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A bstract

Recent theoretical studies by Lingwood (1995,1997a,b) on the rotating-disk boundary- 

layer, have shown, using an analysis that deploys the usual ‘parallel-flow’ approxima

tion, that there exists a region of absolute instability. However, by taking into account 

the radial variation of the mean flow, Davies h  Carpenter (2003) have shown, using 

numerical simulations, that the absolute instability does not give rise to an unstable 

linear global mode. In fact convective behaviour is found to dominate the global 

response.

The aim of the current study is to further the studies of Davies h  Carpenter 

(2003) to other rotating boundary-layers. Uniform suction and a uniform axial mag

netic field are known to be stabilizing. However, by considering non-parallel effects, 

globally unstable behaviour is observed, albeit without the promotion of a fixed global 

frequency. An investigation is also carried out on the so called BEK  family of rotating 

boundary-layers, which includes the Bodewadt, Ekman and von Karman flows. All of 

these flows are absolutely unstable, when the parallel flow approximation is applied. 

However, by considering the genuine non-parallel flow, the numerical simulation re

sults indicate that the kind of behaviour found for the von Karman flow is carried 

over to other flows in the BEK  family.

The numerical simulation results of the rotating-disk boundary-layer can be mod

eled using the linearized complex Ginzburg-Landau equation. By deriving expressions 

for the stability, convection velocity and diffusion/dispersion effects, in terms of the

viii



numerical simulation results, the Green’s solutions to the Ginzburg-Landau equation 

can be successfully matched to the parallel and non-parallel rotating-disk boundary- 

layer. The results suggest that the long-term behaviour depends on the precise bal

ance of the varying frequency, varying growth rate, and diffusion/dispersion effects. 

It is then possible for an absolutely unstable disturbance to remain globally stable.
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Chapter 1 

Stability

The study of spatially developing instabilities is concerned with understanding the 

local convective/absolute behaviour and the global properties. Such studies are widely 

documented and the interested reader is referred to Huerre Sz Monkewitz (1990), 

Monkewitz (1990), Huerre Sz Rossi (1998), Huerre (2000), Schmid Sz Henningson 

(2001) and Chomaz (2004) for excellent reviews of the subject. It is intended that 

this introduction will provide the reader with a brief account of instability definitions 

and methods (that have been developed by previous authors) for determining the 

nature of disturbances.

1.1 Parallel: convective and absolute instability

The concept of convective and absolute instability was originally introduced in Plasma 

Physics by Briggs (1964) and Bers (1975). Such notions have been successfully applied 

to understanding instabilities in shear flows. (Huerre Sz Monkewitz, 1990, contains 

a comprehensive list of references to such studies). In order to simplify the analysis, 

it is assumed that the basic flow of the problem in question is parallel, (spatially 

homogeneous), i.e. the basic flow is independent of the streamwise coordinate x. The

1



Chapter 1. Stability 2

linear stability behaviour may then be characterized by the general dispersion relation

D(a,cj]R) = 0, (1.1)

where a is the streamwise wavenumber, lj is the temporal frequency and R denotes 

the set of control parameters. Any solution of the dispersion relation (1.1), where 

a is real and lj is complex is known as a temporal mode uj(ot). Conversely, spatial 

branches a(cj) are obtained when a  is considered to be complex and lj real. However, 

in general both a and lj are considered to be complex.

One may introduce a differential operator D that acts in the physical space-time 

domain, (which corresponds to the dispersion relation (1.1)), so that fluctuations 

4/(a;, t) satisfy

D 9 9 p \k(:r,£) =  0. (1.2)

Here x is the streamwise direction and t denotes time. We are interested in the 

system response to an impulsive force at the origin of the (x, t )—plane. The response 

to impulsive forcing is given by the Green’s function G(x,t), which satisfies

D 9 9 p G(x,t) = 6(x)6(t), (1.3)

where 6 denotes the Dirac delta function. The basic state is perturbed at x =  0, t = 

0, and the system is then left to evolve.

1.1.1 D efin itions o f stab ility

The main objective of this section is to review the criteria that can be used to ascertain 

the type of stability/instability that evolves from a given disturbance.

The basic flow is linearly stable if

|im G (x ,f) =  0 along all rays x / t  = constant, (1.4)

and it is linearly unstable if

lim G(x, t) =  oo along at least one ray x / t  = constant. (1.5)
t —* oo v '
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For such unstable flows it is possible to distinguish between two types of impulse re

sponses, namely convective and absolutely unstable behaviour. Convective instability 

takes place if

lim G(x, t) =  0 along the ray x / t  = 0 , (1.6)
t—*oo

and the response is referred to as absolute instability if

lim G(x, t) = oo along the ray x / t  = 0 . (1.7)

(a)

Figure 1.1: (a): Convective instability - a disturbance grows at no fixed point in the 
flow, but does grow at moving points, (b): Absolute instability - disturbances grow in 
time at all fixed points.

Figure 1.1 displays schematic sketches of convective and absolute instability in 

the form of an (x, t )— diagram. The wavepacket on the left demonstrates convective 

instability; both edges of the disturbance wavepacket are propagating away from the 

origin in the same direction. The second plot on the right displays absolute instability; 

the two edges of the disturbance wavepacket are propagating in opposite directions 

towards infinity.
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1.1.2 T he G reen’s function solution  and B riggs’ m ethod

Equation (1.3) does not involve x or t dependent coefficients and the solution may 

be obtained by re-casting the problem in Fourier-space. The Green’s function can be 

expressed as the double fourier integral

1 A /
4?r2 Jl Jf D(a,uj)

where L and F  denote the inversion contours in the frequency and wavenumber planes, 

respectively. The F  contour in the complex wavenumber plane initially lies upon the 

horizontal real axis. While the L contour in the complex frequency plane is a straight 

line located above all the singularities of the integrand, so as to satisfy causality, or 

to be precise, G(x,t) =  0 for all x when t < 0. Figures 1.2(a, b) illustrate the paths 

of integration.

The resulting Green’s function assumes the form of a disturbance wavepacket in 

the (x , t )—plane. The response along each line x / t , within the disturbance wavepacket, 

is dominated by one complex wavenumber c^, such that the group velocity satisfies 

du.)(oLk)/doL = x /t .

The temporal growth rate u^(ce), attains its maximum value cj^max =  u^max{oLmax) 

when
duj

= 0, (1.9)

for ocrnax real, which has the corresponding group velocity du / da(amax) = x / t  = 

Umax• Using the earlier definitions (1.4) and (1.5) for linear stability, we obtain the 

simple criteria:

vi,max < 0 linearly stable,

Wi,max > 0 linearly unstable. (1-10)

It is now necessary to establish criteria to differentiate between the different types 

of instability, namely convective and absolute instability. This can be achieved by
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(b)

a»

<d>

a

a'(o>)
01(a)

Figure 1.2: Integration contour L in the complex frequency-plane, (a) and (c); inte
gration contour F in the complex wavenumber-plane, (b) and (d). (a) and (b) display 
the initial contour positions, while (c) and (d) display the behaviour at the point of 
pinching.
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examining the long term behaviour of the wavenumber ao along the ray x / t  = 0. By 

definition, the group velocity is zero for the complex wavenumber ao,

| w = ° -  (U1>
The corresponding frequency ljo = uj(a0) is referred to as the complex absolute fre

quency. Subsequently, the absolute growth rate is defined as a>o,i =  cj^ao). Whereas 

the earlier maximum growth rate uJi>max is observed following the peak of the distur

bance wavepacket, the absolute growth rate characterizes the temporal evolution at 

the location x / t  = 0, as time tends to infinity. Hence, we obtain the following criteria 

on the type of instability,

cj0,i < 0 convectively unstable, (1-12)

u)o,i > 0 absolutely unstable. (1-13)

The absolute frequency ujo is generally an algebraic branch point of the spatial 

branch a (a;) in the complex frequency plane, while the wavenumber c*o is a saddle 

point of the temporal mode u(a) in the complex wavenumber plane. It should be 

noted that the maximum growth rate uJifTnax is an upper bound along any ray x/t,  

(Chomaz, Huerre h  Redekopp, 1991). Thus, we have

^0,i — ,m ax • (1.14)

Definitions (1.11) and (1.13) are necessary conditions for absolute instability. How

ever, they do not fully specify the onset of absolute instability (Briggs, 1964; Bers, 

1975). The time-asymptotic behaviour of the double Fourier integral (1.8) may be 

evaluated using the so-called Briggs or Bers method. The Briggs/Bers method chooses 

the wavenumber integral to be

27T J f  D(a, uj; R)
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and a frequency inversion integral

G(x,t) =  [  G(x,uj)exp(—iut)duj, (1-16)
2?r Jl

where the contours L and F are as described earlier, (refer to figure 1.2(a, b)). We 

then attempt to lower the original L contour below the real a;—axis. If this is achieved, 

the exponent in the inversion integral (1.16) will ensure that the integrand tends to 

zero, as time tends to infinity. If this is not attainable, the highest singularity will 

govern the response. Since a is related to lj via the dispersion equation (1.1), any 

singularity appearing in the lj plane, will have an associated singularity within the a 

plane.

A temporal mode a; (a) is assumed to exhibit a single branch point ljq, with only 

two spatial branches a + and a~. The two branches are located in separate halves of 

the a plane. Therefore, they reside on opposite sides of the F  contour. The spatial 

branch above the real a —axis governs the disturbance behaviour downstream of the 

source, x > 0. While the branch below the real a —axis influences the dynamics of 

the disturbance upstream of the source, x < 0. As the L contour is lowered, the 

spatial branches a+ and a~ tend towards one another. As the spatial branches move 

closer together, the original F  contour must be deformed to ensure that both branches 

remain on opposite sides of F, so as to preserve causality. The successive deformations 

of the contours L and F  will eventually stop, once the F  contour becomes pinched 

between the two spatial branches a + and o r . At the point of pinching, the zero group 

velocity condition (1.11) is satisfied. At the same time, the temporal mode u (a ) forms 

a branch-point singularity in the complex a;—plane. The branch-point can be detected 

by the formation of a cusp appearing at ljo. The L contour cannot be deformed any 

further, since causality will be broken if the two spatial branches cross the F  contour. 

If ljq is located beneath the real a;—axis, the disturbance is convectively unstable or 

stable. Absolute instability is present if pinching occurs before ljq passes below the
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real a;—axis. Figure 1.2(c, d) displays schematic sketches of the contour deformation 

via the Briggs/Bers method.

The above methods have been successfully applied to the rotating-disk boundary- 

layer by Lingwood (1995, 1997a,b), amongst others. Further details on the studies 

by Lingwood and others are given in chapter 2.

1.2 Non-parallel effects: local and global instabil
ity  concepts

To include non-parallel effects, it is necessary to look for solutions of the form

where <Pg(x ) is the eigenfunction and ujg is the corresponding frequency eigenvalue,

i.e. u>g =  wg,t +  iwG,i- The solutions are found by carrying out the stability analysis

analysis is referred to as global, since x is considered to be an eigendirection, i.e. the 

x dependence on the eigenfunction is unknown.

We introduce a linear partial differential operator D , such that fluctuations t)

satisfy

where X  is a slowly varying streamwise parameter.

For the parallel problem, modes of the form ^(x, t) = A (x , t)exp{z(a:r — ut)}  are 

sought. However, for the present operator (1.18), it is more appropriate to assume 

modes of the form

where A(X)  is an unknown complex amplitude, e <  1 incorporates slow streamwise 

variation effects, and u> and a  again refer to the complex frequency and wavenumber.

(̂a:,̂ ) = (p(x)exp(-iujGt), (1.17)

globally, over the entire physical range of the streamwise coordinate x. The stability

D (1.18)

L« Jo



Chapter 1. Stability 9

The superscripts +  and — refer to the respective downstream (x > 0) and upstream 

(x < 0) regions about the source x = 0.

The local dispersion relation, corresponding to equation (1.18) is given as

D [a ,v ',R ,X \= 0 ,  ( 1.20 )

where the slowly varying streamwise variable X  appears as a parameter. The zero 

group velocity condition (1.11), and convective/absolute instability definition (1.13), 

are again valid for the local dispersion relation (1.20).

We define a local absolute frequency as ljq(X, i£), with a corresponding wavenum

ber ao(X, R ), such that
r \

- £ ( a 0-, X , R) = 0, ljo(X, R ) =  u(a0; X , R). (1.21)

In a likewise manner, one may define a local maximum growth rate as uJi,max(X, R) for 

a local complex frequency cumax(X, R). The corresponding wavenumber amax(X, R), 

is given by

dcu
x , R) =  0, Vmax(X; R) = uj(amax; X , R). (1.22)

The type of instability displayed by any given disturbance may be divided into 

four separate groups, depending on the behaviour of the respective local maximum 

and local absolute growth rates Wi,max{X, R) and ujô X ,  R). The sketches displayed 

in figure 1.3(a-d) illustrate the four distinct groups. Figure 1.3(a) depicts a flow that 

is locally stable everywhere, aHtmax(X, R) < 0 and uofi(X, R) < 0, for all X. A region 

of local convective instability is present in figure 1.3(b), since uii,max(X, R) > 0, but 

LJoti(X, R) < 0. The third group of flows are marginally absolutely unstable (refer to 

figure 1.3(c)), since the maximum absolute growth rate is still negative, but small. 

The final group of flows are locally absolutely unstable (refer to figure 1.3(d)), because 

the maximum absolute growth rate has crossed the real X —axis. The first three cases



Chapter 1. Stability 10

(a) <b)

“i

i.m tx

6 x,

O j’m tx«|W y / _ _ _ _ _ _ _ _ _ —

X

% u

-------- -----------------

U0,iLn

% f y

(c) (4

Figure 1.3: Groups of spatially developing flows according to the characteristics of the 
local instability, (a) - stable; (b) - convectively unstable; (c) - marginally absolutely 
unstable; (d) - region of absolute instability.
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will always produce global stability or marginal global stability. While a finite region 

of absolute instability (refer to figure 1.3(d)), is a necessary condition for global 

instability to arise, Chomaz, Huerre h  Redekopp (1991) and Monkewitz, Huerre h  

Chomaz (1993).

1.2.1 D efin itions o f global stab ility  and instability

The definitions for global stability and instability may be presented in terms of the 

long-time behaviour of the Green’s function G(x,t), which is controlled by

D _ —  — B Y
dx at' ’

G(x,t) = 5(x)5(t), (1-23)

where 5 is again the Dirac delta function. As emphasized by Huerre & Monkewitz

(1990) and others, a flow is globally unstable when the long-time behaviour of the 

Green’s function G(x,t) is dominated by a linear global response of the form (1.17). 

Therefore, we have the following definitions for global stability

^G,i < 0 globally stable,

^G,i > 0 globally unstable. (1-24)

Hence, for any flow to be globally stable, all eigenvalues ujQti must be negative.

1.2.2 T he frequency-select ion criterion

It was suggested by Pierrehumbert (1984) that the global mode ljq is given by the

frequency that corresponds to the location of the maximum absolute growth rate

woti\max- While Koch (1985) proposed that the global mode should correspond to the 

local absolute frequency u;o,r , at the streamwise location separating the convective 

and absolutely unstable regions.

A global frequency selection criterion for uq was presented by Chomaz et al.

(1991), and reviewed by Monkewitz et al. (1993), Huerre (2000), amongst others.
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The global frequency is obtained by examining the long-time behaviour of equation 

(1.23). The time Fourier transform G(x,t) is written as

G(x,t) = [  G(x,cj)exp(—iujt)duj, (1.25)

where the contour L is a straight line, parallel to the a;—axis and above all singulari

ties, (refer to figure 1.4(a)). While

G(x,w) ~ A ±(X ) e x p f l  j  a ±( X ' ; u ) d X ' \  (1.26)

A contour M  initially lies upon the real AT—axis, and two branches X +(u>) and 

X~{uj) are located on either side of M, (refer to figure 1.4(b)). As the L contour is 

lowered, the M  contour becomes pinched at some complex location X s, between the 

two branches X +(lj) and X~(u;). The associated absolute frequency uo(Xs) is found 

at the branch-point in the complex frequency-plane, i.e. a>o(X) forms a cusp with 

the L contour, (refer to figure 1.4(c, d)). Since the L contour cannot be lowered any 

further, the frequency ljq(X8) is expected to dominate the Green’s function response. 

Once again the group velocity is zero and the pinching point X s is located at a saddle 

point. Hence,

^ ( a s-X a) = ^ ( o c s-X 3) = 0, (1.27)

where a s is the complex wavenumber at the point of pinching. Due to the definition 

for the local absolute frequency (1.21), the global frequency log is given by

ujg ~  u(a3]Xs). (1.28)

As previously stated by Huerre & Monkewitz (1990), Chomaz et al. (1991), Le Dizes, 

Huerre, Chomaz & Monkewitz (1996) and others, the global growth rates ujc,i are es

sentially less than the maximum local absolute growth rate ujq̂ \max over all real X. 

Thus, we have

WG,i ^0,i| max- (1.29)
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r

(C) M

Figure 1.4: Global frequency selection criterion, (a) and (b) refer to the L and M  
contours in their initial states, (c) and (d) refer to the L and M contours at the point 
of pinching.
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Hence, the existence of a region of local absolute instability is a necessary condition 

for global instability. However, such a condition is not sufficient as it stands. More 

importantly the pocket of absolute instability must reach a critical finite size before 

a self-sustained global-mode arises and prompts the onset of global instability.

Hammond & Redekopp (1997) have applied the above frequency selection methods 

to a two-dimensional wake-shear layer. In their investigation, the extrema of the 

6Jo,r and wo,i were found at different streamwise locations. Thus, the saddle point 

X a (which satisfies equation (1.27)) does not lie on the real X —axis. The Cauchy- 

Riemann equations were called upon to calculate the approximate location of the 

saddle point, since the derivatives of u>o were only known along the real X —axis. 

Of the three methods (Pierrehumbert, 1984; Koch, 1985; Chomaz et al., 1991), the 

Chomaz et al. (1991) frequency selection criterion was found to give the most accurate 

results.

1.3 Final remarks

The above definitions and methods will be called upon later in the thesis (chapter 7: 

The global stability of the rotating-disk) and applied to the rotating-disk boundary- 

layer, in the hope of finding the global frequency ujq and the corresponding location 

of the saddle point X s.

For a greater description of local and global stability characteristics, the interested 

reader is referred to Huerre &; Monkewitz (1990), Monkewitz (1990), Chomaz et al

(1991), Monkewitz et al. (1993), Huerre h  Rossi (1998), Huerre (2000), Schmid & 

Henningson (2001) and Chomaz (2004).



Chapter 2 

Three dim ensional boundary-layers

There are several three-dimensional flows that are of practical interest for studying 

instabilities and transition to turbulence. Examples are

1. Swept-wings,

2. Rotating-disks,

3. Rotating-cones,

4. Rotating-spheres.

2.1 The swept-w ing

The study of swept-wings dates back to the 1950s and is one of the principal reasons 

for investigating other three-dimensional boundary-layers. Gray (1952) was one of 

the first to investigate the transition process over a swept-wing. The instability that 

was found to arise over a swept-wing is known as the crossflow instability, which is 

due to a point of inflection in the crossflow velocity component. There is a maximum 

velocity located along the crossflow velocity profile, while the velocity is zero at the 

body surface and boundary-layer edge. A schematic sketch of the velocity profile is

15
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Tangential
component

Crossflow
component

Figure 2.1: Schematic sketches of the crossflow and tangential velocity profiles over a 
swept-wing.

displayed in figure 2.1. Thus, to understand the transition process over a swept-wing, 

a greater understanding of the crossflow instability is required.

2.2 The rotating-disk

A model problem which is known to exhibit the crossflow instability, is the rotating- 

disk boundary-layer. The problem is modeled as an infinite planar disk rotating at a 

constant angular velocity, about the normal axis, which passes through the centre of 

the disk. The fluid above the disk is stationary and is infinite in extent. Cylindrical 

polar coordinates are employed, i.e. radial, azimuthal and normal directions. Figure

2.2 displays a schematic drawing of the rotating-disk with streamlines. The velocity



Chapter 2. Three dimensional boundary-layers 17

components ur,uo,uz refer to the radial, azimuthal and normal directions.

Streamline!

Figure 2.2: Rotating-disk in still fluid and coordinate system.

The Navier- Stokes equations in cylindrical polar co-ordinates are given as

Momentum: +  (u.'V)u + 2A A u = —-V p  +  v V 2u,
ot p

Continuity: V.u =  0, (2.1)

where A is the angular velocity of the disk, u = {ur,uo,uz}, t is time, p is the fluid

density, p is the fluid pressure and v is the kinematic viscosity. The third term on

the left hand side of the momentum equation is due to the Coriolis1 force.

lrThe term Coriolis comes from the engineering professor, at the Ecole Polytechnique in Paris, 
Gustave-Gaspard de Coriolis (1792 - 1843).
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The rotating-disk is said to act as a centrifugal fan, where fluid is thrown radially 

outwards and is replaced by a normal flow directed towards the centre of the disk.

In 1921 Theodore von Karman found an exact solution to the cylindrical Navier- 

Stokes equations (2.1), using what are now referred to as the von Karman variables. 

On substituting the von Karman variables into the cylindrical Navier-Stokes equations 

(2.1), a system of ordinary differential equations (ODE) is obtained. Of the ODE to 

be solved (equations (4.6) - (4.9), (5.9) - (5.12), (6.14) - (6.17) in chapters 4, 5 and 6), 

one of the equations can be removed by simple integration. The remaining ODE are 

dependent on the normal direction z and can be solved numerically. Th. von Karman 

(1921) solved the system of ODE and resulting velocity profiles by numerical methods. 

Later Cochran (1934) obtained a more accurate solution to the problem. Today, high- 

powered computers are available. Thus, the system of ODE can be solved in a matter 

of seconds, allowing faster and easier investigation of the rotating-disk boundary- 

layer. The author has addressed the problem using the programming language Matlab 

and the interested reader is referred to the appendices for a detailed account of the 

program code. The velocity profiles are plotted in later chapters. The laminar radial 

velocity profile is inflectional. Therefore, the rotating-disk is susceptible to the same 

crossflow instability present within the swept-wing boundary-layer.

Batchelor (1951) pointed out that the rotating-disk or von Karman flow is one 

particular example of a family of rotating-flows. As already mentioned, the von 

Karman flow arises for a rotating-disk beneath a stationary fluid. Other limiting 

cases are the Ekman (1905) and Bodewadt (1940) flows. The Bodewadt flow arises 

for a rotating fluid above a stationary-disk, while the Ekman flow occurs when the 

fluid and disk rotate with approximately equal velocity. In between the Bodewadt, 

Ekman and von Karman flows, lies an infinite number of rotating boundary-layers. 

Due to these particular examples, the system of rotating flows shall be known as the 

BEK  family and will be discussed in greater detail in chapter 6.
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It was also shown by Batchelor (1951) that the von Karman solution can be 

extended to flows with a uniform normal flow, i.e. mass suction and injection. The 

effect of introducing a uniform normal flow will be discussed in chapter 4.

The crossflow instability or Type-1 mode was originally discovered by Gregory, 

Stuart Sz Walker (1955) in the rotating-disk boundary-layer, in their experimental 

and theoretical investigation. The mean velocity profile displays a point of inflection. 

This results in an inviscid neutral disturbance with zero frequency, which has an 

unstable counterpart, (Stuart in Gregory et a/., 1955). The stationary disturbances 

appear as co-rotating vortices, known as crossflow vortices. Such vortices can also be 

found on rotating-cones and swept-wings.

In the experiment by Gregory et al (1955), a china-clay technique was used. 

A stationary vortex pattern was observed and there was approximately 30 vortices 

located on the disk surface, spiralling outwards at an angle of about 14 degrees, (i.e. 

the normals of the vortices make an angle of about 14 degrees with the outward drawn 

radius). The vortices were first observed for a Reynolds number of about Re =  430, 

while transition to turbulence arose for Re «  530.

Stuart’s inviscid theoretical study predicted vortices with a similar wave angle 

to that observed experimentally. However, the number of stationary vortices was 

approximately four times greater. The discrepancy in vortices between experiment 

and theory can be attributed to the fact that viscous effects were ignored in the 

theoretical study.

In a similar experimental study, Fedorov, Plavnik, Prokhorov & Zhukhovitskii 

(1976), observed 27-30 vortices for Reynolds numbers Re > 387. However, for a 

Reynolds number Re = 245, 14-16 vortices were found to propagate at an angle of 

about 20 degrees. While transition to turbulence was found for Re =  515.

Faller & Kaylor (1966) conducted a numerical study, concerning the stability of



Chapter 2. Three dimensional boundary-layers 20

the Ekman boundary-layer. They observed the inviscid crossflow instability or Type- 

1  mode and a viscous Type-2 mode, which is attributed to the Coriolis force and 

curvature effects. The Type-2 mode was also observed in the rotating-disk boundary- 

layer (Malik, 1986). Malik (1986) found the critical Reynolds number for stationary 

modes Type-1 and Type-2, to occur for Rei =  285.36 and Re2 =  440.881, respectively.

Malik, Wilkinson &; Orszag (1981) conducted a theoretical and experimental inves

tigation of the rotating-disk boundary-layer. The Type-1 stationary wave was found 

for a critical Reynolds number Re 1 =  287 at an angle of 11.2 degrees. A weakly 

unstable, propagating Type-2 mode was also located for a critical Reynolds number 

of approximately Re2 =  49. Malik et al. (1981) found transition to turbulence to take 

place for 513 < Re < 526.

An experimental study of the transitional flow over a rotating-disk was conducted 

by Wilkinson & Malik (1983). The experimental apparatus consisted of a hot-wire 

probe, which maps out the instability of the disk in terms of both spatial coordinates 

and velocity fluctuations. Experiments on a clean-disk and for a disk with a single 

isolated roughness were considered. Transition to turbulence was found for 543 < 

Re < 556 for the clean disk, and 521 < Re < 530 for the rough disk. Stationary, 

secondary vortices were also observed prior to turbulent breakdown. It was suggested 

that this is possibly the final stage of the transition process (Wilkinson &; Malik, 

1983).

One of the first investigations conducted on travelling disturbances (i.e. non-zero 

frequency) on the rotating-disk was carried out by Balakumar & Malik (1990). The 

Type-1 mode was found to have a minimum for a frequency lj  =  —2.9 and Reynolds 

number Re 1 =  283.6, while the Type-2 mode was found to have a minimum for 

lj = 7.9 and Re2 =  64.46. For travelling waves, the Type-2 mode almost always 

occurs before the Type-1 mode.

1Here the subscripts 1 and 2 refer to the respective Type-1 and Type-2 modes.
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Mack (1985) discovered a third mode, which is now known as the Type-3 mode. 

The Type-3 mode propagates energy towards the disk centre, but is spatially damped 

and this is why the mode was not discovered in previous stability studies.

Faller (1991) carried out a detailed numerical study on the BEK  system for a 

range of parameters. For the von Karman flow, the critical Reynolds number for the 

travelling Type-2 mode was found to be Re = 69, with a wavelength L =  22 at an 

angle of —19°.

Further theoretical and experimental studies of interest are given by Kobayashi, 

Kohama &; Takamadate (1980), Kohama (1984), Hall (1986), Bassom &; Gajjar 

(1988), Spalart (1991), Malik & Balakumar (1992), Hall, Balalumar & Papageurgiu 

(1992), and Turkyilmazoglu & Gajjar (1997).

The rotating-disk flow has been studied by many investigators, using theoretical, 

experimental and analytical studies. By such methods, three modes have been discov

ered; an inviscid crossflow instability, a viscous instability due to the Coriolis forces 

and an inwardly propagating, spatially damped mode. Hence, one would assume that 

studies on the rotating-disk boundary-layer had been exhausted. This impression was 

to be dispelled by the findings of Lingwood (1995, 1996, 1997a,b).

2.2.1 A bso lu te instab ility

Lingwood (1995) showed that for a given set of parameters the rotating-disk boundary- 

layer is absolutely unstable. Such a revelation came as a complete surprise to other 

researchers. In order to search for an absolute instability a spatio-temporal method 

must be considered, by which we mean, both wavenumber and frequency are consid

ered to be complex.

An inviscid stability analysis and viscous analysis (with Coriolis forces and cur

vature effects) were considered. The parallel flow approximation was assumed, where 

the mean flow is simplified by taking it to be homogeneous along the radial direction.
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In both studies, a region of absolute instability was discovered. Outside this region the 

flow was found to be stable or convectively unstable. The theoretical critical Reynolds 

number for absolute instability was found to occur for Re = 510, later adjusted to 

Re =  507.3 (Lingwood, 1997a,b). Lingwood noted that this is very close to the point 

of transition to turbulence, where she took the average experimentally observed value 

to be Re = 513 ±  3%. Lingwood suggested that the absolute instability may be a 

cause for transition to turbulence. The fact that absolute instability appears in an 

inviscid analysis indicates that absolute instability is not caused by Coriolis forces, 

curvature effects or viscosity. Thus, it is possible that absolute instability may be 

possible on a swept-wing, where Coriolis effects are not present.

The absolutely unstable behaviour was identified by Lingwood using what is 

known as the Briggs/Bers method (Briggs, 1964; Bers, 1975). Absolute instabil

ity is identified by singularities in the dispersion relationship, which arise when waves 

propagating in opposite directions coalesce. These points are known as pinch-points. 

(For further details on the Briggs method, refer to chapter 1). The absolute instabil

ity was shown to result from the coalescence of the Type-1 and Type-3 modes, for a 

complex frequency with non-zero real part and more importantly a positive imaginary 

part, indicating temporal growth.

The Type-1 and Type-2 modes have also been shown to coalesce, Lingwood (1995) 

and Cooper & Carpenter (1997a), resulting in an algebraically growing disturbance, 

rather than an absolute instability.

Lingwood (1996) conducted an experimental investigation that aimed to corrob

orate her theoretical findings. In her experiment, the flow was impulsively excited 

at a point r e, well inboard of the critical value for absolute instability rc. Lingwood 

proposed that the global response to such an excitation, be as shown in figure 2 .3 . 

Initially the wavepacket propagates radially outwards in a convective manner. How

ever, the trailing edge eventually asymptotes towards a constant vertical line at rg,
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(a)t
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( b )t

r r rg e

Figure 2.3: Typical wavepacket evolution for the rotating-disk boundary layer ac
cording to Lingwood’s conjecture. Impulsive excitation (a) at re < r c < rg (based on 
figure lc of Lingwood 1996); and (b) at re > rg > rc.
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which is in the region of rc. Lingwood suggested that transition to turbulence may 

have been caused by the flow becoming absolutely unstable, where the average value 

for transition was found to be about 513. However, her results gave no evidence for 

the existence of a linear amplified global mode, of the form

A  ~  exp(—icjc), (2-2)

where ujg =  wc,r +  is the complex global frequency, for uJc,i > 0 .

Lingwood (1997a,b) applied the above methods to rotating-disk flows with a uni

form normal flow and to the BEK  family of rotating flows. It can be shown that all 

of these flows are absolutely unstable, when the parallel flow approximation has been 

employed. The details and conclusions of her studies will be discussed in chapters 4 

and 6 .

The discovery of an absolute instability in the rotating-disk boundary-layer, led 

Lingwood (1997c) to investigate the possibility of such behaviour occurring in the 

swept-wing boundary-layer. The flow was found to be absolutely unstable in the 

chordwise direction, with a critical Reynolds number of approximately Rec = 681. 

However, this did not prevent disturbances convecting in the streamwise direction. 

Thus, it was concluded that the laminar-turbulent transition process may still be a 

convective process.

2.2.2 T he global behaviour - D avies & C arpenter (2003)

Using the velocity-vorticity formulation of Davies & Carpenter (2001), Davies & Car

penter (2003) were able to produce numerical simulation results for both parallel1 

(homogeneous) and non-parallel (inhomogeneous) mean flows. For the approximate 

parallel mean flow, the results of the numerical simulations agree with the theory of 

Lingwood (1995). For a disturbance excited within the theoretical absolutely unstable 

lrThe so called parallel flow approximation assumes that the mean flow is independent of radius.
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region, the simulations exhibit analogous behaviour. Also, behaviour consistent with 

convective instability was observed when the flow parameters were located within the 

theoretical convectively unstable region.

However, the non-parallel mean flow numerical simulations produce quite different 

behaviour. The outcome of their study is illustrated in figure 2.4. Figure 2.4(a) 

displays the wavepacket evolution for a disturbance impulsively excited within the 

convectively unstable region. The behaviour is quite similar to the sketch drawn 

by Lingwood (1996), figure 2.3(a). However, as the trailing edge approaches the 

absolutely unstable region it shows no indication of tending towards a vertical line in 

the vicinity of the critical Reynolds number. In fact, it appears that the trailing edge 

is propagating radially outwards in a convective manner. Figure 2.4(b) displays the 

wavepacket evolution for a disturbance excited within the absolutely unstable region. 

Initially, the trailing edge of the disturbance wavepacket propagates radially inwards, 

in a manner consistent with absolute instability and temporal growth. Nonetheless, 

such behaviour does not persist for long; it appears that as the trailing edge nears 

the region of critical absolute instability, it reverses direction and propagates radially 

outwards.

Davies & Carpenter (2003) found that the absolute instability did not give rise 

to any sustained unstable linear global mode (2 .2 ). Instead convective behaviour was 

found to dominate the disturbance response for all Reynolds numbers considered, 

even those well within the region of absolute instability.

A recent experimental investigation by Othman & Corke (2006) supports the 

study of Davies &; Carpenter (2003). In their experiment, they were able to study 

disturbances with a much smaller amplitude than those in the experiments of Ling

wood (1996). By considering the initial disturbance (excited at the same location as 

that in Lingwood, 1996) to be small, the trailing edge of the disturbance wavepacket 

was found to travel radially outwards with a finite velocity at all radial locations,
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Figure 2.4: Sketch of a typical wavepacket evolution for the rotating-disk boundary- 
layer as revealed by Davies and Carpenter (2003) and the results on rotating-disk flow 
with normal injection, (a): impulse excitation for re < rc, (b): Impulse excitation 
for re > rc.
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including those within the absolutely unstable region. Hence, their experiments are 

in good agreement with the linearized numerical simulations of Davies & Carpenter 

(2003).

By considering larger initial disturbance amplitudes, behaviour comparable with 

the Lingwood experiments was found. However, there was again no evidence of a 

dominant global temporal frequency (2 .2 ).

2.2.3 Further stud ies on th e  rotating-disk  and absolute in
stab ility

Jasmine (2003) and Jasmine &; Gajjar (2005a,b,c) continued the study on the ab

solute instability over a rotating-disk by considering boundary-layers with a uniform 

magnetic field and temperature-dependent viscosity. The presence of a magnetic field 

in rotating boundary-layers has many industrial applications, such as electromag

netic stirring of liquid metals. Temperature-dependent viscosity problems also have 

a number of industrial applications, and in order to predict accurate behaviour it is 

important to consider viscous variations due to changes in temperature.

For the flow with a uniform axial magnetic field, increasing the magnetic field 

was found to be stabilizing. For a magnetic field parameter m = 0.2 (m =  0 for 

von Karman flow), the critical Reynolds number for absolute instability was given as 

approximately Rec = 695.97, which is almost 40% greater than the critical Reynolds 

number for the von Karman flow. Further details of the rotating-disk with a magnetic 

field will be given in chapter 5.

It was found that for a rotating-disk with a temperature-dependent viscosity, the 

flow becomes increasingly unstable for small positive increases in viscous variation. 

For a small viscous variation parameter e =  0.03 (e = 0  for von Karman flow), 

the critical Reynolds number for absolute instability was given as approximately 

Rec = 275.1, which is nearly half of the critical Reynolds number for the von Karman
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flow.

Pier (2003) has shown - using parallel flow calculations - that the experimentally 

observed sharp transition from a laminar to turbulent state, coincides with the onset 

of secondary instabilities of the primary absolute instability.

Using the result (found by Lingwood, 1995) that the rotating-disk boundary- 

layer is absolutely unstable in the inviscid limit, Healey (2004) was able to (using 

large-Reynolds-number asymptotic expansions) find the non-parallel correction terms 

on the upper branch of the absolutely unstable neutral curve. His study revealed 

that the non-parallel effects are destabilizing. Healey’s results also revealed that 

Lingwood’s family of saddle points were distinct from a second family of saddle points. 

Lingwood’s saddle points were only located along the upper branch of the neutral 

curve for absolute instability and below some finite Reynolds number. While the 

second family of saddle points was found to dominate for large Reynolds numbers. 

However, Lingwood’s family of saddle points on the lower branch of the absolutely 

unstable neutral curve were found to be the pinch-points. The wavelengths along the 

lower neutral curve increase with increasing Reynolds number. This prompted Healey 

(2005, 2006a,b) to consider a long-wave inviscid theory to study the convective and 

absolute instabilities of the rotating-disk.

Healey (2005, 2006a) was able to locate a new convective instability in the normal 

direction to the disk. While the usual convective instabilities in the downstream di

rection are characterized by spatial modes with complex numbers, the new convective 

instability in the normal direction is characterized by exponentially diverging eigen

functions, which are obtained by shifting sections of the branch-cuts in the complex 

wavenumber plane.

Using the inviscid long-wave theory, Healey (2006b) was able to study the lower 

branch of the absolutely unstable neutral curve. His study revealed that in the long

wave limit, the absolute instability is characterized by a wall-jet motion in the radial
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direction, which is superimposed with a small azimuthal crossflow component. The 

absolute instability is formed by the coalescence of eight saddle-points. The pinch- 

point for absolute instability was found to asymptote towards the imaginary axis 

of the complex wavenumber plane as wavelengths increased. Eventually, this led to 

modes crossing the imaginary axis.

For further details of Healey’s investigations the interested reader is referred to 

the above papers for further study.

2.2.4 S tab ility  theory

For the rotating-disk boundary-layer, the instantaneous non-dimensional radial, az

imuthal and normal velocities ur,u0,uz, and pressure p are given as

ur(r, 9, z, t) = ~ ^ F (Z) + Ur (r, 9, 2 , t), (2.3)

u0{r, 9, 2 , t) =  + u0{r, 9, 2 , f), (2.4)

u*(r, 9, 2 , t) = + uz(r, 9, 2 , t), (2.5)

p(r, 9, 2 , t) = P{z) + p(rt 9, 2 , £), (2 .6 )

where r, 0, 2  refer to the radial, azimuthal and normal coordinates. The undisturbed 

mean flow in the radial, azimuthal and normal directions are denoted by F,G ,H  and 

are solved in chapters 4, 5 and 6 ; refer to equations (4.6) - (4.9), (5.9) - (5.12) and 

(6.14) - (6.17). Here P  is the mean pressure and Re = r*A*5*/v* =  r*/5* = ra is

the Reynolds number for some radial position r*. Here 5* — (y*/ A*)^ is the constant

boundary-layer thickness, v* is the kinematic viscosity and A* is the angular velocity 

of the rotating-disk. (Here * denotes dimensional quantities). The terms ur,u0,uz,p  

refer to the velocity and pressure perturbations, which are defined as

(ur,ue,uz,p) =  (f{z),g(z),h(z),7r(z))exp[i(ar + pRe9 -  ut)], (2.7)
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where a,/3,u; refer to the radial wavenumber, azimuthal wavenumber and frequency, 

respectively. On substituting (2.3) - (2.6) into the cylindrical Navier-Stokes equations 

(2.1), the following system of equations can be obtained

i(aF + 0 G -  ui)f +  F'h +  iair =  ± -[ f"  -  A2/  - F J  + 2 (G +  l)g -  H f] ,  (2.8)
He

i(aF + (3G -  u>)g + G'h + if3n = j^ \g "  -  A2g -  Fg -  2(G +  1)/ -  He/], (2.9)

i(aF  + 0 G -  w)h + n '  = -^-[h" -  \ 2h -  H ti  -  H'h], (2.10)
Re

f  + i(3g + h ' = 0, (2-11)

where A2  =  a 2 +  (32. On eliminating 7r and ignoring terms of order R~2 and smaller, 

we obtain

[i(D2 -  X2){D2 -  A2) +  Re{aF + 0G -  u){D2 -  A2) -  Re{aF" +  (3G") 

- iH D (D 2 -  A2) -  iH \D 2 -  A2) -  iFD 2]h +  [2(G +  1 )D +  2G'}r} =  0, (2.12)

and

[2(G + 1  ) D -  iRe(aG’ -  0F')]h +  [i(D2 -  A2) +  Re{aF + 0 G - u ) -  iHD -iF]i) = 0,

(2.13)

where A2 =  aa  + /32, a  =  a — i/Re, g = ag — P f  and D =  d/dz. The parallel flow 

approximation has been assumed, where the radial dependence of the mean flow has 

been ignored. Therefore, we have assumed that r =  Re. Previous investigators have 

called upon the above system of equations to conduct studies on the rotating-disk 

boundary-layer (e.g. Malik et al, 1981; Malik, 1986; Lingwood, 1995, to name a few). 

The sixth-order system is solved subject to the boundary conditions

h(0) =  ti(0) = 7 7(0 ) =  0, (2.14)

and

h( oo) =  /i'(oo) =  7 7(0 0 ) =  0 . (2.15)
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If the Coriolis force and curvature effects are neglected, equations (2 .1 2 ) - (2.13) 

reduce to the fourth-order Orr-Sommerfeld equation

[i(D2 -  A2 ) 2  +  Re(aF + 0G -  w)(D2  -  A2) -  Re(aF" + f)G")\h =  0. (2.16)

If viscous terms are now neglected and /3 =  0, the above fourth-order equation reduces 

to the Rayleigh equation

(F -  c){h" -  a2h) -  F ”h = 0, (2.17)

where c =  u /a  is the group velocity.

A method for solving the above sixth-order system (2 .1 2 ) - (2.13) is given in the 

appendices, along with several results validating the code.

2.3 The rotating-cone and the rotating-sphere

The rotating-cone and rotating-sphere have been studied extensively, since they too 

exhibit the crossflow instability. Garrett &; Peake (2002, 2004, 2007) have shown 

that there exists a region of absolute instability within the rotating-sphere and the 

rotating-cone. The interested reader is referred to the above papers and Banks (1965, 

1976), Kobayashi (1981), Kobayashi &; Izumi (1983), Kobayashi (1994), Kobayashi, 

Kohama Sz Kurosawa (1983), Kohama &; Kobayashi (1983), Kohama (2000), Okamoto, 

Yagita & Kamijima (1976), Taniguchi, Kobayashi & Fukunishi (1998), Manohar 

(1967), Howarth (1951), Tien & Campbell (1963) and Reed & Saric (1989) for further 

details.

2.4 Rem ainder of thesis

The remainder of the thesis is as follows; chapter 3 briefly describes the velocity- 

vorticity formulation (in cartesian co-ordinates) and numerical methods (developed
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by Davies & Carpenter, 2001, 2003) used throughout the numerical simulation in

vestigations. The effects of mass transfer on the rotating-disk boundary-layer are 

considered in chapter 4 and the effects of introducing a uniform axial magnetic field 

to an electrically conducting fluid above a rotating-disk are discussed in chapter 5. 

The family of rotating boundary-layers - so-called BEK  family - are investigated 

in chapter 6 , where particular flows of interest are the Bodewadt, Ekman and von 

Karman boundary-layers. The global stability of the rotating-disk boundary-layer is 

discussed in chapter 7 and comparisons are made with the two-dimensional linearized 

Ginzburg-Landau equation in chapter 8 . Finally, the results are summarized and 

suggestions are made for future studies in chapter 9.



Chapter 3 

Formulation and numerical 
m ethods

3.1 Introduction

The velocity-vorticity formulation and numerical methods are discussed in depth by 

Davies & Carpenter (2001), but for ease of reading the methods are reviewed in the 

present chapter.

The remainder of the chapter is as follows; the velocity-vorticity formulation for 

the three-dimensional problem in cartesian co-ordinates is discussed; the primary and 

secondary variables are defined and calculated; integral operators are given to replace 

first and second-order derivatives; and finally the radial and temporal discretization 

is discussed.

3.2 V elocity-vorticity formulation

3.2.1 V orticity

The vorticity of a fluid is given by

w =  VAw, (3.1)

33
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where u is the velocity of the fluid. Therefore, for a two-dimensional flow u — 

[ux(x, y , t), uy(x , y, t), 0 ], the vorticity u  = (0 , 0 , a;) for

diiy dux
w =  & r -  a i r  (3-2)

While for a three-dimensional flow in cylindrical coordinates

u = [ur(r, 0 , z, £), u0(r, 0 , z, t), uz(r, 0 , z, t)],

lj = (3.3)

the vorticity is given by

1  f duz d(rug) 1  dur duz 1  f d(rug) dur 1

r \  39 dz y  dz dr ’ r \  dr 30 J

where r, 0  and 2  refer to the radial, azimuthal and normal directions.

3.2.2 T he vorticity  equation

The Euler equation is given as

$ub XMomentum: -7 = + (u.V)u = — V P  +  g, (3.4)
dt p —

Continuity: V.u =  0, (3.5)

where u is the velocity of the fluid, g is the direction of the gravitational acceleration,

P  is the fluid pressure and p is the fluid density.

By introducing the identity

G i.v )^  =  ( V A i ) A i + v  ^

equation (3.4) may be re-cast in the form

| + w A u  =  -V fl, (3.7)

where B  is a combination of the pressure and other external forces. On taking the 

curl of (3.7), we obtain

+  VA( wAu)  =  0. (3.8)
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In turn this may be given as

| f  + (a -V k  =  (u».V)a, (3.9)

or

| =  =  (uj.V)u, (3.10)

which is known as the vorticity equation.

The reader will notice that the pressure term has been eliminated from the vor

ticity equation. Indeed, equation (3.10) only depends on the velocity u and vorticity

uj, which as we know are related by equation (3.1).

A similar approach can be applied to the viscous Navier-Stokes equations

Momentum: +  (u.V)u = — V P  -f v V 2u, (3.11)
dt p

Continuity: V.u =  0, (3.12)

which after some manipulation gives the vorticity equation with viscous effects

D / .  i
=  (lj.V)u + v V u ,  (3.13)

Dt

where v is the kinematic viscosity.

3.2.3 Form ulation

The advantages of a velocity-vorticity formulation over a Navier-Stokes formulation 

have been reviewed by Fasel (1980), Speziale (1987) and Gatski (1991). As mentioned 

above, the main advantage of the velocity-vorticity method is that the pressure term 

has been removed, leaving only the velocity and vorticity fields.

Several investigators have conducted studies using the velocity-vorticity approach. 

In particular, Davies & Carpenter (2001) have described and developed a velocity- 

vorticity formulation, which has applications to many boundary-layer problems. The 

system of equations used in their formulation comprises of the vorticity equation
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(3.13) and a Poisson equation (obtained by taking the curl of equation (3.1)), which 

replaces the usual continuity equation (3.12). The Poisson equation is given by

V2u =  —V A lj. (3-14)

Governing equations

For a three-dimensional cartesian system, there are six unknown perturbation vari

ables, which are given as

U  —  ( U X , U y , U Z^,

UJ_ =  (uJx , LUy , UJZ ).

Davies &; Carpenter (2001) divide the unknown components into primary variables 

{ujx, ujy, uz] and secondary variables {ux, uy,u>z}. Here x ,y ,z  refer to the streamwise, 

spanwise and normal directions. The primary variables are determined by three 

equations, which consist of two vorticity equations for the ljx and ujv components and 

a third equation, which is obtained by taking the wall-normal component of equation

(3.14). The system of equations are

dux dNz dNy 1 _ 2

-dT + ^ - ^ 7  =  (3'15>
d^y dN£ _ d N ± J _ V 2 ,.
dt dz dx Re v’ ( )

__o dujx dujv
V u * = - d f ~ i > Z -  w

The convection term N  =  (Nx, Ny, Nz), may be either linear or non-linear. For a 

linear study, N  is given by

N  =  f iA u  +  wAU,  (3.18)

where U and Q = V x U are the undisturbed velocity and vorticity fields.

The remaining secondary variables, which are required to calculate the term N 

are given in terms of the primary variables, by the following integral definitions
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(3.19)

(3.20)

(3.21)

The first two integral definitions are obtained by integrating the appropriate terms 

in the definition (3.1). The third definition is given by integrating the solenoidal 

condition

The so-called secondary variables are given in terms of the primary variables only. 

Therefore, they can be removed from the vorticity equations. Hence, we have a system 

of three governing equations for the three unknown primary variables.

Integral constraints

For the Navier-Stokes equations, the boundary conditions on the velocity components 

at a flat rigid wall are given by the no-slip condition

However, for the velocity-vorticity formulation, Davies & Carpenter (2001) have in

troduced integral constraints on the vorticity terms ux and ujy. These constraints are 

obtained from the secondary definitions (3.19) and (3.20), and are given as

These two expressions are equivalent to the no-slip conditions for ux and uy and are 

used as constraints on the primary variables ujx, uiy.

V.u; =  0. (3.22)

ux = uy = uz = 0 , at z = 0 . (3.23)

(3.25)

(3.24)
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Davies & Carpenter (2003) have successfully applied the above velocity-vorticity 

formulation to the rotating-disk boundary-layer. For further details of their study, 

refer to chapter 2 .

3.3 Num erical m ethod

3.3.1 Prim ary, secondary variables and integral constraints 
Primary variables

The perturbation terms (cux,cuy, uz) are chosen to be our primary variables, which are 

expanded in terms of odd Chebyshev polynomials

where T* is the A;th Chebyshev polynomial of the first kind and £e(0,1] is the mapped 

wall normal coordinate, defined as

where L is a stretching factor. The Chebyshev expansion (3.26) has been restricted

It is assumed that disturbances decay exponentially as z —► oo. Therefore, the 

primary variables vanish as £ —► 0. If our primary variable g is of the form g ~  e~sz 

as 2 : —> oo for s > 0 , then all derivatives disappear as z —> oo.

(3.26)

to an individual spanwise mode number ($. Derivatives with respect to the physical 

coordinate z are related to derivatives with respect to the computational coordinate 

$ by

(3.28)
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Secondary variables

The so called secondary variables (ux, uy, cuz) are defined in terms of even Chebyshev 

polynomials

f ( x ,y , z , t )  =  j i / o ( r , i )  +  f > ( * ,  t)T21fc(£) | e ^ ,  (3.29)

where
N

f 0(r, t) = - 2 ^  f k(x , i ) ( - l ) fc- (3-30)
k=l

This ensures that the secondary variables disappear as 2  —► 0 0 .

The secondary variables are defined in terms of the primary variables (equations

(3.19) - (3.21)). They are of the general form

/ / oo

g dz, (3.31)

where /  is the secondary variable and g is a combination of primary variables. After 

applying the coordinate mapping transformation (3.27) (which maps the semi-infinite 

domain [0 , 0 0 ) to the finite interval (0 , £]), we obtain the expression

s = L f 0 i 2<* '  ( 3 - 3 2 )

By letting
0 0  0 0

9 — y^fffc?2 fc-i(£), h = hkT2k- 1(0> (3.33)
k= 1 * k= 1

and using

£2 ^ 2 fc-i — ^(T2 fc+i +  2T2k-i +  T2k- 3 ), (3.34)

the following expression may be obtained

Since

gk — ^{hk-i +  2/ifc +  hk+1 ). (3.35)

f t  1 1
I  h =  4  T ,  k {hk ~ h*+i)(T» (f)  -  T^(0)), (3.36)
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we may let oo

/  =  E / * ( T“ ( f ) - T2 *(°))’ <3-37)
fc=i

for

fk = ^ ( h k - h k+1). (3.38)

Thus, after some manipulation we can obtain

(A; +  1)/*h-i + 2kfk + (k — l)/jb-i =  + 2/ifc +  /iA;+i — (/ifc +  2/ifc+i+  /ijt+2 ))- (3.39)

Now from the above expression (3.35), relating the coefficients of g and h, we may 

obtain the following relation between the original /  and g coefficients

(k -b l)/fc+i -b 2 kfk +  (k — l)/fc-i =  L(gk — gk+i)- (3.40)

This is the tri-diagonal relationship that is used for calculating the secondary variable 

Chebyshev coefficients (3.19) - (3.21). On combining the secondary variable defin

itions (3.19) - (3.21) with equation (3.40), the following tri-diagonal relations are 

obtained

{k "b l)U®,fc+l +  2kux>k (k l)u.Xjfc_l =  Z/̂ £*7ytfc LOŷ + 1  “b

{k “b l)̂ j/,fc-|-l ~b 2 kUytk ~b (& F)Uy^—\ =  UJx,k+ 1 ~Q̂{v>z,k ^z,/c+l) ̂

{
d ^ n
~(hJx,k  ^ x ,f c + l)  *b 'o ^ (UJy,k ^ y ,k + 1) j  ■

The secondary variables are only required for calculating the convective term 

N (equation (3.18)) in the vorticity equations, which is treated explicitly, using a 

predictor-corrector method, in the time marching procedure.

Integral constraints

The integral constraints (3.24) - (3.25) are of the general form
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which may be re-cast in the form

N

f\z—0 — ^  ^Pk9k• (3.42)
k=l

Here pk are fixed constants, which may be calculated by a similar method as that 

given for the secondary variables. We will now describe the method for calculating 

the unknown coefficients pk-

The relation (3.40) can be given as

A f  = LBg,

where L is the stretching parameter, /  and g are (N — 1) and N  vectors,

f  =  ( / l  2 /2  ••• k f k ■■■ (jV — ) ,

2r  =  (  Si S2 • •' 9h ■■■ 9n  )  1

and A  and B  are sparse (N — 1) x (N — 1) and (N — 1) x N  matrices,

I  2  1

(3.43)

(3.44)

(3.45)

A =

\
1  2

B  =

\
(  ! - 1

1  2  1  

1  2

(3.46)

1  - 1

V

1  - 1  

1  - 1

(3.47)

Here the superscript T  refers to the transpose of a matrix or vector.
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Now

where

Hence,

where

N - l

f  U  =  £ ^ T“ ( * ) - T“ (°))
k= 1

= X > ( i - ( - i ) ‘ ),

2 = 0

fc=l
/ V - l

=  ^ 2 / fcmod(A:,2),
fc=i 

-T= 2rr / ,  (3.48)

r r = ( l  0 1/3 0 1/5 ••• 1 / ( J V - 1 ) ) .  (3.49)

/U=o =  2LrTA~1Bg,

= PTg, (3.50)

p = 2LBT(A~1)Tr, (3.51)

is the vector of coefficients pk, as defined in equation (3.42).

The third boundary condition is of the general form

v =  0. (3.52)

This condition is far easier to discretize than the previous integral constraints, and is 

given as
N

Y .  qkVk =  0, (3.53)
fc=l

where qk = T2 fc_i(l) =  1.



Chapter 3. Formulation and numerical methods 43

3.3.2 C hebyshev integral operators

As we are investigating the velocity-vorticity problem, there will only be first and 

second order derivatives (with respect to z) present in the governing equations (3.15) 

- (3.17). In order to remove these ^-derivative operators, the equations are integrated 

twice with respect to the mapped variable £. Thus, the following ^-integral operators 

are obtained

V({) = f f  /(£")#<*«", (3-54)

J / ( 0  =  z ( 2 f  f  « 7 (0 # '< * f"  ~ f  «'2/ ( ? 'K ' ) , (3.55)

Km  =  ^  U 4f ( 0  -  6 J *  e m ' W  + 6 /  /  . (3.56)

The integral operators are those given in Davies & Carpenter (2001); page 141. The 

integral operator I replaces the zeroth order ^-derivatives; J  replaces the first order 

^-derivatives; and K replaces the second order ^-derivatives. The terms -j- and -p in 

equation (3.55) and (3.56), arise, due to the coordinate transformation (3.27).

The integral operators can be represented as tri-diagonal, penta-diagonal or band

width four matrices, when they are applied to the appropriate Chebyshev series. 

When the integral I is applied to a series of odd Chebyshev polynomials, we obtain 

the following tri-diagonal matrix

1 ^  ^kT2k- 1 =  aT° +  bTl +  I T  8 ( (2 *  — l)(fc — 1) ~  k(k -  1) +  k(2k -  l ) ) T2k~1'
(3.57)

where a and b are arbitrary integral constants that arise due to the double indefinite 

integral. Similarly, we may obtain a matrix with a bandwidth of four, when J  acts on 

a series of even Chebyshev polynomials, and a penta-diagonal matrix when K acts
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on a series of odd Chebyshev polynomials

N  N + 1

=  aT0 + bT1 + ' £
k=1 +  SL(2k — 1)

k=2
L(fc-i)

r i i 1 r i i
,i + _̂

f k - l  +
i 1  ( f c - i ) J

f k  +
,i + ^.

N  N + 1 1

K ^  f k ^ k - i  = (FTq +  M"i +  ^  —
fc=i k—2

16L2
1  - +

+

+

+

1  -  

4 + 

1 +

12
+(2k — 1 ) k(k — l)(2k — 1 )_ 

12 3
(2k -  1 ) ”  k(k — l)(2k — 1 ) 

6  3

(2A: — 1 ) (k -  l)(2k -  1 ) 

f k - l  +  

f k + l

f k —2 

f k + i

f k —2 

f kk ( k -  1 )_

+ f k + 2  ) T 2k - l - (3.59)
(2A; — 1) k ( 2k - l ) _

On substituting the odd Chebyshev series (3.26) for the primary variables into the 

given integrated governing equations and then matching the coefficients of T2k-\ for 

k = 1,2,..., N, we obtain a system of m (N  — 1) partial differential equations, for m N  

unknown primary variables. (Here m  is the number of governing equations or primary 

variables: m =  3 for the rotating-disk boundary-layer formulation). The remaining 

m equations are given by the boundary conditions, which replace the m equations 

that would have been obtained from the coefficients of the lowest order polynomial 

T\. This gives a system of m N  partial differential equations for the m N  unknown 

primary variables.
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3.3.3 R adial and tem poral d iscretization  and a predictor- 
corrector m ethod

Radial discretization

Radial derivatives are discretized using a compact, fourth-order, centered, finite- 

difference method, which are of the general form

2{ a  +  2) f  f lk,j+1 -  f k j - 1 ^  +  4 a  -  1 /  f l j + 2  ~  f k j - 2 \  ^  ^
2 Ar J 3 V 4Ar

and

4(1 -  0) f  fLj+i ~ 2f kj  + f k j - i \  10/3 -  1  f  f ‘kj+2 -  2f kj  + f l j - 2  \  / ,  fil,
~ T ~ \ ---------( S o 5  )  + ~ T ~ \ ----------4 ( S ^ ---------)■ (3'61)

Here a  and (3 may be chosen freely and

fk j  == fk\r=jAr,t=lAti (3.62)

where Ar and At are the radial and temporal increments. As in the study by Davies 

h  Carpenter (2001), a  and f3 are given the respective values 1/4 and 1/10, which 

removes the last terms on the right-hand-side of equations (3.60) and (3.61).

Time discretization and the predictor-corrector method

We define

/ '  =  /|t=iAt, (3.63)

which allows the three-point backward difference scheme to be given as

%  =  4 ( 3 / , - 4 / ' "1 + / , ~2) -  <3-64>
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The time-stepping is carried out using a predictor-corrector method for the con

vective terms in the governing equations (3.15) - (3.17). The viscous terms in (3.15) - 

(3.16) are treated implicitly, as is the Poisson equation (3.17). The remaining Coriolis 

force terms, (which appear in the governing equations for the rotating-disk boundary- 

layer; refer to chapter 4, equations (3.15) - (3.16)) can be treated either implicitly 

or by applying the predictor-corrector method. (The predictor-corrector method has 

been used here for the Coriolis force terms). In chapter 5, which is concerned with 

the rotating-disk and a uniform magnetic field, the terms which arise because of the 

Lorentz force are treated using the predictor-corrector method.

The predictor step is given as

(JV,)p = 21V'-1 -  1V'~2

=  2 (!) A u '" 1 +  u 1- 1 A U ) -  ( f i  A m' - !  + u ' - ! A U ) , (3.65)

for a corrector stage

(n 'y  =  N((u‘y ,  (u>')p)

=  f t A f u ' f + l w ' f A U ) ,  (3.66)

where (u )p and (uil)p are the predicted disturbance velocity and viscosity fields, re- 

spectively. Here U and fi are the undisturbed velocity and vorticity fields.

The finite-difference discretization methods described above can be used to replace 

the temporal and radial derivatives, to give a fully discretized version of the governing 

equations (3.15) - (3.17). The m N  equations consist of m  subsets of N  equations, 

where the first equation in each subset N  is the appropriate boundary condition, 

while the remaining N  — 1 equations are given by the integrated governing equations. 

The fully integrated governing equations are now ready to be solved.

The interested reader is referred to Davies & Carpenter (2001) for further details 

of the numerical methods used here, and other alternative methods for solving the 

given system of equations.
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3.4 Final remarks

The above numerical methods have been successfully applied by Davies & Carpenter 

(2003) to the rotating-disk boundary-layer for parallel and non-parallel mean flows. 

Using the same methods we will now study several other rotating flows;

1 . rotating-disk with mass transfer;

2 . rotating-disk with a magnetic field;

3. Ekman and Bodewadt flows - so called BEK  family.

Essentially the same numerical methods have also been applied to the two-dimensional 

boundary-layer over a flat plate; Davies k, Carpenter (1997a,b).



Chapter 4 

The rotating-disk boundary-layer 
w ith mass transfer

4.1 Introduction

There are many methods and appliances used in fluid mechanics and industry to 

reduce unstable behaviour or delay the onset of transition from a laminar to turbulent 

state. One stabilizing method is to introduce a uniform normal flow of suction. 

Suction has the effect of stabilizing a boundary-layer flow, and in some cases only a 

small level of suction is required to greatly increase the critical point of instability. 

Blowing or injection has the opposite effect and is known to be destabilizing.

It was first noted by Batchelor (1951) that the ordinary differential equations 

found using the von Karman (1921) similarity variables, can be extended to rotating- 

disk flows with a uniform normal flow at the disk surface, (i.e. uniform suction and 

injection). Hall, Malik &; Poll (1984) have theoretically shown that suction has a 

stabilizing effect on the leading edge of the swept-wing. Uniform suction was found 

to extend the laminar flow region, by reducing the magnitude of the crossflow ve

locity and by decreasing the thickness of the boundary-layer. Thus, the crossflow 

velocity profile is stabilized. Therefore, it should be possible to apply suction to 

the rotating-disk boundary-layer and achieve significant delays in instabilities and

48
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transition to turbulence. However, it was shown by Stuart (1954) that there is no 

significant change in the shape of the mean velocity profiles with uniform suction. 

Thus, it might have been anticipated that suction would not significantly increase 

the region of laminar flow. Nonetheless, an experiment on the effects of suction on 

the rotating-disk by Gregory &; Walker (1960), showed that the critical Reynolds 

number for instability and turbulence increased greatly with increasing uniform suc

tion. The experiment consisted of a microphone probe and a hotfilm anemometer 

with suction distributed through either a woven wire cloth or a slitted surface. They 

found the critical Reynolds numbers to be dependent on the angular velocity of the 

disk, because of roughnesses on the disk surface. For the flow with a slitted surface, 

the effects were less dependent on the angular velocity and the Reynolds number, 

since the onset of turbulence was found to increase to approximately Re =  632 for 

the suction parameter a  =  0.4. Here a  is a negative constant for injection and a pos

itive constant for suction. For suction slots, it was found that 75% more suction was 

required to achieve a given level of stability than that was predicted by stability the

ory (Dhanak, 1992; Lingwood, 1997a). Possible reasons for this were the deficiencies 

of the experimental apparatus available at the time, such as surface roughness of the 

rotating-disk and non-uniformity of suction. In the experiment (where suction was 

distributed through slots) by Gregory & Walker (1960), the maximum stabilization 

occurred for a relatively low suction rate. While for larger suction rates the onset of 

transition decreased and then increased again for greater values of the suction para

meter a. It was suggested that due to the reduction in the mean flow radial velocity 

profiles for higher rates of suction, turbulent contamination was allowed to spread 

inwards from the outer edge of the disk. This effect was called ’self-contamination’ 

(Gregory & Walker, 1960).

Since Gregory & Walker (1960) were unable to extend the laminar flow region to 

values corresponding to flight conditions on a swept-wing, they concluded that the
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rotating-disk boundary-layer is not a satisfactory tool for investigating the effects of 

suction on the crossflow instability, nor the testing of suction surfaces.

The effects of mass transfer at the surface of the rotating-disk on heat transfer and 

on the flow field about the disk were investigated in detail by Sparrow Gregg (1960). 

Solutions to their governing equations were obtained over a wide range of suction and 

injection velocities. They obtained results for the velocity, temperature, mass-fraction 

distributions and the heat-transfer, mass-transfer and torque requirements. Sparrow 

&; Gregg (1960) also showed that fluid injection sharply decreases the heat transfer 

at the surface. Thus, injection is useful in cooling turbine blades and high-speed 

aero-vehicles.

A number of researchers have used asymptotic methods to find solutions to the 

flows with suction/injection. By such methods Ockendon (1972) found an approx

imate solution to the problem where the suction parameter a  is small. In Kuiken 

(1971) a study was conducted on the effects of normal blowing/injection through the 

rotating-disk. It was found that for strong blowing, the flow is almost completely in- 

viscid. Kuiken (1971) also compares results of an asymptotic analysis with numerical 

integrations of the full equations and they are found to agree.

Dhanak (1992) studied the effects of suction on the stationary convectively un

stable Types-1 and -2 modes in the rotating disk boundary-layer. Linear stability 

theory was employed. The Type-1 mode is the inviscid crossflow instability and was 

originally discovered by Gray (1952) in his experimental study on the flow over a 

swept wing. Gregory et al. (1955) conducted an experimental investigation on the 

von Karman flow and gave evidence for the presence of the crossflow instability within 

the rotating-disk boundary-layer. The Type-2 mode is essentially viscous and is desta

bilized by the Coriolis forces present within the rotating-disk boundary-layer. It was 

first discovered by Faller Sz Kaylor (1966) within the Ekman layer; Malik (1986) gave 

evidence for its presence within the von Karman flow. Other than the Type- 1  and
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- 2  modes, there also exists a third Type-3 mode that was first discovered by Mack 

(1985). The Type-3 mode is spatially damped and propagates radially inward. We 

will see later that the Type-1 and -3 eigen-modes coalesce to produce absolute insta

bility; Lingwood (1995, 1996, 1997a). In Dhanak (1992) uniform suction was shown 

to increase the critical Reynolds number associated with the Types-1 and -2 modes. 

The convectively unstable region of the parameter space was reduced. On the other 

hand, injection was found to lower the critical Reynolds number and to enlarge the 

convectively unstable region of the parameter space.

Bassom Sz Seddougui (1992) studied the effects of suction/injection on nonlinear 

disturbances. They found that suction lowers the threshold disturbance amplitude 

(disturbances smaller than this decay, while those larger grow without limit), while 

injection increases the threshold disturbance amplitude. Thus, they suggested that an 

experiment with suction would require smaller forcing, for non-linear growth to take 

hold, than the zero normal flow case, whereas injection would require a larger forcing 

for sub-critical stationary instability to occur. In the earlier experiment by Gregory 

& Walker (1960) the methods used to induce suction may have introduced severe 

roughness effects to the disk surface. Thus, it is likely that the surface roughness was 

causing instability and turbulence to occur earlier than what is theoretically possible. 

Therefore, future experimental investigators should be careful in limiting the surface 

roughness introduced through the uniformly distributed suction.

Wilson & Schryer (1978) numerically determined the viscous flow between two 

coaxial infinite disks, one stationary and the other rotating. The flow belongs to 

the two parameter family described by Batchelor (1951). The family represents a 

flow which is in rigid-body rotation, over each of the two planes, at a finite distance 

apart. Wilson Sz Schryer (1978) also investigated the effects of applying uniform 

suction through the disk. Initially, the two disks and fluid core are stationary. The 

angular velocity of the rotating-disk and amount of uniform suction is then gradually
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increased, to various constant values. For large Reynolds numbers the flow tends 

towards a state of equilibrium, in which thin boundary-layers exist near both disks 

and an interior core of fluid rotates with an approximately constant angular velocity. 

It was found that for zero suction the core rotation rate was about 0.3131 times that 

of the rotating-disk. Fluid near the disk is thrown centrifugally outwards. As the 

suction parameter a  is increased, the core rotation rate increases and the centrifugal 

outflow decreases. For a > 1.3494, the core rotation rate is greater than the disk 

rotation rate and the radial flow near the rotating-disk is directed inwards. This final 

case is similar to the Bodewadt flow, where a block of fluid rotates with constant 

angular velocity above a stationary disk. The radial flow is also directed towards the 

centre of the disk for the Bodewadt flow.

4.1.1 A bsolute instability

Lingwood (1997a) extended her work on the rotating-disk boundary-layer for ab

solute instability by studying flows with a constant normal flow through the disk 

wall. Uniform suction across the disk surface was found to delay the onset of ab

solute instability, while uniform injection promotes the onset of absolute instability. 

For the given injection/suction parameter a, it was found that for a  =  -1 (a < 0 

corresponds to uniform injection) the critical Reynolds number for absolute instabil

ity is approximately 2 0 2 , less than half that observed for the case with zero normal 

flow. Whereas for a  =  1 (a > 0 corresponds to uniform suction) the critical Reynolds 

number is approximately 1861, almost four times that observed for the case with 

zero normal flow. For the case a  =  0.4, absolute instability was found to arise for 

Re ~  803. The Reynolds number for the onset of turbulence observed by Gregory 

& Walker (1960) for this suction rate is about 80 percent of this Reynolds number. 

However, Lingwood proposed that the absolute instability may still be responsible
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for the onset of transition, if the limitations of the apparatus reduced the effective

ness of suction in stabilizing the flow. The effects on the stationary and travelling 

Types-1 and -2 modes were again investigated. The Type-1 stationary and travelling 

modes were found to be strongly stabilized and destabilized by suction and injection, 

respectively. The stationary Type-2 mode was also stabilized and destabilized by the 

respective suction and injection flows, while there was little effect on the travelling 

Type-2 mode.

In the present chapter the effect of injection and suction on the global mode 

behaviour corresponding to the absolute instability of the rotating-disk boundary- 

layer is investigated. The simulations are produced using the new velocity-vorticity 

formulation by Davies Sz Carpenter (2001). As discussed in chapter 2 , Davies Sz 

Carpenter (2003) have investigated the global mode behaviour corresponding to the 

absolute instability of the rotating-disk boundary-layer. Thus, the present chapter 

may be considered, amongst other things, as providing further justification for their 

conclusions.

For the cases of injection and suction considered, the parallel flow simulations 

produce behaviour that is in agreement with the theory of Lingwood (1997a). If the 

flow parameters lie within the theoretical absolutely unstable region, the simulations 

always exhibit equivalent behaviour. Likewise for convective instability. However, 

the non-parallel simulations produce quite different behaviour. The mean flows with 

injection produce similar behaviour to that observed in Davies Sz Carpenter (2003) 

for the case of zero normal flow. Initially disturbances within the absolutely unstable 

region exhibit temporal growth and upstream propagation. However, this does not 

persist and the study suggests that convective behaviour will eventually dominate 

at all Reynolds numbers investigated, in a similar way to that found in Davies Sz 

Carpenter (2003). On the other hand a mean flow with uniform suction is found
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to be destabilized by non-parallel flow effects. Disturbances excited within the ab

solutely unstable region appear to exhibit an increasing temporal growth and radial 

inward propagation. The study suggests that for cases with sufficiently strong suction, 

temporal growth and globally unstable behaviour will eventually dominate the flow. 

On comparing the temporal growth rates for each flow, the study suggests that the 

growth rates increase with increasing suction. The present investigation was recently 

discussed by Davies Sz Thomas (2005).

The remainder of this chapter is outlined as follows; in section 4.2 the mean 

flow equations and the velocity-vorticity formulation (in cylindrical co-ordinates) by 

Davies Sz Carpenter (2001) are discussed. The next section contains results for four 

cases of uniform axial flow, and their growth rates are compared. The cases inves

tigated are for the normal flow parameter a =  ±1 and a  =  ±0.5. Where positive a 

corresponds to suction and negative a  corresponds to injection. Finally conclusions 

are given in section 4.5.

4.2 R otating-disk theory

4.2.1 T he m ean flow

The disk is taken to be infinite in diameter, rotating at a constant angular velocity A* 

about the vertical axis that passes through the centre of the disk. Cylindrical polar 

co-ordinates are used where r* is the radial distance from the vertical axis of rotation, 

0* is the azimuthal angle and z* is the normal component. The domain above the disk 

is taken to be infinite, 2 * > 0. The momentum and continuity equations in cylindrical 

polar coordinates are given as
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(4.3)

r * Q r * r * QQ* Q z *

i  d { r * m )  i  d m  d u ;  n
 o  H 7 ^ r  +  = 0 (4.4)

where U* =  (£/*, Uq, U*), which refers to the mean radial, azimuthal and normal 

velocities, respectively. Here P* denotes the mean pressure and p* the fluid density. 

(Here * denotes dimensional quantities).

The mean velocity profiles are found using the von Karman (1921) exact similarity 

solution to the Navier-Stokes equations. The dimensionless similarity variables are 

defined as

where F, G, H are the non-dimensional radial, azimuthal and normal mean flow 

velocities, and P is the non-dimensional pressure. Here i/* is the kinematic viscosity

constant boundary-layer thickness, providing the non-dimensionalization of distances. 

On substituting equation (4.5) into the Navier-Stokes equations (4.1) - (4.4), the 

following non-dimensional mean flow equations are obtained

where the prime denotes differentiation with respect to the normal component z. 

Equations (4.6) - (4.9) are solved subject to the boundary conditions

and z = z*/ 6* is the non-dimensional normal direction, where 5* = (y*/ A*) 2 is the

F 2 +  F'H  -  (G +  l ) 2  =  F", (4.6)

2F(G +1) + G'H = G", (4.7)

P1 + H 'H = H", (4.8)

2 F  + H' = 0, (4.9)

F(0) =  G(0) =  P ( 0 ) = 0 ,  H(0) = -F L  = -a , (4.10)
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F(z —> oo) =  0, G{z -» oo) =  - 1 , (4.11)

where a  is a positive constant for suction through the disk and is negative for injection, 

and Hq is the constant dimensional velocity at the disk surface.

We can take the non-dimensional undisturbed flow to be

U (r , 2 ) = ( ^ F W i ^ G W , ^ )) ,  (4.12)

where Re, the Reynolds number is defined as

Re =  r*A*8*/v* =  r*J5* =  ra> (4.13)

for some radial position r*. The non-dimensionalized velocity, pressure and time

scales are r*A*, p*r*2A* 2  and 5*/(A*r*), respectively. Also, the non-dimensionalized

rotation rate is equal to 1/Re. Therefore, when working in a frame of reference that 

rotates with the disk,
1 1  /

~ R e ~ V a' (414)
which is required for the Coriolis terms included in the velocity transport equations, 

which are to be discussed later in the chapter.

4.2.2 Solving the m ean flow equations

The ordinary differential equations (4.6) - (4.11) were solved using the programming 

language Matlab, which evaluates the numerical solution using collocation methods. 

(Refer to the appendix for a detailed account of the code used). The collocation 

points were selected using

ft?) = c°sV * ’ (4-15)

for j  = 1 ,2 ,3...N  and N =  48, for a co-ordinate transformation

L
z  +  Vf  =  7T T - (4-16)
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which maps the semi-infinite physical domain ze[0, oo) onto the finite computational 

domain £e(0,1]. The parameter L is a stretching factor and is chosen to take the 

value 4 for the present thesis. Equation (4.15) ensures that the majority of collocation 

points are selected near the disk surface, which is where most of the variations in the 

mean flow profiles occur. The physical limit z —> oo corresponds to the limit £ —> 0 

in the computational domain.

Figure 4.1 displays plots of the mean velocity profiles for the rotating-disk flow 

for a = -1, 0 and 1. In all three cases the radial velocity profile is inflectional. Values 

for F ', G' at z = 0 and H  as z —► oo are given to eight decimal places in table 1 for 

varying a. On comparing with previous results (Dhanak, 1992; Lingwood, 1997a), 

the tabulated results agree. Further, it can be shown that H (z  —> oo) -+■ a —► 0 as 

a —> oo, and |H(z —> oo) -t- a| —> oo as a —> —oo.

a F'( 0) G'( 0) H  (oo)
-1.0
-1.0

0.48948122
0.48948

-0.30217350
-0.30217

-0.76070553
-0.76071

I 
1

o 
p 0.51456629

0.51457
-0.43643199
-0.43643

-0.80720514
-0.80721

0.0
0.0
0.0

0.51023262
0.5102326
0.51023

-0.61592206
-0.6159220
-0.61592

-0.88447339
-0.8844705
-0.88447

0.5
0.5
0.5

0.46688002
0.4668800
0.46688

-0.85519306
-0.8551930
-0.85519

-1.02129449
-1.021294
-1.0213

1.0
1.0
1.0

0.38956627
0.3895662
0.38957

-1.17522077
-1.175221
-1.1752

-1.26055309
-1.260553
-1.2606

Table 4.1: Values of Fr, G' at z = 0 and H at infinity for various values of a.. Results: 
roman - present thesis; italics - Dhanak (1992); bold - Lingwood (1997a).

It can be seen from figure 4.1 and table 4.1 that when injection is applied to the
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R a d i a l  m a a n  f l o w  p r o f i l e s

A z i m u t h a l  m a a n  f l o w  p r o f i l a s

N o r m a l  m a a n  f l o w  p r o f i l e *

z

Figure 4.1: The mean flow velocity profiles for the radial (F), azimuthal (G) and 
normal (H) components for the von Karman flow over a rotating-disk with a = 0, 
(dotted lines), a  = 1, (solid lines) and a =  -1, (dashed lines).
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rotating-disk the maximum magnitude of the radial velocity profile increases. Thus, 

the three-dimensionality of the boundary-layer is enhanced, while the magnitude of 

the normal flow at infinity decreases. The opposite is true for suction; the maximum 

magnitude of the radial velocity profile decreases, but the magnitude of the normal 

flow at infinity increases.

4.2.3 V elocity-vorticity  form ulation

A detailed account of the velocity formulation is given in Davies & Carpenter (2001). 

Thus, we only give a brief outline here.

For the rotating-disk, the total velocity and vorticity fields are given as

f/ =  U + u, 0  =  +  (4-17)

where U and f2 are the undisturbed velocity and vorticity fields, while the velocity

and vorticity perturbation variables may be represented as

u - ( u r,ue,uz), (il= (wr,W0 ,Vz), (4-18)

where the subscripts r, 0 and z  refer to the radial, azimuthal and normal directions,

respectively. Then on taking the primary variables to be the components { u ; r , l j q , u z }, 

the Navier-Stokes equations are fully equivalent to the following set of governing 

equations for the perturbation variables,

^  + _  2a A*  +  — )  = ( v 2 - - V r - - — )  (4 19)
d t  r  99  d z  \ e d r  J  R e \ \  r 2J  T r 2 99  J ’  ̂ '

^ ^  ®  + -  S )  = i ( ( ^  -  + I t ) .  <«»)

where
a2/  , 1 9 /  n2 t i 92}
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and

N =  (Nr, Ne, Nz) = ft x u + u x U  + tux u. (4.22)

For the linearized case, where the u x u  has been dropped

Nr : ~ ( -2 G it0  +  Hu>o -  rGu>z),Re

No : -^-(rG'uz -f- 2Gur — H ur + rFujz), 
Re

Nz : -=r-(—G'u0 — F'ur +  G(jjr ~ Fuo), Re

(4.23)

(4.24)

(4.25)

rF"uz+ F'inuo+ Gujr+rG

Here U is the non-dimensional undisturbed base flow (4.12) and the factor A 

represents the non-dimensional angular velocity (4.14). The last terms on the left 

hand side of (4.19) and (4.20) are the Coriolis terms, which arise for rotating systems. 

(The most well known application of the Coriolis force is for the atmospheric flow of 

air across the Earth). The convective quantity N defined in equation (4.22) can only 

be evaluated if the remaining components {ur,uo,u>z} are known. These so called 

secondary variables are defined in terms of the primary variables as follows

4.2 .4  L inearization and integral constraints

For the linearized simulations, the non-linear term u  x u in the convective equation 

(4.22) is ignored. (This is because the governing equations have been linearized, since 

we are only interested in disturbances with small amplitudes). This linearization

(4.27)

(4.29)

(4.28)
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then allows the problem to become separable with respect to the azimuthal direction. 

Thus, modes of the following form can be considered

u =  (ur, ue, uz)e'nS, UJ = diz)e,n0, (4.30)

where ur, etc. are functions only of r, z and t, and n — (3Re is the azimuthal mode 

number. Here (3 is the azimuthal wavenumber used by Malik (1986); Lingwood (1995, 

1997a), among others. Due to the circumferential periodicity of the disk, the az

imuthal mode number n can only take integer values.

For parallel flows it is necessary to ignore variations in the Reynolds number with 

radius. This so called parallel-flow approximation involves replacing the radial vari

able r, which appears in the linearized governing equations with the Reynolds number 

Re. For non-parallel flows, the radius r is unchanged, i.e. it is not approximated by 

such methods.

The linearization also allows the governing equations (4.19) - (4.21) to admit 

solutions of the form

where a and lj are the spatial wavenumber and local temporal frequency, respectively. 

Here to Re is the non-dimensional global frequency, that is used throughout the current 

study. Further details of the global non-dimensionalization are available in Davies, 

Thomas & Carpenter (2007) and are discussed in chapter 7.

We introduce a non-dimensional vertical wall displacement rj = 7 7(r, 0, t), which 

is used to generate disturbances at the disk surface. The linearization permits the 

no-slip conditions and the wall-normal zero-displacement conditions to become

/  ~  exp{i(ar — ujRet)}, (4.31)
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On substituting equations (4.32) and (4.33) into the definitions (4.27) and (4.28) for 

the secondary variables ur , u#, we obtain the following integral constraints on the 

primary variables, which replace the no-slip conditions (4.32) and (4.33)

( 4 - 3 5 )

H u r d z  = ~ G ,(0)ri +  f°°  — dz . (4.36)
Jo R e Jo r

Equation (4.34) acts as the third constraint on the primary variables. Also, the 

assumed azimuthal mode structure has been used to replace partial derivatives with 

respect to 9 by the factor in, where n is as before.

The numerical methods adopted for discretization of the governing equations are 

discussed in detail in Davies Sz Carpenter (2001) and briefly mentioned in Davies Sz 

Carpenter (2003); refer to chapter 3. A finite-difference scheme is used for discretiza

tion in the radial direction, a Chebyshev spectral scheme is used in the wall-normal 

direction and a Fourier spectral scheme is implemented in the azimuthal direction.

As outlined in Davies Sz Carpenter (2003), great care had to be taken when dealing 

with the radial inflow and outflow boundaries. Davies Sz Carpenter (2001) describe a 

number of methods for dealing with these boundary conditions. In the following study, 

all primary variable perturbation quantities were set equal to zero at the radial inflow 

boundary. For the radial outflow boundary, we always ensured that it was located 

well ahead of any disturbance of sufficiently large magnitude, to ensure that spurious 

effects were not introduced. Since we are primarily investigating absolute instability 

and the possibility of a global instability, the introduction of spurious effects had to 

be carefully assessed. Thus, it was important to ensure that the computational radial 

domain was sufficiently large, so as to avoid such effects.

In order to ensure that the results (that follow) are accurately justified, the sim

ulations were repeated a number of times for varying computational radial domains.
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In all cases investigated, the results corresponding to different radial domains were in 

agreement. Further details are given in the appendices.

4.3 R esults

In all simulations, we considered the development of disturbances that were excited 

by an impulsive wall motion. The wall displacement 77 is taken to be of the form

r)(r, 9 z) = a(r — re)b(t)eind, (4-37)

with the temporal impulse given by

b(t) = { l - e - ai2)e-at\  (4.38)

where the parameter a fixes the duration of the impulse, which is chosen large enough, 

so that a wide range of temporal frequencies are initially excited.

The cases of uniform normal flow through the disk wall, considered, were for a =  0, 

±0.5 and ±1. (Note: a  negative corresponds to injection and a positive corresponds 

to suction). As mentioned in Davies & Carpenter (2003), numerical simulations can 

be performed using the parallel-flow approximation (spatially homogeneous) or with 

the genuine non-parallel mean flow (spatially inhomogeneous). Table 4.2 gives the 

critical values for the onset of absolute instability for various values of a, using the 

parallel flow approximation. Here Rec is the Reynolds number, j3c is the azimuthal 

wavenumber, nc is the integer-valued azimuthal mode number (for Lingwood’s results, 

nc has been rounded to the nearest integer), ac is the complex radial wavenumber and 

ujc and u)cRec are the complex temporal frequencies for critical absolute instability. 

(The values given in italics refer to those found by Lingwood, 1997a, and correspond 

to table III in her paper). These critical values were used to verify the results for the 

parallel flow simulations. The values in bold correspond to the results found from the 

numerical simulations.
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The Reynolds number and azimuthal mode number, in the numerical simulations, 

were prescribed to the nearest integer, so as to avoid excessive parametric studies. 

Nonetheless, the numerical simulation results are consistent with those given by Ling

wood (1997a). The reader may have some doubts to the accuracy of the simulation 

results, but as we will discuss in the appendices, the temporal frequency and radial 

wavenumber do not vary significantly over small variations in the Reynolds number 

and the azimuthal mode number.

Davies & Carpenter (2003) studied the frequencies and growth rates for the case 

with zero normal flow, by considering the complex-valued quantity

i dA
w = a  W  (4'39)

where A is taken to be a measure of the disturbance amplitude at all radial locations 

and points in time. The azimuthal vorticity ujq,w was chosen for A. If the complex 

quantity w, does not vary too rapidly in either the radial direction or time, its real 

and imaginary parts may be interpreted as being, the local temporal frequency and 

local temporal growth rate, respectively. Here we have assumed that there is only one 

significant mode of disturbance, at all specified radial locations and points in time. 

If there were several different discrete modes, which were superimposed, it would not

be possible to identify the temporal frequency and growth rate, from the real and

imaginary parts of complex u.

Similarly, the spatial wavenumbers are calculated using the complex-valued ex

pression
id A  , x

a  = ~ A t e -  (440)

Here A is again taken to be a measure of the disturbance amplitude at all radial 

locations and points in time. The azimuthal vorticity ujq%w was chosen for A.

A  central difference scheme was used to calculate the derivative on the right hand 

side of equation (4.39) and further details may be found in the appendices. (Note:
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other difference schemes were also implemented and used to calculate the frequen

cies/growth rates, i.e. three-point backward difference. The results obtained by these 

other methods were always identical, to a certain number of decimal places, to those 

calculated using the central difference scheme).

The complex temporal frequencies (given in table 4.2) were calculated at the radial 

location of excitation r = re. The temporal frequency at this position, was constant 

at all points in time, after the initial transient phase. (The initial transient phase was 

caused by the initial excitation of several frequencies. Eventually, all but one mode 

dissipates, leaving the one dominant mode to be observed). The temporal frequency 

at all other radial locations was found to converge to the frequency at r = re. Similar 

behaviour was found for the temporal growth rates. Eventually all growth rates, at all 

radial positions, approached a constant value. For the critical absolute frequency u>c 

(in table 4.2), the temporal growth rates were found to asymptote to approximately 

zero. Such behaviour is consistent with critical absolute instability. To three decimal 

places, the temporal frequencies ujc are identical to those given by Lingwood (1997a).

The complex radial wavenumbers ac took longer to converge (than the temporal 

frequencies). However, the radial wavenumbers ac were found to be consistent with 

the results of Lingwood (1997a), to within two decimal places in most cases.

The critical azimuthal mode number nc has been rounded to the nearest integer 

value, which is required to satisfy the circumferential periodicity of the problem. 

To ensure that the azimuthal mode number nc is the same for all simulations, the 

azimuthal wavenumber (3 must be changed accordingly. For example: if n =  50, then 

for Re =  300 and Re = 400, (3 =  0.166 and (3 = 0.125, respectively. From table 4.2 it 

may be noted that as the parameter a  is increased from - 1  to 1 , the azimuthal mode 

number nc = (3cRec increases. The frequency ujcRec also increases with increasing a.

Further validation checks are given in the appendices, for the critical stationary 

and travelling convective disturbances. The reader will notice that these are also in
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a Rec Pc nc Wc otc ujc Re^
-1.0
- 1 . 0

201.54
2 0 2

0 .1 4 2 4 29
29

-0.03622
-0.03587

0.1735- iO.1166 
0.1767 - i0.1131

-7.300
-7.245

-0.5
-0.5

309.71
310

0.1398 43
43

-0.03550
-0.03530

0.1903 - iO.1197 
0.1919 - i0.1157

-10.995
-10.943

0.0
0 . 0

507.30
508

0.1348 68
6 8

-0.03485
-0.03435

0.2173 - W.1216 
0.2192 - i0.1153

-17.679
-17.451

0.5
0.5

911.54
912

0.1235 113
113

-0.03261
-0.03256

0.2637 - iO.1228 
0.2634 - i0.1173

-29.725
-29.695

1.0
1 . 0

1860.82
1861

0.1044 1 9 4

194
-0.02796
-0.02786

0.3420 - iO.1300 
0.3380 - i0.1198

-52.029
-51.847

Table 4.2: Critical values for the onset of absolute instability as found by Lingwood 
(1997a) - italics. (Table corresponds to table III in Lingwood (1997a)). The values 
in bold correspond to the values found here.

excellent agreement with the values given by previous authors.

4.3.1 T he von Karm an flow, a =  0

The case a  =  0, which corresponds to the rotating-disk without either suction or 

injection has already been investigated in detail by Davies & Carpenter (2003). The 

critical Reynolds number for absolute instability is Re = 507.3 for an azimuthal mode 

number n = 6 8 ; Lingwood (1997a). The interested reader should refer to the above 

papers for further results and conclusions on the global mode behaviour corresponding 

to the absolute instability of the rotating-disk boundary-layer (or refer back to chapter 

2  for an account of this paper).

In the subsequent sections, the results of simulations for four separate levels of 

uniform normal flow through the disk wall, are discussed.
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4.3.2 Injection

Uniform injection is known to be strongly destabilizing, and promotes the onset of the 

transition process. So one would assume that a boundary-layer flow with injection 

should be avoided. However, uniform injection is useful in cooling turbine blades and 

the surfaces of high speed aircraft, Sparrow & Gregg (1960). Therefore, it is important 

that such models are investigated, so that we may understand what problems (by 

problems we mean instabilities, turbulence) could arise and how best to deal with 

them.

The case a =  -1

The first case considered is when the parameter a =  -1. This corresponds to a 

boundary-layer flow that is strongly destabilized. It was shown by Lingwood (1997a) 

that such a mean flow first becomes absolutely unstable for a Reynolds number Re 

«  202 for an azimuthal mode number n = 29. The critical Reynolds number here is 

approximately 40 percent of that Reynolds number corresponding to the case with 

zero normal flow.

Figure 4.2 shows time histories for four successive radial locations, for a distur

bance with an azimuthal mode number n = 29 for an impulsively excited disturbance 

in a non-parallel flow, centered at re = 202. The azimuthal component of the vor- 

ticity ljo,w at the wall is plotted for a fixed value of 6, along with the corresponding 

envelopes ±.\ujq,w\ obtained from the complex-valued amplitude. Here T  = 2ttRe cor

responds to one rotation of the disk. For the time histories at the radii r =  re - 25 and 

r =  re = 202, the disturbance decays, whereas the plots at r = re +  25 and r =  re 

+  50 display a period of growth followed by a relatively weak decay. It is evident 

that the perturbations exhibit strong spatial growth along the radial direction, when 

account is taken of the the different scales used for the axis.

Figure 4.3(a) and 4.3(b) display the spatio-temporal development plots for the
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Figure 4.2: Time histories for ujq,w (solid lines) with corresponding envelopes ±\ujo!W\ 
(dotted lines), for an impulsively excited disturbance in a non-parallel flow with in
jection a = -1. The azimuthal mode number n = 29 and the disturbance was excited 
at re = 202. The temporal development is plotted for four different radial positions, 
(a) : re-25, (b) : re, (c) : re+25, (d) : re+50.
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Figure 4.3: Spatio-temporal development of \luqiW\ for an impulsively excited distur
bance with injection a =  — 1, and an azimuthal mode number n = 29. The disturbance 
was excited at re = 202. (a) - non-parallel flow, (b) - parallel flow with Re = 202. 
(Contours are drawn using a logarithmic scale, with levels separated by factors of 
two).
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above disturbance in the non-parallel flow and the corresponding parallel flow, where 

the Reynolds number Re = 202. The development is plotted using contours of the 

azimuthal perturbation vorticity at the wall \ue,w\- The leading and trailing edges of 

the wavepacket are easily identified. In both cases, the leading edge propagates radi

ally outwards with approximately the same non-zero velocity. However, the trailing 

edges are distinctively different, and it is this that is most interesting. The trailing 

edge for the parallel flow is propagating with a diminishing velocity. Hence, critical 

absolute instability is indicated, i.e. the trailing edge is not propagating outwards or 

inwards. However, the non-parallel trailing edge propagates radially outwards with 

an increasing, positive velocity. Thus, the disturbance behaves much like a convective 

instability.

The local temporal frequencies and growth rates (calculated using (4.39)) for the 

parallel simulation are displayed in figure 4.4. Plots are given for re = 202, and 

three additional positions that are taken radially inwards and outwards from re. The 

temporal frequency found at the centre of excitation re, for the parallel flow with Re 

= 202 and n =  29 is in excellent agreement with that found by Lingwood (1997a). 

The temporal frequency is (to three decimal places) exactly the same as that found by 

Lingwood; refer to table 4.2. The frequency at the three other locations, asymptotes 

to the constant frequency found at re =  202. It may be concluded that after a 

certain time period, the temporal frequency at all radial positions, settles to this one 

frequency. Such behaviour is to be expected for the approximate parallel flow since 

all radial positions are equivalent. The temporal growth rates also display similar 

behaviour. As time progresses the growth rates asymptote towards a constant value. 

In this case the constant is approximately zero, which indicates that the disturbance 

is exhibiting critical absolute instability.

The corresponding temporal frequencies and growth rates for the non-parallel
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Figure 4.4: Local temporal frequencies ujrRe and temporal growth rates UiRe for a 
disturbance with n = 29 developing in a parallel flow with injection a  =  — 1 and Re 
= 202. The impulsive excitation was centred at re = 202. The temporal development 
is plotted for four different radial positions, re - 25, re, re + 25 and re + 50.
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Figure 4.5: Local temporal frequencies urRe and temporal growth rates u>iRe for a 
disturbance with n = 29 developing in a non-parallel flow with injection a  = — 1. The 
impulsive excitation was centred at re = 202. The temporal development is plotted 
for four different radial positions, re - 25, re, re + 25 and re + 50.
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numerical simulation are plotted in figure 4.5. The reader should notice that the be

haviour is qualitatively the same as that observed in Davies Sz Carpenter (2003). The 

local frequencies initially evolve in the same manner as in the parallel case. However, 

after this initial period, the frequency at each selected radial position, increases, and 

there is no indication that they will eventually asymptote towards a constant. For all 

the selected radial positions, the temporal growth rates are eventually negative and 

decreasing. Thus, temporal decay sets in at all selected radial positions.

The development of the temporal frequencies and growth rates can be understood 

by making comparisons with the Green’s solutions to the Ginzburg-Landau equation. 

The initial behaviour is found to depend on a l / t 2 term, while the long-term devel

opment depends on the variations in the complex frequency. For further details the 

reader is referred to chapter 8.

Therefore, the results suggest that the global behaviour may well be convective 

and that the behaviour is comparable with that observed by Davies & Carpenter 

(2003) for the von Karman flow with zero suction/injection. However, it may be that 

non-parallel effects alter the region of absolute instability and that the critical point 

is raised.

A simulation was carried out using non-parallel effects, for an impulsively excited 

disturbance centered at r e =  252 with an azimuthal mode number n =  29. According 

to Lingwood (1997a) this is well within the bounds of absolute instability. The time 

histories plotted in figure 4.6 clearly indicate that the disturbance is more unstable 

than the earlier simulation, (as expected). For the radial positions r = re — 25,r e, 

there is an initial weak growth followed by a small decay. The disturbance at the 

radial position r =  re +  25 undergoes an initial period of growth, but for larger times 

t/T , the growth appears to be decreasing, while for r = re +  50 the disturbance 

exhibits continuous growth for the time period shown.

The temporal frequencies and growth rates for this simulation are plotted in figure
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Figure 4.6: Time histories for ueyW (solid lines) with corresponding envelopes ±\u)e,w\ 
(dotted lines), for an impulsively excited disturbance in a non-parallel flow with injec
tion a  = -1. The azimuthal mode number is n =  29 and the disturbance was excited 
at re = 252. The temporal development is plotted for four different radial positions, 
(a): re-25, (b): re, (c): re+25, (d): re+50.
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Figure 4.7: Local temporal frequencies u rRe and temporal growth rates LUiRe for a 
disturbance with n = 29 developing in a non-parallel flow with injection a =  — 1. The 
impulsive excitation was centred at re = 252. The temporal development is plotted for 
four different radial positions, re - 25, re, re + 25 and re + 50. The lines labeled with 
a P show the development at the point of impulsive excitation of a similar disturbance 
in a parallel flow with Re = 252.
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Figure 4.8: Spatio-temporal development of \uotW\ for an impulsively excited distur
bance in a non-parallel flow with injection a = — 1. The azimuthal mode number is n 
= 29 and the disturbance was excited at re = 252.

4.7. The solid curves represent results for the corresponding parallel flow simulation 

with Re — 252. For the non-parallel flow the temporal development is again plotted for 

four equally spaced radial locations. The local frequencies behave in the same manner 

as the previous case; their magnitudes decrease as time increases. The growth rates 

also exhibit similar behaviour to that seen previously; they decrease and it appears 

that given time all radial positions considered will have a negative growth rate. Thus, 

temporal decay will be observed. The spatio-temporal evolution of the wavepacket 

disturbance for this simulation is plotted in figure 4.8. Initially the trailing edge 

propagates radially inwards. Thus, the disturbance exhibits behaviour in accordance 

with absolute instability. However, as time increases the trailing edge slows down and 

appears to be reversing direction. Therefore, the wavepacket disturbance is behaving
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more like a convective instability. Again this is similar behaviour to that observed in 

Davies Sz Carpenter (2003) for the case with zero suction/injection.

Longer simulations which may have confirmed the above ideas were extremely dif

ficult to carry out. As outlined by Davies &; Carpenter (2003), convergence problems 

were encountered with the iteration scheme used to solve the discretized governing 

equations. This was due to the large variety of disturbance magnitudes that de

veloped within the computational domain. Since non-linearity was not present, the 

maximum amplitude of the disturbance was allowed to grow exponentially without 

limit. It would have been very difficult to increase the time duration, even by only half 

a time period. However, the fact remains that in both situations so far considered, 

the growth rates always decrease and so it is reasonable to conjecture that temporal 

decay will eventually be observed for all radial locations. Therefore, the behaviour 

is consistent with that first observed by Davies & Carpenter (2003). The long-term 

global behaviour is consistent with convective instability, and is not consistent with 

a linear amplified global mode of the form

A  ~  e~WG*, (4.41)

where ljq is a complex frequency, for which ujo\i > 0, i.e there is no unstable fixed 

global frequency.

The trailing edge of the disturbance wavepackets reverse direction and propagate 

radially outwards in the manner proposed by figure 4(b) of Davies &; Carpenter (2003), 

or displayed in figure 2.4(b) of the present thesis.

In order to be more sure that the above ideas are accurately justified, and not 

just a consequence of simulations taking place near the boundary of the absolutely 

unstable region, a numerical simulation was conducted where the disturbance was 

excited at re =  302 for an azimuthal mode number n = 29. This radial location is 

approximately 50 percent greater than the critical value for absolute instability in
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Figure 4.9: Local temporal frequencies urRe and temporal growth rates u>iRe for a 
disturbance with n = 29 developing in a non-parallel flow with injection a  =  — 1. The 
impulsive excitation was centred at re = 302. The temporal development is plotted for 
four different radial positions, re - 25, re, re + 25 and re + 50. The lines labeled with 
a P show the development at the point of impulsive excitation of a similar disturbance 
in a parallel flow with Re = 302.
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Figure 4.10: Local temporal frequencies urRe and temporal growth rates UiRe for a 
disturbance with n = 43 developing in a non-parallel flow with injection a  =  —0.5. The 
impulsive excitation was centred at re = 310. The temporal development is plotted for 
four different radial positions, re - 25, re, re + 25 and re + 50. The lines labeled with 
a P show the development at the point of impulsive excitation of a similar disturbance 
in a parallel flow with Re = 310.
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the parallel flow. The frequencies and growth rates are plotted in figure 4.9 and once 

again it is clear that the growth rates are decreasing at all radial locations. Thus, we 

assume temporal decay will eventually set in.

T he case a =  -0.5

We now consider the mean flow with a  =  —0.5. This problem is not as unstable 

as the previous problem (i.e. mean flow with a =  -1), but it is less stable than 

the von Karman flow. Lingwood (1997a) found that absolute instability sets in at 

approximately Re = 310 for a  =  —0.5. Which is approximately 60 percent of the 

Reynolds number corresponding to the case with zero normal flow.

A numerical simulation is carried out for an impulsively excited disturbance cen

tered at re = 310 with an azimuthal mode number n = 43. These are the approximate 

critical values for absolute instability. The temporal frequencies and growth rates are 

plotted in figure 4.10. The frequency for the parallel flow simulation (labeled P) is 

in good agreement with that found by Lingwood (1997a). The non-parallel frequen

cies behave as before; they decrease in magnitude as time increases. The temporal 

growth rates also behave in an identical manner to earlier cases. At all selected radial 

locations, the growth rates decrease and there is a tendency for all the selected radial 

points (re - 25, re, re +  25 and re +  50) to eventually display temporal decay.

A second disturbance was excited at re =  360 with n = 43. Figure 4.11 compares 

the temporal evolution of the disturbance in the parallel flow (solid line) with the 

corresponding non-parallel flow (dotted line). The Reynolds number is taken to be Re 

= 360 for the parallel case. Initially the two plots are quite close together. However, 

as time increases the growth in the non-parallel case is substantially less and there 

is also a clear increase in the temporal frequency. Thus, the non-parallel flow effects 

are stabilizing. The corresponding frequencies and growth rates are plotted in figure 

4.12 and as we may now have anticipated, the frequencies increase, while the growth
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Figure 4.11: Comparison of the variation of \uo,w\ for a disturbance with n = 4$ 
evolving in non-parallel and parallel flow with injection a  =  —0.5. The temporal 
development is shown for the radius re = 360 where the impulsive excitation was 
centred. Dotted line: The non-parallel flow labeled N-P; solid line: parallel flow labeled 
P with Re = 360.

rates decrease. Thus, the global behaviour found for the flow with a normal injection 

constant a  =  —0.5, is similar to that found for the earlier case a  =  — 1 and the von 

Karman flow studied by Davies h  Carpenter (2003), i.e. convective.

Although only the injection cases a  = —1, —0.5 have been so far investigated, it 

seems likely that all injection flows or at the very least the flows between a = — 1 and a 

=  0 would behave in the manner found above and by Davies h  Carpenter (2003). For 

a disturbance excited in the theoretical absolutely unstable region there is an initial
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Figure 4.12: Local temporal frequencies urRe and temporal growth rates UiRe for a 
disturbance with n = 43 developing in a non-parallel flow with injection a = —0.5. The 
impulsive excitation was centred at re = 360. The temporal development is plotted for 
four different radial positions, re - 25, re, re + 25 and re + 50. The lines labeled with 
a P show the development at the point of impulsive excitation of a similar disturbance 
in a parallel flow with Re — 360.
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period of temporal growth. However, for a larger time interval, convective behaviour 

dominates. Thus, the absolute instability does not produce a linear amplified global 

mode.

4.3.3 Suction
T he case a =  0.5

Lingwood (1997a) has shown that for a suction parameter value a  =  0.5, the critical 

Reynolds number for absolute instability is almost double that of the case where a = 

0; refer to table 4.2. For a =  0.5, absolute instability occurs for Reynolds numbers 

greater than Re = 912.

A disturbance was impulsively excited at the location re = 912 with an azimuthal 

mode number n = 113, for a non-parallel flow. Such a disturbance arises at the 

boundary of the absolutely unstable region. Figure 4.13 displays time histories 

for four equally spaced radial locations, using uJetW, the azimuthal component of the 

vorticity at the wall and the corresponding wavepacket envelopes ±\ojojW\. For re < 

912 the disturbance initially decays, but then appears to asymptote to a constant 

amplitude. The radial location re +  25 experiences a steady increase in amplitude. 

Thus, temporal growth is present. The position re +  50 also exhibits an amplitude 

increase, but this is far more pronounced. This behaviour is quite different to that 

observed in figure 4.2 (critical absolute instability for a =  -1) where temporal decay 

was eventually found at all selected radial locations.

The spatio-temporal development of the above disturbance is displayed in figure 

4.15(a). The equivalent parallel disturbance with Re = 912 is plotted in figure 4.14. 

As with all previous cases the leading edges propagate radially outwards with a non

zero velocity. The parallel disturbance clearly exhibits critical absolute instability, 

since the trailing edge is parallel to the vertical axis and is travelling with a velocity 

that is approximately zero. The trailing edge of the non-parallel disturbance is also
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Figure 4.13: Time histories foruJojW (solid lines) with corresponding envelopes dc\ujgiW\ 
(dotted lines), for an impulsively excited disturbance in a non-parallel flow with suction 
a  =  0.5. The azimuthal mode number is n = 113 and the disturbance was excited at 
re = 912. The temporal development is plotted for four different radial positions, (a) 
: re-25, (b) : re, (c) : re+25, (d) : re+50.
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Figure 4.14: Spatio-temporal development of \uetW\ for an impulsively excited distur
bance in a parallel flow with suction a =  0.5. The azimuthal mode number is n = 113 
and the disturbance was excited at re = 912. The Reynolds number Re = 912.

propagating with what at first glance, appears to be a near zero velocity. In fact 

when a smaller radial range is considered, (refer to figure 4.15(b)), the trailing edge 

can be seen to propagate radially inwards with a small velocity. This behaviour is 

quite different to what has been seen before for the injection flows, where the trailing 

edge was always found to reverse direction and propagate radially outwards. Thus, 

the long term behaviour does not appear to be like that found by Davies & Carpenter 

(2003) for the von Karman flow or the earlier injection mean flows.

The temporal frequencies and growth rates for the above disturbance are plotted 

in figure 4.16. The parallel frequency, corresponding to the solid line labeled P, 

is comparable with that found by Lingwood (1997a); refer to table 4.2. The non

parallel frequencies behave in the manner that we have become accustomed too; the
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Figure 4.15: Spatio-temporal development of \uefW\ for an impulsively excited distur
bance in a non-parallel flow with suction a = 0.5. The azimuthal mode number is n = 
113 and the disturbance was excited at re = 912. (a) - full radial range, (b) - reduced 
radial range.
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Figure 4.16: Local temporal frequencies urRe and temporal growth rates UiRe for a 
disturbance with n = 113 developing in a non-parallel flow with suction a =  0.5, 
centred at re = 912. The temporal development is plotted for four different radial 
positions, re - 25, re, re + 25 and re + 50. The solid lines labeled with a P show the 
development in a parallel flow with Re = 912. The temporal growth rates are displayed 
over a full time range (a), and for a reduced time range, (b).
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magnitude decreases for increasing time. The temporal growth rates are displayed 

over a full time range (a), and for a reduced time range (b). The parallel growth rate 

asymptotes to zero, which is indicative of the critical absolutely unstable behaviour. 

However, the non-parallel growth rates behave very differently from what we have 

seen previously. At all selected radial locations the growth rates steadily increase 

and appear to be asymptoting towards a positive constant. Therefore, temporal 

growth is observed for all selected radial locations, r > r e. Thus, behaviour consistent 

with global instability is observed, although there appears to be no definite global 

frequency.

Could it be that the flow with suction a =  0.5 displays characteristics consistent 

with global instability, and not the convective behaviour we have seen previously. The 

above results most definitely point towards such an interpretation. Of course there 

is the possibility that convergence problems caused errors, but this is very unlikely, 

since the author was most careful and conducted many simulations for the above 

disturbance, for varying radial ranges, different discretization (i.e. vary the radial 

increment Ar, and temporal increment At), and for very large iteration values, and 

each time the same results were found. There is also the possibility that the flow with 

suction a  =  0.5 will take a longer time to show any sign of exhibiting the convective 

behaviour that we have seen previously for flows with injection. In other words the 

growth rates may stop increasing and eventually start to decrease towards negative 

numbers, leading to temporal decay. (Due to convergence problems, simulations could 

not be run far enough to see if this is the case). However, from what we have seen 

of the growth rates for the above disturbance this does not seem to be the case. The 

growth rate at the radial position re +  25 initially decreases but then reverses at 

some point and then steadily increases. On comparing with other disturbances at 

the theoretical critical point of absolute instability for flows with injection and zero 

normal flow, (figures 4.5 and 4.10) there is no tendency for the growth rate at re +
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Figure 4.17: Time histories forcj0jW (solid lines) with corresponding envelopes ±|u;0 )lo| 
(dotted lines), for an impulsively excited disturbance in a non-parallel flow with suction 
a = 0.5. The azimuthal mode number is n = 113 and the disturbance was excited at 
re = 962. The temporal development is plotted for four different radial positions, (a) 
: re-25, (b) : re, (c) : re+25, (d) : re+50.
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Figure 4.18: Local temporal frequencies urRe and temporal growth rates ujiRe for a 
disturbance with n = 113 developing in a non-parallel flow with suction a = 0.5, 
centred at r = 962. The temporal development is plotted for four different radial 
positions, r - 25, r, r -h 25 and r + 50. The solid lines labeled with a P show the 
development in a parallel flow with Re = 962. The temporal growth rates are displayed 
over a full time range (a), and for a reduced time range, (b).
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25 to increase.

Although what we are seeing may be an attribute of mean flows with suction, it 

might also be due to the fact that the disturbance has occurred near the critical region 

of absolute instability and that disturbances well within this region show completely 

different behaviour. However, this is highly unlikely, since the flow should experience 

greater temporal growth for locations well within the theoretical absolutely unstable 

domain.

To confirm whether or not disturbances experience greater growth at larger radial 

locations, we also conducted a second simulation for n = 113 and re = 962. This 

point is well inside the theoretical region of absolute instability. The time histories are 

plotted in figure 4.17. At all the radial locations considered, the disturbance increases 

at a steady rate, even for the location radially inwards of the origin of the source. 

The corresponding temporal frequencies and growth rates are plotted in figure 4.18. 

Again, the growth rates at all selected radial positions are plotted for a full time 

range and a reduced time range. The growth rates are increasing and appear to be 

asymptoting towards a positive constant. Thus, temporal growth is experienced at 

all radial locations.

A non-parallel numerical simulation was carried out for a disturbance situated 

in the theoretical region of convective instability. The azimuthal mode number was 

taken to be n = 113, which corresponds to the first mode number to become absolutely 

unstable. The impulsive excitation was carried out for re = 712. Such a position is 

well inboard of the theoretical region of absolute instability. The spatio-temporal de

velopment for the above situation is plotted in figure 4.19(a). Figure 4.19(b) displays 

the spatio-temporal development for a disturbance excited within the theoretical con

vective region for the rotating-disk with a  = -0.5, i.e. injection. The disturbance was 

excited at the radial location re =  240. The contrasting behaviour between the two 

wavepackets is quite apparent. The trailing edge of the disturbance wavepacket for
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a =  0.5 can be seen to be propagating with a diminishing velocity, while the trailing 

edge of the disturbance wavepacket for a = -0.5 is propagating with what appears to 

be an increasing velocity.

Figure 4.20 displays the trailing edge velocities (Ct) of the spatio-temporal plots 

in figure 4.19, as functions of time. Initially, both velocity profiles decrease at a rapid 

rate. However, the velocity corresponding to the a =  -0.5 problem (figure 4.20(b)), 

eventually reverses direction and increases. Hence, the disturbance propagates ra

dially outwards with an increasing velocity. On the other hand, the velocity corre

sponding to a = 0.5 (figure 4.20(a)), continues to decrease, and the plot suggests that 

Ct may eventually pass through zero and into the negative half of the plane. Thus, 

the trailing edge may eventually propagate radially inwards.

Figure 4.21(a) and 4.21(b) display time histories for the above disturbances, at 

the radial locations r  =  912fora =  0.5, and r = 310 for a =  -0.5. The radial locations 

are found at the respective boundaries of the region of absolute instability. For the 

rotating-disk with a  =  -0.5, there is a period of rapid temporal growth followed by a 

strong decay. While for a =  0.5, there is a period of rapid temporal growth followed by 

a relatively weak period of decay. Whether this disturbance will eventually asymptote 

towards a constant or grow and display a region of temporal growth, or dissipate and 

decay indefinitely, is unclear from the figure. However, it is clear that there is a marked 

difference between the behaviour of the two types of flow, even for disturbances located 

within the theoretical convectively unstable parameter space.

The case a =  1

The final uniform normal flow considered is that where a = 1. Of all the mean flows 

considered, this is by far the most stable, at least, when the parallel flow approxima

tion is applied. Lingwood (1997a) found the critical Reynolds number for absolute 

instability for this flow to be approximately Re = 1861. This is almost four times
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Figure 4.19: Spatio-temporal development of \u}e,w\ for an impulsively excited distur
bance in a non-parallel flow with: (a): a =  0.5 for an azimuthal mode number n = 113 
excited at re = 712; (b): a =  —0.5 for an azimuthal mode number n = 1̂ 3 excited at 
re = 240. Here rc indicates the onset of absolute instability, as predicted by Lingwood 
(1997a).
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Figure 4.20: Velocity profiles of the trailing edge as a function of time, (a): a = 0.5 
for an azimuthal mode number n = 113 excited at re = 712; (b): a =  —0.5 for an 
azimuthal mode number n = 43 excited at re = 2 4 0 .
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Figure 4.21: Time history for uje,w (solid line) with corresponding envelope ±\ujo,w\ 
(dotted line), for an impulsively excited disturbance in a non-parallel flow with: (a) : 
a  = 0.5 for an azimuthal mode number n = 113 excited at re = 712. The temporal 
development is plotted for r = 912. (b) : a  =  -0.5 for an azimuthal mode number n 
= 43 excited at re = 240. The temporal development is plotted for r = 310.
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Figure 4.22: Local temporal frequencies ujrRe and temporal growth rates UiRe for a 
disturbance with n = 194 developing in a non-parallel flow with suction a  =  1, centred 
at re = 1861. The temporal development is plotted for four different radial positions, 
re - 25, re, re -h 25 andre -f 50. The solid lines labeled with a P show the development 
in a parallel flow with Re = 1861. The temporal growth rates are displayed over a full 
time range (a), and for a reduced time range, (b).



Chapter 4. The rotating-disk boundary-layer with mass transfer 97

that of the zero normal flow case, namely the von Karman flow.

A disturbance was impulsively excited at the radial position re = 1861 with an 

azimuthal normal mode number n = 194. These are the critical parameters for 

absolute instability. The temporal frequencies and growth rates for this disturbance 

are plotted in figure 4.22. The solid lines labelled P refer to the corresponding parallel 

disturbance, where the Reynolds number Re = 1861. The frequency for the parallel 

flow is consistent with that found by Lingwood (1997a). As expected, the non-parallel 

frequencies display behaviour that is qualitatively similar to that found in the previous 

rotating-disk flows; the magnitude decreases with increasing time.

For all selected radial locations the growth rate increases at a steady rate. There 

is no indication that the temporal growth rates will reverse or even asymptote to a 

constant value. This suggests that the growth rate will increase at all radial positions. 

It may also be noted that the temporal growth found here is stronger than that 

experienced at the critical point of absolute instability for a  = 0.5. (Compare figure

4.22 with figure 4.16).

In another simulation, a disturbance was excited at re = 1911 with n = 194. 

This is well within the region of the absolutely unstable parameter space. Figure

4.23 compares the time histories of the disturbance in the non-parallel flow (dotted 

line) and corresponding parallel flow (solid line), where Re =  1911. Initially the two 

plots are almost identical. However, for a larger time interval the amplitude of the 

non-parallel disturbance is clearly larger than the parallel disturbance. Thus, the 

non-parallel flow effects can be seen to be destabilizing.

The destabilization is clearly evident in the growth rates, plotted in figure 4.24. 

The growth rates can be seen to increase steadily with time and so temporal growth 

is clearly evident for all the selected radial positions. For the radial position r = 

re -  50, corresponding to the location of critical absolute instability rc = 1861, a 

temporally growing disturbance is visible after t /T  > 0.4. Several other simulations
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Figure 4.23: Comparison of the variation of \u)q̂w\ for a disturbance with n — 194 
evolving in a non-parallel and parallel flow with a = 1. The temporal development is 
shown for the radius re = 1911 where the impulsive excitation was centred. Dotted 
line: The non-parallel flow labeled N-P; solid line: parallel flow labeled P with Re = 
1911.

were conducted by exciting disturbances further into the absolutely unstable region 

and the growth rates were found to increase every time.

In another simulation, which mimics an experimentally feasible set-up, a distur

bance was excited radially inward of the absolutely unstable boundary. The location
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Figure 4.24: Local temporal frequencies urRe and temporal growth rates WiRe for a 
disturbance with n = 194 developing in a non-parallel flow with suction a  =  1, centred 
at re = 1911. The temporal development is plotted for five different radial positions, 
re -  50 =  rc, re - 25, re, re + 25 and re + 50. The solid lines labeled with a P show 
the development in a parallel flow with Re = 1911. The temporal growth rates are 
displayed over a full time range (a), and for a reduced time range, (b).



Chapter 4. The rotating-disk boundary-layer with mass transfer 100

1.4

1.2

0.8

0.6

0.4

0.2

1900 195018501800 r.c

Figure 4.25: Spatio-temporal development of \uj$yW\ for an impulsively excited distur
bance in a non-parallel flow with suction a  =  1. The azimuthal mode number is n = 
194 and Idie disturbance was excited at re = 1811.

of the disturbance was at re = 1811 with an azimuthal mode number n = 194. Fig

ure 4.25 displays the spatio-temporal development for the above disturbance. Initially 

the trailing edge of the wavepacket disturbance propagates radially outwards, but as 

soon as it reaches the absolutely unstable region, the trailing edge slows down and 

appears to be tending towards a vertical line, radially inward of the critical point of 

absolute instability, rc = 1861. Figure 4.26 displays the temporal frequencies and 

growth rates at the radial locations re = 1811, re +  25, re +  50 and re +  100 for the 

above disturbance. The frequency and growth rate for the parallel flow with Re = 

1811 are also included in the plot (labeled P). The growth rates at all radial locations 

are initially decreasing and for r < re +  50 there is a period of temporal decay. How

ever, this does not persist for long and the growth rates eventually reverse direction
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Figure 4.26: Local temporal frequencies u)rRe and growth rates UiRe for a disturbance 
with n = 194 developing in a non-parallel flow with suction a  =  1, centred at re = 
1811. The temporal development is plotted for four different radial positions, re, re 
+ 25, re + 50 and re + 75. The solid lines labeled with a P show the development in 
a parallel flow with Re = 1811. The temporal growth rates are displayed over a full 
time range, (a), and for a reduced time range, (b).
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and increase. The radial position rc =  1861 =  re +  50 exhibits temporal growth 

after t /T  =  1.4. Bearing in mind the gradient of the growth rate at this point, it is 

plausible to suggest that temporal growth will continue to be displayed for all time 

t /T  > 1.4. Similar behaviour was found for all radial locations r > 1861, where the 

growth was more pronounced for increasing radial positions. An increasing temporal 

growth rate is clearly visible for the radial position r =  1911 =  re +  100. Although 

none of the growth rates for re < 1861 quite reached the positive domain, it did 

appear that they would eventually become positive given sufficient time. Thus, such 

locations will display temporal growth. As already mentioned, convergence problems 

with the iteration scheme were met which prevented longer simulations from being 

carried out. Refer back to sections 4.2.3 and 4.3.2 for further details of problems met 

during the investigation (e.g. effects due to the finite computational radial domain 

and the convergence of the iteration scheme used in the discretization).

A second disturbance was impulsively excited at the radial location re =  1661, for 

an azimuthal mode number n  =  194. This problem corresponds to a radial position 

further inboard than any other example, so far investigated. Figure 4.27 displays the 

non-parallel temporal growth rates for the above disturbance, at the radial locations 

re, r e +  100, re +  150, re -I- 200 and re +  240. For the radial position r e, the growth 

rate increases at what appears to be a steady, linear rate in the negative half of the 

plane. The growth rates at all other selected radial locations, initially, decreases at 

a rapid rate. However, after this initial period, the decrease in growth deteriorates, 

and can be seen to reverse direction and increase at the radial locations re -I- 100 and 

re +  150. The growth rates at the radial locations re -I- 200 and re +  240, has not yet 

reversed direction. However, given sufficient time, it seems plausible that the growth 

rates at the two locations re +  200 and re +  240, will eventually undergo this process, 

i.e. reverse direction and increase. If the growth continues to increase at the rate 

shown, temporal growth may eventually be found at all points. Therefore, behaviour
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Figure 4.27: Local temporal growth rates UiRe for a disturbance with n = 194 devel
oping in a non-parallel flow with suction a  =  1, centred at re = 1661. The temporal 
development is plotted for four different radial positions, re, re + 100, re + 150, re 
+ 200 and re + 2 4 0 .

compatible with global instability could be displayed.

4.4 C om paring grow th rates

A number of uniform normal flows have been investigated and there were found to 

be distinct differences between the injection and suction flows. Figure 4.28 compares
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the growth rates at the critical point of absolute instability for all of the previous 

flows. The solid line represents the a =  -1 case, where re =  202, n =  29; the dashed 

line represents the a =  -0.5 case, where re =  310, n =43; the dashed-dotted line 

represents the a =  0 case, where re =  508, n =  68; the dotted line represents the a =  

0.5 case, where re =  912, n = 113; and the solid-dotted line represents the a =  1 case, 

where re =  1861, n =  194. The growth rates have been plotted using the global non- 

dimensionalization that has been used throughout the thesis. (Further details of the 

global non-dimensionalization are given in chapter 7 and Davies, Thomas & Carpenter 

(2007)). Interestingly the growth rates of all five flows are of comparable magnitude. 

Initially all five plots behave in an analogous manner; the growth rates originate from 

the negative half of the plane and increase rapidly. (In chapter 8 we will see that the 

initial behaviour can be traced to a 1/t2 term in the Green’s solutions). However, 

after only t / T  =  0.4, differences in the growth rates are observed. The growth rates 

corresponding to those flows with a < 0 begin to reverse direction and decrease. The 

growth rate for the case a =  -1 decreases far more strongly than the a =  -0.5 and a = 

0, problems. On the other hand the flows corresponding to normal suction continue 

to increase, although this increase is far weaker than the initial growth. It can be 

seen that the increase in growth is stronger for the a =  1 case than the a =  0.5 case. 

For both suction cases there is no indication that the growth will begin to decrease.

Figure 4.29 displays the gradients of the growth rates in figure 4.28. The data 

lines are as before. For a < 0 the gradients decrease and are eventually negative, 

which corresponds to the growth rates decreasing. For a =  0.5 the gradient remains 

positive for the time period displayed. However, the gradient continues to decrease, 

suggesting that the corresponding growth rate may eventually decrease and display 

temporal decay. The gradient for a =  1 initially decreases, but as time increases, it 

appears to asymptote towards a positive constant. This would suggest that temporal 

growth and an increasing growth rate would be observed for this problem.
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Figure 4.28: Comparing growth rates at the critical point of absolute instability for 
the various normal flows. Solid line: a = -1 where re = 202, n = 29; dashed line: a 
= -0.5 where re =310, n = 43; dashed-dotted line: a = 0.0 where re = 508, n = 67; 
dotted line: a = 0.5 where re =912, n = 113; solid-dotted line: a = 1 where re = 
1861, n = 194•

It is quite apparent that the growth rates increase for increasing a. Thus, we may 

predict that normal flows with a  > 1 may display growth rates that are larger than 

those displayed in figure 4.28. Nonetheless, further investigation is required to prove 

this theory. However, at present there are no eigenvalues available (in the research 

literature) for a  > 1, which prevents further investigation. Figure 4.28 also suggests
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Figure 4.29: Comparing the gradients of the growth rates in figure J .̂28. Data lines 
are the same as those in figure 4-28.

that there may exist a critical value s^, such that the growth rate does not increase 

or decrease, but instead tends towards a constant. The plot suggests that there may 

be a critical value within the region 0.0 < ac < 1.
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4.5 D iscussion  and conclusions

A study has been carried out on the effects of injection and suction on the global 

behaviour corresponding to the absolute instability of the rotating-disk boundary- 

layer. Four cases with normal flow are investigated; a  =  ±  0.5 and ±  1, where the 

parameter a  is negative for mean flows with uniform normal injection and positive for 

mean flows with uniform normal suction. The investigation was undertaken using the 

novel velocity-vorticity method described by Davies &; Carpenter (2001). The system 

of equations used in this method are equivalent to the complete linearized Navier- 

Stokes equations. Since the equations are linear, they are separable with respect 

to the azimuthal coordinate 6. Thus, allowing simulations with a single azimuthal 

mode number. Impulse like excitation was used for all simulations. This produces 

a disturbance wavepacket that initially contains a wide range of frequencies. When 

disturbances are simulated using the so-called parallel flow approximation (spatially 

homogeneous flow), the results are fully in accordance with the theoretical results 

of Lingwood (1997a). If the flow parameters lie within the theoretical absolutely 

unstable parameter space, the simulations produce identical behaviour. The same is 

true for disturbances excited within the convectively unstable region. For disturbances 

excited at the critical point of absolute instability, the calculated frequencies and 

wavenumbers are in excellent agreement with those given in Lingwood (1997a); refer 

to table 4.2. The temporal frequencies ljc were found to be identical to within three 

decimal places in all cases considered, while the radial wavenumbers ac, were the 

same to within two decimal places, in most cases.

For the non-parallel flow simulations (spatially inhomogeneous), the injection and 

suction flows produce quite different behaviour. The investigated uniform normal in

jection flows produce behaviour that is similar to that observed by Davies h  Carpenter 

(2003) for the von Karman flow, a  =  0. Initially, disturbances within the absolutely
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unstable region exhibit temporal growth and inward propagation. However, this does 

not last and the study suggests that convective behaviour will eventually dominate, 

for all Reynolds numbers investigated. This behaviour was not only identified near 

the known boundary of absolute instability, but for radial locations far further out

board. For the injection case a  =  -1, what appeared to be convective behaviour was 

found at approximately one and half times that of the critical Reynolds number for 

absolute instability. Thus, in a similar manner to Davies &; Carpenter (2003) and 

their study on the global behaviour corresponding to the absolute instability of the 

von Karman flow, the simulation results for the injection mean flows suggest that the 

absolute instability does not produce a linear amplified global mode, but is instead 

consistent with convective behaviour.

Therefore, we may describe the results from the study using the schematic draw

ings of Davies & Carpenter (2003), figures 4(a, b). (Plotted here in figure 2.4). The 

two figures depict wavepacket evolutions for the rotating-disk boundary-layer with 

a  =  0, -0.5 and -1. Figure 2.4(a) depicts the case where the point of forcing arises 

within the convective region of the stability plane. Here re is the point of impulsive 

forcing and rc is the critical value for absolute instability. The suggestion is that 

the disturbance continues to propagate radially outwards, even when it passes into 

the theoretical region of absolute instability. Figure 2.4(b) displays a wavepacket 

for a disturbance excited within the absolutely unstable region, re > rc. Initially 

the disturbance wavepacket behaves in a manner consistent with absolute instability 

and large temporal growth. However, the trailing edge of the disturbance wavepacket 

eventually reverses direction and propagates radially outwards. Thus, for larger times 

the wavepacket behaves convectively.

On the other hand the flows with positive suction are found to be destabilized 

by non-parallel effects. For the time period, for which the linearized simulation re

sults could be relied upon, disturbances excited within the absolutely unstable region
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exhibit an increasing temporal growth and a radial inward propagation. The study 

suggests that the absolutely unstable behaviour dominates for all Reynolds numbers, 

even those found corresponding to radial positions in board of the boundary of ab

solute instability. Therefore, the disturbance will eventually contaminate the entire 

spatial region. Disturbances excited in the convective region of instability were found 

to propagate downstream towards the region of absolute instability (as we would ex

pect). However, on reaching this region, the disturbance displays absolutely unstable 

characteristics, since the trailing edge of the wavepacket disturbance appears to either 

asymptote towards a vertical line or reverse direction and propagate radially inwards 

with a weak velocity.

On comparing the growth rates for the separate cases of uniform injection/suction, 

there is a distinct increase in growth for an increase in the parameter a. Thus, 

suggesting that mean flows with a  > 1 may display stronger growth than those studied 

previously. Similarly, mean flows with a  < -1 may display stronger decay than those 

seen previously. A future study will be carried out to verify the behaviour of the 

problems with |a| >  1. Figure 4.28 also indicates that there may exist a value a<. such 

that the growth rate tends towards a constant for large time.

The investigated mean flows with uniform suction may be described using the 

schematic plots, figure 4.30. Again rc is the critical value for absolute instability and 

re is the location of the impulsive excitation. The first plot depicts a disturbance ex

cited within the region of convective instability. The disturbance propagates radially 

outwards until it reaches the absolutely unstable domain. On reaching the absolutely 

unstable region, the trailing edge of the disturbance either propagates towards a ver

tical line near rc or reverses direction and begins to propagate radially inward. It is 

hypothesized that the inward propagation will become more pronounced for larger 

values of the injection/suction parameter a. The second plot displays a wavepacket
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Figure 4.30: Sketch of a typical wavepacket evolution for the rotating-disk boundary- 
layer as revealed by the results on rotating-disk flows with normal suction, (a): im
pulse excitation for re < rc, (b): Impulse excitation for re > rc.
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disturbance centered within the theoretical absolutely unstable region. The study sug

gests that the trailing edge propagates upstream with an increasing velocity. Thus, 

exhibiting temporal growth and behaviour consistent with global instability.

The results of the above investigation have come as quite a surprise. Suction is 

known to be stabilizing, while injection is destabilizing. However, when non-parallel 

effects are included, flows with suction are found to be destabilized in the region of 

the theoretical absolute instability. Whether or not disturbances within the rotating- 

disk boundary-layer with uniform suction produce global instability or eventually 

dissipate and dampen cannot be determined unequivocally from the time duration 

limited simulations. Our numerical simulation results strongly suggest the former, 

albeit without any selection of a dominant frequency, as would be more usual for an 

unstable global mode. However, it could be that flows with suction initially exhibit 

regions of temporal growth, and that after a period of time decrease and display 

temporal decay in a similar style to the flows with injection.

Healey (2005, personal communication) points out that since the Reynolds number 

and azimuthal mode number are a good deal greater for the flows with suction (than 

the injection flows), the non-parallel effects are small and insignificant. Therefore 

the problem is essentially parallel. In the study by Davies & Carpenter (2003) on 

the rotating-disk with zero mass transfer, convective type behaviour was found for a 

disturbance excited at re = 750, which is approximately one and half times the critical 

Reynolds number for the onset of absolute instability in the von Karman flow. Such 

a radial location is of similar size to the problems investigated, with uniform suction 

a  =  0.5; centre of forcing re = 712,912,962. For a  =  0.5 the growth rates were 

found to eventually increase at all radial locations considered. Hence, the reasoning 

for the difference in behaviour between injection and suction flows, appears to be 

unaffected by the radial location of impulsive forcing. Evidently longer simulations 

are required to prove whether temporal growth is intrinsic to rotating-disk flows with
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suction. However, at present the numerical iteration scheme restricts the time length 

of numerical simulations, as has been discussed earlier in the chapter.

As we will see in a later chapter (chapter 7: The global stability of the rotating 

disk), the global stability can be understood by considering the results at various 

radii. By considering the parallel flow approximation, the results from the numerical 

simulations can be plotted using a global non-dimensionalization. The global non- 

dimensionalization has been used throughout the present study, and was recently 

described by Davies, Thomas &; Carpenter (2007) and further details of the non- 

dimensionalization are given in chapter 7. The parallel flow results suggest that the 

global frequency increases linearly with the Reynolds number. Thus, for the genuine 

non-parallel flow, where the Reynolds number is replaced by the non-dimensional ra

dius, it might be expected that the disturbance frequency would increase linearly with 

the radius. The stability characteristics of the present chapter can also be understood 

by making comparisons with the Green’s solutions to the Ginzburg-Landau equation 

(refer to chapter 8).

The results from the present chapter could give a possible reasoning for why 

previous experimental investigators (Gregory & Walker, 1960) were unable to use 

suction to extend the laminar flow region to radii corresponding to that given by linear 

theory. The numerical simulations suggest that suction promotes globally unstable 

behaviour. Thus, the location for the onset of instability (predicted by stability 

studies that make use of the parallel flow approximation) may be lowered, causing 

transition to turbulence to be triggered at radii, which may be smaller than the 

location of critical absolute instability (predicted by Lingwood, 1997a).

As outlined by Davies &; Carpenter (2003) and earlier in the chapter there are 

many problems that arise for numerical simulations (i.e. convergence problems) and 

of course the reader may have some critical views of such a study. However, the 

author took great care when simulating the earlier results and the same behaviour
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was found in all cases for various radial lengths, iteration numbers, radial increments 

Ar, time increments A t, etc. In order to ensure that the above understanding of the 

global behaviour is correct, it would be necessary to increase the time period for each 

simulation. However, due to the constraints of time and convergence problems, this 

was not feasible.

It should be noted that the results do not invalidate the theory of Lingwood 

(1997a), or imply that absolute instability does not play a role in the laminar- 

turbulent transition process. In the cases of uniform injection, local temporal growth 

in the region of the absolute instability, may be enough to cause the already large 

convective disturbances to grow at a rapid rate. Thus, triggering the onset of non

linear effects and transition to turbulence. While in the cases of uniform suction, the 

increasing temporal growth in the region of the absolute instability, may lower the 

radial location for the onset of non-linear effects and turbulence.

Professor Thomas Corke and Mr Cory McElrath of Notre Dame University in the 

USA are planning to conduct several experiments on the rotating-disk with uniform 

suction, to check the disturbance behaviour. This extends the boundary-layer study 

by Othman & Corke (2006) who investigated the problem with zero suction.



C hapter 5 

T he rotating-d isk  boundary-layer  
w ith  a m agnetic field

5.1 In troduction

The flow of an electrically conducting rotating fluid in the presence of a magnetic 

field has many important engineering applications. It exhibits interesting differences 

from the more usual non-conducting problem. Magnetic fields are used in the driving 

and stirring of flows. Magnetohydrodynamic (MHD) systems are also useful in re

ducing instabilities and suppressing the onset of turbulence. There are a number of 

applications found in industry, such as the stirring and casting of metals, and in the 

growth of crystals (Hicks & Riley, 1989; Organ Sz Riley, 1987).

One of the fundamental aspects of a MHD system, is the formation of a Hartmann 

layer, which arises due to a balance between the Lorentz1 and viscous forces. The 

Hartmann layer forms along the boundary in any electrically conducting fluid. It was 

first described by Hartmann & Lazarus (1937), and the non-dimensional Hartmann 

parameter is given as

* - ( ? ) ' “ • <s i >
where B  is the magnetic field intensity, L is the typical length of the flow, p is the

1The Lorentz force is the force exerted on a charged particle in an electromagnetic field.
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fluid density, v is the kinematic viscosity and o is the electrical conductivity of the 

fluid. A stability analysis of the Hartmann boundary-layer was first carried out by 

Lock (1955), who neglected the Lorentz force term and found the critical Reynolds 

number for instability to be Rec w 50000. Lingwood h  Alboussiere (1999) conducted 

a stability study on the full equations that include the Lorentz force effects and found 

Rec «  48250. Further theoretical and experimental studies on the Hartmann layer are 

available by Alboussiere & Lingwood (2000), Moresco & Alboussiere (2003, 2004a,b), 

and Krasnov, Zienicke, Zikanov, Boeck & Thess (2004).

The flow of an electrically conducting fluid due to a rotating-disk with a uniform 

normal magnetic field was first investigated (to the authors knowledge) by Sparrow & 

Cess (1962). In their study they considered the effects of a normal magnetic field on 

the flow and heat transfer. They found that the presence of a magnetic field decreases 

the flow velocities. Thus, the magnetic field has a stabilizing effect on the flow. It 

was also shown that the heat transfer at the disk surface decreased with increasing 

magnetic field.

Suryaprakasarao & Gupta (1966) have also investigated the rotating-disk flow 

with a uniform normal magnetic field. The torque experienced by the disk was found 

to increase with an increase in the magnetic field. The qualitative behaviour of the 

mean flow was found to resemble that given by the rotating-disk mean flows with 

uniform normal suction. That is to say that the magnitude of the undisturbed flow 

over the disk decreases.

The rotating-disk flow with a circular magnetic field has been investigated by 

Pao (1968). The circular magnetic field was found to increase the boundary-layer 

thickness. Thus, such magnetic fields are considered to be destabilizing. Above some 

critical value of the magnetic field, Pao found that the boundary-layer separated from 

the disk surface.
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Further studies on MHD flows have been carried out by Stephenson (1969), Ku

mar, Thacker & Watson (1987) and Thacker, Watson &; Kumar (1990). Stephenson 

(1969) conducted a theoretical and experimental study on the MHD flow between 

two rotating coaxial disks with a uniform axial magnetic field. While Kumar et al. 

(1987) and Thacker et al. (1990) looked at the effects of a circular magnetic field and 

a normal magnetic field, respectively.

Aboul-Hassan Sz Attia (1997), Attia & Aboul-Hassan (2001, 2004) have studied 

the MHD mean flow due to a rotating-disk with Hall effect. The Hall effect is caused 

by the current flow (which is made up of many small charged electrons) in a conductor. 

The magnetic field exerts a force (Lorentz force) on the electrons, which tends to push 

them towards one side of the conductor. This phenomenon was first discovered and 

later named after, by Sir Edwin Hall in 1879. It is worth noting that the Hall effect 

only needs to be considered if the conductor is large.

In the studies by Aboul-Hassan Sz Attia, the MHD mean flow over a rotating-disk 

is considered with a uniform axial magnetic field. They solved the resulting system 

of ordinary differential equations using finite difference approximations. For large 

positive values of the Hall parameter, the magnetic field enlarges the velocity profiles 

in the radial and normal directions. More interestingly, for some values of the Hall 

term, the radial and normal velocity components reverse direction. This is due to the 

magnetic force exceeding the centrifugal force (Aboul-Hassan Sz Attia, 1997; Attia Sz 

Aboul-Hassan, 2004).

5.1 .1  A b so lu te  in sta b ility

Jasmine (2003), Jasmine Sz Gajjar (2005a) conducted a stability analysis on the 

rotating-disk flow with a uniform normal magnetic field. In their study they neglected 

the Hall effect. The mean flow profiles were solved using a finite-difference scheme 

and were found to agree with that found by previous authors.
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For a magnetic field strength parameter m (defined in the subsequent section), it 

was found that increasing m  is generally stabilizing. For m  =  0 (i.e. zero magnetic 

field), the critical Reynolds numbers for the stationary convective instabilities were 

given as Re\ =  285.9 and Re 2  =  451.4, respectively. While for m  =  1, the respective 

critical Reynolds numbers were given as Re 1 =  1278.4 and Re 2  =  2214.1. The 

travelling modes were also stabilized by increasing m. For a frequency lj =  7.9 

and m =  0, Re 1 =  316.51 and Re 2  =  64.45, while for m =  1, Re 1 =  1317.8 and 

Re 2  =  1061.1. Here the subscripts 1 and 2 refer to the Type-1 and Type-2 modes, 

described in chapters 2 and 4.

Using similar methods as Lingwood (1995), Jasmine (2003), Jasmine & Gajjar 

(2005a) were able to show that there also exists regions of absolute instability in 

the flows with a uniform normal magnetic field. The onset of absolute instability is 

suppressed by the introduction of a magnetic field. For m  =  0 the critical Reynolds 

number for absolute instability is Rec =  507.06, while for m  =  0.5, Rec =  1091.9.

It is worth noting that throughout the investigation by Jasmine (2003), Jasmine & 

Gajjar (2005a), the parallel flow approximation was employed; the radial dependence 

of the mean flow is ignored.

In the present chapter, the problem considered is similar to that given by Jasmine 

(2003), Jasmine & Gajjar (2005a). It is assumed that the effects due to the electric 

field are negligible and that the fluid motion has no affect on the magnetic field. The 

only additional term to be considered in the governing equations is due to the Lorentz 

force. By considering the above assumptions, the magnetic Reynolds number (to be 

defined later) is assumed to be small Rem < < 1 .

By extending the velocity-vorticity formulation of Davies & Carpenter (2001) to 

include flows with a normal magnetic field, we are able to study flows with and without 

the parallel flow approximation. The parallel flow simulations produce behaviour 

that is equivalent to the theory of Jasmine (2003), Jasmine Sz Gajjar (2005a). If the
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flow parameters lie within the theoretical absolutely unstable region, the simulations 

always exhibit equivalent behaviour. Likewise for convective instability. However, the 

non-parallel simulations produce quite different behaviour. The results are similar to 

those given in the previous chapter for the mean flows with uniform suction. There 

appears to be a tendency for disturbances to exhibit an increasing temporal growth 

rate. The study suggests that for cases with a sufficiently strong magnetic field, 

temporal growth will eventually dominate the flow. On comparing the temporal 

growth rates for each flow, the study also suggests that the growth rates increase 

with increasing magnetic field. (An abstract of the present investigations was recently 

discussed by Davies & Thomas (2006)).

The remainder of this chapter is outlined as follows; in section 5.2 the mean flow 

equations and the extended velocity-vorticity formulation by Davies &; Carpenter 

(2001) are discussed. Section 5.3 contains results for several cases of the uniform 

magnetic field parameter m, and their growth rates are compared. The cases investi

gated are for m  =  0.0,0.1,0.2,0.5,0.4 and 0.5. Finally conclusions are given in section 

5.5.

5.2 R otating-d isk  theory

5.2 .1  T h e m ean  flow

The three-dimensional boundary-layer is the same as that outlined in chapter 4. The 

only difference is that the fluid is now electrically conducting and a uniform magnetic 

field B =  B o k  is applied to the system, where k is a unit vector parallel to the normal 

direction. The magnetic field strength Bo is measured in units of Tesla. The effects 

of the electric field are assumed to be negligible and the magnetic field is unaffected 

by the fluid motion. There is only one additional force term to be included in the 

momentum equations, the Lorentz force, which is given as ( J AB) .  Here J is the
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current density, defined as

J =  o*(E +  U* A B -  /T(J A B)), (5.2)

for an electric field E  and velocity U* =  (£/*, Uq, U*). Here o* is the electrical

conductivity of the fluid and the last term in equation (5.2) describes the Hall effect, 

where /?* =  1 /n*q* is the Hall factor, for n* the electron concentration per unit volume 

and —q* the charge of the electron.

The momentum and continuity equations in cylindrical polar coordinates are now 

given as

+  m * VW* -  ̂  -  2A‘£T -
d f  + ( u  'V)  r r  6 ~  p'  d r * + V  Ur r2* r2* 8 6 - )

-  HaUg), (5.3)
P*(l +  H i)

d u ° +  (U ‘ .v )( /j  +  + 2A*c/; =  -  } .  df "  + v ' ( V2t/;  -  +  2 d u ;dt* r r r*p* dO* \  r2* r2* d9

+ HaUr), (5.4)
/>*(! +  H i)

ATT*  1 A P *
^  +  (u * .v )c /r =  - — +  i/*v2c/;, (5 .5 )
d f  v z P* dz '  1 K

■ » ™ >  +  - L « |  +  « 2 , „ ,  (56)
r* dr* r* dO* dz" 

where P * denotes the mean pressure, A* the constant angular velocity, v* the kine

matic viscosity and p* the fluid density. (Where * denotes dimensional quantities). 

Here Ha =  0 * (3* Bq is the Hall parameter. However, for the present study, the Hall 

effects are neglected, i.e. Ha = 0.

The above momentum and continuity equations are coupled with
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which is known as the induction equation1 and

a n
V .J  =  0, V A E  =  -  — , V .B  = 0, (5.8)

to form the full system of governing equations for the present MHD problem. The 

first expression in (5.8) is the continuity equation2, the second expression is Faraday’s 

law of magnetic induction3 and the final equation is the solenoidal condition for the 

magnetic induction4. Here Rem =  ct*PqA*6*2 is the magnetic Reynolds number, where 

Pq is the magnetic permeability of free space and 8* — {v*/ h*)% is the boundary- 

layer displacement thickness. For many liquid metals the magnetic Reynolds number 

is usually a great deal smaller than the Reynolds number of the fluid. In Jasmine 

h  Gajjar (2005a) an example is given for mercury at a temperature of 30°. The 

corresponding magnetic Reynolds number is found to be of the order 10~7 times 

smaller than the Reynolds number of the fluid. For such problems, we may neglect 

the effect of the fluid motion on the magnetic field.

On substituting the von Karman similarity variables (4.5) into the momentum 

equations (5.3) - (5.5) and continuity equation (5.6), we obtain the following non- 

dimensional mean flow equations

F 2 +  F 'H  -  (G +  l )2 + mF = F", (5.9)

2 F(G  +  1) +  G'H  +  m(G +  1) =  G", (5.10)

P , + H 'H  = H n, (5.11)

2F +  t f ' =  0, (5.12)

1The induction equation: a local change in the magnetic field is due to both convection and 
diffusion effects

2The divergence of the current density is equal to the rate of change in charge density, which is 
zero here.

3 A spatially varying electric field can induce a magnetic field
4There are no sources or sinks for the magnetic field lines.
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where the prime denotes differentiation with respect to the normal component z.

Equations (5.9)-(5.12) are solved subject to the boundary conditions

F(0) =  G( 0) =  H( 0) =  P( 0) =  0, (5.13)

F (z  —> oo) =  0, G(z —► oo) =  —1, (5.14)

<7*  B?where m = is the magnetic interaction parameter. The non-dimensional undis

turbed flow, Reynolds number and non-dimensional rotation rate are again given by 

(4.12) - (4.14).

The above system of ordinary differential equations may be solved using an adapted 

version of the Matlab code, given for the suction/injection problem; refer to the ap

pendices.

m F'(0) G’{ 0) H( oo)
0.0 0.51023262 -0.61592206 -0.88447339
0.0 0.511 -0.616 -0.885
0.0 0.5102 -0.6159 -0.88447
0.2 0.45314093 -0.70879532 -0.68347665
0.5 0.38513261 -0.84872383 -0.45888038
0.5 0.385 -0.849 -0.459
0.5 0.3851 -0.8487 -0.45887
1.0 0.30925802 -1.06905332 -0.25331430
1.0 0.310 -1.069 -0.253
1.0 0.3092 -1.0690 -0.25331
2.0 0.23055923 -1.44209393 -0.10858375
2.0 0.231 -1 . 4 4 2 -0.109
2.0 0.2305 -1.4420 -0.10858
5.0 0.14851930 -2.24345218 -0.02940157

Table 5.1: Values of F ', G' at z = 0 and H at infinity for various values of m. Results: 
roman - current thesis; italics - Sparrow Sz Cess (1962); bold - Jasmine (2003).

Figure 5.1 displays the radial, azimuthal and normal mean velocity profiles for 

the rotating-disk flow, with m = 0.0, 0.5, 1, 2 and 5. The maximum magnitude
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Figure 5.1: The mean flow velocity profiles for the radial (F), azimuthal (G) and 
normal (H) components for different values of m.
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Figure 5.2: Plot of the magnetic field parameter m against ifoora1,5.

corresponding to the radial velocity component, decreases with increasing m. The 

same is true of the magnitude of the normal component at infinity. Table 5.1 gives 

(to eight decimal places) F ',G ’ at z =  0, and H  as 2  —> oo for various values of m, 

which agree with the earlier tabulated results of Sparrow h  Cess (1962) (italics) and 

Jasmine (2003) (bold). It was shown by Sparrow h  Cess (1962) that as m increases, 

the mean velocity terms F'(0), G'(0) and H (oo) behave as follows,

G'(0) =  —\/m , F '(0) =  - 4 = ,  H (oo) =  - - ± t . (5.15)
3071 37712

The approximate solutions and tabulated results are plotted in figure 5.3. While 

figure 5.2 displays a plot of H ^ m 1-5 against m, where Hqq = H (oo). As m increases, 

Hoom15 can be seen to asymptote to approximately —1/3.
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Figure 5.3: Variations in F '(0), G^O) and H (oo), for various values of m, with 
approximate solutions (5.15).

5.2 .2  V eloc ity -vortic ity  form ulation

For velocity u =  {ur,ue ,uz} and vorticity uj = {<jjr,UQ,ujz} perturbation fields, the 

velocity-vorticity formulation of chapter 4, is now given by 

d u r _ 1 dN z DNq n A f , duz m f  1 duz \  ) 1 ( 2 1 \  ̂  2 du$O A  /  i dUz 171 (  ld u z \ \ _  1
(  dr 2 V r r d8 ) f  Rtdt r 80 dz \ dr 2 \  r dO )  j R e \ \  r2 J r2 dO

(5.16)
dujQ dNr dN z n A f 1 duz m  (  duz \  \  I f  (  2 1 \  2 dujr

V — r ]ug - t
( <97Vr dN z , oA /  1 duZ i m (  t duz \ \  _  1

dz 9 r r r r 88 2 V*'9 dr J J .Redz dr  ̂ r dd 2 \  dr J J R e \ \  r2 J r2 d6

where the convection term N  is defined by equations (4.22) - (4.25) and {ur,ujQ, uz} 

are taken to be the primary variables. The remaining secondary variables {ur, ug, ujz)
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are again defined by (4.27) - (4.29).

Also, the system has been linearized, which allows modes to be separable with 

respect to the azimuthal direction (4.30). Finally, equations (4.34) - (4.36) are again 

taken to provide integral constraints on the primary variables.

Introducing the Lorentz force to the velocity-vorticity equations

The non-dimensional Lorentz force terms in the Navier-Stokes equations (5.3) - (5.4) 

are given by

L.F. =  {mAur, mAuo, 0}. (5.19)

where L.F. denotes the Lorentz force, m  is the magnetic field parameter and A is the 

angular velocity of the rotating-disk. (Note: we have moved the Lorentz force terms 

to the left-hand-side of equations (5.3) - (5.4), to remove the negative signs). On 

taking the curl of (5.19), we obtain

r /  a due . dur m k ( d { r u e) dur \ \

Then by taking z-derivatives of the secondary variable definitions (4.27) and (4.28), 

we obtain

d u r d u z ( ^

97 = Ut + W '  (5'21)
dug l d u z

97 -  r 9 7 _W"  (5'22)

which on substituting into equation (5.20), gives the Lorentz force terms appearing 

in the governing equations (5.16) - (5.17).

5.3 R esu lts

Disturbances were impulsively excited using a wall motion, defined in equations (4.37) 

and (4.38). Table 5.2 displays the critical values for the onset of absolute instability,
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for various values of m that were obtained using the parallel flow approximation. 

Rec is the Reynolds number, (3C is the azimuthal wavenumber, nc =  f3cRec is the 

integer valued azimuthal mode number (for Jasmine’s results, nc has been rounded 

to the nearest integer), a c is the radial wavenumber and u c and ujcRec are the non- 

dimensional temporal frequencies. The results in italic are those found (using the 

parallel flow approximation) by Jasmine (2003), Jasmine h  Gajjar (2005a), while the 

data in bold refers to the results of the numerical simulations, found here. For the 

numerical simulations, the Reynolds number and azimuthal mode number have been 

rounded to integer values. This was done, to avoid excessive parametric studies.

m Rec 0 C nc Otc oJq Re^
0 . 0

0.0
507.30

508
0.1348 6 8

68
-0.03485
-0.03435

0.2173- i0.1216 
0.2192 - i0.1153

-17.679
-17.451

0 . 1

0.1
594-32

595
0.128 76

76
-0.03402
-0.03358

0.2235 - iO.U77 
0.2233 - i0.1096

-2 0 . 2 2

-19.98
0 . 2

0.2
695.97

696
0 . 1 2 4 8 6

86
-0.03338
-0.03334

0.2314 - iO.U47 
0.2314 - i0.1078

-23.23
-23.21

0.3
0.3

812.88
813

0.118 96
96

-0.03208
-0.03205

0.2399 - iO.1130 
0.2396 - i0.1050

-26.08
-26.06

0 .4
0.4

945.36
946

0.113 107
107

-0.03105
-0.03100

0.2498 - i0.1116 
0.2492 - i0.1043

-29.35
-29.33

0.5
0.5

1091.90
1092

0.109 119
119

-0.03027
-0.03023

0.2609 - iO. 1106 
0.2600 - i0.1012

-33.05
-33.02

Table 5.2: Critical values for the onset of absolute instability as found by Jasmine 
(2003), Jasmine and Gajjar (2005a). The values in bold correspond to the values 
found here.

The results obtained from the numerical simulations are almost identical to those 

obtained by Jasmine’s linear stability theory. The complex temporal frequencies 

ujc are (to three decimal places) the same as those given by Jasmine (2003). The 

frequencies (given in bold in figure 5.2) were calculated at the radial point of excitation
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r = re. The frequency at re was constant for all time, after the initial transient phase. 

While the temporal frequency at all other radial positions was found to asymptote 

towards the same constant u c. The temporal growth rates were also all found to 

converge towards the same constant value. For the cases here, the constant was 

approximately zero, since the disturbances are excited at the point of critical absolute 

instability.

The radial wavenumbers a c (in bold) are also consistent (to two decimal places in 

most cases) with the results of Jasmine (2003).

As mentioned previously, if the circumferential periodicity of the problem is to 

be satisfied, the azimuthal mode number n = (3Re can only take on integer val

ues. Therefore, to ensure that n remains constant for all simulations, the azimuthal 

wavenumber f3 must be varied accordingly.

Further validation checks on the stationary convective modes are given in the 

appendices. We will now investigate the rotating-disk boundary-layer with an axial 

magnetic field, where the magnetic field parameter m  =  0.2, 0.4 and 0.5.

5.3 .1  m  =  0.2

For the magnetic field parameter m  = 0.2, Jasmine (2003) found absolute instability 

to first arise for a Reynolds number Re = 696 and an azimuthal mode number n = 

86.

A disturbance was impulsively excited at the boundary of absolute instability; re 

= 696 and n = 86. The corresponding non-parallel wavepacket is plotted in figure 

5.4. The leading and trailing edges of the disturbance wavepacket are easily identified. 

The leading edge propagates radially outwards with what appears to be a constant 

velocity, while the trailing edge appears to be propagating with a diminishing velocity. 

Thus, it appears that we may eventually obtain behaviour comparable with critical 

absolute instability.
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Figure 5.4: Spatio-temporal development of \wetW\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic interaction parameter m = 0.2. The 
azimuthal mode number is n = 86 and the disturbance was excited at re = 696. (a) - 
full radial range, (b) - reduced radial range.
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The temporal frequencies and growth rates for the above disturbance are plotted 

in figure 5.5, which are calculated by the complex-valued quantity (4.39). The lines 

labeled P refer to the data obtained from the parallel flow numerical simulations. The 

frequency is comparable with that given by Jasmine (2003) (refer to table 5.2), and 

the growth rate is found to tend towards zero, which would indicate critical absolute 

instability. For the non-parallel simulation, the frequencies and growth rates are 

plotted for four equally spaced radial locations; re - 25, re = 696, re +  25 and re + 

50. The frequencies increase at all locations with increasing time. This is analogous 

behaviour to that found in the previous chapter, for a rotating-disk with uniform 

mass transfer. The corresponding growth rates appear to be asymptoting towards 

a constant. Such behaviour is not too dissimilar to that observed in the flows with 

uniform suction, where temporal growth was observed.

A second disturbance was excited for re =  796 and n — 86. Figure 5.6 displays 

the corresponding frequencies and growth rates. Again the frequencies are increasing, 

but now the growth rates are decreasing, suggesting that given sufficient time we may 

observe temporal decay.

For the earlier disturbance r e =  696, the growth rates (figure 5.5) appear to be 

approaching a constant, but it could be that they do indeed decrease and display 

temporal decay at larger locations in time.

Figure 5.7 displays the spatio-temporal development for a non-parallel disturbance 

excited at re =  596. This is located radially inwards of the critical radius for absolute 

instability. The disturbance can be seen to initially convect radially outwards. How

ever, the trailing edge can be seen to slow down as it nears the region of absolute 

instability. Nonetheless, it is not possible to discern the long term behaviour of the 

disturbance, as the trailing edge may continue to propagate radially outwards in a 

convective manner or it may eventually reverse direction and display globally unstable 

characteristics.
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Figure 5.5: Local temporal frequencies u)rRe and temporal growth rates WiRe for a 
disturbance with n = 86 developing in a non-parallel flow with a magnetic interaction 
parameter m = 0.2, centred at re = 696. The temporal development is plotted for four 
different radial positions, re - 25, re, re + 25 and re + 50. The solid lines labeled 
with a P show the development in a parallel flow with Re = 696. The temporal growth 
rates are displayed over a full time range, (a), and for a reduced time range, (b).
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Figure 5.6: Local temporal frequencies curRe and temporal growth rates LJiRe for a 
disturbance with n = 96 developing in a non-parallel flow with a magnetic interaction 
parameter m = 0.2, centred at re = 796. The temporal development is plotted for four 
different radial positions, re - 25, re, re + 25 and re -f 50. The solid lines labeled 
with a P show the development in a parallel flow with Re = 796. The temporal growth 
rates are displayed over a full time range, (a), and for a reduced time range, (b).
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Figure 5.7: Spatio-temporal development of \uofW\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic interaction parameter m = 0.2. The 
azimuthal mode number is n = 86 and the disturbance was excited at re = 596.

A greater understanding of the long term features of the disturbance can be ob

tained by looking at the temporal growth rates at various radial locations. Figure 5.8 

displays the growth rates at re =  596, r e +  25, r e +  50, re +  100 and re +  150. There is 

a small increase in growth for the radial positions r < re +  50, while there is a steady 

decrease in growth for all greater radial locations. Indeed for r  =  696 =  re +  100 

(which corresponds to the radial location for the onset of absolute instability) tempo

ral decay is found. Thus, it seems likely that the disturbance will continue to convect 

radially outwards, even when the disturbance has arrived at the region of absolute 

instability.

For m =  0.2 it is possible that convective behaviour will eventually dominate the 

disturbance response. However, the convective behaviour is not as obvious as it was
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Figure 5.8: Local temporal growth rates WiRe for a disturbance with n = 86 developing 
in a non-parallel flow with a magnetic interaction parameter m = 0.2, centred at re 
= 596. The temporal development is plotted for five different radial positions, re, 
re +  25, re +  50, re + 100 and re + 150.

in the rotating-disk boundary-layer; Davies & Carpenter (2003).

As mentioned in the previous chapter, simulations for large time, which would 

show the long term response of the disturbance, were difficult to obtain. This was 

due to convergence problems with the iteration scheme. However, on comparing the 

present problem with that investigated by Davies Sz Carpenter (2003) (rotating-disk
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with m  = 0), we can say that the convective dominance is reduced and that temporal 

growth plays some small role in the disturbance development.

5.3 .2  m  =  0 .4

For m =  0.4 the critical Reynolds number for absolute instability is given as Rec =  946 

for an azimuthal mode number n = 107; Jasmine (2003). We excited a disturbance 

at the radial location re =  946. Figure 5.9 displays the corresponding frequencies 

and growth rates. The lines labeled P refer to the frequencies and growth rates, 

obtained for the simulations, where the parallel flow approximation has been used. 

For the non-parallel flow, the frequencies increase at all selected radial locations. The 

corresponding growth rates are found to increase at a steady rate at all locations, and 

temporal growth is found for all radial locations r > re = 946. Thus, the behaviour 

is similar to that observed in the earlier simulations with uniform suction.

Figure 5.10 displays the frequencies/growth rates for a disturbance excited further 

into the region of absolute instability; re =  996 and n =  107. The growth rates are 

again found to increase at a steady rate, and for the given radial locations, temporal 

growth is observed.

The spatio-temporal development of a disturbance excited radially inwards of the 

boundary of absolute instability is plotted in figure 5.11. The radial location of 

excitation is re = 896 and the azimuthal mode number n = 107. The trailing edge of 

the wavepacket can be seen to initially propagate radially outwards, but as it nears 

the region of absolute instability, it appears to asymptote towards a line, parallel to 

the vertical direction.

The growth rates for this disturbance are displayed in figure 5.12 and are plotted 

for the radial locations re = 896, r e +  25, re +  50, re +  100. For r < re +  50 the growth 

rates increase at all given locations. Although temporal decay is currently being 

observed for these locations, it appears that given sufficient time, temporal growth
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Figure 5.9: Local temporal frequencies u rRe and temporal growth rates ujiRe for a 
disturbance with n = 107 developing in a non-parallel flow with a magnetic interaction 
parameter m = 0.4, centred at re = 946. The temporal development is plotted for four 
different radial positions, re - 25, re, re + 25 and re + 50. The solid lines labeled 
with a P show the development in a parallel flow with Re = 946. The temporal growth 
rates are displayed over a full time range, (a), and for a reduced time range, (b).
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Figure 5.10: Local temporal frequencies u rRe and temporal growth rates UiRe for a 
disturbance with n = 107 developing in a non-parallel flow with a magnetic interaction 
parameter m = 0.4, centred at re = 996. The temporal development is plotted for four 
different radial positions, re - 25, re, re + 25 and re + 50. The solid lines labeled 
with a P show the development in a parallel flow with Re = 996. The temporal growth 
rates are displayed over a full time range, (a), and for a reduced time range, (b).
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Figure 5.11: Spatio-temporal development of \uje,w\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic interaction parameter m = 0-4- The 
azimuthal mode number is n = 107 and the disturbance was excited at re = 896.

and globally unstable behaviour may eventually be displayed. For r = re + 100, the 

plot of the growth rate initially decreases at a rapid rate. However, this does not 

persist for long and there is a suggestion that it may eventually reverse direction and 

increase.

On comparing the two problems, so far investigated, m  = 0.2,0.4, there is a 

strong indication that temporal growth and globally unstable behaviour is promoted 

by increasing the magnetic field parameter m. This would suggest that for m  =  0.5, 

the growth rates would increase at a faster rate than those displayed by m =  0.2,0.4.
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Figure 5.12: Local temporal growth rates LJiRe for a disturbance with n = 107 devel
oping in a non-parallel flow with a magnetic interaction parameter m = 0.4, centred 
at re = 896. The temporal development is plotted for four different radial positions, 
re, re +  25, re +  50, re + 100.

5.3 .3  nrt =  0.5

Figure 5.13 displays the wavepacket evolution of a disturbance excited at re =  1092 

for m =  0.5 and n = 119 in a non-parallel flow. These are the critical values for 

absolute instability as found by Jasmine (2003). From figure 5.13(a) it appears that 

the trailing edge is propagating with a diminishing velocity. Thus, indicating critical
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Figure 5.13: Spatio-temporal development of\u>eyW\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic field m = 0.5. The azimuthal mode 
number is n = 119 and the disturbance was excited at re = 1092. (a) - full radial 
range, (b) - reduced radial range.
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Figure 5.14: Local temporal frequencies u rRe and temporal growth rates u>iRe for a 
disturbance with n = 119 developing in a non-parallel flow with a magnetic interaction 
parameter m = 0.5, centred at re = 1092. The temporal development is plotted for 
four different radial positions, re - 25, re, re + 25 and re + 50. The solid lines labeled 
with a P show the development in a parallel flow with Re = 1092. The temporal 
growth rates are displayed over a full time range, (a), and for a reduced time range,
(b).
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absolute instability. However, by taking a closer look at the trailing edge - figure 

5.13(b) - it can be seen that it is propagating radially inwards with an increasing 

velocity. Therefore, temporal growth and globally unstable behaviour is observed.

The temporal growth is made even clearer by figure 5.14, where the growth rates 

are found to increase at all radial locations. For the radial location r =  re — 25 

(located radially inwards of the origin of the disturbance) temporal growth arises 

after t /T  «  1.4.
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Figure 5.15: Spatio-temporal development of \ujq,w\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic interaction parameter m = 0.5. The 
azimuthal mode number is n = 119 and the disturbance was excited at re = 1042.

Figure 5.15 displays the wavepacket evolution for a disturbance impulsively ex

cited at the radial location re = 1042. Initially the disturbance propagates radially 

outwards, but as it nears the absolutely unstable region, the trailing edge slows down 

and appears to be propagating towards a vertical line, in the vicinity of rc = 1092. The
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Figure 5.16: Local temporal growth rates WiRe for a disturbance with n = 119 devel
oping in a non-parallel flow with a magnetic interaction parameter m = 0.5, centred 
at re = 1042. The temporal development is plotted for four different radial positions, 
re, re -f 25, re +  50, re + 100.

growth rates for this disturbance are shown in figure 5.16. For r  < re +  50 the growth 

rates increase at a steady rate, and it looks as if temporal growth will eventually be 

observed. For r  =  re +  100, the plot of the growth rate decreases with time. However, 

the plot suggests that it may eventually reverse direction and increase. Temporal 

growth is observed for the entire duration of the plot at the location r =  re -f 100.
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Figure 5.17: Spatio-temporal development of \ue,w\ for an impulsively excited distur
bance in a non-parallel flow with a magnetic interaction parameter m = 0.5. The 
azimuthal mode number is n = 119 and the disturbance was excited at re = 892.

A final disturbance is excited at the radial location re = 892 for an azimuthal 

mode number n = 119. The origin of this disturbance is located far upstream of 

the boundary of absolute instability. The spatio-temporal development is plotted in 

figure 5.17. Initially the trailing edge propagates radially outwards in a convective 

manner. However, as the disturbance nears the region of absolute instability, the 

velocity of the trailing edge can be seen to decrease.

Due to difficulties in obtaining solutions for large time, we can no longer use the 

leading and trailing edges to determine the long term characteristics of the distur

bance. Nonetheless, we may obtain a good idea of the the prevailing behaviour, by 

looking at the contour lines within the wavepacket. The contour lines appear to be 

asymptoting towards vertical lines, in the vicinity of rc = 1092, suggesting that the
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trailing edge will also tend towards a vertical line. Hence, we may conjecture that 

temporal growth and globally unstable behaviour will eventually prevail.

5.4 Com paring growth rates

Figure 5.18 compares the growth rates at the critical radius of absolute instability 

re, for various magnetic field strengths. The solid line represents the case m = 0.0, 

where re =  508, n =  68; the dashed line represents the case m = 0.1, where re = 595, 

n =  76; the dashed-dotted line represents the case m =  0.2, where re = 696, n = 86; 

the dotted line represents the case m =  0.3, where re = 813, n = 96; the solid-dot 

line represents the case m = 0.4, where re = 946, n =  107; and the solid-star line 

represents the case m =  0.5, where re =  1092, n =  113. As was revealed by the 

earlier suction/injection problem, the growth rates of all six flows are of comparable 

magnitude.

Initially all six growth rates are comparable; the growth rates increase rapidly 

within the lower half of the plane. However, after only t /T  =  0.5, there are noticeable 

differences in the behaviour of the growth rates. For m  =  0 and 0.1 the growth rates 

reverse direction and decrease. The growth rate decreases more rapidly in the m  = 0 

problem. Conversely, the flows with m > 0.2 continue to grow, and it can be seen 

that the increase in growth is stronger for larger magnetic field strengths.

Figure 5.19 displays the gradients of the growth rates in figure 5.18. The data lines 

are as before. For m  =  0.0,0.1 the gradients decrease and are eventually negative, 

which corresponds to the growth rates decreasing. For m =  0.2,0.3 the gradients 

remain positive for the time period displayed. However, the gradients continue to 

decrease, suggesting that the corresponding growth rates may eventually decrease and 

display temporal decay. The gradients for m  =  0.4,0.5 initially decrease at a rapid 

rate. However, at larger locations in time, the gradients decrease at a slower rate, 

and the plot suggests that the gradients may eventually asymptote towards positive
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Figure 5.18: Comparing growth rates at the critical point of absolute instability for 
the various normal flows. Solid line: m = 0 where re = 508, n = 68; dashed line: 
m = 0.1 where re = 595, n = 16; dashed-dotted line: m = 0.2 where re = 696, n = 
86; dotted line: m = 0.3 where re =813, n = 96; solid-dot line: m = 0.4 where re = 
946, n = 107; solid-star line: m = 0.5 where re = 1092, n = 113.

constants. This would suggest that temporal growth and an increasing growth rate 

would be observed for these problems.

The results suggest that the growth rates increase at a greater rate, as m  increases. 

Thus, we may predict that flows with m > 0.5 will display growth rates that are larger 

than those displayed in figure 5.18. Although further investigation is required to prove
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Figure 5.19: Comparing the gradients of the growth rates in figure 5.18. Data lines 
are the same as those in figure 5.18.

this theory. Figures 5.18 and 5.19 also suggest that there may exist a critical value for 

m, such that the growth rate does not increase or decrease, but instead tends towards 

a constant. The plot suggests that such a critical value (if it does indeed exist) may 

arise for m  > 0.2.
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5.5 D iscussion and conclusions

A numerical study has been carried out on the effects of introducing a uniform mag

netic field on the global behaviour corresponding to the absolute instability of the 

rotating-disk boundary-layer. The fluid above the disk is assumed to be electrically 

conducting, and the effects of the electric field are assumed to be negligible and the 

magnetic field is unaffected by the fluid motion. The problems that we have inves

tigated here, are for m =  0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, where m  is the magnetic 

field parameter defined earlier. Since eigenvalues were unavailable for m > 0.5, we 

were unable to study the disturbance behaviour for larger values of m. The investi

gation was undertaken using the novel velocity-vorticity method described by Davies 

h  Carpenter (2001). The system of equations used in this method are equivalent to 

the complete linearized Navier-Stokes equations. Since the equations are linear, they 

are separable with respect to the azimuthal coordinate 6. Thus, simulations with a 

single azimuthal mode number are allowed. Impulse like excitation was used for all 

simulations. This produces a disturbance wavepacket that initially contains a wide 

range of frequencies.

When disturbances are simulated using the so-called parallel flow approximation 

(spatially homogeneous flow), the results are fully in accordance with the theoretical 

results of Jasmine (2003). If the flow parameters lie within the theoretical absolutely 

unstable parameter space, the simulations produce identical behaviour. The same is 

true for disturbances excited within the convectively unstable region. For disturbances 

excited at the critical point of absolute instability, the temporal frequencies and radial 

wavenumbers are identical (to within a certain number of decimal places) with those 

given by Jasmine (2003); refer to table 5.2.

For the non-parallel flow simulations (spatially inhomogeneous), the behaviour is 

quite different. While the magnetic field parameter is small, behaviour comparable
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with the results of Davies & Carpenter (2003) is found; the growth rates decrease at 

all locations. Thus, temporal decay is observed. The behaviour may be summarized 

by the schematic sketches in figure 2.4.

As the magnetic field parameter m  is increased, the corresponding growth rates 

begin to increase. The growth rates are found to grow at a stronger rate for larger 

values of m. This is clearly evident in figures 5.18 and 5.19, which display the growth 

rates at the critical point of absolute instability for various mean flows and their cor

responding gradients. This would suggest that for m  sufficiently large, the behaviour 

may be summarized by the schematic plots in figure 4.30. Figures 5.18 and 5.19 also 

suggest that there may exist a critical value rac, such that the growth rate tends 

towards a constant for large time. However, further investigation is required to prove 

this.

The results of the present study are rather surprising. The introduction of a 

uniform magnetic field is known to be stabilizing. However, on introducing non

parallel effects, the mean flows are destabilized in the region of the theoretical absolute 

instability and an increasing temporal growth rate is found. Thus, the results are 

similar to that observed in the earlier problems with uniform suction; globally unstable 

behaviour is promoted by their introduction, but there is no fixed global frequency, 

which would be expected for a globally unstable flow.

As mentioned in chapter 4 the behaviour observed in the numerical simulations can 

be understood by considering the Green’s solutions to the Ginzburg-Landau equation 

(refer to chapter 8). Depending on the precise balance between the varying frequency 

and the varying growth rate, globally stable or globally unstable behaviour can be 

observed.

Longer simulations, which would have given a greater insight into the long term 

behaviour, were prevented because of convergence errors. The errors arise because 

of the difficulty in dealing with flow variables that vary over an O(1020) range of
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amplitudes in space and in time. Therefore, it is difficult to say whether the growth 

rates for m  > 0.2 (in figure 5.18) will continue to grow indefinitely, or eventually 

reverse direction, decrease and display temporal decay. The above study suggests that 

the former statement is true. However, it is quite possible that the growth rates (for 

large m) do eventually decrease and display temporal decay. Further study is required 

to gain a greater understanding of the prevailing disturbance behaviour. Nonetheless, 

the results do tell us that temporal growth is promoted by the introduction of a 

uniform axial magnetic field, even if we cannot be sure, from the simulations, about 

whether it is maintained indefinitely.



C hapter 6 

T he BEK  fam ily

6.1 Introduction

The von Karman (1921) rotating-disk boundary-layer is one particular example of a 

wider class of rotating flows. The system consists of a disk of infinite radius, rotating 

with a constant angular velocity A ,̂ beneath a fluid, which is infinite in extent and 

rotating with a constant angular velocity A/. Refer to figure 6.1 for a sketch of the 

rotating system. Three particular examples are the Bodewadt (1940), Ekman (1905) 

and von Karman (1921) boundary-layers and so the system will be known as the 

BEK  family. As discussed previously, the von Karman or rotating-disk boundary- 

layer arises when a disk rotates beneath a stationary fluid. The Ekman layer occurs 

when the disk and fluid rotate with approximately the same angular velocity and the 

Bodewadt layer arises when a fluid rotates above a stationary disk. Batchelor (1951) 

described and Rogers & Lance (1960), Faller (1991) Lingwood (1997b) obtained solu

tions for the BEK  family. The mean velocity profiles become increasingly inflectional 

as the rotating flow changes from the von Karman layer through to the Bodewadt 

layer. Thus, the flow becomes increasingly unstable.

Batchelor (1951) describes the behaviour of the BEK  family in terms of stream

lines. For rotating flows, where the fluid rotates with a greater angular velocity than

150
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D isk

Figure 6.1: Rotating-disk beneath a body of rotating fluid.

the disk, it was shown that the flow will behave in the form given in figure 6.2(a). 

There is a radial flow directed towards the centre of the disk, while there is an axial 

flow directed away from the disk. The Bodewadt layer and Ekman layer (with slightly 

greater fluid angular velocity) belong to this type of rotating flow. Figure 6.2(b) de

scribes a rotating flow, where the disk rotates with a greater angular velocity than 

the fluid. Fluid is introduced at the centre and is thrown radially outwards. The von 

Karman layer and Ekman layer (with slightly greater disk angular velocity) belong 

to this type of rotating flow.
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Figure 6.2: Streamlines of the various types of rotating flow, (a) - fluid rotates with 
greater angular velocity than the disk; (b) - disk rotates with greater angular velocity 
than the fluid.

6.1.1 T h e von  K arm an layer

The von Karman (1921) rotating-disk boundary-layer acts as a centrifugal fan, where 

the flow is introduced at the centre of the disk and is thrown radially outward. The 

disk is studied since the instabilities that arise are similar to those that occur on the 

boundary of a swept-wing. The reader is referred to chapter 2 for further background 

information on the subject.

6.1 .2  T h e E km an layer

The Ekman boundary-layer has a number of applications in meteorology and oceanog

raphy. For example, the interaction of the oceans and atmosphere, hurricanes and 

typhoons. Quasi-streamwise rolls have been observed in hurricanes, and such rolls 

are comparable with the rolls associated with instabilities inherent in the Ekman 

boundary-layer. The instabilities present in hurricane boundary-layers have been 

reviewed and studied by Nolan (2005).
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Steady winds at the sea surface produce a thin boundary-layer, which is known 

as the Ekman layer. The boundary-layer is only a few hundred metres thick, which 

is thin when compared with the vast depths of the ocean. There exists a similar 

boundary-layer at the bottom of the ocean, known as the bottom Ekman layer. There 

also exists a planetary boundary-layer (PBL) just above the sea surface. The PBL 

occurs in the lowest part of the troposphere1. In the PBL, winds are governed by 

frictional forces and the boundary thickness is constantly changing, due to varying 

temperatures and wind speed. The PBL is generally found to be thicker during the 

day, since strong winds allow for greater convective mixing, which causes the PBL 

to expand. During the night there is a reduction of rising thermals from the earth 

surface. Thus, the PBL contracts. The PBL will also be thinner during the winter 

season, compared with the summer season. The reason being that cool air is generally 

denser than warm air. The PBL is approximately 100 - 3000 metres thick.

Within the PBL, wind is turbulent and surface friction due to vegetation2 and 

topography3, causes turbulent eddies and chaotic wind patterns to develop. The wind 

speed is far more uniform and stronger above the PBL, because there is a significant 

decrease in the frictional forces. Within the region above the PBL, the wind is defined 

as geostrophic, meaning a balance between the pressure gradient and Coriolis force. 

As the frictional force is more prominent within the PBL , the wind direction is a 

balance between the frictional and Coriolis forces, and the pressure gradient, and is

lrThe earth’s atmosphere is made up of the troposphere and stratosphere, where the troposphere 
is the lower section, and is the region in which most weather phenomena occur. The Green-house 
effect also arises within this region. The troposphere extends from the earth surface to an altitude 
of approximately 16 - 18 kilometres above the equator, and to an altitude of approximately 10 
kilometres above the poles. The term troposphere, stems from the Greek word tropos, meaning 
turning or mixing. The temperature of the troposphere varies greatly, from 17°c at the earth’s 
surface, to  approximately — 52°c at the tropopause, where the tropopause marks the end of the 
troposphere and the beginning of the stratosphere.

2 A general term for all the plant life in a particular region.
3The technique of graphically representing the exact physical features of a place; or the study 

and depiction of physical features, including terrain relief.
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known as the gradient wind. Friction reduces the affect of the Coriolis force, causing 

the air to spiral into low pressure. Since frictional forces decrease with increasing 

height, winds are generally observed to turn or bend, as one monitors the PBL from 

the earth surface to the upper atmosphere.

Temperatures within the PBL are dominated more by the advection and thermal 

effects, than the regions above. Therefore, of all the atmospherical regions, the most 

dramatic temperature changes occur inside the PBL. This is due to significant solar 

heating during the day and cooling through longwave radiation at night. The temper

ature of the atmosphere above the PBL remains fairly constant during the day and 

night. It is very important to monitor the varying temperature changes within the 

PBL for the purpose of making weather forecasts, since an increase in temperature 

will cause the atmosphere to become more unstable. Thus, prompting the onset of 

hurricanes or typhoons, which could have devastating effects if not detected early on. 

For further reading on the PBL the interested reader is referred to Minto &; Pleva 

(2002).

During an expedition to the north pole in the years 1894 - 1896 (Nansen, 1902), 

the vessel Pram was frozen into the ice. Nonetheless, the misfortune of the vessel and 

voyagers would soon reveal new and significant insights into the effects on the ocean, 

due to the wind. The oceanographer Fridjof Nansen, who was onboard the Fram, 

observed that the drift of the surface ice and consequently the current underneath, 

was directed at 20° to 40° to the right of the wind direction. He correctly attributed 

this to the Coriolis force and predicted that the current vector would spiral clockwise 

with increasing depth. Nansen argued that there are three forces important to the 

process; Wind stress W_, Drag D and Coriolis force C. For an iceberg (or any other 

object), it was proposed that the frictional forces must be in the opposite direction to 

the resulting velocity and that the Coriolis force will be perpendicular to the resulting 

velocity. Finally, Nansen argued that there must be a balance between the three forces
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(W . D , C) if steady flow is to arise. See figure 6.3.

W_ + D + C = 0 (6.1)

Figure 6.3: The balance of forces acting on an iceberg in a wind on a rotating Earth.

In order to prove such a theory, Nansen asked his colleague Vilhelm Bjerknes to 

let one of Bjerknes students to make a theoretical study on the influence of Earth’s 

rotation on wind-driven currents. That student turned out to be Vagn Wilfried Ekman 

(1874 - 1954). Ekman was born in Stockholm, Sweden and worked out the dynamics 

for his doctoral thesis at Uppsala. He showed that the rotation of the Earth influenced 

the way that ocean currents responded to the force of the wind. He pointed out how 

purely viscous effects were unable to transfer horizontal momentum down into the
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water column, so that it was necessary to take the turbulent downward transport 

of momentum into effect, by, for example, introducing a turbulent eddy viscosity 

coefficient Ve . Shortly after producing his thesis, Ekman produced his now famous 

1905 paper, whereby his study was expanded to include the influence of continents 

and differences of water density. Jenkins & Bye (2004) review in detail the work and 

achievements of Ekman and they provide a number of applications of his theory to 

the oceans. Section 5.2 contains the formulation devised by Ekman, with plots of the 

Ekman meanflow and Ekman spiral1.

Ekman spirals have been observed in many geophysical flows, both atmospheric 

and oceanic, and can be created in the laboratory for investigation. Although geo

physical flows always experience turbulence due to the rough boundary-layers and 

possible thermal effects, the mean flow may be assumed to be steady and laminar. 

The Ekman layer has an exact solution to the Navier-Stokes equations and has the 

advantage of having a constant boundary-layer thickness and constant geostrophic 

velocity. Thus, making it strictly parallel.

Since the study by Ekman, a number of investigators have carried out several 

theoretical and experimental investigations into the Ekman boundary-layer. Faller 

(1963) conducted an experimental study, where the Ekman layer was produced in a 

large cylindrical rotating tank by withdrawing water from the centre and introducing 

it at the rim. This created a steady-state symmetrical vortex, in which the flow from 

the rim to the centre took place entirely in the shallow viscous boundary-layer at 

the bottom. Instability was detected for Reynolds numbers of approximately 125. 

This instability is known as the Type-1 mode and is very similar to the Type-1 mode 

present in the von Karman layer, since both are inviscid crossflow instabilities, which 

are a consequence of the inflectional points in the radial mean flow velocity, (see figure

1Path traced out by the tip of the velocity vector in an Ekman layer, as the vertical coordinate 
changes.
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6.6 for plots of the mean flow velocities).

Faller & Kaylor (1966) also detected the Type-1 mode in their numerical study. 

Instability arose for Reynolds numbers Re «  118, which is in good agreement with 

the earlier experimental investigation by Faller. They also detected a Type-2 mode, 

which again is the counterpart to the viscous Type-2 mode present in the von Karman 

layer. The critical Reynolds number for the Type-2 mode was found to be Re «  55. 

Tatro &; Mollo-Christensen (1967) verified the existence of the Type-2 mode in their 

experimental study. The apparatus consisted of two parallel circular rotating plates 

forming a spool; air was admitted through screens at the outer edge and removed 

through a screen cage at the hub. The travelling Type-2 mode was found to occur 

before the Type-1 mode, with the respective critical Reynolds numbers given as Re 

«  56 and Re «  124.5.

Further confirmation of the Type-1 and -2 modes are given by Lilly (1966), Me- 

lander (1983), Faller (1991) and Lingwood (1997b). Lilly and Melander found the 

critical Reynolds numbers for the Type-1 and -2 modes to be Re «  110, Re «  55 

and Re & 112.75, Re & 54.15, respectively. While Faller found the travelling Type-2 

mode to arise for Re & 54, and Lingwood found the stationary Type-1 mode to arise 

for Re «  116.3.

Although the Type-2 travelling mode arises for significantly lower critical Reynolds, 

it is the Type-1 mode that is more commonly observed in experiments. This is be

cause there is a far more rapid growth associated with the Type-1 mode. Thus, for 

larger Reynolds numbers this mode will dominate.

Recently, Allen h  Bridges (2003) investigated the effects of introducing a two- 

dimensional compliant surface into the Ekman boundary-layer. Compliance has been 

shown by Cooper & Carpenter (1997a,b) and Davies &; Carpenter (2003) to suppress



Chapter 6. The BEK family 158

the onset of instability and transition to turbulence in the rotating-disk boundary- 

layer. However, it was shown by Allen &; Bridges that a compliant surface has neg

ligible effect on the Ekman layer and the critical Reynolds number for instability. 

Their study leaves a number of unanswered questions: does compliance have any 

interesting, technological or physical application in the Ekman layer?

For further interesting investigations on the topic of the Ekman layer, the reader 

is referred to Stewartson (1957), Barcilon (1967), Hide (1968), Spooner & Criminale 

(1982) and Foster (1997). Possibly the most important study (of recent times) in 

the area was conducted by Lingwood (1997b). Lingwood showed that the Ekman 

layer and other rotating flows exhibit regions of absolute instability. It was suggested 

that the absolute instability mechanism may be a possible reason for transition to 

turbulence and nonlinear effects. This will be discussed in greater detail later in the 

chapter.

6.1 .3  T h e B odew adt layer

In similar respects to the Ekman layer, the Bodewadt flow and other rotating fluid 

flows are useful in studying the interaction of the atmosphere and oceans. Batchelor 

(1951) describes the Bodewadt layer as a radial flow directed inwards and an axial 

flow directed away from the disk surface. He goes onto describe such a flow; ‘when a 

cup of tea is stirred, the sugar particles accumulate about the centre.’

Since Bodewadt (1940) discovered the solution to the mean flow, for the prob

lem where a fluid rotates above a flat plate, there have been few experimental and 

theoretical studies on the subject. To the authors knowledge, the first study to be 

published was the experimental investigation by Savas (1987). In the experiment, 

circular waves were observed on the disk boundary-layer during spin-down to rest. 

The initial flow evolves into a steady system that exhibits the Bodewadt flow prop

erties. The observed circular waves were found to develop in this flow. The critical
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Reynolds number for instability was found to be approximately Re =  25. This is a 

great deal smaller than the critical Reynolds numbers for the von Karman and Ekman 

layers. Lingwood & Alfredson (1999) also carried out an experimental study on the 

stability of the Bodewadt layer. The Bodewadt flow was approximated on the stator 

of an enclosed rotor-stator system. They found a non-axisymmetric instability for 

a low azimuthal wavenumber, which has an inward phase velocity that decreases in 

magnitude for decreasing radius and small negative wave angle. Their data suggests 

that the critical Reynolds number for instability lies in the range 47 < Re < 56.

Faller (1991) conducted a stability analysis for the complete set of rotating flows. 

In his study he calculates the critical value for the onset of the travelling Type-2 mode. 

The critical Reynolds number was found to be approximately Re =  15 for a wavelength 

L = 16.6 at an angle e =  —33.2°. Lingwood (1997b) also investigated the stability of 

the Bodewadt layer and found the critical Reynolds number for the stationary Type-1 

mode to be Re «  27, which is in good agreement with the experimental investigation 

by Savas (1987).

A spatial linear stability analysis was conducted by Fernandez-Feria (2000). They 

considered the stability of axisymmetric perturbations propagating towards the axis 

of rotation, i.e. the azimuthal mode number n =  0. It was shown that the circular 

waves observed in previous experimental and theoretical investigations, correspond 

to an inertial instability. The inertial mode is present at infinite Reynolds numbers 

and is similar to the Type-1 mode in the rotating-disk boundary-layer. This mode 

is stabilized as the Reynolds number decreases below the critical value, which was 

found to be about Re = 19.8 for n = 0.

6.1 .4  A b so lu te  in stab ility

Lingwood (1997b) extended her study on the absolute instability of the rotating-disk 

boundary-layer to the complete family of rotating flows; so called BEK  family. The
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flows were shown to be absolutely unstable in the radial direction, for a given region 

of the parameter space, (i.e. disturbances grow in time at every radial location within 

these regions). Outside such regions, the flow is either convectively unstable or sta

ble. The convective/absolute nature was determined by examining the branch-point 

singularities of the dispersion relation. The Briggs (1960) criterion was invoked to 

establish the disturbance characteristics. (The Briggs criterion and the requirements 

for instability were discussed in greater detail in chapter 1). Throughout Lingwood’s 

linear stability study, the parallel flow approximation was used, where the radial 

dependence of the mean flow was ignored.

The neutral-stability curves for stationary waves were presented by Lingwood 

(1997b) for a number of rotating flows. The critical Reynolds number for instability 

was found to be approximately 290, 116, and 27 for the respective von Karman, Ek

man and Bodewadt layers. The von Karman stability curve consists of an inviscid 

Type-1 and a viscous Type-2 mode destabilized by Coriolis forces. The other rotating 

neutral stability curves consist of two similar modes. For rotating flows with a nega

tive Rossby number Ro (corresponding to flows with a disk angular velocity greater 

than the fluid angular velocity), the two branches only exist for r > ra, where ra is 

the onset of the instability. Whereas flows with a positive Rossby number Ro (corre

sponding to flows with a fluid angular velocity greater than he disk angular velocity), 

the two branches exist for r < r a. For the Ekman layer Ro =  0“ (i.e. approach zero 

from below), the behaviour is similar to the flows with Ro < 0, in that disturbances 

propagate radially outwards, while for Ro =  0+ (i.e. approach zero from below), 

the behaviour is like the flows with Ro > 0, since disturbances propagate radially 

inwards.

The critical Reynolds number for absolute instability was found to decrease with 

increasing Rossby numbers. The critical Reynolds number for absolute instability for 

the von Karman, Ekman and Bodewadt layers were found to be 507.3, 198.0 and 21.6,
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respectively. Stationary absolutely unstable modes first arise for Ro ~  0.5. These 

stationary modes were found to be close to the critical point of absolute instability. 

Generally, for positive Ro the critical point is close to the stationary modes, while as 

Ro —+ —1, the frequency at the critical point becomes increasingly negative.

For Ro < 0 the absolutely unstable region resides in the lower half of the real 

radial wavenumber plane and the modes propagate radially outwards. The opposite 

is true for flows with Ro > 0. The absolutely unstable region lies in the upper half of 

the real radial wavenumber plane, the modes propagate radially inwards. However, 

for 1 < Ro < 0.8 there is a small region where the modes reside in the lower half 

plane. Thus, these flows produce similar behaviour to that described for the flows with 

Ro < 0. However, these modes only appear for Reynolds numbers that are greater 

than the critical Reynolds number for absolute instability. Hence, it is unlikely that 

this is physically relevant, since nonlinearity and transition to turbulence may have 

already set in.

For the rotating-disk boundary-layer, Lingwood (1995, 1996) felt that the ab

solutely unstable mechanism was possibly responsible for the onset of non-linear be

haviour and the transition from a laminar to turbulent state. It was claimed by 

Lingwood that transition in the rotating-disk boundary-layer typically occurs for Re 

=  513 ±3%, which is remarkably close to her critical value of Re = 507.3 for absolute 

instability. Transition in the Ekman layer was shown by Owen, Pincombe &; Rogers 

(1985) to occur for Re = 180, and other investigators have found transition to arise 

for 180 < Re < 200. The critical Reynolds number for absolute instability in the 

Ekman layer is Re = 198. Thus, Lingwood (1997b) felt that the absolute mecha

nism was again a possible reason for transition and nonlinearity. Lingwood (1997b) 

concluded by saying that absolute instability was a possible reason for transition and 

non-linearity in all rotating flows within the BEK  family.

Lingwood understood the behaviour of the BEK  family to be as follows; for flows
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with Ro < 0, a laminar stable region is surrounded by a convectively unstable region, 

which in turn is surrounded by an absolutely unstable region. The behaviour of flows 

with Ro > 0 is similar. However, since the flow propagates radially inwards, there are 

some important differences. For a disturbance excited within the convectively unsta

ble region, the disturbance propagates radially inwards towards the laminar region 

and if the amplitudes are sufficiently small, the disturbance will eventually decay. For 

a disturbance centred within the absolutely unstable region, the wavepacket envelope 

propagates radially inwards and outwards from the source. Lingwood suggested that 

the absolute instability may act as an exciter for inwardly propagating waves that 

pass through the three regions of the stability domain. The three regions being: 

stable, convectively unstable and absolutely unstable. Thus, suggesting a picture of 

relaminarization along the inward path.

More recently Jasmine &; Gajjar (2005c) have investigated the BEK family, where 

the rotating fluid is between a rotating-disk and a stationary-lid. The distance be

tween the disk and lid was allowed to vary and it was shown that instability is en

hanced as the distance between the disk and lid is increased. The region of instability 

tends towards that given by Lingwood, for large distances.

As already discussed in previous chapters, Davies k  Carpenter (2003) have stud

ied the global behaviour of the absolute instability corresponding to the rotating-disk 

boundary-layer, using a velocity-vorticity formulation described in Davies k  Carpen

ter (2001). Refer to chapters 2 and 3 for details of their study and formulation. 

The following study extends the investigation of Davies k  Carpenter (2003) to the 

complete system of rotating flows; BEK  family. The velocity-vorticity equations are 

adapted to include the complete family of rotating flows and an investigation is carried 

out on the Bodewadt, Ekman and von Karman flows.

The remainder of the chapter is as follows; the subsequent section discusses the 

equations for the Ekman layer and gives plots for the mean flow and Ekman spiral.
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In section 6.3, the velocity-vorticity formulation of Davies & Carpenter (2001) is 

extended to the complete family of rotating flows with results given in section 6.4 

for various flows belonging to the BEK  family. Finally, the results are discussed and 

conclusions are given in section 6.5.

6.2 T he Ekm an equations and spiral

The Ekman layer consists of a rotating fluid flow over a rotating flat solid surface 

extended infinitely in both the streamwise x and spanwise y directions. The vertical 

direction z above the surface, is infinite in extent and the solid surface lies on the 

plane z =  0. The fluid and plate rotate about the same vertical axis with constant 

angular velocity A. We assume that the flow u is small compared with the rotation of 

the system. Thus, the convective term (u.V)u in equation (2.1) is small and may be 

neglected in comparison with the Coriolis term 2A A u. The Navier-Stokes equations 

for a weak flow u in a state of rotation with angular velocity A are given as

Momentum: ^  -f 2A A u =  —-V p  +  ^V2u, 
ot p

Continuity: V.u =  0, (6.2)

where all terms are as before and dimensional. It is assumed that variations of u with 

z are more rapid than those with x  or y. The equations giving the mean velocity 

components U and V  at the boundary z =  0 for the Ekman layer are

-2AV ,  -Jg + .fJ, (6.3)

2A U =  (6.4)

where p and v are the fluid density and kinematic viscosity, respectively. There are 

no-slip conditions at z = 0 and as z —► oo, V(z  —> oo) =  =  (dp/dx)/(2pA). After

some manipulation the non-dimensionalized analytic solutions (6.3) - (6.4) may be
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Meanflow velocity profiles for the Ekman flow
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Figure 6.4: (a): The mean flow velocity profiles for the Ekman layer, (b): The Ekman 
spiral.
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given as

C/(77) =  — e- 7?sin(T7), (6.5)

V{rj) =  1 — e-T,cos(7 7), (6 .6 )

where 77 =  z(A /u ) 5  is the non-dimensional normal component.

Figure 6.4 displays the plots of the mean velocity profiles U, V against the normal 

direction and as an Ekman spiral.

6.3 R otating flow theory

6.3.1 T he m ean flow equations

The following fluid flow model describes the family of rotating boundary-layer flows, 

which are induced by a rotating incompressible fluid with angular speed AJ, above 

a rotating disk with angular speed AJ, about the same axis of rotation. This family 

is commonly referred to as the BEK  system (Lingwood, 1997b). As mentioned pre

viously, particular cases of this system, are the Bodewadt, Ekman and von Karman 

layers. The radius of the disk and the extent of the fluid above the disk are taken to

be infinite. The Bodewadt layer arises when AJ = 0 and AJ ^  0. The von Karman

layer occurs when AJ = 0 and AJ ^  0, and for the Ekman layer AJ «  AJ. In between 

these examples there are various flows in which both disk and fluid are rotating, but 

with differing angular velocities. The momentum and continuity equations in cylin

drical polar coordinates r*, 9* and z*, in a system rotating with angular speed AJ are 

given as

du;  - - - - - - - - - -  u;2 O A „ „  1 a p *  , , / „ 2 ,
o f  + (u* W  -  - f -  -  2k*du ;  = ✓ ( v 2u ;  -  ±  ), (6.7)

8U* 1 BP*
+  (U\V)C/; =  +  v 'V 2U’z , (6.9)

u; 2 dU6
89*

1 I'**
*

1- 2 du;
rp 2* 1 89*
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± d ( r ' U : ) + l d U j  + dUl =  0 (610)
r * Qr * r* QQ* Qz*

where U*, Uq and U* are the mean radial, azimuthal and normal velocities, respec

tively. Here P* denotes the mean pressure and p* the fluid density. (Where * denotes 

dimensional quantities).

The exact similarity solutions to the Navier-Stokes equations, due to von Karman, 

can be generalized for the BEK  family. Thus, we have the following dimensionless 

similarity variables

(u;, u ; , U'z , P -) = (r’A A *F {z),r 'A A 'G (z), <5'AA”H (z), pm{5*AAm)2P{z)),

= (r ‘A 'R o F (z),r , A 'RoG{z),6’A 'R oH (z),p 'v*A ’Ro2P (z)),

(6 .11)

where AA* = AJ — AJ, r is the dimensionless radius, and 2  =  z*/5* is the non- 

dimensional normal direction, where 6* = (i/*/A*)a is the boundary-layer thickness, 

providing the non-dimensionalization of distances. Here v* is the kinematic viscosity, 

A* is the system rotation rate and Ro is the Rossby number, which are defined as

A/  . K  AJ + AJ / / A j  + A j y  (A A -)* \i
A - 2 ^ R o + 2 T R o - ~ ^ ~  + U — 4“ )  )  ' ( }

AA*
R o = — . (6.13)

Therefore, for the von Karman layer Ro = -1 and A* =  AJ, for the Ekman layer 

Ro = 0 and A* = AJ =  AJ, and for the Bodewadt layer Ro = 1 and A* = AJ. 

On substituting equation (6.11) into the Navier-Stokes equations (6.7) - (6.10), the 

following non-dimensional mean flow equations are obtained

Ro(F2 +  H F ‘ -  (G2 -  1)) -  Co{G -  1) =  F", (6.14)

Ro(2FG + HG') + CoF = G", (6.15)

Ro(H H ' + P') = H", (6.16)
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Variation of Co with Ro for the BEK family.
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Figure 6.5: Variation in Coriolis parameter with Rossby number.

2F + H' =  0, (6.17)

where the prime denotes differentiation with respect to the normal component z. The 

Coriolis parameter is defined as Co = ^  =  2 — Ro — Ro2. The variation in the 

Coriolis parameter with the Rossby number is plotted in figure 6.5.

For the von Karman and Ekman flows Co = 2, and Co =  0 for the Bodewadt 

flow. Equations (6.14) - (6.17) are solved subject to the boundary conditions

F(0) =  G(0) =  H{ 0) =  P(0) =  0, 

F (z  —► oo) =  0, G(z —> oo) =  1.

(6.18)

(6.19)
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Figure 6.6: The mean flow velocity profiles for the radial (F), azimuthal (G) and 
normal (H) components for the Bodewadt, Ekman and von Karman flows.
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The non-dimensional undisturbed flow can be taken as

(6.20)

where i?e, the Reynolds number is defined as

= raRo , (6.21)

for some radial position r*. Obviously, for Rossby numbers that are negative the 

Reynolds number will also be negative. However, any results that may be presented 

will only consider the magnitude of the Reynolds number. The non-dimensionalized 

velocity, pressure and time scales are r*A*Ro, p*r^A*2Ro2 and S*/(r*A*Ro), respec

tively. Also, the non-dimensionalized rotation rate is equal to 1/Re. Therefore, when 

working in a frame of reference that rotates with the disk,

which is required for the Coriolis terms included in the velocity transport equations, 

which are to be discussed in the subsequent section.

The set of ordinary differential equations (6.14) - (6.19) were solved using an 

adaptation of the earlier program created in Matlab; refer to the appendices. The 

collocation points were selected as before using equations (4.15) and (4.16). Figure 6.6 

displays the mean velocity profiles for the BEK  flows; Bodewadt: solid line; Ekman: 

dotted line; and von Karman: dashed line.

It can be seen for the von Karman flow that an inflectional profile is only found 

for the radial velocity. However, as the Rossby number increases, the azimuthal 

and normal velocities also become inflectional. This can be seen in the plots for 

the respective Bodewadt and Ekman layers. Values for F \ G' at z =  0 and H  as 

2  —> oo are given to eight decimal places in table 6.1 for varying Rossby numbers. 

On comparing with previous results, Lingwood (1997b) (italics), Jasmine & Gajjar 

(2005c) (bold), MacKerrell (2005) (brackets), the tabulated results agree.
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Rossby number (Ro) F<( 0) G'( 0) H( 0 0 )
1.0 -0.94197072 0.77288499 1.34925834
1.0 -0.9420 0.7729 -
1.0 -0.941971 0.772885 1.3493

(1.0) (-0.9420) (0.7729) (1.349)
0.9 -0.95962008 0.88587380 1.28241034
0.8 -0.97833154 0.87029290 1.21892073
0.8 -0.9783 0.8703 -
0.7 -0.99494056 0.90714810 1.16502767
0.6 -1.00821710 0.93724654 1.120863233
0.6 -1.0082 0.9372 -
0.5 -1.01762653 0.96119299 1.08527848
0.4 -1.02290906 0.97942826 1.05703869
0-4 -1.0229 0.9794 -
0.3 -1.02391257 0.99226379 1.03510339
0.2 -1.02051746 0.99990618 1.01866214
0.2 -1.0205 1.0000 -
0.1 -1.01259816 1.00247277 1.00710811
0.0 -1.00000000 1.00000000 1.00000000
0.0 -1.000 1.000 -
0.0 -1.000 1.000 0.9999
-0.1 -0.98252154 0.99244538 0.99702417
-0.2 -0.95989730 0.97968316 0.99795520
-0.2 -0.9599 0.9797 -
-0.3 -0.93177697 0.96149252 1.00260470
-0.4 -0.89769736 0.93753544 1.01073519
-0.4 -0.8977 0.9375 -
-0.5 -0.85704142 0.90731813 1.02188487
-0.6 -0.80897549 0.87012324 1.03496431
-0.6 -0.8090 0.8701 -
-0.7 -0.75234810 0.82488398 1.04722939
-0.8 -0.68551928 0.76992535 1.05132964
-0.8 -0.6855 0.7699 -
-0.9 -0.60605895 0.70233712 1.02518373
-1.0 -0.51023262 0.61592206 0.88447339
-1.0 -0.5102 0.6159 -
-1.0 -0.51023 0.61592 0.88447

Table 6.1: Values of F ',G f at z = 0 and H at infinity for various Rossby numbers 
(Ro); roman - current thesis; italics - Lingwood (1997b), bold - Jasmine k  Gajjar 
(2005a), brackets - Mackerrell (2005).
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6.3 .2  V eloc ity -vortic ity  form ulation

The velocity-vorticity formulation for the BEK  family, is simply an extension of the 

rotating-disk formulation first described by Davies Sz Carpenter (2001); as discussed 

in chapters 2, 3, 4 and 5. For the BEK  family, the velocity and vorticity perturbation 

fields may be represented as

U — (nr , Uff, Uz')i

w =  (ur,u e,u z),

where the subscripts r, 9 and z refer to the radial, azimuthal and normal directions,

respectively. Then on taking the primary variables to be the components {ujr,ue, uz},

the Navier-Stokes equations are fully equivalent to the following set of linearized

governing equations

d w r 1 d N z d N e ^  A (  , d u z \  1 f  (  2 1^ 1
+  r-5 3 - - S T -  CoA <"« +  -5T =  -57 V “  75 K  ~  7 5 ^  > (6-23)dt r 89 dz \  dr J Re \ \  r2 J r2 89

due , dNr 8NZ (  l dn*^  1 ( (  2 1 ^ 2 dur \
^  + ^ - ^ + C o A [ “' - - r - W )  = t e ( V 7 - 7 > P  + ^ ) '  (624)

5 7 2  - \ ( 9Ur 9 (ru«)\  ,R 0c%
‘ r \ d $  dr ) ’  ̂ ^

where N  =  (Nr,N e ,N z) is as before, equation (4.22), but its components (4.23) - 

(4.26), are multiplied by the Rossby term Ro. Hence,

Ro
N r : — ( - 2 Gue + Hioe -  rGu>z), (6.26)

Ns : ^  (rG'u* +  2Gur -  H ur + rF u z) , (6.27)
Re
rRo

Nz : — (-G 'u e - F 'u r  + G w r-F w e), (6.28)

— ■ : ^ ( - G 'u e - r G '^ - - r F " u z+ F 'inue+Gwr+ r G ^ - F u ; e - r F ^ ) .  (6.29) dr Re dr dr dr
Here we have assumed that modes have an exp {in#} dependence. The convective 

quantity N, can only be evaluated if the remaining components {ur,u e ,u z} are known. 

These so called secondary variables are again defined by equations (4.27) - (4.29).
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6.3 .3  L inearization  and in tegral constraints

As stated above the governing equations are linearized, which allows the problem to 

become separable with respect to the azimuthal direction. Therefore, we can consider 

modes

u — (ur, ue, uz)em6, u — (ljr, (jJe, u z)etn0, (6.30)

where n = (3 ^  is the integer-valued, azimuthal mode number and (5 is the azimuthal

wavenumber.

The linearization also permits the no-slip conditions and the wall-normal zero- 

displacement conditions to become

Ur = (6.31)

ue =  - r~ ^ G '(0 )V, (6.32)

(6-33)

at z = 0. Where rj is the non-dimensional vertical wall displacement. On substituting 

equations (6.31) - (6.32) into the definitions (4.27) and (4.28) for the secondary vari

ables ur , ue, the following integral constraints on the primary variables are obtained, 

which replace the no-slip conditions (6.31), (6.32)

r ^ =S F(°»-f <6-34>
/  Ljrdz = — —  G"(0)77+ /   -dz. (6.35)

J o Ke J o r
Equation (6.33) does not change as a boundary condition and acts as the third con

straint on the primary variables. Also the assumed azimuthal mode structure has 

been used to replace partial derivatives with respect to 0 by the factor m, where n is 

as before.
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6.4 R esults

Much like chapter 4, disturbances were impulsively excited using a wall motion, de

fined in equations (4.37) - (4.38). Numerical simulations were carried out for the 

particular cases; von Karman, Ekman and Bodewadt boundary-layers. A study was 

also conducted for various intermediate rotating mean flows, which can be found for 

— 1 < Ro < 0 and 0 > Ro > 1. For these examples, Lingwood’s (1997b) critical 

values for absolute instability were used to validate the results of the parallel numer

ical simulations. The results are displayed in table 6.2, where Rec is the Reynolds 

number, /?c is the azimuthal wavenumber, hc = ncRo = /3cRec is the modified integer 

valued azimuthal mode number (where nc is the azimuthal mode number), ac is the 

radial wavenumber and u c and u cRec are the temporal frequencies for critical absolute 

instability. The results in roman-type are those given by Lingwood (1997b), while 

the data in italics refers to the results obtained by Jasmine (2003), Jasmine &; Gajjar 

(2005c), and the data in bold refers to the results of the numerical simulations (where 

the parallel flow approximation has been employed). For the numerical simulations, 

we only checked the stability characteristics for integer values of the Reynolds num

ber. This was to avoid excessive parametric studies. However, the results obtained 

from the numerical simulations are consistent with those obtained by earlier studies.

The non-dimensional frequencies ujc are found to be exact to within three decimal 

places (in most cases), while the radial wavenumber a c are the same to within two 

decimal places (in most cases). The temporal growth rates were found to be approx

imately zero (in all cases), which is consistent with critical absolute instability. Also, 

the modified azimuthal mode number hc has been rounded to the nearest integer, so 

as to satisfy the circumferential periodicity of the problem.

Results for the mean flows with Ro >0.6  are not given, since the numerical simu

lations did not produce very meaningful results at small Reynolds numbers. Several
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Ro Rec (3C hc UJq otc ujcRec
-1.0 507.3 0.1350 68 -0.0349 0.217 - i0.122 -17.705
-1.0 507.06 0.1340 68 -0.0345 0.217- 00.121 -17.49
-1.0 508 68 -0.03435 0.2192 - i0.1153 -17.451
-0.8 434.8 0.155 67 -0.0393 -0.252 - iO. 142 -17.088
-0.8 435 67 -0.03924 0.2526 - i0.1369 -17.070
-0.6 345.4 0.1690 58 -0.0418 -0.294 - iO. 164 -14.438
-0.6 346 58 -0.0416 0.2946 - i0.1528 -14.409
-0.4 284.7 0.178 51 -0.0425 -0.329- iO. 180 -12.100
-0.4 285 51 -0.0418 0.3289 - i0.1741 -11.920
-0.2 238.5 0.182 43 -0.0413 -0.357- i0.191 -9.850
-0.2 239 43 -0.04057 0.3542 - i0.1878 -9.6952
0.0 198.0 0.1840 36 ±  0.0397 0.379 ±  iO. 195 ±  7.861
0.0 198.81 0.181 36 ±  0.0378 0.377 ±  i0.196 ±  7.53
0.0 198 36 ±  0.03964 0.3780 ±  i0.1857 ±  7.849
0.2 161.5 0.173 28 0.0314 0.393 +  iO. 197 5.071
0.2 162 28 0.03080 0.3917 +  i0.1910 4.9893
0.4 124.5 0.157 20 0.0199 0.403 +  iO. 191 2.478
0.4 125 20 0.01970 0.4026 +  i0.1802 2.4629
0.6 87.3 0.1250 11 -0.00252 0.410 +  iO. 176 -2.200
0.6 88 11 -0.00261 0.4027 +  i0.1617 -2.3000
0.8 51.4 0.0495 3 -0.0616 0.406 +  iO. 141 -3.166
0.8 - - - - -
1.0 21.6 -0.1174 -3 -0.218 0.340 +  i0.0776 -4.709
1.0 21.66 -0.1174 -3 -0.217 0.341 + 0.0803 -4.71
1.0 - - - - -

Table 6.2: Critical values for the onset of absolute instability as found by Lingwood 
(1997a). (Table corresponds to a small section of table III in Lingwood (1997a).) The 
values in italics refer to those found by Jasmine (2003). The values in bold correspond 
to those found from the numerical simulation results.

problems, such as, numerical instabilities and problems with the inflow/outflow con

ditions, arose, which prevented satisfactory results. Thus, we were unable to obtain 

results for the Bodewadt flow, for either the parallel method or non-parallel method. 

However, as we will see shortly, the disturbance characteristics of the Bodewadt flow,
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can to some extent be predicted by extrapolating the stability behaviour of other 

rotating boundary-layers.

The onset of absolute instability for the various mean flows is summarized in figure 

6.7, (figure 10 of Lingwood, 1997b). The solid line gives the critical Reynolds number 

for the onset of absolute instability, as a function of the Rossby number Ro, while the 

dashed line gives the critical radii for the onset of absolute instability, as a function 

of Ro. Above these lines, exists the absolutely unstable region, while convective 

instability and stability are observed at smaller radii and Reynolds numbers. A 

singularity arises for Ro = 0 (Ekman layer) within the Rossby number - radius plot 

(r =  Re/Ro  —> oo as Ro —> 0). Hence, all radial positions are equivalent. Thus, the 

Ekman layer is strictly parallel.

6.4.1 T he von  K arm an layer

The first problem considered is the von Karman layer or rotating-disk boundary- 

layer. Here the Rossby number Ro = —1. The critical Reynolds number for absolute 

instability is Rec = 507.3 for an azimuthal mode number h =  68, Lingwood (1995, 

1996, 1997a,b), where h  =  nRo = (3Re. (Note that for negative Ro , the Reynolds 

number and modified azimuthal mode number h are negative. This is due to negative 

and positive Rossby-number flows being considered in the same model. However, for 

the subsequent study, we will only state the magnitude of Re and n).

Although Davies &; Carpenter (2003) have already discussed (in depth) the effects 

of non-parallelism within the rotating-disk boundary-layer (refer to chapter 2), we 

have included some further simulation results, for slightly different parameter values, 

with the aim of illustrating the behaviour discovered by Davies & Carpenter (2003).

A disturbance was impulsively excited, for a parallel flow, for a Reynolds number 

Re = 508 and azimuthal mode number h =  68. The disturbance is located at the
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Figure 6.7: Critical Reynolds number (solid line) and radii (dashed line) for the onset 
of absolute instability for the BEK family. The circles (o) and diamonds (o) mark the 
calculated data points from Lingwood (1997b), and the areas above the lines correspond 
to the regions of absolute instability.

boundary of absolute instability. Figure 6 .8 (a) displays the spatio-temporal devel

opment plot for the above disturbance. The development is plotted using contours 

|o;0 )U;|. The leading-edge propagates radially outwards with a non-zero velocity, while 

the trailing-edge propagates with a diminishing velocity. Hence, critical absolute 

instability is observed.
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Figure 6.8: Spatio-temporal development of \uj$w\ for an impulsively excited distur
bance with an azimuthal mode number h = 68. The disturbance was excited at re = 
508. (a) - parallel flow with Re = 508, (b) - non-parallel flow. (Contours are drawn 
using a logarithmic scale, with levels separated by factors of two).
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Figure 6.9: Local temporal frequencies ujrRe and temporal growth rates WiRe for a 
disturbance with h = 68 developing in a non-parallel flow. The impulsive excitation 
was centred at re = 508. The temporal development is plotted for four different radial 
positions, re - 25, re, re + 25 and re + 50. The solid lines labeled with a P show the 
development in a parallel flow with Re = 508.
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The corresponding non-parallel disturbance was impulsively excited at the radial 

location re = 508 and the disturbance wavepacket is plotted in figure 6.8(b). The 

leading edge propagates radially outwards with a non-zero velocity, while the trailing- 

edge propagates radially outward with (what appears to be) an increasing velocity. 

Hence, convective behaviour is observed. Therefore, the disturbance behaviour is 

consistent with the study by Davies & Carpenter (2003); as required.

Figure 6.9 displays the non-parallel frequencies and growth rates for the radial 

locations re - 25, re = 508, re -f 25 and re +  50. The solid lines labeled with a P, 

show the development at the point of impulsive excitation, for the disturbance in a 

parallel flow, with Re =  508. The parallel frequency is comparable with that given 

by Lingwood (1997b). On the other hand the non-parallel frequencies increase in the 

manner observed by Davies & Carpenter (2003). The non-parallel growth rates are 

also consistent with the behaviour found in Davies &; Carpenter (2003), since they 

decrease with increasing time.

6.4 .2  R esu lts  for — 1 < Ro < 0 
R o  =  -0.8

The results for the non-parallel flow are comparable with the results of the von 

Karman boundary-layer. Figure 6.10 displays the wavepacket development, frequen

cies and growth rates for a disturbance impulsively excited at the critical radius for 

absolute instability re = Re/R o = 544. The corresponding critical Reynolds number 

Re = 435, and azimuthal mode number h = 67 or n =  84, where h =  nRo =  f3Re. 

The trailing edge of the disturbance wavepacket can be seen to propagate radially 

outwards with what appears to be an increasing velocity. Thus, convective type be

haviour is found. For all selected radial locations, the non-parallel frequencies and 

growth rates increase and decrease, respectively, in a similar manner to that found 

for the von Karman boundary-layer.
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Figure 6.10: Spatio-temporal development of\u)QW\ and local temporal frequencies ujt Re 
and temporal growth rates uj{Re for an impulsively excited disturbance with h = nRo = 
(3Re = 61 developing in a non-parallel flow. The disturbance was excited at re = 
Re/Ro = 544' The temporal development is plotted for four different radial positions, 
re - 25, re, re + 25 and re + 50. The solid lines labeled with a P show the development 
in a parallel flow with Re = 435 and Ro = -0.8.
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Figure 6.11: Comparison of the variation of \ujq,w\ for a disturbance with h = nRo = 
/3Re = 67 evolving in non-parallel and parallel flow with Rossby number Ro =  —0.8. 
The temporal development is shown for the radius re = Re/R o = 544 where the 
impulsive excitation was centred. Dashed line: The non-parallel flow labeled N-P; 
solid line: parallel flow labeled P with Re = 435.

Figure 6.11 displays the temporal evolution for the above parallel and non-parallel 

disturbance at the point of impulsive excitation re =  544. Initially, the two plots are 

quite close together. However, over a longer time period, there is a stronger decay and 

a clear increase in temporal frequency associated with the non-parallel case. Hence, 

the non-parallel effects are stabilizing.
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Figure 6.12: Spatio-temporal development of\u>ow\ and local temporal frequencies u>rRe 
and temporal growth rates u>iRe for an impulsively excited disturbance with h = 58 
developing in a non-parallel flow. The disturbance was excited at re = Re/Ro = 577. 
The temporal development is plotted for four different radial positions, re - 25, re, re 
-h 25 and re + 50. The solid lines labeled with a P show the development in a parallel 
flow with Re = 346 and Ro = -0.6.
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Ro  =  - 0.6

A disturbance was impulsively excited at the critical radius for absolute instability 

re =  577, for an azimuthal mode number h =  58, for Ro =  —0.6. Figure 6.12 displays 

the wavepacket evolution, frequencies and growth rates for the above disturbance. 

The trailing edge of the wavepacket can be seen to propagate radially outwards in 

the convective manner we have become accustomed too.

The non-parallel temporal frequencies and growth rates are plotted for four equally 

spaced radial locations. Again, the frequencies increase, while the growth rates de

crease. The lines labeled P refer to the parallel flow problem, where the Reynolds 

number Re =  346. The parallel frequency is approximately the same as that found 

by Lingwood (1997b); refer to table 6.2.

R o  =  -0.4

For the rotating mean flow Ro = —0.4, a disturbance was impulsively excited at 

re = 713 for an azimuthal mode number h = 51, (which corresponds to critical ab

solute instability). The leading edge of the disturbance (figure 6.13(a)) is propagating 

radially outwards with a non-zero velocity, while the trailing edge appears to be prop

agating with a diminishing velocity. However, if we consider a smaller radial range 

about the trailing edge (figure 6.14(b)), the disturbance is found to propagate radially 

outwards with (what appears to be) an increasing velocity. Therefore, it appears that 

convective behaviour is again dominating the disturbance characteristics. However, 

it is not as easy to identify as it was in the earlier rotating boundary-layers.

The non-parallel temporal frequencies and growth rates are plotted in figure 6.14. 

The frequencies and growth rates increase and decrease, respectively. However, the 

rate of increase (decrease) in frequency (growth), at each radial location, is far smaller 

than that was observed in the earlier rotating boundary-layers. This is not surprising, 

because the rotating flows become increasingly parallel as Ro —► 0. This would suggest
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Figure 6.13: Spatio-temporal development of \ueyW\ for an impulsively excited distur
bance with Rossby number Ro = -0.4, and an azimuthal mode number h = 51. The 
disturbance was excited at re =  R e/R o = 713. (a) - full radial range, (b) - reduced 
radial range.
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Figure 6.14: Local temporal frequencies ujrRe and temporal growth rates uJiRe for a 
disturbance with h = 51 developing in a non-parallel flow with Rossby number Ro 
= -0.4• The impulsive excitation was centred at re =  Re/Ro = 713. The temporal 
development is plotted for four different radial positions, re - 25, re, re + 25 and re 
+ 50. The solid lines labeled with a P show the development in a parallel flow with 
Re = 285.
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that for Ro = —0.2, the rate of change in frequency and growth at each radial location 

would be smaller than all previous rotating flows.

R o  =  -0.2
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Figure 6.15: Comparison of the variation of \uq,w\ for a disturbance with h = 43 
evolving in non-parallel and parallel flow with Rossby number Ro = —0.2. The tem
poral development is shown for the radius re = Re/Ro = 1195 where the impulsive 
excitation was centred. Dashed line: The non-parallel flow labeled N-P; solid line: 
parallel flow labeled P with Re = 239.

For Ro = — 0.2 the critical Reynolds number for absolute instability is approxi

mately Re =  239 for an azimuthal mode number h =  43. Figure 6.15 displays the 

time histories for the above problem in a parallel flow (solid line) and non-parallel flow
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Figure 6.16: Spatio-temporal development of \uiotW\ and local temporal frequencies 
u)rRe and temporal growth rates u>{Re for an impulsively excited disturbance with 
h = 43 developing in a non-parallel flow. The disturbance was excited at re =  Re/Ro  
= 1195. The temporal development is plotted for four different radial positions, re - 
25, re, re + 25 and re + 50. The solid lines labeled with a P show the development 
in a parallel flow with Re = 239 and Ro = -0.2.
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(dashed line), where the centre of impulsive forcing is the critical radius for absolute 

instability re =  1195. For the total time period considered, the two plots are almost 

identical. There is no visible difference in the temporal frequencies and there is only 

a small difference in the temporal growth.

The corresponding non-parallel disturbance wavepacket, frequencies and growth 

rates are plotted in figure 6.16. The trailing edge of the wavepacket appears to be 

propagating with a diminishing velocity. Thus, the behaviour is comparable with 

that given by a parallel flow disturbance at the point of critical absolute instability. 

However, if we were to consider a smaller radial range, about the trailing edge, the 

disturbance would be seen to propagate radially outwards, in the usual convective 

manner. Nonetheless, the convective behaviour is not as prominent as it was in 

previous rotating flows.

The frequency and growth rates again show tendencies to increase and decrease, 

respectively. However, the rate of change in frequency and growth rate, at each 

radial location, is very small compared with previous rotating boundary-layers (as 

predicted). Hence, it seems likely that temporal decay and convective behaviour will 

prevail, but it will be less prominent than previous rotating flows and take longer to 

become clearly visible.

For flows with Ro negative, the results have shown that convective behaviour 

once again dominates the disturbance response. However, as Ro —► 0, the convective 

behaviour becomes less obvious. This of course is to be expected, since for Ro =  0 

the flow is strictly parallel. Hence, as Ro —*• 0, non-parallel effects will be reduced.

6.4 .3  T h e Ekm an layer

As discussed previously, the Ekman layer is strictly parallel. Therefore, the results 

of a non-parallel numerical simulation will still produce parallel flow disturbance 

characteristics. Nonetheless, the Ekman layer problem is still helpful in validating
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the equations and code. There is also the matter of what happens to the disturbance 

as the Rossby number Ro approaches zero, from both the negative and positive halves 

of the real Ro—plane, i.e. Ro = 0“ and Ro =  0+. Lingwood (1997b) showed that for 

Ro = 0", disturbances behave in a similar manner to the rotating flows with negative 

Rossby numbers; the disturbance propagates radially outwards. While for Ro =  0+, 

the disturbances are comparable with the rotating mean flows with positive Rossby 

numbers; the disturbance propagates radially inwards.

Implementing R o  =  0±

In the governing equations (6.23) - (6.25) the radius r is replaced by f / Ro  where r  is 

a dummy variable for the radius. The convective term Nr (equation (6.26)) becomes

Nr : -^ -(—2R oG uq +  R oH ujq — rGu>2),
Re

=> Nr : ~~R^^'UJz 0̂r =  (6.36)

while similar results are obtained for the remaining convective terms. For

Ro =  0", f  = —Re,

Ro =  0+, f  =  Re. (6.37)

Implementing the above method, makes it possible to study the Ekman layer, for 

Ro =  0±.

R o  — 0“

The critical Reynolds number for the Ekman layer was given by Lingwood (1997b) 

to be Re =  198 for an azimuthal mode number h = 36. Since the radius r = Re/Ro  

and Ro =  0 for the Ekman layer, all radial points are equivalent. To overcome this, 

the disturbance behaviour is plotted about a modified radial forcing point re =  Re.

For Ro =  0~, a disturbance is impulsively excited at the critical point of absolute 

instability, for a non-parallel flow (which as we will soon discover, will give results that
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Figure 6.17: Time histories foruJe,w (solid lines) with corresponding envelopes ±\u>etW\ 
(dotted lines), for an impulsively excited disturbance in a parallel (non-parallel) flow 
with Rossby number Ro =  0.0“ , where Re = 198, for an azimuthal mode number h = 
36. The temporal development is plotted for four different radial positions, (a): f e-25, 
(b): f e, (c): f e +25, (d): f e+50.
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Figure 6.18: Spatio-temporal development of \ue,w\ and local temporal frequencies 
u rRe and temporal growth rates uiiRe for an impulsively excited disturbance with 
h = 36 developing in a parallel (non-parallel) flow with Rossby number Ro =  0.0~ 
The temporal development is plotted for four different radial positions, f e - 25, f e, f e 
-f 25 and re + 50.
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Figure 6.19: Spatio-temporal development of \ue,w\ for an impulsively excited distur
bance in a parallel (non-parallel) flow with Rossby number Ro = 0.0“ , with an az
imuthal mode number h = 36 and Re = 248. (Contours are drawn using a logarithmic 
scale, with levels separated by factors of two).

could be obtained from the parallel flow numerical simulations). Figure 6.17 displays 

time histories for four successive radial locations; (a): r e-25, (b): re = 198, (c): re+25, 

(d): re+50. The azimuthal component of the vorticity u>etW at the wall is plotted for 

a fixed value of 9, along with the corresponding envelopes ±\ujq,w\ obtained from the 

complex-valued amplitude. For the time history at r  =  r e-25 the disturbance decays, 

while the disturbance amplitude appears to be approaching a constant magnitude 

for r = f e and r =  r e+25. For the radial location re+50, the disturbance exhibits 

a continuous increase in amplitude. It is evident that the flow is strongly unstable 

when account is taken of the different scales used for the axis.

Figure 6.18 displays the disturbance wavepacket, temporal frequencies and growth
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rates, for the above problem. The trailing edge of the wavepacket is propagating with 

a diminishing velocity. Thus, behaviour comparable with critical absolute instability 

is present. The frequencies and growth rates are plotted for four equally spaced radial 

locations. For all positions, the frequency asymptotes to the same constant, which is 

comparable with that given by Lingwood (1997b). The growth rates also approach a 

constant, which is approximately zero. Hence, the results are comparable with critical 

absolute instability.

A second disturbance is impulsively excited at f e =  248, for a Reynolds number Re 

= 248 and azimuthal mode number h = 36. Such a disturbance is located well within 

the theoretical region of absolute instability. Figure 6.19 displays the spatio-temporal 

development for the above disturbance. Both edges propagate in opposite directions 

with constant velocities. Hence, we observe absolute instability.

R o  =  0+

For Ro = 0+ a disturbance is impulsively excited at f e =  198 for Re =  198 and h = 

36. Figure 6.20 displays the corresponding disturbance wavepacket, frequencies and 

growth rates. The wavepacket shows a disturbance propagating radially inwards that 

is critically absolutely unstable. The frequencies and growth rates again asymptote 

towards constant values. The growth rates tend towards zero, which is to be expected 

for critical absolute instability. While the constant frequency is the same as that found 

for the earlier Ro = 0“ case, but of opposite sign.

Hence, for Ro = 0“ disturbances propagate radially outwards, while for Ro = 0+, 

disturbances propagate radially inwards. This would suggest that there is a singularity 

found for Ro = 0, where the direction disturbances propagate, alternates. Thus, one 

would expect that for the remaining positive Ro, disturbances will generally propagate 

radially inwards.
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Figure 6.20: Spatio-temporal development of \<jJe,w\ and local temporal frequencies 
u>rRe and temporal growth rates WiRe for an impulsively excited disturbance with 
h = 36 developing in a parallel (non-parallel) flow with Rossby number Ro =  0.0+ . 
The temporal development is plotted for four different radial positions, re - 50, f e - 
25, re and f e + 25.
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6.4 .4  R esu lts for 0 < Ro < 1 
R o  =  0.2

Figure 6.21 displays the spatial-temporal evolution for a disturbance centred at re = 

810, with an azimuthal mode number h =  28, for Ro =  0.2. The leading edge propa

gates radially inwards with a decreasing velocity, while the trailing edge is propagating 

with what appears to be a diminishing velocity. However, on closer inspection, the 

trailing edge can be seen to propagate radially inwards with an increasing velocity; 

refer to figure 6.21(b).

The corresponding frequencies and growth rates are plotted in figure 6.22 for 

four equally spaced radial locations. The growth rates are again decreasing at (what 

appears to be) a faster rate than the earlier negative Rossby number flows. The 

frequencies are also decreasing, which is the opposite of what was observed for the 

mean flows Ro < 0 (where the frequencies increased with time).

R o  =  0.4

Figure 6.25 displays the parallel and non-parallel wavepacket development for a dis

turbance excited at the critical point of absolute instability for Ro =  0.4. The critical 

Reynolds number is given as Rec =  125, for a critical radii re =  313 and an azimuthal 

mode number h = 20. The wavepacket corresponding to the parallel flow is clearly 

demonstrating behaviour characteristic of critical absolute instability. The leading 

edge is propagating radially inwards with a non-zero velocity and the trailing edge is 

propagating with a diminishing velocity.

For the non-parallel wavepacket disturbance, the leading edge is initially propa

gating inwards. However, it eventually reverses direction and it would appear that 

given sufficient time, the leading edge would eventually meet the inwardly propa

gating trailing edge. Thus, the unstable disturbance would be enclosed within this 

region. After this time the flow would become stable, everywhere. The corresponding
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Figure 6.21: Spatio-temporal development of \u)q,w\ for an impulsively excited distur
bance in a non-parallel flow with Rossby number Ro = 0.2, and an azimuthal mode 
number h = 28. The disturbance was excited at re = Re/Ro = 810. (a) - full radial 
range, (b) - reduced radial range. (Contours are drawn using a logarithmic scale, with 
levels separated by factors of two).
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Figure 6.22: Local temporal frequencies ujrRe and temporal growth rates u>iRe for a 
disturbance with h = 28 developing in a non-parallel flow with Rossby number Ro 
= 0.2. The impulsive excitation was centred at re =  Re/Ro = 810. The temporal 
development is plotted for four different radial positions, re - 50, re — 25, re and re + 
25. The solid lines labeled with a P show the development in a parallel flow with Re 
= 162.
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Figure 6.23: Spatio-temporal development of \cjgtW\ for an impulsively excited distur
bance with Rossby number Ro = 0.4, and an azimuthal mode number h = 20. The 
disturbance was excited at re = Re/R o — 313. (a) - parallel flow with Re = 125, 
(b) - non-parallel flow. (Contours are drawn using a logarithmic scale, with levels 
separated by factors of two).
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Figure 6.24: Local temporal frequencies u rRe and temporal growth rates uj{Re for a 
disturbance with h = 20 developing in a non-parallel flow with Rossby number Ro 
= O.4 . The impulsive excitation was centred at re = Re/Ro = 313. The temporal 
development is plotted for four different radial positions, re - 50, re — 25, re and re + 
25. The solid lines labeled with a P show the development in a parallel flow with Re 
= 125.
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Figure 6.25: Spatio-temporal development of \uo>w\ for an impulsively excited distur
bance with Rossby number Ro = 0.4, a,nd an azimuthal mode number h = 20. The 
disturbance was excited at re =  Re/R o = 375. (a) - parallel flow with Re = 150, 
(b) - non-parallel flow. (Contours are drawn using a logarithmic scale, with levels 
separated by factors of two).
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Figure 6.26: Local temporal frequencies u)rRe and temporal growth rates UiRe for a 
disturbance with h = 20 developing in a non-parallel flow with Rossby number Ro 
= 0-4- The impulsive excitation was centred at re = Re/Ro = 375. The temporal 
development is plotted for four different radial positions, re - 50, re — 25, re and re -f 
25. The solid lines labeled with a P show the development in a parallel flow with Re 
= 150.
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Figure 6.27: Local temporal frequencies u rRe and temporal growth rates WiRe for a 
disturbance with h = 20 developing in a non-parallel flow with Rossby number Ro 
= 0.4. The impulsive excitation was centred at re = Re/Ro = 563. The temporal 
development is plotted for four different radial positions, re - 50, re — 25, re and re + 
25. The solid lines labeled with a P show the development in a parallel flow with Re 
= 225.
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frequencies and growth rates are plotted in figure 6.24. Both frequencies and growth 

rates decrease with time.

A second disturbance was excited for re = 375 - which corresponds to a Reynolds 

number Re = 150 - with an azimuthal mode number h = 20. The parallel and non

parallel spatial-temporal evolution for the disturbance is plotted in figure 6.25. For 

the parallel disturbance, the leading and trailing edges are propagating in opposite 

directions. Thus, absolute instability is observed. However, for the non-parallel 

disturbance, convective behaviour appears to dominate. Initially the two edges are 

propagating in opposite directions. However, this does not persist for long and the 

trailing edge can be seen to reverse direction and propagate radially inwards. At the 

same time, the leading edge appears to slow down, suggesting that it too may reverse 

direction and eventually meet up with the inwardly propagating trailing edge. Hence, 

the unstable disturbance would once again be enclosed within a radial-time region, 

and the mean flow would remain stable for all radial locations and for all time after 

this point.

The temporal frequencies and growth rates for the above disturbance are plotted 

in figure 6.26. Again the frequencies and growth rates decrease at all selected radial 

positions, and temporal decay is found for all given radial locations after t /T  =  1.4.

A third disturbance was excited at re =  563, for an azimuthal mode number 

h = 20. This corresponds to a Reynolds number Re =  225, and is located well within 

the absolutely unstable parameter space. Figure 6.27 displays the corresponding 

temporal frequencies and growth rates for four equally spaced radial locations. The 

temporal growth rates decrease with increasing time, and although temporal decay is 

not observed for the time period considered, the trend of the plot suggests that this 

will eventually be observed.

The above disturbance behaviour suggests that the mean flow with Ro = 0.4, will 

eventually be stable everywhere, independent of the radial origin of the disturbance.
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Figure 6.28: Spatio-temporal development of \uotW\ for an impulsively excited distur
bance with h = 11 developing in a non-parallel flow with Rossby number Ro = 0.6. 
The disturbance was excited at re =  Re/Ro = 188.

R o  =  0.6

Figure 6.28 displays a disturbance excited at re = 188 for h = 11, for Ro = 0.6. This 

corresponds to a radial location well inside the absolutely unstable parameter space. 

Initially both edges propagate in opposite directions. However, the velocities of the 

two edges are decreasing, suggesting that they will eventually reverse direction and 

adjoin, forming an enclosed region of instability.

Longer simulations (which may have verified the above ideas) were increasingly 

difficult to produce for the flow Ro =  0.6. Problems such as numerical instabili

ties, inflow and outflow conditions were causing several problems, which meant that 

reliable simulation results could not be produced for a sufficiently long time interval.
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Similar problems were met for Ro = 0.8. Nonetheless it seems likely that the 

disturbance characteristics for Ro >0 .6  will be comparable with the earlier positive 

Rossby mean flows.

6.4 .5  T he B odew adt layer

fe

r

Figure 6.29: Sketch of a typical wavepacket evolution for the Bodewadt boundary-layer 
for a disturbance excited within the convective region of instability, r < r e = 21.6.

The Bodewadt boundary-layer is the most unstable of all the rotating flows. The 

Bodewadt layer is known to be absolutely unstable for Rec > 21.6 (Lingwood, 1997b).

Due to numerical problems (such as inflow and outflow conditions), it was very 

difficult to produce numerical simulations for a sufficient length of time. Nonetheless, 

the characteristics of the non-parallel Bodewadt flow can be anticipated from the 

numerical simulations that we obtained for the earlier rotating boundary-layers.
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Figure 6.30: Sketch of a typical wavepacket evolution for the Bodewadt boundary-layer 
for a disturbance excited within the absolutely unstable region, r > re = 21.6.

For Ro < 0, disturbances propagated radially outwards in a convective manner, 

while the temporal frequencies increased with time at all radial locations. The op

posite behaviour was found for the flows Ro > 0 that have been investigated. Both 

frequencies and growth rates decreased with time, while disturbances propagated ra

dially inwards in a convective manner. However, the disturbance eventually stabilized, 

and the instability was enclosed within a radial-time region.

Figures 6.29 and 6.30 display schematic sketches describing the predicted behav

iour of the Bodewadt flow. The flow is impulsively excited at a radial location less 

than the critical radii re =  21.6, in figure 6.30. Both edges (of the wavepacket dis

turbance) initially propagate radially inwards. However, the leading edge eventually
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reverses direction and connects with the trailing edge. Thus, the disturbance is en

closed and the flow is stable everywhere after some time t /T . The second figure 6.30 

displays a disturbance excited within the absolutely unstable region. Initially the 

two edges propagate in opposite directions, but eventually they reverse direction and 

meet. Thus, the flow is again stabilized.

6.5 D iscussion and conclusions

A study has been carried out on the global behaviour corresponding to the absolute 

instability of the BEK  family of rotating flows. The system includes the Bodewadt, 

Ekman and von Karman flows. Numerical simulations have been conducted to investi

gate the behaviour of linearized disturbances for the parallel and genuine non-parallel 

flows. This extends the work of Davies &; Carpenter (2003), which was limited to 

the von Karman case. The system of equations used for the simulations is equivalent 

to the complete linearized Navier-Stokes equations. Since the equations are linear, 

they are separable with respect to the azimuthal coordinate 9. Thus, allowing simu

lations with a single azimuthal mode number. Impulse like excitation was used for all 

simulations. This produces a disturbance wavepacket that initially contains a wide 

range of frequencies. When disturbances are simulated using the so-called parallel 

flow approximation (spatially homogeneous flow), the results are fully in accordance 

with the theoretical results of Lingwood (1997b). If the flow parameters lie within 

the theoretical absolutely unstable parameter space, the simulations produce identical 

behaviour. The same is true for disturbances excited within the convectively unsta

ble region. For disturbances excited at the critical point of absolute instability1, the 

frequencies and wavenumbers were very close to those found by Lingwood (1997b). 

The temporal frequencies ljc were identical to within three decimal places in most

lfThe Reynolds number and azimuthal mode number were rounded to the nearest integer in the 
numerical simulations. This was done to avoid excessive parametric studies.
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cases, while the spatial wavenumbers a c were the same to within two decimal places 

in almost all cases considered. (Refer to table 6.2 for further details).

The non-parallel numerical simulation results indicate that the kind of behaviour 

found for the von Karman flow is carried over to other flows in the BEK  family. For 

a Rossby number Ro within the range — 1 < Ro < 0 (where Ro — -1 corresponds to 

the von Karman flow), disturbances display a tendency to propagate outwards in a 

convective manner, even for those disturbances originally located within the known 

regions of absolute instability. The behaviour may be summarized by the schematic 

sketches in figure 2.4. It is also worth noting that as Ro —► 0 (or as we approach the 

Ekman layer), the convective behaviour is less marked and the non-parallel effects 

are reduced.

For the strictly parallel Ekman layer (Ro =  0), the results of the numerical sim

ulations agree with the theory of Lingwood (1997b), as would be expected. For a 

disturbance excited within the theoretical absolutely unstable region, the simulations 

exhibit exactly the same behaviour.

If we approach Ro =  0 from below, we observe disturbance features inherent in 

mean flows with Ro < 0; disturbances propagate radially outward. However, if we 

approach Ro =  0 from above, the disturbance characteristics are identical to mean 

flows with Ro > 0; disturbances propagate radially inwards.

For 0 < Ro < 1 (Ro = 1 corresponds to the Bodewadt flow), disturbances display 

a tendency to propagate radially inwards in a similar, though directionally opposite, 

convective manner to that found for the von Karman flow. However, as the propagat

ing disturbance approaches the centre of the disk, the wavepacket stabilizes. Figures 

6.29 and 6.30 describe the typical disturbance behaviour for such flows. Although 

simulation results for the Bodewadt flow were unattainable, it was possible to predict 

the general behaviour from the trends found for other rotating flows with Ro > 0.

The behaviour of the rotating flows can be described as follows. For Ro < 0
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there is a region of stability, surrounded by a region of convective instability, which 

in turn is surrounded by a region of absolute instability. Disturbances propagate 

through the convective region and into the absolutely unstable region. However, 

the convective behaviour continues to dominate, and so the disturbance continues 

to propagate radially outwards. A similar idea can be used to describe the flows 

with Ro > 0. Independent of the location of excitation (i.e. convectively unstable or 

absolutely unstable region), convective behaviour dominates the disturbance response, 

and disturbances pass through the absolutely unstable region into the convective 

region, and eventually into the stable region, where disturbances stabilize.

It should be noted that the results do not invalidate the theory of Lingwood 

(1997b), or imply that absolute instability does not play a role in the laminar- 

turbulent transition process. For all rotating flows — 1 < Ro < 1, temporal growth 

in the region of the absolute instability, may be enough to cause the already large 

convective disturbances to transiently grow at a rapid rate. This may be sufficient for 

the disturbance to obtain an amplitude large enough to trigger the onset of non-linear 

effects and transition to turbulence.



C hapter 7

T he global stab ility  o f the  
rotating-disk

7.1 Introduction

Lingwood (1995) conducted both inviscid and viscous stability studies on the absolute 

instability on the rotating-disk boundary-layer. Her theoretical results indicate that 

the growth rate associated with the absolute instability gets stronger with the in

creasing radius/Reynolds number. Moreover her inviscid study has shown that the 

absolute instability even persists at the inviscid limit. This would at first sight, ap

pear to suggest that any stabilizing properties, attributed to the non-parallel effects, 

would become insignificant as the radius approaches the inviscid limit.

Nevertheless, the study by Davies &; Carpenter (2003) and of earlier chapters 

on the rotating-disk boundary-layer, suggests that the absolute instability does not 

lead to any sustained unstable linear global mode. Instead the simulations of the 

non-parallel flow, suggest that convective behaviour dominates the disturbance. It 

is suggested that there is a transient temporal growth associated with the absolute 

instability, similar to an algebraically growing disturbance. Hence, the long-term 

behaviour is not consistent with a linear amplified global mode of the form

A  ~  exp(-i(jjGt), (7.1)

210
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where ljq is the complex global mode, i.e. uq =  WG,r +  ^ G,i•

For the present investigation we will introduce a local and global non-dimensionalization, 

and attempt to locate the global frequency (if indeed one exists) for the rotating-disk 

boundary-layer. To achieve this, we will use the global frequency selection criterion, 

developed by Chomaz, Huerre Sz Redekopp (1991) and others; refer to chapter 1 for 

further details.

7.1.1 T he global frequency selection  criterion

The local dispersion relation for the rotating-disk boundary-layer is given by

D(a,P,uj',r) = 0, (7.2)

where a  and j3 are the radial and azimuthal complex wavenumbers, and u  is the

complex temporal frequency. Here r  is a slowly varying radial parameter. The global 

frequency selection criterion developed by Chomaz et al. (1991), described in chapter 

1, can be employed to determine the global stability of absolutely unstable flows. The 

criterion requires a double saddle point, where
d u  dui
da ~  dr  ̂ ^

The first saddle point requirement is the necessary, but not sufficient condition that

the group velocity disappears in order for absolute instability to arise. The second 

saddle point locates the position rs of the global mode uq- The saddle point will 

generally be found off from the real r —axis. Therefore, the spatial parameter r  must 

be complex. Global instability will be observed if coq,% > 0, while globally stable 

behaviour is found if ujc,i < 0. (For further details of the global frequency selection 

criterion, the reader is referred to chapter 1, where we have briefly described the 

criteria developed by Chomaz et al. (1991) and others).

As mentioned by Davies Sz Carpenter (2003), it is not known whether 
doj
—  =  0, for some finite real value of r, (7.4)
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or if

—> 0, as real r  —> oo. (7.5)
or

If the statement (7.5) is true, the saddle point r3 either

1. does not exist, or

2. it is located off the real r —axis, and within the complex r —plane.

Hence, the global frequency selection criteria developed by Chomaz et al. (1991), could 

not be applied without modification, to the rotating-disk boundary-layer. However, 

as mentioned by Pier (2003), for integer valued azimuthal mode numbers n > 51, the 

associated region of absolute instability, remains finite in extent, in the radial range. 

Therefore, there may exist a saddle point for some finite r.

7.1.2 O utline o f chapter

For the local stability studies, the non-dimensionalization of the time variation and 

corresponding disturbance frequencies, are usually given by a locally defined timescale. 

This is obtained from the ratio of the constant boundary-layer thickness and the cir

cumferential velocity at the surface of the rotating-disk, which varies linearly with 

the radius. However, there is also a globally-defined timescale, which does not de

pend on the radius, and is given by the inverse of the constant angular velocity of 

the rotating-disk. Consequently, the two types of non-dimensionalization, imply that 

when a locally specified frequency is constant, the corresponding globally defined 

frequency varies linearly with the radius.

Some of the results of the current chapter were recently discussed in Davies, 

Thomas & Carpenter (2007). The local and global non-dimensionalization was de

scribed and applied to the rotating-disk boundary-layer with constant azimuthal 

wavenumber /? and constant azimuthal mode number n. It is intended that the cur

rent chapter will give a detailed account of the ideas and results that they obtained.
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We will also apply the local and global non-dimensionalization to the rotating-disk 

boundary-layer with mass transfer, where the suction/injection parameter a =  ±1. 

(Here a is negative for injection and positive for suction). Davies, Thomas & Carpen

ter (2007) also briefly describe a simple method for calculating the global mode ujq 

and corresponding saddle point location ra. This simple method (that incorporates 

the behaviour observed for the results of the rotating-disk boundary-layer) will be 

described in full in section 7.4, and will be applied to the rotating-disk boundary- 

layer with mass transfer a =  0, ±1. (Note: a =  0 for the rotating-disk without mass 

transfer). In section 7.5 a polynomial-fit method is used to calculate the saddle points 

and complex global modes, and finally the results are discussed in section 7.6.

7.2 Local and global non-dim ensionalization

As before, for the rotating-disk boundary-layer, cylindrical polar co-ordinates are 

employed, where r*, 6*, z* are the dimensional radius, azimuthal angle and normal 

direction. The dimensional undisturbed mean flow is given by

U *(r*,z*) = (u;,u;tu;) = (r*A*F(z),r*A*G(z),6*A*H(z)), (7.6)

where A* is the angular velocity of the disk, <5* =  {y*/A*) 5 is the boundary-layer 

thickness, v* is the kinematic viscosity and z — z*/5* is the non-dimensional normal 

direction. (Again, asterisks refer to dimensional quantities). Here F, G , H  denote the 

non-dimensional radial, azimuthal and normal velocity profiles, which are found by 

solving a system of ordinary differential equations; refer to equations (4.6) - (4.9), 

(5.9) - (5.12) and (6.14) - (6.17) of chapters 4, 5 and 6.

The boundary-layer thickness S* is the reference scale for the non-dimensionalization 

of distances. However, there are two types of non-dimensionalization for the velocity 

field, depending on whether the velocity is locally or globally defined. For the locally
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•defined velocity, the circumferential disk velocity r*A* is chosen as the reference scal

ing, where r* is some dimensional radius. This leads to the most commonly adopted 

form of the non-dimensional mean flow

U‘^ - ( w e F ^ ' T e G^ W e H{z)) ’ (7J)

where the suffix I denotes locally defined. Here the radius r  =  r*/8* and the local 

Reynolds number is given as Re = r*A*6*/is* =  r*/8* =  r0.

For the globally defined velocity, S*A* is the velocity reference scale, which gives 

the non-dimensional mean flow

U9(r, z) =  ^rF (z), rG(z), H (z )^ , (7.8)

where the suffix g denotes globally defined1. Since there are two types of velocity 

scaling, there are in turn, two types of time non-dimensionalization - local and global. 

The local time scale is given by S*/(r*A*) = l / ( r aA*) and the global time scale by 

1/A*. Therefore, for the local time non-dimensionalization, the period of one rotation 

of the disk is given by T) =  2nRe, while for the global time non-dimensionalization, 

the period of one rotation is given by Tg = 2ir. By letting a;/ and u>g denote the 

respective local and globally defined disturbance frequencies, we have the relation

Ug = LJiRe. (7.9)

7.3 N um erical sim ulations for the parallel flow

As in previous chapters, the complex-valued quantity

= (7.10)

is used to calculate the temporal frequencies and growth rates of the disturbance, 

where A(r,t)  is taken to be the azimuthal vorticity at the disk surface uje,w The

1Note that the suffix g is different to the suffix G, which denotes global mode.
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temporal frequencies and growth rates are given by the respective real and imaginary 

parts of l j .

By considering the parallel flow approximation, the numerical simulations produce 

the same behaviour as that observed by Lingwood (1995). By impulsively exciting 

disturbances for a given Reynolds number Re and azimuthal mode number n, the tem

poral frequencies and growth rates (at all radial locations) will eventually asymptote 

to that predicted by Lingwood’s local stability analysis.

For the present study, the long-time asymptotic temporal frequencies and growth 

rates were found by estimating the limit

lj = lim uj(re , t ) ,  (7-11)
£—>oo

where r e is the radial location of impulsive forcing. The real part of u; gives the 

limiting value of the temporal frequency, while the imaginary part of l j  gives the 

corresponding temporal growth rate. We consider the parallel flow approximation, 

where it is convenient to set the non-dimensional radial location of impulsive forcing 

equal to the Reynolds number, i.e. r e = Re.

We will first review the results given by Davies, Thomas & Carpenter (2007) for 

the rotating-disk boundary-layer with constant azimuthal wavenumber (3 and constant 

azimuthal mode number n. The local and global non-dimensionalization is then 

applied to the rotating-disk with mass transfer a  =  ±1, where the azimuthal mode 

number remains constant; the first to become absolutely unstable.

7.3.1 T he rotating-d isk  boundary-layer
C o n stan t az im uthal w avenum ber (3 - Lingwood’s (1995) inviscid s tudy

Figure 7.1 displays the limiting local and globally defined frequencies and growth 

rates, obtained from the parallel numerical simulations, for a constant azimuthal 

wavenumber (3 =  n /R e , where n is again the azimuthal mode number. The azimuthal
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wavenumber (3 =  0.126 was chosen, so that the results would correspond to the 

behaviour predicted by Lingwood’s (1995) inviscid absolute instability study. The 

inviscid absolute frequency was given by Lingwood, as u  = —0.0262 +  z0.013.

Figures 7.1(b, d) display the temporal frequencies and growth rates uJij that 

have been non-dimensionalized in the usual locally defined manner. The local tem

poral frequencies and growth rates appear to be approaching constant values as the 

Reynolds number increases.

The asymptotic value of the local frequency and growth rate can be predicted 

using the plots of the globally non-dimensionalized frequencies ojg>r and growth rates 

uigyi, refer to figures 7.1 (a, c). The global frequencies and growth rates appear to 

decrease and increase linearly with the Reynolds number, and may be fitted to the 

straight line relationships

ujg r = —0.0268Re -  2.24339, (7.12)

Ljgti = 0.0099Re -  5.2104. (7.13)

By equation (7.9), the local complex frequency at the inviscid limit, is given as 

uji = —0.0268 +  £0.0099, which to two decimal places is in exact agreement with 

Lingwood’s inviscid result.

Unfortunately, it was impossible to obtain results for larger Reynolds numbers, 

which may have confirmed the limiting behaviour with greater confidence. This was 

due to convergence problems in the numerical simulations associated with the increas

ingly rapid growth of the disturbances. Nonetheless, the large limit behaviour does 

appear to be compatible with the inviscid study by Lingwood (1995).

By taking the azimuthal wavenumber f3 to remain fixed, the azimuthal mode 

number n is allowed to vary and can take on non-integer values. Such behaviour is 

not physically obtainable, since n is restricted to taking only integer values, due to 

the circumferential periodicity of the problem. Therefore, it is more appropriate to
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Figure 7.1: Complex frequencies obtained in the large-time limit from simulations of 
impulsively excited disturbances in the parallel flow at various radii/Reynolds numbers 
Re. The azimuthal mode number is varied, such that (3 =  n/R e  =  0.126. (a) ujgfJ.; 
(b) oui,r; (c) ugti; (d) ujî . Each data point o corresponds to a result obtained from a 
separate numerical simulation conducted at the indicated Reynolds number.

investigate the large Reynolds number behaviour with a fixed azimuthal mode number 

n.

Constant azimuthal mode number n

Figure 7.2 displays the local and globally non-dimensionalized frequencies and growth 

rates for various radii/Reynolds numbers, corresponding to the azimuthal mode num

ber n = 68, where the usual parallel flow approximation has been employed. This 

corresponds to the first azimuthal mode number to become absolutely unstable, as
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Figure 7.2: Complex frequencies obtained in the large-time limit from simulations of 
impulsively excited disturbances in the parallel flow at various radii/Reynolds numbers 
Re. The azimuthal mode number n = (3Re =  68. (a) oJg,r; (b) u^r; (c) uj9ti; (d) 

Each data point o corresponds to a result obtained from a separate numerical 
simulation conducted at the indicated Reynolds number.

found by Lingwood (1995, 1997a,b). The range of Reynolds numbers considered ex

tends from Re =  500 to Re = 3000. The data points o indicate the locations of the 

temporal frequencies and growth rates obtained from the numerical simulations. It 

is clear from figures 7.2(c, d) that there is a finite region of absolute instability and a 

stationary point. The region of absolute instability starts at approximately Re = 507 

(corresponding to that found by Lingwood (1997a)) and extends to approximately 

Re =  1650. The global maxima occurs near Re =  1000. Outside the region of 

absolute instability, the flow is either convectively unstable or stable.

Although there is a turning point within the growth rate plot, it is essential that
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there is also such a point within the frequency plot, if we are to locate the saddle 

point ra along the real r —axis. However, the locally defined frequency appears to 

be asymptoting towards a constant for large Re, while the globally non-dimensional 

frequency appears (at least for Re < 3000) to increase linearly with the Reynolds 

number. Consequently, it looks as though the saddle point rs does not exist along 

the real r —axis. Therefore, the results suggest that the saddle point (if it does exist) 

will be located off the real r —axis, and within the complex r —plane.

The local frequency a;/>r, for n = 68, for large Re, can be approximated by first 

finding a least squares-fit to the co9yT — Re plot. The global frequency u9tr can be 

approximated by the straight line expression

u v  «  0.017385Re -  24.457. (7.14)

The gradient of the straight line will give an estimate of the local frequency u>itr as 

Re —► oo. Thus, uitr —> 0.017385 as Re —► oo.

It is also interesting to note that there is an absolutely unstable stationary mode, 

which appears for Re «  1350. However, such a mode would never realistically be 

observed in an experiment, since it is located well beyond the location of the onset of 

non-linear effects and transition.

7.3.2 T he rotating-d isk  boundary-layer w ith  in jection  a =  -1

Figure 7.3 displays the local and globally defined frequencies and growth rates, for 

various radii/Reynolds numbers for the rotating-disk mean flow with injection a  = 

-1. The azimuthal mode number is chosen to be n = 29, as this is the first to become 

absolutely unstable for a  =  - 1. The frequencies and growth rates are plotted over 

the range 170 < Re < 800, and again data points are indicated by o. The turning 

point within the growth rate plots is again quite evident, and the absolutely unstable 

region extends from Re «  202 (which corresponds to the location of critical absolute
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Figure 7.3: Complex frequencies obtained in the large-time limit from simulations of 
impulsively excited disturbances in the parallel flow at various radii/Reynolds numbers 
Re, with uniform mass injection a = -1. The azimuthal mode number n =  (3Re = 29. 
(a) ujgtri (b) (c) u gyi; (d) luî . Each data point o corresponds to a result obtained
from a separate numerical simulation conducted at the indicated Reynolds number.

instability, as found by Lingwood, 1997a) to Re «  670, with the global maximum 

growth rate found near Re = 400.

From figure 7.3(a, b), the globally defined frequency appears to vary linearly 

with the Reynolds number, while the locally non-dimensionalized frequency is found 

to asymptote towards a constant near uô r = 0.0266. The asymptotic limit of the 

locally defined frequency, is found by estimating the plot of the global frequencies, 

as a straight line. The asymptotic local frequency is given by the gradient of the 

expression for the straight line.

Hence, the results suggest that the saddle point rs cannot be found along the real
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r —axis, but instead may be located within the complex r—plane.

7.3.3 T he rotating-d isk  boundary-layer w ith  suction  a =  1

For the rotating-disk flow with uniform mass suction a = 1, the first azimuthal mode 

number to become absolutely unstable is n = 194. The corresponding frequencies 

and growth rates are plotted over the range 1810 < Re < 9000, in figure 7.4, with 

o indicating data points. Again there is a clear indication of a turning point in 

the growth rate plots. The region of absolute instability extends from Re «  1860 

(which corresponds to that found by Lingwood, 1997a) to Re 5800, and the global 

maximum growth rate occurs for Re «  3600.

However, there is no corresponding turning point in the ujgir—Re plot, since the 

globally defined frequency, appears once more to increase linearly with the Reynolds 

number. The local frequency «  0.013773 at the inviscid limit. Again the limiting 

behaviour of uj^r is calculated by approximating ug<r as a straight line.

7.3.4 C om paring th e freq u en cy /grow th  rate-radius p lots

Although the above study does not immediately help us to identify global modes, 

within the above rotating systems, there are a number of interesting features of the 

frequency/growth rate - Re plots, that we will now discuss.

In all cases considered, for fixed azimuthal mode number n, there was no turning 

point found within the frequency plots. Instead, the globally defined frequency (in 

all cases) was found to increase approximately linearly with the Reynolds number, 

yielding a locally non-dimensionalized frequency that tended towards a constant at the 

inviscid limit. However, a turning point was found in the growth rate plots, revealing 

a finite region of absolute instability. Outside the absolutely unstable parameter space 

the boundary-layer is either stable or convectively unstable.

For the mean flows with mass transfer, the radial extent of the region of absolute
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Figure 7.4: Complex frequencies obtained in the large-time limit from simulations of 
impulsively excited disturbances in the parallel flow at various radii/Reynolds numbers 
Re, with uniform mass suction a = 1. The azimuthal mode number n — f3Re = 194. 
(a) uJg,ri (b) LJitr,' (c) LUĝ ; (d) ui'i. Each data point o corresponds to a result obtained 
from a separate numerical simulation conducted at the indicated Reynolds number.

instability appears to decrease with injection, while it increases with suction. This 

may provide part of the explanation as to why the mean flows with uniform suction 

displayed disturbance behaviour consistent with global instability. It is possible that 

the region of absolute instability was of sufficient size, so as to promote globally 

unstable behaviour. While the region of absolute instability within the mean flows 

with uniform injection was too small. Table 7.1 gives a summary of the range of 

absolute instability for the rotating boundary-layers. (Note: the data is only given 

for fixed n; the first to become absolutely unstable. The regions of absolute instability 

will differ if we consider other values of n).
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Flow
Extent of 
absolutely 
unstable 

region

Maximum
growth

u g,i

Corresponding
frequency

Corresponding
radius

(Reynolds
number)

von 
Karman 
a  =  - 1

202 - 670 0.99 -1.26 400

von 
Karman 

a =  0

507 - 1650 1.70 -6 . 0 0 1 0 0 0

von 
Karman 

a  =  1

1860 - 5800 4.18 -25.74 3600

Table 7.1: Summary of range of absolute instability and maximum global growth rate 
for the above rotating mean flows. The azimuthal mode number n is fixed in each 
case. ujg is the globally defined complex frequency and uji is the locally defined complex 
frequency, and subscripts r and i refer to frequency and growth rate.

The maximum global growth rate attained by each flow is also given in table 7.1. 

The maximum globally defined growth rate appears to increase with suction, while 

decreasing with injection. In all cases (so far) investigated, the maximum globally 

defined growth rate is located well within the region of absolute instability.

Another interesting feature of the simulation results is the presence of an ab

solutely unstable stationary mode. Table 7.3 displays the approximate globally de

fined growth rate and location of the stationary modes for the given azimuthal mode 

number, (i.e. first to become absolutely unstable). Since the global growth rates are 

positive in the three cases considered, the stationary modes are absolutely unstable. 

In all cases considered, the stationary modes are located at Reynolds numbers/radii, 

well beyond the inner boundary of the absolutely unstable region. Hence, it is un

likely that these modes will ever be observed in an experiment, as non-linear effects 

and transition to turbulence would be expected to have set in motion at much lower
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Flow
Growth (cjg}i) of 
stationary mode

Corresponding radius 
(Reynolds number)

Inviscid limit 
for Ultr

von 
Karman 
a  =  - 1

0.9702 440 0.0266

von 
Karman 

a  =  0

0.9905 1350 0.0174

von 
Karman 

a  =  1

0.8800 5600 0.0138

Table 7.2: Summary of stationary modes and their location for the above rotating 
flows. The azimuthal mode number n is fixed in each case. cug is the globally defined 
complex frequency and ui is the locally defined complex frequency, and subscripts r 
and i refer to frequency and growth rate.

radii.

7.4 A  sim ple m eth od  for determ ining th e  global 
frequency

A simple heuristic method for determining the global frequency and saddle point loca

tion was briefly described by Davies, Thomas k  Carpenter (2007). The results of the 

previous section appear to suggest that the globally defined frequency u r (note that 

the suffix g, used to denote globally defined complex frequencies has been dropped) 

varies linearly with the Reynolds number/radii, while the behaviour of the global 

growth rate Ui is consistent with a quadratic function, where there is a finite range 

of radii over which the flow is absolutely unstable. Figure 7.5 displays a plot of the 

approximate behaviour of the global frequency (solid line) and growth rate (dashed 

line), as indicated by the earlier study. The labels rc and rm refer to the radial lo

cations/ Reynolds numbers for the onset of absolute instability and the maximum
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growth rate. By letting ojmyr and u myi denote the globally non-dimensionalized fre

quency and growth rate at the radial location rm, we have

u r(r) = u m,r + a(r -  rm), (7.15)

Ui(r) = u myi -I- b(r -  rm)2, (7.16)

where a and b are unknown real constants. Thus, we obtain the following expression 

for the complex frequency

u{r) = u m + a(r -  rm) +  ib(r -  rm)2, (7.17)

f o r  CJm  =  UJrn,r T

7.4.1 T h e global com p lex  frequency

Differentiating (7.17) with respect to r gives

dcuir) .
~~jr = a + 2ib{r -  rm),

ia
=> rs = rm + — , (7.18)

where rs is the saddle point. Therefore, providing a is non-zero, the saddle point rs 

will be located off the real r —axis. On substituting rs into equation (7.17), we obtain 

the global complex frequency
• 2 za

(*>G =  W m  +  ( 7 - 1 9 )

at the saddle point rs. Hence, we obtain globally unstable behaviour, if

a2
UJm,i ^  4 5  > (7.20)

The coefficient a is given by the radial derivative of equation (7.15)
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3

r

Figure 7.5: Behaviour of the global frequencies u r and growth rates Ui as ascertained 
by the earlier parallel simulation results. Here u r varies linearly, while Ui varies 
quadratically with the radius.

The second coefficient b can be derived, by analyzing the behaviour at the onset 

of absolute instability, which arises when r  =  rc, or

Vi(rc) = 0 ,

=>b =  - OJr

at which point
dwi
dr

(rc -  rm)2'

2  b{rc Tm).

(7.22)

(7.23)
r~ rc

On squaring both sides of equation (7.23) and introducing (7.22), we obtain
2

= 4b2{rc -  r m ) 2
/  duji 
\  dr r —rc

—  45wm,i, (7.24)
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diJi x 2

r —rc
(4<*w)- (7.25)

The complex global frequency (7.19), at the saddle point ra, can now be given as

dLOr } 2
U G  =  U J m -  ium A    ) , (7.26)duij

1. dr I r= r e )

where the global growth rate at the saddle point is given by

J j — J  1. (7.27)

Due to the restrictions of the problem (i.e. there is a definite finite region of absolute 

instability), the maximum growth rate ujm,i is positive. Thus, we must have

dhjj
dr

dujr , .
> ~dx' <7-28>r = r c

in order to obtain a globally unstable mode. Otherwise the flow is globally stable.

7.4 .2  T h e saddle p oin t location

The location of the saddle point was previously given by equation (7.18), but on 

substituting for a and b we obtain

i(rc -  rm)2 dwr
r ,  =  tv

2  wm,i dr
( duJr 

dr— rm |  ^  2̂ J- (7.29)

Hence, as noted before, the saddle point is located in the complex r —plane, providing 

that and ^  are non-zero.

7.4 .3  T h e m eth od  applied  to  som e ro ta tin g  boundary-layers

For the rotating-disk boundary-layer, the complex frequency at the location of max

imum growth is approximately given by ujm = —6.00 -I- il.70, for the radial location
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rm = 1000; Obtained using figure 7.2. The global frequency and growth rate can now 

be crudely approximated by the equations

u;r =  0.023(r -  1000) -  6.00, (7.30)

W = 1.70 -  7.23 x 10_6(r -  1000)2. (7.31)

Using equation (7.29) the saddle point is given as

r3 «  1000 -  z‘1670, (7.32)

while the corresponding global complex frequency is given as

«  -6.00 -  zl7.94. (7.33)

Hence, the global frequency at the saddle point is stable.

Table 7.3 gives the saddle point locations rs and corresponding complex global 

modes wq, calculated using the above model, for the two other mean flows that we 

have considered; rotating-disk boundary-layer with mass transfer a =  ±1. In both 

cases considered, the global frequency (at the saddle point) is indicated to be stable 

and the saddle point is located in the lower half of the complex r —plane.

Problem U>G rs
a =  - 1 -1.26-7.92i 400-594i
a  =  1 -25.74-36.64i 3600-5440i

Table 7.3: The global complex frequency ujq and saddle point rs for the rotating-disk 
with mass transfer a  = ±1, calculated using the method developed by Davies, Thomas 
h  Carpenter (2001).

7.5 A  polynom ial fit m ethod

The above model is rather simplistic and it is likely that the approximate global 

frequency (7.17) does not fully capture the characteristics of the global behaviour of
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the rotating-disk boundary-layer. Instead, we will now fit the numerical simulation 

data of the globally defined complex frequency to a polynomial of the form

Lj(r) = a + br + cr2 +  dr3 +  (7-34)

where a, b, c and d are possibly complex. If the polynomial is at most a cubic, the

radial derivative of the global complex frequency gives stationary points when

~  = b +  2cr -I- 3dr2 — 0, (7.35)
dr

which gives the saddle points

I /  \  2 uc f  c \  b
r = r* = - 3 d ± n w  ~ 3d' (7-36)

7.5.1 E xam ple

We will now apply the cubic polynomial method, equation (7.34), to the rotating- 

disk simulation data presented in figure 7.2(a, c). The globally non-dimensionalized 

frequency can be expressed as

Ur(r) = -3.03 x 1 0 1 +  2.64 x 1 0 "2r  -  2.56 x 1 0 ' V  +  1 . 8 6  x 1 0 ' 1 0 r 3, (7.37)

for a globally defined growth rate

LJi(r) = -3 .90 +  1.10 x 10_2r  -  6.17 x 10"6 r 2  +  5.32 x 1 0 '1 0 r 3, (7.38)

which are valid over the real radial range 500 < r < 30001. Figure 7.6 displays 

a plot of the numerical simulation global frequencies/growth rates (indicated by o) 

and corresponding polynomial fit (dashed line). The polynomial expressions give a 

remarkably good fit to the simulation data.

LThe radial range corresponds to the range of Reynolds numbers considered in figure 7.2(a, c).
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Figure 7.6: Numerical simulation data o for the globally defined frequencies cjr and 
growth rates Ui for the rotating-disk boundary-layer. The dashed line refers to the 
cubic polynomial given by equations (7.37) and (7.37).

On applying equation (7.36) to the polynomial expressions (7.37) and (7.38), we 

obtain the saddle points r s, with corresponding global modes u>G

rs m 6749 +  1697i, ljg ~  86.60 — 31.83z,

rs ^  1134 — 2148z, u G «  -1.76 -  22.36i (7.39)

The first saddle point can be ignored, since the real part does not belong to the valid 

range of radii for the polynomial expressions (7.37) and (7.38). The second saddle 

point is within the valid radial range, and is globally stable.

The results obtained for the polynomial fit method are quite different to those 

obtained in the previous section, where rs «  1000 — zl670 and u>G ~  —6.00 — zl7.94.
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This would suggest that the approximations described in section 7.4, are not good 

enough for accurately predicting the saddle point or global mode. Nevertheless, the 

simple quadratic method (described in section 7.4) does successfully predict (in this 

instance) that the saddle point will be located within the complex r —plane and that 

the global mode will be stable. Hence, the quadratic method is useful, since it may 

be used to predict the nature of the global mode.

Table 7.4 displays the saddle point locations and complex global frequencies for the 

rotating-disk with mass transfer a  =  ± 1 , calculated using the above cubic polynomial 

method. In both cases, the global mode is stable.

Problem LJg ra
a =  - 1 -0.53 - 6.12i 389 - 470i
a  =  1 -22.52 - 30.31i 3587 - 4483i

Table 7.4: The complex global frequency and saddle point for the rotating-disk with 
mass transfer a = ± 1 , calculated using the cubic polynomial method.

The earlier study on the rotating-disk with mass transfer suggested that globally 

unstable behaviour was promoted by the application of uniform suction; refer to 

chapter 4. However, the results from the current investigation imply that the global 

mode ojg is stable for the rotating-disk with mass suction a  =  1. The methods used in 

the current chapter are rather simplistic and may not fully describe the disturbance 

characteristics of the rotating-disk boundary-layer with mass suction. Thus, globally 

unstable behaviour may still prevail for those mean flows with mass suction.

7.6 C onclusions

The results of Lingwood (1995, 1997a,b) suggest that the growth rate associated 

with the absolute instability gets stronger as the radius/Reynolds number increases.
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Indeed her inviscid study has shown that the absolute instability even persists at the 

inviscid limit, which would suggest that non-parallel effects would have no influence 

on the behaviour at large radii/Reynolds number. Nonetheless, Davies & Carpenter 

(2 0 0 1 ) have shown (using numerical simulations) that the absolute instability does 

not lead to a linear unstable global mode. Instead convective behaviour appears 

to dominate the global response, even at radial locations well within the region of 

absolute instability. Such behaviour can be understood by considering two types of 

non-dimensionalization - local and global.

This idea was recently described by Davies, Thomas h  Carpenter (2007). The 

locally-defined non-dimensional timescale is given as the ratio of the constant boundary- 

layer thickness and the radially varying angular disk velocity. While for the global 

study, the time non-dimensionalization is given as the inverse of the angular ve

locity of the disk, which does not depend on the radius. From the two types of 

non-dimensionalization, equation (7.9) may be derived, which relates the locally and 

globally defined disturbance frequencies.

The local and global non-dimensionalizations are then applied to a number of 

rotating-disk boundary-layers, where the numerical simulations were conducted using 

the parallel flow approximation. Three problems are considered; the rotating-disk 

boundary-layer (or von Karman flow) - this case was used as an example by Davies, 

Thomas & Carpenter (2007); the rotating-disk with uniform mass injection a  =  -1; 

and the rotating-disk with uniform suction a  =  1 .

For the rotating-disk boundary-layer, the azimuthal wavenumber (5 is initially 

taken to be constant, and is chosen as (3 =  0.126, in order to match the results of 

Lingwood’s (1995) inviscid study. The complex local frequency at the inviscid limit 

was found to be u>i «  —0.0268 -I- z0.009, which to two decimal places is consistent 

with that found by Lingwood; l j = —0.0262 -I- z0.013. Due to the relation (7.9), 

the respective globally defined frequency and growth rate, decrease and increase,
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in linear proportion with the radius/Reynolds number. Hence, there is a different 

globally non-dimensionalized frequency at each radial location.

Similar behaviour is found for the problems with a constant integer-valued az

imuthal mode number n. The azimuthal mode number can only take on integer 

values, due to the circumferential periodicity of the rotating-disk. In the three cases 

considered, n was chosen as the first azimuthal mode number to become absolutely 

unstable, i.e. for the rotating-disk, n = 6 8 . The locally defined frequency was found 

to approach a constant as the radius increased, and in turn the globally defined fre

quency was found to increase linearly in direct proportion with the radius. Whereas 

the locally and globally non-dimensionalized growth rates were found to display fi

nite radial regions of absolute instability. Outside of these regions the problem is 

either stable or convectively unstable. The region of absolute instability was found to 

increase with suction and decrease with injection. Similarly the maximum globally 

defined growth rate was largest for the suction problem and smallest for the injection 

problem. Another interesting feature of the study, was the discovery of absolutely un

stable stationary modes, which were located in all cases considered, at radial locations 

considerably larger than the radial location for the onset of absolute instability.

The global frequency selection method devised by Chomaz et ai (1991) requires 

that there exists a double saddle point (equation (7.3)), if we are to locate global 

modes u>g- The first term requires that the group velocity is zero, and the second 

term requires that a saddle point exists in the complex r —plane. If the complex part 

of the global frequency ujq is negative, the flow is globally stable, otherwise, if there 

exists a global frequency with a positive imaginary part, global instability is observed.

The results of the parallel numerical simulations (with constant n) show that there 

exists a turning point within the globally defined growth rate plots, i.e. =  0  for 

some radial location rm. However, no such point exists within the globally defined 

frequency plots.
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Nonetheless, using a simple method (that was first described by Davies, Thomas 

& Carpenter (2007)), we are able to estimate the location of the saddle point and cor

responding global mode. By considering a linearly varying frequency and a quadrat- 

ically varying growth rate, (which appears to be consistent with the results of the 

parallel numerical simulations), the location of the saddle point is always found off 

the real r —axis and within the complex radial plane, providing that the variations in 

frequency and growth rate are always non-zero. The global response is determined by 

the inequality (7.28). If the inequality (7.28) is satisfied, the global mode is unstable, 

otherwise the problem is globally stable. For the three examples considered, globally 

stable modes are obtained, while the saddle points are located in the lower half of the 

complex r —plane. This would suggest that for the problem with mass suction (where 

our earlier study suggests that globally unstable behaviour appears to be present; 

refer to chapter 4), globally stable behaviour eventually prevails. However, the meth

ods used in the current chapter may not fully describe the disturbance characteristics 

for the rotating-disk with mass suction. Hence, globally unstable behaviour may still 

play an important role in the disturbance development.

A cubic polynomial-fit method is also implemented to fit the numerical simulation 

data of the globally defined frequency, so as to improve the accuracy of the saddle 

point locations and global modes.

The inequality (7.28) relates the varying frequency and the varying growth rate, 

and has the general form of a criterion for global in/stability given in the subsequent 

chapter. The criterion under consideration also relates the varying frequency and 

varying growth rate, and is found by considering solutions to the linearized complex 

Ginzburg-Landau equation (Hunt & Crighton, 1991; Hunt, 1995). We will now study 

these solutions and make comparisons with the rotating-disk boundary-layer.



C hapter 8

T he G reen’s solutions to  the  
G inzburg-Landau equation

8.1 Introduction

The results of Davies & Carpenter (2003) and of previous chapters has indicated that 

the rotating-disk boundary-layer does not give rise to any fixed unstable global mode, 

although globally unstable behaviour does appear to be promoted in some cases, e.g. 

rotating-disk with uniform suction - refer to chapter 4. A greater understanding 

of the rotating-disk boundary-layer can be obtained by making comparisons with a 

much simpler system: the linearized complex Ginzburg-Landau equation. Using the 

results of the numerical simulations for the linearized disturbances in the rotating-disk 

boundary-layer, we can model and match the behaviour to solutions of the Ginzburg- 

Landau equation.

8.1 .1  T h e G inzburg-L andau equation

The linearized Ginzburg-Landau equation is a simple and convenient model for study

ing the linear space-time development of a disturbance amplitude A(r,t). It is given
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where e <C 1  incorporates slow streamwise variation effects, p  characterizes linear 

temporal growth and temporal frequency1, U is the convection velocity and 7  de

scribes the diffusion and dispersion effects. Here r  refers to the streamwise/radial 

direction and t is the time variable.

If the three terms p, U and 7  are independent of the spatial co-ordinate r, the 

linearized complex Ginzburg-Landau equation can be used to model the disturbance 

development of the numerical simulations with a parallel flow. While if any one of 

the three parameters p, U and 7  is allowed to vary with streamwise direction r, 

the Ginzburg-Landau equation may be thought of as modeling the development of a 

disturbance in a non-parallel flow.

The three parameters p , U and 7  can be expressed in terms of the results of the 

numerical simulations of the rotating-disk boundary-layer. We can derive definitions 

for global in/stability from the Ginzburg-Landau equation and match the results with 

the rotating-disk simulation data. From the ensuing results we are able to understand 

why the rotating-disk boundary-layer does not give any fixed globally unstable mode, 

and why a globally unstable flow may not give a constant global frequency.

8.1 .2  A n a ly tic  S o lu tion s to  th e  G inzburg-Landau equation  - 
H unt & C righton  (1991)

Hunt & Crighton (1991), Hunt (1995) obtained analytic solutions to the Ginzburg- 

Landau equation

^  + Û = ^ ) G + ^ f f  + 6(r)6(t), (8.2)

where G = G(r, t) is the Green’s function representing the response to an impulsive 

forcing of the usual Dirac delta form S(r)8(t). The Green’s solutions were calcu

lated using a computer based symbolic algebra manipulation package. The package

1The temporal frequency is only included if fi is taken to be complex, i.e. the real part of /i refers 
to the local temporal growth, while the complex part of fi is the local temporal frequency.
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obtained general results for the Green’s function and the time periodic response for 

varying forms of the stability parameter p. Hunt & Crighton considered the cases 

where the stability parameter p(r) was

1 . constant, p(r) = po,

2 . linearly varying, p(r) = po +  p ir , and

3. quadratically varying, p(r) = po +  p \r  +  \p 2r2.

They also considered the effects of a linearly varying convection velocity, U(r) = 

U0 +  Uir.

Throughout the investigation by Hunt & Crighton (1991) the three parameters p, 

U and 7  were real only. However, Hunt (1995) did consider the more general case, 

where p, U and 7  can be complex. Hunt (1995) gave the equations for the distur

bance wavepacket edges in terms of the real parts of the complex stability, convection 

velocity and diffusion/dispersion parameters. This led Hunt to derive definitions for 

global stability and globally convective instability. The reader is referred to Hunt 

(1995) for further details.

8.1 .3  Further stu d ies on  th e  G inzburg-Landau equation

Other investigations on the global stability of the Ginzburg-Landau equation, of in

terest, have been carried out by Chomaz, Huerre k  Redekopp (1988) and Cossu k  

Chomaz (1997). Chomaz et al. (1988) investigated the Ginzburg-Landau equation 

with a stabilizing cubic nonlinearity. Their stability parameter p  was allowed to vary 

linearly with the streamwise direction, i.e. p = po + p'r, with p' < 0. For po^ < 0 and 

r > 0, p  is always negative. Therefore, any flow is both locally and globally stable. 

As poti is increased above the real zero axis a region of local convective instability 

develops near the origin of the source. This results in a region of local transient
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growth. However, the disturbance eventually decays and the flow is globally stable. 

As po,i is increased further, a region of local absolute instability develops near the 

origin. If the region of local absolute instability is sufficiently small the transient 

growth persists and the flow remains globally stable. On the other hand if po^ is 

greater than some critical value, globally unstable behaviour prevails. Thus, it was 

concluded that although the existence of a region of local absolute instability was a 

necessary condition, it was not a sufficient condition for proof of an amplified global 

mode.

Cossu & Chomaz (1997) considered the behaviour of a flow with a quadratically 

varying stability parameter, i.e. p — po +  \p 2r2, where p 2 < 0. For po < 0 the 

flow was found to be locally stable everywhere, while a finite region of local convec

tive instability appears when po is increased above zero. In both instances the flow 

is globally stable. As po is increased further, a region of local absolute instability 

develops, but again the flow is still globally stable. It is only when the stability pa

rameter po adopts a value that is greater then some critical constant that the flow 

becomes globally unstable. Cossu &; Chomaz (1997) found this critical value to be 

pc = U214 |7 | 2  +  ( V - 2 /z2 7 / 2 )cos[Arg(7 ) / 2 ].

It should also be noted that Floriani, Dudok de Wit h  Le Gal (2000) conducted 

a study on the nonlinear interactions of the rotating-disk boundary-layer, that is de

scribed in terms of weakly interacting Fourier modes, using a Volterra series equation. 

Floriani et al. (2000) show that the Volterra model is similar to the Ginzburg-Landau 

equation and formulate analytical relations between the coefficients of the Ginzburg- 

Landau equation and the Kernels of the Volterra model. The results obtained for the 

Ginzburg-Landau coefficients in relation to the rotating-disk mean flow were found 

to be compatible with previous experimental investigations.

Gajjar (1996) and Gajjar, Arebi h  Sibanda (1996) conducted a theoretical study 

on the non-linear stability of stationary and non-stationary instabilities developing in
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three-dimensional boundary-layers. The example chosen for their investigation was 

the rotating-disk boundary-layer, where they studied the crossflow instability. Us

ing a high Reynolds number asymptotic analysis, they were able to derive a novel 

integro-partial differential equation. By considering linearized disturbances, the am

plitude equation (given in their investigations) did not retain any diffusion/dispersion 

terms. However, as we will see shortly, the inclusion of diffusion/dispersion effects are 

required, if we are to successfully model the behaviour shown in our numerical simu

lations of the rotating-disk boundary-layer. This is especially true for the mean flows 

obtained when there is uniform suction or a sufficiently large uniform axial magnetic 

field.

8 .1 .4  T h e rem ainder o f  th e  chapter

For the current study, the behaviour observed in the numerical simulations of the 

rotating-disk boundary-layer, is modeled using the linearized Ginzburg-Landau equa

tion. We may derive expressions for the parameters p, U and 7  in terms of the 

rotating-disk simulation data. The resulting Green’s solutions of the Ginzburg- 

Landau equation display characteristics consistent with that depicted by the numer

ical simulations. We may then formulate expressions for global stability, which allow 

us to understand the disturbance behaviour of the rotating-disk boundary-layer.

If we allow the stability term p  and dispersion/diffusion term 7  to be complex, 

and p  is linearly varying, the global stability may be characterized by the relationship 

between the ratio of the linearly varying frequency and growth rate, and the ratio 

of the dispersion and diffusion effects. Davies, Thomas &; Carpenter (2007) recently 

discussed the case where the stability parameter p  is linearly varying. They com

pared the Green’s solutions of the Ginzburg-Landau equation with the non-parallel 

simulations of the rotating-disk boundary-layer. The example given in their recent 

paper (for the rotating-disk boundary-layer) is also used here to model and compare
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disturbance characteristics. Further examples are given later in the chapter, where 

the simulation results of the rotating-disk with uniform mass transfer are used.

The remainder of this chapter is as follows; the following section describes the 

Green’s function solutions that were obtained by Hunt & Crighton (1991), Hunt 

(1995). We derive expressions for global stability and present plots of frequencies, 

growth rates and disturbance development wavepackets for the Green’s solutions that 

match the behaviour found in the numerical simulation results. Finally, the investi

gation is discussed and an explanation is given for why the non-parallel rotating-disk 

mean flows produce the behaviour found in Davies & Carpenter (2003) and chapters 

4, 5 and 6.

8.2 A nalysis o f the G reen’s function solutions

Hunt & Crighton (1991), Hunt (1995) obtained Green’s solutions to the linearized 

Ginzburg-Landau equation

d G 0 , tt9G o _  ( xrt x 'yd2Go t fo oX
~ g f  + ~  » (er)G° + gr2 +  <*(r)<Wi (8-3)

where e <C l 1 is a small positive parameter (e =  1 for the following investigation), and

/ i ,  U and 7  (^ ( 7 ) > 0) are the stability, convection velocity and diffusion/dispersion

terms, respectively. Here Go is the Green’s function Go(r, t ), where r and t denote the

streamwise direction and time unit, respectively. The equation is subject to impulsive

forcing S(t)S(r), where S is the usual Dirac delta function. To simplify the subsequent

notation we have shifted the streamwise co-ordinate r, so that the centre of forcing is

centred at r = 0, rather than at r = re, which was the case for the earlier numerical

simulations. (Here we have, in effect, introduced a new streamwise variable r =  r — re.

However, it would be rather monotonous to keep track of the difference between r

1Note that no assumption is required about the size of e, in order for Hunt & Crighton’s solutions 
to be valid. Here we have set e =  1 to simplify the problem and reduce the number of variables.
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and r, when we are comparing the results of the Ginzburg-Landau equation with the 

numerical simulation data).

8.2.1 p, =  fiQ, a real constant

The exact analytic expression for the Green’s function, for a stability parameter 

p — po, a real constant is given as

G0(r,t) =  y X e x p W  -  (r -  Ut)2/ ^ t } ,  (8.4)

where U =  C/o, a constant. When p and 7  are real only (dispersion effects are 

ignored), the disturbance characteristics may be found by calculating the leading and 

trailing edges of the spatial-temporal disturbance wavepacket. (This was the method 

employed by Hunt Sz Crighton in their study). The edges of the wavepacket at any 

time t, are defined as the values of r, for which the real part of the argument of the 

exponential of (8.4) vanishes. The wavepacket will be exponentially large inside the 

wavepacket and exponentially small outside the wavepacket. There is of course the 

possibility that no real root exists for r. Thus, the wavepacket has no edges and the 

solution is exponentially small everywhere. This would imply stability. On the other 

hand if the edges exist, locally convective or absolutely unstable behaviour would 

be observed. Hunt Sz Crighton noted that the edges occur for r — { U ±y/{4poj)}t. 

Therefore, stability arises for po < 0, since the roots are complex. For 0 < p0 < U2/47 

the two edges are travelling in the same direction. Hence, any fixed r will eventually 

be within the decaying region of the wavepacket; convective instability is present. For 

po > U2 / 4 7  the edges travel in opposite directions - any fixed r will eventually be 

within the region of exponential growth; absolute instability. (Refer to figure 1 . 1  for 

schematic drawings of convectively and absolutely unstable disturbance wavepackets).
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8.2 .2  n = no, a com p lex  constant

The stability parameter p  is now considered to be a complex constant, and the term 

7  is also complex, i.e. p =  po,r +  ipo^ and 7  =  7 r +  *7 i- Therefore, dispersion effects 

are now included. The Green’s function (8.4) can be re-written as

_ . . I I (  7 r(r — Ut)2 iji(r  -  Ut)2\  . .
G o ( r ’ t ]  =  V 4 ^ t eXPr ‘  4 W i ~  +  A \ y \ H   ) ’ {8'5)

where I7 I2  =  7 2  +  yf, and p0 and U are as before.

If we are to fit the numerical simulation data of the rotating-disk boundary-layer to 

the Green’s solution of the Ginzburg-Landau equation, we must determine expressions 

for the unknown terms p, U and 7 . However, before we proceed to find expressions 

for the three unknown terms, we will consider the full disturbance structure

G(r, t) = G0 (r, t)exp{i(aar -  u at)}, (8 .6 )

where Go is the Green’s function (8.5), and aa and u a are the respective complex 

wavenumber and frequency, which are obtained from the numerical simulation results. 

Hence, we have

. I 1 (  7 r (r — Ut)2 i'yAr — Ut)2 . .
G (r’() =  V 4 ^ eXP H  "  4|7 |»t +  4|j \H  +  l a ‘T ~  ^  1 ’ (8J)

which can be rearranged, for convenience, as

G(r’() = \ / £ exp( /ioi-4F F t + i $  + ^ r/
=  Gmexp(iaar). (8 .8)

Here po = po — iwa — U2/ ( 4 7 ) and aa =  aa — iU /( 2 7 ), while the modified Green’s 

function G* satisfies the modified Ginzburg-Landau equation
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The convection velocity U has been removed from the Green’s solution, by the in

troduction of the wavenumber a s. As we are trying to model the rotating-disk simu

lation results, using the Ginzburg-Landau equation, we assume for convenience that

corresponds to the radial wavenumber of the rotating-disk simulations. The radial 

wavenumber is calculated using equation (4.40) and the interested reader is referred 

to section 4.3 for further details.

Likewise we assume (in order to match the Green’s solutions to the simulation 

data) that

Po = -iu ja, (8 .1 0 )

which implies that

1- Po,r =  wSti, the temporal growth rate from the simulation results, and

2- Po,i — —wa,r, which is the corresponding temporal frequency.

Definitions for the locally defined frequency and growth rate can be obtained by 

applying the complex-valued expression

U‘ =  G ~ d t '  ^8 1 1 ^

where G is the Green’s function (8 .8 ) at all radial positions and points in time. If the 

complex quantity ui, does not vary too rapidly in either the radial direction or time, its 

real and imaginary parts may be interpreted as being, the local temporal frequency 

and local temporal growth rate, respectively. Here we have assumed that there is 

only one significant mode of disturbance, at all specified radial locations and points 

in time. If there were several different discrete modes, which were superimposed, it

would not be possible to identify the temporal frequency and growth rate, from the

real and imaginary parts of complex u
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The local frequency and local growth rate for the Green’s function (8 .8 ) are given

as

_  Hr2
l,r — ~P0,i + 4|7| 2t2

—po,i as t —> oo, (8 .1 2 )

and

i , 7y
Wl,i — i l 0 ,r — 771 H-21 4|7| 2t2

— ► fio>r as t —► oo. (8.13)

As time tends towards infinity, the local complex frequency ui will approach the 

complex numerical simulation frequency u>a. The local behaviour is specified by the 

long term behaviour of the local growth rate ui^. If

1 . po>r < 0 , the disturbance is either stable or convectively unstable, and if

2 . po,r > 0 , absolute instability is observed.

Similar expressions for the local wavenumber a^r and local streamwise growth

rate may be found, by using the complex-valued quantity

id G  ,
Qi =  ~ G  (8'14)

where G is the Green’s function given in equation (8 .8 ). The local wavenumber and

streamwise growth rate for the Green’s function are given by

_ 7ir , -
a , ' r  ~  2 |7| H  a , 'r

— ► aa>r as t —► oo, (8.15)

and

7 Tr 
2|7P«
aaj  as t —► oo. (8.16)
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As time tends to infinity, the complex wavenumber corresponding to the Green’s 

function (8 .8 ), asymptotes towards a a - the complex wavenumber obtained from the 

numerical simulation results.

The parameters po and d a are defined in terms of results given by the numerical 

simulations. Therefore, the only unknown parameter left to calculate, is complex 7 .

O n calcu lating  th e  unknow n 7

Firstly, we calculate the leading and trailing edges of the wavepacket, for any time t, 

for values of r, such that the real part of the argument of the exponential of (8 .8 ) is 

zero. The real part of the exponential is given as

7  (?
PO  , r  ^ | ^ | 2  & 8,iC  =  0 ,  ( 8 . 1 7 )

where r = ct. The two solutions for c, are the leading Ul , and trailing Ut , edges of 

the disturbance wavepacket. The edges Ul and Ut are calculated using the spatio- 

temporal simulation plots of the rotating-disk boundary-layer. The respective leading 

and trailing edges are given by the following expressions

Now

UL = Cl =  —2 ^ ,  + Uhl (hl&h+pA , (8.18)
7r V 7r V 7r ’ J

u T =  c2 =  - 2b£a8, -  /4b£(W!-2 0  ) (8.19)
7r V 7r V 7r ’ J

(8.18) +  (8.19) =  UL + UT =  (8.20)
7r

and similarly
| 7 | 2

(8.18) x (8.19) =  ULUT =  - 4 — /20)r- (8.21)
l r

By rearranging equations (8.20) and (8.21) we obtain the following expressions

7r 4 a 3yi 4 p 0 ,r

M 2  Ul  + Ut Ul Ut
(8.22)
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Since we have ^ ( 7 ) > 0 (i.e. positive diffusion), 7r/ |7 |2 will also be positive.

The final parameter required for solving the Green’s function (8.8), is the complex 

part of 7 ; 7»/|7|2- To find the expression for 7i/|7 |2, we first calculate the streamwise 

r —derivatives of equations (8.15) and (8.16), giving

donT 7 i
dr 2 (7 ) 2t ’

d<*iti _  7r 
dr 2 |7 | 2t

Now (8.23) -7- (8.24) and rearranging, gives

7t dOLljr I  d o t l j

(8.23)

(8.24)

(8.25)
7 r d r  /  d r

On substituting (8.22) into (8.25), we obtain

7i _  4 a Sti f d o t i s  I d a i ti \  _  4/20(r f d a i , r  / danA (Q .
| 7 | 2  ”  Ul +  Ut  \  dr /  d r  ) ~  ULUT \  d r  /  d r  ) '  1 J

For the rotating-disk boundary-layer, 7»/|7 |2 has always been found to be greater 

than zero. However, for rotating flows with a Rossby number Ro > 0, 7i/ 17 12 was 

found to be negative.

Example: Comparing the parallel numerical simulations and Green’s func
tion (8.8)

The example chosen - to model the parallel numerical simulation results using the 

Ginzburg-Landau equation - is the rotating-disk boundary-layer, where the Reynolds 

number Re = 530 and the azimuthal mode number n =  6 8 . The simulation frequen

cies, growth rates and spatio-temporal disturbance wavepacket for this example are 

plotted in figures 8.1(a), 8.2(a) and 8.3(a).

The frequencies and growth rates are obtained by considering the complex-valued 

quantity (4.39), where A is taken to be a measure of the disturbance amplitude at all 

radial locations and points in time. The azimuthal vorticity u>etW was chosen for A. If
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the complex quantity l j , does not vary too rapidly in either the radial direction or time, 

its real and imaginary parts may be interpreted as being, the local temporal frequency 

and local temporal growth rate, respectively. Here we have assumed that there is only 

one significant mode of disturbance, at all specified radial locations and points in time. 

If there were several different discrete modes, which were superimposed, it would not 

be possible to identify the temporal frequency and growth rate, from the real and 

imaginary parts of complex l j . The frequencies and growth rates are plotted for four 

equally spaced radial locations re — 25, re — 530, r e +  25 and re +  50. The complex 

frequency eventually asymptotes towards lj ss — 16.4 +  z0.2, while figure 8.3(a) clearly 

displays absolute instability, since the edges of the disturbance wavepacket are moving 

in opposite directions.

Using the earlier expression (8.10) for jSo, we can set,

Po «  0.2 +  zl6.4, (8.27)

while

0 .2 1 - i 0 .1 2 . (8.28)

The leading and trailing edges Ul, U t can be estimated by calculating the gradients 

of the edges of the disturbance wavepacket, figure 8.3(a); Ul ~  400 and Ut ~  —8 . 

We also obtain (after some manipulation) 7 i / 7 r  ~  1 .2 .

We are now able to plot the frequencies, growth rates and spatial-temporal dis

turbance wavepacket for the Green’s function (8 .8 ); figures 8 .1 (b), 8 .2 (b) and 8.3(b). 

The frequencies, growth rates are again plotted for four equally spaced streamwise

positions. Due to the symmetry, about r = 0, in equations (8.12) and (8.13) (for

frequency and growth rate), the data lines r e — 25 and r e -I- 25 overlap. Nonetheless, 

the behaviour is still generally consistent with that given by the numerical simula

tion results. (Note: Asymmetric behaviour may be obtained if a smeared impulse 

distribution is used instead of the point forcing. Refer to the appendices for further
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details).

The initial behaviour of the frequency/growth rate data lines is attributed to the 

1/t2 terms appearing in equations (8.12) and (8.13). However, as time increases, this 

term diminishes, and the local complex frequency ui —+ —16.4 +  i0.2 at all radial 

positions.

Further examples - where the numerical simulation results are modeled using the 

Ginzburg-Landau equation - can be found in section 8.3. The examples given are for 

the rotating-disk with mass transfer a  =  ± 1 .

8.2 .3  Linear variation  o f th e  stab ility  param eter fi - (a)

It is the intention of the current and subsequent sections to model the non-parallel 

numerical simulation data by the Ginzburg-Landau equation, with a linearly varying 

stability parameter; p(r) =  po + pir. We will show that it is essential that both p 

and 7  should be complex, if we are to obtain stability characteristics consistent with 

that displayed by the earlier numerical simulations results; refer to chapters 4, 5 and 

6 .

The present study considers four possible scenarios and the type of disturbance 

that prevails. The first scenario that we discuss is the problem investigated by Hunt 

Sz Crighton (1991), i.e. pi and 7  are real only.

Using the series solution method, Hunt Sz Crighton calculated the exact analytic 

solution to the Green’s function to be

Go(r’t] = VSexp (Wli _ (r ̂  + \e,lirt+ ’ (8,29)

where all parameters are as stated previously. (Here e again incorporates slow stream- 

wise variation effects and we assume e =  1 for simplicity). For 7  and p\ real, the 

stability behaviour can be investigated using the same kind of approach that was 

adopted for the situation where p  was a real constant. By considering the argument
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Figure 8.1: The temporal frequencies for: (a) the parallel numerical simulation results 
for the rotating-disk boundary-layer, where Re = 530 and n = 68; (b) the Green’s 
function, where the stability parameter p = p0 is a constant. The frequencies are 
plotted for four equally spaced points. (Note: T  =2irRe).
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Figure 8.2: The temporal growth rates for: (a) the parallel numerical simulation 
results for the rotating-disk boundary-layer, where Re = 530 and n = 68; (b) the 
Green’s function, where the stability parameter p  =  po is a constant. The growth 
rates are plotted for four equally spaced points. (Note: T  =2nRe).
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Figure 8.3: The disturbance development wavepackets for: (a) the parallel numerical 
simulation results for the rotating-disk boundary-layer, where Re = 530 and n = 68; 
(b) and the Green’s function, where the stability parameter p — po is a constant. 
(Contours are drawn using a logarithmic scale, with levels separated by factors of 
two).
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of the exponential in the exact solution (8.29), the edges of the wavepacket occur along 

r ~  (1 ±  -j-)epiryt2 as t — ► oo, (as found by Hunt &; Crighton, 1991). Therefore, one 

edge will eventually move towards -f-oo and the other towards — oo. Thus, any fixed 

r will eventually display exponential growth. Hence, for any real linear variation of 

the stability parameter p, the flow will exhibit global instability. Figure 5 of Hunt Sz 

Crighton (1991) illustrates two basic possibilities for the Green’s function response; 

initially the wavepacket is either propagating towards the region of local absolute in

stability (where po +  p \r > U2/4y) or away from it. Inevitably as time increases the 

leading and trailing edges of the wavepacket diverge in opposite directions towards 

infinity.

This scenario will not re-produce the behaviour found in the non-parallel simu

lation results, since the rotating-disk boundary-layer has been shown by Davies Sz 

Carpenter (2003) to exhibit decreasing growth rates and convective behaviour.

8 .2 .4  Linear variation  o f th e  stab ility  param eter /i - (b)

The second scenario considered is where the stability parameter p\ remains real, but 

the diffusion/dispersion parameter 7  is complex. In keeping with the earlier approach, 

we now consider the full disturbance Green’s function (8 .6 ), where Go is now specified 

by equation (8.29) and ots and u s are as before. Therefore, the Green’s function is 

now given by
I j  /  0  _  u t ) 2  1 1  \

G(r, t) =  y  ^ ^ e x p  (  P o t --------- — —  + -p ir t  +  — +  ^ 3r -  iu3t \ , (8.30)

which can be rearranged (for convenience) as

^   ̂ / I  ( -  'Ir7'2 i l i 7,2 1 1 9 qG(r, t) = J  -— -exp I p0t -  ■ +  — + - p ir t  +  -rzPi'yt* +  ia sxAn'yt \  4|7| 2t 4|7| 2t 2  1 2

=  G*exp(zci'5 r), (8.31)

where po and 7  are again given as (8.10), (8.22), (8.25) and (8.26) and aa = a3 — 

iUj"!7 . The function G* satisfies the modified Ginzburg-Landau equation (8.9). The
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convection velocity U has again been removed by re-defining the complex wavenumber 

d a. The local frequency and growth rate for the Green’s function (8.31), are calculated 

by applying the complex-valued expression (8.11). The local frequency and growth 

rate are given as

vi,r = -Jh,i +  4 |,y|j2  “  ’ (8.32)

and
1  7 rr2 u,\r 9 12 .

<*><,i =  to t  -  Yt + + ~2 + 7 -  (8-33)

where all coefficients are as before.

The local frequency (8.32) will depend on the term —̂ ip \t2/A for large time. If 

the term is positive the frequencies will increase with time (in a manner consistent 

with the rotating-disk boundary-layer), and if the term is negative, frequencies will 

decrease with time (similar to the rotating flows with a positive Rossby number). It is 

the sign of 7 * which will ultimately decide the long term behaviour of the frequencies. 

For the rotating-disk, 7 * has always been found to be greater than zero. Hence, the 

frequencies (8.32) will decrease for large time. Therefore, the local frequencies for the 

Green’s function do not match those given by the numerical simulation results for the 

rotating-disk boundary-layer, where all frequencies show a tendency to increase with 

time; refer to chapters 4, 5, 6  or Davies & Carpenter (2003).

The local growth rate (8.33) depends on the term rfrp \t2/4  for large time. The 

term yr is always found to be positive, when modeling the rotating-disk simulation 

data. Therefore, the local growth rate will increase with time and globally unstable 

behaviour will eventually be displayed. Therefore, if is taken to be real, the stability 

characteristics for the Green’s function (8.31) are not consistent with the non-parallel 

rotating-disk boundary-layer or mean flows with injection, where all growth rates 

have shown a tendency to decrease with time; refer to chapter 4.
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8 .2 .5  Linear variation  o f th e  stab ility  param eter ^ - (c)

We now consider to be complex, but 7  is now real; we ignore dispersion effects. 

We again consider the full disturbance structure (8 .6 ), where Go is equation (8.29). 

On rearranging, the Green’s function is again of the form (8.31), where 7 * =  0. Using 

the complex-valued expression (8 .1 1 ), the local frequency and growth rate are now 

given as
1  t 2

Vl,r = —P0,i ~ ^ Vhir ~ 27rA*l,r^l,iJ, (8-34)

and
1 7Tr2 m,rr . 2 2 , t 2

Wl,i -  H0,r ~  Yt  +  4 | 7 | 2 ( 2  +  ~ 2~  +  ' I ' r O ' l . r  “  ( 8 ' 3 5 )

Hence, the long term characteristics of the disturbance are entirely dependent on the 

relation between the real and complex parts of the stability coefficient

Before we continue to analyze the long-term behaviour of the frequencies and 

growth rates, it is important to describe how the unknown complex variable can 

be expressed in terms of the numerical simulation data. This is important since we are 

attempting to model the non-parallel rotating-disk results using the Ginzburg-Landau 

equation. The two coefficients can be found by taking streamwise r —derivatives of 

equations (8.34) and (8.35) and rearranging. Thus, giving

Hi,r = 2 ^ i ,  (8.36)

Hi,i = - 2 ^ -  (8-37)

where and are the variations in the frequency and growth rate, which are 

obtained from the numerical simulation results. (Note: and have (so far)

always been found to be positive for the rotating-disk boundary-layer. Also, | \ >

1 ^ * 1  has always (so far) been found to be true).

From the expression (8.34), if /xi)T. is found to be positive, the local frequencies 

will decrease at all locations for large time. On the other hand, if p iir x /iltj is
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negative, the local frequencies will increase at all locations for large time. Bearing in 

mind the expressions (8.36) and (8.37), the coefficients p\,r and will be positive 

and negative, respectively. Therefore, the frequency will increase as time tends to 

infinity, and as a result will exhibit features that are consistent with the rotating-disk 

boundary-layer.

The local growth rate (8.35), is dependent on the sign of p \ r — fi\ {, as time tends 

to infinity. If \pi,r \ > \fJ>i,i\ the disturbance will exhibit temporal growth and global 

instability, and if \pi,r \ < the disturbance will display a decreasing growth rate, 

and globally stable behaviour will prevail. For this second case, there may be local 

regions of convective instability or absolute instability. It is this second case that 

is similar to the simulation plots for the rotating-disk boundary-layer (and injection 

flows), where the growth rates are found to decrease with increasing time, Davies Sz 

Carpenter (2003).

By making use of equations (8.36) and (8.37), we obtain p \ r — p \ i =  —

— ). As stated previously, \^£r\ > |“^ |>  is always found to be true for the 

numerical simulation results, even those rotating-disk flows with uniform suction. 

Hence, the growth rate (8.35) (corresponding to the Green’s function (8.31)) will 

always display a decreasing growth rate.

Therefore, it is feasible that the solutions to the Ginzburg-Landau equation, with a 

linearly varying, complex stability parameter p  and real diffusion term 7 , can be used 

to successfully model the rotating-disk boundary-layer (with/without mass injection) 

simulation results. The solutions show that depending on the precise balance between 

the varying growth rates and corresponding shifts in frequency, it is possible for an 

absolutely unstable disturbance to remain globally stable.

Similar behaviour has been observed in the field of astrophysical fluids, Soward 

(1977, 1992) and Harris, Bassom Sz Soward (2000). By considering a problem where 

there is marginal absolute instability, at all spatial locations, sufficiently large local
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variations in frequency, can have stabilizing effects. This phenomenon is known in 

the astrophysical fluids community as phase-mixing. In Harris et al. (2000), a non

linear equation is derived which governs the amplitude modulation of Taylor vortices, 

between two rotating spheres. Vortices off the equator are observed to oscillate and 

phase-mixing is introduced. For problems without phase-mixing, the amplitudes of 

the vortices grow, indefinitely. While for problems with phase-mixing, the vortex 

amplitudes are bounded.

Although the above behaviour is acceptable for modeling the rotating-disk mean 

flow and those mean flows with uniform injection, it is not consistent with the char

acteristics shown by the flows with uniform suction, where increasing growth rates 

and globally unstable behaviour was observed. This suggests that it is not suffi

cient to consider 7  real and p  complex, if we are to successfully model all rotating 

boundary-layers by the Ginzburg-Landau equation.

8.2 .6  Linear variation  o f th e  stab ility  param eter /jl - (d)

When the diffusion term 7  and linear stability parameter p  are both considered to be 

complex, the behaviour can differ profoundly from the above scenarios; as we will see 

shortly. Using the complex-valued expression (8.11), the local frequency and growth 

rate are given as

7 ir2 p\ ir (  / 2  2  x \  t 2 . .
k-V =  — A*0 ,t +  ^ | ^ | 2 £ 2  2  I 'YrPl,rPl,i +  7i(Ah,r — Ah.t) ) (8.38)

and

Vl,i = P>0,r “  2 t +  4 |^j^ 2  +  “  A ,i) ~  2 7iPl,rPl,i  ̂J ,  (8.39)

where p i>r and p\^ are again the respective real and imaginary parts of the linear 

stability coefficient p\.

The complex coefficient p\ may be calculated by the same method applied in 

section 8.2.5. The two coefficients can be found by taking streamwise r —derivatives
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of equations (8.38) and (8.39) and rearranging. The resulting expressions for p i>r and 

Piti are the same as before, i.e. equations (8.36) and (8.37).

As time increases, the local frequency is governed by the t2 term. Whether the 

frequency increases or decreases, is entirely dependent on the sign of the quantity 

B = 2'yrp ijrp iii +  li{p \yT — ALi,i)' If B  > 0 the frequency decreases and if B  < 0 the 

frequency increases. For small time t, the 1 /t2 term will dominate, which is consistent 

with the behaviour that is seen in the early stages of the plots given in figure 8.4. 

However, as time increases this term will diminish indefinitely and eventually the 

quantity B  will dominate the frequency.

Turning now to the growth rates, it may be observed that initially equation (8.39)

depends on a 1/t2 term, which can be observed in figure 8.5. However, for larger times,

the sign of the quantity C  =  7 r(A*i>r -  p \ ,*) — will govern the behaviour

of the disturbance. If C > 0 the disturbance exhibits temporal growth and global 

instability, otherwise the disturbance exhibits global stability with at most a local 

region of convective or absolute instability.

The long-term  nature of the frequency and growth rate

We are now going to derive conditions for the behaviour of the complex frequencies. 

If we are to match the Green’s solution frequencies to the non-parallel numerical 

simulation results, where increasing frequencies were observed, it is essential that 

B < 0. Therefore,

B  = 27r/iiir/xM +  7 i(p2hr -  p2hi) < 0,

=> ( A +  p )  “  ( l  +  < 0, (8.40)

where T = 7 i / 7 r and A =  p i<r/pi,i- Hence, we are left with an equality relating the 

real and complex parts of the stability coefficient pi, and the real and complex parts 

of 7.
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There are two possible solutions to (8.40), either

1. A < — ̂  +  y j  1 +  Or

2. A > —p — y j l  +  pj.

Thus, if the local frequencies are going to increase with increasing time, it is essential

that the parameter A, lies within the region

~r “ + < A < ~ f  + 'J1 + T2' 8̂'41'
If this does not arise, the local frequencies will decrease.

By a similar approach we can obtain an inequality, which determines whether a 

system is globally stable or unstable. If we consider the case of temporal growth and 

global instability, we obtain

c  =  7r(Ml,r -  Ml,.) -  27.Ml,rMl,i >  0,

=!• (A -  r)2 -  ( 1  +  r2) > 0 . (8.42)

There are two possible solutions to (8.42) for global instability, either

1. A < T — y/l +  T2, or

2. A > T +  v T T P .

Hence, if globally stable behaviour is to prevail, A must satisfy the following inequality

r + v/TTp  > a > r -  v T + n .  (8 .4 3 )

If A does not satisfy (8.43), the local growth rates will increase at all streamwise 

locations and globally unstable behaviour will eventually be displayed. Therefore,

the global response of a system is determined by the ratio of the varying frequency

and varying growth rate, and the ratio of the diffusion/dispersion effects.
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If 7  is real only, equation (8.43) becomes

1 > A > -1 , (8.44)

or
/q,r < 1, (8.45)
/ l̂,i

which on substituting for p i>r and (equations (8.36) and (8.37)) gives a similar 

expression to that given in chapter 7; equation (7.28), which relates the varying 

frequency and the varying growth rate.

Example: Comparing the non-parallel numerical sim ulations and the Green’s 
function (8.29)

The example considered - that matches the Green’s function to the non-parallel sim

ulation results for the rotating-disk - is that where the point of forcing re = 530

and azimuthal mode number n =  6 8 . The simulation frequencies, growth rates and

spatial-temporal disturbance wavepacket for this problem are plotted in figures 8.4(a), 

8.5(a) and 8 .6 (a). The frequencies/growth rates are again plotted for four equally 

spaced radial locations.

We assume for convenience that

po «  0.2 +  zl6.4, (8.46)

while

ol3 «  0.21 — i0.12, (8.47)

where 7  is again defined by equations (8.22), (8.25) and (8.26), where Ul «  400, 

Ut  ~  — 8  and 7 ^/7 r ~  1.2. The variations and are approximately given as

0.012 and 0.003, respectively.

We are now able to plot the frequencies, growth rates and disturbance wavepacket 

for the Green’s function (8.29); figures 8.4(b), 8.5(b) and 8 .6 (b). The frequencies
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and growth rates are consistent with the results of the numerical simulations; they 

increase and decrease, respectively. The spatial-temporal disturbance wavepackets 

are also similar, since (in both cases) the trailing edge initially propagates inwards, 

but as time increases, it reverses direction and propagates outwards.

Further examples comparing the simulation results with the Green’s solutions, can 

be found in the subsequent section.

8.3 Further com parisons betw een th e  numerical 
sim ulations and G reen’s function solutions

Two more examples are discussed, where the numerical simulation results of the 

rotating-disk boundary-layer, have been matched to the Green’s solutions of the 

Ginzburg-Landau equation. The problems considered are for the rotating-disk with 

mass transfer a =  ± 1 ; a is negative for injection and positive for suction.

8.3.1 Exam ple: a =  -1, Re =  252, n =  29 
p  - Constant

Figures 8.7(a), 8 .8 (a) and 8.9(a) display the parallel frequencies, growth rates and 

disturbance wavepacket for the simulation results for the rotating-disk boundary- 

layer with mass injection a =  - 1 , where the Reynolds number Re =  252 and azimuthal 

mode number n =  29. The complex frequency u>8 «  —5.5 +  z0.5 and the complex 

wavenumber a a «  0.18 — zO. 11. The wavepacket edges are estimated as Ul = 250 and 

Ut = —2 0 , while 7 i / 7 r ~  0 .8 .

Using the above data, the frequencies, growth rates and disturbance wavepacket 

for the Green’s function (8 .8 ) can be plotted; figures 8.7(b), 8 .8 (b) and 8.9(b). The 

data lines re — 25 and re +  25 again lie on top of each other, due to the symmetry 

about r =  0; equations (8.12) and (8.13). The Green’s solution plots are consistent
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Figure 8.4: The temporal frequencies for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer, where re = 530 and n = 68; (b) the 
Green’s function, where the stability parameter fi = p0 + p \r  . The frequencies are 
plotted for four equally spaced points. (Note: T  =2nra where ra is the inner radius).
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Figure 8.5: The temporal growth rates for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer, where re = 530 and n = 68; (b) the 
Green’s function, where the stability parameter (i = po +  p.\r . The growth rates are 
plotted for four equally spaced points. (Note: T  =2nra where ra is the inner radius).
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Figure 8 .6 : The disturbance development wavepackets for: (a) the non-parallel nu
merical simulation results for the rotating-disk boundary-layer, where re = 530 and 
n = 68; (b) and the Green’s function, where the stability parameter p  =  p0 +  p\r. 
(Contours are drawn using a logarithmic scale, with levels separated by factors of 
two).
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with the simulations, since ui —► uj3 for all radial positions, and absolute instability 

is displayed.

fi - L inearly  V arying

Figures 8.10(a), 8.11(a) and 8.12(a) display the frequencies, growth rates and distur

bance wavepackets for the non-parallel simulation results and the Green’s function 

with a linearly varying stability parameter; equation (8.31). The parameters /2o,

7  are as before, while the variations and are approximately given as 0.014 

and 0.0035, respectively. The frequencies increase at all locations considered, for 

both problems, while the growth rates decrease at all locations. The wavepackets are 

also similar, since the trailing edge of both wavepackets, initially propagates inwards. 

However, this does not persist for long, as the trailing edge can be seen to reverse 

direction and propagate radially outwards.

8.3 .2  Exam ple: a =  1, Re =  1911 
p  - C o n stan t

Figures 8.13(a), 8.14(a) and8.15(a) display the frequencies, growth rates and distur

bance wavepackets for the parallel numerical simulation results for the rotating-disk 

boundary-layer with mass suction a  =  1 , where the Reynolds number Re =  1911 and 

azimuthal mode number n  =  194. The complex frequency ljs «  —51.2 +  i0.2 and 

the complex wavenumber as «  0.34 — z0.12. The wavepacket edges are estimated as 

Ul = 450 and Ut  — —7, while 7 i / 7 r ~  1.6.

Using the above data, the frequencies, growth rates and disturbance wavepacket 

for the Green’s function (8 .8 ) can be plotted; figures 8.13(b), 8.14(b) and 8.15(b). 

The data lines re — 25 and re +  25 again lie on top of each other, due to the symmetry 

about r =  0; equations (8.12) and (8.13). The Green’s solution plots are consistent 

with the simulations, since uji —> ujs for all radial positions, and absolute instability
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Figure 8.7: The temporal frequencies for: (a) the parallel numerical simulation results 
for the rotating-disk boundary-layer with a  = -1, where Re = 252 and n = 29; (b) the 
Green’s function, where the stability parameter p = p0 is a constant. The frequencies 
are plotted for four equally spaced points. (Note: T  =2nRe).
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Figure 8 .8 : The temporal growth rates for: (a) the parallel numerical simulation 
results for the rotating-disk boundary-layer with a  = -1, where Re = 252 and n = 
29; (b) the Green’s function, where the stability parameter p = po is a constant. The 
growth rates are plotted for four equally spaced points. (Note: T  =2ttRe).
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Figure 8.9: The disturbance development wavepackets for: (a) the parallel numerical 
simulation results for the rotating-disk boundary-layer with a = -1, where Re = 252 
and n = 29; (b) and the Green’s function, where the stability parameter fi = po is 
a constant. (Contours are drawn using a logarithmic scale, with levels separated by 
factors of two).
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Figure 8.10: The temporal frequencies for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer with a = -1, where re = 252 and n = 29; 
(b) the Green’s function, where the stability parameter p — po + p ir  . The frequencies 
are plotted for four equally spaced points. (Note: T  —2nra where ra is the inner 
radius).
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Figure 8.11: The temporal growth rates for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer with a  = -1, where re = 252 and n = 29; 
(b) the Green’s function, where the stability parameter p =  po +  p \r . The growth 
rates are plotted for four equally spaced points. (Note: T =2ttra where ra is the inner 
radius).
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Figure 8.12: The disturbance development wavepackets for: (a) the non-parallel nu
merical simulation results for the rotating-disk boundary-layer with a  = -1, where 
re = 252 and n = 29; (b) and the Green’s function, where the stability parameter 
fj, = po + p ir. (Contours are drawn using a logarithmic scale, with levels separated by 
factors of two).
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is displayed.

/1 - L inearly  V arying

Figures 8.16, 8.17 and 8.18 display the frequencies, growth rates and disturbance 

wavepackets for the non-parallel numerical simulation results and Green’s function 

with a linearly varying stability parameter; equation (8.31). The disturbance in the 

simulation results is excited for re =  1911, for an azimuthal mode number n = 

194. The parameters 7  are as before, while the variations and

are approximately given as 0.011 and 0.003, respectively. For the two problems, 

the frequencies and growth rates increase in an analogous manner. The disturbance 

wavepackets are also comparable, since the two trailing edges propagate in opposite 

directions.

8.4 D iscussion and conclusions

The results of the numerical simulations for the rotating-disk boundary-layer have 

been modeled using the Green’s solutions to the Ginzburg-Landau equation, obtained 

by Hunt & Crighton (1991), Hunt (1995). The parameters //, U and 7  that repre

sent stability, convection and diffusion/dispersion effects, can be defined in terms of 

quantities that can be determined from the numerical simulation results; refer to 

equations (8.10), (8.22), (8.25), (8.26), (8.36) and (8.37). In the study by Hunt & 

Crighton (1991) all parameters were real only and they considered a stability parame

ter fi that could be a constant, vary linearly or vary quadratically with the streamwise 

direction1. However, by letting the terms p, U and 7  be complex, we have shown 

that the Green’s solutions can display behaviour consistent with that observed for 

the rotating-disk boundary-layer.

1In the previous study, we considered the cases where the stability parameter p  was a constant 
and linearly varying. The problem where p  is quadratically varying is discussed in the appendix.
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Figure 8.13: The temporal frequencies for: (a) the parallel numerical simulation re
sults for the rotating-disk boundary-layer with a  = 1, where Re = 1911 and n = 194; 
(b) the Green’s function, where the stability parameter p = p0 is a constant. The 
frequencies are plotted for four equally spaced points. (Note: T  =2nRe).
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Figure 8.14: The temporal growth rates for: (a) the parallel numerical simulation 
results for the rotating-disk boundary-layer with a  = 1, where Re = 1911 and n = 
194; (b) the Green’s function, where the stability parameter p = po is a constant. The 
growth rates are plotted for four equally spaced points. (Note: T  =2ttRe).
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Figure 8.15: The disturbance development wavepackets for: (a) the parallel numerical 
simulation results for the rotating-disk boundary-layer with a  = -1, where Re = 252 
and n = 29; (b) and the Green’s function, where the stability parameter p = p0 is 
a constant. (Contours are drawn using a logarithmic scale, with levels separated by 
factors of two).
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Figure 8.16: The temporal frequencies for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer with a  = 1, where re = 1911 and n = 
194; (b) the Green’s function, where the stability parameter p — fj,0 +  p \r . The 
frequencies are plotted for four equally spaced points. (Note: T  =2irra where ra is the 
inner radius).
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Figure 8.17: The temporal growth rates for: (a) the non-parallel numerical simulation 
results for the rotating-disk boundary-layer with a  = 1, where re = 1911 and n = 194; 
(b) the Green’s function, where the stability parameter p = p0 +  p ir  . The growth 
rates are plotted for four equally spaced points. (Note: T =2nra where ra is the inner 
radius).
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Figure 8.18: The disturbance development wavepackets for: (a) the non-parallel nu
merical simulation results for the rotating-disk boundary-layer with a = 1, where re 
= 1911 and n = 194; (b) and the Green’s function, where the stability parameter 
p = p\r. (Contours are drawn using a logarithmic scale, with levels separated by 
factors of two).
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If the parameters //, U and 7  are independent of the streamwise direction r, 

the Green solutions may be matched to the parallel flow simulations. The temporal 

evolution for the frequencies, growth rates and disturbance wavepacket for the Green’s 

solution is consistent with that displayed by the numerical simulations of the rotating- 

disk. Whereas if one of the terms p, U and 7  is dependent on r, the Green’s solutions 

may be used to model the non-parallel flow simulations.

In the above study, the stability parameter p was allowed to vary linearly with 

the streamwise direction r; p = po + p\r, for p\ possibly complex. The real part of p\ 

characterizes variations in growth, while the complex part of p\ includes variations 

in the frequency.

In section 8.2.5 - where p was complex and 7  was real only - it was shown that 

the Green’s solutions to the Ginzburg-Landau equation, could successfully model 

the simulation results for the rotating-disk boundary-layer and mean flows with mass 

injection. The solutions suggest that the varying frequency may be enough to globally 

stabilize disturbances. Depending on the precise balance between the radial increase 

in growth and the corresponding shifts in frequency, it is possible for an absolutely 

unstable flow to remain globally stable.

However, due to the definitions for the real and imaginary parts of p\ (equations 

(8.36) and (8.37)), it was not possible to match the solutions of the Ginzburg-Landau 

equation, with the simulation results of the rotating-disk boundary-layer with mass 

suction. The solutions of the Ginzburg-Landau equation always gave globally stable 

behaviour, while the simulation results suggest that global instability is promoted by 

mass suction; refer to chapter 4. Hence, it was not sufficient to consider p  complex 

and 7  real only, when attempting to model all the rotating-disk mean flows.

When p  and 7  are both complex (refer to section 8.2.6), the global behaviour could 

be determined by the inequality (8.43), which relates the variations in frequency and 

growth rate, and the diffusion and dispersion effects. If this inequality is satisfied,
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decreasing growth rates will be observed and globally stable behaviour prevails. How

ever, if it is not satisfied, increasing growth rates and globally unstable behaviour will 

persist indefinitely.

When the Green’s solution was matched to the rotating-disk boundary-layer and 

those mean flows with mass injection, equation (8.43) was satisfied, and globally 

stable behaviour was observed. However, for the mean flows with uniform suction, 

the inequality (8.43) was not satisfied, and global instability was displayed.

Therefore, when attempting to model the non-parallel rotating-disk simulation 

results with the Green’s solutions to the Ginzburg-Landau equation, it is essential 

that the linearly varying stability parameter p and diffusion/dispersion term 7  are 

complex. The global disturbance characteristics can then be determined by the pre

cise balance between the variation in frequency, variation in growth rate and diffu

sion/dispersion effects.



C hapter 9 

Conclusions and future studies

In this final chapter, the main results and conclusions of this thesis will be outlined in 

section 9.1 On going experimental investigations and future studies will be discussed 

in section 9.2.

9.1 Conclusions

The main results and conclusions are as follows:

1. The velocity-vorticity formulation, developed by Davies & Carpenter (2001) 

has been successfully applied to the rotating-disk boundary-layer, with mass 

transfer and an axial magnetic field, and the so-called B E K  family; Bodewadt, 

Ekman von Karman mean flows. This extends the work of Davies &; Carpenter 

(2003), who studied the more usual rotating-disk problem, in the absence of 

any mass transfer or magnetic field. Refer to chapters 4, 5 and 6 .

2. When disturbances are simulated using the so-called parallel flow approxima

tion, the results are consistent with the theoretical results of Lingwood (1995, 

1997a,b), Jasmine (2003) and Jasmine h  Gajjar (2005a). In particular within 

the theoretical absolutely unstable parameter space, the simulations produce 

the expected behaviour. Refer to chapters 4, 5 and 6 .

280
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3. For the non-parallel flow simulations, the mean flows with mass injection pro

duce similar behaviour as that seen by Davies &: Carpenter (2003) for the 

rotating-disk boundary-layer. Initially disturbances within the absolutely un

stable region exhibit temporal growth and upstream propagation. However, this 

does not persist indefinitely and the study suggests that convective behaviour 

will eventually dominate at all Reynolds numbers considered. However, the 

mean flows with mass suction are found to be destabilized by the non-parallel 

effects. Disturbances excited within the absolutely unstable region appear to 

exhibit an increasing temporal growth and radial inward propagation. The 

study suggests that for cases with sufficiently strong suction, temporal growth 

will eventually dominate the flow, albeit without any selection of a dominant 

frequency, as would be more usual for an unstable global mode. Refer to chapter 

4.

4. The simulation results suggest that globally unstable behaviour can be pro

moted when a uniform axial magnetic field is applied to the rotating-disk 

boundary-layer. Impulsively excited disturbances were found to display an in

creasingly rapid growth at the radial position of the impulse, albeit without any 

selection of a dominant frequency. Refer to chapter 5.

5. The simulation results indicate that the kind of behaviour found for the von 

Karman flow is carried over to other flows in the BEK  family. For a Rossby 

number Ro within the range — 1 < Ro < 0 (where Ro = -1 corresponds to the 

von Karman flow), disturbances display a tendency to propagate outwards in 

a convective manner, even for those disturbances originally located within the 

known regions of absolute instability. While for 0 < Ro < 1  (Ro = 1 corre

sponds to the Bodewadt flow), disturbances display a tendency to propagate 

radially inwards in a similar, though directionally opposite, convective manner
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to that found for the von Karman flow. However, as the propagating distur

bance approaches the centre of the disk, the wavepacket stabilizes. Refer to 

chapter 6 .

6 . A local and globally defined non-dimensionalization is applied to the parallel 

flow simulations of the rotating-disk boundary-layer. For a fixed azimuthal 

mode number (first to become absolutely unstable), the globally defined fre

quency is found to increase in linear proportion with the Reynolds number/radius, 

while the globally defined growth rate displays a finite region of absolute insta

bility. The Chomaz et al. (1991) global frequency selection criterion may be ap

plied to the rotating-disk, if, we consider a simple model, that crudely matches 

the behaviour of the globally defined complex frequency. The corresponding 

saddle points are always located in the complex r —plane. Refer to chapter 7.

7. The numerical simulation results of the rotating-disk boundary-layer can be 

modeled using a much simpler system - the linearized complex Ginzburg-Landau 

equation. The Ginzburg-Landau equation can be used to model the disturbance 

development in a parallel flow, if the parameters /x, U, 7  (stability, convection, 

diffusion/dispersion), are independent of the streamwise direction. However, if 

one of the terms /x, U, 7 , depends on the streamwise coordinate, the Ginzburg- 

Landau equation can be used to match the disturbance development of a non

parallel flow. The parameters /x, U, 7 , may be expressed in terms of the results 

of the numerical simulations of the rotating-disk boundary-layer. Conditions 

for global in/stability may be derived. The solutions to the Ginzburg-Landau 

equation show that behaviour consistent with the non-parallel simulation re

sults can be obtained if p is complex and linearly varying, and 7  is complex. 

The results suggest that the behaviour depends on the precise balance of the 

varying frequency, varying growth rate, and diffusion/dispersion effects. Refer
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to chapter 8 .

9.2 Future stud ies

The current investigation has produced several interesting results. Nonetheless, there 

are a number of items that need to be addressed for future studies.

9.2.1 E x ten d in g  th e  current study  
M ass tra n sfe r an d  a  m agnetic  field

The results of chapters 4 and 5 suggest that uniform suction and an axial magnetic 

field promote behaviour consistent with global instability. However, to ensure that 

this understanding is correct, a study should be conducted for a  > 1 and m > 0.5, 

where a  and m  are the suction and magnetic field parameters, respectively.

Before numerical simulations are conducted for a  > 1 and m > 0.5, a linear 

stability study is required to obtain eigenvalues (for comparison with the numerical 

simulations) for each particular problem. At present there are no eigenvalues available 

(in the research literature) for a  > 1 and m > 0.5.

It would also be advantageous to extend the current study (for — 1 < a  < 1, 

0 < m <  0.5), for longer simulation time lengths.

T he B odew adt flow

Unfortunately we were unable to obtain any results for the Bodewadt flow. Numerical 

instabilities, (which possibly arose due to the small Reynolds numbers considered 

for the Bodewadt boundary-layer), made it impossible to observe sufficiently long 

and valid simulations for the Bodewadt flow. However, we were able to predict the 

disturbance behaviour from other rotating boundary-layers. Nonetheless, it would be 

good to confirm these predictions by obtaining numerical simulation results for the 

Bodewadt boundary-layer.
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9.2 .2  O n-going exp erim en ta l studies

The results obtained on uniform suction and the rotating-disk boundary-layer, has 

prompted Professor Tom Corke and Mr Cory McElrath of the University of Notre 

Dame, in the USA, to conduct an experimental investigation on the rotating-disk 

boundary-layer with uniform suction. For their problem the suction parameter a  =  

0.4. This extends the experimental study by Othman & Corke (2006), who studied 

the rotating-disk boundary-layer without uniform suction. It is hoped that their 

study will produce results that support the theoretical findings of the current thesis.

9 .2 .3  Further stu d ies

Below we have listed several ideas for future investigation:

1. The effect of mass transfer on the Ekman and Bodewadt boundary layers.

2. The effect of an axial magnetic field on the Ekman and Bodewadt boundary 

layers.

3. The effect due to to the Hall factor (refer to chapter 5).

4. The rotating-disk beneath a stationary-disk or lid.

5. The rotating-disk with a temperature dependent viscosity.

6 . The rotating-disk in a compressible boundary-layer.

7. The rotating-sphere boundary-layer.

8 . The rotating-cone boundary-layer.

9. A non-linear study on rotating boundary-layers.



A ppendix  A  

A velocity-vorticity  eigen-solver for 
th e O rr-Som m erfeld equation

We are concerned with calculating eigenvalue solutions to a given system of ordinary 

differential equations
m

o ,  ( A . i )

k=0
where 0  is a set of complex variables, Ak are linear differential operators and a 

is an eigenvalue. Such problems arise in many areas in fluid dynamics. The Orr- 

Sommerfeld equation can be written in the form (A.I). Thus, the corresponding 

eigenvalues to a flow can be calculated. Bridges Sz Morris (1984) considered the Orr- 

Sommerfeld equation and the case of a plane Poiseuille flow. They rearranged the 

system of equations into companion matrix form and found approximations to the 

eigenvalues. The approximate solutions were then refined using a cubically convergent 

iteration scheme that was derived by Lancaster (1964). We will now discuss and apply 

the companion matrix method and iteration scheme to a velocity-vorticity version of 

the Orr-Sommerfeld equation.

285
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A .I  M ethod

The solution to a given problem (i.e. Orr-sommerfeld equation), involves the ex

pansion of a complex variable - say the vorticity u  - in terms of a finite Chebyshev 

series and representing the given equations as an N  x N  matrix system. Using a 

mathematical programming language (namely Matlab) and a cubic iteration scheme, 

eigenvalues can be first approximated and then correctly calculated.

A . 1.1 T he linear com panion  m atrix m ethod

In the analysis of linear stability, an investigator generally decides to choose, either 

spatial or temporal theories. For the spatial theory, one assumes that disturbances 

evolve in space from an initial temporal distribution. Thus, the method assumes 

that the frequency is real, while the wavenumber is complex. The opposite is true 

for temporal theory, as the frequency is complex and the wavenumber is real. This 

implies that disturbances grow or decay with time from an initial spatial distribution. 

It is also possible to consider a complex frequency and wavenumber, when absolute 

instability is suspected.

Independent of the theory utilized, one is able to call upon a simple but effective 

method for calculating the eigenvalues of a given problem, that being the linear 

companion matrix method.

The linear companion matrix method involves rearranging the given problem into 

the form

A v  =  ABu, (A.2 )

where A and B are square matrices (possibly complex), A is an eigenvalue with a 

corresponding eigenvector v. Once in this form the eigenvalues can be determined by 

a mathematical programming language - Matlab.
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A . 1.2 Local itera tion  schem e

Once a satisfactory approximation is available for a single eigenvalue, it is possible to 

calculate the root by a locally convergent algorithm. The method employed through

out this chapter, is the cubically convergent method, derived by Lancaster (1964). 

The iterative formula may be written as

o 2 C*2 +  ... in its most general form; C* are matrices and a  is the eigenvalue), XV{^4}

and second derivatives of D with respect to a.

The above cubic iteration scheme is called upon for the following Orr-Sommerfeld 

problem. The code for the iteration scheme may be found in appendix B.

A .2 O rr-Som m erfeld equation - velocity-vorticity  
form ulation

Q k + l  =  Oik — (A.3)

where

/ ( a fc) =  T r{D - 1 (a*)D<1 )(afc)}, (A.4)

and

/<»(«*) =  T r{ D - 1 (a fc)D<2 )(al ) -  |D~ V ) D (1)(«*)|2}

Here D is the lambda equation (where the lambda equation is D (a) =  Cq +  aCi +

is the trace of A, D 1 is the inverse of D and and are the respective first

The governing equations for the two-dimensional Orr-Sommerfeld equation are given
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where v  denotes the wall-normal velocity component and uj is the associated vorticity 

perturbation. While U = U(y) is the parallel flow, x is the streamwise direction, y is 

the wall-normal direction and Re is the Reynolds number.

We may now introduce a stream function (p such that

w <A-8>

so that the governing equations may be re-written as

%  + - K v v  <A J >

V 2(f> — uj. (A.10)

As the problem is linear, the vorticity and stream function may assume the form

uj( x , y, t) = <jj(y)exp[i(ax -  7 t)\,

4>(x,y,t) = (p(y)exp[i{ax -  7 *)], (A .ll)

where a  is the wavenumber and 7  is the frequency. Thus, by making the substitutions 

d /d t —* —i j  and d /d x  —> ia , equations (A.9) and (A. 1 0 ) may be re-written as

— 4 - iaUuj — iaU"(j) = ~  (A.12)

(D2 -  a2)(p = uj, (A.13)

where D 2 = d?/dy2.

Equations (A.12) and (A. 13) are now integrated twice with respect to the mapped 

variable £ (equation (3.27)), giving
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where I and K are defined in equations (3.54) and (3.56). The variables u  and (f>

are approximated by the finite, odd Chebyshev series (3.26). While the basic flow is

given by the even Chebyshev series

oo

U(y) = ' £ / a kT2{k. l ) ( ( ) .  (A. 16)
k=l

Boundary conditions

The boundary conditions for the Orr-sommerfeld equation are

poo o

I  " + 3 ^ = ° ’ (A 1 7 )

t/ =  0. (A.18)

On substituting equation (A.8 ) for the stream function, into equations (A. 17) and 

(A. 18), and by assuming linear modes (A. 1 1 ), we obtain

/•O O

Jo
uj + a (j>dy =  0, (A. 19)

ro

0 = 0. (A.20)

Equations (A.19) and (A.20) are of the type (3.41) and (3.52), respectively. Thus,

the methods discussed previously can be used to discretize the boundary conditions

(A. 19) and (A.2 0 ), to give

N  N

y  P k u k + ol2 y  p k <pk =  o, ( a .2 1 )
k=l fc=l

N

5 >  =  0. (A.22)
fc=l

As suggested earlier, we can now consider either a temporal or spatial theory to 

determine the eigenvalues of the Orr-Sommerfeld equations.
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A .2.1 Tem poral solver

By considering a temporal theory, the wavenumber is assumed to be real, while the

frequency is complex. The maximum power corresponding to the frequency is of order 

one, (for the Orr-Sommerfeld problem). Hence, the Orr-Sommerfeld problem may be 

rearranged into the companion matrix form

The terms 0 and 0jv-i,n refer to a 1 x N  vector of zeros and a (N — 1) x N  matrix of 

zeros, respectively. While 1 refers to a 1 x N  vector of ones. All other terms are as 

before. The first and third rows of each matrix are of size 1  x 2 N  and make up the 

boundary conditions (A.21) and (A.2 2 ). The second and fourth rows of each matrix 

are of size (N  — 1 ) x 2N  and make up the Orr-Sommerfeld equations (A. 14) and 

(A. 15). Hence, each matrix is square and of size 2 N  x 2 N.

Since (A.23) is of the general form (A.2 ), we are able to calculate the temporal 

eigenvalues of the problem.

(A.23)

where cuT is the transpose of to. The matrices A q and A\ are

A q =
-d-K -  # 1  -  io&U ioilU"

(A.24)

\

0

I
1

- K  +  a 2I y

and

A i = (A.25)
0 0

\  ®n - \ , n  0n - i , n  /
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A .2.2 Spatial solver

For spatial theory, the frequency is assumed to be real, while the wavenumber is 

complex. For the Orr-Sommerfeld equation, the maximum power corresponding to 

the wavenumber a  is of order two. Hence, the problem can be written as a lambda 

matrix of degree two

B 0 + aB i + a 2B2)  {u>, <p)T =  0. (A.26)

The matrices Bo, B\ and B 2  are given as

/
Z _ / J f c = l  Pk

Bn =

B\ =

and

Bo =

- I ' l l  -  h 1
O

0 1

I - K

f  0 0 ^

HU —HU"
0 0

1
O

0 1 5;

( Q v—vTV \
T , k= iP k

jfcl 0 1

0 0

0 1 1 J

(A.27)

(A.28)

(A.29)

I, K, 0, 0;v and 1  are as before and the matrices B0, B\ and B2  are square and 

of size 2 N  x 2 N.

In order to calculate the spatial eigenvalues of the Orr-Sommerfeld problem, the 

lambda matrix (A.26) has to be transformed, such that it is of the general companion 

matrix form (A.2). This may be achieved by making the substitution

X  =  ( u ,  0 ) T , X , =  a x , (A.30)
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and by constructing the matrix

=  0 . (A.31)

The terms 0 and I  represent a ( 2 N  x 2N) zero matrix and a 2N x 2N  identity matrix. 

Therefore, equation (A.31) is of size 4N x 4N  and of the general companion matrix 

form (A.2). Thus, the spatial eigenvalues corresponding to the Orr-Sommerfeld equa

tion may now be evaluated.

A .2.3 Falkner-Skan boundary-layers
Mean velocity profile

The mean velocity profile of a flow over a flat plate is influenced by pressure gradients, 

as they can accelerate or decelerate the freestream velocity. Such flows are known 

as Falkner-Skan boundary-layers. The flow can be represented in the streamwise 

coordinate direction {/<£,, by

û {x) = c*(x*r, (A.32)

where * denotes dimensional quantities. Here x* is the coordinate in the streamwise 

direction and C* is a constant. Equation (A.32) is associated with a freestream mean 

pressure gradient, given as

(A.33)

On introducing a wall-normal similarity variable

(A.34)

and a stream function

(A.35)

where v* is the kinematic viscosity, and
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one can obtain (after some manipulation) the ordinary differential equation for /

f "  +  / / "  +  M l  -  f'2) = 0- (A.37)

This is solved subject to the boundary conditions

/ ( 0 ) =  / ' ( 0 ) =  0 , / ' ( oo) =  1 . (A.38)

The parameter Ph is the two-dimensional pressure-gradient parameter, known as 

the Hartree parameter and is related to m  by

_ 2771 pH
Ph = — — r, m = -— — . (A.39)

ra +  1 2 -  pH
The Hartree parameter is a measure of the acceleration or deceleration of the freestream. 

T he B lasius boundary -layer

The Blasius boundary-layer arises for a flow with zero pressure gradient, i.e. Ph = 

m  = 0. The non-dimensional streamwise velocity component is given as

u(n) =  f'(v), (A.40)

and the streamwise velocity second derivative, is given as

U"(n) =  62}'"{r,). (A.41)

The Blasius mean velocity profiles for U  and U n are plotted against r j / S  in figure 

A.l, where 6 takes the familiar value 1.2167.

A .2.4 R esu lts

The critical parameters for the Blasius boundary-layer were found to be Rec =  519.2, 

q c =  0.303 and u c = 0.1201, which are almost identical to those given by Schmid & 

Henningson (2001); refer to table A.I. (Here Rec is the Reynolds number, ac is the
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Figure A.l: The profiles for the velocity (U) and second derivative (U") for the Blasius 
flow.

wavenumber and ujc is the frequency). Several other eigenvalue comparisons are given 

in table A.l, which were used in order to validate the numerical solvers.

The eigenvalues of the Orr-Sommerfeld equation (A.9) and (A. 10) for the Blasius 

flow are shown in figure A. 2 . The Reynolds number was taken to be the critically 

unstable value, as given above. Figure A.2 (a) displays a set of the discrete and 

continuous spectra u n for a — 0.303. The eigenvalues are located along two well- 

defined branches. The first set of eigenvalues are found along the branch ujr —> ar 

(i.e. u  —> 0.303), while the second set of eigenvalues are located along the branch 

ujn —► 0, where the maximum occurs at u  =  0.1201. This mode is unstable and 

is known as a Tollmien-Schlichting (TS) wave (Tollmien (1936), Schlichting (1933)), 

after the researchers who first showed that the Orr-Sommerfeld equation has unstable
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Author Reynolds number Frequency Wavenumber
Schmid &; Henningson (2001) 519.4 0 . 1 2 0 1 0.303

Present Thesis 519.2 0 . 1 2 0 1 0.303
Schmid h  Henningson (2001) 800 0.2944 - i0.0824 

0.4641 - i0.1698 
0.5834 - i0.2136 
0.2375 - 0.2144

1 . 0 0 0

Present Thesis 800 0.2944 - i0.0824 
0.4641 - i0.1697 
0.5798 - i0.2079 
0.2375 - i0.2144

1 . 0 0 0

Grosch & Orszag (1977) 580 0.0652 0.179
Present Thesis 580 0.0625 0.179

Table A.l: Eigenvalues for the Blasius boundary-layer compared with those found by 
previous authors.

disturbances for mean flows without inflection points. The TS wave is always located 

along the branch u>n —> 0 .

Figure A.2 (b) displays the wavenumber eigenvalues for the parameters Re =  520 

and u> = 0.1201. Again there is a set of discrete eigenvalues found along the branch 

a  —> w, and there is also an eigenvalue located at a =  0.303, as expected.

The neutral curve

The neutral curve of a given problem is defined as the boundary between areas of 

exponential growth and decay. The region within the neutral curve is unstable, while 

the region outside the neutral curve is stable. Figure A.3 displays the neutral curve 

for the Blasius boundary-layer.

For any given horizontal line, which is allowed to pass through the region of 

instability, there are two points of intersection with the neutral curve. This will in 

turn divide the neutral curve into two parts: an upper branch and a lower branch.
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Figure A.2: Spectrum for Blasius boundary-layer at critical Reynolds number Re = 
519: (a) - frequency spectra for wavenumber a = 0.303; (b) - wavenumber spectra for 
frequency uj = 0.1201.
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Figure A.3: Neutral curve: area of instability is shaded.



A ppendix  B  

Code for th e Orr-Sommerfeld  
eigen-solver

B .l  Solvers

B .1 .1  Spatial solver

% Function to calculate eigenvalues of the Orr-Sommerfeld equation.

% Input data required to solve problem: Number of Chebyshevs, Reynolds number 

% and frequency 

N =  64;

Re =  input(’ Reynolds number: Re =  ? ’); 

wr =  input(’ Frequency: wr =  : ’); 

wi =  input(’ Growth: wi =  : ’);

% Complex constant 

i =  sqrt(-l);

% Frequency 

w =  wr+i*wi;

% Mapping parameter 

L =  1.64368166657907;

M =  1/(L*L);

298
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% Call integral boundary coefficients 

[FINT] =  Boundaryconditioncoef(N);

% Call integral operator I 

[I A] =  IntegralA(N);

% Call integral operator K 

[IB] =  IntegralB(N);

% Call meanflow chebyshev matrices U and D2U 

[U, D2U] =  Meanflowsolver(N);

% Identity matrix 

I =  eye(N);

% Set up matrices in form 

% [a2  CO +  a 2  C l +  a 0  C0][w phi]' =  0 

% where CO, C l, C2  are 2N x 2N matrices.

% Firstly introduce boundary conditions

C2 =  [zeros(l,N), FINT; zeros(N-l,2*(N)); zeros(N,2*(N))];

Cl =  [zeros(2 *(N))];

CO =  [FINT, zeros(l,N); zeros(N-l,2*(N)); zeros(l,N), ones(l,N); zeros(N-l,2*(N))]; 

% Now include main equations

C2  =  C2 +  [(l/Re)*IA, zeros(N); zeros(N) IA];

C l =  C l +  [i*IA*U, -i*IA*D2U; zeros(N,2 *(N))];

CO =  CO +  [-i*w*IA - (M/Re)*IB, zeros(N); IA, -M*IB];

% Can now rearrange into form 

% [a1 DO +  a0 Dl][ax x]’ =  0, where x =  [w, phi]’.

BO =  [-C1, -C2; eye(2*(N)) zeros(2*(N))];

B1 =  [CO, zeros(2*(N)); zeros(2*(N)), eye(2*(N))];

% Can either calculate eigenvalues of companion matrix or lambda matrix 

e =  polyeig(C0, C l, C2 );
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% Determine the wavenumbers with maximum real and imaginary parts 

[m,l] =  max(real(e));

disp(’Eigenvalue with largest real part =  ’) 

disp(e(l))

[m,l] =  max(imag(e));

disp(’Eigenvalue with largest imaginary part =  ’) 

disp(e(l»

% Iteration solver 

% Set approximate eigenvalue to b 

b =  e(l);

% Number of iterations Q =  10;

% Loop to solve eigenvalue b 

for K =  1:Q

D =  CO +  b(K)*Cl +  b(K)*b(K)*C2;

D1 =  C l +  2*b(K)*C2;

D2 =  2*C2;

Dinv =  inv(D); 

f =  trace(Dinv*Dl);

fl =  trace(Dinv*D2 - [Dinv*Dl]*[Dinv*Dl]); 

b(K +l) =  b(K) - 2 *f/(f*f - fl);

end

% plot eigenvalues

plot(real(e), imag(e),’ro’);axis([-l 1  - 1  1 ]);

B .1 .2  Tem poral solver

% Function to calculate eigenvalues of the Orr-sommerfeld equation 

% Input data required to solve problem: Reynolds number, wavenumber.
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N=64;

Re =  input(’ Reynolds number: Re = ? ’); 

ar =  input(’ Wavenumber: ar =  : ’); 

ai =  input(’ Growth: ai =  : ’);

% Complex constant 

i =  sqrt(-l);

% Wavenumber 

a =  ar+i*ai;

% Mapping parameter 

L =  1.64368166657907;

M =  1/(L*L);

% Call Chebyshev integrals, boundary coefficients, meanflow 

[I A] =  Integral A (N);

[IB] =  IntegralB(N);

[FINT] =  Boundaryconditioncoef(N);

[U, D2U] =  Meanflowsolver(N);

% Need to sort out boundary conditions 

A ll  =  [FINT; zeros(N-l,N)];

A12 =  [(a*a)*FINT; zeros(N-l,N)];

A21 =  [zeros (N)];

A22 =  [ones(l,N); zeros(N-l,N)];

% Now include equations

A ll  =  A ll +  (M/Re)*IB - ((a*a)/Re)*IA - i*a*IA*U; 

A 1 2  =  A12 +  i*a*IA*D2U;

A2 1  =  A21 +  IA;

A22 =  A22 - M*IB +  (a*a)*IA;

A =  [A ll A 1 2 ; A2 1  A22];
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% Sort out right-hand-side of problem 

B1 =  -i*IA;

B2 =  0*IA;

B =  [B1  B2; B2 B2];

% Calculate eigenvalues of problem 

e =  eig(A,B);

% Determine the eigenvalues with largest real and imaginary parts 

[m,l] =  max(real(e));

disp(’Eigenvalue with largest real part =  ’) 

disp(e(l))

[m,l] =  max(imag(e));

disp(’Eigenvalue with largest imaginary part =  ’) 

disp(e(l))

% Iteration solver 

% Set approximate eigenvalue to b 

b =  e(l);

% Number of iterations

Q =  1 0 ;

% Loop to resolve eigenvalue b 

for K =  1 :Q

D =  A - b(K)*B;

D 1  =  -B;

D2 =  zeros(2*(N));

Dinv =  inv(D); 

f =  trace(Dinv*Dl);

fl =  trace(Dinv*D2 - [Dinv*Dl]*[Dinv*Dl]); 

b(K +l) =  b(K) - 2*f/(f*f - fl);
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end

%plot eigenvalues

plot(real(e), imag(e),’ro’);axis( [ 0  1  - 1  0 ]);

B.2 Boundary coefficients and integrals

B .2 .1  B oundary  coefficients

function [FINT] =  Boundaryconditioncoef(N);

A =  1;

B =  2;

C = 1;

L =  1.64368166657907; 

for K =  2:N-1 

F(l)=l;
F(K)=(l/K)*(mod(K,2));

end

for K =  N-2:-l:l

BET(N-l) =  B;

GAM(N-l) =  F(N-l);

CBET(K) =  C/(BET(K+1));

BET(K) =  B - CBET(K)*A;

GAM(K) =  F(K) - CBET(K)*GAM(K-fl);

end

for K =  2:N-1

W (l) =  GAM(1)/BET(1);

W(K) =  (GAM(K) - A*W(K-1))/BET(K);

end
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for K =  2:N-1

FINT(l) =  L*2*W(1);

FINT(K) =  L*2*(W(K) - W(K-l));

FINT(N) =  -L*2*W(N-1);

end

B .2 .2  C hebyshev  integrals  
Integral I

function [IA] =  IntegralA(N);

% Function to calculate the integral operator I which acts on odd chebyshev 

% polynomials and is written in a tridiagonal manner.

% Calculates the coefficients f(K-l), f(K), f(K+l). 

for K =  2:N+1

a(K) =  1/(8*(2*K-1)*(K-1)); 

b(K) =  -1/(8*K*(K-1)) 

c(K) =  1/(8*K*(2*K-1));

end

% Creates the tridiagonal matrix.

IA =  diag(b(l:N),0) 4 - diag(a(2:N),-l) +  diag(c(l:N-l),l);

Integral K

function [IB] =  IntegralB(N);

% Function to calculate the integral operator K which acts on odd chebyshev 

% polynomials and is written in a pentadiagonal manner.

% Calculates the coefficients f(K-2), f(K-l), f(K), f(K+l), f(K+ 2 ). 

for K =  2:N+2

al(K) =  1/16;
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bl(K) =  1/4;

cl(K) =  3/8;

dl(K) =  1/4;

el(K) =  1/16;

a2(K) =  1/(16*(2*K-1));

b2(K) =  1/(8*(2*K-1));

c2(K) =  0;

d2(K) =  -1 /(8*(2*K-1)); 

e2(K) =  -1/(16*(2*K-1)); 

a3(K) =  1/(32*(K-1)*(2*K-1)); 

b3(K) =  1/(32*K*(K-1)*(2*K-1)); 

c3(K) =  -1/(32*(K-1)*K); 

d3(K) =  -1/(32*K*(K-1)*(2*K-1)); 

e3(K) =  1/(32*K*(2*K-1)); 

a(K) =  (al(K) - 6*a2(K) +  6*a3(K)); 

b(K) =  (bl(K) - 6*b2(K) +  6*b3(K)); 

c(K) =  (cl(K) - 6*c2(K) +  6*c3(K)); 

d(K) =  (dl(K) - 6*d2(K) +  6*d3(K)); 

e(K) =  (el(K) - 6*e2(K) +  6*e3(K));

b(2 ) =  (b l( 2 )+ a l( 2 ) - 6 *(b2 (2 )+a 2 (2 )) +  6 *(b3 (2 )+a 3 (2 )));

end

IB =  diag(c(l:N),0) +  diag(b(2 :N),-l) +  diag(d(l:N-l),l);

IB =  IB +  diag(a(3:N),-2) +  diag(e(l:N-2),2);

B .3 M ean flow solver

function [U, D2U] =  Meanflowsolver(N);

% Function to transform the mean velocity profiles from collocation space
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% Chebyshev space.

% Collocation values for U and U"

Ml = [0.000000000000000000; 0.000282959826495337; 0.001132694492131107;

0.002551775533010251

0.010277021734211642

0.023389962590386885

0.042263021572698345

0.067451726642569251

0.099733544868301743

0.140162787563543330

0.190122654620963450

0.251399474889032580

0.326187775921186310

0.416939393914891540

0.525650219929556740

0.651784704086493690

0.787257935681726860

0.908916569889709480

0.981551413490585610

0.999344391475489920

0.999999792658503250

0.999999999993113620

1.000000000000001100

0.004544508840776532

0.014034420765414753

0.029017609018465982

0.049924151789873243

0.077378438249061141

0.112243586658369160

0.155678082277931010

0.209189502609298690

0.274709727098769120

0.354544401601672220

0.451122324763552300

0.565933832462586440

0.696656823122624450

0.831050446620130940

0.940062426410669840

0.992017489365257470

0.999900693387071770

0.999999998217581790

0.999999999999882540

1.000000000000000000

0.007116964915322029

0.018400836816274111

0.035301822642907835

0.058310865885997161

0.088126108383279611

0.125703085474088840

0.172309413067983810

0.229587783399974150

0.299608078640860360

0.384768565221385310

0.487359576818445720

0.608064048047086140

0.742076148885554730

0.872095613969664060

0.964415132962072820

0.997294784907640230

0.999992311429745320

1.000000000025288400

1.000000000000046000

1.000000000000000000

1.000000000000000000];

M2 =  [0.000000000000000000 -0.000000059285521856 -0.000000949996403597 

-0.000004821441696169 -0.000015291846444472 -0.000037503201616729 

-0.000078199640696901 -0.000145830968394501 -0.000250683486000673
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-0.000405040816390607 -0.000623378035768106 -0.000922593072477855 

-0.001322280034500118 -0.001845049868001658 -0.002516904508894791 

-0.003367671428042255 -0.004431506119054188 -0.005747470519947258 

-0.007360195409595532 -0.009320637882472041 -0.011686949375501972 

-0.014525221797035895 -0.017910587265962605 -0.021928356593549674 

-0.026675161512582653 -0.032260074630909921 -0.038805644088130142 

-0.046448035538733744 -0.055336399385716273 -0.065632659410805858 

-0.077508913993729250 -0.091141995976364895 -0.106702613879449790 

-0.124339165575672870 -0.144155443544363600 -0.166172178862819070 

-0.190273572482252460 -0.216133702460587970 -0.243112462357646470 

-0.270148350500162890 -0.295577792014319110 -0.317074012165833090 

-0.331629895227252390 -0.335578815616557000 -0.325204101062522450 

-0.297785052677842050 -0.253037686836590450 -0.194735124500390100 

-0.131333192176974560 -0.074194340142948109 -0.032961888571106240 

-0.010523218383097537 -0.002114337177937716 -0.000219088960191523 

-0.000008140072457660 -0.000000095887770295 0.000000000944915165 

-0.000000001030438495 -0.000000000043537120 0.000000000010812587 

0.000000000000473505 0.000000000000014067 -0.000000000000000137 

0 .000000000000000000];

% Use cosine transform to get Chebyshev values

Ml =  [Ml; 1];

M2 =  [M2; 0];

J =  [2:N];

K =  [1:N+1];

M =  sqrt(2/N)*[0.5*ones(N+l,l), cos((J-l)’*(K-l)*pi/(N))’, 0.5*(-l).(K-l)’];

U1 =  sqrt(2/N)*M*Ml;

U2 =  sqrt(2/N)*M*M2;
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% Matrix multiplier for U and U" 

for K =  1 :N

for J =  1:N

J1 =  abs(K-J)+l;

J2 =  K+J;

U(K,J) =  0.5*U1(J1); 

if (J2 < =  N)

U(K,J) =  U(K,J) +  0.5*U1(J2);

end

end

end

for K =  1 :N

for J =  1:N

J1 =  abs(K-J)+l;

J2 =  K+J;

D2U(K,J) =  0.5*U2(J1); 

if (J2 < =  N)

D2U(K,J) =  D2U(K,J) +  0.5*U2(J2);

end

end

end



A ppendix  C 

M ean flow solver

% The following code was used to calculate the mean flow velocity profiles for all 

% rotating flows with suet ion/inject ion.

% The code was adapted to include the effects of a uniform magnetic field, and 

% also to study the BEK  family.

% The code can also be used to calculate the meanflow profiles for a 

% rotating-disk with temperature-dependent viscosity or 

% BEK  family with mass transfer/magnetic field.

function Suction-Injection 

% The following code solves the above problem, 

infinity = 10; 

maxinfinity =120;

solinit =  bvpinit(linspace(0,infinity, 120), [0 0 1 0 0]); 

options =  bvpset(’AbsTol’, le-40, ’RelTol’, le-20); 

sol =  bvp4c(@fsode,@fsbc, solinit, options); 

z =  sol.x; 

f =sol.y;

% Plot the graph of f, g and h

309
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figure

plot(z,f(l,:),,-b’,z,f(3,:),,-.r,,z,f(5,:),’-g ’); 

axis([0 maxinfinity -1.6 1.6]);

title(’Solution to the von Karman flow over a rotating disk for a =  ’); 

xlabel(’z’);

h =  legend(’f y gy h ’,2);

drawnow

shg

% Extending solution to maxinfinity 

for j =  infinity +  1: maxinfinity

solinit =  bvpinit(sol, [0 j]);

options =  bvpset(’AbsToP, le-40, ’RelTol’, le-20); 

sol =  bvp4c(@fsode, @fsbc, solinit, options); 

z =  sol.x; 

f =  sol.y;

plot(z,f(l, :),’-b’, z , f ( 3 , r ’,z,f(5,:),’-g ’); 

axis([0 maxinfinity -1.6 1.6]);

title(’Solution to the von Karman flow over a rotating disk for a = ?’); 

xlabel(’z’);

h =  Iegend(’f7 g 7 h \2 );

end

hold off

% Output solution at 48 points 

n =  48; 

for k =  l:n

u(k) =  cos((k-l)*pi/(2*n)); 

y(k) =  4*((l/u(k))- 1);
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f =  deval(sol,y); 

fprintf(’12.18f’,u,f);

end

% The differential equations 

function dfdz =  fsode(z,f) 

dfdz =  [f(2)

/(5) * /(2) +  / ( l ) 2 -  (/(3) + l)2 

f(4)
/ ( 5 ) * / ( 4 )  +  2 * / ( l ) * ( / ( 3 )  +  l)

- 2 * / ( l ) ] ;

% The boundary conditions

function res =  fsbc(fO, finf) a = 1; 

res =  [fO (1) 

f0(3)

f0(5) +  a 

finf(l) 

finf(3) +  1];

The mean velocity profiles for the BEK  family and the rotating-disk with a uniform 

magnetic field can be found by altering The differential equations function and The 

boundary conditions function.
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C .l M ean velocity  profiles for a tem perature-dependent 
viscosity

For a rotating-disk with temperature-dependent viscosity, the system of ordinary

differential equations is given as

(1 +  eS)2{F2 +  F 'H  -  {G +  l)2) +  eS'F' = (1 +  eS)F", (C.l)

(1 +  eS)2{2F(G +  1) +  G'H) +  tS'G' =  (1 +  eS)G", (C.2)

2 F  + H' = 0, (C.3)

5" -  PrS'H  =  0, (C.4)

where F , G, H  and S  refer to the radial, azimuthal, normal directions and temper

ature. Primes refer to derivatives with respect to z, e is a parameter controlling the 

temperature dependence of viscosity and Pr is the Prandtl number, which is taken 

to be equal to 0.72, in order to be consistent with the study by Jasmine (2003) and 

Jasmine h  Gajjar (2005b). The system of ordinary differential equations is solved 

subject to the boundary conditions

F{ 0) =  G(0) = H( 0) =  0, 5(0) =  1 (C.5)

and

F (z —> oo) =  S(z —► oo) =  0, G(z —> oo) =  —1. (C.6)

Figure C.l and table C.l displays the profiles of F ,G ,H  and 5, and the values 

of F'(0),G'(0), S'(0) and H (oo). The tabulated results agree with those given by 

Jasmine (2003) and Jasmine &; Gajjar (2005b) (italics).
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p r o f l l «

A z l

Figure C.l: Profiles for the radial F, azimuthal G and normal H velocities and tem
perature profile S, for different values of t.
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e F'{ 0) G'(O) H( oo) S'( 0)
0 0.51023262 -0.61592206 -0.88447339 -0.32857284
0 0.5102 -0.6159 -0.88447 -0.3285
1 0.72166155 -0.90531614 -0.71418364 -0.30806332
2 0.88338965 -1.10969670 -0.59502185 -0.28658208
2 0.8833 -1.1097 -0.59503 -0.2866
3 1.02916791 -1.27641962 -0.51017318 -0.26669842
4 1.14081101 -1.42125005 -0.44882179 -0.24909599

Table C.l: Values of F', G'.S' at z = 0 and H at infinity for various values of e.



A ppendix D

An eigen-solver for the  
rotating-disk boundary-layer

D .l  M ethod

The following method was developed using a technique described by Professor Neil 

Sandham of the University of Southampton, at a lecture course in Keele, in September

The sixth-order system (2.12) - (2.13) is solved using a Chebyshev-collocation 

method. Variables are expanded in terms of Chebyshev polynomials

where TJt is the A;th Chebyshev polynomial of the first kind and £e[—1,1] is the mapped 

wall normal coordinate, defined as

where L = 5 for the subsequent problems and ze[0, oo] is the physical wall normal 

coordinate .

The derivative of the variable (D.l) is given as

2006.

N

(D.l)
k=0
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where the elements of the differentiation operator D are given as

_ Q j( - iy +k j , k
3k ~  3 * k '

j  = k , j ? 0 , N ,
2(1 -  Q)

2JV2 + 1
j  =  k = 0,

(2A12 + j  = k — N,  (D.4)

where

and

Cj = 2 j  = 0,N,

=  1 0 < j < N ,  (D.5)

fc =  - c o s ( ^ )  0 < j  < N.  (D.6)

Since we are considering a grid mapping (D.2), derivatives with respect to the 

physical component 2  are re-written as

du dud£ ,
~dz = d£dz'  D̂ '7^

^ u  = ^ u ( d ^ \ 2 d u d ?  m  .
dz2 d ? \ d z )  d£dz2' {

d3u _  d3u /  d£ \  3 d?u d£ d£2 du d£3
dz3 d£3 \d z  J ^ d£2 dz dz2 dl; dz3 ’ (^-9)

d4u _  d4u { d £ \ 4 d3u f  d£ \  2d£2 d W ^ A 2 d?ud£d£3 dudf,4
dz4 d£4 \ d z )  +  d J p \ d z )  dz2 ^  d £ * \ d z 2J  d ^ d z d z 3 ^  d id z 4' { }
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D .2 The tem poral solver

The sixth-order system (2.12) - (2.13) is now rearranged into the companion matrix 

form

A\ are 2N  x 2N  matrices. The elements of Ao and A\ can be easily identified by 

rearranging equations (2.12) - (2.13).

The corresponding spatial solver can be defined and evaluated using a similar 

method as was defined in appendix A.

D .3 R esults

D .3 .1  C onvective in stab ilities  
S ta tio n ary  waves

Figure D.l displays the neutral curves for the stationary convective instability for the 

rotating-disk boundary-layer with mass transfer. Here the dashed-dotted line refers 

to the case a  =  -0.5; solid line refers to the case a =  0; and the dashed line refers to 

the case a  =  0.5, where a  is negative for injection and positive for suction.

Figure D.2 displays the radial wavenumber spectra for the rotating-disk boundary- 

layer, where Re =  286, (5 =  0.077 and uj = 0. The critical radial wavenumber for 

stationary waves is given as a = 0.38089. There are also two continuous branches 

a  -> ±/3.

D .3 .2 A b so lu te  in stab ility

Figure D.3 displays the frequency spectra for a Reynolds number Re = 507.3, radial 

wavenumber a = 0.2173 — 0.1216z and azimuthal wavenumber f3 = 0.1348. These 

are the critical values for absolute instability as found by Lingwood (1997). There

(D .ll)

where uj is the temporal frequency, h and 77 are variables defined earlier, and Aq and
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Figure D.l: Neutral curves for the stationary convective instability for the rotating- 
disk boundary-layer with mass transfer.

are two branches found asymptoting towards u = 0  and u  = —ft, while the critical 

frequency for absolute instability is given as u  =  —0.03488, where the imaginary part 

(which determines whether disturbances grow or decay in time) is zero (to five decimal 

places). This is (to four decimal places) comparable with that observed by Lingwood 

(1997); uj =  —0.03485 is the critical frequency in her study. Table D.l displays several 

other comparisons between Lingwood (1997) and the above eigensolver method.

The sixth-order system (2.12) - (2.13) may also be extended to include

1 . the family of rotating flows, B E K  family,

2 . a uniform magnetic field,

3. Hall effects, etc.
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Figure D.2: Radial wavenumber spectra for stationary waves u  =  0, for azimuthal 
wavenumber (3 =  0.077 and Reynolds number Re = 286.

a Rec Pc LVc OLc

-1.0
-1.0

201.54 0.1424 -0.03622
-0.03626

0.1735 - i0.1166

-0.5
-0.5

309.71 0.1398 -0.03550
-0.03552

0.1903 - i0.1197

0.0
0.0

507.30 0.1348 -0.03485
-0.03488

0.2173 - iO.1216

0.5
0.5

911.54 0.1235 -0.03261
-0.03265

0.2637 - i0.1228

1.0
1.0

1860.82 0 .1 0 4 4 -0.02796
-0.02800

0.3420 - iO.1300

Table D.l: Critical values for the onset of absolute instability as found by Lingwood 
(1997) - italics. (Table corresponds to table III in Lingwood (1997)). The values in 
bold correspond to the values found here.
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Re = 507.3, p = 0.1348, a = 0.2173 -  0.12161
0.1

0.08

0.06

-0.03488
0.04

Comparable with that 
found by Lingwood (1997).
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Figure D.3: Frequency spectra for spatial wavenumber a = 0.2173 —0.1216z, azimuthal 
wavenumber (3 = 0.1348 and Reynolds number Re = 507.3



A ppendix E

Eigenvalue checks for the  
num erical sim ulations - part 1

Tables E.l, E.2 and E.3 display the eigenvalues found using the numerical simulation 

results for the rotating-disk with mass transfer, the rotating-disk with a magnetic field 

and the Ekman flow. The eigenvalues correspond to the stationary and travelling 

Type-1 and -2 modes. Subscripts s refer to stationary and subscripts t refer to 

travelling. Also included are the corresponding eigenvalues, given by previous authors. 

(Note: BM refers to Balakumar &; Malik).
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a reference Mode type Rec Pc 0JC OLc

-0.5 Lingwood (1997) 2t 62.9 -0.102 0.1253 0.264
-0.5 Current Thesis 2t 63 -0.102 0.1253 0.2455
0.0 Malik (1986) h 285.36 0.07759 - 0.38402
0.0 BM (1990) Is 286.1 0.07781 - 0.38643
0.0 Lingwood (1997a) Is 290.1 0.077 - 0.381
0.0 Current Thesis Is 290 0.077 - 0.3779
0.0 Malik (1986) 2s 440.88 0.04672 - 0.13228
0.0 BM (1990) 2s 451.4 0.04641 - 0.13109
0.0 Current Thesis 2s 451 0.04641 - 0.1336
0.0 BM (1990) It 283.36 0.09379 -0.01023 0.36661
0.0 Current Thesis It 284 0.09379 -0.01023 0.36064
0.0 BM (1990) 21 64.46 -0.10594 0.12237 0.28027
0.0 Lingwood (1997) 21 64.4 -0.106 0.1225 0.276
0.0 Current Thesis 21 65 -0.106 0.1225 0.2661
0.5 Dhanak (1992) 1. 552.776 0.06690 - 0.45876
0.5 Current Thesis Is 553 0.06690 - 0.44431
0.5 Dhanak (1992) 2S 698.937 0.04113 - 0.15941
0.5 Current Thesis 2S 699 0.04113 - 0.15905
0.5 Lingwood (1997) 21 87.9 -0.0775 0.0897 0.265
0.5 Current Thesis 21 88 -0.0775 0.0897 0.2601

Table E.l: Critical points for the von Karman layer and flows with injection/suction 
obtained for the stationary/travelling type 1 and 2 modes together with previous results 
from the literature.
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m reference Mode type Rec 0c UC <*c
0.2 Jasmine (2003) 1, 405.6 0.06584 - 0.4019

Current Thesis Is 406 0.06584 - 0.3905
0.2 Jasmine (2003) 2S 674.1 0.03826 - 0.1339

Current Thesis 2s 674 0.03826 - 0.1429
0.4 Jasmine (2003) Is 565.4 0.05726 - 0.4279

Current Thesis Is 566 0.05726 - 0.4144
0.6 Jasmine (2003) Is 765.4 0.05087 - 0.4589

Current Thesis Is 766 0.05087 - 0.4498
0.8 Jasmine (2003) Is 1004.1 0.04577 - 0.4900

Current Thesis Is 1004 0.04577 - 0.4804
1.0 Jasmine (2003) Is 1278.4 0.04193 - 0.5140

Current Thesis Is 1279 0.04193 - 0.5109

Table E.2: Critical data for the rotating-disk boundary-layer with a uniform normal 
magnetic field, obtained for the stationary/travelling type 1 and 2 modes together with 
previous results from the literature.

Reference Mode type Rec 00 CJc OCc
Lingwood (1997a) *-s 116.3 0.137 - 0.528

Current Thesis -*-5 116 0.137 - 0.5299
Lilly (1966) It 110 0.0695 0.050 0.5280

Faller &; Kaylor (1966) It 118 0.1110 - 0.5712
Melander (1983) It 112.75 0.0697 0.0518 0.5513

Faller (1991) It 113.1 0.0663 - 0.548
Current Thesis It 113 0.0663 0.0416 0.527

Lilly (1966) 2f 55 -0.1089 0.187 0.2992
Faller +  Kaylor (1966) 2t 55 -0.0701 - 0.2618

Melander (1983) 2t 54.155 -0.1364 0.1949 0.3162
Faller (1991) 2t 54.3 -0.1331 - 0.312

Current Thesis 2t 55 -0.1331 - 0.3142

Table E.3: Critical points for the Ekman layer obtained for the stationary/travelling 
type 1 and 2 modes together with previous results from the literature.



A ppendix F

Eigenvalue checks for the  
num erical sim ulations - part 2

When validating the parallel numerical simulation results with those obtained by 

previous authors, the Reynolds number Re and azimuthal mode number n were always 

rounded to integer values; refer to tables 4.2, 5.2 and 6.2 of chapters 4, 5 and 6. This 

was done to avoid excessive parametric studies about the critical location for absolute 

instability. However, the temporal frequencies and radial wavenumbers obtained from 

the numerical simulations were always comparable (to a few decimal places) with those 

obtained by Lingwood (1995, 1997a,b) and Jasmine (2003). Nevertheless the reader 

may still have some doubts to the accuracy of the results.

Table F .l and F.2 display temporal frequencies and radial wavenumbers for the 

rotating-disk boundary-layer, obtained using the parallel flow numerical simulation 

results. In table F .l the azimuthal mode number n — 68, and the Reynolds number 

Re = 507, 508 and 509. While table F.2 displays the results for a Reynolds number 

Re = 508, and azimuthal mode numbers n = 67, 68 and 69. In each case, the tempo

ral frequencies and radial wavenumbers are the same to two or three decimal places. 

Hence, the frequencies and radial wavenumbers do not vary much over small incre

ments in the Reynolds number or azimuthal mode number. Therefore, the results 

given in tables 4.2, 5.2 and 6.2 of chapters 4, 5 and 6, (where the Reynolds number
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and azimuthal mode number are rounded to integer values for the numerical simu

lations), are sufficient for comparing with those given by Lingwood (1995, 1997a,b) 

and Jasmine (2003).

Rec nc Uc Otc
507 68 -0.03447 0.2193 - i0.1153
508 68 -0.03435 0.2192 - iO. 1153
509 68 -0.03423 0.2191 - i0.1152

Table F.l: Eigenvalues for the rotating-disk boundary-layer, obtained using the nu
merical simulation results. The azimuthal mode number n = 68, while the Reynolds 
number Re = 507, 508 and 509.

Rec nc ujc Otc
508 67 -0.03351 0.2184 - i0.1159
508 68 -0.03435 0.2192 - i0.1153
508 69 -0.03519 0.2199 - i0.1148

Table F.2: Eigenvalues for the rotating-disk boundary-layer, obtained using the nu
merical simulation results. The azimuthal mode number n = 67, 68 and 69 while the 
Reynolds number Re = 508.



A ppendix G

Checks on th e  influence o f the  
outflow boundary condition

As mentioned in earlier chapters, several checks were performed to ensure that the 

disturbance evolution was not contaminated by any spurious effects caused by the 

radial outflow boundary. Simulations were checked for a number of radial lengths, and 

in all cases considered, the disturbance behaviour displayed no significant differences. 

To illustrate this, we will look at the disturbance with an azimuthal mode number 

n = 194, which is impulsively excited at re = 1861. The suction/injection parameter 

a  = 1. Thus, the mean flow is subject to uniform suction.

Figure G.l displays the time evolution of the disturbance at three equally spaced 

radial locations; r = re, r = re +  25 and r = re +  50. Data is presented from 

two different numerical simulations. For the data represented by dots, the radial 

outflow is located at rQ = 2361, while for the data represented by dashed lines, the 

outflow is at rQ = 3001. For the three radial locations there is no visible differences 

in the disturbance behaviour, over all time considered. For the radial location re, the 

disturbance initially decays, but eventually appears to asymptote towards a constant 

amplitude, while at the two other positions, temporal growth is visible for all time 

considered. This is equivalent behaviour to that observed earlier in the thesis.

Figure G.2 displays the radial variation of the disturbance wavepacket for three

326



Appendix G. Checks on the influence of the outflow boundary condition 327
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Figure G.l: Instantaneous radial variation of ue,w for an impulsively excited distur
bance with n =  194, re =  1861 and a = 1. (a): r — re; (b): r = re -f 25; (c): 
r =  re +  50. The computational outflows are located at r0 =  2361 (dots); rQ =  3001 
(dashed lines).
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points in time; t /T  =  0.612, t /T  = 0.948 and t /T  — 1.305. Again data is plotted 

for two simulations; dots correspond to outflow radius rQ =  2361 and dashed lines 

refer to rQ = 3001. For the first time instant, the maximum wavepacket amplitude is 

located well before the outflow boundary used in both simulations. For the second 

time instant, the disturbance amplitude at the outflow boundary, corresponding to 

the shorter radial length, is a significant fraction of the maximum wavepacket ampli

tude. This is not the case for the data obtained using the larger radial domain. The 

amplitude of the disturbance at the outflow is very small compared to the maximum 

amplitude. Nonetheless, there is no noticeable differences between the two simula

tions. For the third selected time, the maximum amplitude occurs after the outflow 

boundary of the simulation with the shorter radial length. However, there are again 

no discernible differences between the two simulations, and the shorter radial domain 

does not appear to have produced any spurious effects.



A ppendix H

Frequency and grow th rate solver

Consider the complex-valued quantity defined by

i dA  m  -n
w =  a W  ( i u )

where A is taken to be the azimuthal vorticity uew. Once u  has been found, its 

real and imaginary parts may be interpreted as being the local temporal frequencies 

and local temporal growth rates, respectively. A central difference scheme was used

to solve equation (H.l), where A = A n = an +  ibn and =  4̂n+̂ 'f n~1 • The

following code was then used to calculate the frequency and growth rate for some 

given disturbance.

function omega =  frequency(A);

% Ensure A is of the form A =  a +  ib,

% where a and b are the real and imaginary parts of A, i is complex. 

% Boundary conditions 

uO =  f(l); 

u l =  f(2); 

f(l+l) =  0;
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1 =  length(f);

% For loop 

for n =  2:1

omega(n) =  i?e*i*(f(n+l) - f(n-l))/(f(n)*2*At);

end

% Where Re is the Reynolds number and A t is the time step. The real and imaginary 

& parts of ’omega’ then give the temporal frequency and growth rate.

& A similar method can be used to calculate the spatial wavenumber 

& and growth rate.



A ppendix I

G reen’s function  solver

The following code was used to calculate the Green’s function for constant stability. 

A similar approach could be used for the linearly varying and quadratically varying 

stability problems.

% Reynolds number/inner radius

R =  ;
% Time period 

T =  2*pi*R;

% Leading-edge 

UL =  ;

UL =  UL/T;

% Trailing-edge 

UT =;

UT =  UT/T;

% Local growth rate 

muO =  ; 

muO =  muO/R;

% Local frequency
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wO =

% Imaginary part of wavenumber 

ai =  ;

% Real part of wavenumber 

ar =  ;

a =  ar+i*ai;

% Real part of diffusion/dispersion parameter 

gamr = -(UL+UT)/(4*ai);

% Imaginary part of diffusion/dispersion parameter 

garni =  gam r*(2^  +  52M);

% Fixed constant M 

M =  1700;

% Calculate Green’s function for fixed x 

for t =  1:1:M 

x =  ;

Ga(t) =  sqrt((gamr-i*gami)/(4*pi*t));

Ga(t) =  Ga(t)*exp(mu0*t-(x*x)*gamr/(4*t));

Ga(t) =  Ga(t)*exp(i*(x*x)*gami/(4*t) +  i*ar*x - ai*x);

end

% Calculate complex frequency 

for n =  3:M-1

wl(n) =  i*(G a(n+l) - Ga(n-l))/(Ga(n)*2);

end 

% Frequency

bll=wO+real(R*wl);

% Growth rate

cll=imag(R*wl);



A ppendix J

The G inzburg-Landau equation  
w ith  a sm eared im pulse

In section 8.2, the parallel rotating-disk numerical simulations were modeled using 

the Ginzburg-Landau equation (8.3) with constant stability fi = (j,q. However, when 

attempting to plot the frequencies and growth rates for the Green’s solution (8.8) 

to the Ginzburg-Landau equation, the data lines re — 25 and re +  25 were found to 

overlap. This was due to the symmetry about r = re = 0 (the point of forcing).

To overcome this problem, we will consider a smeared impulsive distribution, 

instead of a point forcing. Figure J .l  displays a smeared impulsive distribution (solid 

line) and a point forcing (dotted line). Here A; is a small displacement about the radial 

position r.

We assume that the Green’s function (8.8) can be approximately given as

G(r, t) ~  G(r + k, t) + G(r -  k, £), (J.l)

for the smeared impulsive distribution. The complex-valued expression (8.11) may 

once again be called upon to calculate the local frequencies and growth rates, where 

G is the Green’s function (J.l) at all spatial positions and points in time. The real 

and imaginary parts may be interpreted as being, the local temporal frequency and
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  S m e ar forcing
Point forcing

2k

r + kk rr

Figure J.l: Plot depicting a smeared impulsive distribution (solid line) and a point 
forcing (dotted line).

local temporal growth rate, respectively. The complex frequency is given as

. 7 i (r2 +  fc2) . 7 jkr  ,r , . f_  1 + jv fc r 1
' ^  4|7 |2<2 2|7 |2<2 \ ^ ’r 2t 4|7 |2«2 2|7 |2i2 ^

where

H  =

(J.3)

G{r +  k) — G(r — k)
G(r +  k) +  G(r — k) ’

_  »{sin(o:fc) +  sin( -  s i n h ( ^ )
cos(afc) +  c o s ( J ^ )  +  cosh(^pj)

Hence, the local frequency and growth rate are given as

7i(r2 +  fc2) kr f  7r{sin(qfc) +  s i n ( ^ ) }  +  7isinh( ~|
Ul'r 4|7 |2t2 2|7 |2i2 \  cos(a fc) +  cos( J * )  +  COs h ( ^ ^ )  J ’
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1  , 7 r(r2 + k2) kr  f 7 i{sin(afc) +  sin(^% )}  -  7 rs in h ( jj^ )  |

if^ i)  +  c o sh (^W)'r 21 +  4|7 |2*2 + 2|7 |2t2 i  cos(afc) +  cos(2fe) +  c o s h (^ i) ' } '
(J.5)

We may now use the above expressions (J.4) and (J.5), to show that the local 

frequencies and growth rates, at the positions re — 25 and r e +  25, are different. 

(Note: re = 0). The absolute differences in the local frequencies and growth rates 

may be given (after some manipulation) as

K r ( r e +  25) -  c*v(re -  25)| =   7 ^ ^ -------u/25 7 (J -\l\2t2 ( cos(a/c) +  c o s (^ r t ) +  c o s i^ ^ r )  J
.6)

(J.7)

\l\2t2 \  cos(a/c) +  c o s ( f ^ )  +  cosh(|p^;

1 / 257jA; f  sin(aA;) 1
|ajiti(re +  25) -  u iti(re -  25)| =  y - r ^ { ----— -------------------- w 2 5 7 f •

|7l t t cos (ah) +  cos(2 | ^ )  +  cosh ( 21^ )  J

Since k > 0, the data lines re — 25 and re +  25 will follow different paths towards the

constant frequency and growth rate, found at large time t /T.

J .l  Exam ple

In keeping with the earlier study on the Green’s solution to the Ginzburg-Landau 

equation (refer to chapter 8), the example chosen, is the rotating-disk boundary-layer, 

where the Reynolds number Re  =  530 and the azimuthal mode number n = 68. For 

a smeared impulsive distribution, the Green’s solution (8.8) is estimated as

G{r,t) =  0.1{G (r+5,t) +  G (r-5 ,t)}+ 0 .4 {G (r+ 2 .5 )+ G (r-2 .5 )}+ 0 .6 G (r,t) . (J.8)

Using the expressions and parameter constants given in section 8.2.2, we are able 

to calculate the local frequencies and growth rates for the Green’s function (J.8). 

Figure J.2 displays the corresponding local frequencies and growth rates at the radial 

positions r =  re — 25 and r  =  r e +  25. The data lines follow different paths towards 

the complex frequency (cui «  —16.4 +  z0.2) found for large time t /T.
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Figure J.2: The temporal frequencies (a) and growth rates (b), at the positions r = 
re — 25 and r = re + 25, for the Green’s function (J.8). The plots are matched to the 
rotating-disk boundary-layer, where Re = 530, n = 68 and re = 530.



A ppendix K

The Ginzburg-Landau equation - 
quadratically varying stability

In chapter 8 , the numerical simulations for the rotating-disk were modeled using the 

Green’s solutions to the Ginzburg-Landau model. The stability parameter /z that 

appeared in the Green’s solutions, was a constant when we wanted to match the 

parallel numerical simulation results, and was linearly varying when we attempted to 

match the non-parallel numerical simulations.

We will now consider the Ginzburg-Landau equation with a quadratically varying 

stability term; fi(r) = //o +  n \r  -I- Here fi2 is assumed to be a real negative.

K .l Quadratic variation o f the stab ility  parameter 
f i  -  (a)

For the case where 7  and fj, are real only, Hunt & Crighton obtained the following 

exact expression for the Green’s function to the Ginzburg-Landau equation (8.3)
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G0(r, t)

x tanh ̂  V (“ 2 /̂ 2 7 ) ^  — er2  ^  ^ ^ -co th (> /(~2p2'y)et)

(K.l)
47T7sinh(\/ (—2p2'y)et) 7

where we let c =  1  and all other terms are as given in chapter 8 .

The edges of the wavepacket occur along r 2  ~  ( \ / (—8 7 / ^ 2 ){Pmax — U2 / ^ l)  ~  27)t 

as time tends to infinity. Here pmax is the maximum value that p(x) takes, i.e. 

Pmax =  Âo ~ I1 i/(2/42)- The flow is globally stable, if the equation for the wavepacket 

edges has no real solution. This arises if either

(See equations (42) and (43) of Hunt k, Crighton (1991)). If (K.2) is satisfied, the 

flow is either: locally stable everywhere, providing po < 0 , or there exists a region of

eventually damped. The second condition (K.3), implies that a small region of local 

absolute instability exists, but on the whole the flow is globally stable. If neither 

condition holds, the flow is globally unstable.

K.2 Quadratic variation o f th e  stab ility  param eter

P m ax U  / 4 7  <  0 , (K.2)

or

max (K.3)

local convective instability, if 0 < po < U2/Ary. In this last instance the disturbance 

is convected through the region of instability into the region of stability, where it is

The diffusion/dispersion term 7  and stability parameter p  are now allowed to be 

complex. By considering the full disturbance structure G(x, t ) =  (7oexp{z(o;sa:—u>st)},
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we obtain the Green’s function

2(7r +  ijj)p i 
V

^tanh (iryi)

2 (7r - h i ) v ^ u ,— 4 j^j2 — coth(77G +  iotsr

=  G*exp(io!sr), (K.4)

where Go is equation (K.l). Here a3 is the complex wavenumber, obtained from 

the numerical simulation results; JIq = —iujs (where ljs is the numerical simulation 

complex frequency), and p\ and 7  are again given by equations (8.22), (8.25), (8.26), 

(8.36) and (8.37). The stability parameter /x2  has been replaced by 7 7, where

Since 7  is allowed to complex, 77 will also be complex. However, we will only consider 

real 77 for the subsequent discussion, so as to simplify the problem.

The local frequency and growth rate for equation (K.4) are obtained by applying 

the complex-valued expression (8.11). The full and limiting behaviour solutions, are 

given as

r? = -2/127- (K.5)

cosech (r/t)

(K.7)

(K.6 )

and

wi,i = Vo,r  + cosech2 (rft) +  ^ ^ s e c h 2 “  | cothW )

t a n h 2(l77£)
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Equations (K.7) and (K.9) arise, since tanh(|? 7 £) —► 1, coth(?7 t) —► 1, sech(^t) —> 

0 and cosech(rjt) —> 0 as t —> oo. Hence, for large time t, the frequency and growth 

rate asymptote towards constant values. The long term behaviour of the frequency 

and growth rate will be discussed later in the section.

The local frequency (K.6 ) and growth rate (K.8 ) are to first order, in 77, given as

(jJi>r = Equation (8.38) +  A(rj2), (K.10)

u>iti = Equation (8.39) +  A(7 72), (K .ll)

which are obtained by approximating the hyperbolic functions to first order, i.e. 

cosh(77 )̂ =  1 and sinh(77 )̂ =  771. Thus, to first order, the local frequency and growth 

rate are identical to the results obtained for a linearly varying stability parameter p\ 

refer to section 7.2.6. It is quite obvious that for the first order equations (K.10) and 

(K .ll), the earlier constraints (8.41) and (8.43), also hold. Hence, to at least first 

order (in 77) the disturbance behaviour is dependent on the parameters 7  and p\.

Expressions for the complex wavenumber are obtained by applying equation (8.14) 

(where G is taken to be the Green’s function (K.4)). The full and limiting behaviour 

solutions to the wavenumber and spatial growth rate are given as

(*i,r = aa,r +  ^ ^ co th (7 7 0  +  ^ t a n h ^ * ) ,  (K.12)

-  *-.r +  STF* +  —  a s *  ^ 0 0 , (K.13)2 |7 r V
and

=  <**,» +  ^ j^co th fa* ) -  ^ t a n h ^ t ) ,  (K.14)

2 |7 r V
where we have used the fact that tanh.(^r]t) —* 1  and coth(7 7 )̂ —► 1  as t —» 0 0 .

We assume for convenience that po, 7  and p\ are as defined in chapter 8 . (Refer to 

equations (8.10), (8.22), (8.25), (8.26), (8.36) and (8.37)). The only term left to define
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(if we are to model the numerical simulation results using the Green’s function (K.4)) 

is the parameter 7 7. This can be derived by calculating the streamwise r —derivatives

of the solutions (K.13) and (K.15). On rearranging, 77 may be given as

(K.16)

or

7 r dr (K. IT)

(It is worth noting that (K.16)-7- (K .17) and rearranging, gives the expression (8.26)).

of the rotating-disk boundary-layer.

K .2.1  C om paring th e  G reen ’s fu n ction s w ith  linearly and  
quadratically  varying sta b ility  pi

development wavepacket, for the Green’s function with a linearly varying stability

a quadratically varying stability parameter p  (labeled Q and solid lines in figure K.2 ). 

The plots are modeled to match the non-parallel numerical simulation results for the 

rotating-disk boundary-layer, where the point of forcing re = 530 and azimuthal mode 

number n  =  6 8 . The frequencies and growth rates are plotted for four equally spaced 

locations, re - 25, re = 530, re +  25 and re +  50. All variables are as stated in 

the examples given in chapter 8 ; i.e. po «  0.2 +  zl6.4, d s «  0.21 — zO. 12, Ul ~  400, 

Ut  ~  —8 , 7 i / 7 r «  1.2, ^ -  «  0.012 and «  0.003. The parameter 77 was calculated 

using (K.16), where it was found that could be given as approximately 10-4.

For the time period considered, the frequencies, growth rates (for both L and 

Q problems) increase and decrease, respectively. The spatio-temporal disturbance 

wavepackets are also similar, since the trailing edges initially propagate inwards, but 

eventually reverse direction and propagate downstream.

The derivatives and are calculated using the numerical simulation results

Figures K.l(a, b) and K.2 display the local frequency, growth rate and the disturbance

parameter p (labeled L  and dotted lines in figure K.2 ), and the Green’s function with
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Figure K.l: The frequencies (a) and growth rates (b), for the Green’s function with a 
linearly varying stability p; (labeled L) and quadratically varying stability p; (labeled 
Q). The frequencies and growth rates are plotted for four equally spaced streamwise 
points. The case corresponds to the rotating-disk boundary-layer, with point of forcing 
re =  530 and n = 68.
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Figure K.2: The wavepacket for the Green’s function with a linearly varying stability 
p; (dotted lines) and quadratically varying stability p; (solid lines). The case corre
sponds to the rotating-disk boundary-layer, with point of forcing re = 530 and n = 
68. (Contours are drawn using a logarithmic scale, with levels separated by factors of 
two).

K .2 .2 T he long-term  behaviour

The long-term behaviour of the frequencies and growth rates can be identified by 

equations (K.7) and (K.9), respectively. Both the frequency and growth rate asymp

tote towards constants, as time tends to infinity. Hence, the global response to the 

disturbance will be governed by the value given by equation (K.9). If this value is 

positive, global instability occurs, but if the value is negative, global stability prevails.

Figures K.3 and K.4 display the long-term behaviour of the frequencies, growth 

rates and disturbance wavepacket for the Green’s function with a linearly varying 

stability parameter p (labeled L and dotted lines in figure K.2), and the Green’s
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Figure K.3: he frequencies (a) and growth rates (b), for the Green’s function with a 
linearly varying stability p; (labeled L) and quadratically varying stability p; (labeled 
Q). The frequencies and growth rates are plotted for four equally spaced streamwise 
points. The case corresponds to the rotating-disk boundary-layer, with point of forcing 
re =  530 and n = 68.
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Figure K.4: The wavepacket for the Green’s function with a linearly varying stability 
p; (dotted lines) and quadratically varying stability p; (solid lines). The case corre
sponds to the rotating-disk boundary-layer, with point of forcing re =  530 and n = 
68. (Contours are drawn using a logarithmic scale, with levels separated by factors of 
two).

function with a quadratically varying stability parameter p  (labeled Q and solid lines 

in figure K.2 ). The plots are modeled to match the non-parallel numerical simulation 

results for the rotating-disk boundary-layer, where the point of forcing re = 530 and 

azimuthal mode number n = 6 8 . The frequencies and growth rates have been plotted 

for t=15T, and the wavepackets have been plotted for t=9.5T , where T =  2nra is the 

period of one rotation of the disk and ra is the inner radius.

The frequency at all selected streamwise locations, is found to tend towards a 

constant in the region u rra = 7 , while the growth rate at all selected points is found 

to asymptote towards a constant near LJira = -5. This would imply global stability.
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The disturbance wavepacket for the quadratically varying stability problem (il

lustrated in figure K.4, solid lines), displays a disturbance, convected outwards. The 

leading edge propagates with a diminishing velocity, which eventually reverses direc

tion and propagates inwards, while the trailing edge propagates with an increasing 

velocity. The edges of the disturbance wavepacket eventually meet, and the unstable 

disturbance is enclosed within this region. Hence, global stability prevails.
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Publications

L .l Paper 1

Christopher Davies &; Christian Thomas - Global stability of the rotating disk bound

ary layer and the effects of suction and injection, Bulletin of the American Physical 

Society, 58th Annual Meeting of the Division of Fluid Dynamics, Chicago, Illinois, 

50(9):266, 2005.

The von Karman boundary layer over a rotating disk is known to be absolutely un

stable (Lingwood 1995). However, numerical simulations indicate that this absolute 

instability does not give rise to an unstable linear global mode, when account is taken 

of the radial dependence of the basic flow (Davies & Carpenter 2003). Analogous 

behaviour can be found in solutions of the linearized complex Ginzburg-Landau equa

tion, similar to those derived by Hunt & Crighton (1991). These solutions show that 

detuning, arising from the radial variation of the local temporal frequency, may be 

enough to globally stabilize disturbances, even when local temporal growth rates in

crease with radius. Depending on the precise balance between the radial increase in 

growth rates and the corresponding shifts in frequency, it is possible for an absolutely 

unstable flow to remain globally stable. For the von Karman rotating disk boundary 

layer, the earlier numerical simulation results suggest that the balance in this case

348
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does in fact give rise to global stability. Similar behaviour has been identified in more 

recent numerical simulations that we have conducted, where mass injection was intro

duced at the disk surface. The modified flow still appears to be globally stable, despite 

the fact that injection is known to be locally destabilizing. More interestingly, it was 

also found that globally unstable behaviour was promoted when suction was applied.

L.2 Paper 2

Christopher Davies k  Christian Thomas - The effects of a uniform axial magnetic field 

on the global stability of the rotating-disk boundary-layer, Bulletin of the American 

Physical Society, 59th Annual Meeting of the Division of Fluid Dynamics, Tampa 

Bay, Florida, 51 (9):74, 2006.

Following on from the earlier discovery by Lingwood (1995) that the rotating-disk 

boundary-layer is absolutely unstable, Jasmine k  Gajjar (2005) have shown that the 

application of a uniform axial magnetic field can raise the critical Reynolds number 

for the onset of absolute instability. As with Lingwood’s analysis, a ’parallel-flow’ type 

of approximation is needed to derive this locally-based stability result. The approxima

tion amounts to a freezing out ’ of the underlying radial variation of the mean flow. 

Numerical simulations have been conducted to investigate the behaviour of linearized 

disturbances in the genuine rotating-disk boundary-layer, where the radial dependence 

of the mean flow is fully accounted for. This extends the work of Davies k  Carpen

ter (2003), who studied the more usual rotating-disk problem, in the absence of any 

magnetic field. The simulation results suggest that globally unstable behaviour can be 

promoted when a uniform axial magnetic field is applied. Impulsively excited distur

bances were found to display an increasingly rapid growth at the radial position of the 

impulse, albeit without any selection of a dominant frequency, as would be more usual 

for an unstable global mode. This is very similar to the behaviour to that was observed 

in a recent investigation by Davies k  Thomas (2005) on the effects of mass transfer,
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where suction was found to promote global instability.

L.3 Paper 3

Christopher Davies, Christian Thomas &; Peter W. Carpenter - Global stability of 

the rotating disc boundary layer, Journal of Engineering Mechanics, 57(3), 219-236, 

2007

The global stability of the von Karman boundary layer on the rotating disk is 

reviewed. For the genuine, radially homogeneous base flow, linearized numerical sim

ulations indicate that convectively propagating forms of disturbances are predominant 

at all radii. The presence of absolute instability does not lead to the formation of 

any unstable global mode, even though the temporal growth rate of the absolute in

stability increases along the radial direction. Analogous behaviour can be found in 

the impulse solutions of a model amplitude equation, namely the linearized complex 

Ginzburg-Landau equation. These solutions show that, depending on the precise bal

ance between spatial variations in the temporal growth rate and the corresponding 

shifts in the temporal frequency, globally stable behaviour can be obtained even in the 

presence of a strengthening absolute instability. The radial dependency of the absolute 

temporal frequency is sufficient to detune the disturbance oscillations at different ra

dial positions, thus overcoming the radially increasing absolute growth, thereby giving 

rise to a stable global response. The origin of this form of behaviour can be traced to 

the fact that the cylindrical geometry of the rotating-disk flow dictates a choice of a 

globally valid time non-dimensionalization that, when properly employed, leads to a 

significant radial variation in the frequency for the absolute instability.
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