
C a r d i f f
U N I V E R S I T Y

P R I F Y S G O L

C a eR D yS>

Studying the Rate of Convergence of Gradient
Optimisation Algorithms via the Theory of

Optimal Experimental Design

Rebecca Jane Hay croft,
Cardiff University

May, 2008

A thesis submitted for the degree of Doctor of Philosophy

UMI Number: U 585088

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 585088
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

D EC LA R A TIO N

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signed Date

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged explicitly. A bibliography is appended.

Signed Date

STATEMENT 2

I hereby give my consent for my thesis, if accepted, to be available for photocopying *

and for inter-library loan, and for the title and summary to be made available to

outside organisations.

........................ D ateSigned

A C K N O W L E D G E M E N TS

I would like to thank my supervisor, Professor Anatoly Zhigljavsky, for his contin

uous support throughout my period of study and for providing me with invaluable

opportunities to broaden my skills along the way. Without him none of this would

have been possible.

I would also like to extend my gratitude to my family and friends; to my parents,

David and Janet, for their unconditional love and encouragement, to Jonny for being

my emotional support and to all of my friends of the last few years who have put up

with me and my talk of maths. I would also like to express thanks to my colleagues

in the School of Mathematics for making my time as a postgraduate student a very

enjoyable experience.

Finally I would like to thank the EPSRC for providing me with the financial

means to partake in this research.

PU BLIC A TIO N S

Haycroft, R. J. - Studying the Rate of Convergence of the Steepest Descent Op

timisation Algorithm with Relaxation, in: Computer Aided Methods in Optimal

Design and Operations, (Ser. Series on Computers and Operations Research - Vol

7). World Scientific Publishing Co. Inc. (2006) p.49-58, ISBN 981-256-909-X

Haycroft R, Pronzato L, Wynn H. and Zhigljavsky A - Optimal Experimental De

sign and Quadratic Optimization, Tatra Mountains Mathematical Publications. (To

appear)

Haycroft R, Pronzato L, Wynn H. and Zhigljavsky A - Studying Convergence of

Gradient Algorithms via Optimal Experimental Design Theory, in: “W-optimality

and related statistical issues”. (To appear)

SU M M A R Y

The most common class of methods for solving quadratic optimisation problems

is the class of gradient algorithms, the most famous of which being the Steepest De

scent algorithm. The development of a particular gradient algorithm, the Barzilai-

Borwein algorithm, has sparked a lot of research in the area in recent years and many

algorithms now exist which have faster rates of convergence than that possessed by

the Steepest Descent algorithm. The technology to effectively analyse and compare

the asymptotic rates of convergence of gradient algorithms is, however, limited and

so it is somewhat unclear from literature as to which algorithms possess the faster

rates of convergence.

In this thesis methodology is developed to enable better analysis of the asymp

totic rates of convergence of gradient algorithms applied to quadratic optimisation

problems. This methodology stems from a link with the theory of optimal exper

imental design. It is established that gradient algorithms can be related to algo

rithms for constructing optimal experimental designs for linear regression models.

Furthermore, the asymptotic rates of convergence of these gradient algorithms can

be expressed through the asymptotic behaviour of multiplicative algorithms for con

structing optimal experimental designs.

The described connection to optimal experimental design has also been used

to influence the creation of several new gradient algorithms which would not have

otherwise been intuitively thought of. The asymptotic rates of convergence of these

algorithms are studied extensively and insight is given as to how some gradient

algorithms are able to converge faster than others. It is demonstrated that the worst

rates are obtained when the corresponding multiplicative procedure for updating

the designs converges to the optimal design. Simulations reveal that the asymptotic

rates of convergence of some of these new algorithms compare favourably with those

of existing gradient-type algorithms such as the Barzilai-Borwein algorithm.

Contents

1 In troduction 1

1 .1 Convex Optim isation... 1

1.1.1 Convexity and Concavity... 3

1.1.2 Quadratic Optimisation ... 4

1.1.3 Iterative M ethods... 4

1.2 Steepest D e sc e n t... 7

1.3 The Conjugate Gradient M e th o d .. 11

1.4 Iterative Methods for Solving Linear Systems 13

1.4.1 Stationary Iterative Methods .. 14

1.4.2 Krylov Subspace M eth o d s .. 16

1.5 Recent Successful Gradient A lgorithm s.. 18

1.5.1 The Barzilai-Borwein Algorithm... 18

1.5.2 Generalisations of the Barzilai-Borwein A lgorithm 19

1.5.3 Other New Gradient M ethods..26

1.6 Motivation of T h e s is ... 30

2 G radient A lgorithm s and th e ir R elation to O ptim al Design T heory 32

2.1 Renormalised Versions of Gradient Algorithms..32

2.1.1 Renormalisation of the Steepest Descent A lgorithm 32

2.1.2 Renormalisation of a General Gradient A lgorithm 35

2.2 Asymptotic Behaviour of the Steepest Descent A lgorithm....................... 35

2.3 Relation to Optimal Experimental Design .. 44

2.3.1 Optimal Experimental Design Terminology....................................45

2.3.2 Constructing Gradient Algorithms which Correspond to Given

Optimality C rite ria ... 48

2.3.3 Rate of Convergence of Gradient Algorithms Corresponding

to Optimal Designs... 50

3 T he 7 -S teepest Descent A lgorithm 53

3.1 The Renormalised 7 -Steepest Descent Algorithm.......................................54

3.1.1 Concavity of the Optimality Criterion... 55

3.1.2 Convergence to an Optimal D e s ig n .. 56

3.1.3 Speed of Convergence to the Optimum D esign60

3.1.4 Behaviour of the Sequence (4>(£^)} 61

3.2 Asymptotic Rate of Convergence ... 71

3.2.1 Dependence on 7 ... 72

3.2.2 Dependence on p ... 75

3.2.3 Dependence on d ... 79

3.2.4 Behaviour of r ^ ... 83

3.3 7 -Steepest Descent Summary .. 92

4 The /3-Root A lgorithm 94

4.1 The Square Root A lgorithm ... 94

4.1.1 The Renormalised Square Root A lgorithm95

4.1.2 Asymptotic Rate of Convergence...96

4.2 The 7 -Square Root A lgorithm ..97

4.2.1 Concavity of the Optimality Criterion... 98

4.2.2 Convergence to an Optimum Design ... 99

4.2.3 Speed of Convergence to the Optimum D esign105

4.2.4 Asymptotic Rate of Convergence...105

4.3 Generalisation to the /3-Root Algorithm...109

4.3.1 The Renormalised /3-Root A lgorithm .. 109

4.3.2 Concavity of the Optimality Criterion... 110

4.3.3 Behaviour of the Sequence {4>(£^)} I l l

4.3.4 Asymptotic Rate of Convergence...118

vi

4.4 (7 , (3)-Root A lg o rith m ...134

4.4.1 Generalisation of the (3-Root Algorithm.. 134

4.4.2 Asymptotic Rate of Convergence... 135

4.5 (3-Root Algorithm Sum m ary...138

5 $ p-optim ality 140

5.1 A -O ptim ality ..140

5.1.1 The A-Optimality Criterion and the Corresponding Gradient

A lgorithm ... 140

5.1.2 Behaviour of the Sequence {4>(£^)} 142

5.1.3 Asymptotic Rate of Convergence..147

5.2 A-Optimality with R elaxation.. 155

5.2.1 The Renormalised (7 , A)-Optimality Gradient Algorithm . . . 155

5.2.2 Asymptotic Rate of Convergence..155

5.3 4 >2-O ptim ality..161

5.3.1 The 4>2-Optimality Criterion and the Corresponding Gradient

A lgorithm ...161

5.3.2 Behaviour of the Sequence {4>(£(fe))} 163

5.3.3 Asymptotic Rate of Convergence..163

5.4 4>3-O ptim ality..172

5.4.1 The <f>3-Optimality Criterion and the Corresponding Gradient

A lgorithm ...172

5.4.2 Behaviour of the Sequence {4>(£(fe))} 174

5.4.3 Asymptotic Rate of Convergence... 174

5.5 4>p-Optimality S um m ary ... 184

6 Conclusions and F u rth e r W ork 185

6.1 S u m m ary .. 185

6.2 Further W o rk ..188

6 .2 .1 The Optimum 2-Gradient A lgo rithm ... 188

6 .2 .2 The Relaxed Optimum 2-Gradient A lg o rith m189

6.2.3 Future Investigations... 193

vii

6.3 Comparison of A lgorithm s..195

6.4 Conclusions.. 198

A Exam ple Program m es 200

B Sum m ary Tables 202

C E x tra G raphs 207

viii

Chapter 1

Introduction

1.1 Convex Optim isation

Finding the extreme points of a function cannot always be achieved via the classical

approach of calculus. In some situations calculating the partial derivatives of a func

tion is an arduous task and it is often necessary to resort to numerical optimisation

methods to find approximate solutions to the extreme points. Differing numerical

methods exist, however the goal in each method invariably involves determining

extrema, be they minima or maxima, of the objective function. It is potentially

the case that a given objective function could possess more than one extreme point

and so the crux of the problem usually lies in establishing whether a found local

extremum is also the overall, or global extremum. Methods which are successful in

accomplishing this are termed global optimisation methods whereas methods which

concentrate on identifying local extrema are named local optimisation methods. Lo

cal optimisation methods are usually used as part of the inner workings of a global

optimisation technique.

First two important definitions are given.

Definition 1.1.1. x* is a local minimum of a function / , given on X such that

/ : X — ► R1, if for some e > 0, f(x*) < f { x) for all x where \\x — x*|| < e.

The global minimum is then defined as follows:

Definition 1.1.2. x* is a global minimum of a function / if, f(x*) < f (x) \/x E X.

2

local uihmuinu

global mnmiiiun

Figure 1.1: Graph showing a typical function f (x) with more than one minimum.

Figure 1.1 illustrates a local and global minimum of an objective function. Note

that the definition of a local and global maximum can be achieved by reversing the

inequalities in the above definitions.

Global optimisation is inevitably a much harder problem than local optimisation

as, if the function being optimised has more than one turning point, it is possible that

the progress of an algorithm might be halted at the discovery of a local minimum

and thus the global minimum may not be found. One solution to the problem is to

calculate all local minima in turn, (perhaps by selecting different starting points from

which to run a local optimisation algorithm) and then, by process of comparison,

determine which amongst them is the global minimum. This procedure can be very

time-costly and an alternative is desirable. Other approaches exist such as stochastic

techniques e.g. simulated annealing where a step in a direction away from a local

solution is accepted with some probability. This avoids the certainty of the algorithm

terminating prematurely at a local solution. There is, however, a group of functions

with a specific property for which this problem is not an issue, namely convex (and

concave) functions.

3

1.1.1 C onvexity and C oncavity

A definition of a convex function is as follows.

Definition 1.1.3. A function f (x) is said to be convex over a convex set S if, for

any two points x\, X2 £ § and for all a, 0 < a < 1 ,

f (a x 2 + (1 - a)x i) < a f (x 2) + (1 - a) f (x i) . (1.1)

The definition of a concave function can be obtained simply by reversing the

inequality (1 .1) i.e. a function is concave if

f (a x 2 + (1 - a)x\) > a f (x 2) + (1 - a) f (x i) , Vo, 0 < a < 1 . (1.2)

If the inequalities in (1.1) and (1.2) are replaced with strict inequalities then the

function f (x) is said to be a strictly convex function, or a strictly concave function,

respectively. For the proofs of several theorems on the subject of convexity see, for

example, [69].

Figure 1.2 shows examples of convex and concave functions of one variable. Here

the property translates to the curve lying below (conversely above for concavity) the

chord joining any two points (xi, f{x\)) and (x2 , f (x 2)). The advantage of knowing

X

Figure 1.2: Example of (a) a convex function and (b) a concave function.

that the objective function is strictly convex is that, for a function of this kind,

there exists at most one minimum, thus any local minimum found is also the global

minimum. Similarly with concave functions, any maximum found will be the only

4

maximum of the function and thus the global maximum. There are many real-life

problems where the objective function is known to be convex and for these problems

local optimisation techniques can be applied.

1.1.2 Quadratic O ptim isation

Consider the task of finding the minimum point x* of a quadratic objective function

of the form

f (x) = - x TAx — x Tb-\-c (1-3)

where A is a positive definite symmetric d x d matrix with eigenvalues

0 < m = A i < A 2 < . . . < A d = M < o o

and b is a d x 1 vector. Since A is positive definite it follows that the function

/ is strictly convex. Algorithms developed for optimising quadratic functions of

this form can thus take advantage of the desirable property of convexity; any local

extremum found will also be the global extremum. Quadratic optimisation has

been studied extensively. One reason why it has proven so popular is due to the

ability to adapt algorithms of this kind to solve systems of linear equations. This

application is introduced in Section 1.4. Another reason is that many non-quadratic

functions can be approximated well by functions of the form (1.3) in the region

of their minimum point; so in many cases it is sufficient to simply minimise the

quadratic approximation of the function. In this thesis only the problem of quadratic

optimisation is considered.

Most numerical methods developed for solving optimisation problems, quadratic

optimisation being no exception, take an iterative form.

1.1.3 Iterative M ethods

Starting from either an initial guess or a random vector an iterative method

will produce a sequence of approximations, in the form of vectors x^k\ k = 1 , 2 , . . .

that are expected to move increasingly closer to the exact solution. The procedure

is only said to converge if lim^oo ||ar* — x ^ || = 0. The iterations are ceased when

some predefined stopping criterion is reached.

5

The majority of iterative algorithms can be written in the following general form

^(fc+i) = x (k) _ a {k)6 (k) ? (j 4)

where 8^ is the direction from x ^ along which the next point is selected. For fixed

aW is the step length. Different optimisation algorithms vary in their choice

of and 8̂ kK

It must be noted at this point that iterative methods work just as well for

the minimisation or maximisation of more general non-linear objective functions;

however it is often much harder to calculate the step length for objective functions

of higher degree. It is straightforward to obtain results for maximisation of quadratic

functions by adapting those results described for minimisation.

D irect Search M ethods

Direct Search Methods is the name given to those methods which rely entirely on

the value of the objective function f (x) at iteration k and information gained from

previous iterations. These methods do not require the explicit evaluation of any

partial derivatives of f (x) .

When dealing with functions of one variable a number of simple search methods

can be employed. Techniques belonging to this category include the method of

Bisection, Fibonacci search and Golden Section search. These methods all involve

determining an increasingly smaller interval in which the minimum lies. The process

ceases when the interval which contains the minimum point is sufficiently narrow or

a pre-specified number of function evaluations are made.

For multi-variate functions, several direct search methods also exist. A gener

alisation of the Fibonacci search for one variable functions can be applied. In this

method a series of nested uni-variate Fibonacci searches is carried out in order to

reduce the problem to one which is readily solvable.

Another technique, this one not of the form (1.4), applied to multi-variate func

tions is the Simplex method. A simplex is a d-dimensional polytope made up of

d + 1 vertices; if d = 2 then it is an equilateral triangle, if d = 3 it takes the form of

a regular tetrahedron and so on. The objective function is evaluated at each of the

6

d + 1 vertices. For minimisation, the vertex where the objective function is found to

have the highest value is then reflected in the centroid of the remaining d vertices.

The objective function is then evaluated at this new vertex and the process contin

ues by reflecting whichever vertex is now evaluated to be the one with the largest

function value. Modifications exist to prevent oscillations and to aid the method

in cases where convergence is slow, such as when descent down a narrow valley is

required.

An extension of the Simplex method gives rise to the method of Nelder and

Mead. Here the basic step of reflection of the largest vertex is accompanied by

either an expansion (if this improves upon the vertex obtained by simply reflecting)

or contraction (if the point obtained by reflecting is worse than the original vertex).

Other direct search methods developed include Hooke and Jeeves’, Rosenbrock’s

and Davies, Swann and Campey’s method. For a description of the main existing

direct methods see [1 0 , 1 1].

G radient M ethods

In contrast to direct search methods, gradient methods utilise the partial derivatives

of the objective function, coupled with information obtained from earlier iterations,

to select the direction along which the next point in the iterative process is to be

chosen.

For a general smooth function f (x) in R d gradient algorithms can be written as

X (M) = x (k) _ Q(fc) V / (XW) _ (L 5)

where

V/(x('=») = 9 (x «) = (g) . . , g)

and a ^ is the step length.

It is generally concluded that if information regarding the first derivatives of

the objective function is readily obtainable and not too costly to compute then this

information should be used. Methods which also make use of the second derivatives

usually converge faster but these are not necessarily the most efficient algorithms as

the cost associated with computing the matrix of second derivatives and inverting it

7

can outweigh the advantage gained through this extra knowledge. Also, algorithms

of this kind are very sensitive to computational inaccuracies.

Amongst the gradient algorithms are the Newton-Raphson method, the Davidon-

Fletcher-Powell method, see [30], the Fletcher-Reeves method, see [31] and the

Polak-Ribiere method (a modification of the Fletcher-Reeves method), see [52]. The

two most important algorithms, to which the next two sections are dedicated are

the methods of steepest descent and conjugate gradients.

1.2 Steepest Descent

The steepest descent algorithm is the most famous of all the gradient algorithms.

Nowadays it is it generally regarded as having a poor convergence rate; however it

is popular on account of its easy application and stability as an algorithm. Many

algorithms have been created by adapting the steepest descent algorithm in some

way, with a view to improving upon the rate of convergence. For this reason the

method of steepest descent is widely regarded as the gold standard against which

all other algorithms of this type are compared.

The method of steepest descent, also known as the gradient descent method,

dates back as far as Cauchy, see [12] where it was first suggested as a method for

solving systems of linear equations, see Section 1.4.

For a general convex function the steepest descent algorithm takes the following

form:
_ x (k) _ aWy / (x ^) ,

where

<*(*) = a rg m in /(x ^ — a \ / f (x ^)) . (1 .6)a

The step length is chosen so that, at iteration (A:-hi), the function takes on the

minimum possible value along the anti-gradient —y I n other words, the point

x (k+l) is determined by travelling from the previous point x ^ down the direction

of the negative gradient until the minimum point along this line is located. The

direction - y f (x ^) is chosen because the initial rate of decrease of the objective

function from x ^ is greatest in this direction, hence the name ‘steepest descent’.

In the two-dimensional case, the method approaches the minimum point in a

zigzag manner. This is due to the fact that, at the minimum point along any search

direction, the direction of steepest descent is always at right angles to the previous

search direction thus making successive directions orthogonal. Figure 1.3 shows an

example of the approach to the minimum point of a function of two variables made

by the steepest descent algorithm. The level sets of a function are d-dimensional

ellipsoids (in this figure d = 2 thus the contours are ellipses) and show regions of

constant value of the function. For ill-conditioned problems, i.e. if the corresponding

Figure 1.3: Graph showing a typical path of descent made by the steepest descent

algorithm for a function of two variables.

maximum and minimum eigenvalues of the problem are considerably different from

each other so that the condition number (i.e. the ratio p = M / m of the largest to

smallest eigenvalues of the matrix A) is large, then the method of steepest descent

exhibits poor rates of convergence. At the outset steady convergence is achieved but

progress becomes steadily slower, the closer to the minimum the approximations get.

Figure 1.4 depicts such a situation where the large condition number causes slow

convergence to occur. In this example the minimum point lies in a narrow valley

of a quadratic function. If either Ai = 0 or Ad = oo then the method of steepest

descent is slow to converge.

For the quadratic case, the value of a^k\ such that (1.6) holds true, can be

calculated explicitly. The derivative of a general quadratic function of the form (1.3)

Figure 1.4: Graph showing a typical path of descent made by the steepest descent

algorithm when x* lies in a narrow valley.

is

p(fc) = g(x^k)) = V /(z (fc)) = A x ^ - b .

The value of is determined by minimising

/(x<*> - <*<?(*>) = - a g W f A -(*<*> -
2

Differentiating this function with respect to x and equating the resulting derivative

to zero gives

a'"' =„(*) _ (gw ,g (t>)

where (a, b) denotes the Euclidean inner product. The steepest descent algorithm

for the quadratic case can thus be written as

x(*+i) _ x (t) _(gw ,g(*°) (17]
~ X(V fc),9<*))9 • ()

Multiplying by A and subtracting b gives

^ (* + 1) - b = Ax^k) - b — ^ A qW0 Ax 0 (Ag{k)g{k))*9 ,

which is equivalent to

g (M) = g W _(9W’g(t)) A g (k) (1 g)
9 9 {Ag (1-H)

It can be shown that the method of steepest descent converges to the unique

minimum point of a convex quadratic function; see [44] for a proof of this. The rate of

convergence is, however, dependent on certain conditions. In the case when m = M,

10

i.e. all eigenvalues are equal, the level sets are spherical and the steepest descent

algorithm converges in one step. For all other cases, however, some investigation is

needed into the convergence properties of the algorithm.

A rate of convergence at iteration k for gradient algorithms can be defined as

w _ (g(*+1),g (t+1)) (1 9)
(9 m ,s m) ■ ^

First note that

(g(‘ +1\ g (‘ +I)) = (9 {k)J k)) ~ 2 a (* W ' ° , S (*)) + (a W)2(^ 2g ((:),9 W) , (1-10)

where = {ĝ k\ g ^) / (Ag(k\ gW) for the steepest descent algorithm. Dividing

(1 .1 0) through by (ĝ k\ g ^) gives

r W _ ! _ 2 a (t) (^ g w ,g (t)) , W)2(A2g(t),gW)
(gW ,gW) + > (gW .gW)

which for the SD algorithm is equal to

(t) (>l2g (‘;),g (*))(g (<0,g (<0)
SD (Ag&^gW)2 ('

The asymptotic rate of convergence for gradient algorithms can then be defined as

(fc \ V*
r [r « J (1.12)

The steepest descent algorithm converges jR-linearly, i.e. R s d < 1- Incidentally, if

a gradient algorithm is such that its rate of convergence rW — ► 0 as k — ► oo

then it is said to have /2-superlinear convergence. In order to compare convergence

rates of two algorithms, both with linear convergence, it is necessary to evaluate

their respective asymptotic rates of convergence. Whilst it is not possible to get an

exact analytic formula for the asymptotic rate of convergence of the steepest descent

algorithm, an upper bound for this convergence rate is obtainable by employing the

Kantorovich inequality, see [41]. This can be considered as the worst-case rate for

the algorithm and is equal to

11

The worst-case rate of convergence of the steepest descent algorithm thus depends

on the condition number of the matrix A in (1.3) i.e. the ratio p — m / M of the

smallest to largest eigenvalues m and M.

The actual rate of convergence is known to depend on the starting vector in

a complicated manner and is studied in [1, 50, 53] with the aid of a useful technique,

renormalisation. For detailed discussion on this and other results concerning the

asymptotic behaviour of the steepest descent algorithm see Section 2.1.

There are, of course, ways of improving the rate of convergence of the steepest

descent algorithm. Even a small adaptation to the algorithm can result in a dramatic

improvement in convergence rate. For example, Booth [9] suggested that for ill-

conditioned systems adding a relaxation coefficient of 0.9 to the algorithm for some

iterations will improve the performance of the algorithm. The iterative formula

would thus become

I n(k)Tn(k) \
<+!) = XW _ o.9 4 ' - g - 9<*>

yg(k) AgW J

for, for instance, four iterations and then a single iteration using the exact formula

would be made. There exist many other algorithms that have been created from

modifying the steepest descent algorithm, see Section 1.5 for discussion on some of

these.

1.3 The Conjugate Gradient M ethod

Presently, the conjugate gradient method is a very popular algorithm for the minimi

sation of convex quadratic functions. It was first introduced as a method for solving

systems of linear equations whose matrices are symmetric and positive-definite, see

Sec 1.4. [38].

The algorithm can be defined as follows. Starting with an initial vector x ^ , the

method of conjugate gradients first takes a step in the direction of steepest descent

i.e. = —g(° .̂ Then the method follows the iterative procedure

x (* + i) = x (k) _ a (k) 6 (k) ?

12

with

where pW = (ĝ i+1\A S ^) /(S ^ \S ^) . See [44] for a proof that pW and a® have

the alternative formulae

respectively.

The method of conjugate gradients is advantageous for several reasons; the for

mula is relatively simple, being only slightly more complicated than that of the

method of steepest descent, the advances towards the minimum point are generally

fairly uniform at each iteration and the direction at each step is always linearly

independent of all other step directions.

A disadvantage of the method of steepest descent is that it often finds itself

repeating descent directions during the course of its descent to the solution. The

method of conjugate gradients on the other hand only travels in each necessary di

rection once. The way the method achieves this is by forming d conjugate search

directions where a definition of conjugacy is given by Defini

tion 1.3.1.

Definition 1.3.1. Two vectors and 8 ^ are said to be conjugate to each other

if for some matrix A,

These directions can be produced by using the conjugate Gram-Schmidt process,

see [60]. After each iteration, one of the d elements of x* will be found and thus after

d iterations the solution will be known. Such algorithms which locate the minimum

point of the function in d iterations are said to be quadratically convergent. It is

possible that the solution can be found in less than d iterations if, in any particular

iteration, the value of a ^ is 0 .

The method is not free from potential problems however. For the conjugate

gradient algorithm to converge to the solution in d iterations each computation needs

to be precise. Even small errors may result in the search vectors losing conjugacy

a{k) = (p(fe),) /(j4<5(fc), 5(fc)) and /?<*> = (g {k+1), g lk+1)) / (g ik), g ik))

8Wt A6P> = 0 .

13

which would result in more than d iterations being required. In reality it is not

always possible to maintain this level of accuracy whilst still retaining computational

efficiency; thus often a play off between accuracy and speed is needed.

Convergence

Whilst the method of conjugate gradients converges to the solution in d iterations

in ideal conditions, the method could be applied to a problem so large that it is not

practical to run the algorithm for d iterations. For this reason, and also because in

practice the algorithm is generally restarted frequently to avoid loss of conjugacy,

convergence analysis for this algorithm is still required.

It must be noted that ill-conditioned problems will have a similar impact on

the convergence of the conjugate gradient method to the effect they have on the

method of steepest descent. As with the method of steepest descent, there exist

many modifications of the algorithm which seek to improve on the efficiency and

reliability of the algorithm. One such method is the Fletcher-Reeves algorithm,

suggested in [31].

For problems where d is large, the search directions may begin to become ineffi

cient after a few iterations. One way to get the process back on track is to restart

the process with an iteration of steepest descent and continue in this manner thus

operating the method in cycles.

1.4 Iterative M ethods for Solving Linear System s

The task of solving a system of linear equations Ax = b, where A is a n x n non

singular matrix and b is a given vector, is a common one, arising in many fields.

The solution to such a system is x* = A~lb . In some circumstances, calculating the

inverse A- 1 can be time consuming and so a more efficient means in which to find

the solution x* is sought.

An application of particular interest is the solution of linear systems obtained

from the discretisation of partial differential equations. Many problems in areas

such as physics and engineering require the solution of systems of partial differential

14

equations, for example the study of elasticity and fluid flow. In the majority of cases

these equations are non-linear; however, after the discretisation process coupled with

some iterative methods to tackle the problem of non-linearity, a linear system of

equations remains. These systems can be large and are often sparse.

Whilst it is possible to solve linear systems via direct methods, those based on

Gaussian elimination perhaps being the most well-known, these methods frequently

prove to be too expensive, with respect to both computer time and storage required,

particularly when the matrices are large and sparse. For a description of several di

rect methods see [47]. Often direct methods cannot take full advantage of the prop

erties of sparse or specially structured matrices. Conversely, matrix-multiplication

can benefit greatly from sparseness. The number of operations needed to compute a

product involving a matrix with several zero entries is much reduced and only stor

age of those entries that are non-zero is required. For this reason iterative methods

that use a moderate number of matrix multiplications can often outperform direct

methods.

Due to their nature, iterative methods will only provide an approximation to

the exact solution. In reality, however, even direct methods can only find a solution

to a certain degree of accuracy (due to the limited precision of the floating point

operations carried out by the computer) so the approximate solution of iterative

methods is not seen as a disadvantage.

Iterative methods are thought to date back as far as Gauss (1777-1855), where

he suggested solving a four-dimensional system of equations by means of repeatedly

solving the component which contained the largest residual. Since then many itera

tive methods have been suggested. These methods can be split into two main groups;

stationary iterative methods and Krylov subspace methods. For a chronological re

view of some of the more important advances in the field of iterative methods see

[72].

1.4.1 Stationary Iterative M ethods

Stationary iterative methods include amongst them, the Jacobi method and the

Gauss-Seidel method. While they are generally easy to implement and analyse,

15

these methods have the main drawback that their convergence is only guaranteed

under fairly restrictive conditions and the rate of convergence is generally slow.

Most methods of this form involve splitting the matrix A in some way. In the

general case A is denoted as

A = M — N ,

where M is a non-singular matrix. The solution of Ax = b will then be equal to

x = M~lN x + M~lb and thus the general updating formula for algorithms of this

type can be written as

<«> = M ~lN x ik) + Af-16 .

The Jacobi method partitions A as follows

A = D + E + F ,

where D is the diagonal of matrix A , and E and F are the strictly upper and lower

triangular parts of A respectively. The matrix A is then split into two with M being

set equal to the diagonal of A, i.e. M = D and N = —(E + F) . Since M is diagonal

it is easy to invert. Although this method is simple, convergence is very slow.

Seidel, a student of Jacobi, suggested a variation on this method, namely the

Gauss-Seidel method. Seidel himself however recommended not to use it. The

Gauss-Seidel algorithm differs from the Jacobi method in the manner in which A is

split. For this algorithm M is set equal to the lower triangle of A , i.e. M = D + E

and N = —F . This algorithm makes use of updated values as soon as they become

available. Convergence is faster than that of the Jacobi algorithm but it is still

relatively slow.

Another algorithm, improving on the performance of both the Jacobi and the

Gauss-Seidel algorithm is that of the Successive Over Relaxation (SOR) Method.

This faster algorithm, which can be derived from the Gauss-Seidel method by intro

ducing an extrapolation parameter, provoked a great deal of research in the 1950s

and 1960s. For a detailed study of the SOR method see [71]. For results concerning

the stability of stationary iterative algorithms as well as a survey of error analysis

see [39].

16

1.4.2 K rylov Subspace M ethods

A Krylov subspace K, for a symmetric matrix A and vector 6 , is defined as

K = Span(b ,A b,...,A n- 1b) .

Krylov Subspace Methods for solving systems of linear equations create an orthonor-

mal basis of K. The vectors x^k+1̂ are constructed by minimising the residual,

r (k) _ ^ _ Ax {k) over the subspace formed. Krylov subspace methods suffer from

the vectors x ^ becoming virtually linearly dependent and for this reason methods

of this type often require the aid of an orthogonalisation process such as Arnoldi or-

thogonalisation, see [6]. Algorithms belonging to this group include the Generalised

Minimal Residual Algorithm (or GMRES), the Stabalised Biconjugate Gradient

Method (or BiCGSTAB), the Lanczos algorithm and, perhaps the most widely used

of them all, the Conjugate Gradient Method.

The GMRES method, see [59], is a generalised version of Paige and Saunders’

MINRES method (see [51]) which minimises the norm of the residual vector over a

Krylov subspace at every iteration. A description of some extensions of the GMRES

algorithms are given in Chapter 7 of [47].

The Lanczos method was developed as an algorithm for determining the eigenval

ues of a square matrix, see [43]; however it can also be used to solve linear systems.

In fact the conjugate gradient method is a particular case of the Lanczos method.

M ethod of Steepest Descent

The problem of solving a system of linear equations Ax = b corresponds exactly

to that of finding the minimum (or maximum) point x* of a quadratic function of

the form (1.3). As was stated earlier, the gradient of a quadratic function can be

written as g(x) = Ax — b. At the minimum point, g{x*) = 0 thus the equality

Ax — 6 = 0, or in other words Ax = 6 , holds. Consequently some iterative methods

for solving quadratic optimisation problems can be adapted to the context of solving

linear systems. The steepest descent algorithm, sometimes known as the optimum

gradient method in this context, is a prime example of this. In fact, the method of

steepest descent was first suggested in the context of the solution of linear systems

17

of equations, see [12]. Mention of this application of the algorithm was also given

by Curry in [14].

Conjugate Gradient Method

Apart from being a very successful optimisation algorithm, as discussed in sec

tion 1 .3 , the conjugate gradient method is a popular iterative method for solving

sparse systems of linear equations where A is a positive definite symmetric matrix.

Indeed the conjugate gradient method was first suggested as a means to solve lin

ear systems; it was not until much later that its full potential as an optimisation

algorithm was realised. It is generally fast and requires minimal storage as only the

derivative and the computation must be kept after each iteration. The algorithm

can however suffer from a loss of conjugacy and in the worst situations can fail to

converge. The method was first developed independently by Hestenes and Steifel,

see [38] and since its proposal much research has been dedicated to this algorithm

and its convergence rate. Several modifications have been suggested over the years to

improve upon its convergence rates, mostly involving preconditioning of some kind.

The algorithm has also been extended to solve non-linear systems and generalised

to deal with nonsymmetric matrices and indefinite matrices. For a chronological

survey of developments to both the conjugate gradient algorithm and the Lanczos

method see [35].

Preconditioning

For ill-conditioned systems, i.e. those where the condition number p = A^/Ai of

the matrix A is large, it is often beneficial to first precondition the system before

performing an iteration. The rate of convergence of algorithms designed to solve

systems of linear equations worsens when the condition number is large but if the

system can be multiplied by a matrix B~l which reduces the condition number

and the system B~lAx = B~lb is solved in place of the original system, improved

convergence rates can be achieved.

A simple preconditioner is B = D where D is a matrix made up of only the diag

onal elements of A. This is known as the Jacobi preconditioner. A more complicated

18

example of a preconditioner is the successive over relaxation preconditioner

\U J l — U) \U))

where D is the diagonal of x4, L is the lower triangle, U is the upper triangle and

0 < (j < 2 is a relaxation parameter. If A is symmetric then U = LT and B becomes

the so-called symmetric successive over relaxation (SSOR) preconditioner. The in

troduction of preconditioning gives rise to the preconditioned conjugate gradient

method. In [7] a SSOR preconditioner is used in conjunction with the conjugate

gradient method and it is shown that in some circumstances the preconditioner has

the effect of reducing the condition number by up to the power 1 / 2 .

1.5 Recent Successful Gradient Algorithm s

In this section a review of some recent developments in the area of gradient algo

rithms, mainly through modifications of the classical method of steepest descent, is

given.

1.5.1 T he Barzilai-Borwein A lgorithm

Possibly the most important recent advance in the field of gradient descent algo

rithms is due to Barzilai and Borwein. In their paper [8], an adaptation of the

classical steepest descent method is suggested whereby a two-point step size is used.

The idea came from finding a two-point approximation to the secant equation which

underlies quasi-Newton methods (see for example [25] for details on quasi-Newton

methods). The search direction in this new algorithm, now commonly known as the

Barzilai-Borwein (BB) algorithm, is the same as for steepest descent but two new

step lengths are suggested;

(t) _ (Ax, Ag) ,k) _ (Ax, Ax)
Qbbi~ (A9, a 5) 811(1 aBB2~ (Ax, AS) ’ (L14)

where A x = x ^ — x^k~^ and Ag = gW — g^k~l\ In the quadratic case these

correspond to

(k) _ (g(t~1),g (t~1)) «=) (V * - 11, ^ * - 11) , 1 1 5 s

19

the step length o$m being slightly easier to implement in practice. This step length

is exactly the step length for the standard steepest descent algorithm but at the pre

vious iteration. For the positive definite quadratic case the BB algorithm is proved

to be i?-superlinearly convergent in two dimensions and the algorithm is shown

numerically to have a significantly faster rate of convergence when compared with

the original steepest descent algorithm. Proof of convergence of the BB algorithm

for the strictly convex quadratic case is extended to any dimensional problems by

Raydan in [57] although for dimensions greater than two the rate of convergence is

no longer .R-superlinearly convergent. Indeed, in [19], it is established that the BB

algorithm converges / 2-linearly when applied to a strongly convex quadratic function

of greater than two dimensions.

It must be noted that the behaviour of the BB algorithm is completely non

monotonic i.e. it is possible that an iteration of this algorithm could cause the

gradient norm, ||<7^ | | , to increase. Due to this property the algorithm is less sen

sitive to ill-conditioning since unlike monotonic algorithms, such as the original

steepest descent algorithm, where the algorithm is often limited to small step-sizes

when the condition number is large, the BB algorithm is not. An improvement to

the algorithm is suggested by Barzilai and Borwein in [8] for situations where the

gradient norm does not decrease; the point calculated by means of the original steep

est descent algorithm should be compared with that obtained via the BB algorithm

after a set number of iterations (say 2 or 3) and whichever point is lowest should

be taken. There are however no numerical results to support this theory and since

their suggestion will destroy the very nature of the algorithm, the improvement in

convergence rate gained by the BB algorithm is likely to be lost.

1.5.2 G eneralisations o f th e Barzilai-Borw ein A lgorithm

The massive improvement in convergence rate the BB method demonstrates when

compared with the steepest descent algorithm has provoked a great deal of interest in

the algorithm and many adaptations and generalisations of the algorithm have been

suggested. In [48] the BB algorithm is used in conjunction with pre-conditioning

techniques in an attempt to improve further upon the rate of convergence. Here the

20

pre-conditioned BB (PBB) method is applied to a large sparse positive definite sys

tem of linear equations and it is seen that, when compared with the pre-conditioned

conjugate gradient method, the PBB method is competitive and in some cases bet

ter.

In [48] the BB method is embedded in a non-monotone line search strategy

in order to ensure global convergence for the general non-linear case. In many

global strategies the step length of the underlying algorithm is accepted if the so-

called Armijo-Goldstein-Wolfe conditions are met (see [5, 34, 70] for details on these

conditions) however, if these conditions are applied to the BB method, a decrease in

the objective function value is enforced at every iteration. This would destroy the

non-monotone nature of the algorithm and reduce the convergence rate to that of

the method of steepest descent. For this reason the BB method is combined with

the non-monotone line search suggested in [36], which has previously been combined

with several optimisation algorithms such as Newton’s method. This non-monotone

line search technique consists of computing such that

f (x ik) + a (feV fe)) < max / (x ^) + Saik) (gik\ g{k)) , (1.16)
0 <i< s(k)

where s(k) = min (k , S — 1), S is an integer and <5 is small. This method enforces

much weaker conditions and allows for an increase in objective function value thus

allowing the BB method to keep its non-monotone behaviour. The combined BB line

search technique is referred to as the Global Barzilai-Borwein (GBB) algorithm.

The convergence of this algorithm is established and the method is seen to compare

favourably with some conjugate gradient methods except in ill-conditioned problems.

It must be noted however, that problems to which algorithms of this nature are

generally applied to tend to be ill-conditioned. The method is also heavily dependent

on the choice of the parameter S. It is stated in [19] that the BB algorithm is locally

i?-linearly convergent when applied to general non-linear objective functions which

means that when combined with the non-monotone line search of [36] to form the

GBB algorithm, the BB step size will always be accepted by the non-monotone line

search when the current iterate is in the vicinity of the solution.

Adapting the approach in [36], new stabilisation schemes that combine watchdog

21

techniques (see [13] for details of the watchdog technique) with non-monotone line

search procedures are proposed in [37]. It is demonstrated that when the BB algo

rithm is combined with one of the suggested non-monotone line search techniques,

global convergence is guaranteed. An advantage of the suggested technique is that

a sequence of steps is permitted where different formulae can be used to compute

the step size at each step.

In [40] an inexact Barzilai-Borwein method is used where, instead of using the

exact residual at the k—th iteration g(k\ some approximation of the linear system

gW is used instead. It is proven, under the assumption < 77||<7 |̂| for

some small 77 > 0 , that the algorithm converges /^-linearly. The suggested algorithm

can be adapted to solve saddle point problems of the form

where A £ Rnxn is a symmetric positive definite matrix and C G Mmxm is symmetric

positive semi-definite. jR-linear convergence for this adapted algorithm is obtained

by extending the previous result.

A detailed review of the Barzilai-Borwein algorithm and its adaptations is given

by Fletcher in [29]. Here some insight into the behaviour of the BB algorithm is

given. The possibility of non-monotonicity is partially explained by the fact that

if 1 /o$B1 < Ad/2 then |^ fc+1̂ | > \g^\. Also if l/o ^ n i (known as the Rayleigh

(Ad/Ai) — 1 , so that the degree to which the non-monotonicity occurs is dependent

on the condition number p.

In most circumstances the conjugate gradient method outperforms the BB method

however the CG method relies on the search direction being from a quadratic model.

If the calculation deviates from the quadratic model, through round-off errors for

example, then the method can become inefficient thus if less precision is used the

BB method is much more competitive. This phenomenon is shown numerically to

be true.

It is also noted in [29] that a comparatively large increase in the gradient norm,

11gW 11, is usually followed by a desirable large decrease in 1|<7^ +1) 11 which overall gives

quotient) is close to the smallest eigenvalue, Ai, then |^ fc+1̂ |/ |^ ^ | can approach

22

the net effect of reducing the value of the gradient norm. It is thought that this

phenomenon occurs when p is large and the step size is relatively small which has

the effect of diminishing the large components of the gradient (i.e. for large i)

so that the small components dominate which then gives rise to a large a^k+1̂ which

subsequently causes the large components of g(k+1̂ to dominate thus causing a spike

of activity. The GBB method suggested in [48] limits these large increases in ||<7^ | |

which will prevent the large decreases in ||<7^ +1)|| which follow. This is suggested as

a reason why the GBB method has poor convergence for ill-conditioned problems.

As a remedy Fletcher recommends selecting much larger values of the parameter S

in (2.17) if an ill-conditioned problem is thought likely but he also states that this

could cause difficulty for problems which are far from quadratic.

In the paper by Friedlander et al, [33], a generalisation of the steepest descent

and Barzilai-Borwein algorithms for the solution of large scale symmetric positive

definite systems is given. This generalised algorithm is defined as

x (*+.> _ x <*) _ (g ^ W * * ”) (t)

with v{k) chosen arbitrarily from the set {k , A:—1 ,.. . , max{0, k —t}} where t is some

positive integer; i.e. the step length is chosen to be one of the last t step lengths. If

v(k) = k then the step length is simply that of the steepest descent algorithm and if

v{k) = k — 1 is chosen then the step length corresponds to that of the BB method,

however, there are now many other choices of step length as well.

This new method is proven to be globally convergent through a generalisation of

the proof in [57] and numerical experiments show convergence rates are favourable

when compared to the CG method with respect to both storage requirements and

computations if precision needed is low.

Some choices of v(k) suggested in the paper [33] are given below.

1 . v(k) is a random integer between k and k where k = max{0 , k — t}

2 . v(k) = k if v(k — 1) < k or k = 0 , v(k) = v{k — 1) otherwise

3. v(k) = k

4 l;(k) — arc max ((g(fc),g(*})4 . v{K) - argmax • • • > (AgW^)))

23

5. v{k) = k if k is even, i/(k) = k if k is odd

6 . v(k) is a random integer between k and k — 1

An advantage of these methods, named gradient methods with retards (GMR), is

that the step length does not need to be calculated at every iteration, in particular

the 2 nd method described above only requires 1 step length to be computed every

t + 1 iterations. A pre-conditioned version of the gradient method with retards

(PGMR) is also presented in [33] (a follow on from the PBB method of [48]).

The gradient method with retards has faster convergence the larger the retard

parameter t\ however, as t increases the method suffers from a loss of precision due to

the non-monotone behaviour of the algorithm. In [42] a technique is used to smooth

down this non-monotone behaviour in order to make a larger choice of t viable. It

is also shown in this paper that the parameter t can be chosen adaptively in order

to combat loss of precision. In essence the adaptive choice of t is a compromise

between speed of convergence and the stability of the algorithm. The adaptive

method involves choosing an aggressive value of t as often as possible but after a

preset number of consecutive increases in ||<7^ | | has occurred the method is kept in

check by a preset number of iterations in which the BB step length is used.

In [18] the gradient method with retards, with v{k) = k if v(k — 1) < k or

k = 0 , v(k) = v{k — 1) otherwise, is discussed further and is referred to as the cyclic

Barzilai-Borwein method. Since, for this algorithm, the same BB step length is

reused for t iterations in a row, the amount of calculations of the step length required

is reduced by 1/t. Global convergence of the cyclic BB algorithm is ascertained in

[33] for strongly convex quadratic objective functions and in [21] the algorithm is

shown to converge R-linearly for this case. In [16] it is discovered that the cyclic

BB method is locally linearly convergent at a local minimiser with a positive definite

hessian matrix A. It is shown numerically that the cyclic BB algorithm can be locally

superlinearly convergent for strongly convex quadratic functions if t > d/2 > 3. The

algorithm is extended by incorporating a non-monotone line search, in order to

produce a globally convergent algorithm in the non-quadratic case, and since the

choice of t has an impact on performance, an adaptive method for choosing suitable

24

cycle lengths is proposed. Numerical results show this algorithm to be better than

the standard BB method.

In [24] an adaptive non-monotone line search is proposed which when combined

with the BB method is globally convergent. This is an adaptive version of the

technique suggested in [48] with the reasoning being that if the non-monotone line

search is so dependent on the parameter S in (2.17) then it would be beneficial

if the value of this parameter could be re-selected at each iteration. It is shown

numerically here that the line search method proposed is particularly well suited to

the BB method.

The original Barzilai-Borwein step length was derived from the quasi-Newton

secant equation but, as is shown in [15], it can also be obtained from an interpolation

point of view. In [15] two modified BB algorithms are proposed with step lengths:

ik) = ____________ (A x , A x) _____________

2 (/ (fc_1) — / (fe) + (g (k\ A x))

and
ik) = ________________________ (A x , A x) ________________________

6 (/(fc_1) — -|- 4(g(k), Ax) + 2(g(k~1), Ax)
where A x = x^k~^ — x^kK Both are shown to be globally convergent when combined

with the non-monotone line search technique in [36]. These new methods are com

pared with the GBB method via numerical experiments and are shown to perform

better, requiring fewer storage points and less iterations to converge.

In [16] an algorithm is suggested in which the step length alternates between

that of the SD algorithm and that of the BB algorithm. In this way

(fc) f aSD for odd A;
= S (k)

(arB}B for even k

and the method avoids the zigzagging behaviour which the SD algorithm exhibits.

This method is referred to as the alternate step (AS) method and requires less step

length computations than either the SD or BB methods since the BB step length at

iteration k is exactly the SD step length at iteration k — 1. It is a particular case of

the GMR method 5 described above and is suggested in [33] where t = 1. The AS

method can be adapted so that a BB step length is taken after every t — 1 iterations

25

of the SD step length and conversely it can be adapted so that a SD step length

is taken after every t — 1 iterations of the BB step length, ^-linear convergence

for the AS algorithm is established for the symmetric positive definite case and

numerical experiments show the AS method to be a good alternative and rival to

the BB algorithm. The AS method is a different formulation of the Cyclic-Barzilai-

Borwein algorithm, see [18].

Another modification of the BB algorithm is introduced in [58] and is named the

Cauchy-Barzilai-Borwein (CBB) algorithm. For this algorithm, each iteration can

be viewed as two consecutive steepest descent iterations where the step length only

needs to be computed once but is used twice. The computational cost is thus still

the same as that of the standard SD algorithm despite there being, in effect, twice

the number of iterations. The algorithm is defined as follows:

set
„(*) = XW _ (gW»g(t)) (k)
y x (V = > , g w) ff ’

then
_ „(*) _ (g(t)’gW) .W

V (AgW,gW)9 ■
This can be equivalently written as

j-Ofc+l) _ x (t) _ o (gW.g(t>) (k) + ((gW.g W) \ A Ik) (1 17N
* " X + W > , g < ‘>)J A9 ’ (L17)

and in a similar way to the BB algorithm exhibits non-monotonic behaviour in its

descent to the minimum point. It is shown that this algorithm converges Q-linearly,

i.e. its convergence rate is such that

lim s u p r^ < 1 , k— >00

(Q-linear convergence implies /^-linear convergence). Numerical comparison with

the BB algorithm shows that, for the test problems chosen, the CBB algorithm

converges in fewer iterations.

The asymptotic behaviour of some of these gradient methods, including the

BB algorithm and others which are competitive with conjugate gradient methods,

is studied in [17]. It is observed in the quadratic case that a transition between

superlinear and linear convergence occurs at a certain dimension which depends on

26

the method. Simplifying the algorithms, by neglecting some terms in the recur

rence relations, enables analysis into why this transition from superlinear to linear

convergence occurs when it does.

1.5.3 O ther N ew Gradient M ethods

In [58] the standard SD algorithm is modified by introducing a relaxation parameter

7 ^ which can vary between 0 and 2. If 7 ^ = 1 the step length is reduced to that of

the standard SD algorithm and if 7 ^ = 2 then f(x^k+1̂) = f (x ^) . Convergence of

this method, named the relaxed steepest descent (RSD) method, is established un

der a mild assumption and the question of what are good choices for the relaxation

parameter is posed. A numerical experiment is undertaken comparing the standard

SD method with the RSD method where the relaxation parameter is chosen ran

domly and it is seen that the RSD method outperforms standard SD although its

rate of convergence is not as fast as the BB algorithm.

In [22] a gradient algorithm is developed in which the step sizes alternately

minimise the function value f(x) and the gradient norm ||<7^ | | , i.e.

a (2k - i) ajgminll^O2*-1) _ a^(2fe_1)) ||
a

and

o;(2fc) = argm in (/(a :^ — agW))
a

which in the quadratic case equates to

(2*-l) = ^ Q(2k) = (<7W,gW)
(A*gW,gW) ^ “ (A g ^ ,g W) '

The idea behind this method is to produce a monotone algorithm (unlike the BB al

gorithm) with a better rate of convergence than the steepest descent algorithm.

It is proven in the convex quadratic case that the algorithm (called the alternate

minimisation gradient algorithm) is Q-linear convergent and numerical results for

a problem with a symmetric positive definite hessian matrix show the algorithm to

have a superior rate of convergence to the steepest descent algorithm and, if low

precision is required, the method is even competitive with the BB algorithm.

27

Two variants of this method, named here as shortened SD step gradient method

1 and 2 (SSI and SS2) are suggested. In SSI the step length is

(k) (k)
a SS l ~ T l a SD

and in SS2

a {k) - ISS2 ~ '
l2(^SD k

(*) L.
a SD e v e n *

where 71 and 72 are constants less than 1. These two methods have a similar

performance to the alternate minimisation algorithm but they are much more readily

extendable to unconstrained global minimization problems with inexact line search.

It is pointed out that SSI and SS2 are less effected by the condition number than

the alternate minimisation algorithm as the shortened step lengths help prevent the

occurrence of zigzags in the decent path.

Two new gradient methods are proposed in [74] and are given the names; Adap

tive Steepest Descent algorithm (ASD) and Adaptive Barzilai-Borwein algorithm

(ABB). The ASD method is a monotone algorithm which, like the alternate minimi

sation algorithm of [2 2], uses a combination of step lengths using the steepest descent

formula and the step length formula that minimises the gradient norm. In [74]

this step size is named the minimal gradient (MG) step length and for quadratic

minimisation is equal to

a (k) -u »/r» —Ma (A2g(k) ,gWy
Unlike the alternate minimization algorithm where the step length alternates sys

tematically between ol̂ g ^ and otsD-> the choice for the step length at iteration k

for the ASD algorithm is determined as follows:

a (k) = f if “ mg/qsd > *
1 a sc otherwise,

where k G (0,1) is a parameter close to 0.5. The SD step length can be shortened

slightly by subtracting S a ^ G, where S G (0 , 1), to further improve upon convergence

rates. By combining these two methods in this way, the worst case behaviour of

both the SD algorithm and the MG method are prevented and it is shown that

ASD algorithm converges Q-linearly.

28

The ABB algorithm, on the other hand, is a non-monotone algorithm and uses

both the step sizes originally suggested by Barzilai and Borwein in [8]. Noting that

aBB1 = o^sd^ &BB2 = m a similar way to the ASD algorithm, the ABB

algorithm’s step length at iteration k is chosen according to

f if a ^ / a ^ < k(k) I aBB2 11 a BB2/a BBl ^ K
aABB ~ \ (k)

I a BBi otherwise ,

where k G (0,1). It is shown that the ABB algorithm converges R-linearly.

In both of these algorithms there is a longer and shorter step length. It is sug

gested that the smaller step size might induce a desirable direction of descent whilst

the larger step size brings about good reductions in ||<7^ | | . Numerical examples

show that both of these algorithms require fewer iterations to converge than the

BB, AS and AM algorithms, the ABB method seems to perform particularly well

in comparison with the rest when the condition number is large and high precision

is required.

Another adaptation of the steepest descent algorithm is suggested in [73]. Again

the motivation behind the adaptation is to produce an algorithm which yields faster

rates of convergence than the SD method but one which still possesses the monotone

property of the original algorithm. The reason for desiring a monotone algorithm

is that an algorithm of this kind can be generalised to general non-linear functions

without the need for the specialised non-monotone line search procedures of [36]

that the BB algorithms requires. The proposed algorithm has the steepest descent

step length in odd iterations and in even iterations the step length

«<“ > = 2 ,
^ (l / a j £ - 1) - l / 4 “ >)2 + 4 ||9e *) |p / | |s e*-i> ||2 + 1 /„< *-» + 1 / a f S '

(1.18)

where s^k~^ = x ^ — x^k~^ and indicates the steepest descent step length at

iteration k. A further modification to this algorithm is made in which an iteration

of the new step size (1.18) is made after every two consecutive steepest descent

step lengths. Both variations are an improvement upon the classical SD algorithm

but the second variation is the better of the two and works particularly well for

small scale problems. It is also competitive with the BB algorithm for large scale

29

problems.

A gradient method with step size olopt = 2 /(ra+ M) = argmin | | / —cnA|| can be

called an optimal step length in the sense that it minimises ||I — aA\\. In practice,

however, m and M are rarely known so this optimal step size cannot be used. In

[2 0] a step size is suggested for symmetric positive definite problems which tends to

the optimal step length, (Xopt as k — ► oo. This new step length is

a w _ (1 19)
OPT2~ \\AgW\\' (’

It is proven that this method converges Q-linearly and through numerical results it is

claimed that the algorithm performs slightly better than the SD algorithm; a possible

reason for this being that otQpj^ < ^ sd- ^ wilh however, be shown in Chapter 4

(under the name the ‘square-root algorithm’) that this algorithm has exactly the

same worse rate of convergence as the SD algorithm. A way to improve upon the

proposed algorithm is suggested whereby the step length for the SD algorithm is used

in odd iterations and the step length otQpj^ is used in even iterations. Numerical

results show that this combined method only requires half the number of iterations

of the first method to converge.

A review of existing monotone gradient algorithms can be found in [23]. The

original steepest decent algorithm, the relaxed SD algorithm of [58], the Alternate

Minimisation algorithm, the shortened SD step gradient methods 1 and 2 of [22],

the two methods described in [73] as well as the method presented in [20] are dis

cussed and a study of their numerical behaviour is enabled by employing a long

term observation technique. In many situations these algorithms only require very

few iterations to converge to the solution; so to enable long term observations the

gradient gW is normalised by setting gW = g ^ / \ \ g ^ \ \ before computing

Examples are given to show that the Alternate Minimisation algorithm and the first

method suggested in [73] may sometimes fall into a cycle. It is seen that the second

method suggested in [73] shares a common property with the BB algorithm in so

much that the gradient components with respect to the eigenvalues of A decrease

together in both these algorithms. It is thought that this could be the reason why

this method has a similar rate of convergence to the BB algorithm while the other

30

algorithms are worse.

In [4] a modification of the steepest descent algorithm is proposed by Andrei

in which the classical step length is multiplied by a positive parameter, 6̂ k\ less

than 1 which is recalculated at each iteration by means of backtracking (an inex

act line search technique). Linear convergence in the convex case is established for

the algorithm and it is shown to have a faster rate of convergence than the origi

nal steepest descent algorithm. Another gradient method which uses the steepest

descent direction but which involves a backtracking method to calculate the step

length is presented in [2]. It is shown to have a similar rate of convergence to the

BB algorithm for well-conditioned convex problems.

In [3] the relaxed steepest descent method, as discussed in [58], is extended

to general non-linear convex well-conditioned functions where the step length is

calculated by means of backtracking. Linear convergence for this case is proved.

The algorithm suggested by Andrei in [2] is compared with the relaxed SD algorithm

for convex well-conditioned functions and it is shown numerically to have a superior

rate of convergence.

1.6 M otivation of Thesis

To summarise this chapter, there exists a lot of literature on gradient algorithms but,

amongst this literature, no set method for studying the rates of convergence of these

algorithms is present. This has lead to confusion when comparing the rates of differ

ent algorithms with many papers presenting differing opinions on which algorithm

is superior depending on the testing conditions used. Many existing convergence

rate studies have been limited to small dimensional cases as little can be proved for

larger dimensions.

In this thesis a technique for studying rates of convergence is developed based

on renormalisation, dynamical systems and optimal design theory. This technique

enables an in depth analysis of the convergence rates of gradient algorithms. It

allows improved comparisons between algorithms to be made and gives a better

insight into how a successful algorithm achieves faster rates of convergence.

31

In Chapter 2 the renormalisation process is introduced and it is shown how,

when gradient algorithms are in their renormalised form, they can be related to

algorithms for constructing optimal experimental designs. A detailed review of the

steepest descent algorithm and its rate of convergence is given. It is demonstrated

that the renormalised steepest descent algorithm is related to an optimal design

algorithm based on the D-optimum criterion.

In Chapter 3 the steepest descent algorithm is generalised to the 7 -steepest

descent algorithm through the addition of a fixed relaxation parameter, 7 . Investi

gations into the effect the choice of the relaxation parameter 7 has on the asymptotic

rate of convergence are undertaken and the best value for 7 for various parameters is

determined. The algorithm is compared with the relaxed steepest descent algorithm

suggested in [58].

The steepest descent algorithm is generalised in a different manner to produce

a family of algorithms named the {3-root family in Chapter 4 whose performance

depends on the value of the parameter (3. A particular member of this family, named

the square root algorithm is examined and is shown to be exactly the algorithm

suggested in [20] with step size aopT2 = ||<7^||/||A < 7^ | | . The /3-root family is further

generalised by the addition of the relaxation coefficient 7 to try to gain even faster

convergence rates.

In Chapter 5 a family of well-known optimality criteria are used to inspire the

creation of new gradient algorithms which otherwise would not intuitively be thought

of. This family includes the well known A-optimality criterion. Their asymptotic

rates of convergence are subsequently analysed and compared with the rate of the

steepest descent algorithm. Finally in Chapter 6 the asymptotic rates of convergence

of the algorithms studied in this thesis are compared both amongst themselves

and with the asymptotic rates of convergence of the Barzilai-Borwein (1.15) and

Cauchy-Barzlai-Borwein (1.17) algorithms. Those algorithms developed whose rate

of convergence is better than that of the BB and CBB algorithm are deemed viable

alternatives to existing gradient algorithms. Further work is suggested including

the further generalisation of Forsythe’s s-dimensional optimum gradient method,

see [32]. Finally the main findings of the thesis are summarised.

Chapter 2

Gradient Algorithm s and their

Relation to Optimal D esign

Theory

The steepest descent algorithm is introduced in Section 1.2 and modifications of

the algorithm are described in Section 1.5. In this chapter a review of the steepest

descent algorithm and its asymptotic rate of convergence is given. In order to

achieve this, the technique of renormalisation is first introduced which enables a link

between gradient optimisation algorithms and algorithms for constructing optimal

experimental designs to be established.

2.1 Renorm alised Versions o f Gradient Algorithm s

2.1.1 R enorm alisation o f th e Steepest D escent A lgorithm

A useful tool in the study of asymptotic rates of convergence of gradient algorithms,

such as the steepest descent algorithm, is that of renormalisation. In many situations

gradient algorithms converge to a local extremum very quickly making analysis of

their asymptotic rate of convergence hard. Renormalising an algorithm’s gradient

facilitates a better analysis of the algorithm’s asymptotic rate of convergence as the

long term behaviour of the algorithm can be studied.

32

33

As was discussed in Section 1.2, the steepest descent method for the minimisation

of quadratic functions of the form (1.3) can be written as an iterative formula in

terms of the gradient g ^ as follows

9 ~ 9 (A g ^ K g ^) 9 '

It can be assmned without loss of generality that

(2 .1)

(

A =

Ai 0

0 A2

\

(2 .2)

y 0 0 . . . Xd j

since the step lengths of gradient methods are invariant under any orthogonal trans

formation. The eigenvalues 0 < ra = Ai < A 2 < . . . < A d = M can be assumed to be

distinct as it is possible to join together the gradient components if there exist any

multiple eigenvalues, see [29] for further explanation. In view of the fact that it is

the asymptotic rate of convergence of the gradient algorithms that is being studied

and the actual value of x* that the algorithm converges to does not effect this rate,

it is also possible to assume that x* = 0 , otherwise the substitution x — x* — > x

can be made.

Using the assumption that A is diagonal, the iterative formula (2.1) can be re

written component-wise as

,(*+!) _ J k) Y^=i(9jk))2
91 9i ~

e U xM k))2
A f o r i = 1 , . . . ,d. (2.3)

The step of renormalisation is now possible by setting

,(*) ,(fc)

l l ^ l l (9 ^ , 9 {k)) 1/2

(so that | |z ^ | | = 1 for all k = 1 , 2 ,...). Also set p\k̂ = (z\ k^)2 so that

(ffifc>)2(k)
Pi =

E A g f Y
Squaring both sides of (2.3) gives

= (l - ((*h2

(9' ' I E L a , (9 ‘ W (ft)
for * = 1 , . . . , d , (2.4)

34

which implies

(jfc+1) E j = 1 ^jPj ̂ ~ ^ *) 2 (fc) r • 1 j / ' o c XPi = ----------- To-----Pi for z = 1, . . . , d . (2.5)
E S L i (ZU hvf ~ a -) p , w

Note that = 1 pj^ > 0 so that p[k ̂ can be conceived as the weight

associated with eigenvalue A* and (2.5) can be considered as an updating formula

p (k + l) _ \J /(p (*0)

for discrete probability distributions supported at the points {Ai,. . . , Â }. The mo

ments of these probability distributions are given by

Ml = M P (k)) = £ A'p -
*=i

The updating formula (2.5) for the weights p\k ̂ can thus be written in terms of the

moments as follows:

p-k+1) = far i = l . •••.«*■ (2-6)P2 ~ Pi

Dividing the numerator and denominator of (2.6) by p\ gives the alternative form

• * < " M

Since

„ _ V Vn - ^ =1 Xl{Pi ^Alg’9}
i —1

the rate of convergence defined by (1 .1 1) can also be written in terms of the

moments pa as follows:

(k) _ (^ y fcW fe))(0 (fcW fe)) _ {A2gtk\g W) ((g{k\ g {k)) \ 2

(^ w , </(*))» y fc),pW) v w * > y fc>);

= J j § - 1 , (2 .8)
Ml

which is exactly the form of the denominator of the updating formula (2 .7).

Now the algorithm is in a renormalised form, a link can be made between it

and multiplicative algorithms for constructing optimal experimental designs. This

connection will be explained in Section 2.3.

35

2.1.2 Renorm alisation o f a G eneral G radient A lgorithm

It is possible to renormalise any gradient algorithm of the form (1.5) using the same

method as described above for the steepest descent algorithm. A general formula

for renormalised gradient algorithms can thus be obtained. First note that, under

the same assumptions as used for the steepest descent algorithm above (i.e. that A

is diagonal with distinct eigenvalues 0 < m = \ i < . . . < \ d = M and x* = 0), the

updating formula for the general gradient algorithm can be written component-wise

as

9ik+1) = 9ik) ~ o t^X ig^ for i = 1 , . . . , d.

By renormalising the gradient gW so that

_W = (g^) 2

E / s f) 2 ’

and by setting = a, the updating formula for p\k ̂ can be written as

J fc+1) = __ (1 ~ Q^t)___ (fc) / 2 gx
* 1 — 2api + a2p2 '

If a = (g(k\ g ^) / (Ag(k\ gW) = 1/pi the updating formula for the renormalised

steepest descent algorithm (2.5) is obtained. The rate for the general gradient

algorithm has the form

(jfc) = (g(fc+1W fe+1)) = (,9{k\ g {k)) - 2a(Ag(k\ g W) + a(A2g^k\ #(fe))
{ g {k), 9 (k)) (9 ik) , 9 {k))

= 1 - 2api -I- a2p,2 ,

which, as was the case with is equal to the denominator of the corresponding

updating formula (2.9) of the algorithm.

2.2 A sym ptotic Behaviour of the Steepest D e

scent Algorithm

Analysis of the steepest descent algorithm using the method of renormalisation de

scribed above was first carried out by Akaike in [1]. In this paper the limit ing

36

behaviour of repeatedly applying the transformation ty(pW) to a probability dis

tribution is studied. The methods of this study are applied to the steepest descent

algorithm and it is shown that the behaviour of the sequence of probability distri

butions { p ^ } is oscillatory in nature. Furthermore it is shown that the sequences

k = 1,2, . . .} and {p(2/c+1); k = 0,1,2, . . .} converge to some limiting distri

butions

where c depends (in a complicated manner) on the starting vector , the condition

number p and the co-ordinate system defined by the eigenvectors and £<* corre

sponding to the eigenvalues Ai and Â . Note that these limiting distributions have

their total probability attached only to the extremal points m and M. An example

of this phenomenon is shown in Figure 2.1 where, as k increases, the middle weights,

i.e. p\k\ i = 2, . . . , d — 1, tend to zero while p[k ̂ and p ^ reach their limiting 2-point

cycle.

0.8

0.6 -

0.4 -

Figure 2.1: Weights p[k\ p ^ and X)?=2 Pi^ 88 a function of k (p = 10, d = 100, A*

equally spaced).

Relating back to the steepest descent algorithm in non-normalised form the er-

and

(2 .10)

o

p_i
P_d
middle weights

0 50 100 150 200

37

ror, — x*, at iteration A; alternates asymptotically between two fixed

directions generated by the eigenvectors £1 and i.e. the steepest descent method

is asymptotically reduced to a search in the plane generated by these eigenvectors.

The asymptotic rate of convergence of the steepest descent algorithm is shown

in [1] to equal

R(c) = (M ~ m)2 = <?(P~ !) 2 /o i n
(m + M)2 + (c — c~l)2m M (c2 + p)(l + c*p)

which is exactly the worst case rate Rref defined by (1.13) when c2 = 1 . The corre

sponding limiting distribution for the worst case rate is

p<°°>=p*<°°>= Q . 0 , . . . , 0 , i)

i.e. in this case {p ^ } will not exhibit oscillatory behaviour and instead will converge

to a single point. It is stated that the asymptotic rate of convergence of the steepest

descent algorithm will tend towards its worst rate when p is large especially if there

exists an eigenvalue of A close to (Af + ra)/2.

The main result of [1], that the renormalised steepest descent algorithm (2.5)

in Kd converges to a two-point attractor, is extended in [54] to the case where A

is a bounded self-adjoint operator in Hilbert space. The Hilbert space case for the

steepest descent algorithm is further extended in [55] to a whole family of gradient

algorithms.

The optimum s-gradient algorithm is an adaptation of the original steepest de

scent algorithm in which the iterative formula combines s-steps of the original algo

rithm into one iteration. In this way the iterative formula can be written as

x[k+1) = xik) ~ <?\9{k) ~ o2Ag{k) - ... - V fe) ,

where <7i , . . . , crs are coefficients, the values of which are calculated so as to minimise

the error function e ^ . If s = 1 there is only one coefficient and the formula collapses

to that of the standard steepest descent algorithm. Further explanation of this

algorithm is given in, for example, [27]. In [32] the asymptotic behaviour of the

renormalised sequence is studied for the optimum s-gradient method and the

main results of [1] are extended to the case where s > 1 . As s — > oo the asymptotic

38

rate of convergence of this algorithm tends to

R _ (y / p - l) 2 (2 12^
(n /P + 1)2 ' (

This convergence rate is a distinct improvement on the original case where s = 1

and, as will be seen in the coming chapters, is hard to improve upon with any

gradient algorithm. For this reason Rmin can, in some sense, be taken as a lower

bound for R and new gradient algorithms developed should be done so with the aim

of achieving an asymptotic rate of convergence as close to Rmin as possible.

The work of Akaike in [1] was extended independently by Nocedal et al. in [49]

and Pronzato et al. in [53]. In [49] a greater insight into the value of c in (2.11) is

given. It is demonstrated that c satisfies

z (2k) z {2k+\)
c = lim = - lim)

k— kx> A2k> k— >oo y{2k+l)
Z1 Zd

and some restrictions on what value c can take are established.

A necessary condition for a minimum, or indeed a maximum, of a function f (x)

is that
df_ = 2 1 = df_ = 0
dx\ dx2 dxn

thus the value of the gradient norm of any successful optimisation algorithm must

converge to zero. Due to the oscillatory nature of the steepest descent algorithm,

however, at some iterations the value of \\g^\\ will increase. By employing the

Kantorovich inequality an upper bound for the growth of |\ g ^ | | can be given as

llg(t+1)ll2 A p - i) 2
||fl(‘)|p - Ap

and in [49] this is proved to hold both asymptotically and at each iteration.

The occurrence of large oscillations in the gradient norm is attributable to the

matrix A being ill-conditioned; however the fact that A is ill-conditioned will not

necessarily imply large oscillations. The choice of starting vector will also affect

the magnitude of the oscillations in ||<7^ | | in some way but it is not the case that a

bad starting point will give rise to large oscillations. It is stated that the maximum

possible oscillation in 11<7^ 11 will occur if c2 = p or 1 /p.

39

It is also proven in this paper that

ng(2t+i>n2 cPjp-ji[i ^ i p c ^ (p - i r
1̂ ||9 (2)||2 (1 + C2p)2 ^ *™o ||ff(»+l) ||2 - (c2 + p)2 ’

these limits being the same and equal to R ref if c2 = 1. In addition, it is proven that

f (k + 1) ||o(fc+2) | |
lim ■ ,.» = hm ,,

k— ►oo f (k) k— >oo 11 <7^11

i.e. the one-step asymptotic rate of convergence of the function value is equal to the

two-step asymptotic rate of convergence of the gradient norm. Figure 2.2 shows an

example of the rate r ^ progressing to the limiting oscillatory behaviour given in

(2.13) as k increases.

Figure 2.2: Rate as a function of k (p = 10, d = 100, A* equally spaced).

The asymptotic behaviour of the steepest descent algorithm is also studied in

detail in [53]. Here the 2-point limiting cycle of the renormalised sequence {p^} is

written as

p<°°> = lim p<2*> = q+ (1 - q)idand p*<°°> = lim p<2*> = (1 - q)^ ,
k—>00 k—>00

(2.14)

where q G (0 , 1) is exactly equal to

1
Q =

1 + c2

40

It is proved that, in order for the 2-point attractor to be stable, the value of q must

lie in the range q 6 1̂ / 2 — 6 (Ai*), 1 / 2 -I- b(A**) , where

_ y/(M - A) 2 + (m - A) 2

(} 2 (M - m)

and i* is such that |A»* — (m + M)/2| is minimum over all A*, z = 2, . . . , d — 1. The

shortest achievable interval occurs when A = (m + M) / 2 for some i* G {2 , . . . , d— 1 }

and is equal to [l/2 ± V2/4]. A change of variables gives the asymptotic rate, defined

by (2 .1 1), in terms of q as

n = g(! - q)(.p - !)2
(g + p (l - q)) ((l - ?) + P 9)

for almost all starting vectors x^°\

Dependence on A2 , . . . , Xd-i

It is known that the worst rate of the steepest descent algorithm, RTef, depends solely

on the smallest and largest eigenvalues m and M; however the actual observed

asymptotic rate of convergence, (1 .1 2), of an algorithm differs from R^f in this

respect as x ^ and the middle eigenvalues A2 , . . . , Xd-i also have an effect on the

rate of convergence. A three-dimensional example of this dependence in the steepest

descent algorithm is shown in Figure 2.3 where the smallest and largest eigenvalues

are fixed to be m = 1 and M = 10 and the middle eigenvalue A2 is varied between

these limits. The graph shows the average (with respect to x ^) asymptotic rate

of convergence R as a function of A2 . It can clearly be seen that the asymptotic

rate of convergence is best when A2 is close to either m or M and worst when

A2 = 11/2 = (m + M) / 2 , i.e. when A2 is the midpoint of m and M so that the

eigenvalues are equally spaced apart. A similar dependence can be seen in the four

dimensional case, see Figure 2.4. In the left hand graph A2 and A3 are varied between

m = 1 and M = 10 symmetrically so that A = diag(l, X, 11 — X , 10). The graph

shows the asymptotic rate of convergence as a function of X. When X — 1 = m or

X = 10 = M there are two repeated eigenvalues which has the effect of reducing the

dimension to d = 2 since the weights, £(Aj), associated with the repeated eigenvalues

can be combined and the eigenvalues joined. When X = 11/2 there is also a repeated

41

0.65 •

0.6 ■

0.55 ■

0.45

Figure 2.3: Average asymptotic rate of convergence as a function X2 with d = 3,

p = 1 0 .

eigenvalue thus reducing the dimension to d = 3. On the graph these three values

of X represent points where the asymptotic rate of convergence is comparatively

favourable indicating that, at least in small dimensions, the asymptotic rate of

convergence worsens as the dimension of the problem grows. As X moves further

and further away from a repeated eigenvalue the asymptotic rate worsens until X

is such that a situation where the eigenvalues are evenly spread between m and M

occurs; here the asymptotic rate is at its worst.

0.66 -

0.64

0.62 -

0.6 -

0.58

0.665 -

0.645

0.635

Figure 2.4: Average asymptotic rate of convergence as a function X where (left)

A = diag(l, X, 11 — A, 10) and (right) A = diag(l, X , 7,10); d = 4, p — 10.

In larger dimensions, the difference in the average asymptotic rate of convergence

42

in situations where the eigenvalues of A are evenly spaced or not evenly spaced is

less pronounced. Figure 2.5 shows the average asymptotic rate of convergence of

the steepest descent algorithm as a function of p in the case where the eigenvalues

are evenly spaced and the case where the eigenvalues are randomly chosen from a

uniform distibution. The dimension was fixed as d = 50. The graph shows there

to be virtually no difference between the two cases. This phenomenon is true of all

algorithms studied as part of this thesis and for that reason all results given in this

thesis from this point on are from simulations run with evenly spaced eigenvalues

unless otherwise stated. A characteristic worthy of mention can be demonstrated

0.8

0.6

0.4

0.2

100
- evenly spaced random

Figure 2.5: Average asymptotic rate of convergence as a function p; for (a) evenly

spaced eigenvalues and (b) randomly generated eigenvalues; d = 50.

in the five-dimensional case. By fixing four of the eigenvalues to be equally spaced

between the smallest and largest eigenvalues and varying the fifth between m and

M shows that the worst-case scenario here is when the varied eigenvalue is equal to

A = (m + M) /2 (see Fig 2.6). It is true of all dimensions that if any eigenvalue of

the matrix A is equal to A* = (m + M) / 2 then the asymptotic rate of convergence

is worse than if this value is not contained within the eigenvalues of A. In the right

hand graph of Figure 2.4 a four-dimensional example is shown where the second

eigenvalue A2 is varied between 1 and 10. The average asymptotic rate of convergence

is worst when 4 ^ A2 ^ 6 i.e. when the eigenvalues are most evenly spread or

43

A2 ^ (m + M) / 2. For this reason, in odd dimensions, where the equal spacing of

eigenvalues naturally includes the midpoint (ra + M)/2 , a slightly worse asymptotic

rate of convergence is observed compared with even dimensions where equal spacing

does not incorporate the midpoint. The difference between even and odd dimensions

is, however, negligible in larger dimensions since, when d is even, for any p, the more

eigenvalues between m and M there are, the closer to the midpoint the middle two

eigenvalues in the range will be.

0.664 ■

0.662 •

0.66 -

0.658

Figure 2.6: Asymptotic rate of convergence as a function X where A =

diag(l, 4, X, 7,10), d = 5, p = 10.

D ependence on p

Figure 2.7 shows the dependence of the asymptotic rate of convergence R of the

steepest descent algorithm on the condition number p of the matrix A for a problem

of dimension d = 100. As the condition number increases, the asymptotic rate of

convergence worsens, a well known phenomenon; see for example [44]. It can also be

seen from Figure 2.7 that the average rate of convergence, R, of the steepest descent

algorithm is only slightly less if not equal to the worst case rate Rref. This confirms

the fact, observed in [1], that close to the worst rate is achieved for the majority of

starting vectors x ^ if the set {A*} contains an eigenvalue close to (ra + M) / 2. Fig

ure 2.7 also compares the asymptotic rate of convergence, R , of the steepest descent

44

algorithm with that of the ideal asymptotic rate of convergence Rmin achieved by

the optimum s-gradient algorithm with s = oo and it can be concluded that there is

a great deal of room for improvement upon the original steepest descent algorithm.

0.8

0.6

0.4

0.2

— R - ' {fnf

40 100

Figure 2.7: Average asymptotic rate of convergence R of the steepest descent al

gorithm (terminated after 1 0 0 0 iterations) as a function of p (d = 1 0 0 , A* equally

spaced, 300 repetitions) compared with Rref and Rmin.

Dependence on d

While the asymptotic rate of convergence is shown to depend on the condition

number of the matrix A , for d ^ 10, the dimension of A has virtually no effect on

the asymptotic rate of convergence, R. An example of this is shown in Figure 2.8.

Simulations have shown that a dimension of d = 100 is representative of the case

d = oo and will therefore be used to demonstrate this case throughout this thesis.

2.3 R elation to O ptim al E xperim ental D esign

It will emerge that gradient algorithms can be related to multiplicative algorithms

for constructing optimal experimental designs. First a short overview of the required

optimal experimental design notation is given.

45

0.7

0.6

0.5

- R
"An-f

0.4
100

Figure 2.8: Average asymptotic rate of convergence R as a function of d (p = 10, A*

equally spaced) compared with RTef.

2 .3 .1 O p tim al E xp erim en ta l D esig n T erm in o logy

Consider the regression model
m

Vj = + £j , j = (2.15)
1 = 1

The number of parameters in the model (2.15) is denoted by m, N signifies the num

ber of experiments performed and the vector of unknown parameters is represented

by 0 = (0i,. . . , 0m)T• Denote by X the design matrix:

• • •

X = 0 l(* ,))JS S - : ••• i

y / l (^ 7 v) • • • j

where f(x) = (/ i (x) , . . . , f m(x))T. The matrix

N

M 0) = X
j - 1

/ T(^l)

f T{xN)

\

is called the information matrix and

D{6) = <j2(X

46

is the covariance matrix of 6. The vector of errors e — (ei , . . . , £ n)T satisfies

Esj = 0 and Eej£k = <

so that the least squares estimator

o2 if j = k,

0 if j ± k,

9 = {XtX)~ 1X t Y

is valid.

An approximate weighted design can be defined as

Xi, xd
(2.16)

where p\ , . . . , pd are the weights assigned to the d distinct design points X\ , . . . , Xd

such that 0 < < 1 , i = 1 , . . . ,d and Yli=iPi = 1 - ^ fwo design points X{, Xj

are equal then their weights Pi and Pj can be summed and the points combined

as one so that the presence of d distinct design points can be assumed. For the

case where f (x) = (1 , x , . . . , xK~l)T , the corresponding information matrix for a

weighted design of the form (2.16) is defined as

d
M (£) = Pjf(xj)Tf (xJ) = {mo : ma = Vi+f’ 0 ^ < K - i } ,

j= 1

where pa — m«(£) = Yl*j=i x<jPj 3X6 moments of the measure £. If K = 2,

for example, the information matrix would be

m) =
Mo Mi (2.17)
Mi M2

where Mo = 1- The covariance per observation matrix of the approximate design

(2.16) is equal to

D{£) = (M (^))-1

if cr2 = 1.

The purpose of experimental design in regression is to select the design points

x i , . . . , Xd and corresponding weights Pi , . . . ,Pd so that the design £ is optimal for

47

some criterion. Different optimality criteria exist but generally they are created

with the aim of minimising some convex functional of the covariance matrix D(£) of

the design or, equivalently, maximising some concave functional of the information

matrix M(£).

A useful tool in optimum experimental design theory is the directional derivative

(also known as the Frechet derivative) ‘towards’ a discrete measure of mass 1 at

a point x. This is

Here 4> is a functional of the K x K information matrix M(£) and is usually consid

ered as the optimality criterion to be maximized with respect to £. The first term

on the right hand side of (2.18) is equal to

Perhaps the most well-known of the optimality criteria is D-optimality. Here the

criterion is defined to be

The determinant of a matrix is a natural characteristic of how big that matrix is, so

if the determinant of M(£) is large then it follows that the inverse of M(£), which

is hence considered desirable. More technically, a D-optimum design will provide

minimum volume confidence regions for 6. (See [62] for a review on D-optimality for

regression designs and [26] for a review of optimal experimental design in general).

d_
da$ (M [(l - a) 4 + < j) | (i=o = t r (| (O M (^)) - t r (| (0 M (0) , (2.18)

where

v (x , 0 = f T(z) $ (£)/(*) • (2.19)

*(£) = detAtf(«)

and a design £* is called D-optimum if

detM(£*) = maxdet M(£) .

is proportional to the covariance matrix D{9), will be small. A jD-optimum design

48

2.3.2 C onstructing Gradient A lgorithm s which Correspond

to G iven O ptim ality C riteria

It will be seen that gradient algorithms belonging to the family (1.5) can be con

structed, albeit indirectly, from optimality criteria, such as the D-optimality cri

terion. In order to accomplish this, a connection between multiplicative optimal

design algorithms and renormalised gradient algorithms of the form (2.9) is first

described.

A family of optimal design algorithms is based on the multiplicative updating

of the weights of the current design measure with some function of (f(x, £).

With the intention of formulating a particular member of this family the following

assumptions are made: the design measure £ is discrete and concentrated on the

interval [m, M] and the (K , X)th-element of the matrix }(M)/dM is positive, i.e.

d$(M)/dH2K-2 > 0. Under these assumptions the function (f(x, £) has a well-defined

minimum

c(£) = min (p(x, £) > —oo.

Let £(x) be the mass at a point x, the re-weighting at x can then be defined by

(2-2o)

where &(£) is a normalising constant equal to

r M rM
Hf) = / f a fo O -c(£))Z(dx) = / (p(x,€)£{dx)-c(£)

J m J m

= t r [M (0 l(€)] - c (€) . (2 .2 1)

The normalisation constant is required to ensure that the measure £ is still a prob

ability distribution. The first term on the left hand side of (2.21) is (ignoring the

difference in sign) the second term in the directional derivative (2.18).

The algorithm (2.20), considered as an algorithm for constructing ^-optimal

designs, is a particular case of the family of algorithms considered in, for example,

[45, 46, 6 8]. In the optimal design arena there is interest in optimising a design

criterion with respect to the weights assigned to the support points Ai,. . . , A<*. When

using a multiplicative algorithm of this kind, at each iteration the current weights,

49

^ k\ axe multiplied by a factor (in the form of a function f(d \k*) of the current

partial derivatives) and are then scaled to sum to unity. In [63], Titterington proved

monotonicity for the case where f(d) = d for D-optimality and in [64], Torsney

proof extended a result given in [28] for c-optimality, but the focus in [28] was not on

algorithms. An empirical exploration of f(d) = ds, S > 0, for D-optimality is given

in [61]. Other choices of f(d) are needed if it is possible that the criterion function

has negative derivatives (as is the case in some maximum likelihood estimation

problems, or if partial derivatives are replaced by vertex directional derivatives); see

[65, 67, 6 6].

To relate algorithms of the kind (2.20) to gradient algorithms such as the steepest

descent algorithm it is necessary to consider the case where K = 2. For this case,

proved monotonicity for the case where f(d) = d1̂ 2 for A-optimality. In fact, this

and the function (p(x,£), quadratic in x, is equal to

It then follows that

where

and the numerator on the right-hand side of (2 .2 0) is

Define a = c*(£) = a(/ii,/z2) as

(2.24)

The numerator (2.23) can then be written as

- c(£) = B({) (1 - a(£)z) 2 (2.25)

50

and, through algebraic manipulation, the re-weighting formula (2 .2 0) can be written

in terms of a as

(*) = , (l~aXJ 2 « *) • (2-26)1 - 2ani + a H2

This is exactly the same form as the renormalised general gradient algorithm (2.9).

This can be seen by re-writing the updating formula (2.26) iteratively as

^ " w - i | i 2 ,)

and setting ^ and rr< = A* for i = 1 , . . . , d.

Consider the D-optimality criterion 3>(£) = detM (£), which for the case where

K = 2 is equal to

$ (0 = det (^ I = fioii2 - fi2v (2.28)
\ Ml M2 /

For this criterion

o I fj,2 — M 1 \ o o
$ (0 = I , ip(x,Z) = V2 - 2 n 1x + tiox, and c = b = /jl2 -

\ ~ M i Mo J
Consequently, the corresponding multiplicative optimal design algorithm will have

the form

which when rewritten iteratively with the change of variables and Xi = \

for i = 1 , . . . , d, will yield the steepest descent algorithm in renormalised form (2 .5).

Using this link between multiplicative optimal design algorithms and renor

malised gradient optimisation algorithms, any optimality criterion <£(£) can be used

to generate a corresponding gradient algorithm. This opens up the possibility of

new gradient algorithms whose step lengths a^k\ created from optimality criteria,

would not necessarily be intuitively thought of otherwise.

2.3.3 R ate o f Convergence o f Gradient A lgorithm s Corre

sponding to O ptim al D esigns

A design £* is said to be optimum for a given criterion $ on [m, M] if

S (M (O) = nM«*(Af(0) ,

51

where the maximum is taken over all probability measures supported on [m, M \ .

Consider the case where $ = 4>(M(£)) is an optimality criterion, with M(£) as

defined in (2.17) and associate with it a gradient algorithm with step-length a(/ii, /x2)

as given by (2.24). The rate of the gradient algorithm corresponding to a particular

design £ is given by

r(£) = 1 - 2a/ii + •

If a design is optimum then it is invariant under one iteration of the updating

formula (2.27) i.e. if £ = £* then £ (x») = £(x») for i = 1 . . . , d. Assume that £* is

non-degenerate, i.e. it is supported at at least two points, then since £* is optimum

it follows that 4>(M(£)) is at its maximum and thus all directional derivatives

d_
da $ [m ((1 - <z)£* + a£(:r)) + - 0 ’ a = 0 +

i.e. are non-positive for all x G [m, M]. Since

(m [(1 - a) r + « ^x])[=o = ¥>(x,r) - t r (l (D M (D) ,

see (2.18), the following inequality is implied

max (p(x,C) <t* = t i |m(£*) I (£*)

Equivalently the following inequalities hold; (p(m, £*) < t*, ip(M, £*) < t* , since

tp(x, £*) is quadratic and convex with respect to x. The fact that

Lv IT

M

implies that £* is supported at the extreme points m and M, thus £* must have

positive masses at m and M, as it is assumed that £* is non-degenerate, and

^ (" b O = <p(M, £*) = t* .

As ip(x, £*) is quadratic in x with its minimum at 1/a, see (2.25), it implies that

a* = a(Mi(r),M 2(€*)) = '

The rate r(£*), associated with an optimum design is therefore

r (r) = b $) = = {1~ m a ’)2 = (1 “ M a ')2 = * * ’

52

If the optimum design £* is degenerate, i.e. it is supported at a single point x*

then x* must be either m or M since the function y?(x, £*) is quadratic and convex.

The optimum design £* is invariant under one iteration of the updating formula

(2.27) therefore a* is constant and

maxr(£) = max [(1 — m a*)2, (1 — Mo*)2] > Rre{,

with max£ r(£) only equalling Rre{ if a* = 2/(m + M).

In conclusion, any gradient algorithm corresponding to an optimum design £*

will possess the worst case rate of convergence of the steepest descent algorithm.

A multiplicative optimal design algorithm of the form (2.26) which converges to an

optimum design does not, therefore, give rise to a gradient optimisation algorithm

with an asymptotic rate of convergence any better than that of the classical steepest

descent algorithm.

Chapter 3

The 7-Steepest D escent Algorithm

The standard steepest descent algorithm is known to have a poor rate of conver

gence. Any modification of the steepest descent algorithm which might lead to an

improvement in the asymptotic rate of convergence of the algorithm would there

fore be viewed as beneficial. It will be seen in this section that the introduction of a

relaxation coefficient, 7 , to the standard steepest descent algorithm will completely

change the behaviour of the algorithm and, for certain values of 7 , will dramatically

improve upon the rate of convergence of the original algorithm.

Let the modified steepest descent algorithm be defined as follows:

x (k+1) _ (*) _ (gW,gW) (k)

This algorithm will be known as the 7 -steepest descent algorithm hereafter. The

algorithm was discussed in Chapter 7 of [53], however analysis there was restricted

to the 2-dimensional case. The difference between the 7 -steepest descent algorithm

and the original steepest descent algorithm (1.7) is that in the modified algorithm
(U\

the usual steepest descent step length atg ̂is multiplied by a relaxation coefficient 7 .

If 7 = 1 the step length of the original algorithm is thus regained. It is well known

that, for ill-conditioned problems, the step length for the steepest descent algorithm

is slightly too long (see discussion in [9];) thus intuitively it is possible that values

of 7 < 1 may lead to improved rates of convergence.

53

54

3.1 The Renormalised 7-Steepest Descent Algo

rithm

To complete analysis of the 7 -steepest descent (7 SD) algorithm, the algorithm is

first renormalised. The step length of the 7 SD algorithm can be rewritten in terms

of the moments as
Qm = ... (g(t).g (t)) = X .

(Agfk\ g f k>) /ij

Substituting this value of a into the general equation for renormalised gradient

algorithms (2.9) gives the updating formula

(*+i) = (1 ~ for i = 1 , . . . , d . (3.1)
1 - 2 7 + 72M2/Mi

The rate at iteration k of the 7 -steepest descent algorithm is equal to

r7sn = 1 - 2 7 + 7W m ?- (3-2)

As with the renormalised steepest descent algorithm, the renormalised 7 -steepest

descent algorithm can also be viewed as a multiplicative algorithm for constructing

optimal designs. The optimality criterion for this algorithm is

$(0 = 7 MoM2 - Mi = 7 M2 - M? > (3-3)

which can be seen as a generalisation of the D-optimality criterion where, instead

of taking the determinant of the information matrix (2.17) as the criterion, the

determinant
r 0

m (0 +
0 0

$(£) = det

with r = 7 — 1, is used in its place. For this criterion

7/io — Mi
$ (0 = | I > 0 = 7/42 - 2/ziX + jx2,

Mi 7Mo

Mi __ 1 L _2 .. , . 2 (1c = 7 M2 ------ , and b = 7 ^ 1 + / i f ----- 2 .
7 \7

55

3.1.1 C oncavity of the O ptim ality Criterion

For the purpose of the maximisation of an optimality criterion in experimental de

sign, it is often important that the optimality criterion $(£) is concave, see Def. 1.1.3.

In other words, it is necessary that

(indicating that the turning point is a maximum). For a general criterion $, de

pending on the first two moments of the design, the second derivative is

note (i! = /ii(£a) and /i2 = M fa)-

The following theorem shows that the optimality criterion (3.3) is a concave

function.

Theorem 3.1.1. The functional, 3>(£) = 7 M2 — Mi> is a concave functional for all 7 .

Proof The first derivatives of $ = 7 M2 — Mi 8X0

$((1 - a)£ + of') > (1 - a) * (0 + a*K ') ,

for 0 < a < 1 and any designs £, where

and

M i((l - a) £ + a £ ') = (1 - a) M i (f) + a \ii (f #) ,

M2((l - o)i + (4) = (1 - a)fi2 (0 + an2(£).

A necessary and sufficient condition for the concavity of a functional is that the

second derivative is non-positive i.e.
r\ 2

V£, = (l - a) £ + a£'

/ d y i { € a) \ d ^ (f l ! , / J , 2) / d f l 2(^a) \ '
\ da J dfi2 \ da J

56

Substituting these values into the general formula for the second derivative (3.4)

gives

^ [-2Ml(?a)(M£') - Ml(0) + 7 (M 0) ~ M2©)]

= - 2 (*n(«') - mi«)) 2 < 0 •

The necessary and sufficient condition that the second derivative d2$(£)/da2 is

negative has been met and does not depend on the value of 7 thus $(£) = 7 M2 — Mi

is a concave functional for all 7 . □

3.1.2 Convergence to an O ptim al D esign

If 2m /(m + M) < 7 < 4M m /(m + M)2 or 1 < 7 < 2M /(m + M) the renormalised

7 -steepest descent algorithm (3.1) will always converge to an optimum design £* and

hence, for these ranges of 7 , the asymptotic rate of convergence of the algorithm

is equal to the worst possible rate of the steepest descent algorithm, RTef. In order

to prove this it is first shown that the optimality criterion (3.3) is a monotonically

increasing sequence which converges to a limiting point 4>*.

Theorem 3.1.2. Let £(°) be any non-degenerate probability measure with support

{Ai,...,Ad} and let the sequence of probability measures {£^} be defined via the

updating formula (3.1). The sequence

$<*> = 4-(C<‘)) = i M O k)) - M 0 k))

then monotonically increases and converges for 7 < 4m M /(m + M) 2 and 7 > 1;

that is 4>(°) < < . . . < < . . . and the limit <&*(£(°)) = lim*;-^ exists.

Proof Note that > 0 for any £ in view of the Cauchy-Schwartz inequality.

The sequence is non-decreasing if 4>(fc+1) — 4>(fe) > 0 holds for any distribution

£ = £(fc). If the distribution £(fe) is degenerate (that is, has mass 1 at one point) then

<j>(fc+i) _ ^(k) an(j statement of the theorem holds. It is assumed below that £ is

non-degenerate. In particular this implies M2 > Mi- The problem can be formulated

as:

$(*+!> _ $ m > 0 <— (7 M2 - (M i) 2) - (7M2 - M i) > 0 , (3.5)

57

where ijlx and / 4 are respectively the first and second moments associated with

the distribution respectively. It is possible to express the moments of

through the moments of £ = f^k\ First it is verified that fi0 = ^ fc+1̂ = 1. Indeed,

Mo I X +1) - 1 _ 27+7v 2/m? !r (1

1 - 27 + 7V2/M1
 1
1 - 2 7 + 7 W M 1

27 + 72M2/Mi

t=l P1 i=l i=l

l - 2 7 + 7 2^
Mi

= 1 .

In a similar way

d 1
' _ V A£(fc+1) - _______-f t - 2 ^ a* “ 1 - 2 7 +

*=1 12 7 + 72M2/Mi
0 M2 . 2M3Mi - 2 7 — + 7 - 3

Mi Mi J

and
d 1' = V \ 2 t(*+i) = _______L

f t 1 - 2 7 + ',=1 - 2 7 + 7 2f t / f t

It is possible to represent the left hand side of (3.5) as

0 M3 . 2 M4M2 - 2 7 — + 7 “ 2
Mi Mi.

(7 ^ 2 - (f t)2) - (7 ft - Mi) = 7 ^

with,

*7 = -a*i2M2272 + 4 72/ii/i3M2 - 2 7V 1M 3M 2 - 4 Mi2M227 + 4 Mi4M2 - 4 7Mi3M3

+ 7 2 M 4M i2 + 4 /Z1V 27 + 4 7 2 M i3 M3 + 7 4 M4M2 - 2 7 3 M 4M i2 + 5 M i2 M22 7 3

- 8 / i i V 2 7 2 - 7 3M32 - 4 /X16 + 4 / i i 67 - 7 V 2 3

and
2 \2IF = (~72M2 - Mi2 + 2 7/ii2)

It is clear VF will always remain positive thus the problem is reduced to determining

whether or not the numerator, t/, is non-negative. One way of proving that an

expression is non-negative is to relate it to a variance of random variable, as it is

known that variances are always non-negative. Consider the variance

V = var(arj + brj2)

58

where 77 is a random variable with distribution £ and a, b are some parameters that

can be chosen.

V = var(ar] + brf) = E(ar) + brj2)2 — [E(arj + brf)]2

= a2E(rj2) + 2abE(r}3) + b2E (rf) — [aE(r}) + bE(rj2)])2

= a2/i2 + 2 a6/i3 + 62/i4 — (a/i 1 + bp2)2 ■

Subtract the variance V from U and consider this as a function of a, b:

F{a,b) = U - V = 472//i/z3/ /2 -7 W -4 M i6+4Mi67-4M i2//227 + 4 //14/i2 - 4 7 Mi3M3

+ 7V4/^i2 -A*i2M2272+4/ii4/Z27+472/ii3/i3+7V 4/i2-273/i4/^i2 +5/xi2/x2273

- 8/ii ̂ 7 2 ~ 27 Vi M3M2 - 7 V23- a V2 - 2 afyi3 - 62/i4 + a2/i 12 + 2 a/iX &/i2 + b2p22-

If a, 6 are selected so that F(a,b) = 0, this would imply that JJ — V . First,

choose 6 to eliminate the /i4 term:

b = bo = 7 y 7 2M2 + Mi - 2 7 /if .

As /i2 > A4?, the inequality 7 2/i2 + /if — 2 7 /if > 0 holds and so b is always correctly

defined. Substitute this value into F(a, 6), then solve F(a, 60) = 0 with respect to

a. F(a, bo) is a quadratic function in a. Let D be the discriminant of F(a, bo). This

discriminant can be simplified to

D = (7 - 1) (7 /i2 - /ii2) (/i37 + 2/ij3 - 7 /ii/i2 - 2/i2/ii) 2 .

This is clearly non-negative when 7 < 4m M /(m 4 - M) 2 = min^(/if (£)//i2 (£)) ^ d

when 7 > 1 since p,2 — /if > 0 by the Cauchy-Schwarz inequality. There is therefore

a solution of the equation F(a, b) = 0 and hence the conclusion can be drawn that

monotonously increases and converges to a limit, i.e. lim^oo exists for any

initial design □

It has been established that the sequence converges to a limit, the value of

that limit can now be calculated.

T heorem 3.1.3. Let be any non-degenerate probability measure with support

{Ai,...,Ad} and let the sequence of probability measures {£^} be defined via the

59

updating formula (3.1). I f ̂ is such that £^(A i) > 0 and £^(Ad) > 0 , then the

limit limfc_ >00 of the sequence = $ (£ ^) = 7 P2 (£ ^) — P i(£^) does not

depend on f and
/ y 2

$*(£«>)) = $ * = J L (m + M f - j m M ;

moreover, the sequence of probability measures {£^} converges (as k —► oo) to the

probability measure £* supported at the points m and M with weights

2M — 7(771 + M) l { m + M) - 2m
* (m) = 2(M - m) 2(M — m) '

wh e r e ^ j < 7 < ^ -

Proof A limiting probability measure £ will exist if applying the transformation

'!'(£) results in the original measure £, i.e. if ^(^) = £ for some £. For the 7 -steepest

descent algorithm this equates to finding a measure £(x) such that
(1 _ 212)2

« *) - T Z 5 r W (x) -Pi

As was discussed in Section 2.3.3, an optimal design, £* will be supported at the

minimum and maximum eigenvalues m and M, so that

f m M 1

r = I p q)

where q = 1 — p. The first and second moments of the limiting probability measure

C are

/21 = mp -I- M (1 — p) and p2 = m2p + M 2(1 — p)

respectively. Solving the equation

(i - ? ?) 2
P = 1 O 1 2P2. P1 - 2 7 + 7 2£|

for p gives a weight at m for £* of

and therefore the weight at M will be

2(M — m)

60

Since £*(m) and £*(M) are weights they must be between 0 and 1, i.e.

2 M — 7 (m + M) 7(771 + M) — 2m
~ 2 (M — 771) ’ 2 (M — 771) —

therefore 7 is restricted to the range

m + M
2m 2M

< 7 < ---------- .
771 + M

Substituting the weights of the probability measure £* into

$>(£(*0) = 7 /x2(£ ^) — gives the limit of the sequence

'Y2
= — (771 + M)2 — 7771M

as required. □

It can be verified that the rate r(£*) associated with the optimum design is the

worst possible rate of the steepest descent algorithm, R ref, by further substituting

the value of p* into the equation for the rate of convergence of the 7 -steepest descent

algorithm, (3.2).

If 7 < 2m/(m + M) then the probability measure becomes degenerate and the

design is supported solely at the smallest eigenvalue m. The consequence is that

$(M(£*)) = 77i2 (7 — 1) and the rate r(£*) = (1 — 7)2. Similarly, if 7 > 2M/(m + M)

the design is supported entirely a the maximum eigenvalue M, $(M(£*)) = M 2(7 —

1) and the rate in this case equals r(£*) = (7 — l)2. These results are summarised

in Table 3.1.

3.1.3 Speed o f C onvergence to th e O ptim um D esign

It has been established that when the chosen relaxation coefficient 7 lies within

either 2/(1 + p) < 7 < 4p/(l + p)2 or 1 < 7 < 2p/(l + p) the renormalised 7 -

steepest descent algorithm converges to an optimum design and r(£*) = f. An

investigation into how the choice of 7 affects the speed with which the sequence

{£(*)} reaches the optimum design £* is therefore of interest. This can be measured

in one of two ways; either the number of iterations required to reach the optimum

design within a certain degree of accuracy can be measured, or alternatively, the

61

2m ^ ^ 2 M
m+M — / — m+M 'y > 2M ' — m+M

r w 1
2M —7(M + m)

2(M —m) 0

$ (M (r)) 77l2 (7 — 1) I 7 2 (m +M) 2 —7 mA/ M 2 (7 - 1)

r(C) (1 - 7) 2
D _ (M -m)2
/ lr e f — (m + M)2 (7 - l) 2

Table 3.1: Values of £*(m), $(£*) and r(£*)

degree of accuracy to which the optimum design has been reached after a preset

number of iterations can be measured. Using the latter option Table 3.2 indicates

the speed with which the rate r^ reaches r* = R ^f and thus also the speed with

which reaches £*. The number of correct decimal places attained by after 200

iterations of the 7 -steepest descent algorithm for different p is given. Blank entries in

the table reflect parameter choices where an optimum design is not attained due to 7

being outside of both the intervals where convergence to an optimum design occurs.

With the exception of when 7 is near the boundary of one of the feasible intervals

(where convergence to the optimum design takes longer) the speed of convergence

of the sequence { r ^ } is approximately the same for all feasible values of 7 .

3.1 .4 Behaviour o f th e Sequence { $ (£ ^)}

It was shown in the proof of Theorem 3.1.3 that for regions of 7 where convergence

to an optimal design occurs, i.e. where 2m/(m + M) < 7 < 4mM/(m + M) 2 or

1 < 7 < 2 M /(m +M), the sequence converges to = ^ (m + M) 2 - 7 mM.

For the values of 7 which lie between these two ranges, the behaviour of the sequence

{$(£(*))} is completely different and indeed for much of this range of 7 the optimality

62

7 p = 2 p = 4 p = 1 0 p = 19 p = 49 p = 99

0.05 - - - - 1 -

0 .1 - - - 1 0 - -

0.15 - - - 14 — —
0 .2 - - 2 - - -

0.25 - - 17 - - -

0.3 - - 18 - - —

0.35 — - - - - -

0.4 - - - - - -

0.45 - 19 - - - -

0.5 - 18 - - - -

0.55 - 17 - - - -

0 .6 - 16 - - - -

0.65 ... - - - - -

0.7 18 - - — - —

0.75 18 - - - - —

0 .8 18 - - — - —

0.85 13 - - - - -

1.05 15 12 11 12 12 13
1 .1 2 0 18 19 2 0 17 19

1.15 19 2 0 19 18 19 18
1 .2 19 19 19 18 18 19

1.25 19 19 19 2 0 18 19
1.3 19 18 18 18 18 18

1.35 - 18 18 19 19 2 0

1.4 - 19 19 19 19 19
1.45 - 18 19 19 18 19
1.5 - 19 2 0 19 2 0 17

1.55 - 17 19 19 19 18
1 .6 - - 19 2 0 18 19

1.65 - - 19 19 18 19
1.7 - - 19 19 18 2 0

1.75 - - 14 19 18 19
1 .8 - - 4 19 19 19

1.85 - - - 1 0 2 0 2 0

1.9 - - - 3 10 13
1.95 - - - - 2 5

Table 3.2: Speed with which { r^ } converges to r*, measured as the average number

of decimal places of accuracy achieved by rW after 2 0 0 iterations of the 7 -steepest

descent algorithm; d = 1 0 0 .

63

criterion does not always converge to a single point regardless of the number of

iterations the sequence is run for. Figure 3.1 and Figure 3.2 show the attractors of

<$(£(*)) as a function of 7 for various values of p for both a 2-dimensional and 50-

dimensional problem. For much of the range 4m M /(ra + M) 2 < 7 < 1, the limiting

behaviour of the sequence of the criterion shows chaos to be present; however, for

some values of 7 in amongst the chaos, the attractors of form cycles of varying

size. The value of 7 chosen thus has a huge impact on the nature of the asymptotic

behaviour of the sequence {$(£^)}- Cyclic behaviour appears more often when

d = 2 and when the condition number, p is small.

To further demonstrate the limiting behaviour of the sequence ($ (£ ^)} Fig

ure 3.3 and Figure 3.4 show the normalised values of) as a function of k.

For equivalent graphs for different values of the relaxation coefficient, 7 , see Ap

pendix C. For 7 = 0.985 a clear pattern can be made out where, for a particular

iteration number, the value of the optimality criterion shoots up dramatically from

its previous value before then descending slowly back down to more typical values

as k increases. The sequence then enjoys an unpredictable phase where low values

of 4>(£^) are witnessed before again rising sharply for the process to repeat itself.

The length and frequency of each phase of this behaviour are not constant however

it can be observed that as 7 moves closer and closer to 1 , the graph of as a

function of k shows that the length of each phase generally increases.

Figure 3.5 shows the spread of values of {$(£^)} for k = 1 , . . . , 10000, for

different values of the relaxation coefficient 7 . The impact the choice of the relaxation

coefficient has on the distribution of {4 >(£^)} can clearly be seen. For example,

when 7 = 0 .8 , a distribution is produced where the majority of values of 4>(£^)

are located at the centre of the range of possible values the optimality criterion can

take on. When 7 = 0.999, on the other hand, the distribution of (<f>(£^)} shows

the optimality criterion to take on the extreme values of the range more often than

more central values.

Figure 3.6 shows the relationship between the value of the optimality criterion at

consecutive iterations, i.e. and for various values of the relaxation

coefficient 7 . For some values of 7 the progression from iteration to iteration is more

64

U i----------------- 1------------------ 1----------------- 1----------------- 1 2.5

Figure 3.1: <!>(£(*)) for k = 750,.. ., 1000; plotted as a function of 7 for (left) d = 2

and (right) d = 50 and with, from top to bottom: p = 4, p = 10, p = 20.

65

Figure 3.2: $ (f ^) for k = 750,..., 1 0 0 0 ; plotted as a function of 7 for (left) d = 2

and (right) d = 50 and with, from top to bottom: p = 50, p = 100.

1000

Figure 3.3: Trajectory of the efficiency $ (£ ^) / max<F(£) plotted as a function of k for a single realisation of the 7 -steepest descent
£ as

algorithm with 7 = 0.9, p = 10, d = 100.

0.5 ■

300100 400200

-0.5

0.5

■ V W
600 700 800500

-0.6

0.5 ■

11008 0 1200900 1000

-0.5

Figure 3.4: Trajectory of the efficiency max<I>(£) plotted as a function of k for a single realisation of the 7 -steepest descent

algorithm with 7 = 0.985, p = 10, d = 100.

68

Figure 3.5: Histogram of for, from top left to bottom right: 7 = 0.7, 7 = 0.8,

7 = 0.9, 7 = 0.985, 7 = 0.99, 7 = 0.999; p = 10; d = 100, k = 1 , . . . , 10000.

predictable than for other values, with chaos clearly being present in the process for

7 = 0.9 for example.

Figure 3.7 shows the weight at Ai plotted against the weight at A a t each

iteration of a single trajectory of the renormalised 7 -steepest descent algorithm. The

weights £^(A i),. . . ,£^(A <*) must sum to 1 at each iteration therefore the points on

each plot are restricted by the inequality £^(Ad) + £ ^ (^ 1) < 1- When £^(Ad) —

1 - £(fc)(^i) this indicates a situation where, £^(A2) = . . . = £(fc)(Ad_!) = 0 , i.e.

where the design is supported solely at the minimum and maximum eigenvalues.

On the graphs there are many points very close to the line £^(Ad) = 1 — £^(Ai)

indicating that this situation occurs quite frequently within the sequence however

there are also many points below this line suggesting that although from time to

time is supported at only two points, a limiting design is not reached, since

after a while the middle weights re-establish themselves and the algorithm once

again descends into chaos.

69

3

(I j1
1 1,

Iy!
-1

-2
y '

12

8

y y y j t i

m
•« -4

-4 • & "

w
Figure 3.6: Plots of the pairs ($ (£^), for, from top left to bottom right

7 = 0.5, 0.6, 0.7, 0.8, 0.9, 0.985. Points plotted are the last 2000 of 10000 iterations;

d = 1 0 0 , p = 1 0 .

6

15

70

0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 3.7: Plots of the pairs (£^(Ai),f^(Ad)) for the 7 -steepest descent algorithm

with (from top left to bottom right): 7 = 0.5, 0.6, 0.7, 0.8, 0.9, 0.985, 0.99, 0.999,

0.9995; p = 10; d = 100. Points plotted are the last 8000 of 10000 iterations.

71

3.2 A sym ptotic R ate o f Convergence

In this section a detailed analysis of the asymptotic rate of convergence of the 7 -

steepest descent algorithm and the factors which affect this convergence rate are

given.

It is possible to give an analytical formula for the asymptotic rate of convergence

when 7 is in regions where convergence to an optimal design occurs, i.e. if 2 ra/(m +

M) < 7 < 4m M / (m + M) 2 or 1 < 7 < 2M / (m 4- M); then the rate is simply

R ref = (M — m)2/(M 4 - m)2. When 7 is outside of these regions, however, the

manner in which the algorithm behaves entirely changes and it will be seen that

the algorithm exhibits either chaotic behaviour or forms cycles of some length for

some values of 7 in this interval. An analytical formula for the convergence rate

cannot, therefore, always be specified since r ^ is not constant for much of the range

4m M / (m 4 - M) 2 < 7 < 1. In order to study the asymptotic rate of convergence in

this case, it is instead necessary to simulate the behaviour of the algorithm with

different starting vectors and calculate an approximation to the asymptotic rate of

convergence (1 .1 2) by using the formula

k \ V*'

j = 1
I F *, 0

,i=i

i N r f i k
= e x p i - J > g rN j=i

(<)

* «

where N is the number of different random starting vectors over which the asymp

totic rate is averaged and &, the number of iterations performed, is large.

With fair comparisons in mind, all approximate average asymptotic rates given

in this thesis were calculated from simulations run for 1 0 0 0 iterations (k = 1 0 0 0)

and averaged over 300 replicates. The starting vector x ^ for each replicate was

generated randomly, however if = 0 for any i then the complexity of the problem

is reduced yielding unrepresentative rates so these zero entries were replaced by a

non-zero number. Simulations were run for the most part in MatLab 13 although

Maple 10 was used in situations where this better facilitated the analysis. Examples

of a typical programme in MatLab and Maple can be found in Appendix A.

72

3.2.1 D ependence on 7

In order to achieve the best asymptotic rates of convergence when using the 7 -

steepest descent algorithm it is first necessary to find the optimum value of the

relaxation parameter 7 . It is important to see whether the optimum value of 7

changes for different values of parameters, such as the condition number p or the

dimension d, in order to recommend a useful value of 7 in any situation.

Figure 3.8 shows the average asymptotic rate of convergence of the 7 -steepest

descent algorithm as a function of 7 for typical parameter values. As was discussed in

the previous section, if 1 < 7 < 2M /(ra+M) or 2ra/(ra+M) < 7 < 4m M /(m +M) 2

then the renormalised 7 -steepest descent algorithm converges to an optimal design

and the rate of convergence in these regions is equal to Rre f. I f 0 < 7 < ra /(m + M)

or M / (m -1- M) < 7 < 2 then the algorithm converges with a rate worse than that

of i ^ f and i f 7 < 0 o r 7 > 2 then R > 1 indicating that divergence occurs if 7

is not contained within 0 < 7 < 2. The region of interest, however, is when 7 lies

in the range 4m M / (m -I- M) 2 < 7 < 1. In this area of the graph it is plain to see

that much better rates of convergence are present, the best rate occurring when 7 is

slightly less than 1. To gain a better insight into exactly how the algorithm behaves

when these better rates of convergence are produced, a more informative plot is

needed. Figure 3.9 shows the rate, r^k\ at iteration k for k = 750,.. . , 1000 for a

single trajectory plotted as a function of 7 . By displaying each individual rate r ^

for every value of 7 sampled, a clear picture can be gained as to both how varied

the rates can be and also what the nature of the algorithm is like e.g. whether any

cyclic or chaotic behaviour is revealed. From Figure 3.9 it can be observed that, as

7 increases, the nature of the algorithm evolves from converging at a constant rate

equal to i?ref (denoted Rmax in the figure), to converging at a constant rate better

than i?ref, to forming cycles of increasing size and finally descending into chaos. It

is clear therefore that varying choices of 7 produce optimisation algorithms with

totally different behaviours.

Referring back to Figure 3.8, it can be seen in Figure 3.9, that the area of the

graph corresponding to the best average asymptotic rates of convergence is that

where chaos occurs. Here the rates r ^ are incredibly varied and at first glance it

73

r e f

2m0
m + M (m + A/)2 m + \ f

Figure 3.8: Average asymptotic rate of convergence as a function of 7 for the 7 -

steepest descent algorithm.

4mM
(liT t M p

Figure 3.9: Attractors of as a function of 7 for the 7 -steepest descent algorithm.

74

is not obvious that the asymptotic rate of convergence in these parts is attractive

at all since it is clear is extremely high in some iterations. The reason for the

fast average asymptotic rates of convergence lies with those r ^ close to zero. In

Figure 3.9 it is not possible to see clearly those values of r ^ close to zero, partly

due to the denseness of points in the region (which in itself indicates that there are

many more values of close to zero compared with larger values). A more useful

plot in this situation is Figure 3.10 where the attractors of (—ln(r^)) are plotted

as a function of 7 . In this form, the higher values of (— ln(r^)) indicate the more

desirable rates and vice versa. It is thus apparent that the advantage gained from

these better values of far outweighs the disadvantage gained from the worse

values.

10i------ 1---

4iuM
(m + M)»

Figure 3.10: Attractors of (— l n r ^) as a function of 7 for the 7 -steepest descent

algorithm.

While the best average asymptotic rates of convergence occur when 7 is just less

than one, in this region the algorithm exhibits chaotic behaviour and the actual rate

at iteration k can vary quite dramatically. In fact, it is even possible that at some

iterations r^ > 1 which corresponds to a situation where an iteration produces a

new approximation to the minimum point which is further away from x* than the

previous approximation. While on average, these varied rates produce a much more

75

desirable overall asymptotic rate of convergence than the classical steepest descent

algorithm, it is not possible to guarantee a fast asymptotic rate of convergence for a

single trajectory due to the chaotic nature of the algorithm. The situation is the same

for the BB algorithm whose step length is defined in (1.15) and the CBB algorithm

defined in (1.17). There is, however, a region of values of 7 just before the bifurcation

to chaos procedure starts, for which an asymptotic rate of convergence better than

that of the steepest descent algorithm is guaranteed to be achieved. In this region

the rate r ^ = r Vfc, i.e. the rate is constant and no chaotic behaviour comes

into play as can be seen in Figure 3.9. To guarantee a faster asymptotic rate of

convergence than the steepest descent algorithm, the best value of 7 to choose is

thus the point at which the bifurcation to chaos phenomenon starts, since the rate

is decreasing up to this point. Although this rate is considerably better than the

steepest descent algorithm, the possible asymptotic rate of convergence achievable

when 7 is just less than one is considerably better still.

From Figure 3.11 it can be observed that the value of 7 at which the bifurcation

to chaos procedure starts is smallest when A2 = (ra-f-M)/2 , i.e. when the midpoint of

Ai and Ad is contained within the eigenvalue set. In this situation the region where

the rate is constant ends sooner and so the asymptotic rate of convergence

attained at the point at which bifurcation starts is at its worst for that particular

value of p. This phenomenon is true for all dimensions d and condition numbers p

but is more prominent when d is small.

3.2.2 D ependence on p

In a similar manner to the classical steepest descent algorithm, and in fact all gra

dient algorithms studied in this thesis, the asymptotic rate of convergence of the

7 -steepest descent algorithm will worsen as the condition number p increases, re

gardless of the value of 7 . Figure 3.12 shows the relationship between the average

asymptotic rate of convergence and the condition number p for several values of 7 for

a small dimensional problem (d = 4) and a larger dimensional problem (d = 100).

While the relationship between the two is more erratic for some values of 7 compared

to others this outcome is analogous for small and larger dimensions. Figure 3.13

76

Figure 3.11: Attractors of r (A:) as a function of 7 for a 3-dimensional problem with

Ai = 1, A3 = 4 and, from top left to bottom right: A2 = 3/2, 2 , 5 / 2 = (m + M)/2 ,

3, 7/2, 4.

77

 T=0 2

100

Figure 3.12: Average asymptotic rate of convergence as a function of p for (left)

d = 4 and (right) d = 100.

shows the average asymptotic rate of convergence of the 7 -steepest descent algo

rithm as a function of 7 for various values of p. For p § 10 the optimum value of 7 is

approximately 0.985 however as p increases the trough in which the best asymptotic

rate of convergence is found becomes narrower and narrower and so the importance

of precision in selecting the value of 7 to be used in a certain situation becomes

more profound, as a small deviation either side of the optimum value will result in a

relatively large increase in R. It must be noted however, that in reality the condition

number of the matrix A is generally unknown and so precise selection of 7 is not

possible. For p < 10 the optimum value of 7 is smaller. Fortunately, here the trough

is not so deep so using a value of 7 slightly larger will not spoil the lucrative rate

greatly. A value of 7 = 0.985 thus appears to be the most sensible value for the

relaxation parameter for a generic large dimensional situation where the condition

number is unknown.

Figure 3.14 and Figure 3.15 show the corresponding plots of the attractors of

rW as a function of 7 for d = 50 in the right column and similar plots for d = 2

in the left column. As p increases, the region in which better asymptotic rates of

convergence are demonstrated, 4m M / (m + M) 2 < 7 < 1 , naturally increases and

thus chaotic behaviour is present in the algorithm’s convergence rates for a greater

range of 7 .

The overall shape of the graph is comparable when d = 2 and d — 50 for

78

0.80.8

0.60.6

0.4 0.4

02

0.4 0.6 0.4 0.6 0.8
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.4 0.80.6 0.4 0.6 0.8
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0 0.80.4 0.6 1 0.4 0.6 0.8

Figure 3.13: Average asymptotic rate of convergence as a function of 7 for, from

top left to bottom right: p = 2,4,10,20,50,100; d = 50.

79

p = 10 onwards. The main difference, however, in the 2 -dimensional case is that,

where in larger dimensions chaotic behaviour is exhibited, in the 2 -dimensional case

cycles are often formed of varying size. Cyclic behaviour is also present in larger

dimensions but to a much lesser extent. To demonstrate the frequency and size of

cycles present, Figure 3.16 shows the natural logarithm of the number of attractors

of as a function of 7 in the 2 and 3-dimensional case with p = 4. It must be

noted, however, that in situations where chaos is occurring, due to limitations on the

number of iterations run, in this case 2 0 0 0 , the natural logarithm of the number of

attractors is artificially limited to ln(2000) = 7.6. For those values of 7 , the attractor

is thus better thought of as having an infinite number of points.

3.2 .3 D ependence on d

It was seen in the previous chapter that, for the steepest descent algorithm, the num

ber of dimensions in the problem does not have a significant effect on the asymptotic

rate of convergence of the algorithm provided the number of dimensions is greater

than approximately 10. The situation is not dissimilar for the 7 -steepest descent al

gorithm, although with this algorithm, dimensionality does have a more pronounced

effect on the asymptotic rate of convergence for a small range of 7 . More precisely,

the observed relationship between the number of dimensions of the problem and the

asymptotic rate of convergence is approximately constant for all values of 7 in the

range 0 < 7 < 2 with the exception of when 7 is marginally less than 1 , i.e. in

the region where the best asymptotic rates are exhibited. When 7 is in this zone

the dimension has a more marked effect on the rate of convergence as can be seen

in Figure 3.17, however, even here the difference between the rate with d = 50 and

d = 1 0 0 is very marginal.

From Figure 3.17 it is evident that the value of d also effects the optimum value

of 7 when d is less than approximately 50. The fewer the number of dimensions, the

closer to 1 the optimum value of 7 becomes. Since the size of matrix A is always

known in advance of applying the algorithm it is possible to adjust the value of 7

used to account for this however, in general gradient optimisation algorithms would

normally be used in situations where d is large and from d = 50 upwards the number

80

Figure 3.14: Attractors of rW as a function of 7 for d = 2 (left) and d = 50 (right)

and from top to bottom; p = 4,10,20.

81

Figure 3.15: Attractors of r ^ as a function of 7 for d = 2 (left) and d = 50 (right)

and from top to bottom; p = 50,100.

8

6

4

2

0
0.8 0.880.84 0.92 0.96 1

- d = 2 d = 3 I

Figure 3.16: ln(number of attractors) as a function of 7 for the 7 -steepest descent

algorithm with d = 2 and d = 3; p = 4.

82

of dimensions has virtually no effect on the optimum value of 7 .

0.9 ■

0.8 -

0.7 ■

0.6 ■

0.5
0.5 0.6 0.7 0.8 0.9 1.1

Figure 3.17: Average asymptotic rate of convergence as a function of 7 for the

7 -steepest descent algorithm with p = 1 0 0 .

Figure 3.18 illustrates the difference in effect the dimensionality of the problem

has on the average asymptotic rate of convergence of the 7 -steepest descent algo

rithm with 7 = 0.9 and 7 = 0.99. The left graph is typical of most values of 7

and shows that the rate of convergence is virtually independent of the number of

dimensions of A. When 7 = 0.99, depicted in the graph on the right, a somewhat

more erratic relationship is present; however fluctuations in average asymptotic rate

are relatively small and, as the number of dimensions increases, the asymptotic rate

of convergence worsens only very gradually.

To demonstrate further how small an influence the number of dimensions of A

has on the asymptotic rate of convergence, Figure 3.19 shows, for different sizes of

d, the attractors of r (fc) as a function of 7 for a situation with a condition number

of p = 4. For d = 10 and larger the graphs are almost identical.

83

0.8 0.8 -
--- -------- V M '

0.6 0.6

0.4

0.2

0.4

a 0.2 -

nU
) 20 40 60 80 100

0
(

1 ----1---------------- 1----------------1----------------1
> 20 40 60 80 100

| - p= 4 p= 10 p= 20 p= 50 p = 100 | | P= 4 p= 10 p= 20 p= 50 p= 100

Figure 3.18: Average asymptotic rate of convergence as a function of d for the

7 -steepest descent algorithm for (left) 7 = 0.9 and (right) 7 = 0.99.

3 .2 .4 B eh av iou r o f

It has been seen that in order to profit from the best asymptotic rate of convergence

possible for this algorithm, a value of 7 slightly less than 1 is required. In this region

the rate at each iteration varies dramatically and for some iterations even indicates

that the approximation to the minimum point is worse than at the previous iteration.

In order to understand how the algorithm is benefiting from taking steps in the wrong

direction a more detailed look at the rate at each iteration is necessary.

Figure 3.20 and Figure 3.21 show the rate r ^ as a function of k for 7 = 0.99 and

7 = 0.995 respectively. Both start with an oscillatory period similar to that of the

steepest descent algorithm, with similarly poor rates as a consequence. After some

iterations the oscillations grow steadily in size culminating in producing extremely

high rates (greater than 1) followed by extremely low rates (close to zero). The

asymptotic rate of convergence is calculated by taking the geometric mean of the

rates in this case a rate of around 2 , followed by a rate close to zero would

average out at a profitable figure. From time to time the algorithm breaks out of

this oscillatory behaviour and periods of chaos ensue where valuable lower values

of A k) are produced. It is these regions of chaos which have the greatest effect on

improving the asymptotic rate of convergence. It must be noted, therefore, that the

algorithm will only produce a desirable asymptotic rate of convergence if it is left

to run for enough iterations to reach these lower values of r^kK

84

Figure 3.19: Attractors of rW as a function of 7 for, from top left to bottom right:

d = 2, 4, 10, 20, 50, 100; p = 4.

85

As 7 approaches 1, the algorithm takes more and more iterations before it breaks

out of its oscillatory phase and reaches the stage where more beneficial rates are

achieved. In fact, when 7 = 0.999, after 1000 iterations the algorithm is still ex

hibiting an oscillatory nature. Realistically, optimisation algorithms would not be

run for as many iterations as would be required to reach superior rates so using a

value of 7 too close to 1 would not be wise.

Corresponding graphs for other values of 7 can be found in Appendix C and show

that for smaller values of 7 little pattern can be found within the rates indicating the

presence of true chaos. While the rates for these values of 7 regularly exceed 1, there

are no extremely bad rates and thus there are no remarkably good rates to follow,

leading to a less varied picture on the whole. This can be seen from Figure 3.22 and

Figure 3.23 where the distribution of r ^ and — ln(r^fê), for various 7 , clearly shows

that, for the values of 7 which relate to the better asymptotic rates of convergence,

the rates are much more varied than less advantageous values of 7 . It can also be

seen for those values of 7 close to 1 that there are more extreme values of r ^ than

there are middle values, demonstrating further the algorithms tendency to oscillate

from good rate to bad rate and back again.

Further analysis of the rate, r^k\ is enabled by exploring patterns in the tran

sition of r ^ from one iteration to the next. Figure 3.24 depicts plots of the pairs

(r(fe), r(fc+1)) for k = 5000,..., 10000 with 7 = 0.9995 and shows, that for this value

of 7 , there is a clear relationship between the rates in consecutive iterations. Most

importantly, it illustrates that if the rate at iteration k is large then the rate in the

following iteration is close to zero. It is also seen here that the number of dimensions

does not effect the shape of the plot.

Figure 3.25 shows the effect of p on the transition of r^k\ It can be seen that there

is a clear transitional pattern no matter what the condition number may be but for

larger values of p, the situation becomes more extreme due to becoming very

large in some iterations; however the general pattern of a bad rate being followed

by a good rate is still true.

Finally, Figure 3.26 shows how patterns in the transition from to r^k+l ̂

change for different choices of 7 . Chaos is clearly visible for some values of 7 , making

800 900 1000 1100 1200

Figure 3.20: Rate, r^k\ as a function of k for d = 100, p = 10 and 7 = 0.985.

900 1000 1100 1200

Figure 3.21: Rate, r^k\ as a function of k for d = 100, p = 10 and 7 = 0.995.

5

88

' 1 1000

MO
• . fJi

ISO

JlLiMiii

|

2000

J
MOO

M0

li 1 U 2
20C
1«
10C
M

HlTl] ririirmTTTTmmfmrrTth.•P t W 2

I
1000

JulltOllDikbininimianaiinllL .• U_. _ M 1J 2 1 it 1 u 1

Figure 3.22: Histogram of r ^ for, from top left to bottom right: 7 = 0.7, 7 = 0.8,

7 = 0.9, 7 = 0.985, 7 = 0.995, 7 = 0.999; p = 10; d = 100, k = 1 , . . . , 10000.

ttlTtmTmfnTffi

Figure 3.23: Histogram of — ln (r^) for, from top left to bottom right: 7 = 0 .7 ,

7 = 0.8, 7 = 0.9, 7 = 0.985, 7 = 0.995, 7 = 0.999; = 10; = 100, = 1,. . . , 10000.

89

2.0 -2.0-

1.5-1.5-

1.0 -

0.5-0.5-

0 .0 -0.0 -

0.00.0 0.5 1.0 1.5 2.00.5 1.0 1.5 0.0 1.02.0 1.5 2.0

2.0-

1.5- 1.5-

0 .0-

0.0 1.0 0.0 1.0Z0 0.5 2.01.5 0.0 1.00.5 2.01.5

Figure 3.24: Plots of the pairs (r^k\ r^k+1̂) for a single trajectory of the 7 -steepest

descent algorithm for, from top left to bottom right: d = 2 , 4 , 1 0 , 2 0 , 50, 1 0 0 .

Points plotted are the last 5000 of 10000 iterations; 7 = 0.9995, p = 10.

90

2 .0 -

1.5-

1.0 -

0.5-

0.0 2.01.5 0.5 1.0 1.50.0 1.0 2.0

2.0 -

0.5-

0.0 -

1.50.0 1.0 2.0

1.0 -

0.5-

0.5 1.50.0 1.0 2.0

0 .0 -

1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

5.0-

0.0 2.5 5.0 12.510.00 2 3 4 51 0 5 10 15 20

Figure 3.25: Plots of the pairs (r^k\ r ^ +1̂) for, from top left to bottom right: p =

2 , 4, 6 , 8 , 9, 10, 20, 50, 100. Points plotted are the last 5000 of 10000 iterations;

7 = 0.9995, d = 100.

91

2 0 -

1-5 1.5-

15 i 0-

0.0 - o.o-
0.50.0 1.0 1.5 2.0 0.0 0.5 1.0 15 2.00.0 05 1.0 15

2.0 - 2 .0 -2 0 -

1.5 - 1.5

' 0- 1.0

0 .5 - 05- 0.5

0.0

0.0 0.5 10 1.5 2.0 0.0 05 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

2 0 - 2.0-2.0

15- 1.5-15

1.0- 1.0 -

0 5 05-

0 0 - 0 .0 -0 .0 -

0.0 05 0.0 0.51.0 1.5 2.0 1.0 15 2.0 0.0 05 1.0 15 2.0

2.0-2.0

1 5-

1.0 -1.0

0.5-

0 .0 -0.0 —r
2.0 0.0 0.5 1.0 2.00 0 0.5 1.0 15 1.5

Figure 3.26: Plots of the pairs (r(fc) ,r (A:+1)) for, from top left to bottom right: 7 =

0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.995, 0.999, 0.9995, 0.9999, 0.99995, 1. Points

plotted are the last 5000 of 10000 iterations; d = 100, p = 10.

92

the transition of rates less predictable. For values of 7 approaching 1 the attractors

of diminish in number and the behaviour of the rates approaches the 2 -point

cycle present in classical steepest descent (i.e. when 7 = 1).

3.3 7-Steepest D escent Sum m ary

In conclusion, the 7 -steepest descent algorithm looks to be a fairly promising gra

dient algorithm with the best asymptotic rates of convergence demonstrated when

the value of the relaxation coefficient 7 is just less than 1 . As with the original

steepest descent algorithm, increasing the condition number p leads to a worsened

asymptotic rate of convergence. The dimensionality of the problem, however, has

little or no effect on this rate from d ~ 1 0 onwards.

If 1 < 7 < 2M /(m + M) or 2m /(m + M) < 7 < 4m M /(m + M) 2 then the

gradient algorithm converges to the minimum point x* with an asymptotic rate of

convergence equal to the worst case rate of the steepest descent algorithm, Rre{.

This corresponds to the situation where convergence to an optimum design occurs.

Whilst this is bad from the point of view of creating an efficient gradient optimisation

algorithm it is advantageous from the experimental design point of view.

The optimum value of 7 (minimising the asymptotic rate of convergence) occurs

in the interval 4m M /(m -1- M)2 < 7 < 1 where the algorithm does not necessarily

converge to the optimum design. It is in this region that chaos is exhibited in the

algorithm. Chaotic behaviour gives rise to the rate r ^ in some iterations being

greater than one i.e. at some iterations the point x ^ moves further away from

the minimum x* meaning the algorithm is no longer monotonic. Nevertheless, at

other iterations the rate is much better than when 7 = 1 (standard steepest

descent) and overall an improved average asymptotic rate of convergence is achieved.

This non-monotonic behaviour is shared with, amongst others, the BB algorithm.

If 2 M /(m -I- M) < 7 < 2 o r 0 < 7 < 2m /(m -I- M) then the gradient algorithm

converges with a rate worse than R ref and if 7 < 0 or 7 > 2 then the algorithm

diverges.

In Section 1.5 an algorithm, introduced in [58] and named the relaxed steepest

93

descent algorithm was described. This algorithm differs from the 7 -steepest descent

algorithm in so much that in this algorithm the standard steepest descent algorithm

is relaxed with the inclusion of a random relaxation parameter 7 ^ which can vary

between 0 and 2 at each iteration. This is in contrast to the 7 -steepest descent

algorithm where the relaxation parameter is fixed throughout all iterations. Figure

3.27 below shows that the 7 -steepest descent algorithm with 7 = 0.985 compares

very favourably with the relaxed steepest descent algorithm. There is, however, still

room for improvement since the desirable rate Rmm has not yet been reached.

0.8 ■

0.6

0.4

— - Rmin
— Y = 0.985
— 0 < Y < 2
— Rref

0.2

60 100

Figure 3.27: Average asymptotic rate of convergence as a function of p for the relaxed

steepest descent algorithm and the 7 -steepest descent algorithm with 7 = 0.985;

d = 1 0 0 .

C hapter 4

T he (3-R oot A lgorithm

It was seen in the previous chapter that adapting the step length of the steepest

descent algorithm, so that it includes a relaxation parameter 7 , can generate much

improved rates of convergence if 7 is selected wisely. A value of 7 slightly less than 1

is recommended. This method of adaptation is however, merely one of many ways in

which the standard steepest descent algorithm can be modified. Keeping the same

descent direction, 8 ^ = g^k\ but changing the formula for the step length, a ^ , in

some way, gives rise to a whole host of possible new algorithms with the potential

of having better asymptotic rate of convergence than the original steepest descent

algorithm. In this chapter a particular family of algorithms, all with related step

lengths, will be considered. These algorithms will collectively be referred to as the

/3-root algorithm. Moreover, it will emerge that the steepest descent algorithm is a

particular case of this more generalised family of algorithms.

4.1 T he Square R oot Algorithm

The first algorithm in the (3-root family to be considered in this chapter is that with

step length

I G ? V) (4 1}
g ^)

94

95

This algorithm shall be referred to individually as the square root algorithm and

has the formula
X(M) _ (*> _ I (g(h),g lk)~ ik)

\l (A?gW,9W) 9 ■

As was discussed in Chapter 1 the square root step length (4.1) can be seen to be

exactly the step length (1.19), suggested by Dai in [20], since

a (*) _ \\9ik)w y /(g n ,g M) W kW k>)
OPT2 \\A9W\\ y / (A ^ \ A ^) V ^ V fe), ^) '

4.1 .1 T h e R enorm alised Square R oot A lgorithm

As was the case with the steepest descent algorithm, the best way to analyse the

asymptotic convergence rate of the square root algorithm is by first converting the

algorithm to its renormalised form.

The step length of the square root algorithm can be re-written in terms of mo

ments as

a (fc) = (4.2)
V^2

and, by substituting (4.2) into the general updating formula for renormalised gra

dient algorithms defined in (2.9), it can be seen that the updating formula for the

renormalised square root algorithm takes the following form

(̂fc+i) = (1 - K /V g i) (k) {oi i = 1 d (4 .3)
2 (1 - Mi / v ^)

The rate, r^k\ for the square root algorithm can be written as

(*) (g{k+1\ g (k+1)) 9 (1 _ (Agtk\g W) / (gW,gW) \ f _ jm _ \
T (g{k),g ik)) \ (g{k),g(k)) y (A2gW ,gW)J \ y/JIi)

and corresponds exactly to the denominator of the updating formula (4.3).

In a similar manner to the steepest descent algorithm, the renormalised square

root algorithm corresponds exactly to a multiplicative algorithm for constructing

optimal experimental designs. In this case, the optimality criterion to be maximised,

$(£) = V7W2 - Mi = VM2 - Mi>

96

¥>(*, 0 = / T(z) I (0 / 0*0 = 77^7= - x + t t ^ * 2 = ^

can be seen as an extension of the D-optimality criterion where the determinant of

the matrix
M = f v ^ VFi

\ y/W l y/&2

is taken in place of the determinant of (2.17). The multiplicative algorithm,

formed from the square root criterion benefits from the relatively simple formulae:

1 _ 1

* (0 = | 2 V t L .1 1 HQ.
2 2\j M2

2 -y/Mo 2 /x2 2 (v ^)

c = nun<p(x, 0 = ° and b = tr |m (£) 4 (£)] - c(0 = $(£) = - Mi •

4.1 .2 A sy m p to tic R ate o f C onvergence

Figure 4.1 shows the average asymptotic rate of convergence of the square root

algorithm as a function of p (left) and as a function of d (right). As with the

7 -steepest descent algorithm, the rate of convergence of the square root algorithm

seems not to depend on the number of dimensions of the problem, shown in the right

hand graph by the constant rate. The average asymptotic rate of convergence will,

however, worsen with an increase in p, as seen in the left hand graph. In fact, the

average asymptotic rate of convergence of the square root algorithm is exactly the

worst rate of the steepest descent algorithm, Rref defined in (1.13), indicating that

this algorithm is no better than the standard steepest descent algorithm, in fact, on

average it is slightly worse than the steepest descent algorithm. The fact that the

square root algorithm converges with an asymptotic rate of convergence equal to

.Rref also indicates that the corresponding multiplicative algorithm for constructing

optimal designs will converge to an optimum design. The proof is a particular case

of Theorem 4.2.2 in the next section.

97

1

o.a

0.6

0.4

0.2

0
60 1000 20 40 80

1

0.9

0.8

0.7

0.6
0 20 60 80 10040

— p ■ 100 p ■ 50 — p-20 — p ■ 10 |

Figure 4.1: Asymptotic rate of convergence as a function of (left) p with d = 100

and (right) d with various p\ eigenvalues equally distributed.)

4.2 T h e 7-Square R oot A lgorithm

In the previous section, it was shown that the square root algorithm does not improve

upon the asymptotic rate of convergence of the original steepest descent algorithm.

In an attempt to produce a gradient algorithm with a faster asymptotic rate of

convergence, the square root step length can be multiplied by a relaxation parameter,

7 , in the same way the steepest descent algorithm was generalised in Chapter 3. The

generalised square root step length, which from now on shall be referred to as the

7 -square root step length, thus becomes

Q (fc) _ ry ̂ (<?(*>, <?(*)) (4.4)
(AV*>, <?(*>) ‘

If 7 = 1 the step length (4.4) is exactly the step length of the original square root

algorithm.

In order to create the renomalised version of the 7 -square root algorithm it is

noted that the step length (4.4) can be represented in terms of the moments of £ as

a (k) =

and the rate at iteration k for the algorithm can be formulated as:

.(*) _ (g(t+1),g(t+1>) = J _ M g(t),gw) / (gW.gW) , = 1 _ 2

(g (« 0 ,g < * >) 7 (g<*>,g«) V (^ 2gW,g(‘>)
Pi

\/P 2
+ 72 .

(4.5)

98

The updating formula for the renormalised 7 -square root algorithm can thus be

written as

d t+1> = , 2 for t = 1, . . . ,d . (4.6)
1 - 2 7 /il/ y/Jj^ + 72

In a similar manner to the standard renormalised square root algorithm, the

renormalised 7 -square root algorithm can also be considered as an algorithm for

constructing optimal experimental designs. The corresponding optimality criterion

for this algorithm is

$(£) = ly /JW v ~ Hi = 1 VH2 ~ Hi • (4.7)

This is a further generalisation of the D-optimality criterion where the determinant

$ (0 = det / y /H o y /H l \ | T °

\ y /H l y /H 2) \ 0 0

with r = 7 — 1, is taken as the criterion in place of the determinant of (2.17).

For this criterion

<p(x ,£) = ~ x + 1X$ (0 =

c = ~ 1)1 ^ 6 = ^ (2 + 2^) ~

4.2.1 C oncavity o f th e O ptim ality C riterion

The 7 -square root optimality criterion (4.7) can be shown to be a concave functional

for all designs £ in a similar fashion to the way in which the 7 -steepest descent

optimality criterion was shown to be concave in Theorem 3.1.1.

T heorem 4.2.1. The functional, 4>(£) = 'yy/jl^—Hi, is a concave functional provided

7 > 0 .

Proof. To prove concavity it is necessary and sufficient to show that

£ * (&) < °

holds for all £a = (1 — a)£ + a£\ where £, £ are any two designs and 0 < a < 1 .

99

The first derivatives of <3>(£a) = 7 \/M2 (£a) — Mi(£a) are

d*((a) _ . d*(ta) _ 7
^Ml (£a) dfl2 (£a) 2-y//i2(^a)

Substituting these values into the general formula for the second derivative (3.4)

gives

— * «) = - da2 {Ka) da — (M i(C ') - M i (f)) + r - T F T ^ Z ') ~ M2 (0)
2V /i2 (£a)

7 (Mz(£) - M O) ^ 0 v 7 > 0 .
4 (M «) 3/2

The necessary and sufficient condition that the second derivative d2$(£)/da2 is

negative has been met provided 7 > 0 and thus for 7 > 0 the optimality criterion

$ (0 = 7/42 — M i is a concave functional. This implies that the optimality criterion

for the standard square root algorithm is also a concave functional. □

4.2 .2 C onvergence to an O ptim um D esign

T heorem 4.2.2. Let be any non-degenerate probability measure with support

{Ai,...,Ad} and let the sequence of probability measures {£^} be defined via the

updating formula (4-6). Then the sequence

$ < * > = $ (£ < * >) = - w (£ < * >)

monotonically increases and converges for 7 > 1 ; that is < . . . < < . . .

and the limit $*(£(°)) = lim^oo exists.

Proof Note that > 0 for any £ in view of the Cauchy-Schwartz inequality. The

sequence is non-decreasing if 4>(fc+1)—4>(fc) > 0 holds for any distribution £. If the

distribution £ is degenerate (that is, has mass 1 at one point) then 4>(fc+1) = and

the statement of the theorem holds. It is assumed below that £ is non-degenerate.

In particular this implies p.2 > M i-

The problem can be formulated as

$ (* + 1) _ $ (fc) > 0 < = * (7 ^ - M i) - { l \ f P 2 - M i^ > 0

7 2M2 - (7 \ / M 2 + M l - M i) > 0 ,

100

where //x and fi2 are respectively the first and second moments associated with the

distribution £(fc+i) respectively. The inequality that will be proved to hold true is

7 V 2 - (7 ^ + Mi - M i) > 0 . (4 .8)

As (fi2 — fjt 1) and /q are both positive, this inequality is equivalent to the fact that

are non-decreasing.

It is possible to express the moments of £(fe+i) through the moments of £ =

First it is verified that fi0 = ^ fc+1̂ = 1. Indeed,

1 *" A

d - d
u = V ^ fc+1) = _______ 1

0 h t * 1 - 2 7 M i/ \ /M 2 + 7 2

1 - 2 7 ^ 1 /y/JIi + 7 2

 1_______
1 - 27/4i/<n/ / ^ + 7 2

*=i
Mi

1 - 2 7 - 7 ^= + 7 2
a/M2

In a similar way

d 1

* ' ~ h “ i - w2 7 M i/ \ /M 2 + 7 5
Mi - 27 a /M 2 + 7 2 —

M2 J

and

' = V AV(fc+1) = _______-______
S ' 1 - 2 7 M i/v^ 5 + 7 2

The left-hand side of (4.8) can be represented as

7 2M2 - (7 \ /M 2 + Mi “ M i) =

with,

o M 3 . 2 M4
M2 - 2 7 - — + 7 —

V M 2 M2 .

2 E .w (4.9)

f/ = 72(~8M27/27Mi + 3M2472 + 1072/i3//22Mi - 473/z3M25/2 + M2V M 4

- 2 /z23 /2 7 3M4Mi + M227 4M4 - 4/i23/27/i3/ii2 -4 /x iV 22 - 1 3 7 2/x23/zi2

+ 6 7 3/x27/2/ii + 127/z25/2/ii3 +4/i23/ii2 - / i 272/z32 - 7 4/i24) (4.10)

and

IF = (v̂ M2 - 2 7 /ii + 72V ^) 2M22 • (4.11)

As £ is non-degenerate, IF, the denominator of (4.9), is always positive.

101

It thus remains to prove that U, the numerator of (4.9), is also non-negative.

One way of proving that an expression is non-negative is to relate it to a variance of

a random variable, as it is known that variances are always non-negative. Consider

the variance

V = var(ar] 4 - brj2)

where rj is a random variable with distribution £ and a, b are some parameters.

V = var(arj + brj2) = E(arj -I- brj2)2 — [E(arj -I- brj2)]2

= c?E(r}2) + 2abE(rf) + b2E (rf) - (aE(ri) + 6£ (t ;2)) 2

= a2/i2 + 2 af>/i3 + 62/*4 — (an j + bfi 2)2.

Subtract the variance, V, from U and consider this as a function of a,b :

F(a,b) = U - V = 3/i2372 - 8/i25/27Mi + 1 0 7 2A*3M2M i-4 7 3//3Ai23/2 +M2 7 2M4

- 2v//^7 3^ 4/zi+/x274A*4 + 673^25/V i - 1372/z22A«i2 +127^23/2/ii3 +4/i22Mi2

- 72Ai32-7 V 2 3-4/iiV2-4>/^27M3Mi2

- a2/i2 —2a6/i3-62//4 -f-a2/zi2 +2a//i6/X2+ft2M22 •

If a, b can be selected so that F(a , b) = 0 this would mean that U = V. First,

choose b to eliminate the /Z4 term:

b = b0 = 'yyjfi2 -- 2 7 v//Z2/ii + 72/x2 ;

note that 60 > 0 for 7 > 1- Substitute this value into F(a, 6), then solve F(a, bo) = 0

with respect to a. Note that F(a , bo) is a quadratic function in a.

Let D be the discriminant of F(a, b0). (For a quadratic function Ax2 + B x -I- C

in x the discriminant is D = B 2 — A AC] the condition D > 0 guarantees that real

roots of this equation exist). In this particular case, the discriminant is

D = 4//2472 + 872/i3/x2V i ~ 8 ^ 27/V i - 473/i3/i25/2 - 8 /ii4/z22 + Ajj^fJii2

- 6/ii373/i25/2 - 16y2fie3fa 2 + 473/i27/V i + 207//25/V i 3 - 4^23/27 / ^ i 2

- 1 0 / / i 3 7 2 / / 3 / i 2 + 8 / x i 2 7 3 / / 3 At2 3 /2 + 4 / x i 4 v / ^ 2 7 / i 3 -1- 1 3 / i i 4 7 2 /z 2 2 + M1W

-I- /ii274/i23-1 2 /ii57/i23/2+4/ziV2+At32M274-2/ii/i22̂ 374-2At32v/M27Vi •

102

If D > 0 then there is always a solution of the equation F(a, b) = 0 in a and b

meaning that there are always values of a, b such that

U = var(ar) + brj2) .

Split D into two parts, one with fractional powers of fi2 and the other with whole

powers of fj,2 • We then have D = Di + D2 with

D\ = 2 7 v ^ (2 ^ 22 ~ 3/i2/ii2 + /W iX /w V i - 2/i2/q + 2 /zi3 - 7 2/z3) (4.12)

and

D2 = Mi272 /̂ 32 - 2Ati/X22m 4-10A*i372M3M2+4/xi6M2+Mi274̂ 23+13/ii472/i22

+ ^32M274 +4^23/ii2 +4M2472 +872M3A*22M i-1672//2Vi2 -8 /iiV 2 2- (4.13)

For the moment assume that D2 > 0, D\ < 0 (see end of proof for assumptions).

Then the fact that D, the discriminant, is non-negative, is equivalent to

| 0 a | > | 0 i | or (D2f > { D i f .

The difference of squares, (D2) 2 — (D1)2, can be represented as a product of two

squares as follows:

{D2)2—(D\)2 = (Ati2- 7 2/i2)2 (4/ii4M2-8M22Aii2-7 2At22Mi2+272At3/i2Mi-72A*32-+4/i23) 2 > 0 .

This implies that (D2)2 — (D \)2 > 0 and that \D2\ = \D\\ (that is, D = 0) if and

only if

(4/^i V 2 — 8 /Z2V 12 —72/i22 Mi2 + 272//3/i2Mi — 72M32 + 4/i23) 2 = 0

It will now be proved that D\ < 0, where D\ is defined in (4.12). Consider each

factor in (4.12) separately.

(i) The factor /ii/ /3 + 2 fi22 — 3 /ii2/i2 is non-negative since fiifis > by the

Jensen inequality and therefore

/X1//3 + ~ 3/ij/i2 > 3 /X2 - 3/if/i2 = 3 /i2 (M2 - A*?) > 0 implying \xi/x3 +

2/^2 — 3/xf/i2 > 0 .

103

(ii) The factor 7 2/i3 — 7 V 2M1 + 2/i2Mi — 2 /ii3 is non-negative for 7 > 1 since

/i3 > /if by the Jensen inequality and therefore 7 2/i3 — 7 2/i2Mi + 2/̂ 2Mi — 2Mi3 —

(7 2/i3 - /if) + //i(7 2M2 + 2 /i2 - /if) > 0

This implies that Di = - 2 7 v//i^(2 /i22 — 3/i2/ii2 + /i3/ii)(7 2/i3 - 7 2/i2/ii -I- 2/i2/ii -

2 /ii3) < 0.

Finally consider D2, defined in (4.13), and prove that D2 > 0. Consider this

expression as a quadratic equation in /i3 and compute the roots. This is a quadratic

equation of the form D2 = Ap\ + B/i3 -I- C with

A = 7 2/ii2 -I- 7 V 2 , B = - 2 7 2/i2/ii(7 2/i2 + 5/ii2 - 4 /i2),

C = /i2 (/ii27 4A*22 + 13/ii472̂ 2 - 1672/i22/ii2 + 4/ii6 + 4/i2372 + 4/i22/ii2 - 8 /ii4/i2).

Let T be the discriminant of £>2:

T = B 2 - 4AC = - / i 2 (/ / 2 - /ii2)2 (7 2Ai2 - A*i2) 2 < 0 .

Consequently Z} 2 has no real roots and, as a result, D2 > 0 as required. □

It has been proven that a limit to the sequence ($ (£ ^)} exists for the 7 -square

root algorithm when 7 > 1. It is therefore possible to find the limit of this sequence.

Theorem 4.2.3. Let be any non-degenerate probability measure with support

{Ai,...,A<f} and let the sequence of probability measures {£^} be defined via the

updating formula (4.6). I f ^ is such that £^(Ai) > 0 and £^(Ad) > 0 , then the

limit lim^oo of the sequence = 4>(£(fc)) = 7 ^///2(£ ^) — Ah(f^) does not

depend on ^ and

lim 0 (£(l!)) = 4>* = ^ (m + M) - m Mk— >00 4 m + M ’

moreover, the sequence of probability measures {£^} converges (as k 0 0) to the

probability measure £* supported at the points m and M with weights

4M 2 - 7 2(m + M)2 7 2("i + M)2 ~ 4m2
f m = TTTT^T-----o\— 311(1 r M = aTa/to- — ^ ----->v ’ 4(M 2 - m2) v 4(M 2 - m2)

where 7 > 1 .

104

Proof. In a similar fashion to the proof of Theorem 3.1.3, the limiting point of the

probability measure £ can be found by solving the equation

() = (i - 7 x / ^ y
5(X} l - 2 7 M i / v ^ + 72 5 W ’

for £(x) i.e. by finding a measure which is invariant under the 7 -square root updating

formula (4.6).

As was discussed in Section 2.3.3, an optimal design, £* will be supported at the

minimum and maximum eigenvalues m and M, so that

f m M)

r = 1 p 1 j

where q = 1 — p. The first and second moments of the limiting probability measure

C are

Pi = mp + M(1 — p) and p2 = rn2p -1- M 2(1 — p)

respectively. Solving the equation

(1 -7 7 7 1 /^)2 c(m) = ------ - ~ y _ ------ 4 (771)
1 - 27//1 ly/pi + 7 2

for £(777) gives a weight at m for £* of

^ 4M2 - 7 2 (7n + M) 2

{ (m) = ~ A (M2 - m2)
and therefore the weight at M will be

7 2(m + M)2 - 4 m 2
{ (M) = l - £ (m) - 4(M2 _ m2) ■

Since £*(m) and £*(M) are weights they must be between 0 and 1, i.e.

4 M 2 — j 2(m + M) 2 72(771 + M)2 — 4m2

— 4 (M 2 — 77i2) ’ 4(M2 — m 2) ~

and it was shown in the previous Theorem that 7 must be greater than 1, therefore

2 M
1 < 7 < --------- .

771 + M

Substituting the weights of the probability measure £* into $(£(*)) = 7 vV 2(£ ^ —

A*i(f(fc)) gives
7 2/ tuM4> = — {m + M) —
4 771 + M

as required.

□

105

It is possible to confirm that the rate r(£*) associated with the optimum design

is equal to i^ef by substituting the weight p* into the equation for the rate of

convergence (4.5) for the 7 -square root algorithm. If 7 > 2 M /(ra + M) then the

probability measure becomes degenerate and the design is supported solely at the

maximum eigenvalue M.

4.2 .3 Speed o f Convergence to th e O ptim um D esign

The renormalised 7 -square root algorithm has been shown to converge to an opti

mum design if the relaxation coefficient 7 is in the range 1 < 7 < The exact

value of 7 used could however have an effect on the speed with which the opti

mum design is reached. In order to verify whether or not this is the case, the same

technique that was utilised to measure the speed of convergence for the 7 -steepest

descent algorithm has also been applied to the 7 -square root algorithm. The results

of this investigation can be found in Table 4.1.

Whilst it was shown in Theorem 4.2.2 and Theorem 4.2.3 that the 7 -square root

algorithm will converge to an optimum design if 1 < 7 < 2 p/ (1 + p), it can be seen

from Table 4.1 that the range of 7 for which convergence occurs is actually more

extensive than this. In fact there is only a small range of 7 (the location of which

depends on the condition number p) within the interval [2 / (1 + p), 2 p /(l + p)] for

which convergence does not occur. This range of non-convergence can be identified in

the table by the entries which show that a significantly reduced number of decimal

places of accuracy were observed. Blank entries in the table indicate parameter

values for which the 7 -square root algorithm does not converge at all (due to the

fact that 7 < 2/(1 + p) or 7 > 2 p/(l + p). The speed of convergence of the sequence

{r (*0 } is approximately equal for all feasible values of 7 except those values of 7

close to regions where non-convergence occurs, there the convergence is slower.

4.2 .4 A sym p to tic R ate o f C onvergence

The average asymptotic rate of convergence of the 7 -square root algorithm is shown

in Figure 4.2 as a function of 7 for various condition numbers. In concurrence with

106

7 p = 2 p = 4

0t HII p = 19 p = 49 p = 99

0.05 — — — — 1 2
0 .1 — — — 11 9 4

0.15 — — — 15 7 4
0 .2 — — 2 17 3 2
0.25 — — 16 14 2 3
0.3 — — 17 7 1 3

0.35 — — 18 4 2 5
0.4 — — 13 3 3 6

0.45 — 18 7 1 6 8
0.5 — 18 4 3 7 1 0

0.55 — 19 2 4 1 0 12
0 .6 19 1 6 13 14

0.65 16 3 9 15 18
0.7 18 8 5 1 2 18 19

0.75 18 3 7 15 19 19
0 .8 18 1 11 18 19 2 0

0.85 3 2 15 19 18 19
0.9 4 6 19 19 18 19

0.95 1 11 18 19 19 18
1 6 18 19 19 19 19

1.05 18 19 19 18 18 18
1 .1 19 19 19 19 19 17

1.15 19 18 19 17 18 19
1 .2 17 19 2 0 19 19 18

1.25 3 18 18 19 19 2 0
1.3 3 17 19 19 19 19

1.35 — 19 19 19 17 18
1.4 — 18 18 19 19 18

1.45 — 18 19 19 2 0 17
1.5 — 19 19 19 18 19

1.55 — 17 19 19 19 19
1 .6 — — 18 18 19 18

1.65 — — 17 19 19 19
1.7 — — 19 19 19 2 0

1.75 — — 17 19 19 19
1 .8 — — 5 2 0 19 19

1.85 — — — 1 0 19 19
1.9 — — — 3 3 2

1.95 - - - - 2 4

Table 4.1: Speed with which { r ^ } converges to r*, measured as the average number

of decimal places of accuracy achieved by r ^ after 2 0 0 iterations of the 7 -square

root algorithm; d = 1 0 0 .

107

the findings of the previous section it can be seen that for the range 2 / (1 + p) <

7 5: 2 p/ (1 -h p), apart from a small region where a marginally better asymptotic

rate of convergence occurs, the 7 -square root algorithm demonstrates an average

convergence rate equal to the worst rate of the steepest descent algorithm, Rre{.

With regards to the asymptotic rate of convergence of the algorithm, the range

of 7 of most interest is the, albeit small, interval for which the average asymptotic

rate of convergence is slightly better than the worst rate of the steepest descent

algorithm. In order to gain a greater understanding as to why this improvement

in rate occurs, Figure 4.3 shows the attractors of the sequence { r^ } in the region

where this improvement in asymptotic rate of convergence occurs. As was the case

with the 7 -steepest descent algorithm, the areas of improved asymptotic rate of

convergence correspond to regions of 7 where chaos is present in the algorithm.

This improvement in asymptotic rate of convergence is, however, negligible when

compared with the asymptotic rates of convergence achievable by the 7 -steepest

descent algorithm with 7 slightly less than 1 .

0.8 -

0 .6 -

0 2 -

0 2 0.4 0.6

- p = 1 0 0 p = 50 —p = 20 p = 10 —p = 4 —p = 2

Figure 4.2: Average asymptotic rate of convergence as a function of 7 for the 7 -

square root algorithm; d = 1 0 0 .

Figure 4.3: Attractors of r ^ as a function of 7 for the 7 -square root algorithm with,

from top left to bottom right; p = 2,4,10,20,50,100; d = 1 0 0 .

109

4.3 Generalisation to the /3-Root Algorithm

4.3.1 T he R enorm alised /3-Root A lgorithm

While it may not be immediately obvious from their step lengths, the steepest

descent and square root algorithms both belong to the same larger family of gradient

algorithms. Algorithms are classified as belonging to this family if the optimality

criterion corresponding to their renormalised updating formula has the form

When (3 = 1 the optimality criterion is exactly the D-optimality criterion which

was shown in Sec 2.3 to produce a multiplicative algorithm corresponding to the

renormalised steepest descent algorithm. When (3 = 1/2 the criterion is precisely

the optimality criterion described for the square root algorithm, see Sec 4.1. The op

timality criterion (4.14) can therefore be seen as a generalisation of the D-optimality

criterion where the determinant of the matrix

Using (4.14) as a basis, many more gradient algorithms, which would not be intu

itively thought of without this connection to optimal experimental design theory, can

be constructed. The relevant formulae needed to create a multiplicative algorithm

of the form (2.20), which will maximise the criterion (4.14), are as follows:

(4.14)

is taken as the criterion in place of the determinant of the matrix (2.17).

= f T(x) I (f)/(x) = (3 (j 4 - + A v)
c = min(p(:r,£) =

X ,/3-i

110

d& ,d $ i£ r x
“ “ ~ 2d j r J a ^ - ^ ' (}

The resulting updating formula is

^ ‘+1) = ̂ '/g - i si-i ^ for i = 1 , . . . , d (4.16)

1- 2 ISJ + IS!
and has a rate of convergence equal to

/ \ /3—1 / \ 2/3-1
r ' " - l - 1 (S) + (S) - (417»

This algorithm shall be referred to as the (renormalised) /3-root algorithm.

To obtain the non-renormalised version of the /3-root algorithm it is noted that

the step length (4.15) can be re-written as

(»> _ i t 1 _ (9w ,s (*)) W t),<7(<Y - 1cr

and hence the f3-root algorithm takes the form

x<*+1) _ x(fc) _ w (418)

For the purpose of studying the asymptotic rate of convergence associated with

this algorithm, the renormalised version (4.16) will be used.

4.3.2 C oncavity o f th e O ptim ality C riterion

Following the same method set out in Theorem 3.1.1, the /5-root optimality criterion

(4.14) can be shown to be a concave functional for a specific range of (3.

Theorem 4.3.1. The functional, $(£) = ^ — *\ is a concave functional for

1/2 < (3 < 1.

Proof To prove concavity it is necessary and sufficient to show that

holds for all £a = (1 — a)£ -I- a £ , where £, £ are any two designs and 0 < a < 1 .

I l l

The first derivatives of <f>(£a) = ^ (£a) — are

« * & l = - 2 / * * " (« .) , £ g = ^ 1(&).

Substituting these values into the general formula for the second derivative (3.4)

gives

Both terms will be non-positive and hence ^4>(^a) will definitely be non-positive

if (3(2/3 — 1) > 0 and (3((3 — 1) < 0 i.e. if (3 lies in the range 1 / 2 < (3 < 1. □

4.3 .3 B ehaviour o f th e Sequence { $ (f ^) }

Performing similar analysis to that undertaken for the 7 -steepest descent algorithm,

the behaviour of the sequence

m ,k))} = { A z (k)) - (4.i9)

is studied. It has already been shown in this chapter that when (3 = 1/2 the

sequence converges to a limiting design (see Theorem 4.2.2). For other values of (3

the behaviour of the sequence (4.19) is quite different. In particular, when (3 > 1

the sequence can become chaotic. Figure 4.4 and Figure 4.5 show the attractors

of 4>(£(fc)) as a function /?, for various values of p, for both 2 -dimensional and 1 0 0 -

dimensional problems. For most (3 > 1 chaos is clearly present regardless of the

condition number and number of dimensions. For those values of (3 where chaotic

behaviour is not exhibited small cycles are formed and, as was observed with the

7 -steepest descent algorithm, there is a greater abundance of values of (3 at which

cyclic behaviour is demonstrated when d = 2. It is also evident from the y-axis

in these figures that the sequence (4.19) is much more varied than the equivalent

sequence for the 7 -steepest descent algorithm.

In an attempt to further understand the progression of the sequence (4.19),

Figure 4.6 and Figure 4.7 show the normalised values of 4>(£(fe)) as a function of k

for various values of (3. For 1 < (3 § 1.1 the sequence tends to progress in a relatively

112

Figure 4.4: 4>(£(fe)) for k = 7 5 0 ,..., 1000; plotted as a function of (3 for (left) d = 2

and (right) d = 100 and with, from top to bottom: p = 4, p = 10, p = 20.

113

Figure 4.5: 4>(£(fc)) for k = 750 ,..., 1000; plotted as a function of /3 for (left) d = 2

and (right) d = 100 and with, from top to bottom: p = 50, p = 100.

114

stable fashion, slowly decreasing in value until a near zero figure is reached, at which

point a zigzagging period ensues until a near zero figure is again reached which causes

the sequence to jump to a much larger value for the behaviour to then repeat itself.

This is, however, only the general trend of the sequence, the length and frequency

of each phase of behaviour is not constant. For (3 § 1.1 the sequence progresses in a

more hap-hazard fashion with zigzagging from low to high values and back

again with a higher frequency when (3 is larger.

Figure 4.8 shows the spread of values of for k = 1 , . . . , 10000, for different

values of f3. Regardless of the choice of /?, the distribution peaks at near zero values.

For (3 close to 1, the histograms confirm the oscillatory nature seen in Figure 4.6

since the majority of values are located at either end of the range. This behaviour

is less apparent for larger values of (3 as the sequence becomes more erratic.

Figure 4.9 shows the relationship between the values of the optimality criterion

at consecutive iterations, i.e. and for various values (3. For [3 close

to 1 the progression from iteration to iteration is more predictable but as (3 increases

the situation becomes more chaotic, in particular when /? = 1 .5 o r /? = 2 chaos is

clearly present in the transition.

Figure 4.10 shows the weight at Ai plotted against the weight at A<* at each

iteration of a single trajectory of the renormalised /?-root algorithm. Since the

weights, £ ^ (A i) ,. . . ,£ ^(A <*), must sum to 1 , £^(A i) and £^(Ad) are restricted by

the inequality £^(A<f) + £^(A i) < 1 . On the graph corresponding to each value of (3

studied, there are many points very close to the line ^ k\Xd) = 1 —£^(A i) indicating

that at many iterations the design is supported solely at the minimum and maximum

eigenvalues. There are however points located beneath this line, indicating that after

a time the middle weights re-establish themselves sending the algorithm back into

chaos. As (3 increases, the density of points below the line increases which indicates

that the design is supported entirely at the end points (Ai and Â) less and less.

0.8 -

0.6 ■

0.4 ■

0.2 -

800100 200 300 400 700500 600

0.8 ■

0.6 ■

0.4 -

0.2 -

700 800500 600400100 200 300

0.8 -

0.6 ■

0.4 ■

0.2 ■

800700100 600200 300 500400

Figure 4.6: Trajectory of the efficiency 4>(£M)/max4>(£) plotted as a function of k for single realisations of the (3-root algorithm

with, from top to bottom; (3 = 1.01, P = 1.05, f3 = 1.1; p = 10, d = 100.

0.8

0.6

0.4

0.2

100 200 300 800400 500 600 700

0 100 200 300 400 500 600 700 800

0 100 200 300 400 500 600 700 800

Figure 4.7: Trajectory of the efficiency 4>(£^)/max4>(£) plotted as a function of k for single realisations of the /?-root algorithm

with, from top to bottom; (3 = 1.2, (3 = 1.5, (3 = 2; p = 10, d = 100.

117

0 10 20 30 40 50

0 5 10 15 20 25 30

0 500 1000 1500 2000

Figure 4.8: Histogram of for, from top left to bottom right: (3 = 1.01,

/3 = 1.05, (3 = 1 . 1 , (3 = 1.2; (3 = 1.5, /? = 2; p = 10; d = 100, k = 1 , . . . , 10000.

Figure 4.9: Plots of the pairs (4>(£^), 4>(^fc+1̂)) for, from top left to bottom right

(3 = 1.01, (3 = 1.05, /? = 1.1, (3 = 1 .2 ; /? = 1.5, (3 = 2. Points plotted are the last

2 0 0 0 of 1 0 0 0 0 iterations; d = 1 0 0 , p = 1 0 .

118

m m

Figure 4.10: Plots of the pairs (£ ^ (A i) ,£ (fc)(Ad)) for the /?-root algorithm with (from

top left to bottom right): (3 = 1.01, (3 = 1.05, (3 = 1.1, (3 = 1.2; (3 = 1.5, (3 = 2;

p = 10; d = 100. Points plotted are the last 8000 of 10000 iterations.

4 .3 .4 A s y m p to t ic R a te o f C o n v erg en ce

D ependence on (3

Both of the algorithms studied in the (3-root family so far have had comparatively

poor asymptotic rates of convergence. The square-root algorithm was shown to have

an asymptotic rate of convergence equal to the worst rate of the steepest descent

algorithm, R ref and the steepest descent algorithm has been seen to have an average

asymptotic rate of convergence only marginally better than Rref. It remains to be

seen whether there exists a value of (3 for which a significant improvement in average

asymptotic rate of convergence can be yielded.

Figure 4.11 shows the average asymptotic rate of convergence of the (3-ioot al

gorithm as a function of [3. For (3 < 1 the average asymptotic rate of convergence is

unvarying and equal to Rret but when (3 > 1 the rate is no longer constant and it is

evident that much improved average asymptotic rates of convergence are possible.

For these particular parameter settings, the average asymptotic rate of convergence

119

achieved when (3 is fractionally larger than one is especially promising.

0.7 - i

0.6 ■

0.5

0.4

0.3

0.2
0.5 1.5 2.5

Figure 4.11: Average asymptotic rate of convergence as a function of (3 for the /5-root

algorithm.

It may not be the case that the optimum value of (3 is the same for all condition

numbers or for problems of any number of dimensions. For the parameters used in

Figure 4.11 the valley in which the optimum value of (3 lies is very steep. A shift

of as little as 0.01 in the value of (3 will affect the asymptotic rate of convergence

significantly, indicating the importance of selecting exactly the right value of (3 for

the situation. In order to be able to choose the most appropriate value of (3 further

analysis is needed.

Dependence on p

Now that it is known that competitive convergence rates are possible with the correct

choice of /5, it is necessary to discover to what extent the average asymptotic rate

of convergence depends on the value of the condition number p. Figure 4.12 shows

the average asymptotic rate of convergence as a function of p for several different

(3. Similarly to what has already been observed for other algorithms, the average

asymptotic rate of convergence worsens as p increases. For some values of (3 the

increase in R occurs in a more stable fashion than others. In particular, when

(3 = 1.01 or (3 = 2 the increase in asymptotic rate, R , is less steady than for

120

intermediate values. Figure 4.13 shows the average asymptotic rate of convergence

0.8 ■

0.6

0.4 -

0 20 40 60 80 100

— P=1.01 P= 1.05 — P=1.1 — P=1-2 P = 1.5 p = 2 - - Rmin Rrefj

Figure 4.12: Average asymptotic rate of convergence as a function of p for various

values of /?; d = 100.

as a function of (3 for several different values of p. It can be seen that the shape

of the curve is different for the different condition numbers used. The value of (3

that will produce the best asymptotic rates of convergence will therefore be slightly

different in each case. In reality, the condition number of an optimisation problem

is not usually known in advance so it is not possible to pre-specify a value of f3 for a

particular condition number. It is therefore of use to recommend a value of (3 that

will work well for any condition number. A value of (3 = 1.05 seems to be best.

To gain a greater insight into how these advantageous rates are achieved, Fig

ure 4.14 and Figure 4.15 show the attractors of r ^ as a function of (3 for both

a 2-dimensional and 100-dimensional case. As was noted when studying the be

haviour of the sequence (4.19), the algorithm generally exhibits chaos when (3 > 1.

This corresponds to the region where faster asymptotic rates of convergence occur.

In the 2-dimensional case, for certain values of /?, the /3-root algorithm converges

.ft-superlinearly. The regions of (3 for which this is the case can be identified in

the graphs by values of (3 where all attractors of the sequence { r^ } equal zero.

The range of (3 for which .R-superlinear convergence occurs shrinks as p increases.

Another phenomenon observable in the 2-dimensional case is that cycles are formed

with a much higher prevalence compared to the 100-dimensional case.

121

0.8

0.6 -

0.4 •

0.2 -

0.8 1.2 1.4 1.6 1.8

— p=2 —p=4 p= 10 —p= 20 p= 50 —p=100|

Figure 4.13: Average asymptotic rate of convergence of a function of (3 for various

p\ d — 100.

It can be understood from the denseness of points close to the x-axis in Fig

ure 4.14 that at many iterations rW is very close to zero. Near zero values have

a desirable effect on the average asymptotic rate of convergence since R is the ge

ometric mean of the sequence { r^ } . A value of r ^ = 0.001 compared to a value

of = 0.01 would not have that much of a difference in effect on an arithmetic

mean but on a geometric mean the difference is much more significant. The scales in

Figure 4.14 and Figure 4.15 are such that it is not easy to see, with any a degree of

accuracy, exactly how close to zero these points really are. A small difference in r ^

can be much more clearly distinguished in Figure 4.16 and Figure 4.17 where the

attractors of (— ln r ^) are plotted as a function of /3. It should be noted that, due

to limitations in accuracy with the floating point calculations completed in the com

puter simulations used to generate these figures, a value of 10“10 = 0 and therefore

values of (3 where .R-superlinear convergence occurs should be identified by points

at which - lnr<*> = - ln(l(T10) “ 23.

When (3 = 1 the sequence { r^ } converges to a 2-point cycle. For (3 > 1 the

sequence no longer converges and instead exhibits chaos. The transition from cyclic

behaviour to chaotic behaviour can be seen more closely in Figure 4.18 which shows

r a s a function of /? for 1 < (3 < 1.01.

122

Figure 4.14: Attractors of r ^ as a function of /3 for d = 2 (left) and d = 100 (right)

and from top to bottom; p = 4,10,20.

123

Figure 4.15: Attractors of r ^ as a function of j3 for d = 2 (left) and d = 100 (right)

and from top to bottom; p = 50,100.

124

1 1.2 1.8 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2

Figure 4.16: Attractors of (— lnr^fĉ) as a function of (3 for d = 2 (left) and d = 100

(right) and from top to bottom; p = 4,10,20.

125

Figure 4.17: Attractors of (— ln r ^) as a function of f3 for d = 2 (left) and d = 100

(right) and from top to bottom; p = 50,100.

126

i m m m

1.002

Figure 4.18: Attractors of as a function of (3 for 1 < < 1.01, with from top

left to bottom right; p = 2,4,10,20,50,100.

127

D ependence on d

The effect of d on the average asymptotic rate of convergence of the (3-root algorithm

must also be analysed. Figure 4.19 shows the average asymptotic rate of convergence

as a function of d for various values of (3. It can be seen that the relationship between

the asymptotic rate and the number of dimensions is approximately constant for

d = 10 onwards indicating that increasing the number of dimensions of the problem

does not worsen the rate at which the algorithm converges.

0.8

0.6

0.4

0.2

40 60 80 100
= 1.01 = 1.05 = 1.1

Figure 4.19: Average asymptotic rate of convergence as a function of d for the /3-root

algorithm for various /3, with p = 10.

While increasing the number of dimensions has little effect on the asymptotic

rate of convergence of the /3-root algorithm once (3 has been selected, the number of

dimensions does have an effect on the selection of the optimum value of (3 in the first

place. Figure 4.20 shows the average asymptotic rate of convergence of the /3-root

algorithm as a function of (3 for different values of d. The minimum point of each

curve is slightly different and hence the optimum value of (3 depends on d as well as

on the condition number p. In both the graphs in Figure 4.20 the line corresponding

to the 4-dimensional case is broken in several places. At the values of /3 where the

line is broken, the /3-root algorithm has i?-superlinear convergence. It should be

noted however that algorithms of this type would generally be applied to problems

with a large number of dimensions.

0.8 -

0.6 ■

0.4 •

0.2 ■

1.2 1.4 1.6 1.80.8

— d = 20 d = 50 — d = 100— d = 4 d = 10

0.2 -

0.8 1.2 1.4 1.6 1.8

d = 10 — d = 100— d = 4 — d = 20 d = 50

Figure 4.20: Average asymptotic rate of convergence as a function of /3 for the /9-root

algorithm with various d and p = 10 (top) and p = 100 (bottom).

129

Behaviour of r^

It has been seen that the best asymptotic rates of convergence occur when (3 is

slightly greater than 1 . The exact value of (3 for which the best asymptotic rates of

convergence are achieved depends on the parameters p and d. The condition number

p, however, is not usually known beforehand and in this situation a value of (3 — 1.05

is recommended. When (3 is slightly greater than 1 the rate of the (3-root algorithm

at each iteration varies dramatically. It is of use therefore to study the progression

of the sequence { r^ } as k increases.

Figure 4.21 and Figure 4.22 show the rate r ^ as a function of k for /? = 1.01 and

(3 = 1.05 respectively. Both start with an initial oscillatory period similar to that

observed in the steepest descent algorithm, with correspondingly poor rates as a

consequence. After some iterations the oscillations grow steadily in size, eventually

producing extremely high rates (greater than 1) followed by extremely low rates

(close to zero). Every so often the algorithm breaks out of this oscillatory behaviour

and periods of chaos follow where profitable values of close to zero are produced.

As was the case with the 7 -steepest descent algorithm, the /?-root algorithm will

only produce a desirable asymptotic rate of convergence if it is left to run for enough

iterations to reach these lower values of r^k\ The closer the value of (3 is to 1 the more

iterations that are required before the sequence { r^ } breaks out of its oscillatory

phase and reaches the stage where more beneficial rates are achieved. Corresponding

graphs for other values of /? can be found in Appendix C and show that for larger

values of (3, little pattern can be found within the rates indicating the presence of

true chaos.

The distribution of the rates, r^k\ can be seen in Figure 4.23 and the corre

sponding distribution of (— ln r ^) can be seen in Figure 4.24. While on average the

asymptotic rate of convergence is desirable for the /?-root algorithm with suitable

choice of /?, it can be seen from these histograms that at some iterations the rate

will be much worse and, of course, at some iterations the rate of convergence will be

much better. It is recalled that if > 1 at a particular iteration this corresponds

to a situation where the approximation to the minimum point is further away from

x* than at the previous iteration. This indicates that, just like the 7 -steepest descent

Figure 4.21: Rate, r^k\ as a function of k for d = 100, p = 10 and /? = 1.01.

Figure 4.22: Rate, r^k\ as a function of k for d = 100, p = 10 and j3 = 1.05.

132

and Barzilai-Borwein algorithms, the p -root algorithm is non-monotonic in nature.

4000 40OC

3000 300C

2000 200C

1000 . 1001

JltlTni7TTnTTTTTTf[] ,

4M

300

> ! 200

) 100

, OllnflTniTrTriTiTTri

0

. I ttta ta rm T m x fli

4000 400

...ItorrmTTTrmTmi0 0.3 0.0 0.0 1.2 1J 1.0 2.1 2.4 2.7 3 3.3

1
•00
400

0 500

o l j t h X l T T T ~ T T T T l - r T T T T - T ~ r > - <0 0.0 1.2 1.0 2.4 3 3.6 4J 4.0 5.4 6 6.6

0 0.3 0.6 0.6 12 1.5 12 2.1 2.4

i0

0
0

0 2 4 0 i 10 12 14 16 10 20 22

Figure 4.23: Histogram of r ^ for, from top left to bottom right: p = 1.01, (3 = 1.05,

p = 1.1, (3 = 1.2, (3 = 1.5, (3 = 2; p = 10; d = 100, k = 1 , . . . , 10000.

Figure 4.24: Histogram of (— ln (r^)) for, from top left to bottom right: (3 = 1.01,

(3 = 1.05,13 = 1.1, f3 = 1.2, p = 1.5, p = 2; p = 10; d = 100, k = 1 , . . . , 10000.

Further analysis of the rate, r^k\ is enabled by exploring patterns in the transi-

133

tion of r ^ from one iteration to the next. Figure 4.25 shows how patterns in the

transition from r ^ to Ak+1̂ change for different choices of (3. For (3 = 1.05 there is

a clear relationship between the rates in consecutive iterations but for larger values

of (3 chaos is clearly visible, making the transition of rates less predictable.

5

25

7 25

Figure 4.25: Plots of the pairs (r^ ,r^ fc+1̂) for, from top left to bottom right: (3 =

1.01, (3 = 1.05, (3 = 1.1, /3 = 1.2, = 1.5, /? = 2; Points plotted are the last 5000 of

10000 iterations; d = 100, p = 10.

134

4.4 (7 , /?)-Root Algorithm

4.4.1 G eneralisation o f th e /0-Root A lgorithm

The /0-root family of algorithms can be further extended to incorporate the 7 -

steepest descent and 7 -square root algorithms by adding a relaxation coefficient,

7 , to the /0-root optimality criterion (4.14). This produces an optimality criterion

of the form

When >0 = 1 the optimality criterion is exactly the 7 -steepest descent optimality

criterion and when >0 = 1 / 2 the criterion is precisely the 7 -square root optimality

criterion. By setting 7 = 1 the standard /0-root optimality criterion can be regained.

The optimality criterion (4.20) can therefore be seen as a further generalisation of

the D-optimaiity criterion where the determinant of the matrix

where r = 7 — 1 , is taken as the criterion in place of the determinant of the matrix

The relevant formulae required to produce the multiplicative algorithm which

maximises the optimality criterion (4.20) and hence also produces a renormalised

gradient algorithm are as follows:

$ (0 = 7Mo/4 - = 7 /4 ~ (4.20)

from which a corresponding renormalised gradient algorithm can be produced.

(2.17).

<^(z,£) = f T(x) I (0 /(s) = p - 2 /x f + 7 /4 v) ,
c = mmip(x,€) = p 7 / 4

b = tr [M(C) *({)] - c(f) = ^ (7 2/ 4 - 2 7 /1? + .

(4.21)

135

The resulting updating formula has the form

«<t+1) = ----- (1 7 X? A ^ V l V i ^ fa ri = (4.22)
4 - 2 7 (1) + 7 2 (^ f)

and has a rate of convergence equal to

0 -1 / \ 20-1

The algorithm (4.22) shall be referred to as the (renormalised) (7 , /?)-root algorithm.

To obtain the non-renormalised version it is noted that the step length (4.21) can

be rewritten as

,» 7v t 1 l (9 ik),9ik)f

and hence the (7 , /3)-root algorithms has the form

\P / aO (IcA 1
x(*+1, _ xW H 9 ^ r (A W k^y ,M

(A g ^ r - 1 9

4.4.2 A sym ptotic R ate o f Convergence

Figure 4.26 shows the average asymptotic rate of convergence of the (7 , /?)-root

algorithm as a function of 7 for various values of (5. For those values of (3 which have

been observed to produce a /0 -root algorithm with the fastest asymptotic rates of

convergence, the addition of a relaxation parameter, 7 , does not improve the rate

further. This can be seen in the top graph by the fact that the minimum point of

each curve is at 7 = 1 .

For other values of /?, a wise choice of relaxation coefficient, 7 , will improve upon

the rates observed for the same value of f3 when no relaxation parameter is used.

The improvements yielded are not, however, enough to produce an algorithm with

a faster asymptotic rate of convergence than the standard (3-ioot algorithm with (3

slightly larger than 1 .

For more insight into the behaviour of the rate of the (7 , (3)-xoot algorithm,

Figure 4.27 shows the corresponding plots of the attractors of r ^ as a function of 7 .

136

0.8

0.6

0.4

0.2
1.40 0.2 0.4 0.6 0.8 1 1.2 1.6 1.8 2

| — 1 p=1.01 — p=1.05 P= 1.1

0.8 -

0.6 -

0.4-

0.2 -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

| —(3=0.25 — p= 0.5 p~ 0.75 p= 1.5 ~P=~2~|

Figure 4.26: Average asymptotic rate of convergence as a function of 7 for the (7 , (3)-

root algorithm with (3=1, 1.01, 1.05, 1.1 (top); and (3 = 0.25, 0.5, 0.75, 1.2, 1.5, 2

(bottom); d = 1 0 0 , p = 1 0 .

137

;i .V*>>
v-r'v :

Figure 4.27: Attractors of as a function of 7 for the (7 ,/?)-root algorithm with

from top to bottom (3 = 0.25,0.5,0.75,1.01,1.05,1.1; d = 100, p = 10.

138

4.5 /3-Root Algorithm Sum m ary

The square-root algorithm was introduced in Section 4.1. It was shown that the

renormalised square-root algorithm converges to an optimum design and, as a con

sequence, the asymptotic rate of convergence of this algorithm was seen to equal the

worst rate of the steepest descent algorithm, RTe{. The square-root algorithm there

fore provides no improvement in rate over the standard steepest descent algorithm.

In Section 4.2, an attempt was made to improve upon the asymptotic rate of

convergence by adding a relaxation coefficient 7 to the square-root algorithm. It was

shown that the renormalised 7 -square root algorithm also converges to an optimum

design for 7 > 1 and, apart from a small region of values of 7 where the asymp

totic rates of convergence were marginally better, the algorithm converges with an

asymptotic rate of convergence equal to i?ref.

In Section 4.3 the steepest descent and square-root algorithms were both iden

tified, by the structures of the optimality criterion corresponding to their renor

malised forms, as belonging to a larger family of algorithms. This family, collec

tively known as the /3-root algorithm, was shown to possess similar characteristics

to the 7 -steepest descent algorithm in the sense that for certain values of (3 the

rate converges to for other values of (3 the attractors of form cycles of

varying size and for many (3 the algorithm exhibits chaos. As was the case with the

7 -steepest descent algorithm, the best asymptotic rates achievable occur in regions

where chaos is demonstrated. The value of (3 which will form the /3-root algorithm

with the best possible asymptotic rate of convergence depends on the parameters p

and d. In the case where p is unknown, it is advised to use (3 = 1.05 since the asymp

totic rate of convergence is relatively fast for all condition numbers when (3 = 1.05.

It is noted that the /3-root algorithm with (3 = 1.05 is non-monotonic in nature.

Finally, in Section 4.4 the /3-root algorithm is extended further to the (7 , (3)-

root algorithm by adding a relaxation coefficient 7 . The 7 -steepest descent and

7 -square root algorithms both belong to the (7 , /3)-root family. It is shown that an

improvement in asymptotic rate over the /3-root algorithm is possible but only for

values of /3 where the /3-root algorithm does not already demonstrate fast asymptotic

139

rates of convergence. For 1 < (3 ^ 1.1, i.e. where the fastest asymptotic rates have

been witnessed, no improvement in asymptotic rate of convergence is achievable by

adding a relaxation coefficient 7 . The best asymptotic rates observed so far have

thus been produced by the /3-root algorithm with (3 slightly greater than 1.

Chapter 5

optim ality

In the previous two chapters the step lengths of the algorithms under scrutiny have

been created from modifications and generalisations of the steepest descent step

length. There is, however, another source of inspiration from which new step lengths

for gradient algorithms can be generated. Due to the link, established in Chapter 2,

between renormalised gradient algorithms and multiplicative algorithms for con

structing optimal experimental designs, it is possible to create new step lengths for

gradient algorithms based upon existing optimality criteria. In this chapter gradient

algorithms created from the family of 4>p-optimality criteria will be developed and

their asymptotic rates of convergence analysed.

5.1 A-O ptim ality

5.1.1 The A -O ptim ality Criterion and th e C orresponding

Gradient A lgorithm

A well-known optimality criterion in the field of optimal experimental design is that

of A-optimality. A design £* is said to be A-optimum if

tr M(£*)-1 = mm tr M ~ \£) .

Essentially an A-optimum design is one where the sum of the variances of the vari

ables in the linear regression model yj = @ifi(xj) + £j , J = 1, •••, N, is min

140

141

imised. The corresponding criterion, as a functional of the information matrix, is

* (M (0) = trM-*(C) .

For the base function f(x) = (1, x)T this corresponds to

$Aop.«) = t r = - — ^ - 2 ■ (5-1)
MoM2 ~ M l

In order to be consistent with D-optimality where the problem is one of maximisa

tion, here the ^4-optimality criterion (5.1) is inverted so that

s,(e\ - 1 _ W 2 - A»j _ M2-M1 ,,
tr M -'(£) P0 + /T2 1 + /T2

For this criterion
 ££l

$ («)= '
(M2+Mo)? M2+M0

Ml MO + M l’~
\ M2+M0 (M2+M0)2 /

V(- , 0 = / r (x) I «) / (.) = +
(M2 + 1) ^

. , ^ (M2-M12)2c = mm ip(x, () = ------- 2 -
x (M2 + I) (1 + M i)

and

6 = t r [M (£) |(f)] - c (f) = (M i M2 + 1 + 2 m i) (M2 — M i)

(M2 + I) 2 (1 + M i 2)

Using (2.24) the resultant step length can be formulated as

a w _ a(e) _ _ 2^ i /<?*
Aopt - < * & - I d

1 + M?
Mi (1 + M2)

_ (<7̂fc\ <7^)2 + (Ag^k\ <7^)2
(ylpW,^*)) [(^ W ,^) + (24Vfc),M(fc))l

The gradient algorithm corresponding to the ^4-optimality criterion can thus be

written

(+!> = XW _ (gW ,gW)2 + (ytg(t),gW)2 ,k)
(Affw ,s w)((s(*),9W) + (^ V t),9 w)) 9 ' 1 ;

The algorithm (5.3) shall hereafter be referred to as the ^4-optimality gradient algo

rithm.

142

For the purpose of studying the asymptotic rate of convergence of the ^4-optimality

gradient algorithm, the renormalised version of the algorithm will be used. Substi

tuting H2) into the general equation for renormalised gradient algorithms

(2.9), gives the updating formula for the renormalised gradient algorithm corre

sponding to the ^4-optimality criterion as

A M) _________ (1 - A j (l + + Hi)))2___________ (kj , ,

41 l-2 (l+ ^)/(l+ /i2)+M2(l+M?)V(M5(l+M2)2) ?i
(5.4)

The rate at iteration k associated with this algorithm is

(fc) = (1 + 2jl\ + /xf/A2)(M2 ~ Vj)
M?(l + /^2)2

5.1.2 Behaviour o f th e Sequence }

The behaviour of the sequence {4>(£^)} for the ^4-optimality criterion (5.2) is com

pletely different to the behaviour of the sequence (4>(£(fc))} corresponding to the

D-optimality criterion (2.28) in the sense that, instead of converging to a two-point

cycle, the sequence exhibits chaos. In that respect the sequence behaves more like

that of the 7 -steepest descent criterion (3.3).

Figure 5.1 and Figure 5.2 show $>(£(*)) as a function of k for the A-optimality

criterion for various values of the condition number p. As with the 7 -steepest de

scent algorithm, the value of 4>(£(fc)) alternates between low and high values in a

seemingly haphazard fashion. For A-optimality however, the range of values taken

by the sequence is much smaller. The frequency with which the sequence jumps

between high and low values is not constant but it can be observed that generally

this frequency is higher when p is larger.

Figure 5.3 shows the distribution of $(£(*)) for various values of p. The histograms

demonstrate, that for small p, the majority of values of 4>(£(fe)) are located at either

end of the range of possible values $(£(*)) can take on with relatively few points

falling more centrally. This is similar behaviour to the 7 -steepest descent algorithm

with 7 close to one. For larger values of p the distribution shows the sequence to

assume more and more values from the upper end of the range of possible values.

Plots of the pairs ($ (£ ^), 4>(£(Ah"1))) in Figure 5.4 show chaos to be clearly

Figure 5.1: as a function of k for from top to bottom: p = 2, p = 4, p = 10; d = 100.

0.8

0.6

0.4

0.2

100 200 800300 400 700500 600

0.8

0.6
0.4

0.2

700 800600400 500300100 200

0.8 ■
0.6
0.4 ■

0.2

800100 700200 300 600400 500

Figure 5.2: as a function of k for from top to bottom: p = 20, p = 50, p = 100; d = 100.

145

aooo

2000

1600 _

1200

I800 1 ■

J l l i n i i i i l

2400

2000

1000

1200

800 1 _ |

II. ifa n m rrtflln

1600

1200

2400

2000

1000

1200

800

. n w n i M l
0 02 0.4 0.8

2400

2000

1000 -

1 1200 -

^ boo m ' '

llll M BH M rilllll

3500 ■

3000 • -

2000-

2000

1500

0 0.2 0.4 0.6 0.8 1

Figure 5.3: Histogram of for, from top left to bottom right: p = 2, p = 4,

p = 10, p = 20; p = 50, p = 100; d = 100, k = 1 , . . . , 10000.

present in the ^4-optimality gradient algorithm making the transition between

and <3>(£(fc+1)) unpredictable.

Figure 5.5 shows the weight at Ai plotted against the weight at A f o r various

p. Akin to the situation with the renormalised 7 -steepest descent algorithm, the

dense scattering of points close to the line £^(A<*) = 1 — £^(Ai) suggests that the

middle weights, i.e. £ ^ (^ 2), • • • are often reduced to near 0 throughout

the sequence. In fact the renormalised A-optimality gradient algorithm attempts to

attract to the two-dimensional plane with the basis ei, by reducing the weights

of the designs ^ at the rest of the eigenvalues. When the plane has almost been

reached, the convergence rate of the algorithm accelerates and the updating rule

quickly regains the weights of the other components. The process then restarts,

essentially at random, which creates chaos. Figure 5.6 demonstrates the change in

the weights £(fc)(Ai), £(fc)(Ad), and Ya =2 £(fe)(^i) as the iterations progress.

146

Figure 5.4: Plots of the pairs 4>(£(fe+1))) for, from top left to bottom right

p = 2, p = 4, p = 10, p = 20, p = 50, p = 100. Points plotted are the last 2000 of

10000 iterations; d = 100.

.1- * •£:

Figure 5.5: Plots of the pairs (£^(Ai),£^(Ad)) for the .4-optimality gradient algo

rithm with (from top left to bottom right): p = 2, 4, 10, 20, 50, 100; d = 100. Points

plotted are the last 8000 of 10000 iterations.

147

middle weights |

Figure 5.6: £^(A i) (denoted pi,) ^ k\ \d) (denoted p2) and Yli= 2 f^(A») as a func

tion of k for the A-optimality gradient algorithm; p = 10, d = 100.

5 .1 .3 A s y m p to t ic R a te o f C on vergen ce

The 2-Dimensional Case

The A-optimality gradient algorithm has super-linear convergence when d = 2.

Consider the behaviour of the gradient algorithm generated by the A-optimality

criterion in the two-dimensional case; that is, when d = 2, Ai = m and A2 = M.

Assume that the initial point is such that 0 < f ̂ (m) < 1 (otherwise the initial

design would be degenerate as would all other designs t^k\ k > 1).

Denote = £ ^ (m) for k = 0 ,1 ,___ As d = 2, all the designs ^ are fully

described by the corresponding values of since = ^ k\ M) = 1 — The

updating formula for the weight ^ is = / (£ ^) where, for the renormalised

A-optimality gradient algorithm,

UP \ = (\ - (l + ^ i2) mV / î2(1 + ^ 2) 2
V /i1(l + /i2)my (l + 2 /Z12 + MlV 2)(//2 - //l2)^ 1’

+ (1 — £1)M and /i2 = ^ m 2 + (1 — £i)M2. The fixed point of the transfor

mation is

^ M 2 + 1 - y/(M 2 + l)(m2 + l)
M 2 — m2

For this point we have £* = /(£*)• The design with the mass at m and mass (1—£*)

at M is the A-optimum design for the linear regression model yj = 90 + 9\Xj +£j on

the interval [m, M). This fixed point £* is unstable for the mapping £1 —> /(£i) as

\ f m > 1.

148

For the transformation / 2(-) = /(/(•)) , see Figure 5.7 for an illustration of this

map, there are two stable fixed points which are 0 and 1. The fact that the points

0 and 1 are stable for the mapping £i —> / 2(£i) follows from

(Mm + l)4
= (/(/(Cl)))

6=0
= / (o)/ (i) v2 »

6=1 (™2 + !) (M2 + !)'
the right-hand side of this formula is always positive and less than 1. There is a

third fixed point for the mapping —► / 2(£i); this is of course which is clearly

unstable.

This implies that in the two-dimensional case the sequence of measures ^

attracts (as k —► oo) to a cycle of oscillations between two degenerate measures,

one is concentrated at m and the other one is concentrated at M. The super-linear

convergence of the corresponding gradient algorithm follows from the fact that the

rates r(£) at these two degenerate measures are 0 (implying —► 0 as k —> oo for

the sequence of rates r ^) .

l

o
o l

Figure 5.7: Graph depicting the transformation / 2(-) for the A-optimality gradient

algorithm with m = l , M = 4 ; d = 2.

A sym ptotic R a te of Convergence when d > 2

For almost all starting points the gradient algorithm corresponding to the A-

optimality criterion for d = 2 has super-linear convergence in the sense that the

149

sequence of rates r ^ tends to 0 as k —> oo. If the dimension d is larger than

2, however, the convergence of the optimisation algorithm generated by the A-

optimality criterion is no longer super-linear.

The asymptotic rate of convergence of the A-optimality gradient algorithm is

shown as a function of d in Figure 5.8 and as a function of p in Figure 5.9. All

algorithms presented in this thesis have been shown to have little dependence on

the dimension d and the A-optimality gradient algorithm is no exception, as can

be seen by the approximately constant asymptotic rate of convergence for all values

of d g 10. The asymptotic rate of convergence worsens as p increases however a

considerable improvement over the standard steepest descent algorithm is apparent

when this rate is compared with the worst case rate of the steepest descent algorithm,

Rref -

0.8

0.6

0.4

0.2

100

Figure 5.8: Average asymptotic rate of convergence as a function of d for the A-

optimality gradient algorithm.

Figure 5.10 and Figure 5.11 show rM as a function of k for various different

condition numbers p. Unlike the 7 -steepest descent algorithm with 7 close to 1,

where an initial oscillatory period takes place before the algorithm reaches the more

desirable lower rates, the sequence { r^ } for the A-optimality gradient algorithm

descends straight into chaotic behaviour. The advantageous rates close to 0 are not

reached with the same frequency as they are in the 7 -steepest descent algorithm with

150

0.8 -

0 .4 •

0.2 -

40 100
 Aopt Rref - - Rmin

Figure 5.9: Average asymptotic rate of convergence as a function of p for the 74-

optimality gradient algorithm.

suitable choice of 7 , however, the rates r^) in the A-optimality gradient algorithm

are much less varied than those in the 7 -steepest descent and so no extremely bad

rates are produced. In fact, since < 1 for all k > 1 regardless of the condition

number of the problem, the A-optimality gradient algorithm monotonically decreases

to the minimum point x*. This is not necessarily a sought-after characteristic since

the best algorithms studied so far have all been non-monotonic.

The distribution of r ^ for different values of p can be seen in Figure 5.12 and

the corresponding distributions of (—l n r ^) can be seen in Figure 5.13. For larger

values of p the range of values r ^ can take on is much wider. Also, the larger the

value of p, the greater the proportion of there is taking on high values (close

to 1). This is true of all gradient algorithms and shows why the overall asymptotic

rate of convergence always worsens as p increases.

The transition from rW to is shown in Figure 5.14. It is evident that

there is chaos present in the sequence {r however there is also a pattern present

in the form of a denser line of points. This indicates that at least in some places

throughout the course of the sequence a particular value of rW will give rise to a

slightly smaller value of r^k+1̂ gradually decreasing the rate until chaos enters the

sequence again and eventually larger values of r ^ are produced for the pattern to

then start again.

0.5 -

700100 200 600300 400 500

0.5 -

400100 500 600200 300 700 800

0.5 -

100 800700200 300 400 600500

Figure 5.10: Rate, r̂ k\ as a function of k for from top to bottom: p = 2, p = 4, p = 10; d = 100.

0 100 200 300 400 500 600 700 800

0.5 -

300 400 500 600 700100 200 800

0.5

800100 700200 300 600400 500

Figure 5.11: Rate, r̂ k\ as a function of k for from top to bottom: p = 20, p = 50, p = 100; d = 100. Cn
t o

153

MNt ' ~ 3000 .

2000 aooo

. [t o n u n j l t v « m . I l i T i i i i n f l l L i

1000 r~t”

. J l T l n t T T T r t f , L

MOO 3000

PIMOO 2000

1

r r

. 1 T T T T 1 1 i T f l f t l l 1 D . h r r n i T T i T T (T f l f J _

3000

-

1000 _

- „ 1 rTT. r d l l f l i -

Figure 5.12: Histogram of r ^ for, from top left to bottom right: p = 2, p = 4,

p = 10, p = 20, p = 50, p = 100; d = 100, k = 1, . . . , 10000.

Figure 5.13: Histogram of (— ln (r^)) for, from top left to bottom right: p = 2,

p = 4, p = 10, p = 20, p = 50, p = 100; d = 100, k = 1 , . . . , 10000.

154

0.8 0.80 8

0 6

-j|
0.6 0.6

0.40.4 0.4

0.2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.6

0.4

0.2 0.8 0.2 0.6 0.8 0.6 0.80.2 0.4

Figure 5.14: Plots of the pairs (r^k\ for a single trajectory of the A-optimality

gradient algorithm for, from top left to bottom right: p = 2, p = 4, p = 10, p = 20,

p = 50, p = 100. Points plotted are the last 5000 of 10000 iterations; d = 100.

155

5.2 A-O ptim ality w ith R elaxation

5.2 .1 T h e R enorm alised (7 , A)-O ptim ality G radient A lgo

rithm

The addition of an appropriate relaxation coefficient, 7 , to the steepest descent algo

rithm has proved to be greatly beneficial in terms of the improvement in asymptotic

rate of convergence it yielded. The A-optimality gradient algorithm (5.3) has al

ready demonstrated an impressive rate of convergence in comparison to the original

steepest descent algorithm without added relaxation, so it is possible that incorpo

rating a relaxation coefficient into the A-optimality gradient algorithm will further

ameliorate its convergence rate.

Adding a relaxation coefficient 7 to the standard A-optimality step length (5.3)

gives rise to the (7 ,A)-optimality gradient algorithm

x(*+i) = x (k) _ (9w ,gw)2 +_(AgW,gW)2_____ (t) .

The step length of the (7 ,A)-optimality gradient algorithm (5.5) can be written in

terms of the moments, and /X2 , as

(k) _ 1 + M1
cW t - \ 1(1 + M2)

and hence, using the general formula for renormalised gradient algorithms (2.9), the

renormalised version of the (7 ,A)-optimality gradient algorithm can be written as

Ak+i) _ Ak) (1 A 7 (l + /*i) V / (7 V 2U + M i) _ 2 . (1 + m D + t

/x f (1 -I- /Z2) 2 1 + ^2

for i = 1 , . . . , d. The formula for the updating of the weights for the renormalised

A-optimality gradient algorithm can be recovered by setting 7 = 1 . The rate at

iteration k corresponding to the (7 ,A)-optimality gradient algorithm is

ik) 2 M I + Mi)2 _ (t + Mi) j
7 Mi(l + M2)2 7 1 + M2 '

5.2 .2 A sy m p to tic R a te o f C onvergence

Figure 5.15 and Figure 5.16 show the average asymptotic rate of convergence for the

(7 ,A)optimality algorithm as a function of the relaxation coefficient 7 , for varying

156

values of the condition number p and dimension d. As can be seen from all of these

graphs, the minimum point and thus the fastest rate of convergence occurs in the

region of 7 = 1. The exact value of 7 for which the convergence rate is fastest

appears to depend on the value of p but only varies very slightly, being either

marginally less than 1 , 1 , or marginally greater than 1. The increase in convergence

rate gained by using this optimum value of 7 as opposed to simply taking 7 = 1 is

however seemingly negligible; the extra speed of convergence gained is probably not

worth the cumbersome calculations needed due to having a more complicated and

less natural updating formula. The evidence does not therefore suggest the addition

of a relaxation coefficient to the A-optimality algorithm is worthwhile. Having said

that, there is nevertheless a range of 7 , the width of which grows with p, for which

the (7 ,A)-optimality gradient algorithm still gives rise to a better asymptotic rate

of convergence than the worst case rate of the steepest descent algorithm, R ref.

From Figure 5.15 it can be seen that, similar to the all algorithms considered

so far, the asymptotic rate of convergence worsens as p increases. Furthermore,

consistent with what has been observed in other algorithms, the dimensionality

does not seem to play much of a part in effecting the convergence rate. For d = 10

and higher there does not seem to be any significant difference in the asymptotic

rate of convergence observed for the whole range of 7 studied, see Figure 5.16.

In order to obtain a clearer picture of how the value of the relaxation parameter

affects the asymptotic behaviour of the algorithm Figure 5.17 and Figure 5.18 show

the rate r ^ at iteration k for a single trajectory plotted as a function of 7 for

various values of p and d. For the 7 -steepest descent algorithm, the presence of

chaos indicated areas where faster convergence rates were achieved, the situation

is same with the (7 ,A)-optimality gradient algorithm. Comparing Figure 5.15 with

Figure 5.17 it can be seen that the range of 7 for which chaotic behaviour is exhibited

coincides with a region where a rate superior to the worst case rate of the steepest

descent algorithm is attained.

157

0.8

0.80.6

0.40.4

0.40.4 0.6 0.6 0.8
11

0.8

0.60.6

0.4 0.4

0.4 0.6 0.4 0.6 0.8
1 1

0.8

0.6 0.6

0.4 0.4

0.4 0.80.6 0.4 0.6 0.8

Figure 5.15: Average asymptotic rate of convergence as a function of 7 for the (7 , A)-

optimality gradient algorithm with d = 50 and (from top left to bottom right) p — 2,

p = 4, p = 10, p = 20, p = 50, p = 100.

158

0.4 0j4

04

Figure 5.16: Average asymptotic rate of convergence as a function of 7 for the

(7 , A)-optimality gradient algorithm with p = 4, (from top left to bottom right)

d = 2, d = 4, d = 10, d = 20, d = 50, d = 100.

159

Figure 5.17: Attractors of r (fe) as a function of 7 for the (7 , A)-optimality gradient

algorithm with (from top left to bottom right) p = 2, p = 4, p = 10, p = 20, p = 50,

p = 100.

160

» .

Figure 5.18: Attractors of r ^ as a function of 7 for the (7 , A)-optimality gradient

algorithm with (from top left to bottom right) d = 2, d = 4, d = 10, d = 20, d = 50,

d = 1 0 0 .

161

5 .3 <&2- O p t im a l i t y

5.3.1 T he 3>2“O ptim ality C riterion and th e C orresponding

G radient A lgorithm

rithm by introducing a relaxation coefficient 7 , does not give rise to any substantial

improvement in asymptotic rate. There is, however, another way in which the A-

optimality gradient algorithm can be generalised in order to create more prospective

gradient algorithms.

The A-optimality criterion defined in (5.1) is one in a family of so-called $ p-

optimality criteria, see [26]. Here the general formula for the <J>p-optimality criterion

is defined as

where 0 < p < 0 0 . When p = 1 this criterion is that of A-optimality. As the A-

optimality criterion has provided a very useful gradient optimisation algorithm, a

In keeping with the Z)-optimality criterion of Chapter 2, <£(M(£)) = 1 /trM 2(£) is

It has been concluded that trying to modify the so-called A-optimality gradient algo-

(5.6)

logical progression would therefore be to consider the case where p = 2 .

Substituting p = 2 into (5.6) yields the so-called $ 2-optimality criterion

* * m e)) = (trM -2(£))r .

considered as the optimality criterion to be maximised by the optimum design.

For the base function f (x) = (l ,x)T

and therefore

It follows that the criterion for 3>2-optfiniality can be written as

* 2 (M (0) =
+ 2/if + 1)

(A*2 - A)

162

and thus
,2 (M2 - H\?

M2 + 2m2 + 1
becomes the considered optimality criterion to be maximised.

In a similar way to previous algorithms generated, the updating formula for

the $ 2-optimality gradient algorithm can be obtained from the general re-weighting

formula
* * ■ ? - < «) g(g),

tr[M (0 * m - c(d)
where in this case

. 2 (/ z 2- / i i 2) (^ 2 3+ 2 / i i 2 / i 2 + ^ i 2- 2 a ; ^ i / L t 2 2- 2 x / i i 3 - 2 x / x i / i 2 - 2 x / i i - | - a : 2 / i i 2 / i2 H - 2 x 2 /x i2- h E 2)

^ = ---------------------------------------o t f + i + w ---------------------------------------

c(0 = 2(1X2 - ^
(M i 2M2 + 2 / x i 2 + 1) (m 2 2 + 1 + 2 / i i 2) 2

and

tr[M (0 4 (0] = 2^(0-

The resulting updating formula has the form

(t+1) = <*, / / l + W +] V / rWi fori = 1, . . . , rfi (5.8)
\ \ M i (l + M2 + M i + M22) /)

where

(fc) _ (m 2 ~ M i 2) (M i 2M23 + 2 m i 2 M22 + 3/Z2M i 2 + 2 / i i 4 / / 2 + 4 / / i 2 + 1 + 3 / i i 4)

M i2 (M2 + M i2 + 1 + M22)2

Algorithm (5.8) shall be referred to as the $>2-optimality gradient algorithm (in

renormalised form). The step length of the 3>2-optimality gradient algorithm has

the form

(fc) M2M12 + 2 H i 2 + 1a * ' =
* 2 M i (M2 + M i 2 + M22 + 1)

 Q4g(* W fc))2 [(A2g(k\g W) + 2(g(k\gW)] + (g{k),g{k))3
(Ag(k\ gW) [(<7^ , g(ktyA2g(k\ gW)+ (Ag(k\ g(k))2+ (A2g(k\ gW)2+ (g(k\ gW)2]

163

5.3.2 Behaviour of th e Sequence { $ (£ ^)}

In a similar manner to the A-optimality criterion, the sequence (3>(£^)} for the

<f?2-optimality gradient algorithm also does not converge and instead exhibits chaos.

This chaotic behaviour can be seen in Figure 5.19 and Figure 5.20 where the sequence

{<|>(£(*))} is shown for various values of p.

Figure 5.21 gives the distribution of for different condition numbers p and

shows that, as with the A-optimality gradient algorithm, takes on extreme

values in the range more often than more central values. This confirms the oscilla

tory behaviour from higher to lower values and back again seen in Figure 5.19 and

Figure 5.20. The distribution of is shown in Figure 5.21. Figure 5.22 shows

the transition from to $(£(fc+1)) and Figure 5.23 shows the weight pairings

(£^(Ai),£^(Ad)) express a similar behaviour to those of the A-optimality gradient

algorithm.

5.3.3 A sym ptotic R ate o f Convergence

Figure 5.24 compares the average asymptotic rate of convergence of the <l>2-optimality

gradient algorithm with that of the A-optimality gradient algorithm. It can be seen

that the 4>2-optimality gradient algorithm outperforms the A-optimality gradient

algorithm, with respect to the asymptotic rate of convergence, by some considerable

margin. In fact the 4>2-optimality gradient algorithm has an asymptotic rate of con

vergence close to that achieved by the optimum s-gradient algorithm with s = oo,

see (2.12).

The asymptotic rate of convergence of the 4>2-optimality gradient algorithm is

shown to have a greater dependence on d, particularly for large p, in Figure 5.25. For

small p there is little dependence on d but as p increases, the number of dimensions

required before the asymptotic rate starts to plateau also increases and for p = 100

the dimensionality of the problem has an effect on the rate up until approximately

d = 20.

In order to understand how the improvement in asymptotic rate of convergence

over the A-optimality algorithm has occurred it is useful to compare the behaviour

Figure 5.19: Trajectory of plotted as a function of k for a single realisation of the $ 2-optimality gradient algorithm with,

from top to bottom: p = 2, p = 4, p = 10; d = 100.

0.8 •

0.6 -

0.4 ■

0.2 ■

800100 700200 300 600 600400

0.8 ■

0.6 ■

0.4 ■

0.2 ■

600 700 800400 600300200100

0.8 ■

0.6 ■

0.4 ■

0.2 ■

800100 700200 300 400 500 600

Figure 5.20: Trajectory of plotted as a function of k for a single realisation of the $ 2-optimality gradient algorithm with,

from top to bottom: p = 20, p = 50, p = 100; d = 100.

166

2500 -

2000

1500 ■

L ...ill

2900

1500 ■ ■

1000 1

2900

2000

1500

1000 -

2500 -

2000 ■

1500

1000

. L m h m m III
0 0.2 0.4 0.4 0.0

2 9 0 0 -

1000 « | j

. b a B o f l d d l l l
0 0 2 0.4 0.0 0.0

3000 -r

2500 ■ ■

2000

1900 ■ •

1000 - j

c b x o x n o d l l f l l
0 0.2 0 4 0.0 0.8 1

Figure 5.21: Histogram of for, from top left to bottom right: p = 2, p = 4,

p = 1 0 , p = 20; p = 50, p = 100; d = 100, k = 1, . . . , 10000.

0.8

1

04

1

04

04 04 04
• *: *’***.

0.4 04 04

04 i u

w
04

;w
t) 02 M 0.0 U 1 1» 04 04 04 0.8 1 1» 04 04 04 04 1

0.8

04

'.; s r

04

04 :

04

M 04 04

0.2 04

W
04

11 04 0.4 04 0.8 1 {\ 04 04 04 04 1 1 » 04 04 04 04 1

Figure 5.22: Plots of the pairs 4>(£(fc+1))) for, from top left to bottom right

p = 2 , p = 4, p = 10, p = 20, p = 50, p = 100. Points plotted are the last 2000 of

1 0 0 0 0 iterations; d = 1 0 0 .

167

Figure 5.23: Plots of the pairs (£^(Ai),£(fc)(Ad)) for the <F2-optimality gradient

algorithm with (from top left to bottom right): p = 2, 4, 10, 20, 50, 100; d = 100.

Points plotted are the last 8000 of 10000 iterations.

0.8 -

0.6 -

0.4 -

0.2 -

10020 40

- - Rmin A-opt Rref

Figure 5.24: Average asymptotic rate of convergence as a function of p for the

A-optimality and 4>2-optimality gradient algorithms; d = 1 0 0 .

168

0.8 H

0.6

0.4

0.2

40 100

Figure 5.25: Average asymptotic rate of convergence as a function of d for the

^ 2-optiinality gradient algorithm.

of the rate rW of each of the algorithms. Figure 5.26 and Figure 5.27 show the

rate r ^ for the ^-optimality gradient algorithm as a function of k for several

values of p. Again, regardless of the value of p, the rate at each iteration of the

$ 2-optimality gradient algorithm remains below 1 indicating that this algorithm is

also monotonic in its approach to the minimum point x*. As with the A-optimality

gradient algorithm, the rate of the ^-optimality gradient algorithm fluctuates from

extremely good points, close to 0 to comparatively bad rates, close to 1 . The number

of iterations required for the ^-optimality gradient algorithm to progress from bad

rate to good rate and back again is however greater making this algorithm more

systematic than its predecessor since less periods of complete chaos ensue. For

larger values of p, where the most pronounced improvement over the A-optimality

gradient algorithm is observed, the rate of the <h2-optimality gradient algorithm

still reaches the extremely good rates close to 0 whereas the A-optimality gradient

algorithm does not to the same extent.

Figure 5.28 and Figure 5.29 show the distributions of and (— ln r ^) . These

graphs show the rate of the ^-optimality gradient algorithm to behave similarly to

that of the A-optimaiity gradient algorithm where more values of r ^ are located

at either end of the range and less occur in the middle. The <J>2-optimality gradient

algorithm’s rate is more extreme in this shape of distribution with markedly more

0.5 -

r ^
400 800100 200 700600300 500

1

0.5 -

100 200 300 400 500 600 700 800

0.5 -

100 200 800300 700400 600500

Figure 5.26: Rate, r̂ k\ as a function of k for from top to bottom: p = 2, p = 4, p = 10; d = 100.

0.5 -

800100 700200 600300 400 500

0.5 -

100 200 300 400 500 600 700 800

0.5 -

100 800200 700300 400 500 600

Figure 5.27: Rate, r̂ k\ as a function of k for from top to bottom: p = 20, p = 50, p = 100; d = 100.

171

rates falling in the lower end of the range for larger values of p.

1000

. i lh D m r a m c id l l

1000 M FT

. . I t a o r a i

3000

2*°° ra
.ooo r*

. m m n n T r L

2000

[T
10OO r—

. J l i n r m c l l l f . i l

3000

1000

. T r r r m n rtTff I . I

i 1

1000

. Ih-rrTTTTTTTTfrff
Figure 5.28: Histogram of r^ for, from top left to bottom right: p = 2, p = 4,

p = 10, p = 20, p = 50, p = 100; d = 100, & = 10000.

Figure 5.29: Histogram of (— ln (r^)) for, from top left to bottom right: p = 2,

p = 4, p = 10, p = 20, p = 50, p = 100; d = 100, k = 1 , . . . , 10000.

Figure 5.30 shows the transition from r ^ to r^k+1̂ for the $ 2-optimality gradient

algorithm. While chaos is evidently still present in the transition from one rate to

172

the next there is also a definite pattern suggesting that the algorithm does not lapse

into chaos to the same extent as the rates of the ^4-optimality gradient algorithm

where less of a clear transitional pattern can be seen.

0 8 0 80.8

0.6 0.6 0.6

0.4 0 .4

0.2 0.2

0.2 0.6 0.8 0.2 0.4 0.6 0.8 0.20.4 0.4 0.6 0.8

0.8

0.6 - 0.6 0.6 -

0.4

) 0.2
0

0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 5.30: Plots of the pairs (r^k\ r^h+1̂) for a single trajectory of the 4>2-optimality

gradient algorithm for, from top left to bottom right: p = 2, 4, 10, 20, 50, 100.

Points plotted are the last 5000 of 10000 iterations; d = 100.

5.4 <3>3-Optimality

5.4 .1 T h e 4>3-Optim ality C riterion an d th e C o rresp o n d in g

G rad ien t A lg o r ith m

Since the <f>2-optimality gradient algorithm gave rise to a faster asymptotic rate

of convergence than the Aoptimality algorithm it is sensible to progress further

and consider the possibility of constructing an algorithm from the 4>3-optimality

criterion. Substituting p = 3 into the general formula (5.6) for the 4>p-optimality

173

criterion gives__________________ _____________________

W 9) = | I ^ P ^ .
V (/*2 - /^l2)

For the sake of simplicity, the function

» « > - v c w g) » - - 3 (59)
will be taken to form the basis of the new gradient algorithm.

In the same way as with the previous algorithms formed in this chapter, the

updating formula for the algorithm corresponding the the <F3-optimality criterion

can be obtained from the general re-weighting formula

C M -
tr[M (£)$ (£)]~ c(£)

In this case
, ,3 3$ 3$, a $

v(x’4) = 3 ^ + x a ^ + x 3 ^ ’

where

d® _ g (mo/^2 ~ Ẑ i2)2 (2/xq/x2/xi2 + /xi4 + /^i2/xq2 + /X24 + 3/X22/xi2)
(/X23 + 3/12M12 + 3/Xi 2/x0 + /x03)2

= _ 6________ Ml (/xp/x2 - Ml2)2 (mo2 + 2 /ii2 + /x22)_________
0/Jl (mo2 - ^ 0/^2 + 3/Xi2 -1- /x22) (/x23 + 3/12/Xl2 + 3/xi2/x0 + /Xo3) ’

^ 5 . = 3 (w*2 - /^l2)2 (2/Xq/X2/Xi2 + /X22/Xi2 + /Xi4 + 3/Xi2/Xq2 + /Xp4)
^ 2 (/x23 + 3 /X2/X12 + 3/xi2/x0 + /X03)2

c _______________________ 3 (/x2 - /Xi2)6_______________________
(/x2 + l)2 (2/X2/X12 + /X22/Xl2 -I- /Xi4 + 3/Xi2 + 1) (1 - /X2 + 3/Xi2 + /x22)2

and

tr[M (£)|(£)] = 3*(C).

The resulting updating formula has the form

^ +1) = 1 r(l) for i = 1, . . . ,d, (5.10)

where
2 i 2.. 2 ■ 4 . o,. 2

and

(*) _ 2/x2/Xi + /X2 /xi + /xi + 3/xi + 1
a * 3 A*i (M 2 + 1) (1 + 2/xi2 + /x22)

174

a n d

^ (ik) ^ ^ 2 //2 A t i 2 + / i 2 2 Ati 2 + / / i 4 + 3 / i i 2 + l M 2 (2 /^ 2 M i 2 + At2 2 At i 2 + A f i 4 + 3 / z i 2 + l) 2

(/ /2 + 1) (1 + 2//i2 + //22) /zf (/i2 + l) 2 (H-2/i! 2 + /Z22) 2

I n line with the rest in this family of algorithms, the algorithm (5.10) shall be

re fe rred to as the ^ 3-optimality gradient algorithm.

5 . 4 . 2 Behaviour of the Sequence

F ig u re 5.31 and Figure 5.32 show the sequence ($ (f^)} , for the ^ 3-optimality

c r ite rio n for various p. Figure 5.33 shows the distribution of in the form of

h istogram s also for various p and Figure 5.34 shows the transition from 4>(£(fc)) to

4>(£(fc+1)). By comparing these figures with the corresponding graphs for the 4>2-

o p tim a lity criterion in the previous section, it can be seen that all of these figures

sh o w the behaviour of the ^ 3-optimality criterion (5.9) to be virtually identical to

t h a t of the <I>2-optimality criterion (5.7). Likewise, Figure 5.35 shows the weight

p a irin g s (£^(A i) , ^ k\^d)) to behave in exactly the same fashion as those of the

^ 2 -optimality gradient algorithm.

5 .4 . 3 A sym ptotic R ate o f Convergence

T h e ^ 3-optimality criterion was shown to behave in an almost identical fashion

t o th e ^ 2-optimality criterion. It is of no surprise therefore that the asymptotic

r a t e of convergence of the 4>3-optimality gradient algorithm is also approximately

t h e same as that of the 4>2-optimality gradient algorithm, see Figure 5.36. The

dim ensionality of the problem has the same pronounced effect on the asymptotic

r a t e in lower dimensions, see Figure 5.37 with the rate not becoming constant with

increasing d until d ^ 2 0 for larger values of p. Since both algorithms share the same

d es irab le asymptotic rate of convergence it is advisable to select the 4>2-optimality

g ra d ie n t algorithm as a preference between the two as the step length formula for this

a lg o rith m is simpler. Figure 5.38 and Figure 5.39 show the rate as a function of

k fo r different values of p . Figure 5.40 and Figure 5.41 show the distributions of

a n d (— ln r(fc)) respectively and Figure 5.42 shows the transition from r ^ to r(fc+1).

0 100 200 300 400 500 600 700 800

0.8

0.6

0.4

0.2

500 600 700100 200 300 400 800

0.8

0.6
0.4

0.2

800100 700200 300 600400 500

Figure 5.31: Trajectory of as a function of k for from top to bottom: p = 2, p = 4, p = 10; d = 100.

800700100 200 S00 600300 400

0.8

0.6
0.4 ■

0.2

700400 500 600 800200 300100

0.8

0.6

0.4

0.2

800700100 500 600200 300 400

Figure 5.32: Trajectory of as a function of k for from top to bottom: p = 20, p = 50, p — 100; d = 100.

177

2500 2900

2000 2000

1500 ■ 1500 -

1000 1 1000 1

' . f c h m m r i f l : L b

0 0 02 0.04 0.00 0.00 0 0.05 0.1

2500

1500 ■ ■

■ 1000

0.15 0.2 0.25 0.3 0 0.2 0.4 0.6

2500 ■ • 2500

2000 * - 2000

1500

1000 | 1000 ■

. I t a o B O O M f l l l l . L m

0 0.2 0.4 0.6 0.6 0 0.2 0j

5000

2500

2000

1500

1000 - m

M f l d l l l l „ i l l
I 0.0 0 J o 0.2 0.4 0.6 0.6 1

Figure 5.33: Histogram of for, from top left to bottom right: p = 2, p = 4,

p = 10, p = 20, p = 50, p = 100; d = 100, k = 1 , . . . , 10000.

Figure 5.34: Plots of the pairs (4>(^fel), 4>(£^+1))) for, from top left to bottom right

p = 2, p = 4, p = 10, p = 20, p = 50, p = 100. Points plotted are the last 2000 of

10000 iterations; d = 100.

178

i

1

1

0.4

00 0.2 M 0.8 1

Figure 5.35: Plots of the pairs for the $ 3-optimality gradient

algorithm with (from top left to bottom right): p = 2, 4, 10, 20, 50, 100; d = 100.

Points plotted are the last 8000 of 10000 iterations.

0.8

0.6

0.2

20 80 100
A-opt Rref Rmin

Figure 5.36: Average asymptotic rate of convergence as a function of p for the

A-optimality, $ 2-optimality and <3>3-optimality algorithms.

179

0.8 H

0.6

0.4 -

0.2

80 100

Figure 5.37: Average asymptotic rate of convergence as a function of d for the

<I>3-optimality gradient algorithm.

All these figures reveal the behaviour of the rate for the ^ 3-optimality gradient

algorithm to be almost identical to that of the ^-optim ality gradient algorithm.

0.5 -

800700100 200 600300 400 500

0.5

300 500100 200 400 600 700 800

0.5 -

800100 200 700300 400 500 600

Figure 5.38: Rate, r̂ k\ as a function of k for from top to bottom: p = 2, p — 4, p = 10; d = 100. 00
o

0.5 -

800100 700200 600300 400 500

0.5 -

300 400100 200 500 600 700 800

0.5 -

100 800200 300 700400 500 600

Figure 5.39: Rate, r̂ k\ as a function of k for from top to bottom: p = 20, p = 50, p = 100; d = 100.

182

Figure 5.40: Histogram of r ^ for, from top left to bottom right: p = 2, p = 4,

p = 1 0 , p = 20, p = 50, p = 100; d = 100, k = 1 , . . . , 10000.

1 L
j i t w

.iLw . L

Figure 5.41: Histogram of (— ln (r^)) for, from top left to bottom right: p = 2,

p = 4 , p = 10, p = 20, p = 50, p = 100; d = 100, As = 1 , , 10000.

183

0 8 0.8

0.6 0 6 0.6

0 4 0.4

0.2 0.2 0.40.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6 0.8

0.6

0.2 0.4 0.2 0.4 0.6 0.80.2 0.4 0.6 0.8 0.6 0.8

Figure 5.42: Plots of the pairs (r^k\ r ^ +1)̂ for a single trajectory of the ^-optim ality

gradient algorithm for, from top left to bottom right: p = 2, 4, 10, 20, 50, 100.

Points plotted are the last 5000 of 10000 iterations; d = 100.

184

5.5 <E>p-Optim ality Sum m ary

In this chapter, four new gradient optimisation algorithms were proposed. All four

algorithms were derived from existing optimal experimental design criteria, namely

the family of $>p-optimality criteria.

The algorithm created from the A-optimality criterion showed itself to have a

good asymptotic rate of convergence, faster than the worst case rate of the steepest

descent algorithm, Rref. This algorithm also has the additional attractive quality that

all the rates r ^ are such that 0 < r (fc) < 1 . This implies the monotone convergence

of the algorithm. Due to this impressive asymptotic rate, the A-optimality gradient

algorithm was then generalised by adding a relaxation coefficient, 7 , in the hope of

creating an algorithm with a faster asymptotic rate of convergence still. The (7 , A)-

optimality gradient algorithm, however, does not produce a better asymptotic rate

of convergence than the original A-optimality gradient algorithm. For certain ranges

of 7 the algorithm does still converge with a rate better than Rref.

The next algorithm developed was based on the 4>2-optimality criterion. This al

gorithm demonstrates a very fast asymptotic rate of convergence which is superior to

that of the A-optimality gradient algorithm and is close to R min. The <f>2-optimality

gradient algorithm also possesses the characteristic that the rates r ^ remain be

tween 0 and 1. The algorithm therefore converges in a monotonic fashion.

The success of the 4>2-optimaiity gradient algorithm in comparison to the A-

optimality gradient algorithm prompted the creation of an algorithm based on the

4>3-optimality criterion. The figures of Section 5.4 show that the behaviour of this

algorithm closely mirrors that of the 4>2-optimality gradient algorithm resulting in

an extremely similar asymptotic rate of convergence. Since no improvement in the

rate of convergence can be yielded from an algorithm with much longer formulae it is

concluded that the creation of gradient algorithms from ^-optim ality criteria with

p > 4 is not worthwhile due to even more complicated formulae and little chance of

further amelioration in convergence rates.

Chapter 6

Conclusions and Further W ork

6.1 Summary

This section will briefly outline the principal findings of each chapter in this thesis.

For a more detailed review of Chapters 3-5, refer to the end-of-chapter summaries.

In Chapter 1 the principles of quadratic optimisation were introduced and de

scriptions of some of the most famous iterative methods for solving quadratic optimi

sation problems were given. The most common class of methods applied to quadratic

optimisation problems is the class of gradient algorithms. It was explained that gra

dient algorithms can also be applied to the solution of linear equations and it was

revealed that in fact two of the most famous optimisation algorithms, the steepest

descent algorithm and the conjugate gradient algorithm were both first thought of

in terms of solving linear systems. Other methods for solving linear systems were

also outlined. At the end of Chapter 1 a comprehensive literature review was given

which explored recent developments in the field of gradient optimisation algorithms.

Most of the gradient algorithms that have been developed in recent times are mod

ifications of the Barzilai-Borwein algorithm which in itself is a modification of the

steepest descent algorithm. The asymptotic rates of convergence of the algorithms

developed in this thesis are compared to that of the Barzilai-Borwein algorithm in

Section 6.3.

The technique of renormalisation was used by Akaike in [1] to study the rate of

convergence of the steepest descent algorithm. In Chapter 2 the methodology used

185

186

by Akaike is reviewed and a general formula for renormalised gradient algorithms

is obtained. Once in renormalised form, it was shown that a link can be estab-

asymptotic rate of convergence of gradient algorithms can be expressed through the

asymptotic behaviour of multiplicative algorithms for constructing optimal experi-

which enables new gradient algorithms to be created from any optimality criterion

which takes the form of a functional of the moment matrix

It was revealed that an algorithm which converges to an optimum design possesses

In Chapter 3 the steepest descent algorithm was generalised by incorporating

a relaxation coefficient, 7 , into the original step length. The techniques used to

study the behaviour of the rate of convergence of all the algorithms generated in

this thesis were introduced in this chapter and were applied to the 7 -steepest descent

algorithm. It was shown that for 1 < 7 < 2M / (m + M) and 2m / (m + M) < 7 <

4m M / (■m + M) 2 convergence to an optimum design occurs and thus for these ranges

of 7 , the gradient algorithm possesses the worst case rate of convergence of the

steepest descent algorithm, R ^ . For much of the range 4m M / (m + M) 2 < 7 < 1

chaos is exhibited and it is within this range that improvements in the asymptotic

rates of convergence are demonstrated. It was concluded that the best asymptotic

rate of convergence is obtained when 7 is slightly less than 1 . The 7 -steepest descent

algorithm with 7 slightly less than 1 is non-monotonic in its descent to the minimum

point. With a sensible choice of 7 , the 7 -steepest descent algorithm was shown to

possess an asymptotic rate of convergence faster than the relaxed steepest descent

algorithm suggested in [58].

In Chapter 4 the /?-root family of gradient algorithms was created through gen

eralising the .D-optimality criterion. The steepest descent algorithm belongs to this

family of algorithms. The first /?-root algorithm considered was the square-root

lished between gradient optimisation algorithms and multiplicative algorithms for

constructing optimal experimental designs. It was further demonstrated that the

mental designs for linear regression models. A general framework was established

the worst case asymptotic rate of convergence of the steepest descent algorithm.

187

algorithm and it was shown that this algorithm possesses the worst case rate of

convergence of the steepest descent algorithm since the renormalised square-root

algorithm converges to an optimum design. Adding a relaxation coefficient to the

step length of the square-root algorithm did not improve upon the asymptotic rate

of convergence, and indeed for a large range of 7 convergence to an optimum design

was shown to occur. Other algorithms belonging to this family, however, possess

much faster rates of convergence. Some values of (3 allow cycles of varying size

to form in the sequence of rates { r^ } while others induce chaos in the sequence.

The best asymptotic rates of convergence are obtained when (3 is such that chaos is

present. The value of /3 which produces the fastest asymptotic rate of convergence

was seen to depend on p but is always slightly greater than 1 . Similarly to the

7 -steepest descent and Barzilai-Borwein algorithms, the (3-root algorithms with the

fastest asymptotic rates are non-monotonic in nature. Adding a relaxation coeffi

cient to the algorithm did not produce any further improvements in the asymptotic

rate of convergence.

Using the general methodology outlined in Chapter 2, four new gradient algo

rithms, inspired by the so-called 4>p-optimality criteria, were created in Chapter 5.

The first algorithm was formed from the A-optimality criterion. This algorithm was

shown to exhibit chaos and has an asymptotic rate of convergence that is much

better than Rtef. A relaxed version of the A-optimality gradient algorithm was cre

ated but it was concluded that no improvement in asymptotic rate of convergence

could be yielded in this way. The 3>2-optimality criterion and the ^-optim ality

criterion were also used to create new gradient algorithms. These algorithms were

seen to behave in an almost identical manner to each other and both demonstrated

a substantial improvement in asymptotic rate of convergence over the gradient al

gorithm constructed from the A-optimality criterion. It was seen that the gradient

algorithms created from the A-optimality, $ 2-optimality and <I>3-optimality criteria

have the additional attractive quality that all the rates for each algorithm are

such that 0 < r (fe) < 1 . This implies the monotone convergence of the algorithms.

Tables containing the main formulae required to produce each of the algorithms

constructed in this thesis can be found in Appendix B.

188

6.2 Further Work

All gradient algorithms constructed in this thesis have been restricted to the form

x(fc+1) = x (k) _ a Wg(k)t

where is the step length at iteration k and gW = is the direction

of descent. In renormalised form these algorithms have been shown to be exactly

equivalent to a multiplicative algorithm for constructing optimal experimental de

signs for the linear regression model y = 60 + 6\X + e. There are, however, other

classes of algorithms whose asymptotic rates of convergence can be studied using the

methodology developed in this thesis. One of these classes of algorithms is briefly

considered below.

6 .2 .1 T he O ptim um 2 -G radient A lgorithm

A logical progression in the study of the asymptotic rates of convergence of gradient

algorithms would be to consider the convergence rates of those algorithms of the

form
x(fc+i) _ x (k) _ Q(fc)̂ (fc) _ c ^ A g ^ . (6.1)

Gradient algorithms conforming to the structure set out in (6.1) can be related

to multiplicative procedures for constructing optimal experimental designs for the

quadratic regression model y = 6q + 6\x + 02x2 + e. In this case the optimality

criterion to be maximised for each multiplicative algorithm is a functional of the

moment matrix
(\go gi g2

M (0 = g\ 1*2 gs

g 3 g4 ;

The optimum s-gradient algorithm (see [32, 56]) with s = 2 is an example of a

gradient algorithm of this type. There, the parameters and are chosen so

as to minimise f{x^k+l)̂ at each iteration. Brief analysis of the optimum 2-gradient

189

algorithm,

(Jfc+1) <k\ (glk\ g {k)) (A3g(k),g (k)) - (Ag(k\g (Q) (A 2g W ,g W) (Jt)
(A gW ^ g M X A S g W ig W) - (A2g t o , g to)2

(gm ,gw)(A2g(k\ g (k)) - (4g<*>,gW)2 w

has been performed.

In order to study the asymptotic rate of convergence of the optimum 2-gradient

algorithm it is first necessary to renormalise the algorithm. The updating formula

for the renormalised optimum 2-gradient algorithm has the form

for i = 1 , . . . , d, where

(k) (9(t+1),9(t+1)) (t o ~ to2) (Itototo ~ to to2 ~ to2 + to to - to3)
(t o t o - t o 2)2

The asymptotic rate of convergence of the optimum 2-gradient algorithm in re

lation to jRmin and is depicted in Figure 6.1. It can clearly be seen that the

asymptotic rate of convergence of this algorithm is much better than and hence

is also an improvement over the asymptotic rate of convergence of the standard

steepest descent algorithm. The optimum 2-gradient algorithm does not, however,

possess an asymptotic rate of convergence which would compete with that of some of

the other algorithms studied in this thesis, for example the 7 -steepest descent algo

rithm with 7 slightly less than 1 . There is nevertheless the possibility of improving

upon the asymptotic rate of convergence of the optimum 2 -gradient algorithm by

incorporating relaxation into the updating formula.

6.2 .2 T he R elaxed O ptim um 2-G radient A lgorithm

To create the 7 -steepest descent algorithm a relaxation coefficient, 7 , was added to

the step length, of the standard steepest descent algorithm. A similar method

can be applied to the optimum 2 -gradient algorithm but since this algorithm pos

sesses two parameters, and there is scope to add two relaxation coefficients,

190

0.8 ■

0.6 -

0 .4 ■

0.2 -

80 100
— optimum 2-gradient — Rref - Rmin

Figure 6 .1 : Average asymptotic rate of convergence as a function of p for the opti

mum 2-gradient algorithm with d = 1 0 0 .

7 i, 7 2 , to the algorithm. The result is a relaxed algorithm of the form

„(<=+!) _ (*)_„ ((gw .g(t))(^3g(t).g(<!)) - (Agw,gW)(A2g(t),g(t)) \ <*)
7 l V (AgW,gM)(A>gW,gW)V*>,gw)2

„ / (9W,gW)(^ gW,gW)-(A gW,gW)^ ^ (fc)

This algorithm shall be referred to as the relaxed optimum 2-gradient algorithm.

The renormalised updating formula for the relaxed optimum 2-gradient algorithm

has the form

= f<‘> f 1 - V n (» = £ ! ») + Ah, (/ r « , (6.4)

for i = 1 , . . . ,d. The rate, r^k\ and hence also the denominator of the updating

formula (6.4) is equal to = (g^k+1\g^k+1̂)/(g^k\ g ^) = riSm/(pip3 — pfy, where

r ium = ^472^14 + (-2/4272/^3 ~ 2/i37l72A*2 + ^

+ (m237i — 2 7 1 //23 + V32 + 2/i2372 + 2/i327i72 — 27i/i32 — 2/i47|/i2) /^i2

+ (27i/i3At22 — 2 /Z3/222 + 2/i37172/z22 — 2//227i A*3 + 2/i2272At3) A*i

- 2/i2472 - 2/z327i72/i2 + ^ 24 + A*27iM32 + •

In the relaxed optimum 2-gradient algorithm there are two relaxation coefficients,

thus in order to find the relaxed optimum 2-gradient algorithm which yields the best

191

possible asymptotic rates of convergence it is necessary to find the best combination

of 71 and 7 2 . Figure B.l in Appendix B contains an extract of a table where the

asymptotic rates of convergence achieved through varying both 7 1 and 7 2 are dis

played. It is evident from Figure B.l that the best asymptotic rates of convergence

are achieved when 71 = 7 2 = 7 - The analysis was repeated for other values of p and

d than those used in Table B.l and the same phenomenon was seen to occur i.e.

the fastest asymptotic rates of convergence always occur when the two relaxation

parameters are equal to each other. The relaxed optimum 2-gradient algorithm with

7 j = 7 2 = 7 shall be referred to as the 7 -optimum 2 -gradient algorithm.

The asymptotic rates of convergence of the 7 -optimum 2-gradient algorithm have

also been briefly analysed. Figure 6.2 shows the average asymptotic rate of conver

gence of the 7 -optimum 2 -gradient algorithm as a function of 7 for several values

of p. Regardless of the value of the condition number p, the worst asymptotic rates

of convergence occur when 7 = 1 , i.e. when the algorithm is equal to the standard

optimum 2-gradient algorithm. Choosing a value of 7 either slightly less, or even

slightly larger, than 1 will result in a dramatic improvement in the asymptotic rate

but the value of 7 which yields the best asymptotic rates of convergence appears to

be fractionally less than one.

In order to see with greater precision the value of 7 which produces the 7 -

optimum 2 -gradient algorithm with best asymptotic rate of convergence possible,

Figure 6.3 shows the average asymptotic rate of convergence as a function of 7 in

the vicinity of 7 = 1. It seems that the optimal value for the relaxation coefficient is

7 = 0.998, however the exact value of 7 which produces the best asymptotic rates

of convergence will depend on the number of iterations the algorithm is run for. As

the number of iterations is increased the optimal value of 7 moves closer to 1 .

Figure 6.4 shows the attractors of rW as a function of 7 for several values of p. As

has been the case with every gradient algorithm that has demonstrated a compar

atively fast asymptotic rate of convergence, the sequence { r^ } for the 7 -optimum

2 -gradient algorithm with 7 slightly less than 1 , is chaotic in nature.

From Figure 6.5 it can be seen that the asymptotic rate of convergence of the

7 -optimum 2-gradient algorithm with 7 = 0.998 is not only considerably better

192

1

1J* 1.1 1.15 1.2 1.2S0.75 0.85 1

1

Figure 6.2: Average asymptotic rate of convergence as a function of 7 for

the 7 -optimum 2 -gradient algorithm with, from top left to bottom right, p =

4,10,25,50,100,500; d = 100.

193

0.95

0.9

0.8

0.75

0.7

0.65
1.010.96 1.02

Figure 6.3: Average asymptotic rate of convergence as a function of 7 for the 7 -

optimum 2 -gradient algorithm; d = 1 0 0 .

than the standard optimum 2 -gradient algorithm but is also slightly better than

Rmin, which was previously deemed to be the best asymptotic rate of convergence

possible.

6.2.3 Future Investigations

The asymptotic rate of convergence of the 7 -optimum 2-gradient algorithm with 7

slightly less than 1 is better than that of all the other gradient algorithms studied

in the previous chapters. For this reason alone it was felt that the 7 -optimum

2 -gradient algorithm was worthy of an albeit short discussion in this thesis. The

preliminary analysis performed on the 7 -optimum 2 -gradient algorithm has shown

the algorithm to be very promising and a full investigation into how and why these

extremely fast asymptotic rates of convergence arise is warranted.

There is also the potential to develop other 2-gradient algorithms, i.e. algorithms

of the form (6.1) with different choices of and a[k\ perhaps influenced by the A-

optimality criterion for example. It is not clear at present, however, how to produce

a general methodology for relating any multiplicative algorithm for constructing

194

Figure 6.4: Attractors of { r ^ } as a function of 7 for the 7 -optimum 2-gradient

algorithm with, from top left to bottom right, p = 4,10,25, 50,100,500; d = 100.

195

0.8 -

0.6 -

0.4

40 60 80 100
Y-optimum 2-gradient — Rref— optimum 2-gradient - Rmin

Figure 6.5: Average asymptotic rate of convergence as a function of p for the opti

mum 2-gradient and 7 -optimum 2-gradient algorithms with 7 = 0.998; d = 100.

optimal experimental designs for quadratic regression models to a corresponding

2 -gradient optimisation algorithm.

It has been seen that the best asymptotic rates of convergence are achieved in

algorithms where chaos is present. It is not true, however, that all algorithms which

behave chaotically produce fast asymptotic rates of convergence. The 7 -steepest

descent algorithm with 7 = 0.5, for example, also exhibits chaos but the rate of

convergence of this algorithm is not as fast as when 7 = 0.99. Further research is

required into discovering why some types of chaos produce faster asymptotic rates

of convergence than others.

6.3 C om parison o f A lgorithm s

In this section all the new algorithms constructed in this thesis which possess com

petitive asymptotic rates of convergence are compared, both with each other and

with the Barzilai-Borwein algorithm (see [8]) and the Cauchy-Barzilai-Borwein algo

rithm (see [58]). When comparing those algorithms which have a relaxation coeffi

cient inbuilt into their step lengths, the optimum choice of that relaxation coefficient

196

is used.

For most algorithms developed, the number of dimensions, d, of the optimisation

problem does not have much of an effect on the asymptotic rate of convergence of the

algorithm used to solve it, provided d § 10. Figure 6 .6 , which depicts the asymptotic

rate of convergence as a function of p for a 1 0 0 -dimensional problem, is therefore

typical of all problems with d g 10. While it is evident from this figure that the

algorithms considered all have an asymptotic rate of convergence that is must faster

than R Tef, it is hard to distinguish between those algorithms with similar asymptotic

rates of convergence. A better evaluation is enabled by comparing the efficiency of

each algorithm relative to R mm-

0.6 -

0.4 •

0.2 -

10 20 30 40 60 70 80 90 100
opt p-root opt y-SD
Ojopt

 Rref
 BB

- - Rmin
 OfOP*

 CBB
y-opt 2-grad A-opt

Figure 6 .6 : Average asymptotic rate of convergence as a function of p for several

gradient-type algorithms; d = 1 0 0 .

The average efficiency, (R min/R), of each algorithm is plotted as a function of p

in Figure 6.7. It is necessary to mention at this point that for the /2-root algorithm

in particular, the optimum choice for the relaxation coefficient will depend on p

and so the values of the relaxation coefficients used in Figure 6 .6 and Figure 6.7

change slightly as p increases. The optimum 7 -optimum 2-gradient, optimum f3-

root and optimum 7 -steepest descent algorithms all have an efficiency greater than

that of the BB and CBB algorithms which signifies that they have asymptotic rates

197

of convergence faster than those of the BB and CBB algorithms. As p increases the

gradient algorithms corresponding to <3>2-optimality and ^-optim ality approach the

same level of efficiency as that of the BB algorithm whilst the gradient algorithm

corresponding to the A-optimality criterion is the least efficient algorithm included

in the figure.

1.05 -

0.95

0.9 -

0.85
30 40 60 70 90 100

optp-root — opt y-SD — CBB — BB — O s-°pt — A-opt y-opt 2-gradient

Figure 6.7: Average efficiency relative to R mm (i.e. R m\n/R) as a function of p for

several gradient-type algorithms; d = 1 0 0 .

For p ;$ 85 the optimum /?-root and optimum 7 -steepest descent algorithms both

have an efficiency greater than 1 indicating that the asymptotic rates of convergence

of these algorithms are better than which was initially thought to be the best

rate a gradient algorithm could achieve. For p g 85, however, the efficiency is

reduced to below 1 suggesting that, at least as p —> 0 0 , R min is still the best rate a

gradient algorithm can possess. The optimum 7 -optimum 2-gradient algorithm on

the other hand has an efficiency greater than 1 regardless of the condition number.

It is unclear therefore, whether the asymptotic rates of convergence of 2-gradient

algorithms, such as the 7 -optimum 2-gradient algorithm, are restricted by R min in

the same way as standard gradient algorithms.

198

6.4 Conclusions

Several new gradient algorithms have been created as part of this thesis, both

through adapting the steepest descent algorithm and through exploiting the link

established with optimal experimental design. Out of those algorithms developed,

the (3-ioot algorithm with (3 slightly greater than 1 has proven to be the gradi

ent algorithm with the fastest asymptotic rate of convergence. A brief look at the

7 -optimum 2-gradient algorithm, showed that the asymptotic rate of convergence

achievable with a 2 -gradient algorithm is better still.

The asymptotic rates of convergence of each of the algorithms constructed in

this thesis have been studied extensively. In particular, the behaviour of the rates

r(k\ as k increases, was examined as well as the transition from to r^k+1K A

very useful plot for those algorithms which involved a relaxation coefficient was that

which displayed the attractors of r^ as function of the relaxation coefficient. This

enabled the quick identification of those values of the relaxation parameter which

induce chaos in the sequence of rates, { r^ } . Some general observations on the

characteristics possessed by an algorithm with a fast asymptotic rate of convergence

are given below to summarise proceedings.

In their renormalised form some of those algorithms developed in this thesis

converge to optimum designs. These algorithms have been shown to converge with

the worst possible rate of convergence of the steepest descent algorithm. The rates

of other algorithms have converged to cycles of varying size. The standard steepest-

decent algorithm is an example of an algorithm whose rate, r^k\ converges to a two-

point cycle. The algorithms which have demonstrated the fastest asymptotic rates

of convergence have all exhibited chaotic behaviour. It is not the case, however,

that all algorithms which behave in a chaotic manner have fast asymptotic rates

of convergence. More investigation into why some types of chaos induce faster

asymptotic rates of convergence than others has been suggested as further work.

It should be noted that those algorithms which possess the fastest asymptotic

rates of convergence do not produce desirable rates, close to zero, from the first

iteration. Examining the sequence of rates, { r^ } , revealed that most algorithms

199

need a warm up period, where oscillatory behaviour is displayed, before better rates

are reached. The length of the warm up period depends on the algorithm.

Those algorithms developed in this thesis which possess the best asymptotic

rates of convergence are all non-monotonic in nature. Non-monotonicity is easily

identifiable from examining the sequence of rates, { r^ } . If is greater than 1

at some iterations then this corresponds to a situation where the approximation

to the minimum point is further away from x* than at the previous iteration. A

step in the wrong direction seems a counter-intuitive approach to producing faster

asymptotic rate of convergence, however it was observed in many of the sequences,

{ r^ } , that an extremely bad rate, greater than 1 , was often followed by a period in

the sequence where extremely good rates close to zero were observed. The overall

effect is an improvement in the asymptotic rate of convergence.

The Barzilai-Borwein algorithm is also non-monotonic in nature. This algorithm

was successfully incorporated into a non-monotonic line search technique (see [36])

in order to produce a global optimisation algorithm. It is therefore possible that the

non-monotonic algorithms presented in this thesis, such as the 7 -steepest descent

and /3-root algorithms, could also be incorporated into a non-monotone line search

technique in a similar manner.

A p p en d ix A

E xam ple P ro g ra m m e s

Example M atLab Program m e

H ite r = 1 0 0 0 ; k n o . o f i t e r a t i o n s
H R ep ea t= 3 0 0 ; % n o . o f r e p e t i t i o n s
d = 1 0 ; % d im e n s io n
rh o = 1 0 ; % c o n d i t i o n n o . o f m a t r ix A
t = (r h o - l) / (d - l) ;
la m b d a= [1 ; 1 + t ; l + 2 * t ; l + 3 * t ; l + 4 * t ; l + 5 * t ; l + 6 * t ; 1+7*t ; l + 8 * t ; r h o] ; %(e q u a l l y s p a c e d) e ig e n v a lu e s o f m a t r ix A
a = -1 0 0 ; b = 1 0 0 ;
ro w = l ;
f o r g a m = 0 :0 .0 0 1 :2 , k r a n g e o f r e l a x a t i o n c o e f f i c i e n t

f o r r e p = l:M R e p e a t ,
r a t e « 0 ;
R A T E (re p ,1)= 0 ;
x O = a + (b - a) * r a n d (d , l) ; k random s t a r t i n g v e c to r
f o r i 5 » l : d ,

i f a b s (x 0 (i 5 , l)) < 0 . 5 k r e p l a c i n g z e ro co m p o n en ts o f s t a r t i n g v e c t o r
x 0 (i 5 , l) - l ;
e n d

en d
s = l / s u m (x O (: , l) . A2) ;
p O (: , l) = s * x O (: , l) . A2 ; k r e n o r m a l i s i n g
f o r k = l : H i t e r ,

m u l= sum (la m b d a (: , 1) . * p 0 (: , 1)) ; m u2= sum (lam bda(: , 1) . A2 .* p 0 (: , 1)) ; k c a l c u l a t i n g m om ents
L«(gam A2 * (m u 2 /m u lA2) - 2 * g a m + l) ; k r a t e r A(k)
p i (: , 1) = p 0 (: , 1) . * (l - l a m b d a (: , 1) .* g a m /m u l) . A2 . / L ; k u p d a t in g f o r m u la f o r t h e w e ig h ts
s s = l / s u m (p l (: , 1)) ;
pO (: , 1) » p l (: , 1) . * s s ;
i f k> 100

r a t e » r a t e + l o g (L) ;
en d

en d
r e p s (r e p) = r e p ;
R A T E (rep ,1) - R A T Z (r e p , l) + e x p (r a t e / (N i t e r - 1 0 0)) ; ^ a s y m p to t ic r a t e o f c o n v e rg e n c e f o r 1 r e p e t i t i o n

en d
mean=sum(RATE(: , 1)) /M R ep e a t; k c a l c u l a t i n g a v e ra g e a s y m p to t ic r a t e f o r e a c h v a l u e o f gamma
m e a n s (row)= m ean ; gamma(row)=gam ;
ro w = ro w + l;

en d

Above: MatLab programme to generate average asymptotic rates of convergence for

the 7 -steepest descent algorithm for varying 7 . The remaining parameters are fixed.

2 0 0

2 0 1

Exam ple Maple Program m e

x e s t a x t : D i g i t s : - 4 0 :

w i t h (l i n a l g) : w i t h (s t a t s) : r a n d o m iz e () :

r h o : = 1 0 0 : 4 C o n d i t i o n n o . o f m a t r i x A

H i t e x : = 1 0 0 0 : It H o. o f i t e r a t i o n s

H R e p e a t : = 3 0 0 : tt H o . o f x e p e t i t i o n s

g a m := 0 .9 8 : b e t a : = 1 . 0 5 : # R e l a x a t i o n p a x a m e t e r s

f o x d f r o m 2 t o 1 00 do l a m b d a : = a x x a y (l . . d) : # E i g e n v a l u e s o f A
i : * = ' i ' : f o r i f r o m 1 t o d do l a m b d a [i] : = l + (i - l) * (x h o - l) / (d - l) : o d : tt E v e n e i g e n v a l u e s p a c i n g
i 1 i ' : R A T E : = [] : f o r r e p fx o m 1 t o H _ R e p e a t d o x a t e : = 0 :

x O : = x a n d m a t x i x (d , l) : # S t a r t i n g v e c t o r
f o x 1 5 f r o m 1 t o d do i f x 0 [i 5 , l] - 0 t h e n x 0 [i 5 , l] : - l : f i : o d : tt R e p l a c i n g 0 c o m p o n e n ts o f xO

s : - e v a l f (l / (s u m (< x 0 [i , l] > A2 , i - 1 . . d))) :
p O : = s e q (s * (x 0 [i , 1]) A2 , i = l . . d) : tt R e n o r m a l i s a t i o n

i : » ' i ' : f o x k f r o m 1 t o H i t e x do
mu[l] :=sum(lambda[i] *p0[i] ,i—1. . d) : tt Calculating first moment
mu[2] :-sum((lambda[i] A2*p0[i] ,i-l. .d) : tt Calculating second moment
L:=(gam*2*(mu[2]/imi[l]A2)A(2*beta-l)-2*gam*(imi[2]/mu[l]A2)A(beta-l)+l); « Rate x A(k);
pl:=seq(p0[i]* (1-lambda [i] * (gam*mu [2] A (beta-1) / (mu[l] A (2*beta-l)))) A2/L ,i-l. .d) ;
ss :=l/sum(pl[i],i=l. .d) : tt Above: updating formula fox the weights
pO:=seq(pl[i]*ss,i=l..d); # Precautionary steps to ensure weights sum to 1
rate:=evalf(rate+log(L)); od:

RATE :« •[o p (R A T E), e x p (x a t e / H i t e x)] :o d : tt C a l c u l a t i n g a s y m p t o t i c r a t e o f c o n v e x g e n c e
p r i n t (d , m e a n (R A T E)) ; o d : tt C a l c u l a t i n g a v e r a g e a s y m p t o t i c x a t e

Above: Maple 10 programme to generate average asymptotic rates of convergence

for the (7 , (3)-root algorithm for varying dimensions d. The remaining parameters

are fixed.

A ppendix B

Summary Tables

Formulae for

Algorithm r (k) __ (g(fc+1),9(fc+1))

Steepest Descent q 1
M?

7 -Steepest Descent l - 2 7 + 72M̂i

Square-Root

7 -Square Root ! - 2 ^ + 72

/3-root
/ \ 2/3—1 / N/?-l
(if) - 2 (if) +1

(7 , (3-root)
/ \ 2/9-1 / \ /?—1

^(if) -M sf) +1

A-optimality (l+2/i?+Ji?/X2) (M2 -/I?)
M?(l+M2)2

^ 2-optimality (M2-Ml 2)(mi 2A*23+2/ii 2/i22+3At2A*i 2+2/ii V2+4/X12+l+3/Z14)
Ml2 (M2+M12+1+M22)2

^ 3-optimality 1 o2M2Ml2-+M22Mi2-+Mi4-+3Mi2+l I M2(2M2Mi2+M22Mi2-+Mi4-+3Mi2+l)2
(M2+-1)(1+2miz+M22) M2(M2+1)2(1+2mi2+M22)2

Table B.l: Formulae for the rate, r^kK

202

Step Length Formulae

A lgorithm Step Length a ^ o t^(n i ,n 2)

Steepest Descent (g W j W)
(AgW ,g(k>) Ml

7 -Steepest Descent ^ (Ag(k) ,g(k>)
SL
Ml

Square-Root V (A*gW,gW)
1

%/M2

7 -Square Root . . / (ff(fe),3(fc))
7 y (A2g(k) ,g(k>)) n/M2

/3-root (g W ' g W W A ' g W j W) * * - !
(AgW ,g(k)y@~̂

(7 , /3)-root - . (g(k\ g (h))'i (Aag<k\ g (k))0-1
' (Ag(k) ,g(k)

u t 1
7 m^ _1

A-optimality
(gW fgW)2 + (i4 fl|(fc) 5(fc))2

(,5 ^)) ,5(fc))+{A2g'(fc) }g W)] Mi (17u2)

$ 2-optimality 1 + 2 m i2 + M i2M2
(Ag(k\g(ky^jg(k\g(kty(A?g(k\g(k)y}{Ag(k\g(ky)2{{fi2g(k)tg(kyi2^g(k)tg(kyi2̂ M i(1+ M 2+ M i2+M 22)

$ 3-optimality 2(g^k\ g ^) (A 2g^k\ g ^) (A g ^ k\ g ^) 2+(Ag^k\ g ^) 2(A2g ^ , g ^) 2+(Ag^k\g ^) ^ + 3 (g ^ k\ g ^) 2(Ag^k\ g ^) 2+(g^k\ g ^) 4 M22 M 12+2m i2 M2+Mi4+ 3 /i i2+ l
(AgW ,gW)((gW ,gW)+(A2g ^ ,g(k)))((gW ,gW)2+2(Ag^k) ,g(-k^)2+(A2g('k'> ̂ W) 2) M i(M 2+1)(M 22+ 2 m i2+ 1)

Table B.2: Formulae for (the step length at iteration k.)

204

O ptim al Design Formulae

A lgorithm *(€) L im iting Behaviour of (4>(£^)}

Steepest Descent 2 - M i cycle

7 -Steepest Descent to 1 depends on 7

Square-Root 2-/^1 optimum design

7 -Square Root depends on 7

(3- root >4 - f t depends on (3

(7 , /?)-root i t £ - 4 ? depends on 7 , (3

A-optimality H2 - 1A
1+M2 chaos

^-optim ality (M2-M12)2
l+ /i22+2Ml2 chaos

^ 3-optimality (/i2-Ml2)3
(/12+-1) (l-t*243/Lti 2 ^ 2 2) chaos

Table B.3: The optimality criterion $(£) and the corresponding limiting behaviour

of the sequence (4>(£(fc))} for each algorithm.

A lgorithm c = min </?(:c,£) v>(z,0 = f T(x) $ (0 f (x) trMC) 1 (?)

Steepest Descent m fl2 - 2 x ^ 1 + x2 2*(£)

7 -Steepest Descent 7 M 2 - f 7 /i2 - 2/iix + 7 a;2 2*(£)

Square-Root 0 î E2 f 1 ___£_^2
2 v1 vPiy *(€)

7 -Square Root 7M 2—2i v7̂2 +7X2
2y/ja *(£)

(3- root 0 (^ - 2 / if - 1x + p f 1a:2) 2/3*(£)

(7 , 0)-root 2/3*(£)

A-optimality (M 2-M ?)2
(Mf + l) (/ * a + l) a

(x - A i i) 2 + (l ^ i - M 2) 2
(M2 + 1)2 *(£)

$ 2-optimality 2(/X2—M l2)4
(M l2M 2 + 2 /ii2 + l) (/ i 2 2+ l + 2 M l 2) 2 (M22 + l + 2 / i i 2)2 » (£)

4>3-optimality 3(m2-̂ 12) 6 fa 34(0(/L i2+l)2 (2 /i2/x i2 +M 22M l2+ M l4 +3A‘l 2 + l) (l - M 2 + 3 M l 2 +M 22)2 (^irl-1)2 (1-7X243^11+Hi22) 2

Table B.4: Formulae for c, </?(z,£) and trM(£) $ (£) for each algorithm.

<t> 2 = 2 (/x2—A*i2) (/i23+2 /ii2^ 2+A/i2- 2 ^ i / / 22- 2x/ii3- 2x//i/i2~2 a:/ii-hr2/ii2/i2+2 a:2/xi2-hr2)

f a = 3 (^ 2 4d ^ ^ 22Mi2+ 2 ^ i2M 2 ^ i4d ^ i 2- 2 x / i i / x 23-2a:/ii/X 22- ^ ^ i 3M2-4a:/Lii3—2a;/ii/Lt2-2a:/xi-hr2/i22Ati 2+2a;2/ i i 2/X2+<r:2/z i4+3a:2/x i2-hr2)(—/X2+1W12) 2

\ e ?
e 1 \ 0.95 0.952 0.954 0.956 0.958 0.96 0.962 0.964 0.966 0.968 0.97 0.972 0.974 0.976 0.978 0.98 0.982 0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1

0.95 0.7376 0.7564 0.794 0.816 0.8059 0.7962 0.793 0.7894 0.777 0.7709 0.7691 0.7661 0.7654 0.7667 0.7666 0.7671 0.769 0.769 0.771 0.7699 0.7745 0.7747 0.775 0.7781 0.7827 0.7862

0.952 0.756 0.7372 0.759 0.799 0.8164 0.8054 0.7962 0.7926 0.784 0.7756 0.7692 0.7667 0.7653 0.766 0.7667 0.7669 0.7687 0.769 0.771 0.7716 0.7715 0.7726 0.777 0.7749 0.7798 0.7836

0.954 07629 0.7557 0.735 0.761 0.7979 0.8176 0.803 0.7944 0.789 0.7815 0.7713 0.7679 0.7663 0.7648 0.765 0.766 0.7665 0.768 0.768 0.7699 0.7727 0.7731 0.774 0.7754 0.777 0.7811

0.956 0.7679 0.7631 0.754 0.734 0.7615 0.8032 0.8145 0.7983 0.794 0.7882 0.777 0.7697 0.7667 0.7652 0.7654 0.7641 0.7652 0.767 0.767 0.7692 0.7704 0.7719 0.773 0.7739 0.778 0.7792

0.958 0.7702 0.768 0.764 0.755 0.7346 0.7608 0.8074 0.8125 0.797 0.793 0.7857 0.7737 0.7675 0.765 0.7642 0.7645 0.7638 0.766 0.766 0.7682 0.7685 0.7702 0.772 0.7738 0.7736 0.7768

0.96 0.7708 0.7698 0.767 0.762 0.7553 0.7332 0.7671 0.8141 0.811 0.7968 0.7923 0.7825 0.7698 0.7648 0.7642 0.7628 0.7646 0.763 0.763 0.7654 0.769 0.7693 0.771 0.7709 0.7741 0.7756

0.962 0.7734 0.7714 0.769 0.766 0.7628 0.7548 0.7339 0.7676 0.813 0.808 0.7941 0.7887 0.779 0.7689 0.7642 0.7632 0.7621 0.762 0.764 0.7668 0.7663 0.7692 0.769 0.7705 0.7743 0.775

0.964 0.7741 0.774 0.771 0.769 0.766 0.7635 0.7551 0.7322 0.769 0.8188 0.8074 0.7928 0.7873 0.7726 0.7648 0.7632 0.7615 0.763 0.763 0.7635 0.7662 0.7673 0.768 0.771 0.7715 0.7731

0.966 0.7747 0.7745 0.773 0.772 0.7693 0.7684 0.7642 0.7553 0.73 0.7694 0.8166 0.8024 0.7908 0.7848 0.7691 0.7643 0.7634 0.761 0.762 0.7628 0.7645 0.7672 0.766 0.7692 0.769 0.7714

0.968 0.7762 0.7747 0.774 0.774 0.7715 0.77 0.7682 0.7637 0.755 0.7288 0.7751 0.8197 0.7973 0.7902 0.7781 0.7669 0.7631 0.761 0.761 0.762 0.7628 0.7647 0.765 0.7682 0.7687 0.7715

0.97 0.7772 0.7762 0.775 0.774 0.7734 0.7721 0.7706 0.769 0.763 0.7557 0.7273 0.7877 0.8217 0.7963 0.7886 0.7713 0.7646 0.76 0.76 0.7599 0.7623 0.7631 0.766 0.766 0.7676 0.7694

0.972 0.777 0.7774 0.775 0.775 0.7754 0.7726 0.7735 0.7711 0.768 0.7647 0.7554 0.7286 0.7894 0.8112 0.7945 0.7837 0.7671 0.762 0.76 0.759 0.7596 0.7625 0.762 0.7652 0.7664 0.7689

0.974 0.7778 0.7771 0.778 0.777 0.7777 0.7745 0.7739 0.7725 0.77 0.7687 0.7655 0.7553 0.7261 0.7982 0.8092 0.7915 0.7783 0.764 0.759 0.7594 0.7584 0.7616 0.763 0.7643 0.7645 0.7664

0.976 0.7776 0.7771 0.778 0.778 0.7764 0.7758 0.7744 0.7741 0.772 0.7705 0.77 0.7662 0.7571 0.7259 0.8079 0.8067 0.7923 0.769 0.761 0.7577 0.7564 0.7584 0.761 0.7603 0.7649 0.7648

0.978 0.7793 0.7781 0.779 0.777 0.7765 0.7765 0.7754 0.7756 0.774 0.7717 0.7721 0.7711 0.7661 0.7577 0.7246 0.8114 0.7978 0.786 0.765 0.7589 0.7569 0.7582 0.759 0.7606 0.7618 0.7642

0.98 0.7783 0.778 0.778 0.778 0.7763 0.7762 0.7756 0.7744 0.776 0.7742 0.7749 0.7728 0.7697 0.7672 0.7596 0.7231 0.8131 0.795 0.778 0.7605 0.7586 0.7566 0.757 0.7583 0.7599 0.7613

0.982 0.7777 0.7786 0.778 0.777 0.7785 0.7773 0.7774 0.7755 0.775 0.7756 0.7756 0.7749 0.7736 0.771 0.7682 0.7587 0.7215 0.816 0.795 0.7674 0.7565 0.7541 0.756 0.7561 0.7579 0.76

0.984 0.7776 0.7765 0.776 0.777 0.7774 0.7773 0.7764 0.777 0.777 0.7762 0.7754 0.7745 0.7751 0.7737 0.7718 0.7708 0.7601 0.723 0.825 0.7928 0.7615 0.7538 0.756 0.7547 0.7564 0.7575

0.986 0.7776 0.778 0.778 0.777 0.7764 0.777 0.7786 0.7761 0.777 0.7763 0.7761 0.7755 0.7764 0.7756 0.7754 0.7741 0.7698 0.765 0.722 0.8182 0.7829 0.7566 0.754 0.7548 0.7556 0.7571

0.988 0.7777 0.7789 0.777 0.777 0.7781 0.7771 0.7769 0.7771 0.770 0.7756 0.7761 0.7767 0.7766 0.7753 0.7764 0.7741 0.7751 0.772 0.767 0.7173 0.8104 0.7644 0.754 0.7523 0.7525 0.7529

0.99 0.7778 0.776 0.777 0.775 0.7783 0.7779 0.777 0.7772 0.779 0.7763 0.7772 0.7786 0.7782 0.7766 0.7759 0.777 0.776 0.776 0.775 0.7693 0.719 0.8026 0.756 0.7526 0.7516 0.7508

0.992 0.7771 0.7779 0.779 0.778 0.777 0.7766 0.7768 0.7771 0.778 0.7771 0.7769 0.7769 0.777 0.7782 0.7769 0.7774 0.7768 0.776 0.777 0.776 0.7702 0.7273 0.801 0.7524 0.7505 0.7498

0.994 0.7766 0.777 0.778 0.779 0.7767 0.7785 0.7766 0.7783 0.778 0.7759 0.7779 0.777 0.7781 0.7764 0.7777 0.7784 0.7778 0.778 0.777 0.7787 0.7747 0.7732 0.749 0.7742 0.748 0.7483

0.996 0.7776 0.7763 0.778 0.778 0.7777 0.779 0.777 0.7783 0.778 0.777 0.7776 0.7765 0.7784 0.7777 0.7774 0.7783 0.7773 0.778 0.778 0.7812 0.7783 0.778 0.78 0.7661 0.7553 0.7492

0.998 0.7775 0.7763 0.778 0.777 0.7775 0.7776 0.7783 0.7774 0.777 0.7785 0.7756 0.7763 0.7767 0.777 0.7779 0.7784 0.7799 0.777 0.778 0.7795 0.7802 0.7798 0.779 0.7954 0.6246 0.7525
1 0.777 0.7784 0.778 0.777 0.7766 0.7772 0.7768 0.7759 0.778 0.7778 0.7764 0.7773 0.777 0.7781 0.7782 0.7774 0.7782 0.781 0.78 0.7782 0.7795 0.7807 0.781 0.7878 0.7926 0.9232

to
Figure B.l: Above: Table showing the asymptotic rates of convergence of the relaxed optimum 2 -gradient algorithm for varying

relaxation parameters 71 (denoted e\ above) and 72 (denoted e2 above). Green values indicate where the fastest asymptotic rates of §

convergence occur, the yellow indicates the fastest of all. Here p = 100, d = 100.

A p p en d ix C

E x tra G ra p h s

The 7 -S teepest Descent A lgorithm

Figure C.l: Trajectory of max<3>(£) plotted as a function of k for a single

realisation of the 7 -steepest descent algorithm with (from top to bottom) 7 = 0.5,

7 = 0.6, 7 = 0.7; p = 10, d =100.

207

208

-o

•1
800 900 1000 1100 1200

Figure C.2: Trajectory of max$(^) plotted as a function of k for a single

realisation of the 7 -steepest descent algorithm with 7 = 0 .8 ; p = 1 0 , d = 1 0 0 .

r
100 200 300 400

1

0.5

X a N .. .

s —

4

-0.5 •

0 500 600 700 800

1 ■

0.5 i \ J r ' x . A . f \ j \ j s r
8

-0.5

0 BOO 1000 1100 1200

Figure C.3: Trajectory of 3>(£^)/max<I>(£) plotted as a function of k for a single

realisation of the 7 -steepest descent algorithm with 7 = 0 .99; p = 10, d= 100.

209

Figure C.4: Trajectory of 4>(£^)/ max<I>(£) plotted as a function of k for a single

realisation of the 7 -steepest descent algorithm with 7 = 0.995; p = 10, d = 100.

1 1

0.S

0

-0.5

r
1 100 200 300 400

1 «

0.5 ■

0 •

-0.6

r
-1 *

0 100 200 300 400

Figure C.5: Trajectory of 4>(£^)/ max <!>(£) plotted as a function of k for a single

realisation of the 7 -steepest descent algorithm with (from top to bottom) 7 = 1 ,

7 = i .i , p = 10, d = 1 0 0 .

2 1 0

2

1.5

1

“
0 -

I> 100 200 300 400

2

1.5

1

0 5

() 100 200 300 400

2
1*

1

0 5

0
2000 100 300 400

Figure C.6 : Rate, r^k\ as a function of k for the 7 -steepest descent algorithm with

d — 100, p = 10 and 7 = 0.5 (top), 7 = 0.6 (middle), 7 = 0.7 (bottom).

2

2

1.8

1
0 5

0
900 1000800 1100 1200

Figure C.7: Rate, r^k\ as a function of k for the 7 -steepest descent algorithm with

d = 1 0 0 , p = 1 0 and 7 = 0 .8 .

2 1 1

2

Figure C.8 : Rate, r^k\ as a function of k for the 7 -steepest descent algorithm with

d = 100, p = 10 and 7 = 0.9.

2 - |

1.6-

:r0 a
0 100 200 300 400

2 -

I S

1 -

0.5 -

400 600 600 700 800

2

1.5

1

0 5

U -- '--- '--- r---1
800 900 1000 1100 1200

Figure C.9: Rate, r^k\ as a function of k for the 7 -steepest descent algorithm with

d = 100, p = 10 and 7 = 0.999.

2 1 2

The /3-TLoot A lgorithm

Figure C.10: Rate, as a function of k for the /3-root algorithm with d = 100,

p = 10 and (3 = 1.1.

Figure C .ll: Rate, A k\ as a function of k for the (3-root algorithm with d = 100,

p = 1 0 and (3 = 1 .2 .

213

Figure C.12: Rate, r^k\ as a function of k for the /5-root algorithm with d = 100,

p = 10 and (3 = 1.5.

25

20

15

10 - |

5 - M J I

o

0 100

lULil
200

kiiii
300
Lullj j l — j !

400

:|
0 i l

400

iilliillilijiiL
>00

l i j i i
600 700

J l l l l i
800

I I
800

I k i i l i i

900

Liii
1000

Jilu l i J

1100
u i l

1200

Figure C.13: Rate, A k\ as a function of k for the /5-root algorithm with d = 100,

p = 10 and /? = 2.

Bibliography

[1] A k a ik e , H. On a successive transformation of probability distribution and its

application to the analysis of the optimum gradient method. Ann. Inst. Statist.

Math. Tokyo 11 (1959), 1-16.

[2] A n d r e i , N . A new gradient descent method for unconstrained optimiza-

trion. Tech. rep., Research Institute for Informatics, 8-10 Averescu Avenue,

Bucharest, Romania, 2004.

[3] A n d r e i , N. Relaxed gradient descent and a new gradient descent methods

for unconstrained optimization. Tech. rep., Research Institute for Informatics,

8-10 Averescu Avenue, Bucharest, Romania, 2004.

[4] A n d r e i , N. An acceleration of gradient descent algorithm with backtracking

for unconstrained optimization. Numer. Algorithms 4%, 1 (2006), 63-73.

[5] A r m ijo , L. Minimization of functions having Lipschitz continuous first partial

derivatives. Pacific J. Math. 16 (1966), 1-3.

[6] A r n o l d i , W . E . T he principle o f m inim ized iteration in th e solution o f the

m atrix eigenvalue problem . Quart. Appl. Math. 9 (1951), 17-29.

[7] A x e l s s o n , O. On preconditioning and convergence acceleration in sparse

matrix problems. Tech. rep., CERN, Data Handling Division, Geneva, 1974.

[8] B a r z i l a i , J., a n d B o r w e in , J. M. Two-point step size gradient methods.

IMA J. Numer. Anal. 8, 1 (1988), 141-148.

[9] B o o t h , A. D. Numerical methods. Academic Press Inc., New York, 1955.

214

Bibliography 215

[10] B ox, M. J., D. D., a n d S w a n n , W . H. Non-Linear Optimization Tech

niques. Oliver & Boyd Ltd., Edinburgh, 1969.

[11] B u n d a y , B. D. Basic Optimisation Methods. Edward Arnold Ltd., London,

1984.

[12] C a u c h y , A. Methode generate pour la resolution des systems d’equations

simulatanees. Comp. Rend. Sci. 25 (1847), 536-538.

[13] C h a m b e r l a i n , R. M., P o w e l l , M. J. D ., L e m a r e c h a l , C., a n d P e d

e r s e n , H. C. The watchdog technique for forcing convergence in algorithms

for constrained optimization. Math. Programming Stud., 16 (1982), 1-17. Al

gorithms for constrained minimization of smooth nonlinear functions.

[14] C u r r y , H. B. The method of steepest descent for non-linear minimization

problems. Quart. Appl. Math. 2 (1944), 258-261.

[15] D a i , Y., Y u a n , J., a n d Y u a n , Y.-X. Modified two-point stepsize gradient

methods for unconstrained optimization. Comput. Optim. Appl. 22, 1 (2002),

103-109.

[16] D a i , Y.-H. Alternate step gradient method. Optimization 52, 4-5 (2003),

395-415. Theory, methods and applications of optimization.

[17] D a i , Y . - H . , a n d F l e t c h e r , R . On the asymptotic behaviour of some new

gradient methods. Math. Program. 103, 3, Ser. A (2005), 541-559.

[18] D a i , Y.-H., H a g e r , W. W ., S c h i t t k o w s k i , K., a n d Z h a n g , H. The

cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer.

Anal. 26, 3 (2006), 604-627.

[19] D a i , Y . - H . , a n d L i a o , L . - Z . R-linear convergence of the Barzilai and Bor-

wein gradient method. IMA J. Numer. Anal. 22, 1 (2002), 1-10.

[20] D a i , Y. H., a n d Y a n g , X. Q. A new gradient method with an optimal

stepsize property. Comput. Optim. Appl. 33, 1 (2006), 73-88.

Bibliography 216

[21] D a i , Y . H . , a n d Y u a n , Y . Some properties of a new conjugate gradient

method. In Advances in nonlinear programming (Beijing, 1996), vol. 14 of

Appl. Optim. Kluwer Acad. Publ., Dordrecht, 1998, pp. 251-262.

[22] D a i , Y.-H., a n d Y u a n , Y.-X. Alternate minimization gradient method.

IMA J. Numer. Anal. 23, 3 (2003), 377-393.

[23] D a i , Y.-H., a n d Y u a n , Y.-X. Analysis of monotone gradient methods. J.

Ind. Manag. Optim. 1, 2 (2005), 181-192.

[24] D a i , Y.-H., A N D Z h a n g , H. Adaptive two-point stepsize gradient algorithm.

Numer. Algorithms 27, 4 (2001), 377-385.

[25] D e n n is , J r . , J. E ., a n d M o r e , J. J . Quasi-Newton methods, motivation

and theory. SIAM Rev. 19, 1 (1977), 46-89.

[26] D o d g e , Y., F. V. V ., a n d W y n n , H. P . Optimal design of experiments:

An overview. In Optimal Design and Analysis of Experiments. Elsevier Science

Publishers B.V., North Holland, 1988, pp. 1-9.

[27] F a d d e e v , D. K ., a n d F a d d e e v a , V. N. Computational methods of lin

ear algebra. Translated by Robert C. Williams. W. H. Freeman and Co., San

Francisco, 1963.

[28] F e l l m a n , J. On the allocation of linear observations. Phys. Math. 44 (1974),

27-78.

[29] F l e t c h e r , R. On the Barzilai-Borwein method. Tech. rep., Department of

Methematics, University of Dundee, Department of Mathematics, University of

Dundee, Dundee DD1 4HN, October 2001.

[30] F l e t c h e r , R., a n d P o w e l l , M. J. D. A rapidly convergent descent method

for minimization. Comput. J. 6 (1963/1964), 163-168.

[31] F l e t c h e r , R., a n d R e e v e s , C. M. Function minimization by conjugate

gradients. Comput. J. 7 (1964), 149-154.

Bibliography 217

[32] F o r s y t h e , G . E . On the asymptotic directions of the s-dimensional optimum

gradient method. Numer. Math. 11 (1968), 57-76.

[33] F r i e d l a n d e r , A., M a r t i n e z , J. M., M o l i n a , B., a n d R a y d a n , M.

Gradient method with retards and generalizations. SIAM J. Numer. Anal. 36,

1 (1999), 275-289 (electronic).

[34] G o l d s t e i n , A. A. Cauchy’s method of minimization. Numer. Math. 4 (1962),

146-150.

[35] G o l u b , G. H., a n d O ’ L e a r y , D. P . Some history of the conjugate gradient

and Lanczos algorithms: 1948-1976. SIAM Rev. 31, 1 (1989), 50-102.

[36] G r i p p o , L., L a m p a r i e l l o , F ., a n d L u c i d i , S. A nonmonotone line search

technique for Newton’s method. SIAM J. Numer. Anal. 23, 4 (1986), 707-716.

[37] G r ip p o , L., a n d S c i a n d r o n e , M. Nonmonotone globalization techniques

for the Barzilai-Borwein gradient method. Comput. Optim. Appl. 23, 2 (2002),

143-169.

[38] H e s t e n e s , M. R ., a n d S t i e f e l , E. Methods of conjugate gradients for

solving linear systems. J. Research Nat. Bur. Standards 43 (1952), 409—436

(1953).

[39] H i g h A M , N. J. Accuracy and stability of numerical algorithms. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[40] Hu, Y .-Q ., A N D D a i , Y.-H. Inexact Barzilai-Borwein method for saddle point

problems. Numer. Linear Algebra Appl. 14, 4 (2007), 299-317.

[41] K a n t o r o v i c h , L. V., a n d A k i l o v , G. P. Functional analysis, second ed.

Pergamon Press, Oxford, 1982. Translated from the Russian by Howard L.

Silcock.

[42] L a m o t t e , J .-L ., M o l i n a , B . , a n d R a y d a n , M . Sm ooth and adaptive

gradient m eth od w ith retards. Math. Comput. Modelling 36, 9-10 (2002), 1161—

1168.

Bibliography 218

[43] L a n c z o s , C. An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators. J. Research N at Bur. Standards

45 (1950), 255-282.

[44] L u e n b e r g e r , D. G. Linear and Nonlinear Programming, second ed. Addison-

Wesley Publishing Company, US, 1989.

[45] M a n d a l , S., AND T o r s n e y , B. Construction of optimal designs using a

clustering approach. J. Statist. Plann. Inference 136, 3 (2006), 1120-1134.

[46] M a n d a l , S., T o r s n e y , B., a n d C a r r i e r e , K. C. Constructing optimal

designs with constraints. J. Statist. Plann. Inference 128, 2 (2005), 609-621.

[47] M e u r a n t , G. Computer solution of large linear systems, vol. 28 of Studies in

Mathematics and its Applications. North-Holland Publishing Co., Amsterdam,

1999.

[48] M o l in a , B., a n d R a y d a n , M. Preconditioned Barzilai-Borwein method for

the numerical solution of partial differential equations. Numer. Algorithms 13,

1-2 (1996), 45-60.

[49] N o c e d a l , J., S a r t e n a e r , A., A N D Z h u , C. O n th e behavior o f th e gradient

norm in th e steep est d escen t m eth od . Comput. Optim. Appl. 22, 1 (2002), 5-35.

[50] NOCEDAL, J ., S. A ., AND Z h u , C. On the accuracy of nonlinear optimization

algorithms. Tech. rep., ECE Department, Northwestern University, Evanston

II 60208, November 1998.

[51] P a ig e , C. C., a n d S a u n d e r s , M. A. Solutions of sparse indefinite systems

of linear equations. SIAM J. Numer. Anal. 12, 4 (1975), 617-629.

[52] P o l a k , E., A N D R ib ie r e , G. Note sur la convergence de methodes de di

rections conjuguees. Rev. Prangaise Informat. Recherche Operationnelle 5, 16

(1969), 35-43.

Bibliography 219

[53] P r o n z a t o , L., W y n n , H. P ., a n d Z h i g l j a v s k y , A. A. Dynamical search.

Chapman & Hall/CRC, Boca Raton, FL, 2000. Applications of dynamical

systems in search and optimization, Interdisciplinary statistics.

[54] P r o n z a t o , L., W y n n , H. P ., a n d Z h i g l j a v s k y , A. A. Renormalised

steepest descent in Hilbert space converges to a two-point attractor. Acta Appl

Math. 67, 1 (2001), 1-18.

[55] P r o n z a t o , L ., W y n n , H . P . , a n d Z h i g l j a v s k y , A. A. Asymptotic be

haviour of a family of gradient algorithms in Rd and Hilbert spaces. Math.

Program. 107, 3, Ser. A (2006), 409-438.

[56] P r o n z a t o , L., W y n n , H. P ., a n d Z h i g l j a v s k y , A. A. Asymptotic be

haviour of optimum s-gradient algorithm ish. In W-optimality. Springer, To

appear.

[57] R a y d a n , M. On the Barzilai and Borwein choice of steplength for the gradient

method. IMA J. Numer. Anal. 13, 3 (1993), 321-326.

[58] R a y d a n , M., a n d S v a i t e r , B. F. Relaxed steepest descent and Cauchy-

Barzilai-Borwein method. Comput. Optim. Appl. 21, 2 (2002), 155-167.

[59] S a a d , Y., a n d S c h u l t z , M. H. GMRES: a generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Com

put. 7, 3 (1986), 856-869.

[60] S h e w c h u k , J . An introduction to the conjugate gradient method without the

agonizing pain. Tech. rep., Carnegie Mellon University, Pittsburgh, PA 15213,

August 1984.

[61] S i l v e y , S. D ., T. D . M., a n d T o r s n e y , B. An algorithm for optimal

designs on a finite design space. Communications in Statistics A 7 (1978),

1379-1389.

[62] S t . J o h n , R. C., a n d D r a p e r , N . R. D-optimality for regression designs:

a review. Technometrics 17 (1975), 15—23.

Bibliography 220

[63] TlTTERINGTON, D. M. Algorithms for computing d-optimal designs on a fin ite

design space. In Proc. 1976 Conference on Information Sciences and Systems.

1976.

[64] T o r s n e y , B. A moment inequality and monotonicity of an algorithm. In

Lecture Notes in Economics and Mathematical Systems, A. F. . K. K. Eds, Ed.,

vol. 215. Springer Verlag, 1983, pp. 249-260.

[65] T o r s n e y , B. Computing optimizing distributions with applications in de

sign, estimation and image processing. In Optimal Design and Analysis of

Experiments, H. W. E. Y. Dodge, V.V. Fedorov, Ed. North Holland, 1988,

pp. 316-370.

[66] TORSNEY, B. Fitting bradley terry models using a multiplicative algorithm. In

Proceedings in Computational Statistics, J. Antoch, Ed. Physica Verlag, Prague,

2004, pp. 214-226.

[67] T o r s n e y , B., a n d A l a h m a d i , A. Further developments of algorithms

for constructing optimizing distributions. In Model Orientated Data Analy

sis, I. V. E. V.V. Fedorov, W.G. Muller, Ed. Physica Verlag, Bulgaria, 1992,

pp. 121-129.

[68] T o r s n e y , B., a n d M a n d a l , S. Multiplicative algorithms for construct

ing optimizing distributions: further developments. In mODa 7—Advances in

model-oriented design and analysis, Contrib. Statist. Physica, Heidelberg, 2004,

pp. 163-171.

[69] W alsh , G. R. Methods of Optimization. John Wiley & Sons Ltd., 1975.

[70] W o l f e , P. Convergence conditions for ascent methods. SIAM Rev. 11 (1969),

226-235.

[71] Y o u n g , D. M. Iterative solution of large linear systems. Academic Press, New

York, 1971.

Bibliography 221

[72] Y o u n g , D . M. A historical overview of iterative methods. Comput. Phys.

Comm. 53, 1-3 (1989), 1 -17 . Practical iterative methods for large scale com

putations (Minneapolis, MN, 1988).

[73] Y u a n , Y .-X . A new stepsize for the steepest descent method. Tech. rep.,

Chinese Academy of Sciences, 2004.

[74] Z h o u , B ., G a o , L ., A N D D a i , Y .-H . G radient m eth od s w ith adaptive step-

sizes. Comput. Optim. Appl. 35, 1 (2006), 6 9 -8 6 .

