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A bstract

This thesis presents a numerical investigation of a problem on a semi infi­

nite waveguide. The domain considered here is of a much more general form 

than those tha t have been considered using classical techniques. The moti­

vation for this work originates from the work in [28], where unlike here, a 

perturbation technique was used to solve a simpler problem.
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Chapter 1 

Introduction



In this thesis we examine certain boundary value problems associated 

with periodic second order partial differential equations on waveguides. A 

waveguide is a domain in which is topologically cylindrical. This domain 

can either be finite, infinite or semi infinite. The problem that we shall treat 

is tha t of a semi infinite waveguide with a periodic potential which we perturb 

by attaching a domain to the other end of the waveguide, as illustrated in 

Fig 1.1. The region where these two domains meet is called the interface

Figure 1.1: The domain consisting of a perturbed semi infinite waveguide

which we shall denote by T. The first step in solving this problem will be 

to find a Dirichlet to Neumann map at T in the waveguide. A Dirichlet to 

Neumann map when applied to Dirichlet data (usualy on the boundary of a 

domain, or partial domain) gives us Neumann data. In the case of Fig 1.1 it 

can be represented as the following map



on the interface T. In order to calculate this map we shall use the Floquet 

theory since we have a periodic potential on the waveguide to obtain both the 

solution with Dirichlet and Neumann boundary conditions on T. Knowing 

the Dirichlet to Neumann map on T and the boundary condition in the 

perturbing domain we may use finite differences and finite element methods 

to solve the problem in the perturbed region which in our case is a modified 

circular domain. Given this solution in the modified circular domain, we may 

find the solution tp on T. W ith ip defined on T and given the equation in 

the waveguide we can then find the solution over one period of the periodic 

potential, in the waveguide. For this we will use the method of continuous 

orthonormalisation.

Although a number of papers have considered trapped modes (eigenfunc­

tions) in waveguides, there does not appear to be any work considering such 

a  general periodic structure.

Many significant contributions have been made by Linton and his co- 

workers. For instance, in [3], Callan, Linton and Evans consider a waveguide 

obstructed by a circular obstacle, but with a constant potential. By using 

Hankel functions to solve the Helmholtz equation, the authors establish the 

existence of trapped modes. In [22] Mclver shows the non-uniqueness of a 

water wave problem by constructing a potential that does not radiate to in­

finity. In [25] the authors P.Mclver, Linton and M.Mclver construct trapped 

modes belonging to eigenvalues that are embedded in the spectrum of the rel­

evant operator. In [18] Linton and Evans seek the solution of the Helmholtz
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equation for a parallel-plate waveguide with a symmetric obstacle about the 

centreline of the guide and solutions are sought using integral equations. In 

[24], Mclver, Linton, Mclver and Zhang use a boundary element technique 

to find embedded trapped modes of an infinitely long waveguide with an ob­

stacle of the form | J \u +  | | \u =  1 centred at the lower left corner of the tube 

and to study the effect on these modes when v —> oo. In [23], Mclver, Linton 

and Zhang use the matched eigenfunction technique to show that further 

modes exist in the vicinity of a rectangular block. In [11] Evans and Linton 

look for trapped modes in a cylinder with a rectangular indentation. In [2] 

Aslanyan, Parnovski and Vassiliev consider the situation as in [10] except 

that the obstacle is shifted from the axis of symmetry and the corresponding 

complex resonances are studied.

We stress that our use of the term ‘periodic’ differs from that of Linton, 

who often considers a finite sequence of identical equally spaced obstacles 

across the waveguide: our approach would be better adapted to dealing 

with infinitely many identical equally spaced obstacles placed along the axis 

of the waveguide strip.

Evans, Vassiliev and Levitin [10] devised a simple but elegant argument 

based on geometrical symmetries to prove the existence of embedded trapped 

modes for the Helmholtz equation in quite general geometries. We exploit 

this later on to find embedded trapped modes for our periodic Schrodinger 

operator.
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In chapter 2, we introduce band gaps, the essential spectrum, look at a 

simple non perturbed waveguide and we then use the Levinson theorem to 

deal with non separable, rapidly decaying potentials. In chapter 3 we fur­

ther expand the type of potential which we may study by introducing the 

Floquet theory and so allowing us to deal with periodic potentials. In chap­

ter 4 we look at self adjoint boundary conditions and formulate a system of 

Schrodinger equations with a potential perturbed by a compactly supported 

perturbation such that we may find a Dirichlet to Neumann map. The orig­

inal material is in chapter 5 where we are able to use the methods developed 

in chapter 4 to find a Dirichlet to  Neumann map in order to find eigenvalues 

of the problem illustrated in Fig 1.1 which will involve the finite differences 

method. In chapter 6 we will use the finite element method to find the eigen­

values found in chapter 5 and finally in chapter 7 we make a comparison of 

the results.
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Chapter 2

The Schrodinger equation w ith  

decaying potentials on 

waveguides



Introduction

In this first part of the thesis we shall be concerned with a numerical investi­

gation of the spectra of both the Sturm-Liouville problem and the Schrodinger 

equation in a waveguide. We shall confine ourselves to examples of the latter 

in which separation of variables may be employed to reduce the problem to a 

system of Sturm-Liouville problems. We therefore commence this discussion 

by introducing the Sturm-Liouville equation.

2.1 Sturm -L iouville equation on th e half-line

We shall consider the Sturm-Liouville equation

A point a which satisfies the above conditions is a regular point, otherwise 

it is said to be an irregular or singular point. A point that is not singular is 

called a regular point. It is well known that under these assumptions on q,

—y" +  qy =  \ y  x  G [a, oo), A G C and a > —oo (2.1)

where we assume that q G L\oc[a, oo) and satisfies the conditions

3 X  > a such that |g| < oo,

and

7



(2.1) is in the so called limit-point case at infinity. For such problems, with a 

strictly complex A, up to a constant multiple there is a unique solution that 

lies in L2[a, oo). Thus no boundary conditions are required, or even allowed 

at infinity, see [6, chapter 9].

The spectrum of the self-adjoint operator (which must be real) generated 

by the left-hand side of (2.1) is known to contain an essential spectrum aess 

which covers a half line [0, oo), possibly, with both (finitely or infinitely) many 

eigenvalues to the left of 0 and possibly some in the essential spectrum. (See 

[9, IX,Theorem 2.1] for details).

In order to generate a well posed spectral problem we impose the so called 

self-adjoint boundary condition at a, see [6, chapter 7,problem 15]. Thus we 

also assume that there are real constants A\  and A 2 not both of which are 

zero such that

Aiy{a) -I- A 2y'(a) =  0

where a is a regular point.

2.2 L iouville-G reen expansion

As we stated above our goal will be to use numerical procedures to investigate 

the spectrum of this Sturm-Liouville problem (and later the Schrodinger 

equation in two dimensions). However as the problem is posed over [a, 00) 

we must first approximate it by one on a finite interval [a, X], a < X  < 00 

and by imposing a boundary condition at X , which will now depend upon
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the spectral parameter A. In order to do this we calculate an approximation, 

using the Liouville Green expansion, to the (unique up to a constant multiple) 

decaying solution in [X , oo). We now explain how this is performed.

The following theorem is quoted from [7, 2.2.1] in the special case where

p =  1.

T heorem

Let q be nowhere zero and have locally absolutely continuous derivatives in 

[a, oo). Let
(<7-A)' (  1 — =  o ■ - . I as x  —► oo

g - A  W 9 -  V

and let

(« _ A ) i g L{X,oo).

Let

+  r 2) have one sign in [X, oo),

where
.  (<? -  a)'

4 ( , - A ) '

Then (2.1) has solutions y\ and y2 such that

yi(X) «  (q ( X ) -  A)" V *  (2.2)

j/|(X ) «  (9(X) -  A)*e^X (2.3)

9



and similarly for y2 containing — f *  y/q(t) -  A +  r2(t)dt in the exponential 

term.

Using the approximations (2.2) and (2.3) we may replace (2.1) by the 

following problem on the compact interval [a, X] with (a < X  < oo)

- y"{x) +  q(x)y(x) =  Ay(x) with A xy(a) +  A 2y (a) =  0

and
v \ X )  > y . _  . 
y{X)  V l ( X ) X-

2.3 Schrodinger E quations on W aveguides w ith  

decaying p oten tia ls

As we said in the introduction, our motivation in discussing the Sturm- 

Liouville equation is as a tool in the investigation of the two dimensional 

Schrodinger spectral problem in a waveguide. We work with a model two 

dimensional problem over the domain Q := [a, oo) x [0, <$]. It is

-  A^(:r, y) +  q(x, y)\l>(x, y) =  A^(x, y) (2.4)

over this domain and boundary conditions ^{x,y)\oQ = 0.

For the simplified case where q{x,y) =  0 then by separation of variables,
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-------------------------------------------------------------------------------------------------y  =  S

- A i > ( x ,  y ) + q(x, y )^ {x ,  y) = Xxp(x, y) 

-------------------------------------------------------------------- y  =  0

Figure 2.1: The domain and the PDE 

and use of the geometry and boundary conditions we obtain the ansatz

00 /  L.-J- \

y) =  0jfc(a?) sin ( — y  J . (2.5)
fc=i '  '

This leads to the sequence of ordinary differential equations

k 2ir2
+  -gf-<t>k(x ) =  X M x ) (2 .6)

for A* € {1,2, ...,00}. These equations have solutions

<t>k(x) =  A* cos ( \ /X  -  + B k sin ( y  A -

for k 6 {1,2, ...,00} from which we can see that the essential spectrum of
2

problem (2.4) starts at A =  ^-, ie

<7ess =  [lt>2 , OO)

where w =  ?• This follows from considering the decomposed partial differ-
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ential operator L ~  ©fceN Lk where

T _  d? k2n2 
k = ~ d x i  + ~6r

equipped with boundary condition </>(0) =  0. We therefore have

^ess(- f̂c) —
k2 7T2 

82
,00^

It is known that the essential spectrum of L is the union of the essential 

spectra of the L* ie

= U  = fe '° ° )
ke  N L /  L /

(2.7)

In relation to material that will be presented later in the thesis it will be 

of interest to see what happens to the spectrum if we cut the domain in 

half about the axis of symmetry. We will now proceed to investigate what 

happens in this case. It can be seen that if we cut the domain in half as Fig

2.2 illustrates.

y =  s

y  =  0
y

y

_ 6 
~  2

=  0

Figure 2.2: The domain on the left which we chop in half on the right
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this has the effect of changing ti to |  and thus if we continue to impose 

Dirichlet boundary conditions on the boundary at y =  0 and y =  |  then

(2.5) becomes

and thus the essential spectrum is

CTess =  [Aw2, oo) (2.8)

where w = j  is as above. We see tha t the essential spectrum has thus been 

shifted to the right on the real axis.

It will also be of interest to consider what happens if by contrast we 

impose Neumann boundary conditions at y =  |  but keep Dirichlet boundary 

conditions at y =  0 after slicing the waveguide in half. In this case (2.5) 

becomes

4>(x,y) =  jr<j>k(x)sin  ( ( * - (2-9) 

and (2.6) becomes

-<t>l(x) +  (fc -  0 ^ jr M x )  =  a <t>k(x) (2.10)

for k € {1,..., 00}, from which it can be seen that the spectrum is the same 

as the case where we have Dirichlet boundary conditions at both y = 0 and 

y = t i ­

l t  we now add in a compactly supported perturbation q(x,y), then it is

13



well known that it will not affect the position of the essential spectrum, see 

[9,1X2.1], however it may induce eigenvalues below the essential spectrum or 

embedded in it. If q(x , y) in (2.4) is a potential which induces eigenvalues in 

the spectrum, then if we cut the tube in half as in Fig 2.2 and impose Dirichlet 

boundary conditions at y =  0 and y =  some of the eigenvalues previously 

in the new spectrum may now be below the essential spectrum. This can 

be seen if one compares (2.7) with (2.8). This will be useful later since we 

will only be able to find eigenvalues that are not in the essential spectrum 

and thus cutting the waveguide in half is a way of revealing eigenvalues that 

would otherwise be hidden in the essential spectrum.

We now return to (2.4) and again (for a different (f>) we use the ansatz

(2.5) and we consider the case where q ^  0. Substituting this into (2.4) and 

integrating over y we obtain

jU 2_2 9  /  Ic tt \  /  TY1.7T \

- 0 k(x)+—̂ r <t>k(x)+-<t>k{x) J  q(x,y)sin(- jT-y)  sin [ — y ) d y  = \<t>k(x)

(2.11)

for k  =  {1,2, ...,oo}, where we assume that the sum is convergent (this will 

later be provided when q is sufficiently smooth). This system is rewritten in 

matrix form as

-4>"(x) +  Q(ar)$(aO =  A4>(x) (2.12)

14



where $(x)  =  [<f>i(x), 02(^), •••, <i>oo(x)]T and

and

Qkm(x) = 2 f 0 q(x ’ ^ sin ( t ^ )  sin ( ~ T y )

It will be our goal to solve the problem illustrated in Fig 2.1 using the

q(x,y)  is only dependent on x  and not y, the system decouples and the

some point X ,  a < X  < oo.

When the system does not decouple we use the Levinson theorem [7, 

1.3.1] to obtain equivalent results as we now show.

2.4 T he Levinson theorem

We now present a short account of the Levinson theorem taken from [7]. The 

differential equation (2.12) can be written as

expansion in (2.5) where <f> this time is defined in (2.11). In the case where

asymptotes of section (2.2) may be used to define a boundary condition at

15



Let S D S - 1 =  

'  0

^  Q(x)  -  <3 ( ° o )  o  ^

pression

 ̂ 0 /
where D is a diagonal matrix, R(x) =

 ̂ Q(oo) -  XI 0 

0 ^ and Z(x)  =  5  1 I . This leads to the ex-
^ (x )

(
$(x)

\

Z \ x )  =  (D (x ) +  R(x))Z(x) (2.15)

where R  = S ^ R S  — S ^ S ' . If q(x,y)  in (2.13) and (2.14) decays suffi­

ciently fast such that q{x,y) G L2(a, oo) then Q(oo) =  diag ...^

which means that 5  is independent of x  and thus R  — S~l R S  and we thus 

have a necessary condition for the Levinson theorem namely

roc
I \R(x)\dx

J  a
< oo

since q(x,y)  G L2(a, oo) and thus from (2.15), has solutions of the form

Zk(x) =  (ek + o(l))e -Xdt

and

Zk(x) = (ek + o(l))e~Z

If we truncate the sum in (2.11) at N  then the matrix D has the form



and thus for the left half of matrix S  we have Skk =  1 and S(k+N)k = 

y j — A and on the right half we have Sk(k+N) =  1 and S^+N)(k+N) =

  I $(x) |
—  A with all other entries being zero. Since I =  SZ(x)

\  * ' ( * )  /
then (2.11) has L2 solutions of the form

<t>k(x) - r . y p & 5 *

and

A full discussion of the Levinson theorem is contained in [7].

2.5 R esu lts for an exponentially  decaying po­

ten tia l in th e  2 dim ensional Schrodinger 

equation

In this section we shall calculate the eigenvalues of the Schrodinger equation 

over the two dimensional domain as above consisting of a tube of infinite 

length and width 6, namely ([0, oo) x [0, £]). We shall reduce the PDE to an 

infinite system of ODEs and we will then use the Liouville Green expansion 

on each ODE in order to approximate its solution at a certain point X  along 

the tube, thus reducing the domain from ([0, oo) x [0,(5]) to ([0,X] x [0,(5])

17



together with A dependent boundary conditions at X .  Before doing this we 

shall review some of the available software for solving these types of problems 

and a selection of the work done in this area.

There are two main pieces of software for solving Sturm-Liouville prob­

lems numerically, both of which use a shooting method, these are SLEIGN 

by Paul Bailey (1966) and SLEDGE written by Steven Pruess, Charles Ful­

ton and Yuantao Xie. A more advanced version of SLEIGN, SLEIGN2 by 

P. Bailey, T. Zettl and N. Everitt, released in 1991, [27] can handle arbi­

trary self-adjoint, regular or singular, separated or coupled boundary condi­

tions. These codes are designed to compute eigenvalues and eigenfunctions 

of regular and singular self-adjoint Sturm-Liouville problems. SLEDGE can 

also obtain information on endpoints by checking certain inequalities and 

can also calculate a spectral density function. In order to solve a Sturm- 

Liouville problem SLEDGE uses a piecewise approximation of coefficients of 

the differential equation while SLEIGN and SLEIGN2 make use of the Priifer 

transform. The NAG library contains the routines D02KAF and D02KDF 

written in FORTRAN and is based on the scaled Priifer transform of Pryce 

and a shooting method. They both find a specified eigenvalue of a SLP on 

a finite range and D02KDF has an advantage over D02KAF in that it can 

deal with discontinuities in the coefficient function of a SLP.

The code which we shall use here is that described in [19] called SL09F 

and SL10F and were available on NETLIB. Here a new spectral function is 

described for a vector Sturm-Liouville problem and a miss distance function

18



is used to find the eigenvalues. The codes SL11F and SL12F are based on 

matrix oscillation theory and shooting and SL12F additionally uses coefficient 

approximation. They are used in [20] where the code solves a differential 

equation whose solution is a unitary matrix.

It is well known that the problem of interval truncation and discretisation 

can introduce spurious eigenvalues as a form of spectral pollution and we can 

avoid this by using shooting. In [17], Levitin and Shargorodsky look at the 

phenomenon of spectral pollution resulting from trying to approximate the 

spectrum of a self-adjoint operator with a projection method. The paper has 

several detailed examples of the methods used to deal with the phenomenon. 

The authors introduce a second order relative spectrum to detect spectral 

pollution in the standard projection method. For different reasons there are 

spurious eigenvalues when working with the equations of fluid motion as in 

[30]. In this work Walker and Straughan are confronted with the problem of 

spurious eigenvalues when attem pting to solve a porous convection problem 

and they make use of the compound matrix and the beta tau method to 

eliminate spurious eigenvalues. According to Gardner [12] who motivated 

the work in [30], these spurious eigenvalues are due to singularities in the 

matrix resulting from the discretisation of the differential equation.

In this chapter we shall use a shooting method to solve certain problems. 

Shooting methods don’t suffer from the phenomenon of spectral pollution.

19



2.5.1 A pplication  to  a rapidly decaying negative po­

tentia l

We note that when q{x,y) is a function only of x  the equation in (2.12) 

decouples and the Liouville-Green asymptotics [7, 2.2] apply to each equation 

separately. We now calculate a boundary condition at X  for X  < oo for the 

example problem (2.4) where q(x,y)  =  —30e- x cosx.

Let q(x , y) =  — 30e-x cos x  in (2.4) after substituting into (2.5) we obtain

(k 27r2
 30e-x cosx  ) (j>k(x) =  X<f>k(x))

for k  6 {1, 2,..., oo}.

Applying (2.2) and (2.3) to the above equations gives for X  > a

- f X 3 0 e -* co sH - XdtJa y  ^  4(n2f 2+30e- tco87 ^ 7

M X )  »   ------------ —---------------------------- i----------- (2.16)
(»£*1 - 3 0 e - x c o s X - A ) ’

and

- f X  / n ^ - 3 0 e - f c o s t+  ■ Xdt
J* ^  4(n|JH + 30.-oo.,-»)'

<t>'n(X) « ------------— -------------------------- - I ---------- (2.17)
( 2 |f ^ - 3 0 e - x co sA '-A ) 4

respectively. The code in [21] which we use to compute a numerical approx­

imation of the solutions requires the boundary condition to be of the form

20



y {X)  =  A y(X )  for X  > 0 and thus (2.16) and (2.17) become

I 2 2

4>(X) = ~< l> (X )y-£ -  -  30e-* cosX  -  A. (2.18)

2
If 8  is sufficiently small then the term Jy dominates — 30e-x cosx so that

for x  > X  and large X  and thus (2.18) becomes

, r^ - 2
0 ( X ) « - 0 ( X ) ^ ^ - A .

This approximation is equivalent to setting q(X) = 0 and thus — 30e~x cos:r 

acts as a compactly supported perturbation in [a, X )  and thus does not 

change the essential spectrum.
2

In our case we choose 5 = 0.73 and thus Jy ~  18.52 with a =  — 1. The 

chosen value of 8  is mainly an intuitive guess as this 8  allows a certain number 

of eigenvalues to be below the essential spectrum while not producing too 

many. We impose the following boundary conditions

y ( - l )  =  0 and y (X)  =

and we choose several values for X  in order to compare accuracy. Table (2.1) 

gives the eigenvalues to our problem where we truncate (2.11) at N  = 5. We
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note that since the system decouples then the eigenvalues do not depend on 

N.

X  = 5 X  = 8 X  = 11 X  = 1A
-16.502020
-0.77175819

11.396364
19.352632

-16.502019
-0.77175678

11.397026
18.832586

-16.502019
-0.77175776

11.397032
18.641448

-16.502013
-0.77175930

11.396997
18.586329

Table 2.1: Eigenvalues for S = 0.73, N  = 5 at various X

The negative potential — 30e x c o s t  induces eigenvalues below the essen-
2

tial spectrum which start at J5- =  18.52. From table 2.1 it can be seen that 

the eigenvalues below the essential spectrum are quite stable with respect to 

X .  We note that the last eigenvalue in the table is in the essential spectrum. 

We now discuss the case of a non separable potential.

2.5.2  A pplication  to  a non  separable potential

For the following non separable potential

q(x,y) = — 30e“ ^ l2+ ŷ~5)2

for y € [0, <J] and x  € [a, X] we use the FORTRAN code in [21] to integrate 

out the y dependence to obtain the following potential



We use the Levinson theorem [7, 1.3.1] to derive the boundary condition 

at X \  namely y (X) = —y (X ) y J ^ — A. In table (2.2), again we truncate

(2.11) at AT =  5.

X  = 5 X  = 8 X  = U X  = 14
-1.616036
7.977970
13.829375
17.299980
19.194344

-1.616047
7.977978
13.829459
17.287788
18.617109

-1.616037
7.977982
13.829113
17.286995
18.542617

-1.616061
7.977962
13.829361
17.28774

18.524077

Table 2.2: Eigenvalues for (5 =  0.73, N  = 5 at various X  

In table (2.3) we truncate (2.11) at N  = 10.

X  = b X  = 8 X  = 11 X  = 14
-1.616043
7.977970
13.829375
17.299980
19.194343

-1.616055
7.977976
13.829450
17.287788
18.617108

-1.616045
7.977982
13.829111
17.286997
18.542616

-1.616064
7.977963
13.829360
17.287735
18.524077

Table 2.3: Eigenvalues for 6  = 0.73, N  = 10 at various X

Of interest is the error made from truncating the domain. Looking at 

tables 2.2 and 2.3, it can be seen that interval truncation produces a more 

significant error than truncating the sum at N  which we now analyse.

2.5 .3  A nalysis o f th e  error caused by truncating at X

This leads us to the following observation. Our approximation at x  = X  is 

equivalent to the assumption that q(X , y) =  0. We may therefore write two



differential equations, one for the non truncated problem

-<j>l(x) +  Q{x)<t>k{x) =  A<t>k{x) and -  <t>'k{x) +  Q(x)(f>k(x) = A</>k(x)

where Q(x) = Q(x) for x  € [—1,X] and Q(x) =  0 for x > X .  Subtracting 

these two equations from one another and integrating we obtain

/ oo roo
<pk(x)2dx =  J  Q(x)<j>2k(x)dx.

Let A  be a normalisation constant so that A2 / 0°° <t>\(x)dx =  1. Thus we 

obtain
oo

Q(x)<t>l(x)dx 

or

which lead to

A -  A <  Ay W  e- 2V ^ ^ ,

2V/ ^ " A

As can be seen, there is an exponential decay in the truncation error as we 

move the point of truncation X  to the right of zero.

In this chapter we examined Schrodinger problems with decaying po­

tentials while in the next chapter we will introduce Floquet’s theory which 

allows us to deal with periodic potentials. We also look at certain conditions 

necessary for self adjointness.

A - A - W
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Chapter 3

Sequences o f ODEs on 5R+ w ith  

band-gap spectral structure
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In this chapter we shall consider the general class of problems of the form

—̂  (x) +  Q(x)\£(x) =  A\P(x) x € (3.1)

where Q is an n x n  matrix with the property that Q(x  +  2 n) =  Q(x) and 

^ (x ) =  [ipi(x),ip2{x), -I'tpnix)]7' and

where A\  and A 2 are n x n  matrices.

We shall consider (a) the conditions on the matrices A\  and A 2 which en­

sure that the operator underlying this ODE problem is self-adjoint; (b) the 

Floquet theory associated writh the ODE problem; (c) the band-gap spec­

tral structure of the underlying operator, as characterised through Floquet 

multipliers.

The role of this chapter is to provide a complete and rigorous description 

of the theory behind a system of ODEs which will arise in later chapters as an 

approximation to a single PDE on a waveguide. We should emphasise that 

this chapter is largely a review of known results, provided for the convenience 

of the reader. The construction of the self-adjoint operator associated with 

our system of ODEs may be found in a number of sources, including [14] and 

[26]. The Floquet theory is also quite classical, although in textbooks it is 

usually developed for a single ODE (see, e.g., [8]); for systems of ODEs there 

is a good review in the recent article of Clark, Gestezy, Holden and Levitan

^ i^ (O ) +  ^ 2^ ( 0) =  0. (3.2)
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15].

We define an operator by Ly  =  —y +  Qy on the domain

V{L)  =  { y  € (L2(» +))"| -  y + Q y €  (L2 (X+) ) ,A iy (0) + A 2y ( 0) =  0}.

We wish to describe the conditions on A\ and A 2 which ensure that L  is 

self-adjoint. For self-adjointness the following are required

{ L f , g ) - ( f , L g ) = 0 V f , g € D ( L )

where < g , f  > =  / 0°° gfdx.  The m atrix Q(x) is a real symmetric matrix and 

thus cancels, viz for / ,  g € D(L)

roc roc
{L f . g ) -  {/, Lg) =  /  ( - / "  +  QJ)’gdx -  /  +  Qg)dx

Jo Jo

= Um [ - { f ' ( x )yg (x )  + r ( x ) g ' ( x ) \ ‘0 = /'*(<%(()) -  /* (0)ff'(0),
t —*oc

by choosing /  and g to have compact support. The boundary condition (3.2) 

can be rewritten as

(A 1+iA 2) m + A 2 ( f ' ( 0 ) - i m )  = 0 =* /(0 ) =  -(> l,+ M 2 )-M 2( / ( 0 ) - i / ( 0 ) )  

and

( A , - a 2)9 (o )+ y i2(9 '( o ) + i ff(o )) =  0 =*■ fl(o) =  - ( ^ - a 2) - M 2(< /(o )+ iff(o )),
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provided that we can ensure that A\  +  iA 2 and Ai — iA 2 are invertible. We 

shall justify this later. Therefore after rewriting the result for (L f , g) — ( /, Lg) 

we obtain

(Lf ,g)  -  ( /, Lg) =  ( / '( 0) -  i / ( 0))*S(0) -  /* (0)(</(0) +  ig(0)) (3.3)

=  ( / ( 0 )  -  */(0))*[J45(J41 +  iAa) -  -  (Ax -  *Aa) - lAa](s'(0) +  fo(0)).

Expression (3.4) is zero for all compactly supported / ,  g € P(L ) iff

A*2 {Ax +  L42) '*  =  {Ay -  iA2)~1A 2

(Ax -  iA 2 )A* =  A2(i4J -  ti4J)

=  j42j4J.

We see that one condition for the operator L to be self-adjoint is that A 1A 2 = 

A 2A\.

We introduce the minimal operator L0 and the maximal operator LJ 

where Lq has deficiency indices (2n, 2ra) and LJ has deficiency indices (n, n). 

Note that for A £ 9ft the deficiency indices n+ and n_ are the number of 

L2 [0,00) solutions of Lg =  ±iy,  see Naimark [26]. The self-adjointness of 

the operator L  given the boundary condition (3.2) will now be proved based 

on [14, theorem 10.5.2]. Let {f j}]= 0 a set °f n functions in V(Lq) linearly 

independent with respect to V ( L 0).
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For our operator L to be self-adjoint it is necessary and sufficient that 

the boundary conditions (3.2) be of the form (3.4) for some suitable choice 

o f F o r  self-adjointness

<£/„#>  -  (fj,  L #) =  [/,, # ]“  =  —/J*(0)®(0) +  //(O)VP'(O) (3.4)

should be zero. Comparing this with (3.2) we see that

j'ji0) =  - A { e j  and fr(0) =  A'2e}

and thus it can easily be deduced that Aifj(Q)+A2f  'j(Q) =  0 and so 

is a spanning set of k e r(d i|d 2) and

(3.5)

MO)

/'(0)

- / i ( 0)*

- M o  r

\

■f'n(0Y

and A2 =

1  / i ( 0 )* N

M o y

M o y /

The functions / i ,  . . . , /n are smoothly extended from these initial conditions 

as compactly supported elements of V(L*0).

It remains to show that { /j}”= i are linearly independent with respect to 

V (L q). Let us choose n compactly supported functions {<7j }”=i in 'D(Lq) such
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that d e t ( [ / i , ^ J ]o°) ^  0. This leads t o

[fi<9i]o =  -/;*(0)fc(0) +  M O Y g M  = et(Al9j( 0) +  A2g.(0)).

It can be seen that
9j(0)

9j (  0)
€ ker(Ai|>l2) and thus

\fu 9 i\o  =  < ( A i \A2)
9j( 0)

3j(0)

Choosing
9,(0) A\

ej, we get

[f„g]l?  = A 1A; + A2A'2 7 ‘ 0.

Prom [14, theorem 10.5.2] we have shown that no self-adjoint extension exists 

for the operator (3.1) and (3.2) and thus the problem is self-adjoint.

3.1 F loq u et’s T heory for a H am iltonian sys­

tem  o f O DEs

Consider the following Hamiltonian system of ODEs

u (x) = A(x)u(x) x  £ [0, oo) (3.6)
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where A  has the property that A(x  +  2n) = A(x), u(x) is a vector of the 

form u(x) =  [yi(^), •••, 2/2n(^)]T with unspecified boundary conditions at 0. 

Equation (3.1) can be written in the form Y'(x)  =  A(x)Y(x)  where Y(x)  G

$2Nx2N ^

1 q = p + N

Q{p—N)q{X' ) ^ p — q N
A p q  —  < (3.7)

Q(p-N)q(x) p ±  q +  N  and p > N ,q  < N

0 otherwise

on [0, oo) with the property that A (x  +  27r) =  A(x)  since Q(x  +  2 n) = Q(x). 

Then there exists solutions with 2N  components, and complex

numbers pi, ...,pn such that

u j ( x  +  27r) =  p j Uj ( x )  for 1 <  j  < 2N. (3.8)

The Uj are called Floquet eigenvectors and the pj Floquet multipliers. We 

let Uj(x)  =  Y ( x ) c j , j  =  1,2,..., 2 N , where Cj is a column vector of length 2 N  

and Y  a 2 N  x 2N  matrix.

Setting (0) =  I 2N we have itj(O) =  Cj where I2N is the 2N  x 2 N  identity 

matrix and thus solve the following

Y \ x ) c j  = A(x)Y(x)cj  with T(0) =  I2N
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over the interval x  £ [0,27r]. Using (3.8) we obtain the following eigenvalue 

problem

(T(2?r) -  PjI2N)cj =  0.

We are interested in values of A which are in the spectral gaps of the operator 

L. In the spectral gaps we have solutions with the following property;

u+(x  +  27r) =  p+u(x)  and U - ( x  +  2n) =  p - u ( x )  (3.9)

where |p_| < 1 and |p+| > 1. In fact we can expect N  Floquet multipliers to 

have the property that |p_| < 1 and N  others with property that \p+\ > 1. 

The case when \pj\ < 1 corresponds to the Floquet eigensolutions in L2(3ft+). 

Any solution of equation (3.1) which lies in L2 consists of a linear combination 

of the L2(9ft+) eigenvectors of (3.6). In the essential spectrum \pj\ = 1 for 

some j  and thus there exists solutions which are oscillatory.

Using U j ( x )  =  Y(x)cj  we can rewrite (3.8) as

Y ( x ) c j  =  A(x)Y(x)cj .

We can then impose the following boundary condition Y (0) =  I2n  and thus

(3.9) becomes Y(27r)cj = pjY(0)cj. From this equation we can find, for a 

given value of A in a gap, the N  values p for the N  solutions in L2(3?+). For 

a more technical introduction to the Floquet Theory of Hamiltonian systems 

see [5].
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3.2 T he spectral bands and gaps

In [1] Aceto, Ghelardoni and Marietta find the spectral gaps of the dif­

ferential equation —̂ ( x )  +  sin(a:)0o(^) =  A<f>o(x) which we quote here as 

<70 =  (-oo ,-0 .3785) U (-0.3477,0.5948) U (0.9181,1.293) U (2.285,2.343) 

where the gaps beyond the fourth have been ignored. Consider (2.11) with 

q(x , y )  = sin(x) which leads us to

n 2 7r2
-<t>n(x) +  sin(x)0n(x) +  —̂ - 0 n(x) =  A <f>n(x). (3.10)

The spectrum of (3.10) which we shall denote by an is that of <r0 shifted to 
2 2

the right by This can be easily seen when one replaces A in (3.10) with 
/  2  2A =  A — 2^5-. Let a  be the union of the spectra of the sequence of equations 

in (3.10) for n =  {1,2, ...27V} then it is well known that a  should be the 

union of the spectrum of each individual equation in (3.10) ie

<7 =  Ujijfffc.

Since the gaps die out so rapidly (theorem 5.2 [8]) it follows that, in our case,

to a very good approximation we have a  =  o \ .

Below is a diagram showing the bands and gaps in the spectrum for

different n. The black lines denote the spectrum and the gaps are the clear

spaces. It can be seen how the spectrum is shifted to the right for every
2 2equation in (3.10) with different n by 2jf-. In this example as illustrated in
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Fig. 3.1 we have chosen 6  =  2 sin (^ ).

£2  ^  lO  OO CO
n . §  0 8

r-t i—l I''- CM
0  0 5  CO lO CO^  ^  i-j
id in 0  coCM CM CM CM CM-►I----1-I----- 1 I—

00 OO t-h 
n  o  loO  O  Oi CM CO 
CM CO CO
o  o  o  o o

AfT* i-H H r-H
----------------------------------- H -----1 I------- 1 I—52-

Figure 3.1: Spectrum and gaps of (3.10) for n  =  0,1 and 2.

In the following chapter we shall apply Floquet’s theory to find eigenval­

ues of systems of ODE’s containing a periodic potential with a compactly 

supported perturbation. The formulation will lay the foundations for finding 

the Dirichlet to Neumann map which will first appear in (5.17).
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Chapter 4

A numerical algorithm  for 

solving a perturbed periodic 

H am iltonian system
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In the previous chapter we considered a periodic potential Q. For such 

Q there are often no eigenvalues in the gaps, although this depends on the 

boundary conditions. By introducing a compactly supported perturbation, 

eigenvalues can be induced in the gaps. Thus we have a potential of the form 

Q =  Qperiodic+ Qperturbed- We next illustrate this with a simple SLP example.

4.1 Solution o f a sim ple ODE w ith  a pertur­

bation o f a periodic potential

We consider two Sturm-Liouville problems over [0, oo) with self-adjoint bound­

ary conditions at the end points and with potentials sinx  and cos a: respec­

tively. Both problems have the same essential spectrum and it is well known 

that a compactly supported perturbation will leave the essential spectrum of 

the system invariant [9, IX 2.1]. In this example the compactly supported 

perturbation is where 6 is a constant which when its absolute value is 

above a certain value results in eigenvalue accumulation [29].

Consider the two systems

z[ =  (sinx  +  q — A) z\ and z^ = (cosx + q — \ )  z2 (4.1)

with given boundary conditions Zj(0)cosa;i -I- zt-(0)sinQj =  0 for i = {1, 2}
/  \

and q(x) = <
x  €  [0 ,167r]

. We write the solution in the form
0 X >  167T

Zi

\  Zi )
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where is the solution to —z ” + q ( x ) z i  =  Xzi for i  — {1,2} and q ( x )  is either

sin x  or cos x. At 167T it is assumed the the solution is a linear combination
/  , \  /

of the vectors e\ =
1

\ 0 /
and e2 =

\

0

1

. Therefore given two funda­

mental solutions (j>i(x) and 02{x) of the differential equation with boundary 

conditions e\ and e2 at x  = 167r we can write the solutions Z  and Z' as a 

linear combination of 0!(167r) and 02(167t), ie

z (167r) =  Ci0 i ( 167r) -1- C202(lb 7r) and z (167r) =  4- C202(167r).

Applying the Floquet theory to our case we have Z (187r) =  pZ (167r) where p 

is the Floquet multiplier and Z \  18n) = pZ'(16tt) ie Ci0 i (187r)+ c202(187r) = 

p(ci0 i ( 167r)+c202(167r)) and Ci0 /1(187r)+C202(187r) =  p(ci0/1(167r)+c202(167r)). 

The last two equations can be rewritten in the form

^ 01 ( 187T) 0 2 (1 8 7 r )  ^

\
(187r) 0 2 (18?r) /

0 l (167r) 02 ( 16tt) 

0 i ( 167r) 02(16tt)

and in view of the boundary conditions at 167T we have

/

V

0l(187r) 02 ( 187r) 

0 l ( 1 8 7 r )  0 2 ( 1 8 7 t )
= p

(4.2)

If A is in one of the spectral gaps of the perturbed problem then p € and 

from [1] the following values of A correspond to gaps in the essential spectrum
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It is obvious that

A € (—00, —0.378] U [—0.348,0.595] U [0.918,1.293] for the equations in (4.1).

M is an eigenvector of (4.2) and it is known as a
C2;

/
Cl

Floquet eigenvector. Thus the eigenvector

V

gives us the value of

(
\ c2

Cl z( 167r)
. These values define the boundary conditions on

V
c2 J  \ z (  167r)

the right end of the interval x e  [0, 167r]. We next turn our attention to the 

problem in [0,167r] with this initial condition at I67r and e ^ 0 .  We calculate 

z(x) and z ( x )  in this interval as a function of A, varying A until the boundary 

condition is satisfied.

R esults

The following are the eigenvalues found by satisfying 2 cos a + z' sin a  

(e =  —40 and a  =  | )

=  0 .

zx +  (sinx +  y t ^ ) zi = * Z 1 z2 + (cos x  T j ^ s ) z 2 = \ z 2

0.33532 0.01912
0.53651 0.38025
0.58302 0.52787

0.57924

Table 4.1: The eigenvalues of the equations for zi and z2 

a comparison can be made with [1].
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4.2 T he H am iltonian system

Our main result in this section will be formulated via a Hamiltonian Sys­

tem. For illustrative purposes we now recast problem (4.1) as a Hamiltonian 

System.

The equations in table 4.1 may be rewritten as the following system;

\ Z2 )
+

f
s i n *  +  T T ?r 

0

0

cosx +
=  A

(
Z\

Z2

■ (4.3)

The following transformation rotates the non-perturbed system (e = 0) by J

i
V2

i
v/2

V v/2 v/2 /

(4.4)

W ith this rotation we obtain



which is better rewritten as

sin x  +  cos x  + sin x — cos x

sin x  — cos x  sin x  +  cos x  +  e

\  /  Ny\

1+x2 J \ V 2  ;

=  A

(4.5)

We find that (4.5) has the same essential spectrum as the two Sturm-Louiville 

systems in (4.3). The system in (4.5) may be rewritten in Hamiltonian form

J Y '  = (A + A B ) Y (4.6)

where J  is a symplectic matrix with property that J  J 7  =  I  and has the form

J  =

\

0 0 1 0

0 0 0 1

- 1 0  0 0 

0 - 1 0 0

A  and B  are the following real square matrices

A =

|  (sin x  4- cos x  +  y ^ r )  \  (sin x — cos x)

|  (sin x — cos x) 

0 

0

\  (sin x  +  cos x  +  

0 

0

0

) o 

- 1  

0

0

0

0

- 1
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and

B =

f  - 1  0 0 0 ^
0 - 1 0 0  

0 0 0 0

0 0 0 0\

In order to solve this system we proceed in the same way as for solving (4.1),

except in this case the initial conditions at x  = 167T are ei, e2, e3 and e4 (the
/

usual 4 x 1  unit vectors). We thus set

Hamiltonian system we have y[ =  2/3 and y2 = 2/4 and we let

2/i (1 6 tt) ^ Cl

2/2(1 6 tt) C2

2/3(1 6 tt) C3

2/4 ( 16?r) y C4 y

From the

^ 2/i(x) ^ 

2/2 (*) 

yz(x)

2/4 (z )  j

' S i ( x )  ti(x)  P i ( x )  qi(x) '

s2(x) t2(x) p2(x) q2(x)

s3(x) i3(x) p3(x) g3(x)

^ s4(x) <4(x) p4(x) q4(x) J

C2 

C3 

V C4

where we set Si(167r) =  1, £2( 167t) =  1, p3(167r) =  1 and </4(167r) =  1 with
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the rest being equal to zero. From Floquet’s theory this leads to

 ̂ si(187r) £i(187t) p!(187r) <7i(187r) ^
s 2(187t) £2(187t) p2(187r) g2(187r)

s3(187t) t3(187r) p 3(187r) g3(187r)

 ̂ s 4(187r) £4(187t) p 4( 187r) <?4(187t) y

(  \ (  \
Cl Cl

C2 C2
= p

C3 C3

\ C 4 1
[ c 4 J

(4.7)

where p is the Floquet multiplier and as in (4.1), it corresponds to A being 

in a gap or in the essential spectrum depending on whether p E 3ft or not. 

For a value of A in a spectral gap we find both Floquet multipliers, whose 

absolute value are less than 1, and also the eigenvectors associated with 

these Floquet multipliers. These are associated with the decaying solution 

of our system and give boundary conditions at the point x = 167T to the 

right of which the perturbation e =  0. These two eigenvectors generate the

solution in L2[167r,oo). Let these two L2 eigenvectors be u =
u2

U3 

)

and

42



V  =
V2 

V3 

\ V* /

. Thus we may write

y i(r) ^ * Ul(x) Ul(x) ^

V2 (X) u2 (x) V2 {x)

V3{x) u3 (x) V$(x)

2/4 (*) ) { U a ( x ) v4 (x) J

(4.8)

here d\ and d2 are constants to be determined. We have the following bound­

ary condition associated with our problem

Zi cos oci +  z'i sin a, =  0

for i £ {1,2} and this suggests tha t we need to integrate (4.8) from x  =  

to x  = 0. Having found the L 2 Floquet eigenvectors of (4.7) we have the 

following boundary condition at x  =  I67r

^ 2/1 (167T) ^ 

y2( 167r) 

2/3(167t)

V 2/4(16tt) )

^ Ui(167r) ui(167t) ^

u2(16tt) v2(167r) 

U3(167r) U3(167t)

 ̂ u4(167t) v4(167t) j

\ d 2 ;
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together with (4.6) we may shoot back to x  =  0 and obtain the solution 

vectors u(0) and v(0) with this solution at x  =  0, from (4.4) and z{ cos a, + 

z[ sin Qj =  0 for i =  {1, 2}. We obtain;

Since d\ and g?2 are not zero the determinant of the matrix obtained by 

multiplying the two matrices on the left in (4.9) must be zero or

All that is now required is to use some iterative scheme in order to find 

values of A which satisfy (4.10). There is one more obstacle to overcome 

before we can solve this problem which is a consequence of the fact that 

the functions y\, jfc, y$ and y4 are continuous however this does not mean 

that the eigenvectors u  and v are continuous since the coefficients d\ and 

c?2 can be discontinuous in such a way that the functions y\, y<z, y$ and y4 

remain continuous across the interval x  € [0,167r]. This is what was found in

(4.9)

det

(4.10)
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practise by our numerical experiment. It was found that d\ and d2 fluctuated 

suddenly between 1 or —1 with every increment of A when we incremented A 

over an interval which coincided with a spectral gap. Thus the determinant in 

(4.10) fluctuated between multiples of +1 and —1 of its absolute value. Thus 

the more values of A along the interval that the determinant in (4.10) was 

calculated, the more often the determinant went from positive to negative 

giving an enormous number of incorrect eigenvalues amongst the correct ones.

In order to avoid this problem we make the transformation R = V  + iU 

where

We may rewrite the equation for R  as /  =  V R  1 +iUR  1 and let W  = UR  1

invertible. We then differentiate W  to obtain the differential equation

The initial matrix problem (4.6) with the solutions U  and V  can be

U and V  = (4.11)

where R  is always invertible since either U or V  or both U and V  must be

W'  =  U 'R - 1 + U (R -1)'.

(R  *)' can be replaced by (R  =  —R  1R  R  1 and thus we have

W' = U'R - 1 -  U R - l R 'R - '  or W ’ =  U'R~l -  W R!R~l .
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rewritten in the form

XI — Q 0

where

Q =
|(sin  x  +  cos x) +  |  (sin x  — cos x)

|(s in  x  — cos x) I  (sin x  +  cos x) +

So with V  =  (Q -  XI)U and U' = V  we have R' =  {Q -  XI)U +  iV. Thus 

we obtain the following:

W  = V R - 1 -  W((Q -  XI)U +  iV)R~l .- l

Since UR 1 — W  and V R  1 =  /  — iUR 1 — I  — iW  we finally obtain> - i  _ - l  _

W' -  (A -  1 ) W 2 +  2iW  +  W Q W  =  I. (4.12)

If we write W  =
(

w i w3
then we may write the matrix equation in

w 2 w4 '
(4.12) as the following four ordinary differential equations

' /X -w 1 X W\ f . X W\W2 / . xw1 — {X — l) {w\+W2W3 )+ 2 iw\ +  —  (sin x+cos x) +  -——7: H— -— (sin x —cos x)
2 14- x z 2
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. W\ WZ, . x , W2 w 3  . w 2 w 3e4— -—(sin i — cosx) 4---- -—(sm i +  cosx) +      =  1;
2  2  1 4- x 2

' \ W\W2 - . . ix?, .
w2 — {A — l ) w 2(w i+W 4)+2iw2-\  — (sinx4-cosx)4-- -  +  —=-(sinx—cosx)

2 1 4- x  ̂ 2
W1 W4  . . W2 W4  . . lX2lX4e n

4— - — (sinx — cosx) H  — (sinx 4- cost) 4   =  0;
2  2  1 4- x l

' \ _. W\W3 . . . W\w3e . .w3 — (X—\)wz{wi+W4)+2iw3 4— -— (sm x+cos x) -I-  ------  4- —=■ (sin x —cos x)
2  1 4-  x z 2

Wiw4 f l  N _ w3 / .___ , N w3wAe
(sinx — cosx) +  -^-(sinx +  cosx) 4   = 0;

2 v 2 v 7 1 +  x2

' / x ,  x / 2 \ n • w 2 w 3 , . v w 2 w 3e W2 W4  . .ix4 —(A—l)(ix21x34-1X4)4-221x4 4— -— (smx4-cosx)4--------H — —  (sinx-cosx)
2 14- x^ 2

1x3^4 , . x v $ ,  . v IX? £
4— -—(sinx — cosx) 4- -^-(sinx +  cosx) 4- -—— x =  1;

2  2  1 4 -  x z

which are solved in MATLAB. We know the initial solution of all these equa­

tions at the right hand side of the interval (in our example at 167r) so  we

numerically solve the equation back to the origin for a chosen A and look for

a change in sign in the determinant, of this matrix in (4.9). That is, we seek 

the determinant of

J -c o s tt!  -j- cos a ,  j .  sin a , ^ s i n a ,  

^ -c o s a 2 — 72 cos a 2 75 sina;2 — ̂  sin a 2

f  w

I  - i W
(4.13)

When a change occurs in the sign of both the real part and the imaginary 

part of the determinant in (4.13) then we have an eigenvalue of (4.3) with 

boundary condition Zi cos a* 4- z[ sin a* =  0 fo r i  =  {l,2}.
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R esults

Tables 4.3 and 4.2 contain some of the eigenvalues of (4.3) with e =  —40 and 

the following boundary conditions; Z\ cos a i +  z[ sin a\  =  0 and z2 cos a 2 4- 

22s in a 2 =  0 where we have taken Qi and a2 to be | .  In Table 4.2, the 

perturbation is non zero on the interval x  € [0,4ir] and e =  0 for 

X >  47T.

ft(D(lT(A))) =  0 A))) =  0
-0.23217
0.02019
0.09593
0.37774
0.39316
0.39831
0.48884

-0.02362
0.02019
0.24645
0.37774

0.39835
0.41242

Table 4.2: Zeros of the real and imaginary parts of D(W(A))

As can be seen the eigenvalues are 0.02019, 0.3777 and 0.3983 by reading 

off values of A where 9ft(VK(A)) and Qf(VK(A)) are simultaneously zero.

Below we have exactly the same example, except that the perturbation 

is non zero over the interval x  € [0,357r] and is zero for x > 357T.

In this case the eigenvalues are 0.0191, 0.3353, 0.3803, 0.5279, 0.5366,

0.5780, 0.5808, 0.5909, 0.5917 and 0.5918. As can be seen the perturbation 

induces eigenvalues in the gap A 6 [—0.347,0.594] and also increasing the 

range of the perturbation from [0,47r] to [0,357r] increases the number of 

these induced eigenvalues. Comparing these results with the work in [29] 

we see that there is a qualitative agreement in that the eigenvalues seem to
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&(D(W(  A))) =  0 A))) =  0 9t(D(W(\))) = 0 3(D(VF( A))) =  0
-0.23260 -0.02464 0.54517 0.57478
0.01912 0.01912 0.57796 0.57796
0.09367 0.23660 0.5803 -

0.33532 0.33532 0.58081 0.58080
0.34812 0.36905 0.58126 0.58175
0.38025 0.38025 0.59006 -

0.45102 0.51148 0.59085 0.59085
0.52787 0.52787 0.59147 -

0.53656 0.53650 0.59176 0.59170
0.53744 0.53917 0.59183 0.59196

Table 4.3: Zeros of the real and imaginary parts of D(W(A))

accumulate towards the end of the gap. When e is above some critical value 

we get an accumulation according to [29, theorem 3] which is what we see 

happening towards the right side of the gap. It can be seen that when we 

increase the range of the perturbation more eigenvalues are induced in the 

gap. Also most of the accumulation of eigenvalues is so close to the edge 

of the gap that we can only find a small number of eigenvalues numerically. 

These results agree quantitatively with [29, theorem 3] which in our case for 

accumulation at the right hand end of the gap, approximates the number of 

eigenvalues between any two points within the gap in terms of the distance 

between the second point to the right of the first and the edge of the gap.

We are now ready to apply these methods to obtain (5.17) which will 

allow us to obtain the eigenvalues of the problem in Fig 1.1, which have not 

been previously obtained.
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Chapter 5

A PD E  w ith band-gap spectral 

structure in a perturbed  

periodic waveguide
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This chapter considers the numerical calculation of eigenfunctions for the 

Schrodinger operator in a domain with a regular cylindrical end, in which the 

potential appearing in the Schrodinger equation is periodic with respect to 

the axial variable measured along the cylinder. For definiteness we consider 

the configuration shown in Fig 5.1;

Figure 5.1: A domain with a regular cylindrical end in M2

in which a strip of width 6 = 2 sin 6 is attached to the side of a disc of radius

1. In the composite domain1, which we denote by Q, we look for those A for 

which the equation

—Aip +  V (x , y)tp = Axfj (5.1)

has a nontrivial solution satisfying the condition

t  € L2(Q),

JThis domain is also known as the frying pan model from its geometry
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together with homogeneous boundary conditions on dQ

a ( - ) 0  +  6 ( - ) t r  =  0 . (5.2)

The functions a and b are assumed to be constant on the walls \y\ = 8/2 of 

the strip, at least for all sufficiently large x. The potential V  is assumed to 

be 27r-periodic with respect to its first argument, at least for all sufficiently 

large x :

V(x  + 2n,y) = V(x ,y ) ,  x > x 0, \y\ < 8/2 (5.3)

where x0 is the x  coordinate of T. In order to avoid technical complications 

we assume that V  is continuous on Q. The method used to solve the problem 

is a classical domain decomposition technique. The problem is reduced to 

a problem on a finite domain by cutting the attached strip at some point 

x  = xi > xq (see Fig 5.1). We define the sub-domains

Q0 =  Q p |{ (x ,y )  \x  < Xi},

fti =  f i P | { ( x , y )  | a: >  Xi}, 

and the artificial boundary

r  =  { ( x 0 , 2/ )  I Is/ I <  < 5 / 2 } -

On T we introduce the Dirichlet to Neumann maps A0(A) and Ai(A) as fol-
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lows. Suppose that /  € H 3̂ 2(T). Let u b e a  solution of the boundary value 

problem consisting of the PDE (5.1) in Qo> the boundary condition (5.2) on 

dQo \  T, and the boundary condition

u |r  =  /  (5.4)

on T. Such a solution is guaranteed to exist uniquely for all but count ably 

many values of A, these being the eigenvalues of the problem in L2(Fl0) ob­

tained by replacing (5.4) by the Dirichlet condition u\r = 0. The map

. du

is the map which we denote by A0(A). It is a linear map from H 3̂ 2(T) 

to H 1/2(r ) .  Correspondingly, if we can uniquely solve (5.1) in the infinite 

domain with the boundary condition (5.2) on dQi \  T and the condition 

(5.4) on T, then we can define a second map from H 3̂ 2(F) to H l/2(T), which 

is the map which we denote by Ai(A). Suppose (5.1), (5.2) has a nontrivial 

solution G L2(fl). Generically we may expect that

/  := ^ |r 7^0.

(If not, we can always move T slightly to the right). This ^  then solves both
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the inner and outer boundary value problems for this choice of /  and hence

Ao(A) /  =  - A ,  (A)/, (5.5)

the minus sign being due to the change in the direction of the outward unit 

normal on T between Qq and fix. This means we can characterise eigenvalues 

as those A for which

In this way the problem can be reduced to the interface I\ provided we can 

calculate Aq and Ai. In fact, in this thesis, we take the slightly different

on the interface I \  The main new contribution in this thesis is the algorithm 

for the calculation of the Dirichlet to Neumann map Ai(A) in the presence 

of the periodic potential V. In the remainder of this chapter, sections (5.2) 

to (5.5) are devoted to a description of our numerical algorithm and the 

necessary mathematical background for its development. Section (5.6) uses 

the algorithm to study some spectral properties of some periodic waveguide 

problems. For instance, we study the effect that the width of the tube has 

on the eigenvalue; we derive a theoretical expression for the rate of change

ker(Ao(A) +  A1(A ))^{0}.

but equivalent approach of solving the PDE (5.1) on the domain with the 

boundary condition (5.2) on dQo\T  and the A-dependent boundary condition

(5.6)
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of the eigenvalue with respect to tube width and compare the results which 

this yields with those obtained from direct numerical calculation. Finally, we 

trace the evolution of an eigenvalue which lies in a spectral gap, but which 

becomes an embedded eigenvalue (embedded trapped mode) when the tube 

width becomes sufficiently small. We believe this may be the first time that 

it has been possible to observe, numerically, the evolution of a trapped mode 

from a spectral gap into a spectral band and out again.

Consider for definiteness the case with Dirichlet boundary conditions

ip (x ,±6 /2) =  0, x > xq.

For each fixed x  we represent the solution tp using a Fourier series

We have two main objectives:

1. To determine the infinite coupled system of differential equations which

must be satisfied by the functions <pn(’) in order that the PDE be 

satisfied;

2. To determine an appropriate representation for the Dirichlet to Neumann

map Ai(A) when the boundary datum /  appearing in (5.4) has a cor­

responding Fourier expansion.
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In fact, 2 is rather simple. If we suppose that

oo

))n=l

then we shall evidently need to have the initial conditions

l) 0'

The Dirichlet to Neumann map Ax (A) will map /  to the function g defined 

by

We now proceed to derive the system of differential equations satisfied by

5.1 A  circular dom ain  w ith Dirichlet bound­

ary conditions

Here we consider the simplest version of the non-perturbed problem, since 

we can solve it analytically and see what effect the perturbation will have on 

the eigenvalues of the original problem.

The problem is posed on a disc of radius 1 called with boundary dQ 

with the following equation

71— 1

—A ijj =  A (5.8)
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on Q and boundary condition 'iplan =  0. We remind the reader that A takes 

the form
A 1 8 (  d \  i d 2 
A =  r — +

r  d r  \  d r  J r 2 dO2 

in polar coordinates. Then by separation of variables ?/>(r, 0) =  R(r)Q(6) we

obtain
1 d2eL I  ( r M \

~Rdr \  dr J + =  ArR  dr \  dr J  r 20  d92 

and after choosing 0(0) =  cos n6 or 0(0) =  sin nO we thus obtain the follow­

ing well known equation

1 d (  d R \  n2
—  7T~ ( r — 2 ~r dr \  dr J rz

This is Bessel’s equation and the solutions are of the form R(r) = Jn(\/Xr) 

where n is the order of the Bessel function. The boundary condition i p ( l ,  0)|an 

0 translates into

o  =  j n ( V \ ) .

This means that the eigenvalues A are the zeros squared of different order 

Bessel functions. The eigenfunctions are

«/n(\/Ar){sin n0, cos nO}

and it can be seen that eigenvalues not associated with zero order Bessel 

functions are doubly degenerate. Table 5.1gives eigenvalues associated with
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(5.8) which we enumerate in increasing order.

71 A n A n A
0 5.783186 0 30.47126 4 57.58294
1 14.68197 3 40.70647 2 70.85000
2 26.37462 1 49.21846 0 74.88701

Table 5.1: Eigenvalues in increasing order for the Laplacian of a circular 
domain of radius 1

5.2 T he m odified circular domain

The domain left of T in Fig 5.1, which we call the modified circular domain, 

is defined by

(x ,y) =  {x € [— 1 — cos#,0], y € [— y / l  — (x +  cos#)2, y / l  — (x +  cos#)2]}

or (x, y) € no\([0> 27r] x [— | ,  |]). In this domain we apply the finite difference 

method to the discretised Laplacian. We will have to design a finite difference 

mesh in the modified part of the circular domain to fit the geometry and also 

to meet other requirements such as preserving accuracy. The corners in 

Fig 5.1 which are located where T and dQo meet can lead to inaccuracies 

depending on how we apply the finite differences method in the domain. It 

is known that the use of geometric meshing minimises the error in this case.

There are numerous examples of such meshes, in [16] for instance Kuznetsov, 

Lipnikov and Shashkov claim to achieve the same accuracy with a geometric
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mesh as with a uniformly refined grid with four times as many points. In 

[15] Kadalbajoo and Kumar use geometric mesh refinement to solve a sin­

gularly perturbed second order self-adjoint boundary value problem. In [13] 

Gilbert, Miller and Teng use the geometric partitioning algorithm to define 

mesh point positions and provide MATLAB code for doing this.

For our domain a geometric mesh involves placing more points near the 

corners as in Fig 5.6. In Fig 5.2 we have an example of a point with its four 

neighbouring points on the unevenly spaced mesh.

( xt - i , y j )  ( X i , y j )

A X\Ax.

Figure 5.2: A section of mesh with the node in the middle unevenly separated 
from its four neighbouring nodes

If we discretise A ^ +  Xip =  0 based on the five nodes in Fig 5.2, then we 

obtain the corresponding five point discretised Laplacian

Ax^Axl + A x ^ 1' ^  + Ax̂ aI  + Ax, , ) ^ ^

2 2 
+  +  Aya(Aya + Ayb) ^ - l) (5'9)

" 2 ( a ^  +  A ^ )  +  = °'
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We now move on to discuss the construction of this mesh. In order to fully 

describe the domain we give the x  and y coordinates for various mesh nodes 

in the domain in Fig 5.1. The interface T where the tube and the modified 

circular domain meet is located at (0, y) where y 6 [— f , §] and <5 =: 2sin0.

We now describe the algorithm for partitioning T. We begin by placing 

n evenly spaced nodes across T not including the corners and bisect the 

first and last interval. This means that the first two and last two intervals 

have width while the remaining intervals each have a width of

This is considered to be one iteration of the algorithm for dividing up T. 

Iterating again we cut every interval in two and again bisect the first and 

last intervals. This gives us a width of g^yy for the first two and last two 

intervals, for the third, fourth, fifth, third to last, fourth to last and

fifth to last intervals. The remainder of the intervals each have a width of 

2(w+y). Let p be the number of iterations of this algorithm and N  the number 

of nodes on the interval, then

N  = 2p~ln +  2P+1 +  2P_1 -  3.

The points in Fig 5.3 have been labelled from 1 to 7 and 1 to 13 respectively 

and have been spaced using the algorithm just outlined above with two and 

three iterations respectively.

From these points we may draw lines extending to the left of T (parallel 

to the x  axis) as in Fig 5.5 to the boundary of the domain on the left.
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0.5 0.5

0.4 0.4

'110.3 0.3

0.2 0.2

- 0.1 - 0.1

- 0.2 - 0.2

- 0.3 - 0.3

- 0.4 - 0.4

- 0.5 - 0.5

0.10.2 - 0.2  - 0.1 0 0.2- 0.2  - 0.1

X  X

Figure 5.3: The interface T showing the location of points for n =  5 with 
p = 1 on the left and n = 3 with p = 2 on the right

These lines will determine the y coordinates of the nodes in the part of the 

domain where (x.y)  € FI ([— 1 — cos0,0] x [— §,§]). The x  coordinates 

will be positioned in the same way as the nodes on T, that is, distributed 

geometrically in x  for x  G [—2 cos0, 0] as has been explained for I \  We start 

by placing m  evenly spaced nodes not including the edges over the interval 

x  6 [—2 cos 0,0] and dividing the first and last interval. We then perform a 

second iteration where we divide each interval into two and again we chop
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the first and last interval in two. If we apply this algorithm p times and let 

M  be the number of nodes across the interval then we obtain

M  =  2p~ 1m  +  2P+1 +  2P_1 -  3.

The position of these points is illustrated by the vertical lines (parallel to the 

y  axis) in Fig 5.5. The intercept of these vertical lines with the horizontal 

lines determines the coordinates of the nodes in the mesh as illustrated in Fig 

5.6 for the points in (x, y)  E ([—2cos0 ,0] x [— |]). As can be seen in Fig

5.5 we draw vertical and horizontal lines joining the intercepts of the lines 

passing through the geometrically spaced points with to locate mesh 

nodes for (x, y)  E Qo\  ([—2 cos 0, 2n]  x [— |]).

Fig 5.6 shows the intercepts of these lines as mesh points and Fig 5.4 shows 

the part of the domain in Fig 5.6 for (x, y)  E { x  E [— 1 — cos0, —2 cos0], y  E

[— y / l  — ( X  +  C O S #)2 , y / l  — ( x  +  C O S # )2]} .

We introduce a numbering scheme for the node as in Fig 5.4. For any 

node (a;*, y j )  we number the x coordinate starting at the leftmost nodes. For 

any column (X i , y j ) (where a column consists of the set of nodes with the 

same x coordinate and different y  coordinates as in Fig 5.6) we number the y  

coordinate with the smallest y  value; which in our case is from the base of the 

column. Using this convention and referring to Fig 5.4, we obtain ^ (x 2, y2) = 

^ (Z l,2/l) =  -01, lp(X2 ,yi) = ^ 2 , 2/3) =  and ^ (x 3,?/3) =  xp7.

Referring to Fig 5.4, let Axi, Ax2 and Ax3 be the x distances between certain
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Ax, A X,

Figure 5.4: A section of the mesh left of x = —2 cos 6

neighbouring nodes, and likewise Ay! and At/2 be the y distances between 

certain neighbouring nodes. Note that in this particular case At/i =  Ay2 

since the mesh is symmetric about the x  axis. In order to illustrate the 

application of equation (5.9) to our mesh we treat the five nodes in equation

(5.9) and in Fig (5.2) as corresponding to the set of nodes labelled 1, 2, 3, 

4 and 7 in Fig 5.4. If we apply equation (5.9) to fa  then from Fig 5.4 we 

obtain

 2  ,  2 2 ,

A x3(A x2 +  A x3) ^ 7 +  A x2{Ax2 +  A x3) 1 +  Ayi(Ayi +  A y 2)W2+
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~A /A A \ ^ 4 — ^ i *A A  ̂~A A  ) ^3 (5.10)A y 2( A y i  +  A y 2) \ A x 2A x 3 A y i A y 2 J

We will next demonstrate how the Dirichlet boundary conditions are ac­

counted for. Keeping in mind that we have chosen 'tp(x2, y2) = fa  in Fig 5.4 

then the Dirichlet boundary condition on dfio is interpreted as 

^ ( - 1  -  cos0,0) =  0, V>(-cos0 -  1 -  22(P- f (̂ p ,  2P-i^+1)) =  o and

ip(-  cos 6 -  J l  -  . ~ ^ ? n +1)) =  0> where the last two nodes are

located above and below fa  = 'ip(x2, y^) and fa  =  f a x 2, y\) respectively on 

dQ and are thus unlabelled. If we treat fa  in Fig 5.4 as ufax i ,y j )n in (5.9) 

then we obtain

—— —---------— -fa  — 2 (  ——   f- —— -— ^ ipi +  \ifti = 0. (5.11)
A x 2( A x i + A x 2) \ A x i A x 2 A y i A y 2J

More generally for a mesh with parameters M  and N  then the number of 

nodes is |M 2 +  J N 2 +  ^M N + M + N 4-1. The mesh in Fig 5.6 has parameters 

M  = 27 and N  = 11 from m = 5, n = 2 and p = 2 producing a total of 

582 nodes. We label the nodes from 1,2, ...,582 and thus If we

apply (5.9) at each node in the mesh of Fig 5.6 like we did for two nodes in

(5.10) and (5.11), then we obtain 582 equations. Note that we have not yet 

dealt with the application of (5.9) at the boundary T.  Suppose that we wish 

to apply (5.9) at a point of the boundary T,  for example f a x M + N+ $, y j )  =  

^ i M2+i,v2+ iMiV+M+|+j where j  G {2,..., N  — 1}. We know that there are no 

nodes to the right of T  and thus 'ip(xM+z + 5 , y j )  is known as a fictitious node 

and will have to be eliminated from (5.9). For the time being we imagine
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that we have zero Neumann boundary conditions on T which we approximate 

by i/j(x m +n +|,y J+1) =  'tp{xM+N + i ,y j ) which means that on T (5.9) becomes

Ax^ ( x M+E+l , yj) + Ayb{Aya + Ayb))^yM+^ y j ^ )

A y a(A y a +  A y b) ^ XM+%+i ’ ~  2 (a x J 2  +  A y aA y J  ^ Xm+t +1  ’ ^

+§-%') = °

where Axi, = A x a for Xi 6 T. Note that if j  =  1 or j  =  N  then we would 

have ip(xM+N+z,y j - i )  =  0 or 'ip(xM+z +z,yj+i) =  0 respectively.

We let ^  =  [^i, ^ 2, .. . ,^ 582]Ti then our 582 equations may be rewritten

as

A& = W .  (5-12)

The eigenvalues of A  are of course the approximate eigenvalues of our simpli­

fied problem with zero Neumann boundary conditions on T and zero Dirichlet 

boundary conditions on d(Q0 \  ([0,27r] x [— | , |])) \  I \

In the following section we derive a Dirichlet to Neumann map which 

when modified allows us to deal with the application of (5.9) to nodes in Fig

5.6 on T.
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Figure 5.5: Example of a mesh with m  =  5, n  =  2 and p  =  2 with 5 =
2sin(0.147r) illustrating the location of mesh nodes
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Figure 5.6: Example of a mesh with m  =  5, n  =  2 and p  =  2 with <5 =
2sin(0.147r) illustrating the positioning of the mesh nodes
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5.3 C alculation o f th e Dirichlet to  N eum ann

map

In order to derive a Dirichlet to Neumann map at the interface T we must 

solve (3.6) making use of the matrices U and V  in (4.11) which means we 

will be required to solve a problem of the form Y'(x) = A(x)Y(x)  when A(x) 

is as in (3.7) and Q(x) is as in (3.10),

/  7J-2 z 2ir2
Q(x) =  diag ( — +  sinx -  A,..., — + sinx -  A

where (5.7) has been truncated at Z.  This means that Y(x)  contains ex­

ponentially growing solutions with asymptotic behaviour for large n of the
/  \  X  / » 4*4 -A  - X  / » 4*4 -Aform 0n(x) =  Ane V s* +  B ne V & ? which come from equations of

the form -0 " (x )  4- ^ 0 „ ( x )  =  A<f>n(x).

To avoid this problem due to exponentially growing solutions dominating 

the decaying solutions in the matrix Y  we shall change the representation of 

the variable Y  to a form which restricts the growing solutions.

The Cayley transform has the desired properties since it will not converge 

to zero or oo as certain elements of Y (x) tend to oo and we will make use of 

it to calculate the Floquet multipliers. The method is explained as follows. 

We choose

© =  (Y  + i I ){Y  (5.13)

as our Cayley transform where /  is the 2Z  x 2Z  identity matrix.
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Differentiating (5.13) and using Y'  =  A Y  we obtain

e '  = h i -  e ) A ( i  + e )  (5.14)

and with T(0) =  I2N then 0(0) =  (I  +  H){I — H )_1 =  izfL Let uj(x) = 

Y (x)cj be the j th Floquet eigensolution. From this we obtain

Y \ x ) c j  =  A(x)Y(x)cj

hence Y' (x)  = A( x) Y(x )  since Cj is constant and note that Y(2n)cj  =

PjY(0)cj where pj is the j rmth Floquet multiplier. If we apply 0(27r) as

in (5.13) to cj we obtain

0(27r)c, =  ^ -i4 e (0 )c ,- . (5.15)
P j - l

We see that finding an eigenvalue of 0(27r) allows us to obtain the corre­

sponding Floquet multipliers. We are interested in values of A which are in 

the spectral gaps of equation (3.10). In these gaps values of p are real. In 

fact if A is in a spectral gap, then of 2Z  possible values of p, Z  of these will 

have the property that — 1 < p < 1 and \p\ > 1 for the other Z. The case 

where \p\ < 1 corresponds to the Floquet eigenvectors in L2. The physi­

cally realistic solution down the tube consists of a linear combination of the 

L2[0,00) eigenvectors of (5.15).

Let $(0) =  [01(O),...,<MO)]r  and 4>'(0) =  [^ (0 ),..., 0'W(O)]T be Z x 1
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column vectors containing the {4>k}k=i i*1 (5.7) and let X  be a 2Z  x Z  matrix 

of the L2[0, oo) eigenvectors of Y(2n)  or 0(27r) ie the Cj of (5.15). Let

f u '  

\ V J

Then 3d 6 cN such that

* ( 0)

*'(0)

f v '  

\ v /

where d  is a Z  x  1 vector. From these we obtain the following two equations

$(0) =  Ud  and $'(0) =  V d (5.16)

from which we obtain

$ '(0) =  VU~l${ 0).

Thus we have the following expression for the Dirichlet to Neumann map

A(A) =  VU~l \x=o. (5.17)
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5.4 Calculation o f the modified D irichlet to

N eum ann m ap and its application

In section (5.3) we calculated the Dirichlet to Neumann map for a one di­

mensional domain in terms of the basis functions <f>i(x) for i =  { 1 , . . . ,  Z }  in

(5.7). The interface F represents a two dimensional domain and thus A(A) 

in (5.17) will have to be modified as we now show.

Suppose we are given a set of Z  evenly spaced nodes 1/1 , 3/21 ---yz on the 

interface F between the waveguide and the perturbation, and a function 77 

with corresponding values 77(7/1 ), 77(7/2 ), ...77(7/2 ) where the function 77 has the 

property that 7?(—|)  =  0 and 77(|) =  0 with { y \ , y z }  £  { —f , §}• Then if we 

are given an arbitrary point £ 6  (—| , | )  in this interval, we can estimate 

77(£) by the following interpolate

We may substitute these Z  nodes into (5.7) to obtain Z  equations which 

can be written as the following matrix; =  F $ .  Here we have the vector 

V r =  (t^(2/i)5 V’(2 /2 )* •••, iP(yz))T which denotes the values of 'ip in the tube at 

x =  0 and at the evenly spaced nodes 7/ 1 , 2/2 , •••, 2/z to the right of F together 

with $  =  (0 i(0), 0 2(O)> •••> 0z(O))T ^md F  is the matrix

(5.18)
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for {k, 1} G { 1 , 2 , Z}.  If on the interface T we have N  geometrically spaced 

nodes corresponding to where the nodes on the geometric mesh coincide with 

T, we denote these by; £1,^2, we may write

=  G ^r

where = {ip(y 1) , ^{vn))  is the solution where the nodes on the geomet­

ric mesh intersect T, and G = (G)mn for m  € { 1 , N }  and n G { 1 , Z}.  

Using the fact that in the tube {3/1, ...,yz} are evenly spaced nodes we have 

yn =  — |  -I- for n G { 1 , Z}  and substituting this into ( 5 . 1 8 )  we obtain

m n

Prom (5.16) V R = FUd  and V'R = F V d since $(0) =  Ud  and $'(0) =  Vd  

where d is an Z  x 1 column vector and with =  GWr and = G ^ R so 

we are led to

=  GFUd  (5.20)

and

ty'L = G F V  d.

The variable d in the expressions for and r  needs to be eliminated in 

order to obtain a relationship between and \kL. Since GFU  G 

and G F V  G Sfyvxz we look for a least squares solution. Let d be the
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value of d  that minimises the norm | |^ l  — GFUd\\ then it is well known

that if d  is such a value then (GFU)t ( ^ l — GFUd) = 0. We thus obtain

d =  (Ut F t Gt GFU)~1Ut F t Gt ^ l and substituting this into ty'L =  G F V d 

where we write d  =  d  which yields

y'L = G F V (U t F t Gt GFU)-1Ut F t Gt V l (5.21)

from which we obtain

A(A) =  G F V (U t F t Gt GFU)-1Ut F t Gt (5.22)

where A(A) is the Dirichlet to Neumann map to the left of T. We use this 

in equation (5.9) to eliminate t/>(xi+i,yj) when applying equation (5.9) to 

^(z»,2/j) when (xu yj) e  T.

We are now in a position to apply the Dirichlet to Neumann map where 

as stated previously, we wish to eliminate ^(^i+i* 2/j) when (x^yj)  € I\ 

Referring to the diagram (5.2) we consider il)(xi,yj) where (Xi.yj) € T then 

we may interpret (5.21) as the following;

ip(xi+i ,yj)- i j j ixi-uyj)  /cooA
----------- -777TZ----------- — =  l ^ ^ j k ^ m x i . y k ) .  (5.23)

LL*Xa k=i
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Using (5.23) to eliminate ,i/j) from (5.9) we obtain

^ T A jk{\)ip(xu yk) +

A y b(Aya +  A  yb)

(5.24)

The matrix corresponding to (5.9) can now be assembled with software 

packages such as MATLAB and so the eigenvalues of the complete domain

main can be found. In assembling the matrix corresponding to (5.9) and 

(5.24) which we call A , it was necessary to form a sparse matrix where only 

the non-zero entries of the matrix corresponding to (5.9) are stored. The 

eigenfunction over the modified circular domain is calculated via an iterative 

technique using MATLAB. This involves guessing an initial value for A in 

order to determine A(A) from which we form the matrix equation A (A) in 

(5.12) to obtain

where the eigenvalue y  of A(A) is obtained by using MATLAB’s eigs func­

tion. The next step is to repeat the process by constructing A(y) and thus 

finding the eigenvalues of A(y). In obtaining the results in (5.7) for most 

eigenvalues it was found after two iterations that A — y  was less than the 

error as a result of the discretisation and thus there was no point in per­

forming more iterations. Prom MATLAB’s eigs function we may also obtain

and corresponding eigenfunctions of the modified circular part of the do-

A(A)4> =  fiV (5.25)
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the eigenvector containing the values of $  at the nodes in figure (5.6), and 

based on the organisation of the matrix A(A) we can pick out from ^  the 

value 77(2/1) ,...,77(2/#) and thus we now xpa.tr and so we obtain a boundary 

condition at the interface. This is essential for calculating the solution in the 

waveguide as shall be explained in the next section.

5.5 Continuous orthonorm alisation and the  

solution in th e  waveguide

The version of this method which we shall employ here is based on the paper 

[31] and here this method will be explained in a self contained format specially 

adapted to solve our problem.

Let W  =  $(0) where W  € 3ftZxl is the initial condition of the problem 

& = A$,  x  € [0,2n] where A  is as in (3.7). Let us form G 3tNxl in 

(5.20) by taking the last N  elements of #  in (5.25). Prom (5.20) we must 

have l — G F W  and thus from least squares we obtain

W  =  (f t g t g f ) - 1f t g t v l .

We also have ^  =  L $  at x = 2tt where L is the Dirichlet to Neumann map 

in (5.17) as we will be working to the right of the interface T. These two
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equations may be written as

£ $ (0 ) =  W  and C$(2 tt) =  0 .

Here B  =  (Iz  0) and C — (L —Iz)  where Iz  is the Z  x Z  identity matrix.

Let X* = A X  where A  is as before, and X  is a solution. Now consider 

the equation

Y  = A Y  +  YG  (5.26)

for Y  as before and G is some matrix. The spaces spanned by the columns 

of X  and Y  will be the same if X(0) =  T(0). Let

Y  =  X W  (5.27)

then Y' = X 'W + X W '  so that Y' - A Y - Y G  = X ' W + X W ' - A X W - X W G  

which leads to Y  -  A Y  -  Y G  =  X ( W '  -  WG). Hence if W* = W G  and 

VT(0) =  In  then T(0) =  X(0) and Y  defined by (5.27) will satisfy (5.26).

We can choose a G such that the solution of (5.26) has orthonormal 

columns. Let us denote these orthonormal columns by 7\. Then we have 

T^Ti = IN and after differentiating and substituting in (5.26) we obtain

G + Gt  =  —T± (AT +  A)T\.

This leads to an obvious solution G = —T±ATi  for G. For T\ we now have
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T[ =  (72n — TiTvf )A T \ .  To find the initial value of 7\ we can perform a QR 

decomposition on B T

B T = Q
i

\

R

0

or QtBt =

The left side of the above equation can be multiplied by an anti-diagonal 

matrix U consisting of zeros except for ones on the anti diagonal. This leads 

to

T t B t  =
' o '

R 1

or BT =  o r t (5.28)

where T 1 =  UQT and R  is reverse lower triangular. In this case R  is reverse 

lower triangular. The first N  columns of T  which we denote as T\ are or-

(  0
thogonal to B  and thus we may chose Xi(0) = The remaining N

columns will be called T2. Let
V

In

z  = (I2N- T 1T [ ) $ (5.29)

then we have B z  =  W  since Ti is orthogonal to B  from (5.28). It can also be 

easily seen that T?z = 0 by applying TXT to (5.29). This gives us boundary 

conditions for 2 for which we will seek a differential equation.

Next we need a transformation of the form $  = Ty  for ^  =  A&. This
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leads to y = 7^ ATy — T TT > y which, if we partition T  into (Ti|T2), we obtain

We wish to choose the transformation such that yx is the growing solution 

and 2/2 the decaying solution and which also partially separates the equations. 

This can be done if we set T2 AT\ — T2 Tfl =  0. This would lead to T[ = AT\ 

but would not give an orthogonal 7V However T[ =  ATX + TXG is orthogonal 

to T2 and T\ will remain orthogonal over the integration interval for some 

G in (5.26). We now wish to eliminate 7^ in (5.30) and thus we seek an 

expression for X2. Differentiating 7\t T2 =  0 and using the expression 7"J = 

ATi we get TfT^ = - T ? A t T2. Given that 7\7f7^ = - T XT [  A t T2 and with 

TxT f  +  T2X% = I2N we are led to 7$ = T2T%T2 -  TxT [A T 2. Since from 

differentiation T2 T2 =  In we obtain (7^7^)T +  T^X^ =  0 and so can 

be chosen to be 0 and likewise 7V This finally leads to T2 =  —T iT ^ A t T2 

and so (5.30) becomes

By the partitioning of T  into (7i|T2) and y into (yx y2)T and using the fact 

that $  =  Ty  we may write $  =  T\yx -f T2y2 which when substituted into 

2 =  (I2N ~  yields z =  (I2z  — TiT^)(Tiyi  +  T2y2) which upon using

TfATx  -  T[T[  7J A T 2 -  T?T2 

T2 AT i -  T?T[ T% AT2 -  T2t 7^
(5.30)

T'[ATl TT{A + At )T2 

0 7J A T 2
(5.31)
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the fact that T^T\  =  1^ and T±T2 =  0 gives us 2 =  T2y2. Differentiating and 

substituting in the expressions for T[ and we obtain z = —T { I ^ A r T2y2 +  

T2T j A T 2y2 and T2 can be eliminated using z =  T2y2 and we may use T i T f  +  

T2T2 = I 2N to eliminate T2T j  to finally give

z =  ( A - T ^ f i A  + A ^ z .

This together with B z(0) =  W  and T f  2 =  0 gives us

B

T\
^(0) =

from which 2(0) =
f

-1

B W

\

. We now have boundary conditions
? !  )  \  0

for Ti and 2 at x  = 0 as well as differential equations for T\ and z thus T\ and 2 

can be found over the interval x  6 [0,2ir]. We recall the boundary condition 

C$(27r) =  0 which after substituting in $  =  T\y\ +  z yields C$(2tt) =  

CTi(27r)?/i(27r) +  C z{2,k) or

y i(2n) =  —(CTi(2ir)) Cz(2n).

To summarise our equations and boundary conditions for Tx and 2, we
- 1 /  \

have 2(0) =
w

\ 0 )

with z (x) = (A — T\T^{A  +  AT))z(x)
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0 I
and Ti(0) =  I with Tx =  (I2N — T{F[)AT\. We now need to find

 ̂ I n

$(x). From the equation $>(x) =  T\(x)yi(x) 4- z(x) all we need is y\(x) since 

from above T\(x) and z(x) have been found. Let Y ^ x ) =  AT\Y\\(x)  with

Vii(0) =  In then from (5.31) we have y[{x) =  T f  ATiyi(x) + T*f(A + AT)z(x) 

then any solution y\ can be written in the following form

yi{x) = wi(x)  +  Yn(x)2/i(0) (5.32)

where (0) =  0 and Yn(0) =  In - The matrix Yn(x) is likely to become ill 

conditioned and thus an alternative is to consider Rn(x)Yn(x)  = I n - Dif­

ferentiating this equation and solving for Ft!u  leads to R u  =  —R u Y ^ Y ^ 1 = 

—R u T f  AT\. Letting Vi(x) = R u (x)w(x) then differentiating this gives us

v1 = R n y i  +  R nyi  = —R \ \T \A T \y \  +  R\\(T[AT\y\  +  (A -I- AT)z)

which after cancelling the first two terms yields

v[(x) = R u T?(A + At )z

with the boundary condition fi(0) =  0 since w(0) =  0. Multiplying (5.32) 

by R u  we obtain at x  = 2n the following R u (^7r)yi(27r) =  Vi(2n) -I- ?/i(0). 

Thus starting at x  =  27t we can integrate backwards via a finite differences 

scheme whereby for each interval the solution on the right hand end of the
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interval becomes the new boundary condition.

R(t)(xi) = In Rm(x1+1) = I2N + R^'(xi)(xt+i -  Xi)

v^ixi) = I2N u(,)(i»+i) = -  *i)

Figure 5.7: One interval of the finite differences scheme in the tube

Looking at Fig 5.7, it can be seen that over interval i from the left, we 

have the following iteration formula

yxixi) = R ^ { x j+i)yi{xi+1) -  v{t)(xi+i).

Once we have the matrix yi(xi) at every node x{ of the interval we use the 

transformation

$(£*) =  Ti(xi)yi{xi) +  z{xi).

The mesh on which we solve this problem is once again geometric. The 

smallest interval is between T and X\ and the largest contains Xi+\ =  2tt.
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5 . 6  D erivative o f the eigenvalue A  w ith  re­

spect to  the tube width 8

We set (ip, ip) = 1 where ip = is over the domain Q and differentiate

—Aip +  V(x)ip = Xip with respect to S to obtain

—Aip +  Vip — Xip +  Xip (5.33)

where ip denotes partial differentiation with respect to S. Using Green’s

theorem for the inner product (Aip, ip) we have

(Aip, ip) -  (ip, Aip) =  -  i p ^ j  -dl

where dQ denotes the boundary of the whole domain and v the outwards 

normal. Substituting in (5.33) we obtain

A =  -(ip, A ip) -  ^  -dl +  (ip, ViP).

Since (ip, (—A +  V)ip) = (ip, Xip) we have

X = (1P,\1P)- -dl.
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Since ip\ao. = 0 and {ip, ip) =  0 we are left with

A -  [  4 t d l .
Jan vv

(5.34)

Taking the total derivative of ip with respect to S we have

dip dx dip dy dip 
I d  = d S d ^  + d 5 d y +iy

where ip = and substituting (5.35) into (5.34) we obtain

(5.35)

• _  f  S' dip dx dip dy dip\ dip
Jan V d5 d8 dx d5 dy )  dv

It can easily be seen that ^  =  ± \  for y = ± | ,  ^  =  0 and ^ \a n  — 0 (from 

the Dirichlet boundary condition) and so (5.35) reduces to

; i 1 i . d
= at V = ± 2-

V 0 /

and j  =
(

In our caseLet i. j  be the unit vectors where i =

=  §^i +  § f̂j and since the boundaries of the waveguide are horizontal then 

dy = 0 and thus dl =  — j  dx which upon substituting the expressions for ip

and d l into (5.34) we obtain

r i  

Jo 2
l d ip ( x , - \ ) d i p { x , - § )

dy dy ( - J
r  ij j)d x  + J  —-

0 1 dip{x, f ) dip(x, | )
dy dy (-j-j)dz
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which simplifies to

f)
dy

dx 2 J0
V’O z .-f)

dy
dx. (5.36)

Substituting in (5.7) we obtain

r i w ,  * ,
J .

2 N  N r

d* = J r E E mn J
m = l n = l  ,/0

and

/■ • la * ,  s ,
i .  k (* ’ 5 )

n AT
7T ,  > .  ^ f ° °

dx — E E  ran cos(ra7r) cos(n7r) I (f>Tn(x)(f)n(x)dx.
m= 1 n= 1 *'°

Letting pm be the Floquet multiplier of <f>m, we can rewrite the integral as

roc °° r2n
/ 0m(x)0n(x)dx =  y ^PnPn /  0m(^)0n(a:)dx.

Jo k=0 Jo

Setting JZfcLo PmPn =  fz i  we obtain for A the following
"P m  Pn

N N

A = - ^ E E
m = l  n=l

m n (l  +  cos(m 7r) cos(n7r)) 

1 PmPn

p2n
/ <j>m{x)(pn{x)dx. (5.37) 

./o

5.7 N um erical results

Here we consider the domain in Fig 5.1 for different values of the mesh 

parameters ra,n, p and 6. Table 5.2 gives eigenvalues as a function of the
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mesh parameters m, n  and p  as well as a function of 9.

(m,n,p) 9 Ai A2 ^3 A4 5̂ 6̂
(53,15,3) 0.097T 5.68499 14.0968 14.6771 24.8608 26.3358 29.6698
(53,15,4) 0.097T 5.68508 14.0972 14.6769 24.8622 26.3368 29.6731
(51,17,3) 0.17T 5.66031 13.9229 14.6742 24.0921 26.3153 -

(51,17,4) 0.17T 5.66038 13.9231 14.6741 24.0924 26.3166 -

(51,17,3) 0.117T 5.63231 13.7101 14.6702 - - -

(51,17,4) 0.117T 5.63235 13.7101 14.6703 - - -

(49,19,3) 0.127T 5.60071 13.4477 14.6651 - - -

(49,19,4) 0.127T 5.60074 13.4476 14.6653 - - -

(49,19,3) 0.137T 5.56536 13.1202 14.6584 - - -

(49,19,4) 0.137T 5.56535 13.1199 14.6588 - - -

(47,21,3) 0.147T 5.52592 12.7026 - - - -

(47,21,4) 0.147T 5.52591 12.7023 - - - -

Table 5.2: Eigenvalues for different mesh densities and various tube widths

In table 5.2, A5 goes from being below the essential spectrum to being in 

the first gap when 6 changes from 0.097T eigenvalues as a function of 0.

9 ^1 A2 3̂ A4 5̂ ^6
0.097T -0.315 -2.24 -0.0268 -9.28 -0.203 -5.69
0.17T -0.369 -2.85 -0.0382 -19.3 -0.295 -

0.11?r -0.429 -3.68 -0.0531 - - -
0.127T -0.495 -4.85 -0.0721 - - -
0.137T -0.570 -6.69 -0.0961 - - -
0.147T -0.653 -10.01 - - - -

Table 5.3: Rate of change of various eigenvalues with respect to tube width

Table 5.4 compares (5.37) with the numerical value for the rate of change 

of A with respect to 5. Here we have used best fit polynomials to calculate 

A at various values of 9 in between the sampled points as in Tables 5.3 and
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5.2. The results of this are illustrated in Table 5.4 where A is obtained from 

the best fit polynomial to the data in Table 5.2 while P-{0) is obtained by 

differentiating the best fit polynomial to the data in Table 5.3. The accuracy

e 0.0957T 0.1057T 0.1157T 0.125tt 0.135tt

Ai -0.34 -0.40 -0.46 -0.53 -0.61
P[{0) -0.41 -0.47 -0.54 -0.61 -0.69

A2 -2.5 -3.2 -4.2 -5.6 -8.1

^ (0 ) -2.9 -3.6 -4.5 -5.6 -7.3
3̂ -0.032 -0.045 -0.062 -0.083 -

^ (0 ) -0.047 -0.064 -0.085 -0.11 -

A4 -14.3 - - - -

^ (0 ) -12.8 - - - -

A5 -0.25 - - - -

^ ( 0) -0.35 - - - -

Table 5.4: Comparison of theoretical and observed derivatives of A with 
respect to 6

of the eigenvalues is of order ±0.008% for the eigenvalues that are most 

sensitive to changes in tube width and ±0.003% for those least sensitive. 

When we vary the width of the tube the variation in the eigenvalues between 

adjacent values of 6 is ± 1.2% for the most sensitive to ± 0.02% for the least 

sensitive. Contour plots of the eigenfunctions are illustrated in Figs 5.8, 5.9, 

5.10, 5.11, and 5.12.
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Figure 5.8: Contour plot of Ai for 6 =  0.097T and 6 = 0.137T
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Figure 5.12: Contour plot of A5  for 0 =  0.097T and 6 =  0.17T

5.8 T he half dom ain w ith  Dirichlet boundary  

conditions about the sym m etry axis

We now proceed to cut the domain in half about the axis of symmetry, 

namely y =  0. First we impose zero Dirichlet boundary conditions on the 

whole domain resulting from this operation and secondly we shall impose 

Neumann boundary conditions on the original axis of symmetry. For the 

first case £ =  sin(0), and with Dirichlet boundary conditions on the whole 

boundary, equation (5.7) becomes



and (5.18) becomes

7 , ( 0  =  z T T  ^  *, ( v , )  s i n  ( t w )  s i n  ( t c )  '

(5.19) therefore becomes

with £n being the geometrically spaced points on the left. Table 5.5 contains 

the eigenvalues for five different mesh densities.

('m ,n ,p ) 0 A3 ^5 8̂ 1̂0 1̂2

(53,7,3) 0.097T 14.6769 26.3343 40.5566 49.1709 57.1995
(53,7,4) 0.097T 14.6768 26.3360 40.5678 49.1905 57.2269
(51,9,3) 0.17T 14.6741 26.3131 40.4802 49.1586 56.9976
(51,9,4) 0.17T 14.6741 26.3152 40.4924 49.1772 57.0255
(51,9,3) 0.117T 14.6700 26.2837 40.3733 49.1403 56.7001
(51.9.4) 0.117T 14.6702 26.2866 40.3862 49.1570 56.7283
(49,11,3) 0.127T 14.6649 26.2446 40.2246 49.1101 56.2530
(49,11,4) 0.127T 14.6652 26.2481 40.2384 49.1252 56.2819
(49,11,3) 0.137T 14.6581 26.1928 40.0186 49.0598 55.5373
(49,11,4) 0.137T 14.6587 26.1970 40.0335 49.0729 55.5677
(47,13,3) 0.147r 14.6497 26.1254 39.7318 48.9635 -

(47,13,4) 0.147T 14.6504 26.1303 39.7476 48.9754 -

Table 5.5: The eigenvalues of the half domain with Dirichlet boundary con­
ditions on the former axis of symmetry

The labelling of the eigenvalues is obtained by looking at Table 5.1. Since 

in the above problem we have Dirichlet boundary conditions at y = 0 then
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Figure 5.13: Contour plot of A3 for 9 =  0.097T and 0 = 0.137T

these eigenvalues correspond to the eigenvalues associated with the solutions 

of the form 0(0) =  sin# for our non-perturbed problem. These eigenfunc­

tions are not able to penetrate so far into the tube and thus represent the 

larger eigenvalue of eigenvalue pairs after the degeneracy is lost due to the 

perturbation.

Figs 5.13, 5.14, 5.15, 5.16 and 5.17 are contour plots of various eigenvalues 

as we widen the tube with theoretical estimates of the derivative. Notice 

how more of the eigenfunction gets into the tube as we widen the tube. This 

leads to the hypothesis that the eigenvalue associated with the eigenfunction 

becomes more sensitive to fluctuations in tube width as one widens the tube. 

This is verified in the table of theoretical estimates for the derivative from 

(5.37).
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5.9 T he half dom ain w ith N eum ann bound­

ary conditions on the sym m etry axis

In the case where we impose Neumann boundary conditions on the original 

axis of symmetry (5.7) becomes

y) =  Y l  ̂ "(x)cos ((" ~ 5 )

where 8 =  sin 9 and 2 + 1  is the number of basis functions in the waveguide. 

Equation (5.18) is more complicated and it can’t be obtained as in section 

5.1 using simple intuition.

Firstly we need to consider the geometry to the right of the interface 

T. For the full domain there are Z  evenly spaced points across the tube 

and by definition of Z, Z  = 2z +  1. Let yi be the Ith evenly spaced point 

from the bottom of the interface for the complete domain. Since we have 

Neumann boundary conditions about the lines y =  0 then if we let 77 be 

the solution across the interface then for the points yu for v  e  {1,..., z} we 

have yv =  —y2z+2-v and from the Neumann boundary condition we have the 

symmetry relation rfiy^) = 'n(y2z+2-u)- Ignoring the term in (5.18), then 

(5.18) becomes
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EE  T>(y2z+2- v )  sin ( ^ -  (y2z+2-v + 0) sin ( y  (? + 0) • 

Writing y„ =  y2M+2- v and 7,(7/2m+2-i/) =  y(y*)  we obtain

E E ( sin ( t  ( * + 0 ) + sin ( t  (" ^ + 0 ) ) sin ( f  (e+

z

E ^ s i n  ( y )  sin ( t ( C +  0 )

= e e ^ ) 2c°s ( f yi) sin ( ¥ ) sin ( t  ( e + 0 )

z
g  7,(0) sin +

Further collecting like terms and using the fact that Z  =  2z  +  1 we see that



sin ( t )*=i,..w =  sin (2l7 i,r )„=i,...M+i leadinS t0

sin (t) (2 5  ̂ cos (t^) + 7?(0)) sin ( t  ({ + 0 )
=  X >  ( e ^ ) 2 « »  + * » (°))sin

Writing

sin ( * + ! ) ) =  sin cos ( \ + r

/  2/i — 1 \  / 2/i — 1
+  cos I — -— 7r£ I sin I — -— 7r

we finally obtain

E ( ~ 1)''+1 ( 2 y j  i){yv) cos + J/(°)J ( - l ) f,+1cos

= E (2 £•?(*)«» ( ^ t —»-)+7?(0)) cos ■
Since we cut the tube in half <5 —► 26 and with 2 + 1  evenly spaced points in 

the half tube, then yu =  for v € {0, 1, ...,2} and remembering that we 

must substitute Z  =  22 +  1 into (5.18) we obtain

n ^ l)+ '? (° ))cos( ^ - 0 fniO = E (2 E cos ( (** - 0
M—1 \  l/=l
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The matrix G  in (5.19) becomes

^ = ^ £ ^ ( * 4 ) ^ )  (5-39)/i=i v v / '

= 4 r  ! >  ( ( "  ■" 0  4 r r ) cos ( ( / * “  I )  t " )  n > l

Table 5.6 contains the eigenvalues obtained for various mesh densities and 

width of the tube.

(m,n,p) e Ai A2 A4 a6

(53,7,3) 0.097T 5.68456 14.0923 24.8559 29.6679
(53,7,4) 0.097T 5.68466 14.0947 24.8569 29.6711
(51,9,3) 0.17T 5.66006 13.9214 24.0890 -

(51,9,4) 0.17T 5.66010 13.9215 24.0861 -

(51,9,3) 0.117T 5.63202 13.7084 - -

(51,9,4) 0.117T 5.63202 13.7082 - -

(49,11,3) 0.127T 5.60022 13.4448 - -

(49,11,4) 0.127T 5.60041 13.4456 - -

(49,11,3) 0.137T 5.56479 13.1170 - -

(49,11,4) 0.137T 5.56496 13.1177 - -

(47,13,3) 0.147T 5.52521 12.6989 - -

(47,13,4) 0.147T 5.52560 12.7007 - -

Table 5.6: Eigenvalues for various mesh densities with Dirichlet conditions 
on the former axis of symmetry

Equation (5.37) becomes

2 2+1 2+1 »2tz
7T v;—> v —> 77171 COS 777T COS 777T f  , . , .

A =  — p  > > ----- ----------------- /  <t>m(x)<t>„(x)dx.
5 f +  1 -  PmPn Jo771=1 77=1
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9 Al A2 A3 A4 A5 As A10 A12

0.097T -0.603 -4.41 -0.0614 -17.1 -0.462 -1.70 -0.297 -4.60
0.17T -0.723 -5.50 -0.0890 -31.9 -0.679 -2.55 -0.477 -7.10

0.117T -0.838 -6.97 -0.122 - -0.950 -3.67 -0.755 -10.96
0.127T -0.980 -9.04 -0.166 - -1.31 -5.29 -1.20 -17.75
0.137T -1.12 -11.80 -0.216 - -1.76 -7.55 -2.17 -32.67
0.147T -1.30 -15.9 -0.285 - -2.39 -11.2 -4.75 -

Table 5.7: Theoretical values for the derivative of A with respect to <5 for 
various J

5.10 A parabolic potential

We now consider the full domain and modify the potential to

V =  <
A x 2 x < 0

B y 2 sin2(x) x > 0
(5.40)

where A  and B  are some positive constants. The aim of using this potential 

is to force the solution to the right of the domain into the waveguide. Taking 

B  = 1 with 9 =  0.08tt, 9 = 0.097T and 9 = 0.17T gives us spectral gaps at 

A <E (-oo,39.895), A € (-oo , 31.700) and A 6 (-oo , 25.839)U(26.088,26.090) 

respectively. As A  increases the solution moves into the waveguide and it’s 

total density is reduced thus increasing the eigenvalue. We shall let A =  21.
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e 0.095tt 0.1057T 0.1157T 0.125tt 0.135?r
-0.67 -0.78 -0.91 -1.1 -1.2

P[(0) -0.82 -0.94 -1.1 -1.2 -1.4
A2 -4.9 -6.2 -7.9 -10.3 -13.6

P'(6) -5.8 -7.2 -8.9 -11.3 -14.5
^3 -0.076 -0.10 -0.14 -0.19 -0.25

P*{0) -0.092 -0.13 -0.17 -0.22 -0.29
A 4 -24.5 - - - -

K W -25.6 - - - -
A5 -0.57 -0.80 -1.1 -1.5 -2.0

p ' M -0.69 -0.96 -1.3 -1.8 -2.3
As -2.3 -3.1 -4.4 -6.3 -9.1

P sW -2.5 -3.6 -5.0 -7.0 -9.9
A10 -0.38 -0.60 -0.95 -1.6 -3.2

P[ o(0) -0.43 -0.68 -1.1 -1.8 -3.3
A12 -6.7 -8.9 -13.7 -23.7 -

Pu(0) -6.7 -9.9 -15.0 -24.3 -

Table 5.8: Comparison of the theoretical and actual derivatives obtained for 
A with respect to 6 continued.

In this case the Hamiltonian as in (3.7) becomes

1 if q = p +  n

+  t ( s -  m k *) sin(x ) -  A if P = <l + n
263kl(cos(ln) cos(kn)-l)  g jn ^

ir2(k—l)'2(k+l)'2

Table 5.9 contains eigenvalues as a function of 0 for A = 21.

\i p >  n q < n p ^  q + n;
(5.41)
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(m,n,p) 6 Al A2 A3
(53,15,3) 0.087T 16.8676 28.6950 32.3882
(53,15,4) 0.087T 16.8674 28.6948 32.3873
(53,15,3) 0.097T 16.3970 28.4500 -

(53,15,4) 0.097T 16.3967 28.4502 -

(51,17,3) 0.17T 15.8547 - -

(51,17,4) 0.17T 15.8541 - -

Table 5.9: Eigenvalues of the periodic potential for various tube widths

5.11 The error in | |

Let us consider a small section of the domain near the corners of Fig 5.1 with 

radius e

Assuming that =  0 then the solutions are ipn (r, 9) = s in (^0)

for n € {1,..., oo} and in terms of 6 in Fig 5.1 0  =  y - 0 .  We will now find 

to which Sobolev space these solutions belong.

Given that the nth order Bessel function is given by

J  (r) =  V   r2p
^ 2 '  k^o 22pP-(n +  !)•
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then near the corner

J™. (r) «  cr © .

Differentiating this function v times and integrating over r  in polar coordi­

nates we obtain

and we require ^  — 2^ +  2 > 0 to guarantee convergence or

mr
" < 1 +  e "

In the case where 6 =  ^  we have 0  =  and so v < y .  As r  —► 0 then 

*/< §.

The following theorem is taken from [4, Theorem 3.1.5].

T heorem : For a given triangle K  in the mesh there exists a constant ck 

such that

W'ti — ^-K^\\Hm(K) < C/dV>|//fc+i(K)

for 0 < m < k +  1 where k is the order of the interpolating polynomial which

in our case is 1 and IIk P̂ is the interpolated solution. From this we see that

our solutions will converge in H k for k < 2. In deriving A we required the

first order derivative on the boundary dQ as in (5.36) and we see that the
12solution near the corner is in H ~ . We can thus expect convergence but not a 

very good rate of convergence as is evidenced by the poor agreement between 

theoretical and experimental values for | | .
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5.12 Conclusion

Looking at the derivative of the eigenfunction with respect to tube width and 

the plots, we see that eigenfunctions which penetrate strongly into the tube 

are more susceptible to changes in 8. As the tube is widened the eigenvalues 

become more sensitive to the tube width since more of the eigenfunction is 

able to get into the tube. In comparing the theoretical and experimental 

values for the derivative of the eigenvalue with respect to tube width it can 

be seen that for eigenvalues which are not strongly sensitive to tube width 

that the theoretical estimate is an underestimate by approximately 15%. For 

eigenvalues more sensitive to the tube width S, we see that the theoretical 

estimate starts as an underestimate but eventually becomes an overestimate 

as <5 increases.

In the following chapter we will use the finite element method to find the 

eigenvalues of Fig 5.1 by deriving an analogous expression to (5.24) for the 

finite element method. Given these two sets of eigenvalues calculated using 

the finte element and finte differences methods, we shall imake a comparison 

between them in the last chapter.
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Chapter 6

Calculation o f the eigenvalues 

using the finite element m ethod
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6.1 Introduction

In this last chapter we shall use the method of finite elements instead of 

the method of finite differences as we did in the previous chapter to solve 

—A ip +  \ip = 0 subject to ip\dn\r =  0 and |r =  A(A)^>|r in the modified 

part of the circular domain.

As a consequence of the work to be undertaken in this chapter, we will 

conclude with a comparison of the eigenvalues obtained from the method of 

finite differences and that of finite elements.

6 . 2  T he M ethod  o f F in ite E lem ents

We begin with an integral expression for the weak formulation which we 

shall show that when minimised we obtain the original problem namely that 

shown in Fig 5.1. Let I  [ip] be

IW[ =  \  J (  I V ^ |2 -  A ip2)dx A(X)ip)n.di, (6.1)

where A(A) is a pseudo differential operator. I[ip] can be minimised by setting 

I[ip 4- SipJ — I[ip] to zero and solving (where Sip is a small increment in ip or 

more precisely 6ip(x, y) =  ip(x +  5x, y +  Sy) — ip(x, y)) thus

I{ip+8ip]-I[ip] = \- [ (\V('ip+5'ip)\2-\('ip+5ip)2)d x - l-  f  {ip+S'ip,A(\)(ip+6ip))n.d\ 
2 Jn 2 yr
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l- j ^ - X ^ ) d x  +  \  J ( i p , A ( X ) i p ) n . d l

which reduces to

[  (Vip.VSip — XipSip)dx — i  f  ((ip, A(A)5ip) +  (Sip, A(X)ip))n.d\
Jn 2 J r

- 1  f  {6il>,A(\)6il>)n.dl +  1 f  (VSip.VSip -  \(Sip)2)dx = 0.
* Jr  2 J n

The second line of the above is negligible compared to those on the first line 

provided that Sip «  ip and so neglecting it we obtain

f  (Vip.VSip — Xip5ip)dx — i  [((ip,A(X)Sip) + (Sip,A(X)ip))n.d\ = 0. (6.2) 
Jn 2 J T

We now apply the divergence theorem giving from (6.2)

I  V&.'VSipdx = i  [  V  .(6ipVip)dx+^- j  V.(^Vfo/>)dx— i  f  ipASipdx—^ f  
Jn 2 2 ./q 2 2 yr

We thus obtain

f  (^-SipAip +  +  XipSip)dx =  ^ f  (Sip, Vip).di +  -  f  (ip,VSip).d\
Jn 2 2 2 yr 2 ,/r

/ (̂ ’ A(A)̂) +  A(A)(J^»n .rfl.

SipAipdx.
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Making use of the fact that t^lanxr =  0 and rearranging we may rewrite the 

above expression as

interface I \  We see that in minimising this integral we obtain the equations 

for p  which when solved yield solutions to our problem.

Thus the minimum of (6.1) over a finite element mesh gives a solution 

of the problem. Now consider a finite element mesh in Q consisting of Nt 

triangles and Np nodes, then we can minimise (6.1) on this mesh using a par­

ticular linear combination of functions pk(x , y) for k =  1, 2, . . . ,  Np. Consider 

the following:

where 7* is the value of p  at the point (xk, yk) for k = 1,2, ...,NP and </>*(£, y) 

is a piecewise linear function whose properties will now be explained.

Given a node (xi, y{) then the function <f>i(xi,yi) = 1 and zero on the other 

nodes of the triangles of the domain, or yi) — Ski for {k, /} G {1,..., A^}. 

Consider a section of mesh for a particular triangle, such as triangle number 

n which we shall denote by Tn as illustrated below:

-  I  (A p  H- Ap)5pdx. +  -  f  (ASp  +  ASp)pdx = \  f  (Sp, V p  — nA(X)p).d\

 ̂J  ('ip, -  nA(A)5p)

This yields A p  +  Xp = 0 and n  • 'S/p =  A(X)p where n = on the

(6.3)
fc=l

108



Figure 6.1: Example of a triangle amongst the finite element mesh

Then we may define a function /  as follows. Let / (n ,  1) =  p, / (n , 2) =  q 

and f ( n . 3) =  r. Then 0/(n,s)(^, y ) '=  a ?  +  &n ^  for s = {1,2,3} and

according to the desired properties of the hat function on letting t = {1,2,3} 

we may impose the following condition:

0/(n,s)(^/(n,t)5 2//(n,t)) &s,t

which produces the following equation

v 0 /

f i xp Vp

1 X q  Vq 

1 X r yr

(  (1) Na V

6(1)Un

For the node (xp,yp) and for the nodes (x q,yq) and (xr,yr) we have



respectively. We thus see that <!>k(x,y) is a piecewise linear function since 

its coefficients a, b and c depend on which triangle the function is defined 

over. Note that the hat function is continuous but not differentiable across 

the edges of the triangles.

This leads to the following approximation for ^ (x .y )  over the triangle Tn:

V ) ~  7 / ( n , l ) 0 / ( n , l )  (^: 2/) T  <7 / ( n ,2 )0 /( n ,2 )  ? 2/) T  'T /(n ,3 )0 /(n ,3 )  (^ j 2/)

for k = {1,2,3} and e/t is the unit normal vector with the A:th component 

equal to 1 and the rest zero.

We now proceed to minimise (6.1) by choosing appropriate values of 7  ̂

in (6.3). Substituting (6.3) into (6.1) we have

or

^>(x, y) «  7p(pp{x, y) +  7<A(x > v) +  7r M x , y)

for (x, y) € where U /£i ^Tk =  ^  and

/ \  „ V 1

1 1 0



.* - N p N p

/ 2 1J E E  lkli{<t>k, A (A) </>*)<&/
2 fc=l z = i

The above expression can be minimised by differentiating with respect to 7  ̂

and equating to zero as follows:

n f  ( V ' k ^4>j , V"' ®4>k d(f)j ^

"  ■/» j  *

/•I 'v” 1 /-I 1
+ s ^ 2  o'ftW’j ’ A W<Pk)dy +  I  s ^ 2  N\)<t>j)dy. (6.4)

“' “ I fc=l •'“ I fc=l

Here we write ^(0, y) = ip{y) and likewise (f>k{0,y) = (f>k(y) and denote the 

interface by T. We therefore make the following linear approximation to the 

derivative on T
r )  N r
-jr-(v) =  ^ T k<t>k(y)

k= 1

where AY is the number of nodes on the boundary T and is the derivative 

of the ijj at node (0, 2/*) ie § f(2/fc)|r =  Tk• This together with the fact that 

4(y) = 52k=i 7k<Pk(y) then

N r  N r

X^7jfc<0j(y), A(A)0fc(2/)> =  Y^(<f>j{y),<i>k{y))Tk
k=1 k=1

and for the second term

N r N r

J2'Yk(A'WMy),4>Ay))  =  J 2 ( M v )  , H y ) W
k=1 k=1
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From (5.21) and (5.22) we have

Nr q , Nr  Nr

Tk = ^ A fc/(A)7 / and thus ~ g - ( y )  =  E E a  k i W i i M v ) -
1=1 k = i  i = i

The integrals in (6.4) thus become

Nr Nr Nr Nr p i/ E E  <f>j(y)hkiW'yi<t>k(y)dy =  EE Aw(A)7i /  g <t>j(y)<i>k{y)dy.
I  fc=l Z=1 fc=l 1=1 ■'“ I

Since 0* is a hat function there are three values of k namely k =  j  — 1, k = j

and A: =  j  +  1 for which the integral is non zero. We have

4>k(y) =  - — for y G [y jb -i, 2/fc) and <f>k(y) = -------- for ?/ G 2/fc+i)
2/fc yk—i 2 / f c + i  2/fc

and thus if /c =  j  — 1 we have

[  <t>j-i(y)4>Ay)dy  =  [  ^ ^ -  %- i )

likewise
f i  1
/  4>j{y)<t>j+i{y)dy =  g(i/j+ i -  %)•

The diagonal elements of (6.4) are

/ E 2 / w  r *  ( y - V k - 1)2 j .  , f yk*' ( y k + i - y ) 2 j .  i ,  . ,
=  y w i { y k + i _ y k Y d y  =  5 (W+1- » * . . ) •

This leads to the following expression for a given value of j  in the second line
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of (6.4)

\ ' r

~ Vj-1) +  ^ j i W ( y j +1 “  2/j-i) +  gA(j+i)/(A)(2/j+i -

which when we interpret (6.4) as the quadratic form of a matrix we obtain 

the expression

c  = f  I d(j>k{x, y) d(j)j(x, y) d<pk(x , y) y) \  ^
V ^  <%/ dy )  X

/.j  ̂ j
+  — Vj-1) +  ^ Aj/(A)(yj+i — Vj-1) +  gA(j+1)/(A)(i/j+i -  yj)

iff yj G T and

^  [  ( d(f>k(x,y)d(f>j {xJy) d<f>k(x, y) d(frj(x, y)  ̂ ^
Cik = Lv~di dT~ + — y a ^ |dx

iff yj ^ T with {/,£} G {1,2, ...,NP} and

Bjk =  /  <t>k(x,y)<t>j{x,y)dx 
Jn

where we define the matrices B =  (Bij)?J=1 and C  =  (Cij)?J=1 for {/,&} G 

{ 1 , 2 , 7Vp}. Letting d =  [7 i , . . . ,7P]T we obtain

C d = XBd.

The integrals involved in obtaining B  are calculated by evaluating <fik(x,y)
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at the centroid and multiplying by the area of the triangle. The coordinates 

of the centroid (xc, yc) are given by

Xp T Xq -j- x r yp 4- yq -j- yT
xc — — ir  and yc = —---- ^------

and thus we have

[  A t
/  </>k(x, y ) M x i y)d*  = 4>k{xc, yc) M x c  yc)ATn = (6.6)

JTn y

where Arn is the area of triangle Tn. The table below gives the eigenvalues 

calculated using this method of approximating the mass matrix B.

(Nt , Np, Nr) 0 Al A2 A3

(4336,2239,11,9)
(17344,8813,23,21)

0.097T
0.097T

5.69415
5.67782

14.1518
14.1136

14.7183
14.6873

(4416,2281,15,13) 
(17664,8977,31,23)

0.17T
0.17T

5.66846
5.66273

13.9707
13.9369

14.7153
14.6846

(4608,2377,15,13) 
(18432,9361,31,23)

O.llTT
0.117T

5.64069
5.63483

13.7589
13.7246

14.7111
14.6806

(4480,2313,15,13) 
(17920,9105,31,23)

0.12tt
0.127T

5.60943
5.60339

13.4972
13.4627

14.7067
14.6759

(4432,2291,19,17)
(17728,9013,39,27)

0.137T
0.137T

5.57332
5.56764

13.1622
13.1322

14.7009
14.6696

(4400,2275,19,17) 
(17600,8949,39,27)

0.147r 
0.147T

5.53390
5.52822

12.7405
12.7135

Table 6.1: Eigenvalues for several widths and mesh densities where the mass 
matrix is evaluated using quadrature

We remind the reader that the above calculations have been performed 

using approximation (6.6) to the mass matrix.
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We can perform the integrals of the mass matrix exactly. If one does this 

then one obtains the following results

r I ^  iff k = I
/  <j>k(x, y)<t>i{x, y)dx =  < 6 (6.7)

•/ t » I i S k ^ l .

In Table 6.2, we have the eigenvalues obtained from using this more accu­

rate calculation of the mass matrix. We note that the exact calculations of 

the mass matrix results in an improvement of order 10-3 in the eigenvalues 

calculated.
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(NT,N p,N r ,N b) e Ai A2 A3 A4 A5 A6
(4336,2239,11,9) 0.097T 5.69179 14.1373 14.7024 24.9752 26.4203 29.7855

(17344,8813,23,21) 0.097T 5.68724 14.1100 14.6833 24.8975 26.3586 29.7056
(69376,34969,47,21) 0.097T 5.68582 14.1016 14.6785 24.8741 26.3424 29.6833
(69376,34969,47,31) 0.097T 5.68585 14.1017 14.6785 24.8744 26.3425 29.6834

(4416,2281,15,13) 0.17T 5.66621 13.9572 14.6989 24.1808 26.4058 -

(17664,8977,31,23) 0.17T 5.66220 13.9337 14.6804 24.1198 26.3372 -

(70656,35617,63,23) 0.17T 5.66098 13.9265 14.6757 24.1013 26.3217 -

(70656,35617,63,31) 0.17T 5.66102 13.9268 14.6757 24.1017 26.3218 -

(4608,2377,15,13) 0.117T 5.63847 13.7461 14.6952 - - -

(18432,9361,31,23) O.llTT 5.63431 13.7216 14.6767 - - -

(73728,37153,63,23) 0.117T 5.63300 13.7139 14.6720 - - -

(73728,37153,63,31) 0.117T 5.63305 13.7142 14.6720 - - -

(4480,2313,15,13) 0.127T 5.60724 13.4852 14.6906 - - -

(17920,9105,31,23) 0.127T 5.60288 13.4599 14.6719 - - -

(71680,36219,63,23) 0.127T 5.60147 13.4518 14.6671 - - -

(71680,36219,63,31) 0.127T 5.60153 13.4521 14.6671 - - -

(4432,2291,19,17) 0.137T 5.57114 13.1518 14.6848 - - -

(17728,9013,39,27) 0.137T 5.56720 13.1301 14.6656 - - -

(70912,35753,79,23) 0.137T 5.56591 13.1233 14.6607 - - -

(70912,35753,79,31) 0.137T 5.56600 13.1235 14.6607 - - -

(4400,2275,19,17) 0.147T 5.53175 12.7317 - - - -

(17600,8949,39,27) 0.147T 5.52780 12.7118 - - - -

(70400,35497,79,23) 0.147T 5.52655 12.7053 - - - -

(70400,35497,79,31) 0.147r 5.52659 12.7057 - - - -

Table 6.2: Eigenvalues for different tube widths and mesh densities for the 
exact calculation of the mass matrix
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6.3 T he parabolic potential again

Here we have the same potential as in section (5.10). The differences arising 

from using the potential (5.40) to (6.5) are to U and V  in the calculation of 

A(A) in (5.22) which we call A(A) and thus (6.5) becomes

^  f  ( d<f>k{x,y) d<t>j(x,y) d<f>k(x,y) d<l>}(x,y)  ^
= I  { —di dT~  + —Qi W ~  + M 'V)M 'V))

(  \ ~ 1 I \
+ Y :  ( ~  Vj-1) +  ^A^(A)(2/j+i — yj - \ )  +  -A(j+i)i(\)(yj+i — yj)J

i=i ' '

iff yj £ T and

Cjk  =  jf ( a * f x y ) d 4 , f x y)  +  ^

iff yj £ T.

Table 7.3 contains the eigenvalues as a function of tube width and mesh 

density.
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(Nr ,N p,N r ,N b) 0 Ai A2 A3

(4304,2223,11,9) 0.087T 16.9134 28.7466 32.5274
(17216,8749,23,21) 0.087T 16.8835 28.7083 32.4319

(68864,34713,47,21) 0.087T 16.8732 28.6983 32.4038
(68864,34713,47,31) 0.087T 16.8734 28.6983 32.4044

(4336,2239,11,9) 0.097r 16.4466 28.5051 —

(17344,8813,23,21) 0.097T 16.4144 28.4648 —

(69376,34969,47,21) 0.097T 16.4031 28.4542 —

(69376,34969,47,31) 0.097T 16.4034 28.4543 —

(4416,2281,15,9) 0.17r 15.8925 — —

(17662,8977,31,23) 0.17T 15.8643 — —

(70656,35617,63,23) 0.17r 15.8585 — —

(70656,35617,63,31) 0.17T 15.8592 — —

Table 6.3: Eigenvalues of the parabolic potential for several tube widths and 
mesh densities
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Chapter 7

Comparison o f the finite 

differences and finite elem ent 

m ethods
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7.1 Com parison o f th e  eigenvalues

In this chapter we shall make a comparison of the eigenvalues obtained from 

the method of finite differences with those obtained from the method of finite 

elements. Table 7.1 gives eigenvalues obtained by both methods where for 

each A the left column below A contains the eigenvalues obtained by finite 

differences and the right column contains the eigenvalues obtained by the 

method of finite elements for different values of 9 on the full domain.

9 Al A2

0.097T 5.68508 5.68585 14.0972 14.1017
0.17T 5.66038 5.66102 13.9231 13.9268

O.llTT 5.63235 5.63305 13.7101 13.7142
0.127T 5.60074 5.60153 13.4476 13.4521
0.137T 5.56535 5.56600 13.1199 13.1235
0.147T 5.52591 5.52659 12.7023 12.7057

9 A3 a4
0.097T 14.6769 14.6785 24.8622 24.8744
0.17T 14.6741 14.6757 24.0924 24.1017
O.llTT 14.6703 14.6720 - -

0.12tt 14.6653 14.6671 - -
0.137T 14.6588 14.6607 - -

9 A5 ^6
0.097T 26.3368 26.3425 29.6731 29.6834
0.17T 26.3166 26.3218 - -

Table 7.1: Comparison of eigenvalues obtained by finite differences on the 
left and the method of finite elements on the right

Table 7.2 compares the eigenvalues obtained for the half domain and has 

the same layout as Table 7.1. The eigenvalues in Table 7.2 calculated via the 

method of finite elements for the half domain have not previously appeared
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in this thesis. These eigenvalues have only being calculated for the densest 

possible mesh as are the last values appearing in Table 6.2 for each value of 

9 and A.

9 Ai A2 ^3
0.097T 5.68466 5.68570 14.0947 14.1009 14.6768 14.6786
0.17T 5.66010 5.66105 13.9215 13.9270 14.6741 14.6759
O.llTT 5.63202 5.63304 13.7082 13.7142 14.6702 14.6721
0.127r 5.60041 5.60149 13.4456 13.4519 14.6652 14.6672
0.13?r 5.56496 5.56613 13.1177 13.1243 14.6587 14.6608
0.147T 5.52560 5.52668 12.7007 12.7062 14.6504 14.6526

9 A4 A5 6̂
0.097r 24.8622 24.8722 26.3360 26.3426 29.6711 29.6831
0.17T 24.0924 24.1022 26.3152 26.3223 - -

O.llTT - - 26.2866 26.2941 - -
0 . 12tt - - 26.2481 26.2562 - -
0.13tt - - 26.1970 26.2058 - -
0.14tt - - 26.1303 26.1395 - -

9 As A]10 A12

0.09tt 40.5678 40.5864 49.1905 49.2163 57.2269 57.2666
0.17T 40.4924 40.5124 49.1772 49.2037 57.0255 57.0670

O.llTT 40.3862 40.4072 49.1570 49.1821 56.7283 56.7617
0.127r 40.2384 40.2613 49.1252 49.1501 56.2819 56.3291
0.13tt 40.0335 40.0576 49.0729 49.0979 55.5677 56.6182
0.14tt 39.7476 39.7735 48.6754 49.0010 - -

Table 7.2: Comparison of eigenvalues obtained by finite differences on the 
left and the method of finite elements on the right for the half domain

Notice that A3 in Table 7.1 and Table 7.2 are virtually the same. This 

is the first antisymmetric eigenvalue about the x axis. This is not the case 

for the other eigenvalues since they are calculated by imposing Neumann 

boundary conditions at y = 0 on the half domain. This means that we use
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5.39 instead of 5.38 which itself is symmetric to 5.19. The same comparison 

is done in Table 7.3 containing the eigenvalues for the parabolic potential.

e Ai A2 3̂
0.087T
0.097T
0.17T

16.8674
16.3967
15.8541

16.8734
16.4034
15.8592

28.6948
28.4502

28.6983
28.4543

32.3873 32.4044

Table 7.3: Comparison of eigenvalues obtained from the method of finite 
differences on the left and the method of finite elements on the right

7.2 T he eigenvalues in relation to  theory

These results for the eigenvalues calculated by the methods of finite dif­

ferences and finite elements agree with the theory that the finite differences 

method is an approximation from below and the finite elements method gives 

an approximation from above. This is the case for the comparison Table 7.1, 

Table 7.2 and Table 7.3.

7.3 Conclusion

In this thesis we have examined a spectral problem for a semi infinite waveg­

uide with a perturbed periodic potential. We have shown numerically that 

the perturbation induces eigenvalues into the spectral gaps of the unper­

turbed problem as well as inducing eigenvalues into the spectral bands. These
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results have been obtained using both the methods of finite difference and 

finite elements and a comparison between the quality of them has been made. 

As waveguides are often used for models of quantum switches (and triadic 

logic) it would be interesting to repeat this investigation, but now assuming 

the underlying problem is governed by the Maxwell system.
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