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Abstract

CD4+CD25+ regulatory T cells (Treg) are known to inhibit T cell responses; however 
their site of action and whether they suppress other immune responses has not been well 
characterised. Using a model of tumour rejection involving a melanoma cell line 
expressing Fas ligand (B16FasL) the effect of Treg on these responses has been studied. 
NK cells and macrophages were found to play a critical role in rejection of B16FasL. 
Depletion of Treg enhanced tumour rejection, whilst adoptive transfer of Treg inhibited 
tumour rejection, indicating that Treg suppress innate immune responses. Experiments 
performed to identify the Treg target indicated that Treg inhibit the cytolytic activity of 
NK cells. Furthermore, deletion of Treg enhanced the inflammatory infiltrate within 24 
hours, which consisted of elevated numbers of neutrophils, indicating that Treg not only 
inhibit innate immune responses, but also act rapidly.

Another aim of this project was to identify whether Treg act in lymphoid organs or at the 
tumour site. T cells from transgenic mice, in which lymph node homing receptor CD62L 

expression is maintained upon activation (LAP), were predicted not to enter inflamed 

tissue. However, experiments showed that T cells from LAP mice could enter inflamed 

lungs following influenza infection. Characterisation of memory T cell responses 

indicated that LAP mice exhibit delayed viral clearance, despite comparable cell numbers, 

cytolytic activity, and levels of CD 107a and IFNy. Control transgenic mice in which 

CD62L can be shed, showed no defect in viral clearance indicating that inability to shed 

CD62L in LAP mice did not affect T cell migration but compromised anti-viral 

immunity. Although not suitable to study location of Treg action, this data indicated that 

CD62L shedding is important for memory T cell responses.
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Chapter 1 - Introduction

The immune system has evolved to protect the host from a wide range of pathogens and it 

comprises an innate and adaptive immune arm. Cells of the innate immune system 

respond immediately to signals induced upon injury. Innate immune cells express 

germline encoded receptors capable of recognising pathogen associated molecular 

patterns (PAMPs), which upon ligation by microbial products activate cells and induce 

cytokine/chemokine secretion, triggering effector cells to degranulate, and attack invaders 

(reviewed in (Pasare and Medzhitov 2005; Bianchi 2007; Trinchieri and Sher 2007) 

Although innate immune responses are effective first lines of defence in limiting 

pathogen dissemination, an aggressive pathogen may not be eliminated and the innate 

immune response may cause extensive damage to the host through continual release of 

toxic mediators.

The adaptive immune system has evolved to facilitate pathogen clearance and includes 

development of memory responses capable of more rapid clearance upon a second 

encounter with pathogen. Although initiation of adaptive immune responses (principally 

T and B cells) takes longer, the clearance of invading pathogens is directed in a highly 

antigen specific manner. Unlike innate immune cells, adaptive immune cells use DNA 

recombination to generate both the T cell receptor (TCR) and the B cell receptor (BCR), 

from a selection of germline encoded genes, during cell development (reviewed in 

(Goldrath and Bevan 1999; Nemazee 2000). It is estimated that 1018 different TCR can be 

generated in this way, each with the potential to recognise pathogen-derived antigens; 

however receptors recognising host antigens could also be generated during this process 

(Janeway et al. 2001) pg 138).
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Excessive immune responses to pathogens, inappropriate responses to environmental 

antigens and auto-immune responses can be extremely detrimental to the host and the 

immune system has evolved mechanisms to regulate these responses. In particular, the 

regulation of T cell responses has been extensively studied. The development of T cells in 

the thymus is an intricate process during which cells are selected for the ability of their 

TCR to bind with low affinity the major histocompatibility complex (MHC) in 

association with peptides derived from host proteins (self-peptides) (Janeway 1994; Fink 

and Bevan 1995; Starr et a l 2003). This process is required in order that T cells can 

recognise MHC in the periphery, however there is the potential to produce self-reactive T 

cells. The majority of T cells binding MHC:self-peptide with high affinity are deleted in 

the thymus (Kappler et al 1987; Ramsdell and Fowlkes 1990; Nossal 1994) and can also 

be induced to undergo apoptosis/become anergic in the periphery upon contact with self­

antigen in the absence of costimulation (Rocha and von Boehmer 1991). Although these 

mechanisms limit the number of self-reactive T cells in the periphery, they are imperfect 

and sub-populations of T cells that are capable of actively suppressing T cell responses 

have been identified (Gershon and Kondo 1970; Sakaguchi et a l 1995).

7.7. Immunosuppressive T Cells

Evidence for a population of T cells involved in immunosuppression was initially 

gathered during the 1970s. Gershon et al reported that a population of thymocytes was 

involved in maintaining peripheral tolerance, and this population was termed suppressor 

T cells (Ts) (Gershon and Kondo 1970; Gershon and Kondo 1971; Gershon et a l 1972; 

Gershon et a l 1974; Gershon 1975). It was discovered that removal of the thymus from 

mice at day 3 of life induced widespread autoimmunity later in life, whereas day 7 

thymectomy did not. Furthermore, thymus transplant or injection of T cells from adult 

mice before day 14 of life prevented autoimmune disease, suggesting that a population of
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T cells with the ability to suppress autoimmune T cells, eniigrated out of the thymus after 

day 3 but before day 7 (Kojima and Prehn 1981; Sakaguchi et al. 1985). Many other 

studies over the following years characterised these cells further, clearly indicating that 

they prevented autoimmunity (Cohen and Wekerle 1973; Penhale et al. 1976; Cooke et 

al. 1978; Muraoka and Miller 1980) and suppressed responses in an antigen specific 

manner (Tada and Takemori 1974; Weinberger et al. 1979; Smith and Howard 1980; 

Green et al. 1983). It was originally proposed that Ts cells mediated their biological 

functions via soluble, antigen-specific factors containing a region of the MHC (termed I- 

J), however, despite numerous attempts, molecular studies failed to identify a 

corresponding I-J gene within the MHC. Unfortunately, few researchers pursued Ts cells 

and the field was abandoned.

It wasn’t until the mid 1990s that the field of immunosuppressive T cells was 

rediscovered. With more sophisticated experimental tools, the initial experiments with 

mice thymectomised on day 3 of life were repeated. These mice developed widespread 

autoimmune disease that could be rescued by adoptive transfer of CD4+ T cells from 

normal adult mice. A significant advance was the identification of the population 

containing the T cell suppressive capacity as CD4+ T cells coexpressing the IL-2 receptor 

alpha chain, CD25 (Sakaguchi et al. 1995; Suri-Payer et al. 1996). Adoptive transfer of 

CD4+CD25‘ T cells (Asano et al. 1996) or CD25+ T cell-depleted mature thymocytes 

(Itoh et al. 1999; Seddon and Mason 2000) into syngeneic T cell deficient mice caused 

similar autoimmune disease which could be inhibited by cotransfer of CD4+CD25+ T 

cells. Further in vitro analysis revealed this population was capable of suppressing clonal 

(Suri-Payer et al. 1998) and polyclonal CD4+ T cell responses and suggested suppression 

was mediated in a contact-dependent fashion, requiring activation through the TCR in
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order to become suppressive (Thornton and Shevach 1998[ Thornton and Shevach 2000). 

Since these cells are present in normal naive mice and exit the thymus functionally 

mature, they are frequently referred to as naturally occurring CD4+CD25+ regulatory T 

cells (Treg).

1.2. Naturally Occurring CD4*CD25* Regulatory T Cells

1.2.1. Phenotype and Function

CD4+CD25+ T cells comprise 5-10% of both human and mouse peripheral CD4+ T cells. 

Although in naive mice the vast majority of this population shows suppressive capacity, 

in humans (and in mice undergoing an active immune response) this is less clear cut, as 

activated conventional T cells also express CD25. Various studies have identified those 

cells expressing the highest levels of CD25 as Treg in humans, which represent 1-3% of 

peripheral CD4+ T cells, although differentiating between high and low expression is still 

subjective (Baecher-Allan et al. 2001).

Besides CD25, a range of other molecules have been detected on the surface of Treg, 

particularly CD62L (L-selectin), CD 103 (ocE integrin subunit), GITR (glucocorticoid- 

induced TNFR-related protein) and CTLA-4 (cytotoxic T lymphocyte associated antigen- 

4) and high levels of CD45RB. These markers aided more specific characterisation of 

Treg and their function. Using combinations of these markers investigators reported that 

not only do Treg inhibit autoimmune disease caused by CD4+CD25' T cells (Groux et al. 

1997; Read et al. 2000), they also inhibit responses in murine models of allergy, and 

parasite infection (Belkaid et al. 2002), indicating that their activity may not be confined 

to suppression of self-reactive T cells.
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Numerous reports indicated that suppression in vitro is contact dependent and could not 

be blocked by anti- IL-10/TGFp blocking antibodies. However, in many in vivo 

experimental models there is a requirement for Treg to produce IL-10 (Belkaid et al. 

2002) or TGFp, although some reports have suggested that the source of TGFp is not 

Treg (Fahlen et al. 2005; Kullberg et al. 2005). The importance of these cytokines is 

discussed later. In vitro Treg do not proliferate in response to TCR stimulation (are 

anergic) unless ’supplied with high concentrations of IL-2 (Thornton and Shevach 1998), 

although TCR stimulation is reported to be required for suppression of both CD4+ and 

CD8+ T cell responses (Piccirillo and Shevach 2001). However, reports also indicate that 

Treg are not anergic in vivo, and that IL-2 is not involved (Walker et al. 2003a). 

Resolving the differences between in vitro and in vivo work has proved difficult without a 

unique marker for Treg.

1.2.2. FOXP3

More recently, the transcription factor FOXP3 (also known as Scurfin) has been shown to 

be involved in the function of Treg. Studies of the scurfy mouse strain, which develop 

similar disorders to day 3 thymectomised mice (Godfrey et al. 1991; Blair et al. 1994; 

Clark et al. 1999), identified a mutation in the X-linked recessive gene Foxp3, encoding a 

forkhead-winged-helix transcription factor (Brunkow et al. 2001). In humans with X- 

linked recessive disease, IPEX, who suffer from multi-organ autoimmune diseases, 

allergy and IBD, mutations were also identified in the Foxp3 gene (Wildin et al. 2001; 

Wildin et al. 2002). Initially it was hypothesised that FOXP3 was a repressor of 

transcription which regulated T cell activation and therefore limited immunopathology 

(Schubert et al. 2001). However it was not until 2003 that a link between FOXP3 and 

Treg was confirmed.
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Expression of FoxpS mRNA was identified in mouse CD4+CD25+CD8' thymocytes and 

peripheral CD4+ T cells predominantly, though not exclusively, in the CD25+ population 

(Hori et al. 2003). Forced expression of FoxpS in T cells using retroviral vectors and IL- 

2, upregulated CTLA-4, GITR and CD 103 and resulted in a population that failed to 

proliferate and produce cytokines in response to TCR stimulation. Importantly, these cells 

were capable of suppressing CD4+CD25' T cell proliferation, in a contact-dependant 

manner and required TCR stimulation in order to do so. Furthermore, these cells were 

able to inhibit IBD when cotransferred with disease causing CD4+CD25'CD45RBhigh T 

cells into SCID mice. These findings were supported by two reports published shortly 

after, in which retrovirally transduced CD4+CD25" T cells and T cells from FoxpS 

transgenic mice were utilised respectively (Fontenot et a l 2003; Khattri et al. 2003). 

Further studies using a reporter allele of FoxpS indicated that only cells that expressed 

FOXP3 had regulatory activity, and that conventional T cells did not upregulate FOXP3 

upon activation (Fontenot et al. 2005b).

The discovery of FOXP3 as a Treg marker enabled more accurate identification of Treg. 

It was confirmed that the majority of Treg in humans are CD25hi by RT PCR and there 

were two isoforms of FOXP3 identified (Allan et al. 2005). The recent availability of an 

anti-FOXP3 antibody has aided characterisation of other cell surface markers on Treg; 

however, the nuclear localisation of FOXP3 precludes staining of live cells, due to the 

requirement for permeabilisation, and therefore direct functional analysis.

Initially, human studies reported that FOXP3 was found only in CD4+CD25W T cells that 

exert suppressive activity in vitro. Subsequent reports of FOXP3 expression in activated 

conventional T cells indicated that FOXP3 expression in humans is not confined to Treg, 

although expression generally correlated with anergy and regulatory activity (Walker et
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al. 2003b; Allan et al. 2005; Morgan et al. 2005). Prolonged TCR stimulation in the 

absence of costimulation, also leads to FOXP3 expression and acquisition of suppressor 

function (Walker et al. 2003b).

A recent study aimed to clarify the field by comparing stimulated CD4+CD25‘ T cells to 

CD4+CD25+ T cells from 9 donors (Wang et al. 2007). In this study, CD4+CD25‘ T cells 

from all donors mpregulated FOXP3 upon TCR stimulation, and were hyporesponsive to 

further stimulation, however only a third of these exhibited suppressive activity in vitro. 

The suppressive capacity correlated with the stability of FOXP3 expression, with FOXP3 

maintained at high levels in the suppressive cells and rapidly lost in those cells unable to 

suppress. The emerging hypothesis is that transient FOXP3 expression attenuates effector 

function whilst sustained expression confers regulatory activity in human T cells.

This hypothesis is supported by initial reports describing FOXP3 as a factor that 

regulated T cell activation by inhibiting NF-AT mediated gene transcription (Schubert et 

al. 2001). NF-AT (nuclear factor of activated T cells), AP-1 (activator protein-1) and NF- 

kb are induced upon TCR stimulation and lead to T cell activation and IL-2 gene 

transcription. The Foxp3 promoter region contains binding sites for both NF-AT and AP- 

1 (Mantel et al. 2006) and others have shown that FOXP3 directly interacts with NF-AT 

and NF-kb, blocking their ability to induce IL-2, IL-4 and IFNy gene transcription 

(Bettelli et al. 2005). The NF-AT-FOXP3 complex has also been shown to bind DNA 

and be required for Treg suppressive capacity and upregulation of the Treg associated 

markers CTLA-4 and CD25 (Wu et al. 2006).
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The NF-AT family includes four closely related members; NF-ATcl, NF-ATc2, NF- 

ATc3 and NF-ATc4, of which NF-ATc2 and NF-ATc3 appear to be dispensable for Treg 

generation (Bopp et al. 2005). The results of a study on NF-ATc2/c3 double deficient 

mice showed that although mice displayed a phenotype similar to FOXP3 deficient mice, 

there was normal development of FOXP3+CD4+CD25+ T cells. The phenotype was found 

to be due to conventional T cells being unresponsive to Treg mediated suppression. Since 

these mice display elevated levels of NF-ATcl (Ranger et al. 1998a; Ranger et al. 1998b) 

it is unclear whether this family member compensates for the loss of the others or NF- 

ATc2 and NF-ATc3 are not required for the generation of Treg.

1.2.3. Other Types of Regulatory T Cell

The discovery that FOXP3 expression generates an immunosuppressive phenotype has 

facilitated the identification of other types of regulatory cells. Increasing evidence 

indicates that regulatory T cells can be induced from CD4+CD25' T cells in the periphery, 

either upon stimulation amidst an immunosuppressive environment or by repeated 

antigen stimulation (Groux et al. 1997; Walker et al. 2003b). Immature Dendritic Cells 

(DC: ‘professional’ APC), thought to induce anergy or death in T cells recognising 

antigens expressed on their surface, have also been implicated in regulatory T cell 

induction (Jonuleit et al. 2000; Mahnke et al. 2003).

Stimulation of the TCR in the presence of TGFp is also known to induce regulatory T 

cell phenotype in conventional CD4+ T cells (Chen et al. 2003a), which requires CD28 

and CTLA-4 signalling (Liu et al. 2006b; Zheng et al. 2006). TGFp also induces a 

population of CD8+ regulatory T cells although these cells are less well characterised 

(Rifa'i et al. 2004; Xystrakis et al. 2004; Zheng et al. 2004). The expression of FOXP3, 

however, is not always required to confer the ability to suppress immune responses as a
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number of investigators have reported a population of FOXP3-negative T cells, secreting 

IL-10 that can inhibit immune responses in vitro and in vivo (Levings et al. 2001; Vieira 

et al. 2004).

1.3. Development in the Thymus

Conventional T cells (Tconv) develop in the thymus from CD4'CD8' (double negative - 

DN) precursors. These precursors have generated a functional TCRp chain, paired with a 

surrogate TCRa chain, by the CD4+CD8+ (double positive - DP) stage. Subsequent 

generation of a functional TCRa chain allows the precursor to be positively, then 

negatively selected based on interactions with MHC molecules in the thymus. DP T cells 

become apoptotic in the absence of stimulation through the newly formed TCR. 

Recognition of MHC/self-peptide in the thymic cortex rescues the T cell and commits the 

cell to either the CD4+ or CD8+ T cell lineage. However the affinity of the TCR 

interaction with MHC/self-peptide must be low as T cells bearing a high affinity TCR are 

subsequently deleted by a process referred to as negative selection.

Similar to conventional T cells, Treg development requires MHC class II/self-peptide 

expression on thymic APC, in particular on thymic epithelial cells from the cortex 

(Bensinger et al. 2001; Jordan et al. 2001; Apostolou et al. 2002). Studies of developing 

thymocytes in TCR transgenic mice, with different affinities for influenza virus 

haemagglutinin (HA), also expressing another transgene encoding HA, have indicated 

that CD4+CD25+ thymocytes require a TCR with a higher affinity for self-peptide in 

order to develop into Treg, and that low affinity TCR do not induce Treg development 

(Jordan et al. 2001; Apostolou et al. 2002). This conclusion was corroborated in other 

TCR transgenic models such as the DO 11.10 model (Kawahata et al. 2002). Investigators
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have also reported an increase of Treg precursors in the presence of specific antigen at the 

DP stage of development, where these cells acquire the Treg markers CD25 and CTLA-4 

(Fontenot et al. 2005b; Cabarrocas et al. 2006). Another report indicated that DP 

thymocytes from MHC class II deficient mice express FOXP3 and suppress severe colitis 

(Krajina et al. 2004). Together these reports suggest that the commitment to the Treg 

lineage is made early in T cell development, at the DP stage, possibly upon high affinity 

interaction of their TCR with MHC expressing self peptides (Figure 1.1 A).

The latter stages of Treg development are more controversial. Given the high affinity of 

the Treg precursor TCR, it is unclear how these cells proceed through negative selection. 

An early report suggested that Treg precursors were more resistant to negative selection 

(Papiemik et al. 1998), however recent reports have indicated that Treg precursors 

expressing a TCR for a neo-self antigen are deleted at the single positive (SP) stage of 

development, since there is a reduction in proportion of Treg when compared to the DP 

stage (Caton et al. 2004; Cabarrocas et al. 2006). This suggests that only Treg with TCR 

affinities above that required for Treg induction and below that which causes deletion 

would persist. However, the existence of clonotypic Treg and Tconv cells in transgenic 

mice suggests that this hypothesis is oversimplified and suggests other signals are also 

involved in Treg lineage commitment (Figure 1.1B and C).
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Figure 1.1. Schematic Representations of Possible Associations Between TCR 
Affinity and Treg Selection
Hypothesis (A) suggests high TCR affinity alone instructs Treg development. However 
the overlap of repertoire of Tconv and Treg suggests other factors are involved as in (B) 
and (C). Hypothesis (B) suggests this overlap may be due to the strength of TCR signal, 
possibly related to the concentration of TCR on the surface. Hypothesis (C) suggests that 
Treg may develop separately to Tconv and require different signals to differentiate.
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1.3.1. The Role of FOXP3 in Treg Development

Since forced FOXP3 expression is sufficient to convert Tconv cells into a Treg 

phenotype, it has been suggested that FOXP3 is required for the development of Treg in 

the thymus (Fontenot et al. 2003; Hori et al. 2003), indeed FOXP3 expression is detected 

on DP thymocytes in the thymic medulla (Fontenot et al. 2005b; Cabarrocas et al. 2006). 

However whether or not FOXP3 expression commits developing T cells to the Treg 

lineage or is a result of such a commitment remains unclear.

In a bid to address this question, two groups of investigators tracked Treg development in 

mice where FOXP3 transcription could be studied in the absence of functional protein 

(Gavin et al. 2007; Lin et al. 2007). These studies inserted DNA encoding EGFP/GFP 

and a stop codon into the Foxp3 locus. Since Foxp3 is X-linked, male mice carrying the 

gene, referred to here as Foxp3g developed autoimmune disease, whereas heterozygous 

females (Foxp3ĝ >/+) did not. X chromosome inactivation in these females lead to half the 

Treg bearing wild-type Foxp3, therefore studies of Treg development in Foxp3ĝ /+ 

females allowed Foxp3ĝ > Treg analysis in healthy mice. Although Foxp3gfp Treg lacked 

the ability to suppress T cell responses; they expressed high levels of CD25 and CTLA-4, 

proliferated poorly and produced only minimal IL-2 suggesting that FOXP3 expression is 

not required for these characteristics.

Both studies reported a similar proportion of Foxp3ĝ  Treg in the thymus when compared 

to wild-type Treg at the DP stage of development, suggesting that FOXP3 expression is 

not required for CD25 and CTLA-4 upregulation, seen in the early stages of Treg 

development. However the proportion of Treg precursors at the SP stage was reduced in 

Foxp3ĝp Treg suggesting that FOXP3 enhances Treg precursor survival upon maturation.
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The expression of FOXP3 stabilises CD25 and CTLA-4 Expression, confers suppressive 

activity, and functional FOXP3 is required to maintain FoxpS transcription. This is 

supported by a report described earlier, where only stable expression of FOXP3 correlates 

with suppressive capacity in activated human conventional T cells (Wang et al. 2007). 

Together these reports support the hypothesis that positive selection of T cells with high 

affinity induces FOXP3 expression, which in turn allows some Treg precursors to escape 

deletion. The :stability of FOXP3 expression might then determine the ultimate 

commitment to either the Treg or Tconv lineage, although how this might be controlled is 

unclear. The availability of antigen or level of TCR expression are factors that might 

affect signalling.

A similar, though less pronounced phenotype is evident in *#cer-deficient Treg (Cobb et 

al. 2006). Deficiency in Dicer, the RNAse III enzyme that generates functional miRNAs 

(micro RNAs which post-transcriptionally regulate gene expression), results in lower 

precursor Treg numbers at the SP stage, a lower number of Treg in the periphery, and 

ultimately immune pathology. This defect was cell autonomous as generation of dicer- 

deficient Treg in a wild-type thymus did not rescue the phenotype. Dicer-deficiency also 

precluded induction of FOXP3 expression in CD4+CD25' T cells by TGFp, which may 

suggest that miRNAs are important for FOXP3 induction during naturally occurring Treg 

development in the thymus.

Depletion of Treg by targeting CD25 has been the most specific way of removing Treg 

from a healthy immune system for more than a decade (Onizuka et al. 1999). Although 

not a unique marker of Treg, depletion of CD25+ cells relieves immune suppression in a 

number of experimental models and in the majority of cases this does not cause severe 

autoimmune disease (Onizuka et al. 1999; Long et al. 2003; Benghiat et al. 2005;
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Loughry et al 2005). Although day 3 thymectomy does cause autoimmune disease it is 

less severe than in scurfy mice, which are deficient in FOXP3 and develop rapid, fatal 

autoimmune disease. Due to identification of other non-CD25 expressing regulatory T 

cells, it was hypothesised that these remaining regulatory cells were sufficient to control 

rampant autoimmune disease (Groux et al 1997; Walker et al 2003b). However the 

possible role of FOXP3 in the development of self-specific Treg led to the hypothesis that 

in the absence of FOXP3 those cells with high TCR affinity which would have become 

Treg are added to the autoreactive T cell pool, contributing to autoimmune disease. 

Another possibility is that Treg are required early in life to aid homeostatic expansion of 

Tconv and prevent autoimmunity at this stage.

A recent paper aimed to distinguish between these alternatives by generating mice in 

which depletion of FOXP3+ cells in vivo could be achieved using diphtheria toxin (Kim 

et al 2007). Investigators inserted a construct encoding GFP fused to human diphtheria 

toxin receptor (DTR) into the untranslated region of Foxp3. Treatment of mice with 

diphtheria toxin targeted FOXP3 expressing cells resulting in specific depletion of Treg 

after 7 days treatment, with 97% depletion by day 2. Normal numbers of Treg recovered 

within 10-15 days once treatment was removed. The report indicated that Foxp3DTR mice, 

when treated with diphtheria toxin from birth, developed similar autoimmune disease to 

scurfy (Foxp3'/_) mice, suggesting that self-reactive T cells that failed to commit to the 

Treg lineage are not the major cause of autoimmunity in these mice. This conclusion is 

supported by another study using a similar model (Lahl et al 2007). In adult mice, 

depletion of FOXP3+ cells resulted in an even more rapid induction of autoimmunity, 

also suggesting that autoimmunity is not simply due to a defect in homeostatic regulation 

that occurs early in life (Figure 1.2).
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Figure 1.2. Does FOXP3 Deficiency Result in Increased Numbers of Autoreactive 
Tconv
(A) Represents the T cell repertoire in wild-type mice. (B) Represents the repertoire in 
mice depleted of Treg using anti-CD25 antibody, post Treg development. In FOXP3 
deficient mice, do T cells that fail to commit to the Treg lineage and therefore contribute 
to autoimmunity as in (C), or do they fail to survive as in (B).
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1.3.2. IL-2 and IL-2R

IL-2 has often been implicated in Treg development and function as mice deficient in 

either IL-2, IL-2Ra(CD25) or IL-2Rp (CD 122) develop wide ranging autoimmunity 

similar to FOXP3 deficient mice (Malek and Bayer 2004), and neutralising anti-IL-2 

antibody has a similar effect (Setoguchi et al. 2005). Recent studies using FoxpS reporter 

mice have inchoated that IL-2 and IL-2Ra deficient mice do generate FOXP3+ 

thymocytes although in substantially reduced numbers (Fontenot et al. 2005a). These 

Treg were equally able to suppress T cell responses when compared to wild-type Treg in 

vitro, suggesting that IL-2 signalling is not required for Treg function. The few Treg that 

are generated in these mice are attributed to other cytokines signalling through the IL-2 

receptor common y-chain (Fontenot et al. 2005a), as mice deficient for this receptor chain 

have a complete lack of Treg, suggesting that FOXP3 expression may require some 

signalling through this receptor.

Since Tconv cells found in IL-2Ra deficient mice display an activated phenotype and 

therefore could produce cytokines able to signal through this receptor, the authors aimed 

to reduce inflammatory environment by generating mixed bone marrow chimeric mice in 

which no autoimmunity was evident (Fontenot et al. 2005a). In these experiments, T cell- 

depleted CD45.1+ (wild-type) and CD45.1' bone marrow (consisting of IL-2Ra+/+ IL- 

2Ra‘ ‘ cells mixed at a ratio of 1:1) was used to reconstitute lethally irradiated wild-type 

(CD45.1+) mice. In mice receiving a mixture of IL-2Ra+/+ and wild-type bone marrow, 

IL-2Ra+/+ Treg were equally able to compete with wild-type Treg, however in mice 

receiving IL-2Ra' " and wild-type bone marrow, IL-2Ra‘ ‘ Treg only represented a small 

proportion of SP thymocytes and an even smaller proportion of lymph node cells,
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indicating that in the absence of an inflammatory environment IL-2Ra'/' Treg are 

impaired in their survival. Together this data suggests that although IL-2 signalling is not 

required for FOXP3 expression and Treg function, signalling through its receptors is 

important for homeostasis. Interestingly, a recent report indicated that a single amino acid 

deletion in the leucine zipper region of FOXP3 prevented oligomerisation disrupting the 

association with the IL-2 promoter and limiting repression of IL-2 transcription (Li et al 

2007). *

1.4. Activation

Early in vitro experiments indicated that Treg activation required stimulation through the 

TCR; however a polyclonal population of naive Treg can inhibit antigen-specific effector 

cells within 7 days of adoptive transfer. These observations lead to the hypothesis that 

Treg are specific for self antigen, which is supported by the data gathered on Treg 

development in the thymus.

Another report has indicated that Treg cells can share TCR specificity with Tconv (Hsieh 

et al. 2006). This study utilised mice bearing a non-variable TCRp chain thereby limiting 

TCR repertoires enough to study variability by sequencing. Comparisons between TCRa 

chains on Treg vs. Tconv indicated that there was some overlap. The study also reported 

that T cells transduced with Treg TCRs proliferated more than those transduced with 

Tconv TCRs upon adoptive transfer into normal mice, suggesting that Treg TCRs, as a 

population are more self-reactive. The TCR repertoire of activated T cells isolated from 

FOXP3 deficient mice, which suffer from severe autoimmune disease, is similar to that of 

Treg, again suggesting that at least a proportion of Treg are self-specific.
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If Treg are activated by self-antigen it is possible that they are consistently activated in 

vivo. Supporting this hypothesis, one study isolated a population of 

CD4+CD25+CD134(OX-40)+ Treg from naive rats that could inhibit responses ex vivo 

without additional stimulation (Nolte-'t Hoen et al 2004). This population expressed 

activated T cell markers which suggested that they were recently activated in vivo. The 

authors also reported a CD 134" Treg population which expressed naive cell markers and 

required stimulation through the TCR to become effective, which may suggest that these 

cells do not recognise self antigen, or they require additional stimulation.

However, the majority of reports indicate that exerting their suppressive effects ex vivo 

requires restimulation. An alternative hypothesis is that TCR stimulation by self antigens 

alone may not be sufficient for Treg activation and other signals may contribute. One 

paper reported that Treg require either IL-2 or IL-4, presumably from the targeted 

effector cells, as well as TCR stimulation in order to become suppressive (Thornton et al.

2004). However, the authors also reported that Treg suppression could be induced by IL- 

2 in the absence of TCR stimulation. It is possible that these Treg received this TCR 

stimulation in vivo, similar to those isolated by Nolte-'t Hoen et al., but required an 

additional stimulatory signal, however it could suggest that Treg could be activated by a 

purely inflammatory environment.

In support of these hypotheses, Toll-like receptor (TLR) stimulation can also increase 

Treg proliferation and suppressive capacity (Caramalho et al. 2003). TLRs are germline 

encoded receptors that recognise PAMPs and certain endogenous molecules released by 

cells during inflammation. They are expressed on a wide range of cells and usually result 

in stimulation of immune responses. Treg have been shown to express TLR-4. -5, -7 and -
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8, which principally bind LPS, flagellin, single stranded RNA and DNA. Furthermore 

TLR-4 stimulation with LPS could induce Treg proliferation in the presence of IL-2 and 

in the absence of APC. LPS stimulation also enhances the suppressive function of Treg in 

vitro, with LPS activated Treg being equally capable of limiting intestinal inflammation 

as freshly isolated Treg in vivo.

However, TLR' ligation on Tconv enhances TCR stimulation and TLR ligation on DC 

stimulates maturation and secretion of IL-6, which renders Tconv resistant to Treg 

suppression (Pasare and Medzhitov 2003). This apparent conflict is readily resolved with 

two observations. Firstly, the concentration of LPS (TLR-4 ligand) required to activate 

Treg is 3x higher than that required to activate DC (Banchereau and Steinman 1998), thus 

ensuring that a microbial infection can be controlled whilst endotoxic shock is limited by 

activation of Treg in higher amounts of LPS. Secondly, activation through TLR-2 induces 

proliferation of Treg with transiently impaired suppressive capacity (Sutmuller et al. 

2006), suggesting that during the initial priming and effector phase of an immune 

response effector cells can proceed unheeded, with Treg controlling the contraction of the 

immune response.

Other reports focusing on activation by TCR stimulation have shown that Treg bearing 

identical TCR to their naive Tconv counterparts require lower doses of cognate antigen in 

order to be activated (Takahashi et al. 1998). Indeed suppression is lost at higher doses 

(Stephens et al. 2005) suggesting that Treg suppression occurs when antigenic 

stimulation is low, preventing autoimmunity in weakly self-reactive Tconv.
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Although the majority of reports have suggested that Treg bear self-reactive TCR, reports 

of Treg which inhibit immune responses to pathogens, such as Leishmania-specific 

regulatory T cells (Suffia et al. 2006), suggest that Treg can also be foreign antigen 

specific. Although it is possible that these regulatory T cells could be induced in the 

periphery, by adoptive transfer of Ly5.1+ Treg from naive mice, the authors showed that 

the Leishmania-specific regulatory T cells in infected mice were derived from the 

naturally occulting Treg population.

1.5. Mechanisms of Suppression

The mechanisms by which Treg exert their suppression remain a subject of debate. Many 

studies have shown that suppression is contact dependent in vitro, as suppression was not 

evident in wells where cells have been separated by membranes. However, a number of 

studies have also indicated that cytokines such as IL-10 and TGFP are involved in 

mediating suppression, particularly in vivo. In this section the molecules thought to be 

involved and their possible mode of action are discussed.

1.5.1. Cytotoxic T Lymphocyte Antigen 4

Spontaneous diabetes is exacerbated in CD80/CD86 deficient and CD28 deficient NOD 

mice, which was found to be due to a low number of Treg (Salomon et al. 2000). These 

molecules are usually associated with T cell costimulation and deficiency was postulated 

to prevent diabetes. The observation that Treg constitutively expressed the other 

CD80/CD86 ligand, Cytotoxic T Lymphocyte Antigen 4 (CTLA-4 or CD 152), with its 

deficiency or blockade in normal mice leading to lymphoproliferative and organ-specific 

autoimmune disease similar to that in FOXP3 deficient mice, suggested a role for CTLA-
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4 in the mechanism of Treg mediated suppression (Tivol et al 1995; Waterhouse et al 

1995).

However, Treg isolated from CTLA-4 deficient mice appear to function normally in 

vitro, inhibiting T cell proliferation, suggesting that CTLA-4 would not be the only 

mechanism of suppression (Tang et al 2004). Furthermore the suppressive effect 

appeared to be mediated by IL-10. This result is supported by a recent study into the 

effects of B7/CTLA-4 deficient Treg (Read et al 2006). As well as similar 

immunosuppressive function in vitro, CTLA-4 deficient Treg were also able to inhibit 

colitis induced by wild-type Tconv. Interestingly, the mechanism employed by CTLA-4 

deficient Treg differs from that employed by wild-type Treg as anti-CTLA-4 treatment, 

which blocks wild-type Treg activity, could not block the suppressive effect of CTLA-4 

deficient Treg, indicating that another mechanism may be employed. This experiment 

also suggested that the anti-CTLA-4 antibody is not acting as costimulation on the 

responding T cells as there is no enhanced proliferation. The possible involvement of 

CTLA-4 in Treg development complicates the interpretation of these experiments as Treg 

from CTLA-4 deficient mice may not develop in the same way as their wild-type 

counterparts and therefore may develop alternate suppressive mechanisms. The 

generation of conditional knock-out mice will prove invaluable in resolving these issues.

The ligands for CTLA-4 are mainly expressed on APC, however T cells can also 

upregulate CD80, and to a lesser extent CD86, suggesting that CTLA-4 may be acting 

directly upon the responding T cells (Paust et al 2004), although this remains to be 

shown. The result of CTLA-4-CD80/CD86 interactions between Treg and APC also 

remains unclear. Binding studies have indicated that CTLA-4 has a higher affinity, and

37



double the valency, for its ligands than CD28, leading to the hypothesis that CTLA-4 on 

Treg competes with CD28 on Tconv for CD80/CD86 binding sites on APC and thereby 

reduces costimulation for Tconv (Ikemizu et al. 2000; Collins et al. 2002). Similarly this 

interaction could induce downregulation of CD80/CD86 on the APC and therefore reduce 

their capacity to activate T cells resulting in a less pronounced immune response 

(Cederbom et al. 2000; Oderup et al. 2006).

Another hypothesis is that CTLA-4, upon ligation with CD80/CD86 on APC, provides a 

costimulatory signal to Treg, activating them to suppress. However, mice lacking the 

cytoplasmic region or tyrosine residues of CTLA-4 do not develop the 

lymphoproliferative disease seen in CTLA-4 deficient animals suggesting that signalling 

back through CTLA-4 to Treg is not necessary for suppression (Nakaseko et al. 1999; 

Baroja et al. 2000). It has also been reported that CD80/CD86 signalling induces IDO 

(indoleamine 2,3-dioxygenase) production in DC, which is known to have 

immunosuppressive effects (Fallarino et al. 2006).
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Figure 1.3. Possible Ways in Which CTLA-4 Could be Involved Treg Suppressive 
Mechanisms
(A) CTLA-4 could compete with CD28 for ligands CD80/CD86. (B) CTLA-4 signalling 
could downregulate CD80/CD86. Both of these would limit costimulation signals 
received by Tconv. (C) CTLA-4 could induce a Treg stimulatory signal from the APC. 
(D) CTLA-4 could induce IDO production by APC which has immunosuppressive 
capacity.
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1.5.2. Glucocorticoid-Induced TNFR-Related Protein

As with CD25, glucocorticoid-induced TNFR-related protein (GITR) is expressed at high 

levels on the majority of Treg and can be upregulated in other T cells upon activation 

(McHugh et al. 2002; Shimizu et al. 2002). GITR ligation with an agonist anti-GITR 

antibody enhances T cell responses in vitro and leads to eradication of tumour in tumour 

bearing mice (Ko et al. 2005), suggesting a role for GITR in the mechanism of Treg 

suppression. Indeed anti-GITR antibodies can abrogate Treg anergy in the presence of IL- 

2 without TCR stimulation (McHugh et al. 2002; Shimizu et al. 2002). However, use of 

GITR deficient T cells indicated that anti-GITR antibodies affected responder T cells to 

become resistant to Treg suppression rather than sending an inhibitory signal to Treg 

(Ronchetti et al. 2004; Stephens et al. 2004).

Since GITR ligand (GITRL) is expressed on a range of APC (Stephens et al. 2004), it is 

possible that high expression of GITR on Treg may sequester ligand away from the 

activated T cells. Supporting this hypothesis is the observation that GITR is upregulated 

upon TCR stimulation and GITRL is upregulated upon APC maturation, providing a 

means to overcome Treg blocking. However it is also possible that GITR signalling acts 

upon both Treg and Tconv in a similar way, augmenting proliferation and enhancing 

function of each cell type with the outcome dependent on a fine balance of precursor 

number and activation state (Shevach and Stephens 2006).

1.5.3. Transforming Growth Factor p

Transforming Growth Factor p (TGFp) is a secreted and cell-associated polypeptide with 

immunoregulatory properties. It can be secreted by a range of cell types including B cells, 

macrophages and monocytes, and can regulate the function of an equally diverse range of
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cells. The evidence implicating TGFp in the mechanism of Treg suppression is rapidly 

accumulating. TGFp has been shown to be important in the control of intestinal 

inflammation and diabetes (Read et al 2000; Belghith et al 2003) and TGFP signalling 

has been shown to disrupt proliferation, cytokine production (Espevik et al 1990) and 

cytotoxic function in activated T cells (Smyth et al 1991). Its receptor is only 

upregulated on T cells upon activation suggesting that T cells only become receptive to 

suppression after activation (Chen and Wahl 2003). TGFp has also been shown to induce 

FOXP3 expression in naive Tconv responding to activation by DC (Chen et al 2003a; 

Kim and Leonard 2007).

However, in many in vitro suppression assays anti-TGFp does not inhibit the suppression 

of T cells by Treg. This is surprising considering 80% of Treg express membrane bound 

TGFp once activated (Piccirillo et al 2002) and CTLA-4 ligation enhances TGFp 

production (Chen et al 1998b; Gomes et al 2000). Furthermore, numerous studies have 

implicated membrane bound TGFP, both active and latent forms in direct cell contact 

dependent suppression of T cell responses (Nakamura et al 2001; Chen et al 2003a; 

Nakamura et al 2004; Peng et al 2004; Lim et al 2005), suggesting that TGFp is 

involved in the Treg suppressive mechanism.

Two recent reports have highlighted further corroboration between CTLA-4 and TGFp 

signalling, which supports earlier reports that blocking of both TGFp and CTLA-4 is 

required to prevent suppression (Annunziato et al 2002). Zheng et. al reported that 

TGFp could not induce regulatory T cell differentiation in CTLA-4 deficient mice, and 

blockade of CTLA-4 also prevented differentiation. Furthermore TGFP induced 

upregulation of CD80, a CTLA-4 ligand, on responding T cells (Zheng et al 2006).
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These results were supported by another study which reported that CTLA-4 ligation 

resulted in accumulation of membrane bound TGFP at the point of cell contact (Oida et 

al. 2006).

In contrast, reports utilising TGBp deficient mice have reported that Treg from these 

mice develop normally in the thymus (Marie et al. 2005; Li et al 2006a; Marie et al 

2006), suppress T cell responses in vitro (Piccirillo et al 2002), and inhibit intestinal 

inflammation in vivo (Zom et al 2006). However, they are reduced in numbers in the 

periphery suggesting that TGFP plays a role in Treg homeostasis (Huber et al 2004; 

Marie et al 2005). One report indicated that Treg deficient in the TGFp receptor develop 

and function normally, however responder TGFp receptor deficient T cells are able to 

escape regulation and induce intestinal inflammation (Fahlen et al 2005). It is also 

possible that in TGBp deficient mice, Treg utilise other mechanisms of suppression or 

induce TGFp production by other cell types, however other studies will have to be carried 

out in order to resolve these issues.

1.5.4. Interleukin-10

Like TGFp, Interleukin-10 (IL-10) is an immunoregulatory cytokine first recognised for 

its ability to inhibit the effector function of T cells, macrophages and monocytes, and has 

been shown to have diverse effects on a wide range of other cell types. Despite papers 

indicating that Treg suppression cannot be inhibited in vitro by anti-IL-10 blocking 

antibodies, production of IL-10 by Treg is required in order to inhibit immune responses 

in vivo. Intestinal inflammation, widely shown to be inhibited by adoptive transfer of 

Treg, could not be inhibited by IL-10 deficient Treg (Annacker et al. 2001). Blocking 

antibodies can also relieve suppression in this model, and in graft rejection models IL-10
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receptor blocking antibody accelerates rejection (Kingsley et al 2002). Similarly in 

models of parasitic infection, neutralisation of IL-10 results in pathogen clearance, which 

in Schistosomiasis can result in immune pathology (Hesse et al. 2004) and in Leishmania 

infection can cause ablation of a memory response (Belkaid et al 2001), suggesting that 

IL-10 mediated curtailment of these immune responses is advantageous for the host.

Two studies have recently suggested that the location of IL-10 secretion is also important, 

with local secretion of IL-10 required to inhibit EAE (McGeachy et al 2005) and 

intestinal inflammation (Uhlig et al 2006). IL-10 has been shown to induce expression of 

inhibitory receptors on DC, such as B7-H4 (Kryczek et al 2006), which is thought to 

prevent adequate activation of T cells. A recent paper has also indicated that the direct 

effect of IL-10 on effector T cells is mediated by src homology 2 domain-containing 

protein tyrosine phosphatase 1 (SHP-1), an intracellular protein tyrosine phosphatase, 

involved in negatively regulating T-cell activation. In this report IL-10 activated SHP-1 

can suppress T cell costimulation by dephosphorylating the CD28 and ICOS receptors 

within minutes of ligation, therefore preventing binding of PI3 kinase, essential for T cell 

activation signalling (Taylor et al 2007).

1.5.5. ATP, AMP and Adenosine

It has long been known that adenosine triphosphate (ATP) released upon cell damage can 

induce proinflammatory responses in cells expressing purinergic P2 receptors (Khakh and 

North 2006). These receptors are expressed on immune and epithelial cells, with ligation 

on monocytes leading to release of IL-1, and ligation on DC leading to chemotaxis and 

maturation (Ferrari et al .1997; Idzko et al 2002; Khakh and North 2006). Extracellular 

levels of ATP can be controlled by ectonucleoside triphosphate diphosphohydrolases (E- 

NTPDase), which degrades it to adenosine monophosphate (AMP), thereby removing the
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proinflammatory stimulus. One such E-NTPDase, CD39, is expressed on the surface of 

immune cells and has recently been shown to be involved in Treg inhibition of T cell 

responses (Borsellino et al. 2007; Deaglio et al. 2007). In addition to the conversion of 

ATP to AMP, another ectonucleotidase expressed on Treg, CD73, can dephosphorylate 

AMP to produce adenosine, which has also been reported to inhibit T cell proliferation 

(Huang et al. 1997; Armstrong et al. 2001).

Both studies indicated that CD39 was expressed on the majority of FOXP3+ Treg and that 

CD73 was also expressed, although on a smaller proportion (Borsellino et al. 2007; 

Deaglio et al. 2007). Expression of CD39 correlated with FOXP3 expression and 

transfection of Tconv with FOXP3 upregulated CD39, suggesting that CD39 plays a role 

in Treg function (Borsellino et al. 2007). The authors also show that activated Treg, 

although exhibiting similar levels of CD39 to non-activated Treg, are capable of 

consuming 40x the amount of ATP. Consumption of ATP prevented ATP mediated DC 

maturation and inhibited T cell proliferation, suggesting that Treg could inhibit initiation 

and potentiation of T cell responses using this mechanism. In addition ATP consumption 

resulted in the ability of Treg to survive administration of toxic levels of ATP suggesting 

that Treg could persist at sites of cell death.
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Figure 1.4. Mechanism of Immune Suppression Mediated by CD39 and CD73
CD39 on the surface of Treg could deplete the local environment of proinflammatory 
ATP released by dying cells. P2 receptor ligation by ATP can induce DC chemotaxis and 
maturation as well as IL-1 secretion by monocytes and macrophages. By converting ATP 
to AMP this also provides the substrate for CD73. Conversion of AMP to adenosine 
could also suppress T cell responses via ligation of the A2A receptor.
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Another study indicated that CD73 played an important role in Treg function, however 

the expression of CD39 is also required to generate its substrate (Deaglio et al 2007). 

This study utilised mice lacking the receptor for the immunosuppressive adenosine (A2A 

receptor) to demonstrate that in the absence of adenosine signalling T cell responses 

could proceed, although suppression was not complete. This was most evident 6 days 

after stimulation in vitro as A2A receptor expression is upregulated at this time point, 

suggesting that effector T cells become receptive to suppression at the peak of the 

immune response. Furthermore, Treg from CD39 deficient mice are unable to inhibit skin 

graft rejection, indicating that this mechanism is also relevant in vivo.

1.5.6. Cyclic Adenosine Monophosphate

Cyclic adenosine monophosphate (cAMP), like adenosine, is known to be a potent 

inhibitor of T cell growth, differentiation and proliferation, by inducing the 

transcriptional repressor ICER (Bodor et al 2007). ICER is then thought to compete with 

CREB for binding to the IL-2 promoter attenuating IL-2 production. High levels of 

cAMP have been detected in Treg, which is elevated upon activation suggesting that the 

suppressive activity may be regulated by cAMP (Bopp et al 2007). In addition, Tconv 

cells incubated with Treg showed an increase in intracellular levels of cAMP, which was 

reproduced by administration of forskolin (cAMP-elevating agent), resulting in a 

reduction in proliferative capacity. Blocking of cAMP neutralised the inhibitory effect of 

Treg on IL-2 production and proliferation by responding T cells which displayed 

enhanced ICER expression.

Furthermore, the authors showed that cAMP could be transferred from Treg to target 

Tconv directly through gap junctions (Bopp et al 2007). To demonstrate this, it was first 

shown that dye transfer could occur between activated Treg and responding Tconv in
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vivo. Following this, the authors demonstrated that fluorescently labelled cAMP could be 

passed from Treg to Tconv, a process that could be blocked by peptides which inhibit gap 

junction formation. Together these results indicate that cAMP may mediate the contact 

dependent suppression widely reported.

1.6. Regulation of Other Types of Cell

Although initially characterised as being able to inhibit CD4+ T cell responses, there is 

increasing evidence to indicate that Treg suppress the activity of other immune cells. In 

vitro studies report that Treg can inhibit the activation and/or proliferation of both CD4+ 

and CD8+ T cells (Thornton and Shevach 1998; Piccirillo and Shevach 2001), and this is 

supported in vivo (Dubois et al. 2003). Treg can also suppress B cell proliferation, 

antibody production, and class switching in vitro (Nakamura et al. 2004; Lim et al.

2005), and autoantibody responses in vivo (Fields et al. 2005); although distinction 

between direct inhibition of B cells and inhibition of T cell help for B cells, and other 

cells, is difficult in vivo.

Interestingly, Treg have also been reported to inhibit DC. DC are the main activators of 

naive T cells and are often referred to as ‘professional’ antigen presenting cells. As 

described earlier, Treg have been reported to downregulate co-stimulatory molecules 

CD80 and CD86 on DC, which was later found to be CTLA-4 dependent (Cederbom et 

al. 2000; Oderup et al. 2006). Another group had similar findings and reported that 

treatment of DC with anti-TGFp resulted in a 10% increase in stimulatory capacity 

(Misra et al. 2004). It is therefore likely that one mechanism by which Treg suppress 

immune responses is by suppressing the activating capacity of DC. However, it is not the 

only mechanism as Treg suppression of CD4 T cell proliferation can occur in the absence 

of DC in vitro (Thornton and Shevach 1998). Although Serra et. al. found no role for
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TGFP in Treg suppression of DC maturation, ligation of the costimulatory molecule, 

CD40 or treatment with CpG DNA could render DC resistant to Treg mediated 

suppression. Since Tconv cells upregulate CD40 ligand upon activation, this suggests that 

Treg may help maintain DC in a non-stimulatory state until the initiation of a strong 

activation signal (Serra et al. 2003).

Treg do not only inhibit the capacity of DC to stimulate immune responses but they also 

inhibit the capacity of human monocytes and macrophages to stimulate T cell 

proliferation (Taams et al. 2005). Monocytes cultured with Treg expressed decreased 

levels of CD86, CD80, CD40, MHC class II, and proinflammatory cytokines when 

compared with monocytes cultured with conventional T cells. In another study, human 

monocyte survival induced by LPS treatment was inhibited by Treg (Venet et al. 2006). 

The report indicated that survival was inhibited by a proapoptotic mechanism involving 

the Fas/FasL pathway as Treg inhibition of monocyte survival was blocked by anti-FasL 

antibodies and reproduced by addition of recombinant soluble FasL. Furthermore Treg 

displayed elevated levels of FasL when compared to their Tconv counterparts.

These reports were interesting as they suggested that Treg suppression was not confined 

to the adaptive immune system. They supported the findings of an earlier study exploring 

the impact of Treg on the innate immune pathology seen in RAG deficient (RAG' ") mice 

infected with Helicobacter hepaticus (Maloy et al. 2003). These mice lack the RAG 

recombinase gene required to generate both the TCR and the BCR and therefore lack T 

cells and B cells. Upon infection with H. hepaticus, which does not usually cause disease 

in immune competent mice, RAG " mice develop T cell-independent intestinal 

inflammation, comprising polymorphonuclear and mononuclear cells. This inflammation
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could be inhibited by adoptive transfer of Treg, reducing the number of neutrophils, 

monocytes/macrophages, DC and NK cells in the spleen, lamina propria and mesenteric 

lymph node. Since both anti-IL-10 and anti-TGFp blocking antibodies relieved 

suppression and IL-10-deficient Treg could not inhibit inflammation, it was suggested 

that these cytokines play a major role in suppressing the innate immune system.

In parallel, an observation made in our own laboratory suggested that Treg inhibit innate 

responses to tumour rejection. In these experiments RAG'7' mice were injected with 

CD4+CD25+ T cells, or control CD4+CD25' cells, both from naive mice, and 

subsequently inoculated with B16 tumour cells. Although all mice grew tumours, 

tumours grew more rapidly in mice receiving Treg compared to mice receiving the 

control cell population, suggesting that there is a degree of tumour control exerted by the 

innate immune system which is suppressed by adoptive transfer of Treg. This led to the 

hypothesis that not only do Treg inhibit the adaptive arm of the immune system, but also 

inhibit innate immunity. One of the aims of the work described here was to explore this 

hypothesis and identify target cells.

49



1.7. Do Treg inhibit innate immune responses?

1.7.1 B16FasL Tumour Model

In order to explore the hypothesis that Treg inhibit the innate immune responses, a model 

of tumour rejection involving a melanoma cell line expressing Fas ligand (B16FasL) was 

used. Fas ligand (FasL/CD95) is a type I integral membrane protein of the tumour 

necrosis factor receptor family, which was initially reported to induce apoptotic death in 

Fas bearing cells (Suda et al. 1993). FasL induced cell death is involved in many aspects 

of T cell regulation including thymocyte deletion (Yonehara et al 1994), T cell mediated 

cytotoxicity (Ju et al 1994) and activated T cell deletion, either induced upon 

inappropriate activation (Alderson et al 1995) or during termination of an immune 

response (Daniel and Krammer 1994).

To induce apoptosis, a FasL trimer is thought to bind three Fas molecules, which then 

oligermerise (reviewed in (Wajant et al 2003), and depicted in Figure 1.3). This induces 

assembly of a signalling complex called DISC, which includes the Fas-associated death 

domain protein (FADD) and caspase 8. Depending on cell type, caspase 8 can either 

directly activate other caspases to induce apoptosis or can initiate an amplification loop. 

Fas signalling can also induce necrotic death, requiring FADD and a serine/threonine 

kinase RIP, in the absence of caspase 8.
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FasL expression, although mainly restricted to activated CD4+ and CD8+ T cells, has 

also been detected on tissue from so called ‘immune privileged’ sites (Siegel et al 2000). 

The eye (Griffith et al 1995) and the testis (Bellgrau et al 1995) are examples of these 

tissues where a prolific immune response would be extremely detrimental to the host. It 

was therefore hypothesised that FasL expression in these tissues limits ensuing immune 

responses by inducing cell death in the infiltrating, activated T cells. The observation that 

a number of tumours isolated from patients, of both haematopoietic and non- 

haematopoietic origin (Hahne et al 1996; Saas et al 1997; Shiraki et al 1997), expressed 

FasL suggested that FasL provided the tumour a means to escape destruction by invading 

T cells.

This assumption was extended and it was thought that graft rejection could also be 

prevented by gene transfer of FasL. A number of investigators began to assess the role of 

FasL in tumour immune escape/graft rejection by generating cells expressing FasL. A 

few reported T cell killing (O'Connell et al 1996; Arai et al 1997a; Cefai et al 2001) or 

increased tumour growth (Bellgrau et al 1995; Lau et al 1996), however contrary to the 

hypothesis, others reported an increase in tumour/graft rejection (Allison et al 1997; Arai 

etal. 1997b; Seino eta l 1997; Chen etal. 1998a).

Seino et. al studied tumour rejection by three different tumour cell lines from lymphoma 

(L5178Y), hepatoma (MH134) and melanoma (B16) forced to express FasL. When 

injected subcutaneously into syngeneic animals, non-transfected cells form tumours 

whereas FasL transfected tumours failed to form palpable tumours. This rejection was 

inhibited by anti-FasL neutralising antibodies and a bystander killing effect on non- 

transfected tumour cells was also reported. Tumour rejection was observed in T cell-
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deficient nu/nu mice and histological examination of the sites of injection 2 days later 

showed massive cellular infiltrates mainly consisting of neutrophils. TUNEL staining 

revealed that the majority of FasL transfected tumour cells were undergoing apoptosis at 

this time. Treatment of mice with agents to deplete various cell types also revealed a role 

for neutrophils in tumour rejection but not for NK cells or macrophages. Work with bone 

marrow chimeras indicated that Fas on haematopoietic cells was important for rejection. 

Lastly, intraperitoneal injection of FasL expressing cells recruited immune cells, 80-90% 

of which were neutrophils, capable of tumour lysis ex-vivo. In combination these results 

suggested neutrophils were important for FasL-expressing tumour cell rejection (Seino et 

al 1997).

Arai et. al used adenoviral vectors to introduce FasL into pre-established Fas' tumours 

and found that tumours began to regress within 24 hours, with no tumour detectable 2 

days later. Histological analysis at 24 hours also revealed massive cell death by TUNEL 

staining. Upon injection of a stable transfectant of the cell line CT26 into nu/nu, SCID 

and SCID-beige, which lack T, B and NK cells, all mice were able to reject tumour 

challenge, which is supported by the previous report indicating that rejection is T cell 

independent. Histological analysis identified polymorphonuclear (PMN) and 

mononuclear infiltrates, with the presence of neutrophils confirmed by antibody staining 

with anti-Gr-1 antibody (Arai et al 1997b).

One report suggests that the difference observed between these studies and the 

hypothesised outcome is due to the level of FasL expression (Chen et al 2003b). High 

levels of FasL expression allow the tumour to grow more quickly and yet with much 

larger neutrophil infiltrate, however only FasLlow tumour cells grew more quickly upon
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neutrophil depletion. In vitro neutrophils lysed FasLlow cells more easily and when 

incubated with F asL ^  cells neutrophils were impaired in their activation markers, 

suggesting that high FasL expression inactivates neutrophils. However another report 

found no difference in tumour growth upon differential FasL expression (Igney et al 

2003).

Chen et. al attempted to resolve the opposing reports by studying FasL expressing cell 

lines injected into the immune privileged site, the eye. In contrast to subcutaneous 

injection, cells injected into the anterior chamber of the eye produced tumours, 

suggesting that it was the microenvironment that dictated the outcome. Human PMN 

preferentially lysed FasL-expressing cells in vitro, as did murine PMN, and depletion of 

other cell types within the preparation did not inhibit tumour lysis. Tumour lysis could be 

inhibited by addition of FasL-Fc Fusion protein and was reduced when PMN from Fas 

deficient, Ipr mice were used. Furthermore, fluid from the eye could inhibit this lysis, 

with the responsible factor identified as TGFp. The effect of TGFp was suggested to be 

on the neutrophils since addition of TGFp had no effect on FasL dependent killing of 

Jurkats by the tumour cells. In addition, doubly transfected FasL+TGFp+ tumour cells 

grew out when injected subcutaneously with few infiltrating neutrophils (Chen et al 

1998a).

Like other members of the TNF receptor family, FasL can be cleaved from the surface by 

matrix metalloproteinases and it was initially reported that soluble FasL had chemotactic 

activity for neutrophils (Seino et al 1998; Ottonello et al 1999); however this has been 

widely disputed (Behrens et al 2001). Others have concluded that FasL can induce
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apoptosis in the first infiltrating neutrophils which then act as to amplify the response by 

recruiting increasing neutrophil numbers (Shimizu et al. 2001).

However, an elegant study using cell lines transfected with different FasL constructs 

clearly indicated that membrane bound (i.e. non-cleavable) FasL was a more potent 

inducer of inflammation in vivo than wild-type FasL, and that soluble FasL alone was 

unable to induce inflammation (Hohlbaum et al. 2000). Injection of these cells into Fas 

deficient mice did not induce inflammation and other experiments indicated that a 

functional Fas death domain was required suggesting that Fas signalling on recipient cells 

was essential to induce inflammation. Interestingly, co-injection of naive peritoneal cells 

from wild-type mice prevented tumour growth in Fas/FasL deficient mice by recruiting 

Fas deficient neutrophils, indicating that the proinflammatory event is Fas dependent, 

however neutrophil extravasation is not.

Following this report the authors utilised a membrane-bound cell-free form of FasL 

(vesicles) to assess the contribution of peritoneal cells to tumour attack (Hohlbaum et al 

2001). Injection of vesicles led to a rapid (within 4 hours) and transient induction of IL- 

lp, MIP-2, MIP-lcc and MIP-ip RNA. MCP-1 RNA persisted longer and was detectable 

after 18 hours. The cytokine induction was associated with a rapid increase in neutrophil 

number and a rapid decrease in the number of cells expressing high levels of CD1 lb and 

F4/80, two macrophage markers, most likely due to FasL induced cell death. Indeed 

F4/80+ cells became annexin V positive within 15 minutes of vesicle injection and this 

could be replicated in vitro. Further analysis revealed that MIP-2 expression correlated 

with disappearance of the CD1 lbhigh population, and in vitro the CD1 lb1̂  population 

was the only one to respond to FasL by producing cytokines and undergoing apoptosis.
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Finally they coinjected purified CD1 lb1**8*1 macrophages from naive wild-type mice with 

vesicles and showed it restored neutrophil recruitment in Fas/FasL deficient mice.

Interestingly, tumour cells transfected with IL- 8  (Lee et al. 2000a), MIP-la (Nakashima 

et al. 1996), MIP-ip (Miyata et al. 2001) or MCP-1 (Bottazzi et al. 1992) also induced 

tumour regression and an inflammatory influx in vivo. This suggests that once initiated by 

any one of these factors, the inflammatory response is capable of tumour clearance.

Although macrophages were essential in order to induce a neutrophil infiltrate it remains 

unclear whether there is a requirement for apoptosis, cytokine/chemokine production or 

both. It has long been known that IL-lp plays a role in neutrophil recruitment, however it 

appears that its affect may be indirect. IL-1'7' mice have been reported to be defective in 

neutrophil recruitment to the peritoneum (Sayers et al. 1988) and Fas ligation has been 

reported to induce processing and secretion of IL-lp in cells harvested from the 

peritoneum following challenge with a FasL expressing cell line (Miwa et al. 1998). 

Although cells also underwent apoptosis, the process of cytokine secretion did not appear 

to be a consequence of cell degeneration as no IL-lp secretion was observed in non­

stimulated cells in vitro. Stimulation of IL-lp secretion is caspase 1 independent as cells 

from ICE deficient mice were capable of IL-lp secretion. In agreement with the report 

described above, IL-1'' mice presented with reduced neutrophil recruitment upon 

intraperitoneal injection with FasL expressing tumour cells, however both murine and 

human neutrophils show no chemotactic activity towards IL-1 in vitro (Georgilis et al. 

1987), suggesting that another factor may bridge IL-1 production and neutrophil 

recruitment.
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In contrast, MIP-2 and its human functional homologue IL- 8  are recognised neutrophil 

chemoattractants and activate oxidative burst and release of lysosomal enzymes. Not only 

is MIP-2 found in the peritoneum upon Fas ligation but, human colonic epithelial cells 

have been reported to release IL- 8  upon Fas ligation which was dependent on gene 

transcription (Atyreu-Martin et al. 1995). CXCR2 is expressed on neutrophils and is the 

receptor for both MIP-2 and KC, another neutrophil chemoattractant. CXCR2 deficient 

mice were utilised to address the role of these cytokines in the rejection of FasL 

expressing cells (Shimizu et al. 2005). In this model, only macrophages were recruited to 

the peritoneum following intraperitoneal injection of FasL expressing cells. Since there 

was no defect in production of the other chemoattractants studied, it suggested a primary 

role of CXCR2 ligands in the recruitment of neutrophils. In agreement with the studies 

described by Hohlbaum et. al. discussed earlier only wild-type macrophages coinjected 

with FasL expressing cells could induce neutrophil recruitment in Fas'7' mice (Hohlbaum 

et al. 2000). All CXCR2'7' mice survived FasL+ tumour challenge similar to wild type 

mice suggesting that neutrophils, although recruited in a large number, are not required 

for tumour rejection. This conclusion was supported by another study on mice with 

neutrophils deficient in cytotoxicity molecules p47phox or iNOS (Igney et al. 2005). In 

these mice, and in mice depleted of neutrophils using anti-Gr-1 depleting antibody, there 

was no difference in tumour growth when compared to control mice.

Within the laboratory, the melanoma cell line B16-F10 has also been transfected with 

FasL (B16FasL), which when inoculated subcutaneously, leads to 50% of C57BL/6 mice 

being capable of tumour rejection (Simon et al. 2002). This rejection was dependant on 

Fas binding as mutation of this region resulted in 0% tumour rejection. The truncation of
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the cytoplasmic region had no affect on tumour rejection indicating that reverse 

signalling through FasL is not responsible for tumour rejection. Interestingly, there was a 

slight impairment of tumour rejection in MIP-la deficient mice, which although it is 

primarily thought to recruit macrophages, has also been reported to act as a neutrophil 

chemoattractant (Lee et al. 2000a).

In summary, FasL expressing tumour cell lines have been extensively studied and the 

immune responses induced are well characterised, which is depicted in Figure 1.3. 

Although there is still more to be learned about the mechanism of tumour rejection, 

studies agree that innate immune cells are primarily responsible and can be sufficient for 

rejection. Overall, these reports indicate that B16FasL induces an inflammatory response 

and may therefore represent an ideal model in which to study the effects of Treg on 

innate immune responses.
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Figure 1.6. Tumours Expressing FasL Induce Inflammation
This diagram shows the way in which FasL expressing tumours are thought to be 
rejected. FasL interacts with Fas on macrophages, and FADD signalling is required for 
apoptosis and concurrent chemokine release. MIP-2 and IL-1 have been shown to attract 
neutrophils which may participate in tumour clearance. The role of other cytokines 
released by macrophages, and the cells they attract, is unknown.
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1.8. Location of Treg Suppression

Although extensive studies have been carried out to elucidate the mechanism of Treg 

suppression both in vitro and in vivo, whether Treg suppress immune responses in the 

secondary lymphoid organs or at the site of challenge, remains to be elucidated. The 

location of Treg suppression will dictate the cells that could be targets for immune 

suppression as ?all mechanisms of suppression previously described are short-ranged. If 

Treg are only active in the lymphoid tissue they are likely to encounter naive and central 

memory T cells along with B cells, as these cells are able to circulate through lymph 

nodes. Furthermore, accumulating evidence suggests that the ability of DC to activate T 

cells is inhibited by Treg (Cederbom et al. 2000; Serra et al. 2003; Misra et al. 2004; 

Veldhoen et al. 2006) implying that Treg inhibit the priming of an immune response, 

which is most likely to occur in a lymph node. Intravital two-photon laser scanning 

microscopy has also indicated a role for Treg in destabilising contacts between DC and 

Tconv in lymph nodes (Tadokoro et al. 2006; Tang et al. 2006). However, if the activity 

of Treg is not restricted to lymphoid tissue, it is possible that they can inhibit the effector 

phase of an immune response, potentially inhibiting the action of both effector T cells and 

cells of the innate immune system to limit immunopathology.

Although migration of Tconv cells has been studied extensively, the migration, and 

therefore the location, of Treg is less well studied. Circulating T cells have various 

adhesion molecules and chemokine receptors which are thought to direct migration, some 

of which have been shown to be expressed on Treg. Movement into tissues occurs in 

three stages; tethering of cells on endothelium, chemokine activated adhesion and 

transmigration through endothelium, with each stage controlled by homing markers. 

Although there is a wide range of these markers identified, below is a summary of the 

best characterised and their role in T cell migration.
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1.8.1. T Cell Homing to Lymphoid Tissue

Upon thymus exit, naive Tconv express CD62L and CCR7. These molecules aid 

circulation through the lymphoid tissue facilitating encounter with antigen. CD62L (L- 

selectin) mediates rolling of lymphocytes in high endothelial venules (HEV) of peripheral 

and mucosal lymph nodes (Bradley et al. 1994) via binding of peripheral node addressin 

(PNAd) or muoosal addressin cell adhesion molecule-1 (MAdCAM-1) respectively and T 

cells from CD62L deficient mice have impaired entry into lymph nodes (Arbones et al. 

1994) indicating that CD62L is required for lymph node entry.

Firm adhesion of T cells to the HEV requires upregulation of lymphocyte function- 

associated antigen 1 (LFA-1) which is stimulated by signalling through CCR7 by the 

chemokine CCL21 expressed by the endothelial cells. Within the lymph node, CCL21 

and CCL19 attract CCR7+ T cells to the T cell area. Upon activation by DC expressing 

specific antigen, T cells downregulate CD62L and CCR7 and are programmed to express 

chemokine receptors and adhesion molecules that allow them to enter peripheral tissue.

Memory T cells however are mixed in phenotype, with central memory T cells (T cm )  

expressing both CD62L and CCR7 and effector memory T cells (T em ) expressing neither 

(Sallusto et al. 1999). Tem require no additional stimulation in order to become effective 

and are thought to reside in peripheral tissues as the first line of defence, whereas Tcm 

require restimulation in order to exert their effector mechanisms and are thought to 

recirculate through lymphoid tissue. The expression of CD62L and CCR7 on the surface 

of Tcm supports this conclusion.
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1.8.2. T cell Homing to Non-lymphoid Tissue

Once activated/reactivated in lymphoid tissue T cells need to migrate out and into tissue. 

Interestingly, effector T cells generated in different lymphoid organs display distinct 

tissue tropism (Campbell and Butcher 2002) as cells activated in mesenteric lymph nodes 

(mLN - draining the gut) express high levels of OC4P7 (Stagg et al 2002; Mora et al 2003) 

whereas skin (framing lymph nodes (skinLN) stimulate upregulation of other molecules 

(Calzascia et al 2005).

Several reports have suggested that DC in the mucosal draining lymph nodes induce T 

cells to express mucosal homing receptors, in particular CX4 P7 and CCR9 (Stagg et al 

2002; Mora et al 2003). The ligands for these receptors, MAdCAM-1 and CCL25 

respectively, are found almost exclusively in the HEV of mLN, Peyer’s patches (PP) and 

postcapillary venules in the lamina propria. Furthermore CCL25 is produced by gut 

epithelia, suggesting that these interactions very precisely dictate migration of activated T 

cells into organs. Other receptors such as CCR6  and CCR10 (and their ligands CCL20 

and CCL28) have also been implicated in migration to the small intestine (Kunkel et al

2003). Intraepithelial lymphocytes (IEL) are another population of mucosal homing T 

cells, however the majority express a different integrin, (Xe (CD 103), associated with P7 

which is thought to regulate their homing as CD 103 deficient mice are severely depleted 

of IEL (Schon et al 1999).

Skin homing T cells express ligands for P and E-selectin as well as chemokine receptor 

CCR4 (ligands are CCL17 and CCL22) and/or CCR10 (ligand is CCL27). Cutaneous 

lymphocyte antigen (CLA) has been identified on T cells in the skin where it interacts 

with E-selectin expressed on endothelial cells, which is upregulated during inflammation
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(Kunkel and Butcher 2002). VCAM-1 is also upregulated on inflamed endothelium and 

its ligand, OI4P1, is expressed on skin homing T cells in contrast to OC4P7 which is 

downregulated (Mora and von Andrian 2006). CCL17 and CCL27 are also expressed in 

skin, although not exclusively, under non-inflammatory conditions by endothelial cells 

and keratinocytes respectively. They are also expressed by activated monocytes, 

macrophages and B cells, and mature DC, suggesting that they attract CCR4+ T cells to 

sites of ensuing immune responses. Although each receptor/ligand pair does not attract 

cells solely to the skin, reports indicate that the majority of cells identified in skin express 

more than one receptor, consolidating their commitment to normal and inflamed skin.

1.8.3. Treg Homing Markers

A wide range of homing markers have been reported to be expressed on Treg cells 

although few investigators completely agree. Originally identified as expressing high 

levels of CCR7 and CD62L (Itoh et al. 1999; Lepault and Gagnerault 2000), there has 

been a plethora of reports indicating that Treg express a range of different homing 

receptors. These differences may be due to methods of Treg isolation. Until recently, 

Treg isolation relied upon expression of CD25, which is also a marker of activated T 

cells, and therefore the chemokine receptor and adhesion molecule profile could have 

been contaminated with activated cells. In an attempt to exclude activated cells from 

these earlier studies, analysis was usually carried out on populations expressing cell 

markers such as CD45RO/A in humans (Iellem et al. 2001). Although this facilitated the 

study of Treg at the time, the discovery of FOXP3 as a more specific marker of Treg 

prevented the accidental exclusion of other Treg and allowed the study of Treg 

subpopulations. Another factor that may affect the study of homing markers is the tissue 

from which the Treg were isolated. Classically murine Treg were isolated from spleen 

and lymph nodes, and human Treg from peripheral blood, therefore conclusions drawn
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from these experiments should not be applied generally to the Treg population as a whole 

just those found in that location.

Human Treg from peripheral blood expressed CCR4, which although has been implicated 

in inflamed skin homing, its ligands (CCL17 and CCL22) are also produced by activated 

APC. In combination with the observation that these cells also express CCR8 , whose 

ligand, CCL1, is also expressed by professional APC, this suggested that these receptors 

regulate migration to activated lymphoid organs (Iellem et al. 2001). However the same 

group later reported these cells expressed high levels of CLA and low levels of OC4P7 and 

CCR9, suggesting they were skewed toward skin and not gut homing (Iellem et al. 2003). 

In reality the receptor expression was assessed on a population basis and all receptors 

tested were expressed by a proportion of Treg (Iellem et al 2003; Clark and Kupper 

2007). Murine studies of cardiac transplant indicated that recruitment of Treg was 

dependent on CCR4 as tolerance to allografts could not be induced in CCR4 deficient 

mice (Lee et al. 2005), which may suggest migration to lymphoid organs is required, 

however, CLA+CCR4+ Treg can be isolated from normal human skin (Hirahara et al. 

2006; Clark and Kupper 2007).

CCR5, the receptor for the inflammatory cytokine CCL4, has also been detected on large 

proportions of Treg which are attracted by CCL4 (Bystry et al. 2001). In vivo, Treg 

deficient in CCR5 have been shown to be less effective at preventing graft-vs.-host 

disease (GVHD) (Wysocki et al. 2005) and favoured pathogen persistence in the 

Leishmania major model of infection due to inefficient Treg migration to the site of 

infection in the skin (Yurchenko et al. 2006).
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Although first identified as a homing receptor for IEL in the gut, high levels of CD 103 

are expressed on IEL from other mucosal surfaces which aids binding to E-cadherin. 

Inflammatory skin disease in CD 103 deficient mice suggested immune dysfunction, 

which could be transferred to wild-type mice by adoptive transfer of T cells (Schon et al 

2000). Expression was detected on a population of Treg which had enhanced regulatory 

activity when .compared to their CD 103' counterparts (Lehmann et al 2002). Later 

studies indicated that CD 103' Treg could not control antigen-induced arthritis (Huehn et 

al 2004) or Leishmania major infection (Suffia et al 2005), however, the latter study 

found no increase in suppressive capacity of CD103+ Treg but detected enhanced 

numbers of Treg in skin of wild-type mice, indicating that CD 103 expression enables 

Treg migration into the skin. In contrast, a study of murine colitis found no role for 

CD 103 on the surface of Treg but wild-type Treg could not control disease in CD 103 

deficient recipients (Annacker et al 2005).

A role for E/P-selectin ligands in controlling Treg entry into inflamed tissues was also 

indicated by studies of FucTVII deficient mice, which lack an enzyme necessary to 

generate selectin ligands in T cells. Treg from these mice were unable to enter inflamed 

sites and suppress delayed type hypersensitivity (DTH) (Siegmund et al 2005). Treg 

expressing CD 103 have been shown to express low levels of CD62L and CCR7, whereas 

CD 103' Treg express high levels of these markers (Huehn et al 2004; Siegmund et al 

2005). Interestingly, the latter cannot inhibit DTH or antigen-induced arthritis whereas 

Szanya et. al have reported that CD4+CD25+CD62L+CCR7+ T cells and not those 

negative for CD62L were able to inhibit diabetes (Szanya et al 2002). Two other reports 

support this observation as only the CD62L+ population of Treg could protect against 

GVHD and bone marrow graft rejection (Taylor et al 2004; Ermann et al 2005).
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The conclusion drawn by the majority of the studies where CD62L expression is required 

to inhibit detrimental immune responses is that Treg require entry into lymph nodes in 

order to exert suppression, suggesting that the possible mechanism of action is inhibition 

of the initiation of an immune response. Whilst one study has shown that CD62L 

deficient Treg behave like CD62L deficient Tconv, in that they are unable to enter lymph 

nodes effectively (Venturi et al 2007), these reports do not exclude the possibility that 

CD62L+ Treg have a higher proliferative capacity, as reported by some (Fu et al 2004; 

Ochando et al 2005), and therefore can produce a greater number effective progenitors 

which are then able to inhibit immune responses.

Similar to Tconv, recent reports have indicated that organ selective homing in Treg can 

be programmed by DC in the respective lymph node. In one study CFSE labelled OVA- 

specific Treg were adoptively transferred into wild-type hosts which were later 

challenged with OVA. Cells recovered from the mLN predominantly expressed OC4P7 and 

CCR9, whereas those from peripheral lymph nodes (pLN) were (X4P7 negative and 

expressed E/P selectin ligands (Siewert et al 2007). Another study successfully induced 

ear homing Treg by prior incubation with Langerhans cells (Schwarz et al 2007). A 

study of human Treg also drew parallels between Treg and Tconv as unlike most other 

studies it aimed to identify subpopulations of Treg expressing cohorts of homing 

molecules (Lim et al 2006). This study identified a subpopulation of 

CD45RA+CD62L+CCR7+ naive-like Treg as well as CD45RO+ memory-like populations 

which predominantly expressed tissue homing receptors. A proportion of CD45RO+ cells 

also expressed CD62L and CCR7 which suggests that the memory Treg pool may contain 

both central and effector memory-like cells.
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In summary, studies show that Treg express homing markers that would direct migration 

into both lymphoid and non-lymphoid tissue, although whether these markers are 

expressed on the same cell remains to be determined. Furthermore, Treg have also been 

isolated from both lymphoid tissue and peripheral tissue in steady state and inflammatory 

situations. However, investigations into the ability of Treg expressing different markers 

to inhibit immune responses in vivo have reported conflicting results, leaving the question 

of whether Treg inhibit initiation or the effector phase of an ensuing immune response 

unanswered. These possibilities are not mutually exclusive, and may involve different 

Treg subpopulations. One aim of this thesis is to identify the location of Treg action in 

vivo and therefore help address these questions.

1.8.4. CD62L Transgenic Mice

Previous work has indicated that only Treg expressing high levels of CD62L are able to 

inhibit various immune responses in vivo (Szanya et al 2002; Fu et al 2004; Taylor et al 

2004; Ermann et al 2005), which has been attributed to preferential migration to lymph 

nodes over peripheral tissue. Although Treg may inhibit the initiation of the immune 

response in the lymph node, reports have not excluded the possibility that these Treg give 

rise to progeny that can migrate into tissue and inhibit the effector phase of the immune 

response. In order to address this hypothesis, a model in which Treg might be retained 

within lymph nodes, was characterised.

CD62L mediates rolling of lymphocytes in high endothelial venules of pLN and TCR 

engagement, or cross-linking with anti-CD62L antibody or ligand, causes proteolytic 

shedding of its ectodomain (Ley et al 1995). Shedding has been shown to correlate with 

loss of lymph node entry (Hamann et al 2000), as has complete deficiency (Arbones et
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al. 1994), and studies of T cells isolated from inflammatory sites show low levels of 

CD62L expression (Mobley and Dailey 1992; Hou and Doherty 1993; Rigby and Dailey 

2000). In combination, these results suggest that maintenance of CD62L expression on T 

cells could retain T cells in the lymph nodes and prevent access to inflamed tissue.

If maintenance of high levels of CD62L expression prevents T cell infiltration of 

peripheral tissues, Treg from mice that cannot downregulate CD62L could be used to 

address the hypothesis that Treg must migrate into tissues in order to exert their 

suppressive effects. In vitro studies using anti-CD3/CD28 antibodies have shown that 

CD62L undergoes complex changes in expression after TCR engagement (Chao et al. 

1997). Accelerated shedding during the first 4 hours leads to rapid downregulation. 

CD62L is then re-expressed 24-48 hours later due to increased gene transcription, 

followed by late downregulation after 3-5 days due to accelerated shedding and decreased 

gene transcription (Figure 1.7) (Chao et al. 1997). Therefore in order to prevent CD62L 

downregulation, gene transcription must be maintained and proteolytic shedding 

prevented.
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Figure 1.7. Schematic Representation of CD62L Levels on T Cells Following TCR 
Engagement
Following TCR engagement CD62L is lost from the cell surface by shedding within the 
first hour and remains low for up to 4 hours. Increased gene transcription and cessation of 
shedding results in an increase in CD62L expression with 2-3 fold increase in expression 
when compared to naive T cells. CD62L expression then drops over the following 5 days.
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Two strains of mice expressing either wild-type (WT) or a shedding-resistant form (LAP) 

of CD62L driven by the hcd2 promoter were generated by the laboratory of Dr Ann Ager 

(Figure 1.8 duplicated from (Galkina et al. 2003). Numerous studies have shown that 

protein expression driven using the hcd2 promoter is directed to T cells and is maintained 

upon activation (Zhumabekov et al 1995; Bromley et al. 2005), therefore wild-type 

CD62L expressed under this promoter does not undergo transcriptional downregulation 

post T cell activation (WT mice). The additional substitution of the proteolysis sensitive 

membrane proximal region of CD62L with that of the proteolysis insensitive CD62P (P- 

selectin), generated a shedding resistant form of CD62L (LAP mice). CD62L transgenic 

mice were backcrossed to B6 CD62L' ' to eliminate endogenous CD62L and transgenic 

lines expressing levels of CD62L comparable with those on T cells in B6 mice were 

chosen. Therefore LAP mice potentially present a model in which to address the 

hypothesis that maintained CD62L expression stops Treg access to peripheral tissue 

subsequently preventing exertion of their suppressive effects.

The inability of T cells to downregulate CD62L did not affect cellularity or subset 

composition of pLN, mLN, PP or spleen in LAP mice, and shedding was resisted in vitro 

upon PMA or cognate peptide (CD8) stimulation, unlike WT CD62L. Lymphocyte 

rolling under flow conditions and the ability of naive cells to home to pLN were also not 

affected, although LAP T cells accumulated within the HEV suggesting that CD62L 

shedding may inhibit movement across HEV into pLN. In vivo stimulation with cognate 

peptide reduced the ability of WT CD8+ cells to enter LN when compared to LAP CD8+ 

cells, however activated LAP CD8+ cells were inferior to naive LAP CD8+ cells in their 

ability to migrate into lymph nodes, suggesting other factors also play a role.
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Figure 1.8. Construction of CD62L Mutants
Schematic representation of the Membrane Proximal Region (MPR) of mouse CD62L in 
relation to the whole molecule (SCR, short consensus repeat). Location of a primary 
cleavage site in wild-type CD62L (WT) is shown together with amino acid sequence of 
corresponding LAP mutant, containing the MPR of CD62P which is naturally shorter and 
lacks the cleavage site. This figure is duplicated from Galkina et al 2003.
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As T cell migration in the context of an active immune response had not yet been studied 

in these mice, it was first important to establish whether or not maintained CD62L 

expression prevented T cell access of inflamed tissue. Since insufficient information is 

known about Treg migration, the migration of conventional T cells under inflammatory 

conditions in WT and LAP mice was studied in the context of an influenza infection.

1.8.5. Influenza Virus Model

The influenza model has been used extensively to study T cell responses, because the site 

of infection and therefore the target organ for T cells is known. Influenza virus is an 

enveloped RNA virus of which three strains exist (A, B and C) each characterized by the 

antigenic properties of internal components. Influenza A viruses can be further 

categorized into subtypes on the basis of two surface antigens present in the lipid bilayer: 

haemagglutinin (HA), responsible for binding to host cells, and neuraminidase (NA), 

which facilitates release of viral progeny from infected cells. These antigens are known to 

be the main targets of the immune system.

Influenza virus infection is restricted to the epithelial cells and monocytes/macrophages 

of the respiratory tract, and infection can cause tissue destruction directly during the lytic 

phase of the virus life cycle or indirectly by induction of interferon oc/p production 

(Garcia-Sastre et al. 1998). The innate response is not sufficient to control the virus and 

the adaptive immune system is enlisted. CD8+ cytotoxic T cells can directly kill infected 

cells aided by CD4+ helper T cells (Th), which also aid production of neutralising 

antibodies by B cells.

Typically the virus is controlled within 7-10 days, with CD8+ T cells activated and 

proliferating within lymph nodes 3-4 days after infection, subsequently migrating to the
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lung around days 5-7 (Tripp et al 1995a; Topham et al 1997; Lawrence and Braciale

2004). CD8+ T cells exert their effector functions in the lung, producing antiviral 

cytokines and lysing target cells by a mechanism involving perforin and/or Fas (Topham 

et al 1997). The importance of virus-specific CD8+ T cells is demonstrated by 

observations in mice which lack CD8+ T cells. A study on P2-niicroglobulin- and 

therefore MHC class I- deficient mice indicated that viral clearance was delayed in the 

absence of CD8+ T cells (Eichelberger et al 1991), and in the case of a more pathogenic 

strain, viral infection was more prolific, resulting in increased morbidity (Bender et al 

1992).

B cells are also important for viral clearance. B cells are responsible for the generation of 

neutralizing antibodies to external viral coat proteins (Gerhard et al 1997). B cell 

deficient, jiMT mice can clear less pathogenic forms of virus with slightly delayed 

kinetics (Topham et al 1996), however more pathogenic strains result in increased 

morbidity (Mozdzanowska et al 1997).

CD4+ T cells are also recruited to the lung in large numbers peaking at day 6-7 

(Baumgarth and Kelso 1996a; Baumgarth and Kelso 1996b; Roman et al 2002). 

Although the role of CD4+ T cells appears secondary to CD8+ T cells and B cells, they 

provide cytokines important for CD8+ effector and memory cell generation along with 

facilitating antibody production. Upon infection of CD4 deficient, MHC class II deficient 

mice with influenza, influenza-specific CD8+ T cells had limited clonal expansion but 

maintained equivalent cytotoxic ability at the peak of infection, resulting in a slight delay 

in viral clearance (Tripp et al 1995b; Riberdy et al 2000). In contrast, numerous studies 

have indicated that CD4 deficient mice do not exhibit impaired viral clearance, even with
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more pathogenic strains (Allan et al 1990) (Mozdzanowska et al 2000). However, the 

support provided by CD4+ T cells is more evident in the absence of other arms of the 

immune system, as jjMT were even more susceptible to mortality, where recruitment of 

CD8+ T cells to the lung was reduced, suggesting that CD8+ T cells required CD4+ T cell 

help (Mozdzanowska et al 2000; Riberdy et al 2000).

IFNy production by both CD8+ and CD4+ T cells is also elevated during influenza 

infection (Roman et al 2002). IFNy can induce macrophage activation, upregulate the 

expression of MHC class I and II molecules and activate NK cells (Welsh et al 1991), 

possibly contributing to the innate clearance of virus, however, there have been mixed 

reports concerning the relevance of IFNy in mediating viral clearance. Experiments 

carried out in vitro have reported no requirement for IFNy with reports suggesting that in 

the absence of IFNy in vitro CD4+T cells acquire direct lytic ability (Graham et al 1993). 

In contrast, in vivo studies have indicated that IFNy from CD4+ T cells enhances survival 

and IFNy deficient CD8+ T cells caused greater immune pathology in the lungs (Wiley et 

al 2001). A recent study has also demonstrated that IFNy signalling, acting on T cells 

themselves, regulates trafficking CD8+ T cells from the lymph node to the lung (Turner et 

al 2007).

In summary, both CD4+ and CD8+ T cells respond to influenza infection with known 

kinetics and migrate into the site of infection and inflammation, the lung, where they 

exert their effector functions. This well characterised model provides a way in which to 

characterise the migration of T cells within WT and LAP mice, with a view to utilising 

these mice to study the location of action of Treg.
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1.9. Aims and Objectives

CD4+CD25+ regulatory T cells are a subset of T cells that have been shown to suppress T 

cell responses both in vitro and in vivo. Recent evidence has suggested that Treg may also 

inhibit other non-T cell responses. One aim of this thesis is to assess whether the 

suppressive effect of Treg is confined to T cells or whether the cells are capable of 

inhibiting innate immune responses. To achieve this aim a model of tumour rejection 

involving a melanoma cell line expressing Fas ligand (B16FasL) was utilised. B16FasL 

induces an inflammatory response and rejection is thought to involve innate immune 

cells, particularly neutrophils and macrophages.

The first objective of this study was to elucidate the nature of the innate immune response 

to B16FasL following in vivo challenge of mice with the tumour cells. These experiments 

are described in Chapters 3 and 4. The second objective was to study the effect of Treg 

upon these responses. These experiments are also described in Chapters 3 and 4.

The ability of Treg to inhibit immune responses, T cell or otherwise, is dependent on the 

ability of Treg to locate and act upon target cells. The mechanisms of Treg suppression 

described so far require cell contact or are dependent on short range immunosuppressive 

cytokines indicating that Treg are most likely to exert their suppressive effect locally. The 

location of Treg action will determine the cells with which Treg are in close contact, 

highlighting the possible cellular targets. Furthermore, identification of the location of 

Treg action may also indicate the stage at which Treg are effective. For instance, if 

confined to the lymph nodes Treg may only inhibit initiation and priming of an immune 

response and not the effector phase. Another aim of this thesis is to identify the location 

of Treg action in vivo.
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To achieve this aim CD62L transgenic mice were utilised. CD62L is a lymphoid homing 

marker, downregulation of which is thought to allow access to peripheral tissues. It was 

hypothesised that T cells from LAP mice, which maintain CD62L expression post 

activation in vitro, would fail to migrate into the periphery during an inflammatory 

response. Therefore LAP mice potentially present a model in which to address the 

hypothesis that maintained CD62L expression stops Treg access to peripheral tissue 

subsequently preventing exertion of their suppressive effects.

Therefore, the third objective of this study was to analyse the suitability of this mouse 

strain for studies of Treg activity in vivo. To fulfil this objective, the in vivo migration of 

T cells was studied using a model of influenza infection, where the migration of wild- 

type T cells is already well described. These experiments are described in Chapters 5.

In summary, the work presented in this thesis describes investigations into the effect of 

Treg on cells involved in the innate immune rejection of B16FasL. Subsequently, this 

study explored the use of CD62L transgenic mice as a model to investigate the location of 

Treg action.
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Chapter 2 - Materials and Methods

2.1. Mice

C57BL/6 (B6) and C57BL/6 Rag 1 deficient mice (RAG ) purchased from Harlan 

(Oxford, UK) or bred at Biomedical Services (Cardiff, UK) were maintained at 

Biomedical Services (Cardiff, UK). WT and LAP mice were generated as previously 

described (Galkina et al. 2003), bred at NIMR (London, UK), and maintained at 

Biomedical Services (Cardiff, UK). Mice were housed in Filter-top cages throughout 

experimental procedures unless infected with virus when animals were housed in 

Scantainers. All experiments were performed in compliance with Home Office 

regulations.

2.2. Cell Culture

2.2.1. Tumour Cell Lines

B16F10 (B16) and B16F10 transfected with Fas Ligand (B16FasL) were generated as 

previously described (Simon et al. 2002) and were maintained in RIO which consists of 

RPMI 1640 medium (Gibco - Invitrogen, Carlsbad, USA) supplemented with 10% foetal 

calf serum (FCS) (Gibco-Invitrogen, Carlsbad, USA), penicillin-streptomycin, L- 

glutamine, non-essential amino-acids (Life Technologies- Invitrogen, Carlsbad, USA) 

and 50|iM of 2p-mercaptoethanol ((3Me) (Sigma-Aldrich, St Louis, USA). In the case of 

B16FasL, G418 was added to the media at a final concentration of 1.5mg/ml in order to 

maintain expression of FasL. Tumour cells were either injected subcutaneously (105 in 

100pl of PBS) or intraperitoneally (2xl06 in 100|il of PBS). Tumour growth was

77



monitored in mice weekly by parting the hairs and using callipers to measure length (/) 

and width (w) of tumour. Tumour volume was calculated according to the following 

equation: (2nlw)/6.

2.2.2. Other Cell Lines

Yac-1 (TIB-160; American Type Culture Collection, Teddington UK), RMA, and RMA- 

S cells were also maintained in RIO. TK' cells were maintained in DMEM medium 

(Gibco- Invitrogen, Carlsbad, USA) supplemented with 10% foetal calf serum (FCS), 

penicillin-streptomycin, L-glutamine, and non-essential amino-acids (DIO).

2.2.3. Hybridomas and In Vivo Depletion

Hybridomas secreting CD25- (PC61, rat IgGl (Lowenthal et al. 1985)), E. coli p- 

galactosidase- (GL113, rat IgGl, isotype control), NK1.1- (PK136, mouse IgG2a (Koo 

and Peppard 1984)), Gr-1- (RB6-8C5, rat IgG2b (Seino et al. 1998)) and TGFP- (1D11, 

mouse IgGl (Dasch et al. 1989)) specific monoclonal antibodies (mAbs) and their 

efficiency to deplete their respective cell subset have been described previously (Table 

2.1). Hybridomas were grown using the CELLine CL1000 system (INTEGRA 

Biosciences Chur, Switzerland) with RIO used in the cell compartment and R0 (RIO 

without FCS) used in the media compartment and cell compartment supernatant collected 

for monoclonal antibody (mAb) purification every 7 days.

Administration frequency and quantity of depleting antibody used was dependant on 

target cell turnover. For short-term experiments (<3 days), 0.5mg of each antibody was 

injected i.p. 1 day prior to tumour inoculation. For tumour rejection experiments (>60 

days), 0.5mg of PC61, GL113 and/or PK136, were administered i.p. 1 and 3 days prior to 

tumour inoculation. Due to the turnover of Neutrophils, 300|ig of RB6-8C5 was
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administered every second day from 1 day prior to tumour inoculation. Macrophage 

depletion was achieved by injection of lmg of Carrageenan resuspended in PBS i.p. 1 

and 3 days prior to tumour inoculation and 3 days later.

Table 2.1. Agents Used in Depletion Experiments
Details of antibodies and other agents used to deplete indicated cell types in vivo are 
summarised below.

Depleting
Agent

Species and 
Isotype

Target Used to deplete

PC61 Rat IgGl CD25 Regulatory T cells,

GL113 Rat IgGl E. coli P- 
galactosidase

None -  isotype control

PK136 Mouse IgG2a NK1.1 NK Cells

RB6-8C5 Rat IgG2b Gr-1 (Ly6G) Neutrophils

Carrageenan Phagocytes Macrophages
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2.3. Cell Isolation

2.3.1. Mouse CD4+CD25* and CD4*CD25~ cells

CD4+CD25+ T cells were purified by negative selection using Dynabeads and subsequent 

positive selection using MACS beads. Spleen and lymph node cell suspensions prepared 

from naive C57BL/6 mice were resuspended at 108 cells/ml in HBSS (Gibco- Invitrogen, 

Carlsbad, USA) and mixed at a 2:1 ratio (volume/volume) with an antibody cocktail 

containing 10 pg/ml rat anti-B220, -Mac-1, -CD8, -MHC class II and -NK1.1 antibodies 

in HBSS/0.1% BSA in order to enrich CD4+ cells. After a 20-minute incubation on ice 

the cells were washed twice in HBSS and Dynabead-conjugated sheep anti-rat IgG 

antibodies (Dynal - Invitrogen, Carlsbad, USA) were added at a ratio of 1 Dynabead per 

spleen cell. After a further 20 minute incubation at 4°C, Dynabead-bound cells were 

magnetically separated according to the manufacturer’s instructions. Dynabead bound 

cells were discarded and a quarter of the original number of Dynabeads were added to the 

cells and a second round of negative selection was performed as above. Cells that were 

not Dynabead bound (enriched for CD4+ cells) were subsequently incubated with anti- 

CD25 antibodies conjugated to R-Phycoerythrin (PE) (Miltenyi Biotec, Bergisch 

Gladbach, Germany) and purified using microbeads conjugated to anti-PE antibodies 

according to the manufacturers instructions (Miltenyi Biotec, Bergisch Gladbach, 

Germany). Alternatively CD4+CD25+ and CD4+CD25' were purified using the MACS 

purification kit according to manufacturer’s instructions (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Cells were then either injected intravenously (i.v.) into mice or 

used in vitro. A purity bf greater than 90% CD4+CD25+ cells was obtained in all 

experiments (See Appendix Figure A.3).
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2.3.2. Mouse Neutrophils (PMN)

Bone marrow was collected from naive mice and PMN isolated by density centrifugation. 

Ends of bones were removed and marrow flushed out using a 27 gauge needle and 

syringe filled with RPMI 1640 medium. Cells were collected by centrifugation 350 x g 

for 5min, resuspended and red blood cells lysed by addition of 3ml 0.2% NaCl followed 

immediately by 3ml 1.6% NaCl. Cells were washed immediately in RPMI 1640 medium 

and cells resuspended at 2ml/mouse. A Percoll (Amersham Biosciences-GE Healthcare 

Little Chalfont, UK) gradient was prepared as follows: Stock Percoll solution was 

prepared by adding 9 volumes of Percoll to 1 volume of lOx PBS. This was then used to 

generate solutions of 72%, 64% and 52% Percoll diluted in PBS. 2.5ml of each was then 

layered into a 15ml tube using a 21G needle and 5ml syringe. 2ml of the bone marrow 

preparation was then layered on top and the gradient centrifuged at 1500 x g for 30min at 

room temperature with no brake. The lower ring of cells constituted mainly mature 

neutrophils and was collected with minimal Percoll using a Pasteur pipette. Cells were 

then washed twice in >10ml R10 and used immediately. Purity of PMN was assessed by 

Giemsa staining of methanol fixed cells on positively charged slides and was greater than 

90%.

2.3.3. Mouse Dendritic Cells

Dendritic Cells were prepared from bone marrow collected from limbs of B6 mice aged 

between 6 and 8 weeks. Ends of bones were removed and marrow flushed out using a 27 

gauge needle and syringe filled with RPMI 1640 medium. Cells were collected by 

centrifugation 350 x g for 5min, resuspended and red blood cells lysed by addition of 1ml 

RBC lysis buffer (Biolegend, San Diego USA) for 5min at room temperature. Cells were 

washed immediately in RPMI 1640 medium and passed through a cell strainer. The total 

cells from 1 mouse were then resuspended in 50ml of R10 supplemented with 200U/ml



recombinant mouse Granulocyte Macrophage-Colony Stimulating Factor (rmGM-CSF, 

Peprotech, Rocky Hill, USA) and plated at 1ml per well of a 24 multi-well (MW) plate. 

On day 3 of culture, non adherent cells were gently removed and fresh RIO added. DC 

were immature and ready for experimentation from Day 4. For DC maturation positive 

control 2ug/ml of LPS (Sigma-Aldrich, St Louis, USA) was added to wells.

2.3.4. Mouse Peritoneal Lavage Cells

Mice were injected i.p. with 2xl06 B16F10 or B16FasL. The peritoneal lavage cells were 

collected by injecting 6ml PBS with 2mM EDTA and 0.5% BSA into the peritoneum of 

sacrificed mice at the indicated times after tumour inoculation. 6ml of fluid was 

recovered in every case. Cells were counted and used for flow cytometry, cytospin and/or 

Chromium release assay.

2.3.5. Human Neutrophils (PMN)

Polymorphonuclear Cells (PMN) from blood of healthy donors were collected in heparin 

and separated by density centrifugation. 6ml of 6% w/v Dextran 70 (Fisher Scientific UK, 

Loughborough, UK) resuspended in 0.9% NaCl was gently mixed with 24ml of fresh 

blood and RBC allowed to sediment at room temperature for 45-60min. The plasma and 

white blood cells (WBC) were layered on top of 20ml lymphoprep (Axis-Shield, Oslo, 

Norway) and centrifuged at 700 x g  for 25min at room temperature with no brake. After 

centrifugation, all liquid was aspirated and the neutrophils and remaining RBC in the 

pellet resuspended in 1ml H2O for 20-30sec to hypotonically lyse RBC. Cells were 

washed twice with R10 and used immediately. Purity of PMN was assessed by Giemsa 

staining of methanol fixed cells on positively charged slides and was greater than 95%.
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2.3.6. Human CD4+CD25* and CD4*CD25' cells

Peripheral Blood Mononuclear Cells (PBMC) from blood of healthy donors were 

collected in heparin and separated by density centrifugation. Fresh Blood was layered on 

top of an equal volume of lymphoprep and centrifuged at 700 x g for 25min at room 

temperature with no brake. After centrifugation, PBMC were located at the interphase 

between the plasma and lymphoprep and were gently removed using a Pasteur pipette. 

Cells were washed twice in RIO and counted. CD4+CD25+ and CD4+CD25' cells were 

then purified using the MACS purification kit according to manufacturer’s instructions 

(Miltenyi Biotec, Bergisch Gladbach, Germany). Cells were then immediately used in 

vitro. A purity of greater than 90% for CD4+CD25+ cells was obtained in all experiments.

2.4. Antibodies

2.4.1. Purification of Endotoxin Free Monoclonal Antibodies for In- 

Vivo Use

All glassware and other materials were treated with 0.5M NaOH for 20 min to remove all 

traces of endotoxin and sterile, tissue culture grade plastics were used throughout. Buffers 

were also made up with highly purified AnalaR water (BDH-VWR International, West 

Chester, USA). Cell debris was removed from hybridoma supernatant by centrifugation at 

6000 x g for 30min and the protein in the supernatant precipitated by addition of an equal 

volume of saturated ammonium sulphate (660g in 1L of AnalaR water) for 16 hours at 

4°C. The protein was collected by centrifugation at 6000 x g for 30min and resuspended 

in minimal AnalaR water and the process repeated. The protein solution was then 

dialysed against 3 x 2L PBS with intervals of greater than 6 hours. The resulting protein 

solution was then run on a denaturing protein gel (SDS-PAGE (Laemmli 1970)) to 

evaluate the purity.
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2.4.2. Endotoxin Free, Azide Free, Antibodies for In Vitro Stimulation

Endotoxin free, azide free mAbs raised against CD28 (37.58) and CD3 (50A2) were 

purchased from Leinco Technologies Inc. St. Louis, USA.

2.5. Cell Identification

2.5.1. Fluorescent Staining

Anti -CD8a-FITC, -IFNy-FITC, -CDllb-FITC, -CD62L-FITC, -CD25-PE, -0TCR-PE, - 

CD4-Alexa Fluor 610, -IFNy-Alexa Fluor 610, -CD8a-Alexa Fluor 647, -CD4-Alexa 

Fluor 647, -F4/80-APC and biotinylated anti-MHC Class II antibodies were purchased 

from Caltag Laboratories, Burlingame, USA, as were rat IgGl and IgG2a isotype control 

antibodies. Anti -CD86-FITC, -CD80-FITC, -CD107a-FITC, -NK1.1-FITC (PK136), - 

NK1.1-PE (PK136), -NK1.1-purified (3A4), -CD8cx-PerCpCy5.5, -Gr-1- PerCpCy5.5, - 

CDllc-APC, -CD16/CD32 antibodies and Streptavidin PerCpCy5.5 were purchased 

from BD Pharmingen, Franklin Lakes, USA, as were rat IgG2b, mouse IgG2a and 

hamster IgG isotype control antibodies. PE conjugated MHC class I tetramers were 

produced within the laboratory. Samples were also stained using an anti-FOXP3-PE 

staining kit (Ebioscience, San Diego, USA).

Extracellular Staining

All staining and washes were carried out in FACS buffer (PBS + 2% FCS + 2mM EDTA) 

and on ice to minimise antibody internalisation. Single cell suspensions were obtained, 

and non-specific binding of Fc limited by incubation with 0.25pg of anti-CD 16/CD32 (Fc 

blocking antibody 2.4G2) per 106 cells in 25jil, for 20 min. Cells were then washed twice. 

If required, 0.1 |Xg of MHC class I tetramer in 25|il was added to cells 15 min prior to
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addition of staining antibodies. Cells were then incubated with 0.25|ig of antibody per 

106 cells in 25jnl of FACS buffer for 20min. In cases where directly conjugated antibodies 

were not used, immunoglobulin-specific secondary antibodies were added after 2 washes. 

Cells were then fixed in FACS fix (FACS buffer +2% Formalin) and analysed by flow 

cytometry (FACS Calibur, BD, Franklin Lakes, USA). Cell Quest Pro and Flowjo were 

used to analyse the resulting data.

Intracellular Staining

Any cell surface staining required was performed as described above. Intracellular 

staining was then performed using Cytofix/Cytoperm Kit (BD Pharmingen, Franklin 

Lakes, USA) according to the manufacturer’s instructions. Cells were resuspended in 

FACS fix and analysed by flow cytometry (FACS Calibur). Cell Quest Pro and Flowjo 

were used to analyse the resulting data.

2.5.2. Cytospin of Lavaged Cells

Cytofunnels were assembled as described in the manufacturer instructions. 240pl of 

lavage fluid was added to the Cytofunnel assembly, consisting of funnel, absorbent card, 

glass slide and metal clamp. The Cytofunnel was then placed in the Cytospin for 10 

minutes at 1000 r.p.m. Slides were then air dried and stained using a Wright-Giemsa 

stain, rinsed in deionised water and allowed to air dry.
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2.6. Histology

2.6.1. Paraffin Embedded Sections

Tissue collected for histology was fixed in Zinc fixative (0.1M Tris HC1 [pH 7.4] with 

0.05% Ca acetate, 0.5% Zn acetate and 0.5% Zn chloride) (Beckstead 1994) for 24-72hrs 

at 4°C. Tissue was then embedded in paraffin wax and 5pm sections cut and placed on 

positively charged glass slides. Sections were then either stained with haematoxylin and 

eosin (H&E) or subjected to immunohistochemistry.

2.6.2. Cellular Mass Size Determination

Sections of injected skin were taken every 300pm and stained with H&E. The diameter 

(D) and width (W) of infiltrate on each section was measured on a calibrated microscope 

and an estimate made of the total tumour volume based on Figure 2.1.

2.6.3. Immunohistochemistry

Macrophage/Monocyte marker -  F4/80

Sections were dehydrated over 30min by washing in xylene followed by ethanol and 

finishing in water. Sections were equilibrated in Tris-buffered saline (TBS) for 30min 

prior to blocking with TBS supplemented with 1% bovine serum albumin (BSA) and 2% 

rat serum (Blocking buffer) for 30min. Blocking buffer was removed and primary 

antibody, rat anti-mouse F4/80 (Abeam, Cambridge, UK) diluted 1:500 in blocking 

buffer, added overnight at 4°C in a humidity chamber. Slides were rinsed with TBS and 

washed in TBS/1%BSA for lOmin followed by incubation with the secondary antibody, 

Alkaline Phosphatase (AP) conjugated goat anti-rat (Abeam, Cambridge, UK) diluted 

1:100 in TBS/1%BSA, for lhr at room temperature. Slides were rinsed with TBS and 

washed in TBS/1 %BSA for lOmin followed by incubation with the tertiary antibody, AP
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The volume of the shape below is: hflfrl + r2 + rl *r2)
3

The circle at either end represents the serial sections through the skin with the distance 
between the sections (h) being 300|im. However the area of cell mass on each section 
is elliptical in shape with a diameter of (D) and the width (W). To calculate r, it was 
assumed that area of an ellipse with a diameter of D and a width of W is equal to that 
of a circle with a radius of r:
Area of an ellipse = 7iDW and Area of a circle = 7tr2 so 7iDW = rcr2 

Therefore r = J nDW = JDW 

Therefore the volume of the shape is:

300*J5w j f e J P V f c B  = 10071(/DW 4 ^ + / D W ‘ /d ^ )

Assuming that the cellular mass ends at the midpoint between the last section it is seen 
on and the next, the total volume would resemble the diagram below and therefore the 
sum of each shape results in the total volume of the cellular mass.

Figure 2.1. Estimating the Total Volume of the Cellular Mass
Using the assumption and calculations shown, an estimate of the total volume of cellular 
mass can be calculated from the diameter (D) and the width (W) of cellular mass on each 
section.
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conjugated mouse anti-AP (Sigma-Aldrich, St Louis, USA) diluted 1:200 in 

TBS/1 %BSA, for 30min at room temperature. Slides were rinsed with TBS and washed 

in TBS/1 %BSA for lOmin. Sections were then developed using Sigma-Fast Fast-Red 

(Sigma-Aldrich, St Louis, USA) according to manufacturer’s instructions and 

counterstained with haematoxylin.

Neutrophil marker -  IL-8R

Sections were dehydrated over 30min by washing in xylene followed by ethanol and 

finishing in water. Slides were then microwaved for 3 x 5min in lOmM Citrate Acid pH 6 

and allowed to cool naturally. Sections were equilibrated in PBS for 30min prior to 

blocking of peroxidase activity with 1% H2O2 for 5mins. Non-specific antibody binding 

was blocked by incubation with PBS supplemented with 1% bovine serum albumin 

(BSA) and 2% rabbit serum (Blocking buffer) for 30min. Blocking buffer was removed 

and primary antibody, rabbit anti-mouse IL-8RB (K-19) (Santa Cruz Biotechnology, 

Santa Cruz, USA) diluted 1:200 in blocking buffer, added overnight at 4°C in a humidity 

chamber. Slides were rinsed with PBS and washed in PBS/1%BSA for lOmin, followed 

by incubation with the secondary antibody; biotinylated swine anti-rabbit (Dako, 

Glostrup, Denmark) diluted 1:300 in PBS/1 %BSA, for lhr at room temperature. Slides 

were rinsed with PBS and washed in PBS/1 %BSA for lOmin followed by incubation 

with the tertiary antibody, horseradish peroxidase (HRP) conjugated Extravidin (Sigma- 

Aldrich, St Louis, USA) diluted 1:50 in PBS/1 %BSA, for 30min at room temperature. 

Slides were rinsed with PBS and washed in PBS/1%BSA for lOmin. Sections were then 

developed using a DAB* substrate kit (VectorLabs, Burlingame, USA) according to 

manufacturer’s instructions and counterstained with haematoxylin.
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2.7. Influenza Virus

2.7.1. Preparation of Influenza Virus Stocks

Recombinant influenza A virus strain E61-13-H17 (H17;H3N2), amplified in 

embryonated chicken eggs, was generated by Dr Rosa Gonzalves, and Dr John Skehel 

from National? Institute for Medical Research London. The virus was titrated from 

allontoic fluid by performing a haemagglutination assay.

2.7.2. Infection

Mice were infected intra-nasally (i.n.) with 20 haemagglutination units (HAU) of 

Influenza virus HI7 in 20p! of PBS. 8 days post-infection, perfused lungs, lung draining 

lymph nodes (LDLN), blood and spleen were harvested for immunostaining and/or 

functional assays.

2.8. Vaccinia Virus

Recombinant Vaccinia Virus (rW ) expressing a MHC class I-restricted peptide epitope 

(NP68) derived from the influenza nucleoprotein (rWNPP) has previously been 

described by (Townsend et al. 1988) The control rW  expressed a MHC class I-restricted 

peptide epitope from melanoma antigen Trp2 (rWTrp2) (Overwijk et al 1998).

2.8.1. Preparation of Recombinant Vaccinia Virus Stocks

Expansion of rW  was carried out in TK‘ cells. An 80% confluent monolayer of TK' cells
a

was infected with 10 plaque forming units (pfu) in 5ml of VDM (DIO supplemented 

with 0.05% bovine serum albumin (BSA)). Cells were incubated for 2 hours at 37°C then 

an additional 15ml of D10 was added for 48 hours. Cells were subsequently harvested
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and subjected to three freeze thaw cycles. Cell debris was removed by centrifugation and 

Vaccinia titres in the supernatant determined by plaque assay.

2.8.2. Infection

Mice were injected intraperitoneally (i.p.) with 50|il of rW  at 108pfu/ml. At days 1, 3, 5, 

and 8 post-infection, perfused lungs, lung draining lymph nodes (LDLN), ovaries, ovary 

draining lymph nodes (ODLN), blood and spleen were harvested for viral titres, 

immunostaining and/or functional assays.

2.8.3. Vaccinia Virus Titres

Stock rW  and infected tissue titres were determined by plaque assay on a monolayer of 

TK‘ cells. Tissue was homogenized and debris removed before serial dilution in DIO. TK' 

cells in a 24 MW plate were infected with 200|il of the dilutions for 2 hours at 37°C. 1ml 

of DIO was then added to each well for 24 hours before staining with Giemsa. Pfu per 

sample was calculated after enumeration of plaques in wells with between 30 and 300 

plaques.

2.9. Determination of Functional Capacity

2.9.1. Chromium Release Assay

The chromium (51Cr) release assay assesses the ability of effectors to lyse particular 

targets and is used in this thesis to measure the activity of NK cells, neutrophils and CD8+ 

T cells.
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Peritoneal Lavage Killing Assay

Mice were injected i.p. with 2xl06 B16F10 or B16FasL. The peritoneal lavage was 

collected using PBS with 2mM EDTA and 0.5% BSA at the indicated times after tumour 

inoculation. Cells were counted and resuspended in RIO at 5xl06/ml. 3 fold dilutions of 

cell suspensions were made in duplicate in a 96 MW plate. 104 51Cr labelled B16 or 

B16FasL cells were added to wells for 4-5hr at 37°C. For minimal and maximal lysis, 

cells were incubated with medium or 5% Triton XI00 respectively. Lavage activity was 

measured by 51Cr release with the formula; % lysis = [(sample -  min)/(max -  min)] xlOO.

Neutrophil Killing Assay

PMN from healthy human donors or mouse bone marrow were collected and resuspended 

in RIO. Double dilutions of PMN were made in duplicate in a 96 MW plate at indicated 

ratios. 104 51Cr labelled B16 or B16FasL cells were added to wells for 4-5hr/18-20hr at 

37°C. For minimal and maximal lysis, cells were incubated with medium or 5% Triton 

XlOO respectively. Lavage lytic activity was measured by 51Cr release with the formula; 

% lysis = [(sample -  min)/(max -  min)] xlOO.

CTL Killing Assay

4xl06 spleen cells were stimulated in vitro with lxl06 NP68 (ASNENMDAM - Research 

Genetics- Invitrogen, Carlsbad, USA) peptide loaded (10'5M), irradiated splenocytes in a 

24 MW plate. lOU/ml of rIL-2 was added at day 2. On day 5, cells from 4 wells were 

collected washed and resuspended in 600pl RIO. 3 fold dilutions of cell suspensions were 

made in duplicate in a 96* MW plate. 104 51Cr labelled NP68/control peptide loaded B16 

cells were added to wells for 4hr at 37°C. For minimal and maximal lysis, cells were
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incubated with medium or 5% Triton XlOO respectively. CTL activity was measured by 

51Cr release with the formula; % lysis = [(sample -  min)/(max -  min)] xlOO.

2.9.2. IFNyand CD107a Staining

Intracellular Staining

Tissues from mice were mechanically dissociated and cells incubated for 4hr at 37°C in 

the presence of 3|iM monensin (Sigma-Aldrich, St Louis, USA). During this time cells 

were stimulated with either; lfxg/ml ionomycin and 20ng/ml PMA (Sigma-Aldrich, St 

Louis, USA), or NP68/irrelevant peptide. For intracellular CD 107a staining anti-CD 107a 

was also added during stimulation at 1:500. Surface and intracellular stains were then 

carried out as described above.

Surface Staining

Highly activated cells from infected mice could be stained directly ex-vivo with anti- 

IFNy and anti-CD 107a as described for extracellular staining

2.9.3. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 3.0. Where there was no 

statistically significant difference the data is marked ns. For p  values less than 0.05 data is 

marked with *, if less than 0.01 it is marked with **, and differences with a p  value of 

less than 0.001 are marked with ***.
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Chapter 3 -  Innate Immune Responses to B16FasL are 

Inhibited by CD4+CD25+ Regulatory T Cells

3.1. Introduction

CD4+CD25+ regulatory T cells (Treg) are a subset of T cells that have been shown to 

suppress T cell responses both in vitro and in vivo, as described in detail in the 

Introduction. One aim of this thesis is to assess whether the suppressive effect of Treg is 

confined to T cells or whether the cells are capable of inhibiting other non T cell 

responses. This Chapter describes experiments performed to assess the ability of Treg to 

inhibit innate immune responses.

The hypothesis that Treg inhibit innate immune responses was first formulated on the 

basis of an observation made in the laboratory using the tumour cell line, B16. In these 

experiments, RAG‘/_ mice were injected with CD4+CD25+ T cells or control CD4+CD25' 

cells, both from naive mice, followed by inoculation of B16 tumour cells. Although all 

mice grew tumours, tumours grew more rapidly in mice receiving Treg compared to mice 

receiving the control cell population, suggesting that there is a degree of tumour control 

exerted by the innate immune system which is suppressed by adoptive transfer of Treg.

In a model of tumour rejection involving a melanoma cell line expressing Fas ligand 

(B16FasL), in which 50% of B6 mice inoculated subcutaneously are capable of tumour 

rejection (Simon et al. 2002), rejection is thought to be largely T cell independent and 

accompanied by an inflammatory infiltrate at the site of tumour inoculation (Seino et al. 

1997; Chen et al. 1998a). A number of FasL expressing tumour cell lines have been 

shown to be more susceptible to rejection in vivo than their parental cell lines, and studies
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of intraperitoneally injected FasL+ tumours indicate a major role for the innate immune 

response, particularly neutrophils and macrophages, in the rejection process (Hohlbaum 

et al 2001; Chen et al. 2003b). Recent studies show that in this system membrane-bound 

FasL is a potent mediator of inflammation (Hohlbaum et al 2000) and neutrophil 

apoptosis, mediated via FasL expression, is crucial for the induction of inflammation 

(Shimizu et al 2001). Overall, these data indicate that B16FasL induces an inflammatory 

response and may therefore represent an ideal model in which to study the effects of Treg 

on innate immune responses.

This Chapter first describes experiments that characterise the innate immune response to 

the melanoma cell line B16FasL, and then investigates the hypothesis that Treg inhibit 

this response. Subsequent investigations will focus on the effect of Treg on individual 

populations of innate immune cells.
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3.2. Results

3.2.1. The Innate Immune Response is Sufficient for B16FasL 

Rejection

To address whether Treg impinge on innate immune responses, it was essential to 

characterise the immune response to B16FasL. Numerous studies have shown that 

enhanced rejection of FasL expressing tumour cell lines coincides with the induction of a 

pronounced inflammatory response (Seino et al 1997; Chen et al 1998a; Hohlbaum et 

al 2001; Chen et al 2003b). To determine whether this innate immune response is 

sufficient for B16FasL rejection, these cells were injected s.c. into both B6 and RAG'7' 

mice which lack T and B cells. As described previously (Simon et al 2002), 

approximately 50% of B6 mice were able to reject the tumour challenge. Interestingly 

RAG'7' mice were equally able to reject B16FasL (Figure 3.1), indicating that the innate 

immune response can result in tumour rejection in the absence of B cells and T cells.

3.2.2. NK cells and Macrophages are Important for B16FasL Rejection

Having determined that the innate immune response is sufficient for B16FasL rejection, 

experiments were undertaken to examine which cells were responsible for this tumour 

rejection by depleting neutrophils, macrophages and NK cells in vivo prior to tumour 

inoculation. Neutrophil and NK cell depletion with anti-Gr-1 (RB6-8C5) and anti-NKl.l 

(PK136) depleting antibodies has previously been described (Koo and Peppard 1984; 

Seino et al 1997), as has depletion of macrophages with carrageenan (Seino et al 1997). 

To check effective depletion in this model, mice
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Figure 3.1. RAG'7' and B6 Mice are Equally Able to Reject B16FasL Tumour 
Challenge
B6 and RAG'7' mice were injected s.c. with 105 B16FasL and tumour growth monitored 
over 100 days. Bars indicate mean percentage rejection ± SEM of 3 experiments, with the 
number of tumour free mice/total number of mice injected indicated at day 100.

96



treated with each depleting agent were monitored for the presence of these cell types 

(Figure 3.2A&B). Neutrophils were identified as SSCWCD11 b+Gr-1^4/80', 

macrophages as SSCintCDl lb+Gr-llo'mtF4/80+ (see Appendix Figure A.l) and NK cells as 

SSCloNKl.l+. Depletion of neutrophils was reflected by the total number of cells 

recovered from the lavage, which was reduced by approximately 30% in B16FasL treated 

mice (from 4.b8xl06 ± 1.49xl06 to 1.58xl06 ± 0.25xl06). Depletion of NK cells was 

confirmed by staining with a different monoclonal antibody also thought to recognise 

NK1.1 (3A4). Depletion of each cell type was achieved for 10 days using the regime 

described in Materials and Methods. Figure 3.3A shows that depletion of macrophages 

and NK cells in B6 mice inhibits rejection of B16FasL, whereas depletion of neutrophils 

had no effect on rejection. In RAG 7' mice, neutrophils and NK cells were important for 

B16FasL rejection (Figure 3.3B). Depletion of macrophages in RAG‘ ‘ mice reduced the 

number of tumour free mice but not to a statistically significant level.

3.2.3. Peritoneal Challenge Model

The data described above indicate that innate immune cells are sufficient for B16FasL 

rejection. However, functional analysis of cells from the site of subcutaneous tumour 

challenge is hampered because isolation of sufficient viable cells is difficult. It is for this 

reason that an in vivo peritoneal tumour cell challenge model was established.

3.2.4. Neutrophils, NK cells and Macrophages are Recruited upon 

Intraperitoneal Injection of B16FasL

To identify the cells recruited to the tumour site, B16FasL was injected into the 

peritoneum of B6 mice and immune cells recruited to the site collected by peritoneal 

lavage 18 hours later. The lavage was then evaluated by flow cytometry for its cellular
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Figure 3.2. Identification and Depletion of Neutrophils, NK cells and Macrophages
The presence or absence of neutrophils, NK cells and macrophages can be determined by 
flow cytometry. (A) Cells were identified by forward (FSC) and side (SSC) scatter, and 
by antibody binding to CDllb,  NK1.1, Gr-1 and F4/80: SSChlCD1 lb+Gr-lhiF4/80‘ 
(neutrophils); SSCToNK1.1+ (NK cells); SSCintCDl lb+Gr-l'°‘m'F4/80h' (resident 
macrophages) SSCinlC D llb+Gr-lmtF4/80mt (recruited macrophages). (B) Mice were 
depleted of neutrophils, NK cells and macrophages by treatment with RB6-8C5, PK136 
and carrageenan respectively and the presence of cells determined by FACS analysis. 
FACS plots are representative of 10 mice per group.
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Figure 3.3. Depletion of Neutrophils, NK cells and Macrophages
B6 and RAG" mice were depleted of neutrophils, NK cells and macrophages by 
treatment with RJB6-8C5, PK136 and carrageenan respectively. Mice were challenged s.c. 
1 day later with 105 B16FasL and tumour growth monitored over 60 days. Bars indicate 
mean percentage rejection ± SEM of 3 experiments, with the number of tumour free 
mice/total number indicated. Statistical significance was evaluated by Fisher’s Exact test 
(* p<  0.05).
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Figure 3.4. Neutrophils, NK cells and Macrophages are Recruited Following 
Intraperitoneal Injection of B16FasL
B6 mice were either challenged i.p. with 2x106 B16FasL [closed symbols] or an equal 
volume of PBS [open symbols]. 18 hours later, the peritoneum was lavaged and collected 
cells analysed by flow cytometry. Each symbol represents the percent of live cells in one 
mouse, with the mean indicated by the line. Statistical significance was determined by 
Mann-Whitney test (* /?<0.05).
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composition. Neutrophils, NK cells and macrophages were recruited to the peritoneum 

following injection of B16FasL (Figure 3.4).

3.2.5. NK Cells Isolated from the Peritoneum of B16FasL Challenged 

Mice Can Lyse Tumour Cells

In order to assess the anti-tumour activity of lavage cells, cells from the peritoneum of 

B16FasL challenged mice were used as effectors against chromium labelled tumour cells. 

Interestingly, lavage cells were able to lyse B16 (Figure 3.5A) and B16FasL ex vivo. The 

action of both neutrophils and NK cells can be cytolytic so it was hypothesised that these 

cell types may be responsible for the lytic activity of lavage cells. To investigate this, B6 

mice were depleted of neutrophils and NK cells in vivo using RB6-8C5 and PK136 

respectively (Figure 3.5B). In vivo depletion of NK cells but not neutrophils reduced the 

ex-vivo lysis of the tumour by the lavaged cells. In order to limit the possibility that 

depleting antibodies alter lytic activity, depletion of neutrophils and NK cells from the 

peritoneal lavage was also carried out ex vivo (Figure 3.5C). Similarly, depletion of NK 

cells but not neutrophils ex vivo completely abolished tumour lysis, also indicating that 

other cells do not contribute to tumour lysis in these experiments.

3.2.6. B16FasL Express NK Cell Activating Ligands

Since NK cells can receive stimulatory signals through the NKG2D receptor and are 

known to recognise the absence of MHC class I, B16 and B16FasL were tested for 

expression of the NKG2D ligand Rae-1 and levels of MHC class I. Both B16 and 

B16FasL were positive for the murine NKG2D ligand Rae-1 (Figure 3.6). The tumour 

cells also expressed low levels of MHC class I when compared to spleen cells (Figure 

3.6). The data shown here and above indicate that NK cells are recruited to the 

peritoneum upon B16FasL injection where they are capable of direct tumour lysis.

101



Depletion agent i.p.

24 hours

i

B16FasL i.p.

18 hours

Remove NK cells, 
neutrophils or both +  
prior to addition of 
tumour cells

5 hours

Measure 
51Chromium 
released into 
supernatant

Wash out 
peritoneal cells

oggog + 51Chromium 
labelled tumour 
cells

Figure 3.5. NK Cells in the Lavage of B16FasL Challenged Mice are Capable of 
Tumour Lysis Ex-Vivo
Mice were challenged i.p. with 2x106 B16FasL. 18 hours later, the peritoneum was 
lavaged and collected cells used as effectors against chromium labelled B16 (A). (B) 1 
day prior to B16FasL challenge mice were depleted in vivo of neutrophils (RB6-8C5) or 
NK cells (PK136) or remained undepleted. (C) Lavage cells were depleted ex vivo of 
neutrophils, NK cells or both using magnetic beads, prior to incubation with chromium 
labelled B16.
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Figure 3.5 (cont.). NK Cells in the Lavage of B16FasL challenged mice are capable 
of Tumour Lysis Ex-Vivo
Mice were challenged i.p. with 2x106 B16FasL. 18 hours later, the peritoneum was 
lavaged and collected cells used as effectors against chromium labelled B16. (A) Each 
symbol represents percent tumour lysis for each mouse with the mean indicated by the 
bar. (B) 1 day prior to B16FasL challenge mice were depleted in vivo of neutrophils 
(RB6-8C5) or NK cells (PK136) or remained undepleted. Graph shows mean percent 
tumour lysis ± SEM of 5 mice per group. (C) Lavage cells were depleted ex vivo of 
neutrophils, NK cells or both using magnetic beads, prior to incubation with chromium 
labelled B16. Graph shows mean percent tumour lysis ± SEM of 5 mice per group and 
are representative of 3 independent experiments.
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Figure 3.6. B16 and B16FasL Express NKG2D Ligand, Rae-1 and Low MHC Class I
B16 and B16FasL were immunostained with anti-Rae-1, anti-MHC class I [open 
histograms] or appropriate isotype control antibody [filled histograms], and evaluated by 
flow cytometry. Similarly stained naive spleen cells are included for reference.
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3.2.7. Treg Inhibit Innate Immune Rejection of B16FasL

The experiments described above indicate that the innate immune system is sufficient for 

rejection of B16FasL. Furthermore, NK cells recruited by B16FasL have been shown to 

have direct cytotoxic activity. It was now possible to test the hypothesis that Treg inhibit 

innate immunity. This hypothesis was investigated by depleting Treg in B6 mice prior to 

B16FasL challenge. Depletion of Treg is accomplished via administration of anti-CD25 

depleting antibody, PC61. Administration of lmg of PC61 results in an approximately 4- 

fold reduction in the number of CD4+CD25+ splenocytes and an approximately 2-fold 

reduction in CD4+FOXP3+ splenocytes for around three weeks after injection (Figure 

3.7A&B and Appendix Figure A.2). Mice treated with PC61 or isotype control antibody 

GL113 were then challenged s.c. with B16FasL and tumour growth monitored over 60 

days (Figure 3.7C). As expected 50% of GL113 treated mice rejected B16FasL challenge 

which was enhanced to 100% rejection upon PC61 treatment. Since the data shown 

previously indicate that B16FasL is rejected by innate immune responses, this data 

suggests that removal of Treg promotes rejection of the tumour cells by enhancing this 

response.

This conclusion is supported by further experiments injecting RAG'7' mice with 

CD4+CD25+ or CD4+CD25‘ cells purified from naive B6 mice, or PBS alone, and one 

day later inoculating them with B16FasL (Figure 3.8). Tumour growth was monitored 

weekly for at least 100 days. Approximately 50% of the mice inoculated with 

CD4+CD25‘ cells or PBS rejected the B16FasL inoculum. However, no rejection was 

observed in the mice receiving CD4+CD25+ cells indicating that Treg can inhibit the 

innate immune system. Collectively these data indicate that CD4+CD25+ Treg inhibit 

innate immune responses that are capable of tumour rejection in B6 and RAG'7' mice.
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Figure 3.7. CD25+ Cell Depletion Enhances Rejection of B16FasL in B6 mice
Mice were treated with either isotype control antibody (GL113) or anti-CD25 depleting 
antibody (PC61) and the presence of CD4+CD25+ and CD4+FOXP3+ cells evaluated by 
FACS. Representative FACS plots are given in (A) and the number of cells for each 
mouse is shown in (B). Statistical significance was evaluated by Mann-Whitney test (** 
jckO.01, *** /K0.001). Mice were challenged s.c. 1 day later with 105 B16FasL and 
tumour growth monitored over 100 days (C). Bars indicate mean percentage rejection ± 
SEM of 3 experiments, with the number of tumour free mice/total number indicated. 
Statistical significance was evaluated by Fisher’s Exact test (***/?<0.001).
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Figure 3.8. Adoptive Transfer of CD4+CD25+ Cells Inhibits Rejection of B16FasL in 
RAG-' Mice
RAG' ' mice were injected i.v with either 106 purified CD4+CD25+ cells [solid line], 106 
purified CD4+CD25' cells [dotted line] or an equal volume of PBS [dashed line]. 1 day 
later, mice were injected s.c. with 105 B16FasL and tumour growth monitored over 100 
days (A). The numbers of mice in each group are indicated in parentheses. The data is 
representative of 2 independent experiments summarised in (B). Bars indicate mean 
percentage rejection ± SEM, with the number of tumour free mice/total number injected 
indicated. Statistical significance was evaluated by Fisher’s Exact test (*/?=0.05).



3.2.8. Treg Inhibit NK Dependent Ex Vivo Tumour Lysis by Lavage 

Cells

Since NK cells were the only cell type shown to be important for tumour rejection in both 

B6 and RAG’7' mice, it was hypothesised that Treg cells inhibit the activity of B16FasL- 

induced NK cells. The intraperitoneal tumour challenge model showed that NK cells 

were responsible for tumour lysis and therefore provided a system to study the effect of 

Treg on NK cell function. To determine whether Treg inhibit NK cell mediated tumour 

lysis, purified CD4+CD25+ cells or CD4+CD25' cells were injected concomitantly with 

B16FasL tumour cells into the peritoneum of RAG'7' mice. 18 hours later the lavage cells 

were harvested and used as effectors against chromium labelled B16 and B16FasL. 

Figure 3.9 shows that the percentage tumour lysis was reduced in mice receiving 

CD4+CD25+ cells compared to those receiving CD4+CD25' cells. In agreement with this 

data are the results from B6 mice treated with either GL113 or PC61 with/without PK136 

(Figure 3.10). Treatment with PC61 alone enhanced tumour lysis; however in the absence 

of NK cells, PC61 treatment could not enhance tumour lysis. Together these experiments 

indicate that the increase in tumour lysis is due to NK cell activity and not activity of 

another cell type and therefore show that Treg inhibit the activity of NK cells.

3.2.9. Treg Reduce the Percentage of NK cells in the Lavage

Altered NK activity could be the result of altered activity on a per cell basis, altered 

recruitment or a product of the two. To address this, the proportion of NK cells in the 

lavage was monitored by flow cytometry. In B6 mice, adoptive transfer of purified 

CD4+CD25+ cells reduced the percentage of NK cells when compared to CD4+CD25' 

cells (Figure 3.11). The same experiment in RAG'7' mice yielded similar results
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Figure 3.9. Adoptive Transfer of CD4+CD25+ Cells Inhibits Tumour Lysis by 
Lavaged Cells from B16FasL Challenged RAG'7" Mice
RAG'' mice were injected i.p. with 10 purified CD4+CD25+ cells or CD4+CD25* cells. 
At the same time mice were injected i.p. with 2x106 B16FasL. 18 hours later, the 
peritoneum was lavaged and collected cells used as effectors against chromium labelled 
B16 and B16FasL. Graph shows mean percent tumour lysis ± SEM of 5 mice per group. 
Statistical significance was evaluated by Mann-Whitney test (* p< 0.05, ** /K0.01).
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Figure 3.10. CD25+ Ceil Depletion Enhances NK Cell Dependent Tumour Lysis by 
Lavaged Cells from B16FasL Challenged B6 Mice
B6 mice were treated with either isotype control antibody (GL113) or anti-CD25 
depleting antibody (PC61) with/without anti-NKl.l depleting antibody (PK136) 1 day 
prior to injection i.p. with 2xl06 B16FasL. 18 hours later, the peritoneum was lavaged 
and collected cells analysed by flow cytometry for the presence of NK cells. Symbols 
represent the percent tumour lysis for each mouse at a ratio of 50 lavage cells : 1 tumour 
cell. Bars represent the mean tumour lysis ± SEM. Data shown is representative of 3 
independent experiments. Statistical significance was evaluated by unpaired t-test (* 
p<  0.05).
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Figure 3.11. Adoptive Transfer of CD4+CD25+ Cells Reduces the Percentage of NK 
Cells in the Lavage of B16FasL Challenged B6 and RAG'7" Mice 
B6 and RAG'7" mice were injected i.p. with 106 purified CD4+CD25+ cells [open bars] or 
106 purified CD4+CD25' cells [shaded bars]. At the same time mice were injected i.p. 
with 2xl06 B16FasL. 18 hours later, the peritoneum was lavaged and collected cells 
analysed by flow cytometry for the presence of NK cells. Bars represent the mean percent 
of lavaged cells that are NK cells (SSCloN K l.l+) ± SEM from 5 B6 and 2 RAG'7' mice 
per group. Statistical significance was evaluated by Mann-Whitney test (** /K0.01).
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however could not be analysed for statistical significance due to the low number of mice 

used. Furthermore, treatment of B6 mice with PC61 tended to increase the percentage of 

NK cells in the lavage however it was not statistically significant (Figure 3.12). This data 

goes some way to support the hypothesis that Treg inhibit NK cell recruitment to the site 

of B16FasL challenge but further experiments are required to corroborate this 

observation.

3.2.10. Treg Directly Inhibit NK Dependent Ex Vivo Tumour Lysis by 

Lavage Cells

Experiments were done in collaboration with Dr Simon at Oxford University, to 

determine whether Treg inhibit NK cell activity on a per cell basis. CD4+CD25+ cells or 

CD4+CD25' cells purified from naive B6 mice were either left un-stimulated or 

stimulated with anti-CD3 antibodies and irradiated antigen presenting cells. These cells 

were then added to lavage cells obtained from B6 mice injected intraperitoneally with 

B16FasL at a ratio of 1:1 (Figure 3.13). Un-stimulated cells did not affect tumour lysis 

(data not shown). Stimulated CD4+CD25' cells neither lysed tumour cells directly nor 

affected tumour lysis when mixed with lavaged cells. Only stimulated CD4+CD25+ cells 

were able to inhibit tumour lysis and these cells also inhibited proliferation of 

CD4+CD25" cells in a conventional Treg suppression assay (72.4 ± 4.0 % inhibition at a 

ratio of 1:1 - Appendix Figure A.3).
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Figure 3.12. The Effect of CD25+ Cell Depletion on the Percentage of NK Cells in the 
Lavage of B16FasL Challenged B6 Mice
B6 mice were treated with either isotype control antibody (GL113) or anti-CD25 
depleting antibody (PC61) 1 day prior to injection i.p. with 2xl06 B16FasL. 18 hours 
later, the peritoneum was lavaged and collected cells analysed by flow cytometry for the 
presence of NK cells. Symbols represent the percent of lavaged cells that are NK cells 
(SSCloN K l.l+) in one mouse with bars indicating the mean. Data are a summary of 2 
independent experiments.
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Figure 3.13. I n  V i t r o  Activated CD4+CD25+ Cells Inhibit Tumour Lysis by Lavaged 
Cells from B16FasL Challenged B6 Mice
CD4+CD25+ cells or CD4+CD25‘ cells purified from naive B6 mice were stimulated with 
anti-CD3 and irradiated antigen presenting cells. These cells were then added to lavage 
cells obtained from B6 mice injected i.p. with 2x106 B16FasL 18 hours previously, at a 
ratio of 1:1. These cells also inhibited proliferation of CD4 CD25' cells in a conventional 
Treg suppression assay (data not shown). Bars represent the mean percentage tumour 
lysis ± SD of triplicate wells. Statistical significance was evaluated by Mann-Whitney 
test (* /K0.05).
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3.3. Discussion

As described in the Introduction, the aims of the experiments described in this Chapter 

were; 1) to characterise the immune response to B16FasL; 2) to assess the ability of Treg 

to inhibit innate immune responses; and 3) to investigate the effect of Treg, if any, on 

individual innate immune cells This was done by utilising the melanoma cell line B16 

engineered to express FasL, as FasL+ tumour cell lines have been reported to induce an 

innate immune response.

3.3.1. Characterising the Immune Response to B16FasL

The observation that RAG7' mice are equally able to reject s.c. B16FasL tumour 

challenge when compared to immunocompetent B6 mice demonstrates that innate 

immune responses are sufficient for B16FasL rejection. In order to characterise this 

response further two models were used. Injection of B16FasL subcutaneously allowed the 

identification of cells involved in tumour rejection. The model of intraperitoneal injection 

of B16FasL was developed in order to allow functional analyses of cells involved in this 

rejection process.

Upon i.p. injection of B16FasL, NK cells, neutrophils and macrophages were recruited to 

the peritoneum and the proportion of resident macrophages were concomitantly reduced 

as indicated by other studies (Hohlbaum et al 2001). Macrophages may promote tumour 

rejection directly by production of inflammatory cytokines and/or by recruitment of other 

cells (Hohlbaum et al 2001). Fas+ macrophages have been shown to secrete chemokines 

which act as attractants for both NK cells and neutrophils, upon engagement with FasL 

(Hohlbaum et al. 2001; Shimizu et al. 2005). To assess the role of macrophages in 

B16FasL rejection, mice were treated with carrageenan in order to deplete macrophages
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prior to s.c. injection of B16FasL. While carrageenan treatment reduced the percentage of 

mice able to reject B16FasL tumour challenge, agreeing with the current literature that 

macrophages are important for rejection, the interpretation of results is complicated by 

the fact that treatment with carrageenan also induced a neutrophil infiltrate (seen in figure 

3.2B). Attempts were made to deplete macrophages using multi-lamella vesicles (MLV) 

containing Clodronate, which is thought to be a cleaner depletion method (Rooijen and 

Sanders 1994); however effective depletion was unsuccessful. Therefore, a role for 

macrophages could not be definitively characterised in these experiments.

Cells lavaged from the peritoneum following i.p. injection of B16FasL showed ex vivo 

cytolytic activity towards tumour cells. This was dependent on NK cells as depletion of 

NK cells, in vivo or in vitro, abolished lavage cytolytic activity. This result is not 

surprising considering that both B16 and B16FasL express Rae-1, and low MHC class I. 

Rae-1 is a ligand for the NK cell activating receptor NKG2D (Yokoyama et al 2004) 

which along with the low levels of MHC class I, are factors known to enhance 

recognition by NK cells. Moreover, depletion of NK cells prior to s.c. injection of 

B16FasL reduced the percentage of mice able to reject tumour challenge in both B6 and 

RAG7' mice, indicating that NK cells are critical for B16FasL rejection.

The role of neutrophils is less clear cut as depletion in B6 mice did not affect rejection 

whereas depletion in RAG7' mice completely abolished rejection. Other studies have 

shown neutrophils recruited upon i.p. injection of FasL expressing cells were responsible 

for tumour lysis ex vivo (Seino et al. 1997; Chen et al 1998a). In contrast to these 

studies, depletion of neutrophils prior to B16FasL challenge had no effect on ex vivo 

tumour cell lysis. Removal of neutrophils from the lavage also had no effect on ex vivo
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tumour cell lysis. These results are in agreement with those in which tumour growth in 

mice deficient in neutrophil cytotoxicity was the same as that in wild-type mice when 

challenged with FasL expressing tumours (Igney et al. 2005).

Overall:

• Innate immune cells are sufficient for B16FasL rejection.

• Macrophages are recruited by B16FasL, however their precise role has yet to be 

defined;

• Neutrophils although recruited by B16FasL, do not contribute to ex vivo tumour 

lysis and are not essential for B16FasL rejection in B6 mice;

• NK cells are essential for s.c. B16FasL rejection and are capable of tumour lysis 

ex vivo suggesting that they are the main effector cell for B16FasL rejection.

3.3.2. Treg Inhibit Innate Immune Responses

Having established that B16FasL is rejected by innate immune cells, the next step was to 

assess the ability of Treg to inhibit this rejection. In order to address this, B6 mice were 

treated with PC61 prior to B16FasL inoculation. PC61 is a monoclonal antibody specific 

for CD25 and has been widely used to deplete naturally occurring Treg in naive mice 

which constitutively express CD25 (Onizuka et al. 1999). Currently there are no unique 

cell surface markers identified for Treg that would allow specific targeted depletion in 

vivo. Although the majority of CD4+CD25+ cells were depleted by PC61 treatment, only 

approximately half of CD4+FOXP3+ cells were depleted. Despite this, PC61 treatment 

enhanced B16FasL rejection from 50% to 100%. Since B16FasL has been shown to be 

rejected by innate immune cells, this suggests that Treg may suppress innate immune 

responses. Furthermore, adoptive transfer of purified CD4+CD25+ cells, which have been
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shown to contain the Treg population (Sakaguchi et al 1995) prevented B16FasL 

rejection in 100% of RAG'7' mice indicating that Treg do indeed inhibit the innate 

immune system.

3.3.3. Treg Inhibit NK Cell Activity

The ability of Treg to suppress tumour lysis by lavaged cells was then assessed. In RAG'7' 

mice adoptive transfer of CD4+CD25+ cells inhibited lysis and in B6 mice PC61 

treatment enhanced lysis. This tumour lysis was shown to be dependent on NK cells and, 

in the absence of NK cells, PC61 treatment could not enhance lysis. This demonstrates 

that depletion of Treg did not enhance the activity of another cell type, which then acts in 

addition to existing NK cell activity and therefore indicates that Treg inhibit NK cell 

activity.

Treg inhibition of NK cell activity manifests in two ways. Data presented in this chapter 

demonstrates the ability of Treg, activated by anti-CD3 antibody and irradiated APC, to 

inhibit the NK cell dependent cytotoxic activity of lavage cells. During the course of this 

investigation similar findings have been published by other investigators (Trzonkowski et 

al 2004; Ghiringhelli et al 2005; Smyth et al 2006). Trzonkowski et. al showed that 

coincubation of human NK cells with purified CD4+CD25+ cells inhibited IFNy and 

perforin production and resulted in a reduction of NK cytotoxic activity. The mechanism 

remained elusive but enhanced generation of NK-Treg conjugates in vitro was reported 

along with increased IL-10 production.

A study of GIST (gastrointestinal stromal tumour-bearing) patients treated with Gleevec 

STI571 in order to enhance anti-tumour NK activity, showed that Treg numbers were
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enhanced in patients which did not display NK cell induction (Ghiringhelli et al. 2005). 

Treg were shown to inhibit NK cell cytotoxicity and IFNy secretion in a non fixation 

sensitive manner, later identified as membrane bound TGFp. Neutralising anti-TGFp 

antibody could prevent inhibition and soluble TGFp mimicked the effect of Treg by 

altering expression of inhibitory receptor NKG2D. In parallel, experiments carried out in 

the murine system produced similar findings. Adoptive transfer of Treg inhibited NK 

target cell lysis by splenocytes and reduced the expression of NKG2D, yet adoptive 

transfer of TGFp'7' Treg did not. Adoptive transfer of Treg also resulted in more lung 

metastases in nu/nu mice challenged with the melanoma B16 transfected with NKG2D 

ligand Rae. In addition, they reported that scurfy (Foxp3 deficient) mice had enhanced 

NK target cell lysis by splenocytes and Treg depletion with PC61 enhanced splenic NK 

proliferation.

Similar findings were presented using various tumour cell lines expressing Rae-1 

isoforms in the murine system (Smyth et al. 2006). However, in contrast to the study by 

Ghiringhelli et. al. and in agreement with our findings, only activated Treg were able to 

inhibit NK cell cytotoxicity. Since Ghiringhelli et. al. did not attempt this experiment in 

their murine system these differences may be due to differences between human and 

mouse Treg. Neutralising anti-TGFp antibody also restored cytotoxicity, unlike anti-ILlO 

antibody, and this was shown to be contact dependent. Another disparity was that no 

enhanced NK cell cytotoxicity or proliferation was detected in PC61 treated mice. The 

effect of Treg on NK cells was also demonstrated in vivo by adoptive transfer of activated 

Treg into RAG'7' mice prior to i.v. tumour challenge, resulting in increased lung 

metastases. No increase in lung metastases was observed upon Treg transfer in the 

absence of NK cells.
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In accordance with the observation that Treg inhibits NKG2D-mediated NK cell tumour 

lysis, both B16F10 and B16FasL used in these experiments express the NK2GD ligand, 

Rae-1. Both of latter studies demonstrate that suppression by the Treg is dependent on 

TGFp. However, in the B16FasL model, TGFp does not completely account for the 

suppressive effect of Treg on NK cells, since neutralisation of TGFP in vivo using the 

TGFp-specific -neutralising antibody, 1D11, did not increase tumour lysis within the 

peritoneal lavage (data not shown). However, it was observed that treatment with 1D11 

increased NK cell recruitment into peritoneum following injection of tumour cells. The 

increase, although not statistically significant, was consistent thus raising the possibility 

that production of TGFp by Treg also impedes recruitment of NK cells.

Indeed, the suppressive effect of Treg on NK cytotoxicity may be magnified in vivo by 

Treg inhibition of NK cell migration to the site of tumour challenge. Adoptive transfer of 

CD4+CD25+ cells into RAG7' mice prior to B16FasL challenge impaired the recruitment 

of NK cells to the peritoneum and the converse was seen in B6 mice treated with PC61 

however the difference was not significant. Studies of NK migration following virus 

infection support a role for MIP-loc, a chemokine whose production is driven by Type I 

interferons (IFNs) (Salazar-Mather et al 2002; Yokoyama et al 2004). Hohlbaum et. al 

showed MIP-la production by cells isolated from the peritoneum post challenge with 

FasL expressing cells and another study later confirmed that macrophages were the 

source (Hohlbaum et al 2001; Shimizu et al 2005). Therefore the stimulation of MIP-la 

secretion by Fas ligation on resident macrophages may recruit NK cells and ultimately 

lead to tumour rejection. Indeed, this laboratory has previously shown that the ability to 

reject B16FasL is impaired in MIP-la deficient mice (Simon et al 2002; Jones et al 

2003), a finding that may be attributable to defective NK cell migration to the tumour
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site. The mechanism by which Treg inhibit NK cell migration may not be a direct effect 

on NK cells but an inhibition of cytokine production by macrophages. Further studies are 

required in order to elucidate this mechanism.

In summary, this Chapter demonstrates that Treg can inhibit innate immune rejection of 

B16FasL. In agreement with recently published studies it has also been shown that Treg 

can directly inhibit NK cell cytotoxicity of tumour cells. However, this chapter has also 

identified a possible role for Treg in the regulation of NK cell migration to sites of 

immune challenge. It still remains unclear whether this is a direct effect on NK cells or an 

indirect effect through the suppression of chemoattractant production by other cell types 

and is a matter for further investigation.
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Chapter 4 -  Neutrophil Recruitment by B16FasL is 

Inhibited by CD4+CD25+ Regulatory T Cells

4.1. Introduction

In the previous, chapter, a tumour cell line expressing Fas ligand (B16FasL) was shown to 

be rejected by the innate immune system, and was used to address the hypothesis that 

Treg suppress innate immune responses. Indeed, in vivo depletion of Treg in wild-type 

B6 mice enhanced tumour rejection whilst adoptive transfer of Treg into RAG" ' mice 

inhibited tumour rejection indicating that Treg do suppress innate immune responses.

An article published during the course of this study supports these findings. The study of 

Helicobacter hepaticus infected RAG*' mice showed that adoptive transfer of 

CD4+CD25+CD45RBlow cells (Treg) from naive B6 mice inhibited T cell-independent 

intestinal inflammation via IL-10 and TGFp (Maloy et al 2003). In this model of chronic 

inflammation, numbers of neutrophils, monocytes/macrophages, NK cells and dendritic 

cells (DC) were lower in spleens of mice receiving Treg, indicating a role for Treg in the 

control of chronic (systemic) inflammation.

The inhibition of multiple cell types involved in chronic inflammation by Treg would be 

advantageous to the host, preventing excessive immunopathology and possibly death. 

However, unlike the model studied by Maloy et. al., the B16FasL tumour model is one of 

acute inflammation. Since acute inflammation can be detected within hours, the ability of 

Treg to suppress B16FasL rejection would suggest that Treg might also act rapidly to 

suppress the innate immune system.
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Although the data presented in the previous chapter indicate that Treg inhibit NK cells, in 

order to address the hypothesis that Treg suppress acute inflammatory responses, the 

effect of Treg on other innate immune cells must be studied. It has been shown in the 

previous chapter that B16FasL tumour challenge induces the recruitment of neutrophils 

and macrophages and that Treg depletion enhances B16FasL rejection. This Chapter 

describes experiments designed to address the hypothesis that Treg also inhibit neutrophil 

and macrophage responses, with a view to exploring further the theory that Treg are 

rapidly active.
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4.2. Results

4.2.1. Treg Depletion Enhances B16FasL Rejection in NK Depleted 

Mice

To characterise more fully the impact of Treg on the innate immune system, experiments 

were performed to determine whether cell types other than NK cells, were required for 

tumour rejection after treatment of mice with CD25-specific depleting antibodies. To 

explore the hypothesis that cells of the innate immune system, other than NK cells, may 

be inhibited by Treg in our model of B16FasL rejection, mice were treated with both 

PK136 and PC61, in order to deplete NK cells and CD25+ cells respectively, followed by 

s.c. challenge with B16FasL (Figure 4.1 A and B). Figure 4.1 A is a duplication of Figure 

3.3A for reference. Interestingly, PC61 treatment could still enhance rejection in those 

mice depleted of NK cells suggesting that Treg could be inhibiting the action of other cell 

types involved in B16FasL rejection.

4.2.2. Treg Depletion Cannot Enhance B16FasL Rejection in 

Neutrophil Depleted Mice

Despite the finding in the previous chapter that neutrophils are not essential for B16FasL 

rejection in B6 mice, they are recruited to the peritoneum following i.p. injection of 

B16FasL in agreement with many other studies (Seino et al. 1997; Chen et al. 1998a; 

Hohlbaum et al. 2001). It is possible therefore that although not essential, they contribute 

to tumour rejection and that this anti-tumoural activity is inhibited by Treg. In order to 

test this hypothesis, mice were treated with both PC61 and RB6-8C5, to deplete 

neutrophils, followed by s.c. challenge with B16FasL (Figure 4.2A and B). Figure 4.2A
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Figure 4.1. CD25+ Cell Depletion Enhances Tumour Rejection in the Absence of NK 
Cells
Mice were treated with either (A) Isotype control antibody (GL113) or (B) anti-CD25 
depleting antibody (PC61), with/without anti-NKl.l depleting antibody (PK136). Mice 
were injected s.c. 1 day later with 105 B16FasL and tumour growth monitored over 100 
days. Bars indicate mean percentage rejection ± SEM of 3 experiments, with the number 
of tumour free mice/total number indicated. Statistical significance was evaluated by 
Fisher’s Exact test (*/?<0.05).
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Figure 4.2. CD25+ Cell Depletion Cannot Enhance Tumour Rejection in the Absence 
of Neutrophils
Mice were treated with either (A) Isotype control antibody (GL113) or (B) anti-CD25 
depleting antibody (PC61), with/without anti-NKl.l (PK136) or anti-Gr-1 (RB6-8C5) 
depleting antibodies. Mice were injected s.c. 1 day later with 105 B16FasL and tumour 
growth monitored over 100 days. Bars indicate mean percentage rejection ± SEM of 3 
experiments, with the number of tumour free mice/total number indicated. Statistical 
significance was evaluated by Fisher’s Exact test (** p<0.01).
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is a duplication of Figure 3.3 A for reference. No enhancement of rejection was observed 

in neutrophil depleted mice upon PC61 treatment indicating that neutrophils are 

important for the increased rejection seen in PC61 treated mice, suggesting that their 

activity is normally inhibited by Treg.

4.2.3. Neutrophil Recruitment to the Peritoneum Following B16FasL 

Injection is Not Affected by Treg Depletion

The ability of Treg to inhibit neutrophils could manifest as reduced neutrophil numbers at 

the site of challenge or reduced activity on a per cell basis. In order to characterise the 

effect of Treg on neutrophil numbers, cells recruited to the peritoneum at different time 

points by B16FasL challenge were analysed for their neutrophil content. In the previous 

chapter, the peritoneal model of tumour inoculation was used in order to recover recruited 

cells for analysis and at 18 hours post tumour inoculation, there was no difference in the 

number of neutrophils recovered from the lavage of PC61 and GL113 (isotype control 

antibody) treated mice. The lifespan of neutrophils is known to be short, with the most 

generous estimates being 24 hours for infiltrating neutrophils, and just 10 hours for 

circulating neutrophils (Yamashiro et al. 2001). For this reason it was hypothesised that 

an increase in neutrophil number upon Treg depletion might be observed at different time 

points given that neutrophil infiltration is detectable after just 1 hour. In order to address 

this, GL113 and PC61 treated mice were injected i.p. with B16FasL and the cells from 

peritoneal cavity collected by lavage 1, 3, 6, 18, 24, and 36 hours later. The number of 

recruited neutrophils for each mouse was assessed by flow cytometry as 

SSChiCDllb+Gr- lhiF4/80“ as described in Chapter 3 (Figure 4.3). No difference in 

neutrophil recruitment was observed at any time point, post i.p. injection of B16FasL, 

between groups of mice, suggesting that Treg do not enhance neutrophil recruitment to 

the peritoneum.
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Figure 4.3. Neutrophil Numbers in Lavage Fluid are Not Affected by CD25+ Cell 
Depletion
Mice were treated with either isotype control antibody (GL113 -  solid line) or anti-CD25 
depleting antibody (PC61 -  dotted line) and injected i.p 1 day later with 2xl06 B16FasL. 
At the indicated time points, mice were sacrificed and the peritoneal cavity lavaged. Cells 
from the lavage were counted and immunostained for CD lib,  Gr-1 and F4/80. Presence 
of neutrophils (SSC^CDl lb+Gr-lhiF4/80') in the lavage fluid was analysed by flow 
cytometry as in Chapter 3. Mice were analysed individually and data shown are the mean 
± SEM of >5 mice per group.
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4.2.4. Treg Depletion Results in an Increased Number of Nuclear 

Segments in Neutrophils Isolated from the Peritoneum Following 

B16FasL injection

Although no differences in neutrophil numbers were observed in the above experiment, 

cytospins generated from 18 hour lavaged cells showed phenotypic differences in 

neutrophils isolated from GL113, compared to PC61, treated mice. Cytospins were 

generated from 240|il of lavage fluid and enabled visualisation of recruited cells. Cell 

counts confirmed that there was no difference in the number of recruited neutrophils (data 

not shown), however it was noted that neutrophils from PC61 treated mice had an 

increased number of nuclear segments. Examples of segmented nuclei are given in Figure 

4.4A, where segments are joined by thin strands of chromatin. Figure 4.4B and 4.4C are 

examples of neutrophils isolated from GL113 and PC61 treated mice respectively. Upon 

enumeration, it was evident that the proportion of neutrophils with a higher number of 

segments was increased in PC61 treated mice (Figure 4.4D) which resulted in an increase 

in the average number of segments per neutrophil (Figure 4.4E).

4.2.5. Treg Depletion Results in an Increase in Cellular Mass at the 

Site of B16FasL Injection

Whilst the peritoneal model is useful, it was hypothesized that neutrophil recruitment and 

access to tumour may be different in the skin. Injection of fluid subcutaneously (with or 

without tumour cells) causes visible distortion and possibly cellular stress due to the 

inability to diffuse quickly, the effect of which is less severe upon intraperitoneal 

injection, and this process could more potently initiate neutrophil infiltration. In addition, 

s.c. injection restricts tumour cells to a discrete area of the skin unlike in the peritoneal 

model where cells have a much greater volume in which to settle. There are also distinct
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Figure 4.4. Increased Number of Nuclear Segments in Neutrophils from CD25+ Cell 
Depleted Mice
Mice were treated with either isotype control (GL113) or anti-CD25 depleting antibody 
(PC61) and injected i.p 1 day later with 2xl06 B16FasL. 18 hours later, mice were 
sacrificed and the peritoneal cavity lavaged. Cytospins generated of lavaged cells were 
stained and number of segments in 100 neutrophils assessed. (A) Examples of segmented 
neutrophils. (B) and (C) Representative photographs of cytospins generated from GL113 
(B) and PC61 (C) treated mice. (D) Indicates proportion of neutrophils with given 
number of segments. Mice were analysed individually and data shown are the mean ± 
SEM of 4 mice per group. (E) Indicates the average number of segments in neutrophils 
isolated from 4 mice per group, with bars indicating the mean per group. Statistical 
significance was evaluated by Mann Whitney test (* p=0.0286).
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populations of cells found in the skin which could significantly contribute to neutrophil 

activation and recruitment, such as keratinocytes which are a rich source of IL-1. 

Migration of neutrophils towards tumour cells could also be more restricted in skin due to 

being surrounded by extracellular matrix, unlike in the peritoneum. For these reasons it 

was important to study the neutrophil infiltration in the skin.

Isolation of cells from the precise site of s.c. inoculation is difficult at such early time 

points due to size and number of cells, however, histological analysis of the site of 

inoculation allowed the study of the cellular infiltrate at the non-palpable B16FasL 

inoculation site. B6 mice treated with GL113 or PC61 were injected s.c. with 105 

B16FasL and 4, 24, 96, and 240 hours after tumour injection mice were sacrificed and 

injected skin removed for histology. Tissue was embedded in paraffin and 5|im sections 

cut at 300pm intervals throughout the skin. Sections were then H&E stained to locate the 

midsection of the tumour infiltrate (Figure 4.5). It is clear from all sections that there is a 

large amount of cell death, as indicated by the lack of cellular cohesion and presence of 

fragmented nuclei. Fragmented nuclei often resemble the polymorphonuclear phenotype 

of neutrophils and it is therefore difficult to distinguish different cell types within these 

areas by histology. There is however a visible increase in size of the cellular mass at 24 

hours in the PC61 treated group compared with the GL113 treated group (Figure 4.4C 

and D). Analysis of the total volume of the cellular mass, calculated as described in 

Chapter 2 (Figure 2.1), in each of >4 mice per group supported this observation (Figure

4.6). There is a rapid increase in size of cellular mass between 4 and 24 hours which 

tends to be greater in the PC61 treated mice, although not quite significantly different. It 

is unlikely that this increase is due to tumour cell division and, due to the early time 

point, is most likely to consist of tumour cells and an inflammatory infiltrate. Between 24
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Figure 4.5. Cellular Mass at the Site of B16FasL Injection is Larger in CD25+ Cell 
Depleted Mice
Mice were treated with either isotype control antibody (GL113 -  A-G) or anti-CD25 
depleting antibody (PC61 -  H-N) were injected s.c. 1 day later with 105 B16FasL. At the 
indicated time points, mice were sacrificed and skin surrounding the injection site 
collected for histology. H&E stained 5pm paraffin sections were generated throughout 
the skin. Sections shown are representative of >4 mice per group, (continued on next 
page)
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Figure 4.6. Total Volume of Cellular Mass at the Site of B16FasL Injection is Larger 
in CD25+ Cell Depleted Mice
Mice were treated with either isotype control antibody (GL113 -  solid line) or anti-CD25 
depleting antibody (PC61 -  dotted line) were injected s.c. 1 day later with 105 B16FasL. 
At the indicated time points, mice were sacrificed and skin surrounding the injection site 
collect for histology. H&E stained 5pm paraffin sections were generated every 300pm 
throughout the skin. An estimation of the volume of cellular mass was based on the area 
of cellular mass on each section and the distance between them, as described in Figure 
2.1. Data shown are mean ± SEM of >4 mice per group. Statistical significance was 
evaluated by Mann Whitney test.
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and 96 hours there is a switch as control mice have larger cellular masses, coinciding 

with an increased number of live tumour cells.

4.2.6. Treg Depletion Results in Enhanced Neutrophil Recruitment to 

the Site of B16FasL Injection

In order to ascertain the precise constituents of the cellular mass, and therefore address 

the hypothesis that Treg inhibit neutrophil recruitment, immunohistochemistry was 

performed. IL-8 and its mouse counterpart, MIP-2, attract neutrophils to the site of 

inflammation and the IL-8 receptor (IL-8R) is expressed on the majority of mature 

neutrophils. For this reason, an antibody to the murine IL-8R was used, in conjunction 

with haematoxylin nuclear staining, to identify neutrophils in the cellular mass (Figure

4.7). Visualisation of anti-IL8R antibody with horseradish peroxidase and DAB substrate 

produced a dark brown product. Due to the large amount of cell debris, which non- 

specifically binds antibodies, identification of cells within areas of cell death was 

obscured thus hampering colorimetric analysis. However in other areas neutrophils were 

identified as polymorphonuclear cells which express IL-8R (dark brown staining). For 

this reason the midsections of cellular mass for each mouse were blindly ranked 

according to the extent of neutrophil infiltrate. The slides were then grouped into those 

with similar infiltrates which resulted in scores out of 5 (Figure 4.8A). Since a difference 

in the neutrophil infiltrate between groups was more obvious at 24 hours, the neutrophils 

were counted on these slides. The results show an increased number of neutrophils in 

PC61 treated mice at 24 hours post injection. The results reflect the data on increased 

cellular mass in PC61 treated mice, with a significant increase in neutrophil infiltrate 

evident at 24 hours. In combination these results suggest that Treg inhibit neutrophil 

recruitment in the skin.
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Figure 4.7. Neutrophil Recruitment to the Site of B16FasL Injection is Greater in 
CD25+ Cell Depleted Mice at 24 Hours
(A) Mice were treated with either isotype control antibody (GL113) or anti-CD25 
depleting antibody (PC61) were injected s.c. 1 day later with 105 B16FasL. At 24 hours 
mice were sacrificed and skin surrounding the injection site collected for histology. IL-8R 
stained 5|im paraffin sections were generated to identify neutrophils. Areas of neutrophil 
infiltration are enclosed by lines. 2 sections from each group are shown and are 
representative of 5 mice per group. All photographs are taken at x5 magnification. (B) 
Examples of neutrophils (indicated by yellow arrows) which stain dark brown with multi- 
lobed nuclei visible at x 40 magnification.
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Figure 4.8. Neutrophil Recruitment to the Site of B16FasL Injection is Greater in 
CD25+ Cell Depleted Mice at 24 Hours
Mice were treated with either isotype control antibody (GL113 -  closed symbols) or anti- 
CD25 depleting antibody (PC61 -  open symbols) were injected s.c. 1 day later with 105 
B16FasL. At the indicated time points, mice were sacrificed and skin surrounding the 
injection site collected for histology. 5pm paraffin sections were generated throughout 
the skin and midsections from each mouse stained with anti-IL-8R antibody to identify 
neutrophils. (A) Sections were blindly ordered according to the amount of neutrophil 
infiltrate. Those showing similar infiltrate were grouped together and groups were 
assigned a score from those in group 0 having no neutrophils to those in group 5 having 
the greatest number of neutrophils. (B) The numbers of neutrophils, assessed as 
polymorphonuclear cells with IL-8R expression, are given for sections taken at 24 hours 
post injection. Each symbol represents the score for one mouse. Statistical significance 
was evaluated by Mann Whitney test (* /K0.05).
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4.2.7. Neutrophils are Able to Lyse B16FasL In Vitro

Although present at the site of B16FasL injection, the capacity of neutrophils to 

contribute to tumour rejection remains unclear. The experiments in the previous chapter 

suggest that neutrophils recruited to the peritoneum are unable to lyse tumour cells ex- 

vivo (Figure 3.5). However due to the short life span of activated neutrophils, it is 

possible that their lytic activity wanes once recruited and activated in the peritoneum. In 

order to address the hypothesis that neutrophils can lyse tumour cells, mature neutrophils 

isolated from mouse bone marrow were used as effectors against chromium labelled B16 

and B16FasL (Figure 4.9A). The results show that neutrophils can lyse tumour cells in 

vitro and that they show enhanced lytic activity against B16FasL. Furthermore, 

neutrophils isolated from the peripheral blood of healthy volunteers also lysed B16FasL, 

but not B16, in vitro (Figure 4.9B).

4.2.8. Histological Differences Between Isotype Control and Anti- 

CD25 Depleting Antibody Treated Mice

During analysis of neutrophil numbers, it was noticed that there were two forms of 

cellular mass displaying different histological characteristics (Figure 4.8). In one type, 

cells are confined to a single layer of the skin, in a rounded symmetrical shape, 

surrounded by normal tissue (Figure 4.10A). In the other type, inflammatory cells are 

spread throughout the layers of the skin, forming irregular shaped cellular masses (Figure 

4.1 OB). Strikingly, upon assessment of sections for these characteristics, none of the 

sections from PC61 treated mice, and only half of the GL113 treated mice, displayed the 

‘confined’ phenotype (Figure 4.IOC). This is particularly interesting when compared to 

the percentage of mice that reject these tumours; 50% in GL113 treated mice and 100% 

in PC61 treated mice. Furthermore, there is a positive correlation between confined
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Figure 4.9. Isolated Neutrophils Lyse B16FasL I n  V i t r o
Neutrophils isolated from the bone marrow of mice (A) or blood of healthy volunteers 
(B) were used directly as effectors against Chromium labelled B16 or B16FasL at a ratio 
of 40:1. Bars indicate mean ± SD of duplicates and graphs are representative of 2 
experiments.
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Figure 4.10. Confinement of Cellular Mass
Mice were treated with either isotype control antibody (GL113) or anti-CD25 depleting 
(PC61) antibody were injected s.c. 1 day later with 105 B16FasL. At 4, 24, 96 and 240 
hours post injection, mice were sacrificed and skin surrounding the injection site 
collected for histology. H&E stained 5pm paraffin sections were generated throughout 
the skin. Sections shown are representative confined (A) and non-confined (B) cellular 
masses. (C) The percentage of mice displaying the confined phenotype of cellular mass. 
(D) Live tumour cells show irregular nuclear staining indicated by yellow arrows. (E) 
Non-confined and confined cellular masses were studied for the presence of live tumour 
cells. Statistical significance was evaluated by Fisher’s exact test (***/?<0.001).

140



cellular masses and those containing live tumour cells (Figure 4.10D and E). Together 

this data suggests a link between the confined phenotype and tumour outgrowth.

4.2.9. Macrophage Recruitment to the Peritoneum Following B16FasL 

injection is Not Affected by Treg Depletion

Based on studies of intraperitoneally injected tumour, others have implicated 

macrophages in the chain of events resulting in rejection of FasL+ tumours. It is thought 

that FasL induction of apoptosis in Fas+ macrophages (Hohlbaum et al. 2000; Hohlbaum 

et al. 2001), results in release of neutrophil chemotactic factors. In order to assess their 

involvement in rejection and a possible difference in Treg depleted mice, GL113 and 

PC61 treated mice were injected i.p. with B16FasL and the cells from peritoneal cavity 

collected by lavage. The number of resident and recruited macrophages was then assessed 

by flow cytometry. As described in Chapter 3 resident macrophages in the lavage fluid 

were identified as SSCmtCDl lb+Gr-lmtF4/80hi (Figure 4.11 A) and recruited macrophages 

as SSCmtCDl lb+Gr-lmtF4/80mt (Figure 4.1 IB). In support of a previous study (Hohlbaum 

et al. 2001), a drop in macrophage number was observed up to 6 hours post B16FasL 

injection, however no difference in macrophage recruitment was observed at any time 

point between GL113 and PC61 treated mice, suggesting that Treg do not enhance 

macrophage recruitment to the peritoneum.
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Figure 4.11. Macrophage Numbers in Lavage Fluid are Not Affected by CD25+ Cell 
Depletion
Mice were treated with either isotype control antibody (GL113 -  solid line) or anti-CD25 
depleting antibody (PC61 -  dotted line) and injected i.p 1 day later with 2xl06 B16FasL. 
At the indicated time points, mice were sacrificed and the peritoneal cavity lavaged. Cells 
from the lavage were counted and immunostained for CD lib, Gr-1 and F4/80. Presence 
of (A) resident (SSClntCDl lb+Gr-lintF4/80M) and (B) recruited (SSCtatCDl lb+Gr- 
1 m'F4/80mI) macrophages in the lavage fluid was analysed hy flow cytometry as in 
Chapter 3. Mice were analysed individually and data shown are the mean ± SEM of >5 
mice per group.
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4.2.10. The Cellular Mass Does Not Include Macrophages

As described earlier for neutrophils, the events in the peritoneum may be different to that 

in the skin. In addition, the peritoneum has a large, distinct resident population of 

macrophages which is likely to be different to that found in the skin. Again, histological 

analysis of thq site of inoculation provides the ideal way to study macrophages at the 

B16FasL inoculation site. For this reason, serial sections of those obtained for IL-8R 

staining were immunostained with anti-F4/80 antibody, a macrophage / monocyte 

marker, in conjunction with haematoxylin nuclear staining, to identify macrophages in 

the cellular mass. Visualisation of anti-F4/80 antibody with Alkaline Phosphatase and 

Fast-Red substrate produced a red product. Surprisingly, there were no F4/80+ cells in the 

cellular mass (Figure 4.12 A-D) and only a few in the surrounding tissue; for comparison, 

a section from a mouse injected with the parental cell line B16 showed a much more 

evident macrophage infiltrate (Figure 4.12E). Furthermore there was no difference in 

macrophage number detected between groups of mice. It is therefore possible that 

peritoneal events reflect those in the skin in that macrophages numbers are depleted at 

very early time point which simultaneously prevents detection of any difference in 

macrophages between GL113 and PC61 treated mice using this method.
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Figure 4.12. Absence of Macrophages in B16FasL Injected Skin
Mice were treated with either isotype control antibody (GL113 -  A&C) or anti-CD25 
depleting antibody (PC61 -  B&D) and injected s.c. 1 day later with 105 B16FasL. At the 
indicated time points, mice were sacrificed and skin surrounding the injection site 
collected for histology. 5pm paraffin sections were generated at 300pm throughout the 
skin. Midsections of the cellular infiltrate were then immunostained with anti-F4/80 
antibody and visualised with Alkaline Phosphatase and Fast-Red to give a red substrate. 
(E) Unlike B16FasL, mice injected with B16 exhibit a macrophage infiltrate. All 
photographs are taken at x20 magnification.
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4.3. Discussion

One aim of this thesis was to address the hypothesis that Treg suppress innate immune 

activity. Having shown in the previous chapter that Treg inhibit NK cell activity it was 

important to assess the effect of Treg on other cells of the innate immune response, in 

particular neutrophils and macrophages. This was done by utilising the melanoma cell 

line B16FasL which has been shown to induce neutrophil and macrophage infiltration.

4.3.1. Neutrophils

The ability of Treg-depleted mice to reject B16FasL in the absence of NK cells indicated 

that other cell types were involved in enhancing rejection. In addition, Treg depletion in 

the absence of neutrophils failed to enhance rejection, indicating that neutrophils are at 

least partly responsible for the enhanced tumour rejection observed in the absence of 

Treg. Together these results suggest that neutrophils are inhibited by Treg.

Treg inhibition of neutrophils could be a result of suppressed neutrophil recruitment 

and/or suppressed activity. Data presented in this chapter shows that although the 

recruitment of neutrophils to the peritoneum following i.p. injection of B16FasL was not 

inhibited by Treg, the ability of neutrophils to infiltrate the subcutaneous site of tumour 

challenge was enhanced by Treg depletion. These results reflect those from studies of 

Helicobacter hepaticus infected RAG'7' mice where it was found that adoptive transfer of 

Treg reduced neutrophil numbers in the spleen and lamina propria (Maloy et al 2003), 

although the model is that of chronic inflammation. Since intestinal inflammation 

induced by H. hepaticus could not be inhibited by Treg isolated from IL-10'7' mice and 

was blocked by in vivo administration of anti-IL-lOR and anti-TGFp antibodies, it is 

likely that these soluble factors are involved in the inhibition of neutrophil recruitment.
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In the experiments described here, neutrophils isolated from mice and humans were able 

to lyse B16FasL indicating that neutrophils are capable of tumour lysis; however, target 

cell lysis could not be inhibited in vitro by addition of anti-CD3/CD28 activated Treg 

(data not shown). In contrast, a recent study of human neutrophils reporting that LPS- 

activated CD4+CD25+ Treg suppressed PMA-induced reactive oxygen intermediate 

(ROI) production and CD62L expression in neutrophils, whilst increasing CD lib  

expression, all of which are markers of neutrophil activation (Lewkowicz et al. 2006). 

Furthermore, LPS-activated CD4+CD25+ Treg suppressed LPS-induced neutrophil 

production of IL-8, TNFa and IL-6 and enhanced neutrophil survival, all of which could 

be blocked by addition of anti-IL-10, anti-TGFp and anti-TLR4 antibodies. Interestingly, 

anti-CD3/CD28 activated Treg could also suppress cytokine production and neutrophil 

survival; however neither could be inhibited by anti-IL-10 or anti-TGF(3 antibody 

addition.

Both of these studies highlight a role for IL-10 and TGF(3 in inhibition of neutrophils by 

Treg. Whether Treg act through these cytokines or through interactions with immune and 

non-immune cells, to inhibit neutrophil recruitment in response to B16FasL challenge, 

has not yet been addressed. It is possible that Treg inhibit the activity of keratinocytes, 

fibroblasts and other cells resident in the skin, known to be able to secrete inflammatory 

mediators such as IL-1, TNFa and IL-8. Treg could also act to downregulate expression 

of chemokine/cytokine receptors and adhesion molecules on neutrophils and/or the 

corresponding ligands on the target endothelium in the skin, such as E-Selectin, therefore 

limiting the ability of neutrophils to transmigrate into tissues. Interestingly, IL-10 is 

known to inhibit production of MIP-la, IL-8/MIP-2 and KC/GROa by macrophages and 

neutrophils (Moore et al 2001). IL-8 (Abreu-Martin et al 1995) and MIP-la (Lee et al
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2000b) are known to recruit neutrophils and therefore IL-10 could inhibit neutrophil 

attraction to sites of inflammation. TGFp also inhibits TNFa induced IL-8 expression by 

endothelial cells (MacDonald et al. 1999), whilst downregulating E-Selectin and VC AM- 

1, known to be important for neutrophil transmigration, and thereby inhibit entry of tissue 

by neutrophils (Smith et al. 1996; Park et al. 2000). One study showed that TGF(3 

inhibited lysis of FasL expressing tumour cells by neutrophils (Chen et al. 1998a).

Although these cytokines have been implicated in the modulation of neutrophil activity, 

the sources of these cytokines are vast, ranging from leukocytes to macrophages to 

keratinocytes, complicating direct association with Treg (Moore et al. 2001; Li et al. 

2006b). Treatment of mice with anti-IL-10 and anti-TGFp antibodies prior to tumour 

challenge will go some way to addressing the hypothesis that the mechanism of Treg 

suppression is mediated through these cytokines. However, these experiments will not 

determine the source of the cytokine, as Treg could induce IL-10 and/or TGFp expression 

by other cells. Treg isolated from mice deficient in IL-10 and/or TGFp could be utilised 

to differentiate between these two possibilities. In summary, there is an abundance of 

ways in which Treg could inhibit neutrophil recruitment but further careful 

experimentation is needed.

The increase in neutrophil nuclear segmentation upon Treg depletion is an interesting 

observation. The segmentation of nuclei in human neutrophils from peripheral blood has 

long been used as a diagnostic tool. A lower number of segments indicates a ‘younger’ 

neutrophil with the ratio of bands (single segmented immature neutrophils) to total 

neutrophil number often given as a result. A ‘shift to the left’ or an increase in bands is 

indicative of severe infection, where there is enhanced neutrophil exit from the bone
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marrow before complete maturation (Davis et al 2006). A ‘shift to the right’ or an 

increase in average number of segments, is rarer. Hypersegmentation is strongly 

associated with anaemia, in particular Megaloblastic anaemia caused by Vitamin B12 

and/or Folic Acid deficiency (Gulley et al 1990), and is evident in other non-infectious 

inflammatory conditions such as in rats with pulmonary inflammation caused by graphite 

dust (Anderson et al 1989). Others have reported hypersegmentation in neutrophils from 

irradiated mice (Gagnon et al 2003) and patients with Chemotherapy-induced acral 

erythema, an inflammatory skin condition (Tsuruta et al 2000). Since the model used in 

this thesis is also one of an inflammatory reaction in the absence of infection, it is 

interesting that Treg depletion enhances the proportion of highly segmented neutrophils.

Historically hypersegmentation is associated with older neutrophils and prolonged 

survival. Although the literature on the activity of hypersegmented neutrophils is limited, 

this phenotype is also seen in patients and rats during the first few hours after treatment 

with G-CSF (Ulich et al 1988). Recombinant G-CSF is used therapeutically to relieve 

neutropenia, as it has been shown to stimulate granulocytopoiesis. In addition, G-CSF 

can promote survival, phagocytic and cytolytic capacity, along with production of ROI in 

mature neutrophils (Brach et al 1992; Spiekermann et al 1997). A recent report also 

indicated that in vitro treatment of human neutrophils with G-CSF, delayed neutrophil 

apoptosis, prevented deterioration of chemotaxis towards C5a and IL-8 usually associated 

with neutrophil aging, and maintained expression of chemokine receptors CXCR1 and 

CXCR2 (Wolach et al 2007). These reports suggest that hypersegmentation is indeed 

associated with prolonged neutrophil survival. Since Treg depletion enhanced the 

proportion of highly segmented neutrophils, this may suggest that Treg inhibit neutrophil 

survival. This hypothesis is supported by a recent study by Lewkowicz et. al., in which
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activated Treg enhanced human neutrophil apoptosis. This hypothesis could also explain 

the enhanced neutrophil numbers observed during B16FasL challenge, as neutrophils 

persist at the site of injection (Lewkowicz et al 2006).

In order to further investigate the impact of Treg on neutrophil responses, particularly the 

effect on recruitment versus survival, there are a number of approaches that could be 

taken. Since neutrophil recruitment is at least in part dependant on soluble mediators, it 

would be important to quantify these chemoattractants at the site of tumour challenge. 

This could be carried out by real-time PCR of mediators important for neutrophil 

recruitment, such as MIP-2 and KC. Although real-time PCR quantifies the amount of 

specific mRNA present in sample at one time, a kinetic analysis may also be important to 

determine at what point levels may be increased. Measurement of other inflammatory 

mediators, such as IL-lp, in these kinetic experiments would also help address which, if 

any, may initiate an increase in the others. This method could also be used to assay the 

quantity of IL-10 and TGFp.

Another set of experiments to address the impact of Treg on neutrophil survival could be 

carried out in vitro. Monitoring of neutrophil survival in the presence or absence of 

(activated) Treg, by Annexin V/Propidium Iodide staining or by exclusion of 7AAD, 

would help address the hypothesis that Treg directly effect neutrophil survival. However, 

this experiment does not exclude the probability that the microenvironment in the skin is 

important in this process. Neutrophil maturation and activation could also be studied in 

this way, for example by monitoring ROI production, cell surface marker expression or 

cytokine expression.
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4.3.2. Macrophages

A recent study of monocytes from human peripheral blood indicated that Treg inhibit the 

capacity of these cells to act as antigen presenting cells (Taams et al 2005). Unlike 

CD4+CD25‘ T cells, coculture of CD4+CD25+ Treg with monocytes did not induce T cell 

proliferation or TNFcx, IFNy, or IL-10 cytokine production although the T cells showed 

similar activation markers. Studies of costimulatory molecules expressed by these 

monocytes revealed that CD4+CD25+ Treg did not induce upregulation of CD40, CD80 

and MHC class II and reduced the levels of CD86. Coculture of CD4+CD25+ Treg with 

both CD4+CD25' T cells and monocytes inhibited the proinflammatory effects seen in 

cultures without CD4+CD25+ Treg. Repurified monocytes from cocultures with 

CD4+CD25+ Treg were unable to stimulate T cell proliferation unlike those from cultures 

without T cells and those with CD4+CD25' T cells. Furthermore, LPS induced production 

of TNFcx and IL-6 was inhibited by preculture of monocytes with CD4+CD25+ Treg. 

Although these data indicate that Treg do inhibit the ability of blood derived monocytes 

to act as antigen presenting cells; whether or not this is the case for tissue macrophages 

remains to be delineated.

Using the techniques described here, identification of an inhibitory effect of Treg on 

macrophages proved elusive. There was no effect on numbers of either resident or 

recruited macrophages upon depletion of Treg, however this does not rule out the 

possibility that macrophages are inhibited by Treg. Unfortunately histological analysis of 

macrophage recruitment was also unfruitful, most likely due to the reported macrophage 

depleting affect of Fas ligation (Hohlbaum et al 2001), as injection of the parental cell 

line B16 induced a substantial macrophage infiltrate. This complicating factor makes 

monitoring macrophage recruitment difficult, however a way of bypassing this is to
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utilise Faslpr mice. These mice have a mutation in Fas which is non-functional and 

prevents Fas mediated cell death. Histological analysis of B16FasL injected Faslpr mice 

treated with PC61 might help resolve this issue. It is particularly important to resolve this 

issue as macrophages have been shown to secrete chemokines which attract both NK 

cells and neutrophils (Hohlbaum et al. 2001; Shimizu et al. 2005) suggesting that 

inhibition of their recruitment might be an indirect effect of Treg inhibition of 

macrophage chemoattractant production.

4.3.3. Are Treg Rapidly Active?

The two histological phenotypes seen in tumour sections are interesting observations, 

particularly as the confined phenotype is associated with the presence of live tumour 

cells. In contrast to the confined phenotype, the skin surrounding the tumour cells in non­

confined tumours is heavily infiltrated with inflammatory cells and the percentage of 

mice able to reject B16FasL tumour challenge seems to correspond with the percentage 

of tumours which are non-confined. Moreover, 50% of GL113 mice bear the non­

confined phenotype, compared to 100% of PC61 treated mice. This could suggest that 

Treg depletion enhances a pre-existing immune response, as opposed to uncovering 

another arm of the immune system. If accurate, this would support the hypothesis that 

Treg act rapidly to suppress an ensuing immune response as this difference is seen from 4 

hours post injection. Unfortunately, using this model it is not possible to otherwise 

identify those GL113 treated mice that will eventually go on to reject tumour challenge at 

this early time point, and therefore draw definitive conclusions.

The hypothesis that Treg either act rapidly or constitutively, goes against the current 

literature on conventional naive T cell activation. Naive T cell activation principally 

occurs in lymph nodes upon contact with mature DC, which present antigen in the
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context of costimulatory molecules. This process first requires DC to collect antigen and 

migrate to the lymph node and is slow in comparison to an innate immune response. It is 

therefore unlikely that Treg able to suppress acute inflammatory responses are activated 

in this way upon B16FasL challenge.

This assumes that Treg are equivalent to naive T cells, which is not unreasonable based 

on the observation that Treg in mice express similar markers to naive T cells (CD62L and 

CCR7) (Itoh et al 1999; Lepault and Gagnerault 2000), however it is also possible that 

rapidly acting Treg are akin to memory T cells, in that they do not require the same 

stringent costimulatory signals as naive T cells in order to become activated upon 

challenge. Central memory T cells (T cm )  also express CD62L and CCR7 but are more 

slowly activated than their effector memory (T em )  counterparts expressing low levels of 

these markers.

Numerous studies have identified populations of regulatory T cells expressing memory T 

cell markers. Some early reports in mice identified a population of regulatory T cells 

expressing low levels the naive T cell marker CD45RB (Read et al. 2000), and in 

humans, the majority of regulatory T cells express the memory marker CD45RO, lack the 

naive T cell marker CD45RA and have low levels of CD45RB (Taams et al 2001; Taams 

et al 2002). In fact, only recent studies have identified a naive regulatory T cell 

population in adult humans (Valmori et al 2005; Seddiki et al 2006). However another 

recent report indicated that these cells have an increased turnover, like memory T cells, 

but are present in elderly individuals suggesting that they may not be wholly derived 

from the thymus (Vukmanovic-Stejic et al 2006).
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If memory Treg are similar to memory T cells, this suggests that they have previously 

been activated by antigen and are activated again upon B16FasL injection. Since 

B16FasL is a tumour cell line derived from B6 mice, it is likely that the antigen 

recognised by the Treg is a self-antigen. Several reports have suggested the TCR 

repertoire of Treg contains self-reactive TCR (Cabarrocas et al. 2006), substantiating the 

possibility that Treg are initially activated by self-peptides and exist as memory cells 

either being constantly activated by self-peptide on non-antigen presenting cells or are 

activated upon tissue destruction. Furthermore, studies have identified memory-like 

populations of Treg, with one reporting the ability of these cells to inhibit conventional T 

cell proliferation ex vivo without additional TCR stimulation (Nolte-'t Hoen et al. 2004).

The ability of Treg to suppress an innate immune response in a discrete site so rapidly 

would also suggest that Treg patrol the periphery. If Treg are indeed similar to memory T 

cells, it is possible that they share the ability to enter non-lymphoid tissue. Since the 

ability of cells to enter peripheral tissues is regulated by chemokine receptor and adhesion 

molecule expression, the reports of several studies showing expression of CLA, a ligand 

for E-Selectin expressed in normal and inflamed skin, on human peripheral blood Treg 

indicate that Treg are capable of skin infiltration (Rao et al. 2002). Furthermore, there are 

an increasing number of reports indicating that Treg can be found in peripheral tissue in 

steady state, in particular they have been isolated from skin in both mice (Suffia et al. 

2005) and humans (Clark and Kupper 2007) suggesting that Treg do indeed patrol the 

peripheral tissue prior to immune challenge. In combination these reports support the 

hypothesis that Treg are present in the periphery prior to tumour challenge.
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In summary, the results shown in this chapter indicate that the recruitment of neutrophils 

is inhibited by Treg. Migration and infiltration of tissues by inflammatory cells is 

regulated by various chemoattractants and adhesion molecules on both neutrophils and on 

the endothelium which are produced / upregulated in response to injury or infection. It is 

therefore possible that Treg may not only directly inhibit innate immune cell activity but 

also suppress mobilisation of an innate immune response via inhibition of 

chemoattractant secretion and/or adhesion molecule upregulation by the tissue under 

attack. If this is the case it would provide a mechanism by which Treg can inhibit innate 

immune cell recruitment and suppress inflammation in general.

The advantage of inhibiting acute inflammatory immune responses may not be 

immediately obvious. Aside from the ability to prevent excessive immunopathology, one 

role could be in regulating the ability of wounds to heal, as inflammation has been shown 

to significantly affect wound closure and scar tissue formation (Eming et al 2007). 

Although cells of the innate immune system are potent anti-microbial effectors and are 

important for the clearance of microbes in open wounds, in tissue injury which does not 

compromise the skin barrier, suppression of inflammation could limit further tissue 

damage by granule release. In a non-sterile wound it is conceivable that the presence of 

microbial molecules or inflammatory mediators could override the effect of Treg by 

rendering cells refractive to suppression.

Overall, the data presented in this Chapter add to the current literature which is slowly 

altering the way in which innate and adaptive immune system are viewed. Previously, 

they were thought of as separate entities with cell interactions primarily being confined 

within one system. Increasingly, reports indicate that the complexity of cell interactions 

has been largely underestimated. The possibility that Treg inhibit innate immune
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responses in general, would add to the intricacy; however the mechanism and extent of 

suppression requires further detailed investigation.
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Chapter 5 -  Investigation of the Location of CD4+CD25+ 

Regulatory T Cell Action

5.1. Introduction

The ability of Treg to inhibit conventional T cell responses is now widely accepted. 

Extensive studies have been carried out in order to elucidate the mechanism of 

suppression both in vitro and in vivo, yet few have focused on the location of action of 

Treg. One objective of this thesis was to identify the location of Treg action in vivo.

Whether Treg suppress immune responses in the lymph nodes or at the site of challenge, 

remains to be elucidated. The implications are that Treg may be able to suppress different 

cell types depending on their location or be effective at different stages of an immune 

response. For instance, if Treg are only active in the lymph node they are likely to 

encounter naive and central memory T cells along with B cells, as these cells are able 

circulate through lymph nodes. Furthermore, accumulating evidence suggests that the 

ability of DC to activate T cells is inhibited by Treg (Cederbom et al 2000; Serra et al 

2003; Misra et al 2004; Veldhoen et al 2006), implying that Treg inhibit the priming of 

an immune response. If the activity of Treg is not restricted to lymphoid tissue, it is 

possible that they are inhibiting the effector phase of an immune response, potentially 

inhibiting the action of both effector T cells and cells of the innate immune system to 

limit immunopathology.

Identification of the location of Treg action may also help analyse the mechanism of Treg 

suppression. In vivo studies of the mechanisms Treg use to mediate suppression have 

highlighted roles for soluble factors such as TGFp and IL-10, and yet in vitro studies
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consistently show a requirement for cell-cell contact. The identification of membrane 

bound TGFp on the surface of Treg (Nakamura et al 2001; Kim et al 2007) may go 

some way to resolving this conflict but it doesn’t explain the requirement in some models 

for IL-10. The requirement for cell contact suggests that the anatomical location and 

migration of Treg in vivo is critical for their suppression of immune responses. 

Furthermore, a cell contact dependent mechanism might confer upon Treg the ability to 

actively select a target cell. However the use of soluble mediators to exert suppression 

would allow Treg to target a larger number of cells, not necessarily restricted to the organ 

of Treg location. Another explanation is that Treg can induce a cell contact independent, 

suppressive phenotype in other cells via a cell contact dependent mechanism (Dieckmann 

et al 2002; Jonuleit et al 2002). Either way the mechanisms by which Treg exert their 

suppressive activity might be highlighted upon studying their location of action.

Although migration of conventional T cells has been studied extensively, the migration, 

and therefore the location, of Treg is less well studied. Circulating T cells have various 

adhesion molecules and chemokine receptors which are thought to direct migration; one 

such adhesion molecule is CD62L, which is expressed on the majority of Treg and naive 

T cells (Sallusto et al 1999; Wherry et al 2003; Bouneaud et al 2005). Rolling of 

lymphocytes in high endothelial venules of peripheral lymph nodes is mediated by 

CD62L, the ectodomain of which can be proteolytically shed following T cell activation. 

Loss of CD62L prevents T cell access of LN (Hamann et al 2000) and T cells isolated 

from inflammatory sites express low levels of CD62L (Mobley and Dailey 1992; Hou 

and Doherty 1993; Rigby and Dailey 2000). These observations suggest CD62L 

downregulation may be required for LN exit and/or entry into inflamed tissue.
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If CD62L downregulation on T cells is required for infiltration of peripheral tissues, Treg 

from mice that cannot downregulate CD62L could be used to address the hypothesis that 

Treg must migrate into tissues in order to exert their suppressive effects. In vitro studies 

of CD62L expression following TCR engagement indicate that both shedding and gene 

transcription are involved in regulating surface levels of CD62L (Chao et al. 1997), as 

described in Chapter 1. Therefore in order to prevent CD62L downregulation, gene 

transcription must be maintained and proteolytic shedding prevented.

The laboratory of Dr Ann Ager generated two strains of mice expressing either wild-type 

or a shedding-resistant form of CD62L driven by the hcd2 promoter (Figure 5.1 

duplicated from Galkina et al. 2003). Protein expression driven using the hcd2 promoter 

has been shown to be directed to T cells, and is maintained upon activation (Zhumabekov 

et al. 1995; Bromley et al. 2005), therefore wild-type CD62L expressed under this 

promoter should not undergo transcriptional downregulation post T cell activation (WT 

mice). Substitution of the proteolysis sensitive membrane proximal region of CD62L 

with that of the proteolysis insensitive CD62P, generated a shedding resistant form of 

CD62L (LAP mice). Therefore LAP mice, in which proteolytic shedding is prevented and 

gene transcription maintained, could potentially be used to address the hypothesis that 

prevention of CD62L downregulation on Treg inhibits their access to peripheral tissue 

subsequently preventing exertion of their suppressive effects.
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Figure 5.1. Construction of CD62L Mutants
Schematic representation of the Membrane Proximal Region (MPR) of mouse CD62L in 
relation to the whole molecule (SCR, short consensus repeat). Location of a primary 
cleavage site in wild-type CD62L (WT) is shown together with amino acid sequence of 
corresponding LAP mutant, containing the MPR of CD62P which is naturally shorter and 
lacks the cleavage site. This figure is duplicated from Galkina et al 2003.
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T cell migration during an active immune response had not yet been studied in these 

mice, therefore it was first important to validate the hypothesis that maintained CD62L 

expression prevented T cell access of inflamed tissue. Since little is known about Treg 

migration, the migration of conventional T cells in WT and LAP mice was studied during 

influenza infection. The influenza model has been used extensively to study T cell 

responses, because the site of infection and therefore the target organ for T cells is 

known. This Chapter describes experiments carried out in order to characterise T cell 

migration in WT and LAP mice, with a view to utilising these mice to study the location 

of action of Treg.
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5.2. Results

5.2.1. CD4* and CD8* T cells From LAP Mice can Infiltrate Influenza 

Infected Lungs

In order to characterise the migratory pathways of CD62L transgenic T cells, a robust 

model of influenza A virus (flu) infection was used to validate the hypothesis that failure 

to shed CD62L impairs migration of T cells to sites of viral infection. Infiltration of T 

cells into the lung following intranasal (i.n.) infection with flu was studied at the peak of 

the immune response (Kedzierska et al 2006). B6, WT and LAP mice were sacrificed 8 

days post infection, lungs were collected and numbers of infiltrating T cells assessed by 

flow cytometry. Due to the highly vascularised nature of the lung, it was hypothesised 

that the few T cells harvested from lungs of LAP mice were located within the blood 

vessels and not within the lung tissue. In order to address this hypothesis, lungs were 

perfused with PBS:EDTA prior to tissue harvest. As expected, lungs harvested from B6 

mice infected with flu showed marked infiltration with both CD4+ and CD8+ T cells 

(Figure 5.2). Surprisingly, there was no difference in T cells infiltrating the lung in WT 

and LAP mice when compared to each other and to control B6 mice. Similar results were 

gathered from the lung draining lymph node (LdLN) and spleen. Repeated experiments 

confirmed this result suggesting that maintained CD62L expression on T cells does not 

impair their ability to enter inflamed tissues.
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Figure 5.2. B6, WT and LAP T Cells are Equally Able to Enter the Tissue of Flu- 
Infected Lungs
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs, lung draining 
lymph nodes (LdLN) and spleens were stained with antibodies to CD4 and CD8, and then 
evaluated by FACS. The total numbers of CD4+ or CD8+ cells in lungs, LdLN and 
spleens of B6 (squares), WT (triangles) and LAP (circles) mice are shown. Each symbol 
represents an individual mouse and solid lines represent the means within each group. 
Data are representative of two individual experiments. Statistical significance was 
evaluated using a Mann Whitney test (* p<0.05).
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5.2.2. CD8* but not CD4* T cells From LAP Mice Maintain CD62L 

Expression

In order to verify that expression of CD62L was indeed maintained on T cells in infected 

mice, particularly in LAP mice, cells harvested from organs were also immunostained 

with anti-CD62L antibody. As expected, a large proportion of CD4+ and CD8+ cells in 

the spleen of B6 mice were CD62L10 with WT T cells showing downregulation on a 

proportion of cells due to accelerated shedding (Figure 5.3). Despite studies indicating 

that CD62L on LAP T cells is not shed upon TCR stimulation in vitro (Galkina et al 

2003), a significant proportion of CD4+ cells in flu-infected LAP mice were CD62L10 in 

lungs and spleen (Figure 5.4). However, CD62L expression remained high on the 

majority of CD4+ cells isolated from the LdLN. In contrast the majority of CD8+ T cells 

remained CD62Lhi in lungs, LdLN and spleen (Figure 5.5). This indicates differential 

regulation of CD62L expression in CD4+ and CD8+ T cells, as discussed later in more 

detail.

Unfortunately the ability of CD4+ cells from LAP mice to downregulate CD62L 

expression and enter inflamed tissue excludes the possibility of utilising these mice to 

identify the location of CD4+CD25+ Treg action. However, the observation that CD8+ T 

cells from LAP mice, which do maintain high CD62L expression, also migrate into 

infected lungs contradicts the current dogma that T cells need to downregulate CD62L in 

order to enter inflamed tissue and warrants further investigation.

163



*•
CD4

 ►

CD8

Figure 5.3. CD4+ T Cells from LAP Mice Can Downregulate CD62L in Contrast to 
CD8+ T Cells
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, cells isolated from the spleen were stained with antibodies to CD4, CD8 
and CD62L, and then evaluated by FACS. Representative FACS plots of CD62L versus 
either CD4 or CD8 staining on splenocytes from B6, WT and LAP mice (5 mice per 
group) are shown.
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Figure 5.4. CD4+ T cells from LAP Mice Show Similar Levels of CD62L Expression 
in Lungs and Spleen When Compared to B6 and WT Mice
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza vims. Eight days 
after infection, cells isolated from the spleen were stained with antibodies to CD4 and 
CD62L, and then evaluated by FACS. The percentage of CD4+ cells in lungs, LdLN and 
spleens of B6 (squares), WT (triangles) and LAP (circles) mice expressing CD62L at high 
levels are shown. Each symbol represents an individual mouse and solid lines represent 
the means within each group. Data are representative of two individual experiments with 
a minimum of 4 mice per group. Statistical significance was evaluated using a Mann 
Whitney test (**/?<0.01).
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Figure 5.5. CD8+ T Cells from LAP Mice Maintain CD62L Expression in Lungs, 
LdLN and Spleen When Compared to B6 and WT Mice
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, cells isolated from the spleen were stained with antibodies to CD8 and 
CD62L, and then evaluated by FACS. The percentage of CD8+ cells in lungs, LdLN and 
spleens of B6 (squares), WT (triangles) and LAP (circles) mice expressing CD62L at high 
levels are shown. Each symbol represents an individual mouse and solid lines represent 
the means within each group. Data are representative of two individual experiments with 
a minimum of 4 mice per group. Statistical significance was evaluated using a Mann 
Whitney test (* p<0.05, ** /?<0.01).
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5.2.3. Investigation of CD8* T cells in LAP Mice

In an experiment to determine whether the cells in the lungs of influenza-infected mice 

were antigen-specific effector cells, it was important to distinguish between non-activated 

and activated CD8+ T cells, as normal lymphocyte trafficking had been reported in naive 

WT and LAP mice (Galkina et al 2003). The anti-influenza A response has been well 

characterised and CD8+ T cells specific for an immunodominant epitope from influenza 

nucleoprotein can be detected using fluorescently labelled soluble H2-Db tetramers 

containing the NP366-374 (NP68) peptide. This permitted monitoring of flu-specific CD8+ 

effector cell generation during infection and the presence of flu-specific memory CD8+ T 

cells once the infection has been cleared. Therefore, in order to determine the effect of 

maintained CD62L expression on activated CD8+ T cell infiltration of infected tissues, 

B6, WT and LAP mice were infected i.n. with influenza A virus. 8 days post infection, 

lungs were perfused and, together with lung draining lymph nodes (LdLN) and spleen, 

numbers of CD8+, tetramer+ (tet+) T cells infiltrating each organ assessed by flow 

cytometry (Figure 5.6, and Appendix Figure A.4). Control staining with NP68 tetramer 

and irrelevant tetramer (gp33), on both B6 and F5 (transgenic for a TCR recognising 

NP68) mice is shown in Appendix Figure A.7, along with representative FACS plot of 

NP68 Tetramer staining of organs from infected mice.

In agreement with the data on total CD8+ T cells, the number of CD8+tet+ T cells was 

similar in the lungs and spleen of B6, WT and LAP mice, however there was an increase 

in the number of CD8+tet+ T cells in the LdLN of LAP mice when compared to B6 mice. 

The percentage of CD8+tet+ cells expressing CD62L at high levels was also assessed in 

these experiments. Figure 5.7 shows downregulation of CD62L on B6 CD8+tet+ cells in
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Figure 5.6. Maintained CD62L Expression Does Not Prevent Flu-Specific CD8+ Cells 
From Entering Lung Tissue
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs, draining lymph 
nodes (LdLN) and spleens were stained with antibodies to CD8 and with NP68-tetramers 
and evaluated by FACS. The total numbers of CD8+tet+ cells in lungs, LdLN and spleens 
of B6 (squares), WT (triangles) and LAP (circles) mice are shown. Each symbol 
represents an individual mouse and data are a summary of two independent experiments 
using groups of at least 5 mice. Solid lines represent the means within each group. 
Statistical significance was evaluated using a Mann Whitney test (* p<0.05).
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Figure 5.7. CD62L is Maintained at a High Level in CD62L Transgenic Mice
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs, draining lymph 
nodes (LdLN) and spleens were stained with antibodies to CD8, CD62L and with NP68- 
tetramers and evaluated by FACS. The percentages of CD8+tet+ cells that are CD62Lhi in 
lungs, LdLN and spleena of B6 (squares), WT (triangles) and LAP (circles) mice are 
shown. Each symbol represents an individual mouse and solid lines represent the means 
within each group. Data are representative of two independent experiments with a 
minimum of 4 mice per group. Representative FACS plots of CD62L versus tetramer 
staining on CD8+ splenocytes in B6 mice are shown. Staining in a naive B6 spleen is 
given for comparison.
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lung, as would be expected, however the majority of WT cells retain CD62L on their 

surface and almost none of the LAP cells downregulate CD62L. These findings were 

reflected in the LdLN and spleen. In combination these data confirm the finding above 

that although antigen activated CD8+ T cells maintain CD62L at high levels, they are able 

to enter inflamed tissue.

5.2.4. CD8* T cells from B6, WT and LAP mice are Capable of Target 

Cell Lysis and IFNy Secretion

CD62L functions primarily as a LN homing adhesion molecule, and downregulation of 

CD62L expression has been shown to correlate with immediate effector function in CD8+ 

T cells (Oehen and Brduscha-Riem 1998). As suggested previously the purpose of 

CD62L downregulation could be to allow entry into inflamed tissues, however signalling 

via CD62L has also been shown to costimulate TCR proliferation (Nishijima et al. 2005); 

it is therefore possible that the level of CD62L expression regulates the proliferation 

and/or differentiation of activated T cells. By analogy with other cell surface molecules 

that undergo ectodomain proteolysis, such as CD44 and Notch (Gao and Pimplikar 2001; 

Okamoto et al. 2001), shedding may regulate cleavage of the CD62L cytoplasmic tail, 

resulting in effector function. In order to assess the functional capability of virally 

induced T cells, the ability of T cells harvested from flu-infected mice to lyse targets 

labelled with the immunodominant flu epitope, NP68, was assessed. Splenocytes isolated 

from flu-infected mice were stimulated with NP68 peptide-pulsed, irradiated splenocytes 

from naive mice. Five days later, stimulated cells were collected and used as effectors in 

a chromium release assay against NP68- or irrelevant peptide- pulsed targets. Figure 5.8 

shows that cytotoxic T lymphocytes (CTL) are generated in all mice and specific lysis is 

greater for NP68-pulsed targets in all groups.
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Figure 5.8. CD62L Transgenic Mice are Capable of Cytolysis
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 

after infection, cells isolated from the spleens were stimulated with NP68-pulsed, 

irradiated APC. 5 days later cells were used as effectors in a chromium release assay 

against NP68- (dark bars) or irrelevant peptide- (light bars) labelled targets. The mean 

percentage specific lysis ± SEM for 5 mice per group is shown at a culture dilution of 1:3 

targets.
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IFNy production by CD8+ T cells has also been implicated in viral clearance (Belz et al 

2001; Wiley et al 2001) and therefore the ability of CD8+ T cells from flu-infected mice 

to produce IFNy upon restimulation with PMA/ionomycin in the presence of monensin 

was assessed (Figure 5.9). There was no statistically significant difference in the numbers 

of IFNy secreting CD8+ cells between B6, WT and LAP in lungs and spleen suggesting 

that there is no impairment in CD8+ T cell effector function.

5.2.5. CD8+tet+ cells Show Enhanced Levels of CD107a and IFNy on

their Surface Following Direct Ex Vivo Antibody Staining

Both of the above methods require in vitro stimulation of cells prior to analysis and it was 

hypothesised that this may overcome suboptimally activated effector function in the cells 

analysed. Furthermore, stimulation of cells isolated from flu-infected mice also resulted 

in a downregulation of the TCR such that resolution of a tetramer positive population was 

not possible, preventing distinction between flu-specific and non-specific responses. For 

these reasons the possibility of direct ex vivo staining of cells with CD 107a and IFNy was 

explored.

Cell surface expression of CD 107a (LAMP-1) has been shown to correlate with 

degranulation and release of cytolytic molecules and has been used to assess the lytic 

capacity of cells (Betts et al 2003). Usually the antibody to CD 107a is incubated in 

conjunction with peptide stimulation and monensin for 4 hours in order to enhance 

staining. However it was found that when stained directly ex vivo, tet+ populations could 

be resolved and CD 107a levels were elevated on tet+ cells when compared to tef cells in 

infected mice. Similar results were found for IFNy, allowing analysis of the functional
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Figure 5.9. CD62L Transgenic Mice are Equally Capable of IFNy Production
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, cells isolated from the lungs and spleens were stimulated PMA and 
ionomycin for 4hours at 37°C in the presence of monensin. Cells were then stained with 
antibodies to CD8 and IFNy and evaluated by FACS. The total numbers of CD8+ cells 
producing IFNy in lungs, LdLN and spleens of B6 (squares), WT (triangles) and LAP 
(circles) mice are shown. Each symbol represents an individual mouse and data are a 
summary of two independent experiments using groups of at least 5 mice. Solid lines 
represent the means within each group.
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capacity of CD8+tet+ cells without the bias of in vitro stimulation. Therefore, in order to 

assess the functional capacity of flu-specific CD8+ T cells in B6, WT and LAP mice, mice 

were infected i.n. with flu and sacrificed eight days later. Lungs were perfused and cells 

isolated from lungs and spleens were stained with antibodies to CD8, CD 107a, IFNy and 

tetramer.

In agreement with the results of the chromium release assay, the geometric mean 

fluorescence intensity (MFI) of CD 107a was elevated on flu-specific CD8+tet+ cells when 

compared to CD8+tet' cells (Figure 5.10 and Appendix Figure A.8). Furthermore, the 

levels of CD 107a expression were similar in B6, WT and LAP mice, implying that there 

is no defect in the capacity of CD8+tet+ T cells to lyse target cells. Similarly, IFNy levels 

were higher on CD8+tet+ cells when compared to CD8+tet' cells in all mice (Figure 5.11 

and Appendix Figure A.8). Although B6 mice showed a slightly higher level of IFNy 

expression in the lung when compared to CD62L transgenic mice, there was no 

difference in IFNy expression between WT and LAP mice. In combination with the 

results on stimulated cells, this data indicates that flu-specific CD8+ T cells from WT and 

LAP mice express, at the cell surface, key cytotoxic molecules associated with two 

different effector functions and are recruited to infected tissues in normal numbers, 

suggesting that they are equally capable of viral clearance.

5.2.6. CD8+tet+ Memory Cell Numbers are Similar in B6, WT and LAP 

mice

Having established that flu-specific CD8+ T cells which maintain CD62L expression can 

migrate to sites of inflammation and appear to function normally, the logical progression
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Figure 5.10. CD62L Transgenic Mice Show Comparable Levels of CD107a to B6 E x

V iv o

B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs and spleens were 
stained directly ex vivo with antibodies to CD8, CD 107a and with NP68-tetramers and 
evaluated by FACS. The geometric mean fluorescence intensities (MFI) of CD107a on 
CD8+tet+ and CD8+tet' cells for B6 (squares), WT (triangles) and LAP (circles) mice are 
shown, along with representative histograms. Each symbol represents an individual 
mouse and data are a summary of two independent experiments using groups of at least 5 
mice. Solid lines represent the means within each group.
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Figure 5.11. CD62L Transgenic Mice are Show Comparable Levels of IFNy to B6 E x

V iv o

B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs and spleens were 
stained directly ex vivo with antibodies to CD8, IFNy and with NP68-tetramers and 
evaluated by FACS. The geometric mean fluorescence intensities (MFI) of IFNy on 
CD8+tet+ and CD8+tef cells for B6 (squares), WT (triangles) and LAP (circles) mice are 
shown. Each symbol represents an individual mouse and data are a summary of two 
independent experiments using groups of at least 5 mice. Solid lines represent the means 
within each group.
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was to study the memory response. Two populations of memory T cells have been 

identified in the literature; those that are CD62L'CCR7'CD45RAneg and display 

immediate effector function, termed effector memory T cells (T em); and those that are 

CD62L+CCR7+CD45RAneg which are able to enter LN but need restimulation in order to 

display effector function and therefore termed central memory T cells (T cm )- T em have 

been shown to distribute throughout peripheral non-lymphoid organs, a process thought 

to be dependent on CD62L and CCR7 downregulation and T cm  are thought to circulate 

through lymphoid organs. One hypothesis is that CD62L downregulation is required for 

memory cell differentiation.

In order to address this hypothesis, B6, WT and LAP mice were infected i.n. with flu and 

numbers of flu-specific T cells assessed more than 100 days after infection. Cells isolated 

from perfused lungs, LdLN, spleens as well as non-involved ovaries and ovary draining 

lymph nodes (OdLN) were stained with antibodies to CD8, CD62L and with tetramers 

(Figure 5.12 and Appendix Figure A.5). The numbers of CD8+tet+ cells isolated from 

both the lung and the ovary were similar for all mice suggesting that there was no 

impairment of Tem cell generation in CD62L transgenic mice. Furthermore, the numbers 

of CD8+tet+ cells isolated from the spleen and lymph nodes of these mice were similar to 

each other and B6 mice, suggesting that T cm  generation was not impaired. In fact, there 

was a trend for increased numbers of memory T cells in lymph nodes of LAP mice. 

Although the low numbers of cells isolated from each tissue prevented definitive analysis 

of CD62L levels, it was clear that LAP CD8+tet+ cells maintain CD62L and that there are 

varying levels in WT and B6 mice (Figure 5.13). These results suggest that 

downregulation of CD62L is not required for the generation and distribution of flu- 

specific memory CD8+ T cells.
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Figure 5.12. Maintained Expression of CD62L Does Not Affect the Distribution or 
Numbers of Flu-Specific Memory CD8+ T Cells
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. >100 days 
after infection, lungs were perfused and cells isolated from the lungs, lung draining 
lymph nodes (LdLN), ovaries, ovary draining lymph nodes (OdLN) and spleens were 
stained with antibodies to CD8 and with NP68-tetramers and evaluated by FACS. The 
total numbers of CD8+tet+ cells in lungs, LdLN, ovaries, OdLN and spleens of B6 
(squares), WT (triangles) and LAP (circles) mice are shown. Each symbol represents an 
individual mouse and data are representative of two independent experiments using 
groups of at least 5 mice.'Solid lines represent the means within each group. Statistical 
significance was evaluated using a Mann Whitney test (* p<0.05).
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Figure 5.13. CD62L Expression is Maintained on Flu-Specific Memory CD8+ T Cells 
in LAP Mice
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. >100 days 
after infection, cells isolated from the ovaries, ovary draining lymph nodes (OdLN) and 
spleens were stained with antibodies to CD8, CD62L and with NP68-tetramers and 
evaluated by FACS. Representative FACS plots of CD62L versus Tetramer staining on 
CD8+ cells in ovaries, OdLN and spleens of B6, WT and LAP mice are shown. Staining 
in a naive B6 spleen is given for comparison.
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5.2.7. Infection with Recombinant Vaccinia Virus

Whether or not the memory CD8+ T cells generated are capable of enhancing viral 

clearance during a secondary infection can be addressed using a model of recombinant 

vaccinia virus (rW ) infection. To avoid the potential complications of studying 

recruitment to the primary site of challenge, the ability of flu-immune mice to clear 

recombinant vaccinia virus expressing the flu NP68 epitope (rWNPP) (Townsend et al 

1988) was assessed. After systemic infection by i.p injection, vaccinia virus replicates in 

the ovaries and clearance can be measured by plaque assay of the ovary (Jones et al 

2003). In flu-immune B6 mice, i.e. those infected with flu more than 100 days previously, 

the flu-specific memory CD8+ T cells are able to clear rWNPP faster than naive mice 

(Figure 5.14). Therefore any defect in the CD8+ T cell memory response is reflected by a 

higher viral titre at day 5 post rW  infection.

5.2.8. Failure to Shed CD62L on Memory CD8+ T Cells Results in 

Increased Viral Titres

To address the hypothesis that maintained CD62L expression affects the ability of 

memory T cells to clear a secondary infection, flu-immune B6, WT and LAP mice were 

injected i.p. with either rWNPP or a control rW  expressing an irrelevant melanocyte 

antigen from melanoma (rWTrp2) (Overwijk et al 1998). Mice were sacrificed 5 days 

later and viral titres in ovaries evaluated (Figure 5.15). As expected, viral titres in flu- 

immune B6 mice receiving rWNPP were much lower than in those receiving rWTrp2 

(effectively a naive vaccinia-specific response) and WT mice were equally capable of 

viral clearance, reflecting clearance by NP68 specific CD8+ T cells. In stark contrast, 

viral titres in LAP mice receiving rWNPP were significantly higher, although clearance 

of rWTrp2 was similar in all mice.
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Figure 5.14. Diagrammatic Representation of rW NPP Clearance in Naive and Flu- 
Immune
The diagram indicates the pattern of expected viral titres for naive (red line) and flu- 
immune (blue line) B6 mice given recombinant vaccinia virus expressing NP68 
(rWNPP).
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Figure 5.15. LAP Flu-Specific Memory T Cells are Less Able to Clear Recombinant 
Vaccinia Virus Expressing a Flu Peptide When Compared to B6 and WT
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP) or an irrelevant antigen (rWTrp2). Mice were sacrificed 5 days 
later and ovaries collected. Ovaries were homogenized and viral titres determined by 
plaque assay. Symbols represent the number of plaque forming units (pfu) per ovary in 
individual B6 (squares), WT (triangles) and LAP (circles) mice challenged with rWNPP 
(closed symbols) or rWTrp2 (open symbols) from two independent experiments using 
groups of 5 mice. Statistical significance was evaluated using Mann Whitney test (* 
p<0.05, *** pO.OOl).
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5.2.9. Distribution of Memory CD8*tet* cells is Similar in B6, WT and 

LAP mice Challenged with rWNPP

The defect in the memory CD8+ T cell response leading to higher viral titres could be due 

to a defect in the resident Tem and/or recruited Tcm- Previously, it was shown that similar 

numbers of memory T cells were generated in mice prior to the second infection. To 

determine whether the reduced clearance of virus in LAP mice was due to lack of 

recruitment of NP68-specific CD8+ T cells during infection, ovaries, OdLN and spleens 

were harvested and numbers of CD8+tet+ compared with those in WT and B6 mice 

(Figure 5.16 and Appendix Figure A.6). As found during primary flu infection, altered 

CD62L expression did not impair the ability of CD8+tet+ cells to enter the site of 

inflammation, in this case the ovary. In fact, there was a trend towards enhanced numbers 

of CD8+tet+ in all organs in LAP mice. Continued analysis of CD62L expression 

confirmed it was maintained at high levels on CD8+tet+ cells in LAP mice challenged 

with rWNPP (Figure 5.17).

5.2.10. CD8+tet+ T cells from B6, WT and LAP mice Challenged with 

rWNPP are Capable of Target Cell Lysis and IFNy Secretion

Since the distribution of memory CD8+tet+ T cells to ovaries and their recruitment during 

ongoing infection were not altered in LAP mice, it was hypothesised that there was a 

defect in the cytotoxic capacity of these cells. In order to address this hypothesis, the 

ability of splenocytes harvested from flu-infected mice to lyse targets labelled with NP68 

peptide or an irrelevant peptide was assessed by chromium release assay (Figure 5.18). 

Although B6 mice had consistently higher cytolysis, WT and LAP mice had comparable
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Figure 5.16. Elevated Numbers of CD8+tet+ Cells are Detected in Organs of LAP 
Mice When Compared to B6 and WT Mice
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP). Mice were sacrificed 5 days later and ovaries, ovary draining 
lymph nodes (OdLN) and spleen collected and stained with antibodies to CD8 and with 
NP68-tetramers and evaluated by FACS. The total numbers of CD8+tet+ cells in organs of 
rWNPP challenged mice is given for B6 (squares), WT (triangles) and LAP (circles) 
mice. Data are a summary of 2 independent experiments using a minimum of 5 mice per 
group. Statistical significance was evaluated using a Mann Whitney test (***/?<0.001).
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Figure 5.17. CD62L Expression is Maintained on Flu-Specific Memory CD8+ T Cells 
in LAP Mice Upon Recombinant Vaccinia Virus Infection
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rW NPP). Mice were sacrificed 5 days later and ovaries, ovary draining 
lymph nodes (OdLN) and spleen collected and stained with antibodies to CD8, CD62L 
and with NP68-tetramers and evaluated by FACS. Representative FACS plots of CD62L 
versus tetramer staining on CD8+ cells isolated from organs in B6, WT and LAP mice (5 
per group) are shown.
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Figure 5.18. CD8+tet+ Cells from B6, WT and LAP Mice Show Similar Capacity to 
Lyse Target Cells
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP). Mice were sacrificed 5 days later and spleens were harvested 
for Chromium release assay. Cells isolated from the spleens were stimulated with NP68- 
pulsed, irradiated APC. 5 days later cells were used as effectors in a chromium release 
assay against NP68 peptide- (closed symbols) or irrelevant peptide- (open symbols) 
labelled targets. The percent specific lysis at 3 different culture dilutions is given for 1 
representative mouse out of a group of 5 for B6 (squares), WT (triangles) and LAP 
(circles) mice.

186



levels of cytolysis suggesting that the defect in viral clearance in LAP mice is not due to a 

defect in the ability of memory CD8+ T cells to lyse virally infected targets.

Direct ex vivo staining with anti-CD 107a and anti-IFNy antibodies was performed in flu- 

immune mice challenged with rWNPP or left unchallenged (Figure 5.19 and 5.20). In 

agreement with the data from the chromium release assay, there was no difference in the 

levels of CD 107a on CD8+tet+ splenocytes isolated from B6, WT or LAP mice. However, 

there was a significant increase in the levels of CD 107a on CD8+tet+ cells isolated from 

the ovaries and OdLN of LAP mice when compared to those from B6 and WT mice. A 

similar result is seen when comparing levels of IFNy on LAP and WT cells (Figure 5.20). 

In combination with the observation that higher numbers of CD8+tet+ cells can be seen in 

LAP mice, this data supports the hypothesis that the NP68-specific response is greater in 

these mice due to increased viral titres at this time point.
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Figure 5.19. CD8+tet+ Cells From B6, WT and LAP Mice Have Levels of Cell 
Surface CD107a Expression
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP). Mice were sacrificed 5 days later and ovaries, ovary draining 
lymph nodes (OdLN) and spleen were harvested for immunostaining. Cells were stained 
directly ex vivo with NP68-tetramer, anti-CD8 and anti-CD 107a antibody and evaluated 
by FACS. The geometric mean fluorescence intensity (MFI) of CD107a on CD8+tet+ 
populations is given for unchallenged (open symbols) and rWNPP challenged (closed 
symbols) mice. Data are representative of 2 independent experiments with a minimum of 
5 mice per group. Each symbol represents a single mouse and the solid lines indicate 
means within each group. Statistical significance was evaluated using a Mann Whitney 
test (* p< 0.05).
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Figure 5.20. CD8+tet+ Cells from B6, WT and LAP Mice Show Similar Capacity to 
Produce IFNy
Flu immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP). Mice were sacrificed 5 days later and ovaries, ovary draining 
lymph nodes (OdLN) and spleen were harvested for immunostaining. Cells were stained 
directly ex vivo with NP68-tetramer, anti-CD8 and anti-IFNy antibody and evaluated by 
FACS. The geometric mean fluorescence intensity (MFI) of IFNy on CD8+tet+ 
populations is given for unchallenged (open symbols) and rWNPP challenged (closed 
symbols) mice. Data are representative of 2 independent experiments with a minimum of 
5 mice per group. Each symbol represents a single mouse and the solid lines indicate 
means within each group. Statistical significance was evaluated using a Mann Whitney 
test (* /?<0.05).
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5.3. Discussion

The aim of this Chapter was to explore whether CD62L transgenic mice could be used to 

identify the location of Treg action. The hypothesis on which the study was to be based, 

that T cells unable to downregulate CD62L could not enter inflamed tissue, had to be 

tested initially. The findings of this initial study altered the course of the investigation as 

two important observations were made. CD62L expression could be downregulated on 

CD4+ T cells in LAP mice and therefore Treg with maintained CD62L expression could 

not be generated. However, maintenance of CD62L on CD8+ T cells did not prevent 

access of inflamed tissue. The second observation proved interesting as it contradicted the 

current dogma and therefore warranted further investigation.

5.3.1. Characterising T ceil migration CD62L Transgenic Mice

Maintained expression of CD62L was hypothesised to prevent T cell access of inflamed 

tissue therefore T cell migration into flu infected lungs was monitored. The slightly lower 

number of CD4+ and CD8+ T cells isolated from the lungs of LAP mice when compared 

to B6 and WT mice initially suggested a slight impairment of T cell migration to 

inflamed tissue. However, repeated experiments where lungs were perfused prior to tissue 

harvest, yielded similar numbers of cells in both lung and LdLN, with reduced numbers 

of CD4+ in the spleen of WT and LAP mice when compared to B6 mice. Analysis of 

CD62L levels in these mice revealed that CD62L expression on CD4+ T cells could be 

downregulated in lungs and spleen of infected LAP mice. In contrast CD8+ T cells from 

LAP mice were unable to downregulate CD62L expression.

Although interesting, the mechanism of CD62L downregulation on these cells was not 

pursued in this thesis. Due to the similar FACS profiles of CD4+ cells isolated from WT
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and LAP mice, the possibility that viral infection can induce an alternative shedding of 

CD62L from the surface of LAP T cells must be explored, although this would oppose in 

vitro studies indicating that LAP T cells resist basal and PMA-induced shedding (Galkina 

et al 2003). Furthermore, CD8+ T cells isolated from LAP mice crossed with F5/RAG'7' 

mice, in which all lymphocytes express a MHC class I restricted TCR for flu 

nucleoprotein (NP68), also resisted cognate peptide induced shedding. An alternative 

hypothesis is that expression of CD62L is transcriptionally downregulated in these CD4+ 

cells, although numerous studies have utilised the human CD2 promoter to maintain 

expression of proteins upon T cell activation without loss of expression (Zhumabekov et 

al. 1995; Bromley et al. 2005).

5.3.2. Location of Treg Action

Unfortunately, the ability of CD4+ cells from LAP mice to downregulate CD62L 

expression and enter inflamed tissue prevented utilisation of these mice to identify 

whether or not Treg excluded from inflamed tissue were impaired in their suppressive 

activity. This model was to be used to identify the location of Treg action in vivo, 

however during the course of this project a plethora of other studies on Treg migration 

were published. While the majority of these studies focused on identification of 

chemokine receptor expression and chemotaxis by Treg isolated from peripheral blood of 

humans (Iellem et al. 2003; Hirahara et al. 2006; Lim et al. 2006), or lymphoid organs of 

mice (Venturi et al. 2007), thereby implying possible migration patterns, a few studied 

cells harvested from non-lymphoid organs (Siegmund et al. 2005; Yurchenko et al. 

2006).
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The wide ranging experimental methods may explain the lack of a consensus in reports, 

however there is some agreement on the markers of migration in humans and mice. In 

summary, the main migration markers shown to be expressed on Treg are CCR7, CD62L, 

CCR4, CLA, CCR5, and CD 103 as discussed in the introduction. CCR7 is a receptor for 

lymphoid chemokines CCL19 and CCL21 and CD62L is an adhesion molecule known to 

be required for entry into lymph nodes. CCR4 is a receptor for CCL17 and CCL22 which 

are produced by macrophages, activated T cells and mature DC. CLA is a ligand for E- 

Selectin which is expressed in normal skin and inflamed endothelium. CCR5 is the 

receptor for CCL4, an inflammatory chemokine and CD 103 is the ocE subunit in a range 

of integrins which bind E-cadherin on epithelia. Each study has highlighted that the 

majority of Treg isolated by various techniques, expressed both lymphoid homing and 

non-lymphoid homing markers.

A recent study of murine Treg isolated from different locations aimed to identify cohorts 

of markers on Treg that may be associated with localisation (Sather et al 2007). Treg 

isolated from normal skin express CD 103 and CCR4 supporting earlier studies linking 

these markers to skin tropic Treg (Suffia et al. 2005; Hirahara et al. 2006). In addition, 

Treg in peripheral LN stimulated by antigen administered subcutaneously, downregulated 

CCR7 and upregulated CD 103, CCR4 and E-selectin ligands and were found 5 days later 

in the skin. Furthermore this accumulation was impaired in the absence of CCR4, and 

CCR4 deficient Treg were unable to prevent cutaneous inflammation caused by wild-type 

CD4+ T cells.

Dissection of Treg subtypes may yet reveal individual Treg populations with specific 

tissue homing capacities, however given the current information it is possible that Treg

192



are promiscuous and retain the ability to circulate through lymph nodes whilst being able 

to enter inflamed tissue. This would allow the Treg to be present both at the priming of an 

immune response and at the effector stage and therefore bestows dual potential to limit 

excessive immune activation. Furthermore, the identification of skin homing receptors on 

Treg in peripheral blood and the isolation of Treg from normal skin in humans (Clark and 

Kupper 2007) and mice (Sather et al. 2007) suggests that Treg may patrol the peripheral 

tissue prior to immune challenge, conferring the ability to interact with rapid, innate 

immune and memory responses.

5.3.3. A New Focus -  CD8+ T cells

Current belief is that the ability of T cells to enter inflamed tissue is permitted via CD62L 

downregulation based on the observation that T cells isolated from sites of inflammation 

are CD62L10. However, CD8+ T cells from LAP mice maintain high CD62L expression 

and yet are able to migrate into infected lungs upon flu infection, indicating that CD62L 

downregulation is not required for entry into inflamed tissue. Therefore despite the lack 

of usefulness for studying Treg, further investigations were carried out in order to fully 

characterise flu-specific CD8+ T cells in these mice.

Since maintained CD62L expression does not prevent access of T cells to inflamed tissue, 

and cells isolated from sites of infection express low levels of CD62L, it was 

hypothesised that CD62L shedding and transcriptional downregulation might be involved 

in the generation or function of effector T cells. Furthermore, it was hypothesised that 

this may also impact upon memory cell generation, distribution and function. It was first 

important to assess the ability of flu-specific T cells to enter inflamed lung as these cells 

would be activated by stimulation through the TCR which would usually induce shedding 

and later transcriptional downregulation of CD62L.
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The influenza model has been widely used to assess T cell responses to infection and 

tetramers to the MHC class I restricted immunodominant peptide have been employed to 

identify flu-specific CD8+ T cells (Townsend and Skehel 1984). Studies of CD8+tet+ cells 

supported those on total CD8+ T cells in that there was no significant difference in 

number of cells recruited to the lung or isolated from the spleen between B6, WT or LAP 

mice. There was a trend towards slightly enhanced numbers of CD8+tet+ cells isolated 

from the LdLN. The lack of a difference between mice was reflected in the ability of 

CD8+ cells to lyse NP68 labelled targets and produce IFNy. This result was reproduced 

upon direct ex vivo staining of CD8+tet+ cells with IFNy and CD 107a, a marker of lytic 

capacity. In combination these results indicate downregulation of CD62L is not a 

requirement for effector cell generation or migration to inflamed tissue. Furthermore, 

maintenance of CD62L expression does not impair the functional capacity of antigen 

specific CD8+ T cells.

5.3.4. Memory Cell Generation

The similar number of CD8+tet+ cells harvested from B6, WT and LAP mice 100 days 

post flu infection, suggested that maintained CD62L expression did not affect the 

distribution of flu-specific memory cells at the site of primary infection. Furthermore the 

number of CD8+tet+ cells harvested from distant, non-involved sites was also similar, in 

agreement with reports for other virus-specific memory cells (Masopust et al 2001; 

Masopust et al. 2004). Interestingly, there is a trend towards increased numbers of 

CD8+tet+ cells harvested from LdLN in LAP mice, which is reproduced, although not 

significantly, in the OdLN. This may simply reflect the consequences of the primary
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response, as elevated numbers were seen in LdLN 8 days post-infection, probably due to 

the slight increase in retention of cells crossing the HEV as reported previously (Galkina 

et al 2003). Although the low cell number harvested from organs precluded definitive 

analysis of CD62L expression on flu-specific memory CD8+ T cells, it is clear from the 

FACS plots that expression on cells isolated from B6 and WT mice is varied whereas 

expression on LAP T cells remains high. Together these results indicate downregulation 

of CD62L is not required for the generation and distribution of flu-specific memory T 

cells to non-lymphoid tissue, regardless of site of activation.

5.3.5. Failure to Shed CD62L Compromises Anti-Viral Immunity

Although it has been shown that the ability to generate memory T cells is similar amongst 

B6, WT and LAP mice, the function of these memory T cells also had to be tested, and 

therefore the ability of mice to clear a secondary infection with rW  expressing the 

immunodominant flu peptide, NP68, was assessed. This model avoided complicating 

factors associated with infection in the same organ as, after systemic infection, vaccinia 

virus replicates to high titres in ovaries and clearance of rW  expressing CTL epitopes 

from the ovaries has been used as a measure of CD8+ T cell memory in a number of other 

studies (Karupiah et al. 1990; Jones et al 2003).

Since the only difference between WT and LAP mice is their ability to shed CD62L from 

their T cells, the inability of LAP mice to clear rWNPP when compared to both B6 and 

WT mice, indicates a significant role for CD62L shedding in the control of infection. 

However, some NP68-specific clearance was evident as titres in rWNPP challenged 

mice were lower than rVVTrp2 challenged mice. In addition this defect was not due to
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global impairment of the response to vaccinia virus as there was no difference in the 

ability to control rWTrp2 infection between groups.

This impairment of viral clearance by memory CD8+ T cells was not simply due to an 

inability of memory cells to migrate to the site of infection as there were in fact increased 

numbers of CD8+tet+ cells found in both the ovary and the spleen. These increased 

numbers may reflect the on going struggle to limit infection as viral titres are still high at 

this time point. Nor was the impairment due to a defect in function as determined by in 

vitro analysis of lytic activity in stimulated cells. Further analysis of the levels of IFNy 

and CD 107a on the surface of CD8+tet+ cells confirmed these results and indicated that 

cells isolated from LAP mice were not only functionally capable but were expressing 

higher levels of these markers than their WT and B6 counterparts. In summary, although 

memory CD8+ T cells in LAP mice are equally capable of both target lysis and IFNy 

production and are recruited to infected tissues in normal numbers, they show defective 

viral clearance.

Clearance of virus by memory T cells is likely to depend on both memory T cells resident 

in tissue ( T em)  and those recruited upon infection (T cm ) ,  the contributions of which have 

not yet been clearly defined. Given the current definition of T em and T cm , it is 

hypothesised that initial infection is limited by T em and that T cm , once activated in the 

lymphoid tissue, would migrate into the ovary to further control infection. This is highly 

probable as only a small increase in the number of CD8+tet+ cells is seen in the ovary up 

until day 3 of vaccinia infection, possibly due to Tem proliferation, followed by a rapid 

influx between day 3 and day 5 (data not shown). Since there were no differences in cell 

number or viral titre seen between groups of mice at these early time points, this suggests 

there is no defect in early responses to infection (data not shown).
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If the primary target is the ovarian stroma, the efficiency of viral clearance will depend 

on the ability of T cells, most likely Tcm, to enter/migrate through the ovarian tissue 

towards their target. The ability of cells to enter inflamed tissue is dictated by altered 

expression of inflammatory chemokines and/or adhesion molecules within the organ and 

is controlled by the infected stromal cells. One hypothesis is that in the absence of 

CD62L shedding, flu-specific cells in LAP mice are not optimally activated to express the 

correct adhesion and chemokine receptors required to gain access to their target infected 

cells within the ovary. Although viral titres were higher in LAP mice at day 5, clearance 

was not completely absent as by day 8 the titres in LAP mice were comparable to those in 

WT and B6 mice (data not shown). It is possible that, as virus replication proceeds 

relatively unchecked in LAP mice, the accompanying tissue destruction allows antigen- 

specific T cell entry, which then interact with and kill target cells more readily. However, 

the elevated numbers of CD8+tet+ cells seen at day 5 may simply compensate for a delay 

in the preceding immune response.

Several mechanisms could be responsible for an early delay in viral clearance. CD62L 

signalling via ligands expressed on endothelial and stromal cells in the draining LN or the 

target organ could activate integrin- or chemokine-mediated adhesion and migration 

(Hwang et al. 1996; Giblin et al 1997; Ding et al. 2003). Sustained CD62L signalling 

could therefore enhance adhesion such that the kinetics of T cell entry, migration within, 

and exit from these organs may be slowed, resulting in a slight delay in target cell attack. 

The absence of significant levels of soluble CD62L in LAP mice, which could compete 

for signalling with cell surface CD62L and limit adhesion or directly stimulate ligand 

expressing stromal cells, may also alter the kinetics of memory T cell migration through 

tissues. As alluded to previously, CD62L shedding could direct the subsequent genetic



programming of memory T cells required for optimal target cell interaction. Although 

there is little evidence to support this hypothesis in T cells, it has been reported that 

neutrophils expressing a shedding resistant mutant of CD62L are defective in chemokine 

directed migration (Venturi et al 2003). To explore these differing hypotheses, it will be 

important to identify anatomical location and kinetics of CD62L shedding, and to 

determine whether ligands for CD62L are induced in virally infected ovaries. Further in 

depth studies of the kinetics of memory cell migration would also prove invaluable.

In summary, it is clear from the data presented here that the existing dogma that CD8+ T 

cells require CD62L downregulation in order to enter inflamed tissue needs to be revised. 

Furthermore, it has been shown that maintained CD62L does not affect CD8+ effector 

and memory cell generation and distribution to non-lymphoid organs, which is supported 

by the finding that Tcm of the phenotype CD62L+CCR7+, can be detected in non­

lymphoid organs (Bouneaud et al. 2005; Unsoeld and Pircher 2005). Finally these results 

demonstrate a critical role for CD62L shedding in the control of viral infection by CD8+ 

memory T cells. Future studies are needed to determine whether this is truly a defect in 

cell migration or a defect in target cell recognition.
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Chapter 6 - Final Discussion

6.1. Treg Inhibit Innate Immune Responses

The immune system has evolved to protect the host against invading pathogens; however 

it also has the potential to damage the host. In order to prevent inappropriate or excessive 

immune responses the immune system is intricately regulated. One source of immune 

regulation is naturally occurring CD4+CD25+ regulatory T cells, which have been shown 

to suppress T cell activation, proliferation and effector mechanisms in vitro and in vivo 

(Sakaguchi et al. 1995; Dubois et al. 2003), however T cells are not the sole cause of 

immunopathology. Therefore, whether or not Treg suppression is confined to T cells was 

an area that warranted exploration.

Reports indicating that Treg could also inhibit B cells (Nakamura et al. 2004; Fields et al. 

2005; Lim et al. 2005) and DC (Cederbom et al. 2000; Misra et al. 2004; Oderup et al.

2006) suggested that suppression was not confined to T cells, however prior to the 

commencement of this study, only one report had addressed the possibility that Treg 

inhibit innate immune responses. In this study, Treg could inhibit chronic intestinal 

inflammation, reducing numbers of inflammatory cells in lymphoid tissue, indicating that 

Treg inhibit chronic inflammation (Maloy et al. 2003).

The work presented in this thesis demonstrates that Treg can inhibit the rejection of 

B16FasL, which has been shown to be rejected by innate immune responses. In contrast 

to Maloy et. al. the model of B16FasL rejection is one of acute inflammation in which 

Treg depletion can enhance responses within hours. Dissection of the cells involved 

indicated that activated Treg could directly inhibit the lytic ability of NK cells and may
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restrict migration of NK cells to the site of tumour rejection. Furthermore, the data 

presented here implicates Treg in the inhibition of neutrophil recruitment to the site of 

tumour rejection.

6.1.1. Possible Modes of Action

The possible ways in which Treg could achieve this suppression are extremely varied and 

include direct and indirect mechanisms. TGFp from Treg has been implicated in the 

suppression of NK cell activity (Ghiringhelli et al. 2005; Smyth et al. 2006), and along 

with IL-10 has a role in the control of T cell independent intestinal inflammation (Maloy 

et al. 2003) and neutrophil activity (Lewkowicz et al. 2006). These cytokines are well 

known for their immunosuppressive properties on various cell types and therefore 

represent strong candidates for direct suppression of innate immune responses in the 

B16FasL model. However the sources of these cytokines are varied complicating 

interpretation of experiments using anti-cytokine depleting antibodies in vivo. Although it 

has been demonstrated that TGFp and IL-10 are involved in Treg mediated suppression 

of innate immune cells in vitro, particularly membrane bound TGFp, Treg could induce 

production of these cytokine by other cell types in vivo via another mechanism. Further 

experiments utilising anti-TGFP and anti-IL-10 depleting antibodies in combination with 

Treg from cytokine deficient mice would help elucidate the role these cytokines play in 

Treg mediated immunosuppression.

Chemokine and cytokine .production by local cells plays a critical role in the initiation 

and maintenance of an inflammatory response and therefore could be the target for Treg 

suppression. Inflammatory cells such as neutrophils and NK cells are recruited and 

activated by MIP-2(IL-8), IL-ip, MIP-laand others which can be produced by local
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macrophages, keratinocytes and epithelial cells. Another hypothesis is that Treg may 

influence neutrophil and NK cell activity indirectly by suppression of cytokine 

production. Identification of chemokines/cytokines produced in the skin following 

B16FasL challenge, in the presence and absence of Treg, would allow validation of this 

hypothesis and may provide insights into the target populations.

In support of this hypothesis, the recently described roles for CD39 and CD73 on the 

surface of Treg in converting proinflammatory ATP into immunosuppressive adenosine 

provides another possible mechanism by which Treg can suppress innate immune 

responses (Borsellino et al 2007; Deaglio et al. 2007). ATP can be released upon cell 

death and ligation of its P2 receptor on immune cells can lead to IL-lp release in 

macrophages and activation of DC (Khakh and North 2006). Since the importance of 

macrophages for the initiation of inflammation following challenge with FasL expressing 

cell lines has been clearly demonstrated (Hohlbaum et al. 2000; Hohlbaum et al. 2001), 

this is also a strong candidate for the mechanism for Treg mediated suppression. The 

hypothesis that Treg deplete ATP and therefore inhibit macrophage production of IL-lp, 

leading to a reduction in neutrophil recruitment could be addressed using the B16FasL 

model in P2 receptor deficient mice or by utilising Treg deficient in CD39 and or CD73. 

The A2A receptor for adenosine has also been identified on the surface of NK cells 

(Lokshin et al 2006) and neutrophils (Emens et al 2006) suggesting that the product of 

ATP degradation could also influence NK cells and neutrophils directly.

6.1.2. Implications

The novel observation that Treg can inhibit acute innate immune responses has a range of 

implications. Firstly, it adds to the growing body of literature indicating that Treg can 

suppress a multitude of immune cells, possibly acting to generally dampen down immune
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responses. It also alters the way in which the immune system as a whole is viewed. 

Currently it is accepted that there are two arms of the immune system, innate and 

adaptive, within which cell interactions are confined. Combined with other evidence of 

‘cross-talk’, the interaction between Treg from the adaptive immune system and cells of 

the innate immune system suggests that this view is oversimplified and perhaps 

inappropriate. The immune system is highly complex with each activated cell adding to 

the multitude of activation signals, explaining the requirement for strict regulation. The 

observation that Treg inhibit a plethora of immune cells may suggest that the mechanism 

by which they suppress is an evolutionarily old one that can globally suppress cell 

activity, leading to suppression of not only immune cells but non-immune cells too. 

However it may also suggest that Treg employ a multitude of effector mechanisms which 

may affect target cells more specifically.

Another question that remains unanswered is whether these Treg represent only a 

subpopulation of naturally occurring Treg. The ability of Treg to suppress the innate 

immune response to B16FasL, which is rapid by nature, suggests that Treg must also be 

exerting their effect within hours. This suggests that Treg must either be activated rapidly 

or be constantly active. The question then arises as how they are activated. The published 

evidence on Treg activation suggests that these cells are activated to suppress T cell 

responses through their TCR. The observation made in this thesis that only Treg from 

naive mice activated through their TCR could inhibit tumour lysis by NK cells supports 

this hypothesis, suggesting that Treg that inhibit innate immune cells are also activated 

through their TCR. The recognition of self peptides by TCR on Treg has also been 

reported which suggests that Treg could be activated constantly by self antigen in the 

periphery and/or activated upon presentation of self peptides during an ensuing immune
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response. In the first instance you might expect effector memory like Treg able to rapidly 

respond without costimulation and in the second there could be a mix of different 

phenotypes depending on the immune challenges already experienced by the host.

However the research into activation of Treg has focused on those able to inhibit T cell 

responses and therefore may not represent the way in which Treg are activated to 

suppress innate immune responses. Other innate receptors such as the TLRs may be 

responsible for activating Treg to inhibit innate immune cells. A variety of TLRs have 

been identified on the surface of Treg (Caramalho et al. 2003) and a number of recent 

reports have indicated that TLR ligation on Treg leads to suppression of T cells 

responses. Two reports indicated that TLR2 ligation with Par^Cys resulted in increased 

Treg proliferation, with temporary abrogation of suppression (Liu et al. 2006a; Sutmuller 

et al. 2006), which has also been reported upon TLR9 ligation with CpG 

oligodeoxynucleotide (Chiffoleau et al. 2007). Although TLRs were first described to 

bind pathogen associated molecules, it has been shown that they also bind host ‘stress’ 

associated molecules such as heat shock proteins (Ohashi et al. 2000; Asea et al. 2002; 

Vabulas et al. 2002). Indeed, ligation of TLR2 with heat shock protein, HSP60, on Treg, 

in conjunction with TCR stimulation, has been shown to augment inhibition of T cell 

responses (Zanin-Zhorov et al. 2006).

These reports suggest that Treg could also be activated though their TLR to suppress 

innate immune responses, in support of this hypothesis, it has been reported that TLR4 

stimulation of human Treg with ultra pure LPS can induce inhibition of neutrophil 

activity (Lewkowicz et al. 2006). In contrast to other studies on suppression of T cell 

responses by TLR activated Treg, this report found no requirement for TCR stimulation
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and no temporary abrogation of suppressive activity, suggesting that the mechanism of 

suppression of innate immune responses is different to that of T cell responses. Further 

analysis of the effects of different TLR ligands will determine whether TLR ligation in 

general can stimulate Treg or whether specific TLRs/ligands stimulate suppression, 

whilst others stimulate Treg proliferation and temporary abrogation of suppression. 

Experiments stimulating Treg with TLR ligands in vitro and utilising TLR deficient Treg 

in vivo would address this hypothesis.

Although TCR stimulation is a likely way of activating Treg to suppress innate immune 

responses, this relies on the ability of the Treg TCR to recognise antigen, and therefore 

activation could be limited. Should TLR ligation stimulate Treg to suppress in the 

absence of TCR stimulation, this would provide a mechanism by which a greater number 

of Treg could be activated rapidly. It is also possible that other molecules and cytokines 

can bypass TCR stimulation, a hypothesis supported by the observation that Treg can be 

activated to suppress T cell responses by the addition of IL-2 (Thornton et al. 2004), 

although IL-2 is unlikely to be produced very early in the B16FasL rejection model.

The role of DC in the stimulation of Treg has also been explored. Although initial reports 

indicated that suppression of T cell responses by Treg in vitro was APC independent 

(Thornton and Shevach 1998), other reports indicate that DC can induce regulatory T cell 

proliferation and differentiation from naive T cells (Jonuleit et al. 2000; Mahnke et al.

2003), and Treg can inhibit DC function (Cederbom et al. 2000; Oderup et al. 2006). A 

recent report has indicated that other cells can contribute to this interaction. Keratinocytes 

engineered to express high levels of RANKL, which is naturally upregulated upon 

ultraviolet light exposure and during certain types of inflammation, interact with RANK
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on DC in the skin to enhance their ability to induce regulatory T cell expansion in the 

skin and draining lymph nodes (Loser et al 2006). Induction of Treg expansion in this 

study requires TNFa production (Loser et al 2006), a finding supported by the 

observation that regulatory T cells express higher levels of the TNF receptor 2 and TNFa 

enhances suppressive activity (Chen et al 2007). Although it is not clear what proportion 

of cells are induced from Tconv in the study by Loser et a l, it is interesting to note that 

inflammatory responses may enhance Treg activity, and in combination with the findings 

of this thesis, suggest that this could be a negative feed back loop to limit extensive 

inflammation.

However the role of TNFa and other inflammatory mediators in the regulation of Treg 

responses has also been implicated in the inhibition of Treg activity. In numerous studies 

of Rheumatoid Arthritis (RA) in humans, it has been shown that TNFa impairs both 

naturally occurring, and adaptive regulatory T cell function (Ehrenstein et al 2004; van 

Amelsfort et al 2007), and results in increased FOXP3 expression (Valencia et al 2006). 

Other cytokines such as IL-7 and IL-15 have also been shown to limit suppressor 

function of regulatory T cells (Ruprecht et al 2005). This dichotomy is similar to that 

involving TLR stimulation, where slight variations in ligand-receptor signalling or 

microenvironment could result in essentially opposite outcomes. Experiments to assess if 

suppression is temporarily abrogated in Treg treated with inflammatory cytokines would 

go some way to help resolve these differences.

In the B16FasL model it is still unclear how Treg may be activated to suppress innate 

immune responses. Each of the mechanisms described above are plausible in this model. 

Since the parental cell line B16 is a tumour cell line derived from B6 mice, it will contain
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self-antigens and also tumour antigens, suggesting that Treg could be activated through 

their TCR upon recognition of host proteins or tumour associated host proteins. Equally, 

FasL expression results in large amounts of cell death in the local area, either directly or 

indirectly, which could lead to the release of ‘stress* associated molecules which could 

ligate TLRs and may provide ligands for self-specific TCR. The cytokine milieu could 

also be a contributing factor, with inflammatory cytokines acting in concert to potently 

activate Treg.

Another hypothesis is that FasL costimulation may activate Treg directly. The Fas-FasL 

interaction has long been implicated in the homeostatic contraction of T cell responses, 

with expression of FasL being upregulated on activated T cells resulting in ‘autocrine 

suicide* (Dhein et al 1995). It has been reported that Treg express increased levels of Fas 

(Taams et al. 2001) and are more susceptible to FasL induced cell death in the absence of 

TCR stimulation when compared to Tconv (Fritzsching et al 2005). However, upon TCR 

activation, Treg are less susceptible to cell death than their Tconv counterparts 

(Fritzsching et al 2005). This suggests that Fas/FasL signalling differs between the two 

cell types and is possibly altered by other exogenous signals. It is therefore possible that 

Fas signalling could costimulate TCR signalling in surviving Treg, which would 

contribute towards the termination of immune responses. Indeed, a number of studies 

have reported that Fas signalling can costimulate suboptimal TCR stimulation in Tconv 

via caspase activation (Alam et al 1999; Kennedy et al 1999). Studying of the effect of 

Fas stimulation on the suppressive effect of Treg, using cells deficient in the apoptosis 

inducing pathway, would help address this hypothesis.
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It is also possible that commensal bacteria, drawn into the skin upon injection of 

B16FasL, could activate Treg. This could be through TCR recognition of foreign antigens 

or via recognition by innate receptors such as TLRs, indeed LPS has been shown to 

activate Treg to suppress neutrophil activity (Lewkowicz et al 2006). The reason why 

bacteria might activate Treg may not be immediately obvious, until you consider that the 

skin, like the gut, is covered with commensal, non-pathogenic bacteria and is constantly 

exposed to exogenous antigen. Responses to commensal bacteria on the skin must be 

tightly regulated in order to prevent unnecessary damage, which could result in 

compromising this physical barrier to pathogens. Although the mechanism is still 

debated, it is widely agreed that Tconv can become tolerant to commensal bacteria in the 

gut (and possibly the skin), either by inactivation/deletion due to lack of costimulation, or 

by active suppression (Iweala and Nagler 2006).

However innate immune receptors recognise molecules shared by both pathogenic and 

non-pathogenic micro-organisms, suggesting that regulation of innate immune responses 

must be by other mechanisms. Active suppression of both innate and adaptive immune 

responses by Treg in the skin and gut is therefore an attractive hypothesis. It is also 

possible that the ability to suppress innate immune responses is confined to those Treg 

within these organs. Recent studies have reported that APC isolated from the skin, gut 

and draining LN activate Treg to express skin and gut homing receptors respectively 

(Schwarz et al 2007; Siewert et al 2007). It is therefore possible that these APC also 

program these Treg to respond differently to micro-organisms. The study of Treg isolated 

from different anatomical locations may help address this hypothesis.
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The location of Treg action would also impact upon their effectiveness in vivo. If located 

solely within the lymphoid tissue prior to immune challenge, Treg have the opportunity 

to interact with a wide range of immune cells with the potential to suppress both the 

initiation and maintenance of an immune response. The close contact of large numbers of 

immune cells in this situation would provide the ideal environment in which Treg could 

suppress responses by a contact-dependant mechanism as suggested by a number of 

studies in vitro (Thornton and Shevach 1998; Thornton and Shevach 2000; Nakamura et 

al 2001).

However, it has been reported that although Treg are activated via their TCR in an 

antigen specific manner their suppression is antigen non-specific (Thornton and Shevach 

2000), suggesting that Treg may suppress multiple responses indiscriminately. 

Potentially, this could prevent activation of cells in the lymph node required to generate 

an adequate immune response and lead to poor immune responses. In contrast, if Treg 

action occurs in the periphery, their action could be localised without affecting the ability 

of the host to mount responses to other simultaneous challenges. In this situation, it 

appears more likely that the mechanism(s) by which Treg exert their suppressive effects 

are not cell contact dependent since immune cells would be dispersed throughout the 

tissue.

In the B16FasL model, depletion of Treg altered the inflammatory influx within 24 hours, 

which might suggest that Treg are acting locally and not within lymphoid organs. The 

majority of inflammatory cells at this time point would have been recruited from the 

blood and therefore Treg in the blood or skin would be the likely effectors of suppression. 

Indeed, Treg have been isolated from normal skin (Suffia et al. 2005; Hirahara et al.
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2006) supporting this hypothesis. Limiting Treg to lymphoid organs would help address 

this hypothesis. Unfortunately the CD62L transgenic mice used in this thesis were not 

appropriate to study the location of Treg action, however experiments on other mice 

where Treg entry into peripheral tissue is prevented could prove interesting.

6.1.3. Therapy

The manipulation of Treg has long been thought to be the key to eradicating cancer and 

resolving autoimmune disease. In addition, attenuating the inflammatory response would 

also be advantageous in numerous clinical settings. Delicate tissues such as the lung are 

extremely susceptible to damage by infiltrating innate immune cells (Chatteijee et al.

2007), and attenuation of this response can limit damage whilst other treatments could 

stem the cause of the inflammation. Damage caused to organs in this manner can often 

prove fatal so rapid reduction of inflammation would save lives.

Altering the suppression of the innate arm of the immune system may also help break the 

cycle in cases of chronic inflammation, where cytokines released by recruited 

inflammatory cells recruit more cells. Many of these disorders are perpetuated by T cell 

responses and therefore Treg provide an attractive way to limit both. The effect of Treg 

on innate immune cells may also have knock on effects on the initiation of an adaptive 

immune response and therefore altering responses early on may prevent initiation of an 

inappropriate adaptive response, or conversely could be used as an adjuvant to enhance to 

potency of a vaccination.
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6.2. Shedding ofCD62L is Important for Viral Clearance

Initially CD62L transgenic mice were hypothesised to be useful in the study of the 

location of Treg action. CD62L has been shown to mediate rolling of lymphocytes in 

HEV of pLN (Sallusto et al. 1999; Wherry et al. 2003; Bouneaud et al. 2005) and 

shedding of its ectodomain correlated with loss of LN entry (Hamann et al. 2000). In 

combination with studies on T cells isolated from inflammatory sites which reported low 

CD62L expression, this suggested that maintained CD62L expression may retain T cells 

in pLN. Had this been the case, mice unable to downregulate CD62L could have been 

utilised to study the location of Treg action.

However work carried out in this thesis to characterise WT and LAP mice, in which T 

cells express wildtype and shedding resistant CD62L on a CD62L deficient background 

respectively, indicated that downregulation of CD62L was not required for CD8+ T cell 

entry into the inflamed tissue of the lung during influenza infection. This observation 

went against the current dogma and warranted further investigation into the effects of 

maintained CD62L expression, if any, on CD8+ T cell responses. Primary responses to flu 

appeared to be unaffected, showing comparable numbers and in vitro effector function of 

flu-specific CD8+ T cells in B6, WT and LAP mice. Generation and distribution of flu- 

specific memory CD8+ T cells are also not affected as numbers of cells within various 

organs 100 days after flu infection were also comparable. Although displaying similar 

cytolytic function in vitro, corresponding with cell surface levels of CD 107a and IFNy, 

upon challenge with rW  expressing a flu epitope, flu-immune LAP mice were impaired 

in their viral clearance when compared to both WT and B6 mice. Since the only
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difference between WT and LAP mice is the ability to shed CD62L, this indicated that 

failure to shed CD62L compromises anti-viral immunity.

6.2.1. Possible Modes of Action

The impaired anti-viral memory response in LAP mice could be the result of a number of 

factors. In combination with the observation that viral titres are eventually controlled by 

LAP mice (data not shown), a report indicating that T cells from these mice are retained 

around the HEV, may suggest a slight delay in the kinetics of an LAP T cell response. 

Equally, retention in the HEV could lead to incorrect localisation of T cells within the LN 

altering the ability to interact with DC and mount an anti-viral response. Indeed, a study 

of CCR7 deficient CD8+ T cells indicated that localisation of T cells within the lymph 

node resulted in impaired viral clearance yet normal effector function in vitro (Junt et al

2004). CD62L signalling via ligands expressed on endothelial and stromal cells in the 

draining LN or the target organ could also activate integrin- or chemokine-mediated 

adhesion and migration (Hwang et al. 1996; Giblin et al 1997; Ding et al 2003). 

Therefore sustained CD62L signalling could enhance adhesion such that the kinetics of T 

cell entry, migration within, and exit from these organs may be slowed, resulting in a 

slight delay in target cell attack. In order to address this, a detailed study of the 

relationship between viral titres and T cell infiltrate should be carried out. Adoptive 

transfer of CFSE labelled memory T cells transgenic for both CD62L and the TCR for 

NP68 (F5 mice), would provide information on the expansion of these cells during a 

response and the kinetics of migration of these cells to the ovary could also be tracked 

using this method.
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Although flu-specific LAP CD8+ T cells showed no impairment of cytolytic activity in 

vitro, the ability of these cells to lyse target cells in vivo has not been addressed in this 

thesis. Small differences in the ability of T cells to recognise/interact with target cells, 

may be overcome in vitro, whereas in vivo CTL assays may highlight a deficiency in anti­

viral activity. These assays should be carried out during both the primary and memory 

response to ensure that the defect, if any, is not in generation of the memory response. A 

study of the adhesion molecules and cytokine receptors expressed by these cells would 

also provide useful information.

It is possible that the lack of circulating soluble CD62L is the cause of impaired anti-viral 

immunity. It is possible that soluble CD62L could compete for ligands and limit cell 

adhesion, which may manifest in shedding deficient mice as increased cell adhesion and 

retention in and around vessels. Another possibility is that soluble CD62L, or its 

internalisation, could signal directly to stromal tissue, altering its responses to invading T 

cells, possibly facilitating their entry by upregulating adhesion molecules. Since soluble 

CD62L can be detected in the serum during an ensuing immune response, it could act as a 

systemic signal, mobilising the immune system. Although T cells are the only source of 

soluble CD62L in WT mice it could be enough to amplify immune responses. An in 

depth analysis of soluble CD62L levels in WT and LAP mice would determine if this is a 

valid hypothesis.

6.2.2. CD62L and memory T cells

The experiments using CD62L transgenic mice have not only put into question the view 

that CD62L downregulation is required for entry into inflamed tissue, but has 

demonstrated an important role for CD62L shedding on memory CD8+ T cells in viral 

clearance. The kinetics of CD62L shedding, its re-expression and subsequent
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transcriptional downregulation on activated T cells suggests that CD62L may have a role 

during the initial stages of a T cell response in the lymph node and could be an integral 

part of differentiation of memory T cells.

Recent studies have suggested that memory cell populations are derived from responding 

T cells before day 3 in the primary response, opposing the theory that memory T cells are 

derived from effector T cells towards the end of the immune response (Kedzierska et al

2007). It has been reported that a proportion of responding T cells, that were CD62LW 

and maintained TCR diversity, persisted in the long-term, when compared to rapidly 

proliferating CD62L10 T cells, of which the majority were eliminated during the 

contraction phase (Kedzierska et al 2006). This suggested that CD62L may be important 

during memory cell differentiation. However a later report adoptively transferred T cells, 

derived from influenza infected mice, into naive recipients and reported that cells 

transferred from the draining lymph nodes and not the spleen resulted in a superior 

memory response, irrespective of CD62L expression (Kedzierska et al 2007). This 

suggested that location in a lymph node rather than CD62L expression was important for 

identifying the most potent memory T cells. However, since CD62L is also involved in 

LN homing these two factors may be inextricably linked. Clearly, the role of CD62L in 

the generation of memory T cell responses requires further investigation.

Once generated, two forms of memory T cell are thought to exist, those that circulate 

through peripheral tissues, do not express CD62L and do not require restimulation to 

exert their effector functions (T Em ) ,  and those that express CD62L, circulate through 

lymphoid tissue and require restimulation (T cm)- The expression of CD62L on T cm  may 

simply allow LN access and therefore access to activation signals from DC, however it is
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possible that CD62L and its shedding is involved in T cm  activation or function. It is not 

yet known whether shedding of CD62L from the surface of memory T cells post 

activation differs from that on naive T cells, therefore further studies on the kinetics and 

consequences of CD62L shedding on T cm  may further distinguish between T cm  and T em -

In summary, although little is known about the consequences of CD62L shedding in T 

cell responses, it is clear that it plays a significant role in viral clearance that is not simply 

due to a inability of T cells to migrate to the site of infection. Since the models used here 

are those of active infection a subtle defect or delay in the immune response can tip the 

balance in favour of viral replication.

6.2.3. Relevance to Disease

CD62L shedding clearly impacts on viral clearance, with higher viral loads in mice where 

shedding is prevented on memory T cells. Although not intended to be a study of human 

disease, this work suggests that CD62L shedding may impact upon susceptibility to viral 

infections, and possibly other infections. If viral titres peak much higher in individuals 

with defects in CD62L shedding this may turn a usually sub-clinical infection clinical, or 

increase severity of disease. Since the effect appears to be restricted to memory T cells, 

this suggests that where the majority may become immune to further infection, those with 

defects in CD62L shedding may be susceptible to further infection with the same or 

similar agents. This may also impact upon vaccination strategies. However, it is 

important to bear in mind the balance between activation and regulation during immune 

responses and this is only one model. In models where activation stimulus is stronger, the 

defect may be overcome, therefore studies using other infection models would address 

this hypothesis.
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6.3. Conclusion

In one part of this thesis I have shown that Treg are able to inhibit acute innate immune 

responses as well as their well defined ability to inhibit T cells responses. Initially I 

demonstrated that tumour rejection involving B16FasL was mediated by innate immune 

cells and that this rejection was inhibited by Treg. Although postulated to be dependent 

on neutrophils, this study demonstrated that the cytolytic activity of cells recruited upon 

B16FasL was dependent on NK cells, thought to be activated by low levels of MHC 

Class I and NKG2D ligands expressed by the tumour. This cytolytic activity could be 

inhibited by adoptively transferred Treg in vivo and by activated Treg ex vivo. 

Furthermore, Treg depletion enhanced the number of neutrophils present at the site of 

B16FasL challenge and resulted in nuclear hypersegmentation of neutrophils, which is 

thought to be linked to enhanced survival (Wolach et al 2007). However many questions 

still remain concerning the mechanisms of Treg activation and suppression in this model, 

in particular it is important to address whether or not these Treg represent a 

subpopulation of Treg or whether all Treg are capable of inhibiting innate immune 

responses. The results of these studies may lay the foundations of future studies on the 

manipulation of Treg to treat a variety of inflammatory diseases.

In the second part of this thesis, I have demonstrated that maintenance of CD62L 

expression on CD8+ T cells does not prevent entry into inflamed tissue and that it does 

not appear to affect effector T cell or memory T cell generation and distribution. 

However a crucial finding was that failure to shed CD62L on memory T cells resulted in 

a defect in viral clearance, which could not be attributed to a defect in migration of cells 

to inflamed tissue, cytolytic activity or IFNy production. Identifying the mechanism 

involved in this impairment will lead to greater understanding of memory T cell
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responses, which in turn may lead to insights into the generation of immunity to 

infectious agents.
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Appendix
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Figure A.I. Characterising Resident and Recruited Macrophages.
Mice were challenged i.p. with 2xl06 B16FasL or remained unchallenged. 2 hours and 24 
hours later the peritoneum was lavaged and collected cells stained with anti -CDlib, - 
F4/80 and -Gr-1 antibodies, then evaluated by FACS. Macrophages present prior to 
B16FasL challenge were identified as C D llb+Gr-llo‘intF4/80hi, with higher FSC/SSC, 
were termed resident macrophages. Those emerging over time and identified as 
CD1 lb+Gr-lmtF4/80mt, with lower FSC/SSC, were recorded as recruited macrophages.
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Figure A.2. Administration of PC61 depletes CD25+ cells resulting in reduced 
numbers of CD4+CD25+FOXP3+ ceUs but no change in CD4+CD25FOXP3+ cell 
numbers.
(A) Mice were treated with either isotype control antibody (GL113) or anti-CD25 
depleting antibody (PC61) and splenocytes stained with anti -CD4, -CD25, -FOXP3 
antibodies then evaluated by FACS. Representative FACS plots, gated on CD4+ cells, are 
given in (A) and the number of CD4+CD25FOXP3+ cells for each mouse is shown in
(B). Statistical significance was evaluated by Mann-Whitney test. A representative FACS 
plot of splenocytes isolated from naive mice stained with anti~CD4 and FOXP3 isotype 
control antibody is given in (C).
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Figure A.3. CD4+CD25+ Treg are purified from the spleen using magnetic cell 
sorting and exhibit suppressive function in  v i t r o .
(A) Splenocytes were magnetically depleted of non-CD4+ cells. Positive selection of 
CD25+ cells from the CD4+ enriched cells resulted in two populations, CD4+CD25' and 
CD4+CD25+ cells. Cells were stained with antibodies to CD4 and CD25 and evaluated by 
FACS. 2xl04CD4+CD25‘were stimulated with 1x10s irradiated CD4‘ splenocytes (APC) 
and 1 |ig/ml anti-CD3 antibody for 3 days, with varying numbers of CD4+CD25+ cells at 
the ratios shown. Proliferation was then assessed by radioactive thymidine incorporation 
3 days later (B).
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Figure A.4. Maintained CD62L Expression Does Not Prevent Flu-Specific CD8+ 
Cells From Entering Lung Tissue
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs, draining lymph 
nodes (LdLN) and spleens'were stained with antibodies to CD8 and with NP68-tetramers 
and evaluated by FACS. The percentage of CD8+ cells that are tet+ in lungs, LdLN and 
spleens of B6 (squares), WT (triangles) and LAP (circles) mice are shown. Each symbol 
represents an individual mouse and data are a summary of two independent experiments 
using groups of at least 5 mice. Solid lines represent the means within each group.
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Figure A.5. Maintained Expression of CD62L Does Not Affect the Distribution or 
Numbers of Flu-Specific Memory CD8+ T Cells
B6, WT and LAP mice were infected i.n. with 20 HAU of influenza vims. >100 days 
after infection, lungs were perfused and cells isolated from the lungs, lung draining 
lymph nodes (LdLN), ovaries, ovary draining lymph nodes (OdLN) and spleens were 
stained with antibodies to CD8 and with NP68-tetramers and evaluated by FACS. The 
percentage of CD8+ cells that are tet+ in lungs, LdLN, ovaries, OdLN and spleens of B6 
(squares), WT (triangles) and LAP (circles) mice are shown. Each symbol represents an 
individual mouse and data are representative of two independent experiments using 
groups of at least 5 mice. Solid lines represent the means within each group.
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Figure A.6. Elevated Numbers of CD8+tet+ Cells are Detected in Organs of LAP 
Mice When Compared to B6 and WT Mice
Flu-immune B6, WT and LAP mice were generated by i.n. infection with 20 HAU of 
influenza virus and >100 days later, mice were challenged with recombinant Vaccinia 
Virus expressing a MHC class I-restricted peptide epitope derived from the influenza 
nucleoprotein (rWNPP). Mice were sacrificed 5 days later and ovaries, ovary draining 
lymph nodes (OdLN) and spleen collected and stained with antibodies to CD8 and with 
NP68-tetramers and evaluated by FACS. The percentage of CD8+ cells that are tet+ in 
organs of rWNPP challenged mice is given for B6 (squares), WT (triangles) and LAP 
(circles) mice. Data are a summary of 2 independent experiments using a minimum of 5 
mice per group.
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Figure A.7. Tetramer Staining.
(A) Splenocytes from naive F5 (bearing a TCR specific for NP68), B6 or influenza 
infected B6 mice were stained with antibodies to CD8, with either NP68-tetramers, or 
irrelevant tetramers, gp33-tetramers, then evaluated by FACS. Representative FACS 
plots of CD8 versus Tetramer staining are given in (A). (B) B6, WT and LAP mice were 
infected i.n. with 20 HAU of influenza virus. Eight days after infection, lungs were 
perfused and cells isolated from the lungs and spleens were stained with antibodies to 
CD8 and with NP68-tetramers, and then evaluated by FACS as in Figure 5.6. 
Representative FACS plots of CD8 versus Tetramer staining are given in (B).
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Figure A.8. CD62L Transgenic Mice Show Comparable Levels of CD107a to B6 Ex
V iv o

B6, WT and LAP mice were infected i.n. with 20 HAU of influenza virus. Eight days 
after infection, lungs were perfused and cells isolated from the lungs and spleens were 
stained directly ex vivo with antibodies to CD8, CD 107a, IFNy and with NP68-tetramers 
and evaluated by FACS. (A) Representative FACS plots of isotype control staining for 
anti -IFNy and -CD 107a antibodies on CD8+ cells from lungs is given alongside staining 
with specific antibodies. (B) Representative FACS plots of CD 107a versus IFNy on 
CD8+tet+ or CD8+tef cells from the lungs or spleen.
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