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Abstract

This thesis presents the development of tangible acoustic interfaces for human 

computer interaction. The method adopted was to position sensors on the surface of a 

solid object to detect acoustic waves generated during an interaction, process the sensor 

signals and estimate either the location of a discrete impact or the trajectory of a 

moving point of contact on the surface. Higher accuracy and reliability were achieved 

by employing sensor fusion to combine the information collected from redundant 

sensors electively positioned on the solid object.

Two different localisation approaches are proposed in the thesis. The learning-based 

approach is employed to detect discrete impact positions. With this approach, a 

signature vector representation o f time-series patterns from a single sensor is matched 

with database signatures for known impact locations. For improved reliability, a 

criterion is proposed to extract the location signature from two vectors. The other 

approach is based on the Time Difference o f Arrival (TDOA) of a source signal 

captured by a spatially distributed array of sensors. Enhanced positioning algorithms 

that consider near-field scenario, dispersion, optimisation and filtration are proposed to 

tackle the problems of passive acoustic localisation in solid objects. A computationally 

efficient algorithm for tracking a continuously moving source is presented. Spatial 

filtering of the estimated trajectory has been performed using Kalman filtering with 

automated initialisation.
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Chapter 1

Introduction

Human Computer Interaction (HCI) is of one of two types, tangible (touchable) and 

intangible (or non-touchable, such as audio or video). The vast majority of input 

interfaces are tangible. A tangible user interface is a user interface in which a person 

interacts with digital information through a physical environment, achieving seamless 

coupling between these two very different worlds of bits and atoms. Currently, the most 

important forms o f such tangible interfaces include keyboards, mice, touch pads and 

touch screens.

The concept of tangible acoustic interfaces, as depicted in figure 1.1, is that any 

physical contact with a solid object or a surface (wall, table, etc.) will modify its 

acoustic pattern by the way acoustic energy is distributed in the object and on its 

surfaces. Such perturbation of the acoustic pattern can be caused in two ways: 

passively, by the acoustic vibration generated at the points of contact when tapping or 

moving a finger on the surface of the object and, actively, by the sound energy that is 

absorbed at the points of contact (proportional to contact pressure) when the object is 

acoustically activated.

The ultimate challenge in human computer interaction is to create tangible interfaces 

that will make the binary world accessible through augmented physical surfaces like
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walls and windows, graspable objects like models and equipments, and possibly 

ambient media like air and water.

Acoustic interface

Or—
Transducer

A ?\X
Physical interaction

A/D Converter

T
Digital signal

J
Mapping process

J
Action

(display/audio/control)

Figure 1.1. Acoustic HCI model.

Different solutions have been suggested to tackle the problem o f  passive source 

localisation. They normally rely on the acquisition o f time-delayed replicas o f a source 

signal at spatially distributed sensors, or learning and memorising predefined locations 

from specific features in the signals.
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1.1 Motivation

The available commercial interface devices are part of everyday life as they are found 

in all kinds o f electronic devices, from personal computers, to interactive kiosks, to 

digital personal assistants or bank tellers. A common problem with these interfaces is 

the presence of mechanical or electronic devices, such as switches, sensitive layers, and 

embedded sensors near or under the interaction area. User mobility is therefore 

restricted to be through a particular device at a certain location within a small 

movement area (e.g. keyboard, mouse, touch screen and ultrasonic pen). Such 

interfaces, however, are normally based on active interaction, the principle of which is 

usually the sensing o f some kind of disturbance induced in an electric, magnetic or 

optical field by finger touch. Whatever the solution employed, this does not apply to 

arbitrary surface materials and sizes, but only to a narrow range of specific materials 

deliberately made to be an interface device, which usually embed some distributed 

electronics. An ideal solution would be to convert virtually any tangible object such as 

table tops, walls and windows into interactive surfaces.

The motivation for embracing passive acoustic based remote sensing technology as the 

solution is that acoustic vibration is the natural outcome o f an interaction and 

propagates well in most materials. Passive acoustic technology relies on the analysis of 

the acoustic vibrations generated at the points of contact. These methods are more 

promising if the requirement is to develop new touch-based interfaces, that have to be 

scalable in dimensions, cheap, and built with materials and devices that allow them to 

be suitable for any condition and environment. The advantage of this new sensing
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paradigm over other methods of interaction such as computer vision and speech 

recognition implies significant potential for the computer industry. New applications 

can include wall-size touch panels, three-dimensional interfaces and robust interactive 

screens for harsh industrial environments. Potential applications that may benefit from 

acoustic interface devices are:

■ Low cost desktop keyboards and consumer keypads.

■ A virtual mouse where the user moves his/her finger directly on the surface of 

the table.

■ Device-free electronic whiteboards and pointing systems, using just 

conventional pens and fingers.

■ Low cost consumer interfaces for PCs, video games, entertainment, etc.

■ Large scale interactive screens for academic presentations or educational 

purposes.

■ Interactive windows in shops or public services.

■ Interactive interfaces for spectators such as visitors to museums, information 

centres, and exhibitions.

■ Part of the interactive environment of Virtual Reality.

■ Sensitive skin for robots and sensitive surfaces in multi-transducer 

environments.

■ Interactive interfaces for security systems (interactive doors, windows, walls 

and floors).

■ Robust interactive screens used in harsh conditions, such as underwater, open 

fields, high/low temperature environments, and public environments.
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■ Robust touch sensitive surfaces for industrial condition monitoring, for instance 

automatic counting and positioning of objects.

■ Novel interactive artistic interfaces (interactive painting, photographs and 

sculptures).

■ Novel musical instruments.

1.2 Research Aim and Objectives

The aim was to develop a human computer interaction system capable of using an 

arbitrary solid object like a wall, table or window as a tangible interface with a natural 

interaction by a finger or an ordinary device like a wooden stick. Acoustic waves 

produced from this interaction were utilised as a natural resource conveying source 

location information to sensors attached to the object surface. Signals acquired by 

sensors are employed to estimate the location of the impact or the trajectory of the 

continuous hand movement in an analogous way to conventional PC mouse actions. In 

this manner, the system does not require any external energy source or embedded 

electronics.

Although various passive source localisation techniques have been developed, 

particularly for in-air and underwater applications, not all of them are appropriate for 

tangible acoustic interfaces because of fundamental differences in the application 

requirements and the physical properties of the transmission medium. Therefore, an 

essential task in this work was to study the potential applicability of different 

techniques.
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The objectives of this work were:

• Convert tangible objects into interactive interfaces.

• Employ passive sensing technology suitable for various materials.

•  Develop localisation algorithms that can respond to discrete (as impact) and 

continuous (as scratch) type of interactions.

• Resolve problems associated with acoustic propagation in solids.

13 Hypotheses

The main hypothesis to be proved was that the adoption of redundant sensors and 

sensor fusion techniques improved the accuracy of localisation. Another hypothesis 

was that in-air acoustic localisation algorithms can be adopted for use in in-solid 

applications.

1.4 Methodology

The above hypotheses were proved using a combination of theory and experimentation. 

Different mathematical models were developed and implemented in algorithms which 

were then tested. The techniques employed included:

■ The adoption of the coherence function as an alternative to cross correlation for 

better performance with a single sensor system and the use of a hypothetical 

transfer function to resolve reliability problems using two sensors.
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■ The application of Hilbert envelope filtering in addition to phase transform 

filtering to achieve enhanced impact localisation.

■ The computation of the linear cross spectral phase to estimate time differences 

o f arrival.

■ The smoothing o f estimated trajectories using Kalman filtering.

1.4 Thesis Outline

This thesis comprises into seven chapters and is organised as follows.

In the following chapter, the state of the art o f commercial tangible interfaces is 

presented and this is followed by a description of the research work carried out on large 

interactive surfaces. A literature review on the theory of source localisation and the 

basic physics of acoustic propagation in solids is then provided. Chapter three is 

devoted to the topic o f localisation based on pattern matching including cross 

correlation, coherence and the conceptual transfer function. In chapter four, popular 

localisation techniques are analysed and compared to identify methods that are not 

suitable for tangible acoustic interfaces based on their physical properties and practical 

limitations. Enhanced impact localisation using one-step and two-step techniques is 

proposed in chapter five. A computationally less expensive algorithm is proposed for 

tracking a continuous source with position filtering using a Kalman prediction 

algorithm is presented in chapter six. Finally, chapter seven summarises the 

conclusions and contributions of the research, and gives suggestions for further 

investigation.
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Chapter 2

Literature Review

The vast majority of HCI systems are tangible, and different detection methods of 

interaction have been developed which can be divided into two groups, passive and 

active. Most of the commercial HCI products are active while most of the localisation 

techniques used in modem applications for in-air and underwater acoustics are passive. 

The attributes of passive systems make them valuable and attractive for HCI 

applications, which have triggered some ideas for employing them in this way. There is 

a wide range of techniques for passive localisation, particularly for in-air applications 

but as yet they have not been comprehensively evaluated for HCI development, which 

is one of the tasks in this work. In this chapter, the state of the art o f commercial 

tangible interfaces is first presented followed by a review of the research work carried 

out on acoustic interactive objects. A comprehensive literature review on the 

techniques used in solving the source localisation problem is provided and finally, a 

basic physics of acoustic wave propagation in solids is given.

2.1 Commercial Tangible Interfaces

Tangible interfaces can be divided into two broad categories: passive and active. 

Passive systems do not require a special pointer to inject energy or a source to activate

8



the touch surface. The user’s finger or a solid object is sufficient. Active systems, on 

the other hand, require a special device which can emit some kind of energy either at 

the point of contact or by exciting the area of interest of the tangible surface.

The popular commercial tangible interfaces are touch screens, meaning that glass 

material is used as a substance. The technologies used in passive systems are mainly 

resistive and optical, and the technologies used in active systems include capacitive, 

infrared, ultrasonic and Surface Acoustic Wave. The principles of these technologies 

can be described as follows [1,2,3],

>  Resistive

Resistive is the most common type of touchscreen technology. It is a low-cost solution 

found in many touchscreen applications, including hand-held computers, PDAs, 

consumer electronics, and point-of-sale applications. It is ideal for screen sizes up to 

12.1". A resistive touch screen uses a controller and a specially coated glass overlay on 

the display face to produce the touch connection as in figure 2.1. Resistive touch 

screens substantially reduce light throughput and thus provide lower image clarity.

> Optical

Optical technology used to develop tangible interfaces based on using four cameras at 

the comers of the tangible object as shown in figure 2.2. Practically, this visual system 

may not suite all surfaces, particularly those with reflections.

9



Durable 
hard coating

Conductive 
cover sheet

Separator dot

CRT

Figure 2.1. Resistive touch screen.

Camera 1 Camera 2

Camera 3Camera 0

figure 2.2 Optical touch screen.
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>  Capacitive

Capacitive touch screens are entirely glass and designed for use in ATMs and similar 

kiosk type applications. A small current of electricity runs across the screen with 

circuits located at the comers o f the screen to measure the capacitance o f a person 

touching the overlay. Touching the screen draws current to the finger and the software 

calculates a position o f the touch as shown in figure 2.3. It is commonly used in harsher 

environments such as gaming, vending retail displays, public kiosks and industrial 

applications with screen sizes from 8.4" up to 20".

Touch draws 
from each co

Minute amount of voltage applied 
to all comers of touch screen.

Uniform electric field.

Touch draws current 
from each comer of 
electric field controller 
measures the ratio of 
currents to determine 
touch location.

F ig u re  2.3 C ap ac itiv e  touch  screen .
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>  Infrared (IR)

IR technology relies on the interruption o f an IR light grid in front o f the display screen. 

The touch frame contains a row o f IR light emitting diodes (LEDs) and phototransistors, 

each mounted on opposite sides in both X and Y dimensions, to create a grid o f 

invisible infrared light. The IR controller sequentially pulses the LEDs in each 

dimension and when a stylus, such as a finger, enters the grid, it obstructs one or more 

o f the beams in each dimension. The phototransistors, as in figure 2.4, detect the 

absence o f IR light and transmit a signal that identifies the X and Y coordinates.

Touch activation

I
cj u u o n m m m j u u a u u u u m j  u u u u u

Grid of
infrared
liciht

Opto-
Matrix
frame
inside
bezel

Inside and
outside
edges of
infrared
transparent
bezel

Edge of 
active 
display 
area

F igu re  2 .4  Infrared touch  screen
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>  Surface Acoustic Wave (SAW)

SAW technology provides better image clarity because it uses a pure glass construction. 

A SAW touch screen uses a glass display overlay and is suitable for screen sizes from 

8.4” up to 20”. When sound waves are transmitted across the surface of the display, 

each wave is spread across the screen by bouncing o ff reflector arrays along the edges 

o f  the overlay. Two receivers detect the waves. When the user touches the glass surface, 

as in figure 2.5, the user’s finger absorbs some of the energy o f the acoustic wave and 

the controller circuitry measures the touch location. SAW Touchscreen technology is 

used in ATMs, Amusement Parks, Banking and Financial Applications and kiosks. 

Compared to resistive and capacitive technologies, it provides superior image clarity, 

resolution, and higher light transmission.

X receive 
/  transducer

Y receiveY tiansm it 
transducer

X transmit

F igu re  2.5 S A W  tou ch  sc reen

13

i



Other hybrid technologies also exist, such as using infrared with optical. Next Window's 

optical touch screen technology, [4], uses two line scanning cameras located at the 

comers of the screen. The cameras track the movement of any object close to the 

surface by detecting the interruption of an infra-red light source.

Apart from touch screens, other interactive objects are also of interest. These are active 

systems developed for specific applications, such as Pegasus PC Notes Tracker [5], 

Mimio Whiteboard [6] and Virtual Laser Keyboard [7].

>  Pegasus PC Notes Tracker

PC Notes Taker is a device that captures natural handwriting on any surface onto a PC 

in real time. Pegasus technology utilises ultrasonic transmission, from the tip of the pen, 

and time measurement of the duration from when the pulse leaves the pen until it 

reaches the receiver. The digital pen, shown in figure 2.6 has advanced positioning and 

tracking technology, which is based on an ultrasonic and infrared sensory system and 

uses proprietary algorithms for signal processing, filtering and positioning.

> Mimio Interactive Whiteboard

MIMIO uses a high-resolution ultrasonic position capture system consisting of a 

capture bar, colour-coded marker sleeves and an electronic eraser. The capture bar is a 

two-foot long ultrasonic tracking array positioned along the upper left edge of the 

whiteboard or flip chart. The capture bar connects to a personal computer through a 

serial or USB interface cable. The electronic marker sleeves transmit an ultrasonic 

signal to the capture bar, which triangulates the pen's position on the board as the user
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writes. The only change users must make is to be sure they use the electronic eraser to 

make corrections. The system, as pictured in figure 2.7, captures each move o f a 

marker or stylus on the whiteboard or flip chart surface as digital data that expresses 

vector strokes over time, which are then interpreted by software.

Figure 2.6. Pegaus PC Notes Tracker.
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Figure 2.7., MIMIO Interactive W hiteboard [6].

>  Virtual Laser Keyboard

The virtual keyboard, as shown in figure 2.8, consists o f  projecting a keyboard template 

by illuminating a holographic optical element with a red diode laser. An infra-red plane 

o f  light is generated ju st above, and parallel to, the interface surface, which is invisible 

to the user and hovers a few millimetres above the surface. When the user touches a 

key position on the interface surface, light is reflected from this plane in the vicinity o f  

the key and directed tow ards the sensor module. Reflected light from user interactions 

with the interface surface is passed through an infra-red filter and imaged on to a 

CM OS image sensor in the sensor module. Embedded hardware in the sensor chip then 

makes a real-time determ ination o f the location o f the reflected light. The processing 

core can track m ultiple reflection events simultaneously and can thus support both 

multiple keystrokes and overlapping cursor control inputs.
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Figure 2.8 Virtual Laser Keyboard.

Recently, after this work began, passive acoustic technologies have emerged on the 

market based on utilising the vibration caused by a touch to determine its location. The 

technology presented by SensetiveObject [8] is based on the recognition o f sound 

waves propagated in an object when the user touches a defined zone. A tap on an object 

produces a pattern o f  sound waves through the material. This pattern creates an 

acoustic signature that is unique to the zone of the impact. Acoustic sensors linked to a 

computer are used to capture the audio vibrations within an object and generate 

acoustic signatures. The zone o f  a hit can then be determined by mapping the best 

matched signature. The technology is applicable to different materials and 

demonstrated with keyboard and control switch applications but all zones o f  interest on 

the object surface must be trained first. Another product presented by 3M [9] and i- 

vibrations [10] calculates the coordinates o f  a nail click on a glass surface from the 

vibration signals received by sensors at different times. The applications include shop 

windows and display cases. So far, no technical information is available about these
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technologies. The commercial interest in various types of tangible interfaces reflects 

the importance of, and the demand for, localisation technology.

2.2 Research work on tangible interfaces

Large flat surfaces, such as walls, floors, tables, or windows, are common structures in 

everyday life, usually dictated by practical human necessity or driven by architectural 

design. At present, these surfaces are used to display decorative items such as paintings, 

photographs, and rugs. It is unusual to see large portions of the walls, floors, or 

windows themselves used directly as interactive surfaces. Therefore, it is desired to 

develop new technologies that will enable such architectural surfaces to become sensate. 

User interaction with large surfaces is a topic of considerable interest in HCI and 

among the ubiquitous computing communities [11,12]. In contrast with other 

interactive object technologies, sensitive skin is a large area with a flexible array of 

sensors having data processing capabilities, which can be used to cover the entire 

surface of a machine or even a part of a human body or a robot [13].

In late nineties a group of researchers at MIT developed a passive interactive ping pong 

table called PingPongPlus (PP+) [14]. The goal is to visualise each ball impact location 

on the table by certain graphics, such as water waves, via video projector which is 

controlled by a PC that determines the impact location. As shown in figure 2.9, when a 

ball hits the table, the sound travels through the table to eight microphones mounted on 

the underside of the table. The picked-up signals are passed through an operational 

amplifier to a set of comparators and OR gates, where hardware peak thresholding on
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signals is performed by comparing the signal's absolute value against a fixed threshold 

voltage. The com parator pair returns true to a PIC chip if there is an impact. I f  there is a 

hit, the PIC chip assigns a time value to that microphone input and sends a microphone 

num ber along with its associated time value to the host PC where the received 

information is evaluated by a time difference algorithm that determines the location o f 

the hit. The hyperbolic intersection algorithm, which is calibration-free, has been tried 

then replaced by a training-based algorithm. The model o f the latter algorithm is given 

by AX = Y, where Y is the ball landing coordinate vector, X is the time difference 

information and A is the model parameter that needs to be performed once for a given 

table, unless the microphone placement is changed. Training data is acquired by 

dropping a ping-pong ball on certain known spots on the table a num ber o f times then 

matrix A was calculated through a least-squares fit to this data. When an impact occurs, 

the time differences are multiplied by the model parameters which returns a ball 

landing coordinate.
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Another research for tracking knocks on large windows as depicted in figure 2.10 was 

carried out for two Master degree projects at MIT which was motivated by the PP+ 

project. However, the development of this application required more accurate time 

differences than PP+ as impacts on glass are much less distinct than those of a ping- 

pong ball on wood and the dispersion creates significant distortion in the received audio 

waveforms. The modifications introduced by [15] include hardware signal filtration and 

software time difference calculations by sending the conditioned signals to a PC via a 

data acquisition board, which provides flexible signal processing such as normalising 

the signals before thresholding. The arrival time determination algorithm locates the 

first peak that is above a certain level, rather than a fixed, threshold. The average of two 

cross correlation peaks was also suggested for timing. The training method as in the 

PP+ was used with higher order polynomial data fitting. Further improvements to the 

knock tracking system on a large window followed in [16], where the threshold used 

for measuring the time differences was defined as a function of the signal peak. Cross 

correlation on part of the signal with few heuristics was also proposed for the time 

difference determination, while iterative solutions of two hyperbolic intersection 

equations were proposed for calculating the source coordinates rather than the training 

method.

The intention of the above systems was to localise impacts rather than to trace a 

continuous movement. However, there is as yet no clean, simple, inexpensive, and 

general means of robustly tracing the movement of bare hands near or on the surface of 

large objects. However, a solution to this problem that has been developed by MIT 

researchers [17] is to place a scanning laser rangefinder, as illustrated in figure 2.11, at
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one com er o f  the display surface to determine the polar coordinates o f hands in a 

clearly defined plane above the projection surface. This would ideally be a compact 

device, enabling a simple retrofit to make any flat surface interactive. One unit, in a 

single com er o f the screen is able to scan the entire display surface, and because it 

produces two coordinates simultaneously, there is no correspondence problem with 

m ultiple hands. However, there are still occultation issues and also the system is not 

receptive to the tapping type o f interaction.

As can be observed from the above review, most o f  the interactive systems are active. 

Passive acoustic technology, whether developed for a commercial product or for 

research work is limited to user interaction with single impacts and not for tracing a 

continuous movement and mainly intended for a glass substance.

PVOf S * n u / U

T4

Figure 2.10. MIT Knock localiser on large window
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Figure 2.11. MIT Laser tracing interactive screen

2.3 Literature Survey on Source Localisation

Binaural localisation in human beings and animals is a live example o f an efficient 

source localisation system. Relying on a variety o f cues, including interaural power 

level difference and interaural phase shift difference between the two ears, as well as 

information from the spectrum and precedence effect, human brains create a three- 

dimensional image o f  the acoustic landscape from the sound they hear. After more than 

a century o f  work, there is still much about sound localisation in humans that is not 

understood. It rem ains an active area o f  research in psychoacoustics and in the 

physiology o f hearing [18].
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The technology of source localisation in general has already received significant 

attention for decades due to its wide areas of application, including: underwater 

acoustics, such as the detection of a submarine from its noise or via ultrasound 

scanning since electromagnetic waves suffer from high attenuation in seawater; 

seismology, to locate an earthquake source; and military, to detect airplanes with 

passive acoustic radar before the invention of electromagnetic radar. Nevertheless, 

source localisation has attracted recent applications in various fields, including: non 

destructive testing, to locate acoustic emissions from cracks in solids such as airplane 

wings; voice localisation, for example, video conferencing, service robotics, e-textiles 

and hands-free speech communication; wireless sensors network, e.g. environmental 

monitoring, surveillance and security; impulsive noise, e.g. machinery fault diagnosis; 

and radio frequency such as aerospace, cellular phones, electronic warfare and 

electromagnetic compatibility testing.

In most active systems, as RF sources, the waveforms are narrowband since the ratio 

of the highest to the lowest frequency is usually very close to unity (e.g., for the 

802.1 lb wireless LAN system, the ratio is 2.4835 GHz/2.GHz= 1.03) which means the 

signals have a well defined nominal wavelength and therefore the time delay can be 

compensated for by a simple phase shift. On the other hand, audio waveforms in the 

range of 100 Hz to 10 KHz having a ratio of 100 are considered wideband signals and 

interpolation approaches are therefore required to estimate the time delay.

When an acoustic source is located close to the sensors, the wave front of the received 

signal is curved and the curvature depends on the source distance, then the source is in
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the near-field. As the distances become large, all the wave fronts are planar and parallel, 

and the source is in the far field. For a far-field source, only the direction-of-arrival 

angle in the coordinate system of the sensors is observable to characterise the source. A 

simple example is when the sensors are placed in a line with uniform inter-sensor 

spacing, then all adjacent sensors have the same time delay and the direction of arrival 

of the far-field source can be estimated readily from the time delay. For a near-field 

source, the collection o f all relative time delays and the propagation speed of the source 

can be used to determine the source location.

Classical source localisation can be categorised into three major methods; time of 

arrival, time difference of arrival (TDOA) and angle (or direction) of arrival. Time-of- 

arrival methods are based on measuring the time delay between the transmitter and the 

receiver, hence the source has to be active. On the other hand, TDOA is obtained from 

passive sources by measuring the time difference of signals arriving at multiple 

receivers. Readings o f multiple times of arrival or TDOA’s can be integrated and the 

source can be located by triangulation. Accordingly, two hot areas in research were 

initiated, one that deals with the improvement of TDOA estimation and another that 

deals with the triangulation and data fusion to improve the estimation of the source 

coordinates. Basically, the angle of arrival can be obtained from the TDOA between 

two sensors using the concept of array beamforming, which is the most popular 

technique in radar systems but has also been employed in recent applications.

The source in most applications is located in the far field, hence beamforming is the 

most popular and well established approach for estimating the angle of arrival [19]
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particularly for narrowband signals. It is an array signal processing technique that has 

been well studied for more than two decades [20]. Beamforming is based on a one-step 

procedure by finding the bearing of the maximum energy driven from time delayed, 

filtered, weighted and summed versions of the received signals, which form a single 

output signal. The estimator virtually steers the beam of the array to various locations 

and searches for a peak in output power. It has the advantage of accuracy and has the 

potential for detecting multiple sources but is time consuming and normally requires at 

least eight sensors. For example, in [21] eight microphones are used in beamforming to 

localise sound sources as a complement to the vision system in a mobile robot. In [22], 

a PhD work is carried out for developing angle-of-arrival estimation algorithms for 

wideband signals.

The technique for most passive sound source localisation systems using a microphone 

array is a two-step procedure. First the TDOA in microphone pairs o f the sensor array 

are estimated, usually by cross-correlation-based technique. In a second step, these 

TDOAs are used together with the microphone array geometry to determine the 

position of the sound source. TDOA estimation has been very profoundly described in 

an IEEE special issue [23]. The most common technique used to estimate the TDOAs is 

the Generalised Cross Correlation method [24]. It is a computationally efficient method 

which involves performing a cross correlation process in the frequency domain with 

various filtering criteria. A popular filtering process used in room acoustics to 

overcome the reverberation problem is the Cross-Power Spectrum Phase [25,26]. An 

alternative but less common technique is the Adaptive Eigenvalue Decomposition [27]
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proposed for room acoustics. It outperforms the Generalised Cross Correlation 

technique in moderately reverberant rooms but the convergence time is considerable.

Various positioning techniques have been developed to be used in the second step to 

locate the source based on the given TDOAs. Interesting to mention here is the 

positioning technique used in the Great War by British troops on the battlefield to find 

the location o f the enemy’s gunfire by measuring TDOAs from recorded signals 

received from microphones using a kinematograph. Target location was then found 

from manually plotting the TDOA triangulations [28].

The fundamental positioning method is based on the intersection of two hyperbolas 

defined by two TDOA information obtained from three sensors. Solving hyperbolic 

equations is a highly nonlinear problem and sensitive to the errors in TDOAs. Research 

has been active to find a closed form solution and also to develop techniques that utilise 

more than two TDOA measurements to reduce the error in the estimated location. 

Taylor-Serious [29] and spherical interpolation [30] have been proposed to make the 

triangulations of the localisation equations linear. Maximum Likelihood is a least-error 

estimate computed from the measured TDOAs and the true TDOAs. This method has 

been implemented to find a speaker location in a room [31,32].

The two-step procedure has been extensively implemented in algorithms for various in- 

air applications where a common problem with these applications of in-room acoustic 

localisation is the reverberation. A framework for designing a wearable microphone 

array for localising speech source or vehicle is presented in a piece of Master research
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[33] where the triangulation of two angles of arrival from two arrays is used to locate 

the source. Sound localisation in a network of sensors has been designed using two 

arrays each of two microphones and different localisation algorithms were compared

[34]. Acoustic localisation algorithms were proposed for service robots working in real 

conditions. One of the main uses of these algorithms in a mobile service robot is that 

the robot can localise a human operator and eventually interact with them by means of 

verbal commands [35]. In [36] the two-step procedure is proposed for passive source 

localisation to steer a video camera towards a speaker in a conference room. Using a 

cross correlation and hyperbolic intersection, the method has also been used to 

determine the source location in thin plates [37].

Recent advances in acoustic localisation have combined the advantages of the 

traditional methods of beamforming and TDOA, leading to techniques that are both 

accurate and fast. A procedure proposed for room acoustics estimates the location in 

one-step [38]. This method implies maximising the likelihood of the source location 

based on the data received from multiple sensor pairs, where the TDOA is associated 

with the estimated location rather than having been computed individually. The method 

has the advantage of including filtering criterion when implemented in the frequency 

domain [39]. Least-error is another localisation technique based on minimising the 

error between the measured and the ideal time delay [40].

Sensor fusion is an important concept in source localisation since it provides a 

mechanism for integrating extra information from redundant sensors to improve the 

accuracy of the estimated location. Least-error and maximum likelihood are examples

27



of sensor fusion but have the disadvantage of being nonlinear. Linear least square is an 

optimisation technique that can be used with a linear positioning algorithm and one that 

is popular in wireless localisation [41].

The problem of the passive tracking of a moving source is encountered in many diverse 

applications. In passive tracking, sensors “listen” for the signal emitted by the source in 

order to determine its location. Unlike radar systems, passive tracking systems have a 

stealthy operation capability. Passive tracking is achievable by employing TDOA 

between signals received at multiple receivers or from bearing measurements. However, 

because outliers in the estimated locations crucially affect the trajectory, it is essential 

to use a location prediction algorithm. Among the algorithms that have been proposed 

for tracking a moving source such as sound and mobile phones are recursive smoothing 

[42], particle filter [43,44] and the popular Kalman prediction [45].

2.4 Overview of Acoustic Wave in Solids

Sound is an acoustic wave pattern which is caused when a sound source disturbs the 

normal random pattern of the molecules in air or in any other molecular medium, such 

as a liquid or solid. Sound waves propagate in a variety of media, including gas, liquids, 

organic and inorganic solids, in plasmas and superconductors, and in interplanetary, 

interstellar, and intergalactic media. They range in frequency from billions of cycles 

per second to a single cycle within a period of years. Human hearing is only a small 

fraction of the frequency range of the full acoustic wave spectrum. These waves 

propagate in a variety of media at different speeds, and have different vibration
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characteristics depending on their source. They include traveling waves, standing 

waves, internal waves, surface waves, trapped waves, thermal waves, shock waves, and 

plasma waves which are included in the acoustic wave spectrum represented in the 

chart shown in figure 2.12 [46].

In air, sound travels by the compression and rarefaction of air molecules in the 

direction of travel. In solids, waves can be characterised by oscillatory patterns that are 

capable of maintaining their shape and propagating in a stable manner and molecules 

that can support vibrations in other directions. A number of different propagation 

modes therefore exist. There are four principle modes in solids based on the way the 

particles oscillate; longitudinal wave, transverse (or shear) wave, surface wave and 

plate wave. In contrast with wave propagation in seismological science [47], there are 

two main types o f waves; body wave and surface wave. A body wave is one traveling 

through the interior o f the medium and is of two kinds; longitudinal, designated P 

(primary) wave and transverse, designated as S (secondary) wave. A surface wave 

travels only through the surface of the medium and is of two kinds; a Love wave and a 

Rayleigh wave. Body waves arrive before the surface waves and they are of a higher 

frequency.
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Figure 2.12. Acoustic wave spectrum
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As shown in figure 2.13, the oscillations occur in longitudinal waves in the longitudinal 

direction or the direction o f  wave propagation. It can be generated in liquids as well as 

solids because the energy travels through the atomic structure by a series o f 

compression and expansion movements. In the transverse or shear wave, the particles 

oscillate at right angles, or transverse, to the direction o f  propagation. Shear waves 

require an acoustically solid material for effective propagation, and therefore are not 

effectively propagated in materials such as liquids or gasses. Shear waves are relatively 

weak when compared to longitudinal waves. In fact, shear waves are usually generated 

in m aterials using some o f the energy from longitudinal waves. Longitudinal and shear 

waves are the two m odes o f propagation most w idely used in active non destructive 

testing using ultrasonics [48].
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As illustrated in figure 2.14, Love surface waves produce an entirely horizontal motion 

with respect to the direction o f propagation. Rayleigh surface waves travel on the 

surface o f  a relatively thick solid material, penetrating to a depth o f  one wavelength. 

The particle m ovem ent has an elliptical orbit. Rayleigh waves are useful in non 

destructive testing because they are very sensitive to surface defects and they follow the 

surface around curves. They can, therefore, be used to inspect areas that other waves 

m ight have difficulty reaching. Plate waves can be propagated only in very thin metals.
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Lamb waves are the most commonly used plate waves in non destructive testing. Lamb 

waves are complex vibration waves that travel through the entire thickness of a 

material. Propagation o f Lamb waves depends on the density and the elastic material 

properties of a medium. They are also influenced a great deal by the test frequency and 

material thickness. With Lamb waves, a number of modes of particle vibration are 

possible, but the two most common are symmetrical and asymmetrical as shown in 

figure 2.15. The complex motion of the particles is similar to the elliptical orbits for 

surface waves. The symmetrical Lamb waves mode, also called the ‘extensional mode’ 

move in a symmetrical fashion about the median plane of the plate. Wave motion in the 

symmetrical mode is most efficiently produced when the exciting force is parallel to the 

plate. The asymmetrical Lamb wave mode is often called the ‘flexural mode’ because a 

large portion of the motion moves in a normal direction to the plate, and little motion 

occurs in the direction parallel to the plate. In this mode, the body of the plate bends as 

the two surfaces move in the same direction.

Plat* Wav*
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Figure 2.15 Modes of Lamb wave in plate



Wave velocity is essential for the location calculations. For an acoustic source, the 

propagation speed in air is a known constant of approximately 345 m/s. In [49], 

experimentation was carried out for measuring the ultrasonic wave velocity in Medium 

Density Fiber. It was proposed to measure the phase velocity based on the travel time 

of a specific phase point within the waveform and the group velocity based on the time 

of the waveform centroid, defined as the energy center of the wave as shown in figure 

2.16.
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Figure 2.16. Transit time measurement for (a) group velocity and (b) phase velocity
using ultrasound signal [49].



Another approach for the analysis of transient waves propagating in composite 

laminates is presented in [50]. A wavelet transform approach is proposed here for the 

time-ffequency analysis of a dispersive plate wave. Figure 2.17 shows the results of the 

measured and the theoretical dispersion in unidirectional laminate.
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Figure 2.17 [50]. Flexural dispersion in unidirectional laminate.
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CHAPTER 3

Enhanced Pattern Matching for Impact Localisation

The use of pattern recognition for source localisation is a new approach based on 

matching the pattern of the signal’s features with a template associated with a 

predefined location rather than by calculating the actual coordinates of the source. The 

approach is named here, therefore, Location Pattern Matching (LPM). Although LPM 

requires a learning process for each location, it has the unique feature of being able to 

work in heterogeneous medium of any shape or material using one or two sensors. This 

feature overcomes the limitations of the more widely used approaches based on time 

difference. The use of cross correlation to match the time series pattern of the received 

signals has been verified experimentally in [51]. Maximum Likelihood estimation is 

proposed for pattern matching in [52] to localise an object in acoustically activated 

room. In [53], an ultrasound source is localised in a room with one receiver based on 

using Vector-distance Metrics to compare measurements with the simulated signature 

o f location obtained from the room acoustic channel model. Cross correlation is more 

popular as a matching technique in other applications such as in the medical field, 

where it is used to compare test ECG signals with the database of known diagnoses to 

find the most similar waveform and hence the related cardiac information can be found 

[54]. In image processing, pointing finger is tracked for gesture interface by matching a 

searched image from a video camera with a finger template using two-dimensional 

cross correlation [55]. The method of pattern matching for localisation, although it is a
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simple method, it has not been explored intensely in literature from an engineering 

point of view. In this chapter, pattern matching for in-solid localisation is thoroughly 

investigated and novel algorithms are proposed to solve the common problems of 

resolution and reliability.

3.1. Hypothesis of Pattern-based Localisation

The hypothesis behind identifying a location from the received signal pattern is that a 

signal propagating from source to destination inherits a specific signature in its pattern 

associated with it’s source location as a result of scattering. In this section, the 

hypothesis is illustrated in a mathematical model.

When a driving force is applied to a medium, a travelling wave is generated 

transporting energy away from the source of disturbance. In a closed system, the 

waves propagate until they meet the boundaries and are reflected or absorbed. The 

reflections cause reverberation to the received signal acquired by a transducer at a 

certain location in the medium. To comprehend the effect of the boundary on the 

magnitude and phase of a received signal, a plane wave is assumed propagating in the x 

direction, and the acoustic wave equation is given by,



where p  is the acoustic pressure as a function of time t and distance x  and vp is the

phase speed. The solution o f the differential equation (3.1) is the travelling wave 

equation given by [56],

p  = A e** '* '  (3.2)

where A is the amplitude constant and p  is the wave number. With this wave equation, 

it can be shown how a transmission medium with one reflection affects the received 

signal. Assume a simple model of two signal paths from the transmitter to the receiver. 

One direct path with unity gain and a delay td , and the other is reflected with

attenuation a  and a delay td + A, resulting from the path length difference. The 

overall transfer function of such a transmission medium H(eo) can be expressed by,

H (co) = e~ia*d +cee-jM,'+*')

*»(«>____
a sin , -y(arrf+tan -----------—)

= J l  + a 2 + 2a  cos &>A, e (3.3)

Therefore, multi-path causes distortion in the magnitude //(w )| and the phase 0h(<a)

characteristics of the transmission medium. Since the time delay is the product of the 

path length difference and the wave-number, it is clear from (3.1) that the magnitude 

and phase of the received signal at a certain location will vary as the source location 

changes. In a random medium the received signal is a combination of the direct wave 

and multiple delayed scattered waves that have gone through reflections and refractions
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plus the effect of non-isotropic material, and therefore the received signal in reality has 

a much more complicated relation to its source location than that given in equation 

(3.1). With this hypothesis, signals received from different locations will have a 

distinctive feature that can be used to localise the source origin if there is some 

knowledge about this feature. Practically, the locations features are obtained from the 

received signal in the training stage.

3.1.1. Focusing in Time-reversal Theory

In time-reversal acoustics, a source is applied to a medium at a certain location and a 

received signal is recorded by an array of transducers as shown in figure 3.1. The 

received signals are reversed in time and then re-transmitted into the medium. The re­

transmitted signal propagates back through the same medium and goes through all the 

multiple scattering, reflections and refraction that it underwent in the forward direction 

and refocuses on the source location. If only an aperture of limited area, called the 

time-reversal mirror, is performed in the time reversal operation, a small part of the 

field radiated by the source is captured and time reversed, thus limiting focusing quality

[57].

In a bounded medium, multiple reflections along its boundaries significantly increase 

the apparent aperture of the time reversal mirror and effectively the transducers are 

replaced by reflecting boundaries that redirect part of the incident wave towards the 

aperture. Thus, spatial information is converted into the time domain and the reversal 

quality depends crucially on the duration of the time-reversal window, i.e. the length of

39



the recording to be reversed. The heterogeneity o f  the medium or the boundaries 

produces multi-paths and this contributes to having an aperture that is much larger than 

its physical size. It has been shown experimentally that in a cavity with a specific 

geometrical property, focusing with time-reversal can be obtained using one transducer

[58].

(b)

Figure 3.1. Sketch o f  time reversal focusing in random medium, a. impulse 

transmission and reception, b. time-reversed transmission and impulse localisation.
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The time-reversal approach is clearly connected to the inverse source problem. They 

both deal with propagation of a time-reversed field, but the propagation is real in the 

time-reversal experiment and simulated in the inverse problem. Moreover, the most 

important distinction is that time-reversal doesn’t need knowledge of the propagating 

medium while the inverse problem method does.

As for any linear and time-invariant process, wave propagation through a multiple 

scattering medium may be described as a linear system with a certain impulse response. 

If the source sends a Dirac pulse S(t) function, they* transducer of the Time-Reversal-

Mirror will receive a signal h} (/), which is the propagation impulse response from the

source to transducer j  . Moreover, due to spatial reciprocity, hj (/) is also the impulse

response describing the propagation of a pulse from the f h transducer to the source. 

Thus, if the transducer is able to record and time-reverse the whole impulse response as 

h} ( - /) ,  the signal generated at the source is given by the convolution hj (t) * h} ( - /) .

This convolution product, in terms of signal analysis, is a typical matched filter which 

is a linear filter whose output is optimal in some sense. Whatever the impulse response 

hj (/), the temporal result is the convolution between this response and its time-reverse

version h j{ t)*h j{ - t)  which is maximal at time t=0. This maximum is always positive 

and equals jh j( t)d t ,  i.e. the energy conveyed by /*,(/). This has an important

consequence. Indeed, with an N-element array, the signal recreated on the source can 

be written as,
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(3.4)

Even if hj(t) are completely random and apparently uncorrelated signals, each term in

this sum reaches its maximum at time t=0. So, all contributions add constructively 

around t=0, whereas at earlier or later times uncorrelated contributions tend to interfere 

destructively one with another. Thus the recreation of a sharp peak after time-reversing 

on an N-element array can be viewed as an interference process between N  outputs of N  

matched filters.

3.1.2. Realisation of Source Localisation from Time-reversal Focusing

As described in the previous section, it is possible with time-reversal theory to 

reconstruct an acoustic signal in its original location in a scattering medium by 

recording the received signals and sending back the time-reversed version of these 

signals through the medium. This implies that the received signal carries its source 

location signature as a result of scattering in the transmission medium and reflections 

from complex boundaries. With the same assumption of Dirac delta source excitation, 

the response term hj(t) of the temporal correlation as given by 3.1 can be interpreted

in LPM as a template obtained in the learning stage. The /*, ( - /)  is the applied test

signal that with a negative sign turns the convolution into a cross correlation operation. 

Therefore, cross correlation is a focusing process in time-reversal but a similarity 

measure in template matching localisation.
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3.13 Deduced Rules

Although source reconstruction in time-reversal is a transmission process or an active 

one, it is comparable to passive source localisation with template matching by the 

operation of cross correlation as illustrated in the previous section. However, time- 

reversal can help to provide an explanation and physical limitations of the source 

localisation problem.

Ideally, source reconstruction is achieved with an array of sensors surrounding the 

source origin with element spacing of at least half a wavelength. Practically, a limited 

aperture area is used at the cost of focusing resolution. The smaller the array, the larger 

the focal spot. As a result of wave diffraction, the waves will refocus to a spot not 

smaller than the shortest wavelength [58]. Accordingly, the achievable localisation 

resolution using template matching can be increased with more sensors but still limited 

to the smallest wavelength, and since wavelength is inversely related to frequency, 

higher accuracy can be obtained with interactions that generate higher frequency 

signals, such as using nail clicks or a metallic object, than those which generate lower 

frequencies such as a finger tap or damping material.

3.2. Criterion of Pattern Matching

Localisation by pattern matching encounters two stages, learning and recognition. In 

the learning stage, signals received from impacts are tagged to their known location 

zones. In the recognition stage, a received signal is localised by finding the best
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matched feature in the template. Pattern matching is performed using one of the 

similarity measure criterion, maximum likelihood estimation, vector-distance metrics 

or cross correlation coefficient. The LPM system is depicted in figure 3.2.

Suppose the location feature is represented by the column vector g, of the template 

signal samples for the f h location and s is the column test signal that needs to be 

matched to a template signal. The matching criterion is to find location i that maximises 

the matching process. One possible matching criterion is the maximum likelihood 

decision used in [52] to localise the object in a room with active sources. Assuming the 

vector s consists of zero mean independent Gaussian random variables with standard 

deviation of a , the likelihood function can be modelled as:

(3.5)

where rjt is the i* hypothesis. The maximum likelihood decision can be stated by 

maximising (3.5) and the matching criteria can be simplified to;

/ = argmaX; { f„ g.(s | g,)} = argm in^s - g , |2) (3.6)

It is clear that equation (3.6) is effectively a least square estimator.

The approach used in Dijk PhD work [53] for locating an ultrasonic source is by 

comparing the measured signal with reference signals obtained by simulation that takes
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into account the 3-D geometrical reflections in the room. Vector-Distance metrics are 

proposed for com paring the two time series o f  length N with a tuning factor ,q, for the 

required resolution as given by,

i< s ,* ) = ( i > ( » ) - * , ( ' ,)| )*'• (3-7)
n=l

The same concept has been used in [59] to localise an active source underwater using 

single hydrophone.

s ignal 
condition ing

Data
A cquisition

Figure 3.2 LPM system layout.
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Another matching approach is cross correlation, a familiar process used in signal 

processing to compare the similarity between two patterns, where the peak value 

indicates the degree of linear correlation and the peak argument indicates the time lag 

between the two signals. Mathematically, the cross correlation between two time 

signals s(t) and g(t) is given by;

Because R varies as the signal energy varies with time, and the correlation range is

dependant on the signal’s amplitude, it is more appropriate to use the cross correlation 

coefficient expressed by;

where Rss and R are the autocorrelation functions of signals s and g  respectively at

time lag zero. Here, the signals are normalised to their energy and the range of is

bounded by the interval [-1, 1]. Because the sign of the signal doesn’t affect the pattern, 

for example sine and cosine waveforms have a correlation of -1, both positive and 

negative peaks are considered. The criteria to estimate the location / of the test signal s 

from the best match with the template signals g, can be expressed by,

(3.8)
-oo

- i < r  < isg (3.9)
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/ = argmaxf|r^ (r)| (3.10)

There are good reasons to choose cross correlation as a preferred matching algorithm. 

One is that from physics point of view cross correlation can be interpreted as a focusing 

in time reversal theory. The other reason is that practical tests have shown much better 

results with cross correlation than the other two methods. Very importantly, the 

existence of the Fourier transform relationship given by the famous Wiener-Khintchine 

theorem allows for efficient operations in the frequency domain. The location feature 

used in the matching process above is the pattern o f the time series signals s(t) and g(t), 

but it is not limited to time series. Any other quantity that carries a location feature can 

be used instead. The extraction of more specific location features will be considered 

later. A practical example for identifying the location of a finger tapping on a fibre 

board is shown in figure 3.3. The result of equation (3.9) is shown in a 3-D map for 

four individual sensors where the highest correlation peak corresponds with the source 

location while the matching with other location templates results in lower peaks.

3.3 Empirical Analysis

Since the LPM method conquered the complexity of defining the location signature by 

recording real signals rather than by simulation or by using an analytical solution, it is 

more appropriate to analyse the performance of LPM system empirically. The 

performance of LPM localisation can be characterised by the resolution and the 

reliability.
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Practically, there is no guarantee that for each location there is alw ays a unique feature 

in the signals that leads to a distinctive cross correlation peak at the correct location. 

M ultiple global cross correlation peaks causes am biguity which results in incorrect 

estim ation. This case can be treated by changing the sensor position, selecting an 

alternative interaction location or choosing a different object m aterial or shape. From 

the signal processing side, filtration, sensor fusion and other developm ents can be 

considered to reduce the ambiguity.

Resolution is lim ited by the wavelength according to tim e-reversal theory. Practically, 

it is the m inim um  distance between distinguishable locations w ithout ambiguity. 

Consider the tem plate o f  ten locations positioned in a line on a glass sheet. By applying 

a nail click at the m iddle o f  the line, the cross correlation coefficients are obtained as 

shown in figure 3.4.

095

0 9
Contrast

0.85

o

1  075

Resolutiono
2 065
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055

0 5

location in 10m m  units

Figure 3.4. Resolution in LPM system. 
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The resolution can be shown in this figure, as arbitrary defined in [51] by the half 

power beam width of the spatial cross correlation peaks and the ambiguity level by the 

contrast.

On the other hand, reliability is indicated by how well the LPM system is correctly 

responding to different types of interactions, which is restricted by the sensitivity of the 

matching algorithm to the type of interactions used in the learning stage.

3.3.1 Evaluation Procedure

Obviously for a proper evaluation or comparison of LPM systems, given data collected 

ffom measurements has to be used for evaluating different algorithms and parameters 

since interactions cannot be reproduced exactly the same. For a quantitative evaluation 

of large data, a simple procedure is used by generating both template signals and test 

signals from known locations and tagging all o f those received to their location index. 

The two sets of data are then saved. The location index is a number associated with the 

interaction zone as shown in figure 3.5. In the evaluation process shown in figure 3.6, 

each signal from the test database is localised using the given algorithm, then the 

estimated location index is checked against the actual index tagged to the signal. In this 

way the percentage of correct estimations is calculated as a measure of confidence in 

the localisation system.
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m=l:M impact per location

Template signals */>) 
j=l J  locations

Figure 3.5. Data recording for evaluation.
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Similarity measure 
Select algorithm and channels
Match the test data 1%,.) for all inpacts n =U , m=l:M 
with the template data t/(SV) for all locations j= U  
e.g. cross-correlation

Template signals ^(0 
j=l J  locations

Test signals g_(/)
n=l J locations
m=l:M impact per location

Signal Processing
Processed template data: u (S J
Processed test data:
e.g. filtering, feature extraction, etc.

Performance evaluation 
Confidence = % o f error free estimated locations

Error measurement 
Incorrect location detected if rto*jB for any » 
Uncertainty detected if Threshold level

Location estimation 
Estimated location =* j„ corresponding to 
the pair u (g ^ )  and U{sh ) having maximum 
similarity XM 
e.g. peak detection

Figure 3.6. Evaluation procedure for the data collected as in figure 3.5.
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3.4 Enhanced Resolution

Before looking at the proposed solutions to enhance resolution and reliability, it is 

important to examine what cross correlation coefficient should be accepted. In order to 

make the LPM system less susceptible to false trigger, for example to ignore impacts 

outside the tactile locations of interest, a threshold value ro needs to be assigned so

that r  > r 0 must be satisfied for the location to be recognised. Thus equation (3.10) 

can be rewritten as /(T0) = argm ax^T^ (r)| > T0). The higher the threshold the less

the system is susceptible to false trigger but locations with a correlation coefficient of 

less than T0 will be missed. Therefore, there is a trade-off in choosing the threshold 

level and there is a need to define its value. The threshold value can be investigated by 

plotting the percentage o f successful estimations against T0 for a given test database

using the evaluation procedure given above. From the example shown in figure 3.7, T0

should be set to at least 0.95 to improve system immunity against false trigger as far as 

possible without degrading its performance.

3.4.1 Multi-dimensional signal

It was shown that focusing with time-reversal can be performed in an open system with 

an aperture of transducers at the cost of resolution. However, in a closed system, one 

transducer can be sufficient depending on the object geometry. Based on this fact, 

spatial diversity using multiple sensors can improve the resolution. Two options of
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sensor fusion can be considered. One basic m ethod is by calculating the statistical 

average o f  the m atching peaks detected by K  channels as,

Success%  vs Correlation Threshold, Hits/Locations= 32/16
110

100

C0
1

J3T7-Bm
Vo
3
(A

O
3*

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cross Correlation Coefficient

Figure 3.7. Threshold o f  cross correlation coefficient.

K

i = argm ax , ^ m a x ( T % * ( r ) ) / K  (3.11)
i

N ote that m axim um  likelihood estim ator can also be used as in (3.11) but with 

m inim isation o f  the m atching kernel rather than m axim isation. The other option is to 

adopt the signal reconstruction form ula from tim e-reversal theory given by equation 

(3.4) to com bine the outputs o f  the cross correlation prior to peak detection as follows,



/ = argmax. (3.12)

The evaluation process shown in figure 3.6 has shown comparable results for both 

criteria but obviously (3.12) is more computationally expensive than (3.11) and thus its 

use is unjustified.

3.4.2 Post Filtering

As with any signal processing system, noise can degrade the output of the system. In 

the developed LPM, the main source of noise is the nonlinear response of the sensor. 

Unlike other acoustic localisation systems, reflections and path distortion of the 

propagating wave is an advantage not a noise. To show the effect of noise removal as 

well as to demonstrate the relationship of wavelength and resolution, the following 

experiment was conducted. Sensors with nonlinear properties above 10 KHz were used 

and therefore a low pass filter was required. A template was created from nail clicks at 

2x4 grid of eight locations spaced by 100 mm on a fibre board and four channels were 

used to acquire the signals at a sampling rate of 100 K samples per second. A 

Chebyshev digital filter of the frequency response shown in figure 3.8 was used with a 

cutoff frequency of 8 KHz, then modified to 4 KHz. By applying ten impacts at each 

location, the resulting database was evaluated using raw signals, filtered signals with 

8KHz low pass filter and then with a 4KHz low pass filter. The evaluation results 

shown in table 3.1 indicate the improvement with noise filtering for both filters as well
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as the contribution of higher frequencies in the location features. The minor 

improvement of higher frequencies is due to the major power content within the lower 

frequency band.

Filtering Sensor Sensor Sensor Sensor Average from
a b c d 320 test signals

None 91.00 98.00 95.00 93.00 94.25
LPF 8 KHz 100.00 100.00 100.00 100.00 100.00
LPF 4 KHz 99.00 99.00 100.00 98.75 99.19

Table 3.1. The percentage of correct estimations from four channels.
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Figure 3.8 Low pass filter
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3.4.3 Coherence Filtering

As seen with the previous filtering example, the removal of some frequency 

components from row signals improved the results of cross correlation, but that was 

only for known noise sources and unnecessary filtration of higher frequencies will 

degrade the resolution. Other frequency components which can negatively affect the 

cross correlation may still exist in the signals. Therefore it is desirable to select only the 

frequency components which are correlated. This can be achieved using the coherence 

function.

Coherence is one of the techniques used in acoustics for signal analysis [60]. The 

coherence function quantifies the linear relationship between two signals in the 

frequency domain at each frequency co. The magnitude squared coherence between 

signals s(/)andg(/)is given by,

where P {co) is the cross spectral density and Pu {co) and PK {co) are the auto spectral 

density functions of s{t) and g{t) respectively. Equation (3.13) produces a real 

number between 0 and 1 that represents the degree of matching at frequency co. Rather 

than detecting the peak of equation (3.13), the mean value of y 2 denoted by y  is 

computed and used as a matching criterion given by,

ss gg

(3.13)
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r =  —  I  r tg{o))do)

eo m
(3.14)

where is the range of frequencies for which the power spectrum is above a

threshold level. To eliminate the coherence produced as a result of division by nearly 

zero quantity, the magnitude squared coherence is multiplied by the cross spectral 

magnitude.

Sensor Sensor Sensor Sensor Average
a b c d

correct correct correct correct % o f

Algorithm wrong wrong wrong wrong
correct

Cross 824 710 810 803
Correlation ----- 72.8

256 370 270 277
936 895 939 926

Coherence 85.6
144 185 141 154

(a)

sensor sensor sensor sensor Average
a b c d

correct correct correct correct % o f

Algorithm wrong wrong wrong wrong
correct

Cross 891 823 879 803
Correlation 78.6

189 257 201 277
1036 978 1031 1025

Coherence 94.2
44 102 49 55

(b)

Table 3.2. Results of localising 1080 impacts at 12x9 locations at 20mm resolution for 

four channels using (a) finger tap and (b) nail click impacts on a glass sheet.
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A typical example of using the coherence function is shown in Figure 3.9.

This algorithm has been compared with the cross correlation algorithm using the 

evaluation procedure in section 3.3.1 for nail clicks and finger tapping on a glass sheet 

with four low-frequency piezoelectric sounders positioned arbitrarily near the edges. 

The percentage of successful localisations is shown in table 3.2, where a 14.2% 

improvement on average has been achieved for coherence compared to cross 

correlation with single sensor.
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Figure 3.9. Magnitude squared coherence versus frequency of two nail click signals at

the same location on a fibre board.
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3.5 Location Feature Extraction for Enhanced Reliability

Ideally, to comply with the time-reversal theory, an impulsive source is needed for both 

learning and recognition stages. Practically, it is found that cross correlation is sensitive 

to the template type, which means that similar sorts of impacts should be used in both 

stages, which is expected since the variation in the signal will appear as a variation in 

the location signature. One option to make the system more reliable is to use multiple 

templates for different types of interactions, but this is impractical as the calibration 

work will be intensified. Signal filtering improves the resolution but is found to be not 

effective in improving reliability because it filters the frequency components and not 

the location features. Therefore, an attractive novel solution is proposed here to solve 

the reliability problem by extracting specific features from the signal that is associated 

with the source location rather than the source information.

Let an unknown source signal given by s(t) emitted from location i on the surface of a 

tangible object as shown in figure 3.10, and two sensors are receiving the signals gj(t) 

and g2 (t). The propagation path from the given source to sensor-1 and sensor-2 can be 

expressed by specific transfer functions denoted by hj(t) and h2(t) respectively. The 

transfer function is characterised by the complex propagation path and is independent 

o f the source signal information. Accordingly, the transfer function for a specific source 

to receiver path represents the actual location signature. Treating the transmission 

medium as a black box of a single input/multiple output system, the output signal 

received by the f h sensor, as any time invariant system, can be expressed analytically 

by the convolution integral given by,



00

£ ,(0 =  jX (/)s(/ - r ) d r
—oo

(3.15)

For instance, consider the output from one sensor only. It is possible to measure the 

transfer function for a given location by applying an impulse S(t) at that location and 

measuring the output. In that case, the received signal is the transfer function, as one 

can tell from equation (3.15) which in turn can be used as location signature in the 

template. If the test signal is also an impulse, then the matching process is comparing 

location signatures and therefore high accuracy is anticipated. Otherwise, if the signal 

used for test, or for the template, is not an impulse, the resulting received signal will 

include source signal information plus location information, which accordingly results 

in estimation error. This is why LPM is very sensitive to template signals and works 

better with impulsive types of impact. The task now is to develop a technique to extract 

the source information from any type of interaction by employing two sensors.

Let the input in the system shown in figure 3.11 is a stationary random signal. The 

input/output relationship in the frequency domain is given by a Fourier transform of 

equation (3.16) as,

G, ( / )  = S ( f ) H , ( / )  (3.16)

The hypothesis of extracting the location signature involves utilising a measurable 

quantity that doesn’t require any knowledge about the input excitation or medium
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transfer function. Thus, from the output/output relationship that is given by the cross 

spectral density function between the two outputs,

a hypothetical transfer function can be defined as,

n m  H ' ( f )  P™ '( / )  n n
“  H J f )  (3 1 8 )

where P  is the autocorrelation function of g x (/). It can be seen from the above three 

equations that H  is a function of the two transfer functions hj(t) and h2 (t) which still

represents an independent location signature. A related subject in literature is the 

binaural localisation in humans which is simulated by the Head Related Transfer 

Function cue and defined by the ratio of the two output spectrums [61].

By rewriting the complex equation (3.18) in the form of magnitude and phase as 

equation (3.19) bellow,

" » „ ( / > = v 8, „ ( / > ^ ,  (319>

either the magnitude or phase patterns can be used as location signature information. To 

use both amplitude and phase information, the pattern given by,
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can be used as signature, where y/(J) is a filter introduced to adjust the bandwidth 

variation which differs depending on the interaction with different materials. With 

V ( f )  -  yglg2 ( / )  > °nly phase information is extracted. Obviously, utilising only the

phase or the magnitude pattern is computationally faster than using (3.20) since it is not 

necessary to convert them back into the time domain.

An experimental result was carried out by registering a template from impulsive 

impacts at defined locations generated by pen tip hits on a glass sheet. The test database 

consists of different interaction types such as pen tip hits, nail clicks and finger tapping. 

Then, with the evaluation procedure, it is found that the highest percentage of correct 

estimations are obtained using (3.20), then using the phase information only and lastly 

when only magnitude information is used.

3.6 Experimentation

The experimental setup consists of the interactive object, sensors, signal amplifier, data 

acquisition card and a PC to process the signals. Different object materials have been 

tested including metal, glass, plastic and fibre boards. The suitable sensors were the 

piezoelectric discs, electret microphones and accelerometers. For data acquisition, a 

four channel PCI card is used for evaluation and a two channel sound card used for 

demonstrations, such as the portable USB sound card and the wireless audio
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transmitter. These equipments are pictured in figure 3.12. The LPM system is found to 

be working on a variety of materials. The piezo-ceramic sounders and electret 

microphones are the cheapest but can only pick up low frequencies when firmly 

attached to the surface. The piezoelectric microphone is very sensitive with wide 

bandwidth response but the most expensive. The piezoelectric shock sensor from 

Murata is the best sensor with a sufficient frequency response and a very reasonable 

price. A drawback of the LPM system is that it may require re-calibration of all the 

interaction points whenever a physical change is imposed on the tangible object.
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Glass with four Piezo-ceramic sounders
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Metal tray with shock sensors and USB sound 
card

Plastic tray with shock sensors and USB 
sound card

Figure 3.12. Various experimental equipm ent for LPM  localisation.
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Chapter 4

An Investigation into Localisation Approaches for TAI

The LPM approach proposed in the previous chapter utilises the uniqueness of the 

transmission channel property between source and sensors. It benefits from the 

propagation complexity which results from object geometry, boundaries and the 

structure of material and thus is suitable for impact localisation for any object material 

and shape. However, the disadvantage of the LPM method is the learning requirement 

for each individual point of interaction on the tangible surface. This is a problem when 

it is preferred to interact with arbitrary locations or to work on large surface with a 

large number of interaction points or if it is not desired or not possible to carry out the 

learning stage. Another problem with the LPM approach is its unsuitability for tracking 

a moving source. The promising approach that doesn’t require learning, with good 

potential for tracking a continuous moving source, is the one based on measuring the 

time differences of signal arrivals to multiple spatially separated sensors which has 

been a hot area in the development of passive source localisation for modem 

applications.

Since various algorithms have been developed for the passive source localisation 

problem in the literature, as seen in section 2.3, it is important now to identify the 

fundamental features of these algorithms and to match it with the essential
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requirements of TAI. These approaches are based on a known wave propagation 

velocity v, the measured time difference r  and sensor geometry with no learning 

required. In the research by MIT for developing a large tangible window, only heuristic 

methods were considered, with little attention paid to other methods. The purpose of 

this chapter is to investigate the main theoretical localisation methods and identify the 

problem of source localisation in the TAI model, which in turn leads to a narrowing 

down of the possible options and justifies the methods used in the development of the 

algorithms in the following chapters.

4.1 Active and Passive Sources

In an active localisation system, a deterministic signal is transmitted from the source to 

work as an embedded time stamp. The Time of Arrival (TOA) from source to sensor 

can be known from the signals acquired by each sensor, using synchronisation with the 

emitter clock. Since each TOA forms a circle of possible source location centred at the 

relevant sensor, the source location ambiguity can be resolved from the intersection of 

three circles using a minimum of three sensors as shown in figure 4.1. Such an active 

method is common in mobile phones and in ultrasound applications [62].

In a passive localisation system, the time of arrival is unknown. But the Time 

Difference of Arrival (TDOA) between a couple of sensors can be measured and used 

as the fundamental unit to calculate the source location. In comparison with the TOA 

circles in an active system, a given TDOA value between two sensors forms a 

hyperbolic curve for the possible source location as illustrated in figure 4.2. Therefore,



Sensor

Source

Figure 4.1. Active source localisation from time TOA circles’ intersection

' /

source

vertexsensor

Figure 4.2. TDOA hyperbola for passive system
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an additional sensor is required to find the location from the intersection of two 

hyperbolas.

4.2 Bearing Estimation

The best known source localisation approach for in-air and underwater application is 

the bearing estimation or Angle of Arrival (AOA) using a linear phased array. With 

reference to figure 4.3, assume a plane wave is incident on an array of two sensors 

spaced a distance d  apart. From the geometry, it can be shown that the angle of arrival 

3  can be found from,

cos(«9) =
vr,

(4.1)

far field source

8l(0

Z (t)

Figure 4.3. Far-field plane wave front and beamforming
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The condition for assuming a plane wave that leads to equation (4.1) is that the source 

is located in the far-field zone specified by r »  d  [63]. Another condition to resolve 

ambiguity resulting from spatial aliasing is that the maximum distance between sensors 

Xmust satisfy d  < —, where X is the wavelength [64]. The direction of arrival of a far-

field source can also be approximated by the asymptotic line of a hyperbola curve as 

depicted in figure 4.2.

The source coordinates can be obtained in the far-field from the triangulations of 

intersecting two angles o f arrival using two arrays as illustrated in figure 4.4 as given 

by,

far field source

5

Figure 4.4. Far-field source location (x,y) from two AOA’s
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_ j  sin(«9,)sin(i92) 
sin(«9, -«92)

j  sin(^ i)c° s(^2)
sin(^ - i92)

(4.2)

This approach has been proposed for sound localisation in service robots [35].

Due to practical and physical limitations including signal strength, accessibility, 

wavelength variation and the need to distribute the sensors apart for better performance, 

the working area of a reasonable size object, i.e. reachable by hands such as a 

whiteboard and a shop window, is in the order of the distance between sensors. In this 

case, the source is located in the near zone where the wave front is spherical and the 

time difference is a function of the radial difference, as illustrated in figure 4.5. Thus 

the far-field formula is not a proper approximation and near-field localisation 

algorithms should be considered. The source location in the near-field can be calculated 

from the hyperbolic intersection geometry.

near field source

sensor

spherical wave front

Figure 4.5. Near-field TDOA assuming spherical wave front.
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4 3  Hyperbolic Localisation Geometry

The hyperbola is defined by the set of points that are an equal difference in distance 

from two focal points. Consider the scenario of locating a source s, produced by an 

impact on a solid object, using the acoustic signal picked up by sensors 1, 2 and 3 as 

depicted in figure 4.6. The focal points here are the sensors. For a given TDOA 

measurement between sensors 1 and 2 , the source s can be located anywhere along the 

red hyperbola curve. With additional measurement from sensors 1 and 3, for instance, 

the source location (x,y) can be resolved from the intersection of the two hyperbolas, 

the red and the green curves. Mathematically, let sensors 1, 2 and 3 be at (xi.yj), (.X2,y2) 

and (.X3,y3) respectively. The emitted energy from source s arrives at sensors 1 and 2 

with a delay difference o f r 12 and at sensors 1 and 3 with a delay difference of r 13. 

Thus two hyperbolas can be formed,

V (* -* i )2 + ( y - y i ) 2 - tJ(x - x2)2 + ( y - y 2)2 = v r12

(4.3)

V( * - * , ) 2 + ( y - y l)2 - V ( * ~ * 3>2 + ( y ~ y j ) 2 = VTx

These are two equations with two unknowns, x and y. However, because of the root 

square, solving fourth-order equations in x and y is not promising and therefore an 

alternative solution is sought.

73



M,

Figure 4.6. Hyperbolic intersection geom etry 

4.3.1 A n a ly tic  S o lu tio n

The analytic solution for the hyperbolic intersection problem can be simplified using 

polar coordinates as proposed in [65] for detecting acoustic emission in non destructive 

testing. Assuming the source is located at (r,«9) from the reference sensor, gi, in the 

origin (0,0) and applying the cosine rule for triangles Mi.Mzs and yield after

algebraic simplification,
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r -

r  =

2 ( jc2 cos( 0 )  + y 2 sin(0 ) + v r12)

4 _____________
2 ( x 3 cos( 0 )  + y 3 sin(0 ) + v r13)

(4.4)

where Ax = jc2 + y \  -  v t x2 and A2 = x] + y 3 -  v r13

Solving the above two equations simultaneously takes the form of,

A2v t 12 -  Axv t 13

■y(Axx3 A2x 2) (Axy 3 A2y 2)
(4.5)

where tan(^) =
Axx3 -  A2x 2

Now «9 can be obtained from equation (4.5) and substituted in equation (4.4) for r. 

Other compact solutions have been developed for special cases of array geometries. In 

passive sonar acoustics [66], a compact solution is developed using a linear array of 

three sensors positioned as (xj=0,yi=0), (X2=-Li,y2=0) and (xj= L2,y3 =0 ). The source 

location (x,y) is found using the time differences of arrival between each pair of sensors 

( r l2=r/yv, r 13=r/i/v and x23=r2s/v) in a closed form by simultaneously solving two 

cosine law equations of the two adjacent triangles formed by four points defined by the 

three sensors and the source as,
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(4.6)
2 ( r ! 2 ^ 2  +  *13^1 )

and y  is obtained from 4 r 2 - x 2 where,

r =

Similarly, another compact solution has been formulated for the special case o f having 

three sensors in a right angle geometry [67] for the development of a golf simulator. 

Although these analytic solutions are attained in a closed form, they are very sensitive 

to errors in time delay values and they do not use redundant information from 

additional sensors to improve accuracy. For these reasons, alternative algorithms need 

to be considered.

43 . 2  Iterative solution

A numeric solution to the hyperbolic intersection equations that can handle the error in 

TDOA is obtained by defining the error in equation (4.3) as,

*12 = J ( x ~ x x)2 + ( y - y l)2 - ^ ( x - x 2)2 + ( y - y 2) 2 - v r 12
(4.7)

*13 = J ( x ~ x l)2 + ( y - y l ) 2 - J ( x - x 3)2 + ( y - y 3)2 - v r u

76



Then, x and y that satisfies both hyperbolas with least mean error are found by 

minimising the term,

e(x ,y) = et2(x ,y ) + ef3(x,y)  (4.8)

This numeric algorithm has been proposed for the tangible acoustic interface 

application in [16].

4.4 Time difference estimation

In the two stages localisation approach, time difference of arrival is the key element 

used in the positioning algorithm. One basic method with limited capability for 

estimating the time delay is based on the time when the signal amplitude passes a 

threshold value within a certain region of the signal. Other sophisticated methods are 

based on the cross correlation operation. In [15], the first maximum in the signal is used 

as an index to measure the time difference between two sensors. The x  and y  

coordinates are then found from a polynomial function of time delays with coefficients 

that have been previously determined from calibration impacts at known locations. An 

improved routine then followed by [16] based on raising edge detection. This routine 

spots where the signal first surpassed a quarter of the peak of the signal, then it 

backtracked specific steps before proceeding forward to find the first spot that rose 

above some lower predefined threshold that should be above noise level. Another 

heuristic method in [16] is the peak of the cross correlation performed on a selected 

part of the signals. Because the used direct cross correlation is not reliable enough, the

77



final time delay is taken from the average value of these two methods, then substituted 

in equation (4.7) for the location coordinates using an iterative solution.

The approaches in [15, 16] rely on the signal magnitude regardless of the whole signal 

shape and phase. It is, therefore, sensitive to factors that affect the signal magnitude 

such as the object’s damping property, homogeneity, noise and is severely affected by 

dispersion. Also, this method is only applicable to individual impacts but is not suitable 

for continuously tracking a moving source. The theoretical development in most of the 

algorithms for estimating the time difference in the applications of sonar, radar, speech 

and acoustic signal processing is based on cross correlation as described below.

4.4.1 Cross Correlation based TDOA

If the source produces signal s(t), then the received signals g,(t) and g /t)  acquired by 

spatially separated sensors M  and Mj can be modelled by,

g i(0  = hi( t ) *s ( t )  + nl (t) 

g j ( 0  = hj ( t ) * s ( t - T )  + nj (t)

where r  represents the time difference o f arrival to be determined, * signifies the 

convolution operation, hj(t) is the channel impulse response between the source and the 

i111 sensor and rtj(t) is an additive white Gaussian noise assumed uncorrelated with s(t) 

and n /t). In the ideal propagation, h(t) is the Dirac delta function, therefore
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g, (0 = s(0 + ", (0 and gj  (0 = s(i ~  r) + ", (0 • For such an assumption, r  is the time 

lag corresponding to the global maximum of the cross correlation function given by,

The noise term n(t) is eliminated by the cross correlation process since it is assumed 

uncorrelatecL If the given assumptions are not valid, the peak detection of (4.10) will 

encounter error. However, this can be compensated for by introducing a weighting 

function in the frequency domain in a process called generalised cross correlation, a 

closer approximation to the real environment.

4.4.1.1 Generalised Cross Correlation

The most popular cross correlation method for time delay estimation is the Generalised 

Cross Correlation (GCC) [68]. The advantage o f the GCC is that it encompasses a 

weighting function in the frequency domain to improve the TDOA estimation accuracy 

in a real reverberant environment to some extent.

From the well known Wiener-Khinchin theorem, the cross spectral density of a wide- 

sense-stationary random process is related to the cross correlation function by the 

Fourier transform relationship. The GCC technique introduces a weighting function 

VF ( / )  as a filtering process within the cross correlation operation as given below,

(4.10)
—oo
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00

«„(r)= \V (f)G ,G ]e> ^'d f (4.11)
—00

where G, is the Fourier transform of gift) in equation (4.9). The estimated TDOA can 

then be found from

The solution of (4.12) is simply obtained by numerical search. Mathematically, 

detecting the maximum of the cross correlation is equivalent to detecting the zero 

crossing of its derivative when the second derivative is negative. This solution has 

several advantages over the numerical search, particularly for hardware 

implementation, since shift register can be replaced with logic counter and XOR gates

4.4.1.2 Criteria of the GCC Filtering Process

The choice of the filter *F(/) is important in practice. If VF ( /)= 1 , no weighting is 

introduced to compensate for the effect of propagation in a real environment and thus 

the classical cross correlation is obtained which is equivalent to equation (4.10). 

Because of noise and reverberation in a real environment, some criteria for the 

weighting functions have been developed particularly for in-air acoustics. Among the 

common criteria are the Phase Transform (PHAT), Smooth Coherence Transform 

(SCOT) and Maximum Likelihood Filter (MLF). The classical PHAT filter is given by

r = argr max Rtj (r) (4.12)

[69].
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4- « ______ !______
FHAT |a - ,( / ) | |x 2( / ) |

(4.13)

This PHAT processor can perform well in a moderately reverberant room. It has been 

used extensively in the literature for the localisation of a speaker in a room [70] and in 

robotics applications [71]. If the noise spectrum A is known, then MLF expressed by

can reduce the effect o f noise but does not perform well with reverberation. The SCOT 

filter is given by

These GCC filtering processes, in particular PHAT, are the most popular approach for 

in-air applications for the treatment of the dominant problems of reverberation and 

noise. This is also required for TAI application although these problems can be 

physically reduced. The reflection effects, even if less in damping material, can be 

decreased by placing the sensors away from the edges or by fitting an absorbing

(4.14)

=
T SCOT (4.15)

which effectively leads to the coherence function when substituted in equation (4.11).
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material on the edges. The ambient noise can be significantly reduced by affixing 

sensors firmly to the object with directional isolation plus a good choice of electronics 

to transfer the signal at low impedance. Other problems arise with wave propagation in 

solids which are minor in the air. The velocity of sound waves in the air is well known 

and precisely modelled as a function of temperature with no substantial dispersion 

phenomenon. Also, air can be assumed uniform where the inverse square law applies 

and therefore energy based localisation is an option [72] and a cross correlation based 

approach with some filtering can perform well. While wave propagation in solids is far 

more complicated, it has different modes and may experience dispersion and amplitude 

distortion. The GCC filtering technique is, therefore, one option for the development of 

TAI application but further improvement is required by alternative or supportive 

techniques.

4.4.2 Beamforming

Beamforming, or spatial filtering, is another approach to source direction estimation 

based on bearing estimation, where the reception pattern of an array of sensors is 

steered virtually to the direction where the signal energy is maximised. This is a 

primaiy approach in radar and sonar applications.

In the uniform array shown in figure 4.3, the signal gx(t) received by the ith sensor is a 

time delayed version of the signal from sensor /-I by t  given in equation (4.1). The 

beamformer delays and sums the received signals and the energy of the output signal 

during the time interval [-T T] can be found from
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(4.16)

Accordingly, the time delay r  or the corresponding direction of arrival from equation 

(4.1) is the value that maximises E b f ( t ) .  Various improvement techniques can be 

applied by performing the beamforming process in the frequency domain, such as 

signal weighting and filtering, which has been an area of research [73]. This approach 

has the potential to detect multiple targets by searching for multiple peaks in equation 

(4.16). However, side loops and local maxima are issues that have received high 

attention in research. Beamforming is a known technique in radar but has also received 

attention in modem applications such as source localisation to enhance speech 

recognition as in [74].

4.5 Signal Analysis

The Fourier transform is a very powerful tool for analysing the frequency content G(f) 

of the entire time signal g(t). If it is desired to provide information about the time 

intervals when certain frequencies occur, such as searching for voiced intervals in 

speech, then the frequency content in a finite time window of length b can be found 

from a logical extension of the Fourier transform known as the Short Time Fourier 

Transform (STFT) given by

oo

STFTs ( b , f )  = jg (t)h (t -  b)e~nii>dt (4.17)
—00
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For a time limited signal, the time window width A, is related to the frequency window 

width A f  by the uncertainty principle [75] given by the condition o f

A, A/  > 0.5 (4.18)

Relation (4.18) shows that the size of a time-frequency frame cannot be made 

arbitrarily small and that a perfect time-frequency resolution cannot be achieved, i.e., 

the higher the frequency resolution, the lower the time resolution and vice versa. For 

example, if the time frame is chosen as 0.1 s, then A f  > 5 Hz, which is high resolution

and more than required. However, a duration of 0.1 s at a sampling rate of 100 k 

sample/s results in processing large amounts of data, which may not be useful, for 

example in the case o f an impact, the signal duration lasts for about 20 ms only. For the 

case of tracking a continuous moving source, the details o f the location information can 

be lost within 0.1 second. A compromised time frame would be 20 ms, giving Af  > 25

Hz frequency resolution, which is less than the 50 Hz noise considered appropriate. 

Various forms can be used for the windowing function h to reduce spectral leakage, 

such as the Hanning window shown in figure 4.7(a). Upon choosing the window 

function, the time-frequency resolution is fixed over the entire analysis plan. If the 

signal is highly dynamic, i.e. more to non-stationary, then a Wavelet transform can 

provide more details than STFT. The continuous Wavelet transform (WT) of a signal 

g(t) at scale a is given by [76]
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- )= ¥ •(— )dt (4.19)
Vtf a

where a is the scale parameter, b is the position parameter and T (r) is the mother 

wavelet. An example o f the mother wavelet is the one shown in figure 4.7(b) from the 

Symlet family of wavelets. The trouble with wavelet analysis is that it requires 

attention on how to choose the decomposition level and how to choose the proper 

mother wavelet from various families of wavelets to match the signal characteristics 

and to consider the computation cost.

To demonstrate these time-frequency analysis tools, a typical signal obtained from a 

nail scratch on an MDF board is shown in figure 4.8 with its power spectrum. The 

resulting STFT analysis using the window function in figure 4.7(a) and the wavelet 

analysis using the mother wavelet in figure 4.7(b) are shown in figure 4.9. Both 

techniques indicate no significant fluctuation o f frequency with time.

W T(b,a)=  J g (0
—00
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Figure 4.7. (a) Hann window function (b) mother wavelet from the Symlet family
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Wavelet transform has been used to de-noise signals before applying GCC as another 

option to the conventional FIR and IIR filters [77]. As an alternative approach to the 

GCC method, wavelet transform has also been proposed to estimate the time delay 

between sensors from the wavelet peak in thin plates [78] and in composite laminates 

[50] at high frequencies (ultrasound). The simulation results in [79] show that time 

delay estimation performance obtained from the inner product o f the wavelet transform 

coefficients are comparable to those obtained from the GCC method but better than 

cross correlation alone. The use of wavelet transform to track a speaker is justified in 

Griebel PhD work [80] by the non-stationary nature of voice signals.

In the TAI application, the nature of the observed signals is stationary to some extent 

and the use o f the STFT tool is sufficient and effective. Furthermore, Fourier 

techniques are known for their analytical operations in the frequency domain, providing 

powerful and convenient tools such as cross spectral estimation, which is fundamental 

in time delay estimation. Accordingly, spectral estimation tools based on the Fourier 

transform are considered the preferred option in this work rather than those based on 

the wavelet transform.

4.6 Experimentation

Characterising the features of the source signal, particularly wave velocity and 

spectrum, as well as choosing the signal analysis tool as seen in the previous section, is 

part o f the investigation to provide essential information for the algorithms’ 

development in the following chapters. Therefore, it is chosen to include the
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experim entation here in a com pact form rather than having it in a separate chapter. The 

experim ental set up used in this work consists o f  tangible object, sensors, signal 

conditioning circuit, data acquisition card, a PC with M atlab softw are and a display unit 

w ith the follow ing description,

>  In teractive O bject

The chosen interactive object is a 6m m  thickness M edium  D ensity Fibre (M D F) board 

o f  size 1.5 x 1.2 m 2 and a sm aller board o f  size 0.8 x 0.9 m 2 used for exhibitions as 

shown in figure 4.10. This board is m ade ffom  com posite m aterial. It is available on the 

shelf and has w ide dom estic uses such as for w all partitions, furniture and decoration.

F igure 4.10. MDF interactive board (1500m m  x 1200mm).
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> Sensors

The choice of an appropriate sensor is vital for development success since it is the core 

element responsible for obtaining the important information within the acquired signal. 

Therefore the required specification for a good sensor is to be o f high sensitivity to 

vibration, of wide frequency response, of low noise and preferably of small compact 

size. After intensive experimental tests of various types of sensors including 

microphones, VDF piezoelectric film, Ceramic piezoelectric sensor, sounder and 

accelerometer as pictured in figure 4.11, the accelerometer model BU-1771 from 

‘Knowles Acoustics’ was found to be the best for its specifications as well as because 

of its reasonable price.

This sensor has a built in JFET transistor, which is a great feature used to convert the 

very high impedance of the piezoelectric element into low impedance. This has the 

practical benefit of allowing the transformation of signals through wires without having 

the amplifier placed close to the sensor. The two-wire configuration is used to feed the 

sensor with power and transfer the signal back to the data acquisition board. The 

frequency response of the sensor is shown in figure 4.12 where the resonance occurs at 

around 10 KHz.
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F igure 4.11. D ifferent types o f  tested  sensors.
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> Signal Conditioning Circuit

The signal conditioning board show n in figure 4.13 consists o f  signal pream plifier 

m odel K em o M 040, used to boost the signal received  from  sensors plus other 

com ponents for basic filtering and for provid ing  phantom  pow er to sensors. The 

pream plifier gain is 25 at supply voltage o f  9V.

To sensors

Kwno*

To Pow er supply To data acquisition card

Figure 4.13. Signal conditioning board.
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> Data Acquisition Card

The theoretical localisation  accuracy is lim ited by the sam pling frequency  since the 

sam pling tim e m ust be grater than the shortest tim e difference. T herefore, it is better to 

choose a data acquisition card w ith a sam pling frequency as high as possible. The data 

acquisition board used is a 32-bit PCI-B us architecture m odel N uD A Q -2010, w hich is 

pictured in figure 4 .14 and has the follow ing m ain specifications:

4-channel sim ultaneous analogue inputs 

4-bit A D C  w ith sam pling rate up to 2M H z 

M ax sam pling rate: 2M S/s 

Supports softw are and hardw are trigger

Single ended connection is used for the m easurem ents input. The board  is set for 

softw are trigger and the h ighest sam pling rate o f  100 K bps is used.

F ig u re  4 .14 . D A Q -2 0 1 0  d a ta  a cq u is itio n  b o ard .



> Signal Processing

All the developed  algorithm s are w ritten  in M atlab  code version  6.1 and the data 

acquisition  card  is operated by M atlab driver. M ouse m ovem en ts and clicks are 

contro lled  from  M atlab  via Java C lasses w hich a llow s in teraction  w ith  any W indow s 

applica tion  such as M icrosoft Paint.

The com plete TA I system  including the above list o f  eq u ip m en ts is depicted  in figure 

4.15. H um an in teraction w ith the tangible object can be p erfo rm ed  passively  w ith a 

finger nail o r o ther so lid  object such as a p lastic brush , w o o d en  stick  or m etal bar. The 

result o f  processing  the interaction can be d isp layed  d irec tly  on to  a m onito r o r m ore 

intu itively  by pro jecting  the screen onto the in teractive object.

Interactive Solid Object

Vibration

Passive 
human interaction

Display

Signal Conditioning Data Acquisition Signal Processing

F ig u re  4 .15 . T A I m o d e l d ia g ra m
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T he application used  in this system  is M icrosoft Paint as a m eans o f  creating  graphics 

from  a finger touch on a dead object.

T est signals o f  nail click, fingertip rubbing and m etal spoon im pact on the surface o f  

the M D FF tangible object are show n in figure 4.16 together w ith their correspond ing

(nail click)
0 4

.>02

- 0.2

-0 4

-0 6
0 tjme (s)
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power spectrum. It is observable from the power spectrum of these signals that they 

occupy most of the audible frequency range and there is a nonlinear part caused by the 

sensor resonance. Also, the presence of considerable power is observable in the 

continuous signal at the higher frequencies beyond the resonance region which can also 

be utilised for tracking.

> Wave Velocity measurement

The group velocity is measured using the experimental setup shown in figure 4.15, by 

applying consistent impacts at known locations. The time differences between sensors 

were measured using the developed time delay algorithms described in chapter 5. For 

each pair of sensors, the velocity is found from dividing the length difference between 

the source location and the sensors by the corresponding time delay between sensors. 

These velocities from sensor pairs and from multiple impacts are then averaged. The 

obtained velocity is checked back and tuned in the developed localisation algorithms. 

The velocity which results in less error is found to be 700 m/s, which is roughly twice 

the velocity of sound in the air, which is about 345 m/s.

> Preliminary localisation test

A preliminary test model is built using the simple threshold method. A metallic 

whiteboard, as shown in figure 4.17, is used to maintain the signal’s strength since this 

method is crucial to attenuation. Signals are first filtered using a conventional HR low 

pass digital filter. The cut-off frequency of the chosen Chebyshev type II filter is 3KHz, 

with the frequency response shown in figure 4.18. Then the time difference is 

determined from the threshold level exceeding a threshold value of 0.3 v after
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normalising each signal to its first lobe peak detected above noise level. Good results 

were achieved on the whiteboard but it failed when applied to an MDF board. The 

reason for this is that the attenuation in metal is minor while it is considerable in 

damping material.

The first version of the conditioning circuit, as shown in figure 4.17 has the sensor on 

board and placed directly on the whiteboard surface. The improved circuit used later on 

the MDF board takes advantage of the FET transistor built into the sensor to convert 

the impedance so that the signal is less susceptible to noise and the conditioning circuit 

can be placed away from the sensor, making sensor attachment easier and more 

practical.

4.7 Concluding remarks

Some conclusions can be reached from the above investigation that help to decide the 

proper approach for the development of a TAI model aiming to achieve continuous 

tracking of a moving source as well as localising individual impacts. Basically, there 

are two problems to look at in passive localisation considering near field scenario; one 

is the estimation of time delays from the received signals and the other is the estimation 

of the location from the given time difference values.

Due to the adverse effect of noise in a real environment caused by propagation, sensors 

and ambient factors, time delay estimation becomes problematic. The localisation in a 

TAI model involves the estimation of time delays from acoustic signals propagating in

100



a solid object and hence is subject to amplitude distortion, particularly in composite or 

non-uniform material, as well as dispersion. The method of raising edge passing a 

threshold level relys completely on the amplitude and therefore it can easily fail with 

considerable or uneven attenuation and dispersion. In any event, it is not suitable for 

tracking. Direct cross correlation is not sufficient on its own because of the amplitude 

dependence. PHAT filtering processes in the GCC approach are a promising choice to 

handle this problem because, as can be seen from equation 4.11, they treat the 

reverberation and noise by normalising the amplitude for all frequencies and therefore 

the operation becomes less sensitive to amplitude distortion and more suitable for 

wideband signals. The development of time delay estimation algorithms that imply 

optimisation and are phase dependant rather than magnitude dependant, with attention 

to dispersion, is crucial for TAI application.

In the TAI model, the intended resolution of the location estimation is comparable to 

the finger tip size, where a point source is assumed. This is in contrast to a speaker 

localisation application in the air, where the resolution is comparable to the head size. 

Also, tracking the trajectory of a continuously moving source requires good 

consistency of time delay estimation and the computation cost becomes a significant 

factor for real time implementation. To achieve such estimation accuracy from time 

delays which are corrupted with error, sensor fusion is required. The option of the 

beamforming approach is an example of sensor fusion and optimisation. Although it is 

accurate, it requires intensive computation and is based on bearing estimation assuming 

a far-field scenario, which is not an appropriate approximation for the TAI model.
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The Maximum Likelihood approach is an error-based method that minimises the error 

between the measured time differences and the theoretical ones, searched over a 

hyperbolic grid area. This method is a common technique used for talker localisation 

and tracking in a room [81, 82]. Another probabilistic approach known as accumulated 

correlation [28] or spatial likelihood [29] has shown promising results in room 

acoustics by optimising the location based on cross correlation information from multi- 

sensor pairs and, importantly, uses spatial mapping rather than a far-field assumption. 

Therefore, these approaches are strongly nominated for the TAI approach with a good 

potential for success, although they encounter numerical optimisation. Other solutions 

[42] involving linearisation of the hyperbolic equations with sensor fusion are also of 

interest, particularly for tracking. These solutions will be considered in the following 

chapters.
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Chapter 5

Enhanced Acoustic Source Localisation

In theory, two pieces of time difference of arrival information from three sensors are 

adequate to resolve the source location ambiguity problem. However, to achieve the 

required resolution for TAI application in practice, sensor fusion with nonlinear 

optimisation are proposed in this chapter using two different methods where the 

information from each pair of sensors including redundant sensors are utilised to 

optimise the source location. The first method finds the location where the probability 

of possible time differences is maximised based on the spatial likelihood while the 

second method determines the location where the error in the estimated time 

differences is minimised based on least squared error.

For further localisation enhancement, the dispersion problem has been considered. This 

is accomplished by introducing the detection of the cross correlation envelop via a 

Hilbert transform, which can be regarded as a temporal smoothing filter. Moreover, a 

criterion is developed for each method to detect outlier estimations.

Real signals from four sensors are used throughout this chapter to illustrate the 

functionality of sensor fusion and the proposed algorithms, but without losing the 

generality of employing additional sensors. That means the developed algorithms can 

handle an optional number of sensors. The experimental TAI model used in this work
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consists o f an MDF board of 6mm thickness with four sensors located at the comers o f 

a 600 mm x 400 mm rectangle as illustrated in figure 5.1. The signals, gi(t), acquired by 

the i4h sensors in response to source signal s(t) excited by nail click and scratch at 

location (200,300) mm on the board surface are shown in figure 5.2. These signals will 

be used as an example in the following theoretical development.

*
600mm □

actual location

estimated location

excluded location

theoretical hyperbolic 
time delays grid

6
£Q

Figure 5.1 TAI model with four sensors

5.1 Spatial Likelihood-based Localisation

With real signals, cross correlation is not a perfect technique since it usually contains 

multiple peaks as shown in figure 5.3 and therefore there is no guarantee that the peak 

will occur at the correct time difference. This problem o f noisy cross correlation can be 

handled by retaining the entire cross correlation vector o f  each sensor pair rather than
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Figure 5.2. Real signals, gi, from the f 1 sensor generated by (a) nail click (impact) and

(b) nail scratch on the MDF board.
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selecting the peak of each one. Signals from each pair of sensors are first cross 

correlated, and the entire cross correlation vector is then mapped spatially to a common 

coordinate system to measure the likelihood that the source is at any of the hyperbolas 

corresponding to the given pair of sensors. Vectors from multiple sensor pairs are then 

summed to yield the total likelihood map for that location. After all the information has 

been taken into account, the location with the highest likelihood is finally selected as 

the estimate for the source location. Such a localisation process can be looked at as 3-D 

beamforming in contrast with the traditional beamforming used in phased array.

pair 2-4

3

2

1

0

1

•2

•3
-0 8  -0.6 -0.4 -0 21 0 2  0.4 0 6  0.80

time lag (ms)

Figure 5.3. Cross correlation of impact signals showing multiple peaks
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This localisation algorithm has been developed for room acoustics by two authors 

individually using different mathematical formulations. In [83] the processing is 

performed in the time domain and is known as accumulated correlation, and in [84] the 

processing is performed in the frequency domain and is known as the spatial likelihood 

function. In this work the algorithm is enhanced for TAI development and referred to as 

Enhanced Likelihood Mapping (ELM).

5.1.1 Theory

By rewriting equation (4.9) as g t (/) = hk (/) * s ( t - r i) + ni ( t ) , assuming /?, independent

zero mean white Gaussian noise with variance o f  , the theoretical proof of the

algorithm in [83] is based on treating gift) as an estimator for r t and s(t -  r , ) where

tv = | |^ - w j /v  given w, the i h sensor location. Using Bayes’ Rule stating: posterior =

likelihood * prior /  marginal likelihood, the posterior probability that the source is 

located at q is

P  = P(9,s | * ..................................................................................................................... (5.1)
P (gl,~ ,gN)

Ignoring the denominator, which is a normalisation constant and not a function of q, 

and assuming the prior P(q,s) uniform, then maximising (5.1) reduced to maximising 

the likelihood P(gi,..,gN\q,s). With g, considered as an independent random variable, it 

can be shown that,
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„  /diifiintfSSt,
p  = 19*s>= t \ e "  2a'

i= l  1=1

(5.2)

1 NSubstituting s with its maximum likelihood estimate given by s = — (/ + r,)  in 

(5.2), and assuming equal cr for all sensors, then taking the logarithm yields,

logp'= - f  /[*,(» + r,) - =  j V AC ~ ^ V E (5.3)

where

vAC =Yd Z JW' +  T< 1'+  TJ ~>d t  ( 5 -4 )
i=l j= i+ L -t

is the accumulated correlation and

^  = Z j s - ( '  + 0 < *  (5-5)
i=l - T

is a constant representing the combined energy of the signals. Accordingly, the 

estimated location can be found from the maximum of Vac given in (5.4).
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In [84], the theory derivation of the algorithm is based on treating the cross correlation 

as an observational estimate of P(gx,..,gN Iq,s) which is related to the posterior 

estimate as given in (5.1) under the same assumption for the prior probability P(q,s). 

Thus, by substituting the time difference rl}{q) between sensors / and j  given as a

function of source location q in the GCC formula (4.11), the spatial likelihood function 

(SLF) in the frequency domain for a pair of sensors is obtained as,

The advantage of (5.6) is that it allows for the filtering processes 4/( / )  as discussed in 

section 4.4.1.1 to be performed inclusively in the frequency domain.

Given N  sensors, the usable number of time differences is given by M  none-repeated 

combinations of sensor pairs given by

oo

(5.6)

5.1.2 ELM Algorithm

N\ (5.7)
2!(« — 2)!

With three sensors, three time differences are available, providing one redundant time 

difference. By adding a fourth sensor, the time delay information from equation (5.7)



is doubled to six. The ELM algorithm allows for sensor fusion by utilising M  time 

difference information to improve the accuracy and robustness o f the estimated location.

From the above theory and by introducing a Hilbert envelope detection operator© , to 

be expressed later, the proposed ELM algorithm for TAI can be formulated in compact 

form for both of time domain and frequency domain filtering processes as follows,

N-\,N  »
E LM ,(x,y) = £  ©[ J g r M g r O  + r , ^ ) ) * * ]  (5-8)

i-1 ,j—2 —00

i*jhj*j,i

N-l,N  »
E L M ,(x ,y ) = £  (5.9)

i=l,y=2.
i*j*J*jj

given,

ru (x ,y )  = (4 (x  -  x, ) l + O' -  y, ) 2 -  p  -  )2 + (y  -  y , )2)/  v (5.10)

where g BPF = hBPF(/)<S)g(/) is the band pass filtered signal resulting from the 

convolution (denoted by ® ) of the signal g  and the impulse response of the band pass 

filter hBBF{t). ¥ ( / )  is the weighting filter. The estimated locations x ,y  can then be 

found by locating the maximum of equation (5.9) or (5.10) as,
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( x,y ) =  SLTgx y max(ELM(x,y)) (5.11)

Attention should be paid to the search time required to maximise the 3-D equation of 

(5.11). This ELM algorithm is illustrated in the diagram shown in figure 5.4.

Let for instance evaluate the core algorithm using raw signals by letting 0([.]) = [.] and 

hBPF (0  = S{t) . Considering the example of having four sensors located on the surface 

of the tangible object as in figure 5.1, the theoretical time difference map for all sensor 

pairs can be computed numerically with a 1 mm step from the hyperbolic equation 

(5.10) and the resulting time difference maps are shown in figure 5.5. Given the signals 

in figure 5.2, the spatial likelihood map for each pair of sensors obtained from equation 

(5.8) before performing the summation is shown in figure 5.6. The darker hyperbola 

curve observed in each image represents the locus of the possible source location sited 

by the corresponding sensor’s pair. By summing the spatial likelihood from all pairs, 

the source location can be obtained from the maximum of the absolute value of the 

final likelihood map. The result of equation (5.8) is shown in figure 5.7 for nail click. 

The estimated location from equation (5.11) is (220,380) mm.
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Figure 5.4. Algorithm diagram for (a) ELMt and (b) ELM t
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Figure 5.5. Theoretical hyperbolic map o f  time differences
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Figure 5.7. Spatial Likelihood o f the source at (200,300)mm.

5.1.2.1 F ilte r in g  P rocess in E L M

In the previous section the ELM algorithm is verified for TAI application using raw 

signals. In this section, two types o f  filtering are introduced to improve the localisation 

accuracy and robustness. Initially, a signal generated from interaction with the tangible 

object is distinguished from the background noise using a simple threshold technique. 

This noise can be seen when there is no interaction activity with the board. Practically, 

the noise is lower than 5 mV, which is very low compared to 50 mV produced by weak 

signals generated from rubbing the surface depending on the signal amplifier used. 

Hence, only signals above the threshold o f  50 mV are processed and localised.
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The first expected attempt to improve the localisation is to condition the input signals 

prior the localisation process. The conditioning stage comprises signal normalisation 

and filtering in the time domain. The normalisation is performed to reduce the 

attenuation effect by dividing each signal by its standard deviation, g,'(0 = *?,(')/

This will help to make the signal waveforms from multiple sensors as similar as 

possible before cross correlating them. The purpose of the pre-filtering is to remove the 

noise from the signal as a result of low frequency components from electrical 

interference and the high frequency components from the nonlinear response around 10 

KHz for the used sensor model BU-1771. The use of the popular HR filter was found to 

be adequately successful, but other conventional filters or a Wavelet filter is also an 

option. The designed digital filter is a 10th order band-pass Elliptic filter with a lower 

cut off frequency of 500 HZ and an upper cut off frequency of 8 KHz. The frequency 

response of the designed filter is shown in figure 5.8. Expanding the upper or lower 

bandwidth of the filter was found to degrade the results.

While the design of the HR filter involves defining the stop band cut off frequencies 

where the noise is dominant and setting the attenuation level, in comparison, the 

Wavelet filter design requires decomposing the signal into levels, identifying which 

components contain the noise, and then reconstructing the signal without those 

components. This method may result in losing sharp features of the signal and therefore 

an alternative thresholding technique can be used which involves discarding only the 

portion of the details that exceeds a certain limit.
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Figure 5.8 Elliptic band-pass filter design

The generation of the spatial likelihood maps are repeated for the same test impact 

signals after applying the proposed filter. The results are shown in figure 5.9 for the 

individual pair of sensors and the summation of these maps is the final map given by 

the ELMt equation as shown in figure 5.10. It is clear that pre-filtering has significantly

improved the reliability of the estimation, as can be seen from the smoothness achieved 

in the likelihood map in figure 5.10, where the local maximum becomes distinctive 

compared to the multiple peaks in figure 5.7 using raw signals.

The second filtering type employed here is the PHAT process discussed in section 

4.4.1.1. This is achieved by substituting the filtering process ¥ PHAT( f ) given in 

equation (4.13) into equation (5.9). The resulting map of ELM f  is calculated for the

same signals used in the above example as shown in figure 5.11. It is clear that a 

sharper peak is obtained compared to the pre-filtering method in the time domain.
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A significant advantage of using ELM f  over ELMt is that the PHAT process does not 

require any design parameters, while the pre-filtering in ELM t , whether it is IIR, FIR or

Wavelet filter, requires knowledge of the dominant signal components and noise which 

is normally obtained by analysing the signals. That means that if these parameters have 

been considerably changed as a result in changing the object material for example, the 

filter of ELM, (IIR, FIR or wavelet) has to be redesigned but this is not necessary 

when using PHAT.

5.1.2.2 Temporal Smoothing

Further enhancement in the ELM algorithm is achievable by treating the dispersion 

effect in solids. Theoretically, in non dispersive multiple output systems, the output of 

the cross correlation reaches the maximum at a time lag equal to the time difference 

between the arrival of the input signals. On the other hand, in dispersive systems, where 

the wave propagation velocity is a function of frequency, the output peak of the cross 

correlation envelope occurs as the time lag equals the group delay of the wave. This 

fact can be interpreted in practice using a Hilbert transform [85].

The analytical signal of a given function z(t) is defined by

Z(t) = z(t) + jz ( t)  (5.12)

where the imaginary part in (5.12) is the Hilbert transform of z{t) given by,
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the envelope function of z(t) is found from the magnitude of Z(t) as

0 (t) = [z2 (t) + z 2 (t)]'n  (5.14)

Equation (5.14) can be used through the operator 0  in equations (5.8) or (5.9) to 

reduce the error in cross correlation caused by dispersion.

To visualise the difference between algorithms and the effect of dispersion treatment, 

the ELM algorithm is applied to the impact signals shown in figure 5.2(a) and the 

produced spatial likelihood maps are shown in figure 5.12. With raw signals, the ELM 

algorithm produces multiple peaks in the likelihood map with several sharp local 

maxima comparable to the global maximum as shown in figure 5.12(a). By 

conditioning the input signals, the local maxima are reduced, as shown in figure 5.12(b). 

When a Hilbert envelope is applied, it is observable that the peak is enhanced by 

shifted local maxima towards the global peak and the overall ELM surface is smoothed 

as shown in figure 5.12(c). It is clear from figure 5.12(d) that the PHAT process 

produces sharper peaks with lower side-loops. For the purpose of evaluating the 

functionality of the ELM algorithm for tracking in the next chapter, the above results 

are repeated in figure 5.13 but for scratch signals as shown in figure 5.2(b). Although 

scratch signals produce more local maxima than the impact signals, the proposed ELM
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Figure 5.12. ELM o f  impact signals using (a) raw signals, (b) conditioned signals, (c) 

as in (b) with Hilbert envelope, (d) PHAT and (e) with Hilbert envelope only.
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Figure 5.13. ELM o f  scratch signals using (a) raw signals, (b) conditioned signals, (c) 

as in (b) with Hilbert envelope, (d) PHAT and (e) Hilbert envelope only.
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algorithm has significantly improved the results as seen from the enhanced global 

maximum and reduced local maxima. By inspecting the results of using a Hilbert 

envelope as the only filer, it is noticeable from figures 5.12(e) and 5.13(e) that it has 

effectively worked as temporal smoothing filter, and is considerably better at revealing 

the global peak when used with pre-filtering.

5.1.2.3 ELM Outlier Detection

Finally, a criterion is proposed here for identifying outlier estimations. Ideally the time 

difference between two sensors is the time lag corresponding to the peak of the cross 

correlation between the received signals. Since ELM applies spatial mapping, the 

produced spatial peak at the source location should ideally be equivalent to the 

summation of the temporal peaks. However, this is not true if the received signals are 

inconsistent, meaning they are uncorrelated enough to produce a correct cross 

correlation peak at the correct location, such as reflections, noise and multiple or 

indirect sources. Accordingly, the following criterion can be defined for considering the 

estimated location (jc,y) from equation (5.11) as outlier if,

£ m a  xR 0(r)
«=1,7=2 
• * j

where 0 < eaA/ < 1 is a threshold value that can be adjusted to the required sensitivity.
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Practically, with eELM set to 0.1, the criterion in (5.15) has successfully identified 

estimated locations resulting from a handclap or from dropping an object on the floor 

as an outlier by marking them with a different colour that those obtained from tidy 

impacts on the board.

5.2 Time Difference-based Localisation

The unreliable time delay estimation using the cross correlation method was conquered 

in the ELM algorithm by maximising the likelihood of the source location rather than 

finding the time delays from each cross correlation.

Another option is to estimate the time differences first, corrupted with error of course, 

and then the sensor fusion algorithm is used to minimise the error while positioning the 

source. For this purpose, Maximum Likelihood (ML) estimators are proposed. This 

option is more flexible than ELM because it allows the choice of the required 

positioning algorithm. However, the accuracy of the positioning algorithm here vastly 

depends on the level of error in the time difference values. Therefore, it becomes 

crucial to develop a reliable algorithm to estimate time differences with as little error as 

possible, taking into account the processing speed. An efficient algorithm is developed 

for estimating time differences based on spectral estimation.
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5.2.1 Linear Cross Spectral Phase

The classical time difference estimation is defined by equation (5.10) as the argument 

of the cross correlation peak. In the time domain, this can be improved by pre-filtering 

the signals or applying the most popular PHAT process using GCC, which involves 

filtering in the frequency domain, then returning to the time domain to extract the time 

difference from the peak as given by equations (5.9) and (5.10). An alternative method 

for estimating the time difference is to compute the Linear Cross Spectral Phase 

(LCSP). The proposed LCSP algorithm for TAI in this section estimates the time 

difference entirely in the frequency domain, making the estimation process more 

efficient and robust than the time domain algorithms and therefore particularly 

important for tracking a continuous source.

Let the received signal g(t) be assumed a wide sense stationary process. Although some 

real signals are not so, this assumption usually holds for a signal within a time frame of 

small size, which is a practical necessity. The cross spectral density of signals gi(t) and 

gj(t) can be found from

^  ( / ) = < ? ,( / ) ( ? ; ( / )  (5.i6)

where G(f) is the Fourier transform of g (t). Since g/t)  is time delayed from gi(t) by r  

as given in the signal model of (4.9), then in terms of the Autospectral density Au(f) of 

gj(t), (5.16) can be expressed by,
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P„(f) = Au( f)e -™ '  = \P„(f\z<Kf) (5.17)

The time difference r  appears only in the phase angle (f) of (5.17) as a linear function 

of the frequency f  Since the group velocity is used to compute the length difference, 

the group delay, not the phase delay, must be extracted from the phase function in (5.17) 

as given by [86],

r = _ d4 i f )  (5.18)
d f

The cross spectrum and auto spectrum functions can be effectively estimated based on 

using STFT as given in chapter 4, then equation (5.18) can be computed numerically 

for the quantities given in samples, /, using linear regression of the form 

£ ( / ,  ~ / M / £ ( / .  - / ) /  [87,88],

5.2.2 ML Positioning

Given M  pair of sensors, the Maximum Likelihood algorithm (ML) proposed here for 

TAI can handle the error in the time difference values by minimising the error between 

the given time difference rm of the mth pair and the ideal time difference Tm(q) 

associated with the searched location q. If the estimated time differences are modelled 

by the random variable f m + em , where em is zero-mean additive white GaussianJ  TYl Tfl rfl 7 m

noise with known standard deviation crm, then by assuming that the time differences
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from each pair of sensors are statistically independent, the likelihood function can be 

expressed by the conditional probability density function given by [89],

1 ~{T ,-r,(<?)]2

lg) = n  ; 2 e  (5-19)
m =1 • y 2 . 7 T ( J m

taking the log of both sides of (5.19) yield,

'n(P(i...... t u Iq)) = - |2 > ( 2 ; t < t ’ ) - Z (r" J m2 9^  (5-2°)
^ m = l m = l

The ML estimation of location q is the position that maximises the likelihood function 

(5.20) or equivalently that minimises the second term, since the first term is not a 

function of q, which results in the following localisation criterion

J M (q) = a r g m in ,( |; [r" (5.21)
m= 1 ^  m

It is clear that J ^  is a weighted least error estimator. If  no statistics are considered or 

a m is the same for all sensor pairs, then the denominator is constant and (5.21) is 

reduced to the following formula,

(q) = arg min, ( £  [ f„ -  r m (q)]2) (5.22)
m=1
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Figure 5.14 shows the location of the impact and scratch test signals used in the above 

example computed from (5.22) using the input from (5.10). A significant difference 

between ML and ELM can be observed by comparing figure 5.13 with figure 5.14 

where it is seen that ML does not suffer from side loops but at the cost of sharpness, 

which means that the ML algorithm provides more stability while ELM algorithm 

provides higher accuracy. The similarity between the ML maps o f the two different 

signals is due to the dependence of the ML algorithm on the time differences already 

estimated, not on the signals themselves.

5.2.3 Time Difference Outlier Detection

A large error in any time difference measurement will result in outlier estimation of the 

source location. To reduce this error a validation criterion is proposed here by checking 

the integrity of time differences from all pairs of sensors. This criterion can be used as a 

prior check of time differences before proceeding to estimate the location.

With reference to figure 5.15, let the source be located at distances ry, r2, rj and r4 from 

sensors my, m2, m3 and m4 respectively and the associated time difference of arrival 

between each pair of sensors is given by r jy = (a* -  ry) / v , where i j  = 1:4, / * j . From

the geometry of the time differences, both segments ra =(r3 - r 4 ) ~ (r3 - r,) and

rb = (r2 -  rA) -  (r2 -  r ,) resulting from the intersection of the two circles of radius rx

and r4 with lines r3 and r2 respectively must have the same length of r 14v since both

circles are centered at the same origin.
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>ource

Sensor

Figure 5.15. G eom etry o f  tim e differences relationship

A ccordingly, as a condition for the tim e d ifferences integrity to  be w ithin an  certain 

error o f  s , the follow ing criterion holds for all pairs,

|(r54 + r,3)-(rM + rI2) |< e

H ere e  is a threshold value that can be adjusted  experim entally  for the required 

sensitivity. For an initial assum ption o f f , let the acceptable deviation in each o f  x  and jy  

directions from the source location be c r , then the associate variance o f  the tim e 

difference is 2cr2 / v 2 . Suppose r, are independent random  variables o f  Gaussian
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distribution and having the same variance, then the sum of those variables in (5.23), is 

also a random variable of variance 8cr2 / v2. Therefore, e can be approximated by

2>/2cr / v . In a test of dropping objects on the floor close to the interactive board, 

s  =0.0754 ms, the impact was successfully detected as an outlier compared to sharp 

impacts on the board.

Similar criteria suggested in [90] for the case of assuming a plane wave incidence from 

a far-field source and three sensors are positioned uniformly in a line.
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Chapter 6

Enhanced Continuous Tracking

The localisation approaches developed in chapter 5 satisfy the TAI requirements and 

the positioning of a scratch type of signal as a snapshot of continuous tracking has been 

verified successfully in addition to the impact type of signals. Therefore, both ELM and 

ML techniques are qualified for developing a continuous tracking algorithm but the use 

of a Hilbert envelope with ELM increases the computation cost.

Initially, source tracking can be achieved by iterating the location estimation of 

consequent sets of time frames acquired by the sensors, but the error produced by the 

positioning algorithm appears as noise in the estimated trajectory. The computation 

cost also becomes a significant factor to consider. Because the amplitude of the signals 

produced by continuous contact movement varies rapidly, power threshold is used 

instead of amplitude threshold as previously used with an impact signal. The use of 

power threshold is important for skipping localising noise or the very weak signals that 

usually appear within the continuous tracking. However, this has the consequence of 

omitting some events. There are three issues to resolve with continuous tracking: 

filtering of noise in the trajectory estimation, also called spatial filtering; improving the 

accuracy and robustness of positioning; making it fast enough to cope with a large
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interactive area. The task in this chapter is to develop a continuous tracking algorithm 

that can handle these three issues efficiently with attention to practical viability.

6.1 Trajectory Prediction with Kalman Filter

The Kalman filter is an efficient recursive filter that estimates the state of a dynamic 

system from a series of incomplete and noisy measurements. Thus it is an ideal option 

for smoothing the estimated trajectory from noise and missing events.

An example of the noise produced in the trajectory estimation of a continuous moving 

source using ELM and ML positioning algorithms is shown by the black circles in 

figure 6.1, where some of the estimated locations are scattered around the actual 

movement path of a Sine wave and horizontal line created by a nail scratching. 

Obviously, curve fitting is not an option to smooth the trajectory in real time because 

only historical information is available and outlier detection is not appropriate since it 

has a fixed threshold and this results in missing data. The Kalman filter can 

significantly improve the trajectory estimation by predicting the location based on 

previous behaviour and current measurement. The theoretical derivation of the Kalman 

filter is available in textbooks on estimation theory such as [91]. There are various 

formulas for developing the Kalman filter, such as the g-filter and h-filter presented for 

tracking from a physics point of view as clearly given in [92]. Here, Kalman filter 

equations in a compact and efficient matrix form have been implemented for the 

development of TAI [93].
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Let the system dynamics of a moving source be described by n system variables and let 

Xk be an n x 1 vector containing all the variables. Suppose the dynamics of the system 

can be described as

Zt+i =<PkZk+<>k (6 .1)

where q>k is a n x  n matrix that dictates the transition of the state variable %k from the 

previous step k  to the variable %k+\ hi the current step, and ak is the process noise. For 

a source moving in a two dimensional plane, its state variables can be defined as 

Z -  (Px>Py’vx>vy) ’ wherepx,p y are the position coordinates and v*, vy are the velocity

in x  and y  directions. The state equation (6.1) describes the known dynamic equation 

stating new position = previous position + velocity x elapsed time + noise. The elapsed 

time is updated by setting a time counter between current and previous measured 

locations.

Suppose that m out of n state variables are observables. Here px, py are denoted by the 

vector zk which is related to y k by

where H k is an m x n matrix that extracts observable variables from the state variables. 

bk is the measurement noise. Both ak and 6* in equations (6.1) and (6.2) are assumed 

white Gaussian with covariance Ak and Bk respectively. If the initial estimation of the

zk ~ H kZk + bk (6.2)
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state variables is %k » error ° f  ^ is  estimate can be found from ek = Xk~  Zk an(* 

the covariance of this error is defined by Pk , where means it is a prior estimate.

With Kalman filtering, the measurements of x  can be improved by incorporating zk in 

the following relation

i*  = i ; + K t (zt - H kz ; )  (6.3)

where K k is an n x m matrix called the Kalman gain yet to be determined from

K„ = Pi  H i  (H t P ;H l  + B„)-' (6.4)

Having calculated the Kalman gain, the predicted covariance can be obtained from

Pk - ( l - K t Hk)P[ (6.5)

where /  is the identity matrix, and both corrected state and corrected error covariance to 

be projected in the next step as a prior estimate are found from

Zm  = <PkXk (6-6)

t̂+i = Vk̂ kVk + Ak (6.7)
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Equations (6.2) to (6.5) represent the Kalman filter. The implementation algorithm of 

the Kalman filter in this work is illustrated in a flowchart as shown in figure 6.2. The 

state variables here are the source position coordinates and the measurement inputs are 

the output of the localisation algorithm. The initial velocity state variable is assumed to 

be 0.2 m/s, the natural speed of a hand movement, which is reasonable compared to the 

technical tracking speed of a typical PC mouse. The initial position state variable can 

be assumed as arbitrary but can be made automatic as given in the following section. It 

is worth mentioning here that if the source movement velocity (not the wave 

propagation velocity) can be measured, then it can be updated within equation (6.2). 

Using the difference between estimated consequent locations divided by the related 

observable time is an option but is not a real measure of velocity since it includes the 

computation velocity. Practically, it is noticed that a small variation in the velocity state 

variable has no effect. At this point, to illustrate how multi-modal sensor fusion can be 

attained with a Kalman filter, direct velocity measurement from video camera or 

accelerometer can be used here to provide an actual velocity update by modifying 

equation (6.2).

It may be observed from figure 6.1 that tracking with ELM results in higher deviation 

than ML but has better accuracy in following the actual trajectory. This is expected as 

seen from the analysis in chapter 5. After applying Kalman filtering to the tracking 

example using ML and ELM, the trajectoiy is significantly improved as shown by the 

smooth red circles in figure 6.1.
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1st Observation

Measurements
(Input)

Project into k+1 
equations (6.6 & 6.7)

Updated Covariance 
equation (6.5)

Updated Estimate 
equation (6.3)

Kalman Gain 
equation (6.4)

Updated State Estimates 
(Output)

Figure 6.2. Kalman Filter Recursive Algorithm

6.1.1 Automatic Filter Initialisation

An essential requirement for Kalman filter prediction is to have an initial state value. 

This causes a practical problem in TAI application which appears at the beginning of 

each individual trajectory. The prediction of the first point at the beginning of the 

interaction uses a predefined initial state value, and the last estimated value at the end 

of a trajectory becomes the initial state of the first point in the next trajectory prediction. 

A good example can be seen when starting the interaction from a location different 

from the initial state value such as drawing a cross with two individual lines. The
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consequence is the appearance of unwanted points joining the end of the first line with 

the beginning of the second line, and also at the beginning of the plot as shown in 

figure 6.3, note that no such follow-up points appear without Kalman filtering.

This problem can be solved by automatically setting the initial state value of the 

Kalman filter to the first measured value at the beginning of each individual trajectory, 

but this solution requires a means of distinguishing between discontinued interactions. 

One option is to oblige the user to start each interaction with a distinctive impact and 

the tracking algorithm will monitor the input signal amplitude and uses a threshold 

level to recognise new interaction. However, this method is not reliable and restricts the 

user to a certain interaction procedure. Another method proposed here which is 

transparent to the user is by utilising the transition time naturally required between the 

interactions, which is basically the time taken to move the hand from the last point of a 

current interaction to the first point of the next interaction. This can be accomplished by 

measuring the idle time when there is no activity on the board, using a time stamp at 

the beginning of the data acquisition, and if this time exceeds the transition time, the 

following interaction is flagged as new. Subsequently a Kalman filter is initialised by 

the first estimated value obtained from the localisation algorithm and the same for each 

new interaction and a similar initialisation is also made at the beginning of the first 

point. This process is illustrated in the flowchart shown in figure 6.4. For example, by 

setting the transition time at 800 ms, individual sketches could be plotted conveniently 

using the proposed solution, such as the nail sketching of ‘X ’ shown in figure 6.5. It is 

clear that the follow-up points in figure 6.3 have disappeared in figure 6.5.
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follow up point!

(b)

Figure 6.3. Undesired estim ations appear as a result o f  Kalman filter initialisation at the 

beginning and at discontinuity *+’ generated with (a) ELM and (b) ML algorithms.

follow up poijttt
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The proposed solution to this problem is very important, particularly for applications 

like computer drawing programs. Without treating this problem, the user has always to 

start from a fixed location and is only able to make a single interaction per session, 

otherwise unacceptable results will appear. For such an application another control 

based on the idle time is used to release and press the mouse button at the end and the 

beginning of each interaction. For proper display on a PC monitor, the produced figure 

is resised by the ratio of the interactive board to the monitor size and the movement 

steps are converted from ordinary x-y coordinates to the monitor’s pixels.

6.2 Linear Positioning Algorithm

The localisation algorithms using ELM and ML in chapter 5 as demonstrated in the 

previous section encounter nonlinear mapping, and therefore the solution is attained by 

maximising or minimising a three dimensional function. This means that as the 

interactive area becomes larger, the dimensions of the function get bigger and hence the 

search time for the global peak takes longer. Because the computation time is of great 

importance for tracking a moving source in real time, an alternative Linear Positioning 

(LP) algorithm is proposed in this section for TAI which is independent of the spatial 

size while at the same time it satisfies the requirement of near-field, sensor fusion and 

accuracy.

The proposed algorithm consists of measuring time delays between a number of 

sensors and a reference sensor which can be obtained using the LCSP algorithm given 

in chapter 5. Here, with N  sensors there are N-l usable time delays. A closed form
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location solution is then found from tangent circles of these time delays instead of from 

a hyperbolic intersection. The function of sensor fusion is achieved using the Linear 

Least Square (LLS) technique.

A basic problem with solving the simultaneous hyperbolic equations is that a closed 

form of algebraic solution is difficult to find, so the solution has to be attained by a 

numerical search. Another problem with the hyperbola itself is that the point of 

intersection can move considerably for a relatively small change in eccentricity of one 

of the hyperbolas. This is unlike circles, defined by a constant distance from each 

sensor, as an alternative localisation geometry to the traditional hyperbolic intersection 

as proposed in [94].

Let the source location to be resolved is (xj>), the i h sensor location is (jc,, y t),  the 

distance between the source and the i ,h sensor is rt and the time delay between the i'h 

sensor and the reference sensor is tu = ru / v .  Consider sensor 1 as the reference sensor, 

then with reference to figure 6.6, the circle radius r, is given by,

( * - * , ) 2 + ( y - y ]) 2 = r 2 (6 .8)

and since ru = r i - r l , then,

( x - x 2)2 + ( y - y 2) 2 = ( r l + v r i2) 2 

(x -  * 3 ) 2 +  (y  -  y 3 ) 2 =  (rx +  v r 13 ) 2

( * - * j v ) 2 + 0 ' - . > V ) 2 = ( r x+VTXN) 2
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Source

Sensor

Figure 6.6. TDOA localisation from  tangent circles

Substitute 6 .8  into 6 .9  and rearrange terms to get

(2*1 ~ 2 x 2 ) x  + (2\yx - 2 y 2) y - 2 v T l2rl - v 2r* = K{2 - K \

(2 * i- 2 x , ) x  + (2y i - 2 y , ) y - 2 v T url - v 2r 2 = K ,2 - K ]  10)

(2*i — 2x N)x + (2 y j — 2y N) y  — 2 v r w r, — v r 1Ar = K ] — K N

where K 2 = x 2 + y ? . Note that (6.10) is nonlinear for the unknowns x  and y  since rx

appears in the equations. Finding a non-iterative solution for (6.10) has been a

challenge for researchers.
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Seeking a compact solution for the source localisation problem based on solving 

similar equations to (6.10) using TDOA measurements has been an area of research 

since the 1980’s until recently in various areas, including aerospace [95], robotics [96] 

and other signal processing fields [97], where a specific assumption is made for each 

case. In [94] a linear solution is obtained from circle equations using four sensors only. 

The solution was extended for more than four sensors in [97] with the introduction of 

second order statistics for better results. A weighting function for the error was 

introduced to the solution in [95]. The solution was manipulated in [96] to account for 

the wave velocity estimation. By inspecting these options of solving (6.10) with the 

TAI pragmatic sense in mind, a preference solution is suggested for TAI which has a 

practical feasibility, and other solutions are addressed for different hypotheses 

depending on the availability of sensors and the method o f managing the time delay 

information to achieve sensor fusion as a goal.

In order to utilise all redundant information with least number of sensors, the terms in 

equation (6.10) can be rearranged and written in matrix form as,

V\V\ +A (611>

where

* i-* 2  y \ - y i ~VTn ~ ~ v 2t 22 + K 2 - K 2 '

=
* l-* 3  ^ 1 -^ 3 > vx =

X
. c , =

VT13
’ D' = \

v 2t 23 + K 2 - K 2
1

y. ... 2

y x- y N_ y T iv _ v 2t 2n + K 2 - K 2n _
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With three sensors only, i.e. no redundancy, Ux is square and (6.11) can be used for an 

intermediate solution in terms of rx as,

v t = u ; ' r tc l + u ; ' D , (6 .12)

However, the aim is to achieve sensor fusion from added redundant sensors. In this 

case (6.12) is not valid since Ux becomes an over-determined matrix. Note that the 

right hand side of (6.11) includes the source of error from the noisy TDOA 

measurements. This is a typical data fitting problem which can be solved using the 

Linear Least Square optimisation. Assume for instance that rx is known, then the

problem of the form of UXVX ~ Ex can be solved by minimising the sum of squares of

UXVj -  Ex, which can be performed by setting the first derivative of the vector inner 

product to zero as,

(6.13)

yielding,

Vx=(U(U]r lU[(rxC,+D, ) (6.14)
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Substituting this intermediate solution (6.14), into equation (6.8), a standard quadratic 

equation in rx is obtained. Then, substituting the positive root back into the above

equation yields the final solution of Vx.

The outcome of this positioning algorithm when used together with the LCSP 

algorithm for TDOA estimations is impressive. As can be seen in figure 6.7, The sketch 

of ‘X ’ produced from a nail scratch is better than those shown in figure 6.5 and also 

shown is a precision sketch of face that is difficult to achieve with ELM and ML 

algorithms without Kalman filtering. More importantly, the LLS process is independent 

of the spatial size and thus applicable on large interactive surfaces without additional 

computation costs, unlike the ML and ELM algorithms. Integrating this algorithm with 

the Kalman filtering solution given in figure 6.4 and interfacing with the PC mouse to 

use Microsoft Paint program as an application example, produces the desired tangible 

acoustic interface for continuous tracking. The result o f this final algorithm is 

demonstrated by the free hand writing of ‘mec’ with a plastic brush and the Sine wave 

plot shown in figure 6.8.

A practical test of this proposed continuous tracking algorithm has shown its accuracy 

and robustness, with satisfying results achieved by interacting with the board using 

finger tip rubbing, a nail scratch, metal spoon and plastic brush without the need to 

change the settings or configurations of the system.
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Figure 6.7. Sketching (a) ‘X ’ and (b) ‘face4 with nail scratch using the proposed 

algorithm with Kalman filter shown in red for comparison with figure 6.5.
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(c)

Figure 6.8 Using Paint program as an application interface to the final algorithm. 

Example o f  using brush to (a) write mec and (b) draw Sine wave, (c) Live demo in

public exhibition.
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6.2.1 Extended Positioning Options

Another hypothesis for solving the set of equations in (6.10) is to sacrifice one 

redundant sensor at the cost of preventing the intermediate solution. Rearranging terms 

in (6.10) and writing the set of equations in matrix form gives,

U2V2 =D2 (6.15)

where

"*1 "*2 1 V! to - 2  VTn ~ v
” 2 2  V Tn K?

i<s M 
*1

U2 = *1 r*1X1 y \ - y i - 2 vt,3 II

A

y ^ 4
2 2 v r 13

CN „ 1

_xt *
. 

X
: 

1 1 
: *

* ~ 2 v t i h _
2 2 
Tin *“* 

to

~ K i .

which results in direct solution from V2 = U2 D2 when four sensors are used. For more 

than four sensors, the technique of LLS can be implemented as described above. 

However, although the solution is reached directly, it requires one more sensor than the 

minimum number required in theory. That means the processing of data from one 

sensor is not contributing to sensor fusion. On the contrary, a result is duplicated by 

estimating r, and therefore this solution is considered as non efficient.

Another solution of (6.10) is available which is less efficient but with the assumption of 

having no problem with the availability of sensors and the consequence of handling the



resultant data for the benefit of overcoming unpredictable wave velocity or strong 

dispersion. This solution can be obtained by rearranging equation (6.10) in matrix form 

as

U3V3 = D3 (6.16)

where

* i - * 2 y \ - y 2 *ij / 2 X ~ K \ - K \

* i -* 3  y * - y i  Tn *f3/2
. 2̂ =

y K\ K 3
vr,

_x\ ~ x n y \ ~ y n 7in _v2_ K t - K 2N

Now with a minimum of five sensors, (6.16) can be solved from V3 = U 31D3 but can

also be solved for more than five sensors using the LLS technique described. The wave 

velocity is treated in (6.16) as variable and thus it is estimated within the positioning 

process. A note on the formulation of (6.16), although it requires a minimum of five 

sensors without any sensor fusion functionality, it can still be utilised as an efficient 

tool to measure wave velocity in an object for initial tests. The measured velocity can 

then be substitutet into the positioning algorithm given in section 6.2, or it can be used 

to develop a device for measuring wave velocity in materials. Another note regarding 

the above three formulations for solving (6.10), is that the solution can be extended for 

estimating source position in three dimensions by adding an additional sensor to the 

minimum requirement number in each solution. Finally, as a concluding remark, the
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solution for the hypothesis of utilising sensor fusion with minimum number of three 

sensors is the most efficient and most practical compared with the other two hypotheses 

since most affordable hardware has four channels.

6.2.2 Empirical Error Analysis

The performance of the LLS and ELM localisation algorithms has already been 

analysed in a 3-D view using real signals in chapter 5 and those have also been 

compared experimentally with the LLS algorithm for continuous tracking, as shown 

above. It remains now to provide an empirical comparison between LLS, ELM and ML 

for single impacts, since a 3-D view for LLS is not valid. This is accomplished by 

generating M  impacts at known locations indexed by the number k  on the interactive 

board. The error in the estimated locations is then analysed for each method, as 

depicted in figure 6.9.

The actual coordinates of the impact at location k  are (xk, y k) and the corresponding 

estimated locations by a certain method from multiple impacts are given by vectors xkl 

and y b of size lxM.  For each location k, the standard deviation of the estimated 

location from its mean (xk , y k) in the x  andy  directions can be found from,
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Figure 6.9. Error analysis

r«=JiPx»-x‘)2
(6.17)

1

M t

M
ZO'* -y»)

Since it is more sensible to consider the radial distance o f the estimated location from 

the actual location as in figure 6.9, the radial standard deviation can be found from 

equation (6.17) as,

^ < 6-18)

By applying M=10 consistent and sharp test impacts with nail clicks at each location, 

the results obtained from equation (6.18) for locations k= 1:10 are shown in table 6.1.a. 

The same test repeated with small nail scratch and the results are shown in figure 6.1.b.
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Location
k ELMt ELMt 

+ Hilbert ELMf ML LP

1 23.022 17.029 3.1623 15.811 3.34

2 18.439 3.1623 6.3246 13.416 2.0992

3 33.015 34.059 31.78 27.019 31.407

4 25.495 7.0711 6.3246 8.9443 3.8629

5 33.5 16.667 3.3333 4.714 21.75

6 31.78 42.544 25.495 31.78 31.202

7 35.355 29.155 28.46 31.78 30.651

8 42.544 40.249 42.544 42.544 42.225

9 36.056 28.284 25.495 28.46 25.901

10 40.139 44.845 26.874 33.333 26.874

Average 31.9345 26.30654 19.97928 23.78013 21.93121

(a)

Location
k E L M t ELMt  

+ Hilbert ELM f ML L P

1 9.4868 13.038 69.354 13.038 4.2511

2 11.402 10 42.544 7.0711 7.378

3 34.059 32.249 40.249 25.298 29.426

4 15.811 4.4721 42.544 7.0711 2.7327

5 26.667 24.267 73.106 10 41.092

6 36.878 36.878 72.25 26.077 21.29

7 31.78 33.015 42.544 28.636 26.793

8 56.303 51.865 44.944 49.396 48.292

9 32.558 30 42.544 28.46 24.825

10 118.13 47.14 73.106 51.747 48.796

Average 37.30748 28.29241 54.3185 24.67942 25.48758

(

Table 6.1. Standard deviation of estimated locations for (a) click and (b) scratch test

signals
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The second and third columns in the table are for ELMt using pre-filtering and with a

Hilbert envelope added. The last three columns are for ELMf  using PHAT, ML and

LP algorithms. As the results indicate, the Hilbert envelope improved ELMt but

ELMf  with PHAT has better results than ELM,  for impact type of signals rather than

for scratch type. The LP algorithm has shown the best results both for impact and 

scratch signals among the others in addition to the advantage of its computation speed.

Finally, the detection of two simultaneous sources has also been of interest. 

Theoretically with the ELM algorithm it is possible to detect two impacts by 

considering the second peak in the outcome of the cross correlation based process. 

However, the empirical results were not satisfactory. In [98], the second and the third 

peaks obtained with the GCC method using the PHAT process have been studied for 

detecting active speakers simultaneously in a room but the results were not sufficiently 

reliable with successful attempts of about 40%. For the scenario of having two 

simultaneous sources with different distinctive bandwidths, there might be a good 

chance to localise them simultaneously by splitting the received signals with two filters 

before implementing the given algorithms. This case has not been tested but it is an 

option for active sources in particular. Therefore, for reliable multi-source localisation, 

there is a need to refine the algorithms and to investigate the feasibility of employing 

other promising techniques such as Independent Component Analysis as used in [99] to 

localise multiple sound sources in a room within the proposed algorithms.
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CHAPTER 7

Conclusions and Future Work

In this research, tangible acoustic interfaces (TAIs) for human computer interaction 

have been developed. With the new interfaces it is possible to convert virtually any 

solid object into an interactive interface in a transparent way by simply attaching 

sensors to the object’s surface to detect the acoustic signals resulting from natural 

interactions with the object, such as nail clicks. The developed system is capable of 

responding to two types of interactions, discrete impacts and continuous movement. 

Various localisation techniques have been thoroughly investigated and the TAI system 

has been analysed to determine which localisation methods are applicable. Two distinct 

localisation approaches are proposed. The one that requires configuring each point of 

interest is not suitable for tracking but can work with one or two sensors with different 

object materials or shapes. The other method only requires wave velocity and 

information on the position of the sensors. It is suitable for interacting with arbitrary 

locations on a flat and reasonably homogeneous surface and suitable for tracking.

The first localisation approach is Location Pattern Matching. The interactions are 

localised by finding the best matched feature pattern representing a known location. 

One sensor is adequate for this method, with a higher resolution attained with more 

sensors, proving the main hypothesis of this research. The reliability problem caused by 

the sensitivity of the matching process to the pattern of the template has been solved by
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the concept o f extracting the location signature pattern from received signals using two 

sensors.

The second localisation approach, widely used for in-air acoustic localisation, is based 

on measuring the time differences of arrival (TDOA) between spatially separated 

sensors and uses triangulation to determine the source coordinates. For the efficient 

operation of TAI with this approach, three requirements have to be met, the assumption 

of the near-field scenario, the use of an optimisation method and the implementation of 

sensor fusion. Accordingly, two methods are proposed for impact localisation. The 

ELM method performs localisation in one step, and two algorithms are proposed. One 

uses time domain processing with conventional post-filtering and the other employs 

PHAT filtering in the frequency domain. In the two-step method, TDOA values are 

found first using either GCC or LCSP. Based on these values, the source is localised 

using the ML algorithm. The effect of dispersion is treated by introducing Hilbert 

envelope smoothing. A criterion is proposed for each method to detect outlier 

estimations that can happen, for example from domestic noise like that made when a 

door is shut.

Although the above two methods are applicable to tracking, their localisation 

algorithms are a function of the working area dimensions and the theoretical resolution 

which in turn can cause significant latency when used for tracking on a large surface. 

For this reason, an LP localisation algorithm is proposed which is independent of the 

working area dimensions and uses LCSP for the TDOA inputs. For smooth trajectory 

prediction of a continuous moving source, Kalman filtering is proposed. A timing-



based algorithm is developed to solve the problem of Kalman filter initialisation, which 

is important to eliminate the appearance of nndesired estimations between consecutive 

interactions. For a real application, the developed system was interfaced with a mouse 

pointer. With this system it was possible to draw curved and straight lines on an MDF 

board with an accuracy of 10 mm using a finger, brush, or wood stick on the Paint 

program on a PC. All the above algorithms were developed with the sensor fusion 

concept in mind, which is the trend in sensor applications research. The algorithms 

were written for an arbitrary number of sensors although in this work four sensors were 

used due to the limitations of the hardware.

The good results obtained have proved the second hypothesis of this research, namely, 

that in-air acoustic localisation algorithms can be adopted for use in in-solid 

applications.

This research has met all the objectives stated in chapter one as follows:

• Objects in different materials (an MDF board and a sheet of glass) were 

transformed into interactive interfaces.

• Three algorithms have been developed for discrete impact localisation and 

another algorithm for continuous tracking.

• Filtering techniques were applied to address the problems of wave dispersion 

and distortion.

For future work, the suggestion is to investigate the integration of LPM with time delay 

based methods in an attempt to gain the advantages of both approaches. The
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localisation of multiple simultaneous sources was not successful and requires more 

research, possibly with the aid of Independent Component Analysis. Multi-modal 

sensor fusion is attractive to implement for achieving better accuracy, for example, by 

introducing velocity information from a dedicated sensor within the parameters of the 

Kalman filter, or by integrating visual information with the current audio information 

for more capable applications. Finally, it is worth investigating the extension of these 

methods for in-air localisation by placing the sensors away from the surface for even 

freer interaction.
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