrained optimisation problems were solved using the Bees 

Algorithm. In each case, the algorithm converged to the optimum without becoming 

trapped at local optima. The algorithm generally outperformed other optimisation 

techniques in terms of the accuracy o f the results obtained.

In addition to the basic Bees Algorithm, an improved version of the Bees Algorithm 

was described. A comparison between the results obtained by the Basic version and 

the improved version were also presented.

Indeed, the Bees Algorithm can solve a problem without any special domain 

information, apart from that needed to evaluate fitnesses.
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CHAPTER 4

PRELIMINARY DESIGN AND 

MULTI-OBJECTIVE OPTIMISATION 

USING THE BEES ALGORITHM
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4. PRELIMINARY DESIGN AND MULTI-OBJECTIVE 

OPTIMISATION USING THE BEES ALGORITHM

4.1 Preliminaries

This chapter describes two adapted versions o f the Bees Algorithm for solving multi­

solution and multi-objective optimisation problems. Preliminary design is a multi­

solution problem. In the first section, a first adapted version of the Bees Algorithm 

will be presented to solve the problem preliminary design. In the second section, a 

second version of the Bees Algorithm will be presented for multi-objective function 

optimisation problems. The results will be compared with the results obtained by a 

genetic algorithm and random search.

4.2 Preliminary Design

Until now, research efforts in computer aided design (CAD) have mainly focused on 

detailed design. Effective computing tools have been developed for tedious and time 

consuming tasks such as finite element analysis (FEA), simulation, and draughting 

for the later design phases. The initial creative part o f the design process is still 

carried out almost exclusively by humans.
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There is now increasing interest in the automation of creative design. A desirable 

feature for a computer-based creative design system is the ability to generate 

multiple conceptual solutions. The more candidate solutions the system produces, 

the greater the chance is of finding the optimal solution (Pham and Yang 1993a, b).

Preliminary design can be regarded as an optimisation task, where the goal is to 

generate as many solutions as possible that meet pre-defined quality criteria. This 

section presents a new preliminary design system based on the Bees Algorithm 

(Pham et al. 2006), an optimisation tool recently developed by the authors. In the 

proposed study, the Bees Algorithm is used to generate the largest possible number 

of acceptable solutions. Preliminary gearbox design is chosen as a case study for the 

proposed algorithm. The results obtained by the Bees Algorithm are compared with 

the results obtained by a basic random search procedure, and the results obtained by 

the popular Genetic Algorithm (Fogel 2000) optimisation technique.

4.3 The Multi-Solution Bees Algorithm

In chapter 3, the Bees Algorithm for finding the optimum solution in a given search 

space was described. If a problem requires the discovery of the largest possible 

number of solutions that satisfy a given quality criterion, a filtering method can be 

adopted in order to capture all non-identical satisfactory individuals generated after 

the evaluation process.
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Figures 4.1 and 4.2 show the pseudo code and the flowchart for the multi-solution 

Bees Algorithm. The algorithm is like the one described in chapter 3, only step 4 has 

been added to the algorithm to select and store satisfactory solutions. In step 4, after 

fitness evaluation of the population, those candidate solutions that satisfy the quality 

criterion will be added to the solution set. In order to avoid duplicates in the solution 

set, only solutions which were not previously included will be added to the solution 

set.
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1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- Select the solutions that satisfy the criterion and add them to the solution set

4- While (stopping criterion not met)

//Forming new population.

5- Select sites for neighbourhood search.

6- Determine the patch size.

7- Recruit bees for selected sites (more bees for best e sites) and 

evaluate fitnesses.

8- Select the fittest bee from each patch.

9- Abandon sites without new information.

10- Assign remaining bees to search randomly and evaluate their 

fitnesses.

11-End While.

Figure 4.1. Pseudo code of the multi-solution Bees Algorithm
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S
earch

N ew  Population o f  scout Bees

Select the R epresentative Bee from  each Patch

Initialise a population o f  n Scout Bees

E valuate the Fitness o f  the Population

A bandon Sites w ithout N ew  inform ation

A ssign the (n-m ) R em aining Bees to Random  
Search

A dd satisfactory solutions to Solution Set

Select m  Sites for N eighbourhood Search

D eterm ine the Size o f  the N eighbourhood 
______________ (Patch Size)______________

R ecruit Bees for Selected Sites 
(m ore Bees for the B est e Sites)

Figure 4.2. Flowchart o f the multi-solution Bees Algorithm
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4.4 Preliminary gearbox design

4.4.1 Problem statement

Gearbox design is a well defined and documented machine design task. A gearbox is 

a power transmission device linking a power supplier and a power consumer in a 

mechanical system. The power supplier can be a motor or an engine working at one 

or more discrete speeds within a limited range. The power consumer can be any 

machine which may need different speeds and torques. To match the input speed 

with the required output speed/torque, a gearbox is used. The gearbox obtains the 

desired speed conversion ratio through simple mechanisms like gear pairs and shafts. 

Figure 4.3 shows a schematic o f a gearbox in a typical application.

The proposed preliminary gearbox design task entails the creation of the largest 

possible number of distinct gearbox configurations that approximately produce the 

required output speeds (it is assumed that designers have a small number of 

alternative motors at their disposal).

4.4.1.1 Assumptions

For the sake of simplicity several assumptions are made:

1. Only one input speed is chosen for the gearbox.

2. Only one output speed is required from the gearbox.

3. Only parallel shafts are used in the gearbox.
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4. The power transmission between two adjacent shafts is accomplished only by 

pairs of gears.

4.4.1.2 Parameters

The following parameters are known:

a. the speed of the motor (700, 1000, 1500 or 3000 rpm);

b. the required output speed (pre-specified in revolutions per minute).

The following parameters are to be computed:

a. number of shafts;

b. number of teeth for each gear.

4.4.1.3 Constraints

1. The minimum number of teeth o f a gear is 18, and the maximum number of 

teeth is 274.

2. The maximum transmission ratio for each gear pair is 5.0.

3. The maximum number of shafts, including the input and output shafts, is 8.
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Figure 4.3. An example of a gearbox
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4.4.2 Evaluation function

Candidate solutions are evaluated according to a positive-valued fitness function F  

that incorporates the main design specifications. The parameters considered in the 

fitness function are listed below:

1. The number of shafts (NoOfShafts) generated must not exceed 8:

if NoOfShafts > 8, then F  = 0.0 (4.1)

2. For a reduction gearbox, the number o f teeth of the driven gear must be larger 

than the number of teeth o f the driving gear for each gear pair. Otherwise, the 

candidate solution is considered invalid and its fitness F  is calculated as:

F  = 28.0 -  2.0 * W rongPair ^  2)

where WrongPair is the number of invalid gear pairs.

3. The transmission ratio achieved by one pair o f gears must not exceed the 

maximum single-stage transmission ratio (MAXRATIO) by more than a given 

percentage. The tolerance is set to 15% of the MAXRATIO value. Solutions 

containing gear pairs exceeding the tolerance limit are penalised according to the 

following formula:

F  -  Original *(1.0-0.1 SumOfExcess) (4.3)

where (SumOfWxcess) is the sum of the transmission ratio overshootings of all the 

gear pairs exceeding the MAXRA TIO limit.

4. In order to make the gearbox design compact, the number o f shafts (.NOfShafts) 

should be as low as possible.
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5. The difference between the total transmission ratio of the gearbox and the required 

ratio (RatioDifferrence) should be as small as possible.

6. Fitness values should be positive. Candidate solutions satisfying constraints 1 to 3 

(that is, valid solutions) but having negative fitness are assigned a positive fitness 

value of 27. This figure is slightly higher than the maximum fitness attainable by an 

invalid solution. Accordingly, valid candidate solutions are considered fitter than 

invalid solutions.

Taking into account specifications 3, 4 and 5, the overall fitness function is as 

follows:

F  =

0.0, If  NoOfShafts >8;

28.0 -  2 * WrongPair, If WrongPair * 0;
{MaxA llowedFitness
—[JF * (4*4)

+W2 * 3( ])( [{F>= 0;

2 7 0 ’ If F<0;

where MaxA llowedFitness is set to 5000 and is the maximum fitness value 

obtainable by a candidate solution. W1 and W2 are penalty weights, while A1 and A2 

are coefficients. Wl, W2, A1 and A2 are experimentally optimised in order to yield a 

fitness function that is effective over a wide range of output speeds. Their final 

values are set to:

(Wl W2 A{ A2) = (0.286 1.0 0.7925 1.0) /45 )
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4.5 Genetic Algorithms

In order to assess the performance of the proposed design technique, the results 

produced by the Bees Algorithm are compared with those obtained by random 

search and by a genetic optimisation procedure.

Genetic Algorithms (GAs) are population-based stochastic search algorithms that 

aim to find an acceptable solution when time or computational requirements make it 

impractical to find the best one. GA has been described in chapter 2.

4.6 Results of preliminary design

The results obtained by the Bees Algorithm are compared with those found by a GA 

and a random search procedure. The random search results are used for baseline 

evaluation of the performance of the Bees Algorithm and the GA.

Since all the variables in this problem are discrete, candidate solutions are encoded 

using integer-valued strings. The three search algorithms use the same integer-based 

encoding scheme for representing the solutions, and the same fitness evaluation 

procedure, which is described in sub-Section 4.2. The Bees Algorithm and the GA 

use the same random technique for population initialisation. This technique is used 

also in the random search procedure to generate new solutions. Finally, the Bees 

Algorithm neighbourhood search operator and the GA mutation operator share the 

same procedure for modifying the candidate solutions. According to this procedure,
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the transmission ratio of randomly picked gear pairs is changed by randomly altering 

their number of teeth. The main search parameters are set so as the three search 

algorithms sample the same number o f candidate solutions over the total 

optimisation process.

4.6.1 Solution acceptance criteria

A “filtering” method is employed to capture all nonidentical satisfactory individuals 

generated during the evaluation process. The total number of acceptable solutions is 

the measure used to assess the performance o f the design method under evaluation.

The filtering criteria for deciding whether a solution is acceptable are:

1. The output speed is within ± 10 percent of the required output speed.

2. The fitness measure is above or equal to a pre-defined threshold.

4.6.2 Parameters of the Bees Algorithm

The main parameters characterising the Bees Algorithm are empirically chosen. They 

are detailed in Table 4.1. The search space is defined as:

2 < NoOfShafts <8 (4.6)

18 < Af. < 274 (4.7)

where A, is the number of teeth o f gear i. The total number of gears varies according 

to the number of shafts. Since each shaft is made of a gear pair, the total number of 

gears is equal to 2 * NoOfShafts .
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The initial patch size for the first variable (.NoOfShafts) is set to 2. For the remaining 

variables (Ni) is set to 10.
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Bees Algorithm parameters Symbol Value
Population n 33
Number of selected sites m 3
Number of top-rated sites out o f m selected sites e 2
Initial patch size ngh 2/10
Number of bees recruited for best e sites nep 50
Number of bees recruited for the other (m-e) selected sites nsp 20
Number of iterations ...... g .... . 300

Table 4.1. Parameters o f the Bees Algorithm

Genetic Algorithm parameters Symbol Value
Population n 150
Generations g 300
Crossover rate cr 1.0
Mutation rate mr 0.25

Table 4.2. Parameters of the Genetic Algorithm
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4.6.3 Parameters of the Genetic Algorithm

The main parameters characterising the GA are empirically chosen. They are 

detailed in Table 4.2.

4.6.4 Results of the preliminary gearbox design

Table 4.3 gives the average number of solutions obtained by the Bees Algorithm 

(BA), the Genetic Algorithm (GA), and the Random Search Algorithm (Random). 

The results are calculated over 100 independent runs.

Table 4.3 shows that the Bees Algorithm outperforms the genetic and random search 

algorithms in terms of acceptable solutions found. In some cases, the number of 

acceptable solutions produced by the Bees Algorithm is over one order o f magnitude 

larger than the number of solutions produced by the GA.
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Fitness
Threshold Method Required Output Speed (rpm)

30 50 75 100

4992
Random 20 88 142 164

GA 61 672 871 811
BA 3453 4012 3973 3804

4993
Random 17 71 127 151

GA 54 611 756 791
BA 3275 3885 3830 3786

4994
Random 10 46 87 118

GA 41 345 559 626
BA 2654 3329 3492 3600

4995
Random 1 6 11 15

GA 7 45 74 94
BA 427 613 689 755

Table 4.3. Number of solutions for different output speeds
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4.7 Multi-Objective optimisation

The goal of an optimisation problem can be stated as finding the combination of 

parameters (independent variables) which maximises or minimises the value of one 

or more dependent variables possibly subject to some constraints on the independent 

variable ranges. The values to be optimised are called objective functions. If there is 

only one function to optimise, the task is a single function optimisation problem. If 

more than one function should be optimised, the task is a multi-objective 

optimisation problem.

There is now increasing interest in multi-objective function optimisation as most 

engineering design problems involve multiple and often conflicting objectives. There 

are two ways of solving multi-objective optimisation problems. The first possibility 

is to form a linear combination of the different objective functions. The contribution 

of each function is associated to a weight, and each function is optimised using 

methods developed for single objective function problems. The other way of solving 

a multi-objective problem -  the genuine way - is to consider all objective functions 

simultaneously. The following two main drawbacks are of concern when converting 

a multi-objective optimisation problem into a single objective optimisation problem. 

The first shortcoming is that not all the solutions are usually found. The second 

drawback is that the weight assigned to some objective functions may not be 

suitable, and the overall linear combination of functions may lack of significance. In 

multi-objective optimisation tasks, the goal is not to find a single optimal solution,
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but to compute the set o f all non-dominated solutions, that is, the Pareto optimal set. 

A solution belonging to the Pareto set is not better than any other solution belonging 

to the same set. For this reason, they are not comparable and each of them is called a 

feasible solution. Different techniques to solve multi-objective function optimisation 

tasks and their characteristics are explained in (Deb 2001).

A maximum of a function /  is a minimum of -f. Thus, the general optimisation 

problem may be stated mathematically as:

minimise f^ X ) , i = l ,2,...,/
subject to c / X )  = 0, y = l,2 ,...,p  (4 g)

hk( X ) > 0 ,  k = \,2,. .-,q
X  = (xv x2,...,xn)r

Where f(X )  are the / objective functions, X  is the column vector o f the n independent 

variables, c/X) are p  termed equality constraints, and h /X )  are q inequality 

constraints. Taken together, f(X ), c /X )  and h /X )  are known as the problem 

function(Deb 2001).

The word 'minimise' means that we want to minimise all the objective functions 

simultaneously. If there is no conflict between the objective functions, then a 

solution can be found where every objective function reaches its optimum. To avoid 

such trivial cases, it is assumed that there is not a single solution that is optimal with
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respect to every objective function. This means that objective functions are at least 

partly conflicting. They may also have different units.

4.7.1 Pareto ranking and Pareto optimality

An individual’s Pareto rank corresponds to the number o f individuals in the current 

population by which it is dominated. For example in Figure 4.4, the solutions which 

are shown by red circles are not dominated by any other solutions, so their rank is 

zero. The blue ones are dominated by one other solution so their rank is 1 and in the 

same way the rank of solution shown by green circle is 5.

The predominant solution concept in defining solutions for multi-objective 

optimisation problems is that of Pareto optimality (Arora 2004). A solution in the 

feasible solution space is called Pareto optimal (or non-dominated solution) if  there 

is no other feasible solution in the solution space that reduces at least one objective 

function without increasing another one. According to the Pareto ranking definition, 

the ranks of all non-dominated solutions are zero.
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Figure 4.4. Pareto ranking o f candidate solutions



4.8 The multi-objective Bees Algorithm

Figures 4.5 and 4.6 show the pseudo code and the flowchart for the multi-objective 

Bees Algorithm. Likewise the Bees Algorithm for solving single objective function 

problems, the multi-objective Bees Algorithm requires a number of parameters to be 

set, namely: number of scout bees (n), number o f sites selected for neighbourhood 

search (out of n visited sites) (m), number o f bees recruited for the selected sites 

(nsp), the initial size of each patch (ngh) (a patch is a region in the search space that 

includes the visited site and its neighbourhood), and the stopping criterion.

The algorithm starts with n scout bees randomly distributed in the search space. The 

fitness of the sites (i.e. the performance of the candidate solutions) visited by the 

scout bees are evaluated in step 2.

In step 4, the m non-dominated sites are designated as “selected sites” and chosen for 

neighbourhood search. If there are more than m non-dominated sites in the 

population, the first m will be selected since it is not possible to differentiate 

between them. If there are less than m non-dominated sites, from the dominated ones 

which have been dominated only once, the rest will be selected and this procedure is 

repeated until a sufficient number of sites have been selected. In step 5, a large patch 

size is chosen initially. For each patch, the initial size is kept unchanged as long as 

the recruited bees can find better solutions in the neighbourhood. If  the 

neighbourhood search does not yield any progress, the patch size is decreased. This
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strategy aims at making the local search more exploitative, searching more densely 

the area around the local optimum. Henceforth, this step will be called the 

“shrinking method”.

In step 6, the algorithm searches around the selected sites. In the basic version of the 

Bees Algorithm, more bees were chosen to search in the vicinity of the best e sites. 

In selection of the best sites was made according to the fitness associated with. In the 

multi-objective optimisation version o f the Bees Algorithm, sometimes it is not 

possible to rank the solution candidates, so all the selected sites have the same 

number of recruited bees to search around the neighbourhood. In step 7, the 

representative bee will be the original one unless it is dominated by one of the 

recruited bees; in that case the representative will be the new non-dominated bee. 

Step 8, has been added to the basic Bees Algorithm to enable it to deal with multi­

objective optimisation problems. If  the representative is a non-dominated solution, it 

will be added to the Pareto optimal set. In addition, if  this solution is dominating the 

other solutions in the created Pareto optimal set, the dominated solutions will be 

removed from the set.
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1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met)

//Forming new population.

4- Select sites for neighbourhood search.

5- Determine the patch size.

6- Recruit bees for selected sites and evaluate fitnesses.

7- Select the representative bee from each patch.

8- Create or Amend the Pareto optimal set.

9- Abandon sites without new information.

10- Assign remaining bees to search randomly and evaluate their

fitnesses.

11-End While.

Figure 4.5. Pseudo code of the multi-objective Bees Algorithm
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N ew  Population o f scout Bees

Create or A m end Pareto Optimal Set

Initialise a population o f  n Scout Bees

Evaluate the Fitness o f  the Population

Assign the (n-m ) Rem aining Bees to Random 
Search

Select m Sites for N eighbourhood Search

Determine the Size o f  the N eighbourhood 
______________(Patch Size)______________

Recruit Bees for Selected Sites

Select the Representative Bee from each Patch

Abandon Sites w ithout New information

Figure 4.6. Flowchart o f the multi-objective Bees Algorithm
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In step 9, in the case when no improvement is gained using the shrinking method, it 

is assumed that the patch is centred on a local peak of performance of the solution 

space. Once the neighbourhood search has found a local optimum, no further 

progress is possible. Consequently, the exploration of the patch is terminated. 

Henceforth this step is called “abandon sites without new information”. In step 10, 

the remaining bees in the population are placed randomly around the search space to 

scout for new potential solutions.

At the end of each iteration, the colony has two parts to its new population: 

representatives from the selected patches, and scout bees assigned to conduct 

random searches. These steps are repeated until a stopping criterion is met.

4.9 Welded beam design problem with two objective functions

This problem is the same as the problem described in 3.4.1. However, the objective 

functions are formulated as (Rekliatis et al. 1983) :

min f x = (1 + cx )h2l + c2tb(L + /) (4.9)

min f 2 =S (4.10)

Also, constraint g8 is now converted into a fitness function.
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Bees Algorithm parameters Symbol Value

Population n 150

Number of selected sites m 30

Initial patch size ngh 0.1

Number of bees recruited for selected 
sites nsp 50

Number of iterations g 1000

Table 4.4. Parameters of the multi-objective Bees Algorithm for the welded beam

design problem
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4.10 Results for the welded beam design problem with two objective functions

The empirically chosen parameters for the Bees Algorithm are given in Table 4.4.

Figure 4.8 shows the non-dominated solutions obtained using the Bees Algorithm. 

The total number is 215 non-dominated solutions distributed along the Pareto front. 

Deb has investigated this problem using the non-dominated sorting GA (or NSGA) 

and a fast elitist NSGA, called NSGA-II (Deb et al. 2000), for finding multiple 

Pareto optimal solutions (Figure 4.9).

In comparison with the number of solutions found by the non-dominated sorting 

genetic algorithms, the Bees Algorithm can find more non-dominated solutions. 

NSGA-II found the best cost solution with a cost of 2.79 units(Deb et al. 2000). The 

multi-objective Bees Algorithm could find a quantity of 2.39 units cost, which is 

closer to the best solution (with a cost of 2.38 units) found using the single objective 

Bees Algorithm in chapter 3.
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4.11 Summary

In tasks like the preliminary design of engineering artefacts, it is often necessary to 

generate as many alternative solutions as possible. An adapted version of the Bees 

Algorithm is used to find multiple solutions for the test case of preliminary gearbox 

design. The results for the Bees Algorithm have been compared with those obtained 

using random search and a GA. Under the same sampling conditions, experimental 

evidence proves that the Bees Algorithm finds a much larger number of solutions 

than the other two methods.

The second section of this chapter has described a modified version of the Bees 

Algorithm, and its application to the search for multiple Pareto optimal solutions in a 

mechanical engineering problem. Compared to two non-dominated genetic 

algorithms, the Bees Algorithm was able to find more trade-off solutions (Deb et al. 

2000).

The Bees Algorithm can be used as multi-objective optimiser tool for complex 

engineering multi-objective optimisation problems.

The Bees Algorithm is capable o f solving multi-solution problems and multi­

objective function optimisation problems without any special domain knowledge, 

apart from the information needed to evaluate the fitness of the solutions. In this
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respect, the Bees Algorithm shares the advantages of general-purpose optimisation 

algorithms such as GAs.

106



CHAPTER 5

TRAINING RADIAL BASIS FUNCTION 

NEURAL NETWORKS USING 

THE BEES ALGORITHM
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5. TRAINING RADIAL BASIS FUNCTION NEURAL 

NETWORKS USING THE BEES ALGORITHM

5.1 Preliminaries

Artificial neural networks are computational models of the brain (Pham and Liu

1995). There are many types of neural networks representing the brain’s structure 

and operation with varying degrees of sophistication. The Radial Basis Function 

(RBF) network is a popular type of network that is very useful for pattern 

classification problems (Bishop 1995). This chapter presents the use of Radial Basis 

Function (RBF) networks for identification patterns recognition in control charts and 

of wood defects. The RBF networks were trained, employing the Bees Algorithm 

instead of the standard training algorithms. The chapter includes explanations o f the 

RBF network, the standard RBF training method, the training procedure based on the 

Bees Algorithm, results of control chart pattern recognition experiments, and 

identification of wood defects with RBF networks trained using the Bees Algorithm 

and the conventional RBF procedure.

5.2 Radial Basis Function (RBF) network

5.2.1 Network structure

As the name implies, this network makes use of radial functions. Figure 5.1 shows 

the structure of a RBF network which consists of three layers of neurons.
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The input layer neurons receive the input pattern ( xx to xN). The hidden layer

neurons provide a set o f activation functions that constitute an arbitrary “basis” for 

the input patterns in the input space to be expanded into the hidden space by way of 

non-linear transformation. At the input o f each hidden neuron, the distance between 

the centre of each activation (basis) function and the input vector is calculated. 

Applying the basis function to this distance produces the output o f the hidden 

neuron. The RBF network outputs y x to y p are formed by the neurons in the output

layer as weighted sums of the hidden layer neuron activations.
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Figure 5.1. Topology o f an RBF network.
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The basis function is generally chosen to be a standard function which is positive at 

its centre x = 0, and decreases uniformly to zero at the sides. A common choice is 

the Gaussian distribution function:

= exp '  I ' '
v ’ 2 ,

(5-1)

This function can be shifted to an arbitrary centre, x = c, and stretched by varying its 

spread a  as follows:

K|l£z£)| = eXp
2a 2

(5-2)

The outputs o f the RBF network y.  are given by:

y t=lLwi>K
i=l V a i /v*

(5-3)

where w.. is the weight of connection from hidden neuron i to output j , c( the

centre of basis function i , and cr is the spread of the function i . p  -  c. || is the norm 

of (jc-c,) . There are various ways to calculate the norm. The most common is the 

Euclidean norm given by:

||jc- cJ  = a / ( * |  -c,tf  +(x2 -C j2) 2 + . . . .+ ( XA, - c mf (5-4)

This norm gives the distance between the two points Xand cf in the N-dimensional 

input space. All points jc that are the same radial distance from c{ give the same 

value of the norm. The purpose of training an RBF network is to determine the
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connection weights wj t , RBF centres c, ,and spreads cr, that enable the network to 

produce the correct outputs y } corresponding to the input patterns x .

5.2.2 RBF network training procedure

The training of an RBF network involves the minimisation of an error function. The 

error function defines the total difference between the actual output and the desired 

output of the network over a set of training patterns (Jain and Dubes 1988). Training 

proceeds by presenting to the network a pattern of known class taken from the 

training set. The error component associated with that pattern is the sum of the 

squared differences between the desired and actual outputs of the network for the 

presented pattern. The procedure is repeated for all the patterns in the training set. 

The error components for all the patterns are summed to yield the error function for 

the RBF network. After training, the percentage of training patterns which the 

network can recognise correctly is called the training accuracy, and the percentage of 

test patterns correctly classified is called the test accuracy.

5.2.2.1 Standard RBF network training procedure

According to the standard procedure for training RBF networks, after the number of 

hidden neurons ( h ) has been set, the following steps will be taken:

1. Choose the RBF centres c ,. Centre selection can be performed by trial and error, 

self-organisation or supervised training.
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2. Choose the spreads <rt. . Several heuristic methods are available. A popular 

method is to set cr, equal to the distance to the centre nearest to ci .

3. Calculate the neuron weights w.f. When c( and wj{ are set, the outputs of the

hidden neurons (/CL, ,A'A)r can be calculated for any pattern of inputs

x — ( ^ , Xjy). Assuming there are s input patterns x  in the training set, there will

be 5 sets of hidden neuron outputs that can be calculated. These can be assembled 

into a h xs  matrix:

K  =

k\ k\ 
k\ k \

.... k[

.... K

.... ki

(5-5)

h  J  h X s

The output of the RBF network (_y) is given by equation (5-6).

y  = K t .wt (5-6)

where

w

Wu W12 

w21 W22

W*1

w.Ip
.... w.2 P

w.*p

(5-7)

y is the matrix of the actual outputs corresponding to the training inputs x . Ideally,

y  should be equal to d , the desired or target outputs. Unknown coefficients wn can
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be calculated from equation (5-8) in order to minimise the sum of the squared 

differences between y  and d .

wT =(K.Kt )~' ,K.d (5-8)

5.2.2.2 RBF network training using the Bees Algorithm

When the Bees Algorithm is used, each bee represents an RBF network with a 

particular set of basis function centres, spreads and weight vectors. The aim of the 

algorithm is to find the bee producing the smallest value of the error function.

The RBF network training procedure using the Bees Algorithm comprises the 

following steps:

1. Generate an initial population o f bees.

2. Apply the training data set to determine the value o f the error function associated 

with each bee.

3. Based on the error value obtained in step 2, create a new population of bees 

comprising the best bees in the selected neighbourhoods and randomly placed 

scout bees.

4. Stop if the value of the error function has fallen below a predetermined threshold 

or after a set number of iterations.

5. Else, return to step 2.

114



53 Control chart pattern (CCP) recognition experiments

53.1 Control chart pattern

Statistical Process Control (SPC) employs statistical means such as control charts to 

show how consistently a process is performing and whether it should be adjusted 

(Montgomery 2000). SPC control charts enable a manufacturing engineer to 

compare the actual performance of a process with customer specifications and 

provide a process capability index to guide and assess quality improvement efforts. 

By means of simple rules, it is possible to determine if a process is out of control and 

needs corrective action. However, incipient problems could be detected before the 

process goes out of control from the type of patterns displayed by the control charts.

There are six main classes of patterns in control charts, normal, cycle, upward trend, 

downward trend, upward shift, and downward shift, as illustrated in Figure 5.2.

Specifically, control chart pattern recognition is a process of recognising an 

unknown CCP and assigning it to one o f the prescribed pattern classes. Normally, 

patterns of the same category share common properties.
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Normal C y clic

Decreasing trend Increasing trend

Downward shift Upward shift

Figure 5.2. Six main classes o f control chart patterns.
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Cyclic patterns occasionally appear on the control chart. Cyclic patterns may result 

from systematic environmental changes such as temperature, operator fatigue, 

regular rotation of operators and/or machines, or fluctuation in voltage or pressure or 

some other variable in the production equipment. Shift patterns may result from the 

introduction of new workers, methods, raw materials, or machines; a change in the 

inspection method or standards; or a change in the skill, attentiveness, or motivation 

of the operators. Sometimes an improvement in process performance is noted 

following the introduction o f a control chart program, simply because of 

motivational factors influencing the workers. Trend patterns or continuous 

movement in one direction are usually due to a gradual wearing out or deterioration 

of a tool or some other critical process component. In a chemical process they often 

occur because of settling or separation o f the components of a mixture. They can 

also result from human causes, such as operator fatigue or the presence of 

supervision. Finally, trends can result from seasonal influences, such as temperature.

53 .2  Control chart pattern simulator

The following expressions were used to generate the different patterns for a control 

chart. This data set is used in this thesis. The total number of generated patterns is 

1500 and each pattern is a time series comprising 60 points. 498 patterns (83 in each 

class) were used for training an RBF network and 1002 patterns (167 in each class) 

were employed for testing the trained network.
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1. Normal patterns:

y(t) =  fJ. +  r(t) a (5-9)

2. Cyclic patterns:

y(t) -  /j + r ( t ) o  + asin(2n t/j,) (5-10)

3. Increasing or decreasing trends:

y(t) = n  +  r(t) a ± g t (5-11)

4. Upward or downward shifts:

y(t) = /u + r{t) <r±ks (5-12)

where

fi = mean value of the process variable being monitored 

a = standard deviation o f the process 

a = amplitude of cyclic variations (taken as 15 or less)

g = magnitude of the gradient o f the trend (taken as being in the range 0.2 to 0.5) 

k = parameter determining the shift position (k=0 before the shift position; k=l at the 

shift position and thereafter).

r = normally distributed random number (between -3 and 3)

s = magnitude of the shift (taken as being in the range of 7.5 to 20)

t = discrete time at which the pattern is sampled (taken as being within the range 0 to

T = period of a cycle (taken as being in the range 4 to 12 sampling intervals). 

y(t) = sample value at time t.

59).
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This pattern simulator is taken from Pham and Oztemel (Pham and Oztemel 1992).

In this thesis, the data were scaled before presenting them to the network.

53.2.1 Procedure scaling data

Although the input data to a node can theoretically take any value, restricting it to 

fall within a fixed range produces more efficient training. Scaling is an application- 

specific transformation that constrains input data into a fixed range. The most 

important issue in scaling is the range of output values dictated by the scaling 

transformation. Scaling has two advantages. The first advantage is that scaling takes 

care of the distribution of the training data and the effect o f outliers. The second 

advantage is that scaling ensures that errors or variations of different variables 

contribute the same proportion to the change in network weights. In this thesis, by 

applying the scaling method mentioned below, the original inputs were scaled to 

continuous values between 0 and 1. The actual data sets were scaled values of y(t).

Scaling was performed using the following expression:

y(t) = y(t) (5-13)
Tm ax Tmin

where

y  = scaled pattern value (in the range 0 to 1)

^min= minimum allowed value (taken as 35)

Tmax= maximum allowed value (taken as 125)
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This scaling method is taken from Pham and Oztemel (Pham and Oztemel 1992) 

with some modification on the minimum and maximum allowed value.

53.3 RBF network configuration for control chart pattern

The RBF network configuration used involves three layers: an input layer, a hidden 

layer and an output layer. The input layer has 60 neurons, one for each point in a 

pattern. The hidden layer consists of 35 neurons. The output layer comprises 6 

neurons, one for each of the six classes as shown in Table 5.1. Therefore, each bee 

defines a 2345-dimensional vector (60*35+6*35+35).

53.4 The Bees Algorithm parameters for control chart pattern

Table 5.2 shows the parameter values adopted for the Bees Algorithm. The values 

were empirically set.
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Pattern Class Outputs
1 2 3 4 5 6

Normal 1 1 0 0 0 0 0

Increasing trends 2 0 1 0 0 0 0

Decreasing trends 3 0 0 1 0 0 0

Upwards shifts 4 0 0 0 1 0 0

Downwards shifts 5 0 0 0 0 1 0

Cyclic 6 0 0 0 0 0 1

Table 5.1. Representation o f the output categories.

Bees Algorithm parameters Symbol Value

Population n 200

Number of selected sites m 10

Number of elite sites out of m 
selected sites e 2

Initial patch size ngh 0.1

Number bees for elite sites nep 80

Number of bees for other 
selected sites nsp 20

Table 5.2. Parameters of the Bees Algorithm.
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5.3.5 Results of control chart pattern recognition using the Bees Algorithm

Table 5.3 presents the classification results obtained for ten independent runs of the 

Bees Algorithm. The results o f the ten runs are used to measure the repeatability and 

reliability of the algorithm.

A typical plot of the solution o f the classification accuracy during the training phase 

is shown in Figure 5.3. The algorithm converges to the target accuracy after around 

8000 iterations. As each iteration requires to apply 498 patterns to 510 different RBF 

networks, and calculate the error for each o f them, running the algorithm on one sole 

computer would take weeks of processing time. In this work, a program called 

Condor was used to speed up the optimisation process. Condor is a program which 

enables the use of idle computers connected to a given network. In this thesis, the 

code for training RBF network was divided into 30 sub programs that were sent by 

Condor from a local machine to 30 free computers on Cardiff University computer 

network. The final results were retrieved and assembled by Condor on the local 

computer. In this thesis, each run took only two days using the Cardiff University 

Condor pool.
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Number of 
runs

Training
accuracy

Test
accuracy

1 99.35% 98.79%
2 99.65% 99.15%
3 99.14% 98.51%
4 99.83% 99.46%
5 99.82% 99.44%
6 99.57% 98.99%
7 99.84% 99.43%
8 99.43% 98.84%
9 99.81% 99.45%
10 99.45% 98.95%

Max 99.84% 99.46%
Min 99.14% 98.51%

Mean 99.59% 99.10%

Table 5.3. RBF classification results.

Pattern
recognition

No o f 
hidden 

neurons
Error Training

Accuracy
Test

accuracy

RBF
(MATLAB) 35 32.6 100 99.6

RBF
(MATLAB) 175 9.3 100 99.7

RBF
(MATLAB) 498 0.02 100 99.8

RBF (Bees 
Algorithm) 35 8.9 99.6 99.1

Table 5.4. Comparison with conventional RBF training.
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Figure 5.3. Typical plot o f classification accuracy versus number of training
iterations.



The average for the ten runs is given in Table 5.4 against the classification results for 

RBF networks trained using the standard algorithm implemented in the MATLAB 

(MAtrix LAB oratory) software. It can be seen that the test and training accuracies in 

the case of the Bees Algorithm are very close to those for the standard RBF 

procedure. The value o f the error function (which is the optimisation criterion for the 

Bees Algorithm) is smaller for a Bees-Algorithm-trained RBF network than the error 

value calculated for an RBF network created using the standard procedure and 

having a five times larger hidden layer.

5.4 Identification of wood defects using the Bees algorithm

This section presents another application of the Bees Algorithm to the problem of 

identifying defects in plywood veneer. An example of a sheet of wood veneer is 

shown in Figure 5.4. The sheet contains several defects. These defects create quality 

problems when the sheets are bonded together. Researchers have developed systems 

for automatically detecting and identifying defects in plywood veneer. Such systems 

generally involve the use of image processing techniques, such as feature extraction 

to capture the essential characteristics of the defects and a classifier to recognise 

these defects.
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Figure 5.4. Wood Veneer. An example of a Wood Veneer sheet containing several

defects



5.4.1 Birch wood veneer boards

Birch wood veneer boards, which are made by bonding together several thin 

plywood sheets, are used in many applications including flooring, furniture and 

vehicle sides. For different applications, there are different quality requirements. The 

quality of a board depends upon the quality of the sheets from which it is made. 

Therefore, the sheets need to be graded into quality categories during the production 

process. The grade of a sheet depends upon the number, size and type of defects 

present.

A board containing serious defects has a lower strength than a board which is free 

from defects. Also, the presence o f certain defects on the surface of a board reduces 

its aesthetic appearance. It is important that a high grade sheet is not used for a low 

quality board because then revenue will be lost. Conversely, if a low grade sheet is 

utilised in a high quality board then customers will be dissatisfied. Producing 

consistently high quality products at economic price is important in market.

The major problem of grading wood sheets is their very high rate of production. On 

a typical line, they travel at speeds o f 2-3 m/s. This makes reliable inspection by 

human operators very difficult and, in addition, operators quickly become tired and 

uninterested. Two independent studies have been carried out to determine the 

accuracy of human operators in grading wood boards. Huber and his colleagues 

(Huber et al. 1985) tested six willing rough mill employees and found that their
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accuracy was 68%. Polzleitner and Schwingshakl (Polzleitner and Schwingshakl 

1992) carried out four independent trials on human graders and observed an average 

performance o f 55%.

In this study, using a charge-coupled device (CCD) matrix camera, the wood veneer 

defects were captured and stored on a digital computer. The wood veneer data 

acquisition rig is shown in Figure 5.5. These images were converted into grey level 

histograms after applying segmentation and image processing algorithms. From the 

first and second order statistical features extracted from the histogram, 17 features 

were selected for training the Neural Network. These are shown in Table 5.5. 

Twelve wood veneer defects and clear wood examples are shown in Figure 5.6. 

Several examples of each class o f defects were used for training and testing the 

neural networks. Automated Visual Inspection (AVI) systems for identifying defects 

using neural networks have been proposed by Pham and Alcock (Pham and Alcock

1996) and Packianather and Drake (Packianather and Drake 2005). The generic 

process for the visual inspection o f wood defects is given in Figure 5.7.

The wood panels are automatically moved to the image capture area by a conveyor 

belt. The system uses a Hamamatsu monochrome CCD matrix camera (resolution 

739 x 575 pixels) to take images of the wood veneer. Uniform illumination is 

provided by a back light (58W fluorescent lamp) and front lighting system (halogen 

lamps: edges 500W and middle 300W). Basic image processing functions (e.g. 

thresholding and filtering) are implemented in hardware. Image segmentation
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algorithms are used to detect the boundaries of the sheet and open defects and defect 

detection algorithms are used to find potential defect areas.
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Figure 5.5. Inspection Rig. The inspection rig for wood defect detection
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Feature
No. Feature Description

1 Mean grey level (m)

2 Median grey level below which 50% o f the values fall

3 Mode grey level the most frequent value

4 Standard deviation o f the grey 
levels (s)

the spread

5 Skewness direction, extent o f  departure from symmetry

6 Kurtosis measures the “peakedness ” o f the histogram

7 Number of pixels with a grey level 
<80

number o f  dark pixels

8 Number of pixels with a grey level 
>220

number o f  bright pixels

9 Grey level (p) for which there are 
20 pixels below p

lowest grey level p- The grey level p is used as the 
lowest grey level to allow for potential noise pixels

10 Grey level (s) for which there are 
20 pixels above s

highest grey level -  The grey level s is used as the 
highest grey level to allow for potential noise 

pixels

11 Histogram tail length on the dark 
side (q-p)

q is the grey level below which there are 2000 
pixels

12 Histogram tail length on the bright 
side (s-r)

r is the grey level above which there are 2000 
pixels

13 Number of edge pixels after 
thresholding a segmented window 

at mean value

defined to detect dark and bright defects

14 Number of pixels after 
thresholding at m-2s

15 The number o f edge pixels for 
feature 14

f l  4 and f l  5 defined to detect dark defects

16 Number of pixels after 
thresholding at m+2s

17 Calculate the number o f edge 
pixels for feature 16

f l  6 an dfl 7 defined to detect bright defects

Table 5.5 Feature selected for training of neural network
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Bark Clear Colored Curly 
Wood Streaks grain

Discoloration Holes Pin Rotten Roughness
knots

Sound Splits Streaks Worm
knots holes

■
Figure 5.6. Wood veneer defect types. There are 12 distinct types o f defect that need 

to be identified by the neural network plus clear wood

Veneer

Classifier

Image

Feature

Image

Defect_l .................................  Defect_n Defect_free

Figure 5.7. Generic Automated Visual Inspection system for wood defect

identification
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5.4.2 RBF network configuration for identification of wood defects

An RBF network configuration similar to the one used for the control chart pattern 

problem was used, this configuration involves three layers: an input layer, a hidden 

layer and an output layer. The input layer has 17 neurons, one for each feature in a 

pattern. The hidden layer consists of 51 neurons. The output layer comprises 13 

neurons, one for each o f the 13 classes shown in Table 5.6. Therefore, each bee 

defines a 1581-dimensional vector (17*51+13*51+51).

For the particular application studied here, 232 examples (both defects and clear 

wood) were employed. This represents the complete set of examples available to the 

authors. Each example is a vector containing 17 features. Table 5.7 shows thirteen 

different classes o f vectors and the number of examples in class. The initial 

classification of these examples was performed by a human inspector. For the 

proposed neural network classification experiments, for each class, 80% (185 in 

total) of the examples were selected randomly to form the training set and the 

remaining 20% (47 in total) formed the test set.

5.4.3 The Bees Algorithm parameters for identification of wood defects

Table 5.8 shows the parameter values adopted for the Bees Algorithm. The values 

were empirically set.
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Pattern Class Outputs
1 2 3 4 5 6 7 8 9 10 11 12 13

Bark 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Clear wood 2 0 1 0 0 0 0 0 0 0 0 0 0 0

Coloured streaks 3 0 0 1 0 0 0 0 0 0 0 0 0 0

Curly grain 4 0 0 0 1 0 0 0 0 0 0 0 0 0

Discoloration 5 0 0 0 0 1 0 0 0 0 0 0 0 0

Holes 6 0 0 0 0 0 1 0 0 0 0 0 0 0
Pin knots 7 0 0 0 0 0 0 1 0 0 0 0 0 0

Rotten knots 8 0 0 0 0 0 0 0 1 0 0 0 0 0
Roughness 9 0 0 0 0 0 0 0 0 1 0 0 0 0
Sound knots 10 0 0 0 0 0 0 0 0 0 1 0 0 0

Splits 11 0 0 0 0 0 0 0 0 0 0 1 0 0

Streaks 12 0 0 0 0 0 0 0 0 0 0 0 1 0
Wormholes 13 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.6. Representation o f the output categories
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Pattern Class Total Used for training Used for Testing

Bark 20 16 4

Clear wood 20 16 4

Colored streaks 20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 8 6 2

Total 232 185 47

Table 5.7. Pattern classes and the number o f examples used for training and testing
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Bees Algorithm parameters Symbol Value

Population n 250

Number of selected sites m 15

Number of elite sites out of m 
selected sites e 3

Initial patch size ngh 0.1

Number bees for elite sites nep 80

Number of bees for other 
selected sites nsp 50

Table 5.8. Parameters of the Bees Algorithm
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5.4.4 Results of the identification of wood defects using the Bees Algorithm

The training and test data set were chosen randomly from the complete data set. Five 

different training and test sets were generated. Table 5.9 presents the mean 

accuracies achieved in five runs for each data set. In total, twenty five experiments 

were implemented.

The average of the twenty five runs is given in Table 5.10 against the classification 

results obtained by RBF networks trained using the standard algorithm implemented 

in the MATLAB software. The results obtained by the Bees Algorithm were also 

compared to the results obtained by a Minimum Distance Classifier (MDC).

In order to build an MDC for a given set o f patterns, the discriminate function must 

be determined (Packianather and Drake 2005). This function is used by the classifier 

to compute the discriminant values for a given pattern. These scalar values are 

passed on to the maximum selector for class assignment. The given pattern is 

classified as class Y  if and only if  the i th discriminant function has the largest value 

(Packianather and Drake 2005)

137



Number of Data 
set

Mean Training 
accuracy

Mean Test 
accuracy

1 84.6% 73.5%
2 88.6% 76.7%
3 87.6% 75.3%
4 85.3% 74.2%
5 88.4% 75.9%

Table 5.9. RBF classification results

Pattern recognition Error Test accuracy

RBF (MATLAB) 28.5 76.43%

MDC - 63.12%

RBF (Bees Algorithm) 11.6 75.12%

Table 5.10. Comparison with conventional RBF training and MDC
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It can be seen that the test and training accuracies in the case of the Bees Algorithm 

are very close to those for the standard RBF procedure. Both the algorithms were 

applied to NNs having the same number of hidden neurons (51 hidden neurons. The 

value of the error function (which is the optimisation criterion for the Bees 

Algorithm) is smaller for a Bees-Algorithm-trained RBF network than for an RBF 

network.

The results also show that the neural network based classifier has better 

generalisation capability compared to the Minimum Distance Classifier.

As in the control chart pattern recognition, task of training RBF network for 

identification o f wood defects takes around 100,000 iterations. In this application, 

the Condor program facility was used to run twenty sub-programs simultaneously 

and reduce the running time from three weeks to two and half days.

5.5 Summary

The first section o f this chapter described the Radial Basis Function (RBF) network, 

its standard training method, and a new method based on the Bees Algorithm.

The application o f the Bees Algorithm for the training of RBF networks for control 

chart pattern recognition was explained. Despite the high dimensionality of the 

problem -  each bee represented 2345 parameters that had to be determined - the 

algorithm trained very accurately the classifiers. The accuracy achieved is

139



marginally lower than the accuracy obtained with conventionally RBF training 

methods. However the comparison of the classification accuracies is in this case not 

totally fair to the Bees Algorithm since the optimisation criterion used by the Bees 

Algorithm is the total output error value rather than the classification accuracy and 

these two quantities are not necessarily correlated because of the way they are 

computed. Experimental evidence demonstrates that the Bees Algorithm produces 

RBF networks with a lower total output error than conventional RBF training 

algorithms, even when the standard training algorithm was applied to RBF networks 

having five times more hidden neurons.

In the last part o f the chapter, an application o f the Bees Algorithm to the training of 

RBF networks for the identification o f defects in wood veneer sheets was presented. 

The accuracy obtained was slightly lower than the accuracy obtained from 

conventionally-trained RBF networks, but the error value was less than the error 

value produced by conventionally-trained RBF networks. The study confirms the 

suitability o f the neural network approach in the identification of defects in wood 

veneer sheets.

In terms of processing time, MATLAB was able to train RBF networks in less than 

10 seconds using a Pentium IV machine and the Bees Algorithm needed 3 days in 

the case of Control Chart Pattern Recognition on the Condor facility. Although 

MATLAB was much faster than the Bees Algorithm, the Bees Algorithm was able to
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train much simpler RBF networks which could be implemented more cheaply in 

hardware if  required.
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CHAPTER 6

CONCLUSION 

AND FUTURE WORK
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6. CONCLUSION

This chapter summarises the main contributions of this work and the conclusions 

reached. It also provides suggestions for future work.

6.1 Contributions

This research has introduced a novel swarm-based tool for solving problems.

The specific contributions were:

• Explaining the Bees Algorithm and its application to function optimisation;

• Using the Bees Algorithm for constrained optimisation problems;

• Employing the Bees Algorithm for multi-solution optimisation problems 

when the task is to obtain as many different solutions as possible which 

satisfy predefined conditions;

• Using the Bees Algorithm for multi-objective optimisation problems;

• Introducing a new method o f training RBF networks using the Bees 

Algorithm.
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6.2 Conclusions

The objectives stated in chapter 1 have all been achieved.

This thesis has presented a new optimisation algorithm called the Bees Algorithm. 

Experimental results on multi-modal functions in n-dimensions show that the 

proposed algorithm has remarkable robustness, producing a 100% success rate in all 

cases. The algorithm converged to the maximum or minimum without becoming 

trapped at local optima. The algorithm generally outperformed other techniques that 

were compared with it in terms o f speed o f optimisation and accuracy o f the results 

obtained.

Two different constrained mechanical design optimisation problems were solved 

using the Bees Algorithm. In each case, the algorithm converged to the optimum 

without becoming trapped at local optima. Again, the algorithm generally 

outperformed other optimisation techniques in terms o f the accuracy o f the results 

obtained.

The version of the Bees Algorithm with enhancements, such as replacing global 

random search with interpolation and extrapolation, shrinking neighbourhood size, 

and abandoning sites with no new information, required less tuning and search space 

sampling than the original algorithm for the problems tested.
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An adapted version o f the Bees Algorithm is used to find multiple solutions for the 

test case of preliminary gearbox design. The results for the Bees Algorithm have 

been compared with those obtained using random search and a GA. Under the same 

sampling conditions, experimental evidence shows that the Bees Algorithm can find 

a much larger number of solutions than the other two methods.

The Bees Algorithm was used as a multi-objective optimiser tool for complex multi­

objective optimisation problems. The tool was used to search for multiple Pareto 

optimal solutions in a mechanical engineering problem. Compared to two non­

dominated genetic algorithms, the Bees Algorithm was able to find more trade-off 

solutions.

The application of the Bees Algorithm to the training of RBF networks for control 

chart pattern recognition and wood defect classification was explained. Despite the 

high dimensionality o f the problem -  each bee represented 2345 parameters (or 1581 

parameters) that had to be determined - the algorithm succeeded in training very 

accurate classifiers. The accuracy achieved is marginally lower than that obtained 

with conventionally RBF training methods. However the comparison of the 

classification accuracies is in this case not totally fair to the Bees Algorithm since 

the optimisation criterion used by the Bees Algorithm is the total output error value 

rather than the classification accuracy. Experimental evidence demonstrates that the 

Bees Algorithm produces RBF networks with a lower total output error than
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conventional RBF training algorithms, even when the standard training algorithm 

was applied to RBF networks having five times more hidden neurons.

6 3  Future work

There are a number of issues which can be investigated in order to improve the Bees 

Algorithm and widen its application potential.

1. Investigate different kinds of neighbourhood search, e.g. using Gaussian 

distribution over the patch size rather the uniform distribution used in this 

research and employing different shrinking methods, for example, 

exponential shrinking.

2. Investigate other types o f selection methods, e.g. probabilistic selection 

according to the fitness or rank o f candidate solutions.

3. Decrease the number o f parameters in the Bees Algorithm. This would 

involve making some o f the parameters dependent on others, for example, the 

neighbourhood size ngh could be set as a percentage of the size of the search 

space.

4. Apply the Bees Algorithm to combinatorial optimisation problems, such as 

Vehicle routing, Job Shop Scheduling and Printed Circuit Board Assembly 

Machine sequencing.
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Investigate the effects of noisy fitness functions on the performance of the 

Bees Algorithm and adapt the algorithm to solve problems such as non-linear 

time-series prediction.
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