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Sum m ary

The fitting of a straight line to bivariate data (x,y) is a common procedure. Standard 

linear regression theory deals with the situation when there is only error in one 

variable, either x, or y. A procedure known as y on x regression fits a line where the 

error is assumed to be associated with the y variable, alternatively, x on y regression 

fits a line when the error is associated with the x variable. The model to describe the 

scenario when there are errors in both variables is known as an errors in variables model.

Errors in variables modelling is fundamentally different from standard regression 

techniques. The problems of model fitting and param eter estimation of a straight line 

errors in variables model cannot be solved by generalising a simple linear regression 

model.

Briefly, this thesis provides a unified framework to the fitting of a straight line er

rors in variables model using the method of moments. Estimators of the line using 

a higher moments approach have been detailed, and asymptotic variance covariance 

matrices of a plethora of slope estimators are provided. Simulations demonstrate tha t 

these variance covariance matrices are accurate for even small data sets. The topic of 

prediction is considered, with an estimator for the latent variable presented, as well 

as advice on the mean value of y given x  via both a parametric and non-parametric 

approach. The problem of residuals in an errors in variables model is described, and 

some quick solutions given. Some examples are presented towards the end of this thesis 

to demonstrate how the ideas provided may be applied to real-life data sets, as well as 

some areas which may demand further research.



List Of N otation

As there is a lot of notation in this thesis, only the most commonly used notations 

are given here. Some symbols are specific to this thesis, whilst some are used more 

generally in statistics. All notations are carefully explained at the appropriate place 

in the text.

& An unobserved latent measurement.

rji An unobserved latent measurement such that rji = a  +  /3&

a  The intercept of a straight line.

(5 The slope of a straight line.

Si A random error component with zero mean and variance a2

£i A random error component with zero mean and variance a2

X{ An observed measurement on the latent variable &, X{ =  & +  <£*•

yi An observed measurement on the latent variable 77*, =  rji +  e*.

LJi Equation error with zero mean and variance a2 added to

H Generic symbol for a mean value.
Exact definition depends on context, usually /j, = E[£].

a 2 Generic symbol for a variance. Usually a 2 = Var[£].
2

A Ratio of error variances %.
a 62

k  Reliability ratio a2 +(Ĵ  ■
e The method of moments estimator for the parameter e.

e The maximum likelihood estim ator for the parameter e.

x  The sample mean of x  measurements.
Defined similarly for other variables.

sxy Statistic defined as ^ 2 r = i( x — x){y — y).
Statistics such as sxx defined similarly.

n  Sample size.

i As a subscript, relates to an individual data point, i = 1, . . . ,  n.

Hh The i-th cental moment of the variable r.

(/)(■) Probability density function of the standard Normal distribution.

$(•) Cumulative density function of the standard Normal distribution.

fa,b,c(a> b, c) The joint probability density function of variables a, b and c.
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Chapter 1 

Introduction

1.1 Introductory Rem arks

The fitting of a straight line to bivariate data (x,y) is a common procedure. Standard 

linear regression theory deals with the situation when there is only error in one variable, 

either x, or y. A procedure known as y on x regression fits a line where the error is 

assumed to be associated with the y variable, alternatively, x on y regression fits a line 

when the error is associated with the x variable. Both of these regression techniques 

will be briefly outlined here.

U sing  y  o n  x  reg ress io n  If the error is associated with the y variable, a suitable 

linear model could be

yi = a  +  f a i  +  £i, i = 1 , . . . ,  n

where (xi, y i ) , . . . ,  (xn, yn) are our observations, and e i , . . . , e n are considered to 

be random error components, each with zero mean and non-zero variance. The 

parameters a  and (3 may be estimated by minimising some function of these random 

error components.

Least squares theory as advocated by Carl Freidrich Gauss (1777-1855) and Adrien

1
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Marie Legendre (1752-1833) suggests minimising the sum of the squared error compo

nents. In other words, the y on x regression line is obtained by minimising the sum of 

squares of the vertical discrepancies from the data to the regression line. Mathemati

cally speaking, this involves minimising the quantity

'jh el = ^2(yi - a -  fai)2 (1.1)
i= 1 i=  1

By differentiating (1.1) with respect to each of the parameters, and solving the equa

tions which arise by setting the derivatives to zero we obtain the least squares estimators 

of the parameters a  and /? as

/90 =  —
$xx

do =  y - f i x

where

7yy

1 n
=  -  x ) { y i  -  y )

71 »=l

= ^ E (x> -x)2
i—1

=  ■  ( L 2 )n ■ 1z=i

and x  and y are the usual sample means. It can easily be shown that the sum of 

squares in (1.1) is minimised with a = do and (3 = fio (see for example Draper and 

Smith [37]). These sample quantities are fundamental to the topic of regression and 

will appear throughout this thesis.

U sing x  on y  regression Now assume tha t the error is associated with the x vari

able. Least squares estimation can still be used, but the sum of the squared horizontal
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discrepancies from the data to the regression line is minimised instead. The method

ology of finding this minimum value is identical to that of y on x regression, and thus 

details are omitted. Since the assumed relationship takes the form x = $ +  9y the 

slope estimator for this model is 0 = but comparison with (3 is made by taking the
s y y

reciprocal so the comparable estimator is

o *  _  s y y
Po ~

° x y

The estimators quoted above for both y on x and x on y regression are the best linear 

unbiased estimators for the given model. This follows from the Gauss-Markov theorem 

(see Draper and Smith [37]). However, the models tha t have been considered so far 

assume tha t there is a homoscedastic error structure. Models with heteroscedastic 

error also may occur, and a modified least squares procedure, known as weighted 

least squares can be used to obtain estimates of the parameters. Such models are not 

discussed in this thesis, and the reader is again referred to Draper and Smith [37] for 

more details.

Once the regression line has been obtained, a Student’s t  test, or an analysis of 

variance procedure can be used to test the significance of the regression. Confidence 

intervals can be constructed for the slope and the intercept, and a lack of fit test 

performed for the chosen model. Further details on this methodology, and of fitting 

standard regression lines may be found in Draper and Smith [37].

An assumption made in both y on x regression and x on y regression is tha t error 

is only present in one variable. In some situations however, it may be possible tha t 

there are errors in both variables. This is commonly known as the errors in variables 

or measurement error model. Casella and Berger in [16] comment tha t the errors in
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variables model

“is so fundamentally different from the simple linear regression ... tha t it 

is probably best thought of as a different topic.”

This type of model usually occurs when both the x-variable and y-variable are 

experimentally measured.

Authors such as Kendall and Stuart [67] have shown that the least squares estimate for 

the slope in y on x regression is biased if applied to an errors in variables model. This 

emphasises the importance of using modelling appropriately and carefully. Finding 

the balance between functionality and simplicity is crucial. Krzanowski [69] comments 

tha t a model may be constructed to appear mathematically elegant, but unless a user 

can fully understand and operate the model it is worthless.

All parametric models are developed from making particular assumptions. It is impor

tan t tha t these assumptions correspond to the data. Ideally, the data would be allowed 

to speak for themselves, rather than having a model aggressively forced upon them. 

Indeed, natural data will never follow a model. Box [11] wrote

“Since all models are wrong the scientist must be alert to what is impor

tantly wrong. It is inappropriate to be concerned about mice when there 

are tigers abroad” .

He also stated

“in nature there was never a normal distribution, there was never a straight 

line, yet with normal and linear assumptions, known to be false, he can
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often derive results which match to a useful approximation those found in 

the real world” .

Tsay [105] took the extreme view that

“Since all statistical models are wrong, the maximum likelihood principle 

does not apply.”

These ideas have recently been addressed by Longford [73]. Committing to a model, 

and putting

“all our inferential eggs in one unevenly woven basket”

may ignore a disastrous error. This is particulary the case when certain modelling 

techniques rely on making heavy assumptions - assumptions which may not properly 

reflect the data in question. For example, James [59], mentions tha t a normal distri

bution is commonly assumed for an error term, even though a negative measurement 

cannot be observed. He quotes blood pressure as such an example of a variable that 

cannot take negative values.

Although simple linear regression models th a t are associated with the problem of 

fitting straight lines to scattered data are inevitably wrong, their widespread use 

indicates th a t they are not always, in Box’s sense, importantly wrong. However, this 

thesis describes circumstances where simple linear regression models are importantly 

wrong; where there are measurement errors in both the x and y variables. In these 

circumstances a completely different type of model is called for.
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1.2 The Linear Errors in Variables M odel

Suppose tha t there are n individuals in a sample with true values (£i} r]i) and observed 

values (Xi,yi). It is assumed tha t there is an underlying linear relationship between &

However there is variation in both variables th a t result in a deviation of the observations 

from the true values, resulting in a scatter about the underlying straight line. This 

scatter is represented by the addition of a random error component to the true values. 

The observations Xi and yi can be written

These errors, 5 and e are assumed to be independent of £. To use the terminology of 

Carroll et al. [14], are latent variables, whilst X{ are surrogate variables.

Errors in variables modelling can be split into two general classifications defined by 

Kendall [65], [6 6 ], as the functional and structural models. The fundamental difference 

between both models regards the treatm ent of the

T he functional m odel This assumes the to be unknown, but fixed constants

and rji

r)i = a  + fib

■Xi — £i "f"

Vi ~  Vi + £ i ~  a  + P € i  + £ i

If

this will be referred to as the Normal functional model.
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T he structural m odel This model assumes the £'s to be a random sample from a 

distribution with mean p  and variance a2. If

~  N
a2 0 0
0 a 2 0
0 0 a2
0 <r 0

then this type of structural model will be referred to as the Normal structural model.

An extension of the structural model is the ultrastructural model. The ultrastructural 

model extends the structural model to a series of subpopulations through which the 

relationship of the centroids is linear.

The higher central moments of £ are also needed for work in this thesis, and so the 

notation is introduced now

The random error components, or errors for short are assumed to have zero means and 

variances th a t are independent of the suffix i

E[Si] =  E[ei}= 0

Var[6i] =  (T?

Var[£i]

The higher central moments of the errors are also assumed to exist

£[«53] =  E [ 5 f } = m

E[£i] = /Je3 : E[Sg] = He4 ■
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The errors are assumed to be mutually uncorrelated such tha t

E[5i5j] = 0 , E[£iSj) =  0 , for all i ^  j

E[5i£j\ = 0  for all i and j.

It is possible to rewrite the model outlined above as

yi = a  + /3xi + (e i - f iS i ) ,  z =  l , . . . , n

This highlights the difference between this problem and the standard regression model 

since the term e — (35 is correlated with x. Indeed,

Cov[x, s — (35\ = E[x{e — (35)} = E[(£ +  5)(e — (35)] =  — (3al

and is only zero if (3 = 0 or <jf =  0. If <rf =  0, the model is equivalent to standard y

on x regression, and the usual results outlined earlier apply. In addition to this, the

error term is clearly dependent on (3.

There have been several reviews of errors in variables methods, notably Casella and 

Berger [16], Cheng and Van Ness [20], Fuller [41], Kendall and Stuart [67] and Sprent 

[97]. Unfortunately the notation has not been standardised. This thesis closely follows 

the notation set out by Cheng and Van Ness [20] but for convenience, it has been 

necessary to modify parts of their notation. All notation will be carefully introduced 

at the appropriate time. A list of all notation used is available towards the beginning 

of the thesis.

1.3 O utline o f the Thesis and C om m ents

As stated by Casella and Berger [16], errors in variables modelling is fundamentally 

different from standard regression techniques. The model fitting and parameter
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estimation of an errors in variables model is notably different to fitting a simple linear

regression model. The array of different methods tha t have been used to tackle the

problem of errors in both variables are described in Chapter 2. In simple regression,

the method of least squares and maximum likelihood are closely linked and furnish a

unified structure to estimation. In the errors in variables situation it turns out tha t the

method of maximum likelihood is only satisfactory when all random variables in the

model £, 6 and e are Normally distributed (i.e. the Normal structural model). Then

the method of maximum likelihood exactly coincides with the method of moments.

Even then some additional information about the parameters, for example knowledge
2

of the ratio of the error variances (called A) is needed. The likelihood method,
<5

and the reasons for its unsuitability is described in Chapter 5. There are comparisons 

with the method of least squares estimation, notably orthogonal regression and the 

A known case. However least squares does not provide a framework tha t covers all 

possibilities. Fortunately the method of moments is a flexible alternative method of 

estimation tha t gives a range of possible estimating equations, each one suited to the 

exact circumstances in which a model is fitted. It is possible to extend the usual range 

of method of moment estimating equations by appealing to higher order moments. 

This is described fully in Chapter 3.

Asymptotic results about the variance covariance structure are as easily obtained as 

they are in maximum likelihood estimation, these results are given in full in Chapter 

3. The delta method (see for example Cramer [28]) allows insights into the exact 

structure of the variance covariance matrices th a t the inversion of an information 

matrix needed in the maximum likelihood approach does not provide. Since the 

results given are asymptotic ones, it is necessary to establish some guidance on topics
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such as the minimum sample sizes that are needed for reliance to be placed on the 

estimators. This is done in Chapter 4 using simulations.

The key application of regression models is often prediction, not just the identification 

of the model. Here too there are profound differences between errors in variables 

models and simple linear regression. The distinction is that the variable £, is not 

measured directly, but instead is a latent variable. The measurement of £, x , differs 

from the latent value by an unknown error 8. As a consequence there are several 

predictions tha t might be of interest, such as the recovery of the latent data set 

{{{.iiViii =  1, • • • ,n)} or the average value of y given an x, E[2/|x]. These turn out 

to be different, as described in Chapter 6 , and the appropriate predictor to use in 

practise will depend on the circumstances of the investigation.

Just as prediction differs from the case of simple regression so does the notion of 

residuals. There are several possible definitions of a residual, but here the diagnostic 

checking of the model is complicated by a phenomenon tha t has only been briefly been 

described previously, which was called migration by Nix (pers. comm.), who seems to 

have been the first to identify the phenomenon. The effect of measurement error in the 

x  measurement is to distort the scatter of data from the true line, but also to make the 

average value of y at any particular x  follow a curve. The average value of y given x  fol

lows a straight line only for the Normal structural model. This phenomenon somewhat 

complicates the usual plot of deviations from the fitted model against x. The interpre

tation of residuals in the context of errors in variables models is discussed in Chapter 7.

So as to illustrate the practical application of the theory developed in this thesis
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Chapter 8  contains a number of case studies based on data from a wide range of 

disciplines. These applications help in clarifying the way in which errors in variables 

models can be applied in a practical way, and illustrate th a t an approach that 

ignores the measurement errors in x  is often fundamentally flawed. Throughout 

the investigation it has become clear tha t it is important to consider not just one 

standard model, as in the case in simple regression, but instead to consider carefully 

the specific application so as to settle on the correct model for the specific investigation.

Chapter 9 summarises the contents of this thesis, as well as describing some potential 

further work as a result of the investigations undertaken in this thesis.



Chapter 2

An O verview o f Errors in Variables 
M odelling

2.1 Introductory Rem arks

The literature on errors in variables modelling is scattered and wide ranging. It is the 

aim of this Chapter to bring together some of the main concepts developed to aid with 

errors in variables modelling, and highlight some similarities between the methods. It 

is impossible to discuss the entire wealth of literature on errors in variables modelling, 

and strict attention has been placed on a few key ideas and methods.

The discussion here begins with the historical development of linear errors in variables 

modelling, and progresses to discuss how some of the available computer packages 

with statistical capabilities, such as SAS, may be used to aid with fitting an errors in 

variables model.

2.2 Origins and Beginnings

The author first associated with the errors in variables problem was Adcock [1], [2 ]. 

In the late 1800’s he considered how to make the sum of the squares of the errors at

12
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right angles to the line as small as possible. This enabled him to find what he felt 

to be the most probable position of the line. Using ideas from basic geometry, he 

showed that the errors in variables line must pass through the centroid of the data. 

However, Adcock’s results were somewhat restrictive in that he only considered what 

is commonly referred to as orthogonal regression. Orthogonal regression minimises 

the orthogonal distances (as opposed to vertical or horizontal distances in standard 

linear regression) from the data points to the regression line. As will be shown in 

Chapter 3 this assumes that the error variances erf and erf are equal. Use of the 

orthogonal regression line has been questioned by some authors, notably Bland [9], on 

the grounds tha t if the scale of measurement of the line is changed, then a different 

line would be fitted. However this is only true if A is not modified along with the scale 

of measurement. If A is modified along with the scale of measurement, the same line 

is fitted.

Adcock’s work was extended a year later by Kummel [70]. Instead of taking equal
2

error variances, he assumed that the ratio A =  was known instead. This methoda6
of identifying a line has proved popular and will be mentioned in detail many times 

in this thesis. Kummel derived an estimate of the line which clearly showed the 

relation between his and Adcock’s work. Kummel argued tha t his assumption of 

knowing A was not unreasonable. He suggested tha t most experienced practitioners 

have sufficient knowledge of the error structure to agree a value for this ratio.

The idea of orthogonal regression was included in a book by Deming [33]. He noted that 

just as the orthogonal projections from the data to the regression line may be taken, 

so can any other projection. This would then take account of unequal error variances.
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Figure 2.1 illustrates how this may be done. A least squares method can then be used to 

minimise the sum of squares of these oblique distances. Lindley [72] found that adding 

a weighting factor when minimising the sum of squares of the orthogonal projections, 

allowed one to minimise projections other than orthogonal. It should be pointed out 

that all these authors implicitly assumed tha t the error structure is homoscedastic, 

otherwise additional weighting factors to allow for the heteroscedasticity would have to 

be used. For example, a recent paper by Cheng and Riu [18] illustrates how some of the 

ideas presented in this literature survey may be applied to a model with heteroscedastic 

errors. They talked about the concept of equation error (discussed later), correlations 

in the error structure and heteroscedasticity.

Vertical

Projection

Figure 2.1: Deming’s Regression

An early paper on modelling with errors in both variables was by Pearson [8 6 ]. He 

extended the ideas of previous authors to allow the fitting of lines and hyperplanes 

(when there is more than one predictor) of best fit. Pearson was able to show that the 

orthogonal regression line lies between the y on x, and x on y regression lines.
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2.3 G rouping M ethods

A different approach was suggested by Wald [110]. He described a method tha t did 

not make any parametric assumptions regarding the error structure. He stressed tha t 

there was no justification in making assumptions such as A =  1, and tha t the re

gression line would not be invariant under transformations of the coordinate system 

(this criticism has been dealt with in the previous section). Wald suggested split

ting the observations into two groups, G\ and G2, where G\ contains the first half of 

the ordered observations (cc(i), 2/(1) ) , . . . ,  (x(m), 2/(m)) and G2 contains the second half 

(aj(TO+i)>2/(m+i))j • • • ? (^(n)) 2/(n))> the two halves being determined by the ordered Xi s . 

An estimator of the slope is then

j3w — (̂ C1) +  • • • +  V(m)) ~  (V{m+1) +  • • • +  l/(n))
(X(i) +  . . . +  £(m)) — (X(m+i) +  . . . +  £(n))

A problem here is tha t for the estimator to be consistent the grouping should

be based on the order of the true values, otherwise, in general, the groups are not

independent of the error terms 51}. . . ,  5n. Wald countered this by proving that, at least 

approximately, grouping with respect to the observed values is the same as grouping 

with respect to the true values. Properties of this estimator for finite samples, as well 

as approximations of the first four moments can be found in Gupta and Amanullah [54].

The idea of grouping the observations was further developed by Bartlett [6 ]. Instead 

of separating the ordered observed values into two groups, he suggested tha t greater 

efficiency would be obtained by separating the ordered observations into three groups, 

Gi, G2 and G3. G 1 and G3 are the outer groups, and G2 is the middle group. Nair and 

Banerjee [78] show that for a functional model, B artlett’s grouping method provided 

them with a more efficient estimator of the slope than W ald’s method. In B artle tt’s
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method the slope is found from a line through the points (x g i,2/Gi) and (xG3,yG3), 

where (x g i,2/Gi) and (xg3 , 2/g3) are the mean points of the observations in G\ and G3 

respectively. In effect, the observations in G2 are not used after the data are grouped. 

Gibson and Jowett [47] offered advice on how to place the data into these three groups 

to obtain the most efficient estimator of the slope. How the data should be grouped 

depended on the distribution of £. A table summarising their results for a variety of 

distributions of £ can be found in the review paper by Madansky [74].

Neyman and Scott [80] suggested another grouping method. The methodology they 

used is as follows. They suggested fixing two numbers, a and b such tha t a ^  b. The 

numbers a and b must be selected so P[x ^  a] > 0  and P[x > b] > 0. The observations 

Xi are then divided into three groups, G i ,G 2 and G3 . If Xi ^  a those observations 

are put into Gi, if a < Xi ^  b those observations are put into G2, and if Xi > b those 

observations are put into G3. A further two numbers — c and d are then found such 

tha t P[—c ^ S ^ d ]  = 1 . An estimator of the slope is then given by

(3ns  = y ~~
^G3 %Gi

and is a consistent estimator of /? if

P[a — c < £ ^ a  +  d] =  P[b — c <  £ ^  b + d] = 0.

However, whether this condition is one tha t is obtainable in practice is open to debate.

Grouping methods, in particular Wald’s method, have been critised by Pakes [82]. He 

claimed tha t the work of Gupta and Amanullah [54] is unnecessary as W ald’s estimator 

is, strictly speaking, inconsistent. Letting (3W denote W ald’s estimator for the slope,
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Pakes showed

\p \ im j3w \  =  \(3 \ j - z --------- — v J f t t 2— -771---- ^771---------777 <  \P\,
(x g2 ~  x Gi) +  E[$\ x  £ G2 ] — E[S\ x  £ G\\

which shows that, in general, W ald’s estimator will underestimate the value of the

true slope.

However, this expression derived by Pakes offers a similar conclusion to that of Neyman 

and Scott [79]. As long as the horizontal error 6 is bounded (Si small in relation to 

the spacing X(*+i) — xq) for all i) so th a t the ranks of £ are at least approximately 

equal to the ranks of x, then grouping methods should provide a respectable es

tim ator for the slope as the expression E[S\ x  £ G2 }—E[S\x  £ G\) should be negligible.

2.4 Instrum ental Variables

Extensive consideration of this method has appeared in the econometrics literature. 

Essentially, the instrumental variables procedure involves finding a variable w that 

is correlated with x, but is uncorrelated with the random error component, S. The 

estimator for the slope is then

Piv =
Sxw

where, syw and sxw are defined analogously to (1.2). In practice however, it is difficult 

to obtain a good instrumental variable which meets the aforementioned criteria.

The method of grouping can be put into the context of instrumental variables. Mad- 

dala [75] showed that Wald’s grouping method is equivalent to using the instrumental
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variable
J 1 if Xi > m e d i a n ^ , . . . ,  x n)

1 1 — 1 if Xi < m e d i a n ^ , . . . ,  xn)

and similarly B artle tt’s grouping method is equivalent to using

1 for the largest |  observations 
Wi = — 1 for the smallest |  observations

0  otherwise.
V

2.5 G eom etric M ean

Other than grouping the data, or looking for an instrumental variable, another ap

proach is to simply take the geometric mean of the y on x regression line, and the 

reciprocal of the x on y regression line. This leads to the estimator

There is a geometric interpretation of the line having this slope - it is the line giving the 

minimum sum of products of the horizonal and vertical distances of the observations 

from the line (Tessier [103]). However, for the estimate to be unbiased (see Jolicoeur 

[61] for example), one must assume that

A = p 2 =  4 - (2.1)

This is due to

This limit is equal to /3 if and only if A = (32.

It is also worth noting that with p = -^11 ..yj&xx&yy
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P g m  is therefore the ordinary y  on x  slope estimator scaled by the correlation 

coefficient between x  and y .

A technical criticism of the use of this estimator is tha t it may have infinite variance 

(Creasy [29]). This happens when the scatter of the observations is so great tha t it 

is difficult to determine if one line or another perpendicular to it should be used to 

represent the data. As a result, it may be difficult to construct confidence intervals of 

a respectable finite width. Geometric mean regression has received much attention, 

primarily in the fisheries literature. Ricker [87] examined a variety of regression 

methods applied to fish biology, and promoted the use of geometric mean regression. 

He claimed tha t in most situations it is superior to grouping methods, and the 

geometric mean regression line is certainly one of the easiest to fit. In addition, 

Ricker also warned tha t regression theory based on assuming tha t the data are from a 

Normal distribution may not apply to non-Normally distributed data. Great care must 

be taken by the statistician to ensure the proper conclusions are obtained from the data.

Jolicoeur [61], again in the fisheries literature, discussed the paper by Ricker. He stated 

tha t as geometric mean regression is equivalent to the assumption in equation (2.1) it 

is difficult to interpret the meaning of the slope, as the error variances cr| and only 

contaminate and cannot explain the underlying relationship between £ and rj.  Ricker 

replied to the paper by Jolicoeur in a letter, and claimed tha t the ratio (2.1) may 

not be linked to the presence or the strength of the underlying relationship, but the 

correlation coefficient will always give an idea as to the strength. Ricker reiterated 

tha t geometric mean regression is an intuitive approach, and as long as the assumption 

(2.1) holds, is a perfectly valid regression tool.
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Further discussion on this estimator was initiated by Sprent and Dolby [99]. They 

discouraged the use of geometric mean regression, due to the unrealistic assumption 

of (2.1). They both however sympathised with practitioners, especially those in fish 

biology, who do not have any knowledge regarding A and therefore would be unable 

to use the methods described in Section 2.2. In addition, they commented that the 

correlation coefficient might be misleading in an errors in variables model, due to each 

of the observations containing error. They did however suggest that a correlation coef

ficient may be useful in determining if a transformation to linearity has been successful.

2.6 Cum ulants

Another method of estimation tha t has been used in errors in variables modelling is the 

method of moments. This will be described in the following section. A closely related 

approach to this is using cumulants, which were proposed by Geary [43], [44], [45], [46]. 

Cumulants can be defined as follows. Assume th a t X  and Y  are jointly distributed 

random variables. Then, provided the expansions are valid in the given domain, the 

natural logarithm of the joint characteristic function can be written as

i>(ti,t2) = In[<£(*!, *2)] =  In[E(eltlX+lt2Y)} = ^  /c(r, s ) (2.2)
T'  S .r,5=0

Here, rjj is the so-called joint cumulant generating function, and, if r ^  0 and s ^  0 

then «(r, s) is called the r,s product cumulant of X and Y. The slope can be estimated 

via the method of cumulants as follows.
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Assume that a structural errors in variables model has been selected. Then

Xi — Si

V i  —  V i  " b  &i

TJi =  Qi +  /?&

where the error laws quoted earlier in this thesis apply. If the true values £ and rj are 

centered with respect to their true mean, then the intercept vanishes, and we can write 

the structural relationship in the form

= 0 (2.3)

Letting K(x,y) denote the cumulants of (x , y ), and K(t,v) denote the cumulants of (£ ,77) 

we have

*(*,y)(r, s ) == (̂£,77) s )

This follows from the following important properties of bivariate cumulants (see, for 

example Cheng and Van Ness [20], Pal [83])

• The cumulant of a sum of independent random variables is the sum of the cumu

lants.

•  The bivariate cumulant of independent random variables is zero.

The joint characteristic function of (£, rj) is

^(f1,f2) =  £'[e“ >«+i(2’Jj (2.4)

It follows from (2.3) and (2.4) that
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and if we replace the joint characteristic function <j> by the cumulant generating function 

tjj we obtain
<ty_ _  &4>_ _  1 (  _ a ^ \

P ditr d i t2 <t>\ dih dit2J { ' 1

and it follows from (2.2) and (2.5), for all r, s > 0

(3k (t +  1, s) — «(r, s +  1) =  0

If /c(r +  1, s) ^  0 an estimator for the slope is then

3  =  «(r, s +  1)
C K,{r +  1, s)

In reality, the cumulants «(r, s) will have to be replaced by their sample equivalents 

K(r ,s) .  Details of how these sample cumulants may be computed as functions of 

sample moments are included in Geary [43].

2.7 M ethod of M om ents

Instead of tackling the problem via cumulants, the method of moments can be used. 

Briefly, this is where a set of estimating equations are derived by equating population 

moments with their sample equivalents. The method of moments approach shall 

be considered in Chapter 3 of this thesis, and so only a brief survey of the existing 

literature is given here. Kendall and Stuart [67] derived the five first and second order 

moment equations for the structural errors in variables model. However, there are 

six parameters, /z, ck, /?, crj, erf and o\  for the structural model. So in order to proceed 

with the method of moments, some information regarding a parameter must be 

assumed known, or more estimating equations must be derived by going to the higher 

moments. Details on the various assumptions tha t can be made are included in Cheng
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and Van Ness [20], Dunn [39], and Kendall and Stuart [67], as well as others. Dunn 

[39] gave formulas for many of the estimators of the slope tha t are included in the 

next Chapter. However, he did not give any information regarding estimators based 

on higher moments. Neither did he give information about the variances of these 

estimates. A recent paper by Davidov [31] considered the Normal structural model 

and commented tha t the method of moment estimators are equal to the maximum 

likelihood estimators. Some large sample properties were also offered. Work on the 

higher order moment estimating equations has been done by Drion [38], and more 

recently by Pal [83], Van Montfort et al [108], Van Montfort [107] and Cragg [27].

Drion [38], in a paper that is infrequently cited, looked at an estimator that could be 

derived through the third order non central moment equations for a functional model. 

Drion computed the variances of all the sample moments tha t he used, and showed 

that his estimator of the slope is consistent. Prior to this work, Scott [90] considered 

the structural model, and also found an estimator based on the third moments. Scott 

was able to show that if the third central moment of £ exists, and is non-zero, then the 

equation

Fn,i(b) = ^  -  y -  b(xi -  x)]3 =  0
i—1

has a root b which is a consistent estimate of (3. This is because the stochastic limit of 

Fnji(b) is (P — b)3/j,£3, where /i^3 denotes the third central moment of £. The estimate 

of the slope is then a function of the third order sample moments. Scott was able 

to generalise this result. If the random variable £ has central moments up to and 

including order 2m +  1 and if at least one of the first m  odd central moments p ^ 2 k+i
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(k = 1 , 2 , . . . ,  m), differs from zero, then the equation

F n , m ( b )  =  -  V 'h / i  ~ y ~  b ( x i  -  x ) ] 2 m + l  =  0 
n i=i

has a root b which is a consistent estimate of (3. Scott did warn however, that 

estimators based on the lower order moments are likely to be more precise than those 

based on higher order moments. Unfortunately, Scott did not provide a method of 

extracting the root which would provide the consistent estimator.

More recently, Pal [83] further examined the possibilities of the moment equations in a 

structural model. He stated tha t in economics, the errors in variables situation cannot 

be ignored, and as a result, least squares estimation is the wrong way to proceed. 

Pal derived six possible estimators of the slope, but showed that three of these are 

functions of the other slope estimators, and concluded tha t there must be infinitely 

many consistent estimators which can be obtained by taking different functions of the 

slope estimators he derived. For each of the six estimators, Pal found their asymptotic

variances when the error terms were assumed to follow a Normal distribution. He
2

then went on to consider a variety of regression scenarios, such as ^  > 0, to offer

advice as to which estimator has the smallest variance. The asymptotic efficiency of 

a particular estimator with respect to the least squares estimator was also provided, 

for different distributions of £. A brief review on the method of cumulants, and how 

errors in variables modelling might be extended to a multiple linear regression model 

was included towards the end of the paper.

Van Montfort et al [108] gave a detailed survey on estimators based on third order 

moments. They provided an optimal estimator of the slope which is a function of three 

slope estimators. In order to obtain this optimal estimator, the variance covariance
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matrix of the third order moments if not known, has to be estimated. By replacing 

the variance covariance m atrix with its estimate, the optimal estimator is no longer 

a function of moments up to order three since moments of order higher than three 

appear in the estimation of the variance covariance matrix. Van Montfort et al, 

through a simulation study, demonstrated tha t the optimal estimator behaves well for 

a sample size of 50, and is superior to any other third moment estimator. The same 

study was replicated for a sample size of 25. For this sample size, they stated tha t 

the third moment estimators performed badly. A standard assumption is to assume 

that the errors 5 and e are independent. Van Montfort et al showed that even if 5 

and e are linearly related, then their optimal estim ator of the slope is still optimal for 

all consistent estimators of j3 which are functions of the first, second and third order 

moments. In addition, the asymptotic properties of the slope estimator are not altered.

A detailed account of alternative approaches to errors in variables modelling was 

written by Van Montfort [107]. This text included estimation based on third order 

moments, extensions to polynomial regressions, using characteristic functions and 

links to the factor analysis model. More details on the asymptotic variances and 

covariances of the third order moment slope estimators were provided. This text is an 

extension of the details included in the paper by Van Montfort et al [108].

The most recent account of the use of using higher moments was tha t by Cragg [27]. 

He extended the work on the moment equations to include those of the fourth order. A 

problem with moment based estimators however, is stability. It is well known that as 

the order of the moment increases they become progressively more difficult to estimate 

and larger sample sizes are needed to obtain a reliable estimate. Indeed, a paper by
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Kagan and Nagaev [64] showed under general conditions tha t the order of a population 

moment that can be estimated by the corresponding sample moment in a sample is 

roughly 2 inpn/n')] an<̂  ^ i s  order is extremely sharp. They offer the warning

“one should be very careful in using too many sample moments even when

the sample size is rather large”

Cragg applied a minimum \ 2 approach to the second, third and fourth moments in 

order to obtain an efficient general moment estimator. This approach again involves 

finding an estimated variance covariance m atrix of the moments. As Cragg noted, this 

may be difficult as it will involve the eighth order moments. He suggested avoiding 

this problem by replacing the variance covariance matrix with some weighting matrix. 

This will result in less asymptotic efficiency however. In his simulations Cragg used a 

diagonal weighting m atrix with elements T  ancj T  depending whether the moment 

equations are based on the second, third or fourth moments respectively. This may be 

deemed inappropriate as these values correspond to the theoretical variances of the 

second, third and fourth powers of a Normally distributed variable with zero mean 

and unit variance, even though a Normal distribution will not be applicable for every 

structural model.

A somewhat different use of the method of moments was suggested by Dagenais and 

Dagenais [30]. They proposed a consistent instrumental variable estimator for the 

errors in variables model based on higher moments. In addition, they showed how a 

regression model may be tested to detect the presence of errors in both variables. Da

genais and Dagenais illustrated their ideas through a number of numerical simulations 

and showed tha t their estimator is superior to the ordinary least squares estimator.
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An alternative way of using the method of moments method was presented in a recent 

paper by Woodhouse [112]. By standardising the data, he presented chart solutions to 

assist users to readily find estimators of the slope (3 and gave advice on how the slope 

may be converted to the original unstandardised data. To assist in the explanation 

of this method, he also provided a detailed illustration. Woodhouse also commented 

on the wide ranging applications of errors in variables modelling, from laboratory use, 

method comparison studies and to make estimates of the constants associated with 

scientific laws.

2.8 Equation Error

Some authors have stressed the importance of a concept known as equation error. 

Further details are given by Fuller [41] and Carroll and Ruppert [13]. Equation error 

introduces an extra term uji to each yi

Hi —  l i  +  +  Si =  Oi T -  (3£ i  +  LUi +  £ i

Dunn [39] described the additional error term u as

“(a) new random component (that) is not necessarily a measurement error 

but is part of y that is not related to the construct or characteristic being 

measured.”

Despite its name, equation error is not intended to model a mistake in the choice of 

equation used in describing the underlying relationship between £ and 77. Assuming 

that the equation error terms have a variance crj tha t does not change with the suffix 

z, and tha t they are uncorrelated with the other random variables in the model, the 

practical effect of the inclusion of the extra term  is to increase the apparent variance
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of y by the addition of crj. The impact of equation error upon the estimation and 

fitting of an errors in variables model is discussed in the next Chapter.

2.9 M axim um  Likelihood

The vast majority of the papers available on errors in variables modelling have 

adopted a maximum likelihood approach to estimate the parameters. Only a selection 

of the large number of papers shall be mentioned here. These papers assumed 

that either the Normal functional or Normal structural model applied. Lindley 

[72] was one of the first authors to use maximum likelihood estimation for the 

errors in variables model. Lindley commented th a t the likelihood equations are not 

consistent, unless there is some prior information available on the parameters. He 

suggested th a t the most convenient assumption to make is to assume that the ra

tio A is known. Estimates of all the relevant parameters are then derived and discussed.

Kendall and Stuart [67] reviewed the topic of estimation in an errors in variables 

model, but concentrated their efforts on the maximum likelihood principle. They 

commented th a t the sample means, variances and covariances form sufficient statistics 

for a bivariate Normal distribution. As a result, the solutions of the method of mo

ment estimating equations for the unknown parameters //, a , /?, cr2, erf and al  are also 

maximum likelihood solutions, provided tha t these solutions give admissible estimates 

(namely, positive estimators for the variances in the model). The conditions to obtain 

admissible estimates are then outlined. Further details on these conditions, and 

estimation using the method of moment estimating equations is included in Chapter 

3. The essential difficulty is that of having five moment estimating equations, and
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six parameters to estimate. Kendall and Stuart suggested various ‘cases’, each which 

consist of a different assumption regarding a subset of the parameters. Estimators 

for the parameters are derived for each of these ‘cases’, and advice is given on how 

to construct confidence intervals. A brief survey on cumulants, instrumental variables 

and grouping methods was also included in their work.

A disadvantage of the likelihood method in the errors in variables problem is tha t it 

is only tractable if all the distributions describing variation in the data are assumed 

to be Normal. In this case a unique solution is only possible if additional assumptions 

are made concerning the parameters of the model, usually assumptions about the 

error variances. The likelihood approach where the distribution assumed for £ is 

different from Normal is touched upon in Chapter 5, where the difficulties of the 

approach are outlined. Nevertheless, maximum likelihood estimators have certain 

optimal properties and it is possible to work out the asymptotic variance covariance 

matrix of the estimators. These were given for a range of assumptions about the 

error structure but for the case when £ is Normally distributed by Hood et al [57]. In 

addition, Hood et al conducted a simulation study in order to determine a threshold 

sample size to successfully estimate their variance covariance matrix. They concluded 

tha t this threshold was approximately 50.

Other papers on the likelihood approach have tended to focus on a particular aspect 

of the problem. For example, Wong [111] considered the likelihood equations when 

the error variances were assumed to be known, and equal. This case has attracted 

much attention, as if both error variances are known, the problem is overidentified 

- there are four parameters to be estimated from five estimating equations (be
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it likelihood equations, or moment equations). To simplify the procedure, Wong 

used an orthogonal parameterisation in which the slope parameter is orthogonal to 

the remaining parameters. Approximate confidence intervals for the parameters, 

information on testing hypotheses regarding the slope, and the density function for 

the slope are also included. Prior to this, Barnett [5] also commented on the inherent 

difficulties in using the maximum likelihood technique.

Again for the structural model Birch [7] showed that the maximum likelihood 

estimator for the slope is the same when both error variances are known, and when 

the ratio of the error variances A is known. He also commented that the maximum 

likelihood estimators provided by Madansky [74] are inconsistent, and as a result 

need to be modified. Some discussion on the admissability conditions was also included.

A key author in this area was Barnett [5]. His paper on the fitting of a functional 

model with replications commented on the importance of errors in variables modelling 

in the medical and biological areas. The paper adopted the maximum likelihood 

technique for estimating the parameters, but no closed form solution could be found. 

He mentioned tha t the maximum likelihood method tends to run into computational 

problems due to the awkward nature of the likelihood equations. Barnett also 

considered alternative error structures which might be applicable to biological and 

medical areas.

Most papers concern themselves with homoscedastic errors. Chan and Mak [17] looked 

at heteroscedastic errors in a linear functional relationship. To find the estimators 

for the parameters in the model they employed a numerical method to solve a set
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of non-linear equations iteratively. The asymptotic behaviour of the estimators were 

considered and an approximate asymptotic variance covariance matrix was found. A 

procedure for consistently estimating this variance covariance matrix was outlined.

Solari [95] found tha t the maximum likelihood solution for the linear functional model 

discussed by many authors was actually a saddle point, and not a maximum. She 

said tha t although the point was purely academic, it was still one worth making. A 

detailed analysis of the form of the likelihood surface was given, and and she concluded 

that a maximum likelihood solution for the linear functional model does not exist, 

unless one has some prior distribution to place on a parameter. Solari commented 

that this problem might appear in other estimation problems. Detailed consideration 

must be given to see if the maximum likelihood solution is indeed a maximum. Sprent 

[98] considered Solari’s work and further noted the practical implications of her findings.

Copas [23] extended the work of Solari [95]. He showed that when errors made 

when rounding the observations are considered, then the likelihood surface becomes 

bounded. This allows for a different consideration of the likelihood surface. An 

estimate for the model can be found, which is approximately maximum likelihood. In 

other words, a point close to the global supremum was used instead. Copas’ solution 

for the slope is equivalent to using either the x on y estimate or the y on x estimate. 

The y on x regression estimate is used if the line corresponding to the geometric mean 

estimate lies within 45° of the x-axis. The x on y estimate is used if the geometric 

mean estimate lies within 45° of the y-axis. A numerical example was provided to illus

trate his suggested methodology, and the likelihood surface for this example was drawn.
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Essentially, Copas introduced a modified likelihood function

L = ' [ [ P i(xi)Qi(yi) (2.6)
i

where Pi(x) = P (x -  |  <  & < x  +  | )  and Q*(a:) =  P  (y -  \  <  /?& < y +  | )  (note 

that Copas’ model did not include an intercept). The value h was introduced to allow 

a discrepancy when (&,/?&) were recorded or measured. The saddle point noted by 

Solari; according to Copas, is a direct consequence of the likelihood function having 

singularities at all points within the sets

A  =  {/?, <7*, <Je, f  ^ ~2(xi ~  6 ) 2 =  0, as = 0}

and

B  = {/?,<75,<j£,£ : ~  (3&)2 = 0 ,a£ = 0}

Copas showed that within these sets A  and B  his modified likelihood function reduces 

to the likelihood function for y on x regression and x on y regression respectively. This 

however is to be expected as set A  essentially assumes tha t there is no horizontal error 

(<£) present and set B  essentially assumes tha t there is no vertical error (e) present. 

In addition, Copas’ analyses assume that h is small, which will also imply tha t the 

simple linear regression techniques outlined at the front of this thesis are appropriate.

In summary Copas’ method is equivalent to using y on x regression if it appears tha t & 

is close to X i , and x on y regression if is close to yt. The choice of which regression 

to use depends on the location of the geometric mean regression line. Copas admitted 

that the y on x and x on y regression estimators do not maximise his likelihood 

function L. So, as it is well known that y on x and x on y regression are biased, and 

can only offer a crude approximation to the true line, the method proposed by Copas
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must be questioned.

An interesting modification of the structural model is the ultrastructural model. 

Cheng and Van Ness [19] considered this model with no replication. They showed 

that if one of the error variances are known, the maximum likelihood estimators 

are not consistent, whilst the method of moments estimators are. Much work on 

this model was carried out by Dolby [36]. He wrote on the linear functional and 

structural models, constructing a model which he called a synthesis of the functional 

and structural relations. Dolby [35] also discussed the linear structural model, giving 

an alternative derivation of Birch’s [7] maximum likelihood solution. Yet another 

paper which adopts a maximum likelihood approach was that by Cox [26]. He wrote 

about the linear structural model for several groups of data, in other words, the 

ultrastructural model. He also provided a method to test various hypotheses regarding 

the model, and offered an example using head length and breadth measurements.

2.10 Confidence Intervals

Confidence intervals are beyond the scope of this thesis, and only a brief description is 

given here. Creasy [29] constructed confidence intervals for Lindley’s [72] estimate of 

the slope. Patefield [84] extended her work and showed that her results can be applied 

to other errors in variables models. On the other hand, Gleser and Hwang [51] claimed 

tha t for the majority of linear errors in variables models it is impossible to obtain 

confidence intervals of finite width for certain parameters. Gleser has been active in 

writing about errors in variables models. W ith a number of coauthors, he has written 

on various aspects of the model. These include the unreplicated ultrastructural model
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[49], the limiting distribution of least squares estimates [50], and estimating models 

with an unknown variance covariance matrix [52].

2.11 SIM EX

SIMEX is the method of Simulation-Extrapolation developed by Cook and Stefanski 

[101], and makes use of the fact tha t the standard y on x  slope estimator is a biased 

estimator of the slope of an errors in variables model. For the straight line model, as 

will be restated in the next Chapter,

This result was derived by Fuller [41]. The SIMEX method works by computing 

the standard y on x  estimator for a number of simulated data sets. In order to use 

SIMEX, must be known. Note tha t SIMEX is not constrained to straight line 

models, it may also be applied to multivariate errors in variables models, as well as 

nonlinear errors in variables models (see for example James [59]). The steps behind 

this method are illustrated here. The pseudo-code needed to implement this procedure 

was provided by James [59].

The SIMEX method involves adding increasing amounts of error to the x  observations. 

A standard y on x  fit is made to each data set, paying attention to the resulting change 

in bias. So for some chosen value of r  >  0 a new set of observations is calculated as

x Ti -  Xi +  (Tsy/rZj, (2.7)

where each is an independently and identically distributed standard Normal random 

variable.
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Carroll et al. [15] recommend that 0 < r  < 2 and about five values in this range are 

chosen for analysis. Equation (2.7) implies that

Var[xTi] = a2 +  (1 +  r)aj.

By using standard regression methods, a relationship between r  and the average 

values of (3 corresponding to each r  may be found. Back-extrapolating to the case 

t  — — 1 then yields the SIMEX slope estimator.

For our straight line model, Carroll et al. [15] show that the regression function to 

back-extrapolate is of the form

where ci, and C3 are constants to be estimated. Carroll et al. show that for the 

straight line model SIMEX produces the same estimates as the method of moments. 

The method of moments is discussed in detail in Chapter 3.

Gleser [52] also described a method of estimating the unknown slope by shrinking the 

observed towards the mean to adjust, on average, for measurement error. Then 

ordinary least squares regression can be used to obtain an estimator for /3 that he 

showed is consistent. This method is discussed later in this thesis.

2.12 Total Least Squares

Total least squares is a method of estimating the parameters of a general linear errors 

in variables model and was introduced by Golub and Van Loan [53], which is frequently 

cited in the computational mathematics and engineering literature. Broadly speaking,
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total least squares may be viewed as an optimisation problem with an appropriate cost 

function. The standard formulation of the total least squares problem is as follows. 

Consider a linear measurement error model

AX «  B

where A = Ao + A and B = Bo + B. It is assumed that the underlying physical 

relationship AoX0 =  Bo exists.

In total least squares estimation, a matrix D = [AB] is constructed which contains 

the measured data, and the parameter matrix X is to be estimated. There is an 

assumption tha t there exists a true unknown value of the data D0 = [A0B0] and a 

true value of the parameters X0 such tha t A0Xo = B0. However, the measured data 

D depends on some additive error D = [AB] so th a t D = D0 + D.

The ordinary least squares method gives a solution X such tha t the Euclidean 

norm ||AX — B|| is minimised. The total least squares technique applies a small 

correction (measured by the Euclidean norm) AD = [AAAB] to the matrix D such 

tha t the equations (A + AA)X = B + AB are readily solved. Solutions for this 

system of equations are obtained by computing its singular value decomposition, 

and this is the precise topic of the paper by Golub and Van Loan [53] mentioned earlier.

The total least squares methodology has been extended to generalised total least 

squares (where the errors are allowed to be correlated), and more recently element-wise 

total least squares (which deals with non-identically distributed errors). For a brief 

review of total least squares and its related methods, see for example Markovsky and 

Van Huffel [76]. A complete monograph on the topic has been written by Van Huffel
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and Vandewalle [106]. Cheng and Van Ness [20] noted tha t total least squares is in 

its most simple version, orthogonal regression. Hence, this methodology may not be 

appropriate when there is some different information available on a parameter.

2.13 Structural Equation M odelling

Structural equation modelling (sometimes referred to as covariance structure analysis) 

is the broad name given to the modelling of a structure specified by a system of 

equations. These equations specify phenomena in terms of cause and effect variables, 

and in their most general form can deal with unobservable, latent variables. Johnson 

and Wichern [60] comment tha t structural equation models have been successfully 

applied in the behavioural and social sciences in modelling such latent variables as 

social status and discrimination in employment. The most common parameterisation 

for a structural equation model has become to be known as LISREL (Linear Structural 

Relationships) (see for example Skrondal and Rabe-Hesketh [94]). A computer package 

has been developed to fit such models, and thus further details are placed in the next 

section.

2.14 Com puter A ided M ethods

There are presently a number of computer packages which aid with errors in variables 

modelling. This section will describe two of these available packages, namely LISREL 

and SAS.
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2.14.1 L IS R E L

LISREL is an example of a structural equation model, and computer software to im

plement such a model was created by Joreskog and Sorbom (see for example [62]). To 

use their notation, the LISREL model is formulated as follows:

2 = Bv + r t  + < (2 .8 )

Y  =  Ayr) +  £ (2-9)

X  = A *£ +  £ (2.10)

where 77 is a (m x 1 ) vector, B is a square (m x m) matrix, T is a (m x n) matrix,

£ is a (n x 1 ) vector, (  is a (m x 1 ) vector, Y  is a (p x 1 ) vector, Ay is a (p x m) 

matrix, e is a (p x 1 ) vector, V  is a (q x 1 ) vector, Ax is a (g x  n) matrix, and S is 

a (q x 1) vector. At a first glance, the LISREL model resembles a combination of 

two factor analysis models, (2.9) and (2.10) into the structural setting of equation (2.8).

The matrix B is introduced to allow inter-relations between the latent variables of 

the model to be formed. Similarly, T, Ax and Ay are matrices which contain loadings 

for the relevant latent variables in the model. 5 and e are the measurement errors ac

cording to X. and Y  respectively, with £ representing equation error as discussed earlier.

Our errors in variables model outlined in Section 1.2 may be fitted into a LISREL 

format as follows. Take m  = n = p = q = l ,  B =  0, (  = 0, T = f3 and Ax = Ay = 1 . 

The standard assumption of the LISREL model is to take E[£] =  E[rj\ = 0. This 

constrains us to take p = a  = 0 for our model in Section 1.2. The remaining 

parameters to be estimated are /?, cr2, cr2 and cr2.



Chapter 2 E r r o r s  in  V a r i a b l e s  R e g r e s s i o n 39

A LISREL model usually cannot be solved explicitly, and in this scenario an iterative 

procedure to estimate the parameters is adopted. Essentially, this involves constructing 

a set of estimating equations for the parameters. The usual methodology is to set the 

sample variance covariance matrix equal to the theoretical variance covariance matrix. 

The elements of the theoretical variance covariance matrix are nonlinear functions 

of the model parameters Ax, Ay, T and the variance covariance matrices of £, £, 6 and e.

The LISREL model, (as in factor analysis), implies a particular structure for the the

oretical variance covariance matrix. Johnson and Wichern [60] gave details of the 

structure, and stated the following identities (they took B =  0 to simplify proceed- 

ings)

e [ y y t ] = A„(r$rT + + e £

£[XXr] = A^Aj + e* 

£[XYt ] = A„r$A^

where i?[££r ] =  E\S5T\ =  &s, E[eeT] = ©e and =  iji. It is assumed that

the variables £, 6 and e are mutually uncorrelated. Also £ is uncorrelated with £, e is 

uncorrelated with rj and 5 is uncorrelated with £.

The iteration procedure mentioned above begins with some initial parameter estimates, 

to produce the theoretical variance covariance m atrix which approximates the sample 

theoretical variance covariance matrix. However, for this estimation procedure to occur, 

there must be at least as many estimating equations as parameters. Indeed, Johnson

and Wichern [60] state that if t is the number of unknown parameters then the condition

t < ]^(p + q){p + q + 1)
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must apply to allow estimation of the parameters. For our model of Section 1.2, t = 4

(ft, cr2, cr2 and cr2) and |( p  +  q)(p +  q +  1) =  3 and so we cannot use the LISREL 

approach to estimate our parameters unless we assume something further known. This 

ties in with the thoughts of Madansky [74] who stated that

“To use standard statistical techniques of estimation to estimate (3, one 

needs additional information about the variance of the estimators.”

Also, comparisons may be drawn between LISREL, the method of moments and 

maximum likelihood, as both of the latter methods also assume that there is some 

parameter known to allow identifiability of the model.

Applying the LISREL methodology to our model of Section 1.2, we get

since for our model $  =  a 2, t/j =  0, =  cr| and 0 £ =  cr2. We can now equate

the theoretical variance covariance matrix to the sample variance covariance matrix to 

construct the following three equations

which are identical to the method of moment estimating equations (and subsequently 

the maximum likelihood estimating equations) (3.3), (3.4) and (3.5) outlined in

£ [ Y Y r ] =  / J V 2 +  a2 

£[XXr ] =  a 2 +  <r| 

£ [ X Y r ] =  13a2

(2.13)

(2 .12)

(2 .11)
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Chapter 3.

The first order moment equations p = x  and a + (3p = y are missing as the LISREL 

model assumes the data are centered, so p  and a  are taken as known in the assumption 

E[£] = E[rj\ =  0. There are three equations (2.11), (2.12), (2.13) and four parameters 

to be estimated. Hence, in order to solve these equations explicitly we need to restrict 

the parameter space by assuming something known (e.g. assume o\  known). So 

LISREL for our model is identical to the method of moments, and thus maximum 

likelihood. As stated earlier, the method of moments is discussed in Chapter 3.

2.14.2 SAS

Details of how to use SAS procedure NLMIXED to fit linear and nonlinear structural 

errors in variables models were provided by Patefield [85]. His paper described the 

methodology behind the procedure, as well as examples as to its implementation. 

The theory behind the procedure NLMIXED is based upon tha t of fitting the general 

linear latent variable model by maximum likelihood.

In a general nonlinear structural model a number of response variables x i , . . . ,  Xk are 

defined by a smaller number of hidden, latent variables £ i , . . . , £ r - A sample of n 

observations is taken, with xj, being the vector of observations on aq , . . . ,  Xk and & is 

the corresponding vector of unobserved latent variables.

Letting x  =  (0 ,0) be a vector of parameters and i = 1 , . . . ,  n, Patefield states that the 

key components to this model are:
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1. The conditional distribution of yi given &, with probability density function 

Pi(yi\(i>, &)•

2. The distribution of the latent variables & with probability density function

Then the marginal likelihood is the joint distribution of the data taken as a function 

of x  given by

The procedure NLMIXED numerically maximises this marginal likelihood using 

quadrature and an iterative numerical method to give maximum likelihood estimators 

of X. However, NLMIXED assumes tha t the latent variables follow a Normal 

distribution. The iterative procedure requires starting values for the parameters to 

be estimated. Patefield recommends tha t good starting values are found to save on 

computation time, and to help avoid the problem of I (x) having multiple local maxima.

To demonstrate how a linear model may be fitted in SAS, Patefield considered a 

bivariate data set taken from Fuller [41] of the average number of hen pheasants 

sighted in August and Spring in Iowa from 1962 to 1976. Fuller decided to model this 

using the Normal structural model, taking A =  As the latent variables are assumed 

to be Normally distributed then the SAS procedure NLMIXED may be used.

Before the NLMIXED procedure is applied to the data, it has to be manipulated so it 

takes the structure of a mixed model. All data has to be concatenated into a single 

response vector of length 2n. Then for each element of this single response vector two 

things must be specified:
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•  The subject classification variable. For the example given in this section, year is 

suitable.

• A value of indicator variables d\ and d2 where d\ = 1 and d2 = 0 for the x  values 

and d\ = 0 and d2 = 1 for the y values.

The procedure NLMIXED may then be implemented. The code Patefield used to 

implement such a model is included here:

proc NLMIXED gconv=le-9 cov;

parms alpha=0 b e ta= l meanxi=0 v a rx i= l v a re= l;

bounds varx i,vare> = 0 ;

m uy=dl*(alpha+beta*xi)+d2*xi;

model y~normal(muy, (d l/6 + d 2 )* v a re );

random xi~norm al(m eanxi, v a rx i)  s u b je c t= y e a r ;

run;

The gconv option controls convergence based on the gradients of the log-likelihood. 

Its default value is 10-8 . The cov option gives the variance covariance matrix of the 

estimated parameters as part of its output. The bounds statement allows restrictions 

on the parameters to be set. The obvious constraints here are for the variances to be 

non-negative.

Patefield commented that the maximum likelihood estimates produced by SAS 

are the same as those produced by the formulae of Hood et al. [57]. As com

mented earlier, the maximum likelihood estimators are identical to the method 

of moments estimators. So for this example SAS produces the same answers as 

the method of moment estimating equations. The variance covariance m atrix out
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putted by SAS also agrees with the variance covariance matrices derived by Hood et al.

2.15 R eview  Papers and M onographs

Over the years several authors have written review articles on errors in variables re

gression. These include Kendall [65], [66], Durbin [40], Madansky [74], Moran [77] 

and Anderson [3]. Riggs et al [88] performed simulation exercises comparing some of 

the slope estimators that have been described in the literature. There are two texts 

devoted entirely to the errors in variables regression problem, Fuller [41] and Cheng 

and Van Ness [20]. Casella and Berger [16] has an informative section on the topic, 

Sprent [97] contains Chapters on the problem, as do Kendall and Stuart [67] and Dunn 

[39]. Draper and Smith [37] on the other hand, in their book on regression analysis, 

devoted only 7 out of a total of almost 700 pages to errors in variables regression. The 

problem is more frequently described in econometrics texts, for example Judge et al 

[63]. In these texts the method of instrumental variables is often given prominence. 

Carroll et al [14] described errors in variables models for non linear regression, and 

Seber and Wild [92] included a Chapter on this topic.



Chapter 3

The M ethod of M om ents and the  
Linear Structural M odel

3.1 Introductory Rem arks

The method of moments technique is described in many books of mathematical statis

tics, for example Casella and Berger [16] and DeGroot [32], although here, as elsewhere 

the treatm ent is brief. In common with many other mathematical statistical texts, they 

gave greater attention to the method of maximum likelihood. Bowman and Shenton 

[10] wrote that

“the method of moments has a long history, involves an enormous literature, 

has been through periods of severe turmoil associated with its sampling 

properties compared to other estimation procedures, yet survives as an 

effective tool, easily implemented and of wide generality” .

In the method of moments estimating equations are derived by equating sample

moments to their population equivalents. The population moments are functions of

the parameters of the model, so the estimating equations are solved to give estimators

of the unknown parameters of the model yielding the so called method of moments

estimators. Use of this method of moments has been criticised because method

of moments estimators are not uniquely defined. The population moments are all

45
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functions of the unknown parameters and, as long as the moments exist, any moment 

could be used to derive an estimating equation. Thus if this method is used it may be 

necessary to choose amongst possible estimators to find ones that best suit the data 

being analysed. This proves to be the case in errors in variables regression theory. 

Nevertheless the method of moments has the advantage of simplicity, and also tha t 

the only assumptions tha t have to be made are tha t low order moments of the random 

variable used as a model for the population exist.

It is relatively easy to work out the theoretical asymptotic variances and covariances 

of the estimators by a method outlined by Cramer [28]. Cramer’s methodology 

shall be outlined in more detail later. Indeed, after making particular distribu

tional assumptions, the method of moments enables a practitioner to fit the line 

and calculate approximate confidence intervals for the associated parameters. Ap

proximate significance tests can also be done. A limitation of the formulae is that 

they are asymptotic results, so they should only be used for moderate or large data sets.

3.2 R estricting the Param eter Space

Consider the structural model outlined in Chapter 1. The method of moments estimat

ing equations follow from equating population moments to their sample equivalents. 

By using the properties of £, 6 and e detailed in Chapter 1, the population moments 

can be written in terms of parameters of the model. This was also done by Kendall 

and Stuart [67], and have been repeated by Cheng and Van Ness [20], [39] amongst
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others.

E[x\ II II

m =  E[rj\ =  a  +  (3p

Var[x] = Var[£] +  Var[8 ] = a 2 +  a 2

Var[y\ = Var[a + /?£] 4 - Var[e] = p 2 a 2 +  a\

Cov[x,y\ =  Cou[£, a  +  /?£] =  Pa2

The method of moments estimating equations are now found by equating the popula

tion moments to their sample equivalents

X = p (3.1)

y =  a. + (3jx (3.2)

$xx ~ 2 , ~ 2 =  a + a s (3.3)

syy =  P2 a 2 + a2 (3.4)

$xy = jda2 (3.5)

Here a tilde is placed over the symbol for a param eter to denote a method of moments 

estimator. From equations (3.3), (3.4) and (3.5) it can be seen tha t there is a hyperbolic 

relationship between the method of moments estimators for a 2 and a2. This was called 

the Frisch hyperbola by van Montfort [107].

{sxx ~  &s){syy ~  &e) = iSxy) (3-6)

This is a useful equation as it relates pairs of estimates ( d f ,^ )  to the data in 

question. In point of fact equations for any pair of parameters can be derived, such as
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4.5

3.5

2.5

s i g m a d e l s q

Figure 3.1: An example of a Frisch hyperbola

One of the main problems in fitting an errors in variables model using the method of 

moments is tha t of identifiability. It can be seen from equations (3.1), (3.2), (3.3),

(3.4) and (3.5) that a unique solution cannot be found for the parameters since there 

are five equations, but six unknown parameters. One way to proceed with this method 

is to assume that there is some prior knowledge of the parameters tha t enables a 

restriction to be imposed. The method of moments equations under this restriction 

can then be readily solved.

Another possibility is to derive additional estimating equations based on the higher 

moments. This is the subject of Section 3.3.

There is a comparison between this identifiability problem in the method of moments 

and the maximum likelihood approach. The only tractable assumption to obtain a
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maximum likelihood solution is to assume that the distributions of £, 6  and e are all 

Normal (Normal structural model). Otherwise the algebraic manipulation required 

becomes an enormous task. This is discussed in subsequent Chapters. If all the dis

tributions are assumed Normal, this leads to the random variable {x,y)T having a 

bivariate Normal distribution. This distribution has five parameters, and the maxi

mum likelihood estimators for these parameters are identical to the method of moments 

estimators based on the moment equations (3.1), (3.2), (3.3), (3.4), and (3.5) above. In

this case therefore it is not possible to find unique solutions to the likelihood equations

without making an additional assumption, effectively restricting the parameter space. 

The maximum likelihood approach is discussed in detail in Chapter 5.

3.2.1 E s tim a to rs  B ased  on  th e  F ir s t  a n d  S econd  M o m en ts

Equation (3.1) immediately yields the intuitive estim ator for p

p = x  (3.7)

The estimators for the remaining parameters can be expressed as functions of the slope 

estimator, /?, and other sample moments. An estimator for the intercept may be found 

by substituting (3.1) into (3.2) and rearranging to give

a  = y — fix (3.8)

This shows just as in simple linear regression, tha t this solution for the errors in 

variables regression line passes through the centroid (x, y) of the data.

Equation (3.5) gives
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with P and sxy sharing the same sign so that the variance estimate is non-negative. 

This is a fundamental assumption, referred to frequently in the following presentation.

If the error variance <rf is unknown, it may be estimated using (3.3)

& 5 =  ~  d 2 (3.10)

Finally, if the error variance a 2 is unknown, it may be estimated using (3.4)

°e = sy y ~ P 2° 2 (3-11)

In order to ensure tha t the estimators for the variances are non negative, admissibil

ity conditions must be placed on the equations. The straightforward conditions are 

included below

&XX

S y y  >  a £

Other admissibility conditions specific to special cases are described later in this 

Chapter. Admissibility conditions are discussed in detail by Kendall and Stuart [67], 

Hood [56], Hood et al [57] and Dunn [39]. Practically speaking, if these admissibility 

conditions are broken, the choice of a linear structural model must be questioned. 

More precisely the estimate of the slope must lie between the slopes of the regression 

lines of y on x and x on y for variance estimates using equations (3.3), (3.4) and (3.5) 

to be non-negative. This point is demonstrated mathematically here.

(3 and sxy should have the same sign and variances are non-negative. We first deal with 

the case where sxy > 0, hence (3 > 0. From equation (3.3) the condition df >  0 => 

sXx >  d2. From equation (3.5) this gives (3sxx > j3a2 = sxy and so p  > j*-. The right



Chapter 3 E r r o r s  in  V a r i a b l e s  R e g r e s s i o n 51

hand side is the slope of the simple linear regression of y on x. Prom equation (3.4) 

the condition d 2 >  0 =>■ syy > j32 cr2 = (3sxy from equation (3.5). Thus (3 < JjjJ. The 

simple linear regression of x  on y gives an estimator for the slope of the equation to 

predict x  with y as However the slope is usually taken to calculate y with x  and 

comparison should be made with the reciprocal of this estimator which is ^nL. Hence
r  ^  S x y

the result tha t the errors in variables slope estimator is between the slopes of y on 

x  and x  on y regression is shown. If sxy is negative, all inequalities are reversed. In 

conclusion for negative sxy,

syy <  ^  <  Sxv 
S x y  S x x

and for positive sxy,

s*y <  p  <  syy 
S x x  $ x y

All of the above estimating equations can be w ritten in terms of sample moments and 

the slope. Unfortunately there is no single errors in variables slope estimator that 

can be used in all situations. In order to use the first and second moment estimating 

equations alone, and to avoid the identifiability problem, the practitioner must decide 

which restriction of the parameter space is likely to suit the purpose best. Various 

restrictions and their corresponding slope estimates are discussed below. W ith one 

exception, these estimators have been described previously; most were given by Kendall 

and Stuart [67], Hood et al [57] and, in a method of moments context by Dunn [39].

Intercept a  known W ith this restriction, an estimator for the slope /? can be derived 

using equations (3.1) and (3.2) alone. Substituting (3.1) into (3.2) and rearranging 

yields
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This estimator can be seen to be similar to the ratio of means of grouped data 

advocated by Wald [110] and Bartlett [6 ], except that an adjustment is made in the 

numerator for the intercept. Dunn [39] considered this restriction when a = 0. He 

wrote that this assumption is extremely unsafe as a particular characteristic of the 

very line tha t is used as a model is assumed.

Obvious problems occur with this estimator when x  «  0. Specific admissibility condi

tions are

Sxx ^  &

y - o t  
syy ^  Sxv

Error variance a 2 known Equations (3.3) and (3.5) are used to obtain an estimator 

for p. Since erf is known, (3.3) can be written in terms of a2. It remains to substitute 

this into (3.5), and rearrange to obtain

Sxx &§

This estimate is a modification of the standard y on x regression slope estimator. The 

modification is to subtract the known error variance a2 from sxx in the denominator 

of the expression. The effects of equation error (outlined earlier in this thesis) have 

led some authors, notably Dunn [39], to recommend tha t an estimator be chosen that 

relies only on information about a2. The difficulty of using prior information of error 

variability in the y variable to estimate the variance a 2 is th a t such information may 

underestimate the variance terms as the contribution made by the equation error term 

may be overlooked. Dunn’s conclusion is that estimators tha t assume prior knowledge 

of the error variance <rf associated with the measurement of x, are more likely to be
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reliable in practical applications than those that assume prior knowledge of g 2 .

The admissibility conditions for this estimator are

’xx ^
\2(SxyY

s y y  >  _  2
° x x  u  5

Error variance g 2 known Writing equation (3.4) in terms of cr2 and then substi

tuting into equation (3.5) gives an estimate of (3 as

s -  cr2 ° y y  u e

This estimator is a modification of the reciprocal of the slope of an x on y regression. 

The modification here is to subtract the known error variance g 2 from syy in the 

numerator of the expression.

The admissibility conditions for this estimator are

iyy > <J£

> fa y )2
j — <7̂’ y y  u  e

R eliability  ratio k, =  —£+ - i  known The y on x regression estimator for the slope 

is biased when applied to an errors in variables model. Indeed,

E

as shown by Fuller [41]. The ratio

a x y

& X X

cr
G 2 +  Gi

G 2
K  =

<r2 +  cr|
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is known as the reliability ratio, and if known, the bias of the slope estimator for y on 

x regression may be corrected. This suggests an estimator of the form

f c S x x

This estimator may be derived from the first and second moment equations by dividing 

equation (3.5) by equation (3.3). Substituting in the known value for the reliability 

ratio and rearranging then gives the above estimator. There are no admissibility con

ditions associated with this estimator.

R a tio  A =  !§■ know n Putting <j \  =  Acrf and manipulating equations (3.3), (3.4) and
5

(3.5) gives the following quadratic in (3

A  & x y  4 ”  / ^ ( A S j c a ;  S y y )  A  S x y  —  0

To ensure tha t admissible estimates are obtained, the positive root must be taken, and 

so the slope estimator in this scenario is

n    ( S y y  ASXX) +  \/(<Syy A S x x  ) ̂  ~l“ 4A(.SXy)^P 5 _  _ _

and there are no admissibility conditions. The positive sign is taken for the square 

root term to ensure that /?5 and sxy have the same sign.

If A is taken to be 1, this estimator is the same as tha t in orthogonal regression 

outlined towards the beginning of this thesis. If A ^  1 then a different projection from 

the data point onto the regression line is minimised. In particular, with A =  1 and 

Syy = SXxi As =  !•
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Riggs et al. [8 8 ], based on their simulation studies, recommended the use of but 

emphasised the importance of having a reliable prior knowledge of the ratio A. The ef

fects of using an incorrect A have been discussed by Lakshminarayanan and Gunst [71].

As a point of note, when A =  1 the discriminant becomes (s yy — s xx)2 +  4s 2xy. By 

rotating the axes to a new co-ordinate system (u , v) through the transformation

/  u \  /  cos 6  — sin 6  \  f  x
\  v J  y sin# cos# J  \  V

it is straightforward to show that

i s yy ~  s xx) 4sxy =  (SuV — s uu) +  4s uv

This is an example of a rotationally invariant moment. This was derived by Hu [58]. 

If the rotation is through an angle whose tangent is equal to the slope of y on x 

regression line, then s uv — 0 and the discriminant reduces to (sui; — s uu)2. Thus the 

discriminant is the square of the difference in variation along the y on x  line and 

tha t orthogonal to it. In addition, the discriminant measures whether the dispersion 

of points about the centroid is isotropic or directional. Rotationally invariant 

moments are commonly used in some aspects of signal and image processing where an 

object must be analysed independently of its angular orientation. Indeed, Hu stated 

that the term y j (s yy — s xx)2 +  4s ly may be interpreted as the “slenderness” of the data.

R atio v = jp known This dimensionless ratio is used as a restriction to illustrate

a link between y on x regression, geometric mean regression and x on y regression. 

In practise it seems unlikely that this ratio would be known a priori. However, for 

completeness, details are included here.
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/o2 2
Using equations (3.3) and (3.4), then the ratio A can be written as s^ ~ _ g 2 • Combining 

this with equations (3.3), (3.4) and (3.5) yields the following quadratic in (3

f3 V S XX (3sxy(l V )  S y y  0

An estimator for (3 under the assumption tha t v — ^  is known is then

- ( 1  -  U ) S Xy  +  y j s 2x y { l  -  U ) 2 +  ^ V S XX S y y

Indeed,

(3.12)

where

r,2

is the Pearson product-moment correlation coefficient between x  and y.

Now if v = 1, this is equivalent to assuming A =  (32. This is the exact assumption 

made when using geometric mean regression (as outlined in Chapter 2 ). Substituting 

v = 1 into (3.12) yields

ensuring tha t sxy and 13 have the same sign. Similarly substituting v = oo and v  =  0 

into (3.12) yields the slope estimator of y on x and x on y regression respectively, after 

some algebraic manipulation.

In a method comparisons context, Dunn [39] defined two methods of measurement as 

equivalent if v — 1 . Indeed, if v  =  1 , then this intrinsically implies tha t the geometric 

mean line is the line of best fit. A number of different types of equivalences were 

introduced by Tan and Iglewicz [102], again reported by Dunn [39]
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1. Individual equivalence, when A =  (3 — 1 and a  =  0

2 . Average equivalence, when (3 = 1  and a = 0

3. Sensitivity equivalence, when v = 1 and a = 0

B o th  variances erf a n d  erf know n For this case, there are four parameters and

the moment equations (3.1) to (3.5) can be used to derive unique estimators. Some 

possible solutions of the method of moment estimating equations (3.1) to (3.5) are 

outlined here.

1. From (3.3), cr2 =  sxx — cr2. Substituting into equation (3.5) yields the same 

estimator as when erf is solely known.

2 . From (3.4), (32 <j2 =  syy — a2. Substituting into equation (3.5) yields the same 

estimator as when a2 is solely known.

3. Since both error variances are known, the ratio A is also known. This yields

five moment equations. Therefore this model is underparameterised and any four of

@5 ~

4. Rearranging equation (3.4) in terms of (32 cr2 and dividing by equation (3.3) gives

132 = • Upon taking the square root, another estimator for (3 is
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The estimator (8 7  is a modification of the geometric mean estimator described earlier 

in this thesis, in that the numerator and denominator are modified by the subtraction 

of both error variances. Since the assumption is always made that the sign of sxy is 

the same as the slope /?, the sgn(sxy) component of $ 7  is included. To this extent

(3.5) is used in deriving this estimator. There are clear admissibility conditions for 

this estimator.

Sxx ^

S y y  >  (J£

Once a slope estimator has been obtained, its value may be substituted into equations 

(3.7) to (3.11) in order to estimate the remaining parameters. All the estimators 

outlined above are found by restricting the param eter space. If a restriction is not 

made, then the method of moment equations are inconsistent. This is primarily due 

to the elementary problem of having six unknown parameters, yet only five moment 

estimating equations. The admissibility conditions essentially suggest tha t the errors 

in variables regression line lies between the y on x and x on y regression lines (see 

proof earlier). If this is not the case, then negative estimates for some or all of the 

variances in the model (namely a2, <rf and of) may be obtained. This is also applicable 

to the estimators making use of higher moments described next.

The moment equations (3.1) to (3.5) only use the first and second order central mo

ments. It is possible to extend this set of equations to consider third order moments, 

and even fourth order moments. This may provide an alternative way of using the 

method of moments instead of restricting the parameter space. Estimators making use 

of higher moments are now discussed.
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3.3 Estim ators M aking U se of Higher M om ents

3.3.1 E s tim a to rs  M a k in g  U se o f th e  T h ird  M o m en ts

is introduced for brevity.

The moment equations based on the third moments are slightly more difficult to derive 

than the first and second order moment equations. An example is provided below to 

outline the general approach.

D erivation o f M om ent Equation for sxxy

Terms of order n 1 are neglected, so the expectations of all the cross products are 

zero. Moreover because of the assumptions that £, 5 and e are mutually uncorrelated,

The third order moments are written as follows

' X X X n
i=  1

i—1

i=  1

In this section, the notation

£  =

s; = Si - s

Si -  e
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to order n ” 1 terms such as £[(& -  £)] are also zero. Hence E[nsxxy] = n/3/if3, where 

/i£3 =  E[(£ — p)3]. This procedure can be replicated for each of the third order central 

moments yielding the third order moment estimating equations below.

& X X X — /if3 +  PS3 (3.13)

&xxy = 0n~(3 (3.14)

S Xy y = 0 2fM3 (3.15)

s y y y =  /^3/V£3 + (3.16)

where ps3 — E[63], and /ie3 =  E[e3] as defined earlier.

Combining the first and second moment equations (3.1) to (3.5), with the third 

moment equations (3.13) to (3.16) gives nine equations in nine unknown parameters. 

Hence there exist unique estimators for the unknown parameters. The additional 

parameters tha t have been gained are the third moments /if 3 , ^ 3 , and /ie3. How

ever, it is unlikely in practise that these third moments of the error terms are of 

as much interest as parameters such as the slope and the intercept of the regression line.

These equations must be treated with care. It is necessary to assume that /if3 ^  0, 

and the third sample moments should be significantly different from zero. In other 

words, in order for estimators based on these equations to be reliable it is necessary 

that the observed distribution of both x and y are sufficiently skewed. Moreover, the 

sample sizes needed to accurately compute third order moments will inevitably be 

larger than those for first and second order moments. It is this requirement that has 

probably led to the use of third moment estimators receiving relatively little attention 

in the literature. Papers by authors who have used this approach have been discussed
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in the literature survey in Chapter 2 .

Nevertheless, assuming tha t one has a sufficiently large sample size and both x and y are 

skewed, a straightforward slope estimator may be found without assuming anything 

known a priori about the values taken by any of the parameters. This estimator is 

obtained by dividing equation (3.15) by equation (3.14)

0 i = ?syy
&xxy

The estimator of f3 may be substituted into equations (3.7) to (3.11) to obtain esti

mators for //, a , a 2, cr2 and<r2. The third moment /i^3 may be estimated from equation 

(3.14)
1 s2° x x y  ^ x x y

^  ~  I T  ~  ~P8 ° x y y

Other simple ways of estimating the slope are available if the additional assumptions 

PS3 = Pe3 = 0 hold. The assumptions hold if the error terms 6 and e are from a

symmetric distribution. It still remains the case however tha t £ has to be sufficiently

skewed to allow the third order sample moments of x  and y to be sufficiently different 

from zero. W ith these additional assumptions, two further slope estimators may be 

found. Dividing equation (3.14) by (3.13) yields

0  = ^  (3.17)
& X X X

and dividing equation (3.16) by equation (3.15) gives

p = ^yyy (3 .1 8 )
S Xy y

Estimators (3.17) and (3.18) will receive little attention in this thesis, as estimators 

that make the least number of assumptions are likely to be of the most practical value. 

Note tha t if the estimator /?8 is to be consistent with equations (3.3), (3.4) and (3.5),
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and that variance estimates are to be non-negative, it is necessary that /?g should lie

between the slopes of x  on y and y on x  regression.

3.3.2 E s tim a to rs  M ak in g  U se  o f th e  F o u r th  M o m en ts

A way of avoiding having to assume that the observations are sufficiently skewed is 

by using the fourth order moment estimating equations. However, in order to ensure 

a stable estimate the sample size needed will be larger even than that for estimators 

using the third order moment equations. Moreover the distributions of x  and y need 

to be sufficiently kurtotic for the fourth moments to be significantly different from zero.

The fourth order central moments are written as follows

The fourth order moment equations can then be derived in a similar manner to the

x xx x n
i = 1

' xxxy

'xxyy

'xyyy

y y y y

i=  1
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third order moment equations described in the previous section

S x x x x  — d" 6(7 (J§ “I- (3.19)

S x x x y  = +  3(362652 (3.20)

>xxyy (32pz 4 +  P26 26s2 +  <j 26  2 +  6 26e2 (3.21)

S x y y y  = P IM4 + 3(36 <7e (3.22)

S y y y y  = PÂ 4  +  6(32626£2 +  pe4 (3.23)

where = E[(£ — p)4],ps4 — and Pe4 — E[s4] as defined earlier.

Combining these fourth moment equations with the first and second order moment

equations results in a set of ten equations, in nine unknowns. The new parameters

introduced here are p^4, ps4 i and pe4. Some of these equations are therefore not needed 

As a result there does not exist a unique estimator for the slope.

In this situation, it makes sense to use the equations which avoid the higher moments 

of the error terms. This leaves (3.20), (3.21) and (3.22). These equations can be 

combined with those based on first and second moments to  obtain three different slope 

estimators. All of these are derived here.

U sing (3.20) a n d  (3.22) Multiply (3.20) by (32 and subtract (3.22) to give

(3 S x x x y  S x y y y  = 3(36 (/3 6 6 £)

Also, multiply (3.3) by (32 and subtract from (3.4) to obtain

(32sxx -  syy = (32625 -  6 2
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Equation (3.5) is now used, and after some algebraic simplification, the slope estimator 

fig is derived as

p 9 — / S x y y y  ~  ^s x y s y y  2̂ 24)
y S x x x y  3 s x x S Xy

U sing (3.20) and (3.21) Multiply (3.20) by f3 and subtract (3.21) to obtain

(3sxxxy -  s xxyy  =  3 p 2 a 2 a 2 -  p 2 a 2 a 2 -  cr2cr2 -  a 2 a 2

As stated previously, the distribution of the bivariate random variable (x ,y)T has a 

mean vector that is equal to (//, a  +  P/i)T and variance covariance matrix given by the 

following expression
^ = ( c r 2 + a2 Pa2 \

y  Pa2 P2<72 +  a2 J

This variance covariance matrix is estimated by the matrix S .

\  s x y  s y y  J

The determinant of the matrix E is |E| =  P2a2cr2 +  cr2cr2 +  a2a2 (which appears in the 

expression for Psxxxy — sxxyy) and is therefore estimated by the determinant of S .

|^ | |^1 — S x x S y y  (^x y )

Hence we can write

Psxxxy $xxyy — ^P ® T  (sXy) SxxSyy

Using equations (3.3) and (3.5) and rearranging yields the following estimator for the 

slope

0+   SXXyy 2 (SXy) SXXSyy
S x x x y  ~  3 s x x S Xy
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U sing (3.21) an d  (3.22) Multiply (3.21) by P and subtract (3.22) to get

f3sxxyy -  sxyyy =  P{p2a 2a2 + a2a2 + a 2a2) -  3(3a2a2

Using the estimator for |£ | and equations (3.4) and (3.5) we obtain the following slope 

estimator

It was functional relations of this sort tha t was covered in the paper by Cragg [27] 

mentioned in Chapter 2.

There may be a practical difficulty associated with the use of (3.24) if the random 

variable £ is Normally distributed. In this case the fourth moment is equal to three 

times the square of the variance. A random variable for which this property does not 

hold is said to be kurtotic. A scale invariant measure of the excess of kurtosis is given 

by the following expression

If the distribution of £ has zero excess of kurtosis the average values of the five sample 

moments used in equation (3.24) are as follows

x y y y

s x x y y  '  ^ \ S x y )  S x x ^ y y

The slope estimators derived above are functionally related, in that

E[sxyyy] =  3 (3s a4 +  3 (3a2 a2 

E[sxxxy\ = 3(3aA +  3 (3a2a 2 

E[sxx] = a2 + a 2 

E[syy] = (32a2 + a 2 

E[sxy\ = Pa2
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Then it can be seen that the average value of the numerator of equation (3.24) is 

equal to zero (to order n _1), as is the average value of the denominator. Thus there 

is an additional assumption tha t has to be made for this equation to be a reliable 

estimator, and that is that p ^  must be different from 3<r4. In practical terms, both 

the numerator and the denominator of the right hand side of equation (3.24) must be 

significantly different from zero.

If a reliable estimate of the slope (3 can be obtained from (3.24), equations (3.1) to

(3.5) enable the intercept a  and the variances cr2, <rf and to be estimated. As is the 

case for /?8, the slope /?9 must lie between the slopes of y on x  and x  on y regression re

spectively so the variance estimators are non-negative. The fourth moment p ^  of £ can 

then be estimated from (3.20), and the fourth moments ps^ and /xe4 of the error terms 

£ and e can be estimated from equations (3.19) and (3.23) respectively, though esti

mates of these higher moments of the error terms are less likely to be of practical value.

In this thesis, only /?9 will be considered due to the length of time taken to construct 

the variance covariance matrix when the slope estimator involves fourth moments. 

Similar analysis (that will be shown in subsequent sections of this thesis) can be 

applied to the other fourth moment estimators outlined above.

3.4 Equation Error

Thus far, much consideration has been given to the estimation of the linear structural 

model. This section will look at the impact of equation error upon the estimation 

of the model. Similarly, the application of the estimation procedures to a functional
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model is looked at in Chapter 5 via a maximum likelihood approach.

Equation error A term for equation error is represented by the addition 

of a new random component tha t is associated with the measurement y , thus 

y =  a  +  /?£ +  u  +  e. This has the effect of changing moment equation (3.4) since 

Var[y] = Var[a +  (3£ +  u  +  e] = (32cr2 + a2 + a 2; wherein it is assumed that the 

equation error terms have a homoscedastic variance a2 and that they are uncorrelated 

with the other random variables in the model.

The inclusion of the equation error term then yields the following first and second order 

moment equations:

x = p 

y = a + (3p 

sxx =  d2 + cf|

S y y  =  p 2 d-2 + a l + d - 2e

&xy — •

It can be seen tha t the only equation that is changed is (3.4). The effect of the 

introduction of equation error in the model is an extra term  crj on the right hand 

side of this equation. In practise, given a data set it is difficult to partition equation 

error and measurement error. It is presumably for this reason tha t Dunn [39] makes 

the recommendation that estimators solely based on the assumption tha t a2 is known 

are likely to be safer. The estimators of the slope tha t are directly affected by the 

presence of equation error are yd3, /35, (36 and (37.
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For of known, the method of moments slope estimator when equation error is present 

is

0 3 e  =  =  A  -  — ■
S x y  S Xy

2
If equation error is ignored, the slope will be either over, or underestimated by 

depending on the sign of sxy. The magnitude of sxy will also affect the degree to which 

the slope is over or under estimated. The effect is to move the slope even further from 

the x  on y regression line than is the case if equation error is not present.

Let u = 3yy Xsxx. For A =  ^  known, the method of moments slope estimator when
Z S X y  <T g

equation error is present is

u - A .  +  J ( u - i L ) 2 +  x

where

2sxy V \  2s a:y

— u +  \J  (u2, +  A).

So again the term ^  distinguishes /35e from /?5, and the magnitude of sxy affects the 

degree to which the slope is over or under estimated.

The assumption v =  ^  known was included for completeness, and to extend the 

concept of geometric mean regression in a previous section. In a similar manner, the 

method of moments slope estimator when equation error is present is

V - i )  +
Ae =  ^

&XX

-  I)2 + S —Av Ausxx(j I
9*xy

2v

The difference between /?6 and (3Qe being the additional term - 4 - Sx̂  in the square
s xy

root (r is the Pearson product-moment correlation introduced earlier).
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When v =  1,

< 06

and so the assumption A =  0 2 does not reduce the above estimator to that of geometric 

mean regression. However, as v  —» oo,

&XX

as does 0$.

In the case where both <rf and erf are known there are four estimators for the slope. One 

solution is the same as erf known, and is robust to equation error. A second solution is 

03e as above, and upon taking the ratio of these error variances, a third solution is 05e 

Finally, another method of moments slope estimator when equation error is present is

R -  l SV « ~ al  ai
H 7 e  \  /  2 2 'y -  Gi  sxx -

It is necessary to assume that sxx — erf > 0 for variance estimates to be non-negative, 

and so 0-je < 0?. Thus if equation error is ignored, the slope will be underestimated if 

fa  is used.

3.5 Variances and Covariances o f th e Estim ators

A common misunderstanding regarding the method of moments is tha t there is a lack 

of asymptotic theory associated with the method. This however is not true. Cramer 

[28] and subsequently other authors such as Bowman and Shenton [10] detailed 

an approximate method commonly known as the delta method (or the method of 

statistical differentials) to obtain expressions for variances and covariances of functions

&XX
> x x J y y

x y

2
{jjof,S.

x y
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of sample moments. The method is sometimes described in statistics texts, for example 

DeGroot [32], and is often used in linear models to derive a variance stabilisation 

transformation (see Draper and Smith [37]). The delta method is used to approximate 

the expectations, and hence also the variances and covariances of functions of random 

variables by making use of a Taylor series expansion about the expected values. The 

derivation of the delta method is included below.

Consider a first order Taylor expansion of a function of a sample moment x , f ( x )  where

was introduced by Cramer to denote a partial derivative evaluated at the expected 

values of the sample moments.

E[x\ = p,

f { x ) t t  f ( p )  + ( x -  p ) f ' (p ) . (3.25)

Upon taking the expectation of both sides of (3.25) the first order approximation

is found. Additionally,

Var  [/(*)] =  E  [{/(*) -  £ [/0 r)]} 2] *  { f ( n ) } 2E[(x -  t f ]

=  { /'( / ')  }2 Var\x\

The notation

This can be naturally extended to functions of more than one sample moment. For a
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function f ( x , y)

Var[f(x,y)}  «  { |1 }  Kar[x] +  { ^ }  Kar[y] +  2 { ^ } { ^ } C o t) [ x ,) / ]

and for a function of p sample moments, Xi , . . . ,  xp,

V a r[ f (x1, . . . , x p) ] ^ V TV V

where

V7 = df_ dj_
dxi  ’ dxp

is the vector of derivatives with each sample moment substituted for its expected value, 

and

V =

(  Var[x i] Cov[xi, x 2] ■■■ Cov[xi,xp] \

\^Cov[xi,xp] Cov[x 2 , x p\ . . .  Var[xp}

is the p x p matrix containing the variances of and covariances between sample

moments. Covariances between functions of sample moments can be derived in a

similar manner.

Indeed for two functions of two sample moments x  and y

{ i K l W f K S H - i+

Essentially, use of this method requires the prior computation of the variance of each 

relevant sample moment, and the covariances between each sample moment. For each 

of the restricted cases (in Section (3.2.1)), the following variances and covariances are 

used. The variances and covariances needed to compute the asymptotics for the higher
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moment based estimators will be stated later on in this Chapter.

2 2
Var[x] ss °  +<7s (3.26)

Cov[y, sxx]

C 0v[x 1 

Cov[y, sxy]

C ( ) v [ X , S y y ]

Cov[y, S y y ]

n
0 2a 2 T (T2

Var[y] «  P ^  £ (3.27)

0 a 2
Cov[x, y] & ----- (3.28)

Var[sxx\ *  -  a 4) +  (MS4 -  aj) +  4crVj (3 2g)

"Var[sxy]

Var[syy] ~  

CW[i,« J  « n

n
P 4(PZ4 -  cr4) +  (/A-4 -  O’4) +  4/?2(72<t2

n

n
0V(3

n
?2

n
?30  / i ^ 3 +  / i e3

C w [ w „ ]  «  ^  ~  ^  +  (3.30)

Cou[sxx,aw] ~  ^  ^ £4 •*

COl^S^y, 5yy]

n
P3(Pt 4 — cr4) +  20a2 cr2

n

Expressions (3.26), (3.27) and (3.28) follow from the definition of the linear structural 

model. To show how these may be derived, the algebra behind expressions (3.29) and 

(3.30) shall be outlined.
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Derivation o f Var[sxx] Since & and 5i are uncorrelated we can write

E[sxx] — E
i=l

E

= - E  
n

^ E { ( c n  +  w )V
™  • 11 = 1

Dff)a+2Dff)W) + Ew>:
~  2 , 2  ~  cr +  cr

L i=l 
2 
(5 -

1 = 1 1 = 1

The above result also follows from the method of moment estimating equation stated 

earlier, sxx = a2 +  cr2.

£ [(S „ )2] =  - 2E

=  ~ 2 E  nz

{Efe _a:)2}
- 1 i = i  )

E  fc*+ 5*):
1=1

^2 ^ n ( ^ 4  +  6cr2a |  +  fj,S4) +  n(n -  1)(<74 +  2o2o\  +  d4)^

Hence it follows that

VQ>r[sxx] E[(sxx) ] E  [sxx]

( /if4 -  cr4) +  ( p s 4 -  c r |)  +  4cr2<j|

n

D erivation o f Coi;[sxx,s x y j

1
E \ s x x s x y \  — E ^ 2 ( x i  -  x )2 x ^ { x i  -  x)(yi -  y)

L 1 = 1 1= 1

Now, (xi — x) =  (£*) +  (6*) and (y{ — y) = /?(£*) +  (ej). Substituting these into the 

above summation, and multiplying out leads to

E[sxxsxy] «  ^  ^n(/3 fi{4 +  (3cr2<72 +  2 (3ct2ct25) +  n(n  -  l)(/fo4 +  /3cr2o2)'j

Hence,

Cov[sxx, SXy] E^SxxSXy] -^[<̂xx]-E'[̂ xy]

_ P(fJ>£4 ~  ^4) + 2/3cr2cr2 .
n
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3.5.1 C o n s tru c tin g  th e  V ariance  C ovariance M a trice s

For each restricted case, and for the estimators of the slope based on the higher 

moments a variance covariance m atrix can be constructed. As there are six parameters 

in the linear structural model p , «,/?, cr2, cr2 and cr2 the maximum size of the variance 

covariance matrix is 6 x 6. If the parameter space is restricted, then the size of the 

variance covariance matrix will decrease in accordance with the number of assumed 

parameters.

It is possible to use the delta method in order to construct ‘shortcut’ formulae or 

approximations to enable quicker calculation of each element of the variance covariance 

matrix. These shortcut formulae depend on the variance of the slope estimator and 

the covariance of the slope estimator with a first or second order sample moment. In 

some cases the variances and covariances do not depend on the slope estimator used, 

and as a result are robust to the choice of this estimator. These shortcut formulae 

are stated below, and repeating the style of the previous section, an example of how 

one is derived will be given. For brevity, the notation |£ | =  crfcr2 +  /?2cr2cr| +  <r2cr2 is 

introduced. This is the determinant of the variance covariance matrix of the bivariate 

distribution of x  and y that was introduced earlier in this Chapter.

Firstly, the shortcut formulae for the variances will be considered. Var[a] will be the
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example derivation provided.

o 1 +  <7?
Var[fj]

n

Var[a\ «  /i2Var[/3] +  ^  +  ° e +  2/z(/?Coi;[a;, /?] -  Cov[y, /?])

Vor [a1] *  g j  V « - a  +  W  *  0 ‘̂ "  ^  C o . a

v„r(a|] »  ̂ . , i » J + E l ± ^ i ^  + ^ ( c „ [ . , , M - 2 E M

Var[cr2] «  /?2a 4Var[/5] +  2 /?<7 2 (/?CVw[sxy, /3] -  Cov[syy,(3]) +  ^  ^  +  ^ £4 ^
n

D erivation o f Var[a]

Var[a] = Var[y - /3x\ «  V a r [ ? / ] + |^ 2 | V a r [ ^ ] + |^ | j  Var[x]

+  2 { § i } { | i } C oi;t5 ^ 1 + 2 { £ } { 5 } COTt* J 1

+  2 { £ } { S } C o t[$ ’ s1dy
/02 2 2

«  /i2Var[/3] H - +  2p((3Cov[x, /?] — Cov[y, /3])
n

A similar shortcut formula was provided in the paper by Hood et al [57]. As outlined 

in the literature survey towards the beginning of this thesis, they investigated the 

Normal structural model. They then used the theory of maximum likelihood to obtain 

the information matrices required for the asymptotic variance covariance matrices for 

the parameters of the model. Applying various algebraic manipulations to Var[a] they 

showed that
2 2

Var[d] «  p 2 Var[j3] H ° e
n

The shortcut formula derived above is a generalisation of tha t derived by Hood et al. to 

cope with non Normal £. Indeed, if (£, 6 , e) do follow a trivariate normal distribution, 

then as {3 is a function only of second order moments (or higher), (3 is statistically
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independent of the first order sample moments. As a result Cov[x,P] = Cov[y,j3] = 0  

and the shortcut formula derived above collapses to that suggested by Hood et al.

Now, the shortcut formulae for the covariances of p  with the remaining parameters will 

be provided.

Cov[jl, a] ~  p\ 
n

Cov[p,P] «  C o u [ ^ , / 3 ]

Cov[p, a2]

Cov[£i, aj] “  —  +  ^ -C o u [i, /5]n p

C o v [£l, a 2] ~  — / ? ct2 ( 7 o ? ;[ x , /?]

The shortcut formulae for the covariances of a  with all other parameters are listed 

here.

Cov[a,p] «  Cov[y, 0] — PCov[x , /3] — p,Var[/3\

Cov[ol, a2] «  Var[P\ +  a 2 ^Cov[x, p] -  C ov& ^  _  ttCov[sxy, P]

Cov[a, erf] «  ^Cov[sxy, P] -  -  fj,Cov[sxx,P] -  Var[p]

Cov[a} a 2] «  —  +  Pp<j2 Var\P\ +  Pa 2 (pCov[x , P\ — Cov[y, /?])

+ / / ( / ? C o v [ s X !/, ^ ]  -

The shortcut formulae for the covariances of (3 with the remaining parameters are listed
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here.

1 2 

Cov[(3, a2] «  -Ccw[sxy, (3\ -  ^-Var[f3]

Cov[(3, g2] «  CVw[sxx, /?] -  + ~Var\fi\

C o v [ / 3 , a -2 ] «  C<w[syy, /?] -  /?CVw[sxy, (3\ -  (3(j2V a r [ j3 \

The shortcut formulae for the covariances of g2 with the remaining parameters are

listed here.

C o v [ g 2 , g 25 ] «  - ^ V a r [ P ]  +  ^ ( j jC o v [ s xy,(3] -  C o v [ s x x , ( 3 ] j  +  ^ 2(75(71

n  r ~ 2  ~ 2 i  4 t /  r/pi o2r<  r , 1̂ 1 “  2 / ? 2 <j2 <72 -  2 a 2 o-2
C o v [ a  , f 7 e ] «  o ’ V a r [ / ? ]  -  — C o v [ s y y , / 3 ]  H---------------------------- — 2-------------2 _ i

Finally, the covariance between the error variance estimates is

C o v [g 2 , g 2\ «  — c r4 V a r [ / 5 ]  +  ^ - < 7 m ; [ s y y , /? ]  -  / ? a 2 C c u ; [ s x x , / 5 ]  +  — — 2 ^  — 2 a  a £

Again, an example derivation is provided.

D erivation o f C o v \ j 3 ,  a 2] We have that

~  2 ^xy G =  —s2-.
0

A first order Taylor expansion of g2 around the expected values of s xy and 0  is

o2 = a2 + (sxy -  0 o-2) t  - ( 0 -  0 ) ^ .

Hence,
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The complete asymptotic variance covariance matrices for the different slope estimators 

under varying assumptions are included in the following pages. For ease of presenta

tion, the matrices are expressed as the sum of three components, A , B  and C. This 

presentation has the advantage of making the matrices simpler for a practitioner to use.

The matrix A  alone is needed if the assumptions are made that £, 8  and e all have 

zero third moments and zero measure of excess of kurtosis. These assumptions would 

be valid if all three of these variables are Normally distributed as in the Normal 

structural model.

The matrix B  gives the additional terms th a t are necessary if £ has non zero third 

moment and a non zero measure of kurtosis. It can be seen tha t in most cases the B  

matrices are sparse, needing only adjustment for the terms for Var[a2] and Cov[p, cr2]. 

The exceptions are the cases where the reliability ratio is assumed known (/?4), and 

slope estimators involving the higher moments.

The C  matrix contains additional terms th a t are needed if the third moments 

and measures of excess of kurtosis are non zero for the error terms 8  and e. It 

is likely that these C  matrices will prove of less value to practitioners than the A  

and B  matrices. It is quite possible tha t a practitioner would not wish to assume 

that the distribution of the variable £ is normal, or even tha t its third and fourth 

moments behave like those of a normal distribution. Indeed, the necessity for 

this assumption to be made in the likelihood approach may well have been one 

of the obstacles against a more widespread use of errors in variables methodol

ogy. The assumption of normal like distributions for the error terms, however, is
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more likely to be acceptable. Thus in many applications, the C matrix may be ignored.

As a check on the method employed the A  matrices were checked with those given 

by Hood [56] and Hood et al. [57], where a different likelihood approach was used in 

deriving the asymptotic variance covariance matrices. In all cases exact agreement with 

the A  matrices was found, although much simplification of the algebra has been found 

to be possible. As discussed in Chapter 5, the limitation of the likelihood approach is 

that it is limited to the case where all random variables are assumed to be Normally 

distributed. The moments approach described in this Chapter does not have this 

limitation.

3.5.2 T h e  V ariance  C o v arian ce  M a tr ic e s

This section contains the variance covariance matrices for each of the slope estimators 

outlined earlier. The results are stated first, followed by a brief discussion. For brevity, 

the notation U = a 2 +  aj, V  = P2 cr$ +  a2, e1 = -  3cr|, e2 =  / / e4 -  3 (7* and

e3 =  /?A/x<53 +  fJ'e3 shall be used. This notation shall also be carried into the next 

section. U and V  are the variances of x  and y respectively. e\ and e2 are the excesses 

of kurtosis for S and e respectively.
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In te rc e p t a  know n The method of moments estimator for the slope based on this 

assumption is

Pi =
y - a

x

Since a  is assumed to be known, the variance covariance matrix for /}, /?, cr2, d2 and d( 

is required.

Ai = n

( u a**2 a2*2 P2*2*]

V_
n2 —— VP ^ V — VPm2V - K vM

|S| +  ^  v  +  2<r4 |S|
P2 ^ v  2cr2cr2 - | S |  +  < V  +  2<t2<72* ' [I &

|2 |
P2 +  ^2 V  +  2as | S |  -  jpV -  2 a 2cr2

\ /?2 |E | +  ^ F  +  2<7e4

/  0 0 

0

Bi = -n

0  0  \  

0  0

(i£ 4 — 3cr4 0 0 

0  0  

0  /

/  0 0 0 

0  0  

0
n

0

0

' f 1 S3

0

0

_sLh'eZ

~  +  P3PS3)

- 2 ^ 3  /
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E rro r  variance  of know n The method of moments estimator for the slope based 

on this assumption is

02 =
’xy

S rp rp (J c

Since of is assumed known, the variance covariance matrix for /x, d, 0, d and of is 

required.

Ao —
n

(  V 0 0 0

£ m  + 2 (Paj) + V - i ( | S |  +  2 ^ < 7  j ) ^ ua* a 2

£ ( |E | +  2 /?2<xf) 2^ _ u<7* 2p°£v  
<?■*

2U2 2 0 2*i

2V 2

( °
0  0 /^ £ 3

0  \

0  0 0 0

0 0 0

[ i£ 4 — 3  a 4 0

\ 0  /

/  o t e a
o

P»6Z
a 2 P S 3 0 2 P 6 3  ^

C 2 =  i
n

202ih i&?,
a 2

/?2M<53
a 2 - 0 P 6 3 V e 3  ~  0 3 P 6 3

B2flCi “  J i e l - f ^ e i

ei 0 2e l

e2 +  0 A&i J
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E rro r  variance  of know n The method of moments estimator for the slope based 

on this assumption is
g  _  ( j 2

p3 = tm  1 1 .
Sxy

Since of is assumed known, the variance covariance matrix for /2, a, (3, d 2 and of is 

required. For brevity, the notation W  = (/?2|£ | +  2of) is introduced.

cs ^b1 0 0 0

a 3 = -
n

f a t f V  + 0 *0 *0 $) 2 y ,a 2V  
(33a 2

~ ^ ( < r 2cV  + / S W s ) 2 a 2 V  
(33a 2

j , ( 0 4 U2  +  V 2 -  2p a t )  + 2 p o W c)

2 V 2
(3A

(  °
0 0 /^3

0  ^
0 0 0 0

b 3 = - 0 0 0
n

Â4  — 3o-4 0

I 0

C3 = —
n

0 0 0 0 fJ>63

2 n n e3
(3a2

Me 3
/3<r2

He3 
/?2 0  ~  P ^ S 3

(32 a 4 e 2 (33a 2 ^2 (33a 2 e 2

j * e  2 ~ 0 e 2

i +  6 2 ) j
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R eliability ratio k, =  a £+ a i  known The method of moments estimator for the slope

based on this assumption is

04 =
7x y

KSn

notation w  = 1 — k is introduced.

U - / M

A 4 — — 
n

A ct2 and df is required.

0 0 0

■u J51• <j4 0 2 / ^ | £ |

M<74 0 1 to ■Gc
s

2 a 4 — 2  (32 na 2 a 2

4P2w\'E\ +  2er4 j

o -U.H

s 4 =  -n

8 zu ^ ^ 3 n

0

â 3

0

■0 2 wiii2, \

0

^ ( * * - 3 ^ )  ^ ( / X {4-3<74) - e g f a - S o * )

AC2 (/i^4 — 3<J4) —/32 K,Zu(/J,£4 — 3<J4)

0 4 w 2 (p ^  -  3a4) )

C4 = -
n

(  0
Bk

Pottos

^  fj2 P<83 n 2

- - ^ 2 ^ 6 3 * 1 * 6 3 P 2 K P S 3

- 0 * 1 * 8 3 — P 3 K,f lS3  +  1*e3

<72 e i
8 * k 2 

a 2 Cl
o

k e \ P 2 K 2 e i

P k, e i +  e2 /
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2
R atio o f th e error variances A =  ^  known The method of moments estimator

as

for the slope based on this assumption is

3    (syy T  “\/(^yy ^sxx) 2 d* 4A(sXy)^
2 ^  ■

The variance covariance matrix for /2, a, (3, a 2 and df is required.

( U

A 5 — — 
n

' <74

/t4

2̂ /3 IV'I 
(/32+A)ct2 I I

2cr4 + 2*2*2
(/32+A) (/32+A)

2 a 4

/  0  0 0 Â 3 0 \
0 0 0 0

—  — 0 0 0n
/i£4 — 3cr4 0

V 0  /

c* = -
n

/  n  mA/3 \ (3' U (/32+A)a2^ 3  (/32+a)0-2 ^<53

o M/3 /3 ^
_ Z (/32+A)o-2e3 (/32+A)cr2 e3

/32e2+A2/32ei 
(/32+A)2<t4

(/?2+A) ̂ 3

(/3e2+A2/3ei)
(/?2+A)2ct2

+A2ei 
C^+Ap
e2

/32
(/32+A)

(/?2+A) (/32+A)e3 ^ 53

/3e2—A/33ei 
(/32+A)2cr2

(e2+A/32ei)
(/32+A)2

e2+/34ei
(/?2+A)2

\
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B o th  variances cr2 a n d  cr2 know n The method of moments estimator for the slope 

based on this assumption is

/% = sgn(sxy) J  ̂
y Sxx &§

The variance covariance matrix for //, a, (3 and a 2 is required. For brevity, the notation

_ |£ | (P2 a 2 -  g£2)
a 4 2(32 crA

is introduced.

A 7 — — 
n

(  U -0(7$

H2T + V  —fiT ^ { U  +  a2) 

T - ^ ( U  +  a2) 

Pz4 -  3a4 J

B 7 =
n

( 0 0 0  //£3 ^ 

0 0 0 

0  0  

\  2 V 2 )

I  0

c 7 =  —
n

2 a 2
0V63
2 a 2

P2̂ .. M .. P2 .. i ^3"pi h*83 ~jfo2 Pe3 +

4  a -4 ei + 62
/32a 4

V63 \

~PP83 

~ 2 ^ el

ei
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3.5.3 D esc rip tio n  o f  M a tr ic e s

There are some common themes and patterns which run through the variance 

covariance matrices. For each of the A  matrices for example, Var[p] = 

Var[a] = p 2 Var[0] +  and Cov[p,a] = —(3a2. p  is also uncorrelated with /3, and 

the variance estimators. Var[(3] and Cov[a, (3\ are different in each case. Patterns 

between rows and columns of the A  matrices were reported by Hood et al. [56].

As can be seen the matrix B, reflecting skewness and kurtosis in the distribution of £, 

is generally sparse, although the B4 m atrix is more complicated. For the cases other 

than the reliability ratio k known there are only corrections for Var[a2] and Cov[p, a2}.

The Ci matrix is more sparse than any other C  matrix. V  ar[a2] and Var[<f£2] depend 

on the skewness and kurtosis of S and e. C o v[a 2 , a 2] depends on the skewness of 6  

and e. The remaining covariances involving 6  2 depend solely on the skewness of 6 , 

whilst the remaining covariances involving 6  2 depend solely on the skewness of e.

For the C2 matrix, each of the variances and covariances involving p  and a  are affected 

by skewness in d and e but not kurtosis. The variances and covariances involving 

a 2 and <j2 are affected by kurtosis in £ and e but not skewness.

We have an identical pattern for the matrices C3, C4 and C5, except variances and 

covariances of a 2 replace variances and covariances of a 2. Each of the variances and 

covariances involving p  and a  are affected by skewness in 6  and e but not kurtosis. 

The variances and covariances involving /?, a 2 and a§ 2 are affected by kurtosis in 6  

and £ but not skewness. C5 has a much more complicated structure than the other C
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matrices.

3.5.4 V ariances a n d  C o v arian ces for H ig h er M o m en t E s tim a
to rs

The methodology underlying the derivation of the asymptotic variances and covari

ances for estimators based on higher moments is identical to that outlined previously. 

However, the algebraic expressions for the variances and covariances of higher moment 

based estimators are longer and more cumbersome than those for the restricted pa

rameter space. As a result, the full variance covariance matrices for higher moment 

estimators will not be reported here. However, the expressions needed to work out the 

full variance covariance matrices for the slope estimator based on third moments will 

be provided. These expressions can then be substituted into the shortcut formulae to 

derive the full variance covariance matrices.

Estim ator based on Third M om ents The estimator for the slope (3 based on the 

third order moments derived earlier is

Sxxy

In order to use the shortcut equations outlined in Section 3.5.1, the quantities 

Cov[x,/3a], Cov[y,j3a], Cov[sxx, fy], Cov[sxy,j38] and Cov[syy, fa] are needed. Further, 

to obtain these quantities, the covariances between each of the first and second order 

moments (x, y, sxx, sxy, syy) and the third order moments tha t occur in (sxxy, sxyy) 

must be obtained. Also, the variances of these third order moments must be obtained, 

as well as the covariance between them.

Using the method illustrated in deriving Var[sxx] and CVw[sxx, sxy], the required co
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variances between the first, second order and third order moments are:

j32(pt6 -  ^ 3 2) +  6(32P£4(T62 +  P ^ e 2 +  4/?2/i£3̂ 3Var[sxxy\

Var[sxyy J

COV̂ X) SxXJ/]

^ x y y ]

Cov\y, s XXy ]  

Cov[y, sxyy]

C o V ^ S x x i  $ x x y \  

C o v [ s x y , S Xx y ]  

C OV^Sy y , S x x y ]

C 0 v\j5xx, 5 Xy y ]

C ^ O 'U ^ S a jy ,  >SXy y ]

C OV [ S y y  , S X y y ]

n
P 2a 2p 54 +  P 8 4 ° e 2 +  6 c r 2 cr<52 (7£ 2

n
(34(p>£6 — P£32) +  6(32p,£4&£2 +  (34PSA<f52 +  4/?/X£3//e3

n
a2p£ 4 + CT82Pe4 + 6P2(T2a52(7e2

13 (p£4 +  3a2a62) 
n

(32Pz 4 + (T82cr£2 + P2a2<782 + <r2Ve2 
n

(32Pz 4 + o 2o 2 + P2a 2as2 + o2a 2
n

(3 {(32 p^4 +  3a 2 ( j 2) 
n 

(3 (p#  -  v 2 p&) +  h(3p&(T82 +  ^(3v2m  
n

P2 {p£5 — ^Pjz )  + 3P2P£3<782 + cr2 (p,£3 + Psz) + (32G2P83
n

/33 (/Z33 -  (J2 p g3) +  q 2 /i£3 +  g$2A*e3 +  P3 P ^ S 2 +  WP&Ve2

n
(32 (^5  -  Q-2/ig3) +  2(32 P£3<Jd 2 +  (32 (T2 P53 +  / - ^ e 2 +

n
(3Z ( ^ 5  -  Q-2/Xg3) +  3(3p^G£ 2 +  CT2/X£3 +  (T8 2 Pe3 +

n
(3A (//g5 -  (T2 p,tf) 4 - 5(32 p&ae 2 +  4/?g2 /i£3 

n
? 3 / o 3 , .  2 , o^,, ^ 2 , o / Q 3 ^  2„ i _  (3 Pt6 ~ /? /^3 + 3(3pZ4<Te + 3/3AfJLZ4Cr64

O 0 ' C [ S XXy ,  S Xy y J  ----
71

PZ3Pe3 + (33P£3P63 + (3i3<J2 CF 2 CF 2 + P83Pe3
n

By using the methodology outlined at the beginning of Section 3.5, we can now obtain 

the variance of our slope estimator /?8, and the covariances of our slope estimator with
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the first and second order moments.

/32pt4(T£2 +  P 4/J i^ 8 2 +  2 P p & p ez +  (T2Pe4 +  4 -  6,ft2(J2O52(J£2
(32 p\8n

2j34p^3ps3 + (34V2P54 + I32m ° e 2 -  2(3p63He3 
P2 p\zn

flp&n
3(j2<jg -  |E|

P&n
- 3 /32 P£3 (T52 -  3P2 (72 PS3 +  fJL&CTe2 +  fJLs&e2 

(3 p t 3 n
2 0 P & Q 2  +  <72 p e 3  +  Q & 2 p e3 -  2 P 3 [ l £ 3 ( T s 2  -  P U S & e 2  ~  0 Z ( T2 p 6 3

n
3(3p£3(Te2 +  Sa2pe3 -  06* He3 ~  P* H&

H&n

If Normal errors 6  and e are assumed, then the variance of P8 may be simplified to 

Var[P8\ = 0 2 7 2 "- +  P2 °s) +  3cr^(cr2 +  of) +  3P2 (J${a2e +  P2 o2) -  6P2 a 2 al\ .

The fi£3 in the denominator emphasises the importance of having skewed £.

For any distribution of £, and for any assumed distribution concerning the error terms 

S and e, Var[a] is relatively straightforward in terms of Var[p8 ]:

Var[a] = p 2 Var[p8] +  ° e [2|E| -  3o 2 (o2 +  P2 (rf)} ,

and similarly

Cov[a,0s] = —pVar\p8\ H —  [|X)| -  3o2 o 2] .
P£3n

The formulas for Var[a] and Cov[a,/38 ] can be seen to be fairly neat, and are easily 

estimated by using the method of moment estimating equations (3.1) to (3.5).

Var[p8]

Cov[x,(38] 

Cov[y,p8] 

Cov\sxx  ̂/?§]

Cov[sXyi /?g] 

COV[Syy, /?g]



Chapter 3 E r r o r s  in  V a r i a b l e s  R e g r e s s i o n 90

Formulas for the variances and covariances of the variance estimators are not as 

straightforward. These, however, are less likely to be of interest than the ones given 

above. Nevertheless, we now have each of the components needed to use the short

cut formulae to obtain the following variance covariance matrix for the parameters

ance matrix will not be reported here, but a practitioner now has the tool to compute 

it if needed. In addition, the Maple programme described towards the end of this 

Chapter does have the capability to create the entire variance covariance matrix for 

a, /?, cr2, a 2 and <r2 when the estimator fig is used, if it is needed.

Estim ator based on Fourth M om ents The estimator for the slope (3 based on 

fourth order moments derived earlier is

In order to use the shortcut equations outlined in Section 3.5.1, the quantities

to obtain these quantities, the covariances between each of the first and second or

der moments (x, y , sxx, sxy, syy) and the fourth order moments tha t occur in fig 

(sxyyy? sxxxy) must be obtained. Also, the variances of these fourth order moments 

must be obtained, as well as the covariance between them. For brevity of algebra, 

variances and the covariances of the sample moments are only presented here.

Using the method illustrated in deriving Var[sxx] and Cov[sxx,s xy], the required co

/i, a , /?, <r2, cr2 and cr2 when the estimator fig is used. The complete variance covari-

x y y y

x x x y

Cov[x,fig], Cov[y,Pg\, Cov[sXX: (3g\, Cov[sxy, (3g\ and Cov[syy, f3g\ are needed. Further,
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variances between the first order and fourth order moments are:

P3p& +  Sftp^a2 +  ft3p&v2 +  M ^ 2 +  ofj
C  OV^X j ^ Xy y y ]

Covtyi SXyyy\

CoV^X, S#xxy]

Cov\y, s XXXy]

n

ft4P& +  6/?2̂ 3<7g +  4/3<72/Ze3
n

ftpt 5 +  Gftp&Vs +  4/?cr2^ 53
n

/32̂ £5 + 3 ft2 p^ a2 + (32(J2fl53 + cr2{ptf + /i«53)
n

The required covariances between the second order and fourth order moments are:

, _  /d3/i£6 +  2 P3I^^S2 +  3 /3  P^(Te2 +  p ẑPe3 +  ft3 P$3P83 +  PS3pe3
C o v { s x x , s x y y y }

C o v [ s x y , S xyyyj

C0i;[Syy,Sxyyyj

C  o v  [ s x x , s xxxyj

C,0'u[sxy, Sxxxyj

^CŴ Syy, Sxxxyj

n
Qfta2a52a 2 -  a 2ft3p^  -  3 a*(3 a 2 

n

ft4P& +  6 P2PZ4&£2 +  ft4p ^ s 2 +  4 /3  p£3Pe3 +  3 P2a2as2al
n

t g'2/^£4 +  & 6 2 P e 4  ~  P 4 V 2 P t 4  ~  3 /3 W £2 
n

_  ft {P4^6  +  § P2PZ4®2 +  10/3 P£3Pe3 +  5 <72peA)
n

P(ft4a2p£^ +  3 ft2a Aa 2 +  3 cre4cr2) 

n
_  ft {Pt6 +  9 P£4&82 +  10 P$3Pd3 +  5 & 2 P$4)

n
ft(a2p£4 +  3 cr4cr52 +  3 cr/cr2) 

n
_ P2P& +  6 P2PZ4°52 +  A^OV2 +  4ft2pz3pS3 +  p 54Ve2 +  ft2V2p84

n

6 cr2cr52cre2 — /32(72/i£4 — 3 ft2a 4as2 
n

_  ft3p£6 +  3 ft3p ^ S 2 +  2 ft P£4<7£2 +  ft3P£3P63 +  P(,3pe3 +  PS3pe3
n

6 ft a2a 2a 2 — <J2 ft3p £4 — 3 ft3cr4as
n
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Let

ui = 15/?4 a 2 +  (36<j  2

u 2 = 15 P4 a ja 2 +  15P2p£4 — P6 p$ 4  — 0p4 a 2 a 2

u 3 = 20 Pza 25 p e 3  +  6 PfJL£ 5 

u4 =  15p2a 2p £4 +  p e 6  -  9/32 a 2 a 4  

vi = 15 P2 a 2 +  <j\

v2 = 15a2a 2 +  15/32ps4 ~  P2P£4 ~  0P2a2a2

v3 = 20 fj,s3a 2 +  6 P2 ps 5

v4 = 15p$4a 2 + P2pse ~  9P2a2a4.

Then, the variances of the fourth order moments are:

1 P6̂  8 + Pt6ui + ^ aV>2 + 20P3fj,£5/j,£3 + p&u3 + a2U4 + a2p£QVar[s x y y y l  ~

y  r 1 _  P p£8 +  p£6vl +  p£4v2 +  20P P&P5Z +  ^ 3 V3 + a V4 +  P6 6 &e
[ x x x y j  —  n

Making the substitutions

ci =  6 P4 a 2 +  OP2 a 2

c 2 =  4 / ? / i e3 +  A p 4p 83

c 3 =  P4 PS4 +  Pe4 -  3P2 a 2 a 2 -  3P4 a 2 a 2 +  30P2 a 2 a 2

c 4 =  1 5P2 p 5 3 a2£ +  2APa2 p e 3

c5 =  lOPa2 pS3 p £ 3 +  6 a 2 a 2 p £ 4  +  6 P2 a 2 p S4 ^ 2 +  P84Pe4 ~  9P2 a4 a ja 2

then the covariance between the two fourth moments in question is

~  r „ -I _  / ? V $8 +  ^ 6^1 +  P£5C2 ~  P A^ 24 +  ^ 4 ^ 3  +  P & C 4 +  C5
C_s O V ^ S x y y y , S x x x y \  --
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For brevity of presentation, it is at this point the algebra for the variances and 

covariances for the fourth moment estimator is left. The expressions for the fourth 

moment estimator are particularly cumbersome. It is worth noting however, that 

Var[l3g] depends on the sixth moment of £, Obtaining reliable estimators of this 

high order moment may be difficult. The variance of Var[P8] depends on the fourth 

moment of £, which may be estimated using the moment equations (3.19) to (3.23). 

However, a Maple 11 program has been created tha t allows the algebraic manipulation 

of the variance covariance matrices for all the estimators discussed in this Chapter, 

including the estimator of the slope based on fourth moments, /39.

Further details and examples of how to use this Maple 11 program are included in 

Appendix A. This program enables a user to both manipulate the expressions of 

the variance covariance matrices, and to substitute numerical values into the variance 

covariance matrices without unnecessary effort. It is hoped tha t this program provides 

help for anyone wishing to theoretically analyse the variance covariance matrices and 

for practical use.



Chapter 4 

Simulations

4.1 Introductory Rem arks

The previous Chapter has introduced the method of moments as a method of 

estimating the parameters of the errors in variables model. This Chapter will use 

simulation to gain a deeper understanding of the estimators introduced earlier.

The typical questions regarding sample size and asymptotic results are considered in 

this Chapter, as well as the effect of having a small sample. A feature with errors in 

variables modelling not present with simple linear regression is tha t there are strict 

admissibility conditions. This is a key concept, as if the admissibility conditions are 

broken, then negative variance estimates may be obtained. As demonstrated in the 

previous Chapter, a simple form of the admissibility conditions is to ensure that the 

errors in variables slope estimator lies in between the slope estimators of x  on y and y 

on x  regression respectively.

9 4
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4.2 Sim ulation to  A ssess Bias

Prom a maximum likelihood perspective, Hood [56] performed large scale simulations 

to ensure that her parameter estimates were asymptotically unbiased as predicted 

by standard asymptotic likelihood theory. As stated in the previous Chapter, 

the method of maximum likelihood provides identical estimators to the method 

of moments if the Normal structural model is assumed, so Hood’s work provides 

guidance on the behaviour of the parameter estimators derived in Chapter 3 where 

the distribution of £, <5 and e are taken to be Normal as in the Normal structural model.

This section will investigate the effect of manipulating the distribution of £ away 

from Normal. In particular both the use of the uniform and chi distribution (two 

degrees of freedom) for £ will be investigated, as well as the Normal functional 

model, and comparisons drawn with the results of Hood for the Normal structural 

model. For completeness of presentation, some of the simulations ran by Hood 

to assess bias in the Normal structural model will be replicated and discussed, al

though this thesis details some different slope estimators from those described by Hood.

For brevity, the parameter (3 will be chosen for analysis. All other parameter 

estimators (apart from p) may be written as functions of sample moments and /?, 

thus the bias in (3 largely determines the bias in the other estimators. For example, 

a = y — (3x and so an underestimated slope results in an overestimated intercept, and 

vice versa.

Hood chose the parameter settings // =  1, c  =  2, a§ = a£ = 1, a  = 0 and (3 = 1 

for her simulations. Her motivation for the choice of these settings for the true line
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was based on the premise tha t most method comparison studies expect some sort of 

identity between methods. It is these parameter settings that shall be used in the 

majority of the simulations th a t follow.

N orm al s tru c tu ra l  m odel Figure 4.1 shows the bias of the various slope estimators 

from the previous Chapter over a range of sample sizes for 10000 simulations for the 

Normal structural model. The bias in /?5 and fa  is similar, and for clarity results 

for /3j have been omitted. The param eter settings were identical to those of Hood. 

The different colours represent different slope estimators, as described by the following 

table.

Colour Estim ator of Slope

Red

e1 ih 

II

Blue A =  2
&xx

Green
~ S — <7̂

=  &yy a‘
S Xy

Black Sxy
f c S x x

Brown 0  i.̂ yy + yji^ ŷy ^ S x x ) ^ 1 T 4Aî sXy)p
~  2sxy

Pink fh  = sgn(sxy)>
V Six -  <Tf

This representation shall be used throughout this simulation Chapter. It can be seen 

that the biases present at the sample size n = 20 diminish as the sample size increases. 

Indeed, (33 displays only a small underestimation of the true slope, and is thus close 

to being unbiased even for a relatively small sample of n = 20. It can also be seen 

that /?4 is virtually unbiased across the whole range of sample sizes. Knowledge of the 

reliability ratio enables a user to correct for the bias in the simple y on x  estimator. 

This was discussed in the previous Chapter. /32 displays a positive bias, but becomes 

approximately unbiased for larger n. Pi seems to behave the most erratically, but
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starts to settle down for n > 60. The scale of Figure 4.1 suggests that all the slope 

estimators investigated have performed rather well, as a whole. For n > 40 the bias in 

all cases, except that of Pi, is less than 3%.

1 . 0 6

1 . 0 4

1.02

0 . 9 8
beta

0 . 9 6

0 . 9 4

0 . 9 2

0 . 9

20 4 0 6 0 8 0 100

n

Figure 4.1: Estimate of P against sample size for the Normal structural model.

It appears that (32 demonstrates a slight positive bias, and /?3 demonstrates a slight 

negative bias. Hood explained that this is likely to be a result of the sample quantities 

sXx , sxy and syy not being corrected for bias. Biases may be removed in sample 

variances and covariances by taking the denominator to be (n — 1) as opposed to n.
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For example the slope estimator 02 may be written

~o = SO i - x ) ( y j - y )
2 S O  i - x ) 2 - n a f

As ncrf is being subtracted in the denominator, instead of (n — l)crf, then 02 will have 

a slight positive bias. Furthermore,

SOi - x ) ( y i - y )  SOi ~ x) ( yi  -  y)

SOi -  x)2 -  0 -  l)cr| SO* “ x)2 “ nc7I +
SO i ~ x ) { y i ~ y )
S O  * -  ^ )2 -

S O *  -  *)2 -  no?
_ S O i - z ) 2 -n<7| +  <rf_

=  02

02

1 + J2(xi-x)2-naj

1

 ̂ (n-l)CT2-t7| _

since E [S O *  — :c)2] ~  (n ~  1 ) 0 2 +  erf).

To correct for the small sample bias in 02, 02 can be divided by

(n -  l)cr2
1 +

(n — 1 )<T2 — erf (n — l)cr2 — erf

As an example, for n = 40, from Figure 4.1 /?2 «  1.026. For the parameters chosen for 

Figure 4.1 then
(n — 1)<75

(n -  l)cr2 -  a]
=  1.006.

Dividing the original value for 02 by 1.006 gives 1.01988, yielding a result closer to the 

value of the true slope.

Similarly, the slope estimator 0$ may be written

03 = S O *  -  V? -  no*
SO i ~ x ) { y i ~ y )
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and this time, as n a 2e is being subtracted in the numerator, instead of (n — 1 )crj, then 

Pz will have a slight negative bias. This positive and negative bias noted in p2 and 

Pz respectively will occur regardless of the distribution of £ since the correction that 

should be made for the bias in the corrected sums of squares and sums of products 

is the small sample correction, and the correction is not dependent upon any given 

distribution.

By considering the small sample correction on P3 we have 

£(3/» -  y ) 2 - ( n -  i )(j 2£ J2(yi -  y ) 2 -  n(jl  +
Y,{xi -  x){yi -  y) -  x){yi -  y)

E f e  -  v )2 -  n(j\
Y .(x i -  x)(y{ -  y) 

Ps 1 +

1 +
T,(yi -  y)2 -  n° s .

(n — l)P 2cr2 — a2

since £?E(y» - (n  -  1 ) ( / 3 V  +  oj).

To correct for the small sample bias in /?3, /?3 may be multiplied by

°e (n ~  l)/^2̂ 21 H------------ 5-----------= — --------—--------. (4.1)
(n — 1 )P2a2 — a 2 (n — 1 )P2a 2 — a2

As an example, for n = 40, from Figure 4.1 /53 ~  0.992. For the parameters chosen for

Figure 4.1 then

( n - W  =  !.00645.
(n — l)P2a 2 — cr2

Multiplying together the original value for p2 by 1.00645 gives 0.9984, yielding a result 

noticeably closer to the value of the true slope.

On the other hand, as p4 may be written

5  =  E ( ^ - £ ) f a - g )  
Pi « £ ( * < - * )
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then removing biases in the sample quantities sxx and sxy is irrelevant as they would

cancel upon taking the ratio. This explains why /?4 is virtually unbiased across the

range of sample sizes.

For the parameters chosen by Hood, A =  1 and /?5 is written

O  _  i S y y  ~  s x x )  ~t~ y / { s y y  ~  S ss )2 +
“  2sxy

and again removing biases in the sample quantities sxx, sxy and syy would be irrelevant 

as they would cancel out.

Uniform  £, Norm al errors In order to make a comparison with the results from 

simulations of the Normal structural model, the parameters a and b of the support for 

the distribution of £ were chosen such tha t

E ®  =  ^  =  1

Var[t] =  ^ ^  =  2.

This yields a = 1 — 2\/3 and b = 1 + 2v^3- Figure 4.2 shows the bias of the various 

slope estimators from the previous Chapter over a range of sample sizes for 10000 

simulations for uniform £ and Normal errors. The bias in j35 and /37 is similar, and for 

clarity results for p7 have been omitted. Again the slight positive and negative bias is 

present in (32 and /?3 respectively, and behaves the most erratically. /?4 is virtually 

unbiased across the whole range of sample sizes as it is for simulations based on the 

Normal structural model. Indeed, it appears th a t Figure 4.2 is very similar to Figure 

4.1, the only difference being the performance of fa. In Figure 4.1 is negatively 

biased for n = 20, and then positively biased for n > 20. In Figure 4.1 /3i is positively 

biased across the range of sample sizes.
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1 . 0 8

1 . 0 6

1 . 0 4beta

1.02

4 0 6 0 8 0 10020

Figure 4.2: Estim ate of j3 against sample size for the structural model with uniform £ 
and Normal errors.

C h i £ (tw o  d eg rees  o f freed o m ), N o rm a l e rro rs  The variance of the chi

distribution with two degrees of freedom is 2 — So comparisons can be made with 

the previous simulations, as and a£ were rescaled so th a t the same reliability ratio (for 

both the x  and y measurements) as previously is obtained.

Solving the following equations with (3 — 1

( 2 - f )

(2 -  f ) +  
( 2 ~ f )  

(2 -  ?) +

gives cr| =  a 2e =  0.1073.
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Figure 4.3 shows the bias of the various slope estimators from the previous Chapter 

over a range of sample sizes for 10000 simulations for chi £ (two degrees of freedom) and 

Normal errors. Here fa behaves extremely well and is close to being unbiased across the 

whole range of the sample sizes. As in all other cases considered so far fa  is virtually 

unbiased over the whole range. fa  and fa  perform similarly, as in all other cases, but 

there is a slight discrepancy for n  =  20. The overestimation and underestimation by 

the estimators fa  and fa  respectively is seen yet again.

1 . 0 6

1 . 0 5

1 . 0 4

1 . 0 3

beta

1.02

1.01

0 . 9 9

6 0 8 0 10020 4 0

n

Figure 4.3: Estim ate of (3 against sample size for the structural model with chi £ (two 
degrees of freedom) and Normal errors.

N o rm a l fu n c tio n a l m odel The previous Chapter demonstrated that the estima

tors of the unknown parameters may also be applied to a functional model. For this
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simulation, a sample of £ was generated from a Normal distribution. This sample 

was then fixed, and random Normal errors were added for each simulation. The 

parameters chosen were again made identical to those of Hood.

Figure 4.4 shows the bias of the various slope estimators from the previous Chapter 

over a range of sample sizes for 10000 simulations for the Normal functional model. 

Different from previous simulations, p 4 behaves the most erratically. One reason for

1 . 0 6

1 . 0 4

1.02

beta

0 . 9 8

0 . 9 6

6 0 8 0 10020 4 0

n

Figure 4.4: Estim ate of (3 against sample size for the Normal functional model.

this could lie in the interpretation of the reliability ratio for a functional model. In a 

structural model, the reliability ratio is defined to be
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where each & is drawn from a random  variable with mean p  and variance cr2. For the 

functional model however, each £ is assumed to be a fixed unknown constant. The 

equivalent reliability ratio  for the functional model is therefore

«« k S(6 -  o 2
S« + CTI s E(& - £)2 +

where s^  will be formally defined in next previous Chapter. The quantity  which 

is a  m easurem ent of the dispersion of the £* about their mean, is subject to bias as 

the sum XX & ~  0 2 *s divided by n, and not (n — 1). This would yield a bias in 

the reliability ratio  for the functional model, which would further lead to  bias in the 

estim ator (3\ . This could explain the erratic behaviour of this estimator.

In summary, it appears th a t the m ajority  of slope estim ators derived in the previous 

C hapter are robust to  the distribution of £. The most inconsistent estim ator appears 

to be /?i, although it does seem th a t it works well for skew £. The estim ator (3.4 

performed well for all structural models, bu t for the reasons highlighted earlier, 

perform ed weakly for the functional model. /?2 , P3 , @ 5 and fa  have a consistent 

perform ance regardless of the type of errors in variables model.

4.3  Sm all Sam ple B eh aviou r

To further understand  the behaviour of the slope estim ators derived in the previous 

Chapter, it is interesting to note the bias for small sample sizes.

N orm al structural m odel Figure 4.5 shows the bias of the various slope estimators

from the previous Chapter over a range of sample sizes for 10000 simulations for the

Normal structural model. The parameter settings chosen were the same as for Figure
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4.1. again performs least favourably, giving an estimate of the slope of more than

2 2

beta 1.6

4 0 5 010 20 3 0

n

Figure 4.5: Estim ate of 0  against sample size for the Normal structural model.

double its true value for n = 1 0 . 0 4  is yet again robust to the sample size, provid

ing an approximately unbiased estimator for n  =  5. The bias in 05 and 0 7  is again 

indistinguishable. The same positive and negative bias in 02 and 03  respectively is 

present.
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U n ifo rm  £, N o rm a l e r ro rs  Figure 4.6 shows the bias of the various slope estimators 

from the previous Chapter over a range of sample sizes for 10000 simulations for uniform 

£ and Normal errors. The param eter settings chosen were the same as for Figure 4.2. 

The same features as for Figure 4.5 are seen, so details are not replicated here. A point

4

3

2

1

0 3 0 4 0

n

Figure 4.6: Estim ate of (3 against sample size for the structural model with uniform £ 
and Normal errors.

worthy of note however, is that for a sample size of n = 15 j3\ is more than four times 

the true value of the slope. The extreme behaviour of (3\ for some structural models 

implies th a t for some sample sizes it would be difficult to obtain positive variance 

estimates using this estimator. As derived in the previous Chapter, to ensure positive 

variance estimators, the estimated (3 must lie between the slopes of y on x  and x 

and y regression respectively. For small sample sizes it is more likely tha t the errors
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in variables estim ator of the slope will lie outside of this range. A simulation study 

looking at the num ber of tim es the  slope estim ators lie outside of this range is included 

in this C hapter.
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C hi £ (tw o deg rees  o f freed o m ), N orm al e rro rs  Figure 4.7 shows the bias of 

the various slope estimators from the previous Chapter over a range of small sample 

sizes for 10000 simulations for chi £ (two degrees of freedom) and Normal errors. The 

parameter settings chosen were the same as for Figure 4.3. Some interesting features

0 . 9

0.8

beta

0.6

0 . 5

10 20 3 0 4 0 5 0

n

Figure 4.7: Estim ate of 0  against sample size for the structural model with chi £ (two 
degrees of freedom) and Normal errors.

are present in this simulation. For the first time in all simulations conducted so far, 

02 has dem onstrated an appreciable negative bias for n < 15. 0\ performs very well 

and is robust to changes in the sample size. This could be due to the large number of 

simulations around the origin for this highly skewed distribution of £. The migration 

effect of the measurement error in the x  observations (which will be introduced in
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C hapter 7) pushes d a ta  in the  left hand tail further left. For the  value of p  chosen 

in these simulations, the increased volume of da ta  around the origin is likely to make 

the slope estim ator which is a  function of the first two sample moments x  and y  more 

reliable.
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N o rm a l fu n c tio n a l m o d e l Figure 4.8 shows the bias of the various slope estimators 

from the previous Chapter over a range of small sample sizes for 10000 simulations 

for the Normal functional model. The parameter settings chosen, and the method of 

simulation were the same as for Figure 4.4. Figure 4.4 and Figure 4.8 are very similar,

0.8

beta
0.6

0 . 4

0.2

3 0 5 010 20 4 0

n

Figure 4.8: Estim ate of (3 against sample size for the Normal functional model.

the only difference being the poor performance of 0\ for n = 5. The erratic behaviour 

of fa  is still present.
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4 .4  B reak in g  o f  A d m issib ility  C on d ition s

As written in the previous Chapter, if the errors in variables slope estimator does not 

lie between the slopes of y  on x  and x  on y  regression then positive estimators of the 

variances of the model will not be obtained.

The following simulations compute the percentage of 10000 simulated data sets which 

have an errors in variables slope estimator outside of the range of y  on x  and x  on y  

regression for varying n . Again different distributions of £ will be considered, namely 

the Normal distribution, uniform distribution, chi distribution with two degrees of 

freedom and the Normal functional model. The same parameters as in the previous 

section were chosen. The impact of altering (3 upon the number of data sets failing 

to produce an admissible errors in variables slope estimator is also considered. In 

all the pictures in this section f a  and f a  are not considered as there are no specific 

admissibility conditions associated with these estimators.

Figure 4.9 shows the percentage of simulated data sets with errors in variables slope 

estimators outside of the y  on x  and x  on y  range for the Normal structural model. 

For all values of /?, f a  produces the most inadmissible slope estimators. When ( 3 = 1 ,  

at least 70% of the simulated data sets of size 5 produced an inadmissable f a .  This 

percentage decreases as the sample size gets larger, but only to about 50% when 

n  =  30. As (3 increases, the number of inadmissable slope estimators produced 

by f a  does increase slightly, but it changes only slowly across the range of (3 . An 

estimator which is greatly affected by the value of (3 i s  f a .  When (3 =  1, the number of 

inadmissible estimators produced by f a  is indistinguishable from the number produced 

by f a .  However, as (3 increases, the number of inadmissable slope estimators from
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using f a  increases, and for small samples is comparable to the number of inadmissable 

slope estimators produced using f a .  On the other hand, as (3 increases, the number of 

inadmissable slope estimators from using f a  decreases. When [3 =  4, less than 10% 

of the data sets produce inadmissable f a  even for a sample size of only 5. f a  and f a  

perform more poorly for large (3. When (3 = 1, f a  starts to produce no inadmissable 

slope estimators as the sample sizes grows to 30. However when /? =  4, approximately 

50% of the samples have an inadmissable slope estimator when f a  is used, even for a 

sample size of 30.

Figure 4.10 shows the percentage of simulated data sets with errors in variables slope 

estimators outside of the y on x and x on y range for a structural model with uniform 

£ and Normal errors. Figure 4.10 can be seen to look similar to 4.9, and so further 

discussion is not made here.

Figure 4.11 does display some features not present in Figures 4.9 or 4.10. Figure 

4 . 1 1  shows the percentage of simulated data sets with errors in variables slope 

estimators outside of the y on x and x on y range for a structural model with chi 

£ (two degrees of freedom) and Normal errors, f a  is the best performing across the 

range of (3. For (3 = 1 ,  the number of inadmissible estimators produced by f a  and 

fa is indistinguishable. However, as (3 grows larger then the number of inadmissible 

estimators produced by f a  and f a  is indistinguishable. On the other hand, the number 

of inadmissible slope estimators produced by f a  decreases, f a  performs similarly as in 

Figures 4.9 and 4.10.

Figure 4.12 shows the percentage of simulated data sets with errors in variables slope
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estimators outside of the y  o n  x  and x  on y  range for a Normal functional model. As in 

previous simulations it can be seen that in general the output for a Normal functional 

model is more erratic than for any other errors in variables model. The most erratic 

estimator is f i i .  For example, when (3 =  2, as the sample size increases, the number 

of inadmissible estimators produced by f3i also increases. A common feature as with 

all other simulations considered here is that for (3 =  1, the number of inadmissible 

estimators produced by /32 and /53 is again indistinguishable. However as (3 grows 

larger, then the number of inadmissible estimators produced by /?3 decreases.
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N orm al structural m odel
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Figure 4.9: Percentage of simulated data sets with errors in variables slope estimators 
outside of yon xand x  on y range for the Normal structural model.
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Uniform  N orm al errors
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Figure 4.10: Percentage of simulations with errors in variables estimator outside of y 
on x  and x  on y range for a structural model with uniform £ and Normal errors.
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Chi f , Norm al errors
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Figure 4.11: Percentage of simulations with errors in variables estimator outside of y 
on x  and x  on y  range for a structural model with chi £ (two degrees of freedom) and 
Normal errors.
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Norm al functional m odel
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Figure 4.12: Percentage of simulations with errors in variables estimator outside of y 
on x  and x  on y range for the Normal functional model.

Admissibility conditions reflect the intuitive requirement tha t variance estimators must 

be positive. The behaviour of some of the estimators may be explained by looking
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deeper into the specific admissibility conditions for each estimator. For example (3$ 

has no specific admissibility conditions, and so performs well regardless of the type of 

errors in variables model. Another estimator which performs well in these simulations 

and improves with increasing (3 is /?3. The specific admissibility conditions for (33 are

Syy > (T£

,  *  (*•»)*
S — /t2ue

As S yy  depends on /?, then as (3 gets larger then so does s y y . o \  however is fixed in these 

simulations. This suggests that as (3 grows larger then the simulated data sets are more 

likely to have s yy  >  cr2 , and thus this admissibility condition is broken less for larger 

(3. For the second admissibility condition, by writing s xy =  (3cr2 and s yy  =  (32cr2 +  cr2 , 

their expected values, then we obtain, on average

> - ^ 2  =  <T2.
Syy ~

and so adjustments in 0  will not affect this admissibility condition. Adjustments in <x2 

however do make a difference to this admissibility condition, and this was considered 

by Hood [56]. If the reliability ratio k  is small then there is likely to be a conflict 

within this second admissibility condition, and it will be difficult to produce admissible 

errors in variables slope estimators.

A similar analysis can be made on the estimator /?2 - The admissibility conditions 

specific to this estimator are

i s x y )
yy  "  _  2 •

° x x  u  S

The first admissibility condition does not depend on (3 as s xx is independent of (3. 

Again if the reliability ratio is small then there is likely to be a conflict within this
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admissibility condition. For the  second admissibility condition, by writing sxx = <j2+i7 2 

and sxy = P a2 then we obtain, on average

,  .  (s*,)2 P*2
VV Six -  /32u 2 +  erf

where 2 is the reliability ratio  in the y  measurement. In the previous simulations, 

a 2 and a 2 rem ained fixed, and p  was increased. This means th a t the reliability ratio for 

the y  m easurem ent decreased, causing potential conflict with this second admissibility 

condition. This could explain the poor performance, in general, of P2 as P was taken 

larger.

4 .5  V ariance C ovariance M atrices

As detailed in C hapter 3, a  number of shortcut formulae for each element of the variance 

covariance m atrices of the varying estim ators of the slope were derived. The shortcut 

formulae dem onstrated th a t most elements of the variance covariance matrices are 

functions of Var[p\. For example, for a Normal structural model

0*2, 2 2
Varla] = fi2Var[P] H----- —AlLffg .

n

As a result, the following simulation study into the variance covariance matrices of 

the varying estim ators only considers Var[P].

The variance covariance matrices are asym ptotic results, and should be used for 

m oderate sample sizes. The aim of the simulations here is to  provide guidance 

on the minimum sample size needed to  obtain reliable estim ators of the variance 

covariance m atrices. As has been the them e w ith this C hapter thus far, a number of 

different errors in variables model types will be considered. As the performance of the
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different slope estim ators differs as the distribution of £ alters, then so do the variance 

covariance matrices.

In general, as shown in Figures 4.13 to 4.16 the theoretical expressions for the variance 

of 0  tend to  be larger than  the sample variances. The scale of the Figures however do 

suggest th a t in general there is close agreement between the theoretical variances and 

sample variances of 0.

Figure 4.13 compares theoretical (using formulae of Chapter 3) and sample variances of 

different slope estim ators for a  Normal struc tu ra l model under varying sample sizes. To 

com pute the sample variances, 100,000 sim ulations were run. The param eter settings 

used were a  =  0, 0  =  1 , p  =  1 , a — 2, <7,5 =  1 and oe — 1. The estim ator with 

the most erratic sample variance for small sample sizes was 0\. The sample variance 

for a sample size of 10 was greater than  70, bu t did settle down to the value of the 

theoretical variance as soon as the sample size was made larger than  approximately 

50. The values of the theoretical variances for this simulation study of the Normal 

struc tura l model were:

riV ar[01] =  2

nVar[02] =  0.6875

nVar[03] =  0.6875

n V  ar [04] =  0.5625

nVar[05] =  0.5625

nVar[07] =  0.5625.

0i has the largest theoretical variance, and this coincides with previous simulations
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(Figures 4.1 and 4.5) th a t dem onstrate its erratic behaviour, particularly for small 

samples. Thus there will not be close agreement of the theoretical and sample 

variances of /?i for small samples. ^ 4 , {35 and j37 share the smallest theoretical variance, 

w ith P2 and fa  sharing the  same theoretical variance. This again is in agreement with 

previous simulations. It can be seen th a t when the sample size is approxim ately 50, 

there is little  difference between the sample variances and theoretical variances.

Figure 4.14 compares theoretical and sample variances of different slope estim ators 

for a structural model w ith uniform £ and Normal errors under varying sample sizes. 

The param eter settings used were a: =  0, /? =  1, a  =  1 — 2y/3, 6 = 1  +  2\/3 , =  1

and cre = 1. Again the  estim ator w ith the most erratic sample variance for small 

sample sizes was fix. The sample variance for a sample size of 10 was greater than  500, 

decreased to  approxim ately 1 0  for a sample size of 2 0  bu t then rose to  approximately 

150 for a  sample size of 30 before settling down to the value of the theoretical variance 

as soon as the  sample size was made larger th an  approximately 50. The values of the 

theoretical variances for this particular construction of the structural model were:

nVar[pi] =  2 

nVar[p2] =  0.6875 

nVar[p3] =  0.6875 

nVarlPi] =  0.5145 

nVar{j35] =  0.5625 

nVar[p7] =  0.5625.

The theoretical variance of f34 is smaller here than  for the Normal structural model. In 

C hapter 3, the theoretical variance covariance matrices were partitioned into the sum
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of the matrices, the A  m atrix, the B  m atrix and the C  m atrix. The m atrix A  alone 

is needed if the assum ptions are made th a t £, 6 and e all have zero th ird  moments 

and zero measure of excess of kurtosis. These assumptions would be valid if all three 

of these variables are norm ally distributed as in the Normal structural model. The 

m atrix  B  gives the additional term s th a t are necessary if £ has non zero th ird  moment 

and a non zero m easure of kurtosis. It can be seen th a t in most cases the B  matrices 

are sparse, needing only adjustm ent for the term s for Var[a2] and Cov[p, cr2]. The 

exceptions are the  cases where the reliability ratio is assumed known (fa), and slope 

estim ators involving the higher moments. The C  m atrix contains additional terms 

th a t are needed if the  th ird  moments and measures of excess of kurtosis are non zero 

for the error term s 5 and e and these additional term s are not applicable for the 

sim ulations in th is C hapter. So as £ is considered to  be a random variable th a t follows 

a uniform distribution, then the corrections given by the B  m atrix must be made. By 

using the formulae of C hapter 3, the deduction of —0.048 from the previous variance 

of fa  for the  Normal structural model must be made. This yields nVar[fa] =  0.5145. 

fa  has the sm allest theoretical variance, with fa  and fa  close to  this value.

Figure 4.15 compares theoretical and sample variances of different slope estim ators for a 

structural model w ith chi £ (two degrees of freedom) and Normal errors under varying 

sample sizes. The param eter settings used were a  =  0, (3 =  1, as = cre = 0.1073. 

As two degrees of freedom for the chi distribution were chosen, then p = and 

a 2 =  2 — The values of the theoretical variances for this particular construction of
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the structural model were:

n V a r[p { \ =  0.13662 

n V a r[P 2] =  0.68740 

n V a r[P 3] =  0.68740 

nVar[/34] =  0.68480 

nV ar\j3 5] =  0.56240 

n V a r l p j ]  =  0.56240.

As was demonstrated in Figures 4.3 and 4.7, the best performing estimator was P i .  

This estimator even performed well for small sample sizes. The theoretical variance 

for this estimator is a lot smaller than for the other estimators of the slope. As can 

be seen from the scale of the graph, there is close agreement between the sample 

variances and the theoretical variances of j3\ across the entire range of sample sizes 

considered. P 2 has an exceptionally large variance of 50 for a the smallest sample 

considered, but does settle down to the value of the theoretical variance as the sample 

size increases. As in the previous simulation, as £ is taken to follow a chi distribution 

with two degrees of freedom, the value n V a r[P 4] is slightly altered by the correction 

terms in the B  matrix. If the correction terms present in the B  matrix are ignored, 

then the value n V  ar[P4] =  0.68740 is obtained. As can be seen from Figure 4.15 

this would distort the close agreement between the sample and theoretical variances 

observed. In general however, the values for the sample variances and the theoretical 

variances are virtually indistinguishable across the range of sample sizes and slope 

estimators.

Figure 4.16 compares theoretical and sample variances of different slope estimators
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for a Normal functional model w ith param eter settings a  = 0, /3 = 1, erg = 1 and 

ae = 1. For all 100,000 sim ulations, the same fjs  were used. The set of were 

generated from a Normal d istribution with a mean 1 and standard  deviation 2. These 

are the param eter settings th a t were used for the Normal structural model. The same 

theoretical variances as for the  Normal structural model were used. It can be seen th a t 

the sample variances are not as stable as those for the Normal structural model, but 

the values are roughly similar to  those of the Normal structural model. As the sample 

size gets larger, then  the sample variances do tend to  the values of the theoretical 

variances. Again, the  estim ator with the most erratic sample variances is Pi. The 

results for the Norm al functional model are very similar to  the results for the Normal 

structu ral model and thus a detailed analysis is not given here.
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Normal structural model
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Figure 4.13: Comparing theoretical and sample variances of different slope estimators
for a Normal structural model. Sample variances are in blue, theoretical variances are
in green.
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Uniform Normal errors
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Chi £, Normal errors
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Figure 4.15: Comparing theoretical and sample variances of different slope estimators
for a structural model with chi £ (two degrees of freedom), and Normal errors. Sample
variances are in blue, theoretical variances are in green.
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Normal functional model
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Figure 4.16: Comparing theoretical and sample variances of different slope estimators
for a Normal functional model. Sample variances are in blue, theoretical variances are
in green.
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In the paper by Hood et al. [57], they state that a sample size of 50 is needed for 

the asymptotic results to be used with reasonable precision. It can be seen from the 

simulation study in this section, that this is a good general guideline. However, this 

number may be reduced in some circumstances. For example, when £ is taken to 

follow a chi distribution with two degrees of freedom, for sample sizes greater than 

30, the results for the sample and theoretical variances are virtually indistinguishable. 

There is even close agreement for sample sizes smaller than this. This is particularly 

the case where the estimator f a  is used for a structural model with £ following a 

chi distribution with two degrees of freedom. So for particular slope estimators, and 

particular constructs of errors in variables models it may be possible to lower this 

threshold provided by Hood et al. However as a safe general guideline, a sample size 

of 50 seems to be a useful threshold.

4 .6  E stim a to r  (3%

As detailed in Chapter 3, in order to use the estimator of the slope based on the 

third order moments, f a  the distribution of both x  and y  must be sufficiently skewed. 

Moreover the sample sizes needed to accurately compute third order moments will 

inevitably be larger than those for first and second order moments. The aim of this 

section is to provide some advice as to the use of f a .  To model the skewness of £, a 

chi distribution with k  degrees of freedom shall be used. As the number of degrees 

of freedom increases, then the chi distribution becomes more symmetric. Thus the 

performance of f a  may be monitored as the degrees of freedom increases and the 

distribution of £ becomes less skewed.
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The sample size needed to  estim ate fo  is also considered, as well as if the estim ator 

0s ^es outside of the  range of slope estimators of y on x  and x  on y  regression 

respectively. If 08 lies outside of this range then admissible estim ators of the variances 

will not be found.

The param eter settings chosen for the following simulations were a  =  0, (3 =  1. As the 

num ber of degrees of freedom increases, then so does the  variance of the chi distribution. 

In order to  com pare results across the range of the degrees of freedom the reliability 

ratio for bo th  the  x  and y  measurement has been set to  0.8, and erf and erf derived 

accordingly. For completeness, the variances of the chi d istribution with k  degrees of 

freedom and the  values of the error variances needed to m aintain a reliability ratio in 

the x  and y  m easurem ent of 0.8 are included in the following table:

k Variance of chi distribution with k  degrees of freedom II 0> t
o II

2 0.42920 0.10730
3 0.45352 0.11338
4 0.46571 0.11643
5 0.47293 0.11823
6 0.47767 0.11942
7 0.48101 0.12025
8 0.48349 0.12087
9 0.48541 0.12135
10 0.48692 0.12173

Figure 4.17 contains simulations of 08 for a  small number of degrees of freedom of the 

chi d istribution. These simulations are therefore for particularly skewed £, and one 

expects 08 to  perform well. For all the degrees of freedom simulated here, 0s performs 

well. For the  m ost skewed £, 08 only displays a  small amount of bias for small sample 

sizes, bu t becomes virtually unbiased a t a  sample size of around 200. This also appears 

to  be the case for the larger degrees of freedom as displayed in Figure 4.17. As k gets 

larger, then 0s becomes more erratic, and for sample sizes less than  100 tends to stray
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outside the range of slopes of y on x  and x on y regression. However, at a sample size 

of again 200, j38 settles down.

50 100 150 200 50 100 150 200

n n
(c) k = 4 (d) k = 5

Figure 4.17: Values of /38 for varying degrees of freedom and sample sizes. The y on x
slope estimator is in red, and the x on y slope estimator is in blue.

50 100 150 200

n
(b) k = 3

50 100 150 200

n
(a) k = 2
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Figure 4.18 contains simulations of fig  for a larger number of degrees of freedom of the 

chi distribution. For the number of degrees of freedom displayed here the distribution 

of £ becomes more symmetric, and thus from the theory presented in the previous 

Chapter, /38 should perform less well. In general it can be seen for the k  presented 

here, fig is extremely erratic even for large sample sizes and is rarely within the required 

range. As a result the use of /3g can not be recommended for k  > 5. For example, 

with a sample size of 250 and k  =  8 , we obtain estimates of the slope which are on 

average -40. This is a severely biased result. Comparison of the scales of Figures 4.17 

and 4.18 demonstrates the impracticality of using fig  for the larger number of degrees 

of freedom presented here.
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Figure 4.18: Values of f y  for varying degrees of freedom and sample sizes. The y on x  
slope estim ator is in red, and the x  on y slope estim ator is in blue.

In sum m ary it seems th a t from the pictures provided, tha t a sample size of at least 

150 is needed to estim ate the slope using fa.  However, if the variance covariance 

m atrix for this estim ator is needed, it is likely th a t an even larger sample is needed to
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successfully estimate the higher order moments. It can be seen that the skewness of 

£ is important, with the better results for (jg occurring for the most skewed of £. A 

problem with this advice however is that the £ is a latent unobserved variable, and so 

the skewness in x  and y  are the only observable skewness measures.

It is recommended that the skewness of £ is at least similar to the skewness of a 

chi distribution with 5 degrees of freedom. To give advice on the skewness of x  and y  

needed, a small simulation study looking at the skewness of x  and y  under the parameter 

settings used here is provided. 1 0 0 , 0 0 0  data sets of size 1 0 0 0 0  were generated from a 

structural model with £ following a chi distribution with 5 degrees of freedom, and 

Normal errors. For each data set the sample skewness of x , and the sample skewness 

of y  was computed. The sample skewness was computed using the formula

V n ^ 2 ( X j -  x ) 3

E ( * i - * ) 2]f
The average skewness of the x  measurements was 0.23557, and the average skewness 

of the y  measurements was 0.24248. So skewness at least as much as the values here 

is required to estimate the slope reliably using f i g .  These are very informal guidelines 

however, as the amount of skewness required is likely to depend on the slope, and 

possibly other parameters as well, such as the error variances, and the reliability ratio 

in both the x  and y  measurement. It is possible to obtain a reliable estimator of the 

slope using f3g with a smaller sample size if the distribution of x  and y  is more skewed.

4 .7  E stim ator  f a

As detailed in Chapter 3, it is recommended that both x  and y  are sufficiently kurtotic 

for the estimator (3$ to be used. Moreover the sample sizes needed to accurately
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compute fourth order moments will inevitably be larger than those for first and second 

order moments. The aim of this section is to provide some advice as to the use of 

f i g .  To model the kurtosis of £, Student’s t distribution with k  degrees of freedom 

shall be used. As the number of degrees of freedom decreases, then the Student’s t 

distribution becomes more kurtotic. Thus the performance of f i g  may be monitored 

as the degrees of freedom decreases and the distribution of £ becomes more kurtotic. 

For a large number of degrees of freedom the Student’s t distribution is similar to the 

Normal distribution. The sample size needed to estimate f i g  is also considered, as well 

as the number of simulations where the estimator f i g  lies outside of the range of slope 

estimators of y  on x  and x on y  regression respectively. If fig lies outside of this range 

then admissible estimators of the variances will not be found.

The parameter settings chosen for the following simulations were a  =  0, (3 =  1. As 

the number of degrees of freedom changes, then so does the variance of the Student’s 

t distribution. In order to compare results across the range of the degrees of freedom 

the reliability ratio for both the x  and y  measurement has been set to 0 .8 , and erf and 

erf derived accordingly. For completeness, the variances of the Student’s t distribution 

with the numbers of degrees of freedom considered in this simulation study, as well as 

the values of the error variances needed to maintain a reliability ratio in the x  and y  

measurement of 0 . 8  are included in the following table:



Chapter 4 E r r o r s  in  V a r ia b l e s  R e g r e s s io n 136

k Variance of S tuden t’s t distribution with k degrees of freedom 2 2 
V6=<7e =

100 1.02041 0.25510
90 1.02273 0.25568
80 1.02564 0.25641
70 1.02941 0.25735
11 1.22222 0.30556
10 1.25 0.3125
9 1.28571 0.32143
8 1.33333 0.33333
7 1.4 0.35
6 1.5 0.375
5 1.66667 0.41667
4 2 0.5

To dem onstrate the im portance of having kurtotic data, Figure 4.19 show values of /?9

assuming th a t £ is from a S tuden t’s t distribution with a large number of degrees of 

freedom. The greater the num ber of degrees of freedom, the less kurtotic the data. 

Figure 4.19 dem onstrates th a t /39 behaves erratically and even for large sample sizes is 

greater than  the x  on y slope estim ator.

The poor performance even for large sample sizes remains until the number of degrees 

of freedom is lowered to  about k =  11. Figure 4.20 contains values of /39 for a smaller 

number of degrees of freedom. As the degrees of freedom are decreased, then the 

performance of (39 improves, although in general there appears to be a slight positive 

bias. It assumed th a t this is not due to  the  absence of small sample corrections in 

the sample moments as the samples are taken to  be rather large. Note th a t in order 

to  obtain a reliable estim ator of (3 using (39 the sample has to  be much larger than 

for any other slope estim ator discussed in C hapter 2. The sample size needed does 

depend however on how kurtotic the d a ta  is. For example, Figure 4.21 contains values 

of A  for an even smaller number of degrees of freedom. W hen k = 4, one may achieve 

a reliable estim ate of (3 for sample size close to  200, but this would need to  increase 

to  a sample size of about 1000 when k  =  10. Indeed, from inspection, it can be seen
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Figure 4.19: Values of fig for varying degrees of freedom and sample sizes. The y on x
slope estim ator is in red, and the x  on y  slope estim ator is in blue.

th a t for every additional degree of freedom added to k = 4, the sample size needs to

increase further by an additional 100 (approximately).
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Figure 4.20: Values of f i g  for varying degrees of freedom and sample sizes. The y on x
slope estimator is in red, and the x  on y  slope estimator is in blue.
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Figure 4.21: Values of /39 for varying degrees of freedom and sample sizes. The y on x
slope estimator is in red, and the x on y slope estimator is in blue.
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For illustrative purposes, the sample excess of kurtosis of x  and y  for a S tudent’s t 

distribution with k  =  4 and k  =  11 for 100,000 data  sets of size 1000 is computed, 

and the average across all simulations taken. The formula used to com pute the sample 

kurtosis was

n  £ ( x j - x ) 4 3

E f o  -  * )2!2

W hen k  =  4 the sample excess of kurtosis for x  was 3.99657, and the sample 

excess of kurtosis for y was 3.91756. W hen k = 11 the sample excess of kurtosis 

for x  was 0.33088, and the sample excess of kurtosis for y  was 0.51611. Again, it 

is difficult to  give formal guidelines on the usage of this estim ator as the amount 

of kurtosis needed is also likely to  depend on the value of the slope and reliability ratio.

4.8  C om parison  S tu dy

The aim of this section is to compare the perform ance of all slope estim ators derived 

in this thesis for a particular representation of a structural model. Such a comparison 

will dem onstrate the additional variability of using the estim ators of the slope based 

on higher order moments, namely fi8 and /59. 1000 d a ta  sets with a sample size of 

150 were sim ulated from a structural model w ith £ following a chi-square distribution 

(five degrees of freedom), and Normal errors. The remaining param eter settings chosen 

were a  =  0, /? =  1, and crs = (Te — 2. A scatterplot of a typical d a ta  set with these 

param eter settings is included in Figure 4.22

Figure 4.23 contains histograms of the estim ators /?i, / % ,  /?3 , A , / % ,  fo,  / 38  and / 3g .  The 

scales have deliberately been chosen to  be different for each estim ator, to dem onstrate 

the differing variation in each estimator. All histograms appear to peak approximately
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Figure 4.22: A typical scatterplot with £ following a chi-square distribution (five degrees 
of freedom), and Normal errors, a  =  0, (3 = 1, and cr$ = cre = 2.

around the true value of the slope /3 = 1. The spread of the histogram is minimal for 

the slope estim ator f i i . As discovered in previous simulations, fi\ performs surprisingly 

well when there is skewed £. The histograms for fi2, fiz, fi8 and fi7 are very similar 

in appearance. For some samples, these slope estim ators were estim ating the slope 

as approxim ately 0.8 and 1.3 respectively. As to  be expected, fi8 and fig perform 

least favourably. For both of these slope estim ators, the peak of the histogram does 

appear to  approxim ately lie above the true value of the slope f3 = 1, but there is 

much more spread in both of the histograms. Roughly speaking, the histogram for fi8 

dem onstrates th a t for some samples, the estim ate of the slope is as extreme as 2.5, 

whilst the  histogram  for fig dem onstrates th a t the slope is estim ated as 20.
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Figure 4.23: Histograms of different slope estimators for 1000 simulated data sets with 
a sample size of 150.
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The following table has the  sample means, sample variances and theoretical variances 

for the slope estim ators fa,  fa, fa, fa, fa,  fa, fa  and fa  computed for the 1000 simulated 

d a ta  sets:

Slope Estim ator Sample Mean Sample Variance Theoretical Variance
fa 0.99986 0.00212 0.00213
fa 1.01056 0.00995 0.00853
fa 0.99791 0.01000 0.00853
fa 0.99492 0.00876 0.00771
fa 1.0029 0.00708 0.0064
fa 1.0028 0.00718 0.0064
fa 1.0074 0.02922 0.037
fa 1.14303 1.07506 0.06982

This table confirms the analysis of the histogram s conducted earlier. All the estimators 

of the slope have a sample mean close to  the  true value of the slope, apart from fa  

which can be seen to be positively biased. The sample variance for this estim ator can 

be seen to  be over 500 times larger than  the sample variance for fa.  For a sample 

size of 150 however, it is to be expected th a t f a , which is a function of fourth order 

sample moments will behave more erratically than  those estim ators based on lower 

order moments, fa  has performed well, w ith a relatively small variance, although it 

is still more than  double the sample variances for the slope estim ators based on first 

and second order sample moments, fa  has the  smallest sample variance, followed by 

fa  and fa.  There is close agreement with the asym ptotic theoretical variances and 

the sample variances in all cases, apart from fa.  The theoretical variance for this 

estim ator is approximately double th a t for fa,  bu t it seems th a t sample variation has 

caused the sample variance of fa  to be inflated.
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4.9  C onclusions

All the estim ators introduced in the previous Chapter have been investigated using 

simulations in this C hapter. It appears th a t the distribution of d a ta  is im portant 

when considering which estim ator to use. For example, from these simulations, it 

would appear knowing the value of the intercept a  would prove more beneficial when 

estim ating the slope when £ follows a chi distribution with two degrees of freedom, 

than  knowing A for example. The admissibility conditions are im portant, but for a 

sufficiently large sample should not be broken. As Dunn [39] states

“If the model is correct, however, and the sample size is large enough, then

we will get admissible estim ates” .

fa  and fa,  although initially appealing as they do not require a restriction on the 

param eter space, do require larger samples than  slope estim ators based on first 

and second order moments. The da ta  m ust also be sufficiently skewed or kurtotic 

respectively, bu t as stated, it is difficult to  give formal and explicit guidelines as 

to  how much skewness or kurtosis is needed as the situation is likely to depend on 

a m ultitude of factors. Nevertheless, it has been dem onstrated th a t given certain 

conditions are met, fa  and fa  are perfectly usable.



C hapter 5 

M axim um  L ikelihood

5.1 In trod u ctory  R em arks

The application of the maximum likelihood m ethod to an errors in variables model 

has been briefly discussed in C hapter 2. The literature is silent on the question of 

maximum likelihood estimators except when (£, 5, e) is taken to be trivariate Normal. 

This C hapter will extend this by providing further algebraic details for particular 

constructions of the errors in variables model.

This C hapter aims to  illustrate the inherent difficulties in the maximum likelihood 

approach th a t are naturally avoided by using the method of moments approach 

advocated in C hapter 3. The complexity of the likelihood function for non-Normal 

£ is such th a t in practice numerical methods would have to  be employed to  find 

maximum likelihood estimators, and the thorough investigation of the properties of 

these estim ators would be lengthy and tedious.

In particular it is unlikely th a t theoretical results concerning the asym ptotic variances 

of the estim ators can be derived for anything other than  the Normal structural model 

(this was done by Hood et al. [57]). To form the information m atrix it is necessary to

145
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find the expectations of the various second derivatives with respect to the unknown 

param eters. Due to  the complex form of the likelihood function, derivation of the 

second derivatives w ith respect to  the parameters of the model are likely to be 

intangible. Thus com putation of the information matrix, let alone its inverse is likely 

to be algebraically difficult.

5.2 N orm al S tru ctu ral M od el

For the Normal structural model, it is assumed th a t

N cr2 +  <72 per* 
2 —2a  +  ^  /  ’ I Pa2 p a  +  <7(

and the log-likelihood of a random sample {(xi, yp,  i = 1 , . . . ,  n )  is given by

n
I = —n  ln(27r) — —

L M  +  l !  +  l n ( |s | )

(see for example Hood [56]) where

P  =  sxx(P2a 2 +  a 2) -  2Pa2sxy +  syy(a2 +  a 2)

Q = (x  -  p )2(p2a 2 +  a 2) -  2(x -  p){y - a -  P p)pa2 + (y -  a  -  Pp)2(a2 +  a 2)

and |£ | is the  determ inant of the variance covariance matrix, a notation introduced in 

C hapter 3.

The term  Q  is minimised and equal to 0 when p  =  x  and a  + Pp = y. These equations 

are identical to  the method of moments estim ating equations (3.1) and (3.2). The 

problem of maximising I is now reduced to  minimising
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since a  and p  do not appear as param eters in terms other than  Q.

Therefore, the param eters remaining to  be estimated are /?, cr, as and a£. Taking the 

partial derivatives of In  w ith respect to  these parameters and setting them  to 0 yields

the following set of likelihood equations as derived by Hood et al. [57]:

(/3 a 2a 2 +  ( 3 a 2s xx -  a 2s x y ) \ L \  -  (3 a 2a 2 P  = 0 (5.1)

(/32c t( j2 +  a a 2 +  (32c rsxx -  2( 3 a s xy +  crsyy)|E| -  (/32a a 2 +  a v 2e ) P  = 0 (5.2)

( a g a 2 +  /32(r2a s +  <7*5yy)|E| -  (crS( j2 +  (32a 2<r5) P  = 0 (5.3)

((r2a e +  a 2a e +  <tcs Xx ) \ E \  -  ( a 2a £ +  a 2o e ) P  = 0 (5.4)

It can imm ediately be seen th a t these likelihood equations are not as compact as the 

m ethod of moments estim ating equations (3.1) to (3.5) and thus manipulation of the 

equations (5.1) to  (5.4) is likely to prove more difficult.

A lthough there are now four likelihood equations in four param eters, these equations 

are not independent and similar to the m ethod of moments approach of Chapter 3, 

a restriction on the param eter space must be made in order to  make the likelihood 

equations (5.1) to  (5.4) identifiable. This point is illustrated in detail by Hood [56].

As mentioned in C hapter 2, under a restriction the solution of the likelihood equations 

(5.1) to  (5.4) will yield identical solutions to the method of moments estimating 

equations (3.1) to  (3.5). This is because x , y , sxx, sxy and syy form a set of sufficient 

statistics for the  two means, two variances and the covariance of the bivariate Normal 

distribution (Kendall and S tuart [67]). It is possible however to derive the method of 

moments estim ating equations (3.1) to (3.5) via the m ethod of maximum likelihood.
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This has been done by Hood [56] and is illustrated here.

As stated, m ethod of moments estim ating equations (3.1) and (3.2) have already been 

derived from the likelihood function I. It remains to maximise with respect to the 

term s th a t form the variance covariance matrix. Keeping the notation

?2_2

then

p  =  sxx{P o +  -  2(3cr sxy +  Syy(<T2 + a])

M  dlN _  2 ,  ,  _ (/J2g2 +  g 2)P
1 la(<T2 +  <7f) ~  0  +<Jt + s «y |E | (5 -5)

M  d lN 2 I 2 I „ (o-2 +  crpP
1 W v ’ +  g 2) +<Ts + s*x |S | (5-6)

"  « ”  -  ^  +  (5.7)
2 d(Pa2) ^  xy |E | 

Setting these equations to 0 and rearranging we obtain

P
|£ | p 2a 2 + a 2

Sxx

=  1 +
a 2 + a]
Sxy

and it thus follows th a t

Per2

/32a2 +  <r2 g2 +  gf /3g2
(5.8)

J y y  J x x  J x y

We may now m anipulate these equations to  obtain the method of moments estimating 

equations. Substituting P  into (5.6) yields

(a2 +  <t|)|E | -  (Pa2)2sxx +  2/3a2(a2 +  a 2)sxy -  {a2 +  cr2)2syy =  0

and substitu ting per2 =  sxy, and P2a 2 +  a 2 =  Syy gives after some manipulation
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which simplifies to (a 2 +  erf) =  sxx, the method of moments estim ating equation (3.3).

Again substitu ting back into the identity (5.8) yields the remaining two method of 

moments estim ating equations (3.4) and (3.5); (/32a2 +  erf) =  syy and (3a2 =  sxy 

respectively.

This implies th a t the combinations of the param eters a 2 +  <rf, (3a2 and (32a 2 +  erf 

may be identified using maximum likelihood, but, unless a restriction is made, the 

individual param eters /?, cr2, a 2 and a 2 may not be identified.

In conclusion then, the method of moments approach of Chapter 2 yields identical 

estim ators to  the maximum likelihood approach for the Normal structural model. The 

variance covariance matrices using the delta m ethod and m ethod of moments also 

agree w ith those of Hood et al. [57] who adopted a maximum likelihood approach. 

The asym ptotics of the method of moments estim ators derived via the delta method 

earlier have the advantage of not being solely constrained to the Normal structural 

model.

5.3 N orm al Functional M odel

The functional model construct is similar to  th a t of the structural model, bu t has a 

crucial difference in the treatm ent of the latent £’s. In the functional model, each & 

is assumed to  be a fixed unknown constant, as opposed to a random  variable as in 

the structural model. A potential problem with this type of model was highlighted by 

Neyman and Scott [79]. They questioned the use of asym ptotic theory for this model
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since the introduction of each new observation increases the number of unknown 

param eters to  estim ate. The dimension of the variance covariance m atrix increases as 

the number of observations increases.

The vast m ajority of papers on the functional model use a maximum likelihood ap

proach. Some details of this approach are offered here. Assume the Normal functional 

model applies. For the functional model, there are (n +  4) parameters, namely, a , /?, 

<rf, o\  and the n  latent £i’s. The likelihood function, L  (see for example, Hood [56]) 

may be w ritten as

L  oc <Tx <re exp
2a? .6 t=i 2(Te • 1 t=l

Differentiating I =  InL  with respect to  each of the param eters yields the following 

(n -I- 4) derivatives, which when equated to  0 give the turning points. In many cases 

the turning point can be identified as a global maximum, and maximum likelihood 

estim ators are thus obtained. As will shortly be shown, this is not the case here.

dl_
d&

dl_
da

= ~  a  -  P€i) = 0

dl
dt

dl

£ i=i  
n

dfj = - / % )  =  <>
i=i

=  + i)2 = 0 -
®L

do.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
i=l

Summing (5.9) over all i using (5.10) we obtain the following relationship a t the turning 

point
n

y >  -  & ) = o =*► x = ^
i=1
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Prom (5.10) a  =  y  — /?£, therefore from (5.11), we can write an estim ator of (3 as

a _  E ? = i( 6 - D ( S f c - S )  , ,
E I U t e - 0 2 ' ( 5 ' 1 4 )

This estim ator is of no im m ediate use since the &’s are unknown. It is, however,

interesting to  note th a t if the true  £ values are known exactly the maximum likelihood

estim ator of the slope is the usual least squares estimator. If each & is estim ated with 

Xi, then the usual least squares estim ate for the slope in a simple linear regression 

model (3 =  is recovered. However as will be seen in Chapter 6, is not an optimal 

estim ator of & and so this is ill-advised. In C hapter 6 a number of possible estim ators 

of £ are considered. Most of these estim ators are functions of (3 and so cannot be used 

here.

Equations (5.12) and (5.13) can be used to  obtain maximum likelihood expressions for 

the error variances. They are

as =
i= l

ae =  - a - f i t i ) 2.71 * *n  ii=i

If equation (5.9) is squared, we have,

(g»- &)2 =  ,
4  4  \Vi P*Li)

ae

and summing over all i yields =  {32crj, or

A =  (32. (5.15)

This is the exact assumption made in the m ethod of moments approach in Chapter 

3 when the geometric mean regression slope estim ator, (3g m  is used to estim ate the
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slope. P u tting  A =  j32 into (5.9) gives us the values of & at the turning point. These 

will be discussed in more detail in Chapter 6,

M ( x i + ^ ) = K x i + ^ - 4

It is issues with estim ators derived from these turning points th a t led authors such 

as Lindley [72] and Solari [95] to  conclude th a t it is not worth proceeding with 

the maximum likelihood equation process. Solari for example highlighted th a t the 

likelihood function has a saddlepoint. We have no prior knowledge of the param eters 

/?, erf and of, yet (5.15) gives a  definite relation between the maximum likelihood 

estim ators which may not be necessarily true  in the model specified. Indeed, (5.15) 

implies th a t we cannot consistently estim ate /?, erf and erf. This approach is therefore 

unacceptable for most applications.

Analogously to  the structural model, one may not proceed with the functional model 

unless a further assumption restricting the param eter space is made. An additional 

problem was highlighted by Lindley [72], in th a t the maximum likelihood estimators 

of the error variances are inconsistent. This is highlighted via an example.

Assume th a t the ratio of the error variances A is known. This reduces the number of 

likelihood equations by one, since (5.12) and (5.13) are now replaced with

dl
da. £ i=l  6 i= 1

Assuming th a t A is known removes the inconsistency of (5.15). The maximum likeli

hood estim ator of <rf is

A -  £i)2 + ' % 2 ( y i - a ~  Pti):
i=1 i=1

(5.16)
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For this estim ator to  be of practical worth, it remains to find estim ators of the latent 

and of the slope (3.

From (5.9) we may write

(xi -  &) +  j ( y i  - a -  f3Zi) =  0

and so

& =  I T / ? * Xi +  I + / P  ( y i - a ) = x  + 2 M 1* -  * ) + -  y)\ ■

This estim ator will be discussed in further detail in C hapter 6. Substituting this 

estim ator into (5.16) gives

A
2n(A +  ? )  ^

{s yy 2(3sXy +  (3 s xx) (5.17)
2n(A 4- (32) 

since a  = y — /3£ = y — (3x.

Kendall and S tuart [67] is a reference which shows th a t the sample variances and 

covariances in the previous expression converge in probability to their expectations. 

We will now exploit this to  show the inconsistency of a*. Letting s#  denote the variance 

of the latent £i’s n ~ l XX& — £)2, and denote convergence in probability, then

5xi +  (5.18)

S y y  (32S ^  +Xa]  (5.19)

p (5.20)

Substituting these into (5.17) we can show th a t

-*-+ 2 Â ^  [P2m  + -W  -  2/32s «  +  0 2 { S ( (  +  O f ) ]  = \  < 4
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which shows the inconsistency. Kendall and S tuart point out th a t this is analogous 

to the correction for degrees of freedom in one-way analysis of variance, and can be 

rectified by using 2a

The problems of inconsistency may be avoided by using the m ethod of moments to 

estim ate the param eters of the model. The method of moment estim ating equations 

may be constructed using (5.18), (5.19) and (5.20). The estim ating equations are:

X  =  ( (5.21)

y  = a  + (5.22)

— , 2 'xx ■+■ a £ (5.23)

lyy = l32S( ( +<Tj (5.24)

IIAH (5.25)

These equations are similar in appearance to  those for the structural model, but have 

a different interpretation. In equations (5.21) and (5.22), £ is no longer the mean of 

a random  variable, bu t is the mean of the fixed constants Equations (5.23), (5.24) 

and (5.25) contain the term  s#  as opposed to  a 2 for the functional model where 

s « = n - 1E " = i ( 6 - | ) 2.

The same problems th a t arise in the structural model also arise here. In the above 

construction, there are five equations, but six unknown param eters, p, s ^ ,  a , /?, a2 

and a 2. In order to solve these equations, a restriction on the param eter space has to 

be made. The above estim ating equations may be solved once this restriction has been 

made, and the solutions are identical to  those of the structural model. In conclusion the 

m ethod of moments enables the usual param eters to be estim ated w ithout difficulty.
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W hen the distribution of £ is non-Normal, then the maximum likelihood approach 

is even more difficult. To illustrate this, a few details on the maximum likelihood 

approach for a num ber of examples when £ follows a distribution other tha t Normal is 

included here.

5.4  U niform  £, N orm al errors

Let £ be an unobservable latent variable which follows a uniform distribution with 

finite support [a, 6]. Then the probability density function of £, /$(£) can be w ritten

'•<«- j ih r ,

with £ such th a t a <  £ <  b.

The errors 5 and e are assumed to be m utually uncorrelated, and each follow an inde

pendent Normal distribution

5 ~  N ( 0 ,a j )  

s  ~  N(0,cr^)

As £, 5 and e are m utually uncorrelated, then it follows th a t the joint p.d.f. of £, 5 and 

e is

(b -  a)2'K(T5(Te 6XP (  2 <rf 2<72 )

Now, consider the one to  one transform ation

x =  £ + £ 

y  =  a  +  /?£ +  e

f  =  £
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The Jacobian of this transform ation is 1, and so the joint p.d.f. of x, y and £ is

fx,y,z(x i Ui C)
1

exp ( f  -  x ) 2 (y - 0 L  -  PC) 21

2<r| 22 i r ( b  — a ) a s ( T e

After some simplification and completing the square, we can write the term  in the 

exponential as

where

A  = + P2° \

B  =
X P ( y - a )

C  =
x 2 , ( y - a ) 2

° 2e

So

fx,y,^(x i Vi C) =
y / 2 n ( b  -  a ) a s a £

exp
1 /  ( y  -  a  -  P x )2
2 \  <T* + P o l \ /2 tt

exp

To obtain the  joint p.d.f. of x and y, it remains to integrate out the £ term

fx,y(x >y)

Hence

y / 2 n ( b  -  a ) a s a £

fx,y{x,y) =

exp
1 ( ( y - a -

2 \

rb i
Ja 'J 2 *

exp - - U - -2 V A

2-1

dC

V2iF^/ crj +  pPa
exp

1 ( { y - a -  P x ) 2

2 \  ° 2 + P2° 25

x
(b

$ V A i b - f V a H ) ] }
(5.26)

Here, $  is the  cumulative distribution function of the standard Normal distribution, 

th a t is

$ ( u )  =  f  <f)(t) d t
J —CO

where
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is the standard Normal probability density function. This notation is now adopted for 

the rest of the thesis.

The term

(b

has some im portant features.

The key feature lies in the consideration of the B / A  term . It can be seen th a t

_  x  , 0(v-a)
b  ^  + a

x  + P
oi+f2*! X + (32 A +  /?2 

*6
(y -  a) = £.

This is the m ethod of moments estim ator for the latent, unobserved £ th a t has been 

mentioned earlier, bu t will be discussed in more detail in the next Chapter and beyond.

This observation allows an analysis of the term  (5.27). For £ close to  the center of the 

distribution, th a t is £ «  then (5.27) becomes

(b
$ $ V a I a —— fc±a) n

which may be w ritten  as 

1
$

( 6 - o )

W hen £ is close to  a, the left end point of the support, th a t is £ «  a, then (5.27) 

becomes
1

(b - a )

p y / A ( b - a )

I <t>{t) dt 
Jo 2(6 — a) ’

and the identical result holds for £ close to  6. VA(b  — a) is likely to  be a lot larger 

than  3 for most applications since y/~A is of order 1 /erf for m oderate (3 and (6 — a), for
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Figure 5.1: Demonstration of behaviour of (5.27) for a simulated data set with uniform
e

most applications, is large compared to erf. If (3 is large it is immediately seen that

VA(b is large. Thus we have the approximation

VA(b-a) ^
(f>{t) d t t t

As an example of the behaviour of (5.27), Figure 5.1 is a plot of (5.27) against x  and 

y for a simulated data set of 5000 points with uniform £. The parameters chosen 

were a =  5, b = 10, a  = 3, /? =  5, as = 0.7, ae =  1. Note for these parameter 

settings y/A(b — a) = 132.1429 > >  3. It can be seen that (5.27) is bounded above by 

yjpg =  0.2, and that (5.27) gets smaller at the tails of the distribution.

As we have now found the explicit joint probability density function for x  and y , we 

may obtain the likelihood function and attempt to maximise it with respect to the 

unknown parameters in order to find estimators for these unknown parameters. Some
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of the m athem atics required to do this is included here to show the potential difficulty 

in using the maximum likelihood approach when the distribution of £ is non-Normal.

The likelihood function L,  is the product

n  ̂

L = n  y ) =  (2tt)n/*(a2 -
i= l (27r)n/2(of +  f32a 2)n/2

exp
(yi -  a  -  (3xj)2 
2(a2 +  (32aj)

x

The likelihood function for simple linear regression is the product

i=1
(5.29)

assuming th a t the error term  e is Normally distributed.

The likelihood function (5.28) differs from the likelihood function of the simple linear 

regression model (5.29) by the inclusion of the  term  after the multiplication sign, 

and the inflated variation of cr2 to of +  P2^s- ^  can seen the term  after the 

m ultiplication sign in (5.29) is likely to  have an impact on the likelihood function 

(5.28) due to  the investigation of (5.27) earlier but its effect is of the order 1/(5 — a)n. 

The term  ft2 in the denominator however fundam entally changes the form of the 

likelihood function (5.28).

As usual, it is more convenient to  work with the log likelihood function I = In(L). 

I = -  % ln(2*) -  I  l n t f  +  /32<r|) -  % ~ 2a+~ J * £  -  » tn(6 ~  <0

+ $ V A l b - l
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We can partition this log likelihood into the log likelihood function of the simple linear 

regression model with inflated variance

(5.30)2 ' - ' -  ' 2

and the additional term s obtained by assuming tha t £ follows a uniform distribution

lu = —n\n(b «) + £ > {
1 = 1 ^

$ ' / A l b - I V a a ~ i i ) |
Hence, we may write the log-likelihood as I = Is +  lu- Assuming th a t the support pa

ram eters a and b are known, then the param eters we wish to estimate are /x, a , /?, cr2, a\  

and cr2. It can be seen th a t maximising the likelihood function will prove difficult, and 

could only be achieved by numerical search methods. Thus the method of moments 

must remain the preferred approach. Maximum likelihood would prove more difficult 

if the param eters a and b were assumed to  be unknown.

The term  lu must not be ignored however. As an example, Figure 5.2 contains the 

log likelihood functions I =  Is +  lu, h  and the log likelihood function of the simple 

linear regression model with variance cr2 (equation (5.30) with cr2 +  /?2cr| replaced by 

cr2) where all param eters, except /?, are assumed fixed. The param eters used in this 

simulation are a =  5, b = 10, a  = 3, f3 = 5, os = 1, and cre =  1, with n — 5000.

The log likelihood of the simple linear regression model is maximised a t a value below 

the true  value of /?. The log likelihood functions I and Is are very flat over the range 

which includes the true  value of f3. The lack of a well defined maxima for both of 

these likelihoods imply th a t it would be difficult to obtain an accurate slope estim ator 

via maximum likelihood.
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Figure 5.2: Blue curve denotes Z, red curve denotes Is, black curve denotes log likelihood 
for simple linear regression.

5.5 C hi £, N orm al errors

As another example of the maximum likelihood approach, let £ follow a chi distribution 

with k degrees of freedom. The probability density function of £ is thus

2(1-D
/«(£) = £

2

with support 0 <  £ <  oc. T(t) is the standard  Gamma function

poo
r (t) =  /  x {t~l) exp(—x) dx.

Jo

The errors 5 and e are assumed to be m utually uncorrelated, and each follow an inde
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pendent Normal distribution

S ~  N{  

e ~  N ( 0 , a 2).

As £, <5 and e are mutually uncorrelated, then it follows that the joint p.d.f. of £, S and 

e  is

f t i A Z , 6 , e )  =  '  € (k 11 exp
\  2 ) & &Ge

Making the one to one transformation

82x A

2 2 o2 2(7? j

x =  £ +  £

t/ =  a  +  /?£ +  e

£ =  £

yields
j ?  _ ( x  -  £)2 ( y  - a -  f i t ) 2 

2

X 2 '
exp

“ T
exp

and after completing the square in £

2<1-f>
f x , y , t ( x , y , f i )  — r (k\<y

1 y 2 )^7T(Xg(7£

Letting I ( k )  denote the integral

roo
m  =  /  *<*

J o

2 a ]

( y  - a -  p x ) '-

2 a ]

- i ) exp

2(«? +  f P a ] )  J

- - U - -
2  \  A

£.(k- 1) exp
4 H )

then the joint probability density function of x  and y  is given by

fx,y{.x i y) r(|)27rcr<jcre
x 2

exp
~ ~ 2

e x p
( y  — a  — P x ) 2

W f T p ^ l )
i ( k ) .

The integral I ( k )  may be evaluated for small degrees of freedom. For k  >  3 then the 

number of terms in the integral grows larger and become difficult to manipulate. The
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value k  =  1 is of particular interest as then the chi distribution becomes a half-Normal 

distribution.

W hen k = 1

It thus follows th a t

m

fx,y(x ,y )  =
l

y/ZKy/a* +  /32a$
exp

V A  \ ' / a )

( y - Q -  /3x)'
x \ l  — exp

21

< 7 * ) '2(®J +  /JV I)

This probability density function differs from th a t of simple linear regression with 

inflated variance a 2 +  j32cr2 by the inclusion of the term

2
— exp 
7r T

(5.31)

As an example of the behaviour of (5.31), Figure 5.3 is a plot of (5.27) against x  and 

y  for a sim ulated d a ta  set of 5000 points w ith chi £ and k =  1. The param eters chosen 

were a  =  3, (3 =  5, as =  0.7, oE =  1.

The log-likelihood function Z of a sample {(£*, ?/*), i =  1 , . . . ,  n} may be w ritten I = ls+lc 

where

It can im m ediately be seen th a t the likelihood function may again be partitioned 

into two components. The first component ls is th a t of simple linear regression with 

inflated variance a 2 +  /?2erf, and the second term  Zc. This second term  is different 

to the term  th a t appears by choosing £ to be from a uniform distribution as it still 

depends on x.
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Figure 5.3: Demonstration of behaviour of (5.31) for a simulated data set with chi £ 
and k =  1

Again the term lc must not be ignored. As an example, the Figure 5.4 contains the 

log likelihood functions I = Is + lc, lc and the log likelihood function of the simple 

linear regression model with variance of (equation (5.30) with of +  /?2of replaced by 

of) where all parameters, except (3, are assumed fixed. The parameters used in this 

simulation are a  =  3, (3 =  5, 0 $ = 0.7, and ae =  1, with n =  5000.

5.6 C o n c lu s io n s

It can be seen that the maximum likelihood approach is not as straightforward as the 

method of moments based approach of Chapter 3. The numerical maximisation of a 6 

dimensional likelihood is likely to prove difficult, and as can be seen in the examples 

investigated here the likelihood surface tends to be flat over a large range of possible 

(3. This implies that constructing a confidence interval for the slope (3 of respectable
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Figure 5.4: Blue curve denotes I, red curve denotes Is, black curve denotes log likelihood 
for simple linear regression.

finite width is a difficult task.

For both uniform and chi £ the inflation of the variance in the denominator of the joint 

probability functions of x  and y has a more profound effect, when compared to the 

no measurement error case than a simple increase of variation. The presence of (3 in 

the term (cr2 +  /?2cr2) ~ f  has the effect of flattening the likelihood. It can be seen from 

Figures 5.2 and 5.4 tha t for the full model the likelihood remains almost constant over 

a wide range of (3. This would make it difficult numerically to estimate /?, but more 

seriously it is highly likely that for any specific data set the value of (3 identified as 

the maximum point would lead to estimates of some of the variance terms that are
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negative.

Figures 5.2 and 5.4 are reminiscent of those derived by Cheng and lies [21] in their paper 

on embedded models. They investigated the problem of using maximum likelihood for 

three param eter models. For all the three param eter models they studied, there was an 

embedded two param eter model limiting case. This two param eter embedded limited 

case corresponded to  infinite or zero values of param eters in the three param eter model. 

The effect of this is a  flattening of the likelihood, such as th a t dem onstrated in Figures 

5.2 and 5.4. The situation here however is much more complicated, with there being 

six param eters. However, there could be an argum ent made for the existence of a five 

param eter embedded model for the examples looked a t in this section. As erg —*■ 0, 

then both the joint probability density functions of x  and y  for uniform and chi £ tend 

to

fx,y{x,y)  =  ~7== exp 
V 27T<7£

So it appears th a t a  five param eter model is embedded within the six param eter 

errors in variables model. This embedded model is not the only one however. For 

example, taking cre —> 0 would lead to  the joint probability density function of x  and 

y  in accordance w ith x  on y regression. Cheng and lies dem onstrate th a t when there 

is an embedded model, the m ethod of maximum likelihood may be unable to identify 

certain param eters. It could be the case th a t this phenomenon is present for the errors 

in variables models discussed in this Chapter, and further explains the flattening of 

the likelihood functions.

For an errors in variables model, it appears th a t the combinations of the parameters 

(a2 +  a 2), (5a2 and {(52a 2 +  a 2) are embedded in the model, and they may be estimated 

from the second order sample moments sxx, sxy and syy respectively. To estimate

(;y - a -  /3x) 
2 <r?
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the individual param eters a 2, a 2 and a2 requires additional information in order to 

recover them  from these embedded parameters.

Thus to summarise, the m ethod of maximum likelihood is difficult to apply, is likely 

to lead to inconsistent estim ates of variance param eters, and would not easily lead to 

expressions for the asym ptotic variances. It is for these reasons th a t for the most part 

this thesis concentrates on m ethod of moments estimators.



C hapter 6 

P red ictio n

6.1 In trod u ctory  R em arks

Cheng and Van Ness [20] commented th a t

“Sometimes one constructs a regression model for the purpose of predicting 

y  from x and other times one is more interested in the relationship between 

y  and x”

C hapter 3 of this thesis has already dealt with the la tte r of their suggestions. Estima

tors for the linear structural model and corresponding variance covariance matrices 

have been provided. This allows the practitioner to estim ate the relationship between 

x  and y , and, after making some param etric assumptions, to construct approximate 

confidence intervals and hypothesis tests.

The first purpose of a regression model mentioned by Cheng and Van Ness concerns 

prediction. In an errors in variables model, there are a number of different prediction 

based questions th a t one may ask. Some of these are listed here:

•  Given the d a ta  set {(x*, ?/*), i — 1 , . . . ,  n}, how may we estim ate the unobserved 

d a ta  set {(&, 77*), i — 1 , . . . ,  n )  ?

168
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•  Given a £, & say, how does one estim ate rji?

•  Given a x, x* say, how does one estim ate yi?

In addition to the wide variety of prediction questions, there is another difficulty in 

th a t the answer for some of these questions depends on whether the model is assumed 

to be functional or structural. The aim of this C hapter is to clarify the prediction 

situation and offer some insights into the above questions.

6.2 E stim atin g  y

It is reasonable to  assume th a t a practitioner may wish to  estim ate a y value, given an 

x  value. There is much confusion in the statistical literature regarding this problem, a 

point m entioned by Cheng and Van Ness [20]. They write

“There is an interesting but sometimes misleading statem ent regarding the 

prediction of y  from x  th a t asserts th a t the ordinary regression least-squares 

predictor should be used even when dealing w ith the ME (measurement 

error) model”

However, this point is only true under particular circumstances. The main distinction 

in prediction lies in the inherent differences between the structural and functional 

model. B oth the Normal functional and Normal structural models shall be considered 

here.

Normal functional model Consider firstly the Normal functional model. Each £ 

is considered to be a  fixed unknown constant such th a t E[xi] =  £* and Var[xi] = cr$.
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For a fixed da ta  point, the distribution of the errors (Si, £i) is given by

Note th a t here, x  and y  are independent. It thus follows th a t (using standard properties 

of m ultivariate Normal distributions)

E[y\x]  =  OL +  f e ,  (6 .1)

where £ is the true latent value th a t x  is used to measure. £ is an unknown parameter, 

and each d a ta  pair has a different £. Since the latent value 77 measured by y  is assumed 

to  be related to  £ by the equation 77 =  a  +  /?£, the latent (£,77) pairs lie exactly along 

a straight line.

To estim ate (6 .1) then unbiased estim ators of a  and (3 are needed. To use the simple 

linear regression estim ators here would yield a biased result. Hence, a  and f3 should be 

estim ated by estim ators which take into account the errors in both variables. These 

were discussed in detail in Chapter 3 .

N o rm a l s t r u c tu r a l  m o d e l The Normal linear structural model has trivariate dis

tribution

Using standard  properties of multivariate Normal distributions, the marginal distribu

tion of x  and y  obtained by transforming to the variables (x, y,  £) and integrating with
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respect to £ is

\  J ? 2 al l -\ y  J  + /to2 P 2a 2 + a 2 )

It similarly follows from standard  results concerning multivariate Normal distributions 

th a t

E[y\x\ = a  + (3p + 2 {x -  p). (6.2)
a 4 +  <rs

However the expression in (6.2) is often called the regression of y on x  and for the 

Normal structural model is linear in x. This was the point made by Lindley [72]. 

There is some inconsistency in the literature concerning the use of the word regression. 

E[y\x] is sometimes called the regression of y on x  and is frequently confused with the 

least squares regression of y  on x. A distinction between estim ating the parameters of 

the straight line fit a  and f3 and finding E[y\x] is particularly im portant for an errors 

in variables model as they are often two separate constructs.

In practise, one can simply estimate the key components of (6.2) using the m ethod of 

moment equations stated  in Chapter 3. We thus obtain

E[y\x] «  y +  — (x — x).
$xx

This suggests th a t the standard least squares estimators are solely needed for prediction 

in a Normal structural model. However, in the functional model E[y|x] =  E[y] = c*+/?£ 

and a  and f3 m ust be estim ated via the errors in variables methodology outlined in 

C hapter 3.

The fact th a t the  least squares estimates appear in E[y\x] for the Normal structural 

model does not imply th a t the errors in variables estim ates become redundant. The
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errors in variables estim ates are still needed to quantify the relationship between x  

and y, and also to recover the unobserved data  set. These least squares estimates 

only appear when considering how one may predict y , under a number of conditions, 

most notably when the distribution of (£, 5, e) is assumed to  be trivariate Normal. It 

will be shown later in this C hapter th a t assuming a non-Normal distribution for £ the 

expressions for E[y\x) are more complicated and not as clear cut.

There is then a clear distinction between the Normal functional model and the Normal 

structural model. For the functional model, if the error laws are considered to be 

Normal, then the errors in variables fit coincides with the expression for i?[y|x]. For 

the structural model, if £ is taken to be a Normally distributed random variable with 

Normal error laws, then the least squares line and not the errors in variables fit is 

used for E[y\x}. The algebra combines in such a way for the Normal structural model 

th a t the component (3a2(a2 +  cr|)_1 appears and this is estim ated by the standard 

least squares regression slope estimator sxy/ s xx.

In the following subsections, E[y\x] will be investigated for a variety of distributions 

of £. Lindley [72] gave the explicit conditions for E[t/|x] to  be linear, bu t what is the 

effect upon changing the distribution of £ to a distribution other than  Normal?. This 

can be investigated parametrically, and nonparametrically.

6 .2 .1  P a r a m e t r i c  A p p ro a c h

In this subsection, three differing param etric techniques of obtaining E[y\x] shall be 

discussed. These are:
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1. Kendall and S tu a rt’s cumulant approach

2. M anipulating trivariate distributions

3. Cochran’s bivariate approach and approximations

Kendall and Stuart’s cumulant approach A possible param etric approach was 

introduced by Kendall and Stuart [67]. Their technique involves constructing expres

sions for E[y\x] w ithout explicitly determining the joint probability density function 

f x,y{x,y)- Instead they derived a result based on cumulants and derivatives of the 

probability density function of x, f x(x). Letting D  denote the differential operator 

D^fx{x)  =  and j )  denote the (i, j) - th  bivariate cumulant of the joint

probability density function of x  and y then

This approach does assume however th a t f x {x) has continuous derivatives a t least in 

the support of x, and th a t the bivariate cumulants of (x, y ) exist.

We can apply this methodology to the case when we have a Normal linear structural 

model as introduced earlier. The joint characteristic function of the standardised vari

ables of ? P■■■ and K ° is given by 
y/*2+*$ y/P & +&eyjf32 <72 +crf

where p = Cov[x,y]
yfVar[x]Var  [y]

Due to the definition of bivariate cumulants, we thus have /cx,y(0,1) =  0, Kx>y( 1,1) =  p 

and Kx,y(r, 1) =  0 for r  >  1. As the variables have been standardised, the probability



Chapter 6 E r r o r s  in  Va r ia b l e s  R e g r e s s io n 174

density function f x (x) is the standard Normal probability density function. Hence

E[y\x] =  px.

Returning to the original unstandardised variables gives us the identical result obtained 

earlier

E\y\x\ = a  +  0 n  +  p ^  °  +  ° s {x -  fj.)
V °  + °s

~  y  +  - ^ - ( x  — x)
SXx

This approach involves com putation of the probability density function f x{x) and the 

bivariate cumulants of x  and y. In the Normal linear structural model, we can use 

well-known properties of the Normal distribution to  readily write down an expression 

for E[y\x]. Upon varying the distribution of £, invoking the above theory will not 

be as straightforward. In particular, finding the bivariate cumulants of x  and y 

under non-Normal £ is difficult. Moreover, the marginal probability density function, 

f x (x) may not in all cases be expressed as a neat closed form expression, and so 

differentiation may be infeasible.

M a n ip u la t in g  t r iv a r ia te  d is tr ib u tio n s  For distributions of £ other than  Normal, 

this m ethod is the most algebraically intensive. It involves working with specified 

distributions of £, S and e, and transforming these to  obtain results regarding x  and y.

The main crux of the method is to first obtain the joint probability density function of
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£, 5 and e, /e,*,e(£,£,e) =  /$(£)./* W /e (£) and then make the one-to-one transformation

x  = £ +  5 

y =  a  +  /?£ +  e

t  = (

which has unit Jacobian.

Integrating out the latent f  over its support will then yield the marginal joint prob

ability density function of x  and y , f x,y(x ,y).  For some distributions of £, it is also 

possible to  compute f x (x). The expression E[y\x] = f  y —f^ j^ -  dy over the support of y 

can then be computed. M anipulating trivariate distributions is likely to prove more al

gebraically intensive than  manipulating bivariate distributions. Thus the method tha t 

shall be exploited in this thesis is Cochran’s bivariate approach, and this is discussed 

here.

C o c h ra n ’s b iv a r ia te  a p p ro a c h  a n d  a p p ro x im a tio n s  Cochran [22] wrote a paper 

solely on the problem of constructing E[y\x] for a structural errors in variables model. 

He reiterates the point made at the beginning of this Chapter, th a t finding the linear 

relationship between x  and y and predicting y from x  are two separate constructs in 

an errors in variables model and must be considered separately. Indeed he states

“There are a t least two reasons for interest in this regression. The objective 

may be to obtain a consistent estim ate of (3 for purposes of interpretation 

or adjustm ent of covariance. Secondly, the purpose may be to  predict y 

from the  fallible x  by the regression technique in which the shape of this 

regression is irrelevant”
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Cochran acknowledged the work of Lindley [72] th a t E[y\x] is linear only for the Normal 

structural model. However, discussing typical applications of errors in variables model 

Cochran stated

“my opinion is th a t in such applications even the Lindley conditions will 

not be satisfied, except perhaps by a fluke or as an approximation.”

Cochran’s tactic to  solve the problem of constructing E[y|x] is to  reduce the problem 

from looking a t the trivariate distribution of (£, 8, e) to  look at the bivariate distribution 

of (£, 8). This has two distinct advantages. Firstly, the algebra required in m anipulat

ing bivariate distributions is both simpler and neater than  for trivariate distributions. 

Secondly, the results are more general than  those using trivariate distributions as 

no distributional assumptions have to be made regarding the e error term  of the model.

To reduce the problem from trivariate distributions to bivariate distributions, Cochran 

noted th a t

E[y\x] = E[(a + /3£ + e) |x] = a  + /3E[(\x] = a  +  (3R(x) (6.3)

where E[e\x] =  0 and R(x)  =  E[£\x].

For some distributions of £ and 8, R(x)  may be computed directly and substituted 

into (6.3) to  obtain an expression for E[?/|x]. For other distributions of £ and 8 the 

algebra needed to obtain R(x)  remains difficult and a neat closed form expression for 

R(x)  is not obtainable. In this scenario Cochran offers a method of approximating 

R(x)  by a quadratic or cubic function, depending on the distribution of £ and 8. The 

approxim ation to  E[y\x] is obtained by adopting a least squares approach, and is 

discussed here.
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The marginal probability density function f x (x) is formed by integrating out the latent 

£ from the joint probability density function of £ and 6, /£,<$(£, 5)- In symbols

fx (x) = j  /*,*(£, 5)d£ = J  /*,*(£, x  -  £) d£

and as

r > f ~ \  f  t  x  ~  0  j c

R { x )  =  J t  /,(*) *
by definition of the conditional expectation, it follows tha t

R ( x ) f x{x) = J  (6-4)

This identity is the basis for Cochran’s approximations to E[y\x\.

To estim ate the form of R { x ), Cochran used the method of least squares. To demon

stra te  a link with the work of Lindley [72], Cochran initially constrained R(x)  to be 

linear. Then E[?/|a;] =  a  +  (3(co +  C\X) and the result described earlier for the Normal 

structural model will be recovered. Thus R(x)  «  co +  Ci# with the coefficients Cq and C\ 

determined by the minimisation of an objective function 5 , weighted by the probability 

density function f x{x). This is a continuous form of weighted least squares where each 

x  is weighted by the value of its probability density function f x (x). So,

S  = J  [R(x) -  Co -  c i x f  f x(x) dx.

The minimisation of S  may be done using standard calculus: 

oq r
—  = - 2  I [R(x) -  Cq -  cix] f x (x) dx  =  0 (6.5)

d S  f
=  - 2  I x  [R(x) -  Co -  c\x] f x (x) dx  =  0 (6.6)

Since using (6.4)

J  R { x ) f x(x) dx = J  J  £/*,*(£, S) d£d6 = p
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then Co =  p ( l  — C\) from (6.5).

Since from (6.4)

J  xR(x)fx{x)dx =  J (£+<$) j  £/*,<$(C,£)d£eW = J  J ( € 2+€S)fcs(€, 6) d£ d5 =  a2+ /A

then from (6.6)

(J2 +  f?  — Cop — Ci (a2 +  a 2 +  /i2) =  0

2
giving Ci =  where /c is the reliability ratio.

It follows th a t

R { x )  ^ f ) + ( t o ? )  *•
This is the result Gleser [51] exploited for his method of obtaining an errors in 

variables fit for when all the random variables of a model are Normally distributed. 

Gleser’s m ethod is discussed in more detail later in this Chapter.

This expression for R{x) may be substituted into (6.3) to  obtain the result

13cr̂
E[y\x\ «  a + ( 3 p + — — 2(x ~a0

a  +  <?8
~  y + - ^ { x  — x).

Sxx

This is the same result th a t has been derived via the other methods described earlier 

in this Chapter. It agrees with the results th a t are obtained for the Normal structural 

model. Cochran however does state  th a t this is only an exact result for the Normal 

structural model and is a very crude approximation when the distributions of the 

random variables in the model differ from Normal. As a result, for structural models 

other than  the Normal structural model, Cochran suggests an approximation based
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on a quadratic or cubic function. In general, it is possible to minimise any objection 

function of the form

S =  y  [R(x) -  r(x)]2 f x (x) dx. (6.7)

though it is intuitively sensible to keep the estimation of E[y\x] as simple as possible.

Cochran stated th a t through his own investigations, if £ or S follow a skew distribution 

then R(x)  can be approximated well by a quadratic curve. If £ or S are symmetrically 

distributed then he suggested th a t R ( —x) = —R{x)  and a cubic curve with zero 

quadratic term  approximation is valid. In order to find these approximations, the 

method illustrated above is generalised.

To fit a polynomial approximation to R(x)  the objective function S  changes to

/
-i 2

R(x)  — ^ 2  CiX% f x(x) dx
i=1

and there are (p +  1) equations th a t are needed to be solved to  find the values of the 

coefficients {co, . . . ,  cp}. The r-th  equation has general form

f>/*M+r= /  [ ( ( . t  +  S)TM t ) M S ) d ( d6
i—1 J J

where p x,i+r is the {i +  r)-th  central moment of x  as defined in C hapter 1. In order 

to ensure th a t only the lowest order moments are used, it is essential th a t p  is kept 

as small as possible. To do this, Cochran gave details only for quadratic and cubic 

approximations to  R{x).  In addition, Cochran only provided results for da ta  centered 

about their mean. The following results have been extended to cope with uncen

tered da ta  and are thus not in an identical form to  the expressions derived by Cochran.
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W hen £ or S are skewed then Cochran states R(x)  can be approxim ated by Q(x)  where 

Q(x)  =  p  +  c i ( x  -  p )  +  c2[(x -  p )2 -  a 2 -  c r | ] ,

and defining

A  =  (At{4 +  6 cr2<j| +  P5a){ct2 +  a]) -  { p i3 +  p6z)2 -  { a 2 +  a])3, 

the coefficients C\ and c2 are

ci =  [(/x€4 +  0a2a 2 +  P84W  ~  ( ^ 3  +  P63)l*& ~  (c-2 +  tf2) V ]  A -1

C2 =  [(<72 +  of)p^3 -  (p^3 +  P5i)G2] A -1 .

W hen £ and 5 are both symmetrical then Cochran states th a t R(x)  can be approxi

m ated by C(x)  where

C(x)  =  p  +  ci(x  — p )  — c3(x — p )3

and defining

A  =  (pt  6 +  15^4 c 2 +  20p£3pss +  15a2 ps* +  P8g){&2 +  c 2) — ( ^ 4  +  6a2 a2 +  /x^)2,

the coefficients ci and c3 are

c i =  [ ( ^ 6  +  15/X£4<t2 +  20 p £ 3p8 3 +  15cr2^ 4 +  P8g) { g 2 +  cr2)

- ( ^ 4  +  5a2a] +  ps4)(pt4 ~  5a2a 2)] A -1 

C3 =  [ ( / ^ 4  +  6<72<72 +  /X(54)cr2 -  (a 2 +  c-2)p %4 -  3(<r2 +  cr|)cr2a |]  A -1 .

Both these approximations Q(x)  and C(x)  have expected values p , as

E  [Q(x)] =  p  + c\E[{x -  p)]  -  c2 [Var[x] -  a 2 -  a}] =  p

and

E  [C(x)] =  p  +  CiE[(x -  p) )  -  c3E [ ( x  -  p f ]  =  /x
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since the use of the approximation C(x)  assumes th a t £ and S both follow a symmet

rical distribution.

To dem onstrate the use of Cochran’s m ethod some examples shall be considered here. 

For some of these examples, it is possible to compute a closed form expression for 

R(x).  Some examples of approxim ating R(x)  shall also be given.

Uniform £, Normal S

Here an exact result can be derived. Let £ be a random variable from a uniform 

distribution with support a <  £ <  b. The probability density function of £ on this 

support is

M O  =
1

(b -  a) '

The error $ is assumed to  be Normally distributed with the following probability density 

function

m  =
i

VZnvs

As £ and S are m utually uncorrelated then

1

exp
62

(b — a)y/27rcrs

2*1

exp
52

2afj

and it follows th a t

/ s , x ( £ , z )  = exp (x -  £)5
(b — a)y/2ncrs

The marginal distribution f x(x) may be computed since

2 o2

f x ( x ) =  f  /*,*(£, a?) d £ =   ------* ■—  [  exp
Ja {b -  a)V2n<Tg J a

(s  ~
2o2

d£

where

/J  a
exp (g -  O '

2a]
d£ =  v2 n a s

08
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Thus

f x ( x )  = ( b - a )
<f>

x — b 
<?6

x — a
<76

The conditional probability density function of £|rr can be written as

/4 |x ltu  /,(x) K OS

and the conditional expectation is therefore 

1

<76

-1 cs1i

exp
2° j  .

W  = i j exp

The integral / Qb £ exp ĵ— d£ in the above expression is

( * - 0
21

2o*
df.

<t> ( - — -  <j) — -[ V <76 J  \  <76

Therefore, after some simplification

R(x) = X + <7s

$
x  — a

<76
$

x  — b 
<76

$  ̂—^

and E[?/|x] =  a  +  (3R(x)\ where a  and /? are to  be estim ated by the errors in variables 

estim ators outlined in Chapter 3, and not the standard  least squares estimators.

It is im portant to remember the support of the conditional probability density function 

f |x.  For the example considered here, the support is given by a < £ < b. Due to 

measurement error however, the range of the observed x  is usually extended beyond 

the original support of £. So when extrapolation beyond the support of £, only those 

data  from the extremities are used. Therefore much care must be made in predicting 

E[y\x] in the tails of the data, regardless of the distribution of £.
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Figure 6.1 shows a plot of the least squares line (blue), the errors in variables line 

(green) and E[y\x] (red) for a simulated data set of 5000 points. The curvature in 

E[y\x\ is readily seen, stressing the point that E[y\x\ may not be linear for a structural 

model other than the Normal structural model. For points close to the mean of 

the data, it appears tha t E[y\x] tightly follows the errors in variables line, and then 

deviates away. For all the examples of deriving E[j/|:r] in this Chapter the true line is 

indistinguishable from the errors in variables line and has so been omitted. The value 

of as has also been made deliberately large for ease of presentation of the examples.

3 0 -

2 0 -

8 10 124 6

x

Figure 6.1: Simulated data set with uniform £ and Normal errors, parameter values 
are a = 5, b = 10, cr* =  oe =  1, a = 3 and (3 = 5.
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Uniform £, Normal S

For comparison purposes Cochran’s approximation is given here for this case. Since 

both £ and 6 have a symmetric distribution, then a cubic approximation to E[y\x] 

was suggested by Cochran. In order to compute the expression C(x)  then the central 

moments of £ and 5 are needed, up to  and including the sixth central moment. The 

central moments of the uniform distribution needed for the approximation are

= p  =  0

^ 2  =

to II 'o
- 

 ̂
1 to

A^3 = 0

/i£4 =
(b  -  a ) 4 

8 0

/^ 5  = 0

IItoM
S

=3.

(b -  a ) 6 

4 4 8

and the central moments of the Normal distribution needed for the approximation are

MSI =  0

P62 II On
tO

1̂ 63 =  0

fJ*64 =  3<74

1*65 =  0

1̂ 66 =  1 5 * ? .

For the example considered earlier, the param eter settings were a  = 5 , b = 10 , a s  =

ue =  1, ol =  3 and (3 =  5. For these settings, the approximation C(x)  is computed as

C{x) =  2.0833 +  0.82674(x -  2.0833) -  0.01998(i -  2.0833)3
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Figure 6.2 shows a plot of the least squares line (blue), the errors in variables line 

(green), the exact expression for E[y\x] (red) and the approxim ation for E[y\x] = 

a  +  /?[2.0833 +  0.82674(:r — 2.0833) — 0.01998(x — 2.0833)3] (black) for a sim ulated 

d a ta  set of 5000 points. The approxim ation is an extremely good fit, and is virtually 

indistinguishable from the  exact result over a large range of the data. In particular, 

the fit is excellent over the the range [5,10] which is the original support of the £. The 

approxim ation however does deviate away from the exact expression for E[y\x] a t the 

tails, beyond the support of £.

60

40

30

20

(a) Without data (b) With data

Figure 6.2: Sim ulated data  set with uniform £ and Normal errors, param eter values 
are a =  5, b =  10, as = oe =  1, a  = 3 and (3 = 5.
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Chi £, two degrees o f freedom, Normal 5

An exact result may be derived for this case. This was an example also considered by 

Cochran, and the details are replicated here and discussed. The chi distribution with 

two degrees of freedom has been chosen as an example of a skew distribution th a t gives 

algebraically tractable results. The probability density function of £ is

M O  =  £exp

with support £ > 0. Cochran stated  th a t in this case, the exact result R(x)  is simplified 

to

R(x)  =
CTi

where

V 1 +

u

(u 2 +  l)$ (u )  +  U(f ) (u)
u$(u)  +  (f){u)

X

(TSy / l  + (T$

Therefore E[y\x] =  a  +  (3R{x)\ where a  and j3 are to be estim ated by the errors 

in variables estim ators outlined in C hapter 3, and not the standard least squares 

estimators.

Figure 6.3 shows a plot of the least squares line (blue), the errors in variables line 

(green) and E[y\x] (red) for a simulated d a ta  set of 5000 points. The curvature in 

E[?/|x] is again seen, and appears to follow the least squares line deviating most at the 

left hand tail.

Chi two degrees o f freedom, Normal S

As an example of the use of Cochran’s approximation, details are provided for this case. 

Since £ follows a skewed distribution, and 5 follows a symmetric distribution then a 

quadratic approxim ation to E[y\x] was suggested by Cochran. In order to compute the
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1 0-

1 o 1 2 3 4

Figure 6.3: Simulated data set with chi £ and Normal errors, parameter values are 
as =  0.4, a£ = 1, a  =  3 and (3 = 5.
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expression Q (x ) then the central moments of £ and 5 are needed, up to and including 

the fourth central moment. The central moments of the chi distribution with k  degrees 

of freedom needed for the approxim ation are

P a  =  p
{{k + 1)/2)
r(fc/2)

2 i 2fl>£2 = o  =  k  — p

p& = p(2p2 -  2k +  1)

Pza — k 2 + 2k — 4 p 2k — 4p2 — 3/x4

and the central moments of the Normal distribution needed for the approximation are

Psi = 0  

P 62 =

PS3 =  o

/ i< $ 4  3 ( 7 , 5 .

For the example considered earlier, the param eter settings were k = 2, as = 0.4, a£ = 1,

a  = 3 and (3 =  5. For these settings, the approxim ation Q(x)  is computed as

2

Q(x) = , / 1  +  0.72427 ( x  -  W | )  +  0.002653 I -0 .5 8 9 2 0

Figure 6.4 shows a plot of the least squares line (blue), the errors in variables line 

(green), the exact expression for E[y\x] (red) and the approximation for E[y\x] =  

+  P { y / l  +  0.698584015(x -  ^ f )  +  0.099151349[(x -  y ^ f)2 -  0.58920]} (black) for 

a simulated d a ta  set of 5000 points. The approxim ation is indistinguishable from the 

exact value of E[y\x] a t the left part of the data. The approximation deviates from the 

exact result for E[y\x] most at the right hand tail of the data.
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- 1 0 1 2 3 4  - 1 0 1 2 3 4

(a) Without data (b) With data

Figure 6.4: Simulated data set with chi £ and Normal errors, parameter values are 
as =  0.4, ae =  1, a =  3 and /? = 5.

Truncated Normal £, Normal 8

An exact result may be derived for E[?/|x] with this particular construct of the 

structural model. In many practical applications, it is unreasonable to assume that 

the data belong to a distribution with an infinite support. Some data sets might have 

a natural truncation at one or both ends of the data. For example some experiments 

may be designed to target a specific range of data and thus there will exist specific 

cut-off points in the data which may be known in advance. To represent such an 

application the truncated Normal distribution is chosen to model the distribution of £.

Let £ have a doubly truncated Normal distribution, with a lower truncation point I and 

upper truncation point u. The probability density function of £ with support / < £ < u
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is given by

/««)
i

\p2/KO
exp ( £ “ /*)

21

2a2

and p  and a 2 are the mean and variance of £ prior to truncation. If I is replaced 

by — oo, or u by oo, the distribution is singly truncated from the left, or the right 

respectively. The particular case I = p, u = oo produces a half-Normal distribution.

Since <5 is assumed to  be independent of £, and Normally distributed, it follows tha t 

the joint probability density function of £ and S is given by

l
27Taos

$ U ~ P \  ( l ~  V
a a

- l
exp «  -  

2<r2 2 oj

Making the one to one transformation

x  — £ +  8 

£ =  £

yields the joint probability density function of £ and x
- ll

2iracrs
$

u — p
<t>

I  —  p

Letting

D  =

a

1 1
H— o

exp ({ -  V)2 (x -  0 -
2 a 2

<J <J\
___ p  X

E  = -T 2 + - 2a 4 <J\
LL2 X 2 F  = +  _
o-2 a 2s

then by completing the square, the marginal probability density function of f x(x) is 

given by

1
fx(x) =

y/2naas
fu  x

x Ji 7 ^
exp - - U - -

2  D

- l
exp
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Since

j ;

1
\/27r

exp
D

<% = - =  
VD

$  | D u ^ E )  _ ^ ^ D l ~ E
V D

then the probability density function of x  simplifies to

1
/ x W

y/2ny/(r2 +  <7, 

X

-1
exp

V d

{x -  fi)‘
2(cr2 +  (Tj)J

V D  )  \  V D

As the probability density functions f z >x(€,x)  and f x (x) have been found, the condi

tional probability function fz\x (£\x) =  may be derived.

After some algebraic simplification

h\x(Z\x) =
V o  + ol
V i e r a s

exp 1 ( * ~ Q 2 (X-/1)
i7‘ (T* +

,  . Du — E \  ( Dl  — E
<f> I  I -  $

V d V d

-1

and it so follows th a t

l< 72+ al2„2(JO V d V d j ; V ^
exp - ? H )

This expression may be simplified further since

I

U £

i V J *
exp - Z U - Z

2 V D
df =  -

D

E
£ ) (  3/ 2)

/  D u — E \  (  Dl — E

««e.

and so

E[t\x] =
po]  +  x o : 

a 2 +  o\
$

Du — E

~ V W ~
-q> Dl — E

V D

- l D u - E \  _  f D l - E
VD \  V d

This may be substituted into E[y\x] = a  + (3E[£\x] to obtain an expression for E[y\x].
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After some simplification then

n 2
E[y\x\ = a  +  Pp  +  2 ^  (x -  p)

~ P

a 2 +  <y\

$ { P u z E \ - $ l D l ~ E
~l r 1 ( D u - E \  J D I - E

V d  )  * V V d

This expression is very similar to  (6.2), the conditional expectation £[j/|x] for the

Normal structural model. The difference is the inclusion of the term

-I - i
~ P V d

$  i P a  P  \  _  $ ' D l  E
V d

, ( Du  — E \  / D l - E
(6 .8)

which accounts for the truncation in the data. This term  is linked to what is known 

as the inverse Mills ratio (see for example Tobin [104]). The inverse Mills ratio is the 

ratio of the probability density function to the cumulative distribution function of the 

standard Normal distribution.

Additionally,

where

Du  — E
V d

E  per2 +  x u 2 a
D 2 i 2 ft 2 i 2a 2 + erf <T2 + CT|

This is the exact result for E[£\x] for the Normal structural model th a t was used by 

Gleser [51]. The work of Gleser is discussed in more detail later in this Chapter.

By performing a similar analysis th a t was carried out for the likelihood function of 

with Normal errors and uniform £, the term

~ P
~1 '  / D u  — E \  A f  D l - E ’

0 ---- 7^— -  0
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has a bigger impact in the tails of the data. This would make E[y\x] deviate away 

from the least squares line outside of the support I < £ < u.

Figure 6.5 shows a plot of the least squares line (blue), the errors in variables line 

(green) and the exact expression for E[y\x] (red) for a simulated data set of 5000 

points. Due to the large as there is a clear discrepancy between the errors in variables 

fit and the least squares line. The effect of the measurement error makes the unbiased 

errors in variables fit seem incorrect for the data shown. The curvature in E[y\x\ is 

demonstrated again, and the extreme tail effects beyond the support of the £ are 

readily seen. Between the truncation points I = — 1 and u = 2 the exact result is 

indistinguishable from the least squares line.

(a) Without data (b) With data

Figure 6.5: p  =  0, a = 1, / = —1, u = 2, a  = 3, P = 5 and as = oe = 1



Chapter 6 E r r o r s  in  Va r ia b l e s  R e g r e s s io n 194

Mixture o f  two Normals Normal S

The mixture of two or more univariate Normal probability density functions results 

in a probability density function th a t may be readily manipulated to form a variety 

of shapes. Since this is an example where the derivation of E[y\x] is tractable, it is 

included here.

If £ is assumed to follow a distribution th a t can be represented by a mixture of two 

Normal distributions then its probability density function /$(£) may be written

where <&(£) is the standard Normal probability density function. The parameter p is 

known as the mixing parameter, and is constrained such th a t 0 <  p <  1 to ensure a 

valid probability density function for £.

Figure 6.6 show a number of examples of the shape /$(£) w ith different parameter 

settings. These Figures demonstrate the variety of shapes th a t are possible. For 

example, skewness and bi-modality are easily obtained.

Since S is assumed to be independent of £, and Normally distributed, it follows that 

the joint probability density function of £ and 5 is given by

f t A W )
P

(27 t)<7i <75
exp

2(7} 2 o l
(1 -  P)

+ 7o ~ \ exp{27r)o2(Ts

Making the one to one transformation

(C “  M2 ) 2 S2
2 do 2<jI

x  = £ +  <5

(  = £
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and
0 2  — 0.5 o-2 = l

(c) p — 0.9, p i  =  0, p,2 =  2.5, o-i = l and (d) p  =  0.5, = 0, = 2.5, o \ = 1 and
0-2 = 1 o-2 = l

Figure 6.6: Examples of mixtures of two Normal distributions.

yields the joint probability density function of £ and x

h A ^ x) = p
(27r)cricr<5

exp
(£ -  Mi)2 (x  -  £) 21

2 o-f
(1 ~ P )  

(2 t t )i72<ts
exp «  -  ^ ) 2 (* -  0 s

2crf 2cr|

Letting

A =

E i =

1 1
+

Pi
+

X

, 2 9

+
X

for i = 1,2, then the joint probability density function of £ and x  may be written

2
P

, C1 ~ p )
V2na2<Js

exp

1
exp " 2  V 2 -  A

1

exp

\/27r
exp
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Since

/J  — (
exp

—oc y /  27T

then the probability density function of x is

(z “ Mi)2
/x W  =

p exp +

<*£ =

(1 - P )

y/Dl

V 2 r V ° f + ^ 5
exp

2(<r? +  a})

The conditional probability density function fz\x{£\x) is defined as

(.x -  p 2):
2(cr| +  (7?).

=
/x W

and since

L — oo V 2tt
exp

A
2 f - A

A

A (3/2)

then

£?K|x] =

Letting

P  [ 2(o-2+0-2 )J (a5f+^)
11 + (!-p) exp (X - M 2 ) 2

2Va+*f).
(x<7̂ +//2̂ )

(*i+3)

v/27T\/CTi+cr;2 eXP -Pi)2
*+3) + (!~P)

y /2 n y /c ^ + c r
exp te-pa)2 

2(*%+vf)

7711 =

7712

P
(! - p )

(* ~ P )
P

X -  fl2

V a2 + (77,

X -  p i

V a l +

<f>

0crt

X -  Pi

V * i + * i

x  -  P2

y / r i  + rf

- l

- l

then finally

E[y\x\ = a  +  

=  a  +

0  (x<jJ +  ^i<r£) 0  (x<rf + /x2<jf)
+

(1 +  m i )  (<Tj +  a | )  ( l  +  7772) (<t|  +  Ct| )

0  0 a \  ( x - p i )  0
-pl H — i ~ —: r ~r p2 +

(x -  p2)
(1 T 77li) <j£ +  (1 +  77li) ( l +  7772) g\  +  <jf (1 +  m 2)

This result can be considered a weighting of the two least squares regressions fitted 

to each individual mixture distribution. If the m ixture distribution is extended to 

a m ixture of M  Normal distributions then E[y\x] would become the weighting of



Chapter 6 E r r o r s  in  Va r ia b l e s  R e g r e s s io n 197

the M  least squares regressions fitted to each of the M  individual mixture distributions.

As an example of this result, the param eter settings used in Figure 6.6 will be used 

to form example d a ta  sets. Figures 6.7 to 6.10 shows the plots of the least squares 

line (blue), the errors in variables line (green) and E[y\x] (red) for a simulated data 

set of 5000 points under the param eter settings of Figure 6.6. E[y\x] is obtained by a 

smoothing of the least squares fit to each m ixture component.
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(a) Without data (b) With data

Figure 6.7: p =  0.3, pi  =  0, (1 2  =  2, <J\ =  1, 0 2  =  0.5, a = 3, /? =  5 and ^  =  <7e =  1
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(a) Without data
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-20-

(b) With data

Figure 6.8: p =  0.3, /̂ i =  0, P2 =  1-5, cri =  1, <j2 =  1, a  =  3, /? =  5 and &$ = a£ = 1
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(a) Without data (b) With data

Figure 6.9: p = 0.9, p,\ =  0, /12 =  2.5, (J\ = 1, cr2 =  1, a = 3, (3  =  5 and as = a£ = I

(a) Without data (b) With data

Figure 6.10: p =  0.5, =  0, (1 2  = 2.5, u\ — 1, <r2 =  1, a  = 3, (3 = 5 and =  a£ = 1

6 .2 .2  N o n p a r a m etr ic  A p p ro a ch

The previous section has used a parametric approach in deriving explicit and approxi

mate expressions for E[y\x]. The algebra behind the derivations is, as seen, sometimes
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messy when the distribution of £ is assumed to be non-Normal. Nonparametric 

methods avoid this complication, and have the advantage of not requiring parametric 

assumptions to be placed on the random variables in our model.

Just as param etric methods have to distinguish between the estimation of the pa

rameters of the straight line and estim ation of E[y\x], so do nonparametric methods. 

Estim ating the param eters of a straight line via a nonparametric method was investi

gated in detail by Koduah [68], and so the focus here is to use a nonparametric method 

to construct E[y\x].

E stim atin g  E[y\x] Various algorithms for estim ating E[y\x] were discussed by 

Carroll et al. [15]. These included methods using splines, likelihood methods and 

deconvolution. A problem with these m ethods is their complicated nature, which may 

render them  unappealing to use in practise.

A practical nonparametric estimator of E[y\x] is the Nadaraya-W atson estimator and 

has a distinct advantage of ease of use. The detailed algebra needed in constructing 

the exact expression for E[y\x] is avoided by choosing a nonparam etric method. The 

Nadaraya-W atson estimator is a weighting of the y  values such th a t

E[y\x] «  Z f x )  =  (6-9)
nh 2 ^ i= 1 9  t  h )

where h is some suitably chosen bandwidth.

Choice of the bandwidth h, will roughly speaking, alter the apparent smoothness of 

the fit. Stefanski [100] has shown th a t for a large number of kernel functions and error
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distributions, the value of h which minimises mean square error is

h =  as [ l o g ( n ) ] - 2 . ( 6 . 1 0 )

This will be used for some illustrative examples later in this Chapter.

The Nadaraya-W atson estim ator (6.9) can be interpreted in a number of ways. 

Firstly, since the denom inator ^  5Z"=i ^  ( x r O  *s kernel density estim ator of 

the probability density function f x (x) and the num erator ^  Y a =i $  ( x r 1) V* 1S 

kernel density estim ator of f  y f x,y(x , y)  dy  then upon taking the ratio we obtain a 

kernel density estim ator of E[y\x] = J  y f y\x {y\x) dy. Secondly, and more simply, the 

Nadaraya-W atson fit may be viewed as a locally weighted average of the observed y 

values.

As an example, Figure 6.11 shows a sim ulated d a ta  set for the Normal structural 

model. The param eter settings chosen were a  = 3, (3 =  5, p = 10, a = 5, as = 2, 

oe =  1 and n  =  5000. Lindley [72] stated  th a t in this case E[y\x] follows the least 

squares line. Indeed it may be seen th a t the Nadaraya-W atson estim ator closely 

follows the  least squares line over the range of the data. For this example, h was 

chosen in accordance with equation (6.10).

A problem w ith the Nadaraya-W atson estim ator lies in its limiting properties. As 

h tends to  infinity, then the Nadaraya-W atson estim ator tends to y. This may not 

be an ideal limiting form. However h should never be chosen so large th a t this is 

a concern. In addition, the Nadaraya-W atson estim ator tends to  behave erratically 

towards the  tails of the data. This is a common tra it possessed by most nonparametric 

methods. In order to  produce reliable estimates, nonparam etric methods tend to
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(a) Without data (b) With data

Figure 6.11: Least squares line (blue), errors in variables line (green) with Nadaraya- 
Watson estimate (black) for a simulated Normal structural data set.

require a larger sample than their parametric equivalents. Some more properties of 

the Nadaraya-Watson estimator shall be reported here.

Letting n(x)  denote the numerator of (6.9) and d(x) denote the denominator of (6.9) 

then by expanding in a Taylor series we have (see for example Di Marzio and Taylor

[34])

E[n(x)] s b  n(x) + y n " ( i) /4 (A ')

and

E[d(x)] »  d(x) +  y < f '(® ) /4 W

where p^(K)  = f  t2<f>{t)dt.
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Making the approxim ation

>)]
E [ d ( x ) \

then we have th a t

d(x ) +  y  d"(x)fi'2(K)
-1

and after some algebraic simplification

E[m(x)] «  m (x)  +  [n"(x ) ~  d " (x )m (x) \ .

So the bias in m (x)  is

2 d(x)

However, since n(x)  =  m{x)d{x)  then by Leibnitz’ rule

n"(x)  =  m ,,{x)d{x) +  2 m ,{x)d,{x) +  m(x)d"(x)

and the bias may be w ritten as

h?n'2{ K )
m"(x)  +

2 m ,{x)d'{x)
d(x)

which is of a  more interpretable form.

So the bias is dominated by the second derivative m"(x)  (close to  a turning point) 

or by the first derivative m'(x)  when there are few observations. This point is of 

particular interest for the Normal structural model. As has been stated  throughout 

this C hapter, Lindley [72] proved th a t E[y\x\ is a straight line if and only if the 

Normal s truc tu ra l model is assumed. E[y\x] takes a much more complicated form for 

any other struc tu ra l model. Hence for the Normal structural model, m"(x)  = 0, and 

thus the bias for the Normal structural model is therefore smaller than  for any other
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structural model. This is however the result th a t E[y\x] follows the standard least 

squares line, and so nonparam etric methods are not needed for the Normal structural 

model.

As further examples of the Nadaraya-W atson estimator, Figures 6.12 and 6.13 contain 

the plots of the exact E[y\x] and the estim ated -E[2/|x] by the Nadaraya-W atson 

m ethod when £ follows a uniform and chi distribution respectively with Normal errors. 

W hen £ is taken to follow a uniform distribution, the Nadaraya-W atson estim ator 

closely follows the exact result for the main body of the distribution, bu t deviates 

perceptibly in the tails. However, the Nadaraya-W atson estim ator only deviates 

greatly from the exact result where d a ta  are sparse.

W hen £ is taken to  be follow a chi distribution with two degrees of freedom there 

appears to  be a closer resemblance between the Nadaraya-W atson estim ator and the 

exact result, bu t there does remain some deviation in the tails, particularly in the 

right hand tail where the data  are sparse.

These examples illustrate the fact th a t the Nadaraya-W atson estim ator is a serviceable 

m ethod of approxim ating to  E[y\x] over the range of the support of £ when data  are 

plentiful. However there are noticeable discrepancies in the tails where data  are sparse. 

In practical applications where the exact distribution of £ is unlikely to  be known, it 

is clear th a t the Nadaraya-W atson estim ator has much to commend it, bu t there are 

difficulties in establishing E[y\x] in the tails.
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Figure 6.12: Nadaraya-Watson estimate (black) and exact result (red) for a simulated 
data set with uniform £ and Normal errors. Parameter settings are a =  5, b =  10, 
a  =  3, (3 = 5, as = 0.7, cr£ = 1 and n = 5000.
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Figure 6.13: Nadaraya-Watson estimate (black) and exact result (red) for a simulated 
data set with chi £ (2 degrees of freedom) and Normal errors. Parameter settings are 
a  =  3, (3 =  5, as = 0.3, ae = 1 and n  =  5000.
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6.3  E stim atin g  £

6 .3 .1  T h e  M e th o d  o f  M o m e n ts

To estim ate the original £, there is a difference between the functional and structural 

models. In the former case, £ is an unknown parameter for which an estim ator 

is sought. In the la tte r case the value being taken by a random variable is being 

established.

Similarly to  earlier parts of this thesis, an estim ator for & may be readily obtained 

by using the m ethod of moments and conditioning upon a fixed data  point. Since

x i == & +  Si, a naive m ethod of moment estim ators for & is

ii = Xi. (6.11)

If the slope (3 and intercept a  are known another estim ator is derived from the equation 

Vi = a  +  (3£i +  £i, namely

6  =  (6-12)

It follows th a t

Var[xi\ =  ar\

and

Var
V i - O L a l

2(3P
In practise it is unlikely th a t a  and (3 will be known, nevertheless in C hapter 3 consistent 

estim ators of a  and (3 have been discussed and if these replace the unknown values in 

equation (6.12) a consistent estim ator of & is obtained. Ignoring the variances of these 

estim ators the optim al linear combination (in term s of minimum variance) of equations
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(6.11) and (6.12) provides the following approximately unbiased estim ator for &

i i = i b ^ X i + ^ { y i ~ &)- ( 6 - 1 3 )

This is the same as the maximum likelihood estimator in the functional model derived 

by Kendall and S tuart [67] when the ratio  of the error variances A was assumed known. 

This also was the estim ator derived in C hapter 5 via maximum likelihood assuming 

the Normal functional model.

The approach of using the m ethod of moments can also be used to derive an estim ator

for rji. Since yi = + e* and therefore yi =  a  +  (3xi +  (e* — /36i), two naive method of

moment estim ators for rji are

0i =  Vi (6.14)

and, again assuming th a t a  and (3 are known,

rji =  a  +  /3xi (6.15)

Again, we can find the variances of expressions (6.14) and (6.15)

Var[vi] =  a 2e

Var[a + pXi] = (32a 2.

Thus the optim al linear combination (in terms of minimum variance) of equations 

(6.14) and (6.15) provides the following approximately unbiased estim ator for rfr

Q2 X
fii =  —Vi 3--------— (a +  fixi). (6.16)

A +  /?2 X +  fi2 J K J

There is some sym m etry in the prediction of & and rji in th a t
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This relationship might be expected as the errors in variables model defines rj =  a  +  /?£, 

however this shows th a t the naive estim ator for rji (6.16) is not a new estim ator 

different from (6.13), bu t is merely the point on the true line corresponding to the 

estim ator (6.13) for £.

For geometric mean regression discussed in C hapter 2, the assumption made is th a t 

A = (32. Under this assumption,

l  = U x i + {Vi- a)
n  n

Vt =  2 [V' +  “  +  &x *)

so effectively, equal weighting of 1/2 is given to  each of the naive moment equations

(6.11), (6.12), (6.14) and (6.15). In addition, y on x and x on y simple linear 

regression are seen as extremes. Consider the factor A/(A +  (32). It can be seen tha t 

mi n

weight is given to  X{ this implies th a t x on y regression is the appropriate tool to use

A
x+W =  0 if and only if A =  0 then rji = yi and & =  y±-jfL- Thus if minimum

Also m a x =  1 if and only if A =  oo then & =  and rji = a  + /3x{. This implies ̂A+/32

th a t y on x regression is the appropriate tool to  use where maximum weight is given

tO X i .

In addition, it can be seen from the equation yi = a+(3xi + {ei~(38i) th a t the estimators 

for & and rji given by (6.13) and (6.16) may be w ritten as

i t  =  X i  +  -  pSi) = X i  +  -  a  -  Pxi) (6.17)

^  =  y * ~  X A& (g<~ W  =  , Tni v t - O t - P x t ) .  (6.18)
A  +  \  +  p *

If the latent d a ta  set {(&, rji), i — 1 , . . . ,  n} has been estim ated, it is straightforward to
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obtain estim ates for the values taken by the random variables S and e respectively

Si = X i -  I  =  -— ^ - ( y i - a -  pXi)
A +  [3*

£i =  y i - r j i  =  ; A ~0 { y i - a -  fixi),
A +  [3*

and these are the exact term s which appear in the estimating equations (6.17) and

(6.18). So it is seen th a t these m ethod of moments estimators for the latent da ta  set 

are the observed d a ta  set adjusted by the estim ated S and e. Equations (6.17) and

(6.18) can also describe how these estim ated values behave depending on where the 

observed d a ta  point lies. Assume (3 > 0. If yi > a  +  (3xi (observed y above true line 

a t observed x) then & >  Xi but rji < yi. If yi < a  +  f3xi (observed y below true line 

a t observed x) then & < Xi but rji > yi. If (3 < 0, then the obvious alterations are 

made to the above inequalities. The m agnitude of the difference between & and Xi is 

greater for those observations most d istant from the true line. If yi =  a  +  (3xi then

= Xi. The implications of these statem ents will be discussed again later in this 

thesis, particularly in Chapter 7.

The m ethod of moments estimators derived above may also be linked to other slope 

estim ation methods. Consider Figure 6.14. We can find an estim ator for the distance 

Di(A) by Pythagoras’ theorem

A(A) =  y l t f  +  e?  =  i s f x  +  W2) Vi\ a+ ~ p Xi-

The quantity  is linked to what has been called orthogonal regression in Chap

ter 1. For the structural model, the maximum likelihood estim ators (and method of 

moment estim ators) when A is known of a  and (3 are given by
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Figure 6.14: Linking to other estim ation procedures

The factor in A  (A) is a weighting factor which can be varied to  give different

projections from the d a ta  point onto the line. This allows the sum of squares of any 

projection to  be minimised. This is an example of weighted least squares, and has 

been discussed by many authors, including Lindley [72] and Sprent [96], amongst 

others. Notice, however, th a t the weights depend on the slope /?, so this is not the 

form of weighted least squares commonly suggested to allow for heteroscedasticity of 

the data.

The term  DA  A) is also similar to  which is known as a pivot (see for

example Cox [25]). A pivot is defined to be a dimension free function of the data  

and param eters whose distribution does not depend on any param eters. Pivots are 

useful in forming hypothesis tests and confidence intervals. Indeed, when and o\  

are known and the d a ta  are rescaled so th a t aj  = =  1, then ~  Xn ^  (?»^  £)

are considered to  be trivariate Normal. This was exploited by Brown [12]. The set
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j ( a , / ? ) | ^ ^ 2 <  9(i_p)| where P ( x l  < Q(i-P)) =  (1 — p) provides a (1 -  p) confidence 

interval for (a,/3). Confidence intervals of this form have been discussed further by 

Okamoto [81] and Cheng and Van Ness [20].

6 .3 .2  G le s e r ’s M e th o d

The estim ation m ethod proposed by Gleser [52] mentioned in Chapter 2 also suggests 

an estim ator for His idea was to  first apply a correction to the observed Xi in 

order to obtain an estim ator for £*. S tandard regression techniques are then applied 

to estim ate the unknown slope (3. The m otivation for this is given here. Assuming the 

Normal structural model,

' N

the joint distribution of (£i,&) is

~  N

a 2 0 0
0 *8 0
0 0

6
X i

a a
a 2 a 2 +  a\

It is seen th a t the conditional distribution of & given Xi is

^i\Xi ~  N  \ p  +
a 2 _ 2era

(T'z +  <Ti' ' ’ "  (<72 3 - a 2)

This suggests another naive estim ator for & given by

d 2
( i  ~  P* +  ~2 _|_ ~2 (Xi &)■ (6.19)

This is an example of direct shrinkage (see for example Copas [24]). The estim ator

for & is taken to  be the overall mean p  adjusted for the location of Xi relative to the

overall mean, and the multiplicative factor of the reliability ratio. For example,

r2a
a 2 +  a)

(Xi -  p).
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Thus if Xi > p  then (& — p) < (Xi — p) and if Xi < p  then (& — p) > (Xi — p). Points Xi 

close to the mean are adjusted to a lesser extent than those further away. The overall 

effect of Gleser’s regression is one of shrinking the data  in towards the mean p.

On the other hand, the m ethod of moments estim ator behaves differently, as outlined 

earlier. The estim ator for & is taken to  be Xi adjusted for the location of yi in terms 

of the true line evaluated a t X{. In other words, the estim ator for & is X{ adjusted for 

the term  (e* — 06i). Those points with large residual are pushed further away from 

the observed x i: as opposed to  those with smaller residuals. Another distinction, is 

th a t the m ethod of moments estim ator uses both  the observed values (xj ,^) ,  whilst 

the Gleser estim ator only uses the X{.

Equation (6.19) only uses the x { observation to  estim ate £, as opposed to the (a:*, 3/*) 

pair. Gleser’s m ethod however, was prim arily intended as a tool to estim ate the 

param eters of the model, and not the latent data. By only using the Xi observation, 

Gleser’s m ethod has the advantage of just relying on the reliability ratio being known. 

In sociology and psychology it is not unusual to  have knowledge of the reliability ratio. 

The measure is also used in genetics where it is called heritability (Hood [56]). To use 

the m ethod of moments estimator for &, all the param eters in the model need to be 

estim ated.

6 .3 .3  M o d if ie d  E s t im a to r  fo r £ b a s e d  o n  G le s e r ’s M e th o d

As just stated , Gleser’s method is primarily a tool to  estim ate the param eters of the 

model. It is good in this sense as it only depends on the reliability ratio. In terms
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of predicting the latent d a ta  set however, it only uses the Xi, through the distribution 

of £i|xi. It is possible to modify Gleser’s method to obtain a possibly more reliable 

estim ator for the latent d a ta  set. This can be achieved through the consideration of 

the distribution of &\yi.

Consider once again the Normal structural model. T hat is,

N

and it follows th a t

N
a + /3 p

G2 0 0
0 erf 0
0 0 or?

f3cr:
(3cr2 fi2<72 +  a 2

Using standard results concerning multivariate Normal distributions we have

E[€\y] =  v- +
f)<7‘

/32cr2 +  o'2
(:y - a -  (3p)

and

Var[€\y] =
a 2a 2

ft2 a 2 +  a 2

This suggests a further naive estim ator of £,

z.2

ii = V- +  a , . ,  - A Vi - a -  Pn). 
-f crj

(6 .20)

In a similar m anner to the method of moments estim ator, we may derive an optimal 

linear combination of the estimators (6.19) and (6.20) of £ which has minimum 

variance amongst all other linear combinations. This estim ator would then use both 

the x  and y value analogous to the method of moments estimator.

Letting V\ = ^ + * 2  and V2 = , the optimal linear combination of the two esti

m ators given in the previous paragraph is

Pa2V2 
V i  +  V 2

a 2
t + g S T g s S * - ®

+ Vl__
V i  +  V 2 >i +  * 2 - 2 ^  p 2a 2 +  a 2

(6 .21)
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6 .3 .4  C o m p a r is o n  S tu d y

A comparison study will now be undertaken to compare estim ators of £ in term s of 

relative errors. For this study a sample of 100 £’s were generated from a Normal 

distribution with p  =  10 and a — 5. For each of the 5000 simulations, the same £’s 

were used to form 5000 different d a ta  sets. The param eter settings chosen were a  = 3, 

(3 =  5, and cre =  1. The m ethod of moments estim ator (6.13), Gleser estim ator (6.19) 

and modified Gleser estim ator (6.21) were used to predict the £’s for each simulated 

da ta  set. Relative errors of the form I were computed for each data  point in each 

simulation. This allows the com putation of the average relative error in estimating 

each & for each of the three estimation m ethods discussed previously. The following 

table shows the average relative error for each estim ation m ethod for some chosen data 

points throughout the range of the data. Here G denotes the Gleser estim ator (6.19), 

M denotes the m ethod of moments estim ator (6.13) and MG denotes the modified 

Gleser estim ator (6.21). Rank denotes the rank of the particular £ investigated.

Rank Method as =  0.5 as = 1 as = 2
1 G 0.02309 0.19368 0.25194

M 0.01875 0.00383 0.04555
MG 0.01943 0.00505 0.04558

10 G 0.05864 0.08102 0.1892
M 0.00752 0.02102 0.03101

MG 0.00822 0.02051 0.04011
50 G 0.07524 0.14429 0.21111

M 0.01193 0.07996 0.08991
MG 0.01545 0.08466 0.09111

90 G 0.04113 0.22237 0.31189
M 0.01623 0.04360 0.07388

MG 0.01680 0.05181 0.07995
100 G 0.01777 0.4197 0.5766

M 0.02959 0.04239 0.06784
MG 0.03016 0.04649 0.06894

The initial conclusion is th a t the Gleser estim ator appears to  be the worst performing 

in term s of relative error. As as grows, this estim ator becomes more erratic, and tends
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to provide highly variable estim ates for a large number of da ta  points. The method of 

moments and modified Gleser estim ator however, seem to be robust to the change in 

(7g, and both out-perform the Gleser estimator. Indeed the m ethod of moments and 

modified Gleser estim ator perform similarly well in comparison.

The Gleser estim ator however, is prim arily a tool used to modify the data  so th a t 

standard linear regression techniques can be applied. It is not surprising it performs 

badly here as it only uses the x  measurement to estim ate the £. It does however 

have the advantage th a t it only requires knowledge of the reliability ratio, « to be used.

6.4  C onclusions

This C hapter has considered the multifaceted topic of prediction in an errors in vari

ables model. It is essential tha t the correct prediction question is answered. Does a 

practitioner wish to  find the average y for a given a;?, does a practitioner want to un

cover the latent da ta  set {(&, 77*), i = 1 , . . . ,  n}?. The topic of prediction for an errors 

in variables model is not as straightforward as th a t for standard  regression models, 

and presum ably this is one reason why the topic is largely neglected in the literature. 

For example, there are differences in finding E[y\x] depending on whether a functional 

or structural model is assumed. There are further differences in the structural model 

depending on the distribution of £. It is hoped th a t this C hapter has clarified the dif

ferences in prediction between models, and offered practical advice as to the prediction 

of £, as well as the prediction of y.



C hapter 7 

R esiduals

7.1 In trod u ctory  R em arks

After a regression model has been fitted, various questions are usually asked. Examples 

of such questions may be:

1. Is the model fitted the correct model?

2. Are there any outliers?

3. Are the distributional assumptions of the model correct?

These questions are typically answered by some sort of residual analysis.

In simple linear regression, much has been documented on residual analysis. Most 

textbooks on the subject (Draper and Smith [37], and the references therein) 

contain detailed and informative sections on residual analysis, as well as providing 

recommendations for the practitioner. The errors in variables situation is not as well 

documented. In the two main texts on the topic, Cheng and Van Ness [20] and Fuller 

[41], there is very little information on residuals. This omission is also apparent in the 

scientific papers and expositions.

2 1 6
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A possible reason for this omission is th a t in the errors in variables setting there is 

no explicit definition of a residual. The simple linear regression model has a natural 

concept of a residual which is not as readily obtained when a random error component 

is included in the x  measurement. The aim of this Chapter is to  investigate the 

concept of a residual for our errors in variables model.

7.2 V ertical R esiduals

For our model, the problems with performing a standard  regression analysis (as outlined 

in any of the standard textbooks cited earlier) can be seen by attem pting to write our 

errors in variables model in terms of the observed d a ta  {(xi, ?/*), i = 1, . . . ,  n},

y = a  +  /3x +  (e -  (35)

The problems here, which do not appear in the standard  linear regression model 

are two-fold. Firstly, due to the additional random  error component, 5, x  is always 

random. Secondly, the observed x  is correlated with the error term  (e — (35). Indeed, 

Cov[x, e — (35] = —/3a

This la tte r point poses an immediate problem. A common tool used by practitioners 

to assess the fit of a regression model is to plot x  against the vertical residual 

yi — a  — (3x{ = e — (35. If there appears to  be no trend or pattern  in this plot, and 

the residuals are randomly dispersed around zero, then roughly speaking, this implies 

th a t the fitted model has a good fit to the data.

Figure 7.1 has residual plots of the vertical residual y — a  — (3x for a Normal structural 

model against the observed x. W hen as = 0, there is no pattern  in the residuals, and
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(a) a s =  0 (b) a6 =  1

Figure 7.1: Vertical residual versus observed x, Normal structural model

they seem to be randomly dispersed about zero. As as gets larger, the trend between 

the residuals and the observed x  becomes more prominent. This shows tha t without 

due care, the residual plots in an errors in variables setting are easily misinterpreted. 

In other words, in an errors in variables setting, there will always be a trend in the 

vertical residuals. In the majority of the plots in this Chapter, the scales of each 

picture are deliberately chosen to be different. This is because the point of note is 

to investigate the shape and structure of each simulated data set, which would be 

distorted if all the scales are set to the same structure.

Different trends are observed upon changing the distribution of £ in a structural setting. 

Figure 7.2 has residual plots of the vertical residual y — a  — fix for a structural model 

with uniform £ and Normal errors against the observed x. Figure 7.3 has residual plots
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of the vertical residual y — a  — fix for a structural model with chi £ (two degrees of 

freedom) and Normal errors against the observed x.

(c) <76= 2 (d) as = 4

Figure 7.2: Vertical residual versus observed x, uniform £, Normal errors
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: ’ ‘ •

(a) o\5 =  0 (b) a<5 = 1

Figure 7.3: Vertical residual versus observed x, chi £ with two degrees of freedom, 
Normal errors
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Before proceeding, properties of the vertical residual in an errors in variables setting 

will be considered. Once the errors in variables model has been fitted, we are provided 

with the estim ated relationship y(x) = a  +  fix. So, the vertical residual, r* say, at the 

point Xi may intuitively be w ritten as — y(xi). If we condition upon a fixed

value of £, then

(r«|f =  6 )  =  ^  +  e i -  a -  0 x {

— rji + £i — a  — /§(£j +  Si)

= (a — a)  +  {(3 — +  (si — pSi).

a  and 0  are independent of the latent &’s, as the distributions of &, Si and are 

mutually independent then

E[ri\( =  6] =  (a -  E[a}) +  (/? -  £[/?])&.

The variance of the vertical residual conditioned on a fixed latent & is given by

Var[ri\£ =  &] =  Var[0} +  Var[a] +  Var[ei -  0Si]

+  2 (iCov[a, 0] +  2Cov[P£i, 0Si] +  2 Cov[a, 0Si].

It is possible to  simplify this expression. Since E[5i] =  0 and 0  is assumed to  be

independent of the error terms Si, then

Cov\p,0Si] = E[02Si] -  E\0\E[pSi] =  0.

Similarly,

Cov[a , 0Si] =  0 .

Finally

Var[£i — 0Si] =  a 2 +  Var\0)Var[Si\ -I- E 2[0]Var[Si] = a 2 +  ajVar[0] +  0 2cr2.
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Combining all these results yields the following expression 

Var[ri\^ =  £J =  £2Var[P\ +  Var[a] +  a 2Var[P\

+ 2£iCov[a,l3\ 4- cre + P as (7.1)

=  V a r [ P ] L  + C °V^ ^

Var[j3\

for the variance of the vertical residual a t a fixed £

Var[P] J

Cov [a, P] ^  y a r ^ j  +  a * y ary3 ] +  erf +  P2cr2.

This expression collapses to th a t for the simple linear regression model where there is 

no measurement error in the x  observations. Upon taking the standard results erf =  0, 

Var[P\ =  Var[a] = c r f ^  and Cov[a,/3] = we obtain

Var[ri|£ =  £i] =  (£* -  £)2 +  a2^ 1- -  f 2—  +  a2
Hi nsii Hi

~  +  ^  +

which is the corresponding result for simple linear regression

( i  +  I + t e — (7_2)
I n su  J

Equation (7.1) may be further simplified by using the ‘shortcu t’ formulae of Chapter

3,

Cov[a , P\ = Cov[y, P\ — P C o v [x , (3] — p V  ar[P\

Var[a] =  p 2Var[P] +  ^  ° 8 ° E +  2p(pCov[x, p\ — Cov[y, P))
n

yielding

Var[ri\£ =  £J =  V ar [£](£< -  p )2 +  erfVar[P] +  ^1 +  (a2 +  P2cr26)

+ 2 (Cov[y, P] -  P C o v [x , £?])(£* -  p) (7.3)



Chapter 7 E r r o r s  in  V a r ia b l e s  R e g r e s s io n 223

Expression (7.3) is fundam entally different to tha t of the simple linear regression model 

(7.2). For example, in (7.3), we have the larger term  (1 +  n~l )(a2 +  /32a 2) instead of 

(1 +  n~l )al  as in (7.2). It is likely th a t the terms (& — £) and (& — p)  will be similar as
_ _ 2

p  is an unbiased estim ator of £. However, in (7.2) (& — £) is multiplied by which is 

again likely to  be a lot smaller than  Var[/3] which premultiplies (& — p) in (7.3). For 

the Normal linear structural model

Cov[y, 0] = Cov[x,(3] =  0.

Only upon varying the distribution of £ from Normal will these covariances be non-zero.

It follows th a t

Var[ri\i = &] -* a2e +  /?Vf

as n  —> oo, since as n —> oo Var[j3\ —> 0 and Cov[y,/3] — {3Cov[x,j3\ & 0. Thus the 

vertical residuals are more variable towards the tails of the data, bu t around the mean 

p  have variance approximately equal to a 2 + (32 cr2.

It was results of this form th a t were exploited by Koduah [68] to  obtain a nonpara- 

metric errors in variables fit. Koduah derived a local linear nonparam etric estim ator 

by taking weighted perpendicular projections from the fitted line to the data. This 

relates to  taking A =  1 in /35 (see Chapter 3).

7.3 O ther R esiduals

A vertical projection from the regression line on to a da ta  point is not the only 

projection th a t can be considered in an errors in variables setting. As mentioned
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throughout this thesis, for the simple linear regression model a residual is immediately 

definable. The param eters of this model are then derived by minimising the sum of 

squares of these residuals. By the well known Gauss-Markov theorem (see Draper 

and Smith [37]), mimimising the sum of squares provides the best unbiased linear 

estim ators for the param eters of the model.

Even though this methodology cannot be applied to an errors in variables model, some 

concept of a residual may inherently be found in alternative estim ation methods. Some 

examples are given here.

Geometric mean The concept of the geometric mean slope estim ator,

@g m  = sgn(sxy) J ^

has an intuitive interpretation as it is the geometric mean of the slope estim ator for y 

on x and x on y regression respectively.

A different m otivation for geometric mean regression was derived by Barker, Soh and 

Evans [4]. Instead of looking at a geometrical average, they showed th a t /3gm may be 

derived in its own right by adopting a least triangles approach. The least triangles 

approach aims to  minimise the areas of the right-angled triangles formed with the 

regression line as the hypotenuse, and the vertical and horizonal projections from the 

da ta  point onto the line as the remaining two sides. M athematically speaking, this 

involves finding a  and (3 so th a t

is minimised. The area of these triangles formed from the data point and the regression
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line may offer a residual which takes into account the extra random error component 

in the observed x.

M a x im u m  lik e lih o o d  As given in C hapter 5, the likelihood function of the Normal 

linear functional model given a sample {(xi5 jji, i =  1 , . . . ,  n)}  may be written:

is a metric since M (a, a) =  0, M (a, b) > 0 if a ^  b, M (a, b) = M(6, a) and 

M(a,b) < M (a, c) +  M(b,c)  for any points a , b and c. Thus M  ((x, y), (£, a  +  /?£)) 

may be considered as a potential residual.

The problem w ith using M  as a residual is the dependence on the latent variable £. 

However, once an initial errors in variables fit has been made, £ may be estim ated as 

shown in C hapter 6. This residual however, is different from any discussed previously. 

It is a distance from the observed da ta  point yi) onto the latent da ta  point (&, rji).

Leading from this point, the metric M  is known as the Mahalanobis distance. The 

M ahalanobis distance is a useful way of determining similarity of an unknown data  set, 

to a known one. This Mahalanobis distance is regularly used in simple linear regression 

for outlier detection and leverage analysis. The da ta  point with greatest Mahalanobis 

distance is known to exert the greatest amount of leverage on the fitted regression line.

and this likelihood function is maximised when | i l_  _|_ (Vi a P&)is minimised for
A &£

each data  point

The term

( g - 0 2 , ( y - a - 0 Q 2
/T? /t2
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W eighted least squares As described in the previous C hapter, weighted least 

squares is used for an errors in variables model to minimise the sum of squared 

residuals where a projection other than  vertical or horizontal is taken.

Thus the term  D,(A) introduced in C hapter 6 may also be considered as a residual 

which takes both the errors in the x and y measurement. The expression for Di(X) is 

repeated here:

Dt(A) =  y / t f  +  e? =  {V>? +  P )  ~ ~x a+ ~ f Xi-

This residual is simply a rescaling of the vertical residual, and so there is no benefit 

in using this residual instead of the vertical residual.

7.4 M igration

It has already been dem onstrated th a t there will be a trend in the vertical residual 

for an errors in variables model. The introduction of m easurement error in the 

x  observation will increase the variability of points about the line. An additional 

surprising feature of errors in variables modelling is the tendency for da ta  not to be 

symmetrically d istributed around the fitted line, sometimes giving the impression 

th a t the fitted line inadequately describes the d a ta  in question. This phenomenon has 

been discovered by Nix (pers.comm.) bu t investigated by Koduah [68], and describes 

the movement of the observed d a ta  due to  the additional error component a ttributed  

to the x measurement. For /? >  0 it appears th a t da ta  are more prevalent above the 

fitted line a t the left hand tail of the data, and are more prevalent below the fitted 

line a t the right hand tail of the data. This not only has im portant implications for 

residual analyses, bu t also for assessing and constructing the reference bands tha t are
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commonly used in diagnostic screening (see for example Royston [89]).

Figure 7.4 shows a set of d a ta  generated with Normal £. The parameter settings 

chosen were a  =  3, (3 =  5, p  = 10 and a — 5. At any given x, there appears to be 

a roughly symmetric distribution of y. If measurement error is also added to the x 

measurement, then this is not the case. The symmetry about the true line of y given 

x  has disappeared, and this is more marked in the tails of the data. The distribution 

at the left hand tail is asymmetric at any x  with larger values of y  predominating. At 

the right hand tail the asymm etry is also present, but is skewed towards lower values 

of y. The approximate effect of migration is to twist or ro ta te  the data  about the true 

line. This yields the asymmetry of y given x  to be more marked a t the tails.

200 200

150 150

100 100

-20-20 -1 0 10

-5 0-5 0

-100-1
(a) Errors in y  only (ae =  2)

- 100-1

(b) Errors in x and y (as =  3, a£ =  2)

Figure 7.4: Scatterplot of da ta  from a Normal structural model. Least squares line is 
in green, the true line is in red.

Figure 7.5 shows a set of data with uniform £. Adding error to the x  measurement
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gives a similar migration effect to that of Normal £ but is not as pronounced. Here 

the tails appear to further tail off giving a subtle ‘z’ or saw-tooth structure to the 

data. The left hand tail has moved horizontally to the left, and the right hand tail 

has moved horizontally to the right.

60

60

Y7
40

30

20

(a) Errors in y only (cr£ = 2) (b) Errors in x and y  (as = 2, <je = 2)

Figure 7.5: Scatterplot of data from a structural model with uniform £ and Normal 
errors. Least squares line is in green, the true line is in red.

Figure 7.6 shows a set of data from a structural model with chi £ (two degrees of 

freedom) and Normal errors. Adding error to the x measurement shifts the density of 

points at the left tail further to the left, creating the shape of a ’tick’. Due to the lack 

of points at the right hand tail, the addition of error has made the points at the right 

hand tail appear more sporadic.

Reasoning for migration can be found by considering the effect of adding measurement
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20

5 - 1 0 -

(a) Errors in y  only (a e =  1) (b) Errors in x and y (cr,j =  1, o e =  1)

Figure 7.6: Scatterplot of data from a structural model with chi f  (two degrees of 
freedom) and Normal errors. Least squares line is in green, the true line is in red.

error to an x  measurement. As demonstrated in the previous figures, prior to adding 

measurement error to the x  measurement, the distribution of y  given any x is at least 

roughly symmetric about the true line. Once measurement error is added some data 

have migrated to the left, and some have migrated to the right, approximately half 

in each direction. For the Normal distribution however there are more observations 

close to the mean, and fewer in the tails. So more observations migrate outwards 

than are compensated for by observations moving inwards. At the left hand tail, for 

observations originally above the true line there are greater numbers migrating left 

than to the right. Observations below the line migrating outwards in greater numbers 

than migrating inwards tend to be closer to the true line after adding measurement 

error to the x. At the right hand tail the opposite effect is seen. This provides the 

rotating effect that has been demonstrated in Figure 7.4.
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The migration effect is slightly different for the uniform £ since equal numbers will 

on average migrate inwards and outwards removing the migration effect for data  

close to the centre of the distribution. Towards the tails, there are no observations 

to compensate for the outward migration and so the migration effect is as described 

previously. W hen £ is assumed to follow a chi distribution with two degrees of freedom, 

the migration of points a t the left hand tail is not balanced by the migration of points 

a t the right hand tail as there are many fewer points a t the right hand tail as opposed 

to the left hand tail. The density of points a t the left hand tail thus move horizontally 

to the left, whilst the points a t the right hand tail become more sparse. Moreover 

the effect of assuming £ is not Normally distributed is such th a t the expectation of y 

given x  is not a straight line, but a curve. This was dem onstrated algebraically in the 

previous Chapter.

A key feature with Figures 7.4, 7.5 and 7.6 is th a t the true line does not appear to be 

the best representation of the data. On inspection, it appears th a t the least squares 

line provides the best fit, in particular for the Normal structural model. This is the 

distortion effect of migration, th a t makes the true line (which is best estim ated by 

the errors in variables line) appear incorrect. This could lead to  much confusion, in 

particular when it comes to residual analysis. A thorough understanding of the effects 

of m igration is essential to fit and check an errors in variables model.

For Normal £ it is possible to describe this migration effect algebraically. In this section, 

two different algebraic reasonings for the migration phenomenon with Normal £ shall 

be presented. The first relates to the conditional distribution of y given x, and the 

second relates to  the contours of equal probability for a bivariate Normal distribution.
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D is tr ib u t io n  o f  y\x  For the Normal linear structural model, the  conditional dis

tribution of (y\x = x0) is also Normal (see for example C hapter 6, or DeGroot [32]). 

Indeed we may write,

(y\x =  x0) ~  N 0 ° 2 , s ( ,  0 2° i
<* + 0 f*+  , _2 (*o - # * ) , ( ! -  2 )

u  +  Gs \  G +  °"s

and the conditional mean of y given x  is (as seen in Chapter 6)

„2

E[y\x = x 0\ = a  + Pp + — — ~ (x0 -  p).
G +  <TS

Hence the average of the vertical distance from y to the true line yo = a  + (3xo at

x  = Xq is
<72

- P ( x 0 -  / i ) - 2- ----2 =  ~ P ( X 0  -  P ) k ,
G +  GS

where k is the reliability ratio. So when x 0 < p  the average migration from the true 

line is positive and when x 0 > p  the average migration is negative. As mentioned 

previously, the least amount of migration will occur when X q  «  p .  The amount of 

migration is proportional to (3 and the reliability ratio n. In other words the vertical 

scatter of y values will not be symmetric, especially in the extremes in the range of x. 

In simple linear regression this migration effect does not occur since the least squares 

line is an unbiased estim ator for the expression for E[y\x = Xq].

This m igration effect will clearly have an im pact upon the vertical residuals. Again, 

for the Normal linear structural model we have

(y — a  — /3x\x =  xq) ~  N 13(76 (Xo -  n) ,  ( 1  -  0 2V s ) ( v 2 +  0 2<?t)

Assuming th a t the slope f3 is positive, for x  < p  then on average, the vertical residuals 

will be negative. For x  > p, then on average the vertical residuals will be positive. 

The effect will be less marked for observations close to the mean, and more marked
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in the tails. This gives the effect th a t the observed data  has ro tated  clockwise about 

the true  line. W hen the slope (3 is negative, the reverse of the above description applies.

For models other than  the Normal structural model, the conditional distribution of 

y\x  can go some way in describing the migration effect. For example, as seen in 

the previous C hapter when the distribution of £ is varied away from Normal in a 

structural model then the expression E[y\x] varies. The figures in Section 6.2 show 

th a t the expressions and approximations for E[y\x\ follow the migration effect. For 

the Normal structural model, E[y\x] is the least squares line. The migration effect in 

the Normal structural model is for the d a ta  to  ro ta te  about the true line, and then the 

least squares line seems the best fit of the data. W hen £ follows a uniform distribution 

in the structural model, then the expression and approximation for jE7[j/|a;] follow 

the migration of the da ta  a t the tails of the data. This follows for all the examples 

considered in the previous section.

E q u ip ro b a b i l i ty  c o n to u rs  a n d  e llip ses  For the Normal structural model, the 

observed d a ta  (x, y) create an elliptical shape on the scatterplot of x  and y. This was 

dem onstrated in Figure 7.4.

The equation

ax2 — 2 bxy +  cy2 =  k  (7.4)

defines an ellipse whose major axis is oblique to the x  axis, with centre at (0,0). The 

inclination of the ellipse 6, as given in Figure 7.7 is defined by values of a , b and c. In
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fact

tan(20) =
26 2 tan(0)

(7.5)c — a 1 — tan 2(0)

and thus a quadratic form for tan(0) may be constructed. The roots of the quadratic 

are the slopes of the m ajor and minor axis of the ellipse.

Figure 7.7: An ellipse w ith inclination 6.

This can be related to  the Normal linear structural model by looking at contours of 

equal probability for a bivariate Normal distribution. For simplicity, we assume the 

mean to  be (0,0). These contours are elliptical and are described by the form

2 px 2 y2
Var[x] Var[y] y/Var[x] y/Var[y]

xy  = k

for different constants k. The introduction of a random  error component in the ob-

'2 Pa2 
(3ct2 a 2 +  pPo1served x is to  change the variance covariance m atrix  from [ % 2 2 7 02  2 1 f°

'2 - 2 p a 2
Pa2 a 2 +  P2a<°  2 5 2 7 o2 2 ) • The effect is to ro ta te  the ellipse formed by the contours of

equiprobability. Comparing the bivariate Normal distribution with (7.4), a = - 2 ^ 2 ,
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b =  (*>+c}Kg V + r j )  a n d  c =  we m ay write

26 20a2
t a n (26) / 2 2\ ( G2 2 1 2'\ ’c — a (a2 +  <r|) — (/32a 2 +  a 2)

As <j |  increases, ta n (20) decreases and the ellipse rotates, but also expands outwards

because of the increase in a . This is exactly the migration effect discussed earlier.

In practise seeing an elliptical scatterplot with m ajor axis inclined at an angle 9, it

is impossible to totally distinguish how much of this inclination is due to (3 and how

much to erf.

The migration effect for the Normal structural model is a t least partly corrected for by 

the m ethod of moments estim ator of £, £ described in the previous Chapter. Assume 

(3 > 0. If yi > a  + /3xi (observed y  above true line a t observed x) then & > Xi  but 

fji < y i .  If y i  < a  +  f3xi (observed y  below true line a t observed x)  then & < Xi  but 

fji > y^  If (3 < 0, then the obvious alterations are made to  the above inequalities. The 

m agnitude of the difference between & and Xi is greater for those observations most 

d istant from the true line. In summary, the m ethod of moments estim ator of £, f  goes 

some way to  reverse the rotation and distortion away from a straight line effect of 

m igration in order to  predict the original, unobserved £.

A related issue is how the major axis is related to estim ators discussed in Chapter 3. 

As sta ted  previously, the roots of (7.5) yield the slope of the m ajor and minor axis. 

The roots of this quadratic are

taa(tf) =  ~̂ C) ±  V g  ~  C)2 +— . (7.6)£i\J

Let tan(# i) =  (Q +4b an(j ta n (^ )  == ~° ^ °" +4~"' • eQuafi°n of the

m ajor axis y =  tan(0<) for one of these 9i, i = 1, 2, depending on the inclination of the



Chapter 7 E r r o r s  in  Va r ia b l e s  R e g r e s s io n 235

ellipse. Some algebra shows th a t —tan(gl) =  tan(02), thus the two solutions for 6 give 

lines at right angles. In other words, the two lines form the m ajor and minor axis for 

the ellipse.

We may estim ate the slope of the m ajor axis by approximating a, b and c with their 

moment equivalents, a =  — , b =  3xy- - and c = — . Substituting these into tan(0i)
&xx S x x & y y  8y y

gives (after some simplification)

(Syy ~  S x x )  “I" \ f  (Syy — Sxx) 2 -f- 4 s 2
t a n ^ )  = ------------------------  .

&SXy

This is also the estim ator for the slope, /?5 used when the ratio of the error variances 

A is known and equal to 1. The m ajor axis is thus estim ated by y = (35x  when A =  1. 

This m ajor axis is the same as the first principal component, whilst the minor axis is 

the same as the second principal component. This is always true for a bivariate data 

set (see for example Seal [91].)

M ig ra tio n  fo r d iffe ren t s t ru c tu ra l  m o d e ls  Some mention has already been 

made as to  the migration effect for models other than  the Normal structural model. 

The expression E[y\x] appears to follow the density of points as they migrate upon the 

addition of measurement error to the x  measurement. The severity of the migration 

effect depends on the reliability ratio, in th a t the larger the o\  in comparison to o2, 

then the more marked migration effect.

Investigation of the joint probability density function of x  and y for different distribu

tions of £ provide further insights into the migration effect. For example, as seen in 

C hapter 5 the joint probability density function of x  and y  for a structural model with
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uniform £ and Normal errors is given by

1
f x , y { x i y )

+ /?2<7£
exp 1 ( (y -  a -  /to)2

2 \  <r| +  /?2<r!

x
(6

$ V A [ b - i V^4( a -  £

As mentioned in C hapter 5, the term

1
exp

1 /  ( y -  a -  f ix)2
2 \  +y/ZKy/a* + (32 a \

may be viewed as the joint probability density function of x  and y of the simple linear 

regression model, with inflated variance a \  +  /?2cr|- As with the Normal structural 

model, the term  in the exponential may be viewed as describing the spread of the 

observed d a ta  {(x,, yi), i = 1 , . . . ,  n}. Instead of an ellipse as in the Normal structural 

model, if the disturbance term

1
$ - 4 -  ' / A ( a  -  |(b-a)

is ignored the da ta  for a structural model with uniform £ and Normal errors are 

spread around the least squares line, with variance +  of. The presence of this 

disturbance term  however, has the effect of stretching the tails of the da ta  horizontally 

away from the mean, as described in C hapter 5. This explains the migration ef

fect seen for the structural model with uniform £ and Normal errors as explained earlier.

Similar consideration may be given to the example in C hapter 5 of £ following a chi 

distribution (one degree of freedom) with Normal errors. As stated  earlier, a chi distri

bution w ith one degree of freedom is the half Normal distribution. As this distribution 

is heavily skewed, a migration effect similar as to when £ follows a chi distribution 

with two degrees of freedom is observed. The density of points a t the left tail moves 

horizontally to the left, and the points a t the right hand tail become more sporadic.
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For illustrative purposes, Figure 7.8 is an example of a structural model with chi £ with 

Normal errors, with and without measurement error in the x measurement. Again, the 

’tick’ effect that occurs when £ follows a chi distribution with one degree of freedom is 

observed.

2 0 -

5 - 3

-10 - 10 -

(a) Errors in y only (ae =  1) (b) Errors in x and y (crs = 1, cre = 1)

Figure 7.8: Scatterplot of data from a structural model with chi £ (one degrees of 
freedom) and Normal errors. Least squares line is in green, the true line is in red.

As derived in Chapter 5, the joint probability density function of x and y  when £ is 

assumed to follow a chi distribution with one degree of freedom and the errors are 

Normally distributed is given by

where

+  6 2(t1 P

( y - Q -  fix)2' 
2 M  + lPoi).
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Again ignoring the term
2
— exp
7T

X*
T • (£

the spread of the points {{xi , £/*), z =  1 , . . . ,  n} (in the structural model with chi £ with 

one degree of freedom and Normal errors) is about the least squares line with inflated 

variance o 2 +  (3a2. As w ritten in C hapter 5, the term

B
$

y/A

has a greater impact a t the tails. The term  of most interest in terms of migration is

exp
21

This term  has the most contribution for those x  observed near the origin. For large x, 

this term  will become negligible. Thus the effect of exp *s pull the left

hand tail of the data  further to the left. It has less of an impact a t the right hand tail 

for the larger x , and so the effect is not as pronounced. This creates the ’tick’ effect 

th a t has been described previously. The left hand tail has been pulled away from the 

least squares line, whilst the right hand tail still seems to  follow the least squares line.

7.5 V ertical R esiduals R ev is ited

The vertical residuals from the errors in variables fit always dem onstrate a trend 

because of the migration phenomenon, which moves the da ta  around the true line. 

Therefore the vertical residuals from the unbiased estim ator of the true line, the errors 

in variables fit, may be misleading when it comes to detecting outliers, and for model 

checking. For this reason, the vertical residual from the errors in variables fit may not 

be suitable for diagnostic analysis of the fitted model.
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Based on work from earlier Chapters of this Thesis, there are two ways in which 

this migration phenomenon might be dealt with. As mentioned previously, the exact 

expressions for E[y\x] derived in the previous Chapter seem to follow the migration 

of the data. Thus, the vertical residual from E[?/|a;] would provide a residual which 

would not display the trend th a t occurs when looking at the vertical residual from the 

errors in variables fit.

Secondly, the migration phenomenon is a t least partially corrected for by the method 

of moments estim ator of £, £ (equation (6.13)). Once an errors in variables model 

has been fitted, then the estim ated param eters from the errors in variables fit may 

be used to estim ate the latent £ values. A simple least squares fit to the data  set 

=  l , . . . , n j  can then be obtained, and vertical residuals from this least 

squares fit should not display the trend th a t occurs when looking at the vertical 

residual from the errors in variables fit.

Some examples of both methods are given here. For the Normal structural model, 

E[y\x] follows the least squares line. In this scenario then, the vertical residuals from 

the least squares fit should not be subject to  the migration phenomenon. Figure 7.9 

for a Normal structural model with param eter settings a  = 3, (3 =  5, p = 10, cr =  5, 

<jf =  1, n =  5000, shows plots of the vertical residual from the errors in variables fit, and 

from the least squares line {E[y\x\) for increasing erf. It can be seen th a t the vertical 

residuals from the errors in variables line is subject to the migration phenomenon, and 

the rotation is more marked for large a$. The vertical residual from the least squares 

line however does not display the migration phenomenon, and is more robust to the 

increase in erf.
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As seen in the previous Chapter, the expressions for E[y|x] for structural models other 

than  the Normal structural model are not so simple. Examples of exact expressions 

for when £ is assumed to follow a uniform or chi distribution with Normal errors were 

given and investigated.

Figure 7.10 shows plots of the vertical residual from the errors in variables fit, and from 

the E[y\x\ curve for increasing erf, when £ is assumed to  follow a uniform distribution. 

The param eter settings are a =  5, 5 =  15, a  =  3, /? =  5, cre =  1 and n  =  5000. As 

as increases to extreme levels, then a ro tated  diamond shape becomes more distinct. 

This is partly  due to the migration effect w ith uniform £, the d a ta  spreads out at both 

tails creating an elongated ‘s’ shape. Thus for extreme error, this migration effect is 

particularly noticed, and so the vertical residual a t the tails will be larger than for in 

the middle of the data.

Figure 7.11 shows plots of the vertical residual from the errors in variables fit, and 

from the E[y\x] curve for increasing a \ , when £ is assumed to  follow a chi distribution 

with two degrees of freedom. The param eter settings are a  = 3, (3 =  5, a£ = 1 and 

n = 5000. Unlike Figure 7.10 the residual plot from the E[y\x] curve is not as affected 

by changes in as-

The second method suggested to  correct for migration is the use of the estim ator of £, 

£ (equation (6.13)) th a t was introduced in the previous Chapter. In summary, the key 

steps of this m ethod are:

1. F it the errors in variables line to  the da ta  {(xi, y{), i =  1 , . . . ,  n}, thus obtaining 

unbiased estim ators for a  and (3.
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2. Estim ate the latent £ j ’s  by using the formula

ii = ^ X i + i r w ^ - a ) -

If A is unknown, then it may be estim ated from the method of moment estimating 

equations (3.1) to (3.5).

3. F it the least squares line to  the d a ta  {(£i,?/i),i =  l , . . . , n }  thus obtaining a 

regression equation of the form yt =  a 0 +  /?o£z

4. Conduct standard residual analysis on the vertical residuals y i ~  ato — /?o£i- Stan

dard residual theory for the simple linear regression model may now be used since 

£ is the estim ated value of x  w ithout measurement error.

For completeness, the vertical residual y i - a o  — Po£i where a 0 and /3q are the estimators 

of the intercept and slope of the least squares fit to the da ta  set {(£*, ?/*), i =  1 , . . . ,  n)  

is compared to  the vertical residual from the errors in variables fit for the same 

distributions and param eter settings used in Figures 7.9 to  7.11.

Figure 7.12 for a Normal structural model with param eter settings a  = 3, (3 = 5, 

fi =  10, a =  5, erf — 1, n = 5000, shows plots of the vertical residual from the errors 

in variables fit, and from the least squares line (E[y\x]) for increasing cr|.

Figure 7.13 shows plots of the vertical residual from the errors in variables fit, and 

the vertical residual from least squares fit to {(£i,t/i),i =  1, . . .  , n} for increasing erf, 

when £ is assumed to  follow a uniform distribution. The param eter settings are a = 5, 

6 = 1 5 , a  =  3 , / ?  =  5, cr£ = 1 and n = 5000. This plot does not display the same 

trend of creating diamond like shapes as seen in Figure 7.10, and seems fairly robust
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to changes in

Figure 7.14 shows plots of the vertical residual from the errors in variables fit, and the 

vertical residual from least squares fit to {(&, yi), i =  1 , . . . ,  n}  for increasing erf, when 

£ is assumed to follow a chi distribution with two degrees of freedom. The param eter 

settings are a  = 3, f3 = 5, oE =  1 and n  =  5000.
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(g) as =  4 (h) as = 4

Figure 7.9: Vertical residual versus observed x, Normal structural model. Vertical
residual from errors in variables fit is on the left hand side, vertical residual from least
squares fit is on the right hand side.
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(a) as = 0.2 (b) as = 0.2

• ;  V'V i'"-*

(c) <7,5 =  1 (d) <7 * =  1

,  •• v  ’•' -v  j ; :  J v i S z J  i ; .

(e) <r̂  = 2 (f) <7* =  2

( g )  ^ < 5 = 4 (h) <7,5 = 4

Figure 7.10: Vertical residual versus observed x, uniform £ and Normal errors. Vertical
residual from errors in variables fit is on the left hand side, vertical residual from least
squares fit is on the right hand side.
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(a) as = 0.2

(c) as = 0.4

(b) as =  0.2

(d) as = 0.4

graft

(e) crj =  0.8 (f) <r«5 = 0.8

(g) °6 = 1 (h) a6 = 1

Figure 7.11: Vertical residual versus observed x, chi £ (two degrees of freedom) and
Normal errors. Vertical residual from errors in variables fit is on the left hand side,
vertical residual from least squares fit is on the right hand side.
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(c) (T$ = 1 (d) as =  1

’• •

(f) <T<5 =  2

(g) ^<5=4

V>V'*• ;',I «*'• vV* ’

f i f e '

K8§ •*>•••.
. . .  • •• 
y  - -■ - :

I ’

(h) 0 -5 = 4

Figure 7.12: Vertical residual versus observed x, Normal structural model. Vertical
residual from errors in variables fit against x is on the left hand side, vertical residual
from least squares fit to {(^i, 2/*), i =  1 , . . . ,  n )  against £ is on the right hand side.
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. v- »awsiI.i-aaa.'-.v.u «.••..•» 4»y..
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(a) a* = 0.2 (b) as =  0.2

(c) a* = 1 (d) 0-̂  = 1

V/ ? .1 V . ;:v-' r> - •* », ;* # *••

V;

j  ■ .; " v  ' / *  ' v  ^  ’?'•••.-; , '- w <  • • i v ;  /.».;■ ■

(e) a<5 = 2 (f) <7(5 =  2

(g) <̂5 = 4 (h) <7(5 =  4

Figure 7.13: Vertical residual versus observed x, uniform £ and Normal errors. Vertical
residual from errors in variables fit against x  is on the left hand side, vertical residual
from least squares fit to {({<, ifc), i  =  1, • • . ,»} against £ is on the right hand side.
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(g) as = 1 (h) CJ$ — 1

Figure 7.14: Vertical residual versus observed x, chi £ with two degrees of freedom and 
Normal errors. Vertical residual from errors in variables fit against x is on the left hand 
side, vertical residual from least squares fit to {(&, yi), i =  1, . . . ,  n}  against £ is on the 
right hand side.
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7.6 C onclusions

As stated  earlier in this Chapter, for a standard regression model, a residual is 

intuitively defined. Modern regression techniques typically involve minimising some 

function of these residuals in order to estim ate the param eters of the model. By 

introducing measurement error into the x  variable, a residual is not immediately 

defined. Some methods of estim ating the param eters of an errors in variables model 

may be related to  some form of residual, and this residual tends to be related to 

the vertical residual. It is for this reason the vertical residual was exploited in this 

Chapter. Both the fact th a t the vertical residual is correlated with x  and the migration 

effect is present makes the interpretation of the vertical residual very dangerous. It is 

seen th a t the errors in variables fit can in some situations look visually wrong when 

drawn on a scatterplot of points. As a result directly looking a t the vertical residual 

from an errors in variables line will be misleading. In order to use the vertical residual, 

two things can be done. The vertical residual from E[y\x] may be considered, as 

the E[y\x\ seems to follow the pattern  of migration. Secondly, if the latent £'s are 

estim ated from an initial errors in variables fit then the vertical residual from the 

standard  least squares fit to {(&, 2/i), a = 1 , . . . ,  n} may be considered. Both methods 

have been shown to be viable.

The topic of migration is a crucial one and the migration of the d a ta  in an errors in 

variables model has a number of implications. It is thus im portant to  fully understand 

this phenomena if one is to understand the ethos of errors in variables modelling. It is 

hoped th a t the numerous explanations given in this Chapter would enable a practitioner 

to cope with the migration phenomenon.



C hapter 8 

C ase S tu d ies and E xam ples

8.1 A lpha F oeto  P ro te in  as a M arker for D ow n ’s 
Syndrom e

Down’s syndrome is an example of a genetic disorder, which is estim ated to have 

an incidence of 1 per 800 births (see for example Selikowitz [93] and the references 

therein). The disorder however is not only seen in humans, it has been noted in 

chimpanzees and mice. Down’s syndrome is caused by the presence (either in whole, 

or in part) of an extra  twenty-first chromosome, and is typically associated with both 

physical and cognitive impairments. Examples of the physical impairments include 

an almond shape to the eyes, shorter limbs and pure muscle tone, whilst cognitive 

impairm ents are mainly associated with mild to m oderate learning difficulties. The 

probability of conceiving a child with Down’s syndrome increases with m aternal age.

In general, pregnant women may receive a number of prenatal screens. Many of 

the standard  screens can aid with the diagnosis of whether the unborn child is 

likely to have Down’s syndrome. The selection of available screens may be split 

into examples of invasive and non-invasive screens. Examples of invasive screening 

include amniocentesis (a small amount of amniotic fluid is taken from the amniotic

250
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sac surrounding the fetus, and analysed) and chorionic villus sampling (a sample of 

placental tissue is obtained, and tested). Both of these procedures however do carry 

some small risk of disrupting the fetus, thus causing potential complications.

An example of a non-invasive screening m ethod is the measurement of m aternal serum 

alpha foeto protein (AFP) levels. It is known th a t A FP levels are markers for Down’s 

syndrome, low values generally being associated with the condition. The level of AFP 

varies with gestational age, and with the health status of the foetus (see for example 

Koduah [68]).

The motivation for the use of errors in variables methodology for the use of AFP is 

clear. There is inherent measurement error in the measurement of gestational age 

and A FP level. Indeed, Selikowitz has stated  th a t one cause of false positives can be 

incorrect date of pregnancy. Thus the m easurement of gestational age is crucial, and a 

model th a t can take into account the error inherent in the measurement of gestational 

age is desirable.

Figure 8.1 contains a typical scatterplot of the natural logarithm of A FP against ges

tational age in days. This particular da ta  set was analysed in detail by Koduah [68]. 

The usual screening range for A FP is 15 to  18 weeks, and it is known th a t the stan

dard deviation for the measurements of gestational age is approximately 2.1 days if 

measured in days, or is approximately 3.4 days if measured in weeks (see references 

in Koduah [68]). In the notation of the model used in this thesis then, this suggests 

th a t as =  2.1. This information concerning the error variance is enough to compute 

an errors in variables fit to the scatter of data. The slope estim ator fa  assumes tha t
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the error variance cr2 is known.
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Figure 8.1: Measurement of the natural logarithm  of A FP against gestational age (in 
days).

The following table shows values for the estim ated slopes and intercepts via x  on y 

regression, y on x  regression, and /?2 - It can be seen th a t fa  does lie in between the 

values of the slope estimated by x  on y  and y  on x  regression, and so no admissibility 

conditions are broken. This implies th a t the  estim ators of the remaining unknown 

variance param eters cr2 and cr2 are positive. It can be seen th a t fo  does align more 

closely w ith the estim ated slope from y  on x  regression. Since

- 2  =  =  lg  6 7 8 7 3

f t

the estim ated reliability ratio k  for this situation is given by,

~  2

k  =  . / ■ ,  =  0.79088. 
o2 + <r}

As this is close to 1, then it would suggest th a t the errors in variables estim ator of the 

slope would align closely with the slope estim ated by y on x  regression.
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Estim ator Estim ated Slope Estim ated Intercept
x  on y 
y  on x

P2

0.27804
0.01886
0.02332

-27.54081
1.38256
0.88557

Figure 8.2 contains Figure 8.1 with the regression fits described above placed on the 

scatter of points. The remaining param eters with their estim ated values from using
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Figure 8.2: Measurement of the natural logarithm  of A FP against gestational age (in 
days), with different regression fits, x  on y  regression fit is in blue, y  on x  regression 
fit is in red, and the errors in variables fit is in green.

the solutions to  the equations (3.1) to  (3.5) are:

p =

a 2

111.597

18.67873

0.11094

The reliability ratio for the natural logarithm of the A FP measurement is estimated as

=  0.08386& V 2

fa* v 2 +  &2

and it is thus noted th a t a 2 is rather large. The range of In (A F P ) values at any 

gestational age is approximately 1.3 but the overall range is only approximately 2.1.
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The slope in this example is also very shallow. It is unlikely th a t measurements 

of In (A F P )  will have such a large error variance associated with them, and so 

presumably there is equation error present, as described in C hapter 3. In other 

words there must be considerable natural variation in the In (A F P )  levels of pregnant 

women. As stated in C hapter 3, the problem of equation error in fitting an errors in 

variables model is avoided by using an estim ator of the slope which does not assume 

anything concerning the error variance As knowledge of the variability in the 

measurement of gestational age was assumed, the inflated value for o\  has no effect 

upon the estimation of (3 using /?2 -

Once the param eters of the errors in variables model have been estimated, then it is 

possible to  estim ate the true gestational age, and true level of In (A FP) .  As derived in 

Chapter 6, equation (6.13)

Xi +  ; - - -  (Vi -  d),
A +  /?2 A +  /?2

may be used to estim ate the true gestational age. The true level of In (A FP)  may 

then be estim ated using the relation fji = a  +  /?&.

Figure 8.3 contains a scatterplot of the estim ated true values of gestational age against 

the observed values of gestational age. The line on the plot is the y = x  line. As there 

is close agreement between the observed gestational age and the estim ated true value 

of gestational age, the points are closely scattered about this line. For this application 

ii = 0.97885^ +  0.90727(?/* — 0.88557). Figure 8.3 shows th a t in general there is close 

agreement between the observed gestational age and the estim ated true gestational age. 

This is because the reliability ratio of the gestational age is quite large. The observed 

values of In (A F P )  are slightly adjusted to estim ate the true gestational age, and this
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adjustm ent is more marked in the left hand side of the data. Due to the scaling of the 

data, it is seen th a t the x* measurement has more of an influence upon the estimation 

of the true value of In (A FP) .
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Figure 8.3: Estim ated true values of gestational age against observed values of gesta
tional age.

Figure 8.4 contains a scatterplot of the estim ated true values of In (A F P ) against the 

observed values of ln (A F P ). Again the line on the plot is the y =  x  line. As can be 

viewed from the scatter about the line y = x, there is not as much of a close agreement 

between observed and estim ated values of ln (A F P ) as was dem onstrated in the previous 

Figure. This is to  be expected due to  the large variation observed in values of In (AFP).  

From looking a t the scatterplot, there is more adjustm ent of the large observed values 

of In (A F P )  than  the smaller observed values. In addition, a whole range of different 

true values of In (A F P )  is given for the same observed In (A FP) .  For example, for an 

observed In (A F P )  level of 2.6068, there are 14 different true values of In (A FP )  ranging 

from 3.338 to 3.909. The reason for this is th a t both the x* and ?/* are used in (6.13). 

For this particular application, 77* = —0.01873 +  0.02282#* +  0.021154165?/*
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Figure 8.4: Estim ated true values of \n (A F P )  against observed values of In (AFP).

Gestational age is measured in days however, and so this should be taken into account 

when estim ating the true values of gestational age and \n (AFP).  Figure 8.5 contains a 

scatterplot of the estim ated true values of gestational age rounded to the nearest day, 

against observed values of gestational age. The line on the scatterplot is the y = x  

line. It can be seen th a t in general there is close agreement between the estimated 

true values of gestational age, and observed gestational age. Many of the estimated 

true gestational ages match with the observed gestational ages. If they do not match, 

the estim ated true gestational age differs from the observed gestational age by a day. 

This is closely related to the grouping methods of fitting a straight line discussed in 

Chapter 2. If the spacings between the x  observations are appreciable, then the effects 

of measurement error in the x  observations may be alleviated.

If the estim ated true values of gestational age rounded to  the nearest day are used to 

estim ate true levels of \n(AFP),  the scatterplot of estim ated true levels of \n (AFP)
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Figure 8.5: Estim ated true values of gestational age rounded to the nearest day, against 
observed values of gestational age.

against observed levels of In (A F P )  becomes th a t of Figure 8.6. The picture is very sim

ilar to Figure 8.4 as there is not too great a difference in the unrounded and rounded 

gestational age. To demonstrate this Figure 8.7 contains a scatterplot of estimated 

levels of In (A F P ) when unrounded estim ated true values of gestational age (blue dia

mond) and rounded estimated values of gestational age (red triangle) against observed 

values of In (AFP) .  It can be seen th a t there is very little difference in the estimated 

true levels of In (A FP) .  There is a small am ount of disagreement in the tails of the ob

served In (AFP) ,  but close to the y — x  line, the observed In (A F P )  and the estimated 

true levels of ln (A F P ) using both rounded and unrounded estim ated true gestational 

age are indistinguishable.

An im portant topic in term s of screening is residuals. Examination of residuals will 

allow the identification of pregnant women with noticeably small or large values of 

ln( A F P ). The correct identification of these women is a crucial aim for any screening 

procedure. As stated  in Chapter 7, careful attention should be made when analysing
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Figure 8.6: Estimated true values of ln( A F P ), against observed values of In (AFP),  
using rounded estimated true gestational age.
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Figure 8.7: Estimated true values of In (AFP) ,  against observed values of In (AFP),  
using unrounded and rounded estimated true gestational age.

a vertical residual, as the trend of migration is likely to distort the typical vertical 

residual scatterplot. For this application, it is difficult to assess migration directly as 

the distribution of true gestational age is not known. However, from inspection of 

Figure 8.1 it does seem that the measurement of gestational age is skewed towards 

the left hand tail. An additional difficulty with this application is in the treatment
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of the estim ated true  gestational ages. There are likely to be slight differences in the 

residual plot if rounded or unrounded true gestational ages are used.

The main suggestions proposed in C hapter 7 for the analysis of the vertical residuals 

were the following:

1. Perform a standard  residual analysis from the least squares fit to {(£i,yi),i  = 

1 , . . . , ra}.

2. Consider the vertical residual from the E[y\x] curve.

As the distribution of the tru e  gestational age is not known, the Nadaraya-Watson 

nonparam etric m ethod of forming the  E[y\x) curve may be used. As stated  in Chapter 

7, the E[y\x] curve tends to  follow the  trend  of the migration effect.

Figure 8.8 contains a scatterp lo t of the vertical residual from the errors in variables 

fit against observed gestational age. To use the notation of previous chapters, the 

scatterp lo t is a plot of yi — a  — fixi against Xi where a  and /? are the values of a  and 

/3 estim ated by the errors in variables fit. C hapter 7 has shown th a t analysing the 

vertical residual on the basis of this plot may be misleading due to  the migration of 

the  observed d a ta  from the tru e  values. This scatterplot does highlight some pregnant 

women w ith particularly  high levels of observed In (AFP) ,  namely those who presented 

themselves for screening a t an observed gestational age between 105 days and 115 days. 

There are some women with noticeably low levels of In {AFP),  and these women are 

those th a t presented for screening after a gestational age of around 120 days.

F ig u r e  8 .9  c o n t a in s  s c a t t e r p l o t s  o f  t h e  v e r t ic a l  r e s id u a l fr o m  t h e  le a s t  s q u a r e s  f it  t o  t h e
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Figure 8.8: Scatterplot of vertical residual from the errors in variables fit against 
observed gestational age.

estim ated true  gestational age and observed levels of ln(^4FP), when the estimated 

true gestational age is both  unrounded, and rounded to the nearest day. The general 

effect of not using the rounded estim ated true  value of gestational age is to have a 

twisted residual plot. This is because even though gestational age is measured in days, 

the estim ated true  gestational age is on a purely continuous scale. Thus around each 

day of gestation, there will be some spread of estim ated gestational age. This could 

be misleading, and the twisting effect is removed by rounding to the nearest day. The 

tw isting effect is also added to because of the  use of yi in the estim ation of &, with 

a greater adjustm ent for the more extreme t/’s. The effect is clearly evident in this 

application due to  the  multiple values of \n (A F P )  a t the same gestational age. This 

figure dem onstrates however, th a t both  residual plots do share the main characteristics 

and features. Despite this, these residual plots are not recommended for practical use 

as they have not been corrected for the attenuation of the observed da ta  points th a t 

is caused by migration.
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Figure 8.9: Scatterplots of the vertical residual from the least squares fit to the esti
m ated true  gestational age and observed values of In(AFP).

Figure 8.10 contains the scatterplot of the vertical residual from the errors in variables 

fit against observed gestational age (blue diamond) with a scatterplot of the vertical 

residual from the least squares fit to  the estim ated true gestational age and observed 

levels of \n (A F P ) ,  when the estim ated true gestational age is rounded to the nearest 

day (red square). As can be seen, there are some noticeable discrepancies between the 

plots. For example, a t a gestational age of 105 days, the vertical residuals from the least
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squares fit are smaller than the vertical residuals from the errors in variables fit. On the 

other hand, at 116 days, there is an extreme vertical residual from the least squares fit, 

that is not present with the vertical residual from the errors in variables fit. Therefore 

there are different conclusions drawn from both residual plots. As stated earlier, the 

ethos of this application is to highlight women with extreme values of In (AFP).  The 

use of the correct residual plot to identify these women is crucial.
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Figure 8.10: Scatterplots of different vertical residuals against observed and estimated 
gestational age.

As written earlier, an alternative way to look at residuals is to take the vertical residual 

from the E[y\x\ curve. The effect of migration may then be nullified. Figure 8.11 shows 

the Nadaraya-Watson fit to the data presented in Figure 8.1. The Nadaraya-Watson 

estimate to E[y|x] is computed as

E[y\x]«  M ? )  = (8-1)
nh 2 - ^ = 1  $  \ h )

and h is chosen in accordance with

h =  as [log(n)]_* , (8.2)
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as discussed in Chapter 6. It is noted that the Nadaraya-Watson fit is not a straight 

line, but is a curve. As stated by Lindley [72] E[y|a:] is only a straight line for the 

Normal structural model. The Nadaraya-Watson fit is linear over a large range of 

gestational ages, but does curl up at the right hand tail. This phenomenon is similar 

to what was experienced in Chapter 6, when the random variable £ was assumed to 

follow a skew distribution. It seems that in general, the y on x regression fit follows 

the Nadaraya-Watson fit closely. But as the errors in variables fit is close to the y on x 

regression fit, it also seems at though the errors in variables fit follows the Nadaraya- 

Watson fit closely.

120
Gestational Age

Figure 8.11: Nadaraya-Watson fit to data, with other regression fits. Nadaraya-Watson 
fit is in black, y on x  regression fit is in red, x on y regression fit is in blue and the 
errors in variables regression fit (using fa) is in green.
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Figure 8.12 contains the scatterplot of the vertical residual from the errors in variables 

fit against observed gestational age (blue diamond) with a scatterplot of the verti

cal residual from the Nadaraya-Watson fit to E[y\x] (purple square). There is close 

agreement between the two residual plots for small values of gestational age. There is 

some disagreement however at the right hand tail of the data. For the larger values 

of observed gestational age there is more of a disagreement as for these values the 

Nadaraya-Watson and errors in variables fit differ the most. The residuals at the right 

hand tail from the errors in variables fit are shifted upwards to create the residuals 

from the Nadaraya-Watson fit. The residuals from the Nadaraya-Watson fit highlight 

some individuals at the right hand tail of the data who may be considered to have a 

high level of In (AFP),  who would not be identified of the residual from the errors in 

variables fit was used.
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Figure 8.12: Scatterplots of vertical residuals from both errors in variables fit, and 
Nadaraya-Watson fit against observed gestational age.

An additional aid in the referral of subjects is to construct a reference interval about a 

chosen baseline. Work on the construction of reference intervals when there are errors 

in both variables had been conducted by Koduah [68] and thus will not be repeated
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in detail here. The typical methodology in practise is to use standard regression 

techniques to  estim ate the baseline, and then using knowledge of the error variance in 

the y m easurem ent, draw a reference band consisting of two parallel lines either side 

of the baseline. These lines are typically constructed to exclude 2.5% in each extreme.

For many applications, as is the  case for the In (AFP)  data, there will be error in 

both the x  and y  m easurem ent. Thus standard  regression techniques will not give an 

unbiased estim ate of the baseline. Koduah derived the reference interval for an errors 

in variables model and it may be estim ated as

y = d  +  0  ±  yja*  +  (3a25

where Zi _ r is a suitably chosen percentile of the standard Normal distribution such 

th a t 100p% of subjects are referred.

As sta ted  previously however, particularly low values of In (A F P )  suggest th a t the 

unborn child may have Down’s syndrome. So a one-sided reference interval of the form

y = a  +  fix  -  zi„pyja* + (3a 25

where z \ - p is a suitably chosen percentile of the standard Normal distribution such 

th a t 100p% of subjects are referred may be constructed instead.

If the usual methodology of fitting a line using standard  regression techniques is used, 

then the corresponding one-sided reference interval is of the form

y = a 0 + P o x -  ^ y / j j

where Z\-p is a suitably  chosen percentile of the standard Normal distribution such 

th a t 100p% of subjects are referred, d 0 is the least squares estim ator of the intercept
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and fio is the least squares estimator of the slope.

Figure 8.13 contains a scatterplot of the ln(^F 'P ) data, with y on x and errors in 

variables regression fits. The one sided reference interval so that 5% of women are 

referred are also plotted. It can be seen tha t at the left hand side of the data, different 

conclusions would be drawn depending on the choice of baseline. The errors in variables 

line and least squares line are very similar in the main body of the data. The least 

squares line however lowers coverage in the right hand tail of the data. In terms of the 

differing results depending on the choice of baseline, Koduah states

“The observation here reinforces the recommendation made already that 

the ordinary least squares procedure must not be applied when it is clear 

that there are measurement errors in the x  variable, in this case estimated 

gestational age.”
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Figure 8.13: Scatterplot of \n (AFP)  data with one-sided reference interval, y on x 
regression fit is in red, errors in variables fit is in green. Reference interval from y on 
x  line is in red with dashed line. Reference interval from errors in variables fir in in 
green with dashed line.
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One may use standard regression techniques if the true gestational age has been esti

mated first. As stated earlier, this may be done using the method of moments estimator 

£ for the latent £. Then the one-sided reference interval may be computed as

y = d 0 +  fox  -  Zi-p\fo *

do is the least squares estim ator of the intercept and (3q is the least squares estimator 

of the slope for the data  set {(£i ,?/ i) ,z =  As an example of this, Figure

8.14 is a scatterplot of In (A F P )  against rounded estimated true gestational age with 

the appropriate one-sided reference interval. However, due to the uncertainty in the 

prediction of the latent true gestational age, it would seem tha t a reference interval 

to the data from an errors in variables fit seems the most reliable, and is simpler to 

implement.
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Figure 8.14: Scatterplot of In (AF P)  against rounded estimated true gestational age 
with one-sided reference interval, y on x  regression fit is in red. Reference interval 
from y on x  line is in red with dashed line.
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8.2 C om parison o f A ffected and U naffected  in  
D ow n ’s Screening

This section is intended to be a small illustration of the comparison between affected 

(mothers were positively screened as having a Down’s syndrome child) and unaffected 

(mothers were negatively screened as having a Down’s syndrome child). Figure 8.15 

is a scatterplot of affected women (purple square) gestational age against In (A FP)  

and unaffected women (blue diamond) gestational age against \n(AFP).  The original 

format of this da ta  was to record gestational age in weeks, and so for consistency 

of presentation this has been changed to  days. The effect of this is to increase the 

spacings between each stack of observations, a t a given gestational age. As stated 

in the previous section, if gestational age is measured in weeks, then as = 3.4 days. 

Presumably though, there is a loss of accuracy in measuring gestational age in weeks 

due to rounding. Due to the prevalence of Down’s syndrome, the number of affected 

women is much smaller than the number of unaffected women in this da ta  set. The 

number of affected women is 153, but the  num ber of unaffected women is 7468.

If the affected and unaffected women are trea ted  as two separate da ta  sets, then an 

errors in variables straight line may be fitted  to  each data  set, and compared. The fol

lowing table shows values for the estim ated slopes and intercepts via x  on y regression, 

y on x  regression, and # 2  for the affected women. It can be seen th a t fa  does lie in 

between the values of the slope estim ated by x  on y  and y on x  regression, and so no 

admissibility conditions are broken. This implies th a t the estim ators of the remaining 

unknown variance param eters a 2 and a 2 are positive. It can be seen th a t # 2  does align 

more closely with the estim ated slope from y on x  regression. This is because the
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Figure 8.15: Measurement of the natural logarithm of AFP against gestational age (in 
days) for both affected and unaffected women.

reliability ratio is estimated as

a 2
k = --------- =  0.77185

<72 +  <j £

which is quite large.

Estimator Estim ated Slope Estim ated Intercept
x  on y 0.17396 -16.81631
y on x 0.02088 0.84740

P2 0.02705 0.13534

The remaining parameters with their estim ated values from using the solutions to the 

equations (3.1) to (3.5) are:

JX =  115.3856 

a2 = 39.10829 

a 2 = 0.15541.

Figure 8.16 contains a scatterplot of gestational age against In (AFP)  for the affected 

women, with the regression fits as described in the previous table.



Chapter 8 E r r o r s  in  V a r i a b l e s  R e g r e s s i o n 270

6

7

6

6

I 4

3

2

0
106 110 116 120 140100 125 IX 135 145 150

GMtationtl Ag*

Figure 8.16: Measurement of the natural logarithm of AFP against gestational age (in 
days), with different regression fits for the affected women, x  on y regression fit is in 
blue, y on x regression fit is in red, and the errors in variables fit is in green.

The following table shows values for the estimated slopes and intercepts via x  on y 

regression, y on x  regression, and fa for the unaffected women. It can be seen that fa 

does lie in between the values of the slope estimated by x  on y and y on x  regression, 

and so no admissibility conditions are broken. This implies tha t the estimators of the 

remaining unknown variance parameters <r2 and <j \  are positive. It can be seen that 

fa does align more closely with the estimated slope from y on x  regression. This is 

because the reliability ratio is estimated as

k  =  ———  =  0.75265

which is quite large.

Estimator Estimated Slope Estimated Intercept
x  on y 
y on x

fa

0.18576
0.01788
0.02376

-17.27163
1.46107
0.80530

The remaining parameters with their estimated values from using the solutions to the



Chapter 8 E r r o r s  i n  V a r i a b l e s  R e g r e s s i o n 271

equations (3.1) to (3.5) are:

p  = 111.58476 

a 2 = 35.1745 

a 2 =  0.13539.

Figure 8.17 contains a scatterplot of gestational age against In (AFP)  for the unaffected 

women, with the regression fits as described in the previous table.
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Figure 8.17: Measurement of the natural logarithm of AFP against gestational age (in 
days), with different regression fits for the unaffected women, x on y regression fit is 
in blue, y on x  regression fit is in red, and the errors in variables fit is in green.

The estimates of the parameters for both the affected and unaffected women are quite 

similar, and this is to be expected. There is no reason why, for example, the variation 

of gestational ages observed is different for affected and unaffected women. Figure 8.18 

contains the errors in variables fits for both the affected and unaffected women. As 

stated earlier, lower values of AFP are associated with Down’s syndrome, and this is 

confirmed by the errors in variables fits shown in Figure 8.18. The lines appear to be
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approximately parallel, as the slope in both fits is approximately the same.
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Figure 8.18: Measurement of the natural logarithm of AFP against gestational age (in 
days) for both affected and unaffected women. Errors in variables fit to the affected 
women is the dashed line, errors in variables fit to the unaffected women is the bold 
line.

Letting c?0, /?Q, c?u, /3U denote the errors in variables estimates of the intercept and slope 

for the affected and unaffected women respectively, then approximate test statistics for 

equality of the slopes and equality of intercepts can be constructed as

Pu - P a

+ Var[/fj

for the slopes, and

Ota
y/Var[au\ +  Var [aa\

for the intercept. These may be compared to the percentage points of the Normal 

distribution to assess whether the slopes or intercepts are significantly different.

Using the formulae from Chapter 3, the following table contains the approximate vari

ances of the slope and intercept for both the affected and unaffected women.
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Variance Affected Unaffected

Var[p2\
Var[a]

0 . 0 0 5 4 9
1 5 3

4.45167

0 . 0 0 5 4 2
7 4 6 8

0.00904

For this application the test statistic  for equality of slopes is 0.543551 and the test 

statistic for the equality of intercepts is 0.31721. So the slopes and intercepts for 

the affected and unaffected women are not significantly different. Nevertheless, this 

example has dem onstrated another application of how the variance formulae derived 

in C hapter 3 may be used.

8.3 M eth od  C om parisons S tu d ies

There are many examples of m ethod comparisons studies in the literature. Essentially, 

these studies involve the comparison of two m easurement techniques. By far the 

most common method of analysis is to  perform y on x regression to quantify the 

relationship between the two methods, com putation of the correlation coefficient, and 

a specification of the sample size. M ethod comparison studies are a key example of 

how the straight line errors in variables m ethodology developed and discussed in this 

thesis may be applied.

A number of authors have offered advice as to  the statistical approach th a t should be 

adopted. A ltm an and Bland [8] have w ritten  a number of papers on m ethod compari

son studies. They deemed standard regression techniques inappropriate since errors in 

both  variables attenuate the slope of the line. They propose, as a tool to  investigate 

between method analysis, plotting (y — x ) against (y + x). The differences of which 

may give information about bias and imprecision between methods. The authors do 

conclude th a t when the objective is to  calibrate one m ethod against the other, re
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gression techniques which take into account errors in both variables may prove valuable.

An alternative statistical procedure was developed by Nix (pers. comm.). Consider the 

following construction of a m ethod comparisons model. Let an individual be measured 

with true measurement p. The two m ethods of measurement, x  and y may be written:

x  = p  + bx(p) + 8 

V = p  + by( p ) + e

where bx(p) = olx +  (3xp  and by(p) = a y +  (3yp  are linear biases in the x  and y methods 

respectively.

W hat then, is the interpretation of y = a  +  (3x1. W hat essentially does this mean in 

a m ethod comparisons context?.

Since x  = a x +  (/3X +  l )p  +  8 and y = a y +  (/3y +  1)^ +  e, eliminating p  yields 

{(3y +  l) (x  -  a x - 5 )  = (/3X +  1 )(y -  a y -  e) and so

„ =  a  -  (A  +  1) +  (/?v +  1) J, + ( e -  (A  +  1) A
v ay (A + i) *+ (A + i) (A + 1 ) J '

The above equation suggests an errors in variables regression form, with a  = a y — (3ax

and Q — ^ y+l  ̂ana p  — ^ x+1y

For this m ethod comparisons, errors in variables regression will identify the rela

tionship between the mean levels for each m ethod, but will not identify the bias 

within each method. However, if one m ethod (say x) is a gold standard, then a x =  0

and (3X = 0, and one can ultim ately identify a y and (3y. Typically, a new method is

compared to  a method which is known to be a gold standard  for calibration of the
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new methods.

Altman and Bland would suggest plotting D  =  (y — x) against S  =  (y +  x) and

performing a regression if there appears to be a trend. Using the notation from above, 

we obtain

Superficially, this is of errors in variables regression form

D  = ct, + p S  + {£' -  p 8 ')  

but with the added difficulty th a t 5' and e' are not independent.

From the above relationship, unless bo th  m ethods have the same relative bias 

((3y = px), then there will always be a trend  between x  and y. Since (y — x ) against 

(y +  x) gives rise to a more complicated regression model, and seems not to provide 

any additional benefits over y against x, it would seem th a t the errors in variables 

approach is the way to  proceed.

As an example of a method comparison study, and some of the questions raised during 

the statistical analysis of such a study, Figure 8.19 contains a scatterplot of measure

ments of A FP by an old and a new m ethod (obtained from Nix, again pers. comm.). 

In other words, a new kit was compared w ith an old kit. This is the typical context 

of a m ethod comparison study. The black line on the scatterplot is the y — x  line. It 

can be seen th a t there is close agreement between the two methods for small values of
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the old kit, but for larger values it appears th a t there is some disagreement. In gen

eral however, there is a good linear relationship across the range. It could be argued 

however th a t there is some heteroscedasticity present in the data. This point shall be 

dealt with later. As a lot of the d a ta  points lie underneath the y = x  line, it appears 

th a t the new kit gives a  smaller m easurement of AFP than the old kit. The data is 

skewed towards the smaller m easurem ents of AFP, and there is one extreme point at 

the right hand tail of the data, which lies far away from the main body of points.
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Figure 8.19: A typical method comparison study, a comparison of a new kit with an 
old kit.

W ith a m ethod comparison study, there is often good reason to  assume th a t the new 

m ethod of measurement is likely to be less th an  or equally variable as the new method 

of measurement. Thus a good starting point for using errors in variables regression 

techniques with method comparison studies is to  use with A =  1 . A sensitivity 

plot investigating changes in ^ 5  as A changes can give an idea as to how robust the 

estim ated slope is to modifications in A.
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The following table contains the x  on y regression, the y on x  regression and the errors 

in variables regression fit (using /55 and A =  1) of a straight line to Figure 8.19. All of 

these fitted lines are different from the y — x  line, and so it appears tha t both methods 

do not match exactly. /?5 lies in between the slope as estimated by y on x  and x  on y 

regression, and towards the right hand tail of the data, all the straight line regression 

fits lie below the y = x.

M ethod Estim ated
Slope

Standard Error 
of Slope

Estimated
Intercept

y  on x  regression 
x  on y  regression 

Errors in variables regression

0.93360
1.06465
0.96119

0.00913
0.00971
0.01295

-1.44408
-1.74311
0.08371

Figure 8.20 contains a scatterplot of the m ethod comparison data, as well as the straight 

line fits as described earlier. It can be seen th a t there is close agreement between all 

the fits for small values of AFP, but there is an increasingly poor agreement for higher 

values.
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Figure 8.20: Method comparison d a ta  w ith different regression fits.

D ata from method comparison studies are often positively skewed, as is the case here. 

So Ps may be of some use as an estim ator of the slope for m ethod comparison studies
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in general. For this application fa  =  0.98375, and the corresponding estimate of the 

intercept is a  — —0.71826. As the value for fa  lies between the values of the slope 

estimated by y on x  and x  on y  regression, then it is possible, using fa  to obtain 

admissible variance estimates.

As stated earlier, there is usually a firm basis to assume tha t both methods of mea

surement have the same variability, or th a t the new m ethod is less variable than the 

old method. Thus A =  1 seems to  be a good starting  assumption. The sensitivity of 

fa  to changes in A may be verified by a sensitivity plot. Figure 8.21 is an example of 

such a sensitivity plot. This plot shows th a t the value of fa  is robust to small changes 

in A. For example, the value of fa  recorded to  two decimal places remains the same for 

any A in the range 0.78 <  A <  1.5. The value of fa  recorded to three decimal places 

remains the same for any A in the range 0.98 <  A <  1.04.
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Figure 8.21: Plot of fa  against A.
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As again stated earlier, the da ta  plotted in Figure 8.19 seems to demonstrate some 

heteroscedasticity. In this scenario, Altman and Bland suggest tha t the logarithm of 

each variable should be taken. Figure 8.22 contains the scatterplot of the data of Figure 

8.19, with the natural logarithm  of each variable taken. The bulk of the data lie below 

the y = x  line, suggesting th a t there is poor agreement of the two methods in general. 

The log transform ation of the d a ta  has removed the original skewness of the data, and 

has appeared to remove a t least part of the heteroscedasticity.
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Figure 8.22: A typical method comparison study, a  comparison of a new kit with an 
old kit. The natural logarithm of each variable has been taken.

The following table contains the x  on y  regression, the y on x  regression and the errors 

in variables regression fit (using /?5 and A =  1) of a  straight line to  Figure 8.22. All of 

these fitted lines are different from the y = x  line, and so it appears th a t again the 

measurement methods do not match exactly. /?5  lies in between the slope as estimated 

by y on x  and x  on y regression, and towards the right hand tail of the data, all the 

straight line regression fits lie below the y = x.
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M ethod Estim ated
Slope

Standard Error 
of Slope

Estimated
Intercept

y on x  regression 
x  on y regression 

Errors in variables regression

0.94891
1.02787
0.98710

0.00482
0.00515
0.00681

0.14320
-0.13352
0.00936

As mentioned earlier, the transform ation to the log domain has removed much of the 

skewness of the data. The value of {38 for the log transformed data is 1.04318, and 

lies outside of the range of slopes between y  on x  regression and x  on y regression. 

So /?8 was a viable estim ator for the d a ta  in the untransformed domain, but gave an 

inadmissible estim ate in the transform ed domain. Figure 8.23 is a sensitivity plot 

to investigate the robustness of /% to changes in A. This plot shows tha t again, the 

value of /?5 is robust to small changes in A. For example, the value of /?5 recorded to 

two decimal places remains the same for any A in the range 0.68 <  A <  1.11. The 

value of /?5 recorded to three decimal places remains the same for any A in the range 

0.99 <  A <  1.03. The width of these intervals is approximately the same for the 

untransform ed data.

There is a problem with looking at this d a ta  in the transform ed domain. Assuming 

the errors in variables fit in the transform ed domain we obtain,

In (New)  =  0.00936 +  0.98710 In (Old)

and converting this back to the untransform ed domain we obtain

N ew  = 1.0094 Old098710.

By transforming the data  onto the log domain, the raw da ta  is forced to pass through 

the origin. This of course, is not ideal as the intercept gives the minimal value of 

one kit needed for detection in the other kit. This minimal value cannot be safely 

found in the transformed domain. So while taking logarithms of the data  might help
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Figure 8.23: Plot of /% against A for the transformed data.

with heteroscedasticity, for this application, working in the transformed domain has 

constrained the intercept to be zero, and has removed the possibility of using (3g.

A ltm an and Bland [8] advocate the use of the  so-called Bland-Altman plot. This is a 

scatterplot of the difference of the old and new m ethod, plotted against the average 

value of the old and new method. In other words, for two methods of measurement x 

and y , the Bland-Altman plot is a scatterplot of x  — y against The purpose of 

such a plot for this application is to investigate whether the difference between the old 

and new method depends of the level of A FP measured. The Bland-Altman plots for 

both  the untransformed and transformed d a ta  are shown in Figure 8.24. There does 

not seem to be much of a pattern  in either plot, and so there would appear to be no 

distinct concentration dependent bias. As mentioned earlier, the untransformed data 

has shown some heteroscedasticity but the log transform  has removed at least part of
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this.
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(a) Untransformed data (b) Transformed data

Figure 8.24: B land-A ltm an plots for the A FP m ethod comparison data.

8.4  F u n ctional R egression  to  C om bine M ultip le  
Laser Scans

This section is concerned with the use of a functional regression model to combine 

multiple laser scans of cDNA microarrays. Microarrays are a powerful and modern 

method to  allow sim ultaneous analysis of thousands of da ta  points. cDNA microarrays 

allow the m onitoring of expression activities of many genes a t the same time. The 

first stage of the  analysis is to  estim ate the expression levels from the laser scans of 

the glass slides. A suitable model proposed by Glasbey and Khondoker [48] may be as 

follows. Let Y i j  be the  measured response of gene i in scan j .  For initial convenience, 

assume th a t ~  N ( p i { 3 j :  a?), i =  1 , . . . ,  rc, j  = 1 , . . . ,  ra. Here, P i  is the expression 

level for gene i, /3j  is the gain setting in laser scan j  and a ? is the variance of the 

measured response in scan j .

The problem  w ith this model is th a t of identifiability, and so it is easier to deal with 

ratios of the  form S 2, and §*, where it is assumed th a t j3\ = 1. The aim here
1 *il r il
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is to estim ate the p ’s, P ’s and er2’s. A number of differing approaches have been 

adopted by Glasbey and Khondoker. However it can be seen th a t the data may be 

a candidate for a no-intercept slope estimator. Once this slope estimator has been 

obtained, the other param eters may be estimated. Similarly, due to the large volume 

of data  (n = 7543 da ta  points) and its skewness, the third moment slope estimator Ps

and fourth moment slope estim ator P9 may be appropriate.

An additional motivation in using ratios of the  form is from constructing the moment 

equations for Glasbey and K hondoker’s model

Y%j =  PiPj (8.3)

Y* =  f i f f j  +  o* (8.4)

YijYik =  t fP jP h-  (8.5)

y . .

Ratios of the form where Pi = 1 u ltim ately allow identification of the other slopes. 

It is worth noting th a t different restrictions of the param eter space are possible, such
y .  .

as taking p 2  =  1 and dealing with ratios of the form y g . As the model is currently 

formulated, there are (2m -I- n ) param eters and y ( m n  +  1) second moments. Even 

m  — n = 2 gives 10 equations for 6 param eters. This implies th a t unique estimators 

are not possible.

M aximum likelihood also fails to give unique answers because of this overparameteri- 

sation. For example, one solution of the moment equations (8.3) to (8.5) is Yij = Pj , 

Yik = Pk, Pi = 1 and cr2 =  0. This solution allows the likelihood function to go to 

infinity. As there are a m ultitude of estim ators however, there is no need for this 

solution to  be chosen. To obtain unique solutions something about the model must be
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assumed, and a restriction on the parameter space is the quickest way to do this.

The scatterplot of the data  is included in Figure 8.4. The scatterplot of Yi2 against 

Yn is in blue, the scatterplot of Yi3 against Yu is in purple, and the scatterplot of Yi4 

against Yu is in yellow. The skewness of the data in each of the laser scans towards 

the origin is seen.

5  25000

~ 20000

15000

10000

5000

0 1000 2000 4000 5000 6000 7000 0000 9000 10000
Y1

Figure 8.25: Scatterplot of gene expression levels from four laser scans.

The sample skewness and sample excess kurtosis for the measurements on Yh, Yi2, Yi3 

and Y{4 are given by the following table.

Variable Skewness Excess of Kurtosis
YiX 3.757 24.761
Yi2 3.679 23.784
y i3 3.668 23.330
YiA 3.681 23.992

It can be seen tha t the skewness and kurtosis in each variable is similar and very 

appreciable.

Yn is extremely positively correlated with each of the other variables Yi2, Yi3 and Yi4. 

Indeed, the correlation coefficient of Yn with all the other variables is at least 0.998
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and all correlations are significant a t the 0.01 level. As the data  are so tight, all fitted 

lines will be very close to each other. This can be seen by just computing the y on x  

and x  on y regression for each pair (Yn,Yij), j  =  2,3,4.

Pair y  on x  slope x  on y slope
(Yii,Yi2) 
(Yn,Yi3) 
{Ya ,Yu)

1.57077
2.77004
4.31012

1.57350
2.77572
4.32692

Due to the sheer volume of points a t the origin, it is difficult to see the behaviour of the 

data  a t the left hand tail. Figure 8.26 has plots of {Yn,Yij) for j  =  2,3 ,4  where only 

the first 50 d a ta  points are considered (the d a ta  set was ordered with respect to Yu 

beforehand). From Figure 8.26 it is seen th a t the da ta  lie far from the origin, and so 

assumptions concerning the intercept a  may be dangerous. Also, there is a surprising 

spread of points a t this left hand tail, which was masked by the initial plot in Figure 

8.4. Nevertheless Glasbey and Khondoker’s model does not contain an intercept, and

o &

(a) QSi.Ya) (b) ( ¥ * , ¥ * )  (c) (Yn ,Yi4)

Figure 8.26: Scatterplots of the first 50 d a ta  points, considering each pair in turn.

so the use of fa  is initially appealing. The following table presents the values of fa 

derived from each pair (Y u , Yij) for j  =  2,3,4.

Pair A
(Ya ,Yi2) 

( Y  , , y M)

1.54815
2.72631
4.27653



Chapter 8 E r r o r s  in  V a r ia b l e s  R e g r e s s io n 286

All values of (3\ lie below the value of the slope estim ated by y on x  regression. As 

mentioned in C hapter 3, this is not an appealing feature, as it would lead to negative

variance estim ates if second order moment equations are used for estimating these 

variances.

The variances cr? for j  =  1, 2,3, 4 may be estim ated from second moment information, 

th a t is from using (8.3),

The obvious admissibility condition here to  ensure positive estim ators for the variances 

is tha t

on y  regression and y on x  regression. So this estim ator may be an improvement 

on the ones described above. However th is estim ator assumes th a t the ratio of error 

variances, A is known. This is information th a t is not explicitly available, nevertheless, 

some investigation with this slope estim ator may shed some light on the fitting of the 

model. For example, it seems reasonable to  assume th a t for each scan j  the error 

variance is the same. So when pairwise comparisons (Yn, Yij) for j  = 2,3 ,4  are made 

taking A =  1 appears to  be a valid assum ption. The following table presents the values 

of /3<j w ith A =  1 derived from each pair (Yn, Yij) for j  = 2,3,4.

/?5 is an estim ator of the slope which is guaranteed to lie between the slopes of x

Pair (3i
(YiU Yi2) 1.57271 
(YiU Yi3) 2.77507 
(Y n ,Y i4) 4.32607

It can be seen th a t the  errors in variables estim ator of the slope does lie in between 

the range of slopes given by x  on y  and y  and x  regression respectively. The results
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from using j35 seem to  be closer to the results from x  on y regression than those from 

y on x  regression.

Figure 8.27 contains sensitivity plots to see the changes in ^ 5  as A changes for each 

pair (YiU Yij) for j  =  2,3,4. W hen A =  0 then the value of slope estim ated by /35 is 

identical to th a t estim ated by x  on y  regression, and as A —► 0 0  then (3$ tends to the 

value of the slope estim ated by y  on x  regression. Figure 8.27 shows th a t when A =  1 

the estim ated slope is very close to th a t estimated by x  on y regression. Indeed, the 

changes in the slope as A grows slightly away from 1 are negligible. For example, for 

the pair (Yu, Yi2) the estim ated slope using /? 5 to two decimal places is 1.57 regardless 

of the value of A chosen. As the gain setting of the scan increases (j  = 2 ,3,4) then a 

more strict downward linear trend in the estim ated value of (3 as A increases is observed. 

Nevertheless, it seems th a t the value in j35 is robust to small changes in A.
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Figure 8.27: Plots of A against f i g ,  considering each pair in turn.

To highlight how robust fig is to small changes in A, the following table has the value 

of fig for a particular value of A for each pair of variables considered. The changes in 

/3 only occur in the th ird decimal place.

Pair A =  0 A =  1 A =  5
( Y  i , y i2) 
(YiuYis)
(Y iuYu)

1.57350
2.77572
4.27653

1.57271
2.77507
4.32607

1.57167
2.77348
4.32337

Therefore it seems as though fig w ith A =  1 is a good practical estim ator of the slope fi 

for this particular model and d a ta  set. As stated  earlier, a t first sight, it appears th a t 

the d a ta  presented in Figure 8.4 would be a candidate for estim ators of the slope based 

on third and fourth order moments, namely fig and fi9. The following table presents 

the values of fig and fi9 derived from each pair (Yn, Yij) for j  =  2,3,4:
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Pair A A
(YiU Yi2)
(YiuYis)
(YiU Yi4)

1.56123
2.75085
4.28936

1.55638
2.74151
4.28143

Unfortunately, these estim ates of the  slope do not lie within the range of the slopes 

estim ated by x  on y and y  on x  respectively. Indeed, the values of fa  and 

derived for each pair lie below the value of the y on x  regression estimator. As 

the distance between the  x  on y  slope estim ator and the y on x  estim ator is small, 

then an estim ator guaranteed to  lie between these values is appealing. Therefore 

seems the obvious choice, and taking A =  1 seems to be a valid and correct assumption.

This example has been chosen to  illustrate  the flexibility of the method of moments 

approach. An initial analysis of the d a ta  indicated th a t lines through the origin 

are the best model. However a more thorough exploration of possible estimates has 

resulted in a model in which somewhat greater confidence can be played.

8.5 G alton  and R egression  to  th e  M ean

G alton [42] was the first to develop the concept of regression towards mediocrity, or 

as it is more commonly known at present, regression to  the mean. Galton carried out 

a number of experiments involving both  seedlings and humans, and as a result of his 

investigations introduced the idea of regression to  the mean. In term s of his study on 

seeds from the same species, G alton explained regression to  the mean as follows.

“It appeared from these experim ents th a t the offspring did not tend to 

resemble their parents seeds in size, but to always be more mediocre than 

they- to  be smaller th an  the parents, if the parents were large; to  be larger



C hapter 8 E r r o r s  in  V a r ia b l e s  R e g r e s s io n 290

than the parents, if the parents were very small.”

G alton’s more famous study involved w hat he called hereditary stature. He compared 

the heights of 930 adult children and their parents (205 of them). Even though he had 

data  of the heights of bo th  sons and daughters, his study focused on the heights of the 

sons. Instead of taking the  direct average of both the parents heights, he multiplied 

each female height by 1.08. G alton offered the following explanation for this.

“In every case I transm uted  the  female statures to  their corresponding male 

equivalents and used them  in their transm uted form, so th a t no objection 

grounded on the sexual difference of s ta tu re  need to  be raised when I speak 

of averages”

The m easurements of the heights of the  adult children and parents are likely to be 

susceptible to  measurement error. In addition to  this, there is much uncertainty in the 

d ata  due to  the way some m easurements have been recorded. Figure 8.28 is an extract 

from the notebook which contains the  d a ta  in its originally recorded form. Firstly, it 

is noted th a t heights are measured to  the  nearest inch. Secondly, G alton has used the 

words ‘abou t’, ‘m edium ’, ‘shortish’, ‘ta ll’ and ‘ta llish ’ to  describe the heights of certain 

individuals. Elsewhere in the d a ta  G alton has used the words ‘deformed’, ‘idiotic’ and 

‘middle’. It is thus very difficult to  a ttr ib u te  a  height to  any individual with these 

entries. Due to  the uncertainty in the m easurem ents of all the heights in G alton’s 

da ta  set, a regression technique th a t can take into account error in both variables is 

likely to  be of some use. G alton’s original analysis of the da ta  used standard regression 

techniques.
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Figure 8.28: An excerpt from G alton’s original notebooks containing the data  on family 
heights. 60 inches are to be added to  each entry. Taken from h ttp ://g a lto n .o rg /.

http://galton.org/
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A scatterplot of sons heights against m idparents heights (in inches) is included in Figure 

8.29. A linear trend is apparent in the data, and Hanley [55] argued tha t nonlinear 

regressions did not provide significantly better fits than  linear ones. This point shall 

be revisited later.
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Figure 8.29: Scatterplot of sons heights against m idparents heights (in inches).

Letting S  denote the height of sons, and M  denote the m idparent height, y on x  

regression gives the estim ate of the  line as

S  =  19.913 +  0.71328M,

and x  on y regression gives the  estim ate of the line as  M  =  46.552 +  0.326795' and 

inverting this gives

S  =  -142.45234 +  3.06007M.

Figure 8.30 contains the scatterp lo t of the original da ta  w ith both  the y on x  and x  

on y  regression fits. The y on x  regression with the slope less than  1 demonstrates the 

regression to  the  m ean phenomenon th a t Galton observed.
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Figure 8.30: Scatterplot of sons heights against m idparents heights (in inches) with 
simple linear regression fits, y on x  fit is in red, x  on y fit is in blue.

Unless errors in variables estim ators of the  slope based on higher order moments 

are used, a restriction on the param eter space has to  be made in order to use the 

standard errors in variables estim ators of the slope. For this d a ta  set there are a 

number of options. Due to  the construction of the data, the w ithin family error mean 

square for the sons’ heights will give an estim ated value for of, and within stature 

group error mean square for the sons’ heights will give another estim ated value for 

of. This gives of =  4.6 and of =  4.242 respectively. Hanley [55] used the MIXED 

procedure in SAS as well as W inBUGS and reported the within family error mean 

square as approxim ately 4.11, which is slightly lower than  the estim ate obtained 

by ANOVA. Hanley however investigated m idparent height against son and daugh

ters heights, disregarding sex. Thus a slight discrepancy in the results is to be expected.

Assuming th a t of =  4.242 gives 0 3 = 1.17043, a  =  —11.69779, a 2 = 1.91796, 

and of =  1.22927. Assuming th a t of =  4.632 gives 0 3 =  1.01095, a  =  —0.67371, 

a 2 =  2.22042 and of =  0.92681. Another method of estim ating the slope would be
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to assume th a t A =  2, as the variable M  is the average of two heights. Taking A =  2 

yields (35 = 1.41935 which is larger than  the previous errors in variables slopes derived. 

The remaining param eters have the  following estimates; a  = —28.90980, a2 = 1.58160 

and cr| =  1.56563.

Figure 8.31 contains the scatterp lo t of G alton’s data, with all regression fits described 

thus far. All estim ated errors in variables regression fits are between the y  on x  and x 

on y  fits, and so, as seen above all variance estim ates are nonnegative.
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Figure 8.31: Scatterplot of sons heights against m idparents heights (in inches) with 
straight line regression fits, y  on x  fit is in red, x  on y  fit is in blue, fit with <7  ̂ =  4.242 
is in green, fit w ith o f =  4.6 is in purple and fit w ith A =  2 is in brown.

As mentioned earlier, Hanley [55] sta ted  th a t a  nonlinear regression fit to  the Galton 

d a ta  is no more beneficial th an  a linear regression fit. This was in reply to an earlier 

paper by W achsm uth et al.[109] who commented on ‘G alton’s bend’ which is what 

they claimed to  be an undiscovered nonlinearity in the data. To dem onstrate G alton’s 

bend they fitted a  LOESS sm oother to  the data, and showed th a t there was a bend in
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the curve at a midpoint height of approxim ately 6 8  inches.

A LOESS smoother fits low degree polynomials to  subsets of the data, and each 

polynomial is fitted by weighted least squares. The degree of the polynomial, and 

the weights are flexible and may be chosen by the practitioner, bu t unfortunately, 

W achsmuth et al.’s paper does not provide any details concerning the exact details of 

the LOESS fit. The LOESS fit however is a non-param etric m ethod of establishing 

E[y\x] (or in this application E[S\M ]), and as noted in previous Chapters, £7[j/|x] 

may not be linear even if the la ten t d a ta  set {(&, 77*), i =  1 , . . . ,  n}  do lie exactly on a 

straight line. E[y\x] is only a straight line for the Normal structural model. Secondly, 

LOESS is only one such non-param etric m ethod to  obtain E[y\x). There are others, 

most notably the Nadaraya-W atson estim ator describes in C hapter 6 . The bandwidth 

for the Nadaraya-W atson estim ator may be chosen in accordance with equation (6.10).

Figure 8.32 contains the Nadaraya-W atson fit to  £ 7[2/|x] w ith the smallest bandwidth 

com puted from equation (6.10) for the variety of estim ated values of erf. The bend as 

described by W achsmuth at al. a t the m idpoint height of approximately 6 8  inches is 

not observed, and the  N adaraya-W atson estim ate of E[y\x) is seen to be approximately 

linear over the entire range of the  data. To reiterate the point made in Chapter 6  

however, it is not necessarily the case th a t E[y\x\ follow the y  on x  line, as dem onstrated 

in this Figure.
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Figure 8.32: Nadaraya-Watson fit for the Galton data.

As introduced in Chapter 7, the contours of equal probability are formed by the ellipse 

defined by the equation

2(X _  Xf  ^  -
■■(x -  x ) { y

Var[x] Var[y) /̂Var\x]

for different values of k. For the sons and midparent height data this may be written 

as

(x -  69.14678)2 (y -69.23368)^ _  0.20767( 69.14678)(i/ -  69.23368) = (8.6) 
3.14723 6.86943 1 A

As an example of this geometry, Figure 8.33 contains the contours of equal probability 

for varying values of k.

Using the algebra derived in Chapter 7, the slopes of the major and minor axis are 

found by solving the quadratic

2/3 0.20767
1 -  (32 ~  0.14557-0.31774

in terms of /?, giving the slope of the major axis as 2.12803 and the slope of the minor 

axis as -0.46992. Figure 8.34 contains a scatterplot of sons heights against midparents
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Figure 8.33: Scatterplot of sons’ heights against midparents heights (in inches) with 
ellipses. The inner ellipse is formed with k =  1, and the outer ellipse is formed with 
k =  5. Working outwards, the ellipses are formed with k =  2,3 and k =  4 respectively.

heights, with ellipse and major and minor axes. Due to the scaling, the major and 

minor axes do not appear to be at right angles. This is because distances and angles 

are not preserved under transformations of scale. The major axis is the same line 

obtained by taking A = 1 in fe. As stated in Chapter 7, the major and minor axes are 

identical to the first and second principal component respectively.

As stated earlier in this section, Galton concentrated on the analysis of the sons heights 

in relation to midparent height. The heights of daughters however were also recorded. 

A scatterplot of daughters heights against midparents heights (pink diamonds) over-
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Figure 8.34: Scatterplot of sons heights against midparents heights (in inches) with 
ellipse (k = 5) and major (bold line) and minor axes (dashed line).

layed on the scatterplot of sons heights against midparents heights is included in Figure 

8.35. As the mothers heights were scaled by a factor of 1.08, then it is also appropriate 

to scale the daughters heights by an identical factor. It can be seen that both sets of 

data are very similar, and share the main features.

Again, due to the construction of the data, the within family error mean square for 

the daughters’ heights will give an estimated value for of, and within stature group 

error mean square for the daughters’ heights will give another estimated value for of. 

This gives of = 4.06 and of = 3.758 respectively.
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Figure 8.35: Scatterplot of adult offspring heights against midparents heights (in 
inches).

Assuming that of =  3.758 gives (3$ =  1.13088, a  =  —9.09791, a 2 =  2.11306, and 

of =  1.23268. Assuming that of =  3.758 gives /?3 =  1.00894, a  =  —0.65005,

0-2 =  2.36844 and of =  0.97730. Another method of estimating the slope would be 

to assume that A =  2, as the variable M  is the average of two heights. Taking A =  2 

yields /?s =  1.36668 which is larger than the previous errors in variables slopes derived. 

The remaining parameters have the following estimates; a  =  —25.43384, a 2 =  1.74848 

and of =  1.59726. All of these estimated values can be seen to be very similar to 

the corresponding estimates for the data  which only considered sons’ heights and 

midparent heights.



C hapter 9 

C onclusions and Further W ork

9.1 C onclusions and Sum m ary

This section will briefly describe the  m ain results from each of the Chapters in 

this thesis. Much discussion of the m ain results in the thesis was included in these 

Chapters, and so only a brief sum m ary is needed here.

C hapter 1 was an introductory C hapter th a t set the scene for the remainder of the 

thesis. As stated , there is a wealth of literatu re  on errors in variables modelling, and 

to give an idea of some of the approaches adopted by many authors C hapter 2 is a 

comprehensive literature survey looking a t the m ain approaches. It was dem onstrated 

th a t many of the m ethods used to  tackle the  errors in variables problem are linked, 

and many were shown to  be equivalent to  the  m ethod of moments. For example, 

LISREL uses the same m ethod of moments estim ating equations derived in Chapter 

3, and maximum likelihood for the Normal structu ral model is equivalent to using 

the m ethod of moments. C hapter 2  is a useful resource and provides many references 

for anyone who wishes to  investigate some alternative methods for errors in variables 

modelling discussed in the literature.

300
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The m ethod of m om ents was used in numerous places throughout this thesis, and was 

introduced as a m ethod of estim ating the param eters of an errors in variables model 

in C hapter 3. The m ethod of moments approach has a number of distinct advantages. 

Firstly, the algebra is much simpler for the m ethod of moments than  for maximum 

likelihood. Secondly, the m ethod of moments estim ating equations do not depend on 

the distributions of the  random  variables in the model. A common misconception 

regarding the m ethod of m om ents is th a t there are no asymptotic results for the 

estimators. This is not true  and, via the delta  m ethod, complete variance covariance 

matrices for each of the slope estim ators discussed in C hapter 3 were derived. For the 

variance covariance matrices not explicitly reported in this thesis, a Maple programme 

has been created so th a t they may be com puted. The derived variance covariance 

matrices extend the work of Hood et al. [57] to  cope w ith any distribution of £, S and 

e. In addition the derived variance covariance m atrices are in a much simpler form 

than  those presented by Hood et al.

C hapter 4 contains many simulations investigating the estim ators of the previous 

Chapter. P articu lar attention was applied to  simulations to  assess bias, small sample 

behaviour, the breaking of admissibility conditions, variance covariance matrices and 

those estim ators of the slope based on higher order moments. The aim of this Chapter 

was to provide some guidance on the use of the  estim ators discussed in the previous 

Chapter, as well as to  assess their behaviour.

The key advantage of the m ethod of moments is its simplicity, and in Chapter 5 

maximum likelihood estim ation is shown to be difficult to  initiate algebraically and 

ineffective as an estim ation tool for the examples considered. For these examples, it
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seems th a t the only feasible m ethod to  maximise the likelihood function would be a 

numerical one, bu t the shape of the likelihood function might make it difficult to find 

a m ethod of solution th a t converges to  the optimum. Some distinctions between the 

functional and s tructu ra l models are offered, but again this Chapter was mainly used 

to dem onstrate some of the  problems in using maximum likelihood for an errors in 

variables model.

The topic of prediction was introduced in C hapter 6 . In an errors in variables regression 

model there is a num ber of different prediction questions. It is im portant to use the 

correct technique and to  answer the correct question. To predict a y  value from a given 

x, a number of approaches was described in detail. Param etric approaches involved 

directly computing E[y\x], and an approxim ation derived by Cochran [22] was given. 

The non-param etric technique used in th is thesis was the Nadaraya-W atson estimator, 

which was simple to implement. For the small number of examples considered, the 

Nadaraya-W atson estim ator was in close agreement w ith the exact result. Chapter 6  

also detailed some im portant issues concerning E [y\x]. The main issue is th a t ^[?/|x] 

only follows the least squares line for a Normal structural model. For the Normal 

functional model, E [y\x \ follows the errors in variables line. It is also not necessary 

th a t E [y\x \ is a straight line. For models other than  the Normal structural and 

Normal functional models, E[y\x)  will be a curve. To uncover the latent £, an optimal 

linear com bination (in term s of minimum variance) was derived from two naive 

m ethod of moments estim ating equations. The estim ator was simple in form, and at 

least partly  corrects for the  effect of the migration effect th a t is described in Chapter 7.

Chapter 7 made the point that a residual for an errors in variables model is not
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explicitly defined as it is in some other estimation methods. In addition, the vertical 

residual from the  errors in variables fit plotted against the observed x  will always 

display a trend, and these residual analyses are made difficult. The concept of 

m igration was introduced, and discussed in detail. The discussion of migration 

brought together some common themes throughout the thesis, and a number of 

explanations as to  why m igration occurs was offered. After the details on migration 

were given, this enabled a fresh look a t residuals to  be made, and two approaches to 

residual analyses were offered. One approach would be to consider the vertical residual 

from the E[y\x]  curve. It was m entioned th a t the E[y\x]  curve seemed to  follow the 

trend of migration, and so the vertical residual from this curve would not be subject 

to  the m igration effect. The second m ethod involved estim ating the latent Qs once an 

initial errors in variables fit has been made. Then a residual analysis can performed 

on the standard  least squares fit to  { { £ i , y i ) , i  =  1 , . . .  ,n} , and this vertical residual 

would not be subject to  the m igration effect. The distinction here is whether a curve 

is sought th a t smooths the data, in which E [y\x \  is appropriate, or whether the true 

relationship between the variables is sought, in which case an unbiased estim ate of the 

true line is needed.

Finally C hapter 8  offered some applications which would benefit from errors in 

variables methodology. The examples were chosen to  be wide ranging, and the case 

for using errors in variables methodology in each application was made.

Even though th is thesis has considered the topic of straight line fitting, this is still 

im portant for a num ber of reasons. To encourage the proper development of the 

subject a  firm basis for further research must be made. F itting  a straight line is an
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im portant topic in its own right, and the development of some of the ideas in this 

thesis would allow application to more complicated models. There seems to be two 

approaches in statistics, one is to  develop a generic methodology, and then to reduce it 

to the particular model from hand. Another is to  start with a simple model, and then 

develop the theory on the  basis of this model. The la tter approach has been adopted 

in this thesis, and it is felt if this were not the case, then a number of valuable insights 

would have been lost. The concepts introduced in this thesis are necessary for a full 

appreciation of errors in variables modelling in general, and the problems mentioned 

in this thesis of estim ation, asym ptotics, prediction and residuals would apply to  any 

errors in variables model.

9.2 Further W ork and A d d ition a l Topics

This section will present some topics th a t need further investigation as a result of this 

thesis. For some of these topics, some m athem atical details are provided.

E x te n d in g  th e  N a d a ra y a -W a t so n  e s t im a to r  The Nadaraya-W atson estim ator is 

a  non-param etric m ethod of constructing E [y\x \ .  Details on how to implement the 

estim ator were given in C hapter 6 . In this thesis, the Nadaraya-W atson estim ator has 

only been applied to  linear models, bu t as it does not depend on the functional form of 

the data, it may be applied to  more complicated non-linear models. An investigation 

of the perform ance of the  Nadaraya-W atson estim ator for non-linear errors in variables 

models would prove valuable. It is likely th a t computing exact expressions for E[y\x] 

for non-linear models will be more difficult than  for linear models, and so a reliable 

and robust non-param etric alternative would be of some use.
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An adaptive bandw idth  is often used by non-parametric regression methods. For 

simplicity, an adaptive bandw idth has been om itted from the Nadaraya-Watson 

estimator. If an adaptive bandw idth was adopted, then it is likely th a t the properties 

of the N adaraya-W atson derived in C hapter 6  would change, but in addition, it 

would be difficult to  explicitly find the changes in these properties with an adaptive 

bandwidth. As comparisons have shown, the Nadaraya-W atson estim ator seems to 

give a good fit to  the exact expression for E[y\x]  in the examples considered in Chapter 

6 . There is sometimes however some slight deviation in the tails, where data  are 

sparse. Adopting an adaptive bandw idth may improve the fit a t the tails, improving 

the general form of the Nadaraya-W atson estim ator in this thesis.

The question of how to find the adaptive bandw idth in an errors in variables model 

has received little attention in the literature. Most non-param etric regression methods 

th a t have been applied to an errors in variables model use a fixed bandwidth chosen 

from some optim ality criterion (see for example, Carroll a t al. [15]). To improve the 

fit a t the tails, the adaptive bandw idth should depend on the density of points so th a t 

da ta  a t the tails do not exert as much leverage on the Nadaraya-W atson estimator. 

Clearly, further investigation in this area is needed.

Q u a d ra t ic  s t r u c tu r a l  re g re s s io n  Some of the theory detailed in this thesis may 

be applied to  more com plicated models. For example, as already stated  the Nadaraya- 

Watson estim ator of C hapter 6  is not restricted to straight line models. Developing the 

complexity of the model typically entails introducing more param eters in the model. 

As an example of extending the model, consider the following quadratic structural 

regression model.
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The observations X{ may again be w ritten as a latent variable adjusted by some random 

error com ponent so th a t Xi =  & +  <$*. The fundamental difference between quadratic 

structural regression and the straight line regression considered in this thesis is in the 

consideration of the y  ̂ measurements. For quadratic structural regression it is assumed 

th a t

yi = a  +  /?i(£i — p) +  # 2(fi — p )2 +  Si.

These errors, 8 and e are assumed to  be independent of £, and of each other. As we 

are assuming the structural model then  £[&] =  p  and Var[£i] =  a 2.

It was seen in C hapter 3 th a t the  m ethod of moments may be used to estimate 

the param eters of a straight line errors in variables regression fit. For the quadratic 

structural regression model there are seven param eters th a t need to be estimated. 

They are p , a 2, a , /?i, /?2, erf and cr2. There is an additional param eter not present for 

an errors in variables straight line fit, and th a t is the coefficient of the quadratic term.

The param eter p  may be estim ated from the  m ethod of moments estim ating equation 

x  = p. The sample m ean of the y  observations gives y = a  +  {32<j2. As Xi is defined 

the same as in C hapter 3 then  s xx =  a 2 +  a 2. The remaining second order moment 

estim ating equations are not as straightforward. For example,

=  -  E  [(6 -  f) + -  5)] [Ate -  $ + Ate -  £)* + (e* -  e)]77. i= 1

and upon taking expectations yields the following m ethod of moments estimating 

equation s xy =  /?i<7 2 +  # 2 /^ 3  • If £ is assumed to  follow a symmetric distribution then 

^ 3  =  0, and the  m ethod of moments estim ating equation (3.5) for the straight line is 

obtained. O therwise an additional new param eter p^3 is introduced into the model.
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Using the same m ethod it follows th a t s yy =  (32a 2 +  P2p ^  +  ‘ZPiPiPzs +  cr? and another 

param eter, is introduced into the model.

Even if the triple (£, S, e) is assumed to be trivariate Normal as in the Normal structural 

model, then there are still five equations for seven parameters. In the same manner 

as C hapter 3, a  possible option is to  restrict the param eter space. If the triple (£, 6, e) 

is assumed to  be trivariate  Normal then the m ethod of moments estimating equations 

become

X =  y (9.1)

y =  a  +  /?2o-2 (9.2)

' X X =  <y2 +  a 2s (9.3)

'xy =  01V2 (9.4)

]yy =  (Ufa2 +  3 0l<r4 +  a 2 (9.5)

and if erf and cr2 are assumed known then  estim ators for the remaining parameters 

may be found.

For example from (9.3) then  cr2 =  s xx — a 2 and substituting this into (9.4) gives 

fa  =  Sxv a . This is exactly the  same as the slope estim ator estim ated in Chapter 3
S x x  O ’j

for a straight line errors in variables fit when erf was assumed known. Substituting the 

estim ator for cr2 into (9.5) yields

\
(  Syy ~  <J2 _  Pl_

^ \  s x y  S x y

Assuming bo th  erf and erf known may be impractical for many situations, nevertheless 

these estim ators have been included to illustrate th a t unique solutions may be found
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from the m ethod of moments estim ating equations, for the quadratic structural model.

If the triple (£, S, e) is not assumed to  be Normally distributed, and the restriction 

of having bo th  erf and erf known is not made, then more m ethod of moments 

estim ating equations are needed. These may be obtained by appealing to the higher 

order moments, in an identical m anner to  C hapter 3. Indeed in standard quadratic 

regression sxxy and sxxxx are used. Again, as Xi is defined the same as in Chapter 3 

then sxxx =  fi£3 +  ps3 which introduces the new param eter pss to the model. The 

remaining m ethod of moment estim ating equations based on third order moments are 

S x x y  =  P iV t3 + P 2PZ4 + s x y y  =  P i ^ 3 + P 2 V&+2PiP2P£4 which introduces the new 

param eter to  the model and finally syyy =  P \p &  +  3P2P2o A + 3p2(r2a 2 + / ? | +  /xe3 - 

This final estim ating equation introduces two new param eters to the model, namely 

Pts and p £3. As this equation introduces two new param eters th a t must be estimated, 

this equation will be ignored, and m om ent estim ating equations based on fourth order 

moments derived instead. In addition, it is likely th a t the sixth central moment of 

£ will be difficult to  estim ate. If this final equation is ignored then there are cur

rently eight m ethod of moments estim ating equations and eleven unknown parameters.

By looking to fourth order moments it follows th a t s xxxx =  +  6cr2crf -1- ps4 which

introduces the new param eter ps4 to  the model. A fourth order m ethod of moments 

estim ating equation which does not introduce a new param eter to the model is

S x x x y  =  P l ^ 4  +  P l f o P t f  +  3 p l ( T 2 a j  +  3 ( 3 i P 2 P Z 3 V 26 +  p 2 P S 3 ^ e -

Thus far twelve unknown param eters and ten m ethod of moments estim ating equations 

have been accum ulated. One possibility is to assume th a t the errors Si are Normally
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distributed. Then p $3 =  0 and ps4 =  3o \ .  Under this assumption there are ten 

unknown param eters and ten m ethod of moments estim ating equations. The added 

bonus of m aking this assum ption is th a t the form of the estim ating equations become 

simpler. Under this restriction the m ethod of moment estim ating equations may be 

w ritten as follows.

The first order estim ating equations are:

x  =  p  

y  =  ol +  f y  o 2

The second order estim ating equations are:

s xx =  cr2 +  crf

S Xy  =  P l C T 2  +  # 2 / Z C3

s y y  =  P l ° 2  +  P i  ̂ 4  +  2 /?i/?2 /^3  +

Since p$3 =  0 and p $4 =  3cr$ then  the  th ird  and fourth order estim ating equations are

simplified. The th ird  order estim ating equations are:

& x x x

$ x x y  =  P l ^ 3  +  / ? 2 ^ 4  +  @ 2 & 2 &S

S x y y  =  P i  ^ 3  +  P I p $5  +  ^ P l P 2 ^ 4

and finally the  fourth order estim ating equations are:

Sxxxx l̂ £4 ~b 0(7 (7$ ~\~ 3(7$

S x x x y  =  P i  ̂ 4  +  P i P 2 ^ 5  +  3 0 1  <72(72 +  3 /??CT2 C r | +  3 0 i (3 2p^3(72 .
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If £ is assumed to  be Normally distributed then p ^  =  p ^  =  0 and these equations 

would simplify further. There are obviously many questions remaining in fitting a 

quadratic model. There are different estim ating equations th a t have not been derived 

here th a t may be of some use. Also, different restraints on the param eter space 

may be investigated. Once estim ators for a quadratic model have been derived, then 

asym ptotic variance covariance m atrices may be constructed using the delta method 

as illustrated in C hapter 3. The details provided here are merely a starting point for 

investigating the fitting of quadratic models to da ta  where there are errors in both 

variables. Nevertheless, it does seem th a t the m ethod of moments may be able to at 

least aid with the fitting process, and would be much simpler than  maximum likelihood.

Related to  the fitting of a quadratic model, there are more obvious extensions of the 

work presented in this thesis. For example, a more complicated model involving a 

multiple regression of the form

V = HQ + £
where £, y  and e are now vectors containing numerous variables instead of single 

variables could be investigated for a variety of different functions / .  As could be 

applied to  the fitting of a  straight line model, further work could be developed by 

relaxing or introducing various assum ptions placed on the model. For example, in this 

thesis the errors 5 and e were assumed to  be independent. Further investigative work 

could lie in assuming th a t these errors are no longer independent. Another option 

with a non-linear model is to  transform  the da ta  so th a t a straight line may be fitted. 

The theory developed in this thesis may be applied. Work on transforming the data 

to linear form has been conducted by Jam es [59].
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Later in this C hapter, the topic of migration for non-linear models will be discussed. 

Consider a set of ^ ’s generated from a Normal distribution with mean 0 and variance 

25. Let the variable r]i be a quadratic function in & such th a t

T)i =  1 -  5&  +  5£,2

and observations

•Ti — £i “I- Si

Vi =  Vi +

are made on the latent variables & and rji. Here Si and £i are generated from in

dependent Normal distributions w ith m ean 0 and variances 92 and 302 respectively. 

Figure 9.1 contains plots of the true  function, and scatterplots of (£,y), (x,rj) and 

(x, y ) derived from the above model for 1000 d a ta  points. The migration effect here is 

to increase the scatter of points about the  true  quadratic, and to  fill in the trough of 

the quadratic. The quadratic structure is still discernable, although the inflection of 

the quadratic has flattened and dissipated.



Chapter 9 E r r o r s  in Va r ia b l e s  R e g r e s s io n 312

400-| 400-1

300- 300-

eta 200-

100- 100 -

T
-10-20 20 -20 -10

-l(fo-100 J

(a) Plot of true function (b) Scatterplot of (£, y )
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(c) Scatterplot of {x,rj) (d) Scatterplot of (x , y )

Figure 9.1: Scatterplots of data  with true function rji =  1 — 5& +  plotted in red.

B ack -ca lcu la tio n  The topic of back-calculation and calibration is closely related to 

prediction. This topic is included here to demonstrate yet another facet of prediction 

that is largely ignored in the literature. The idea of back-calculation is to find an x 

(or £) given a new y  (or even rj). An intuitive approach is to use a fitted errors in 

variables line to obtain the calibrated x  measurement. In other words, we interpolate
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the calibrated x value x with

* =  = f{ot,0,y).

As the y m easurem ents are taken to  be new they are independent of a  and 0. As can 

be seen from C hapter 3 however, the estim ators a  and 0  are correlated.

It is possible to  quantify the  way in which error in the y  measurements is transm itted 

to the calibrated x  m easurement. Details are provided here. For brevity, let E[a] =  at, 

E \0 \  =  (3 and E[y\ =  p y where p y is the mean of the new observations. A first order 

Taylor series expansion gives

X =  / ( < * ,  P, y) «  / ( < * ,  P, M y )  + (a -  + (P ~ + (v ~ M y )

and thus

r.r[i] « >'«-[a|(g) + ( 5 5 ) + Varls] ( ! Q  + 2C»[S, f t  (JQ

It is possible to use the ‘shortcu t’ formulae presented in C hapter 3 th a t were used to 

construct the variance covariance m atrices given in th a t Chapter. The ones of use here

are:

Var[a] =  p 2Var[0\ +  ^ ^  +  +  2K0Cov[x, 0] -  Cov[y, 0])

Cov[a , 0] =  Cov[y, 0] -  0Cov[x , /3] -  pVar[0]

If it is assumed th a t the Normal linear structural model applies, then Cov[x,0\ =  

Cov[y, 0] =  0. Thus,

2 t  r  r-5l /5 2 ^ 2  ,T / r~i Var[0\ Var[x\ =  ~p2
  (ALy a )

A4
p

Var[y} 0 2a$ +  a ‘c
0 2 0 2n
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Otherwise

V ar[x \ =  *2" 2 - " 2
/?2 r  P

+  Var[y] +  /?2a |  +  a \
(32 /32n

( P C o v [ x , P \  -  C ov[y ,P ]) 'j  +  2 ^  (Cov[y,/3 \ -  (3Cov[x,j3\} .

Here p y is the m ean of the new y  measurements, and would be estimated by the 

sample mean of the new m easurem ents, and similarly, V ar[y \  would be estimated by 

the sample variance of these measurements. The param eters p , a , /?, a 5 and o e would 

be estim ated by the errors in variables fit.

The above result allows, for a  num ber of replicated y  measurements, a range of x  to 

be found th a t corresponds to these m easurements. This result however needs more 

investigation as to  its suitability for an errors in variables model.

Migration in non-linear errors in variables models The migration effect for 

two linearly related variables with errors in both, is generally to distort the data 

away from the true line. This gives the  impression th a t visually, the straight line 

errors in variables fit is not correct. For the Normal structural model for example, 

the migration effect ro tates the d a ta  from the true  line onto the y  on x  regression 

line. As seen in C hapter 7, the m igration effect has a number of implications, most 

notably for residual analyses. Moreover, there is an additional problem in th a t the 

migration effect is different for different distributions of £ (and indeed for different 

error distributions) and so an appreciation of the migration effect is needed to use 

errors in variables methodology effectively.

An obvious extension to  the work on migration carried out in this thesis is to con

sider how the  m igration effect is m itigated in non-linear errors in variables models.
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As an example of the m igration effect for a particular non-linear model, Figure 9.2 

contains scatterplots of (£, 77), (£, y), (x , 77) and (x , 7/)  for a structural model with each 

& generated from a Normal distribution with p  =  10 and cr2 =  25 and

77* =  cos(6 ).

The errors 5 and e were generated from independent Normal distributions with zero 

mean and variances cr2 =  4 and cr2 =  1 . It can be seen th a t the migration effect 

here, even for a reliability ratio  of 0.8333 is notable. W ith error only present in 7/, 

the cosine wave is still discernable, though the apparent amplitude is considerably 

greater. The effect of the m easurem ent error in the x  is to  completely obscure the cosine 

structure. Then when these two error m easurem ents are combined, the migration effect 

completely destroys the underlying cosine structure. If faced with such a scatterplot, it 

is unlikely th a t a practitioner would believe th a t a non-linear errors in variables model 

with r)i =  cos(£i) is appropriate. The m igration effect has dram atically increased the 

variation about the true curve, and has distorted  both  the peaks and the troughs of 

the cosine wave. The m igration effect here is to  fill the troughs, dissipate the peaks 

and to increase the variation of scatter around the cosine wave.

There is clearly much further work needed to  fully appreciate the effect of migration. 

In this thesis, the implications of m igration have been discussed in terms of residual 

analyses. The m igration effect however would also distort the initial choice of model 

to be fitted. To find a general m ethod which corrects for the effects of migration would 

be difficult as the  m igration effect depends on a number of factors, such as density of 

points, and the d istribution of the random  triple (£, <5, e).
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lo -1 0

- 3 -

(a) Scatterplot of (£, rj) (b) Scatterplot of (£, y )

- 2 -

•4J

(c) Scatterplot of (x,r/) (d) Scatterplot of (x , y )

Figure 9.2: Scatterplots of data with true function rji = cos(6) plotted in red.



A p p en d ix  A

V ariance C ovariance M atrices and  
M aple P rogram m e

A .l  In trod u ctory  R em arks

This Appendix contains information on the im plem entation and usage of the Maple 

programme v a rc o v a r .m w s  which simplifies the algebraic simplification and manipu

lation of the variance covariance m atrices discussed in C hapter 2. This programme 

thus may be of use to both academics and practitioners. Maple is an example of 

a com puter algebraic package, and the most recent version (at the time of writing 

this thesis) is Maple 11. Maple 11 combines a programming language with a simple 

interface, and is an extremely powerful package.

A .2 L ist o f  V ariables

Figure A .l is a screenshot from the programme va rco v a r .m w s .  Essentially, key com

ponents of the variance covariance m atrices are stored as short variable names, much 

similar to the way a calculator can store a number in its internal memory. For example 

the entire expression for V a r [ s xx] is stored as v l .  This is the key advantage of the 

programme, long cumbersome expressions may be stored as a simple small variable.

317
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Frag) m  mrra isra m  FRrei hi m  isi
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Figure A.l: A screenshot of the programme varcovar.mws opened in Maple 11.

Manipulation is therefore less time consuming. This is particularly beneficial for the 

slope estimators based on the higher order moments. The disadvantage of the pro

gramme is that due to the sheer volume of components which make up the variance 

covariance matrices, there is a large number of variables. The entire list is replicated 

here.



Chapter A E r r o r s  in  V a r ia b l e s  R e g r e s s io n 319

v l  =  V a r [ s xx\ 
v2  =  V a r [ s xy] 

v3  — Cov^sXX) s Xy] 

d4 =  C o v [x , s xy] 
d5 =  C o v  [x , s xx]

d 6  =  C o D [ s Xy ,  S y y ]

v l  =  C O V [ X , S y y ]

178 S y y ]

d 9  =  C o v [ y , S y y ]  

d I O  =  V a r [ s y y ]  

v l l  =  ( 7 o d [ £ ,  s x x ]

v \ 2  =  CW [i/, s Xy]
v l 3  — V ar[x \  
d14 =  V  ar[y]  

v  1 5  =  C o i ) [ : r ,  i / ]  

d16 =  V a r[sXXy] 
d17 =  V a r [ s xyy]

V  1 8  ---  C O V [ S XXy  , S Xy y ]

i ) 1 9  =  C o d [ £ ,  5 XXy ]

1 ) 2 0  =  C O V [ X , 5 Xy y ]

1 ) 2 1  =  C 7 o d [ i / ,  s xxy] 

d 2 2  =  C o i ) [ i / ,  s xxy] 
v23 =  C o v [x , /58] 
d 2 4  =  C o d [ ? / ,  >08 ]

V 2 5  =  C ^ O D ^ X X } S XXy ]

1 ) 2 6  ---  C()v[sxyi 5 XXy ]

v27 — COV^Syyi S XXy ]

v28    C 0 v [sxx, S Xy y ]

v29    C 0 1 ) [ S Xy  , S Xy y ]

1 ) 3 0  —  C 01)[Syy , Sxyy]

d 3 1  =  C ov[sxx,j38] 
v32 =  C o v[sxy, p 8] 
V33  =  COV[Syy, j3g]

w v  =  Var[(3s\ 
v34 =  V a r [sxyyy]
i ) 3 5  —  V  c i v  [ s x x x y ]

1 ) 3 6  =  C o v [x , s xyyy] 
1 ) 3 7    C O D [ l / ,  S Xy y y ]

d 3 8  =  Cov[x , s xxxy] 
1 ) 3 9  =  C o v \y , S x x x y ]  

1 ) 4 0  —  C fO t) [S x x 5  ^ x y y y ]  

1 ) 4 1  —  C 7 (? D [sx y ,  S x y y y ]  

1 ) 4 2  —  C 7 0 D [ S y y 5 S x y y y ]  

d 4 3  —  C o d [ s x x , s x x x y ]  

1 ) 4 4  —  C OV^Sx y j S x x x y ]

1 ) 4 5    C O V ^ S y y , S XXXy ]

1 ) 4 6  == C ^ O D f S x y y y j  S Xx x y ]  

1)1)1) 1) =  V a r [^ g ]  

d 4 7  =  C o d [ x ,  /5 g ]  

1 ) 4 8  =  C o i ) [ y ,  # 9] 

t ) 4 9  =  C o v [ s x x , ( 3 9] 

d 5 0  =  C o v [sxy,/3g\ 
d 5 1  =  C o v [syy,/39\

A .3 In stru ction  G uide

Prior to performing any algebraic m anipulation, the statem ents storing d 1 ,  d 2  etc. 

need to be activated. To do this, the E N T E R  key must be pressed on each line of 

the code. This then  stores the variables. To display d 1  for example, we simply type in 

v l ; .  To perform algebraic m anipulation we use conventional mathem atics type. For 

example ( l / b e t a ) * v l ;  gives Var^ xx\ . If this is combined w ith the simplify statement, 

s im p l i f y ( ( l /b e ta ) * v l ) ; ,  then Maple will simplify the final answer automatically.
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Thus, in combination w ith the  shortcut formulae of C hapter 2, the entire vari

ance covariance m atrices may be constructed using this Maple program. To 

substitute numerical values into an expression, we use the subs command. For 

example, to substitu te /? =  4, cr =  2, and n =  100 into Cov[x, y] we use 

subs(beta=4,sigm a=2,n=100,vl5);.

The help system in Maple is detailed, and is a much valued resource. It may be accessed 

by the main toolbar, may also be accessed by the ? command. For example, typing 

?subs; will open the help page on the  subs command. For further details on Maple, 

then the book by Wright [113] is a  comprehensive textbook covering many aspects of 

Maple programming.
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