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Abstract

Pigment Epithelium-derived Factor (PEDF), a natural protein possessing 
both neuroprotective and anti-angiogenic properties, is a very unique and attractive 
candidate as a therapeutic agent in the management of pathological neovascular 
diseases, such as tumours, age-related macular degeneration (AMD) and diabetic 
retinopathy. While it is well-known that PEDF can exert powerful effects on various 
tissues and cells, the underlying mechanism of PEDF’s action is not well 
understood. This study investigated the relationship between vascular endothelial 
growth factor (VEGF)/PEDF and VEGFR-l/VEGFR-2 by exploring Presenilin- 
l(PS-l) dependent regulated intramembrane proteolysis (RIP). Work on this non- 
classical pathway was initiated by Cai et al., (2006) using in vitro models of bovine 
retinal microvascular endothelial cells (BRMECs). Current study used BRMECs and 
human retinal pigment epithelial (HRPE) cells.

In this study, BRMECs and HRPE cells were isolated and cultured. 
BRMECs were used as an angiogenic cell type while HRPE cells were used as an 
angiogenic regulator cell type. The characteristics of endothelial and epithelial cells 
and the localisation of VEGFR-1, VEGFR-2 and PS in BRMECs and HRPE cells 
were determined using immunocytochemistry techniques. The effects of VEGF and 
PEDF on VEGFR-1, VEGFR-2 and PS were assessed using immunocytochemistry 
and Western blotting, y-secretase activity in BRMECs and HRPE cells treated with 
various growth factors were analysed using a y-secretase activity kit. The role of 
VEGF on the production of PEDF and the expression of VEGFR-1, VEGFR-2 and 
PS in HRPE cells was investigated at both the transcriptional and translational levels. 
The techniques, VEGF-small interfering ribonucleic acid (VEGF-siRNA), reverse 
transcription-polymerase chain reaction (RT-PCR), Western blotting and Enzyme- 
linked immunosorbent assay (ELISA) were used for the investigation.

Results obtained from the project showed that PEDF had a regulatory role in 
the counterbalance of VEGFR-1 and VEGFR-2 expression in cultured BRMECs. 
PEDF upregulated y-secretase activity and PS-1 expression in BRMECs while 
VEGF acted as an antagonist of the effect of PEDF. In contrast, in HRPE cells, 
VEGF upregulated y-secretase activity and PEDF acted as an antagonist of the effect 
of VEGF. VEGF-siRNA induced a reduction of PEDF at both transcriptional and 
protein levels and a reduction of VEGFR-1 at the protein level. The effects of 
VEGF and PEDF on VEGFR-1 and VEGFR-2 may be cell type dependent.

This study strengthens the view that PEDF can exert different regulatory 
effects on the same molecule (s) in different cell types. PEDF acts either 
antagonistically to VEGF or synergistically dependent upon the target molecule. 
Deciphering the cellular and molecular mechanisms underlying these interactions 
will not only contribute to our understanding of PEDF’s action but also provide the 
foundation to maximise the therapeutic potential of this protein.
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1. Introduction

Neovascularisation, the formation of blood vessels, is one of the most vital 

biological processes required for the formation and physiological function of 

virtually all organs in both normal and disease conditions (Visconti, et al., 2002; 

Schmid and Varner, 2007). In a broad range of pathological conditions including 

those with an enhanced or insufficient blood supply, neovascularisation is a key 

event (Distler, et al., 2002). In some human diseases such as in cancer and ocular 

retinopathies, aberrant neovascularisation can potentially be blocked 

therapeutically to prevent disease progression (Folkman, 1995). In other diseases, 

such as in heart ischemia, brain infarction and wound healing, the process of 

neovasculatisation can be used to restore the vital function of the affected organs 

(Isner, 2002).

1.1 Neovascularisation

1.1.1 Definition

Neovascularisation is the formation of blood vessels in areas that were 

previously avascular, and it occurs by both vasculogenesis and angiogenesis 

(Chang et al., 2001; Schmid and Varner, 2007; Afzal et al., 2007).

Vasculogenesis is the coalescence of new blood vessels from individual 

endothelial cells or progenitor cells. The formation of the initial vascular tree 

during embryonic vascular development and the formation of new blood vessels 

by circulating endothelial progenitor in adult animal are examples of 

vasculogenesis (Schmid and Varner, 2007). Vasculogenesis was thought to occur 

only in early embryogenesis. However, it has been found that in adults, 

vasculogenesis occurs as endothelial precursor cells (EPC) derived from the bone 

marrow (BM) enter the circulation and to be incorporated into neovascular foci 

in injured corneas, ischemic hindlimbs and tumour vasculature (Takahashi et al., 

1999; Afzal et a/., 2007).

Angiogenesis is defined as the sprouting of new blood vessels from the pre

existing microvasculature and the modification of the initial irregularly organized
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endothelial tubular network into a structured three-dimensional network of 

branching vessels, result in a functional circulatory system (Carmeliet, 2000; 

Yancopoulos, et al., 2000; Distler, et al., 2002; Coultas et a l, 2005). Angiogenic 

sprouting is responsible for vascularising certain structures during normal 

development, such as the neural tube or the retina, and for most new vessel 

formation in the adult (Moore, 2002).

Angiogenesis was considered the sole mechanism of blood vessel formation in 

postnatal life, until recently accumulating evidence suggests that endothelial stem 

cells are pres ent in adults and participate in new blood vessel formation in 

normal and pathological states, including tumours.

1.1.2 The process of neovascularisation

During embryogenesis, neovascularisation is initiated from vasculogenesis, i.e. 

formation of a functional circulation from EPC. It is initiated as the appearance 

of mesodermal cells with vascular endothelial growth factor receptor 2 (VEGFR- 

2 or Flk-1) positive in the posterior primitive streak (PPS); VEGFR-2 positive 

cells in the PPS give rise to both blood and endothelium (haemangioblasts), but 

are restricted to haematopoietic or angiogenic fate after emigrating into extra- 

embryonic sites [extra-embryonic ectoderm (EXE), yolk sac and allantois) and 

intra-embryonic sites [embryonic ectoderm (EEC)]. In the yolk sac, these 

progenitors aggregate into endothelial-lined blood islands that then fuse to 

generate a primary capillary plexus. The primary capillary plexus undergoes 

remodelling along with intra-embryonic vessels to form a mature circulation. 

Intra-embryonic angioblasts migrate along distinct pathways before aggregating 

directly into the dorsal aorta or cardinal vein, without a plexus intermediate. The 

primary vessels (capillary plexus, dorsal aorta and cardinal vein) then remodel, 

together with the extra-embryonic plexus, to form a mature vasculature, which 

along with VEGF and Notch involves the angiopoietins and Tie receptors. Mural 

cells (pericytes and smooth-muscles cells) proliferate and differentiate in 

response to TGF-p, and are recruited to vessels by PDGF secreted by endothelial

2
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cells (reviewed by Coultas et al., 2005). The formation of a functional circulation 

from endothelial progenitors is shown in Fig. 1.1.

In adulthood, the EPC mobilised from the bone marrow can enter into the blood 

circulation and may be recruited and incorporated into sites of active 

neovascularisation during tissue ischemia, vascular trauma, or tumour growth. 

Moreover, expansion and mobilisation of EPC may augment the resident 

population of endothelial cells (ECs) competent to respond to exogenous 

angiogenic cytokines (Isner and Asahara, 1999; reviewed by Ribatti, 2007) 

(Fig. 1.2).

The process of angiogenesis occurs as an orderly cascade of events (see Figl.2). 

It is initiated from the production and release of angiogenic stimulators, such as 

vascular endothelial growth factor (VEGF), from the tissues by certain 

physiological or diseased conditions. These angiogenic stimulators diffuse into 

the nearby tissues and bind to the receptors on the ECs that are located on the 

nearby pre-existing blood vessels to activate signal transduction pathways. The 

activated ECs produce new molecules including enzymes, resulting in the 

dissolving the basement membrane of the existing blood vessels; and increasing 

the vasodilatation and endothelial permeability. The activated ECs proliferate 

and migrate towards the diseased tissue, with the help of adhesion 

molecules/integrins (a vP3 , a vPs) to pull the sprouting new blood vessel forward. 

Meanwhile matrix metalloproteinases (MMPs) dissolve the tissue in front of the 

sprouting vessel tip to accommodate the sprouting process. Sprouting ECs roll up 

to form a blood vessel tube (lumen formation), and individual blood vessel tubes 

connect to form blood vessel loops that can circulate blood. Smooth muscle cells 

and pericytes join in to stabilise vessels and blood flow begins 

(http://www.angio.org/understanding/content_understanding.html>accessed on: 

3rd Feb. 2004; Distler, et al., 2002).

As a dynamic multistep process, angiogenesis can be summarised by the 

following steps: the degradation of the extracellular matrix (ECM) surrounding
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the pre-existing vessels by proteolytic enzymes, endothelial cells migration 

toward an angiogenic stimulus and their proliferation, formation of the tube-like 

structure, fusion of the formed vessel and initiation of blood flow (Cao, 2001)

1.1.3 Neovascularisation in health and disease

1.1.3.1 Neovascularisation in health

Neovascularisation is an important event in embryonic development initiated by 

vasculogenesis and completed by angiogenesis. In healthy adulthood, 

neovascularisation is in a quiescent state for most organs and tissues, and it is 

only switched on in certain physiological settings, such as the female 

reproductive system in response to ovulation or gestation, the normal hair cycle, 

chronic inflammation and wound healing (Iruela-Arispe and Dvorak, 1997). 

Within the wound, neovascularisation occurs because of local factors that 

stimulate adjacent cells (angiogenesis) and because of recruited circulating BM 

derived EPCs that contribute to existing and new vascular channels 

(vasculogenesis) (Velazquez, 2007). At the physiological level, endothelial cell 

proliferation is tightly regulated in a spatial and temporal manner (Liekens, et al., 

2001).

1.1.3.2 Neovascularisation in disease

1.1.3.2.1 Tumour neovascularisation and metastasis

Tumours are populations of host-derived cells that have lost the ability to 

regulate growth and therefore proliferate aberrantly. Tumour cells, like normal 

cells, require an adequate supply of oxygen and nutrients and an effective means 

to remove waste in order for metabolic processes to occur and survival to be 

maintained. Normal cells and tissues rely on physiological vasculogenesis and 

angiogenesis to provide them with a vasculature that fulfils their metabolic 

demands. Tumour cells, on the other hand, can induce their own blood supply 

from the pre-existing vasculature in a process that mimics normal angiogenesis 

(Papetti and Herman, 2002). Without angiogenesis, tumour cells can only 

proliferate to a certain size and remain in a dormant state (Cao, 2001). The 

‘angiogenic switch’ can be turned on by hypoxia and tumour derived growth
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factors (Folkman, 1995). Recent studies have also shown that vasculogenesis 

also occurs during tumour neovascularisation (Lyden et a l, 2001; Asahara et al., 

1997; Garmy-Susini, 2005; Schmid and Varner, 2007). EPCs may be mobilised 

from the bone marrow by tumour tissue-derived cytokines, such as VEGF 

(Asahara and Kawamoto, 2004; Dome et al., 2007). Recruitment of EPC to 

tumour neovascularisation takes place in five steps: 1) active arrest and homing 

of the circulating cells within the angiogenic micro vasculature; 2) 

transendothelial extravasation into the interstitial space; 3) extravascular 

formation of cellular clusters; creation of vascular sprouts and cellular networks 

and 5) incorporation into a functional microvasculature (Ribatti et al., 2007).

Tumours become cancerous when they metastasise, i.e. the cells migrate from a 

primary location to a distant secondary location and re-grow into a new tumour, a 

process mediated by penetration of the blood or lymphatic vessels. Neovascular 

channels allow tumour cells to metastasise hematogenously (Ribatti et al., 2007).

1.1.3.2.2 Corneal, retinal and choroidal neovascularisation

Ocular neovascularisation is the leading cause of blindness in a variety of clinical 

conditions (Das and McGuire, 2003; Afzal et al. 2007). Corneal 

neovascularisation is usually associated with inflammatory or infectious 

disorders of the ocular surface (Chang et al., 2001). Neovascularization arising 

from the retinal circulation is seen commonly in proliferative diabetic retinopathy 

(PDR), retinal vein occlusion, retinopathy of prematurity (ROP), and sickle cell 

retinopathy (Das and McGuire, 2003). All these conditions can result in 

intraocular haemorrhage and tractional retinal detachment leading to severe 

visual loss. PDR is the most common cause of early-onset vision loss in young 

people in developing countries (Aiello, 2003), and retinal neovascularization is a 

significant contributory factor to this vision loss (Das and McGuire, 2003). In 

addition, hyperglycaemia indirectly regulates the synthesis of a variety of 

angiogenic factors in retinopathy (Cai and Boulton, 2002). In elderly people, age- 

related macular degeneration (AMD) is the most common cause of severe vision 

loss in the USA, and choroidal neovascularization (CNV) is seen in the majority

7
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of AMD patients with severe vision loss (20/200 or worse) (Das and McGuire, 

2003; Afzal et al. 2007).

Although retinal neovascularisation is thought to be due to the proliferation of 

endothelial cells from the existing blood vessels by angiogenesis, recent evidence 

suggests that adult haematopoietic stem cells can enter the circulation and reach 

the areas of angiogenesis, and can clonally differentiate into endothelial cells 

(Grant et al., 2002).

1.1.4 Regulation of neovascularisation

Neovascularisation, a complex process involving extensive interplay between 

cells, soluble factors, and ECM components (Liekens, et al., 2001), is under 

stringent regulation by both endogenous activators and inhibitors (Hanahan et al., 

1996). A wide range of angiogenic inducers, including growth factors, 

chemokines, angiogenic enzymes, endothelial specific receptors, and adhesion 

molecules are involved in the neovascularisation process. When sufficient 

neovascularization has occurred, angiogenic factors are down-regulated or the 

local concentration of inhibitors increased. As a result, the endothelial cells 

become quiescent, and the vessels remain or regress if no longer needed. 

Therefore, neovascularisation is a highly ordered process under tight control and 

the normal healthy body retains a perfect balance between the release of 

angiogenic stimuli and angiogenic inhibitors (Liekens, et al., 2001). When 

angiogenic stimuli are produced in excess of the inhibitors, the balance is tipped 

in favour of blood vessel formation and vice versa (Fig 1.3).

Since each step in the angiogenic cascade involves a great variety of enzymes, 

cytokines, and receptors, neovascularisation presents a range of possible targets 

for therapeutic intervention (Liekens, et al., 2001). On the other hand, anti- 

angiogenic therapy, which targets activated endothelial cells, offers several 

advantages over therapy directed against tumour cells. First, endothelial cells 

are a genetically stable, diploid, and homogenous target, and spontaneous 

mutations rarely occur. Also, turnover of tumour endothelial cells may be 50

8
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times higher than that of endothelium in normal quiescent tissues, and activated 

blood vessels express specific markers, such as integrin a vp3 , Tie, and VEGF 

receptors. Because anti-angiogenic therapy is directed at activated endothelial 

cells, its target should be easily accessible by systemic administration. Finally, 

different tumour cells are sustained by a single capillary, and associated 

endothelial cells contribute to both endothelial and associated cell growth by 

releasing autocrine and paracrine factors. Consequently, the activated 

endothelium presents a more specific target than the associated cells, and 

inhibition of a small number of vessels may affect the growth of many associated 

cells (Kerbel, 1991; Liekens, et al., 2001).

1.1.5 Regulators of neovascularisation

1.1.5.1 Neovascularisation stimuli

A variety of neovascularisation stimuli have been described (Liekens, et al.,

2001). Tablel.l listed some of them. Among them, the VEGF/VEGF receptor 

(VEGFR) family is the most studied regulator o f vascular development, and it is 

also the central focus of this study. The angiopoietin/Tie system controls vessel 

maturation and quiescence (Eklund and Olsen, 2006) while the eph/Ephrin 

system controls positional guidance cues and arterio-venous asymmetry (Heroult 

et al., 2006).

1.1.5.2 Neovascularisation inhibitors

A number of endogenous inhibitors have been identified and Tablel.2 listed 

some of them. The most studied negative regulators include angiostatin (O’Reilly 

et al., 1994), endostatin (O’Reilly et al., 1997), and thrombospondin (Dameron et 

al., 1994). PEDF in particular will be discussed in detail later.

1.2 Ligands and receptors of VEGF family

1.2.1 Ligands of VEGF family

The ligands of VEGF family currently consist of seven secreted glycoproteins 

that designated as: VEGF-A (or VEGF), VEGF-B, VEGF-C, VEGF-D, orf virus 

VEGF (VEGF-E), placental growth factor (P1GF) (Veikkola and Alitalo, 1999;

10
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Table 1.1 Endogenous inducers of angiogenesis (Induction of EC 

proliferation, migration, and differentiation was measured in vitro).

Inducers E C
proliferation

EC
migration

EC
differentiation

References

Heparin binding peptide growth factors

VEGF Yes Yes Yes Veikkola & Alitalo, 
1999; Ferrara, 1999.

P1GF W eak Yes ? Bussolino et al. 1996.

PDGF Yes Yes Yes Heldin &
W estemmark, 1999

Non- heparin binding peptide growth factors

TGF-a Yes Yes Yes Bussolino et al. 1996; 
Jackson et al. 1997.

EGF Yes Yes Yes Bussolino et al. 1996; 
Sato et al. 1993.

IGF-I Yes Yes Yes Sato et al. 1993; Bar et 
al. 1988.

Inflammatory mediators

TNF-ct Inhibition N o Yes Jackson et al. 1997.

IL-8 Yes Yes ? Keane & Strieter, 1999

Enzymes

COX-2 No Yes Yes Daniel et al. 1999.

Angiogenin No Yes Yes Badet, 1999

Hormones

Oestrogens Yes Yes Yes Schnaper et al. 1996.

Proliferin ? Yes ? Jackson et al. 1994.

Cell adhesion molecules

VCAM-1 No Yes ? Koch et al. 1995

E-selectin No Yes Yes Koch et al. 1995 ; 
Nguyen et al. 1993

Hematopoietic factors

Erythropoietin Yes ? Yes Ribatti et al. 1999

Others

Angl No Yes Yes Hayes et al., 1999 
Eklund & Olsen, 2006

EphrinB Positioning o f  ECs; ECs interacting with 
neighboring cells

Heroult et al., 2006
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Table 1.2 Endogenous inhibitors of angiogenesis. Downwards arrow Q) 

represents inhibition or reduction; upward arrow ( |)  represents stimulation or

induction.

Inhibitor Mechanism of action References

P rotein  fragm ents

Angiostatin
(fragment o f  plasminogen)

I  EC proliferation, 
t  EC apoptosis

O ’Reilly et al. 1994; 
Cao, 1999

Endostatin
(fragment o f  collagen XVIII)

I  EC proliferation, 
T EC apoptosis

O ’Reilly et al. 1997.

aa AT
(fragment o f  antithrombin 3)

I  EC proliferation, 
T EC apoptosis

O ’Reilly et al. 1999.

Prolactin (16 kDa fragment) I  EC proliferation 
I  FGF-2-induced 
angiogenesis

Struman et al. 1999.

Soluble m ediators

TSP-1 i  EC proliferation, 
T EC apoptosis

Iruela-Arispe and 
Dvorak, 1997

Troponin I i  EC proliferation Moses et al. 1999

IFN-oc I  EC proliferation, 
T EC apoptosis 
I  FGF-2-induced 
angiogenesis

Dinney et al. 1998

IFN-y ■I EC proliferation, T IP-10 Sato et al. 1990

PEDF I  EC migration 
'i- FGF-2-induced 
angiogenesis

Dawson et al. 1999

IP -10 I  EC proliferation Moore et al. 1998

I  FGF-2 and IL-8 induced 
migration

PF-4 I  EC proliferation 
I  FGF-2 and IL-8 induced 
migration

Moore et al. 1998

IL-12 T i f n -y, T i p -10 Sgadari et al. 1996

IL-4 I  EC migration Volpert et al. 1998

VEGI i  EC proliferation Zhai et al. 1999

TIMP-1,-2 I  MM P activity Gomez et al. 1997

Retinoic acid I  EC migration, transcription 
factor

Diaz et al. 2000; 
Lingen et al. 1996

Ang-2 i  Blood vessel maturation, 
antagonist o f Ang-1

Maisonpierre et al. 
1997

12



Chapter. 1 Yadan Zhang

Liekens, et a l,  2001) and VEGF-F (Suto et al., 2005). Each of these proteins 

contains a signal sequence that is cleaved during biosynthesis. Alternative 

splicing of their corresponding pre-mRNAs generates multiple isoforms of 

VEGF, VEGF-B, and P1GF. The VEGF family plays an integral role in 

angiogenesis, lymphangiogenesis, and vasculogenesis (Roskoski, 2007).

VEGF-A (VEGF)

VEGF was first identified by Senger et al (1983) as a vascular permeability 

factor secreted by tumour cell, and is a 46 kDa homodimeric glycoprotein with 

both vasopermeability and angiogenic properties (Keck, et al., 1989; Senger et 

al, 1990; Ferrara et a l, 1991a & b).

VEGF is a mitogen and survival factor for vascular ECs (Ferrara and Henzel, 

1989; Alon et a l,  1995; Gerber et al. 1998), and also promoting vascular ECs 

and monocyte motility (Waltenberger et a l,  1994; Barleon et a l,  1996). 

Moreover, VEGF selectively and reversibly permeabilises the endothelium to 

plasma and plasma proteins without leading to injury (Senger et a l,  1990; 

Dvorak, 2005; Roskoski, 2007). VEGF acts not only on the resident vasculature 

but also modulates EPC function (Adamis et a l, 1994; Ferrara, 2004; Coultas et 

a l, 2005; Afzal et a l,  2007). Active VEGF signalling is required for normal 

development of progenitors o f the vascular and haematopoietic system; and plays 

an important role in shaping the vascular system, organs signal to the vessels that 

serving them, influencing the endothelial cells to adopt functional specialties, 

such as the blood-brain barrier and fenestrated endothelium in the kidney 

glomeruli (Nikolova and Lammert, 2003)

The VEGF gene is located on the short arm of chromosome 6 , and is a single 

gene composed of eight exons and is differentially spliced to yield nine mature 

isoforms: VEGF121, VEGF 165, VEGF 189, VEGF206, VEGF 145, VEGF183, - 

165b(an inhibitory isoform), -162, and -148 (Tischer et a l, 1991; Neufeld et a l, 

1999; Robinson and Stringer, 2001). The numeric designation of the isoforms 

denotes the number of amino acids in the molecule. VEGF 165 a secreted
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heparin-binding protein being the predominant form followed by the 189 and 121 

residue molecules as determined by cDNA analysis of a variety of cell types, 

tissues, and tumour specimens (Ferrara, et al., 2003; Roskoski, 2007).

VEGF is expressed in different tissues, including brain, kidney, liver, and spleen, 

and by many cell types including, endothelial cells, macrophages, glial cells, 

keratinocytes, tumour cells (Rousseau et al., 2000 a & b; Liekens, et al., 2001), 

and HRPE cells (Ohno-Matsui et al., 2003). Transcription of VEGF mRNA is 

induced by different growth factors and cytokines, including PDGF, EGF, TNF- 

a, TGF-p, and IL-ip (Veikkola and Alitalo, 1999; Akagi, et al., 1999; Enholm, 

et al., 1997; Liekens, et al., 2001). VEGF levels are also regulated by tissue 

oxygen tension. Exposure to hypoxia induces VEGF expression rapidly and 

reversibly, through both increased transcription and stabilization of the mRNA 

(Mukhopadhyay, et al. 1995; Ikeda, et al., 1995). In contrast, normoxia down- 

regulates VEGF production and even causes regression of some newly formed 

blood vessels.

VEGF binds to two related high affinity cell surface tyrosine kinase receptors: 

VEGFR-1 and VEGFR-2 (Yancopoulos, et al., 2000). In addition to these 

receptors, VEGF interacts with a family of co-receptors, the neuropilins (Ferrara 

et al., 2003).

1.2.2 VEGF receptor family

1.2.2.1 General properties

The VEGF receptor family consists of five members, three receptor protein- 

tyrosine kinases [VEGFR-1 (Fit-1, fms-like tyrosyl kinase-1, where fms refers to 

feline McDonough sarcoma virus), VEGFR-2 (KDR in humans, Kinase Domain- 

containing Receptor /Flk-1 in mice, Fetal liver kinase-1) and VEGFR-3 (Flt-4)] 

(Galland, et al. 1993; Mustonen and Alitalo, 1995; Shibuya, et al. 1999; Shibuya 

and Claesson-Welsh, 2006) and two non-enzymatic receptors (neuropilin-1 and - 

2) (Ferrara et a l ,  2003; Roskoski, 2007).
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VEGFR-1, VEGFR-2 and VEGFR-3 are highly homologous to each other in 

overall structure (Shibuya, et al. 1990; Alitalo and Carmeliet, 2002), and all three 

consist of an extracellular ligand-binding domain (a seven Ig-like domain), a 

transmembrane domain, an intracellular tyrosine kinase domain and downstream 

carboxyl terminal region (Shibuya, et a l 1990; Terman et al. 1992 and Millauer 

et al. 1993) (see Figl.4-Aa). The binding site for VEGF(-A) is located in the 

second Ig-like domain in VEGFR-1 and the second/third Ig-like domains in 

VEGFR-2. The downstream structure from the fourth to seventh Ig-like domains 

in these receptors plays a major role in receptor dimerization and activation 

(Keyt et al., 1996; Fuh et al., 1998). Among these receptors, VEGFR-1 has 

highest affinity to VEGF, VEGFR-2 binds with less affinity, and VEGFR-3 

shows essentially no binding to VEGF, although it binds VEGF-C and VEGF-D 

(Veikkola and Alitalo, 1999; Shibuya, 2001a).

Neuropilins are glycoproteins with a molecular weight of 120 -140 kDa (Chen et 

al. 2000). The neuropilins contain a large extracellular component, a 

transmembrane segment, and short (~ 40 amino acid residue) intracellular 

portion (Mamluk et al., 2002). Neuropilins act as co-receptors with large (~ 250 

kDa) transmembrane plexins that transduce semaphoring signalling and as co

receptors with VEGFR-1, VEGFR-2 and VEGFR-3 that transduce VEGF family 

signalling (Roskoski, 2007).

The VEGF receptor signal transduction pathway remains unclear. Most 

approaches used for study are based on the classical tyrosine kinase receptor 

pathway, and have focused on the recognition of the element(s) that are involved 

in it. Classically, signals from a tyrosine kinase receptor are initiated by binding 

of a ligand (usually a growth factor) to the receptor, which then forms a dimer. 

This dimer adds phosphate groups to itself (autophosphorylation), resulting in the 

creation of docking sites that bind to downstream signal transduction molecules 

containing Src homology 2 (SH2) domain. Upon ligand binding, a number of 

signalling pathways can be activated, each one consisting of a chain of
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Fig 1.4 A schematic representation of the structure of VEGFRs. (A) the
full-length of VEGFR-1(a) and soluble form of VEGFR-1(b); B) shows the 
interaction between VEGF family and their receptors (Modified from 
Yancopoulos et al., 2000).
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signalling molecules that indirectly alter the expression of target genes in the 

nucleus (Heldin and Ericsson, 2001). Several adapters such as Nek, Grb2, SHP2 

and Crk have been shown to associate with VEGFR-1 (Ito et al., 1998). 

However, the tyrosine kinase activity of VEGFR-1 is usually weak, about one 

tenth that of VEGFR-2 kinase. Without starving cells of serum, VEGF-dependent 

autophosphorylation is often difficult to detect (Waltenberger, et al., 1994; 

Seetharam et al., 1995).

1.2.2.2 VEGFR-1 (Flt-1)

VEGFR-1 (Flt-1) is structurally a typical tyrosine kinase receptor (Shibuya, 

2001b). Human VEGFR-1 protein consists of 1338 amino acid residues 

including a signal peptide. Its nascent polypeptide is expected to be about 150 

kDa without modification (Shibuya, et al. 1990; De Vries, et al. 1992), but is 

rapidly glycosylated to form an intermediate form of approximately 170 kDa, 

and further glycosylated for expression on the cell surface as a mature protein of 

180-185 kDa. Only this mature form is autophosphorylated in response to VEGF 

and to other VEGFR-1 specific ligands (Davis-Smyth, et al. 1996; Davis-Smyth, 

etal. 1998).

Another important feature o f VEGFR-1 is that the gene encodes not only the 

mRNA for a full-length receptor but also a short mRNA for a soluble form of the 

VEGFR-1 protein, which consists of the l st-6 th Ig-like domain together with an 

additional 31 amino acid residue (Shibuya, et al. 1990; Kendall and Thomas, 

1993) (Figure 1.4-Ab). It remains unknown whether this soluble form of 

VEGFR1 is also produced from cleavage. The VEGFR-1 gene in mice consists 

of 30 exons spanning more than 150 kb (Kondo, et al. 1998). Each of the 1st and 

2nd Ig-like domains is split into two exons. The soluble form of VEGFR-1 is 

found to be derived from the first 13 exons and the down-stream 5 ’-region of 

intron 13 in this gene (Kondo, et al. 1998). Therefore, the VEGFR-1 gene 

appears to carry two physiologically meaningful ‘exonl3’s, one for the soluble 

form of VEGFR-1 and the other for the receptor form. The mRNA and the
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protein of VEGFR-1 gene are specifically expressed in most vascular ECs 

(Barleon, et al. 1994).

Recently, two groups (Lyden et al., 2001; Kaplan et al., 2005) identified 

VEGFR-1 positive haematopoietic progenitor cells that multiply in the bone 

marrow, mobilise to the peripheral blood along with VEGFR-2 positive EPCs, 

and incorporate into pericapillary connective tissue. More interestingly, these 

cells seem to home in before the tumour cells arrive, promoting metastatic 

growth by forming niches where cancer cells can locate and proliferate.

1.2.2.3 VEGFR-2 (Flk-1 or KDR)

VEGFR-2 protein consists o f 1338 amino acids in humans, and is expressed 

mostly on vascular endothelial cells. VEGFR-2 is a marker for the earliest 

progenitors of the vascular and haematopoietic system, the loss of both vascular 

and haematopoietic cells in Flk-1 mutants is one of many pieces of information 

linking endothelial and haematopoietic development through a possible common 

progenitor, the haemangioblast (reviewed by Ema and Rossant, 2003; Coultas et 

al., 2005). VEGFR-2 is also expressed at a significantly lower level in neuronal 

cells; osteoblasts, pancreatic duct cells, retinal progenitor cells, megakaryocytes 

(Matsumoto and Claesson-Welsh, 2001), HRPE cells and a fraction of 

haematopoietic cells which might be the progenitor for endothelial cells (Asahara 

et al., 1999; Lyden et al., 2001). The biological role of VEGFR-2 in these non- 

endothelial cells remains to be clarified. In the tumour vasculature VEGFR-2 

expression is 3-5-fold higher than in the normal vasculature (Plate et al., 1994). 

On the other hand, most tumour cells or leukaemia/lymphoma cells do not 

express VEGFR-2 except for Kaposi sarcoma cells in AIDS patients (Montaldo 

et al., 2000). Within the tumour tissue, the tumour cells themselves and activated 

stroma cells express a high level of VEGF but little VEGFR-2, whereas the 

endothelial cells in the tumour vasculature exhibit an upregulated VEGFR-2 

expression, which strongly suggest a paracrine loop of VEGF and VEGFR-2 

between tumour cells and vascular endothelial cells for the stimulation of
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pathological angiogenesis (Ferrara and Davis-Smyth 1997; Alitalo and 

Carmeliet, 2002; Shibuya and Claesson-Welsh, 2006; Shibuya, 2006a).

VEGFR-2 is the major positive signal transducer for both physiological and 

pathological angiogenesis. Upon stimulation with VEGF, VEGFR-2 is 

autophosphorylated and then PLCy is tyrosine phosphorylated, resulting in the 

activation of the downstream PKC-c-Raf-MEK-MAP-kinase pathway 

(Takahashi et al., 2001); an adaptor molecule, TSAd (T-cell specific adapter) 

also can be activated, resulting in the stimulation of a migration signal (Zeng et 

a l, 2001; Matsumoto et al., 2005). VEGFR-2 is also known to interact with VE- 

cadherin and integrins such as avp3, and regulates many steps of angiogenesis 

(Stupack and Cheresh, 2004).

So far it is known that VEGF, P1GF and VEGF-B are the ligands that bind and 

activate VEGFR-1 (Maglione, et al. 1991; Olofsson, et al. 1998). The affinity of 

VEGFR-1 is highest for VEGF (10-30 pM) and much weaker for P1GF (about 

200 pM) and VEGF-B. The positive signal o f VEGF for endothelial proliferation 

and vascular permeability from VEGFR-1 contribute about one tenth of the total 

signal, the major signal is through VEGFR-2. The soluble form of VEGFR-1 has 

potent negative activity against VEGF-dependent phenomena on ECs because of 

its strong ligand binding activity. A 10-fold or more excess of soluble VEGFR-1 

over VEGF efficiently suppresses the VEGF-induced endothelial cell growth and 

vascular permeability (Tanaka, et al. 1997; Kendall and Thomas, 1993). Thus, 

the VEGFR-1 gene exerts two opposing biological activities, one positive and the 

other negative, in angiogenesis. This dual function may be tightly regulated and 

important for the fine tuning of the formation and maintenance of the blood 

vessel structure (Shibuya, 2001b). Figure 1.4-B shows the interaction between 

VEGF family and their receptors.

1.2.2.4 Relationship of VEGFR-1 and VEGFR-2 in angiogenesis

VEGFR-1 and VEGFR-2 are both expressed on vascular endothelial cells 

(Neufeld et al. 1999; Ferrara, 2002), and closely involved in the formation of
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tube-like structures, blood vessels and lymphatic vessels. VEGFR-1 has been 

shown to heterodimerise with VEGFR-2 leading to autophosphorylation, 

activation of VEGFR-2, and angiogenesis (Autiero et al. 2003; Rahimi, 2006; 

Afzal et al. 2007). However, the relationship between VEGFR-1 and VEGFR-2 

is still unclear. Several studies have indicated that VEGFR-1 and VEGFR-2 have 

different signal transduction properties (Liekens, et al., 2001). Interaction of 

VEGF with VEGFR-2 is critical for VEGF induced biological responses. By 

using chimeric receptors containing the extracellular domain of human CSF-1R/ 

c-fms fused with the entire transmembrane and cytoplasmic domains of murine 

VEGFR-1 and VEGFR-2, Meyer and Rahimi (2003) dissected the biological 

importance of VEGFR-1 and VEGFR-2 and their signal transduction relay in 

angiogenesis. It was demonstrated that selective activation of chimeric VEGFR- 

2, but not chimeric VEGFR-1, stimulated endothelial cell growth, migration, and 

differentiation. Stimulation o f cells co-expressing chimeric VEGFR-1 and 

VEGFR-2 suppressed VEGFR-2-mediated endothelial cell growth. Their results 

also indicate that VEGFR-1, unlike VEGFR-2, is unable to undergo ligand- 

dependent tyrosine phosphorylation and kinase activation (Rahimi et al., 2000). 

Using site-directed mutagenesis they demonstrated that tyrosines 799 and 1173 

are required for VEGFR-2-mediated endothelial cell growth and activation of PI3 

kinase. Further site-directed mutagenesis demonstrated that tyrosine 1212, 

located in the carboxyl tail o f VEGFR-2, is required for the ligand-dependent 

autophosphorylation of the receptor and its ability to activate signalling proteins. 

Studies have shown that there is considerable “cross-talk” between VEGFR-1 

and VEGFR-2 and that this plays a critical role in regulating VEGFR-2-mediated 

signalling (Rahimi et al., 2000; Burkhardt and Zacharias, 2001; Zeng et al.,

2001), and dependent on conditions, VEGFR-1 can act as a pro- or anti- 

angiogenic regulator o f VEGFR-2.

1.2.2.5 VEGFR-3 (Flt-4)

VEGFR-3 has only six Ig-homology domain (Pajusola et al., 1994). It 

preferentially binds VEGF-C and VEGF-D. VEGFR-3 shows a more restricted 

expression pattern when compared with VEGFR-1 or VEGFR-2. It is expressed
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in lymphatic ECs, fenestrated capillaries and veins in endocrine organs as well as 

in monocytes/macrophages (reviewed by Saharinen et al., 2004). VEGFR-3 is 

involved in the regulation of both blood and lymphatic vessel function (Shibuya 

and Claesson-Welsh, 2006). It is believed that VEGFR-3 play various roles in 

cardiovascular development and remodelling of primary vascular networks 

during embryogenesis and enhancing lymphangiogenesis in adulthood. 

Inactivation of VEGFR-3 gene results in embryonic death at E9.5, due to 

abnormal remodelling o f the primary vascular plexus (Dumont et al, 1998).

VEGFR-3 signal transduction is still relatively unexplored. However, evidence 

suggests that heterodimerization of VEGFR-2/VEGFR-3 may direct biological 

signalling such as lymphatic vessel sprouting (reviewed by Shibuya and 

Claesson-Welsh, 2006). Certain human pathological conditions involve either 

dysfunction or increased activation of VEGFR-3. Increased expression of 

VEGF-C and VEGFR-3 plays a role in prostate cancer progression and lymph 

nodes metastasis (Jennbacken et al., 2005).

1.3 Gamma-secretase (y-secretase): a role in neovascularisation?

1.3.1 General properties of y-secretase

y-secretase is an unusual aspartyl multimeric protease complex responsible for 

the intramembranous cleavage of a variety of type I integral membrane proteins, 

including the P-amyloid precursor protein (APP), Notch, ErbB4 (Ni et al. 2001; 

Lee et al., 2002), E-cadherin (Marambaud et al. 2002), and CD44 (Lammich,

2002). This protease complex consists of four different integral membrane 

proteins: presenilin, nicastrin, Aph-1 (anterior pharynx defective-1) and Pen-2 

(presenilin enhancer -2) (LaVoie, et al. 2003) (Fig. 1.5). y-secretase is involved in 

development, signal transduction, protease biochemistry and is central to the 

pathogenesis of Alzheimer’s disease (AD) and appears to play a role in 

vasculogenesis and angiogenesis (Lukiw et al., 2001; Nakajima et al., 2003; 

Sainson et al., 2005; Semeels et al. 2005; Cai et al. 2006; Shi and Harris, 2006; 

Williams et al., 2006).
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Figurel.5 A schematic representation of the complex of y-secretase. PS is
presented using the 8 -TM structural model. (Reproduced from LaVoie et al.,
2003).
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Presenilin (PS)

Presenilin, the active site of the protease complex, was the first member of the y- 

secretase complex to be identified (De Strooper et al., 1998). PS are multipass 

proteins. Several different topography models for PS have been proposed, either 

6 - transmembrane (TM), 7-TM, 8 -TM or 9-TM domains (Dewji, 2005; Laudon 

et al., 2005; Oh and Turner, 2005). The 8 -TM structural model, where the N- 

terminal and C-terminal ends as well as the hydrophilic loop between TM6  and 

TM7 are located at the cytoplasmic face of the plasma membrane, has been the 

most widely accepted (Fig 1.5).

PS is endogenous to almost every type of mammalian cell (Thinakaran et al., 

1996; Iwatsubo, 2004) and localises predominantly in the endoplasmic reticulum 

(ER) and Golgi compartments (Annaert, et al. 1999). PS is initially expressed as 

an unstable holoprotein of about 50kDa, with a half-life of -1 h (Ratovitski, et 

a/. 1997). By endoproteolysis mediated by a presenilinase, PS holoprotein 

undergoes cleavage to yield an N-terminal fragment (NTF; -28 kDa) and a C- 

terminal fragment (CTF; -22 kDa) that remain associated (Ratovitski, et al. 1997; 

Thinakaran, et al. 1996). This PS heterodimer is significantly more stable than the 

PS holoprotein, having a half-life of -30 h, and is thought to be the biologically 

active form of the protein (Ratovitski, et al. 1997; Yu, et al. 1998 and Iwatsubo,

2004). In the mature active form of y-secretase complex PS is present as an 

NTF-CTF heterodimer (Levitan et al., 2001). The mature form of PS (the 

heterodimer) has been found at the cell surface in complex with the membrane- 

associated C-terminus of another y-secretase substrate, Notch (Ray et al., 1999), 

and with nicastrin (Kaether et al., 2002). However, PS alone is not sufficient for 

protease activity.

Nicastrin (NCT)

Nicastrin (NCT) is a type I membrane protein that possesses many potential 

glycosylation sites within its large ectodomain. Three principal forms of NCT 

exist in cells, the unglycosylated, nascent protein (-80 kDa), an “immature” N- 

linked glycosylation endoglycosidase H-sensitive (iNCT, -110 kDa), and a
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“mature” N-linked isoform, complex N-linked glycosylation endoglycosidase FI- 

resistant (mNCT -150 kDa) that is formed after entering the Golgi apparatus 

(Kaether, et al. 2002). This mNCT is associated with active y-secretase 

(Kimberly, et a l 2002), and importantly, PS is required for the full post- 

translational generation o f this mNCT species (Kaether, et al. 2002; Kimberly, et 

al. 2002). Therefore, like PS, NCT undergoes a maturation process that could 

regulate its association with the y-secretase complex.

Aph-1 and Pen-2

Accumulating evidences suggest that both Aph-1 and Pen-2 are physical 

members of the active protease and not transient interactors merely involved in 

assisting y-secretase assembly or protein folding (Takasugi, et al. 2003).

Aph-1 is conserved from nematodes to humans. It has a predicted molecular 

weight of -29 kDa and is predicted to be a 7-TM protein (Goutte et al., 2002). 

Aph-1 has been found to form a subcomplex with NCT and stabilise the presence 

of the PS holoprotein within the complex (Takasugi et al. 2003; Hu and Fortini, 

2003; LaVoie et al., 2003). Down-regulation of Aph-1 (Francis et al., 2002; Lee 

et al., 2002) by RNA interference (RNAi) is associated with reduced levels of PS 

NTF/CTF heterodimers and deficient y-secretase function.

Pen-2 is a membrane protein with two putative TM helices. It consists 101 amino 

acids with a molecular weight of -10  kDa (Francis et al., 2002). Down- 

regulation of Pen-2 (Francis et al., 2002; Steiner et al., 2002) by RNAi is 

associated with reduced levels of PS NTF/CTF heterodimers and deficient y- 

secretase function. Evidence suggests that Pen-2 is required for the 

endoproteolytic processing of PS (Luo et al., 2003; Takasugi et al., 2003); the 

stabilisation of the resulting NTF and CTF, and the subsequent activation of the 

y-secretase core complex (Takasugi et al., 2003; Kimberly, et al. 2003; Hu and 

Fortini, 2003; Luo et al., 2003; Prokop et al., 2004).
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The molecular mass o f y-secretase complex varies depending on different 

preparations (LaVoie et al. 2003). By using Blue Native Polyacrylamide Gel 

Electrophoresis, Steiner et al. (2002) reported the molecular mass of the y- 

secretase complex to be ~500 kDa, while LaVoie et al. (2003) identified it as ~ 

250-~270 kDa using BN-PAGE and Western blotting, corresponding to the 

apparent combined molecular masses of PS, NCT, Aph-1 and Pen-2 (Kimberly, 

et al. 2003). These two different molecular masses may be from dimeric or 

monomeric complexes (LaVoie, et al. 2003).

By using both biochemical co-immunoprecipitations and confocal 

immunofluorescence microscopy in Chinese hamster ovary cells, Baulac and 

colleagues (2003) identified that PS-1, nicastrin, Aph-1, and Pen-2 interact in the 

Golgi/trans-Golgi network (TGN)-enriched compartments. Using immuno

fluorescence techniques, they provide further evidence for localisation of the y- 

secretase components in the Golgi/TGN compartment, rather than in the ER. By 

using a stepwise experiment, Takasugi et al. (2003) demonstrated that Aph-1 

stabilises the PS holoprotein in collaboration with NCT, whereas Pen-2 elicits the 

final maturation of the y-secretase complex, conferring its activity and inducing 

endoproteolysis of PS; they also concluded that PS, NCT, Aph-1 and Pen-2 

represent the set of proteins that comprise the major framework of y-secretase.

The mechanism of y-secretase action is still unclear. By using inhibitor cross

competition kinetics and competition ligand binding, Tian et al. (2003) provide 

evidence that suggests y-secretase has physical separation of the sites for 

substrate binding and catalysis. Another unique feature of the y-secretase 

cleavage, reported by Gu et al. (2001), is the multiplicity of the cutting positions: 

one in the middle of the transmembrane domain that creates the carboxyl- 

terminus of Ap (classical y-cleavage), and the other close to the inner leaflet of 

the membrane that liberates Notch intracellular domain (NICD) (notch site-3 

cleavage), or APP ICD (AICD; y’- or s- cleavage of APP).
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1.3.2 y-secretase and RIP

An emerging model, Regulated Intramembrane Proteolysis (RIP), has been 

proposed by Kimberly and Wolfe (2003) for the normal biological function of y- 

secretase: PS-dependent RIP. In this generalised model, a cell surface receptor 

protein (such as Notch, APP or ErbB-4) binds to its ligand (hypothetical for 

APP), which permits a disintegrin metalloprotease - ADAM to cleave the 

ectodomain just outside of the membrane. The resultant CTF serves as a 

substrate for y-secretase cleavage, which cuts within the transmembrane domain. 

Release of the intracellular domain then permits translocation to the nucleus, 

interaction with appropriate cellular factors, and alteration of target gene 

transcription (see Fig. 1.6)

Ligand-
Receptor
binding

Ligand- 1* cleavage 2nd
Receptor by ADAM by y
binding

2nd cleavage 
by y-secretase

Ligand

Receptor Receptor CTF ICD

Nucleus

tered gene transcripti*

icd
/  Interacting

S  protein

Fig 1.6 A schematic representation of the model of RIP
(Simplified from Kimberly and Wolfe, 2003).
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1.3.3 Common Features of RIP

RIP was defined as the process by which transmembrane proteins can be cleaved 

within the plane of the membrane to liberate cytosolic fragments that enter the 

nucleus to control gene transcription (Brown, et al. 2000). This mechanism 

influences processes as diverse as cellular differentiation, lipid metabolism, and 

the response to unfolded proteins (Brown, et al. 2000).

RIP is mediated by at least three distinct families of intramembrane proteases, 

which cleave substrates within their TM domains: 1) the presenilin-type aspartyl 

proteases, including the PS-dependent y-secretase (Wolfe et al., 1999a & b) and 

the signal peptide peptidase (SPP) which is essential for generation of signal 

peptide-derived HLA-E epitope in humans (Ponting et al., 2002; Martoglio and 

Golde, 2003; Xia and Wolfe, 2003); 2) the site-2 protease (S2P) family, zinc- 

metalloproteases that cleave and activate sterol regulatory element binding 

proteins (SREBPs) (Rawson et al., 1997); 3) the rhomboid serine proteases that 

use a catalytic triad to cleave transmembrane ligand substrates, such as the main 

EGF ligand Spitz (Urban et al., 2001; Freeman, 2004).

Two major mechanisms regulate the proteolytic cleavage mediated by 

intramembrane protease: for PS, SPP, or S2P-dependent RIP, the removal of a 

certain protein domain by prior cleavage regulates subsequent RIP cleavage 

(Brown et al., 2000; Struhl and Adachi, 2000). In contrast, rhomboids directly 

cleave target substrates without a need for a prior cleavage and rhomboid activity 

appears to be tightly controlled by protein trafficking (Urban and Freeman, 2003; 

Freeman, 2004)

Table 1.3 lists the reported y-secretase substrates to date (reviewed by Landman 

and Kim, 2004; Vetrivel et al., 2006). These substrates share several 

characteristics: a) they all span the membrane bilayer at least once, though in 

different directions, b) they can be type I membrane-spanning proteins oriented 

with their NH2 termini in the lumen and their COOH termini in the cytosol; or 

type II membrane protein with its NH2 terminus in the cytosol;
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Table 1.3 Reported y-secretase substrates

Yadan Zhang

Substrate Putative proteolysis function References

APP N uclear signaling in complex with 
Fe65/Tip60

McLoughlin & Miller et al., 1996;

APLP 1/2 Nuclear signaling Eggert et al., 2004; 
Scheinfeld et al., 2002

Notch 1-4 Nuclear signaling in complex with 
transcription factors (e.g. CSL)

Struhl and Greenwald, 1999; 
Song et al., 1999; Handler et al., 

2000; Mizutani et al., 2001; 
Kimberly et al., 2003

Jagged and 
Delta-1

Nuclear signaling (via AP-1) LaVoie and Selkoe, 2003 
Bland et al., 2003

ErbB-4 Nuclear signaling in complex with YAP; 
disassembly o f  high affinity heteromeric

N i et al., 2001; Lee et al. ,2002

DCC Nuclear signaling? Taniguchi et al., 2003

CD44 Nuclear signaling (via CBP supression) Murakami et al., 2003

LRP Nuclear signaling in complex with Tip60 May et al., 2003

N-Cadherin Nuclear signaling (via CBP supression) Marambaud et al., 2003

NRG-1 Nuclear signaling Bao et al., 2003

E-Cadherin Disassembly o f  adherence junctions; nuclear 
signaling through liberation o f  a / P catenins?

Marambaud et al., 2002

Nectin-1 Disassembly o f  adherence junctions Kim et al., 2002

p75NTR Disassembly o f  high affinity heteromeric 
neurotrophin receptor complex

Jung et al., 2003

Syndecan-3 Disassembly o f  synaptic receptor complexes 
and / or nuclear signaling via interaction with 
CASK?

Schulz et al., 2003

GluR subunit 3 Modulation o f  synaptic receptor function? Meyer et al., 2003

Na channel 
P2-subunit

Regulates N avl a-subunit levels and controls 
cel 1-surface sodium current densities

Kim et al., 2007

Tyrosinase Disrupt the melanosomal localisation and 
melanin synthesis activity

Wang et al., 2006

TNF a Trigger IL-12 production Friedmann et al., 2006

VEGFR 1 Regulates angiogenesis Cai et al., 2006

IGF-1 receptor Nuclear signaling? McElroy eta l., 2007

IL-1 receptor2 ? Kuhn et al., 2007

LRP6 Binding directly with GSK3 and attenuating 
its activity; Nuclear signaling?

Mi and Johnson, 2007
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or two membrane-spanning regions that are inserted in the bilayer in a helical 

hairpin fashion.

PS-dependent y-secretase and rhomboids cleave only type-I membrane 

substrates, while S2P and SPP cleave type-II membrane proteins (Weihofen et 

al., 2002; Lemberg and Martoglio, 2002).

1.3.4 RIP and Classic Receptor Tyrosine Kinases

Several recent reports suggest that a classic receptor tyrosine kinase, ErbB-4, 

may also signal through RIP (Ni et a l, 2001; Lee et a l, 2002). Like the other 

RIP substrates, ErbB-4 undergoes two cleavage events. The initial cleavage in 

the extracellular domain is mediated by the metalloprotease TACE (ADAMI7) 

(Rio et al, 2000). This is followed by intramembrane cleavage mediated by y- 

secretase /presenilin, which results in translocation of the C-terminal domain to 

the nucleus. However, it remains to be determined whether endogenous ErbB-4 

mediates nuclear signalling. It is still possible that y-secretase cleavage might 

facilitate ErbB-4 signalling through activation of protein kinase C, MAP kinase, 

or PI3 kinase, known targets of ErbB-4 signalling in the cytoplasm. 

Nevertheless, these findings raise the intriguing possibility that the same receptor 

may signal through both classic kinase cascades and RIP (Ebinu and Yankner,

2002). Very recently, Cai et a l (2006) showed evidence that PEDF inhibits 

VEGF-induced angiogenesis in vitro and this closely correlates to the cleavage of 

VEGFR-1 via y-secretase activity. This suggests that VEGFR-1 may be also 

involved in RIP.

1.3.5 A new non-classical signal pathway for VEGF action?

Considering the evidences reviewed above, a new non-classical signal pathway 

for VEGF action can be postulated as follows: upon the ligand binding (e.g. 

VEGF, VEGF-B or P1GF), an enzyme (possibly one of the MMPs) cleaves a 

portion of the extracellular domain of the VEGFR-1; this 1st cleavage initiates y- 

secretase to cleave the cytosolic domain of the VEGFR-1, allowing this fragment
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to translocate to the nucleus o f the endothelial cells to promote angiogenesis (see 

Fig 1.7).
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Regulation of 
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Fig 1.7 A schematic representation of the hypothesis -  the effect 
of VEGF on VEGFR-1 /VEGFR-2.
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1.4. Pigment Epithelium-Derived Factor (PEDF)

1.4.1 General features of PEDF

Pigment Epithelium-Derived Factor (PEDF), a 50 kDa of glycoprotein with 

pleiotropic functions, is naturally occurring in the eye and considered as crucial 

to prevent pathological angiogenesis. PEDF was first identified as a neurotrophic 

factor possessing neuronal differentiating activity against Y-79 retinoblastoma 

cells in conditioned medium obtained from foetal human retinal pigment 

epithelium (HRPE) cell culture (Tombran-Tink and Johnson, 1989)

PEDF is expressed during embryonic development, suggesting an involvement in 

cell patterning and possibly in early vasculogenesis. As a factor that can bind to 

the ECM, PEDF could help in the spatial definition of developing vessel 

pathways (Tombran-Tink and Barnstable, 2003a).

PEDF is expressed in the RPE cells o f the retina and in the interphotoreceptor 

matrix sequestered between the RPE layer as well as in the adjacent 

photoreceptors of the human foetal and bovine eyes (Karakousis, et al., 2001; 

Tombran-Tink and Barnstable, 2003a); in ganglion cells (Karakousis, et al., 

2001; Ogata, et al., 2002; Behling, et al., 2002) and ciliary epithelium of the 

adult human and rat eye; and in bovine retinal ECs (Tombran-Tink, et al. 2004).

PEDF transcript is expressed in most regions of the nervous system of adult 

human brain and spinal cord (Tombran-Tink, et al., 1995; Bilak, et al. 1999; 

Tombran-Tink, et al. 1996; Tombran-Tink and Barnstable, 2003a). Ependymal 

cells are likely to be a major source of PEDF in the human CSF, suggesting that, 

like the retina, much o f the brain is bathed in this neurotrophic factor (Bilak, et 

al. 1999; Tombran-Tink and Barnstable, 2003a). It is also expressed in a number 

of non-neural tissues including skeletal muscle, bone, heart, placenta and liver 

(Tombran-Tink, et al. 1996; Tombran-Tink and Barnstable, 2003a).

The PEDF gene was independently identified as one that is post-transcriptionally 

and very markedly (> 100-fold) up-regulated (Coljee, et al. 2000) during Go
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phase in young but not senescent cultured fibroblasts (Pignolo, et a l 2003; 

Tombran-Tink, et a l  1995), giving rise to an alternative name of “early 

population doubling level cDNA”, suggesting additional roles in both the cell 

cycle and senescence.

1.4.2 Biology of PEDF

1.4.2.1 Structure

The human PEDF gene contains 8  exons and a 5’ flanking region that is unusual 

because it contains a dense cluster of alu repeats (Tombran-Tink, et al 1996). 

The PEDF promoter region contains several key regulatory elements including a 

retinoic acid receptor motif, which may be important in the regulation and cell 

differentiation function of the gene. The PEDF gene was mapped to human 

chromosome 17pl3 (Tombran-Tink, et a l 1996; Tombran-Tink, et a l 1994; 

Goliath, et a l 1996), a hot spot for many retinal degenerative diseases that are 

characterized by loss of photoreceptor function and subsequent visual 

impairment, e.g. retinitis pigmentosa (RP13), leber’s congenital amaurosis and a 

type of cone-rod dystrophy (CORD5). The PEDF gene encodes a 418 amino acid 

protein (predicated molecular weight of 46.3 kDa) with a hydrophobic signal 

characteristic of secreted proteins. PEDF contains a single carbohydrate side 

chain that raises its apparent molecular weight to a 50kDa single band seen on a 

silver-stained SDS gel (Dawson, et a l 1999) or doublet bands (Tombran-Tink, et 

a l , 1991).

The crystal structure o f PEDF was determined using purified recombinant human 

PEDF expressed in hamster cells (Simonovic, et a l , 2001). PEDF has structure 

and sequence homology to members of the serpin family of proteinase inhibitors 

and contains a characteristic serpin reactive loop (RCL) (Steele, et a l, 1993). 

PEDF, however, does not exhibit inhibitory activity against any known 

proteinases, possibly due to differences in the sequence of the RCL (Simonovic, 

et a l, 2001; Steele, et a l,  1993). The RCL in PEDF is unusual because it is 

exposed in the native state so that the central region is largely uncovered, a 

feature that may allow rapid binding to regulatory proteins. PEDF has a unique
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asymmetric charge distribution, that is, the basic residues are concentrated on 

one surface, and the acidic residues are concentrated on the opposite surface 

(Simonovic, et al. 2001). The PEDF molecule contains two sites for interactions 

with ECM molecules. By utilising residue-specific chemical modification and 

site-directed mutagenesis techniques, Yasui, et al. (2003) revealed the acidic
  TOO

amino acid residues on PEDF (Asp , Asp , and Asp ) are critical for 

collagen binding whilst the three clustered basic amino acid residues (Arg145, 

Lys146, and Arg148) are necessary for heparin binding. A 44-amino PEDF peptide, 

corresponding to position 78-121, was shown to have neuroprotective activity on 

motor neurons, whereas an adjacent 34 amino acid peptide, corresponding to 

positions 44-77, did not (Bilak, et al., 2002).

1.4.2.2 Biological functions

1.4.2.2.1 A natural angiogenesis regulator

Dawson, et al. (1999) showed that PEDF inhibited angiogenesis process in vitro 

and was more effective than the well-studied angiogenesis inhibitor angiostatin. 

Biochemically purified recombinant forms of PEDF potently inhibited 

neovascularization in the rat cornea. In an in vitro assay, PEDF inhibited 

endothelial cell migration in a dose-dependent manner with a median effective 

dose (ED50) of 0.4 nM, slightly more active than pure angiostatin, 

thrombospondin-1 (ED50 o f 0.5 nM), and endostatin (ED50 of 3 nM), placing it 

among the most potent natural inhibitors of angiogenesis. At doses of 1.0 nM or 

greater, PEDF also inhibited basic fibroblast growth factor (bFGF) induced 

proliferation of capillary endothelial cells by 40% (Dawson, et al. 1999). PEDF 

inhibited endothelial cell migration toward the angiogenic inducers, such as, 

PDGF, VEGF, interleukin-8 , acidic FGF (aFGF), and lysophosphatidic acid -  

indicating that PEDF exerts its inhibitory function even in the presence of 

proangiogenic factors (Dawson, et al. 1999).

A recent study has shown that PEDF can inhibit the migration of microvascular 

cells, and it acts on endothelial cells forming new vessels to induce their 

apoptosis without harming the pre-existing vasculature (Stellmach, et al. 2001).
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To an extension, Volpert, et al. (2002) demonstrated that PEDF derives this 

specificity for activated endothelial cells from their dependence on Fas/Fas 

ligand (FasL) mediated apoptosis. Proliferating endothelial cells are the only 

targets identified so far in which PEDF promotes cell death. This might be due to 

a unique type of receptor on endothelial cells or to the regulation of different 

signal transduction pathways by PEDF (Tombran-Tink and Barnstable, 2003b).

1.4.2.2.2 Neurotrophic and Neuroprotective properties

The first function of PEDF that was identified is its differentiating effect on 

retinoblastoma cells in the conditioned-medium of foetel human RPE cells 

(Tombran-Tink and Johnson, 1989; Tombran-Tink, et a l 1991). PEDF promotes 

the transformation of dividing retinoblastoma cells into differentiated neurons. 

The expression of PEDF in the human retina is seen as early as 7.4 weeks of 

gestation, a stage when retinal neurons are differentiating (Karakousis, et al. 

2001).

PEDF is an effective neuroprotective factor in many parts of the nervous system. 

In the eye, for example, PEDF 1) reduces apoptosis induced by H2O2 or light 

damage in rat photoreceptors (Cao, et al. 2001). 2) preserves the spatial 

organisation, morphology and function of photoreceptors after RPE detachment 

in a Xenopus model o f retinal degeneration (Jablonski, et al. 2001), and protects 

retinal neurons from injuries caused by increased intra-ocular pressure from 

transient ischemic reperfusion (Ogata, et al. 2001). Increased pressure within the 

eye is a major risk factor for glaucoma and its associated ganglion cell death. 

Experimental pressure-induced ischemia and subsequent reperfusion leads to 

extensive retinal cell death in the absence of PEDF (Tombran-Tink and 

Barnstable, 2003a).

Glutamate-mediated excitotoxicity is thought to be an important factor in many 

acute neurodegenerative conditions such as stroke and epilepsy. In cultured 

neurons, apoptotic cell death can be induced by micromolar concentrations of 

glutamate (Otori, et al. 1998). PEDF at low nanomolar concentrations
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significantly prevents glutamate-induced apoptotic cell death in cultures of 

cerebella granule cells (Taniwaki, et al. 1995; Araki, et al. 1998), hippocampal 

neurons (DeCoster, et al. 1999; Houenou, et al. 1999) and spinal motor neurons 

(Bilak, et al. 1999; Houenou, et al. 1999). Whether PEDF alters the sensitivity 

of glutamate receptors, the intracellular movements of calcium or the down

stream response of mitochondria to glutamate is still not known.

1.4.2.2.3 PEDF in non-neuronal cells

Increasing evidence shows that PEDF might also have important effects on non

neuronal cells. PEDF prevents alterations in the morphology of Muller cell (the 

main glial cell type present in the retina) by attenuating the spatial 

disorganisation of the inner nuclear layer. PEDF might also mitigate the 

progression of photoreceptor degeneration by improving biosynthetic activity in 

Muller cells such as by restoring physiological levels of glutamine synthetase 

(Jablonski, et al. 2001). In cultures of rat brain microglia, PEDF caused changes 

in morphology and an increase in metabolic activity (Sugita, et al. 1997). PEDF 

also has strong autocrine effects in cells such as the RPE. In neonatal rat cultures, 

PEDF stimulated RPE cells increased in cytoplasmic area, pigment granule 

content, and in the development of cell-cell contacts (Malchiodi-Albedi, et al. 

1998). All of these changes are indicative of normal RPE maturation. Tombran- 

Tink and Barnstable (2003a) provided evidences suggest that PEDF might not 

only act on neighbouring cells, but might also be important for maintaining key 

functional processes in the cells that secrete it.

1.4.2.2.4 In ageing and disease

Recently it has been shown that there is a decrease in PEDF expression with 

ageing. The levels of PEDF protein decline when primary cells in culture reach 

senescence (DiPaolo, et al. 1995), mirror findings in RPE cells, where PEDF 

synthesis and secretion declined with time in culture (Tombran-Tink, et al. 1995; 

Hjelmeland, et al. 1999). This decline can be reset in cloned animals (Lanza, et 

al. 2000). The exact mechanism that regulates PEDF levels is unclear, but some
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evidence supports a post-transcriptional regulation of mRNA stability (Coljee, et 

al 2 0 0 0 ).

In some diseases, PEDF levels increase, such as in the CSF of patients with 

Amyotrophic Lateral Sclerosis and in rodent retinas after laser-induced retinal 

injuries (Ogata, et al. 2001). These increases might constitute an attempt of the 

tissue to limit neuronal damage. In contrast, in macular degeneration or diabetic 

retinopathy, PEDF expression decreased. PEDF also exerts a powerful action on 

tumours. PEDF promotes differentiation and antiproliferation activity in human 

retinoblastoma cells (Tombran-Tink and Johnson, 1989; Tombran-Tink, et a l 

1991). In addition, PEDF treated tumours had less neovascularisation, due to 

the antiangiogenic action of this factor. Ek et a l (2006) reported the 

multitargeted role of PEDF in the inhibition of growth, angiogenesis and 

metastasis of two orthotopic models of osteosarcoma (rat UMR 106-01 and 

human SaOS-2). Through stable plasmid-mediated gene transfer of full-length 

human PEDF, they show that PEDF overexpression significantly reduced tumour 

cell proliferation and Matrigel invasion and increased adhesion to collagen type- 

1 in vitro. In vivo, PEDF overexpression dramatically suppressed orthotopic 

osteosarcoma growth and the development of spontaneous pulmonary 

metastases. Furthermore, tumours overexpressing PEDF exhibited reduced 

intratumoral angiogenesis, evidenced by a significant decrease in microvessel 

density.

On the other hand, other factors such as VEGF that are secreted by the tumour 

cells promote tumour expansion. A finely tuned balance of mitogenic stimulators 

and inhibitors might therefore control the progression or regression of such 

tumours (Tombran-Tink and Barnstable, 2003a & b).

1.4.3 Therapeutic potential of PEDF

From the studies that have been reviewed above, it is clear that PEDF could be 

used as a therapy to limit ocular angiogenesis that endangers vision. Support 

comes from the observations in that: 1) PEDF is effective against multiple
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inducers of angiogenesis (Dawson, et al., 1999), including the VEGF and IL-8 

that are thought to play important roles in inducing ocular angiogenesis 

(Yoshida, et al., 1998), and it is very effective against ischemia-induced retinal 

angiogenesis (Dawson, et al., 1999). 2) Changes in ocular concentration of 

PEDF appear likely to occur and to be important in facilitating human eye 

diseases (Bouck, 2002). 3) In using PEDF, it is just simply replacing the protein 

that is naturally present in healthy tissue but has been lost because of disease 

(Bouck, 2002). A further advantage of these molecules is that they are tolerated 

in the body and are unlikely to produce the toxic side effects of synthetic 

inhibitors (Tombran-Tink and Barnstable, 2003b). 4) PEDF has strong 

neuroprotective effects on neurons from a wide range of brain areas and eye. 

The protection is effective against many insults including ischemia, 

excitotoxicity, axotomy and oxidising agents (Tombran-Tink and Barnstable, 

2003b). This becomes a desirable side-effect of PEDF.

1.4.4 Mechanism(s) of PEDF action

How does PEDF exert its action? To date, a receptor for PEDF has not yet been 

identified*, but a putative 80-85 kDa PEDF-binding protein has been identified 

by two studies using affinity chromatography (Alberdi, et al. 1999; Aymerich, et 

al. 2001). In one study, radiolabelled [125I] PEDF binds to a single class of 

binding sites on retinoblastoma and cerebellar granule cells with Kd values of 

1.7-3.6 nM and 3.2 nM, respectively, indicating that the activity of PEDF might 

be mediated by its interaction with a single receptor type (Alberdi, et al. 1999). 

In the second study, a single class of binding site was detected with a Kd of 2.5 -

6.5 nM on retinal membranes (Aymerich, et al. 2001). Whether this protein 

represents a receptor for PEDF or is a regulatory protein that is important to its 

functions, remains unknown.

Three possible signalling pathways have been related to PEDF by examination of 

the molecules that PEDF activates. First, in cerebellar granule cells, PEDF

A lipase-linked cell membrane receptor for PEDF has been identified by Notari et al. (2006).
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stimulates phosphorylation of IkB [inhibitor of nuclear factor kB (NF-kB)], 

leading to activation and translocation of NF-kB to the nucleus. This results in a 

sequential chain o f events that link the NF-kB pathway to a defined extracellular 

signal and the transcription o f anti-apoptotic and neuroprotective genes (Yabe, et 

al. 2001). Second, under certain growth conditions, PEDF activates the mitogen- 

activated protein kinase (MAPK) pathway by regulating the phosphorylation of 

extracellular-signal-regulated kinase (ERK) 1 and 2 in endothelial cells 

(Hutchings, et al. 2002). Third, in the study by Volpert, et al. (2002), PEDF 

generates antiangiogenic signals by activating the Fas-Fas ligand (FasL) death 

cascade in endothelial cells. However, in mice that are deficient in Fas or FasL, 

PEDF still inhibits ocular angiogenesis, and hence it must have additional 

inhibitory actions in endothelial cells, independent of the Fas-FasL cascade 

(Barreiro, et al. 2003). Figure 1.8 summarises the reported (Yabe et al., 2001; 

Hutchings et al., 2002; Volpert et al., 2002) signalling pathways that PEDF may 

be involved.

1.5. Retinal pigment epithelium (RPE)

The RPE cells is thought to play a central role in the development of choroidal 

neovascularisation in AMD, which is the most common cause of severe visual 

loss in patients over age 60 years in the US alone (Friedman et al., 2004; Brown 

et al., 2005).

1.5.1 General features of the RPE

The RPE is a monolayer o f pigmented cells that lies between the retinal 

photoreceptors and the choroid, and forming a part of the barrier between the 

choroidal circulation and retina (Bok, 1993; Marmorstein, 2001; Rizzolo, 1997). 

The RPE gets its name from the melanin pigment that is present within 

cytoplasmic granules called melanosomes. The RPE is derived embryologically 

from the same neural tube tissue that forms the neurosensory retina, but is 

differentiated into a secretory epithelium (Marmor, 1998).
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RPE cells are small (about 10-14 gm in diameter) in the macular region, and 

become flatter and broader with diameter up to 60 pm toward the periphery. The 

RPE has two distinct membrane regions: the apical membrane that faces the 

photoreceptor outer segments and the basolateral membrane faces Bruch’s 

membrane, which separates the RPE from fenestrated endothelium of the 

choriocapillaris (Fig 1.9). These two regions show distinct membrane 

permeability properties due to the asymmetric distribution of various channels 

and transporters. The apical side has numerous long apical microvilli which 

surround the light-sensitive outer segments establishing a complex of close 

structural interaction. The apical cytoplasm contains microfilaments and 

microtubules, and the highest concentration of melanin granules. The midportion 

contains the nucleus, golgi apparatus, endoplasmic reticulum and lysosomes, etc. 

The basal membrane has small convoluted infoldings that increase the surface 

area for absorption and secretion (Marmor, 1998).

As a layer of pigmented cells the RPE absorbs the light energy focused by the 

lens on the retina (Bok, 1993; Boulton and Dayhaw-Barker, 2001). Like other 

epithelia, RPE also transports ions, water, and metabolic end products from the 

subretinal space to the blood (Domonville de la Cour M, 1993; Hamann, 2002; 

Marmor, 1999). The RPE takes up nutrients such as glucose, retinol, and fatty 

acids from the blood and delivers these nutrients to photoreceptors. Importantly, 

the RPE plays a key role in maintaining the photoreceptor excitability: a) via the 

visual cycle of retinal, i.e. takes up retinal from the photoreceptor and transports 

to the RPE, reisomerise all-trans- retinal to 11-cA-retinal, and transport back to 

photoreceptors; b) to stabilise ion composition in the subretinal space by RPE’s 

voltage-dependent ion conductance of the apical membrane (Hamann, 2002; 

Steinberg, 1985); c) via its macrophage-like properties, i.e. it functions to 

phagocytise and digest discarded portions of photoreceptor outer segments, and 

essential substances such as retinal are recycled and returned to photoreceptors to 

rebuild light-sensitive outer segments from the base of the photoreceptors (Bok, 

1993; Finnemann, 2003). In addition, the RPE is able to secrete a variety of
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growth factors helping to maintain the structural integrity of choriocapillaris 

endothelium and photoreceptors. Furthermore, the secretory activity of the RPE 

plays an important role in establishing the immune privilege of the eye by 

secreting immunosuppressive factors (Ishida et al., 2003; Streilein et al., 2002). 

Fig 1.9 summaries the RPE function (adapted from Strauss, 2005).

1.5.2 Secretary function of the RPE

The RPE is known to produce and to secrete a variety of growth factors 

(Tanihara et al., 1997) and factors that are essential for maintenance of the 

structural integrity of retina (Cao et al., 1999) and choriocapillaris (Witmer et 

al.2003), e.g., different types of tissue inhibitor of matrix metalloprotease 

(TIMP) (Alexander et al., 1990; Qi et al., 2002). Therefore, the RPE makes 

factors that support survival o f photoreceptors and ensure a structural basis for 

optimal circulation and supply o f nutrients. Table 1.4 lists the secreted factors by 

the RPE reported to date (reviewed by Strauss, 2005). Of particular interested 

for this study is the secretion of VEGF and PEDF by RPE.

Table 1.4 Reported factors that secreted by RPE (reviewed by Strauss, 2005)

Growth factors Others
VEGF; FGF-1,-2,-5; TGF-p, IGF-I,CNTF, PDGF; LEDGF, 
Interleukin family; PEDF

MMP-2
MMP-9
TIMPs

In the healthy eye, secreted PEDF from RPE helps to maintain the retinal as well 

as the choriocapillaris structure by protecting neurons against glutamate-induced 

or hypoxia-induced apoptosis (Cao et al., 2001; Ogata et al., 2001). PEDF also 

acts as an antiangiogenic factor to inhibit EC proliferation and stabilise the 

endothelium of the choriocapillaris (Dawson et al., 1999; Ogata et al., 2002a & 

b). Interestingly, VEGF is also secreted in low concentration by the RPE in the 

healthy eye where it prevents ECs apoptosis and is essential for an intact 

endothelium of the choriocapillaris (Bums and Hartz, 1992). VEGF also acts as a 

permeability factor stabilising the fenestrations of the endothelium (Roberts and 

Palade, 1995). In a healthy eye, PEDF and VEGF are secreted at opposite sides
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of the RPE: PEDF to the apical side where it acts on neurons and photoreceptors, 

whereas the majority of VEGF is secreted to the basal side where it acts on the 

choroidal endothelium (Becerra et al., 2004; Blaaugeers et al., 1999). Growth 

factor secretion changes in response to damage or injury, which stimulates the 

RPE to also secrete neuroprotective factors including bFGF or CNTF (Blanco et 

a l, 2000). In the relation between VEGF and PEDF, Ohno-Matsui et al. (2003) 

reported that VEGF upregulates PEDF via VEGFR-1 in HRPE cells in an 

autocrine manner.

Taken together, the complex functions of the RPE indicate that the RPE is 

essential for visual function; also an interesting cell model for study the 

regulation of VEGFR-1 /VEGFR-2 by VEGF /PEDF in paracrine/autocrine 

manners.

1.6. Hypothesis

To date, it is vital to understand the biochemical pathways by which PEDF exerts 

its actions and how they interact with the pathways that are activated by other 

factors. From the evidence reviewed above, the action of PEDF may occur 

through the following steps (Fig 1.10a and Fig 1.10b): PEDF inhibits VEGF 

induced angiogenesis by inhibiting the enzyme(s) activity of the first or second 

or both cleavages of VEGFR-1 or VEGFR-2 in the RIP signalling pathway. 

Consequently, the cleavage of VEGFR-1 (or VEGFR-2) is reduced and less of 

the cytosolic domain of VEGFR-1 (or VEGFR-2) is translocated into the nuclei, 

resulting in the inhibition of angiogenesis.

1.7. Project objectives

The overall aim of the project was to define the involvement of a new signalling 

pathway-PS-dependent RIP -  in relation to VEGF/PEDF, VEGFR-1 /VEGFR-2 

in in vitro models of bovine retinal microvascular endothelial cells (BRMECs) 

and human RPE (HRPE). Specific objectives to achieve this aim include:

1) To investigate the expression profiles of the elements that possibly 

involved in the RIP pathway in cultured BRMECs and HRPE cells;
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2) To define the interactions between the above members in RIP pathway in 

BRMECs and HRPE cells;

3) To further determine the biological functions of VEGF/PEDF in 

regulation of angiogenesis through inhibition of VEGF function.
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^  1st cleavage 
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Regulation of 
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Fig 1.10a A schematic representation of the hypothesis -  the effect of VEGF 
on VEGFR-1 / VEGFR-2. Upon the ligand binding (e.g. VEGF), an enzyme 
(possibly one of the MMPs) cleaves a portion of the extracellular domain of the 
VEGFR-1; this 1st cleavage initiates y-secretase to cleave the cytosolic domain 
of the VEGFR-1, allowing this fragment to translocate to the nucleus of the 
endothelial cells to promote angiogenesis.
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Fig 1.10b. A schematic representation of the hypothesis -  the effect of 
VEGF/PEDF on VEGFR-l/VEGFR-2. PEDF inhibits VEGF induced 
angiogenesis by inhibiting the enzyme(s) activity of the first or second or both 
cleavages of VEGFR-1 in the RIP signalling pathway.
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2.1. Introduction

The retina has frequently been used as a source of microvascular endothelial cells 

(MEC) (Meezan et al., 1974; Frank et al., 1979; Bowman et al., 1982; 

Rymaszewski et al., 1992), partly because of its extensive microvascular network 

and partly because of the well-documented involvement of the retinal 

microvasculature in diabetic retinopathy (reviewed in Afzal et al., 2007). 

Cultured bovine retinal microvascular endothelial cells (BRMECs) has been used 

as an in vitro model for study o f angiogenesis by several groups (Schor, AM and 

Schor, SL, 1986; Simorre-Pinatel et al. 1994; Cai et al. 2003; Tombrain-Tink et 

al., 2004). Due to bovine eyes are easy to obtain; eyes are one of the targeted 

organs from pathological neovascularisation; the MECs are more representative 

than human umbilical vein endothelial cells (HUVECs) in regard to the 

functional study in angiogenesis, this project made use of cultured BRMECs as 

an in vitro model. The limitation is due to the variations between the species, the 

results from BRMECs may not accurately represent human cells.

The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells 

located between the neural retina and vascular choroids that influences the 

structure and function of cells in both (Marmor, 1998; Strauss, 2005). The RPE 

cells may modulate activity of the choriocapillaries through diffusible 

angiogenesis factors (Henkind and Gartner, 1983; Eichhom et al., 1996). One of 

the candidates, vascular endothelial growth factor (VEGF), is secreted by RPE 

cells in physiological and pathological conditions (Adamis et al., 1993; Kvanta et 

al., 1996). However, some studies question the importance of VEGF alone in 

promoting choroidal neovascularisation (Okamoto et al., 1997). More 

interestingly, pigment epithelial-derived factor (PEDF), a potent antiangiogenic 

factor, is also secreted by RPE cells. Recent in vitro studies have demonstrated 

that a dynamic balance exits between VEGF and PEDF in physiological 

conditions that is critical in regulating the behaviour of choroidal endothelial 

cells (ECs) (Ohno-Matsui et al., 2001). A unique relationship between VEGF 

and PEDF in HRPE cells has been reported in that VEGF upregulates PEDF via 

VEGF receptor-1
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(VEGFR-1) in an autocrine manner (Ohno-Matsui et al., 2003). Apart from 

VEGFR-1, HRPE cells also express VEGFR-2. Therefore, cultured HRPE cells 

would be an ideal in vitro model for exploring the relationship further among 

VEGF, PEDF, VEGFR-1 and VEGFR-2. HRPE can also act as a non-angiogenic 

cell type to compare with the angiogenic cell type of ECs. It hopes that the 

differences between endothelial cells and RPE in response to the exogenous 

VEGF/PEDF would provide new insight about the mechanism of VEGF and 

PEDF action.

The aim of this study was to set up in vitro models using BRMECs, as an 

angiogenic cell type, and HRPE cells, as a non-angiogenic cell type to compare 

the interplay among PEDF, VEGF, VEGFR-1, VEGFR-2 and presenilin-1.

The objectives of this study were:

• To establish in vitro cultures by isolation of BRMECs from bovine eyes, 

and isolate HRPE cells from human eyes;

• To characterise the isolated cells by monitoring the purity, cellular 

markers and cell viability;

• To determine the expression of VEGFR-1 and VEGFR-2.

2.2 Experimental design

This study was designed to be carried out by 1) Isolation of BRMECs from 

bovine eyes; and isolation o f HRPE cells from human donor eyes. 2) Culture 

both cells using the protocols available in the group. 3) Cell purity monitoring by 

characterisation of the cells (morphology and specific cellular markers). 4) Cell 

viability monitoring. 5) Confirmation of expression of the targets of interest 

(VEGFR-1 and VEGFR-2). A flow chart for the experimental design is shown in 

Fig 2.1.
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Bovine eyes

I
Isolation of BRMECs

human eyes

Isolation of HRPE

Cell culture (BRMECs/HRPE cells)

I

i *
Cell purity Cell Viability 

1
Cell characterisation

I 1
Morphology Specific cellular marker(s)

Expression of the targets of interest

Fig 2.1 Flow chart of experimental design for the chapter 2.
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2.3 Materials and methods

2.3.1 Cell culture

All the cell culture procedures were carried out in a Class II laminar flow 

cabinet.

2.3.1.1 Isolation of bovine retinal microvascular endothelial cells (BRMECs)

BRMECs were isolated from fresh bovine eyes by homogenisation and a series 

of filtration steps, as described previously (Cai et a l, 2003). In brief, bovine eyes 

were enucleated within 1 2  hours post-mortem and transported from the local 

abattoir to the laboratory and processed for ECs within 24 hours. The 

surrounding tissue of the eyes was cleaned off and the eyeballs were immersed in 

5% beta iodine for at least 5 minutes and subsequently washed with 1 x 

phosphate-buffered saline (PBS). The eyeball was cut open 5 mm posterior to the 

limbus, the contents removed and the retina separated from the RPE layer and 

placed in Eagle’s Minimum Essential medium (MEM) supplemented with 30 

mM hepes buffer at pH 7.4 (EARLE/HEPES) (GIBCO, UK). A pool of bovine 

retinas was isolated from 10 or 20 bovine eyes for each batch. The retinas were 

washed with lxPBS (autoclaved) 3 times then transferred to fresh MEM for 

homogenisation using a rotary Teflon-glass homogeniser. The resultant 

microvessels were trapped on an 85 pm nylon mesh and digested by an enzyme 

cocktail containing 0.5 mg/ml of collagenase (Sigma, USA), 0.2 mg/ml of 

protease (Sigma, USA) and 0.2 mg/ml deoxyribonuclease (Sigma, USA) in 

MEM in a standard incubator for 20 - 30 minutes. The ECs from digested 

micro vessels were trapped on a 53 pm mesh, and washed with cold MEM. The 

ECs were pelleted by centrifugation at 250 g for 10 minutes and the pellets were 

resuspended using human Microvascular Endothelial Cell Basal Medium with 

Growth Supplement (see growth medium for BRMECs in Appendix 1) into 2 

(from 10 eyes) or 4 (from 20 eyes) T25-flasks (25 cm2) (Orange Scientific) 

precoated with the Attachment Factor (ZHS-8949, TCS CellWorks, UK). Cells 

were incubated at 37°C, with a humidified atmosphere containing 5% CO2 and 

95% air and fed every 2 to 3 days. It was observed that the cell number started 

increasing within 4 days of initial seeding and reached confluence around 10-14
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days. Subculture was carried out at a split ratio of 1:2 or 1:3 when confluence 

reached 75-80% of the flask surface. The cells were used within 3 passages.

2.3.1.2 Isolation of human retinal pigment epithelial (HRPE) cells

Human donor eyes were obtained from the Bristol Eye bank with specific 

consent for research use. HRPE cells were isolated as described previously 

(Boulton et al. 1983). In brief, eyes were used within 48 hours post-mortem and 

cut open at 4mm posterior to the limbus. The vitreous and neural-retina were 

gently removed. The posterior eyecup was placed on the inverted lid of a 

universal (sterilised), and the RPE layer was fixed on the edge of the cup if it had 

detached to reduce the contamination by fibroblast cells. Both the eyecup and the 

lid were placed into a 60ml sterile pot. 0.25% (w/v) trypsin with 0.05% (w/v) 

EDTA (see Appendix 1 for more detail) was added to just below the edge of the 

RPE layer and incubated at 37°C, 5% CO2 and 95% air for 60 minutes. The 

digestion was stopped by adding foetal calf serum (FCS). A pellet was collected 

by centrifugation at 250g for 5 min. The pellet was resuspended in Ham’s F-10 

medium containing 10% (v/v) FCS (growth medium for HRPE cells, see 

Appendix 1), and then seeded into one T25-flask per eye. The flasks were kept in 

an incubator at 37°C with a humidified atmosphere containing 5% CO2 and 95% 

air. The cells were fed with Ham’s F-10 medium containing 10% FCS every 2 

days. It was observed that the cell number started increasing around 7 days after 

initial plating and reached confluence around 18 days.

2.3.1.3 Subculture and maintenance

Subculture was carried out at a split ratio of 1:2 / or 1:3 when confluence reached 

75-80% of the flask surface. In brief, the medium was removed and the cells 

rinsed in PBS. The addition of trypsin [0.25% (w/v)] • EDTA [0.05% (w/v)] 

solution was applied to completely cover the monolayer of cells. The flasks were 

placed in a 37°C incubator for approximately 2 minutes to allow the cells to 

detach. Proteolysis was stopped by adding the same volume of the medium that 

designated for the growth of BRMECs or HRPE cells as soon as the cells 

detached. The detach progress was checked by examination with an inverted
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microscope. The cells were pelleted at 250g for 5 minutes and resuspended in the 

growth medium that specific for BRMECs or HRPE cells, before seeding into 

new T25-flask for HRPE cells, or the T25-flask that precoated with Attachment 

Factor for BRMECs at a ratio of 1:2 /or 1:3. Cells were incubated at 37°C, with 

a humidified atmosphere containing 5% CO2 and 95% air and fed every 2 to 3 

days.

2.3.1.4 Preparation of cell stocks

In order to keep a continuous supply of HRPE cells, some of the HRPE cells 

were prepared as stocks and stored in liquid nitrogen. HRPE cells were 

trypsinised from culture vessels at 75 - 85% confluence as described in section 

2.3.1.3 and resuspended in FCS containing 10% (v/v) dimethylsulphoxide 

(DMSO) at a density o f l xlO6 - 1 x 107 cells/ml. Cells were transferred to a 

cryopreservation vial, frozen at -20°C in a container immersed in isopropanol for 

24 hours then transferred to -80°C for another 24 hours. The vials were then 

transferred to a designated liquid nitrogen tank for long term storage.

2.3.1.5 Recovery of cells from cell stocks

Stock of HRPE cells were recovered from liquid nitrogen storage by rapidly thaw 

the cryopreservation vial(s) at 37°C in a water bath then seeded into Ham’s F-10 

medium containing 10% FCS. Incubating at 37°C, with a humidified atmosphere 

containing 5% CO2 and 95% air for overnight. On the next day, the medium was 

removed and replaced with fresh Ham’s F-10 containing 10% FCS. Then cells 

were fed every 2-3 days.

2.3.2 Cell viability and purity

Cultures were examined daily using an inverted light microscope to monitor the 

morphological changes. Photomicrographs were taken at primary and subculture 

passages using the SPOT Advanced software (Version 3.2.4 for Windows) 

attached to an OLYMPUS, 1X70 inverted light microscope.
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In order to obtain BRMECs of good quality and purity, the morphology and 

Factor VIII expression of the cultured BRMECs were monitored throughout the 

whole process o f culture. Cytokeratin peptide 18 was monitored as cellular 

marker for cultured HRPE cells.

Trypan Blue staining was used to monitor cell viability during the subculture.

This method is based on the principle that a live (viable) cells do not take up 

certain dyes, whereas the dead (non-viable) cells do. Cells were trypsinised as 

described above and resuspended in lxPBS (0.5 ml). Trypan Blue solution [0.4%

(v/v), (0.5 ml)] was added to the cell suspension and mixed thoroughly. With the 

cover-slip in place, a small amount of Trypan Blue-cell suspension mixture was 

transferred to both chambers o f a haemocytometer. Cells were counted in the 

1mm centre square and four 1 mm comer squares. Cell viability was calculated 

using the equation:

, . total number o f  non -  stained cells
cell viability = --------------------------------------   x 1 0 0 %

total number o f  non -  stained cells + total number o f  stained cells

2.3.3 Immunofluorescence staining

2.3.3.1 Procedures for use with polyclonal antibodies

Subconfluent BRMECs/HRPE cells were subcultured on cover slips at a density 

of 5 x 104 cells/well overnight in a 24-well plate. The cells were fixed at room 

temperature using 4% (w/v) formaldehyde for 10 minutes, and then washed with 

lxPBS for 2 0  minutes with 3 changes. Cells were permeabilised using 0 .1 %

(v/v) Triton X-100 for 5 to 10 minutes at room temperature and washed with 

lxPBS three times. To suppress non-specific binding of immunoglobulin G 

(IgG), cells were incubated with 5% blocking serum (derived from the same 

species in which the secondary antibody is raised, in this case donkey serum was 

used) for 30 minutes. The blocking buffer was removed and cells were incubated 

with primary antibody (1:100 dilution, i.e. 0.5-5.0 pg/ml in lxPBS with 1.5% 

blocking serum) for 2 hours. Substitution of the primary antibodies with same 

species semm at the same concentration acted as a negative control. Cells were 

washed three times with 1 xPBS for 5 minutes each, and specific binding was
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detected with donkey antibody to rabbit IgG conjugated with Alex Fluor 488 for 

60 minutes (1:600 dilution in lxPBS). For nuclei staining, 3pl/ml of 1% (w/v) 

Hoechst (No.33342, Sigma-ALDRICH) was added and mixed with the buffer 

containing the secondary antibody. Cells were washed with three changes of PBS 

before mounting in Hydromount™ (National diagnostics). Slides were stored in 

a dark location at 4° C until examination using a fluorescence microscopy (Leica 

4000) with FITC/DAPI filters under UV light. Results were recorded using 

Leica Qfluoro software. Table 2.1 listed the primary antibodies used for the 

characterisation o f BRECs and HRPE cells.

Table 2.1 T he list o f  th e  p r im a ry  an tibod ies used in the im m unofluorescence sta in ing

Nam e S ource A gainst a pep tide a t D ilution used

VEGFR-1 
(F it-1) 
(C-17)

Rabbit polyclonal 
(sc-316)

Carboxy term inus o f human 
origin

1:100

VEGFR-1 
(Fit-1) 
(H-225)

Rabbit polyclonal 
(sc-9029)

Amino acids 23-247 within 
the extracellular domain o f 
human origin

1:100

VEGFR-2
(Flk-1)
(C-1158)

Rabbit polyclonal 
(sc-504)

Amino acids 1158-1345 at 
the carboxy term inus o f  
mouse

1:100

VWF
(H-300)

Rabbit polyclonal 
(sc -14014)

Amino acids 23-247 at the 
carboxy terminus o f 
human origin

1:100

2.3.3.2 Procedures for use with monoclonal antibody

FITC Monoclonal Anti-Cytokeratin peptide 18 is a purified mouse monoclonal 

antibody conjugated with fluorescein isothiocyanate (FITC) isomer 1 (Sigma, 

USA).

Cells were fixed and permeabilised as described in 2.3.3.1. Then cells were 

incubated with FITC Monoclonal anti-cytokeratin peptide 18 in 1:100 dilution in 

1 x PBS for two hours at room temperature (in dark). Substitution of the primary 

antibody with the serum of same species at the same concentration acted as a 

negative control. For nuclei staining, 3pl/ml of 1% (w/v) Hoechst was added 

with the buffer containing the antibody. Cells were washed with 1 x PBS for 15
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minutes with three changes, and then mounted with Hydromount™ (National 

diagnostics). Slides were stored in a dark location at 4° C and examined using a 

fluorescence microscope with FITC/DAPI filters under UV light. Results were 

recorded using Leica Qfluoro software.

2.4 Results

2.4.1 Characterisation of cultured BRMECs

The purity of cultured BRMECs was determined by morphology and expression 

of Von Willebrand Factor (VWF), one of the endothelial phenotype markers. It 

was observed that cell clusters started appearing approximately 2 to 4 days after 

the isolation; by day 5-6 an increased cell number and enlarged clusters were 

observed; by day 8-10 the cells had formed a confluent monolayer (Fig. 2.2 A- 

C). A typical cobblestone shape o f BRMEC morphology was constantly 

observed in this study [Fig. 2.2(A-C)] which is consistent with the description by 

Bachetti and Morbidelli (2000). Positive VWF staining (green, Fig 2.3 A) 

confirming endothelial phenotype and demonstrating that cultures consist of 

100% endothelial phenotype by co-immunostaining of the nuclei (blue, Fig 2.3 

B); Negative controls confirmed that there was no non-specific staining (Fig.2.3 

C&D). Only cells that met the criteria of ECs in morphology and cellular marker 

were used for this study.

2.4.2 Characterisation of cultured HRPE cells

The character and purity o f the cultured HRPE cells were assessed by 

morphology and immunolocalisation of one of the epithelial markers. A typical 

epithelioid morphology which is representative of cultured HRPE cells (Fig.2.4) 

was observed. Cells were observed to progressively depigment and change 

morphology during the primary culture (Fig.2.4 A-D). The morphology had little 

change in the subcultures from passage 1 to passage 6  (Figs 2.4 E&F). Fig.2.5 

shows phenotype immunostaining of the epithelial marker, cytokeratin peptide 

18, in the cultured HRPE cells. Co-immunostaining of the nuclei (Fig 2.5 B) 

demonstrated that cultures consist of 100% epithelial phenotype. Only cells that 

met the criteria of epithelial morphology and characters were used for the study.
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Fig 2.2 Characterisation of the morphology of cultured BRMECs. (A)
Approximately 2-4 days after the isolation, cell clusters were observed by 
Olympus 1x70 inverted microscope. (B) By day 5-6 an increased cell number 
and enlarged clusters were observed. (C) By day 8-10, the cells had formed a 
confluent monolayer.
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EaSI

Fig 2.3. Immunolocalisation of VWF in cultured BRMECs.

(A) VWF staining in BRMECs (green) (B) Merge of VWF 

staining with Hoechst nuclei staining (blue). (C) Negative control 

for VWF. (D) Negative control for VWF combined with Hoechst 

nuclei staining (blue).
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H 50 pm 50 pm 50 pm 50 pm

A-Day 2 B-Day 4 C-Day11 D-Day 14

50 pm

R flm

Fig.2.4. C haracterization of the morphology of cultured HRPE cells. (A-D) 

Primary cultures of HRPE cells with a progressive depigmentation and changes 

in morphology. (E-F) The representatives of passage 2-4 cultures demonstrating 

little change in the morphology.
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HM
B

50 pm

Fig 2.5 Im m unolocalisation of Cytokeretin 18 in cultured HRPE cells.
(A) Cytokeretin 18 staining in HRPE cells. (B) Merge of Cytokeratin 18 
(green) with Hoechst nuclei staining (blue). (C) Negative control. (D) 
Merge of negative control with Hoechst nuclei staining (blue).
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2.4.3 Expression of VEGFR-1 in BRMECs and HRPE cells

Immunostaining for the cytosolic domain and extracellular domain of VEGFR-1 

confirmed that VEGFR-1 was expressed in cultured BRMECs (Fig. 2.6). The 

cytosolic domain o f VEGFR-1 localised in both the nuclei and cytoplasm of the 

BRMECs (Fig 2.6A) while the extracellular domain localised on the membrane 

(Fig.2.6B). In HRPE cells the immunostaining shows VEGFR-1 cytosolic 

domain predominantly localised to the perinuclear area (Fig.2.7 A-B).

2.4.4 Expression of VEGFR-2 in BRMECs and HRPE cell

Immunolocalisation showed that VEGFR-2 was expressed in cultured BRMECs 

(Fig 2.8) and HRPE cells (Fig 2.9). In BRMECs, VEGFR-2 expression was 

predominantly localised to the perinuclear area (green) (Fig 2.8 A and B). In 

HRPE cells, VEGFR-2 predominantly localised to the cell membrane and the 

perinuclear area (Fig 2.9 A and B).

2.5 Discussion

It is essential to obtain highly purified primary cells from animal or human tissue 

in order to carry out the down-stream functional study using in vitro models. The 

present study confirmed that highly purified BRMECs can be obtained using the 

combination o f homogenisation, digestion by cocktail enzymes and series 

filtration as previously described (Cai et al. 2003). By enzyme digestion, highly 

purified HRPE also can be obtained as previously reported (Boulton et al. 1983).

It has been well documented that VEGFR-1 and VEGFR-2 are co-expressed in a 

wide range o f cells, particularly vascular ECs (Yang et al., 2004). Recently, 

Ohno-Matsui et al. (2003) reported that VEGFR-1 and VEGFR-2 are co

expressed in HRPE cells. However, it was unclear how the VEGFR-1 or 

VEGFR-2 was distributed in HRPE cells. The result from this study showed that 

VEGFR-1 is expressed throughout the cell of the cultured BRMECs, which is in 

agreement with the report by Cai et al. (2006); and for the first time this study 

provides evidence that VEGFR-1 only expressed in the cytoplasm and membrane 

of cultured HRPE cells in the untreated condition. This study has also confirmed
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D
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Fig 2.6 Immunolocalisation of VEGFR-1 in cultured BRMECs. (A)
The cytosolic domain of VEGFR1 was localised predominantly in the 
nuclei of BRECs with reduced intensity in cytoplasm, whereas very faint 
extracellular domain staining was observed in BRMECs by a 
fluorescence microscopy (B); C) and D) Negative control for the 
cytosolic domain and extracellular domain of VEGFR-1, respectively.
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Fig 2.7 Immunolocalisation of the cytosolic domain of 
VEGFR-1 in cultured HRPE cells. (A) The cytosolic domain of 
VEGFR-1 was localised mainly to the cytoplasm and membrane 
of HRPE cells (green). (B) Merge of the cytosolic domain of 
VEGFR-1 with Hoechst nuclei staining (blue, B). (C) Negative 
control for the cytosolic domain of VEGFR-1. (D) Merge of the 
negative staining with Hoechst nuclei staining (blue).
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Fig 2.8 Immunolocalisation of VEGFR-2 in cultured 
BRMECs. (A) VEGFR-2 was predominantly localised to the 
nuclei and perinuclei area (green). (B) Merge of VEGFR-2 
staining with Hoechst nuclei staining. (C) Negative control show 
no positive staining. (D) Merge of negative control with Hoechst 
nuclei staining.
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50 pm

50 (jm

Fig 2.9 Imm unolocalisation of VEGFR-2 in cultured HRPE cells. (A)
VEGFR-2 expression was predominantly in the prinuclear area and 
membrane (green). (B) Merge of VEGFR-2 with Hoechst nuclei staining. 
(C) Negative control shows no positive staining, and combined with 
Hoechst nuclei staining (D).
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the expression of VEGFR-2 in BRMECs and HRPE cells. In BRMECs, VEGFR- 

2 predominantly localised in the perinuclei, while in HRPE cells VEGFR-2 

predominantly expressed on the membrane and perinuclei of the cells. The 

importance of these differential distributions is yet to be determined.

The confirmation o f co-expression of VEGFR-1 and VEGFR-2 in both BRMECs 

and HRPE cells under normal culture conditions suggests that they may play a 

role in the orchestration of retinal homeostasis.

2.6 Conclusions

• Highly purified BRMECs and HRPE cells have been isolated. Cultured 

BRMECs and HRPE cells have been well characterised.

• The interested target molecules, VEGFR-1 and VEGFR-2 are all 

expressed in the BRMECs and HRPE cells.
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3.1 Introduction

Terminal differentiation occurs through mechanisms that promote growth arrest 

and specialisation in cells (Tombran-Tink et al. 2004). These two processes are 

tightly and co-ordinately linked to the control of cell proliferation. Their 

disruption results in a variety o f pathological conditions including cancer and 

neovascular diseases, which are both characterised by increased cell 

proliferation. A number o f factors regulate these proliferative processes 

independently or through interdependent regulation of each other.

PEDF was first described as an ocular neurotrophic protein that induced 

differentiation in human Y79 retinoblastoma cells (Tombran-Tink and Johnson, 

1989; Tombran-Tink et al., 1991). It functions as a potent neurotrophic factor 

that protects neurons in many regions of the central nervous system (CNS) 

against a wide range o f neurodegenerative insults. PEDF is also a natural 

inhibitor of angiogenesis, targeting the growth of only new vessels (Dawson et 

al., 1999). Inhibition o f endothelial cell growth, blockade of endothelial cell 

migration, and prevention of new blood vessel are well documented biological 

features of PEDF in numerous models of retinal neovascular diseases (Mori et 

al., 2001, 2002; Raisler et al., 2002; Duh et al., 2002). The properties of PEDF 

make it a strong candidate as a pharmacological tool for slowing the progression 

of a range of neurodegenerative diseases and those pathologies associated with 

abnormal vessel growth in the eye and metastatic cancers of various tissues.

Understanding the mechanism of PEDF action is crucial for its clinical 

applications. There is increasing evidence showing that, at least in the eye, the 

balance between the pro-angiogenic factor, VEGF, and the anti-angiogenic 

factor, PEDF, appears to determine the formation of new vessels (Ohno-Matsui 

et al. 2001). An inverse relationship is noted between these two factors in the 

vitreous of patients with PDR and AMD, suggesting an underlying cooperative 

relationship between these proteins in maintaining vascular quiescence. The 

counterbalance o f VEGF and PEDF is supported by the previous demonstrations 

that either inhibition of the VEGF system or over expression of PEDF inhibits 

choroidal neovascularisation (Krzystolik et al., 2002; Mori et al., 2002).
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To further understand the direct and unique relationship between PEDF and 

VEGF may provide new insight in understanding the mechanism(s) of PEDF 

action.

To date, three signalling pathways for PEDF action have been proposed and 

studied intensively: the NF-kB pathway by Yabe et al. (2001); the MAPK 

pathway in ECs by Hutching et al. (2002) and the Fas-FasL death cascade in ECs 

by Volpert et al. (2002).

More recently, Cai et al. (2006) reported that PEDF inhibits VEGF induced 

angiogenesis in vitro, and this closely correlates to the cleavage of VEGFR-1 via 

y-secretase, suggesting a possible involvement of the regulated intramembrane 

proteolysis (RIP) pathway. It is hypothesised that VEGF, y-secretase and 

VEGFR-1 may be the key elements that are involved in this pathway in which 

PEDF acts as a regulator (see Fig 1.10a and Fig 1.10b for the illustrated 

hypothesis). Interestingly, three o f the above four elements, VEGF, VEGFR-1 

and PEDF have been linked together by Ohno-Matsui et al. (2003) in HRPE 

cells, with evidence that VEGF upregulats PEDF in HRPE cells via VEGFR-1 in 

an autocrine manner.

Based on the studies by Ohno-Matsui et al. (2003), Cai et al. (2006) and Ni et al. 

(2 0 0 1 ), the aim o f the project was to investigate the mechanism(s) in which 

PEDF regulates angiogenesis. This was approached by exploring the 

involvement o f the RIP signalling pathway in relation to VEGF/PEDF and 

VEGFR-1 /VEGFR-2 in in vitro models. As the first step, the goal of the current 

study was to determine whether PEDF functions as an antagonist of VEGF in 

regulating the expression of VEGFR-1 or VEGFR-2 in BRMECs and HRPE 

cells.
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3.2 Experimental design

To meet the goal of this study, the experiments were carried out from the 

following aspects: 1) Western blotting for the effect of VEGF/PEDF on the 

expression o f VEGFR-1 and VEGFR-2 in BRMECs and HRPE; 2) Evaluation of 

the specificity o f the antibodies used; 3) Verification of the linearity of the ECL 

Western blotting; and 4) Immunofluorescence staining for the effect of 

VEGF/PEDF on the distribution of VEGFR-1 and VEGFR-2 in BRMECs and 

HRPE. A flow chart for the experimental design is shown in the Fig.3.1.

3.3 Materials and methods

3.3.1 Cell culture

BRMECs and HRPE cells were cultured as described in section 2.3.1. Cells were 

used within passage 3.

3.3.2 Preparation of whole cell lysates

Cell lysates were obtained essentially as described previously (Cai et al., 2003) 

with some modifications. Briefly, the culture medium was removed and the cells 

were washed with ice cold 1 x PBS containing lx  protease inhibitor and 

phosphatase inhibitor cocktails (Santa Cruz, UK). Ice cold 

Radioimmunoprecipitation (RIPA) buffer (500 pi) containing lx  protease 

inhibitor and phosphatase inhibitor cocktails was added to the cell monolayer in a 

T25 flask and gently rocked for 15 minutes at 4°C. The lysed cells were scraped 

and transferred into a microcentrifuge tube. Further cell disruption was achieved 

by passing the lysate through a 21-gauge needle to shear the DNA and incubating 

the lysate on ice for 30 min. The supernatants were obtained by centrifugation at 

10,000 x g for 10 min at 4°C. The supernatant representing the total cell lysate 

was transferred to a new microcentrifuge tube. The protein concentration was 

estimated using BCA assay (see section 3.3.3) before being subjected to Western 

blotting.
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Fig 3.1 Flow chart of experimental design for chapter 3.
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3.3.3 Estimation of protein concentration -  BCA Protein Assay 

The BCA Protein Assay is a detergent-compatible formulation based on 

bicinchoninic acid (BCA) for the colorimetric detection and quantification of 

total protein. This method combines the well-known reduction of Cu+2 to Cu+1 

by protein in an alkaline medium (the biuret reaction) with the highly sensitive 

and selective colorimetric detection of the cuprous cation (Cu+1) using a unique 

reagent containing bicinchoninic acid (Smith et al., 1985).

A titration series o f protein standard was prepared alongside each set of test 

samples. Bovine serum albumin (BSA) at 2.0 mg /ml (provided in the kit) was 

used as the stock standard. The dilution series was prepared as shown in the 

Table 3.1.

Table 3.1. The dilution series o f the BSA standard for BCA Protein Assay

Volume o f  Diluents 

(PBS, nl)

Volume and Source o f  

BSA (nl)

Final BSA

Concentration (ng/ml)

A 0 20 |il o f  stock 2,000

B 20 20 nl o f stock 1,000

C 20 20 nl o f  vial B dilution 500

D 20 20 (il o f  vial C dilution 250

E 20 20 (il o f vial D dilution 125

F 20 20 |il o f  vial E dilution 62.5

G 20 20 nl o f  vial F dilution 31.25

H 20 0 0

The volume o f BCA Working Reagent (WR) was calculated using the following 

formula: number of duplicates of the standards plus number of triplicates of the 

test sample plus three (pipetting error) times the volume of WR for each sample.

Total volume o f WR = [(# standards) *2+ (# samples) *3 + 3] x volume of WR/sample

The WR was prepared by mixing 50 volumes of BCA Reagent A with 1 volume 

of BCA Reagent B (50:1, Reagent A: B). 10 pi of each standard in duplicate or
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test samples in triplicate were added into the wells of a 96-well microplate 

(Orange Scientific). 200 ^1 of the WR (sample: WR =1:20) was added to each 

well and incubated at 37°C for 30 minutes. The plate was cooled to room 

temperature before measuring the absorbance at 550nm and 570nm on a 

microplate reader (Multiskan Ascent ®, Labsystems, Finland).

The standard curve was prepared by plotting the average measurement of each 

dilution of BSA standard into a regression of linear fit (Microsoft Excel). 

Concentration of the total protein in each sample was determined by reference to 

the standard curve (Microsoft Excel).

3.3.4 Sodium Dodecyl Sulphate -  Polyacrylamide Gel Electrophoresis 

(SDS-PAGE)

3.3.4.1 Preparation o f SDS-PAGE

SDS-PAGE is a dissociating system that is designed to denature proteins into 

their constituent polypeptides and hence examines the polypeptide composition 

of samples (Shi and Jackowski, 1998). The anionic detergent SDS denatures the 

proteins and covers them with an overall negative charge. The sample is then 

fractionated by electrophoresis through a polyacrylamide gel. The proteins are 

separated on the basis o f their mass, since all of them have an identical charge to 

mass ratio. The smallest proteins move farthest. SDS-PAGE can be used to 

estimate the molecular mass o f a protein and the number of polypeptide subunits 

in a protein as well as the degree o f sample purity (Hames and Hooper, 2000).

A 10% (w/v) resolving gel with a 5% (w/v) stack gel (Table 3.2) was used to 

separate the peptides in the samples prepared for the target(s) of interested. 

Samples were mixed with an equal volume of 2xelectrophoresis sample buffer 

(sc-24945, Bio Rad Laboratories Ltd., Herts, UK) and incubated at 95° C for 5 

minutes. Equal amount of protein at a volume of 15-20 jal /well was loaded and 

the gel was run at 30 mA in lx  laemmli buffer (Bio-Rad Laboratories Ltd., 

Herts, UK) until the dye approached the bottom of the gel. The gel was analysed 

by Coomassie staining or silver staining for the protein profile depending on the
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protein concentration loaded; or further for western blotting. To ascertain the 

molecular weights o f protein species detected with Coomassie blue staining or 

silver staining, 5 |al o f a prestained molecular weight standard (Precision Plus 

Protein Standards, range 7.2-250 kDa; BioRad Laboratories, Herts, UK) was 

applied to the gel.

Table 3.2. Solutions for casting a 10% resolving and 5% stack gel for SDS-PAGE

(Cai et al., 2006).

Resolving Gel (10%) 

(10ml)

Stacking Gel(5% ) 

(3 ml)

Distilled H20 4.0 ml 2 . 1  ml

30%  acrylam ide mix 3.3 ml 500 [l\

1.5 M Tris/HCl pH 8.8 2.5 ml -

1.0 M Tris/H Cl pH 6.8 - 380 nl

10% SDS 1 0 0  nl 30 Hi

10% APS 1 0 0  nl 30 h1
TEM ED 4.0 yi\ 3.0 hI

3.3.4.2 Visualisation o f protein profile by Coomassie brilliant blue staining 

Coomassie brilliant blue staining is the most commonly used protein stain to 

visualise proteins following electrophoresis. After electrophoresis, the gels were 

immersed in an acidic alcoholic solution of the dye - Coomassie Staining buffer 

(methanol and acetic acid at a ration of 4.5:1, and Coomassie brilliant Blue R250

2.5 mg/ml). This denatures the proteins, fixes them in the gel and allows the dye 

to bind to them. Subsequently the gel was distained in 2:1 methanol and acetic 

acid solution for visualisation of the bands.

3.3.5 Western blotting

Western blotting can be used for detection of one or more antigens in a mixture 

(Hames and Hooper, 2000). ECL (Enhanced Chemiluminescence) Western 

blotting from Amersham Biosciences is a light emitting non-radioactive method 

for detection of immobilised specific antigens, directly or indirectly with 

Horseradish Peroxidase (HRP) labelled antibodies (Instructions of ECL Western
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blotting detection reagents and analysis system, Amersham Biosciences). A 

schematic representation of the principle of ECL Western Blotting is shown in 

Fig 3.2.

The procedures o f Western blotting can be divided into four major steps: 1) The 

separation o f proteins by SDS-PAGE; 2) the transfer of separated proteins onto a 

transfer membrane. 3) Immunological probing to detect specific protein antigens 

of interest. 4) Visualisation of the detection of the specific protein antigen(s) 

using ECL™.

3.3.5.1 Separation o f proteins by SDS-PAGE

Samples were loaded with equal amount of protein and run on a 10% (w/v) SDS- 

PAGE (5% stacking gel) at 30 mA in duplicate until the samples approached the 

bottom of the gel, as described in section 3.3.4.1.

3.3.5.2 Transfer o f separated proteins onto a transfer membrane

Proteins were transferred from the gel to a nitrocellulose membrane in 1 xtransfer 

buffer (Bio-Rad, see Appendix 2) at 005 V for 30 minutes on a semi-dry transfer 

apparatus (Biometra, Germany). The order of gel and membrane sandwich in the 

blotting apparatus was as follows: cathode (the top lid) —> one layer of saturated 

filter paper —► gel —» nitrocellulose membrane •—> two layers of saturated filter 

paper —► anode (bottom of the apparatus). To check the efficiency of the transfer, 

membranes were stained with Ponceau S staining buffer (see Appendix 2). 

Destaining was achieved using dELO.

3.3.5.3 Blocking non-specific binding

To minimise non-specific binding, blocking buffer (see the Appendix 2) was 

applied for 30 minutes at room temperature before incubation with the primary 

antibody. Alternatively, the membrane may be blocked at 4° C overnight in a 

container, using the above buffer without Tween-20.

72



Chapter 3 Yadan Zhang

s

Oxidized

product

Peracid
Oxidized

fo rm

of enzyme

Hyperfilm 
ECL

+  Luminol +  enhancer

Secondary Ab-HRP

Primary Ab

Protein

Fig 3.2 Principles of ECL Western blotting. Ab: antibody. HRP: 
Horseradish Peroxidase. (Reproduced from Instructions of ECL Western 
blotting detection reagents and analysis system, Amersham Biosciences).
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3.3.5.4 Immunological probing to detect specific protein antigens of interest

The blocked membrane was incubated with primary antibody in blocking buffer 

for 2 hours on a roller at room temperature (an optimised dilution 1:125 was 

used). Corresponding negative controls were exposed to just blocking buffer for 

the same period o f time with agitation. On removal of the primary antibody, all 

the membranes were washed in the blocking buffer for 30 minutes with 3 

changes. Subsequently, all the membranes were exposed to a secondary 

antibody conjugated with horseradish peroxidase (HRP) (Santa Cruz 

Biotechnology, Inc.) for 60 minutes at room temperature. This secondary 

antibody was diluted in the blocking buffer at an optimised dilution. Membranes 

were washed with the washing buffer (see the Appendix 2) for 30 minutes with 3 

changes.

3.3.5.5 Visualisation o f the specific protein antigen(s) using ECL™

Before applying ECL™ reagent (Amersham, Amersham, UK) to the membranes, 

the entire washing buffer was removed. An equal volume of both ECL™ 

reagents A and B were mixed and added to the membranes. After incubation for 

1 minute, excess reagent was removed membranes sealed in individual bags and 

placed in an X ray film cassette. 2 sheets of Hyperfilm™ ECL™ (Kodak, UK) 

were placed on top o f the sealed membranes and exposed for an optimised time 

before being manually developed in the standard solutions (Sigma, USA).

In order to normalise the band detected, the same membrane was stripped and re

probed with an antibody specific to one of the house-keeping proteins, p-actin 

(1:200 dilution) (Autogen o f Santa Cruze, UK) or GAPDH (lug/ml) (Ambion, 

UK). Bands of VEGFR-1 and VEGFR-2 were semi-quantified by densitometry 

using the Scanimage software and normalised with a-actin or GAPDH level.

3.3.6 Evaluation of linearity of ECL Western blotting detection

It has been demonstrated (Johnstone and Thorpe, 1982) that Hyperfilm ECL 

exhibits a linear response to the light produced from enhanced 

chemiluminescence. This relationship can be used for the accurate quantification
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of proteins of ECL Western blots, using densitometry (manual book, Amersham 

Biosciences). The sample containing the protein to be quantified plus a set of 

standards (known amounts o f the same antigen) should be used to prepare a 

Western blot. However, a standard for the targets of interest, VEGFR-1, 

VEGFR-2 and Presenilin-1, was not available. This study used semi

quantification instead, i.e. percentage of the protein expression after treatment in 

comparison with control (set as 1 0 0 %) and normalised with a house keeping 

protein, such as a-actin or GAPDH. It is still important that the concentration of 

the protein to be semi-quantified lies within the linear range, therefore, a dilution 

series of a sample with highest concentration of protein were prepared for 

Western blotting.

3.3.7 Evaluation of antibody specificity

To determine the specificity o f antibody binding to antigen, VEGFR-1 or 

VEGFR-2 antibody was blocked by preincubation overnight at 4°C with 5-fold 

(by weight) excess (recommended by the manufacturer) of VEGFR-1 (Flt-1) or 

VEGFR-2 (Flk-1) peptide (Santa Cruz) in a small volume (500 pi) of PBS. 

Following blocking, the antibody/peptide mixture was diluted into appropriate 

blocking buffer. The immunoreactivity from the pre-incubated antibodies was 

compared with the immunoreactivity from antibodies incubated overnight in 

BSA at the same concentration and with membranes or cover-slips incubated 

with freshly diluted antibodies.

3.3.8 VEGF/PEDF treatment for Western blotting

As described by Cai et al. (2006), at passage 2 or 3, 80-90% confluent 

monolayers (7.5 xlO 6 cells/flask) in T25-culture flasks were washed with lxPBS. 

Then the cells were rendered quiescent in serum free medium for 45 min at 37°C, 

5% CO2 . The addition of 100 ng/ml of VEGF, or PEDF in 1% FCS medium 

respectively in duplicates was followed; flasks without growth factor treatment 

but 1% FCS medium was included as control. After one hour, lOOng/ml of PEDF 

was added to one VEGF flask, and 100 ng/ml of VEGF added to one PEDF 

flask, and further incubated for 24 hours at 37°C, 5% CO2 . The medium was
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collected and stored at -20°C. The cells were subjected to the protein extractions 

(section 3.3.2) and Western blotting (section 3.3.5).

3.3.9 VEGF/PEDF treatment for immunostaining

BRMECs/HRPE cells at 80-90% subconfluence on the cover slip were treated 

with serum-free medium for 45 minutes. Subsequently lOOng/ml of VEGF or 

PEDF was added to the wells o f 24-well plate containing medium with 1 % (v/v) 

serum respectively. Cells were incubated at 37°C, 5% C 0 2 and 95% humidity for 

1 hour before addition o f 1 OOng/ml of PEDF (to one of the wells treated with 

VEGF) or VEGF (to one o f the wells treated with PEDF) and further incubated 

for 24 hours prior to immunostaining. A control without any growth factor 

treatment was included.

3.3.10 Immunofluorescence staining

Immunofluorescence staining was carried out as previously described in section 

2.2.1. Controls, included omission of primary antibodies, substitution of the 

primary antibodies with the serum from same species and non-treatment wells. 

Controls for the specificity o f the antibodies were also prepared as described in 

section 3.3.7.

3.3.11 Statistical analysis

The results were given as the mean ± standard error (SEM) from 3 separate 

experiments. An unpaired Student’s t-test was performed to analyse the data with 

SPSS. A P value less than 0.05 (P<0.05) considered statistically significant.

3.4 Results

3.4.1 Differential protein profile of whole cell lysates of BRMECs and 

HRPE cells

Equivalent amounts of protein from samples were separated on 10% SDS-PAGE 

and stained with Coomassie blue. The pattern of the protein profile in BRMECs 

was different from the pattern in HRPE cells (Fig 3.3). In BRMECs, several
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bands were observed above 250 kDa while only two bands were seen in HRPE 

cells; a band at 250 kDa was seen in both BRMECs and HRPE cells; two bands 

between 250 kDa and 150 kDa were observed in BRMECs while no obvious 

band was observed in the same region in HRPE cells. At 75 kDa and under, the 

pattern of the bands were very similar in BRMECs and HRPE cells though the 

intensity of the band varies.

1 2 3 4 5
IWV BRMECsl BRMECs2 HRPE1 HRPE2

250 kDa 

150 kDa 

100 kDa 

75 kDa

50 kDa

37 kDa

25 kDa 

15 kDa

Fig 3.3 Protein profile in whole cell lysates from BRMECs and HRPE cells 
by Coomassie staining of 10% SDS-PAGE. Whole cell lysates were obtained 
using RIP A buffer. Lane 1: MW-the molecular weight marker; Lane 2 and 3: 
whole cell lysates from BRMECs; Lane 3 and 4: whole cell lysates from HRPE 
cells.
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3.4.2 The linearity of ECL western blotting detection

By plotting the peak area [(Optical Density - OD) unit] against quantity of the 

protein, it was observed that ECL exhibits a linear response (Fig 3.4). Calculated 

linear regression equation y = 0.0928X - 0.2418 where the correlation coefficient 

R2 = 0.9585.

3.4.3 The effects of VEGF and PEDF on VEGFR-1 expression in BRMECs

Western blotting showed that three bands of VEGFR-1, at approx. 250 kDa, 180 

kDa and 100 kDa were detected in the untreated BRMECs (Fig. 3.5 A). In 

comparison with the untreated control, the 250 kDa fragment increased when 

exposed to VEGF (p<0.05), PEDF (p<0.05), VEGF followed by PEDF (V+P) 

(p<0.0001), P+V (p<0.05) (Fig 3.5 B); the 180 kDa (full-length) increased when 

treated with V+P (p<0.05) or P+V (p<0.05) (Fig. 3.5 C); the combination of V+P 

significantly increased the 180 kDa full-length (p<0.05) compared with VEGF 

only (Fig. 3.5 C); the 100 kDa fragment was increased significantly when treated 

with PEDF (p<0.05) (Fig. 3.5 D).

3.4.4 The effects of VEGF and PEDF on VEGFR-1 expression in HRPE 

cells

In HRPE cells, four bands (at approximately 250 kDa, 180 kDa, 85 kDa and 75 

kDa) were detected in the untreated HRPE cell lysates by Western blotting (Fig

3.6 A). The 75 kDa and 85 kDa fragments of VEGFR1 decreased significantly 

when treated with VEGF (p<0.05), V+P (p<0.05) or P+V (p<0.05) for 24 hours 

(Fig 3.6 B and C); PEDF alone had no effect on the bands of 85 kDa or 75 kDa, 

but both fragments significantly decreased when pre-exposed or post-exposed to 

VEGF (p<0.05); VEGF decreased the 75 kDa VEGFR-1 fragment and this effect 

was enhanced by pre-treatment with PEDF (p<0.01).

These bands (either in BRMECs or HRPE cells) were not detected when the 

primary antibody was omitted or replaced by the IgG from same species. The 

specificity of the VEGFR-1 antibody was further confirmed by the blockade of 

the antibody binding with a peptide specific to VEGFR-1 (see the appendix 3).
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Loaded Protein 

(M9)

Peak area 

(Optical density unit)

2.8 0.03669

5.6 0.10767

11.2 1.0206

22.4 1.766

y = 0.0928X - 0 .2418  
R2 = 0 .9585

20

Protein loaded (ug)

Fig 3.4 The linearity of peak area (OD units) against amount of protein 
loaded on ECL Western blotting. A: Western blotting of VEGFR-1. B: 
densitometrical analysis o f peak area detected by ECL. C: A linear relation 
between peak area and amount o f protein loaded. Calculated linear regression 
equation y =0.0928x-0.2418 where the correlation coefficient R2 = 0.9585. The 
protein loaded ranged from 5-22.4 pg and produced a linear relationship between 
load (pg) and peak area (OD unit).
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Fig 3.5 The effects of VEGF/PEDF on VEGFR-1 expression in BRMECs by 
western blotting. (A) Western Blotting of VEGFR-1 in BRMECs; (B-D) 
Densitometric analysis o f immunoblots in (A). Data are normalised to a-actin 
from 4 separated experiments and presented as the relative ratio of VEGFR-1 to 
the control. (B) high molecular weight band of 250 kDa, (C) full-length (180 
kDa), (D) fragment o f 100 kDa. Data are presented as mean ± SEM. *p <0.05; 
*** pO.001.

80



Chapter 3 Yadan Zhang

A

VEGFR1<

Actin 
Control +

VEGF + - + +

PEDF + + +

250 kDa

180 kDa 

r 85 kDa 

L 75 kDa 

43 kDa

B

150i

« |

? ?  ^
O ta

R1-85kDa

*
X

1  ■
*
1 .

I I
Control VEGF PEDF V+P P+V 

Treatment

Rl-75kD=i

Control VEGF PEDF V+P P+V 

Treatrrent

Fig 3.6 The effects of VEGF/PEDF on VEGFR-1 expression in HRPE cells 
by western blotting. (A) Western blotting of VEGFR-1 in HRPE cells. (B-C) 
Densitometric analysis o f the 85 and 75 kDa bands on immunoblot in (A). Data 
are normalised to a-actin and presented as the relative ratio of VEGFR-1 to the 
control from 4 separate experiments. Data are presented as mean ± SEM. *p 
<0.05; ** p<0.01.
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3.4.5 The effects of VEGF and PEDF on VEGFR-1 localisation in 

BRMECs

By confocal microscopy, it was observed that both the extracellular and cytosolic 

domains of VEGFR-1 were localised to the plasma membrane and the nuclei of 

BRMECs (Fig 3.7. Column 1 and 2). The fluorescence signal from the cytosolic 

domain of VEGFR-1 staining was reduced when cells were exposed to VEGF; 

the signal was increased, or at least no change when cells exposed to PEDF (Fig

3.7 Panel C); VEGF was not able to reverse this effect by either pre-treatment or 

post -treatment (Fig 3.7 Panel D and E).

3.4.6 The effects of VEGF and PEDF on VEGFR-1 localisation in HRPE 

cells

By fluorescence microscopy, it was observed that the cytosolic domain of 

VEGFR-1 was predominantly expressed in the membrane and perinuclear area in 

HRPE cells (Fig 3.8 Panel A). The fluorescence signal was increased in the 

perinuclear area when HRPE cells were exposed to VEGF for 24 hours (Fig 3.8 

Panel B). PEDF did not significantly change the localisation of VEGFR-1 when 

compared to the control (Fig 3.8 Panel C). PEDF did not reverse the effect of 

VEGF on VEGFR-1 by pre-treatment (Fig 3.8 Panel E) or post-treatment (Fig

3.8 Panel D).

3.4.7 The effects of VEGF and PEDF on VEGFR-2 expression in BRMECs

Western blotting showed that two bands (at approx. 180 and 170 kDa) were 

detected for VEGFR-2 in the untreated BRMECs (Fig.3.9A). Addition of VEGF 

alone reduced the expression o f VEGFR-2 (p < 0.05); addition of PEDF also 

reduced the expression o f VEGFR-2 (p < 0.05) (Fig 3.9 B). The combination of 

VEGF and PEDF (either VEGF followed by PEDF or vice versa) had similar 

effect as VEGF or PEDF alone.
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Fig 3.7 The effects of VEGF/PEDF on VEGFR-1 localisation in 
BRMECs by confocal microscopy. Column 1: VEGFR-1 (extracellular 
domain) staining (green) in BRMECs. A. control (without treatment); B. 
VEGF treatment; C. PEDF treatment; D. VEGF followed by PEDF; E. 
PEDF followed by VEGF. Column 2: VEGFR-1 (cytosolic domain) 
staining (red). Column 3: Merge of VEGFR-1 cytosolic domain and 
extracellular domain with nuclei staining.
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Fig 3.8 The effects of VEGF/PEDF on VEGFR-1 localisation in 
HRPE cells by fluorescence microscopy. Column 1: VEGFR1 
(cytosolic domain) staining (green) in HRPE: A. control (without 
treatment); B.VEGF treatment; C:PEDF treatment; D: VEGF followed by 
PEDF; E: PEDF followed by VEGF. Column 2: Merge of VEGFR1 
staining with nuclei staining. Scale bar = 50 pm.
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Fig 3.9 The effects of VEGF/PEDF on VEGFR-2 expression in BRMECs by 
western blotting. (A) Western blotting of VEGFR-2 in BRMECs. (B) 
Densitometric analysis of immunoblot in (A). Data are normalised to a-actin 
from 4 separated experiments and presented as the relative ratio of VEGFR-2 to 
the control. Data are presented as mean ± SEM. *p <0.05, **p <0.01.
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3.4.8 The effects of VEGF and PEDF on VEGFR-2 expression in HRPE 

cells

In HRPE cells, both full length and a fragment of VEGFR-2 were observed in 

untreated HRPE cells (Fig. 3.10 A). The combination of VEGF and PEDF (either 

VEGF followed by PEDF or vice versa) reduced the expression of VEGFR-2 

(Fig 3.10 B) (/>< 0.01).

The specificity o f the VEGFR-2 bands (in either BRMECs or HRPE cells) was 

monitored by enclosed negative controls, such as without primary antibody, or 

with the IgG of same species. The specificity of the bands was further confirmed 

by the blockade of the antibody binding with a peptide specific to VEGFR-2 (see 

the Appendix 3).

The results obtained from this study are summarised in Table 3.3.

Table 3.3 Summary of the results produced in this study

Treatment R l in BRMECs R2 in 
BRMECs

R l in HRPE R2 in 
HRPE

VEGF Overall
expression
increased

Overall
expression
decreased

Overall
expression
decreased

Overall
expression
decreased

Reduction in 
immunostaining of 
cytosolic domain

Reduction in 
immunostaining 
of cytosolic 
domain

PEDF Overall
expression
increased

Overall
expression
decreased

Overall
expression
sustained

Overall
expression
reduced

No change or 
increased
immunostaining

No change or 
increased
immunostaining

3.5 Discussion

Defining the cellular mechanisms responsible for the homeostasis of the retinal 

vasculature is a prerequisite to achieving a complete understanding of the process 

of angiogenesis. Despite various attempts aimed at defining the factors that 

regulate retina microvascular endothelial cells (MECs), the mechanisms involved
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Fig 3.10 The effect of V EGF/PEDF on VEGFR-2 expression in HRPE cells 
by western blotting. (A) Western blotting of VEGFR-2 in HRPE cells. (B) 
Densitometric analysis o f immunoblots in (A). Data are normalised to a-actin 
and presented as the relative ratio o f VEGFR-2 to the control from 4 separated 
experiments. Data are presented as mean ± SEM. ** p<0.01.
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in the determination o f MECs state during retinal vasculature homeostasis remain 

ambiguous.

Two counter-balancing systems: angiogenic stimulators and angiogenic 

inhibitors are believed to play an important role in regulating the homeostasis of 

angiogenesis (Miller et al., 1997; Bussolino et al., 1997). VEGF, a pro- 

angiogenic factor and PEDF, a potent anti-angiogenic factor have been reported 

as the representatives o f these two systems (Gao et a l, 2001; Eichler et al., 

2006).

It is now believed that a switch of angiogenic phenotype in a tissue is dependent 

upon the local balance between angiogenic factors and inhibitors. Although 

upregulation of angiogenic factors is necessary to stimulate angiogenesis, 

simultaneous downregulation o f angiogenic inhibitors is also required to 

sufficiently turn on angiogenesis. Therefore in theory, VEGF and PEDF should 

have opposite effects on angiogenesis; in practice, results from numerous 

investigations have supported this theory in the animal studies or in in vitro 

studies. In those studies, PEDF alone prevented EC migration or in the presence 

of the potent proangiogenic factors, such as VEGF, FGF1, FGF2 or interleukin-8 

(Dawson et al. 1999); using gene therapeutic strategy, PEDF inhibits the 

formation of both retinal and choroidal neovascularisation in mouse models of 

ocular angiogenesis. Even more importantly, PEDF causes regression of 

neovascularisation already underway (Mori et al. 2001; 2002); recently it also 

has been shown that PEDF cancels VEGF-induced increases in vascular 

permeability (Liu et al., 2004). However, some studies observed a dual role of 

PEDF, in that PEDF can exert opposite effects on EC proliferation dependent 

upon the maintenance o f their phenotype (Hutching et al. 2002); Apte et al. 

(2004) observed that low dose (90 pg/ml) of PEDF had significantly inhibitory 

effect on CNV in mice while a high dose (360 pg/ml) of PEDF can augment the 

development of the neovascularisation.



Chapter 3 Yadan Zhang

Two receptor-tyrosine-kinases, VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1 or KDR) 

that specifically bind to VEGF, have also been studied intensively (Waltenberger 

et al., 1994). It has been well documented that VEGF provokes

neovascularisation by engaging multiple EC surface receptors, including 

VEGFR-1, VEGFR-2, neuropilin-1, and neuropilin-2, by generating potentially 

homologous and heterologous signalling networks. The activation of VEGFR-1 

and VEGFR-2 plays a critical role in neovascularisation. By using a chimeric 

system, Meyer and Rahini (2003) demonstrated that selective activation of 

chimeric VEGFR-2, but not chimeric VEGFR-1, stimulated ECs growth, 

migration, and differentiation. Stimulation of cells, co-expressing chimeric 

VEGFR-1 and VEGFR-2, suppressed VEGFR-2-mediated endothelial cell 

growth. Their results also indicate that VEGFR-1, unlike VEGFR-2, is unable to 

undergo ligand-dependent tyrosine phosphorylation and kinase activation. In 

HRPE cells (a non-angiognenic cell type), VEGF upregulates PEDF expression 

via VEGFR-1 (Ohno-Matsui et al. 2003). Very recently, Cai et a l (2006) 

reported that PEDF inhibits angiogenesis via RIP of VEGFR-1 in cultured 

BRMECs.

Based on the above arguments, the role of VEGF and PEDF in regulating the 

expression and distribution o f VEGFR-1 and VEGFR-2 was examined in 

BRMECs and HRPE cells, where BRMECs acted as an angiogenic cell type and 

HRPE cells as a regulatory cell type.

Upon the establishment o f the specificity of the antibody of VEGFR-1 and 

VEGFR-2 and the confirmation o f the linearity of ECL Western blotting, this 

study observed that in BRMECs, VEGF and PEDF (at 100 ng/ml) exert similar 

positive effects on VEGFR-1 and similar negative effects on VEGFR-2 

expression; while in HRPE cells, VEGFR-1 can be downregulated by VEGF but 

sustained by PEDF while VEGFR-2 can be downregulated by either VEGF or 

PEDF. As supportive evidence for the involvement of RIP, fragment(s) of the C- 

terminal of VEGFR-1 were detected in BRMECs (100 kDa) and in HRPE cells 

(75 kDa and 85 kDa). These fragments responded to the exogenous application
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of VEGF or PEDF. In addition, VEGFR-1 was localised to the nuclei of 

BRMECs and HRPE in the unstimulated states.

MECs have been well documented as a key type of cells in the initiation of 

angiogenesis (Hudlicka et al., 1992). In adulthood, MECs are quiescence in most 

organs and only proliferative in certain organs or under pathological conditions; 

and VEGF is a key growth factor in the induction o f ECs proliferation and 

migration (Hutchings et al., 2002). The upregulation of VEGFR-1 and 

downregulation o f VEGFR-2 expression by VEGF or PEDF in this study 

suggests that VEGF/PEDF is regulating VEGFR-1 in a paracrine manner (ECs- 

independent), and VEGFR-2 in an autocrine manner (ECs-dependent). Further 

more, since VEGF and PEDF can both be produced from BRMECs (Tombran- 

Tink, et al. 2004), and VEGFR-1 and VEGFR-2 are also expressed in BRMECs, 

the result from the present study suggest that there is an autocrine loop between 

VEGF, PEDF and VEGFR-2 in BRMECs. The stimulation of VEGFR-1 and 

inhibition of VEGFR-2 by exogenous VEGF/PEDF suggests that under 

physiological conditions, VEGFR-1 expression may be in a basal level while 

VEGFR-2 is in a higher level. If this is the case, it would be interesting in 

comparison with the autocrine loop among VEGF, PEDF and VEGFR-1 in 

HRPE cells. Further study by monitoring the production of VEGF/PEDF in 

BRMECs before the addition o f VEGF/PEDF would help to understand better 

the inter-relationship o f VEGF/PEDF and VEGFR-1 and VEGFR-2.

An antagonising relationship between VEGF and PEDF was not observed at the 

level of VEGFR-1 and VEGFR-2 in the present study. This is in agreement, at 

least in part, with the reports by Hutching et al. (2002) and Apte et al. (2004). On 

the other hand, it is possible that the antagonising relationship of VEGF and 

PEDF observed by other studies may come from the concert effect of multiple 

regulators on multiple receptors in vivo or in vitro. Further studies, such as knock 

down of VEGFR-1 /VEGFR-2 in BRMECs and observation of the effects of 

VEGF/PEDF on ECs proliferation/migration would help to clarify the role of 

VEGF and PEDF.
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HRPE cells have been well documented as a main source of VEGF and PEDF 

(Ohno-Matsui et al., 2001). In addition, it has been shown that VEGF 

upregulates PEDF via VEGFR-1 in an autocrine manner (Ohno-Matsui et al., 

2003). In the current study, the down regulation of VEGFR-1 fragments in HRPE 

by exogenous VEGF suggests that VEGFR-1 was in a predominantly active state 

under physiological conditions. The reduction of the expression of VEGFR-1 

fragments by the VEGF is a reflection of the autocrine mechanism in that VEGF 

production in HRPE is regulated by VEGFR-1; and consequently this regulation 

leads to the restoration o f a normal balance between angiogenic stimulators and 

inhibitors. This balance might have a key role in maintaining the homeostasis of 

the retinal vasculature.

To date, there are no reports regarding the state of VEGFR-1 /VEGFR-2 in 

BRMECs/HRPE cells under physiological conditions; and there is no standard 

marker for indicating if  VEGFR-1 or VEGFR-2 is active or inactive. Based on 

the classical pathway for a tyrosine kinase receptor, ligand-dependent 

autophosphorylation is considered to be an essential step in receptor activation 

and recruitment o f signalling molecules to the receptor (Heldin and Ericsson, 

2001; Meyer and Rahimi, 2003).

However, based on the report by Cai et al. (2006), VEGFR-1 may be involved in 

the RIP pathway, the pathway that has been well documented in ErbB4, Notch 

signalling pathway and the production of amyloid precursor protein (APP) as 

reviewed in Chapter 1. As hypothesised in Chapter 1.6, VEGFR-1 can be 

activated by the sequential cleavage of its ectodomain and cytosolic domain upon 

ligand binding, and the cleaved cytosolic domain is translocated to the nuclei to 

regulate genes related to angiogenesis. According to this hypothesis, full-length 

VEGFR-1 would be an inactive form which should exist only or predominantly 

in untreated BRMECs or HRPE cells; and the fragment of VEGFR-1 would be 

the active form and should be present or increased in VEGF-treated BRMECs or 

HRPE cells. As an antagonist o f VEGF in regulation of angiogenesis, PEDF
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should exert opposite effects on VEGFR-1 by keeping VEGFR-1 similar to the 

untreated state, i.e. PEDF has no effect on VEGFR-1 expression when compared 

with the control. In contrast to the hypothesis, this study demonstrated that PEDF 

alone significantly upregulated the expression of VEGFR-1 fragment.

The increased full-length and fragment of VEGFR-1 upon the exposure to the 

exogenous VEGF observed in this study seem not to fit the typical model for 

RIP, in that the full-length o f the receptor should be reduced while the fragment 

should be increased. However, since other signalling pathways that involved 

VEGFR-1 have not been eliminated in this study, it is possible that the current 

observation is the integrated result between the RIP and other signalling 

pathways, such as autophosphorylation and the activation of the downstream 

pathways; such a situation has been discussed by Heldin and Ericsson (2001), 

and a model which reflects the close relation between RIP and classical pathway 

in tyrosine kinase receptors had been proposed thereafter.

There are more debatable points in regarding the disagreement with the report by 

Cai et al. (2006). In this report an 80 kDa fragment of the C-terminal domain of 

VEGFR-1 was observed when cells were exposed to VEGF followed by PEDF. 

This has two implications that 1) instead of VEGF, PEDF may play a role as a 

ligand of VEGFR-1 and 2) PEDF’s ligand role only appears when the phenotype 

of BRMECs is under VEGF’s control and this may be transient when compared 

with other signalling pathways. However, it is plausible that the homeostasis of 

angiogenesis is strictly regulated by the dynamic balance between pro- 

angiogenic factors and anti-angiogenic factors. In the current study, the detection 

of the 100 kDa fragment in the control and the treatments may reflect the notion 

of basal expression o f VEGFR and VEGF activity. Exogenous PEDF alone 

seems also play a ‘ligand’ role based on its effect on the 100 kDa fragment of 

VEGFR-1. Therefore despite the variations between the experiments, it is 

possible that these two results may reflect the complex role of PEDF.
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By using immunofluorescence staining and confocal microscopy, this study 

observed that the cytosolic and extracellular domains of VEGFR-1 were 

localised in the nuclear o f untreated BRMECs; though a significant translocation 

of VEGFR-1 to the nuclei was not seen, the overall distribution of the cytosolic 

domain of VEGFR-1 was reduced by the addition of VEGF. PEDF alone or in 

combination with VEGF had no significant effect. The nuclei staining of 

VEGFR-1 in untreated cells suggests that VEGFR-1 is in a basal activation state. 

The absence of translocation may be due to the fact that a basal level of VEGFR- 

1, in untreated conditions, prevents a significant change from being detected by 

confocal microscopy. Quantitative analysis by live FRET may be a better means 

to observe the changes caused by the various treatments.

It is worth to noting the observed differences between BRMECs and HRPE cells 

in their response to exogenous VEGF/PEDF: 1) in response to exogenous VEGF, 

VEGFR-1 is upregulated in BRMECs while downregulated in HRPE cells; 2) in 

response to exogenous PEDF, VEGFR-1 is upregulated in BRMECs while 

sustained or decreased in HRPE; 3) in response to exogenous VEGF or PEDF, 

VEGFR-2 was downregulated in both BRMECs and HRPE cells. These results 

thus provide evidence, for the first time, that suggests that VEGF can exert 

opposite effect on VEGFR-1 depending on cell type; and similarly with PEDF. 

This may reflect the regulatory role of VEGF/PEDF via VEGFR-1 in angiogenic 

or no-angiogenic cell types. One limitation of the current study is the use of 

BRMECs and HRPE cells from different species. Therefore this study only 

compared the general trend in the hope of providing some new insight for further 

study. With the availability of human retinal MECs, further study would provide 

decisive evidence to understand the mechanism of angiogenesis regulation.
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4.1 Introduction

The y-secretase complex is an unusual, multimeric, aspartyl protease responsible 

for the intramembrane cleavage of a variety of type-I transmembrane proteins, 

including the amyloid-p (AP) precursor protein, Notch, ErbB4, CD44, p75NTR 

and N-cadherin (Lavoie et al., 2003; Ni et al., 2003). Very recently, VEGFR-1 

has been added to this list (Cai et al. 2006).

The intramembrane cleavage process and its implication in normal cell signalling 

have been termed Regulated Intramembrane Proteolysis (RIP) (Brown et al. 

2000). As one o f the three protease families (reviewed in more detail in chapter 

1), the main function o f Presenilin (PS)-dependent RIP seems to be the 

regulation of surface to nucleus signalling and gene expression by controlling 

production of peptides that act either as transcriptional stimulators or repressors 

(Landman and Kim, 2004). Recent findings for E-cadherin, syndecan-3 and the 

p75NTR suggest that PS-dependent RIP may also function in non-nuclear 

signalling pathways. An example of this is its involvement in regulating the 

formation/disassembly o f high-affinity heteromeric receptor complexes and/or 

adherens junctions, providing additional diversity to PS-dependent RIP-mediated 

signalling (Landman and Kim, 2004).

y-Secretase catalyses proteolysis within the transmembrane (TM) domains and 

has two unique characteristics: 1) There is a lack of requirement for specific 

amino acid target sequences immediately adjacent to the cleavage site within the 

TM domains due to a limited homology among the putative cleavage sites of the 

known y-secretase substrates; 2) There is a requirement for ectodomain shedding 

to produce membrane-tethered C-terminal substrate fragments (Struhl and 

Adachi, 2000; Sisodia et al., 2001; Li, 2001; Kimberly and Wolfe, 2003).

PS and three other multipass membrane proteins, nicastrin, Aph-1 and Pen-2, 

have been genetically linked to y-secretase activity (Yu et al. 2000a; Goutte et al. 

2002; Francis et al. 2002), and biochemical isolation has provided evidence that 

these proteins are indeed necessary members of the protease complex (Esler et
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al. 2002; Steiner et a l  2002; Gu et al. 2003). Co-expression of these four 

transmembrane proteins is sufficient to reconstitute y-secretase activity in yeast, 

which lacks these mammalian orthologs (Edbauer et al. 2003). It has also been 

observed that the biogenesis, maturation, stability, and the steady state levels of 

y-secretase components are co-dependent. Down regulation or targeted gene 

disruption of any one o f these components affects maturation and stability of 

other subunits, indicating that their assembly into a high molecular weight 

(HMW) complex is a highly regulated process that occurs during biosynthesis of 

these polypeptides (Leem et al. 2002).

PS is essential for y-secretase activity and is likely to serve as a catalytic 

component in the heteromultimeric y-secretase complex (Sisodia and George- 

Hyslop, 2002; Xu et al. 2002; Haass and Steiner, 2002; Iwatsubo, 2004). In 

mammals there are two PS homologues, PS-1 and PS-2, both contributing 

independently to y-secretase activity (Tandon and Fraser, 2002), and both 

expressed throughout most adult human tissues and brain regions (Rogaev et al 

1995; Berezovska et al. 1997, 1998).

It is unknown, at the molecular level, whether y-secretase possesses a 

homogeneous or a heterogeneous activity. Several factors or processes have 

been reported to affect the nature and degree o f y-secretase activity; these include 

y-secretase complex assembly and activation, the integral regulatory subunit 

CD 147 (Zhou et al. 2005), transient or weak binding partners (Takashima et al. 

1998; Chen et al. 2006), inflammatory cytokines (Liao et al. 2004; Blasko et al. 

2000; Gianni et al. 2003) and cholesterol and sphingolipid levels (Sparks et al. 

1990; Sjogren et al. 2006), which may affect the proteolytic microenvironment 

of the y-secretase complex (reviewed by Zhou et al. 2007).

In the study by Cai et al. (2006) PEDF was shown to have a positive effect on y- 

secretase activity in cultured BRMECs, while VEGF did not. In another study by 

Yoshida et al. (2005), they reported that Ap accumulation affects the balance 

between VEGF and PEDF in the RPE, and an accumulation of Ap reproduces
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features characteristic o f human AMD. As one of the substrates, Ap has been 

tightly linked to y-secretase (Haass et al. 1992; Busciglio et al. 1993; Haass and 

Selkoe 1993).

As HRPE cells express VEGF, PEDF and VEGFR-1, it would be interesting to 

see 1) if PS-1 and PS-2 are expressed in HRPE cells; 2) if exogenous VEGF 

and/or PEDF have any effect on PS-1 expression in HRPE; 3) if there is any y- 

secretase activity in HRPE cells; and 4) if  exogenous VEGF and/or PEDF have 

any effect on y-secretase activity in HRPE cells.

The aim of this study was therefore to use BRMECs, as a control cell line, to 

investigate the association between VEGF and/or PEDF and PS-1 and the 

potential association between exogenous VEGF and PEDF and the y-secretase 

activity in HRPE cells.

4.2 Experimental design

To meet the goal o f this study, the experiment was designed to be approached 

from the following three aspects: 1) Enzyme activity assay for the effects of 

PEDF/VEGF on y-secretase activity in BRMECs and HRPE; 2) 

Immunocytochemistry for the confirmation of PS-1 localisation and the effect of 

PEDF/VEGF on PS-1 localisation; and 3) Western blotting for the confirmation 

of PS-1 expression and the effect o f PEDF/VEGF on the PS-1 expressions. A 

flow chart for the experimental design is shown in Fig.4.1.

4.3 Materials and methods

4.3.1 Cell culture

Isolation and growth o f BRMECs and HRPE cells were performed as described 

in section 2.3.1. Cells were used within passage 4.
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Fig 4.1 Flow chart of experimental design for chapter 4. PE
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4.3.2 VEGF/PEDF treatment for y-Secretase Activity Assay and Western 

blotting

VEGF/PEDF treatment for y-Secretase Activity Assay was performed using cells 

within passage 4, 80-90% confluent monolayer (7.5 xlO6 cells/flask) in T25- 

culture flasks as described in section of 3.3.8.

4.3.3 Estimation of protein concentration -BCA protein assay

The protein concentration was estimated using the BCA assay kit as described in 

section 3.3.3.

4.3.4 y-Secretase Activity Assay

A y-Secretase Activity Assay Kit (R&D Systems, R&D Systems Inc. UK. Cat 

No.FP003) was used to determine if y-secretase is functional in BRMECs and 

HRPE cells. This kit uses a fluorometric reaction to detect enzymatic activity of 

the y-secretase class o f proteases associated with the cleavage of amyloid 

precursor protein (APP) from cell lysates.

Principally, cells are lysed to collect their intracellular contents. The cell lysates 

are tested for secretase activity by the addition of a secretase-specific peptide 

conjugated to the reporter molecules EDANS [5-(2-aminorthyl) 

aminonaphthalene-1-sulfonic acid] and DABCYL [4-(4-

dimethylaminophenylazo) benzoic acid]. In the uncleaved form the fluorescent 

emissions from EDANS are quenched by the physical proximity of the 

DABCYL moiety which exhibits maximal absorption at the same wavelength 

(495 nm). Cleavage o f the peptide by the secretase physically separates the 

EDANS and DABCYL allowing for the release of a fluorescent signal. The level 

of secretase enzymatic activity in the cell lysate is proportional to the 

fluorometric reaction (kit manual). Fig. 4.2 illustrates the principle of the assay.
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Secretase-specific peptide

EDANS DABCYL

+ y-secretase 
(samples)

Fig 4.2 Principle of the Y~secretase Activity Kit. A
secretase-specific peptide is conjugated to the reporter 
molecules EDANS and DABCYL. In the uncleaved form the 
fluorescent emissions from EDANS are quenched by the 
physical proximity of the DABCYL moiety which exhibits 
maximal absorption at the same wavelength (495 nm). 
Addition of y-secretase cleaves the peptide and physically 
separates the EDANS and DABCYL allowing for the release 
of a fluorescent signal. The level of secretase enzymatic 
activity in the cell lysate is proportional to the fluorometric 
reaction.
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The y-secretase activity assay was carried out according to the manufacturer’s 

instruction with some modification. In brief, cells from the T25-culture flasks 

harvested and stored at -20°C were thawed on ice. Cell Extraction Buffer (0.5 

ml) was added to each flask and incubated on ice for 30 minutes. The 

supernatants were collected and centrifuged at 10,000 xg for 1 minute at 4°C 

before transferring to new tubes on ice. The protein content of the cell lysate was 

estimated using the BCA Protein Assay Kit (Pierce Chemical Co., Cat No. 

23225). For the y-secretase activity reaction, lOOpl of the cell lysate was added 

to each well of the microplate (provided) in duplicates. 2x Reaction Buffer (100 

pi) and 10 pi of Substrate were added to each well. The plate was covered in the 

dark and incubated at 37°C for 1 hour. The following controls were included in 

each assay: a) Mix o f Extraction buffer and Reaction buffer; aa) Mix of 

Extraction buffer, Reaction buffer and substrate; b) Cell lysate (not receiving 

growth factor) in extraction buffer and Reaction buffer; bb) Cell lysate (not 

receiving growth factor) in extraction buffer, Reaction buffer and substrate. The 

plates were read using a Fluostar OPTIMA microplate reader (BMG) at 355 nm 

excitation wavelength and 520-p nm emission wavelength. The amount of y- 

secretase activity in each sample was reported as Mean of the arbitrary unit ± 

Standard Error (SEM) from three separated experiments. The effect of VEGF 

and PEDF on y-secretase activity in BRMECs and HRPE was expressed as the 

ratio of the y-secretase activity relative to the control [bb) Cell lysate (not 

receiving growth factor) in extraction buffer, Reaction buffer and substrate].

4.3.5 Preparation of a positive control for the y-secretase activity assay

Mouse brain is a tissue known to contain y-secretase activity and is 

recommended as a positive control by the manufacturer. However, this positive 

control is not included in the kit and is not available commercially. Therefore, a 

positive control from mouse brain was prepared as following: fresh normal mice 

brains were obtained from the animal house in the School of Biosciences (Cardiff 

University), and either stored at -20°C in lx  Cell Extraction Buffer, or 

homogenised in ice cold lx  Cell Extraction Buffer to yield a final protein 

concentration o f 0.5-2.0 mg/ml.
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A dilution series of 20, 30, 40, 50 pg /well of the mouse brain lysate were tested 

for y-secretase activity. Mouse brain lysate prepared by different procedures, 

such as frozen or fresh, homogenised or not, were tested for y-secretase activity. 

The preparation with the highest y-secretase activity was chosen as a positive 

control for this study.

4.3.6 Immunofluorescence staining

Cell preparation and immunofluorescence staining were performed as described 

in section 2.2.1. VEGF/PEDF treatment for immunostaining was performed as 

described in section 3.3.9.

4.3.7 Western blotting

The preparation o f whole cell lysate and Western blotting were performed as 

described in the section o f 3.3.5 and 3.3.8.

4.3.8 The primary antibodies used for immunofluorescence staining and 

western blot

Table 4.1 The list of primary antibodies used in the immunostaining

and western blot

N am e S ource A gainst a pep tide  a t D ilution used

Presenilin-1
(PS-1)
(H-70)

R abbit polyclonal 
(sc-7860)

A m ino acids 23-247 at the 
N -term inus o f  human origin

1:100

Presenilin-2
(PS-2)
(C-20)

G oat polyclonal 
(sc -1456)

A peptide m apping at the C- 
term inus o f  PS-2 o f  human 
origin

1:100

4.3.9 Statistical analysis

The results were given as the mean ± standard error (SEM) from 3 separate 

experiments. An unpaired Student’s t-test was performed to analyse the data 

using SPSS program. A P value less than 0.05 (P<0.05) was considered 

statistically significant.
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4.4 Results 

4.4.1 Estimation o f the sensitivity of the y-secretase activity kit

The sensitivity o f the y-secretase activity kit was assessed using the mouse brain 

preparation. The results showed that the addition of substrate increased the 

fluorescence signal > 1  fold in the background control (dark red) when compared 

with the background control without substrate [blue] (Fig.4.3). y-secretase 

activity was detected above background with statistical significance in the mouse 

brain preparation when the total protein concentration was>l mg/ml and extracted 

by fresh homogenisation. This preparation was used as a positive control for the 

study of y-secretase activity in BRMECs and HRPE cells.

4.4.2 The effect of VEGF/PEDF on y-secretase activity in BRMECs and 

HRPE cells

In BRMECs, the y-secretase activity assay revealed that cells that were pre

exposed to PEDF had y-secretase activity increased 13.36 ± 5.4% than the 

control (p<0.05). The fluorescence signal did not significantly increase in the 

samples that were pre-exposed to VEGF alone, or the combination of VEGF and 

PEDF (Fig 4.4).

In HRPE cells (Fig 4.5), pre-exposed to VEGF, y-secretase activity was 14.65 ± 

5.8 higher than the control (p<0.05); the fluorescence signal did not significantly 

increase in the samples that were pre-exposed to PEDF alone, or the combination 

of VEGF and PEDF.

4.4.3 Localisation of PS-1 in BRMECs and HRPE cells

Immunostaining confirmed that PS-1 was expressed in BRMECs (Fig. 4.6) 

where it was predominantly localised to the cytoplasm and membrane. In HRPE 

cells, PS-1 was localised in the perinuclear and membrane area (Fig. 4.7).
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Fig. 4.3 Estimation of the sensitivity of the y-secretase kit. Mouse brain with 

total protein concentrations >1 mg/ml. y-secretase activity increased in mouse 

brain tissue that had been freshly extracted without homogenisation [fsh (w)], 

with homogenisation [fsh (h)], and extracted from frozen tissue without 

homogenisation [frz (w)]. The controls for background (blue: without substrate; 

red: with substrate) were included. The orange line indicates the level of 

fluorescence taken as baseline. *p <0.05.
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V a r i o u s  t r e a t m e n t

Fig 4.4 The effects of VEGF/PEDF on y-secretase activity in cultured 
BRMECs. VE: VEGF, PE: PEDF, VE+PE: VEGF + PEDF, PE+VE: 
PEDF+VEGF. C: control cell not exposed to growth factors; Pos: positive 
control made from mouse brain. Data are presented as the ratio of treatment 
relative to the control. Data are presented as mean ± SEM from 3 independent 
experiments.. * p  <0.05.
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Fig. 4.5 The effects of VEGF/PEDF on y-secretase activity in cultured 
HRPE cells. VE: VEGF, PE: PEDF, VE+PE: VEGF + PEDF, PE+VE: 
PEDF+VEGF. C: control cell not exposed to growth factors; Pos: positive 
control made from mouse brain. Data are presented as the ratio of treatment 
relative to the control. Data are presented as mean ± SEM from 3 independent 
experiments. * p  <0.05.
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Fig 4.6 Im m unolocalisation of Presenilin-1 (PS-1) in cultured 
BRMECs. A) Presenilin-1 staining was in the cytoplasm (predominantly 
perinuclear area) and membrane. B)PS-1 staining with Hoechst nuclei 
stain. C) Negative control shows no positive staining. D) Negative control 
with Hoechst nuclei stain.
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50pm 50pm

50pm 50 pm

Fig 4.7 Im m unolocalisation of PS-1 in cultured HRPE cells. A)
Presenilin-1 (PS-1) staining was found predominantly in the cytoplasm 
(perinuclei) and membrane. B) PS-1 staining with Hoechst nuclei stain. 
C) Negative control shows no positive stain. D) Negative control with 
Hoechst nuclei stain.
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4.4.4 The effects of VEGF/PEDF on the localisation of PS-1 and PS-2 in 

HRPE cells

By dual immunolabeling, it was demonstrated that PS-1 and PS-2 were co

expressed in HRPE cells (Fig. 4.8 A2). PS-1 was localised in the perinuclear and 

membrane area while PS-2 localised predominantly to the perinuclear and 

nuclear area, and in the nuclei area presented as ‘speckles’ (Fig 4.8 red).

The addition o f VEGF reduced the PS-1 distribution on the membrane of HRPE 

cells (Fig.4.8B) whereas PEDF alone (Fig. 4.8C) or the combination with VEGF 

(Fig. 4.8 D+E) had no significant effect on the distribution of PS-1.

The addition o f PEDF increased the distribution o f PS-2 in the perinuclear and 

nuclear area (Fig. 4.8 C l). Pre-exposure or post-exposure to VEGF could not 

reverse the effect o f PEDF on PS-2 distribution (Fig. 4.8. D l+E l).

4.4.5 The effects of VEGF/PEDF on the expression of PS-1 in BRMECs

By western blotting, three bands at approx. 120, 100 and 75 kDa were detected in 

the untreated BRMECs (Fig 4.9 Control), and specific to PS-1 when compared 

with the negative control (data not shown). A 47 kDa band representing PS-1 

was not detected in any o f the three experiments. The addition of PEDF 

increased the 120 kDa high molecular weight (HMW) band of PS-1 (p<0.01). 

The addition of VEGF had no significant effect on all the bands detected (Fig 4.9 

A, B, C). The addition o f VEGF followed by PEDF (V+P) significantly 

increased the 75 kDa HMW (p<0.001).

4.4.6 The effects o f VEGF/PEDF on the expression of PS-1 in HRPE cells

Western blotting o f HRPE cell extracts revealed the presence of two bands of 47 

kDa and 75 kDa specific to the anti-PS 1 antibody (Fig. 4.10A Control). The 75 

kDa HMW band significantly decreased in the samples exposed to VEGF 

followed by PEDF (p<0.05) or PEDF followed by VEGF (p<0.01). VEGF or 

PEDF alone had no significant effect on the expression of PS-1 in HRPE cells 

(Fig 4.1 OB, C).
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PS-1 PS-2 Merge
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VEGF

PEDF  

VE+PE
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Fig. 4.8. The effects of VEGF and PEDF on PS-1 and PS-2 localisation in 
cultured HRPE cells by fluorescence microscopy. Column 1: PS-1 (green) 
with nuclei (blue) staining; A. control; B. VEGF treatment; C. PEDF treatment; 
D. VEGF followed by PEDF (VE+PE); E:PEDF followed by VEGF (PE+VE). 
Column 2: PS-2 (red) with nuclei (blue) staining; Column 3: Merge of PS-1 and 
PS-2 with nuclei staining. Scale bar = 5 pM.
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Fig 4.9. The effects of VEGF/PEDF on presenilin-1 (PS-1) expression in 
BRMECs. (A) Western blotting of BRMECs extracts showing expression of PS- 
1. (B-D) Densitometric analysis of Western blotting from 4 independant 
experiments. (B) Data are normalised to a-actin and presented as the relative 
ratio of the 120 kDa band to the control. (C) Data are normalised to a-actin and 
presented as the relative ratio o f the 100 kDa band to the control. (D) Data are 
normalised to a-actin and presented as the relative ratio of the 75 kDa band to the 
control. Data is presented as mean ± SEM. **p <0.01, ***p<0.001. C=control; 
V=VEGF; P=PEDF; V+P=VEGF+PEDF; P+V= PEDF+VEGF.
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Fig 4.10. The effects of VEGF/PEDF on presenilin-1 (PS-1) expression in 
HRPE cells. (A) Western blotting of HRPE cell extracts showing the presence of 
a 75 kDa band as well as the full-length of PS-1 (47 kDa). Blots were stripped 
and reprobed with an antibody to actin to show equal loading of protein. (B-C) 
Densitometric analysis o f Western blotting from 4 independant experiments. (B) 
Data are normalised to a-actin and presented as the relative ratio of the 75 kDa 
band to the control. (C) Data are normalised to a-actin and presented as the 
relative ratio o f the 47 kDa band to the control. Data is presented as mean ± 
SEM. *p <0.05, **p<0.01. C=control; V=VEGF; P=PEDF; V+P=VEGF+PEDF; 
P+V= PEDF+VEGF.
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4.5 Discussion

The aim of this study was to determine whether VEGF and PEDF treatment 

altered y-secretase activity in BRMECs and HRPE cells. Normal mouse brain, a 

tissue known to have y-secretase activity, was prepared and used as a positive 

control to validate the assay.

It was noticed that the substrate (one o f the reagents included in the kit) induced 

very high background, the fluorescence signal only increased when the protein 

concentration (in mouse brain) was greater than 1 mg/ml.

In order to match the protein concentration of the positive control, the cell lysates 

were prepared by scaling up cell numbers while scaling down the extraction 

buffer. The same amount o f protein from control and samples was loaded for the 

assay. PEDF significantly increased y-secretase activity in BRMECs; whilst 

VEGF significantly increased y-secretase activity in HRPE cells. This provides 

evidence to suggest that y-secretase activity in BRMECs and HRPE cells is 

regulated differently by VEGF and PEDF. The upregulation of y-secretase 

activity by PEDF in BRMECs is consistent with the report by Cai et al. (2006). 

However, the combination o f VEGF and PEDF had not increased y-secretase 

activity as demonstrated by Cai et al. (2006). This may be due to the change of y- 

secretase activity was too small to be detected by the kit. Or VEGF can 

antagonise PEDF’s effect in this case.

The association between y-secretase and VEGF/PEDF was investigated further 

by exploring the expression o f PS following VEGF and PEDF stimulation, since 

PS has been regarded as the catalytic centre of y-secretase (Wolfe et a l 1999b; 

Li et al. 2000). It has been well documented that PS, as the core element of y- 

secretase, is endogenously expressed in every type of mammalian cell 

(Thinakaran et al., 1996; Iwatsubo, 2004), localized predominantly to the 

endoplasmic reticulum (ER) and Golgi compartments (Annaert, et al. 1999). A 

small percentage o f PS can be detectable at the cell surface in specific cell types 

(Ray et al. 1999; Schwarzman et al. 1999; Kaether et al. 2002). This study
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confirmed the expression o f PS-1 in cultured BRMECs and HRPE cells, and the 

localisation o f PS in both cell types is in agreement with the above reports. 

Further more, this study revealed, for the first time, that the distribution of PS-1 

was differentially regulated by exogenous VEGF and PEDF in HRPE cells, in 

that VEGF reduced the membrane distribution of PS-1 whilst PEDF sustained 

the distribution. Pre-exposure or post-exposure of VEGF to HRPE cells did not 

reverse the effect o f PEDF suggesting that VEGF and PEDF act on PS-1 in an 

antagonising manner. This evidence supports our hypothesis that VEGF and 

PEDF have oppositing effects on the PS-dependent RIP pathway.

‘Speckles’ have been considered as storage depots for inactive splicing 

components, and are less prominent in cells that transcribe RNA at high levels 

and strikingly prominent when RNA processing is inhibited (Pollard and 

Eamshaw, 2002). In response to the application of exogenous VEGF, PS-2 

distribution increased in the perinuclei and nuclei and decreased in the 

membrane, suggesting that VEGF promotes the translocation of PS-2 from 

membrane to perinuclei and nuclei area in HRPE cells. In contrast, PEDF 

increased the overall distribution o f PS-2 in HRPE.

It is not surprising that PS-1 in BRMECs was expressed as three higher 

molecular weight (HMW) bands of 120, 100 and 75 kDa rather than a 47 kDa 

band. Such phenomena have been observed by several groups in that PS was 

presented in HMW aggregates in a range from 100 to 250 kDa, and includes both 

the PS NTF and CTF (Thinakaran et al. 1996; De Strooper et al. 1997; Seeger et 

al. 1997). It has also been reported by several groups (Capell et al. 1998; Yu et 

al. 1998, 2000a & b) that full-length (FL-PS1) is present in lower molecular 

weight complexes while the NTF/CTF is present in HMW complexes in cell 

culture studies. Cai et al. (2006) detected FL-PS1 and CTF in BRMECs by 

immunoprecipitation and Western blotting. Therefore, the HMW bands detected 

in this study may be just the intermediate complex of y-secretase that is 

expressed specifically in the BRMECs. If this is the case, the increase of 120 kDa
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by PEDF suggests that PEDF upregulates PS processing into HMW complexes, 

towards the active form of y-secretase complex. The upregulation of y-secretase 

activity by PEDF from this study supports the above speculation. In contrast, in 

HRPE cells, the combination o f VEGF and PEDF down-regulated the 75 kDa 

HMW complex but had no significant effect on the band at 47 kDa, suggesting 

that the effect o f PEDF on PS-1 expression in HRPE cells is opposite to the one 

observed in BRMECs.

Taken together, this study provides evidence for the first time that exogenous 

VEGF and PEDF have opposite effects on 1) the y-secretase activity in BRMECs 

and HRPE cells; and 2) the distribution of PS-1 and PS-2 in HRPE cells. It would 

be interesting to carry out further work to study the relationship between A0, PS 

and exogenous VEGF/PEDF in HRPE cells, which may contribute to a new 

therapeutic approach in treatment of AMD by targeting PS or y-secretase.
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5.1 Introduction

y-Secretase has been implicated in many biological activities, such as the 

pathogenesis o f Alzheimer’s disease and developmental signalling by Notch 

receptor. Other activities involve ErbB4, CD44, VEGFR-1 and E-cadherin as 

reviewed in Chapters 1 and 4.

Involvement o f P-secretase and y-secretase in producing the p-amyloid 

component of plaques found in the brains of Alzheimer’s patients has led to the 

design of selective inhibitors o f these proteases that might be of therapeutic 

interest for Alzheimer’s disease. The use o f selective p and y-secretase inhibitors 

might also be important to reveal new functions of these proteases during other 

physiological processes opening the possibility of new applications for these 

drugs. Meanwhile, y-secretase inhibitors have also been used for identifying new 

substrates that are involved in the PS-dependent RIP pathway by interfering with 

the molecular interaction between the enzyme (y-secretase) and its target. For 

example, Ni et al. (2001) used a y-secretase inhibitor to clarify if the soluble 80 

kDa (s80) fragment detected was from y-secretase cleavage or from 

contamination.

As discussed previously (Chapters 3 and 4), evidence suggests that there is a 

relationship between VEGF/PEDF and VEGFR-1/VEGFR-2 (Chapter 3) and 

between VEGF/PEDF and PS-1 (Chapter 4). However, this evidence is not 

sufficient to confirm the association of y-secretase with VEGFR-1. y-secretase 

inhibitors provide a mean to examine the association of y-secretase and VEGFR- 

1/VEGFR-2.

The aim of this study was to investigate the association between: 1) y-secretase 

and VEGFR-1 and 2) y-secretase and VEGFR-2 in HRPE cells using a y- 

secretase inhibitor.
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plate in replicates o f six (from 0/well to 5400/well). A simple regression model 

was used to analyse the linearity of the crystal violet staining with cell number.

5.3.2.3 Preparation o f the y-secretase inhibitor stock

A y-secretase inhibitor (C33H 57N 5O9F2, molecular formula see the Appendix 4) 

(Sigma, Catalogue number S 2188), which has been used in BRMECs by Cai et 

al. (2006), was applied to determine if y-secretase is associated with VEGFR- 

1/VEGFR-2 in cultured HRPE cells.

This y-secretase inhibitor has been documented as a reversible y-secretase 

inhibitor (Wolfe et al., 1998; Wolfe et a l , 1999) selective for aspartyl protease. It 

inhibits amyloid p protein (AP) biosynthesis at the level of y-secretase. It is also a 

potent inhibitor o f Ap production in embryonic kidney (HEK) 293 cells and its 

IC50 for total inhibition o f Ap is 13.5 pM (Product Information, Sigma).

The y-secretase inhibitor (lm g) was dissolved in 90% (v/v) of dimethyl sulfoxide 

(DMSO) with 10% (v/v) water to form a 1350 pM stock solution and stored at - 

20°C in aliquots.

For assessing the cytotoxcity o f the y-secretase inhibitor, a dilution series of the 

inhibitor was prepared by further diluting the 1350 pM stock to 0.135, 1.35, 13.5 

and 27.0 pM with Ham’s F-10 medium containing 1% FCS. DMSO in 10% 

water in the corresponding dilutions with Ham’s F-10 containing 1% FCS was 

also prepared as the vehicle controls.

5.3.2.4 Evaluation o f the cytotoxic effect of the y-secretase inhibitor

To determine if the concentration of 13.5 pM was a usable concentration in 

HRPE cells with minimum cytotoxicity, HRPE cells were subcultured in a 96- 

well plate at 3000 cells/well and maintained in Ham’s F-10 medium containing 

10% FCS for 24 hours. Prior to the treatment, serum-free medium was replaced 

and incubated for 45 min. The y-secretase inhibitor was added at concentrations
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ranging from 0.135, 1.35, 13.5 and 27pM in (1000 pl/well of) Ham’s F-10 

medium containing 1% FCS respectively, so that each well containing a specified 

concentration o f y-secretase inhibitor and DMSO. Medium without any addition 

and medium containing DMSO only (in correspondent concentrations) were 

included as controls. Each treatment and control was prepared in triplicates. 

Initially, cells were incubated with a given y-secretase inhibitor concentration for 

26 hours at 37 °C. The cytotoxicity of y-secretase inhibitor was assessed by the 

Crystal Violet assay.

5.3.3 y-secretase inhibitor and PEDF / VEGF treatment

Once the optimal concentration o f the y-secretase inhibitor was identified, HRPE 

cells were subcultured in T25 flasks with consistent cell numbers in each flask. 

At near confluence, the cells were washed with PBS three times, and incubated 

with serum-free Ham’s F-10 medium for 45 min. Cells were treated with 13.5 

pM y-secretase inhibitor in Ham’s F-10 medium containing 1% FCS (2 ml/flask) 

and incubated at 37°C for 2 hours. The addition of PEDF (100 ng/ml) or VEGF 

(100 ng/ml) was followed respectively. One hour after incubation at 37°C 

another dose o f VEGF (100 ng/ml) was added to one of the flasks that had been 

treated with PEDF, and same dose o f PEDF to one of the flasks that had been 

treated with VEGF. Cells without any treatment, and cells treated with just the y- 

secretase inhibitor were included as controls. Cultures were incubated for a 

further 24 hours in a 37°C standard incubator. At the end of the time course cells 

were harvested and subjected to protein extraction.

5.3.4 Preparation of whole cell lysate

The whole cell lysate was prepared as described in section 3.3.2.

5.3.5 Preparation of subcellular fractions

5.3.5.1 Preparation o f  four subcellular fractions

In order to analyse the localisation of the target of interest, the ProteoExtract™ 

Subcellular Proteome Extraction Kit (S-PEK) was used in an attempt to obtain 

four subcellular fractions. The S-PEK uses special reagent mixtures to solubilise
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different subcellular compartments while the structural integrity of the 

subcellular structures is preserved before and during the extraction. It enables 

the differential extraction o f proteins according to their subcellular localisation. 

The S-PEK procedure yields proteins in their native state (manual of the S-PEK) 

(Fig 5.2).

Subcellular Proteome Extraction was carried out according to the manufacturer’s 

instruction [ProteoExtract™ Subcellular Proteome Extraction Kit (S-PEK) (Cat. 

No. 539790, EMD Biosciences, Inc.UK)] with some modification. In brief, the 

cells in a T25-flask  were washed with PBS, and any remaining liquid removed. 

Ice-cold Extraction buffer I (500pl) containing Protease Inhibitor Cocktail (5pl) 

was added to each flask and incubated at 4°C for 10 min under gentle agitation. 

The supernatant (fraction 1 - cytosolic) was collected and stored at -20°C in 

aliquots for further analysis. A mixture o f ice-cold Extraction buffer II (500pl) 

and Protease Inhibitor Cocktail (5 pi) was added to each flask and incubated for 

30 min at 4°C under gentle agitation. The supernatant (fraction 2 -  organelle / 

membrane) was collected and a mixture o f ice-cold Extraction buffer III (500pl) 

with Protease Inhibitor Cocktail (5pl) and Benzonase® (1.5pl ) was added to 

each flask and incubated for 10 min at 4°C under gentle agitation. The 

supernatant (fraction 3 -nucleic) was collected and a mixture of Extraction 

buffer IV (500pl) with Protease Inhibitor Cocktail (5pl) at room temperature was 

added to each flask. Cell particles were suspended by vigorously pipetting, and 

transferred into a new eppendorf (fraction 4 - cytoskeleton). The protein 

concentration o f the subcellular protein extracts was determined by BCA Protein 

Assay as described in section 3.3.3 before being subjected to SDS-PAGE or 

Western blotting.

5.3.5.2 Preparation o f  two subcellular fractions

In an attempt to extract subcellular fractions o f cells in their native state with a 

higher protein concentration, extraction o f two subcellular fractions was 

undertaken using Triton X-100 soluble (Tx-sol) (containing the cytosol fraction) 

and Triton X-100 insoluble (Tx-insol) (containing the cytoskeleton and nuclei
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fraction) as previously described (Stolz et al. 1992; Lampugnani et al. 1995; Cai 

et al. 1999; Cai et al. 2006).

In brief, at near confluence, HRPE cells were washed twice with lxPBS after 

removal of Ham ’s F-10 medium. T riton X-100 soluble buffer (500 pi) (see 

Appendix 2) was added to the cells in T25 flasks and incubated on ice for 30 

minutes with gentle agitation. The extraction buffer was collected and 

centrifuged at 14,000g for 5 minutes at 4°C. The supernatant was defined as the 

Tx soluble (Tx-sol) fraction. After this step, the cells appeared homogenously 

adherent to the culture vessel with well preserved nuclei and cytoskeleton fibres 

under phase contrast microscopy. They were then extracted with 1% SDS buffer 

containing protease inhibitors (see the Appendix 2) (500 pi) for 10 minutes on 

ice. The mixture o f 1% SDS buffer and cell cytoskeleton were collected into 

eppendorfs using a cell-scraper and further disrupted by vigorously pipetting 

before centrifugation at 14,000g for 5 minutes. This supernatant was defined as 

the Tx-insoluble (Tx-ins) fraction. The protein concentration from both fractions 

was estimated using the BCA protein assay (as described in section 3.3.3.). 

Equal amounts o f protein from each sample were used for SDS-PAGE or 

Western blotting.

5.3.6 Estimation o f protein concentration -  BCA protein assay

The BCA protein assay was performed as described in the section of 3.3.3.

5.3.7 SDS-PAGE

5.3.7.1 Preparation o f SDS-PAGE

SDS-PAGE was prepared as described in the section o f 3.3.4.1.

5.3.7.2 Visualisation o f protein by Coomassie brilliant blue staining 

Coomassie brilliant blue staining was performed to visualise the protein profile 

in the preparation o f four subcellular fractions and two fractions as described in 

section 3.3.4.2.
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5.3.7.3 Visualisation o f protein by silver staining

All silver staining methods depend on the reduction of ionic to metallic silver to 

provide metallic silver images (Hames and Hooper, 2000). Silver staining is 

much more sensitive than Coomassie Blue staining and is usually carried out 

when the protein concentration is too low to be detected by Coomassie Blue 

staining.

The procedure o f silver staining was undertaken according to the manufacturer’s 

instruction (Pierec, UK) using the GelCode® Colour Silver Stain Kit. On 

completion o f running, SDS -PA G E gels were fixed with the mixture of ethanol 

and acetic acid (10:1) (v/v) overnight on an agitator. Next day gels were washed 

with deionised water (dH20) for 30 minutes with 4 changes, and incubated with 

the Silver Working Solution (WS) (Silver Concentrate: Water = 1:14) for 30 

minutes at room temperature. Gels were rinsed in dH20 for 10 seconds and 

incubated with Reducer WS (equal volumes of Reducer Aldehyde WS and 

Reducer Base WS, prepared immediately before use) for 5 minutes. Gels were 

again rinsed with dH20 very briefly and incubated in Stabilizer WS (1:44 

dilution o f Stabilizer Concentrate in dH20) for up to 2 hours. The bands of each 

sample were analysed using EPSON scan (EPSON EXPRESSION 1680 Pro).

5.3.8 Western blotting

Western blotting was performed on whole cell lysates (as described in section 

3.3.2), two subcellular fractions (section 5.3.5.2) and four subcellular fractions 

(section 5.3.5.1).

5.3.9 Statistical analysis

The results were given as the mean ± standard error (SEM) from 3 independent 

experiments. An unpaired Student’s t-test was performed to analyse the data 

(SPSS). A probability value less than 0.05 (P<0.05) was considered statistically 

significant.
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5.4 Results

5.4.1 Selection of a usable concentration of y-secretase inhibitor for 

treatment with cultured HRPE cells

By crystal violet staining it was observed that the doses of y-secretase inhibitor 

applied to the HRPE had no significant effect on HRPE cell growth when 

compared with the controls as indicated by the orange colour line in Fig. 5.3. 

Thus, no toxic effect was observed in the concentration range 0.135 pM to 27.0 

pM. The 13.5 pM concentration o f y-secretase inhibitor was chosen for the 

following studies in HRPE cells since it has been previously used in BRMECs by 

Cai et al. (2006).

5.4.2 The crystal violet staining exhibits a linear response to the number of 

HRPE cells

To confirm the validity o f crystal violet staining for monitoring the proliferation 

of cultured HRPE cells, the staining was performed on cells cultured at different 

density for 24 hours. By plotting the Optical Density (OD) against the number of 

the cells used, it was demonstrated that there is a linear relationship between the
'y

OD and cell number with a very high coefficient o f determination (R =0.984) 

(Fig 5.4). This indicates that the variance in one variable (OD) would predict 

almost all the variance in the other variable (number of cells). Therefore, the 

crystal violet staining method is a valid approach to quantify HRPE cell 

proliferation (Calculated linear regression equation y = 4E-05X + 0.0834 where 

the correlation coefficient R = 0.984).

5.4.3 Protein profile from 4 subcellular fractions of BRMECs

Coomassie Blue staining o f protein showed no visible band from the samples 

prepared in four subcellular fractions. With silver staining, it was observed that 

each fraction has its own pattern. Bands were observed above and around 250 

kDa position in fraction 1 (FI- the cytosolic) and fraction 2 (F2 - membrane and 

organelle) whereas in fraction 3 (F3 - nuclei) the bands were weaker and were 

ambiguous in fraction 4 (F4 - cytoskeleton). See Fig 5.5.
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Fig 5.3 Evaluation of a usable concentration of y-secretase inhibitor in 

cultured HRPE cells. A dilution series o f the y-secretase inhibitor ranging from 

0.135, 1.35, 13.5 and 27 jiM were added to the cells and incubated for 26 hours. 

Medium only and cells without treatment were included as controls; cells 

exposed to DMSO (vehicle control) in correspondent concentrations (dark red) 

were also included. Vertical bars are mean ± SEM (n=3). The orange line 

indicats the level o f proliferation taken as baseline. rS-in = y-secretase inhibitor.
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Fig 5.4. The validation of crystal violet staining for monitoring cell 

proliferation. (A) The absorbance reading (555 nm) corresponding to the cell 

numbers. (B) Linear relation between the absorbance and cell number.
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Fig 5.5 Protein profile in four subcellular fractions from 
BRM ECs by silver staining of 10% SDS-PAGE gels. The
fractions were obtained using the ProteoExtractTM Subcellular 
Proteome Extraction Kit. FI: cytosolic fraction. F2: membrane/ 
organelle fraction. F3: nuclei fraction and F4: cytoskeleton 
fraction. M: molecular weight marker.
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5.4.4 Protein profile from 2 subcellular fractions of HRPE cells

Coomassie Blue staining o f 10% SDS-PAGE gels show that the protein profile 

from the Tx-sol fraction (containing cytosol) differs from the Tx-insol fraction 

(containing cytoskeleton and nuclei). There are more bands from the range of 75 

to 250 kDa in the Tx-sol than in Tx-insol (Fig. 5.6).

5.4.5 The effects o f y-secretase inhibitor on the expression of VEGFR-1 in 

HRPE cells

Western blot analysis was performed on total cell lysates of HRPE cells exposed 

to y-secretase inhibitor (13.5 pM) followed by the addition of VEGF/PEDF. The 

results revealed that y-secretase inhibitor alone decreased the 75 and 85 kDa 

fragments o f VEGFR-1 (p<0.05). Addition of VEGF alone had no statistically 

significant effect whereas the combination o f VEGF and PEDF sustained the 

effect o f the y-secretase inhibitor (p<0.01, p<0.05, respectively) (Fig. 5.7).

5.4.6 The effects of y-secretase inhibitor on the distribution of VEGFR-1 in 

HRPE cells

Western blotting analysis failed to detect VEGFR-1 /VEGFR-2 expression in any 

of the four subcellular fractions. In an attempt to increase the concentration of 

the total protein in each fraction, cells were fractionated into two fractions 

instead (Tx-sol and Tx-insol). Western blot analysis showed that treatment with 

the y-secretase inhibitor increased the 75 kDa and 85 kDa fragments of VEGFR- 

1 in the insoluble fraction o f HRPE cells (containing cytoskeleton and nuclei) 

(p<0.05); addition o f VEGF or PEDF or a combination of these did not reverse 

this effect (Fig 5.8).

5.4.7 The effects of y-secretase inhibitor on the expression of VEGFR-2 in 

HRPE cells

Western blot analysis demonstrated that the y-secretase inhibitor reduced the 

expression of VEGFR-2 (p<0.05), addition o f VEGF or PEDF alone, or the 

combination o f these reversed the effect o f y-secretase inhibitor and restored the 

expression of VEGFR-2 (Fig. 5.9).
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Fig 5.6 Protein profile in two subcellular fractions from HRPE cells 
by Coomassie staining of 10% SDS-PAGE gels. The two subcellular 
fractions were obtained using Triton X-100 buffer. Lanel: molecular 
weight marker; Lane 2 and 3: Triton x-100 soluble fractions. Lane 4 and 
5: Triton x -100 insoluble fractions.
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Fig 5.7 The effects of y-secretase inhibitor on VEGFR-1 expression in 
HRPE cells by W estern blotting. (A) Western blot of VEGFR-1 in HRPE cells. 
(B&C) Densitometric analysis o f immunoblots depicted in (A). Data are 
normalised with GAPDH from 3 separated experiments and presented as the 
relative ratio of VEGFR-1 to the control. Data are presented as mean ± SEM. *p 
<0.05; ** p<0.01. C: non-treatment control. C-rS in: control-y-secretase 
inhibitor only. rS-in + V : y-secretase inhibitor treatment followed by VEGF. rS- 
in + P: y-secretase inhibitor treatment followed by PEDF. rS-in + V+P: y- 
secretase inhibitor treatment followed by VEGF then PEDF.
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Fig 5.8 The effects of y-secretase inhibitor on VEGFR-1 distribution in the 
Tx-s/Tx-ins fractions of HRPE by western blotting. (A) Western blot of 
VEGFR-1 in Tx-s/Tx-ins fractions. (B & C) Densitometric analysis of 
immunoblots depicted in (A). Data are presented as the relative ratio of VEGFR- 
1 to the control from 3 separate experiments. Data are presented as mean ± SEM. 
*p <0.05; ** p<0.01. C: non-treatment control. C-rS in: control-y-secretase 
inhibitor only. rS-in + V : y-secretase inhibitor treatment followed by VEGF. rS- 
in + P: y-secretase inhibitor treatment followed by PEDF. rS-in + V+P: y- 
secretase inhibitor treatment followed by VEGF then PEDF.
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Fig 5.9 The effects of y-secretase inhibitor on VEGFR-2 expression in 
HRPE cells by western blotting analysis. (A) Western blot of VEGFR-2 
expression in HRPE cells. (B) Densitometric analysis of immunoblots depicted 
in (A). Data are normalised with GAPDH from 3 separate experiments and 
presented as the relative ratio o f VEGFR-2 to the control. Data are presented as 
mean ± SEM. *p <0.05. C: non-treatment control. C-rS in: controPy-secretase 
inhibitor only. rS-in + V: y-secretase inhibitor treatment followed by VEGF. rS- 
in + P: y-secretase inhibitor treatment followed by PEDF. rS-in + V+P: y- 
secretase inhibitor treatment followed by VEGF then PEDF.
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5.4.8 The effects of y-secretase inhibitor on the distribution of VEGFR-2 in 

HRPE cells

By fractionation of the cells into two subcellular fractions, Western blot analysis 

revealed that treatment with the y-secretase inhibitor had no significant effect on 

the distribution o f VEGFR-2 in Tx-sol and Tx-insol fractions of HRPE cells 

(p>0.05) (Fig 5.10).
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Fig 5.10 The effects of y-secretase inhibitor on VEGFR-2 distribution in the 
Tx-s/Tx-ins fractions of H RPE by western blot analysis. (A) Western blot of 
VEGFR-2 in the Txs/Tx-ins fractions. (B) Densitometric analysis of 
immunoblots depicted in (A). Data are presented as the relative ratio of VEGFR- 
2 to the control from 3 separate experiments. Data are presented as mean ± SEM. 
C: non-treatment control. C-rS in: control^-secretase inhibitor only. rS-in + V: 
y-secretase inhibitor treatment followed by VEGF. rS-in + P: y-secretase 
inhibitor treatment followed by PEDF. rS-in + V+P: y-secretase inhibitor 
treatment followed by VEGF then PEDF.
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5.5 Discussion

A well defined model for the RIP signalling pathway that y-secretase is involved 

in has been applied to Notch receptor and ErbB4 as reviewed in chapter 1. In this 

pathway the signalling is initiated upon the ligand binding. A metalloprotease 

cleaves the ectodomain o f the receptor. Subsequently, a second cleavage 

mediated by y-secretase is initiated and results in the release of the intracellular 

domain from the membrane and facilitates its translocation to the nucleus. In the 

case of ErbB4 receptor, the ectodomain and cytosolic domain of ErbB4 is 

cleaved sequentially by two enzymes, and the cytosolic domain translocated into 

the nucleus to regulate cell proliferation and differentiation (Ni, et al., 2001; Lee 

et al., 2002). In cultured BRMECs, VEGFR-1 has been reported to be cleaved by 

y-secretase (Cai et al., 2006).

To define the association between y-secretase and VEGFR-1 and/or VEGFR-2, 

one would expect to see the reduction/or the disappearance of the receptor 

fragment(s) from the ectodomain and intracellular domain when treated with an 

inhibitor of the metalloprotease or y-secretase; and /or to see the inhibition of the 

translocation o f the fragment(s) to the nucleus or other compartment within the 

cells.

To date, the relationship o f VEGFR-1 or VEGFR-2 with y-secretase activity and 

the cleavage o f VEGFR-1 or VEGFR-2 in HRPE cells has not been studied. In 

this study, two fragments smaller than the full-length VEGFR-1, were detected 

(as described in chapter 3) and predominantly expressed in HRPE cells, y- 

secretase inhibition resulted in the reduction o f the 75 kDa and 85 kDa fragments 

in the whole cell lysate suggesting that the production of the VEGFR-1 

fragments is associated with y-secretase in cultured HRPE cells. Restoration of 

the expression o f these fragments following the addition of VEGF further 

supports this relationship. More interestingly is the phenomenon that the 

inhibitory effect o f the y-secretase inhibitor can be sustained by the combined 

effect of VEGF and PEDF. These have two implications: 1) VEGF and PEDF
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have opposite effects on the y-secretase inhibitor and 2) PEDF exerts its effect 

with the presence o f VEGF.

Regarding the effects o f y-secretase inhibition on the distribution of VEGFR-1 

fragments, the reduction o f the fragments in Tx-soluble fraction by the y- 

secretase inhibitor suggests that y-secretase is related to the release of C-terminal 

fragments of VEGFR-1. It is interesting to note that addition of VEGF or PEDF, 

or the combination o f  both cannot reverse the effect o f y-secretase inhibition on 

the VEGFR-1 distribution. Since the Tx-soluble fraction contains the cytosol 

whereas the Tx-insoluble fraction contains cytoskeleton and nuclei, these data 

suggest that y-secretase regulates VEGFR-1 cleavage and the distribution in 

HRPE cells.

Similar to the effect on the expression of total VEGFR-1, y-secretase inhibition 

resulted in the reduction o f VEGFR-2 expression at the total protein level. The 

addition o f VEGF followed by PEDF restored VEGFR-2 expression. This 

evidence suggest that y-secretase also regulates VEGFR-2 but the subsequent 

response to VEGF and PEDF treatment is different from that of VEGFR-1. 

Another difference is that y-secretase inhibition had no significant effect on the 

distribution o f VEGFR-2 in Tx-sol/Tx-insol fraction.

Taken together, these results have two implications 1) y-secretase exists in HRPE 

cells and is involved in the fragment production o f VEGFR-1 and 2) y-secretase 

is involved in the VEGFR-2 signalling in a way that is different from VEGFR-1. 

Further studies are required to clarify the role o f soluble fragments of VEGFR-1 

in the regulation of angiogenesis.
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6.1 Introduction

VEGF plays a central role in vascular homeostasis. It is also a potent angiogenic 

stimulator and plays an important role in pathological angiogenesis (Shibuya, 

2001), such as diabetic retinopathy, choroidal neovascularisation (CNV) (Adamis 

et al., 1994; Aiello et al. 1994; Husain et al, 2002; Witmer et al. 2003) and 

tumour angiogenesis (Moreira et al., 2007). As reviewed in chapter 1, VEGF 

increases vascular permeability which might facilitate tumour dissemination via 

the circulation causing a greater delivery o f oxygen and nutrients. It recruits 

circulating endothelial precursor cells and acts as a survival factor for immature 

tumour blood vessels. The endotheliotropic activities of VEGF are mediated 

through the VEGF-specific tyrosine-kinase receptors: VEGFR-1 and VEGFR-2. 

VEGF and its receptors play a central role in ocular and tumour angiogenesis 

and, therefore, the blockade o f this pathway has been regarded as a promising 

therapeutic strategy for inhibiting angiogenesis and tumour growth.

Conversely, accumulating evidence has shown that the balance between VEGF 

and PEDF is crucial for the regulation o f vascular permeability and angiogenesis 

(Zhang et al. 2006). Under normal conditions, there is a balance between these 

two systems which is essential for maintaining the quiescence o f retinal 

vasculature and integrity o f the blood-retinal barrier (BRB) (Bussolino et al. 1997; 

Miller et al. 1997).

In certain pathological conditions, such as diabetic retinopathy, this balance is 

disturbed due to the over-production o f angiogenic stimulators and the decreased 

production o f angiogenic inhibitors. This will subsequently lead to the BRB 

breakdown and the over-proliferation o f capillary endothelial cells, resulting in 

retinal neovascularisation (Forsythe et al. 1996; Miller et al. 1997; Gao et al. 

2001; Gao & Ma 2002). In animal studies, Gao et al. (2001) demonstrated that in 

rats with oxygen-induced retinopathy, PEDF levels in the retina are significantly 

decreased in contrast to the increased VEGF levels leading to an increased retinal 

VEGF/PEDF ratio. This disturbed balance correlates with the formation and 

progression o f neovascularisation. Such evidence suggests an inverse correlation
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between VEGF and PEDF levels and that a reciprocal regulation exists between 

these two major angiogenic regulators (Gao et a l 2001; Ohno-Matsui et a l  2001; 

Ohno-Matsui et a l  2003; Doll et a l  2003).

In contrast, Ogata et a l  (2002) observed that in rats with experimental CNV, the 

levels o f expression o f VEGF and PEDF vary with the severity of CNV. When 

CNV was active VEGF and PEDF were both strongly expressed in the CNV 

lesions. However, after the CNV had developed, the expression of both VEGF 

and PEDF decreased. In another study, Matsuoka et a l  (2004) reported that 

VEGF and PEDF were strongly expressed in human active subretinal 

fibrovascular membranes from age-related macular degeneration (AMD) and 

polypoidal choroidal vasculopathy (PCV). This evidence suggests that VEGF- 

induces PEDF gene upregulation and a feedback mechanism may be present in 

CNV (Tong and Yao, 2006). A similar phenomenon has also been observed in 

cultured HRPE cells by Ohno-Matsui and colleagues (2003). They demonstrated 

that VEGF secreted by RPE cells upregulates PEDF expression via VEGFR-1 in 

an autocrine manner.

Interestingly, it has been demonstrated that VEGF and PEDF both can be 

produced from the same cells in primary cultures o f various cell types, such as 

cultured HRPE cells (Tombran-Tink et a l  1996; Ohno-Matsui et a l 2001; Ohno- 

Matsui et a l  2003), cultured primary retinal capillary endothelial cells (Simorre- 

Pinatel et a l  1994; Tombran-Tink et a l , 2004), and retinal glial (Muller) cells 

(Yafai et a l, 2007). Understanding the relationship between VEGF and PEDF 

production in the same cell type may lay the foundation for a different therapeutic 

approach for the treatment o f various angiogenesis related conditions. In chapters 

3, 4 and 5, the effect o f VEGF and PEDF, on the expression of VEGFR-1, 

VEGFR-2 and presenilin-1 (PS-1) were investigated in HRPE cells under 

overlapping o f autocrine (HRPE cell dependent) and paracrine (HRPE cell 

independent) pathways. However, further investigation was needed to define the 

responsibility o f VEGF and PEDF in autocrine and paracrine pathways. 

Techniques such as neutralising anti-VEGFR-1 or anti-VEGFR-2 antibodies have
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been used to study the relationship between VEGF and PEDF in HRPE cells 

(Ohno-Matsui et al. 2003).

RNA interference (RNAi), is the method of choice for studying loss-of-function 

study and has been applied to silence VEGF expression in various in vitro models 

(Reich et al., 2003; Li et a l ,  2005; Murata et al., 2006). RNAi has also been used 

in an attempt to inhibit ocular angiogenesis (Reich et a l,  2003; Kim et al., 2004; 

Murata et al., 2006) or to inhibit the growth of malignant melanoma (Tao et al., 

2005) in vivo. Despite the above attempts, the effect(s) of the altered expression 

of specific gene(s) on various downstream signalling and the expression of many 

other genes remain largely uninvestigated. In the hope of applying small 

interfering RNA (siRNA) technology to inhibit the expression of VEGF in HRPE 

cells, this study aimed to dissect the autocrine/paracrine effects of VEGF on 

PEDF, VEGFR-1, VEGFR-2 and PS-1 expression in HRPE cells.

The principal mechanisms o f  RNA interference (RNAi)

RNA interference is a normal, endogenous system for regulating gene expression 

in which short RNA segments, approximately 22 bases in length, form double

stranded structures with an mRNA and either target it for destruction or block its 

translation. By use o f exogenously supplied RNAi sequences, scientists have 

taken advantage o f this system to design new and powerful technologies for gene 

silencing (Nussbaum et al., 2007; Sandy et al. 2005). This enables scientists to 

analyse the effect o f a gene on cellular function in a quick and easy way.

Long double-stranded RNAs (dsRNAs; typically >200 nt) can be used to silence 

the expression o f target genes in many non-mammalian systems, such as worms 

fruit flies and plants (reviewed in Bantounas et al., 2004). Upon introduction, the 

long dsRNAs enter a cellular pathway that is commonly referred to as the RNAi 

pathway. First, an RNase Ill-like enzyme called Dicer cleaves the dsRNAs into 

20-25 nt small interfering RNAs (siRNAs). Next the siRNAs assemble into 

endoribonuclease-containing complexes known as RNA-induced silencing
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complexes (RISCs), unwinding in the process. The antisense siRNA strand 

subsequently guides the RISCs to complementary RNA molecules, where they 

cleave and destroy the cognate RNA (effect step). Cleavage of cognate RNA 

takes place near the middle o f the region bound by the siRNA strand, leading to 

specific gene silencing (Fig 6.1, A).

Upon introduction o f long dsRNA (>30 nt), most mammalian cells initiate a 

potent antiviral response, exemplified by non-specific inhibition of protein 

synthesis and RNA degradation. To bypass the antiviral response in mammalian 

cells, RNAi is induced to these systems by either transfecting cells with siRNA 

(typically 21 bp RNA molecules with 3’ dinucleotide overhangs) or by using 

DNA based vectors to express short hairpin RNA (shRNA) that are processed by 

Dicer into siRNA molecules (Elbashir et al.2001, Caplen et al. 2001, Caplen & 

Mousses, 2003; Hutvagner et al. 2001; Hutvagner, 2005) (Fig 6.1, B and C, 

respectively).

Aims

The aims of this study were to investigate

1) The autocrine effect o f VEGF on PEDF, VEGFR-1, VEGFR-2 and PS-1 

expression in cultured HRPE cells by knockdown o f the VEGF gene using VEGF- 

siRNA.

2) The paracrine effect o f VEGF/PEDF on VEGFR-1, VEGFR-2 and PS-1 

expression in cultured HRPE cells by knockdown of the VEGF gene prior to the 

addition of exogenous VEGF /PEDF.

6.2 Project design

In order to meet the goals o f this study, the experiment was designed to be 

carried out in four stages: 1) preparation of VEGF-siRNA, 2) evaluation of the 

specificity and efficiency o f the VEGF-siRNA, 3) establishment of analytical 

methods for analysis o f the effect of VEGF-siRNA and 4) correlating silencing 

with biological effect. A flow chart for the experimental design is shown in 

Fig.6.2.1. & Fig 6.2.2.
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designed to express (B) short hairpin RNA (C) or synthetic siRNA molecules .

140



Chapter 6 Yadan Zhang

Stage 1 Preparation of VEGF-siRNA

Design siRNA sequence(s) (targeted 
/  non targeted)

Purchase oligonucleotides

I
siRNA synthesis by in vitro transcription

I
Estimation of siRNA concentration / integrity

Stage 2 Evaluation of the specificity and efficiency 
of the VEGF-siRNA

Plate out cells at the recommended density

siRNA transfection with HRPE cells 
at defined concentrations 

for defined time course

I
Harvest cells for RNA / protein extraction 

and
collect medium for protein level analysis

Fig 6.2.1 Flow chart of experimental design for chapter 6.
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Stage 3 Downstream analysis method(s) for 
analysis of the effects of VEGF-siRNA
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I
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Fig 6.2.2 Flow chart o f experimental design for chapter 6.
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6.3 Materials & Methods

6.3.1 HRPE cell culture

The isolation, culture and characterisation of HRPE cells were performed as described 

in 2.2.1. Cells were used within passage 3.

6.3.2 Preparation o f siRNA

By in vitro transcription, siRNAs were constructed using the Silencer siRNA 

Construction Kit (Ambion, Inc.USA). This kit overcomes the sequence 

requirements o f traditional in vitro transcription strategies by using siRNA 

template oligonucleotides containing a ‘leader’ sequence that is complementary to 

the T7 promoter Primer included in the kit. The procedures fo r constructing 

siRNA were as recommended by the manufacture and shown in Fig 6.3.

6.3.2.1 siRNA Design

siRNA specific for human VEGF was designed in two steps according to the 

instruction of “siRNA Design” that is recommended by Ambion 

(www.ambion.com/techlib/misc/siRNA design.html).

The first step was to find 21 nt sequences in the target mRNA that begin with an 

AA dinucleotide, based on the observation by Elbashir et al. (2001) that siRNA 

with 3’ overhanging UU dinucleotides are the most effective. The potential 

siRNA target sites were selected with 21 nt sequences in the target mRNA that 

begin with an AA dinucleotide. In order to avoid the cleavage by RNase at 

single-stranded G residues, the sequence within G residues in the overhang were 

excluded; the siRNA with 30-50% G/C content was selected rather than those 

with a higher G/C content.

The second step was to convert the designed siRNA sequence into 

oligonucleotides based on the following guidelines: 1) The DNA counterpart 

(antisense template oligonucleotide) o f the target mRNA sequence should have 

the same sequence as the target RNA but U residues are replaced with T’s. 2)

The sense template oligonucleotide should start with an AA dinucleotide at the 5’
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end followed by 19 nt that are complementary to the target sequence. 3) The 8 nt 

at the 3’ end o f both oligonucleotides should have the following sequence: 5’- 

CCTGTCTC-3’ (which is complementary to the T7 promoter Primer provided 

with the Silencer siRNA Construction Kit). Table 6.1 shows the sequences of 

the DNA oligonucleotides that were ordered from Sigma-Aldrich.

Table 6.1 Sequences o f the oligonucleotides for VEGF-siRNA and scrambled 

siRNA.

Sequence (5’-3’)

siVEGFant AAACCTCACCAAGGCCAGCACCCTGTCTC

siVEGFsen AAGTGCTGGCCTTGGTGAGGTCCTGTCTC

cVEGFant AAACTACCGTTGTTATAGGTGCCTGTCTC

cVEGFsen AACACCTATAACAACGGTAGTCCTGTCTC

6.3.2.2 Construction o f siRNA

6.3.2.2.1 Preparation o f  transcription template

The sense and antisense template oligonucleotides (DNA) for each siRNA must 

be converted to dsDNA with a T7 promoter at the 5’ end to make an efficient 

transcription template. This is accomplished by hybridising the 2 

oligonucleotides to the T7 Promoter Primer provided with the Silencer siRNA 

Construction Kit and extending the T7 promoter Primer and template 

oligonucleotides using a DNA polymerisation reaction.

Purchased DNA-oligonucleotides were resuspended in nuclease-free water to a 

final concentration o f 200 pM.

To hybridise each template oligonucleotide to the T7 Promoter Primer. 2 pi of T7 

Promoter Primer, 6 jllI o f  DNA Hyb Buffer and 2 pi o f either sense or antisense 

template oligonucleotide were mixed together in separate tubes and heated to 

70°C for 5 minutes, then left at room temperature for 5 minutes. Then the 

following were added: 2 pi o f lOx Klenow Reaction Buffer, 2 pi o f lOx dNTP
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Mix, 4 pi o f Nuclease-free water and 2 pi o f Exo-Klenow and incubated at 37°C 

for 30 minutes.

6.3.2.2.2 Synthesis o f  dsRNA

Transcription was performed in 20 pi o f transcription mix: 2 pi of sense or 

antisense siRNA template, 4 pi o f Nuclease-free water, 10 pi of 2x NTP Mix, 2 

pi of lOx T7 Reaction Buffer and 2 pi o f T7 Enzyme Mix. This was incubated at 

37°C for 2 hours, and then the sense and antisense transcription reaction were 

combined into a single tube and incubated overnight at 37°C.

6.3.2.2.3 Preparation and Purification o f  siRNA

The dsRNA made by in vitro transcription has a 5’ overhanging leader sequences 

that must be removed prior to transfection. The leader sequence is digested by a 

single-strand specific ribonuclease, RNase and DNase. This was achieved by 

adding 6 pi o f Digestion Buffer, 48.5 pi o f Nuclease-free water, 3 pi of RNase 

and 2.5 ul o f DNase to the tube o f dsRNA from 6.3.2.2.2., and incubating at 

37°C for 2 hours. The siRNA was eluted by adding 400 pi siRNA Binding 

Buffer to the nuclease digestion reaction and incubated at room temperature for 

2-5 minutes. The resulting siRNA was purified by glass fiber filter binding and 

elution which removes excess nucleotides, short oligomers, proteins, and salts in 

the reaction. The end product was a double-stranded 21-mer siRNA with 3’ 

terminal uridine dimers that can effectively reduce the expression of target 

mRNA when transfected into mammalian cells.

6.3.2.3 siRNA quantification

The concentration o f the siRNA synthesised was measured by diluting a small 

sample of the siRNA 1:25 into TE (10 mM Tris-HCl pH8, ImM EDTA) and 

reading the absorbance at 260 nm in a spectrophotometer.

The concentration o f the purified siRNA in pg/ml was determined by multiply 

the absorbance reading by 1,000 (1,000 = 25-fold dilution x 40 pg siRNA/ml per 

absorbance unit).

146



Chapter 6 Yadan Zhang

The molar concentration o f the siRNA in p,M was determined by dividing the 

pg/ml concentration o f the siRNA by 14 (there are 14 pg o f RNA in 1 nmole of 

an average 21-mer dsRNA: 21nt x 2 strands = 42 nt x 0.333 pg/nmol for each nt 

= 14 pg/nmol).

6.3.2.4 Estimation o f siRNA integrity

The integrity o f the siRNA was determined by analysis o f 4ul o f siRNA sample, 

which was mixed with gel loading buffer at 5:1 (sample: buffer), on a 2 % 

agarose gel (0.05 ug/ml ethidium bromide) in TBE buffer at 80 volts. 

Electrophoresis was stopped when the bromophenol blue dye front had migrated 

two-thirds o f the way down the gel.

6.3.3 siRNA Transfection

The choice o f siRNA concentration for transfection is critical to the success of 

gene silencing experiments. Transfecting too much siRNA caused non-specific 

reductions in gene expression and toxicity to the transfected cells. Transfecting 

too little siRNA does not change the expression o f the target gene.

The choice o f a transfection agent for delivery o f siRNA is critical for gene 

silencing experiments. Without efficient transfection siRNA will fail to elicit a 

cellular response. The Silencer® siRNA Transfection II Kit (Ambion, Inc.USA) 

provides two different transfection agents, siPORT NeoFX  and siPORT Amine. 

siPORT NeoFX  is a proprietary mixture o f lipids and is compatible with a wide 

range of cell lines and experimental designs. siPORT Amine is a proprietary 

blend of polyamines that delivers siRNA into mammalian cells with minimal 

cytotoxicity. Both transfection reagents function by complexing with siRNAs 

and facilitating their transfer into cells. In this study, siPORT Amine was chosen 

to deliver siRNA into cells, as it has been used successfully in HRPE cells by 

other users (Li et al., 2005).
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In order to provide good gene knockdown while maintaining an acceptable level 

of cell viability for the particular cell type, optimisation had to be carried out to 

determine the conditions that produced the best results.

VEGF-siRNA (0, 5, 10, 20, and 30nM) was transfected into HRPE cells for a 

defined time course o f 24, 48 and 72 hours. Scrambled siRNA, at the 

correspondent concentration to the siRNA, was transfected into HRPE cells as a 

control (detailed in section 6.3.4).

Approximately 24 hours before transfection, RPE cells were plated in normal 

growth medium at a cell density o f 2x105 ( lx l0 5cell /ml) in 6-well plates, to give 

50% to 70% confluency after 24 hours. In sterile polystyrene tubes, siPORT 

Amine was diluted into Ham ’s F-10 medium to the concentration recommended 

by the manufacturer and incubated at room temperature for 30 minutes. Next 

siRNA was added to the diluted siPORT Amine Transfection Agent and 

incubated at room temperature for 20 minutes. After renewing the normal growth 

medium in each well, the Transfection Agent and siRNA complex was overlaid 

onto the cells. Following incubation o f cells under normal cell culture conditions 

for 24 hours, 1 ml/well o f fresh 10% FCS Ham’s F-10 was added. The cells 

were harvested at 24, 48 and 72 hours post transfection for analysis. The 

medium from each time point also collected for assays.

6.3.4 siRNA controls (Whither RNAi? 2003)

In order to monitor the efficiency, non-targeting effect or cytotoxicity effect of 

the siRNA, the following controls were included in each assay: 1) a negative 

control siRNA (also called scrambled siRNA or non-targeting siRNA). This was 

designed by scrambling the nucleotide sequence o f the gene-specific siRNA and 

lacked significant sequence homology to the genome. This scrambled siRNA 

was included in each assay in order to identify non-specific effects such as non- 

sequence-specific siRNA effects, cytotoxicity o f the transfection agent and/or the 

siRNA, or suboptimal transfection conditions; 2) a transfection reagent-only 

control was included for any nontransfection related phenomena; 3) a non
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treatment control which only has normal medium was included. 4) GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) was included to monitor the 

efficiency o f the siRNA, and the effect on the targets involved in the down

stream biological function.

Apart from the controls listed above, the efficiency of the siRNA was monitored 

at the mRNA level using semi-quantitative and protein level using quantitative 

approaches. In order to reduce the chance of side effects as well as providing 

grade readout o f the effect the siRNA was titrated to the lowest possible level.

6.3.5 RNA extraction

6.3.5.1 Homogenisation o f HRPE cells
(R)Cells were lysed directly in a well o f a 6-well plate by adding 1 ml of TRIzol 

Reagent (Invitrogen) and passing the cell lysate several times through a pipette. 

The lysate was collected into an eppendorf tube and stored at -80°C until further 

steps were carried out.

6.3.5.2 Phase separation

The homogenised samples were incubated for 5 minutes at room temperature to 

permit the complete dissociation o f nucleoprotein complexes. Chloroform (0.2 

ml /sample) was added to the RNA-containing TRIzol, mixed by inverting the 

tube several times and allowed to stand for 5 minutes at ambient temperature. 

The whole contents were transferred into a phase lock gel tube and centrifuged at 

12,000g for 15 minutes at 4°C. The upper RNA-containing aqueous phase was 

separated and transferred to a new eppendorf tube. All reagents and plasticware 

used for RNA extraction were RNase free.

6.3.5.3 RNA precipitation

The RNA in the aqueous phase was precipitated by mixing with an equivalent 

volume o f isopropanol (Sigma, USA). Samples were incubated at room 

temperature for 10 minutes and centrifuged at 12,000g for 10 minutes at 4°C. 

The RNA precipitate, a gel-like pellet was located on the side/bottom of the tube.
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6.3.5.4 RNA wash

The supernatant was removed and the RNA pellet washed once with 1 volume of 

75% ethanol. The sample was mixed by vortexing and centrifuged at 7,500g for 

5 minutes at 4°C.

6.3.5.5 Redissolving the RNA

The supernatant was removed and the RNA pellet was briefly air-dried for 5-10 

minutes. The RNA pellet was dissolved in 40 ul of RNase free water and 

incubated at 60°C for 10 minutes.

6.3.5.6 Estimation o f RNA concentration and integrity

RNA concentration was determined by spectrophometric analysis at a 

wavelength o f 260 nm and 280 nm (GeneQuant II, Pharmacy); an A260/A280 ratio 

of 1.8-2.0 is expected. The integrity o f the RNA was determined by analysis of 

lug on a 1.5% agarose gel (containing 0.05 ug/ml ethidium bromide) in TBE 

buffer at 100V for 45 -60 minutes. The ribosomal RNA bands (28S and 18S) 

were visualised by an UV transilluminator (UVIDOC, version 99.01).

6.3.6 RT-PCR (Revrse Transcription -Polymerase Chain Reaction)

6.3.6.1 Primer design and optimisation

Primers were designed, using Primer3, to the mRNA sequences of genes of interest 

for semi-quantifying cDNA samples and generating amplicons of <200bp. The 

sequences o f forward and reverse primer pairs are shown in Table 6.2.

Table 6.2 Oligonucleotide primer sequences.

Gene Primer sequence ^Anneal
(°C)

Product
size(bp)

VEGF F. 5 ’ - GGG CA G  A A T CA T CAC GAA G T 
R. 5 ’ -  TGG TG A  TG T TGG A CT CCT CA

58 211

PEDF F .5 ’-G TG  GCA C C T CTG GAA AAG TC 
R .5 ’-ACC GAG A A G  GAG A A T GCT GA

58 165

VEGFR1 F .5 ’- TG T  CAA TG T GAA A CC CCA GA 
R .5 ’- GTC A C A  CC T TGC TTC GGA AT

58 175

VEGFR2 F .5 ’-AG C G A T GG C CTC TTC TG T AA 
R .5 ’-A C A  CGA CTC C A T G TT G G T CA

58 172

GAPDH F .5 ’-TG A  TGA C A T CAA CAA G G T G GT GAA 
R .5’-TC C TTG  GAG GCC ATG TGG GCC AT

58 235
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The annealing temperature for each primer pair was optimised using the 

programme shown in the Table 6.3 with a gradient annealing temperature from 

50°C to 62°C. The temperature that produced a single band with strongest signal 

was chosen as the annealing temperature for each pair of the primer. The 

optimised associated annealing temperature for each pair of primers used in this 

study is shown in the Table 6.3.

Table 6.3 Program used for PCR reaction.

Programme Cycle Numbers

Initial denaturation 94°C, 5 min 1 cycle

Denaturation 94°C, 30 sec

Annealing 58°C, 30 sec I 35 cycles

Extension 72°C, 1 min J
Final extension 72°C, 7 min 1 cycle

6.3.6.2 Reverse transcription

cDNA was produced by priming lug RNA (~11 pi) with 1 pi (500 ng/pl) of 

anchored oligo dT (Abgene, UK) at 70°C for 5 minutes to remove any secondary 

structure then placed on ice immediately. Addition o f 4 pi of 5x First Strand 

Synthesis buffer, 2 pi dNTP mix (5mM each), l pi Reverse-iT™ RNase Blend 

and 1 pi 100 mM DTT were added. Samples were incubated at 47°C for 30 

minutes. The reaction was terminated by incubation o f the samples at 75°C for 

10 minutes. cDNA samples were stored at -20°C. All the reagents were from 

Reverse-iT™ 1st Strand Synthesis Kit purchased from Abgene (UK).

6.3.6.3 Polymerase chain reaction (PCR)

A standard PCR reaction was used to selectively amplify the gene products of 

interest. 2 pi o f cDNA and 0.5 pi combined forward and reverse primers (mix of
TM

0.25 pi forward and 0.25 pi reverse) were added to 22.5 pi of ReddyMix PCR 

Master Mix (Abgene, UK) resulted in a final reaction volume of 25 pi, 

containing 0.625 units Thermoprime Plus DNA Polymerase, 75 mM Tris-HCl,
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20 mM (NH4)2S 0 4, MgCl2 and 0.01% (v/v) Tween® 20 and dNTPs (0.2mM 

each).

Reactions were performed using the program shown in Table 6.3. on a PCR 

mechine (PTC-220 DNA Engine Dyad™ Peltier Thermal Cycler —MJ Research 

Inc. USA).

6.3.6.4 Detection o f RT-PCR product

The RT-PCR products were detected by gel electrophoresis. 1.5% Agarose gel 

was prepared by dissolving 1.5 g o f Agarose powder (Sigma-Aldren, USA) in 

100 ml of lx  Tris-Borate-EDTA (TBE) buffer (Sigma-Aldren, USA) containing 

0.05 ng/ml o f Ethidium Bromide (Sigma).

6.3.7 Quantification of VEGF/PEDF by Enzyme-Linked Immunosorbent 

Assay (ELISA)

The total amount o f VEGF or PEDF in the cell culture medium was quantified 

using an ELISA kit specific for VEGF 165 (R&D Systems, Minneapolis, MN, 

USA) and PEDF (Chemicon Inc.) according to the manufacturers’ instructions.

6.3.7.1 Principle o f the assay

This assay employs the quantitative sandwich enzyme immunoassay technique. 

A monoclonal antibody specific for VEGF has been pre-coated onto a 

microplate. Standards and samples are pipetted into the wells and any VEGF 

present is bound by the immobilised antibody. After washing away any unbound 

substances, an enzyme-linked polyclonal antibody specific for VEGF is added to 

the wells. Following a wash to remove any unbound antibody-enzyme reagent, a 

substrate solution was added to the wells and colour develops in proportion to the 

amount of VEGF bound in the initial step. The colour development is stopped 

and the intensity o f the colour is measured (Fig 6.4).
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M easure O D (4 5 0  nm) 
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2nd
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1st
Incubation \  
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Colour change

TM B  substrate

V E G F /P E D F  conjugate 
(H R P ) 2° antibody

Sample/standard 
containing V E G F/P E D F

V E G F /P E D F  antibody coated microplate well

Figure 6.4 Schematic representation of the Enzyme- Linked 

Im m unosorbent Assay (ELISA) (Modified from Emma Blain, PhD Thesis, 

2002).
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6 3 .1 2  Procedures o f the assay

The recombinant VEGF standard was reconstituted with 1 ml of Calibrator 

Diluent RD5K to a stock solution of 2000 pg/ml, and a serial 2-fold dilution was 

prepared to produce a standard curve ranging from 31.2 pg/ml to 1000 pg/ml. 

All other reagents were reconstituted according to manufacturer’s instructions.

Standards, samples and buffer blanks (200 pi) were pippeted into the wells in 

triplicates and incubated at room temperature for 2 hours. Wells were aspirated 

and rinsed 4 times in wash buffer to remove unbounded VEGF containing 

sample. 200 pi o f recombinant anti-VEGFi65 polyclonal antibody conjugated to 

horseradish peroxidase (HRP) was added to the wells. The HRP-conjugated 

antibody binds the captured VEGF moiety. After additional 2 hours incubation at 

room temperature, the wells were again rinsed 3 times and 200 pi of hydrogen 

peroxide and tetramethylbenzidine were added. The reaction was stopped by the 

addition of 50 pi o f 2N sulphuric acid (Stop Solution). The absorbance o f each 

well was measured spectrophotometrically at 450 nm and plotted against a 

standard curve with VEGF levels expressed as ng/ml. The lower detection limit 

of the ELISA assay is 5.0 pg/ml. Each sample was analysed in triplicate.

6.3.8 Western Blotting

Western blotting was used to analyse the effect o f VEGF-siRNA on VEGFR-1, 

VEGFR-2 and PS-1 expression in HRPE cells with or without additional growth 

factor treatment. The procedures o f western blotting were the same as described 

in section 4.2.6.

6.3.9 Statistical analysis

The results are given as the mean ± standard error (SEM). Students T-test was 

performed to analyse the data (SPSS). A p  value less than 0.05 (p<0.05) was 

considered statistically significant.
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6.4 Results

6.4.1 The efficiency and specificity of the VEGF-siRNA

6.4.1.1 siRNA concentration and integrity

The concentration and purity o f the siRNAs were estimated by 

spectrophotometer, and the result revealed that approximately 100-130 ug (in 

100 pi volume) o f siRNA was synthesised by in vitro transcription using the kit. 

The integrity o f the siRNA was confirmed by gel electrophoresis (Figure 6.5).

The siRNAs synthesised show similar size and density when compared with the 

GAPDH-siRNA (Fig.6.5 column 5) which was provided within the Kit.

6.4.1.2 RNA concentration and integrity

The concentration and purity o f the RNA was estimated by spectrophotometer. 

The results revealed that approximately 7-15 pg (in 30 pi o f volume) o f total 

RNA was extracted from a 6-well plate when cells were at 50-95% confluence. 

Mean A260/A280 ratios o f 1.805 ± 0.156 (n=3) were obtained. The integrity of 

the RNA was confirmed by gel electrophoresis using lug/sample, and the 

intensity of the band from siRNA treatment /scrambled siRNA / non-treatment 

were similar: sharp, clear 28S and 18S rRNA bands were observed in the 

samples with VEGF-siRNA treatment and the samples with the scrambled 

siRNA or no treatment. The 28S rRNA band is approximately twice as intense as 

the 18S rRNA band; and this 2:1 ratio (28S:18S) is a good indication that the 

RNA is intact (Figure 6.6).

6.4.1.3 siRNA effectively and specifically suppressed VEGF mRNA in HRPE 

cells

In a time course o f 24, 48 and 72 hours, the efficacy and potency of the siRNA 

targeting VEGF was assessed by monitoring VEGF mRNA levels in cells that 

had received a range of siRNA concentrations (0, 5, 10, 20 and 30 nM), and 

compared to that in cells treated with a nontargeting negative control siRNA 

(scrambled siRNA) at the corresponding concentration, and in cells without any 

treatment (Fig. 6.7)
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1 2 3 4 5

CVE-C1 siVE-C1 CVE-C3 siVE-C3 Pos control

Fig 6.5 The intergrity and quality of VEGF-siRNA synthesed by in vitro 
transcription (2% Agarose gel). Lanel and 3 are scrambled siRNA synthesed 
at separated times (cVE-Cl and cVE-C3); lane 2 and 4 are VEGF-siRNAs 
(siVE-Cl and siVE-C3); lane 5 is GAPDH-siRNA provided with the 
Transfection kit (Positive control).
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24h

VEGF-siRNA Control
Scrambled
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s30  s20  s10  s5 c30 c20 c10 c5
28S

rRNA

18S
rRNA
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VEGF-siRNA
_____sK_____

Lad s30  s20  s10  s5

Control
Scrambled
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_____A_____

c30 c20 c10 c5

Scrambled
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ControlVEGF-siRNA Control

Fig 6.6 The integrity and quality of total RNA extracted by Trizol Reagent 
and analysed by 1.5% Agarose gel. A: total RNA extracted from cells 24 
hours post transfection with various concentration o f VEGF-siRNA (5-30 nM) 
and correspondent scrambled siRNA and controls; B: total RNA extracted from 
cells 48 hours post transfection; C: total RNA from 72 hours post transfection. 
Lad = DNA ladder; s30 = 30 nM of VEGF-siRNA; c30 = scrambled siRNA 30 
nM; 0-r = control o f transfection reagents only and 0 = non-treatment control.
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Controls Scrambled siRNA Controls
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24 h

48h

72h

siRNA

S30 s20  s10  s5  0-r c30 c20 c10 c5 0-r

G A PDH

^GAPDH

'-G APDH

Fig 6.7 Time course of VEGF mRNA reduction by various concentrations 
of VEGF-siRNA analysed by RT-PCR on 1.5% Agarose gel. s30 = 30 nM of
VEGF-siRNA; c30 = scrambled siRNA 30 nM; 0-r = control of transfection 
reagents only and 0 = non-treatment control.
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By densitometric analysis, RT-PCR results showed that at 24 hours post 

transfection, the maximum silencing effect was 23.5 ± 3.65% of the control 

(76.41±3.56% remained) (n=3, p=0.0282) with 30 nM of VEGF-siRNA 

[Fig.6.7.1. A (VEGF) and B], whereas GAPDH mRNA from the corresponding 

samples had no change [Fig 6.7.1. A (GAPDH) and C].

At 48 hours post transfection, the maximum silencing effect 67.384 ± 2.295% 

(32.616 ± 2.295% remained) (n=3, p=0.0013) was observed with 30 nM VEGF- 

siRNA [Fig 6.7.2 A(VEGF) and B] whereas GAPDH mRNA from the 

corresponding samples had no change [Fig 6.7.2. A (GAPDH) and C].

At 72 hours post transfection, the maximum silencing effect was 67.688 ± 7.59 

% (32.312 ± 7.585 % remained) (n=3, p=0.013) with 30 nM of VEGF-siRNA 

[Fig 6.7.3.A (VEGF) and B], whereas GAPDH mRNA from the corresponding 

samples had no change [Fig 6.7.3. A (GAPDH) and C].

In summary, the densitometric analysis revealed that the maximum silencing 

effect on VEGF mRNA was observed at 48 hours post transfection with 30 nM 

of VEGF-siRNA (Fig 6.7.4).

6.4.1.4 siRNA effectively and specifically suppressed VEGF protein in HRPE 

cells

The efficacy and potency o f the siRNA targeting VEGF were also tested by 

monitoring VEGF at protein levels in the medium from the cells that had 

received a range o f siRNA concentrations, and compared to that in cells treated 

with a nontargeting negative control siRNA and in cells without any treatment. 

To correspond with the time points for mRNA analysis, the medium was 

collected at 24, 48 and 72hours. VEGF protein was determined by ELISA in 

triplicates.

The VEGF ELISA result revealed that the standard curve generated using VEGF 

standards showed a linear regression between the Optical Density (OD) unit and
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■ scrambled siRNA 99.767 C0.017 03  042 00.684 02.291
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■ VEGF-siRNA 00.893 01382 00.596 00.03 00.544

■ Scrambled siRNA 00.726 00.447 02.732 00.692 00.978

O Non-treatment CO 00 00 CO 00

siRNA concentration (nM)

Fig 6.7.1 Efficiency of VEGF-siRNA on VEGF mRNA expression at 24 hrs 
post-transfection by RT-PCR. (A) RT-PCR analysis of VEGF/GAPDH 
expression on 1.5% Agarose gel. (B & C) are densitometric analysis o f RT-PCR 
depicted in (A-VEGF) and (A-GAPDH), and are presented as the relative ratio of 
VEGF or GAPDH to the control from 3 separate experiments, respectively. 
Vertical bars are mean ±  SEM. *p <0.05. At 24 hours post transfection, the 
maximum silencing effect was 23.5 ± 3.65% (75.4 ± 3.65% remaining) with 30 
nM of siRNA-VEGF.
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Fig 6.7.2 Efficiency of VEGF-siRNA on VEGF mRNA expression at 48 hrs 
post-transfection by RT-PCR. (A) RT-PCR analysis of VEGF and GAPDH 
expression on 1.5% Agarose gel. (B  & C) are densitometric analysis of RT-PCR 
depicted in (A-VEGF) and (A-GAPDH), and are presented as the relative ratio of 
VEGF or GAPDH to the control from 3 separate experiments, respectively. 
Vertical bars are mean ± SEM. *p <0.05; ** p<0.01. At 48 hours post 
transfection, the maximum silencing effect was 67.38 ± 2.295% (32.62 ± 2.295% 
remaining) with 30 nM of siRNA-VEGF.
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Fig 6.7.3 Efficiency of VEGF-siRNA on VEGF mRNA expression a t 72 hrs 
post-transfection by RT-PCR. (A) RT-PCR analysis of VEGF and GAPDH 
expression on 1.5% Agarose gel. (B & C) are densitometric analysis of RT-PCR 
depicted in (A-VEGF) and (A-GAPDH), and are presented as the relative ratio of 
VEGF or GAPDH to the control from 3 separate experiments, respectively. 
Vertical bars are mean ± SEM. *p <0.05. At 72 hours post transfection, the 
maximum silencing effect was 67.688 ± 7.59% (32.31 ± 7.59% remaining) with 
30 nM of siRNA-VEGF.
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Fig 6.7.4 Summ ary of the maxim um  silencing effect on VEGF mRNA 
expression. VEGF-siRNA at 20 nM and 30 nM decreased VEGF mRNA 
expression by 48 hours. This was sustained at 72 hrs using the higher 
concentration of VEGF-siRNA (30 nM).
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a series titrations o f loaded VEGF (y =0.0015X+0.0211, R2 = 0.9998) (Fig.6.8. 

A). This allowed the amount o f VEGF to be calculated in experimental samples.

At 24 hours post transfection, the reduction o f VEGF protein was 11.54 ± 3.05% 

(88.46 ± 3.05% remained) (n=3, p=0.0307) with 30nM of VEGF-siRNA; at 48 

hours post transfection, the reduction o f VEGF protein was 43.12 ± 1.952% 

(56.89 ± 1.952% remaining) (n=3, p=0.0168) with 30 nM of VEGF-siRNA; at 

72hours post transfection, the reduction of VEGF protein was 17.51 ± 4.509% 

(82.49 ± 4.509% remaining)(n=3, p=0.1127) (Fig 6.8.B). The VEGF protein in 

the samples that were transfected with scrambled siRNA-VEGF showed no 

reduction in the correspondent time points (Fig 6.8.B dark-red bar).

In summary, the VEGF ELISA analysis revealed that the maximum silencing 

effect on VEGF protein was observed at 48 hour post-transfection with 30nM of 

VEGF-siRNA (Fig 6.8.C). The 30nM concentration o f VEGF-siRNA and the 

time-point o f 48 hours were chosen for the down-stream study.

6.4.2 The effects of VEGF-siRNA on PEDF, VEGFR-1, VEGFR-2 and PS- 

1 expression and the autocrine loop

To assess the biological effects o f VEGF silencing, it is critical to perform these 

assays during the time frame in which silencing is most profound. Based on the 

optimisation results described in section of 6.4.1.3 and 6.4.1.4, the time point of 

48 hours post transfection with 30nM VEGF-siRNA was chosen to analyse the 

effect of VEGF-siRNA on PEDF/VEGFR-1 /VEGFR-2 and PS-1.

6.4.2.1 The effects o f VEGF-siRNA on PEDF mRNA and protein expression 

The effects o f VEGF-siRNA on PEDF expression were assessed by monitoring 

PEDF mRNA levels in cells /or PEDF proteins in the medium of the cells that 

had received a range o f siRNA concentrations for 48 hours compared to that in 

cells treated with scrambled siRNA or cells without any treatment (Control).
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Fig 6.8 The effects of VEGF-siRNAs on VEGF protein. (A) Standard curve 
for quantifying VEGF protein in the culture media by ELISA. (B) The remaining 
VEGF protein is presented as the relative ratio o f VEGF to the control from 3 
separate experiments. Vertical bars are mean ± SEM. *p <0.05. (C) Summary of 
the silencing effect on VEGF protein with 30 nM of VEGF-siRNA at 24, 48 and 
72 hrs post-transfection. The maximum silencing effect was 43.12% at 48 hour 
post transfection.
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RT-PCR results show that at 48 hours post transfection, the reduction of PEDF 

mRNA was 43.36 ± 5.779% (56.63±5.779% remaining) (n=3, p=0.0166) with 30 

nM VEGF-siRNA, whereas the correspondent scrambled siRNA has no 

significant effect on PEDF mRNA expression when compared with the control 

(Fig. 6.9 A & B).

At the protein level, the PEDF ELISA result revealed that the standard curve, 

generated using PEDF standards, showed a linear regression between the Optical 

Density (OD) unit and a titration series o f loaded PEDF (y =0.1171X+0.9946, R2 

= 0.9864) (Fig.6.10. A). This allowed the amount of PEDF to be calculated in 

experimental samples. At 48 hours post transfection, the reduction of PEDF 

protein was 55.96 ± 1.607% (44.05 ± 1.607% remaining) (n=3, p=0.0468) with 

30 nM of VEGF-siRNA (Fig 6.10 B).

6.4.2.2 The effect o f VEGF-siRNA on VEGFR-1 mRNA and protein expression 

The effects o f VEGF-siRNA on VEGFR-1 expression were tested by monitoring 

VEGFR-1 at mRNA and protein levels in the cells that had received 30nM of 

VEGF-siRNA for 48 hours, and compared to that in cells treated with the 

scrambled siRNA or cells without any treatment.

RT-PCR showed that VEGF-siRNA at 30 nM had no significant effect on the 

mRNA expression o f VEGFR-1, which is similar to the effect on the samples 

with scrambled siRNA and the samples without any treatment (Fig 6.11 .A).

Western blot analysis showed that VEGF-siRNA (30 nM) reduced the 75 and 85 

kDa fragments (p=0.0453) o f VEGFR-1 (n=3) (Fig. 6.11. B&C).

6.4.2.3 The effect o f VEGF-siRNA on VEGFR2 mRNA and protein expression 

RT-PCR results show that VEGF-siRNA at 30 nM had no significant effect on 

the mRNA expression o f VEGFR-2, which is similar to the effect on the samples 

with scrambled siRNA and the samples without any treatment (Fig 6.12 A)
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Fig 6.9 The effects of VEGF-siRNA on PEDF mRNA expression in cultured 
HRPE cells 48 hours post transfection. (A) RT-PCR analysis of PEDF mRNA 
expression. (B) Densitometric analysis o f RT-PCR depicted in (A). Data are 
presented as the relative ratio o f PEDF/GAPDH to the control from 3 separated 
experiment. *p<0.05.
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Fig 6.10 The effects of VEGF-siRNA on PEDF protein expression in the 
medium of cultured H RPE cells at 48 hours post transfection. (A) Standard 
curve for quantifying VEGF protein in the culture media by ELISA. (B) The 
remaining VEGF protein is presented as the relative ratio of VEGF to the control 
from 3 separate experiments. Vertical bars are mean ± SEM. *p <0.05.
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Fig 6.11 The effects of VEGF-siRNA on VEGFR-1 expression in cultured 
HRPE cells 48 hours post transfection. (A) RT-PCR analysis of VEGFR-1 and 
GAPDH mRNA expression. Data shown is representative o f 3 separate 
experiments. (B) Western blot o f VEGFR-1 protein. Data is representative of 3 
separate experiments. Blots were stripped and reprobled for GAPDH. (C) 
Densitometric analysis o f Western blotting depicted in (B). Data is presented as 
the relative ratio o f VEGFR1 fragments/GAPDH to the control from 3 separated 
experiment. *p<0.05. **p<0.01.
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Fig 6.12 The effects of VEGF-siRNA on VEGFR-2 expression in cultured 
HRPE cells 48 hours post transfection. (A) RT-PCR analysis o f  VEGFR-2 and 
GAPDH mRNA expression. Data shown is representative of 3 separate 
experiments. (B) Western blot o f VEGFR-2 protein. Data is representative of 3 
separate experiments. Blots were stripped and reprobed for GAPDH. (C) 
Densitometric analysis o f Western blotting depicted in (B). Data is presented as 
the relative ratio o f VEGFR2/GAPDH to the control from 3 separate 
experiments.
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Western blot analysis showed that expression of VEGFR2 was not significantly 

reduced by VEGF-si RNA treatment. (Fig 6.12 B & C).

6.4.2.4 The effect o f siRNA-VEGF on PS-1 protein expression

Western blot analysis showed that VEGF-siRNA did not alter PS-1 expression (p

= 0.0788) (Fig 6.13).

6.4.3 The effects o f exogenous VEGF/PEDF on VEGFR-l/VEGFR-2/PS-l 

expression after transfection with VEGF-siRNA for 48 hours

6.4.3.1 The effects o f exogenous VEGF/PEDF on VEGFR-1

In order to elucidate the paracrine effect o f VEGF/ PEDF on VEGFR-1 

expression, HRPE cells were transfected with 30 nM of VEGF-siRNA in an 

attempt to knockdown the endogenous VEGF. Post transfection (48 hours) cells 

were treated with exogenous VEGF /PEDF /V+P /P+V respectively and a control 

without treatment was included. In addition cells that had only been exposed to 

the siRNA or cells that had only been exposed to growth factors were also 

included for comparison.

Western blot analysis showed that VEGF-siRNA reduced both the 75 & 85 kDa 

fragments o f VEGFR-1, but only the 75 kDa reduction was statistically 

significant (p<0.05); addition o f VEGF (100 ng/ml) overcame the effect of 

siRNA and increased the fragments to the level o f control, and was similar to the 

one without VEGF-siRNA that received exogenous VEGF treatment. In 

contrast, addition o f PEDF increased both fragments, but only the 75 kDa 

increased with statistical significance (p=0.0117). The combination of 

VEGF+PEDF /or PEDF+VEGF has a similar effect on the VEGFR-1 fragments 

to that of PEDF alone (p <0.05) (Fig. 6.14)

6.4.3.2 The effects o f exogenous VEGF / PEDF on VEGFR-2

The effect of VEGF /PEDF on the expression o f VEGFR-2 at post-transfection 

with VEGF-siRNA was analysed using the aliquots o f the same samples for
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Fig 6.13 The effect of VEGF-siRNA on PS-1 expression in cultured HRPE 
cells 48 hours post transfection. (A) Western blot of PS-1 protein. Data is 
representative of 3 separated experiments. Blots were stripped and reprobed for 
GAPDH. (B) Densitometric analysis o f Western blot depicted in (A). Data is 
presented as the relative ratio o f PS 1/GAPDH to the control.
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Fig 6.14 The effects of exogenous VEGF/PEDF on VEGFR-1 expression. (A)
Representative o f western blot o f VEGFR-1 expression. (B & C) Densitometric 
analysis of the 75 and 85 kDa bands in (A). Data are presented as the relative 
ratio of VEGFR-1/GAPDH to the control from 3 separate experiments. Vertical 
bars are mean ± SEM. *p <0.05; ** p<0.01 (treatment vs control).
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VEGFR-1 analysis. Western blotting showed that VEGF-siRNA did not 

significantly reduce VEGFR-2. The addition of VEGF followed by PEDF or vice 

versa significantly reduced VEGFR-2. Interestingly, exogenous VEGF, PEDF, 

VEGF+PEDF or PEDF+VEGF significantly reduced VEGFR-2 expression 

(p<0.05) (Fig. 6.15).
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Fig 6.15 The effects of exogenous VEGF/PEDF on VEGFR-2 expression.
(A) Representative of western blot o f VEGFR-2 expression. (B) Densitometric 
analysis of VEGFR-2 in (A). Data is presented as the relative ratio of VEGFR- 
2/GAPDH to the control from 3 separate experiments. Vertical bars are mean ± 
SEM. *p <0.05; ** p<0.01 (various treatment vs control).
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6.4.3.3 The effects o f exogenous VEGF / PEDF on PS-1 

Western blot analysis showed that VEGF-siRNA (30nM) has no significant 

effect on PS-1 expression; a similar result was observed following the addition of 

VEGF, PEDF, VEGF+PEDF or PEDF + VEGF (Fig 6.16).
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Fig 6.16 The effect of exogenous V EGF/PEDF on PS-1 protein expression.
(A) Representative o f western blot o f PS-1 expression. (B) Densitometric 
analysis of PS-1 bands in (A). Data is presented as the relative ratio o f PS- 
1/GAPDH to the control from 3 separate experiments. Vertical bars are mean ± 
SEM.
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6.5 Discussion

It has been demonstrated that RNAi mediated by siRNAs can specifically target 

the sequence(s) o f interest in either in vitro or in vivo models (Bantounas et al., 

2004). However, some concern has also arisen due to the observations of non

specific inhibition o f protein synthesis and RNA degradation following the use of 

some siRNA and delivery vector combinations (Jackson et al., 2003).

In this study, VEGF-siRNA was used to address the role o f VEGF in relation to 

PEDF, VEGFR-1, VEGFR-2 and PS-1 in cultured HRPE cells. In order to 

ensure that the effect o f VEGF-siRNA on the down-stream signalling is the 

biological response rather than non-specific inhibition, the VEGF-siRNA used in 

this study was first tested for its specificity, efficiency and efficacy. A series of 

controls were set up alongside the experiments, such as scrambled siRNA, non

treatment controls and house-keeping gene, GAPDH.

By monitoring total RNA quality, VEGF mRNA and protein level in cells that 

had received a range o f siRNA concentrations compared to that in cells treated 

with a scrambled siRNA, it was shown that the VEGF-siRNA had no effect on 

the total RNA level but reduced VEGF at both mRNA and protein levels in 

cultured HRPE cells in a dose and time-dependent manner. The specificity and 

efficiency of the VEGF-siRNA silencing was further confirmed by comparison 

with the house-keeping gene GAPDH and non-treatment controls. Hence, it was 

confirmed that the VEGF-siRNA used in this study was specifically silencing 

VEGF. In addition, the effectiveness and specificity o f the siRNA, constructed 

by in vitro transcription, in the suppression of VEGF expression in HRPE cells, 

suggests a promising approach towards the treatment o f CNV. This adds to a 

number of existing strategies to inhibit VEGF signal transduction, such as the 

development o f humanised neutralising anti-VEGF monoclonal antibodies, 

receptor antagonists, soluble receptors, antagonistic VEGF mutants, and 

inhibitors of VEGF receptor function (Moreira et al., 2007).
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Further more, a major finding o f this study is that VEGF has a close relationship 

with VEGFR-1, VEGFR-2 and PEDF in cultured HRPE cells. The time course of 

siRNA silencing o f VEGF mRNA and protein correlated well with decreased 

PEDF at transcript and protein level. This suggests that VEGF is up-regulating 

PEDF from the transcriptional level which is in agreement with published reports 

stating that VEGF up-regulated PEDF through VEGFR-1 in an autocrine manner 

(Ohno-Matsui et al. 2003).

The siRNA silencing o f VEGF mRNA and protein also correlated well with 

decreased VEGFR-1 at the protein level, but not at the mRNA level, suggesting 

that endogenous VEGF in HRPE cells upregulates VEGFR-1 post- 

transcriptionally. The consequence o f this kind o f regulation needs to be further 

investigated but could involve decreased degradation o f the receptors. The 

VEGF-siRNA has no significant effect on the expression of VEGFR-2 and the 75 

kDa high molecular weight (HMW) form of PS-1.

It was observed that the expression o f VEGFR-1 fragments in responding to 

exogenous VEGF/PEDF (when VEGF was inhibited by siRNA) was different 

from that when VEGF was not inhibited.

In response to exogenous PEDF or PEDF followed by VEGF, after about 68% of 

endogenous VEGF was silenced, the 75 kDa fragment o f VEGFR-1 increased.

This was in contrast to VEGFR-2 expression which was decreased, to a level 

similar to samples that had been exposed to VEGF and PEDF without inhibition 

of endogenous VEGF. These observations suggest that the autocrine and 

paracrine effects o f VEGF may need to be considered in the therapeutic strategic 

designing.

Dias et al., (2000) has reported that certain leukemic cells not only produce 

VEGF, but also acquire the capacity to express functional VEGFRs, which
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results in the generation o f an endothelial-independent autocrine loop that 

supports leukemic survival and migration in vivo. Therefore, in VEGF- 

producing, VEGFR-expressing leukemias, generation of VEGF/VEGFR 

autocrine (endothelial-independent) and paracrine (endothelial-dependent) loops, 

may contribute toward leukemic growth. In assessing the relative contribution 

of paracrine and autocrine VEGF/VEGFR signalling pathways to the growth of 

human leukaemia in vivo , Dias et al., (2001) observed that targeting the paracrine 

or autocrine VEGF/VEGFR-2 signalling pathway delays leukemic growth, but it 

is not sufficient to cure inoculated mice. To achieve remission, both autocrine 

and paracrine pathways were targeted.

Furthermore, the effect o f VEGF-siRNA on the expression of PEDF observed in 

this study not only supports the data showing about the autocrine loop between 

VEGF and PEDF, but it also challenges the concept o f a reciprocal relation 

between VEGF and PEDF. This suggests that a single-targeted inhibition 

strategy may need to be replaced by a double- or multi-targeted inhibition.

In summary, this study demonstrates that siRNA, constructed using in vitro 

transcription methods, is efficient to silence the gene o f target with minimum of 

toxicity as reported by Li et al., (2005). This study demonstrates for the first 

time, the effects o f VEGF-siRNA on VEGFR-1, VEGFR-2, PEDF and PS-1 

expression in cultured HRPE cells, in that VEGF-siRNA down-regulates PEDF 

expression at both the transcriptional and protein level, while down-regulation of 

VEGFR-1 only occurs at the post-transcription level. Future work such as to 

examine the effects o f PEDF-siRNA on the expression o f VEGF, VEGFR-1, 

VEGFR-2 and PS-1 will provide insight into the relationship among these 

elements in HRPE cells.
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7.1 Introduction

Neovascularisation is one o f  the most vital biological processes required for the 

formation and physiological function of virtually all organs in both normal and 

disease states (Visconti et a l., 2002; Schmid and Varner, 2007).

An underlying common aetiology in pathological conditions, such as tumour 

growth and neovascular ocular diseases, is the proliferation o f aberrant blood 

vessels. Conversely, an inadequate blood supply can be seen in conditions, such 

as myocardial infarction and stroke. The importance o f neovascularisation in the 

above conditions has led to intensive research into viable therapies that target 

new blood vessel formation. Anti-angiogenic therapies, such as an anti-VEGF 

monoclonal antibody, soluble VEGF receptor chimeric proteins and VEGF 

antisense oligonucleotides, have been the focus o f the management of tumour 

growth and neovascular ocular disease with reasonable success. However, 

although reduction in tum our growth has been demonstrated, some side effects 

were also noted, including the inhibition o f local endothelial precursor cell (EPC) 

function in the retina and choroid. VEGF is a survival factor for all endothelial 

cells. Loss of VEGF may result in the inability o f resident vasculature to 

proliferate in response to injury and to maintain normal endothelial morphology. 

Examples of this include the fenestration observed in the choriocapillaris and the 

kidney glomerulae.

PEDF, a natural inhibitor o f  angiogenesis with neurotrophic and neuroprotective 

properties, has been identified in a wide variety o f tissues (Tombran-Tink et al., 

2003). The finding that PEDF is essential for maintaining avascularity (Dawson 

et al., 1999) and plays a critical role in preventing aberrant neovascularisation 

(Stell-mach et al., 2001) suggests that PEDF does not appear to harm the existing 

vasculature (Bouck, 2002). The inhibitory effect o f PEDF on vessel formation 

appears to be reversible when regulated, transient angiogenesis occurs in 

situations including tissue repair after injury (Tonnesen et al., 2000). PEDF has 

been shown to act by inhibition o f the angiogenic response to factors such as 

VEGF and fibroblast growth factor. These features make PEDF an attractive 

angiogenic inhibitory agent which may avoid the side effect o f anti-VEGF
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agents. However, controversy exists over the role o f PEDF. There is compelling 

evidence to suggest that PEDF has a dual role in the regulation of 

neovascularisation as reported by Hutching et a l ,  (2002) and Apte et a l, (2004). 

Depending on the maintenance o f endothelial cells (EC)’s phenotype, PEDF can 

exert opposing effects on EC proliferation (Hutching et a l  2002) in cultured 

BRMECs. In an animal study, Apte et a l  (2004) observed that low doses (90 

pg/ml) of PEDF had a significant inhibitory effect on CNV in mice, while a high 

dose (360 fig/ml) o f PEDF augmented the development o f neovascularisation. 

Therefore an understanding o f the mechanism of PEDF’s action is central to 

achieving a therapy with maximal effect.

Three research groups (Yabe et a l, 2001; Hutchings et a l, 2002; Volpert et a l, 

2002) have suggested different signalling pathways that PEDF may be involved 

in, though none o f these fully explains the role o f PEDF. Recently a fourth 

signalling pathway has been suggested by Cai et a l (2006). They demonstrated 

that the inhibitory effect o f PEDF on VEGF-induced angiogenesis results from 

the inhibition o f VEGFR-2 in BRMECs. This inhibitory effect was achieved by 

enhancing y-secretase-dependent cleavage o f the C-terminus of VEGFR-1. This 

suggests that PEDF may be involved in the Regulated Intramembrane Proteolysis 

(RIP) signalling pathway, which has been well documented to play a very 

important role in Notch (Struhl and Greenwald, 1999; Handler et a l ,  2000; 

Kimberly et a l ,  2003) and ErbB4 signalling (Ni et a l ,  2001; Lee et a l ,  2002) 

and Ap production (McLoughlin & Miller et a l ,  1996). Therefore, understanding 

the role of VEGF and PEDF in relation to RIP may contribute to a new strategy 

for treating not only neovascular disease but also a wider range o f clinical 

conditions.

The aim of the project was to investigate the mechanism(s) in which PEDF 

regulates angiogenesis by exploring the involvement of Presenilin (PS)- 

dependent RIP in relation to VEGF/PEDF and VEGFR-1 /VEGFR-2 in cultured 

BRMECs and HRPE cells. BRMECs were used as an example o f an angiogenic- 

type cell, whilst HRPE cells act as regulatory cells. The relationship between
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VEGF and PEDF in the regulation o f VEGFR-1/VEGFR-2 expression was also 

investigated by the inhibition o f VEGF function in HRPE cells.

The hypothesis that VEGF and VEGFR-1 are involved in PS-dependent RIP 

signalling pathway and PEDF acts as a regulator was examined using 

immunoblotting techniques and immunocytochemistry. The relationship between 

VEGF and PEDF in the regulation o f VEGFR-1 /VEGFR-2 expression was 

examined using siRNA assays.

Several fundamental objectives were undertaken to address the hypothesis. These 

included identification of:

1) The role o f VEGF and PEDF in the regulation of the expression and 

localisation o f VEGFR-1 and VEGFR-2

2) The role o f VEGF/PEDF on the activity o f y-secretase and the expression of 

PS-1

3) The association between VEGFR-1 and/ or VEGFR-2 and y-secretase in both 

BRMECs and HRPE cells. The overall project has led to novel findings and 

addresses the need for continued research which is detailed in the future work 

section (section 7.8).

7.2 Summary of findings:

7.2.1 The effects of VEGF and PEDF on VEGFR-1, VEGFR-2 and PS-1 

expression and y-secretase activity in BRMECs and HRPE cells

BRMECs (bovine retina microvascular endothelial cells):

As summarised in Fig 7.1, the results obtained in this thesis indicate that in 

BRMECs, under normal culture conditions, the expression o f VEGFR-1 and 

VEGFR-2 is counterbalanced. The overall expression o f VEGFR-1 can be 

upregulated by exogenous VEGF or PEDF at 100 ng/ml whereas the overall 

expression of VEGFR-2 can be downregulated by exogenous VEGF or PEDF at 

100 ng/ml. In addition, PEDF can augment VEGF’s effect on VEGFR-1 and 

VEGFR-2 in BRMECs.
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Fig 7.1 Effects of VEGF & PEDF on cell signalling. The effects of VEGF and 
PEDF on VEGFR-1 (R l), VEGFR-2 (R2) and presenilin-1 (PS-1) expression and 
y-secretase (rS) activity in (A) BRMECs and (B) HRPE cells, red arrow: VEGF’s 
effect; blue arrow: PEDF’s effect and dark red arrow: combined effects o f VEGF 
and PEDF.
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HRPE (human retina pigm ent epithelial) cells:

The evidence obtained in the study o f HRPE cells suggests that VEGFR-1 (the 

75 and 85 kDa fragments) and VEGFR-2 are highly expressed under 

physiological conditions. The expression of VEGFR-1 fragments can be 

downregulated by 100 ng/ml o f exogenous VEGF, and instead o f antagonising 

VEGF’s effect, addition o f PEDF synergistically inhibited the expression of 

VEGFR-1 and VEGFR-2 in HRPE cells

The differential regulatory roles for VEGF on VEGFR-1 in BRMECs and HRPE 

cells suggest that the effect o f VEGF on the expression of VEGFR-1 is cell-type 

dependent. This may be one o f the distinguishable differences between 

angiogenic and non-angiogenic cells, although this needs to be confirmed on 

cells from the same species.

Differential regulatory roles for VEGF and PEDF on the activity o f y-secretase 

and the expression o f PS-1 observed in this thesis suggest that VEGF and PEDF 

have a regulatory effect on the activity of y-secretase and the expression o f PS-1 

in BRMECs and HRPE cells. The role o f VEGF and PEDF on the activity of y- 

secretase and the expression o f PS-1 is cell-type dependent. In addition, y- 

secretase is involved in the expression of VEGFR-1 fragments and VEGFR-2 as 

well as the distribution of VEGFR-1 fragments in HRPE cells.

7.2.2 The effects of VEGF-siRNA on VEGF, PEDF, VEGFR-1 and 

VEGFR-2 expression in HRPE cells

The VEGF-siRNA used in this study efficiently reduced the expression o f VEGF 

and PEDF at both the transcript and protein level in HRPE cells, as well as 

VEGFR-1 at the protein level (Fig 7.2). The downregulation o f VEGF, as well as 

PEDF, by VEGF-siRNA supports the existence o f an autocrine loop between 

VEGF and PEDF and indicates that other anti-VEGF agents are likely to have 

similar effects on PEDF in cells secreting both VEGF and PEDF.
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Fig 7.2 Effects of VEGF-siRNA on VEGF cell signalling in HRPE cells.
VEGF-siRNA reduced VEGF and PEDF expression at transcript and protein 
level. VEGF-siRNA reduced VEGFR-1 expression at protein level while had no 
significant effect on VEGFR-2 and PS-1.
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It is likely that the differential role o f VEGF and PEDF, on VEGFR-1 and 

VEGFR-2, in BRMECs and HRPE cells contribute either directly or indirectly to 

the regulation o f neovascularisation. The implications o f these roles in the 

regulation of neovascularisation are discussed below.

Questions have been asked as to how PEDF intercepts growth-promoting signals, 

accelerates cell death cascades and prolongs cellular life span. It remains 

unknown whether the different activities o f PEDF are based on different 

receptors or if cellular diversity or variations in the cellular environment account 

for the variations in response to PEDF. A lipase-linked cell membrane receptor 

for PEDF has been identified by Notari et al. (2006). And there is a possibility 

that some activities o f PEDF may not be receptor mediated -  a phenomenon that 

has been seen with many other proteins (Tombran-Tink, 2005).

7.3 PEDF exerts its antiangiogenic role by modulating the 

counterbalance of VEGFR-1 and VEGFR-2 in BRMECs

An antiangiogenic role for PEDF in the retina emerged when Dawson et al. 

(1999) showed that PEDF inhibited angiogenic processes. The inhibitory effect 

of PEDF was more effective than the well studied angiogenesis inhibitor, 

angiostatin. In those studies, PEDF prevented EC migration alone, or in the 

presence of the potent proangiogenic factors: FGF-1, FGF-2, VEGF, interleukin- 

8 and lysophosphatic acid. In animal studies, ocular injection o f an adenoviral 

construct containing the PEDF gene not only inhibited the formation o f both 

retinal and choroidal neovascularisation in mouse models o f ocular angiogenesis 

but also caused the regression of neovascularisation that was already present 

(Mori et al., 2001; Mori et al., 2002). These studies are convincing and indicate 

that PEDF establishes specific mechanisms of interference that mitigate vascular 

growth propelling signals. Furthermore, PEDF was shown to be able to negate 

the increased vascular permeability induced by VEGF in an animal model (Liu et 

al., 2004). At the molecular level, Tombran-Tink (2005) has reported that PEDF 

reduced VEGFR-2 transcription in the adult monkey retina, as well as the human
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A-RPE-19 cell line. PEDF also inhibited phosphorylation of VEGFR-2 in 

HUVECs in the presence o f  its ligand, VEGF.

VEGFR-2 has been regarded as the major transducer o f VEGF signals in ECs, 

which result in cell proliferation, migration, differentiation, tube formation, 

increased vascular permeability and maintenance of vascular integrity (Ziche et 

al. 1997). VEGFR-1, on the other hand, has been proposed to play a negative 

role in the regulation o f the levels o f endogenous VEGF. This is achieved by 

absorbing the ligand with its extracellular domain (Shibuya, 2001). A 

considerable “cross-talk” between VEGFR-1 and VEGFR-2 has been observed 

by several groups (Rahimi et a l , 2000; Burkhardt and Zacharias, 2001; Zeng et 

a l 2001). They reported that the “cross-talk” between VEGFR-1 and VEGFR-2 

played a critical role in regulating VEGFR-2-mediated signalling and that 

dependent on conditions, VEGFR-1 can act as a pro- or anti-angiogenic regulator 

of VEGFR-2.

The findings of this study, that PEDF upregulates VEGFR-1 and downregulates 

VEGFR-2 in BRMECs is in agreement with the above report and supports the 

proposal that PEDF intercepts growth-promoting signals by modulating the 

expression of VEGFR-1 and VEGFR-2 in BRMECs, rather than solely 

downregulating VEGFR-2.

Of most interest is the antagonist effect between VEGF and PEDF was not 

observed but the synergistic effect on either VEGFR-1 or VEGFR-2 that results 

from the combined effects o f VEGF and PEDF. This suggests that PEDF’s 

maximal effect is dependent upon VEGF. This finding is consistent with 

previous reports and, furthermore it indicates a regulatory relationship between 

VEGF and PEDF. Further study is necessary to prove any potential impact on 

the design of anti-angiogenic strategies.
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Based on the accumulating evidence that the role of PEDF is dose-dependent and 

cell phenotype dependent (Apte et al. 2004; Hutching et al. 2002), caution has 

been taken when interpreting the data obtained from the present study. The data 

may represent only part of a mechanism since the data was produced from the 

treatment of a single dose of VEGF/PEDF. To further our understanding o f the 

relationship between VEGF/PEDF and VEGFR-1/VEGFR-2 future work is 

required (see section 7.8).

7.4 PEDF exerts its neurotrophic and neuroprotective role by regulating 

the activity of y-secretase and the expression of PS-1 in HRPE cells

PEDF was first identified in the conditioned-medium of fetal human RPE cells 

which had a differentiating effect on retinoblastoma cells (Tombran-Tink and 

Johnson, 1989; Tombran-Tink, et al. 1991). PEDF exerts its neurotrophic and 

neuroprotective function by protecting various types of cells, including neuronal 

cells, against oxidative stress or glutamate-induced injury through its anti- 

oxidative properties (Cao et al. 1999; Bilak et al. 1999; DeCoster et al. 1999; 

Yamagishi et al. 2002; Yamagishi et al. 2003; Inagaki et al. 2003). Increase in 

oxidative stress has been related to the hyperactivity o f glutamate receptors 

which results in the disturbance of glutamatergic neurotransmission. Oxidative 

stress has also been associated with the deposition o f Ap peptides in the brain 

and therefore implicated in the pathogenesis o f Alzheimer’s disease (AD) 

(Butterfield and Pocemich, 2003).

The involvement o f y-secretase in Notch, ErbB4 and VEGFR-1 signalling, and 

the production of Ap has been well documented. The implication o f y-secretase 

in the development, signal transduction, protease biochemistry,

neovascularisation and the pathogenesis o f AD suggests that the activity of y- 

secretase can be beneficial or harmful dependent upon the nature o f its targets. A 

fine line appears to exist between protective and damaging roles.
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Several factors or processes have been reported to affect the nature and degree of 

y-secretase activity, as reviewed in Chapter 4. PEDF overexpression has been 

found in cortical neurons and astrocytes in the brains of AD patients (Yamagishi 

et al. 2004), and the distribution of PEDF protein was in concordance with 

RAGE protein, one of the receptors for Ap peptide. PEDF overexpression has 

been suggested as a compensation mechanism in an attempt to prevent neuronal 

cell injury in AD.

Recently PEDF was also shown to upregulate y-secretase activity which resulted 

in the inhibition of angiogenesis in cultured BRMECs (Cai et al., 2006).

Conversely, a product of y-secretase activity, Ap, has been reported to have a 

regulatory role on the endogenous production of VEGF and PEDF in HRPE cells 

(Yoshida et al., 2005). It was reported that AP accumulation induced an increase 

in VEGF and decrease in PEDF in cultured HRPE cells. Taken together, these 

studies suggest a regulatory loop between VEGF/PEDF, y-secretase and the 

substrate(s) of y-secretase.

The finding from the present study that PEDF upregulates the activity of y- 

secretase in BRMECs is in agreement with Cai et al. (2006), in part, and suggests 

that the activity o f y-secretase in ECs may be beneficial with respect to the 

regulation of angiogenesis. Furthermore, the upregulation o f y-secretase activity 

by VEGF and the fact that PEDF can negate VEGF’s effect in HRPE cells, 

increases our understanding o f the relationship between VEGF/PEDF and y- 

secretase. It also suggests that, in HRPE cells, y-secretase activity may be 

harmful rather than beneficial. In addition PEDF may protect HRPE cells by 

negating the activation of y-secretase induced by VEGF. Collectively, these 

findings suggest that the role o f VEGF/PEDF on y-secretase activity is cell-type 

dependent.
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Another finding from the current study that y-secretase exerts differential 

regulatory effect on VEGFR-1 and VEGFR-2 in HRPE cells suggests that y- 

secretase involved in the VEGFR-1 and VEGFR-2 signalling. Future study is 

required to further our understanding of the role o f y-secretase on VEGFR-1 and 

VEGFR-2.

7.5 The role of an autocrine loop between VEGF and PEDF in HRPE 

cells

A precise balance between stimulators and inhibitors o f angiogenesis, such as 

VEGF and PEDF, respectively, is essential for angiogenic homeostasis, at least, 

in ocular tissues.

VEGF and PEDF are expressed in a wide variety of tissues and by many cell 

types as reviewed in the section 1.2.1 and section 1.4.1. More interestingly, 

VEGF and PEDF can be produced by the same cell, for example HRPE cells 

(Ohno-Matsui et al., 2001), BRMECs (Tombran-Tink, et al. 2004) and glial 

Muller cells (Eichler, et al. 2004). In HRPE cells, VEGF upregulates PEDF 

expression through VEGFR-1 in an autocrine manner (Ohno-Matsui et al., 

2003). On the other hand, VEGF produced by RPE cells may be involved in 

paracrine signalling between the RPE and choriocapillaris to induce endothelial 

fenestration (Roberts and Palade, 1995). Therefore, it is possible that 

VEGF/PEDF regulates endothelial proliferation and migration using both 

autocrine (EC-dependent) and paracrine (EC-independent) mechanisms. While 

the roles of VEGF and PEDF in neovascularisation are complicated, VEGF 

overexpression/and or PEDF under-expression is believed to be a main cause in 

the initiation of neovascularisation.

Due to its role in tumour neovascularisation, VEGF has been chosen as a 

therapeutic target to manage pathological neovascularisation. VEGF inhibitors, 

such as anti-VEGF monoclonal antibody and antisense oligonucleotides have 

shown partial success and most clinical trials have shown modest effects so far 

(Afzal et al. 2007).
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The demonstration that VEGF-siRNA downregulates VEGF, as well as PEDF, in 

this study suggests that the downregulation o f PEDF may be one o f the side- 

effects of anti-VEGF therapy. Such a side-effect has not been considered in any 

literature. It also challenges the therapeutic approach o f targeting a single 

molecule. This same concern has been raised by Afzal et al. (2007).

7.6 Are VEGF, VEGFR-1 and PEDF involved in the RIP signalling 

pathway?

Regulated Intramembrane Proteolysis (RIP) has been suggested as an non- 

classical signalling pathway for PEDF’s action by Cai et al. (2006) who showed 

that the inhibitory effect o f PEDF on VEGF-induced angiogenesis was a result o f 

the inhibition of VEGFR-2 in BRMECs. This inhibitory effect was achieved by 

enhancing y-secretase-dependent cleavage of the C-terminus of VEGFR-1.

A model for regulated intramembrane proteolysis o f a tyrosine kinase receptor 

has had been previously suggested by Heldin and Ericsson (2001), when Ni et al. 

(2001) showed that ErbB-4 undergoes proteolysis within its plasma membrane 

domain. In this model, binding o f a ligand to its tyrosine kinase receptor induces 

activation and autophosphorylation o f the receptor and created docking sites for 

signalling proteins containing SH2 domains. In this way, different signalling 

pathways, such as those containing mitogen-activated protein (MAP) kinase, are 

activated. In a separate signalling pathway, PLC-y activates PKC, which then 

activates the metalloprotease TACE (tumour necrosis factor-alpha-converting 

enzyme). This enzyme cleaves off the ectodomain of the receptor and allows 

intramembrane cleavage of the remaining part by y-secretase. The cleaved 

cytoplasmic region o f the receptor then moves to the nucleus, where it may affect 

the transcription of target genes (Heldin and Ericsson (2001) (Fig 7.3).
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Nucleus

Fig 7 3  Regulated intramembrane proteolysis of a tyrosine kinase receptor.
Binding o f a ligand to its tyrosine kinase receptor induces activation and 
autophosphorylation o f the receptor and the creation of docking sites for 
signaling proteins containing SH2 domains. In this way, different signaling 
pathways, such as that containing mitogen-activated protein (MAP) kinase, are 
activated. In a separate signaling pathway, PLC-y activates PKC, which then 
activates the metalloprotease TACE. This enzyme cleaves off the ectodomain of 
the receptor and allows intramembrane cleavage o f the remaining part by y- 
secretase. The cleaved cytoplasmic region o f the receptor then moves to the 
nucleus, where it may affect the transcription o f target genes (Copied from 
Heldin and Ericsson, 2001).
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By applying this model to VEGFR-1 /VEGFR-2, this thesis hypothesised that 

upon VEGF binding, an enzyme (possibly one of the MMPs) cleaves a portion of 

the extracellular domain o f the VEGFR-1. This first cleavage triggers y-secretase 

to cleave the cytosolic domain o f the VEGFR-1, allowing this fragment to 

translocate to the nucleus o f ECs to promote angiogenesis. As an inhibitor of 

neovascularisation, PEDF inhibits VEGF-induced angiogenesis by inhibiting one 

of the MMPs or y-secretase cleavage at the first, second or both sites in the RIP 

signalling pathway. Consequently, the cleavage of VEGFR-1 is reduced and less 

of the cytosolic domain o f VEGFR-1 is translocated into the nuclei, resulting in 

the inhibition o f angiogenesis (Fig 7.4a copied from Figl.lOb).

In contrast to this hypothesis, data in this thesis demonstrated that coincident 

with the upregulation o f VEGFR-1 fragment and downregulation of VEGFR-2, 

PEDF upregulated y-secretase activity and the expression of the high molecular 

weight (HMW) complex o f PS-1. The negligible effect of the combined VEGF 

and PEDF on the VEGFR-1 fragment is also consistent with the effect on the 

activity o f y-secretase. This is an indication that PEDF acts as a ‘ligand’ of 

VEGFR-1 to initiate the RIP signalling pathway in BRMECs, whilst VEGF 

seems to act as a regulator (Fig 7.4b).

Increased y-secretase activity in BRMECs by PEDF at 100 ng/ml has been 

reported by Cai et al. (2006). In their report the release o f an 80 kDa fragment of 

the C-terminal domain o f VEGFR-1 due to exposure o f BRMECs to VEGF, 

followed by PEDF, suggests that instead o f VEGF, PEDF may play a role as a 

ligand o f VEGFR-1. In addition, PEDF’s ligand role only appears when 

BRMECs are under the influence o f VEGF. The result obtained from the current 

study is in agreement, in part, with the above report. The disagreement on 

fragment size and the condition o f fragment release may be due to the 

involvement o f complicated pathways and interactive effects o f growth factors 

As well as the variables between experimental conditions. The variation o f the 

time for initiation o f the treatment may also be an important factor since ‘near 

confluent cells’ (Cai et al. 2006) and ‘80-90% of confluency’ (current study) can
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VEGF

Extracellular
space  VEGFRl/£2

Cell 
membrane

Cytosol

PEDF

15) 1st cleavage

2nd cleavage by Presenilin 
mediated- y-secretase

Regulation of 
angiogenesis

Nucleus

Fig 7.4-1 (= Fig 1.10b). A schematic representation of the hypothesis -  the 
effects of VEGF & PEDF on VEGFR-1/ VEGFR-2. Upon the ligand binding 
(e.g. VEGF), an enzyme (possibly one of the MMPs) cleaves a portion of the 
extracellular domain of the VEGFR-1; this 1st cleavage initiates y-secretase to 
cleave the cytosolic domain o f the VEGFR-1, allowing this fragment to 
translocate to the nucleus o f the endothelial cells to promote angiogenesis. PEDF 
inhibits VEGF induced angiogenesis by inhibiting the enzyme(s) activity of the 
first or second or both cleavages o f VEGFR-1 in the RIP signalling pathway.
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Fig 7.4-2 Amended hypothesis. In contrast to the hypothesis, data in this 
thesis suggested that exogenous PEDF increased the expression of VEGFR-1 
fragment by upregulating y-secretase activity and the high molecular weight 
(HMW) complex ofPS-1.
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vary dependent upon an individual’s standard, whereas an elucidated response 

varies dependent upon the stage o f cell growth.

The relationship observed between VEGF, VEGFR-1 and PEDF in HRPE cells 

seems more difficult to fit into the RIP model, since VEGF downregulated the 

expression o f the VEGFR-1 fragments, while upregulating the activity of y- 

secretase. This may be the result o f the activation o f an autocrine loop in order 

to compensate for the high concentration o f VEGF, sensed by RPE cells.

7.7 Concluding remarks

> PEDF regulates the counterbalance o f VEGFR-1 and VEGFR-2 

expression in cultured BRMECs.

>  PEDF regulates the activity o f y-secretase and the expression of PS-1 in 

BRMECs. VEGF is an antagonist o f the effect of PEDF on y-secretase.

>  VEGF regulates the activity o f y-secretase in HRPE cells and PEDF acts 

as an antagonist o f VEGF.

>  y-secretase regulates the expression of VEGFR-1 fragments and VEGFR- 

2, as well as the distribution o f VEGFR-1 fragments in HRPE cells.

>  The VEGF gene silencing strategy induces a reduction of PEDF at both 

the transcript and protein level and VEGFR-1 at the protein level.

>  The effect o f VEGF and PEDF on VEGFR-1 and VEGFR-2 is cell type 

dependent.

7.8 Future work

7.8.1 To examine the effect o f VEGF/PEDF on VEGFR-1 and VEGFR-2 

expression. A titration series o f VEGF concentrations against a single 

dose o f PEDF or vice versa may give a more complete understanding of 

the relationship between VEGF and PEDF and VEGFR-1/VEGFR-2 

expression.
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7.8.2 To gain a better understanding about the production of VEGF/PEDF from 

ECs and RPE cells: measure the production of VEGF/PEDF under 

various conditions, such as serum free medium versus media containing 

1-2% or 10% FCS.

7.8.3 To use the ECs and RPE cells from same species, to compare the 

difference o f VEGFR-1/VEGFR-2 in response to VEGF/PEDF.

7.8.4 To use PEDF-siRNA to determine its effect on the expression of VEGF, 

VEGFR-1 and VEGFR-2 in HRPE cells.

7.8.5 Sequence analysis o f the fragments detected in BRMECs and HRPE 

cells.

7.8.6 The effects o f VEGF/PEDF on VEGFR-1 /VEGFR-2 signalling in 

cultured ECs when co-culturing with RPE cells.

7.8.7 The role o f VEGF/PEDF on the progenitors of endothelial and RPE cells.
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A P P E N D IC E S

A p p en d ix  1 

R eagents for Cell culture

Growth medium fo r  BRECs (TCS CellWorks, UK)
Microvascular Endothelial Cell Growth Supplement (ZHS-8947): 25ml 
[containing: heparin,

hydrocortisone,
human epidermal growth factor, 
human fibroblast growth factor, 
dibutyryl cyclic AMP 
5% (v/v) FCS (final concentration)]

Antibiotic Supplement (ZHR-9939): 0.5 ml 
[containing: 25 mg/ml gentamicin

50 pg /ml amphotericin B (1000 x concentrate)]
Make up in 500 ml o f Microvascular Endothelial Cell Basal Medium (ZHM- 
2946).

Growth medium fo r  H RPE cells (final concentration):
10% (v/v) FCS
0.06% (w/v) Penicillin-G
0.1% (w/v) Streptomycin
0 .1 % (w/v) Kanamycin
Make up in Ham’s F-10 (Gibco, Life Technologies, Scotland)

Trypsin - EDTA solution
0.25% (m/v) trypsin 
0.05% (m/v) EDTA
Disolve in 1 x PBS, mix thoroughly, filtered using 0.2 pm filter, store at -20°C in 
aliquots.

Antibiotics cocktail
1.0 g Streptomycin Sulphate (Sigma # S-913)
1.0 g Kanamycin (Sigma # K-4000)
0.6 g Penicilin-G (Sigma # PEN-NA)
Disolve in 100 ml o f ddH20 , mix thoroughly, filtered using 0.2 pm filter, store at 
-20°C in aliquots.
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A p p en d ix  2

Reagents for proteom ic analysis 

Buffers for protein extraction
Extraction buffers for the preparation of two-subcellular fraction (Cai et al. 
2006)

Buffer 1: l% Triton X-100 soluble buffer
25 mM Tris/HCl
150 mM NaCl
0.25% Sodium deoxycholate
1 mM NaF
1 mM Na3V 0 4

1 mM EDTA
1 mM phenylmethylsulfonyl fluoride
1 pg/ml aprotinin
1 pg/ml leupeptin
1 pg/ml pepstatin
1 % Nonidet P-40
1 % Triton X-100

Buffer 2: 1% SDS buffer
25 mM Tris/HCl
150 mM NaCl
0.25% Sodium deoxycholate
1 mM NaF
1 mM N a3V 0 4

1 mM EDTA
1 mM phenylmethylsulfonyl fluoride
1 pg/ml aprotinin
1 pg/ml leupeptin
1 pg/ml pepstatin
1 % Nonidet P-40
1 % SDS

Extraction buffer for the preparation of whole-cell lysate: RIPA Lysis 
Buffer (sc-24948, Santa Cruz)
RIPA - containing: lx  PBS

1% NonidetP-40 
0 .5 % sodium deoxycholate 
0.1% SDS

PMSF 50 pi for 10ml of lxRIPA
Protease inhibitor cocktail 50 pi for 10ml of lxRIPA
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Buffers for the w estern  blotting
Running  B u ffer  -1 x Tris /  Glycine /S D S  Buffer
25 mM Tris 
192 mM Glycine 
0.1% (w/v) SDS 
pH 8.3
To make 1 liter o f above buffer, add 100 ml of 10 xTris / Glycine / SDS Buffer 
(BIO-RAD, Cat# 161-0732) to 900 ml of dH20 . Mix thoroughly.

Transfer B u ffer  - 1 x Tris /  C APS B uffer
60 mM Tris 
40 mM CAPS 
15% (v/v) methonal 
pH 9.6
To make 100 ml o f above buffer, add 10 ml 10 xTris / CAPS Buffer (BIO-RAD, 
Cat# 161-0778) and 15 ml Methanol to 75 ml of dH2 0  just before use. Mix 
thoroughly.

Ponceau S  staining buffer (Sigma, U.S.A.)
2% Ponceau S 
30% trichloroacetic acid 
30% sulfosalicylic acid 
diluted in ddH 20 in 1:10 for use

Blocking B uffer
3-5% (w/v) skimmed milk powder (Sigma)
50 mM of Sodium Fluoride (NaF) (lg/500ml PBS)
0.05% (v/v) Tween 20™  (250 ul/500 ml PBS)
Make up in 1 x PBS for use.

Washing B uffer
50 mM of Sodium Fluoride (NaF)
0.05% (v/v) Tween 20™
Make up in 1 x PBS for use.

10 x PB S (1000 ml)
80.Og NaCl (Sodium Chloride):

2.0g KC1 (Potassium Chloride):
14.4g Na2P 0 4 (di-Sodium Hydrogen Orthophosphate anhydrous)
2.4g KH2PO4 (Potassium dihydrogen orthophosphate)

Disolves in 800 ml dH20 , adjusts pH to 7.4 (using HC1), add up to 1000 ml of 
dH20, mix well for use. To make l x PBS: dilute 10x PBS 1:10 in dH20 , mix 
well for use.
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10 x Lam ili B u ffer  (10L)
303.Og Tris

1441.4g Glycine
lOO.Og SDS

Dissolves in ddH 20 up to the volume of 10 litre.

1.5 M  Tris/HCl (100ml)
18.17 g Tris Base

HC1 to pH 8 . 8  

4ml 10% SDS

1.0 M  Tris/HCl (100ml)
12.1 Og Tris Base

HC1 to pH 6 . 8  

4 ml 10% SDS

Stripping B u ffer (500 ml)
3.75 g Tris Base

HC1 to pH 6.7 
3.52 ml (3-mecoptoethanol
10.0 g SDS
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A ppendix 3

Evaluation o f the specificity o f the VEGFR-1 and VEGFR-2 
antibody

The specificity of the VEGFR-1 antibody -  the blockade of the antibody 
binding with a peptide specific to VEGFR-1.

Fantibody
+

IFantibody

Blocking peptide 
+

> Fantibody 
+

IFantibody

Stripping reprobing

A1

IFantibody <

B1
sic ..

m  -

Fantibody
+

IFantibody

Neutralisation of the VEGFR-1 antibody binding in BRM ECs and HRPE 
cell lysates by VEGFR-1 blocking peptide by w estern blotting. (A) one of
the duplicates membrane probed with I°and 11° antibodies; (B) the 2nd duplicate 
probed with the blocking piptide prior to the addition of the I°and 11° antibodies. 
The same membranes were stripped then reprobed with 11° antibody only (A l) or 
I°and 11° antibodies (Bl).
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The specificity of the VEGFR-2 antibody -  the blockade of the antibody 
binding with a peptide specific to VEGFR-2.

A B

Fantibody
+

IFantibody

r

V

■ \

Blocking peptide 
+

\ Fantibody
f  +

IFantibody

J

Neutralisation of the VEGFR-2 antibody binding in HRPE cell lysates with 
VEGFR-2 blocking peptide by western blotting. A: one of the duplicates 
membrane probed with I°and 11° antibodies; B: another duplicate probed with the 
blocking piptide prior to the addition of the I°and 11° antibodies.
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A p p en d ix  4

The molecular formular and structure of the y-secretase inhibitor (Cat. # S 
2188, Sigma): C33H 57N 5O9F2

o c -V a l- l le -H N .
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Appendix 5 

RT-PCR relevant

Reverse-iT™  1st Strand Synthesis —tw o-stept protocol:

RT1
First strand primer -  anchored oligo dT (500 ng/ul) 1 ul
RNA template 1 ug/1 Oul
Sterile H2O t o l 2 u l

RT2
Add the mix of the following components
5x First Strand Synthesis buffer 4 ul
dNTP mix (5 mM each) 2 ul
Reverse-iT M Rtase Blend 1 ul
DTT(lOOmM) 1 ul

Tris-Borate-EDTA (TBE) buffer (Cat.# T4415, Sigma)
Dilution of the TBE stock concentrates (lOx) in ddFbO to a 1 x TBE running 
buffer results in a buffer containing 
89 mM Tris-borate
2 mM EDTA
pH 8.3


