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SUMMARY

The molecular basis of biocide resistance and susceptibility in Serratia and mycobacteria 
was investigated using transposon mutagenesis approach. The killing and growth 
inhibitory effects of four biocides (triclosan, cetylpyridinium chloride, chlorhexidine 
diacetate and alkaline ort/zo-phthalaldehyde) on Serratia marcescens D bll, 
Mycobacterium smegmatis me2155, M. chelonae type strain NCTC 946, M. abscessus
type strain ATCC 19977, and Escherichia coli NCTC 1048 were studied using minimal 
inhibitory concentration determination, biocide killing, and potassium leakage tests. 
Transposon mutagenesis using a mariner system did not produce any M. smegmatis
me2155 mutants with altered biocide sensitivity. In contrast mutagenesis of S. marcescens
Dbll using the mini-TnJKm2 transposon system led to the isolation of 26 biocide 
mutants. Increased resistance, susceptibility and mixed biocide phenotypes were 
observed in the mutants. Alteration in antibiotic susceptibility was also noted. The 
locations of transposon insertion in all but two of the mutants were determined, and 14 
putative genes coding for putative proteins with diverse functions were found to be 
disrupted. These functions included anabolism and catabolism, gene regulation, cell 
envelope biosynthesis, porin, energy production, and virulence. Two mutants, one 
deficient in the outer membrane protein A (OmpA), and another deficient in the nucleoid- 
associated protein (NdpA), were complemented. Complementation of the ndpA mutant 
which showed increased resistance to cetylpyridinium chloride and chlorhexidine 
diacetate, but was sensitive to triclosan, lead to restoration of the wild type phenotype. 
Complementation of the ompA mutant, which showed multiple sensitivity to 
chlorhexidine diacetate, triclosan, and ortho-phthalaldehyde however, did not restore the 
wild type phenotype. The cloned ompA gene was shown to be transcribed but not 
translated in the complemented mutant. In summary, the genetic basis for biocide 
resistance in S. marcescens Dbll  is multi-factorial and encoded by several novel loci 
worthy of further study.
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CHAPTER I
i

INTRODUCTION TO BIOCIDES



1.1 Overview

This chapter provides an introduction to biocides and will review the following:

• Definition of the word “biocide”

• Mode of action of biocides

• Different classes of biocides

• Biocide resistance in bacteria

• Link between biocide and antibiotic resistance and development of cross-

resistance
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1.2 Definition

The term “Biocide” is used to describe a chemical agent, usually broad-spectrum, that 

inactivates micro-organisms. Biocides include disinfectants, antiseptics and preservatives, 

but not antibiotics in spite the latter being biocides in the strictest sense (304). Antiseptics 

are used to destroy or inhibit the growth of micro-organisms in or on living tissue, 

whereas disinfectants are used on inanimate objects or surfaces. Preservatives are 

incorporated into pharmaceutical cosmetic and other products to prevent microbial 

contamination and multiplication (899). Biocides vary in the purpose of their use, some 

biocides have a mainly single usage such as glutaraldehyde which is used for 

disinfection, but others such as chlorhexidine and quaternary ammonium compounds 

(QACs) can be used as antiseptics, disinfectants, and preservatives. Moreover, biocides 

also differ in their antimicrobial activity, some are referred to as “static” able to inhibit 

growth, others are “cidal” which kill the target organism.

Biocides have been used for centuries mainly as preservative agents of drinking water, 

such as the use of copper and silver vessels, foodstuffs including slating and even in the 

art of mummification. Other agents with antimicrobial properties such as vinegar, wine, 

honey and mercuric chloride were used for wound dressing (646). The development of
f hantiseptic surgery in the 19 century saw the introduction of disinfectant usage, with 

chemicals such as wood tar, copper sulphate, hydrogen peroxide and chlorine-releasing 

agents being used for infection control. Other agents such as QACs and chlorhexidine 

were introduced more recently (464). Nowadays there is a large number of chemicals 

used as biocides both as single agents and in complex formulations, and the scope of their 

use extends from hospitals and health care settings to industry to the home and domestic 

environment (464, 910).

Biocides fall into a number of families (described in section 1.4) that differ in their use 

and mode of action, in this study four key representatives of these families of biocides 

were investigated: or/Zio-phthalaldehyde (OPA), triclosan (TRI), cetylpyridinium chloride
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(CPC), and chlorhexidine diacetate (CHX). The following will review the different types 

of biocide families and their use in both clinical and home environments. Description of 

their mode of action and development of resistance to them is also presented where 

literature reports are available.

13 Biocides mode of action

Biocides are classified on basis of their chemical structure, reactivity and mode of action. 

They vary greatly in their chemical structures and the precise mechanism(s) of their 

action often reflects this diversity. Moreover, there are many factors that influence 

biocide action and efficiency (915, 920), and these compounds are commonly used in 

complex formulations of active molecules, sometimes containing co-solvents, chelating
f

agents, acidic or alkaline agents, or surface-active or anti-corrosive products. This makes 

their mechanism of action even more complex. Relatively few publications addressed the 

mechanism of inhibition and inactivation of Gram-positive non-sporulating bacteria, 

bacterial spores, and Gram-negative bacteria (456, 898). Even less is known about the 

mechanisms of fungal, protozoal and viral inactivation by biocides (647, 676, 1079).

Unlike most antibiotics, it is widely accepted that only few biocides exert their action 

upon one specific target within the microbial cell. Most agents have multiple target sites 

and the site of lethal action depends upon the concentration employed (920). 

Bacteriostatic effects are usually achieved by lower concentration of biocide, and might 

correspond to a reversible activity on the cytoplasmic membrane and/or effect on 

enzymatic activity. The bactericidal mechanism(s) of action of biocide is however less 

understood and a primary target site within the cell might be involved (646). In any case, 

for the biocide to be effective it has to reach and interact with its microbial target site(s). 

This interaction follows a similar sequence of events in which the biocide first binds to 

the surface of the cell. Subsequent changes in the outer cell layer may occur allowing the 

biocide to penetrate the cell wall and membrane reaching the cytoplasm, where it can 

interact with cellular proteins or nucleic acids. Alteration or damage to the bacterial 

structure at the outer layer, cytoplasmic membrane or within the cytoplasm at any stage
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of the biocide-bacterial interaction may contribute to the bacteriostatic or bactericidal 

effect of the biocide (577, 646).

The overall mechanism of biocides action can be defined according to the bacterial 

structure or site against which it is most active. Three interaction sites have been 

described: (i) the outer cellular components or cell wall; (ii) the cytoplasmic membrane 

and its constituents and; (iii) the cytoplasm and its components. A biocide can act on one, 

two, or all three sites to achieve antimicrobial activity.

13.1 Action on the cell wall and outer cellular components

Several biocides are known to interact with outer cellular component of bacteria although
t

cell viability might not be affected. The effect of this interaction may be changes in cell 

hydrophobicity and permeability. For instance, cationic agents such as chloihexidine and 

QACs were shown to alter the hydrophobicity of Gram-negative bacteria (262, 263, 296) 

and damage the cell wall and outer membrane promoting their own uptake to reach their 

taiget(s) site at the cell cytoplasmic membrane or cytoplasm (343). Other biocides, such 

as glutaraldehyde, bind covalently to the cell wall components, including peptidoglycan. 

The effect of these cross linking agents such as aldehydes is not always apparent in 

altered cell appearance but the function of the cell wall is affected (358, 646). Some 

agents such as metal ion chelating compounds, although might not show strong 

bactericidal activity, they appear to act specifically against the bacterial outer membrane, 

and might enhance the activity of biocides if they are used in combination with these 

agents (27, 646, 916). Examples include EDTA, polycations, lactoferrin, transferrin and 

polyphosphates which were all shown to increase cell permeability of Gram-negative 

bacteria (269, 646, 1083, 1084).

132  Action on the cytoplasmic membrane and its components

Biocides which are active at the cytoplasmic membrane level are referenced to as 

“membrane active agents”. The result of such cytoplasmic membrane disruption can be
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seen in the leakage of the intracellular components. Potassium leakage is one of the first 

indicators of biocide-induced membrane damage and occurs usually rapidly following 

exposure to the biocide (578). Phenols, cresols and their chlorinated derivatives including 

chlorocresol and para-ch\oro-meta xylenol, have all been shown to induce leakage of 

intracellular materials from bacteria (460, 506, 559). Similarly, QACs and biguanides 

such as chlorhexidine are believed to combine with the membrane phospholipids causing 

disruption of the cytoplasmic membrane (1042). Other agents, such as organic acids and 

esters, may also induce leakage of intracellular components, although they also have 

other effects on the bacterial cell (646).

Biocides acting on the cytoplasmic membrane level may also inhibit the energy processes 

in the cell by disrupting the proton motive force (PMF). The latter is an expression of the
i

energised state of the bacterial- membrane, and is composed of an electrical potential and 

proton gradient that is maintained across the cytoplasmic membrane of the cell (577). The 

PMF is involved in active transport, oxidative phosphorylation and ATP synthesis in 

bacteria (461, 714, 715). It is generated by oxidation-reduction reactions occurring during 

electron transport. A number of biocides have effect on the PMF including some lipid- 

soluble phenols such as 2,4-dinitrophenol, and the protonophore, carbonyl cyanide-3 - 

chlorophenylhydrazone which disperse the PMF by dissolving in the membrane and 

uncoupling ATP synthesis from electron transport (6). Similarly, some organic acids and 

their esters collapse the PMF by transporting protons into the cells (260). For instance, 

soibic acid has been shown to accelerate the movement of protons in Escherichia coli

from low pH media to the cell cytoplasm (260), while acetic acid was reported to 

neutralise the PMF in the cell (261).

As well as disrupting the cytoplasmic membrane and its PMF, biocides can interact with 

proteins and enzymes that are embedded in the cytoplasmic membrane. For instance, 

metals such as copper and silver are known to react with the thiol groups of proteins 

(607, 918, 1062), which are vital for the activity of many enzymes. Reaction with these 

important groups produces cell inhibition or cell inactivation. The phenolic biocide, 

hexachlorophene, was reported to inhibit the membrane-bound part of the electron
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transport chain at low concentrations, whereas higher concentrations resulted in leakage 

of intracellular contents from Bacillus megaterium (312, 506).

133  Action on the cytoplasmic components

The cytoplasm contains a number of components that can be a target for biocide action. 

These include proteins, enzymes, ribosomes and nucleic acids. Many biocides are highly 

reactive chemicals and strongly interact with the bacterial cell components. For instance, 

aldehydes, alkylating and oxidizing agents all readily react with amino, carboxyl, 

sulphydryl and hydroxyl groups on proteins causing irreversible modification of the 

protein structure (676). Protein coagulation can also occur as result of biocide action. 

Compounds such as chlorhexidine, phenols and QACs have all been reported to cause
f

such effect (676). Moreover, specific enzymes can also be targeted by biocides. It has
/
been shown that triclosan targets the enoyl-acyl carrier protein reductase (FabI) in E. coli

and Mycobacterium smegmatis (683, 685). In addition, primaquine, an acridine agent, 

was reported to block protein synthesis in B. megaterium (781), and proflavine was 

shown to inhibit the synthesis of polynucleotides by DNA polymerase in E. coli (509). 

Ribosomes can themselves be damaged by biocides. Although they might not be their 

primary targets, agents such as hydrogen peroxide, proflavine and p-

chloromercuribenzoate can all damage ribosomes (698, 745, 1124).

Nucleic acids are also cytoplasmic components that can be targeted by biocides. The 

most obvious example are the acridines dyes which are nucleic acid stains that bind to the 

double stranded DNA by intercalation between adjacent bases on the same strand 

blocking replication and transcription (577). The triphenylmethane dye, crystal violet has 

been shown to interact with nucleic acids in E. coli (2). Alkylating agents such as 

ethylene oxide and formaldehyde, affect nucleic acids because of their interaction with 

the amino groups on the purine and pyrimidine bases (622). Modification of purine and 

pyrimidine bases is also seen in the action of the vapour-phase disinfectant, ozone (362), 

which decomposes in water to yield the hydroxyl and hydrogen peroxy radicals. These
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are reactive species with oxidizing capacity, and ozone has even been reported to induce 

single-strand breaks in mammalian DNA (289, 543).

1.4 Biocide families

1.4.1 Phenols: Triclosan

Phenol and phenol containing product have a long history of use as antiseptics (459), and 

today enjoy a wide use as general disinfectants and as preservatives in a variety of 

products. They are however not allowed to be used where they can contaminate foods. 

Phenol, the parent compound, is effective against both Gram-positive and Gram-negative 

vegetative bacteria, but shows limited effect on spores and fast-acid bacteria. There are a 

large number of phenol derivatives which differ in their chemical reactivity depending on 

their structure. One of the most important in relation to biocides are the bis-phenols. 

These are hydroxyl-halogenated derivatives of two phenolic groups connected by various 

bridges, of which triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) (Figure 1.2) is the 

most wildly used.

Triclosan is a synthetic, non-ionic, broad spectrum antimicrobial agent which has mainly 

antibacterial but also some antifungal and antiviral properties (76, 502), as well as anti-

inflammatory activity (45, 1099). Low concentration inhibits growth of mainly Gram- 

positive (including some mycobacteria) and Gram-negative bacteria. Much higher 

concentrations are bactericidal, although Pseudomonas aeruginosa and certain other 

bacteria are highly intrinsically resistant. In addition, yeast and moulds tend to be much 

less susceptible than Staphylococcus aureus to triclosan whereas bacterial spores are 

unaffected by it (912). The activity of triclosan compounds can be enhanced by 

formulation effects, and some reports have suggested that it may have anti-inflammatory 

activity as well as antimicrobial (45, 1099). Triclosan activity is not compromised by 

soaps, most surfactants, organic solvents, acids or alkalis but ethoxylated surfactants such 

as polysorbate 80 (Tween 80) entrap triclosan within micelles thus preventing its action 

(76). Although known for over 30 years, since its introduction into the health care
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industry as a surgical scrub in 1972, the use of triclosan was confined to mostly health 

care settings for many years. The last decade however saw a rapid increase in the number 

of triclosan-containing products, these included skin cleaners, antibacterial hand rubs, 

dental products including toothpastes and mouth washes, deodorant soaps and other 

cosmetics (76, 502). Triclosan is also incorporated into fabrics and plastics, including 

toothbrush handles, cutting boards, children toys as well as surgical drapes and hospital 

over-the-bed table tops (961). Typically, triclosan is used at a concentration of 0.3% 

(w/w), although higher concentrations are also employed such as 2% recommended for 

skin decolonization of MRS A carriers (181).

Phenols induce progressive loss of intracellular constituents from treated bacteria and 

produce generalized membrane damage with intracellular coagulation occurring at higher 

concentrations (456).Th& initial reaction between a phenolic derivative and bacteria 

involves binding of the active phenol species to the cell surface. The compound then 

enters the cell either by passive diffusion (Gram-positives) or hydrophobic lipid bilayer 

pathway (Gram-negatives). The agent inhibits the cytoplasmic membrane-bound 

enzymes and causes its loss of the ability to act as a permeability barrier (126). Phenols 

denature protein structures by binding to amino acid residues, and the changes brought 

about in protein structure depend on concentration used. Small changes in protein 

structure can cause enzyme inhibition, whereas more significant changes in membrane 

proteins result in membrane damage and leakage of cell components (312, 844). If the 

protein is totally denatured, this results in coagulation of the proteins in the cytoplasm 

(626). Some lipid soluble phenols such as 2,4-dinitrophenol were reported to inhibit the 

membrane-bound part of the electron transport chain, and to dissipate the PMF (6).

The mode of action of triclosan has been well studied and it was initially thought that it is 

a membrane active, non-specific biocide affecting membrane structure and function (693, 

861, 1095). However studies on E. coli, S. aureus and P. aeruginosa have shown that 

these organisms absorb triclosan by diffusion and that fatty acid composition of the cells 

affects their sensitivity to triclosan (693, 817). The major breakthrough in identifying the 

cellular target of triclosan came from studies on E. coli (412, 685), P. aeruginosa (441), 

M. smegmatis (683, 990), M. tuberculosis (990) and S. aureus (410). These studies all
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showed that triclosan acts by blocking lipid biosynthesis by specifically inhibiting the 

NADH-dependent enoyl-acyl carrier protein reductase (FabI), or its homolog InhA in M.

smegmatis (683) and M  tuberculosis (790, 990). The FabI is a major component of the 

fatty acid biosynthetic pathway in these bacteria, and also occur as part of a complex 

polypeptide in animal and fungi (682). Triclosan has also been shown to inhibit the 

enoyl-acyl carrier protein reductase of Plasmodium falciparum (57, 682, 1033). Although 

triclosan specifically targets the enoyl-acyl carrier protein reductase, in practice the agent 

is used at higher concentrations than those that cause the selective inhibition of fatty acid 

synthesis. Hence, the antimicrobial action of triclosan at in-use concentrations results 

from the non-specific damage to the cytoplasmic membrane, and the agent has been 

shown to induce potassium leakage from S. aureus at high concentrations (1031).

1.4.2 Quaternary Ammhnium Compounds (QACs): Cetylpyridinium chloride

(CPC)

Quaternary Ammonium Compounds (QACs) are organically substituted ammonium 

compounds in which the central nitrogen atom is joined to four organic radicals (Figure 

1.1). QACs are used as cationic surface-active agents (surfactants) disinfectants, 

antiseptics and in drugs. Cationic surfactants are a class of chemicals that reduces surface 

tension at interfaces, and attaches to negatively changed surfaces, including 

micoorganisms. QACs were first recognized in the early 1900s and there were references 

to their use by Jacobs (488), and Jacobs et al. (489, 490). Nowadays they are recognized 

as one of the most useful antiseptics and disinfectants used in a number of clinical and 

veterinary procedures such as preparative disinfection of unbroken skin, application to 

mucous membranes, disinfection of noncritical surfaces (897) and disinfection of 

automatic calf feeders (722). In addition, QACs are also used as preservatives, sanitizers, 

in water treatment and other environmental purposes and are effective agents for hard- 

surface cleaning and deodorization (897).

One of the most useful QACs is benzalkonium chloride which at concentrations ranging 

from 0.005% to 0.2%, is used for the preoperative disinfection of unbroken skin, for 

application to mucous membranes, and for bladder and urethra irrigation (722).
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Benzalkonium chloride (0.01%) is recognized as being suitable preservatives for 

inclusion in eyedrop preparations and is also widely used (at concentrations of 0 .001-

the treatment of superficial mouth and throat infections, as well as in alcohol and acetone 

solutions at concentration of 0 .2% for preoperative skin disinfection and for controlling 

algal growth in swimming pools.

The QAC examined in this study was cetylpyridium chloride (CPC) (Figure 1.2), a 

heterocyclic ammonium salts that comes as a white powder with a slight characteristic 

odour and is water soluble. Cetylpyridium chloride is used in a number of application 

including skin cleansing, treatment of wounds and bums, and a number of skin disorders. 

Solutions of 0.1-0.5% cetylpyridium chloride are used for skin disinfection and for

antiseptic treatment of small wound surfaces (722). The agent is also incorporated in 

lozenges for the treatment of mouth and throat infections, as well as used for preservative 

in emulsions. Cetylpyridium chloride is incorporated in many cosmetic products (846) 

such as in hair preparations and in deodorants and in face and shaving lotions at low 

concentrations (0.05-0.1%).

Figure 1.1. General structure of quaternary ammonium compounds.

R represent(s) alkyl or aryl substituents and X represents a halogen, such as 
bromide, iodide, or chloride

0.01%) in hard contact lens soaking solutions. The agent is also included in lozenges for

N
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QACs are active against Gram-positive bacteria, with concentrations as low as 0.0005% 

being lethal. They are however less active against Gram-negative organisms (generally 

lethal at concentrations 0.0033%) especially P. aeruginosa, which tend to be highly 

resistant (221). It is thought that the high content of phospholipids and natural lipids in 

this organism increases its resistance (658). QACs are ineffective against mycobacteria 

(1038), presumably because of the lipid, waxy coat of these organisms, and show some 

antifungal properties although they are fungistatic rather then fungicidal (208). Viruses 

are more resistant than bacteria or fungi to the QACs (378). The spectrum of activity of 

QACs is concentration-dependent, whereby at low concentration they have a static effect, 

and at higher concentration they have a cidal effect.

QACs are membrane active agents affecting predominantly the cytoplasmic (inner) 

membrane in bacteria or the plasma membrane in yeasts (457). Salton et al. (935) 

proposed that micro-organisms exposure to cationic agents such as QACs leads to first 

the adsorption of the agent into the cell surface then its penetration and diffusion 

throughout the outer layers of the cell. This is then followed by the agent reacting with 

the cytoplasmic membrane (lipids or proteins) leading to membrane disorganization, 

leakage of intracellular low-molecular-weight material and degradation of proteins and 

nucleic acids leading to cell wall lysis caused by autolytic enzymes. There is thus a loss 

of structural organization and integrity of the cytoplasmic membrane in bacteria, together 

with other damaging effects to the cell (232).

In this context, QACs irreversibly bind to the phospholipids and proteins of the 

membrane, thereby impairing permeability. Compounds such as benzalkonium chloride 

have been shown to alter the hydrophobicity of Gram-negative bacteria (262, 263), and 

changes in the fatty acid composition of P. aeruginosa exposed to QACs have been 

reported (383). Additionally, QACs such as cetyltrimethylammonium bromide were 

reported to bind to nucleic acids and precipitate them, a property that is widely exploited 

in DNA preparations (227). These agents also induce leakage of intracellular 

components, which is indicative of membrane damage (217, 262, 263, 1041, 1049). As 

with chlorhexidine, low concentrations of QACs cause membrane damage and leakage of
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cytoplasmic constituents, whereas higher concentrations cause cytoplasmic coagulation. 

Cetyltrimethylammonium bromide for instance, used at a bactericidal concentration, was 

shown to rupture the cell membrane (217). It was suggested that this compound targeted 

primarily the lipid components of the membrane and cell lysis was a secondary effect 

(345).

1.43 Biguanides: Chlorhexidine

A number of biguanides show antimicrobial activity, some of the most commonly used 

are chlorhexidine, alexidine and the polymeric forms notably polyhexamethylene 

biguanide (PHMB). Chlorhexidine is a l,6-di(4-chlorophenyl-diguanido) hexane cationic 

bisbiguanide (Figure 1.2), and is available as dihydrochloride, diacetate and gluconate. 

Chlorhexidine was first, synthesized in the 1950s and was found to have high-level 

antibacterial activity, low mammalian toxicity and a strong affinity for binding to the skin 

and mucous membranes (231). These properties amongst others such as its broad 

spectrum efficacy and low irritation made chlorhexidine one of the most widely used 

biocides in antiseptic products both in medical and veterinary settings (446, 919), in 

particular hand-washing and oral products. Chlorhexidine is used in concentrations 

ranging from 0.05% to 4% in washes and lotions (624) while chlorhexidine diacetate is 

typically used at a concentration of 2%. Chlorhexidine has also been formulated with 

other compounds such as ethanol and QACs for better effective use. It is used in oral 

conditions such as reducing dental plaques and treating gingivitis (195, 356), irrigating 

the bladder for some urinary infections, in gynaecology, cleaning wounds and bums, and 

catheterization procedures (1070). Although the main use of chlorhexidine is as an 

antiseptic, it is also used as disinfectant and a preservative (329).

Chlorhexidine has a wide spectrum of antibacterial activity against both Gram-negative 

and Gram-positive bacteria, although some may show resistance to this agent. For 

instance, strains of Proteus and Providencia spp., have been reported to be highly 

resistant to the biguanide (32, 480, 481, 900). Chlorhexidine is not lethal to acid-fast 

organisms, as low concentrations of the agent are mycobacteriostatic, but not generally 

mycobactericidal (894). Chlorhexidine is however, tuberculocidal in ethanolic solutions
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(722). The biguanide is not considered sporicidal (898, 914), although it kills spores at 

98-100°C (722). The agent is active on protozoa (321), yeasts (439) and has some 

antiviral properties (792) although its not considered an effective antiviral. The activity of 

chlorhexidine is reduced in the presence of serum, blood and other organic matter, and as 

result of its cationic nature, activity is also reduced in presence of soaps and other anionic 

compounds.

The mode of action of biguanides especially that of chlorhexidine has been extensively 

studied (294, 295, 462, 463, 855, 915), however, most of these investigations were in 

relation to actions on non-sporulating bacteria (457). Chlorhexidine gluconate has been 

shown to be taken up very rapidly by bacteria (295) and fungal cells (438). At low

concentrations of up to 200 pg/ml, chlorhexidine causes membrane damage, inhibits
<

membrane enzymes and promotes leakage of cellular constituents. Leakage of 

cytoplasmic material generally increases with increasing concentrations up to a high 

concentration where cytoplasmic precipitation occurs. These high concentrations which 

lead to cytoplasmic coagulation also result in less leakage of cellular material and the 

bactericidal effect is seen. Low concentrations of chlorhexidine have bacteriostatic 

activity whereas high concentrations are rapidly bactericidal (231).

Evidence of the above has been collected from a number of studies and reports. For 

example, the hydrophobicity of Gram-negative bacteria was altered when subjected to 

chlorhexidine (262, 263, 294, 500), and the agent was shown to damage the cell wall and 

outer membrane of these bacteria and to promote its own uptake to reach its target(s) at 

the cell cytoplasmic membrane, where it interacts with the anionic lipids (900, 935), and 

cytoplasm (343). Chlorhexidine was reported to induce potassium leakage from baker’s 

yeast and affect the ultrastructure of budding Candida albicans with loss of cytoplasmic 

constituents (84). Chlorhexidine was claimed by Harold et al. (401) to be an inhibitor of 

both membrane-bound and soluble ATPase as well as of net potassium ions uptake in 

Enterococcus faecalis. However, this may not be the primary target for the agent as only 

high biguanide concentrations inhibit membrane-bound ATPase (162).
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Barrett-Bee et al. (48) studied the membrane distabilising action of chlorhexidine in a 

number of bacterial species including E. coli, S. aureus, Morganella morganii and P.

aeruginosa. They reported that the agent caused inhibition of oxygen utilisation in the 

bacteria that was related to fall in cellular ATP levels, although this was not responsible 

for the bactericidal effect of the compound. Investigators also noted effect(s) on the outer 

membrane of Gram-negative bacteria which allowed the release of periplasmic enzymes. 

Although the inner membrane was not ruptured the agent caused it to be functionally 

breached, which was coupled with inhibition of the active uptake of small molecules, but 

not related to cellular ATP levels.

1.4.4 Aldehydes: Orf/w-phthalaldehyde (OPA)

Aldehydes are wide spectrum activity biocides, of which glutaraldehyde (GTA) and 

formaldehyde are the most important as disinfectants. GTA is a saturated five-carbon 

dialdehyde with an empirical formula of C5H8O2. GTA is more stable at acid than 

alkaline pH, and solutions at pH 8 and above generally lose activity within 4 weeks. For 

this reason, GTA is usually obtained commercially as a 50% solution of acidic pH, and is 

used in disinfection as a 2% solution that is activated (made alkaline) before use. GTA 

have been recommended as disinfectant and sterilant, in particular for low-temperature 

disinfection and sterilization of endoscopes, arthroscopes, laparoscopes, and surgical 

equipment and as a fixative in electron microscopy (620, 897). It has also been used in 

the veterinary field for the disinfection of utensils and of premises (919). GTA has many 

advantages as a biocide, as it has broad spectrum of activity with rapid microbial action, 

and it is non-corrosive to metals, rubber and lenses (722). However, there is concern over 

its toxicity, and potential mutagenic and carcinogenic effects of GTA have been reported 

(464) as well as skin and eye irritation and respiratory disorders (904). This, along with 

the appearance of GTA-resistant M. chelonae, lead to the introduction of a new GTA- 

altemative aldehyde, or/Ao-phthalaldehyde (see below) (1119). GTA has a wide spectrum 

of activity and was shown to be effective against both sporulating and non sporulating 

bacteria, fungi, and have a potent mycobactericidal (1119), sporicidal (357), and viricidal 

activity (284).
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Formaldehyde is the other important disinfectant in the aldehyde group, and is used both 

in liquid or vapour forms. The formaldehyde solution (formalin) is typically 34-38% w/w 

CH2O and contains methyl alcohol to delay polymerization (722). Liquid formaldehyde 

solutions have been used as viricidal agent in the production of vaccines such as polio, 

treatment of warts, as preservative in hair shampoos, as an antiseptic mouthwash, as 

disinfectant of membranes in dialysis equipment, and as a detergent in RNA gel 

electrophoresis, preventing RNA from forming secondary structures (722). Formaldehyde 

vapor has been employed in the disinfection of sealed rooms, hospital bedding and 

blankets, and sterilization of heat-sensitive medical materials. Formaldehyde was first 

reported as disinfectant in 1892 and it is microbicidal and lethal against bacteria and their 

spores, fungi and viruses. However its activity is influenced by organic load and 

especially in vapor form its effectiveness is dependent on concentration, temperature and
i

relative humidity (722).

As mentioned above, concerns over the toxicity and development of resistance to GTA, 

lead to the introduction of a new-GTA alternative, orf/ro-phthalaldehyde (OPA) (1119). 

Ortfco-phthalaldehyde is itself an “old” molecule, but recently it has been examined in a 

new antimicrobial context. G/tAo-phthalaldehyde is an aromatic dialdehyde (Figure 1.2) 

that comes in the form of a yellow crystals or powder, and is used at a concentration of 

0.55% (w/v) (310). Its activity has been studied in both Gram-positive and Gram- 

negative bacteria (311, 1120, 1121) and in mycobacteria (1120), and it is claimed to have 

potent bactericidal, sporicidal and viricidal activity and has been suggested as a 

replacement for glutaraldehyde in endoscope disinfection (11, 363, 1119, 1120). To date 

little is known about the mechanism of action of or/Zio-phthalaldehyde, however early 

evidence suggest that its action is similar to that of GTA (1118).

Aldehydes are reactive molecules and are able to react with residues on both proteins and 

nucleic acids by alkylation, leading to irreversible chemical modification which results in 

the inhibition of metabolism and cell division. Among the chemical groups that 

aldehydes are able to react with are amino, carboxyl, thiol, hydroxyl, imino, and amide 

substituents (577). Cross-linking of proteins is also observed and usually involves

17



multiple interactions between chemical groups leading to aggregation (495, 886). 

Formaldehyde was reported to act on proteins by the same above process (495), and on 

nucleic acids by alkylation, for example alkylation of the amino groups on purine and 

pyrimidine bases (622). The mode of action of GTA is similar to that of formaldehyde, 

and is thought to involve strong association with the outer layers of bacterial cells (120), 

and it acts by intermolecular cross-linking of bacterial proteins, such as lipoproteins 

(986). Although GTA does not damage bacterial spores DNA, it eliminates their ability to 

germinate (912). The new GTA-substitute, orf/io-phthalaldehyde, was reported to interact 

with the amino acids, proteins, and microorganisms, although not as affectively as GTA. 

It was shown to cause less cross-linkage, and its high activity against mycobacteria was a 

result of its lipophilic nature, which aids its uptake thought the cell wall (986).

f
1.4.5 Other biocide families

1.4.5.1 Alcohols

Alcohols have long been used as biocides, and are generally rapidly bactericidal (728), in 

some cases including fast-acid bacteria (201), but they are not sporicidal even at high 

concentration (901). They have low activity against some viruses (1080), but are viricidal 

towards others (1086). Alcohols are generally considered non-specific antimicrobial 

agents because of their many toxic effects. Their mode of action appears to involve a 

number of effects including protein coagulation and denaturation, disruption of the 

cytoplasmic membrane and cell lysis (126, 296, 966). They also interfere with the cellular 

metabolism causing inhibition of DNA, RNA, protein and peptidoglycan syntheses along 

with other effects such as inhibition of the enzymes involved in glycolysis, fatty acid and 

phospholipid syntheses and effects on solute uptake (913, 966).

1.4.5.2 Halogens

The two most important microbial halogens are iodine and chlorine compounds. Iodine 

and its derivatives are mainly used for antisepsis (658) and are considered efficient
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microbial agents able to rapidly kill bacteria and their spores, moulds, yeast and viruses 

(333, 531, 658, 901, 1038). Iodine interacts with the thiol groups of enzymes and proteins 

(456, 913), which are important determinants of protein structure and function, leading to 

metabolic inhibition of the cell (185, 359, 1061). Moreover, there is evidence that this 

agent acts by interacting with the double bonds of the phospholipids causing damage to 

the cell wall and leading to loss of intracellular material (126).

Chlorine compounds are widely used as sanitizing agents in the food industry and as 

disinfectants, of which hypochlorite is one of most commonly utilised (722). 

Hypochlorites are considered wide spectrum, antibacterial agents effective against non- 

spomlating bacteria but with low activity against mycobacteria (201). They are active 

against viruses (725) and are considered among the most potent sporicidal agents (177,
t

178, 532). Chlorine compounds act on multi-targets in the cell including cell wall and 

amino groups on proteins leading to the metabolic inhibition of the cell (456, 909), as 

well as deleterious effects on DNA synthesis resulting from the formation of chlorinated 

derivatives of nucleotide bases (676, 681).

1.453 Peroxygens

The most important peroxygens used as biocides are hydrogen peroxide (H2O2), peracetic 

acid (CH3COOOH) and ozone (O3) (83, 722, 836, 1130). They possess disinfectant and 

antiseptic properties and are effective against a wide range of organisms including 

bacteria, yeast, fungi, viruses, and spores (37, 126, 387, 477, 878, 898, 902, 911, 994, 

1130). Peroxygens are powerful oxidants, and it is through the formation of the hydroxyl 

radicals that these agents exert their antimicrobial effect. Being highly active, the 

hydroxyl radicals oxidise thiol groups in enzymes and proteins (232, 341, 909) as well as 

other chemical groups represented within a whole range of membrane-bound and 

intracellular enzymes. They can also attack other components of the cell wall, membrane 

and cytoplasm, including membrane lipids, DNA, and RNA, causing cell destruction 

(289, 362,475, 535, 543).
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1.4.5.4 Heavy metals derivatives

Among the heavy metals derivatives, copper, silver and mercury compounds are the most 

commonly used. They are used as antimicrobial agents as well as in the activation and 

increase efficiency of other drugs and biocides (676, 1189). Heavy metals such as copper 

and silver ions were reported to cause structural changes in the cell envelope and induce 

cytoplasmic protein coagulation. They also react with the chemical groups on proteins, 

enzymes and DNA (918), leading to cell inhibition and inactivation (607, 918, 1062).

1.4.5.5 Antimicrobial dyes

Antimicrobial dyes have antimicrobial use of and acridines, triphenylmethane group and 

quinines are the most conimonly employed. They are mainly used as antiseptics and act 

by combining with several sites on or in the bacterial cell, including DNA, and RNA 

(352, 984). They inhibit gene replication and expression by blocking DNA, RNA, and 

protein synthesis (2, 171, 750, 967, 1153).
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Firure 1.2 . Chemical structures of the biocides used in this study.

A; triclosan, B; ort/io-phthal aldehyde, C; chlorhexidine, and D; cetylpyridium chloride.
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1.5 Biocide resistance in bacteria

Resistance to biocides has been widely studied in bacteria (676, 913), as well as, to a 

lesser extent, in fungi and some protozoa (537, 917, 1078). Reports of bacterial resistance 

to biocides included high and low level resistance to triclosan in S. aureus (40, 190, 410, 

412, 946, 1030, 1031), low level resistance to QACs and chlorhexidine in S. aureus, P.

aeruginosa and P. stutzeri (40, 501, 690, 921, 1030, 1049), resistance to diamidines in S.

aureus (613, 1054), and resistance to glutaraldehyde in M. chelonae (656). The term 

“bacterial resistance” is often used loosely in the context of biocides. For antibiotics, 

resistance in a bacterium is usually referred to in a clinical context, where a bacterium 

became able to withstand an antibiotic concentration to which it was sensitive, hence 

making the agent’s concentration ineffective therapeutically. By contrast, much of the 

work investigating biocide resistance is laboratory-based, and most of the resistance 

reported has little clinical significance as the levels of resistance recorded are to biocide 

concentrations well below those used in hospital, domestic or industrial practice (152, 

896).

It is also the case that resistance is generally determined from MIC values which describe 

the biocide growth inhibitory effect but do not necessarily reflect its effectiveness at 

killing the organism. As biocides efficiency and benefits are dependent for the most part 

on producing effects that cause rapid kill, resistance determined from MIC results has 

little relevance in assessing whether the MIC values are correlated to reduced kill or 

product failure. Nevertheless, bacterial species, such as P. aeruginosa and M  

tuberculosis, are able to survive “in use” biocide concentrations, and Russell (895-897, 

899, 905, 906) described several biocides including QACs, bis-biguanides, diamidines, 

bis-phenol, and acridines, to which resistance may be a problem. Bacterial “reduced 

susceptibility” to biocides, which is the more correct term rather than biocide 

“resistance”, can arise in a number of mechanisms. Some of these are intrinsic, which are 

inherent features of the organism, and others are acquired.
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1.5.1 Intrinsic biocide resistance

Intrinsic resistance is a natural property of an organism and is shown by bacterial spores, 

mycobacteria, and some Gram-negative bacteria (907). Some bacteria withstand 

antimicrobials because their innate biochemical makeup renders them intrinsically less 

susceptible. Resistance to biocides is mostly due to intrinsic cellular mechanisms (1141), 

and this inherent biocide resistance is likely to be of greater significant in Gram-negative 

bacteria (910). This form of resistance is usually associated with cellular impermeability, 

efflux, and degradation or inactivation of the biocide. Intrinsic resistance is usually a 

result of contribution from many if not all of the above mechanisms, whereby the protein- 

lined pores of the outer membrane restrict the access of hydrophobic and large 

hydrophilic molecules to the vulnerable cytoplasmic membrane. The complex outer 

membrane structure and its rigid lipid bed slow down the penetration of hydrophobic 

molecules, while a strong efflux system ensures that lipophilic biocides that do penetrate 

the envelope are pumped out of the cell. Those agents that succeed in passing these 

mechanisms can be inactivated or degraded by specialized pathways.

1.5.1.1 Cellular impermeability

Intrinsic biocide resistance is usually shown as a reduced uptake of the agent which 

occurs as a result of impermeability barriers (913) in bacterial spores, mycobacteria, 

Gram-negative bacteria, and vancomycin-resistant S. aureus strains (899). Vancomycin 

resistance arises as result of mutation and cell-wall thickening and alteration in 

peptidoglycan (440). Biocides interact with microorganisms initially at the cell surface; 

hence intrinsic resistance is significantly influenced by the composition and components 

of the cells outer surfaces. Bacteria differ considerably in their response to biocides. The 

most resistant are undoubtedly bacterial spores, followed by mycobacteria, Gram- 

negative bacteria, and then Gram-positive bacteria. There are however numerous 

exceptions to this classification (897) as well as wide differences in susceptibility within 

the above groups of organisms (676).
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Many of the differences in biocide susceptibility between the different microbial groups 

can be explained on the basis of the structure, composition and components of the cells 

surfaces. In spores their outer and inner coats (composed of alkali-resistant S-S bounds 

and alkali-soluble acidic polypeptides respectively), their cortex, made up of the 

peptidoglycan, limit the uptake of biocides (676). It is however also known that spores 

have other intrinsic mechanism of biocide resistance in addition to their cellular 

impermeability. For instance, spores (ap) lacking the major DNA protective a/p-type 

small, acid-soluble spore protein, were shown to be more susceptible to peracetic acid 

and formaldehyde (622).

In terms of their biocide response, mycobacteria occupy an intermediate position between 

bacterial spores and other bacteria (894). The main reason for their biocide resistance is
i

their lipid-rich waxy cell wall, which limits the uptake of many biocides (310, 894). 

Studies on GTA-resistant M. chelonae strains suggested that the 

arabinogalactan/arabinomannan component of the cell wall is associated with resistance 

to the aldehyde. It is however interesting that orr/io-phthalaldehyde, a cyclic dialdehyde 

is shown to be effective against the GTA-resistant strains (986, 1121). The mycobacteria 

cell wall structure and its action as a permeability barrier are discussed in more detail in 

section 2.1.7.

Gram-negative bacteria, especially P. aeruginosa, Proteus spp., Providencia spp., and 

Serratia marcescens, generally show reduced susceptibility to biocides compared with 

Gram-positives (913). A major reason for this reduced susceptibility is that the Gram- 

negative bacterial cell wall significantly limits the uptake of these agents. The outer 

membrane of Gram-negative bacteria acts as a permeability barrier due to its narrow 

porin channels, which limit the penetration of hydrophobic molecules, and to the low 

fluidity of the lipopolysaccharides leaflets, which slow down the diffusion of lipophilic 

compounds into the cells.

It was thought that the antimicrobial agents that are less active on Gram-negative bacteria 

compared with Gram-positives, acted by inducing metabolic or structural changes in the
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cytoplasmic membrane (458). The cytoplasmic membranes of both Gram-negative and 

Gram-positive bacteria were subsequently shown to be equally sensitive to the action of 

these agents (394). Hamilton (394) suggested that the layer of the Gram-negative cell 

envelope external to the cytoplasmic membrane may either constitute a non-absorbing 

barrier or may absorb and retain the agents, thus protecting the underlying sensitive 

membrane. Unlike in Gram-positives, the Gram-negative cell envelope is a complex and 

multilayered structure. In addition to the typical inner cytoplasmic membrane, Gram- 

negatives have an additional outer membrane composed of lipopolysaccharides, 

phospholipids, and proteins. Sandwiched between these two membranes is the periplasm, 

some 10-25 nm in depth (360), and containing the peptidoglycan layer and enzymes, 

including p-lactamases, ribonucleases and phophatases, suspended in a highly hydrated 

polysaccharide gel (1017).
f

The peptidoglycan consists of glycan chains cross-linked by peptides. The sugar 

component of peptidoglycan consists of alternating residues of |3-(1,4) linked N-

acetylglucosamine and A-acetylmuramic acid residues. Attached to the A-acetylmuramic 

acid is a peptide chain of three to five amino acids. The peptide chain can be cross-linked 

to the peptide chain of another strand forming a 3D mesh-like layer which provides 

strength and rigidity to the cell wall. In Gram-negatives the peptidoglycan is attached to 

the outer membrane via lipoproteins (1140), and it is less substantial than in Gram- 

positives, typically 3-5 nm thick (360). Although not considered a major factor associated 

with cell permeability, Denyer and Maillard (233) suggested that peptidoglycan plays an 

indirect role by holding together the outer membrane of the cell.

The structure and composition of the outer membrane is different from that of the 

cytoplasmic membrane in that it contains less phospholipids (located in the inner 

surface), fewer proteins and has a unique component, lipopolysaccharides (located on the 

outer leaflet of the membrane) (1017). Lipopolysaccharides are characteristics of the 

Gram-negative outer membrane and consist of three covalently-linked regions (233). The 

first is a phosphorylated glucosamine dissacharide unit attached to a number of fatty 

acids, called lipid A. The second region is the core polysaccharide, a complex
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oligosaccharide of about 10 sugar residues, linked to lipid A by 2-keto-3-deoxyoctonate. 

The final portion is the O-side chain which is joined to the core polysaccharide and is 

composed of repeating subunits of oligosaccharides. The lipopolysaccharides chains have 

high negative charge that provides a polyanionic external surface, partially neutralised by
• i x  J  I ^

divalent cations (Mg and Ca ). These non-covalent cross-links formed by the cations 

give structural strength and integrity to the lipopolysaccharides chains in the outer 

surface, as well as limiting the access of hydrophobic molecules into the bacterial cell 

(398).

The Gram-negative outer membrane also contains porin proteins which form channels 

across the lipid bilayer. These channels function in the transport of hydrophilic low 

molecular weight substances (including some hydrophilic drugs) into the cell. The size of 

the solute and its chemical composition as well as the size of the channel are important 

determinants to whether the molecule is able to diffuse thought the outer membrane into 

the cell. In E. coli, porin proteins OmpF and OmpC, which allow the non-specific 

diffusion of hydrophilic molecules, are folded in such a way as to produce a barrel-

shaped, water-filled channel across the outer membrane (763). The channels do not have 

a constant cross-section diameter, and are wide at the entrances and exits but have a 

narrow central section of only 0.7 X 1.1 nm (764). This excludes molecules with 

molecular weight higher than 600 Da from passing across the outer membrane. Although 

it is possible for molecules with higher molecular weight than 600 Da, and which are 

long, flexible and hydrophilic to slowly cross the channels (764).

P. aeruginosa is able to intrinsically restrict the uptake of biocides due to the high Mg2+ 

content in its outer membrane, which aids in producing strong lipopolysaccharides- 

lipopolysaccharides links (676). The tight packaging of the six fatty acids in lipid A 

molecules in E. coli was suggested to play a role in the rigidity of the interior of the 

lipopolysaccharides manolayer, resulting in poor diffusion of hydrophobic molecules 

(762). Tamaki and Matsuhashi (1047) demonstrated that E. coli rough mutants, with 

extensive lipopolysaccharides effects were unusually sensitive to the hydrophobic 

antibiotic novobiocin and hypersensitive to the enzyme lysosyme. From this observation
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the authors concluded that the lipopolysaccharides on the cell surface of the cell prevent 

penetration of lysozyme and certain low-molecular-weight drugs (1047). A contributory 

factor in the resistance of Proteus species to chlorhexidine and other cationic biocides is 

the presence of a less acidic type of outer membrane lipopolysaccharides (913). 

Burkholderia cepacia has been reported to be resistant to chlorhexidine (784) and 

triclosan (502). The unusual high concentration of phosphor-linked arabinose in the 

lipopolysaccharides of the organism decreased the affinity of the outer membrane to 

cationic agents (198).

Mutants producing lipopolysaccharides with polysaccharide chains of different lengths 

are available in Salmonella, and provide a unique opportunity for examining how 

alterations in the structure of this integral component affect the postulated barrier 

properties of the outer membrane. Salmonella typhimurium “deep rough” mutants whose 

lipopolysaccharides lack most of the saccharide chains are highly sensitive towards some 

antibiotics, crystal violet, malachite green and phenol (883, 954). In the same organism, 

the “om/? mutants”, which exhibit a normal wild-type lipopolysaccharides composition 

but have a reduced level of outer membrane proteins, were shown to be sensitive to 

crystal violet and deoxycholate (15). These mutants also allowed rapid penetration of a 

number of hydrophobic antibiotics (761).

1.5.1.2 Efflux pumps

Studies have shown that broad specificity efflux pumps, named multidrug efflux pumps, 

also contribute to the intrinsic resistance of Gram-negative bacteria to a variety of agents 

including dyes, detergents, and antibiotics (601, 603, 758, 760, 765, 835). These pumps 

are chromosomally encoded and induced through sublethal exposure to compounds 

including small hydrophilic antibiotics and agents such as QACs, pine oil, and salicylate 

(704). Hence, bacteria exposed to sublethal concentrations of some biocides might induce 

multidrug resistance for as long as the pump is actively expressed. There are five major 

superfamilies of efflux pumps, each family contains pumps that are specific for single
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agents together with pumps that are responsible for multidrug efflux (845). These 

superfamilies are:

• The small multidrug resistance family (SMR) (170), now described as part of a 

larger drug/metabolite transporter superfamily (DMT) (483).

• The major facilitator superfamily (MFS) (788).

• The multidrug and toxic compound extrusion family (MATE) (110).

• The resistance-nodulation-division family (RND) (758, 1193).

i
• The ATP-binding cassette family (ABC) (1091).

These efflux systems can further be divided into two classes based on the mechanism 

they use to pump agents out of the cell. Those that use transmembrane electrochemical 

gradient of protons or sodium ions to actively efflux agents from the cell are referred to 

as secondary drug transporters, and include the MDR, RND, SMR, and MATE systems 

(845). The ATP-binding cassette family (ABC) belongs to the second class and uses 

energy of ATP hydrolysis to pump agents out of the cell (845). Structure of the main 

types of efflux systems in bacteria are shown in Figure 1.3.

Two efflux pumps are well-established in relation to conferring intrinsic resistance to 

biocides in Gram-negative bacteria. These are the MexAB-OprM system in P.

aeruginosa (Figure 1.3) and the AcrAB-TolC system in E. coli. Both pumps are of the 

RND-type and have a three-component organization (1193) which includes a transporter 

located in the inner membrane, an outer membrane channel that functions with the 

transporter and a periplasmic accessory protein (Figure 1.3). In E. coli, the AcrAB-TolC 

system is encoded by the acr genes, and is composed of AcrB which spans the inner 

membrane of the cell, an accessory periplasmic protein AcrA, which is also anchored in 

the inner membrane, and an outer membrane protein, TolC. The pump is under the
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regulation of the mar (multiple antibiotic resistance) operon, and acts as a transporter for 

tetracycline, ciprofloxacin, fluoroquinolone, p-lactams, and novobiocin as well as 

ethidium bromide, acriflavine, phenylethylalcohol, sodium dodecyl sulfate, and 

deoxycholate (636-638, 744, 780). Activation and up-regulation of the AcrAB-TolC 

efflux pump was seen in E. coli mutants which over-expressed the Mar protein. These 

mutants expressed increased resistance to antibiotics, cyclohexane, pine oil, bile salts, 

and disinfectants such as triclosan, QACs and chlorhexidine (601, 719).

The MexAB-OprM system in P. aeruginosa is the homologue of the AcrAB-TolC system 

in E. coli. The MexAB-OprM pump which is constitutively expressed, and has a normal 

physiological function of exporting the siderophore pyoverdine into the surrounding 

medium, was shown to be able to pump out a wide range of structurally unrelated
i

antibiotics (759). The system was also shown to be capable of transporting triclosan from 

P. aeruginosa cells (166, 961). In P. aeruginosa, in addition to the MexAB-OprM pump, 

other Mex systems (MexCD, and MexEF), which transport a variety of agents, including 

tetracycline, ciprofloxacin, fluoroquinolone, p-lactams, and fusidic acid, also exist. 

Schweizer (960) suggested that for P. aeruginosa the presence of the Mex systems 

coupled with the narrow porin channels in its outer membrane, which restricts the 

diffusion of antimicrobial agents into the cell are responsible for the very high intrinsic 

resistance of this species to antimicrobial agents compared to other Gram-negative 

bacteria. P. aeruginosa RND-type systems have also been identified in a number of 

Gram-negative pathogens including B. cenocepacia, B. pseudomallei, Stenotrophomonas

maltophilia, and in the non pathogen P. putida (959). Similarly, E. coli acr-like systems 

have been found in other species of Enterobacteriaceae such as Salmonella spp. (760, 

765, 1028)

1.5.13 Biocide inactivation/degradation

In addition to impaired uptake and increased efflux, micro-organisms show intrinsic 

resistance though inactivation or degradation of biocides. Nishihara et al. (769) reported a 

P. jluorescens strain TN4 isolated from a sewage treatment plant, that was highly
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resistant to and able to degrade a number of QACs and detergents including 

didecyldimethylammonium chloride, and alkyltrimethyl- and alkylbenzyldimethyl- 

ammonium salts. El-Sayed et al. (769) isolated two phenol tolerant bacterial strains, B.

cepacia PW3 and P. aeruginosa AT2, which demonstrated high biodegradation activity 

against this agent Enzymatic degradation of triclosan has been demonstrated in two soil 

bacteria, P. putida TriRY and Alcaligenes xylosoxidans subsp. denitrificans TR1, which 

were shown to grow on medium containing 1% triclosan (689). Triclosan degradation has 

also been shown in Sphingomonas sp. strain RD1, where loss of the ability to mineralize 

triclosan resulted in susceptibility to this biocide (510).

Some intrinsically formaldehyde resistant Pseudomonas species which expressed an 

aldehyde dehydrogenase were described by Russell and Chopra (913). Chlorhexidine 

resistant Achromobacter xylosoxidans isolated from an ultrasonic hand washer was 

reported to be able to degrade the biguanide (913). Degradation of chlorhexidine was also 

described by Kido et a/.(541) in Pseudomonas and Flavobacterium species, which were 

able to utilize the biguanide as the sole nitrogen source for growth. Similarly, a study by 

Uyeda et al. (1082) showed that Pseudomonas species and S. marcescens were both able 

to degrade chlorhexidine. Resistance to the ester /rara-hydroxybenzoic acid, a widely 

used preservative in food and cosmetics, was attributed to hydrolysis by an esterase in 

both B. cepacia and Enterobacter cloacae (151).

1.5.2 Acquired biocide resistance

Acquired resistance arises via mutation, amplification of an endogenous chromosomal 

gene, the acquisition of genetic elements (plasmids, transposons, or transformation), and 

through adaptive phenotypic changes (833, 910). This form of resistance can be either 

plasmid-mediated or non-plasmid mediated.
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1.5.2.1 Non-plasmid mediated resistance

Acquired non-plasmid mediated bacterial resistance to biocides can occur by mutation in 

the biocide target site, acquisition of genetic elements other than plasmids, and 

phenotypic adaptation, and may involve changes in the membranes compositions, over 

expression of efflux systems, and biocide inactivation.

Acquired biocide resistance via phenotypic adaptation may result when bacteria are 

“trained” to grow in gradually increasing concentrations of a biocide (907). Although this 

type of resistance mechanism has been reported, it is considered unlikely to play an 

important role in long-term tolerance of bacteria to biocides (162). Tattawasart et al.

(1049) reported stable chlorhexidine and QACs resistance in P. stutzeri after being
/

exposed to gradually increasing concentrations of either antibacterial agent. Changes in 

the outer membrane proteins of the resistant strains were observed (1048). Loughkin et

al. (623) trained P. aeruginosa strains to tolerate the QAC disinfectant benzalkonium 

chloride, by growing them in increasing concentrations of the agent. Two strains showed 

stable increase in resistance to the agent as well as to other QACs and some antibiotics. 

The strains showed alterations in outer membrane proteins, uptake of benzalkonium 

chloride, cell surface charge and hydrophobicity, and fatty acid content of the 

cytoplasmic membrane. Guerin-Mechin et al. (383, 384) and Mechin (690) reported 

changes in inner and outer membrane fatty acid composition consistent with changes in 

lipopolysaccharides and in the hydrophobicity of the membrane cores in QACs-adapted 

P. aeruginosa cells.

Overexpression of efflux systems due to mutations or induction after exposure to 

antimicrobial agents is also a common mechanism in acquired biocide resistance. There 

are a number of agents which are substrates for efflux pumps including biocides such as 

triclosan (964) but not inducers of their expression. Prolonged exposure to sublethal 

concentrations of such agents would select for mutants which constitutively express 

efflux pumps. Chuanchuen et al. (166) exposed a susceptible P. aeruginosa mutant 

population, in which the mexAB was deleted, to triclosan. They reported that this
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exposure selected a multi-drug-resistant strain that hyperexpressed the MexCD-OprJ 

efflux system due to mutations in its regulatory gene, nfxB. In E. coli, overexpression of 

the multidrug efflux pump locus acrAB, or of marA or soxS, both encoding positive 

regulators of acrAB, conferred triclosan resistance (684). Similar results were observed in 

relation to resistance to disinfectant pine oil, where overexpressed the marA gene 

conferred resistance to pine oil and multiple antibiotics (tetracycline, ampicillin, 

chloramphenicol, and nalidixic acid) (719).

Chromosomal alterations and changes in biocide target site can also lead to decreased 

susceptibility. An example is triclosan, which has been shown to target the enoyl-acyl 

carrier protein reductase of fatty acid biosynthesis (FabI) in a number of bacterial species 

including E. coli (685), S. aureus (410), P. aeruginosa (441), Haemophilus influenzae

(657), B. subtilis (411), and in both M. smegmatis (683) and M. tuberculosis (790) (where 

is it called InhA). Exposure of E. coli to sublethal concentrations of triclosan has been 

shown to select, at relatively high frequency, clonal mutations that are either modified in 

the fa b l gene, encoding the enzyme, or where the gene has been repressed or deleted 

(342). In either instance, the susceptibility is reduced, giving rise to a series of mutants 

with increasing levels of resistance. Hyperexpression of a modified fa b l gene product was 

also observed in triclosan-resistant S. aureus (280). Moreover, It has been shown that 

mutations in the inhA gene of M. tuberculosis and M. smegrnatis and the fab l gene of S.

aureus also provide triclosan resistance (410, 683, 790).

1.5.2.2 Plasmid mediated resistance

The first evidence that plasmids can encode reduced susceptibility to biocide agents 

involved heavy metals. Although a limited number of heavy metals have been employed 

as biocides, they are by definition biocidal (834). Bacterial resistance to mercury is 

mainly plasmid-bome, inducible and may be transferred by conjugation or transduction 

(910). Resistance to mercury has been widely reported often in strains multiply resistant 

to other biocides or antibiotics (833), and is determined by the mer genes which are 

mainly plasmid-encoded, although chromosomal mer genes have been reported, often on
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highly mobile transposable elements (705, 712). These genes include mer A -encoded 

mercury reducatse (833), merB encoding an organomercuricallyase (833), the regulatory 

gene, merR, the transport genes, merT and merP, and genes merC, and merD (705, 712).

Resistance to silver is of importance as the agent is widely used as a biocide (386). Silver 

salts such as silver nitrate and silver sulphadiazine are particularly important topical 

antimicrobials (722) and resistance to these agents has been reported in clinical isolates 

(385, 386, 536, 833). Plasmid-mediated resistance to silver has been reported in P.

stutzeri (389), Enterobacteriaceae (985, 1073) and Citrobacter species (1073). Gupta et

al. (385) reported the molecular basis of silver resistance in clinical isolates of 

Salmonella. They demonstrated that the resistance is a result of two plasmid-encoded 

efflux determinants, si IP and silCBA. Another gene, si IE, encoding a periplasmic silver 

binding protein, has alio been described and is proposed to sequester silver, 

compromising its access to silver sensitive targets in the cell (385).

Formaldehyde resistance has been identified among several members of the family 

Enterobacteriaceae and Pseudomonas species (392, 419, 521, 1157). In a number of 

Enterobacteriaceae species including strains of E. coli, formaldehyde resistance was 

shown to be plasmid-mediated and self-transmissible (521, 1157). A cloned DNA 

fragment containing the formaldehyde resistance determined from E. coli was shown to 

hybridize with DNA from formaldehyde-resistant S. marcescens, E. cloacae, Citrobacter

Jreundii and Klebsiella pneumoniae strains (1157). In formaldehyde-resistant E. coli

VU3695, the resistance is encoded by the adhC gene located within the large self- 

transmissible plasmid pVU3695 (569). The adhC gene encodes a glutathione-dependent 

formaldehyde dehydrogenase (1081) for which primary function is the metabolism of 

endogenous formaldehyde, although it is also involved in microbial resistance to 

formaldehyde when used as disinfectant (522, 948). Kaulfers (525) and Kaulfers et al.

(524) demonstrated that the plasmid-mediated formaldehyde resistance in E. coli and S.

marcescens was associated with changes in the outer membrane proteins. Other plasmids 

able to cause changes in the outer membrane proteins of E. coli include plasmid R124
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which was shown to alter the surface of the E. coli cells, notably the OmpF outer 

membrane protein, rendering the cells more resistant to cetrimide and other agents (889).

The genetic aspects of plasmid-mediated biocide resistance have been extensively studied 

in staphylococci (947). S. aureus strains carry a number of plasmids many of which 

encode antibiotic resistance. Resistance to acridines, ethidium bromide, QACs, and 

propamidine isethionate is mediated by a common determinant on a group of structurally 

related plasmids. Many of these plasmids also carry transposon Tn4001 encoding 

resistance to gentamicin, tobramycin and kanamycin, as well as the dihyrofolate 

reductase inhibitor, trimethoprim (910). Numerous studies reported increased MICs of 

some biocides in S. aureus strains that possessed a plasmid carrying genes encoding 

resistance to gentamicin (121, 184, 346-348, 632, 633, 850, 988, 1068, 1069). It is now 

known that reduced susdeptibility to ethidium bromide, acriflavine, QACs such as 

cetrimide and benzalkonium chloride, and diamidines such as propamide isethionate is 

mediated by this group of structurally related plasmids carrying the qac genes and 

encoding QAC efflux pumps (59, 63, 161, 614, 634, 713, 800, 870, 1054)

Both qacA and qacB genes encode proton-dependent export proteins which show 

significant homology to other energy-dependent transporters such as the tetracycline 

exporters found on various tetracycline-resistant bacteria (887). The qac A gene is found 

predominantly on the pSKl family of multiresistance plasmids, and its expression is 

governed by QacR, a repressor of qacA (375). The qacB gene is found on many p- 

lactamase and heavy metal resistance plasmids such as pSK23 (887, 908). Although 

coding for similar proteins as qac A, qacB is more specific and relates only to 

intercalating dyes and QACs (798, 800, 801). The qacC and qacD genes encode the same 

polypeptide and have identical phenotypes conferring resistance to ethidium bromide and 

some QACs and are typically found on the plasmids pSK89 and pSK41 (342). The 

origins of the staphylococcal qac genes are unclear, but it has been suggested that they 

evolved long before the introduction and use of topical antimicrobials and disinfectants 

(803). Additionally evidence has been presented that illustrates that qacA has evolved 

from qacB (803). Similarly, it has been postulated that qacC has evolved from qacD

(612).
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The qac genes are widely distributed in clinical S. aureus isolates (59, 63, 772), and have 

been reported in many food-associated staphylococcal species (420-422). Plasmid- 

encoded qac A and qacB genes have also been described in S. epidermidis (592), and in 

antiseptic-resistant coagulase-negative staphylococci (592). Other qac determinants 

conferring biocide resistance have also been identified in S. aureus. These include qacG, 

coding for the QacG exporter of the SMR superfamily (421), qacH also encoding a 

protein of the SMR superfamily (423), and qacEAl (529). The qacE gene was first 

detected in a Klebsiella aerogenes plasmid (803) and qacEAl is a defective version of 

qacE (563).

Although some plasmid-mediated heavy metal resistance is significant in clinical isolates 

(536), and is transferable by conjugation or transduction, this is not the case for biocides 

commonly used as disinfectants. Moreover, the used of certain biocides in clinical 

settings might contribute to the reduction of spread of antimicrobial resistance by 

decreasing the success of conjugative and transductive transfer (7, 165, 342, 808). 

Because of the above, and the level and degree of the changes in susceptibility associated 

with plasmid-mediated resistance, the role of plasmids in resistance to biocides is less 

significant than it is with antibiotics, and they have little impact on biocide effectiveness 

(342, 910).
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Figure 1.3. Schematic illustration o f the main efflux pumps in bacteria. Adapted and modified from Schweizer (959) and Piddock (824).

Shown are: the NorA from Staphylococcus aureus, a member of the major facilitator superfamily (MFS), the NorM from Vibrio parahaemolyticus a 
member of the multidrug and toxic compound extrusion family (MATE), the MexAB-OprM system of Pseudomonas aeruginosa, a members of the 
resistance-nodulation-division family (RND), the LmrA pump of Lactobacillus lactis, members of the ATP-binding cassette family (ABC) and the S.
aureus QacC system, a member of the small multidrug resistance family (SMR), now described as part of a larger drug/metabolite transporter 
superfamily (DMT) (483).
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1.6 Biocides and antibiotics, development of resistance and cross resistance

Antibiotics were introduced clinically in the 1940s, although sulphonamides had been 

synthesised and used earlier than that. Resistance to antibiotics was noted shortly after the 

introduction of penicillin. It developed and spread rapidly and is currently viewed as a 

major threat to clinical practice and a global health crisis (753). It is widely accepted that 

the main cause of this problem has been the overuse and misuse of antibiotics in clinical 

medicine, animal husbandly, and veterinary practice (237, 288). Biocides predate 

antibiotics, probably by about a thousand years (341), however it is only in the last few 

decades that a massive expansion in the use of these agents has been taking place. It is 

estimated that between 1992 and 1999 over 700 consumer products with antibacterial 

properties, the vast majority of them containing triclosan, entered the consumer market 

(961). Biocide resistance jvas first recognized nearly 70 years ago by Heathman et al.

(413) who identified chlorine resistance in Salmonella typhi. This resistance is on the rise 

and the current extensive biocides usage in clinical and home environments have raised a 

number of concerns regarding the development and spread of biocide resistance, and 

cross-resistance with antibiotics.

It is unlikely that the widespread use of biocide will result in the development of multi- 

biocide resistant strains and will lead to a similar global health crisis as that caused by 

antibiotic resistance. Gilbert and McBain (342) argued that antibiotics are considered 

target poisons that are pharmacological precise, whereas biocides are broad-acting, 

pharmacologically imprecise and at use concentrations have multiple target sites (457). 

The implication is that for antibiotics, development of resistance can be by a single step, 

and a small modification in the target can alter the susceptibility of the whole organism. 

This is not the case for biocides, where although changed in susceptibility as indicated by 

MIC values may be noted, changes in all targets are needed to confer resistance. This 

view has been challenged by the finding that the enoyl reductase is a target site for the 

action of triclosan in E. coli (685) and mycobacteria (683), and that with respect to Gram- 

negative bacteria, antibiotics and biocides have been shown to share common 

mechanisms of resistance (166, 834, 895, 1049).
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Another concern about biocide and antibiotic resistance in bacteria is that antibiotic- 

resistant strains are also more resistant to biocide than sensitive ones, and vice versa, and 

that subtle differences in the biocide and antiseptic susceptibility facilitate selection and 

maintenance of these resistant strains in the environment. A number of studies have 

shown that antibiotic-resistant bacteria are not generally more resistant to in-use biocide 

concentrations than the corresponding sensitive bacteria (13, 16, 33, 805, 806, 897, 903, 

907, 923, 927, 1030). However, others reported that there was a relationship between the 

degree of antibiotic resistance and resistance to biocide in bacteria (8, 9, 33, 121, 189, 

713, 869, 1030, 1031). Moreover, bacteria showing reduced susceptibility to biocides 

may or may not be more resistant to antibiotics (1031, 1049, 1050).

Concerns over the extensive use of biocides in the environment have been growing, and it 

was suggested that biocide residues could lead to development of resistant strains. The 

evidence for this is also not conclusive. For instance, several reports have described 

isolates, especially among Gram-negative species, from various food processing 

environments that possess a reduced susceptibility to chlorine and quaternary biocides 

that relates to practical usage (435, 1149). However, opposing results have also been 

reported (313, 588) which suggested that there was no link between the use of biocides in 

environment and clinical settings and resistance.

It is not clear whether biocides select for antibiotic resistance in bacteria and if that could 

lead to emergence of cross-resistance. According to Gilbert and McBain (341), bacterial 

exposure to sub-effective concentrations of antibacterial agents means that the number of 

susceptible targets in the bacterium are reduced. At some point in the biocide 

concentration gradient there will be selection pressure on a single target in the organism. 

If that target happens to be shared with another party agent like an antibiotic, then there is 

a possibility that coincidental resistance to the antibiotic could arise. This is because 

changes in that one target might be enough to confer resistance to the antibiotic. There is 

scientific support for this idea. For instance, cationic biocides such as the 

polyhexamethylene biguanides and bisbiguanides, get into bacteria by a process called 

‘self-promoted uptake’, in which the biocides displace cations in order to damage the cell 

and to get themselves in (341). Aminoglycoside antibiotics are known to use the same
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mechanism of cell entry (397, 1039). Therefore, if a cell adapts itself and becomes less 

susceptible to a biguanide, it might in turn become less susceptible to an aminoglycoside.

Triclosan is also a good example of how shared targets between antibacterial agents 

could lead to development of cross-resistance. The mycobacterial InhA was shown to be 

a common target for triclosan and isoniazid in M. smegmatis (683) as well as a target for 

hexachlorophene (410) and for an experimental group of new antibiotics, the 

diazoborines (36). Moreover, cross-resistance between triclosan and other antimicrobial 

agents including trimethoprim, chloramphenicol, tetracycline, amoxicillin, 

amoxicillin/clavulanic acid, trimethoprim, benzalkonium chloride and chlorhexidine, has 

been reported (93, 94). It is still however not clear, at least from a clinical aspect, if the 

introduction of triclosan as an antimicrobial agent, played a role in the development of 

isoniazid resistant mycobacterial strains, or if the concerns over cross-resistance with this 

biocide are unfounded. For instance, M. tuberculosis is known to be intrinsically triclosan 

resistant but usually susceptible to isoniazid. Moreover, two InhA mutations (I47T and 

12IV) found in isoniazid-resistant clinical isolates of M. tuberculosis remained sensitive 

to triclosan (790).

The wide spread use of cationic biocides such as chlorhexidine and QACs can result in 

the selection of bacteria that are not only intrinsically insusceptible to these biocides but 

are also highly resistant to several chemically unrelated antibiotics. Strains of P.

aeruginosa, P. mirabilis, P. stutzeri, P. stuartii and S. marcescens resistant to 

chlorhexidine and/or QACs were also resistant to several antibiotics (1018-1021, 1049, 

1050). It was also suggested that the QAC, benzalkonium chloride, induced the 

expression of qacA and qacB, which confer low-level resistance to cationic biocides, and 

that their chronological emergence in clinical isolates of S. aureus mirrored the 

introduction and usage of cationic biocides in hospitals, notably acriflavine, diamidines, 

QACs (benzalkonium chloride, cetrimide) and chlorhexidine (799). Benzalkonium 

chloride-insusceptible staphylococci have been shown to be more resistant than sensitive 

ones to some antibiotics (979), and S. aureus MRSA strains trained to QAC resistance 

were shown to have increased resistance to several p-lactam antihiotics (5). Moreover a
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link has been claimed between QACs and dyes resistance and insusceptibility to 

ampicillin and penicillin in clinical isolates and food-related staphylococci (979, 980).

Development of cross-resistance can also be achieved by efflux mechanisms which do 

not require change in the target site. Cells exposed to sub-lethal levels of antibacterial 

agents could select for mutants that are permanently switched on for some of their efflux 

pumps. These efflux mutants can pump antibiotics and many other agents out of the cell. 

Hence, when pumps are on, this can be sufficient to confer resistance to many distinct 

chemical agencies, making the efflux mutants multiply resistant. It was shown that in E.

coli some efflux pumps are induced by exposure to sub-lethal levels of antibiotics, such 

as tetracycline, as well as QACs, triclosan, pine oil or salicylic (719). Upregulation of the 

AcrAB-TolC efflux system of E. coli, which pumps out pine oils, organic solvents, 

triclosan, QACs, chloroxanol, and chlorhexidine (684), lead to resistance to antibiotics, 

fluoroquinolones, ampicillin, tetracycline, nalidixic acid and chloramphenicol (684, 719). 

Sulavik et al. (1029) found that deletions in tolC or acrAB resulted in increased 

susceptibilities to the majority of the 20 different classes of antimicrobial compounds 

they studied which included antibiotics, antiseptics, detergents, and dyes. Multidrug 

efflux pump selecting for biocide and antibiotic resistance was reported in other 

organisms. Chuanchuen et al. (166, 168) reported that triclosan is a substrate for 

multidrug efflux pumps in P. aeruginosa, and that exposure to triclosan in a triclosan- 

sensitive P. aeruginosa mutant switched on an efflux pump that rendered the cell highly 

resistant to ciprofloxacin.

While the possible link between biocide use and antibiotic resistance has been 

demonstrated in laboratory in vitro studies, there is currently little direct evidence that 

this is significant in development of antibiotic resistance in clinical practice or the 

environment (670). Nevertheless, Gilbert and McBain (341) suggested that limiting our 

use of antibacterial agents to applications where there is proven gain and need for 

hygiene and using agents that lose their effectiveness rapidly once they are diluted from 

the point of action, will prevent build up of these agents in the environment. This will

40



help prevent development of resistance and cross-resistance with other antimicrobial 

agents.
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Table 1.1. Biocide families, mode of action and mechanisms of resistance. Adapted from Poole (833), Maillard (646), Lambert
(577), Moore (722) and Russell (899, 912).

Agent Introduction/
application

Examples
of uses

Known targets and mode of action Resistance mechanisms

Biguanides

Chlorhexidine 1954 - Antiseptic
- Disinfectant
- Pharmaceutical 
preservative

Cell outer layers, cytoplasmic membrane,
cytoplasmic constituents

- Binding to phosphate head groups and fatty acid 
chains in phospholipids
- Membrane damage
- Leakage of cellular constituents
- Inhibition of enzyme activity
- General cytoplasmic coagulation

Inactivation o f  biocide

- Chlorhexidine degrading activity (778)

Impermiability

- Changes in surface hydrophobicity (1048, 1049)
- Changes in Omps (323)

Efflux

-CepA (281)

QACs

BAC

CPC

Cetrimide

1933
- Skin disinfectants
- Antiseptics
- Pharmaceutical 
preservatives

Cell outer layers, cytoplasmic membrane,
cytoplasmic constituents

- Binding to phosphate head groups and fatty acid 
chains in phospholipids
- Effect on membrane potential and electron 
transport chains
- Membrane damage
- Leakage of cellular constituents
- Inhibition of enzyme activity
- General cytoplasmic coagulation

Impermiability

- Changes in Omps and fatty acids content (383, 
384)
- Surface change and hydrophobicity (623, 1049)
- Changes in cytoplasmic membrane fatty acid 
content (623)

Efflux

- Qac(A-H) systems (421,423, 592, 613, 676, 798, 
802)
- NorA system (507, 772)
- SugE system (169)
- EvgA system (771)
- EmrE system (770, 1181)
- AcrAB-TolC system (770)____________________
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Table 1.1. Biocide families, mode of action and mechanisms of resistance (continued). Adapted from Poole (833), Maillard (646),
Lambert (577), Moore (722) and Russell (899, 912).

Agent Introduction/
application

Examples
of uses

Known targets and mode of action Resistance mechanisms

Aldehydes Cell outer layer (well call) and cytoplasmic
constituents

Inactivation o f  biocide

Formaldehyde 1894 - Viricidal agents
- Endoscope - Cross linking

- Formaldehyde dehydrogenase activity (521, 569, 
1157)

Glutaraldehyde

OPA

1960s

1994

disinfection - Interaction with amino groups in proteins and 
nucleic acids
- Inhibition of enzymes and nucleic acid function

Impermiability

- Cell wall polysaccharide changes (656)
- Outer membrane changes (28)

Bis-phenols 1927 Cell outer layers (outer membrane), cytoplasmic
membrane, cytoplasmic constituents

Target site alteration

Triclosan Early 1970s - Body washes
- Dental hygiene - Affect membrane potential and electron transport 

chains
- Affect cytoplasmic and membrane proteins
- Membrane damage
- Cytoplasmic coagulation
- Enzyme inhibition

- Mutation in fatty acid biosynthesis fa b l  gene and 
its homologue inhA (410, 683, 685, 790)

Degradation o f  biocide

- Production of triclosan degrading enzyme (689)

Efflux

- MexAB-OprM system (960)
- MexCd-OprJ system (166)
- MexEF-OprN system (166)
- MexJK system (168, 961)
- AcrAB-TolC system (770)
- TriABC system (1043)

BAC; benzalkonium chloride, CPC; cetylpyridium chloride, OPA; ort/»o-phtalaldehyde, Omp; outer membrane protein
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j

MOLECULAR BASIS OF BIOCIDE

RESISTANCE AND SUSCEPTIBILITY IN

MYCOBACTERIA
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ABSTRACT

Some rapidly growing mycobacterial species such as Mycobacterium chelonae and M. abscessus
are problematic opportunistic pathogens that frequently cause nosocomial infections due to their 
ability to contaminate solutions or devices. Mycobacterial resistance and susceptibility to 
antibiotics is well known, however, very little is known about the mechanisms of mycobacterial 
resistance and susceptibility to biocides. Agents such as triclosan (TRI), chlorhexidine diacetate 
(CHX), quaternary ammonium compounds and aldehydes are widely used in the home and 
clinical settings as a mean to disinfect instruments and clean surfaces. This study aimed to 
identify the molecular basis of biocide resistance and susceptibility in M. smegmatis me2155 (a 
model rapidly growing strain for which the complete genome sequence is available), and in M.
chelonae and M. abscessus type strains (NCTC 946 and ATCC 19977 respectively). All 
mycobacteria grew well on Middlebrook 7H11 agar and in Middlebrook 7H9 broth, both 
supplemented with 0.5% glycerol and 10% OADC. M. smegmatis me2155 is late pigmented, and 
grew after 24 h incubation at 37°C. TSB, Lemco, and Sauton liquid media as well as TSA all 
supported the growth or this strain. M. chelonae and M. abscessus type strains were grown at 
different temperatures (30°C and 37°C respectively), and grew after 4 days incubation. All 
mycobacterial strains investigated were shown to have a typical bacterial growth curve. The 
growth inhibitory and killing effects of four biocides; TRI, cetylpyridinium chloride (CPC), CHX 
and alkaline orf/ro-phthalalddhyde (OPA) on the mycobacterial strains were investigated. From 
the agar Minimal Inhibitory Concentration (MICs) of the biocides it was shown that for M.
smegmatis me2155, CHX, TRI, and CPC were most effective at inhibiting bacterial growth with 
MICs of 0.75 fig/ml, 1 pg/ml and 5 pg/ml respectively. OPA demonstrated much less inhibition, 
possessing MIC value of 2000 pg/ml. Agar MICs for M. chelonae type strain showed that CHX 
with MIC of 3.75 pg/ml was most affective, followed by CPC and TRI with MICs of 22.5 pg/ml 
and 30 pg/ml respectively. OPA was again the least effective agent at inhibiting growth of die M.
chelonae strain and had MIC value of 2250 pg/ml. A similar phenotype was observed with M.
abscessus type strain. CHX was the most effective at inhibiting growth of the strain and had an 
MIC of 8.75 pg/ml. It was followed by CPC and TRI both of which had MIC value of 25 pg/ml, 
and lastly OPA (MIC = 2250 pg/ml). Antibiotic susceptibility profiles for the mycobacterial 
strains were also determined and showed that M. smegmatis me2155 was resistant to ceftazidime, 
azithromycin, and piperacillin, but was susceptible to amikacin, tobramycin, ciprofloxacin, 
imipenem, meropenem, and trimethoprim-sulfamethoxazole. M. chelonae NCTC 946 was 
resistant to amikacin, ceftazidime, meropenem, azithromycin, and trimethoprim- 
sulfamethoxazole, but was susceptible to tobramycin and ciprofloxacin. M. abscessus ATCC 
19977 was resistant to tobramycin, ceftazidime, azithromycin, meropenem, ciprofloxacin, and 
trimethoprim-sulfamethoxazole, and was only susceptible to amikacin. To determine the genes 
involved in susceptibility to the four biocides, 3000 M. smegmatis me2155 mutants (generated 
using a mariner-based transposon mutagenesis vector pM272B) were screened on agar containing 
a concentration of biocide just below its respective MIC. The screen failed to isolate any M.
smegmatis me2155 mutants with altered biocide susceptibility. A previously characterised M.
smegmatis recA mutant (HS42) and 6 transposon mutants form the M. smegmatis me2155 library 
with possible cell surface alteration, were selected for more detailed screening. The 6 mutants 
(10-A1, 2-B8, 15-E3, 3-A10, 2-A5, and 14-H1) showed different colony morphologies compared 
to the wild type strain, and had a drier and waxier appearance compared to the parental strain, 
suggesting possible alteration in cell surface composition. However, the 6 mutants as well as the 
M. smegmatis recA mutant did not show alteration in susceptibility to CPC or CHX compared 
with the wild type.
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2.1 INTRODUCTION

2.1.1 Mycobacteria

The generic name Mycobacterium was first established by Lehmann and Neumann in 

1896 (594) to describe the tubercle and leprosy bacilli pathogenic to man. The genus 

Mycobacterium is currently the only genus in the family Mycobacteriaceae, although 

recent studies based on 16S rRNA analyses have suggested that the family 

Mycobacteriaceae should include the three genera: Mycobacterium, Nocardia, and 

Rhodococcus. Mycobacteriaceae family constitute along with the families: 

Corynebacteriaceae (595), Dietziaceae (1002), Gordoniaceae (1002), Nocardiaceae (144), 

Tsukamurellaceae (1002), and Williamsiaceae, the suborder Corynebacterineae (1002) 

placed under the order Acti/nomycetales (123).

Mycobacteriacese are Gram-positive, non-sporing, acid fast, straight or slightly curved 

bacilli (44). They are non-motile and range in size between 0.2-0.6 pm in diameter to 1.0- 

10 pm in length. Both branching and mycelium-like growth may occur. They are 

generally aerobes and produce catalase. Many species form white or creamy coloured 

colonies but some form bright yellow or orange colonies based on carotenoid pigments, 

in some cases only as a response to light. The definition of the family Mycobacteriaceae 

and its unique genus is based on three main criteria: (1) acid-alcohol fastness, defined as 

the resistance to decolourization by acidified alcohol after staining with fuschin dye; (2) 

the presence and composition of the mycolic acids (section 2.1.7.1.2.3); (3) Guanin + 

Cytosine (G+C) content, which (with the exception of M. leprae which has a G+C 

content of 56%) is high in all mycobacteria ranging between 61% and 71% (976).

To date, over 100 mycobacterial species are included in the Approved Lists of Bacterial 

Names (http://www.bacterio.cict.fr) and many more may be isolated, identified and 

classified in the future especially with the introduction of powerful molecular 

classification techniques such as PCR restriction fragment length polymorphism (RFLP) 

analysis (1051).
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2.1.2 Rapidly growing mycobacteria (RGM)

2.1.2.1 Taxonomy, description and characteristics

Except from the M. tuberculosis complex and M  leprae, other mycobacteria are referred 

to collectively as nontuberculous mycobacteria (NTM). Other names used for this group 

of organism include “environmental mycobacteria”, “atypical mycobacteria”, and 

“mycobacteria other than tuberculosis”, although the term NTM is preferred (137, 1101). 

The traditional Runyon Classification System (based on major phenotypic features) 

(893), recognizes four groups of NTM. Groups I, II, and III, are considered slow growers 

(slow growing mycobacteria, SGM), with growth culture time similar to that of M.

tuberculosis, whereas group IV consists of organisms which will grow well in routine 

bacteriologic media in less ̂ han 7 days, and they are collectively termed “rapidly growing 

mycobacteria” (RGM) (Figure 2.1).

2.1.2.2 Habitats

RGM are considered saprophytes, normally found in soil, water and dust in natural 

ecosystems (278). However human activities and human interaction with the environment 

have had a big impact on the RGM bacterial populations and helped in some cases to 

extend their natural habitats. For instance, constructed environments provided new 

surfaces for adherence and growth, particularly for bacterial adapted to aquatic 

ecosystems. RGM grow in water including distilled water, at water surfaces (278, 1106), 

and have been detected in municipal water supplies and water systems (109, 142, 197, 

278). Tolerance to high temperatures (958, 1106) and chemical disinfectants such as 

chlorine and glutaraldehyde (197, 1106) have contributed to the ability of RGM to invade 

extremely hostile environments (1129, 1155, 1156).
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Figure 2.1. Phylogenetic tree of rapid growing mycobacteria

The tree includes new mycobacteria along with previously defined species (underlined). It is based on 

the 16S rDNA nucleotide sequence. Arrows point to the mycobacterial species investigated in the 

current study. Adapted from Tortoli (1064).
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2.1.23 Pathogenicity of RGM

Although considered saprophytes, a number of clinical RGM isolates have been 

identified, and it is well known that some species of RGM can cause diseases in both 

humans and animals. While widely spread, treatment of RGM diseases is usually difficult 

as they are generally resistant to most first-line antimycobacterial drugs, exhibit differing 

sensitivities to other available antibiotics, and treatment may involve months of antibiotic 

therapy in addition to surgical removal of infected tissue (108).

2.1.23.1 Human diseases caused by RGM

A number of recent comprehensive reviews on the aspects of RGM-associated diseases in 

humans have been published (278, 452, 1101, 1106, 1167) as the cases of RGM 

infections and diseases are increasing both in immunocompromised and 

immunocompetent people (1167, 1179). Most infections are believed to occur from 

environmental sources, especially contaminated water or water related equipments, with 

air-born organisms playing an important role in respiratory diseases, and ingestion and 

direct inoculation with the bacterium being linked to soft tissue infections and cervical 

lymphadenitis.

Pulmonary diseases are a common manifestation of RGM infections (109, 365, 1111, 

1112) and most are due to three species: M. abscessus, M. fortuitum, and M. chelonae. Of 

these, approximately 80% of chronic pulmonary diseases are caused by M. abscessus

(365, 1102). Immunosuppression is associated with a greater likelihood of disseminated 

disease due to RGM (278, 1107, 1167). Dissemination may be cutaneous or involve 

multiple organs (278), in which case poor prognosis is very likely (476). Most 

documented cases of RGM disseminated cutaneous disease have been associated with the 

M  abscessus-chelonae group (section 2.1.5) and M. fortuitum  (85, 160, 451, 1115, 1154). 

However, although disseminated diseases due to RGM are usually associated with 

immunorepression, there have been numerous reports of diseases in otherwise healthy 

patients (160, 476, 751).
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Cutaneous, soft tissue, and bone diseases are also commonly caused by RGM. Infections 

generally result from posttraumatic and post surgical wound infections, insertion of 

medical devices, and other medical procedures (1105, 1115). These have been associated 

with a number of sporadic nosocomial or health care-associated infections including 

disease that involved renal dialysis, punch biopsy surgery, augmentation mammaplasty, 

other forms of plastic surgery including face-lifts and liposuction, sternal wound 

infections following cardiac surgery, and postinjection abscesses (85, 127, 696, 1096,

1110, 1113). Catheter-related infections can also be caused by RGM and they are the 

most common form of health care associated disease due to these organisms (109, 1107,

1111, 1112, 1114, 1151).

Bone and joint infections are a frequent complication due to RGM infections where
jr

osteomyelitis can develop due to open bone fractures, puncture wounds, and 

hematogenous spread from another source. The most common pathogen in this setting is 

M. fortuitum, although other RGM have been involved (109, 149, 278, 695, 1101, 1107, 

1114, 1167).

2.1.23.2 Animal diseases caused by RGM

In animals, diseases caused by RGM are similar in type to those in humans (section

2.1.2.3.1). These are mainly opportunistic localized infections, such as through bite 

wounds (377), due to the low pathogenicity of these organism in clinically normal 

animals, although disseminated disease in animals have also been reported (302, 377). 

For instance, disseminated granulomatous lesions in fish, tuberculosis-like lesions in the 

lungs of turtles, and abscesses and ulcerative lesions in manatees (847, 1056), have all 

been reported and linked to M. chelonae. Other infections such as granulomatous lesions 

which occur in mammals skin, lungs, lymph nodes, and joints infections are also common 

(847). Granulomatous mastitis in cattle and ulcerative skin lesions in cats due 

M smegmatis infection, and the less common ulcerative skin lesions in cats from M. phlei

have also been reported (847). Some RGM appear to be exclusively animal pathogens,
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including both M. porcinum, which causes lymphadenitis in pigs, and an agent of bovine 

farcy (976).

2.13 M. smegmatis and the M. smegmatis group

2.13.1 Description and characteristics

Mycobacterium smegmatis was first described in 1885 by Lustgarten as a cause of 

syphilitic penile ulcers (629). Although subsequently shown to have no relationship to 

syphilis, the organism was named for the genital secretions (smegma) from where it was 

isolated, and first designed “Bacillus smegmatis” (1072), then “Mycobacterium

smegmatis” (596). The first modem day survey of isolates was in 1953 (355) and 

described 56 strains, all from culture collections and none from human sources. Gordon 

and Smith (355), studied 124 isolates and reported that out of the 124 isolates studied 56
i

strains received as 12 different species, all belonged to one species, M. smegmatis.

Gorden and Smith (355), gave a detailed description of the M. smegmatis isolates studied. 

The colonies of M. smegmatis were either dense with smooth edges, dense fringed with 

filaments or completely filamentous. The actual organisms were acid fast, usually slender 

of varying lengths, curved and beaded and grew at temperatures from 28°C to 45°C but 

not 60°C. Biochemically the organisms formed acid from glucose, rhamnose, xylose, 

arabinose, sorbitol, inositol, mannose, and galactose, hydrolyzed starch but not casein, 

most reduced nitrates to nitrite, and grew in 5% NaCl but not 7%.

In 1988, Wallace et al. (1111) reported the first clinical isolates of M. smegmatis, when 

they characterised 22 isolates from infections and proposed the existence of three groups 

in the species M. smegmatis. Subsequent genetic and molecular studies confirmed the 

heterogeneity in M. smegmatis isolates (1008, 1051, 1111), and Brown et al. (109), 

named the three M. smegmatis groups as Mycobacterium goodie sp. nov., Mycobacterium

wolinskyi sp. nov., and Mycobacterium smegmatis sensu stricto.
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2.13.2 M. smegmatis sensu stricto

2.1.3.2.1 Colonial and biochemical characteristics

M. smegmatis show similar characteristics to the M. smegmatis group it belongs to (Table

2.1). They are acid fast rods which produce irregular colonies with lobate margins which 

are dry, flat, and appear waxy due to the high concentration of lipids in the cell wall. 

Over 90% of the M. smegmatis colonies produce a late yellow-orange pigmentation on 

Middlebrook 7H10 agar (109). Because the pigmentation is so late and usually occurs 

only on select media, it is often missed.

Table 2.1. Biochemical characteristics of M. smegmatis. Adapted from Brown et

al. (109, 1103) and Wallace et al. (109, 1103).

Characteristic M. smegmatis ATCC 19420 type strain

Smooth colony +

Growth at 50°C in 3 days -
Growth at 45°C in 3 days +

Pigmentation* +

3-day arylsulfatase -
/ -̂aminosalicylate degradation -
Nitrate reduction +

Iron uptake +

Growth in presence of 5% NaCl +

Thermostable catalase (68°C) -
L-arabinose** +

Citrate** +
D-galactose** +

D-trehalose** +

D-xylose** +

D-mannitol +
D-rhamnose +

* Pigmentation after more than 10 days incubation in Middlebrook 7H10 agar, **Assimilation.
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2.13.2.2 Drug susceptibility

M. smegmatis as other members of the M. smegmatis group, is susceptible to 

sulfonamides, doxycycline, imipenem, amikacin, and 5 pg/ml ethambutol. The organism 

is however resistant to 25 pg/ml rifampin, and 10 pg/ml isoniazid (Table 2.2).

Table 2.2. MICs of M. smegmatis to a range of antibiotics as determined by broth 

microdilution. Adapted from Brown et al. (109, 1111) and Wallace et al. (109, 1111).

Antibiotic MIC* range MIC*5o MIC*9o
Aminoglycosides
Amikacin <0.25-0.5 <0.25 0.5
Gentamycin ' <0.25-2 0.5 2

Tobramycin <0.25-1 <0.25 1

Kanamycin <0.25-1 0.5 1

Streptomycin <0.5-1 <0.5 1

p-lactams
Cefoxitin 8-64 16 64
Cefmetazole 4-32 8 32
Imipenem 4 4 4
Anti-tuberculosis
Isoniazid >16 >16 >16
Rifampicin >16 >16 >16
Ethambutol <0.5- 1 <0.5 1

Ansamycin 4 4 4
Others
Ciprofloxacin 0.5-1 0.5 1

Doxycycline <0.25 <0.25 <0.25
Erythromycin >16 >16 >16
Sul famethoxazole <1 <1 <1

* Expressed in pg/ml, MIC5 0 ; MIC which inhibits 50% o f strains tested, MIC9 0 ; MIC which inhibits 90% 

o f strains tested.
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2.13.23 Pathogenicity of M. smegmatis

Although for its first 85 years it was regarded as a saprophytic organism of no clinical 

significance, M. smegmatis is now known to be involved in a number of both human and 

animal diseases and infections. In humans the first well described case was reported in 

1986 (1098) and involved the lung and pleura in a patient with underlying lipoid 

pneumonia. Since then, M. smegmatis has been incriminated in a number of human 

diseases including community-acquired and post-traumatic wound infections (109, 831, 

874, 875, 1111, 1156), and rarely, respiratory diseases, usually associated with exogenous 

lipoid pneumonia (109, 1111). The organism has been recovered from a number of health 

care associated infections, including sternal wound sites following cardiac surgery, breast 

abscess following augmentation mammaplasty (109, 1111), and bacteremia from 

intravenous catheter placement. A case of the latter was reported in 1998 by Skiest et al.

(987), where M. smegmatis was reported to be the cause of a central venous catheter- 

related bacteremia in a cancer patient. Skiest et al. (987) suggested that M. smegmatis

should be added to the list of RGM that are capable of causing catheter infections.

In animals M. smegmatis is currently recognized as an aetiologic agent of bovine mastitis 

(874, 956, 1058). M. smegmatis-induced granulomatous mastitis was seen in a diary herd 

after intramammary treatment (1058). Recently the organism has been implicated in 

systemic granulomatous lesions in an immunocompromised dog (377), and in infections 

in frog (43, 277, 851, 974). In 1999, Talaat et al. (1046) reported for the first time 

evidence that M. smegmatis is also pathogenic to fish, when the pathogenicity of M.

smegmatis was compared with that of the known fish pathogen M. fortuitum , in a goldfish 

model of infection.
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2.1.4 Genetics of M. smegmatis

2.1.4.1 M, smegmatis as a model organism

The application of molecular genetics in the study of mycobacteria has allowed a 

dramatic increase in the number of studies investigating mycobacterial genes and their 

protein products. Therefore, led to a better understanding of mycobacterial life, especially 

in relation to human pathogens such as M. tuberculosis and M. leprae. The publication of 

the full genome sequences of these two major human pathogens (182, 183), have 

dramatically improved our understanding of their metabolism, biochemistry, and 

pathogenicity. However, with all the advances in genetic and molecular techniques, 

genetic analysis of mycobacteria has lagged considerably behind that of other 

prokaryotes. This is due several reasons: First the slow growth rate of many of 

mycobacterial species, especially those with clinical significance, which precludes many 

approaches to selection or screens that are widely used with other bacteria; Second, the 

tendency of mycobacteria to grow in clumps due to their complex cell wall composition, 

prevents single-cell suspensions, hence the isolation of colonies derived from single cells; 

Third, lack of gene transfer systems, and convenient methods for mycobacterial genetic 

analysis, even though some have been developed recently; Finally, for many 

mycobacterial species, the inconvenience of working with an intractable organism under 

biosafety level III has also contributed to the slow advance of mycobacterial genetics.

A useful way for studying mycobacteria, especially pathogenic species, is to use model 

organisms such as M. smegmatis, a non-pathogenic, rapid growing mycobacteria, to study 

gene function and product in those pathogens. M. smegmatis has the advantage over the 

more common genetic hosts, such as E. coli, in that it is a homologous host to 

mycobacterial genes. For instance, genes of mycobacterial strains that are difficult to 

grow, such as M. tuberculosis or M. leprae, could be cloned into M. smegmatis host 

where they are likely to be expressed. This would also eliminate the use of exogenous 

promoters to express these genes. The inability of M. smegmatis to be efficiently
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transformed with plasmid vectors has been improved by the isolation of the efficient 

plasmid transformation mutant me2155 by Snapper et al. (993).

The genome sequencing of M. smegmatis me2155 has been completed at the J. Craig 

Venter Institute (previously The Institute for Genomic Research, TIGR) 

(http://www.tigr.org). The genome is 6988209 bp, with a 67.4% C+G content, and its 

publication will undoubtedly increase the value of M. smegmatis as a model for the study 

of mycobacterial genetics. Generation, screening and analysis of M. smegmatis mutants 

offer a wealth of opportunities for the study of mycobacterial genes, proteins, and their 

functions. A large number of M. smegmatis mutants have been generated either 

spontaneously, by the use of mutagens or transposons, and a collection of these are 

summarized in Table 2.3.
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Table 2.3. Summary of some of M. smegmatis mutants and their characteristics.

M. smegmatis m utant R eferen ce M u tan t ch aracteristics

Mutant defective in biosynthesis o f mycolic acids. (571) -Penicillin-sensitive
-Smooth and filamentous colonies
- Devoid o f mycolic acids, but accumulated short chain fatty
acids than those in the wild type.

Mutants resistant to fluoroquinolones, (gyrA defective)
• Mutants A and C

(868)
-Low level resistance to fluoroquinolones

• Mutants C, D, and E -High level resistance to fluoroquinolones

Mutants defective in siderophore production: mutants
SMI and SM3 {ideR defective).

(252) -Incomplete derepression o f siderophores mycobactin and
exochelin production.
-Increased sensitivity to H20 2.
-Decreased levels o f catalase/peroxidase KatG activity.
-Decreased levels o f manganese superoxide dismutase.

Isoniazid-resistant mutants (katG defective) (79) -Higher MIC for Isoniazid (100- 200 pg/ml) than parental
strain me2155 (25 pg/ml).
-Loss o f catalase/peroxidase activity.

Mutant defective in inositol monophosphate phosphatase
gene homolog: mutant LIMP7 (impA defective)

(791) -Slower growth rate than the parent strain
-Increased clumping in liquid culture
-Formation o f smaller colonies than the parent strain
-Increased resistance to chloramphenicol and erythromycin.
-Increased sensitivity to isoniazid and several p-lactams.
-Altered cell envelope, by decrease in accumulation of
lipophilic molecules and increased accumulation of
hydrophilic molecules.

Mutants defective in DNA-replication gene
(dnaG defective)

(546) -Temperature-sensitive mutants
-Fail to grow at 42°C
-Exhibit filamentous phenotype at nonpermissive temperature
-Sensitive to my cobacteriophages TM4, D29, and L5

Mutants defective in NADH-dehydrogenase
(ndh defective)

(700) -Co-resistance to isoniazid and related drug ethionamide
-Thermosensitive lethality
-Auxotrophy
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Table 2.3. Summary of some of M. smegmatis mutants and their characteristics (continued).

M. smegmatis m u tan t R eferen ce M u ta n t ch aracteristics

Mutant lacking penicillin binding protein 1 PBP1:
mutant MUT1 (ponA defective)

(78) -More sensitive to (J-lactam antibiotics than the wild type
-Grows more slowly in liquid culture
- More permeable to glycine

Mutants defective in 1 -Dmyo-Inosityl-2amino-2-deoxy-
a-D-glucopyranoside and mycothiol (MSH)
biosynthesis.

(754)

• Strains 5 ,6 , and 49 -More sensitive to H20 2

• Strain 49 -Devoid o f MSH
-Grows more slowly on solid media than the parent strain.
-More sensitive to rifampicin.
-Less sensitive to isoniazid.

Mutant defective in biosynthesis o f  mycolic acids
155NS1

(615) -Hypersensitive to (Mactams, hydrophobic compounds such
as novobiocin, rifampicin, erythromycin, chloramphenicol,
and crystal violet.
-Temperature sensitive
-Devoid o f  mycolic acids, but accumulated novel fatty acids
that are not detected in parent strain, such as meromycolates.

Mutant simultaneously resistant to D-cycloserine and to
vancomycin (Cvr-1).

(818) -Resistant to both D-cycloserine and to vancomycin
-Resistant to other peptidoglycan biosynthesis affecting drugs
such as fosfomycin.

Mutants defective in mycothiol production:

•  Strain 164 ( mshC defective) (859) -Chemical mutant.
-Low levels o f  MSH
-Increased sensitivity to alkylating agents
(chlorodinitrobenzene, monobromobimane, iodoacetamide,
and diamide)
-Increased sensitivity to H20 2
-Increased sensitivity to redox-cycling agents
-Increases sensitivity to antibiotics (erythromycin,
azithromycin, vancomycin, penicillinG, rifamycin and
rifampicin).
-Increased resistance to isoniazid.

•  Mutants Tnl and Tn2 -Transposon mutants
similar characteristics to strain 164

Mutant hypersensitive to rifampicin: mutant RHS234
(arr defective)

(10) -Hypersensitive to rifampicin
-No altered sensitivity to other antibiotics

Mutant sensitive to diamide (defective in ORF Rv0274):
mutant T7

(858) -More sensitive to diamide than the wild type.
-Sensitive to other thiol modifying agents such as
iodoacetamide and chlorodinitrobenzene
-Not sensitive to other oxidative stresses such as redox
cycling radicals and organic peroxides.

Mutant resistant to triclosan and isoniazid
(inhA defective)

(683) - Increased resistance to triclosan
- Increased resistance to isoniazid
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2.1.5 M. chelonae-abscessus group

The M. chelonae-abscessus group contains three species: M. chelonae, M. abscessus, and 

M. immunogenum formerly M. immunogen. M. immunogenum is a recently described 

RGM isolated from contaminated metalworking fluids (720) and will not be discussed in 

this report.

M. chelonae was first isolated by Friedman in 1903 from the lung of a turtle identified at 

that time as Chelonia corticata. In 1972 Stanford (1004) first reported studies on clinical 

isolates of what was then known as M. borstelense (797), resulting in the official 

adoption of the name “M. cheloneF which was later changed to the more correct Latin, 

M. chelonae. M, abscessus was first isolated by Moore and Frerichs in 1953 from a 

human joint (knee abscess) and was given the name abscessus because of its ability to 

produce deep subcutaneous abscesses (721).

M. chelonae and M. abscessus were thought to be the same organism as they showed 

almost identical biochemical features. However, a cooperative numerical phenotypic 

study by the International Working Group on Mycobacterial Taxonomy (IWGMT) 

published in 1972, demonstrated that the two taxa were sufficiently different to be 

classified as subspecies and renamed them M. chelonae subspecies chelonae, and M.

chelonae subspecies abscessus (561). This taxonomic status was held until 1992 when 

Kusunoki and Ezaki firmly established through DNA hybridization that these organisms 

had only 35% DNA homology and they are separate species (573). Biochemically only 

two tests, those for sodium chloride tolerance and utilization of citrate, are useful for 

identifying M. chelonae and abscessus organisms at the species level (982). Furthermore, 

conventional molecular taxonomy techniques relaying on sequence comparison of the 

16S rDNA are of limited use to separate the two species because of the low variability in 

their rDNA gene (573). However, a number of other biochemical and molecular methods 

have successfully been used to distinguish the two species apart (132, 133, 431, 982, 

1126, 1172, 1173).
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2.1.5.1 M, chelonae

M. chelonae is a rapidly growing nontuberculous mycobacteria that is found in the 

environment and can cause human diseases. As mentioned above, the organism was first 

isolated in 1903 from sea turtle and normally exists as a free-living saprophyte in soil, 

water, and dust. M. chelonae grow to visible colony size within 7 days at temperatures 

ranging from 28°C to 30°C. It is one of the most antibiotic resistant species of pathogenic 

RGM. Although opportunistic, it can cause infections in patients with or without 

compromised immunity. The clinical outcome depends on the immune status of the host 

and the inoculation mechanism.

M. chelonae have been associated with a range of community-acquired infections 

including disseminated diseases of which disseminated cutaneous disease in chronically 

immunorepressed hosts are the most common (29, 1104, 1112). Localized infections are 

also common, and usually occur following trauma. In a study by Wallace et al. (1107) 

cases of localized cellulitis, subcutaneous abscess, or osteomyelitis developing after 

penetrative trauma, were reported to be exclusively due to M. chelonae. Other diseases 

have been linked to M. chelonae such as comeal ulcers, lymphadentitis, and a case of 

thyroid abscess in a 45-year old immunocompetent woman (787). Interestingly however, 

unlike M. abscessus and M. fortuitum , M. chelonae is only rarely a cause of pulmonary 

diseases. In a study by Griffith et al. (365) on a series of 154 patients with chronic lung 

disease due to RGM, only 1 of 146 isolates identified to species level was an M.

chelonae.

Health care associated infections due to M. chelonae are not as common as those with M.

abscessus or M. fortuitum. However, because M. chelonae is relatively chlorine-resistant 

and able to grow well and survive at relatively high concentrations in tap water and 

distilled water (278, 1096), it can cause a number of outbreaks following medical or 

surgical procedures such as injection with contaminated needles or solutions. Outbreaks 

of M. chelonae infections have been reported after injections with histamine (478), 

lidocaine (135, 1096), saline solution (364), vaccines (87), disinfectant solution (1138),
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and adrenal cortex extract (322). Although only three of these reports were clearly 

ascribed to M. chelonae after the separation into two different species (87, 478, 1085). 

Other sources of infection included implantation of contaminated porcine heart valves 

(309, 487, 1106), treatment with acupuncture (18), and, recently, the use of liposuction 

(697). The other common type of health-care associated M. chelonae infection is that 

related to catheters (330). In another study by Wallace et al. (1107), it was found that 8 

out of 100 clinical isolates of M. chelonae were associated with intravenous catheters, an 

additional 3 involved in chronic peritoneal dialysis catheters, and 1 involved a 

hemodialysis shunt.

2.1.5.2 M. abscessus

M. abscessus, originally isolated in 1953 from a human joint (721), is non-pigmented and 

form visible colonies within few days of growth, even on routine bacteriological 

substrates. It has an optimum growth temperature at 28°C to 30°C with colony 

morphology ranging from rough to smooth. M. abscessus is an environmental organism 

ubiquitously found in water, decaying vegetation, sewage water, as well as drinking water 

tanks and municipal tab water (108, 957), but is also known to cause nosocomial 

outbreaks and was isolated from hospital environments (650, 1106).

M. abscessus is considered the most pathogenic and chemotherapy-resistant RGM, and 

like M. chelonae is involved in a number of both community-acquired infections and 

health-care related diseases, with pulmonary diseases accounting for most clinical isolates 

of this species. A study by Griffith et al. (365) on 146 disease-associated pulmonary 

RGM isolates identified to species and collected over a 15-year period by a Texas 

reference laboratory, 82% were caused by M. abscessus. Patients with pulmonary disease 

due to M. abscessus usually have other underlying diseases which could contribute to 

lung damage, including bronchiectasis, cystic fibrosis (CF), gastroesophageal disorders, 

and prior granulomatous disease such as sarcoidosis or tuberculosis. After M. avium

complex, M. abscessus is the second most common species of NTM recovered from 

respiratory specimens in patients with CF (203, 273, 782, 942).
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M. abscessus causes a wide variety of extrapulmonary diseases as well as health care- 

associated ones. Wallace et al. (1115) studied a series of 59 nonrespiratory isolates 

belonging to the M. chelonae-abscessus group and found that M. abscessus cases were by 

far the most common. Among the 30 cases of nonpulmonary disease caused by M.

abscessus, 43% were postsurgical or postinjection wound infections, 23% were localized 

community-acquired wound infections, 20% were disseminated cutaneous infections, and 

13% were miscellaneous types of infections including keratitis and prosthetic valve 

endocarditis.

Along with M. fortuitum, M. abscessus is the most common RGM species causing 

nosocomial disease, especially sporadic and clustered outbreaks of surgical wound 

infections (1115). Disease outbreaks have also been described after augmentation 

mammaplasty (303), facial plastic surgery, liposuction (738), acupuncture (930), cardiac 

surgery, micrographic surgery (821), eye laser surgery (336), injections of alternative 

medicines, steroid injections, and miscellaneous types of surgery (308, 1192). Although 

unusual, disseminated diseases due to M. abscessus may develop and are serious 

especially in chronically immunorepressed patients where most of these cases occur. For 

instance Bolan et al. (85) reported 25 infections due to M. abscessus in a hemodialysis 

center where 9 of these patients had widely disseminated disease. Disseminated 

infections due to endocarditis with M. abscessus have been reported (867, 1115), and in 

one case the disseminated infection, which meningitis was part of, lead to the death of a 

patient with endocarditis caused by M. abscessus (608).

2.1.6 Antimicrobial susceptibility, therapy and treatment of diseases caused by

RGM

Antimicrobial therapy for RGM, unlike that used for most SGM diseases, may vary 

depending on the nature of the disease, the host, and the infecting organism. This is 

further complicated by the fact that RGM are resistant to many drugs, the in vitro

sensitivity of an antimicrobial agent may not completely reflect its in vivo efficacy (840), 

and development of resistance.
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M. smegmatis group is uniformly susceptible to ethambutol, sulfonamides, imipenem, 

amikacin and doxycycline (109, 1111). They exhibit intermediate susceptibility to the 

older fluoroquinolones (ciprofloxacin and ofloxacin), variable susceptibility to cefoxitin 

and clarithromycin, and are resistant to isoniazid and rifampin (1111). The main 

antimicrobial agents used for treatment of diseases due to the M. smegmatis group are 

oxycycline and trimethoprim-sulfamethoxazole for oral use and the injectable agents 

amikacin and/or imipenem. Surgical intervention along with antimicrobial therapy might 

be necessary for treatment (755).

M. chelonae-abscessus group of organisms are characterised by their high resistance to 

antimicrobial agents, and treatment for diseases cause by these organisms often requires 

the use of multiple drug tkerapy and surgical intervention (1114). When foreign bodies 

such as wood splints, silicon implants, or percutaneous catheters are involved, removal of 

the foreign bodies appears to be essential to recovery (176, 205, 432, 625, 1101, 1102). 

M. chelonae and M. abscessus are resistant to antituberculous drugs, however they are 

susceptible to a number of other antimicrobial agents, which if used appropriately and in 

the right combinations can lead to effective therapy. In studies by Wallace et al. (1104, 

1107, 1108), it was reported that 100% of M. abscessus isolates were susceptible to 

clarithromycin, approximately 90% were susceptible or intermediate to amikacin (32 

pg/ml) and cefoxitin (64 pg/ml) and about 50% were susceptible or intermediate to 

imipenem (8 pg/ml) and linezolid (16 pg/ml). Isolates of M. chelonae were reported to be 

susceptible to amikacin (80%), tobramycin (100%), clarithromycin (100%), imipenem 

(60%), clofazimine and doxycycline (25%), and ciprofloxacin (20%).

Hamesing the differences in susceptibility of M. chelonae and M. abscessus to 

antimicrobial agents is crucial when it comes to choosing the appropriate drug treatment 

for infection. For instance, M. chelonae and M. abscessus have different susceptibility to 

tobramycin. In a study on 75 isolates of M. chelonae and M. abscessus, Yakrus et al.

(1172) reported that all M. chelonae isolates were susceptible to tobramycin (MIC <4 

pg/ml), whereas M. abscessus isolates were either resistant or intermediately resistant to
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the drug (MIC of 8 to >16 jig/ml). Similarly, isolates of M. chelonae show resistance to 

cefoxitin (MICs >128 pg/ml) whereas M. abscessus isolates have MICs range from 16 to 

64 pg/ml, with 32 pg/ml being the model MIC (1036).

2.1.7 Antimicrobial agents, activity, and resistance in mycobacteria

2.1.7.1 Mycobacterial cell envelope

Mycobacteria are resistant to a wide range of antibiotics and chemotherapeutic agents. 

This resistance among other mycobacterial characteristics such as their small size relative 

to other bacteria, their hydrophobicity and acid fast staining, are all thought to be related 

to the unusual structure and low permeability of their cell envelope. The latter is essential 

for growth and survival of mycobacterial cells in their host, therefore understanding the 

composition, functions and biosynthesis of the different cell envelope components should 

enable the development of effective drugs to combat mycobacterial infections. The 

mycobacterial cell envelope is composed of the cell wall overlying the cell cytoplasmic 

(plasma) membrane which surrounds the cytoplasm (Figure 2.2).

2.1.7.1.1 The cytoplasmic membrane

The mycobacterial plasma membrane is an asymmetric lipid (mainly phospholipids) 

bilayer which in its basic structure does not differ from that of other bacterial membranes 

with the addition of some distinctive components. The plasma membrane contains a 

number of phospholipids, the main ones are phosphatidylglycerol, 

diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides 

(PIMs) and the less common phosphatidylinositol (103). The lipids are assembled in the 

bilayer in association with proteins and other compounds including a number of 

polyterpene-based products thought to play a role in protection against photolytic damage 

(103), menaquinones which are involved in electron transport (102), and carotenoids. The 

latter vary in structure from species to species and if present in sufficient quantities can 

give the bacterial colonies a bright yellow colour. In photochromogenic mycobacteria,
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such as M. kansasii carotenoid pigments are only synthesized on exposure to light, while 

in scotochromogens, such as M. gadium they are also produced in the dark.

2.1.7.1.2 The cell wall

The mycobacterial cell has a comparatively thick cell wall which consists of several 

components and has a covalently linked skeleton (711) as its core structure. This skeleton 

is the mycolyl-arabinogalactan-peptidoglycan complex (mAGP), 40% of which 

corresponds to lipids in the form of mycolic acids. The mAGP consists of an innermost 

layer of murein, or peptidoglycan covalently linked to the mycolyl-arabinogalactan 

(mAG) via phosphodiester bonds. The mAG is composed of a layer of arabinogalactan, a 

branched macromolecule composed of arabinose and galactose, which its side chains are 

linked to a layer of mycolic acids. In addition to the mAGP skeleton, mycobacterial cell 

wall contains various numbers of lipids and related compounds including 

lipoarabinomannan (LAM), glycolipids, and mycosides. Mycobacteria are not capsulated 

in the strict sense, however in some strains the surface mycoside layer is very thick and 

gives the colonies a smooth appearance.

2.1.7.1.2.1 Peptidoglycan

The mycobacterial peptidoglycan consists of alternating units of jV-acetylglucosamine 

and N-glycolylmuramic acid (72). The tetrapeptide side chains, consisting of L-alaninyl- 

D-isoglutaminyl-meso diaminopimelyl-D-alanine (820) with the diaminopimelic acids 

being further amidated (1143), are attached to muramic acid which is cross-linked to 

arabinogalactan via a phosphodiester linker (589). This type of peptidoglycan (Alay) is 

one of the most common found in bacteria. However, mycobacterial peptidoglycan is 

distinct in that the muramic acid residues are 7V-glycolylated with glycolic acid, and the 

peptidoglycan cross-links include bonds between two residues of diaminopimelic acid as 

well as between diaminopimelic acid and D-alanine (335).

65



2.1.7.1.2.2 Arabinogalactan

The arabinogalactan polymer is comprised exclusively of D-galactofuranoses and D- 

arabinofuranoses residues which are extremely rare in nature. The polysaccharide is also 

unusual in the type of its component sugars as well as its overall structure (209). Unlike 

bacterial polysaccharides, mycobacterial arabinogalactan is composed not of repeating 

units but a few distinct, defined structural motifs. The arabinogalactan is attached to the 

peptidoglycan by its linear galactan via a diglycosylphosphoryl bridge. The mycolic acids 

are located in clusters of four on the terminal pentarabinofuranosyl units, but only two 

thirds of these are mycolylated (688).

2.1.7.1.23 Mycolic acids

Mycolic acids are high molecular weight ( C 7 0 - C 9 0 )  a-alkyl branched, and (3-hydroxylated 

fatty acids present mostly as bound esters of arabinogalactan, where they appear 

primarily as tetramycolylpentaarabinosyl clusters (73, 707). Mycolic acids are also 

present in the fluid matrix, mainly as trehalose 6 ,6’-dimycolate (cord factor) and 

trehalose monomycolate, both of which are distributed on the cell surface (103). The 

mycolic acids are a major component of the mycobacterial cell wall, making up about 

50% by weight of the lipopolysaccharide core of the mAGP complex. They contribute to 

the thickness of the cell wall, and reducing its permeability. The proportion of mycolic 

acids containing frans-substituents at proximal positions of the meromycolate chain in 

particular, is an important determinant of fluidity of the mycobacterial cell wall and is 

also related to the sensitivity of mycobacterial species to hydrophobic antibiotics (1187).

Investigations in the late 1970s indicated that there were four distinct pathways for the 

formation of the mycolic acids (71). These involve fatty acid chain elongation, 

desaturation (542, 1159), cyclopropanation of the olefin (332, 1186, 1188), and a Claisen- 

type condensation (590). Some enzymes of the fatty acid elongation in mycolic acids 

biosynthesis have been the target of antimycobacterial drugs including the 3-oxo-acyl-
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CoA reductase and enoyl-CoA reductase which were inhibited by isoniazid, and the enoyl 

reductase (InhA) was demonstrated to be a primary target for the latter drug (235).

2.1.7.1.2.4 Lipoarabinomannan (LAM)

Lipoarabinomannan (LAM) is an important mycobacterial cell wall lipid, which is 

somewhat embedded into the framework of the mAGP, with lipid portion in the cell 

membrane while the polysaccharide part extends up to the surface of the cell wall. 

Mycobacterial LAMs are lipoglycans composed of three domains, the mannosyl- 

phosphatidyl-myo-inositol anchor (embedded in the plasma membrane), a polysaccharide 

backbone, and the capping motifs. There are two forms of LAM, in one form the side 

chains terminate in arabinose and in the other they terminate in mannose. In the human 

pathogens, M. tuberculosis and M. leprae the LAMs are capped with mannoses (154) and 

are referred to as ManLAMs. In contrast, LAMs isolated from various RGM including M.

smegmatis are devoid of the mannose cap and small proportion of them terminate with 

unique inositol phosphate caps, and are termed AraLAMs (154, 841). LAMs exhibit a 

wide spectrum of immunomodulatory functions. Studies have indicated that LAM 

suppresses immune responses and mediates the production of macrophage-derived 

cytokines, thus contributing to pathogenesis and many of the clinical manifestations of 

pathogenic mycobacteria (46, 147, 515, 978).

2.1.7.1.2.5 Extractable lipids and other cell wall components

The mycobacterial cell wall contains various lipids and related compounds including 

glycolipids, phenolic glycolipids, glycopeptidolipids, trehalos-containing 

lipooligosaccharides, sulpholipids (M tuberculosis), and phthiocerol dimycocerosate (M 

bovis and M. tuberculosis) (70, 103, 931). Mycobacterial cell wall also contains a number 

of waxes (in several slowly growing mycobacteria) and although mycobacteria are not 

capsulated some of the extractable lipids may exist outside the cell wall proper, and 

mycosides can give a capsulated appearance to the cell.
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The mycobacterial cell wall also contains proteins, for instance the purified cell wall of 

M. leprae contains a 35-kDa major protein (470). Similarly, the cell wall of M. chelonae

contains a 30-kDa major protein (767), and a 65-kDa porin. The presence of porins is 

important in that it enables hydrophilic molecules to cross the cell wall.
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Figure 2.2. Model of the mycobacterial cell envelope. Adapted and modified 
from Park and Bendelac (793) and Lee et al.(591).

1; plasma membrane, 2; peptidoglycan, 3; arabinogalactan, 4; mycolic acids, 5; 
lipoarabinomannans, 6; glycolipids, 7; free lipids, 8; porin, 9; associated plasma- 
membrane proteins



2.1.7.2 Cell wall and permeability

The mycobacterial cell wall with its high lipid contents acts as an effective permeability 

barrier for molecules. Knowing the molecular composition of this wall, is however not 

sufficient to understanding its barrier properties, as the latter depend on the physical 

organization of the wall’s components, mainly the lipids. Up to 60% of the mycobacterial 

cell wall weight is occupied by lipids consisting mainly of mycolic acids. A model of the 

physical organisation of these lipids wall have been put forward by Minnikin (707, 708) 

in which mycolic acids chains are packed side by side in a direction perpendicular to the 

plane of the cell surface in cell wall inner leaflet. The latter is covered by another layer 

composed of extractable lipids, the whole structure thus producing an asymmetric lipid 

bilayer (Figure 2.2).
i

A direct consequence of this physical arrangement is the existence of a fluidity gradient 

across the mycobacterial cell wall that seems to have an opposite orientation. The 

external region is more fluid than the internal segment with its extraordinary long 

mycolic acids containing few double bonds or cyclopropane groups. The model explains 

the low permeability and high surface hydrophobicity of the mycobacterial cell wall, and 

its role in the intrinsic resistance of mycobacteria to a number of antibiotics (492, 766). 

For instance, antibiotic efficiency increases in mycobacterial mutants defective in cell 

wall structure (216), or when detergents such as Tween are added to the culture media 

(716). Moreover, studies on aminoglycosides have shown that these agents were more 

active on ribosomes in cell extracts than in intact mycobacterial cells, suggesting a role of 

the cell wall as a barrier (716).

Although the mycobacterial cell wall is a formidable permeation barrier, production of 

clinically significant levels of resistance usually requires the involvement of additional 

resistance mechanisms such as chemical modification of agents, their enzymatic 

inactivation or degradation and the active efflux of the compounds from the cell (492).
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In principle, as it is the case in Gram negative bacteria, the crossing of molecules through 

the mycobacterial cell wall will be through either porin channels or the lipid bilayer 

region. Hence it is suggested that there are two pathways for solutes to traverse the 

mycobacteria wall, depending on their chemistry.

2.1.7.2.1 The hydrophilic pathway

Since hydrophilic solutes can not traverse lipid bilayers, they are predicted to cross the 

mycobacterial wall through the porin pathways. In this pathway, small hydrophilic 

antibiotics and nutrients pass through the cell wall via water-filled channels, whereas 

larger hydrophilic molecules may be unable to cross the wall (248). M. chelonae, one of

the most drug resistant species of mycobacteria has been used in the study of
/

mycobacterial cell wall permeability. The permeability of this species to the hydrophilic 

solutes cephalosporins was determined (493), and was shown to be very low, about 1000 

times lower than that of the E. coli outer membrane, and 10 times lower than that of the 

very impermeable P. aeruginosa outer membrane. The permeation was not affected by 

temperature and did not increase when more lipophilic cephalosporins were used (493) 

suggesting that the permeation occurred mainly through aqueous channels.

Trias et al. (1074) reported the identification of a 59-kDa cell wall porin in M. chelonae

that allowed the diffusion of small, hydrophilic solutes. The porin was shown to be a 

minor protein in the cell wall and had a much lower permeability than porins of equal 

molecular weight from other bacteria such as E. coli. A pore-forming protein with similar 

properties to that of M. chelonae was identified in M. smegmatis (1074), and similar 

porins are probably distributed widely among mycobacteria (103). There are differences 

in hydrophilic permeability amongst species of mycobacteria. For example, M. smegmatis

was found to be 10-fold more permeable to p-lactams than M. chelonae (1074). This may 

explain the differences in antibiotic susceptibility among mycobacterial species (Table 

2.4).
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2.1.7.2.2 The lipophilic pathway

Lipophilic solutes are not the favored solutes for passage through porin channels and thus 

are likely to diffuse mainly through lipid bilayers. The latter is ordinarily highly 

permeable to such solutes. However, its permeability is directly correlated with its 

fluidity (677). Because of the extreme inefficiency of the porin system, the lipophilic 

pathway may play an important role in solute transport, although this system is slowed 

down by the low fluidity of the mycolic acid leaflet of the cell wall and its unusual 

thickness. It is predicted that within each class, the more lipophilic antimicrobial agents 

would be the more active against mycobacteria. This is supported by the observation that 

the more lipophilic derivatives of the relatively lipophilic antibacterial agents such as 

rifampycin, tetracyclines, macrolides, and fluoroquinolones, are more active against 

mycobacteria (1035, 1109)’(390, 856, 1171).

The permeability of the mycobacterial wall to solutes including antibacterial agents is 

however dependent on other factors and mycobacterial species can have different 

susceptibilities to the same agent depending on their cell wall components. For instance, 

M. chelonae and M. fortuitum are highly resistant to lipophilic inhibitors such as dyes and 

detergents and have differences in susceptibility to various lipophilic antibiotics. For 

example, rifampicin, is active against almost all of the clinically relevant species of 

mycobacteria, except M  chelonae and M. fortuitum (and M. avium complex among the 

slow growers) (1178). Structural variation in the mycolic acids is thought to be the reason 

for this resistance, as these organisms have a substantial fraction of a-mycolate 

containing trans double bonds at the proximal inner position, which decreases fluidity 

and permeability of the cell wall (103, 616).

2.1.73 Mycobacteria and antibiotics: The molecular basis of resistance

Resistance of mycobacterial species to antibiotics is in part due to intrinsic mechanisms 

notably their cell envelope permeability barrier. However, resistance can also arise due to 

mutation and changes in specific targets in the cell. Resistance to rifampicin has been
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linked to mutation in the mycobacterial rpoB gene, encoding the p-subunit of the RNA 

polymerase (434, 517, 518, 1146), the arr gene, encoding rifampicin ADP 

ribosyltransferase (10), and the asnB gene, encoding a glutamine-dependent asparagine 

synthetase (865). Resistance to quinolones such as ciprofloxacin was shown to be a result 

of mutation in the mycobacterial gyrA gene (136, 418, 868) encoding the A subunit of 

DNA gyrase enzyme (331, 1123), whereas resistance to streptomycin was linked to 

mutations in the 16S rRNA gene (rrs) as well as in the rpsL and rpsG genes encoding 

ribosomal proteins S12 and S7 respectively (293, 533). Alterations in the embAB locus 

encoding arabinosyltransferases involved in mycobacterial cell wall synthesis, have been 

reported to cause ethambutol resistance (1001, 1052), while mutations in or complete loss 

of the katG gene, encoding for a mycobacterial catalase-peroxidase, were associated with 

resistance to isoniazid (1023, 1195). Other genes involved in isoniazid resistance in 

mycobacteria include the inhA and the ahpC genes encoding an enoyl reductase, and an 

alkyl hydroperoxide reductase respectively (236, 433, 1152). The molecular basis of 

mycobacterial resistance to the above antibiotics and others is summarized in Table 2.5
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Table 2.4. Activity of the major chemotherapeutic agents against mycobacteria.
Adapted from Jarlier and Nikaido (492).

Agent M. tuberculosis M. leprae Atypical mycobacteria

Sulfonamides +
Penicillin G - - -

Streptomycin + - -

Chloramphenical - - -

Tetracyclines - - -

Erythromycin - - -

Isoniazid + - -

Novobiocin - - -

Vancomycin - - -

p-lactams - - -

Quinolones - - -

Fusidic acid - - -

Rifampicin + + -

Fluoroquinolones + + ±

- and + indicate presence and absence, respectively o f significant activity. 
Minocycline is active against M. leprae.
Clarithromycin is active against some atypical species.
Variable depending on species and compound.
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Table 2.5. Mycobacterial genes involved in antimicrobial resistance. Modified from Musser (741).

Antimicrobial agent Species Gene Product

Rifampicin (RIF) M. tuberculosis, M. leprae, M. africanum, M. avium rpoB P-subunit of RNA polymerase
M. smegmatis arr Rifampicin ADP ribosyltransferase
M. smegmatis asnB Glutamine-dependent asparagine synthetase

Streptomycin (STR) M. tuberculosis, M. smegmatis rpsL Ribosomal protein S12
M. tuberculosis frs 16S rRNA
M. smegmatis rpsG Ribosomal protein S7

Isoniazid (INH) M. tuberculosis katG Catalase-peroxidase
M. smegmatis ahpC Alkyl hydroperoxide reductase

INH and ethionamide M. tuberculosis inhA NADH-specific enoyl-acyl carrier protein
(ETH) reductase

orfl 3-Ketoacyl-acyl carrier protein reductase analog
M. smegmatis ahpC Alkyl hydroperoxide reductase

Fluoroquinolones (FQ) M. tuberculosis, M. smegmatis gyrA DNA gyrase A subunit

Ofloxacin (OFX) M. tuberculosis, M. smegmatis gyrA DNA gyrase A subunit

Clarithromycin (CLR) M. intracellulare, M. chelonae, M. abscessus 23S rRNA 23S rRNA

Ethambutol (EMB) M. tuberculosis embB Arabinosyltransferase

Pyrazinamide (PZA) M. tuberculosis pncA Pyrazinamidase

D-Cycloserine M. smegmatis alrA D-Alanine racemase
M. tuberculosis ddlA D-Alanine-D-alanine ligase
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2.1.7.4 Biocides and mycobacteria

Early studies revealed that mycobacteria were more resistant to biocides than other non- 

sporulating bacteria. In 1971, Croshaw (201) reviewed the response of mycobacteria to 

biocides and listed ampholytic surfactants (e.g. the ‘Tego’ compounds), ethylene oxide 

gas, iodine, alcohols and especially phenolic compounds, notably cresol-soap 

formulations, as being mycobactericidal. Mycobacteria are generally resistant to acids, 

alkalis, chlorhexidine, QACs, non-ionic and anionic surface-active agents, heavy metals, 

and dyes, although many of these agents may inhibit mycobacterial growth without being 

mycobactericidal (406).

Spaulding et al (1000), Favero (285), and Favero and Bond (286) described three levels
/

of disinfection: High, intermediate, and low. A biocide with high-level activity is lethal to 

all types of micro-organisms except high numbers of bacterial spores. One with 

intermediate level of activity inactivates vegetative bacteria including mycobacteria, 

fungi, and most viruses. Low level activity lacks mycobactericidal effect but non- 

sporulating bacteria, some fungi and some viruses are inactivated. On the basis of this 

classification, mycobacteria are considered more resistant to biocides than other non- 

sporulating bacteria but less resistant than bacterial spores.

2.1.7.4.1 Antimycobacterial agents

Heat is still the most effective way of destroying mycobacteria, which are not especially 

heat-resistant. However sterilization or disinfection by heat is not always applicable and 

the use of biocides is more appropriate. The antimycobacterial properties of several of 

biocides against mycobacteria are summarized in Table 2.6.

2.1.7.4.1.1 Alcohols

Alcohols are usually considered to be mycobactericidal when used at the appropriate 

concentration. Favero (283) cited alcohol concentrations 70-90% as having an
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intermediate level disinfection activity. Ethanol in high concentrations is thought to be an 

excellent mycobactericidal agent. However, concentrations above 95%, contain too little 

water to be effective (999). Addition of alcohols to other biocides can increase their 

germicidal activity, and they are routinely found mixed with other agents such as iodine 

and formaldehyde in active formulations. Griffiths et al. (366) reported that 70% 

industrial methylated spirits were highly effective against mycobacteria, including M.

chelonae type strain, glutaraldehyde-resistant M. chelonae, M. fortuitum, and M.

tuberculosis H37 Rv. A major disadvantage of alcohols is their relative inactivity in the 

presence of organic matter. For example, a study by Best et al. (75) reported that the 

lethal effect of 70% ethanol against M. tuberculosis was greatly decreased in the presence 

of sputum.

2.1.7.4.1.2 Phenolic compounds

Phenolics have been considered for many years to be effective against M. tuberculosis.

Tilley et al. (1063) noted their usefulness in this regard, and Richards and Thoen (873) 

stated that phenolics are mycobactericidal. However, a number of studies reported the 

relative infectiveness of phenolics against mycobacteria. For instance 3% phenolics have 

been removed as high-level disinfectants because of their unproven efficacy against M.

tuberculosis (924), and phenols have been found to be ineffective against M. smegmatis

in the carrier test (74, 75).

2.1.7.4.1.3 Chlorine compounds

Chlorine compounds have been widely used as disinfectants, and reported to have a wide 

spectrum of activity against bacteria. Smith (992) reported sodium hypochlorite to be a 

potent mycobactericidal agent. Other chlorine compounds have been shown to be highly 

effective against some mycobacteria. These include chlorine dioxide which has been 

reported to be very active against bacterial spores, M. tuberculosis, M. avium, and other 

atypical mycobacteria. Griffiths et al. (366) reported that this agent along with a high 

concentration of a chlorine releasing agent were rapidly mycobactericidal.
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2.1.7.4.1.4 Chlorhexidine

Chlorhexidine, another commonly used biocide is considered ineffective against 

mycobacteria when used at high concentrations (894), however it is mycobacteristatic at 

low concentrations (107). Chlorhexidine gluconate (4% w/v) was shown to be ineffective 

against M. tuberculosis and produced no more than 2 logio reduction in viability in 

suspension tests with or without sputum (75). It is reported however, that mycobacterial 

susceptibility to chlorhexidines can be increased using other agents that may help 

increase their cellular penetration. Broadley et al. (107) reported that it was possible to 

enhance the activity of chlorhexidine diacetate, a normally poor mycobactericidal agent, 

against M. avium, M. bovis BCG, M. fortuitum and M. phlei using the antibiotic 

ethambutol.

2.1.7.4.1.5 Aldehydes

Aldehydes have a wide spectrum of activity, including sporicidal. The mycobactericidal 

action of aldehydes depends on the individual structure of the agent and the 

mycobacterial strain it is subjected to. Formaldehyde is generally accepted to have good 

mycobactericidal activity (890), although there have been a number of reports of the 

relative ineffectiveness of some formaldehyde formulations against mycobacteria (1089). 

Formulas containing formaldehyde with other agents, especially alcohols, have been 

shown to be mycobactericidal (366, 367, 894). Because of its toxicity and corrosiveness, 

formaldehyde-alcohol has been excluded as a high-level disinfectant (924).

Glutaraldehyde (GTA) has been used as a disinfecting/sterilizing agent for over 30 years 

(904). Alkaline 2% (v/v) GTA has a broad range of activity and rapid mycobacterial 

action, and is the most widely used high-level disinfectant for flexible endoscope 

disinfection (904). The 2% alkaline GTA formulation is now widely regarded as being 

effective mycobactericidal agent against M. tuberculosis, M. smegmatis, M. fortuitum, 

and M. terrae (24, 26, 706, 1089), although variations in resistance of mycobacterial 

strains to this agent were noted (143, 186). A number of other studies, questioned the
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effectiveness of 2% alkalinized GTA against mycobacteria (26). Bergan and Lystad (67) 

and Rubbo et al. (890) reported that the above formulation was not adequately effective 

against M. tuberculosis.

Ot/zo-phthal aldehyde (OPA) is relatively new aromatic dialdehyde biocide that has been 

proposed as a possible alternative to GTA for high-level disinfection of endoscopes

(1119). Studies have shown that 0.5% (w/v) OPA is effective against a range of 

mycobacterial species including GTA-resistant M. chelonae (311). A number of 

aldehydes were tested against M. terrae, M. abscessus, and both GTA- sensitive and 

GTA-resistant strains of M. chelonae, and it was concluded that 0.5% (w/v) OPA had an 

acceptable efficacy against mycobacteria (311).

2.1.7.4.1.6 Peroxygens

Peroxygens are generally regarded to have an activity below that of GTA against 

mycobacteria (105, 207,448). Hydrogen peroxide (6% v/v) has been reported to be active 

against M. bovis, but had poor performance against M. tuberculosis. By contrast the 

combination of 8% hydrogen peroxide and 0.06% peracetic acid had an excellent 

tuberculocidal activity (925). Peracetic acid alone is sporicidal (92), which implies that is 

also mycobactericidal, and it was reported to be effective against GTA-resistant 

mycobacteria. Lynam et al. (631) claimed that Nu-cidex containing 0.35% (v/v) peracetic 

acid was effective against various mycobacteria including M. tuberculosis and GTA- 

resistant isolates. However, It was reported that GTA-resistant M. chelonae isolates were 

still resistant to 0.035% paracetic acid (1090) but were shown to be susceptible to Cidex 

PA, containing 1% hydrogen peroxide and 0.08% peracetic acid (1005). Nu-cidex was 

reported to be effective mycobactericidal agent for use in the disinfection of 

bronchoscopes after it was shown to effectively eradicate M. tuberculosis and M.

chelonae from bronchoscopes.
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2.1.7.4.1.7 Quaternary ammonium compounds (QACs)

QACs are low-level disinfectants that inhibit the growth of some mycobacteria but are 

not mycobactericidal (299, 305, 914). According to Broadley et al. (107) low 

concentrations of cetylpyridinium chloride inhibited the growth of some mycobacteria 

including M. bovis and M. avium. A number of reports however, suggested that some 

concentrations of QACs can be lethal to mycobacteria, or have similar activity to known 

mycobactericidal agents. According to Ascenzi et al. (19, 20) a QAC had similar 

tuberculocidal activity to 2% glutaraldehyde, and Holton et al. (448) reported that a high 

concentration of a QAC product was also mycobactericidal. Other workers however, have 

demonstrated the lack of lethal activity of QACs against mycobacteria (75). Similar to 

chlorhexidine, QACs activity against mycobacteria can be enhanced using other agents as 

Broadley et al. (107) demonstrated using cetylpyridinium chloride in combination with 

ethambutol.

2.1.7.4.1.8 Ethylene oxide

Ethylene oxide is a colorless explosive, highly diffusible gas that is considered to be a 

good tuberculocidal agent and is highly regarded for the used with instruments, especially 

fiberoptic endoscopes that would be damaged by autoclaving (593, 777). Kereluk et al.

(534) reported that M. phlei cells are less resistant to ethylene oxide than other non-spore 

forming species tested. Rutala and Weber (928) noted that ethylene oxide sterilization 

inactivates all micro-organisms including mycobacteria, although bacterial spores were 

more resistant.

2.1.7.4.1.9 Iodine and iodophors

Iodine and iodophors have historically been considered effective against tubercle bacillus 

(334, 552). Frobisher and Sommermeyer (317) reported that 1% iodine solution in 10% 

alcohol was effective against tubercle bacilli contaminating clinical thermometers, 

although in a later study, Wright and Mundy (1163) found an iodophor solution 

containing 1.6% iodine to be ineffective the same contaminating organism. Opposing

80



views have been expressed in regard to the effectiveness of iodine agents against 

mycobacteria, especially in disinfection of endoscopic equipment Nelson et al. (752) 

reported that several iodophor compounds, diluted or undiluted, were ineffective against 

two M. tuberculosis strains even after 30 min exposure. Whereas O’Connor and Axon 

(777) believed that povidine-iodine to be an effective disinfectant for endoscopic 

equipment. The same agent, at concentration of 0.05% (v/v) was shown to be rapidly 

mycobactericidal against suspensions of M. avium, M. kansasii and M. tuberculosis

(880). Rutala (922) noted that although manufacturer’s data demonstrate that commercial 

iodophors are tuberculocidal, they are no longer considered as high-level disinfectants 

because of their unproven efficacy against bacterial endospores, M. tuberculosis and 

some fungi.
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Table 2.6. Mycobacterial activity of biocides. Adapted from Russell (894) and Hawkey (406).

Compound Mycobacterial susceptibility Antimycobacterial
activity

Comment

Alcohols S C Susceptibility reduced in presence of organic load
Formaldehyde S/moderately S C Susceptibility increases in combination with alcohol
Glutaraldehyde S/moderately S/R C
Glyoxal - C
Succinaldehyde - C
Chlorhexidine R ST High concentrations not mycobactericidal
Chlorine dioxide S C
Ethylene oxide S C
Hypochlorite
Iodophors

Moderately S/S/ moderately R 
S/moderately S C

£>//?<?-phthalaldehyde S -
Peracetic acid S - Effective against GTA-resistant M. chelonae
Peroxygens S/R ST/C Varies with individual compound
Phenols S ST/C Antimycobacterial activity varies with individual

QACs R ST
compound
Even high concentration normally not

Superoxidized water S ~

mycobactericidal

P-Propiolactone - c
C, mycobactericidal; ST, mycobacteriostatic; S, susceptible; R, resistant
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2.1.7.4.2 Biocides action in mycobacteria

The mechanisms by which mycobacteria are inhibited or killed by biocides are poorly 

understood. Similarly, it is not clear how biocides are taken up by mycobacterial cells, 

although some progress have been made due to increased knowledge of the 

mycobacterial cell wall and the demonstration of the presence of porins in these 

organisms (section 2.1.7.1) Biocide uptake by mycobacteria is thought to involve 

adsorption process to the cell wall, which although not yet clearly shown in 

mycobacteria, it was demonstrated to be the case for many biocides in a number of non- 

sporulating bacteria (457). The biocides may then cross the cell wall by interaction with 

the sensitive sites at the cytoplasmic membrane or deeper within the cell (894).

/

Within the mycobacterial cell, there are a number of potential targets for biocides. These 

are as follows:

• The cell wall, which unlike the case for chemotherapeutic drugs, it is unlikely to 

be a major site for biocides. GTA could be an exception, because it is known to 

interact with the surface of bacterial cells (253).

• The cytoplasmic membrane is a potential target for “membrane-active agents” 

such as chloriiexidine and cetylpyridinium chloride. These two agents are 

tuberculostatic at low concentrations, of the same order as those that inhibit other 

bacteria (106), but not mycobactericidal. This implies that these agents cause 

membrane damage in mycobacteria but the damage may be insufficient to kill the 

cells or too small concentration is available to cause cytoplamic damage or both. 

Their intake into the cell is also thought to be greatly reduced by the cell well 

(894).

• The cytosol and its components, proteins, enzymes, DNA, and RNA, maybe all be 

potential targets for biocide activity in mycobacteria. This is proven to be the case 

in many non-sporulating bacteria (913), although it is yet to be shown in 

mycobacteria.
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2.1.7.4.3 Mycobacterial resistance to biocides

Mycobacteria are generally more resistant to biocides than other non-sporulating bacteria. 

This difference in susceptibility also exists between mycobacterial species. Development 

of resistance to some agents has also been reported especially in clinical applications 

such as endoscope disinfection. Carson et al. (143) noted variation in resistance of 

mycobacterial strains to GTA and formaldehyde and found strains of M. fortuitum and M.

chelonae in commercial distilled water that were very resistant to chlorine, van Klingeren 

and Pullen (1090) isolated M. chelonae from endoscope washers that survived 60 min 

exposure to alkaline GTA. This resistant strain was also resistant to peracetic acid (631). 

Mycobacterial resistance to other biocides have been noted, such as M. chelonae resistant 

to 2-3% formaldehyde reported by Hayes et al. (408), and triclosan resistance in M.

smegmatis (683).

Intrinsic resistance, mainly due to the low mycobacterial cell wall permeability and its 

composition (section 2.1.7) is thought to be an important factor in biocide resistance. The 

highly hydrophobic mycobacterial cell wall makes it difficult for hydrophilic agents such 

as hydroxybenzoates to cross the wall in sufficiently high concentrations to achieve 

mycobactericidal effect. Low concentrations are believed to cross the wall, as MICs of 

these agents against mycobacteria are generally of the same order as those for other 

bacteria (894). The relationship between the content of waxy material in the 

mycobacterial cell wall and resistance of different species to biocides was quoted by 

Croshaw in 1971 (201). This supports the view expressed by Chargaff et al. (153) who 

reported that resistance to QACs was related to lipid content of the cell wall, since M.

phlei (with low total lips) was more sensitive than M. tuberculosis (with higher cell-lipid 

content) to these agents. Other work on the QAC, cetylpyridinium chloride, and 

chlorhexidine diacetate (107), showed that the activity of these two agent against M 

avium was greatly enhanced in the presence of ethambutol. This suggests that the 

arabinogalactan component of the cell wall may be involved in the mycobacterial 

resistance to cetylpyridinium chloride and chlorhexidine diacetate.
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Manzoor et al. (656) reported that reduce susceptibility to GTA was associated with 

changes in cell wall polysaccharides and increase in phydrophobicity. GTA-resistant M.

chelonae were shown to be more hydrophobic than sensitive strains (656). Walsh et al.

(1120), noted that “decrease in the monosaccharides of arabinogalactan have been 

associated with an increase in GTA resistance, suggesting that the arabinogalactan and 

arabinomannan portions of the cell wall could be involved in the resistance mechanism, 

possibly hindering the penetration of GTA”.

One of the few examples of the identification of a mycobacterial genes involved in 

biocide resistance was the elucidation of triclosan resistance in M. smegmatis. McMurry 

et al. (683) selected for triclosan resistance in M. smegmatis me2155. Three mutants 

which had over 4 times the triclosan MIC of the wild type were examined, and were 

found to have different mutations in their inhA gene. The InhA is an enoyl reductase 

involved in fatty acid synthesis that is 35% identical to the E. coli Fabl. Two of the 

mutants did also express some isoniazid resistance, which was not surprising as the enoyl 

reductase is a target for this drug in M. smegmatis.

Another possible mechanism for biocide resistance in mycobacteria is the natural 

transport system and expression of efflux pumps in these organisms. Several 

mycobacterial efflux pumps have been characterised (225,. 605, 1097), and the role of 

some in mycobacterial intrinsic and acquired drug resistance have been reported (939). 

Baneijee et al. (41) reported that overexpression of the phosphate-specific transporter 

(Pst) in M. smegmatis selected for ciprofloxacin resistance. They concluded that the Pst is 

a natural membrane transport system involved in efflux-mediated drug resistance in M.

smegmatis. In another study Stephan et al. (1014) reported that a M. smegmatis mutant 

lacking the major porin MspA expressed increase resistance to a number of drugs 

including ampicillin, cephaloridine, vancomycin, erythromycin and rifampin.

Efflux pumps have been studied in M. smegmatis in relation to drug resistance. Takiff et

al. (1045) showed that the LfrA, a major facilitator superfamily transporter, confered 

resistance to ethidium bromide, acriflavine, and some fluoroquinolones when
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overexpressed from a multicopy plasmid. Disruption of the IfrA gene rendered the mutant 

more susceptible to ethidium bromide, acriflavine, ciprofloxacin, doxorubicin, and 

rhodamine (939). These results were also confirmed by Li et al. (606), who used M.

smegmatis with mutations in IfrA as well as the homologues of M. tuberculosis Rvl 145, 

Rvll46, Rvl877, Rv2846c (efrA), and Rv3065 (mmr and emrE), all expressed in the 

organism and encoding putative drug efflux pumps. Mutants in the IfrA gene, the mmr

homologue and the efpA homologue rendered the mutants more susceptible to multiple 

drugs such as fluoroquinolones, ethidium bromide, and acriflavine. Although the 

involvement of efflux pumps in biocide resistance in mycobacteria is yet to be clarified, it 

is possible that this mechanism is a significant factor
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2.2 AIMS

The main aim of this study was to determine the molecular basis of biocide susceptibility 

and resistance in mycobacteria. This was to be achieved by:

a) Examining the susceptibility of mycobacterial strains (M smegmatis me2155 as a 

model strain, and M. chelonae and M. abscessus type strains) to biocides (ortho- 

phthalaldehyde, triclosan, cetylpyridinium chloride, and chlorhexidine diacetate) 

and antibiotics.

b) Using transposon mutagenesis to generate random M. smegmatis me2155 mutants 

and subsequently screening these mutants to isolate biocide resistant/sensitive 

derivatives.

c) Evaluating the level of susceptibility of the isolated mutants to the four biocides 

described above using agar and broth MICs and lethality tests.

d) Using the DNA sequence flanking each transposon mutant to identify the 

disrupted gene by correlation to the M. smegmatis me2155 genome sequence, and 

confirming the result by complementation.

e) Comparing the antibiotic profiles of the wild type M. smegmatis me2155 with 

those of the biocide mutants to determine any cross-susceptibility between 

biocides and antibiotics.

The overall hypothesis was that gene transposon mutagenesis would enable the molecular 

basis of biocide resistance or susceptibility in M. smegmatis me2155 to be determined. 

The complete experimental strategy to be followed is outlined schematically in Figure 

2.3.
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MYCOBACTERIAL STRAINS

M. smegmatis me 155 M. chelonae and M. abscessus type strains

- Model strain
- Fast grower
- Genetically easy to manipulate
- Genome sequence is available

ISOLATION OF MUTANTS

Transposon mutagenesis using a 
mariner-based transposon system

I
BIOCIDES AND ANTIBIOTICS +
SUSCEPTIBILITY PROFILES

• Agar MICs
• Broth MICs
• lethality/killing tests
• Potassium leakage test

- Facultative mycobacterial pathogens
- Slower growing
- Less known about their genetics
- Require more developed genetic approaches

BIOCIDES AND ANTIBIOTICS
SUSCEPTIBILITY PROFILES

• Agar MICs
• Broth MICs
• lethality/killing tests
• Potassium leakage test

MOLECULAR BASIS FOR BIOCIDE SUSCEPTIBILITY &
RESISTANCE

Identification and confirmation of disrupted genes using PCR, DNA 
sequencing, bioinformatics, and complementation

Figure 23. Experimental strategy used in the current study.

The experimental strategy used in this study was divided into three major sections: Firstly, biocide and 
antibiotics susceptibility profiles were to be determined for the model organism M. smegmatis me2155, and for 
M. chelonae and M. abscessus type strains. This was to be achieved by evaluating agar and broth MICs, the 
killing effect of biocides, the amount of potassium leaked from biocide-treated cells, and determining the agar 
MICs for selected antibiotics. Secondly, transposon mutagenesis using a mariner-based transposon system was 
to be used to generate and isolate biocide mutants of M. smegmatis me2155. The biocide susceptibility profiles of 
these mutants were to be determined as for the wild type me2155. Agar MICs of selected antibiotics were also to 
be determined for the biocide mutants to find out whether change in susceptibility to biocides had an effect on 
antibiotic sensitivity. Thirdly, the molecular basis of the phenotypic change in the biocide mutants was to be 
determined by identification of the transposon-disrupted gene in the mutant’s genome using molecular 
techniques including PCR, DNA sequencing and bioinformatics. The results were to be confirmed by 
complementation analysis.
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2.3 MATERIALS AND METHODS

23.1 Bacterial strains and plasmids

Bacteria strains and plasmids used in this study are described in Table 2.7.

Table 2.7. Bacterial strains and plasmids.

Strain or plasmid Reference/ 
catalogue number

Comments

Strains

M. smegmatis me 155 (993) Efficient plasmid transformation mutant

M. smegmatis HS42 (789)

M. chelonae NCTC 946 Type strain

M. abscessus ATCC 19977 Type strain

E. coli JM109 (324) Containing plasmid pM272B

Plasmids

pM272B (324) pPR27 containing mariner transposon cassette: 
5* and 3’ inverted repeats of Mo s i  surrounding 
the KANr cassette of Tn903 (from MosKACD
(1066)) and the Mo s i  transposase (mTpase from 
pET3a-Tpase (1066), which is under the control 
of the mycobacterial groEL promoter (groELp
from pSMT3 (325)) (Figure 2.5).
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2.3.2 Media and growth conditions

Mycobacterial cultures were grown on Middlebrook 7H9 broth (Difco) supplemented 

with 0.2% glycerol, 0.05% Tween 80, and 10% oleic acid-albumin-dextrose-catalase 

(OADC) enrichment (Difco). When required the following media were also used: Sauton 

minimal medium (1000 ml of distilled water containing: 0.5g KH2PO4, 0.5g 

MgS04.7H20 , 2g citric acid, 0.05g ferric ammonium citrate, 60 ml glycerol, 4g 

asparagine, and 0.1 ml of a 1% ZnSC>4 solution), Lemco broth (1000 ml distilled water 

containing: lOg Bacto-peptone, 5g Bacto-Lab Lemco powder, and 5g NaCl at pH of 7.2), 

and Tryptone Soya Broth (TSB) (Difco). Unless mentioned otherwise, all mycobacterial 

strains were cultured with gentle shaking at the incubation parameters described in Table 

2.8. Growth on solid agar was achieved using either, Middlebrook 7H11 agar (Difco),
1

supplemented with 0.5% glycerol and 10% OADC, or Tryptone Soya Agar (TSA) 

(Difco). When required, both solid and liquid media used to grow mycobacterial strains 

were supplied with the appropriate concentration of kanamycin.

E. coli JM109 strains used for pM272B plasmid extraction (section 2.3.11.2) and 

transformation experiments (section 2.3.15.1) were grown in Luria-Bertani (LB) (Difco) 

broth (936) or on TSA at 37°C. When required, LB broth and TSA agar were supplied 

with 25 pg/ml kanamycin. Freezer stocks of bacterial strains were prepared by addition of 

8% v/v Dimethyl sulfoxide (DMSO) (Fisher Scientific) to a fresh suspension of bacteria. 

Strains were stored at -80°C.

Optimal growth conditions and growth characteristics of mycobacterial strains in broth 

were determined by growth curves monitoring the change in optical density (OD) 

readings at 630 nm of the cultures over time. OD values were generated using an 

automated plate reader (section 2.3.5). Optimal growth conditions for mycobacterial 

strains were determined using a range of media (Lemco media, TSB, Sauton minimal 

media, and 7H9 broth), and growth temperatures (30°C and 37°C).
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Table 2.8. Growth conditions of mycobacterial organisms.

Organism Period of incubation 

(days)

Temperature of 

incubation (°C)

M. smegmatis me2155 2 37

M. smegmatis HS42 2 37

M. chelonae 4 30

M. abscessus 4 37
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233  Preparation of mycobacterial cultures

Before being used for testing, all mycobacterial cultures were prepared as follows:

Strains were grown from a single isolated colony vigorously dispersed in the appropriate 

liquid medium and grown at the appropriate growth parameters (Table 2.8). Cultures 

were then passed at least 20 times through a 26-gauge needle to separate cells and avoid 

clumping. The resulting suspensions were then used for testing as appropriate.

23.4 Viable cell count

The number of colony forming units (cfu) per ml of bacterial cell suspension was 

calculated using either drop counting method or spreading method. In the drop counting 

method, bacterial suspensions (section 2.3.3) were serially diluted in either 0.85% saline 

or the broth medium in which bacteria had been grown. A series of 10-fold dilutions were 

performed by adding a 100 pi of the bacterial suspension to 900 pi of saline or broth. The 

dilution series were mixed using a vortex mixer and 10 pi of each dilution were dropped 

in triplicate onto the surface of an agar plate. Plates were left to dry at room temperature 

for 15 to 20 min before incubation at the appropriate temperature until the colonies could 

be counted. The number of colonies present in a countable dilution was used to calculate 

the viable cell count expressed as cfu/ml suspension.

In the spreading method, dilution series of the bacterial suspension to be enumerated 

were produced as mentioned above. A 100 pi of each dilution was dispensed on the 

surface of a well dried agar plate and spread evenly over the agar surface using a sterile 

glass rod. The plates were incubated inverted at the appropriate temperature. The dilution 

plates containing between 30 and 300 colonies was used to calculate the viable count.

2.3.5 Measurement of optical density

Optical density (OD) of bacterial suspensions were measured at a wavelength of 630 nm
Tp

using an automated plate reader (MRX revelation, DYNEX Technologies), with the
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bacterial growth held in sterile 96-well plates. When ODs of cultures were measured 

without using the automated plate reader, they were transferred into 1 ml disposable 

plastic cuvettes (Fisher) and the OD measured using a Helios a  UV-visible 

spectrophotometer (Spectronic Unicam) at 630 nm wavelength. Absorbance was always 

measured against an appropriate blank.

2.3.6 Relationship between OD and viable counts

Experiments were also performed to determine the relationship between the OD 

measurements and the number of cfu present for the corresponding ODs of bacterial 

suspensions. The OD reading at 630 nm of bacterial culture grown overnight in 

appropriate broth media and prepared as described in (section 2.3.3) was measured and
t

viable count of the number of cfu present was determined as described above. The 

original suspension was then diluted in sterile deionised water to a new OD and the 

number of cfu present at the new OD was also determined. This process was repeated 

until a standard curve showing the relationship between OD versus logio cfu/ml could be 

obtained. Cell densities of liquid cultures were then determined by comparing the OD 

value of the culture suspension at 630 nm wavelength to the standard curve determined 

above.

23.7 Biocides and biocides solutions

The following biocides were used in this study: triclosan (Ciba Speciality Chemicals, 

Grenzach, Germany), chlorhexidine diacetate (CHX) and cetylpyridinium chloride (CPC) 

(ICN Biomedicals Inc, Ohio, USA), and ort/zo-phthalaldehyde (OPA) (Advanced 

Sterilization Products division, Johnson & Johnson, USA). Biocide stock solutions were 

made up fresh on the day of use in deionised water and filtered sterilised* with exception 

of triclosan and orrim-phthalaldehyde which were prepared in DMSO. The stock 

solutions were then diluted to the required concentration for use. The final concentration 

of DMSO added to the medium was not lethal to the organism being investigated.
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2.3.8 Antibiotics

In this study the antibiotic used was: Kanamycin (KAN), (Sigma Aldrich, Gillingham, 

UK). Stock solutions of the antibiotic were prepared in deionised water, filter sterilized, 

and stored at -20°C. E-test strips (AB Biodisk, Bio-Stat Ltd) containing amikacin 

(AMK), azithromycin (AZM), chloramphenicol (CHL), ciprofloxacin (CIP), tobramycin 

(TOB), trimethoprim/sulfamethoxazole (SXT), meropenem (MEM), ceftazidime (CAZ), 

imipenem (IPM), and piperacillin (PIP) were also used.

2.3.9 Biocides MICs determination

Minimal inhibitory concentrations (MICs) of biocides were determined in both liquid and
/

solid media. Biocide solutions were made up fresh on the day of use as described in 

section 2.3.7, and diluted to the required concentration of use. For MIC determination in 

liquids, 96-well plates were filled .with growth medium containing the appropriate 

concentration of biocide tested. A culture of the organism to be tested (section 2.3.3) was
o

diluted to an OD of 0.5 (~ 10 cfu/ml) and used to inoculate the 96-well plates using a 

multi-inoculator, the plates were then incubated at the appropriate growth parameters 

(Table 2.8). Inhibition of growth was determined by reading the OD of cultures at 630 

nm using an automated plate reader and comparing the results against controls grown in 

the absence of the biocide. Broth MICs were taken as the minimal concentrations of 

biocides that had mean OD values which showed no statistically significant difference 

from the mean value of the blank after growth at the appropriate growth parameters 

(Table 2.8). MIC of DMSO for the tested organisms was also determined in broth as 

described above to evaluate DMSO toxicity on the organisms. Agar MICs were 

determined using 7H11 agar plates containing the appropriate concentrations of biocides, 

inoculated with mycobacterial cultures of OD630nm of 0.5, and observing inhibition of 

growth after incubation at the appropriate growth parameters (Table 2.8).
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2.3.10 Antibiotic MICs

Antibiotic MICs were determined using E-test on 7H11 agar according to the 

manufacturer’s instructions (AB Biodisk, Bio-Stat Ltd). Briefly, organisms to be tested 

were grown in 7H9 broth as described in section 2.3.3. Cells were then washed twice by 

centrifugation at 3000 rpm for 10 min to remove culture media which might interact with 

the test antibiotic, and passed at least 20 times through a 26-gauge needle to separate cells
ftand avoid clumping. An inoculum of approximately 10 cfu/ml was obtained by serial 

dilution in 0.85% saline. A sterile swab was immersed into the cell suspension, excess 

culture was removed, and the culture was then spread evenly in three directions across a 

well dried 7H11 agar plate. Plates were then left to dry for 15 min at room temperature, 

prior to the application of the E-test strip onto the agar surface. Plates were then 

incubated at the appropriate growth parameters (Table 2.8) and analysed. Determination 

of the antibiotics MICs by E-test were performed at least in duplicate, and the MICs were 

interpreted at the point of intersection between the inhibition zone and the E-test strip 

(Figure 2.4).
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Figure 2.4. Antibiotic susceptibility' determination using E-test strips.

Antibiotic MICs for bacteria were determined using E-test strips. The figure showes 
Serratia marcescens D bl 1 grown on TSA agar plate with a trimethoprim/sulfamethoxazole 
(1/19) E-test strip. The Red arrows point to the antibiotic MIC value in pg/ml, which 
represents the point o f  intersection between the inhibition zone and the E-test strip.
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2.3.11 Nucleic acid extraction and manipulation

2.3.11.1 Genomic DNA extraction

Three methods were used for DNA extraction from bacteria:

2.3.11.1.1 The chelex 100 resin method

Chelex 100 DNA extraction method was a rapid and efficient way of extracting DNA of 

sufficient quality to be used for PCR amplification. The method is based on the use of 

chelex 100, a resin that has a high affinity for polyvalent (eg. Copper) over monovalent

(eg. Sodium) cations (1117). During the chelex DNA extraction steps, cells are exposed
/

to high temperature in an alkaline suspension, resulting in disruption of cell membranes 

and DNA denaturation. Although the chelex method produce denatured DNA, it is of 

sufficient quality to be used successfully in PCR amplification (1117).

Briefly cultures used for isolating the genomic DNA were grown at the appropriate 

growth parameters (Table 2.8). A 1 ml portion of a fresh liquid culture was harvested by 

centrifugation, then resuspended in 100 pi of sterile 5 % chelex 100 (Sigma Aldrich, 

Gillingham, UK). The sample was then boiled for 5 min, and immediately placed on ice 

for a further 5 min. The sample was subjected to a further round of boiling and chilling 

on ice, then centrifuged at 13000 rpm for 5 min. The resulting supernatant containing the 

DNA was then transferred to a clean micro-tube and used for PCR or stored at -20°C for 

further use.

2.3.11.1.2 The boiling method

DNA intended for PCR analysis was also generated using a boiling method. It is a faster 

and more convenient way of extracting DNA for PCR analysis. In the boiling method, 

suspensions of the cells were made in 100 pi TE buffer (10 mM Tris-Cl pH 8, 1 mM
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EDTA pH 8), and then boiled for 10 min. After centrifugation at 13000 rpm for 5 min, 

the supernatant containing the DNA was used for PCR.

2.3.11.1.3 The guanidinium chloride method

The guanidinium chloride method was used to extract the total genomic DNA from 

mycobacterial stains. The method adapted from that described by Katoch and Cox (520) 

is based on the use of guanidinuim chloride for DNA extraction. Briefly, cultures of 

mycobacteria grown to their exponential phase in the appropriate media, were harvested 

by centrifugation at 3500 rpm for 10 min. The pellets were resuspended in about 2 ml of 

SET buffer (0.3 M sucrose, 50 mM Tris-CL pH 8, 10 mM EDTA) containing 2 mg/ml 

lysozyme and lipase. The suspensions were then incubated at 37°C with shaking for 2 

hours.

The weakened cells were then pelleted by centrifugation and resuspended in SET buffer 

to give a “smooth paste” of unclumped cells. Mycobacteria were lysed by the addition of 

2 ml of guanidinium chloride buffer (6 M guanidinium chloride, 0.1% Tween 80, 10 mM 

EDTA, 1 mM 2-mecaptoethanol). Once the lysis of cells was completed (the suspension 

of cells cleared and became viscous), the supernatant solution of DNA was extracted by 

addition of an equal volume of chloroform, followed by mixing and centrifugation. DNA 

was precipitated by the addition of 3 volumes of 100% ethanol to the lysis solutions and 

agitating them slowly until the two phases were mixed completely. The precipitated DNA 

formed single clot which was easily removed using a pipette. DNA was then washed 

twice with 70% ethanol, dried under vacuum and dissolved in 100 pi of TE buffer 

containing 0.5 pg/ml RNAase (Sigma-Aldrich Ltd, UK). Dissolved DNA was visualized 

by agarose gel electrophoresis (section 2.3.12) and stored at 4°C until required.

2.3.11.2 Plasmid DNA extraction

Plasmid DNA extraction from E. coli JM109 was carried out using the standard alkaline 

lysis method (936). Briefly 2-5 ml cultures of E. coli JM109 with the appropriate
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antibiotic selection for the plasmid were grown overnight at 37°C with gentle shaking. A

1.5 ml portion of the culture was harvested in a microcentrifuge tube at 13000 rpm for 1 

min. After discarding the supernatant, the cells were evenly resuspended in 100 pi TE, 

and a 200 pi of a freshly made alkaline-SDS (0.2 M NaOH, 1% SDS) solution was 

added. The content of the microcentrifuge was immediately mixed by gentle inversion 

and left to stand at room temperature for exactly 5 min. A 150 pi of 3 M sodium acetate 

pH 5.5, was then added and mixed with the tube content, which was left to stand on ice 

for a further 10 min. The mix was then centrifuged at 13000 rpm for 3 min, and about 

500 pi of the clear supernatant was removed into a clean tube. A 500 pi of chloroform 

was then mixed with the contents of the tube, which was then centrifuged at 13000 rpm 

for another 3 min. The upper aqueous phase that formed on the mix was then transferred 

into a clean tube, taking care not to transfer any of the debris that lies at the interface. 

DNA precipitation was then performed by mixing 0.7 volumes of isopropanol (propan-2- 

ol) with the tube content, which was then left to stand at room temperature for 5 min, 

before centrifugation at 13000 rpm for 20 min. The supernatant was discarded and the 

pellet washed with 500 pi of 70% ethanol, before another round of centrifugation at 

13000 rpm for lmin. Ethanol was then discarded and the pellet dried under vacuum for 

20 min. The resulting plasmid DNA was then dissolved in 50 pi of either TE buffer or 

sterile polished water, both containing 0.5 pg/ml RNAase. Plasmid DNA was stored at 

4°C until required.

2.3.11.3 Quantification of nucleic acid

In this study, nucleic acid concentration in solutions was quantified using the Gene Quant 

system (Pharmacia Ltd, UK) at Cardiff University’s Molecular Biology Service Unit 

according to the manufacture’s instruction. The system uses the A260 / A280 absorbance 

ratios of nucleic acid solutions to calculate the concentration.
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2.3.11.4 Digestion of chromosomal and plasmid DNA

Digestion of both genomic and plasmid DNA was performed according to the 

manufacturer’s instructions (Promega Corporation Inc, Southampton, UK). Unless 

otherwise stated, DNA digestion was made in a 20 pi volume containing the appropriate 

enzyme, buffer, and 3 to 12 pg of DNA. Reaction was mixed then incubated at the 

optimum temperature for up to 12 h. When required, enzyme inactivation was performed 

by heat denaturation at the appropriate temperature. Digested DNA was separated and 

analyzed by agarose gel electrophoresis (section 2.3.12).

2.3.12 Agarose gel electrophoresis

Standard agarose gel electrophoresis was carried out to separate DNA fragments using 

agarose (Invitrogen Life Technologies) prepared in IX Tris-EDTA (TBE) buffer (0.04 M 

Boric acid, 0.04 M Tris, 1 mM EDTA, pH 8) (936). Samples of DNA (5 to 20 pi) were 

routinely added to appropriate volumes of DNA loading dye (Sigma-Aldrich Ltd, Poole, 

UK), and loaded into the gels for analysis. For molecular size comparison, the lKb+ 

DNA ladder (Gibco BRL Life Technologies, UK) was used. Unless otherwise stated, 

electrophoresis was carried out in 1 to 1.5% agarose gels at 80 to 100 volts (Bio-rad 

power PAC 300). After the dye has travelled at least 75% of the gel length, gels were 

stained by immersion in IX TBE buffer containing 0.5 pg/ml ethidium bromide for 30 to 

60 min as appropriate. DNA was analysed on a UV transilluminator and photographed 

using Gene Genius Bioimaging system (SynGene, Syntopics Ltd, Cambridge, UK).

2.3.13 Polymerase chain reaction (PCR)

PCR primers and target DNA for amplification are listed in Table 2.9. Primers were 

ordered from MWG Ltd Biotech (Milton Keynes, UK). The primers were dissolved to 

100 pmol/pl in accordance with the manufacturer’s instructions, then checked on an 

agarose gel. Regions of DNA were amplified using the polymerase chain reaction (933) 

as described by Sambrook et al (936). Unless otherwise stated, PCR amplifications were
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performed using Promega PCR kit reagents (Promega corporation Inc, Southampton, 

UK), and in a standard 25 pi reaction mixture containing PCR buffer (IX manifacturer’s 

stock), 1.5 mM MgCl2, 200 pM of each of the deoxynucleotide triphosphates (dNTPs: 

dATP, dCTP, dGTP, dTTP), 1 unit of Taq polymerase, 5 to 10 pmol of each forward and 

reverse primers and roughly 10-50 ng/pl of DNA template. Both a positive (pM272B 

DNA) and negative (sterile polished water) control were included to confirm 

amplification of the correct DNA sequence.

DNA amplification was carried out with a MJ Research PTC-200 thermal cycler using 

block control and a heated lid. Unless otherwise stated, the reaction program consisted of 

initial 5 to 10 min DNA denaturation at 94°C as appropriate, followed by 30 cycles of 30 

sec denaturation at 94°C, 30 sec of primer annealing at 50°C, and a 1.5 min elongation 

step at 72°C. The process was terminated by a final elongation stage for 5 min at 72°C.
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Table 2.9. Details of the PCR primers and DNA targets used in this study.

Primer Primer sequence 5’-3’ Annealing 
temperature (°C)

Product 
size (bp)

Specificity 
/ use

Reference / 
source

KN-15
KN-23

G AGGC AGTTCC AT AGG AT GG 
TCAGGTGCGACAATCTATCG

55 620 Amplify the kanamycin resistance 
(KANr) gene.

(324)

SACB-15
SACB-23

ACCC AT C AC AT AT ACCT GCC 
ATCGTT AG ACG AAAT GCCGT

55 1422 Amplify the levansucrase gene 
(sacB).

(324)
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2.3.14 DNA hybridization

DNA hybridization was used to check for single random insertion of the mariner

transposon into the M. smegmatis genome. The KANr gene of the transposon was used as 

a probe (Table 2.9).

2.3.14.1 Probe synthesis

The non-radioactively, digoxigenin (DIG), labeled probe was constructed as follows. The 

KANr gene was amplified by PCR (611) as previously described in section 2.3.13, using 

the pM272B DNA as a template, with the modification of using DIG-labelled dNTPs

(Roche Diagnostics Ltd, Lewes, UK) in place of the standard dNTPs. Successful
/

incorporation of the DIG-dNTPs into the PCR products was checked using standard 

agarose gel electrophoresis (section 2.3.12). DIG-labeled PCR products showed an 

increased molecular weight when compared to the same non-labelled PCR products. 

Suitable probe concentration for use in hybridization experiment was estimated by 

spotting 1 pi of the probe in a dilution series onto a positively charged nylon membrane 

(Roche Diagnostics Ltd, Lewes, UK). DNA was fixed on the membrane by exposure to 

short wavelength UV light (320 nm wavelength) for 3 min and probe was detected as 

described in section 2.3.14.4. The probe dilution that gave a strong hybridization single 

with minimal background was used. Probes were stored at -20°C for future use.

2.3.14.2 Transfer of DNA to a nylon membrane

Genomic DNA was digested with Pstl, Sail and Hindlll restriction enzymes, none of 

which cut within the KANr gene sequence of the mariner transposon, and separated by 

standard agarose gel electrophoresis (section 2.3.12). The digested DNA was then 

transferred to a positively charged nylon membrane (Roche Diagnostics Ltd, Lewes, UK) 

as described by Sambrook et al. (936). Briefly, following electrophoresis, gel was cut to 

size using a clean, sharpe scalpel and washed in IX TE buffer. DNA was denatured by 

gentle agitation of the gel in denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 15 min
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at room temperature. Denaturation solution was then replaced and agitation continued for 

a further 15 min. DNA was transferred to a positively charged nylon membrane using 

Quick draw paper (Sigma-Aldrich Ltd, Pool, UK) as follows: eight sheets of Quick draw 

paper were cut to the size of the gel, and four sheets were socked in denaturation solution 

and put on top of each other in a clean plastic try. The agarose gel was positioned DNA 

faced down on top of the soaked Quick draw sheets, and a positively changed nylon 

membrane (Roche Diagnostics Ltd, Lewes, UK) was placed directly on top of the gel. 

One sheet of Quick draw paper soaked in denaturation solution was placed on top of the 

nylon membrane, followed by three additional dry sheets. Denaturation solution was 

added to the bottom of the plastic try and a suitable weight was placed on top of the 

Quick draw paper sandwich. The resulting squash blot was left overnight at room 

temperature. After DNA transfer, the membrane was soaked in neutralizing solution (3 M 

NaCl, 0.5 M Tris-HCl, pH 7.5) for 5 min, then washed in 2X Sodium chloride-Sodium 

citrate buffer (SSC; 0.15 M NaCl, 0.015 M sodium citrate). DNA was fixed to the 

membrane by 3 min exposure to UV light (320 nm wavelength). Membrane was air dried, 

wrapped in cling film and stored at room temperature.

2.3.14.3 Southern hybridization

Membrane containing genomic DNA was transferred to hybridization tube with DNA 

side facing the tube’s interior. Pre-hybridization of the membrane, where non-specific 

nucleic acid binding sites on the membrane were blocked, was performed at 50°C with 

rotary mixing in a hybridization oven (Bibby Stuart Scientific hybridization oven) for 1 h 

in 20 ml of DIG Easy Hyb buffer (Roche Diagnostics Ltd, Lewes, UK). The DIG-labeled 

probe was heat-denatured by boiling for 5 min, and 10 pi of the latter was mixed with 

500 pi of DIG Easy Hyb buffer and added to the hybridization tube. Hybridization was 

carried out overnight at 50°C with rotary mixing. The removal of unbound or non-

specific bound probe was achieved by high stringency (at 68°C) post-hybridization 

washes. These consisted of two 15 min washes with each of the following washing 

solutions: 2X SSC-0.1% SDS, 0.5X SSC-0.1% SDS and 0.1X SSC-0.1% SDS,
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respectively. All washing solutions were preheated to the post-hybridization temperature 

before use.

2.3.14.4 Detection of the probe

Detection of the hybridization signal was carried out at room temperature on a rocking 

platform. Membrane was equilibrated in washing buffer (0.1 M Maleic acid, 0.5 M NaCl, 

0.3% Tween 20), then washed in blocking solution (5% skimmed milk dissolved in 

Maleic acid buffer [0.1 M Maleic acid, 0.1 M NaCl, pH 7.8]) for 30 min, and in antibody 

solution (Anti-DIG-AP fragment [Roche Diagnostics Ltd, Lewes, UK] diluted 1:10000 in 

blocking solution) for a further 30 min. The membrane was then washed twice in washing 

buffer for 15 min each wash, followed by transfer into a plastic try and soaking in 

detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) for 5 min. The next stage 

involved the construction of a development folder and chemiluminescent detection of the 

DIG-labelled probe. The membrane, with DNA side up, was placed onto a clean sheet of 

acetate and 2 ml of a 1:100 dilution of disodium 3(4-methoxispiro[l,2,dioxetane-3,2- 

{5'Chloro}Tricyclo.3.1.13,7]decan)-4-yl phenyl phosphate (CSPD [Roche Diagnostics 

Ltd, Lewes, UK]) prepared in detection buffer was distributed all over the membrane 

surface. Another sheet of acetate was placed on top of the membrane, making sure that 

the CSPD solution covered the entire membrane surface and avoiding any air bubbles. 

The resulting development folder was sealed in cling film with DNA side clear. The 

folder was incubated for 15 min at room temperature for the light producing reaction to 

reach equilibrium. Hybridization bands were developed by exposing the membrane to 

autoradiography film (Sigma-Aldrich Ltd, Pool, UK), in an exposure cassette, in the dark, 

at room temperature for up to 12 h until a clear hybridization signal was obtained. Film 

was processes using the Kodak GBX developer and fixer solutions according to the 

manufacturer’s instructions (Sigma-Aldrich Ltd, Pool, UK), and left to dry at room 

temperature before analysis.
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2.3.15 Mutant generation and screening

2.3.15.1 Electrotransformation and transposon mutagenesis

2.3.15.1.1 Electroporation

Electrotransformation of M. smegmatis me 155 cultures with pM272B vector was 

conducted as follows. A fresh 3 ml of an overnight culture of M. smegmatis me 155 was 

diluted 50 times in 7H9 broth (1 ml of culture into 49 ml of broth) and grown overnight at 

37°C with shaking. At this stage, the cells in their mid-log phase of growth were 

harvested at 3500 rpm for 10 min, washed in 20 ml wash buffer containing 10% glycerol

and 0.05% Tween 80, then centrifuged at 3500 rpm for a further 10 min. The resulting
/

pellet was then resuspended in 4 ml buffer containing 10% glycerol and viable count 

(section 2.3.4) was performed on the suspension. Competent bacteria (100 pi) were mixed 

with 5 pi of plasmid pM272B, incubated for 10 min to facilitate DNA adsorption, 

transferred into a 0.2-cm-gap electroporation cuvette, and subjected to a pulse of 2.5 kV, 

25 pFD, and 400 Q using an electroporation apparatus (Bio-Rad Laboratories Ltd, 

Hertfordshire, UK).

Electroporated bacteria were incubated in 1 ml of 7H9 broth at 30°C for 2 h, repeatedly 

passed through a 26-gauge needle, before serial dilutions of the cultures were plated onto 

7H11 agar containing 25 pg/ml KAN (positive selection). As a negative control to 

estimate the level of spontaneous resistance to KAN, 100 pi of competent cells lacking 

plasmid (pM272B-ffee), were plated onto 7H11 agar containing KAN. Transformants 

were observed after 4 to 5 days of incubation at 30°C. Transformation frequency was 

calculated as a proportion of transformants cfu per ml of culture to the overall cfu per ml 

counts of the competent cells. Transformants, containing a stable pM272B plasmid were 

detected using PCR (section 2.3.13). Only transformants that showed presence of both 

KANr gene and the sacB gene by PCR were used for generating the M. smegmatis

mutants.
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2.3.15.1.2 Sucrose counter selection

M. smegmatis me2155 transposon mutants were generated using sucrose counter selection 

as follows. M. smegmatis me2155 transformants (section 2.3.15.1.1) were grown in 7H9 

broth containing 25 pg/ml KAN overnight at 37°C to an OD of 1.1 at 600 nm. The cells 

were repeatedly passed through a 26-gauge needle, before several dilutions of the cultures 

were plated on 7H11 agar plates containing 25 pg/ml KAN and 10% sucrose (negative 

selection). Transposon insertion mutants were obtained after 4-5 days incubation at 37°C. 

Transposon mutants were checked for the loss of the sacB gene using PCR, and random 

insertion of the transposon into the mutants’ genome was checked using DNA 

hybridization (section 2.3.14). The transposition frequency was estimated as a proportion 

of mutants generated to the number of cfu per ml of transformants’ culture.
i

About 3000 of the M. smegmatis me 155 transposon mutants generated were picked into 

96-well plates containing 150 pi 7H9 broth with 25 pg/ml KAN and incubated for 2 days 

at 37°C. The appropriate volume of DMSO to make up 8% of the total culture volume in 

each well was then added and the plates were stored at -80°C.

2.3.15.2 Mutants screening and isolation of biocides mutants

The process of screening and isolation of M. smegmatis me2155 biocides mutants is 

shown in Figure 2.7. Briefly, triclosan, cetylpyridium chloride, chlorhexidine diacetate, 

and or/Ao-phthalaldehyde mutants were isolated by replica plating from the 96-well 

plates onto first master 7H11 plates containing 25 pg/ml KAN and onto selective 7H11 

plates with 25 pg/ml KAN and containing different screening concentrations of biocides. 

These concentrations were as follows: triclosan at 0.4, 0.6, 0.8, 1, and 1.2 pg/ml, ortho-

phthalaldehyde at 1400, 1600, 1800, 2000, and 2200 fig/ml, cetylpyridium chloride at 

0.5, 2, 4, 5, and 8 pg/ml, chlorhexidine diacetate at 0.1, 0.25, 0.5, 0.75, and 1 pg/ml. 

After 2 days incubation at 37°C, those mutants which grew on the master 7H11/KAN 

plates but not onto the selective, biocides containing plates, were picked and stored in 

7H9 broth containing 8% DMSO at -80°C. Colonies which grew at higher biocide
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concentrations were also isolated for probable resistance. These mutants were further 

characterised both in solid and liquid media, along with two random mutants which 

showed no changes in sensitivity to any of the biocides and which were used as controls.

mTpasegeir
groELp

marinersacB

mariner pM272B
12937 bpEc -on

Figure 2.5. Map of the mariner transposon mutagenesis vector pM272B. Adapted 
from Gao et al. (324).

The vector was constructed by inserting a mariner transposon cassette into the plasmid 

backbone of pPR27 (812), a mycobacterial shuttle vector that contains the levansucrase 

(sacB) gene from Bacillus subtilis (1012), the GENr marker, an E. coli origin of 

replication (Ec-ori), and a thermosensitive Mycobacterium ori (mts-or/). The mariner

transposon cassette contains the following elements: the 5' and 3' inverted repeats of 

Mo si  surrounding the KANr cassette of Tn903 (from MosK CD (1066)) and the Mo si

transposase {mTpase from pET3a-Tpase (1066)), which was under the control of the 

mycobacterial groEL promoter (groELp from pSMT3 (325)).
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2
Wild-type M. smegmatis me 155

Transformation (introduction of the 
pM272B vector) and selection on 25 
pg/mlKAN

M. smegmatis mc2155 transformants
(KANr, sacB?)

I
Confirmation by PCR

Transposition and sucrose counter 
selection on 25 fig/ml KAN and 10% 
sucrose

▼
M. smegmatis me2155 transposon
insertion mutants (KANr, sacB~)

Confirmation by PCR

M. smegmatis mc2155 transposon
insertion mutants (KANr, sacB~)

Figure 2.6. Generation of the M. smegmatis mc2155 transposon insertion mutants.
Transposon insertion mutants were generated using a two-step selection procedure, first on 

KAN, and second on KAN and sucrose. KANr, kanamycin resistant, sacB\ sacB deficient.
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Figure 2.7. Mutants screening and isolation of biocides sensitive mutants.

Illustration of the general procedure used to isolate biocide susceptible mutants in this study. Biocide sensitive mutants (S. marcescens Dbl 1 illustrated above) 
were isolated by replica plating of mutants from 96-well plates onto first a control agar plates (A l) containing the appropriate selection for mutants’ growth and 
onto selective agar plates (B l) containing different screening concentrations of biocides. Mutants which grew on the control plates but showed either weak 
growth (blue circles) or no growth (green circles) on the selective biocides containing plates were picked for further characterisation. Mutants were screened a 
second time using liquid media (A2, B2) to confirm the agar screening results. Blanks (red circles) were included in all screening tests.
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2.4 RESULTS

2.4.1 M. smegmatis

2.4.1.1 Growth characteristics

2.4.1.1.1 Colony morphology and growth on solid media

M. smegmatis me 155 grew well on both Middlebrook 7H11 agar, supplemented with 

0.5% glycerol and 10% OADC, and TSA. Colonies started to appear after 24 h 

incubation at 37°C, and reached optimal growth after 2 days incubation. Colonies 

appeared smooth and non-pigmented in the early stages of growth, however with 

prolonged incubation (2-7 days), the growth became thick, coarsely wrinkled, and 

colonies developed a yellow-orange pigmentation (Figure 2.8). Approximately 95% 

of the M. smegmatis sensu stricto isolates develop this characteristic pigmentation 

(108).

2.4.1.1.2 Growth in liquid media

Biocides activity on bacteria is affected by organic load, hence it was appropriate to 

determine the biocide MICs for M. smegmatis me2155 both in organic rich media 

(7H9 broth) and media with less organic matter. Therefore, growth of M. smegmatis

me 155 in liquid media with different degrees of organic material was tested. These 

media were: TSB, Lemco broth, 7H9 broth, and Sauton medium. Growth was 

determined by following OD readings at 630 nm, generated by automated plate 

reader, over time (section 2.3.5).

Results showed that all media were able to sustain growth of M. smegmatis me2155. 

However, there were differences in the amount of growth reached in each medium 

after 2 days incubation at 37°C. The organism grew best in 7H9 broth reaching an OD 

of over 1.6 . Growth in the other media, as expected, was not optimal and culture ODs 

reached a value of just over 1 after 2 days. The results showed that good growth of 

M. smegmatis me2155 can be achieved in rich media such as 7H9 broth, although
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other media such as TSB and Sauton can sustain adequate growth of the organism. 

Both 7H9 and TSB broths were used in further biocide testing experiments.

2.4.1.1.3 M. smegmatis mc2155 growth curve

The different stages of growth of M. smegmatis me 155 and their length were 

determined to help with subsequent screening and tests. Growth curves of the 

organism were generated by reading ODs at 630 nm (section 2.3.5) of M. smegmatis

me2155 cultures growing in 100 ml of 7H9 broth at 37°C with gentle shaking. The 

curves were then used to determine the mean exponential growth rate and mean 

doubling time for the organism. The M. smegmatis me 155 cultures showed all the 

characteristic stages of bacterial growth (Figure 2.9). It had a short (1-2 h) “lag phase” 

as the medium was inoculated with a freshly grown M. smegmatis me 155 culture. 

The exponential “log phaSe” of growth extended over approximately 15 h with a mean 

growth rate value of p = 0.21 h '1, and mean doubling time of 3.3 h. The “stationary 

phase” started with a deceleration phase and was the longest phase of growth 

extending over 20 h.

2.4.1.1.4 Relationship between optical density and viable count

The relationship between the OD values at 630 nm of M. smegmatis me2155 cultures 

and their viable counts was also investigated (section 2.3.6) to determine the number 

of cfu present per ml of a standard inoculum used in further investigations in this 

study. The standard inoculum chosen was a culture with an OD (630 nm) of 0.5. The 

results (Figure 2.10) showed that the relationship between the OD values and the 

viable count was linear, and the relationship remained uniform up to an OD of over 1. 

M. smegmatis me 155 culture with an OD of 0.5 at 630 nm contained approximately 

108 cfu/ml of bacteria.
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Figure 2.8. Colony morphology of the mycobacterial species studied.

A; M. smegmatis grow n for 2 days at 37°C, B; “A ” after long incubation (3-7 days), C; M. abscessus
grown at 37°C for 3 days, D; M  chelonae grown at 30°C for 3 days. M. sm egm atis developed a late 
yellow  pigmentation.

113



Lo
gin

 O
D 

(63
0 

nm
)

0.6

-0.6

-1.5

Time (h)

Figure 2.9. M. smegmatis me2155 growth curve.

G raph showing the relationship betw een logio o f  the OD at 630 nm o f  a M  
sm egm atis me2155 culture and time. 1, 2, and 3 represent the “lag”, “exponential 
(log)” and “stationary” phases respectively. The points represent mean values and 
the error bars represent standard error o f  the means. The culture had a “ log” phase 
that extended over 15 h w ith a specific grow th rate p =  0.21 h '1, and a culture 
doubling tim e o f  3.3 h.
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Figure 2.10. Relationship between OD and viable count for the mycobacterial 
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The lines are the best fit for the values, and their equations are shown on the graph. The 
points represent mean values and the error bars represent standard error o f  the means. 
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2.4.1.2 Biocide MICs for M. smegmatis

0Susceptibility of M. smegmatis me 155 to four biocides was investigated by 

determining the MICs of these biocides for the bacterium (section 2.3.9). The four 

biocides used were the widely used bis-phenol triclosan, the QAC, cetylpyridinium 

chloride, the biguanide chlorhexidine diacetate, and the newly introduced aldehyde 

or^o-phthalaldehyde. Both triclosan and or/Zio-phthalaldehyde were dissolved in 

DMSO, therefore the toxicity of DMSO to M. smegmatis me 155 was also 

investigated.

MICs for the four biocides were determined both in agar (7H11) and liquid media 

(TSB, Sauton and 7H9 broth) as described in section 2.3.9. MIC values for agar 

testing were taken as the minimal biocide concentration that fully inhibited growth 

after 2 days incubation at 37°C. Broth MICs were determined as the minimal 

concentrations of biocides that had mean OD values which showed no statistically 

significant difference from the mean value of the blank (with no bacterium) with the 

same above growth parameters. The experiments were done in 2 stages to determine 

accurate MIC concentrations of the biocides; initially MICs were evaluated over a 

wide range of biocide concentrations, once an approximate biocide MIC level had 

been determined, MICs were re-evaluated across a narrow concentration range.

The results (Table 2.10, Figure 2.11) showed that in liquid media, DMSO 

concentrations abovq 2% did have an effect on growth of the bacterium. The minimal 

DMSO concentrations that completely inhibited growth were 8% and 10% in TSB 

and 7H9 broth respectively. The maximum concentration of DMSO used in biocide 

MIC determination was 2%, hence DMSO did not have a significant effect on M.

smegmatis me 155 growth in this study.

Liquid MIC values (Table 2.10, Figure 2.11) were higher in the rich 7H9 broth than 

those in media with less organic content (TSB, Sauton), as biocide action is slowed in 

the presence of organic matter. Chlorhexidine diacetate was the most effective biocide 

at inhibiting the growth of M. smegmatis me 155 in both solid and liquid media. It 

had MIC values of 3 pg/ml, 2.5 pg/ml, and 2 pg/ml in 7H9 broth, TSB, and Sauton 

medium respectively, and 0.75 pg/ml in 7H11 agar. Triclosan was the second most 

effective biocide at inhibiting M. smegmatis me2155 growth in solid agar, and had
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MIC values of 1 pg/ml. Low concentrations of cetylpyridium chloride were also 

effective at inhibiting M. smegmatis me 155 growth. The agent had MIC values of 7.5 

pg/ml, 3.5 pg/ml, 4.5 pg/ml and 5 pg/ml in 7H9 broth, TSB, Sauton medium and 

7H11 agar respectively. The agar MIC for ort/m-phthalaldehyde was much higher 

than that of the other three agents, with a value of 2000 pg/ml. Broth MIC of triclosan 

and orf/m-phthalaldehyde were not determined because the interaction between ortho-

phthalaldehyde and the bacterial suspensions resulted in change in the color of the 

medium (turning into a milky white color with increasing concentrations of triclosan, 

and a dark color, ranging from green to black, depending on concentration, with 

or/Zzo-phthalaldehyde), hence making reading ODs impossible.
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Table 2.10. Biocide MICs for Af. smegmatis mc2155.

Agents MIC fig/ml (± SD)

Agar

7H11
Chlorhexidine diacetate (CHX)

0.75(0.3)

Cetylpyridinium chloride (CPC) 5 (0.7)

Broth

7H9 TSB Sauton

3(1.4) 2(0) 2.5 (2.1)

7.5 (3.5) 3.5 (2.1) 4.5 (2.1)

Triclosan (TRI) 1 (0) Nd Nd Nd

Or^o-phthalaldehyde (OPA) 2000 (700) Nd Nd Nd

Dimethyl sulfoxide (DMSO)* Nd 10 (2.8) 8 (2 .8) Nd

* [DMSO] expressed in % (v/v) 
Nd; not determined.
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Figure 2.11. Broth MICs of cetylpyridinium chloride, chlorhexidine diacetate, and DMSO for M.
smegmatis me2155.

MICs were determined in 7H9 broth supplemented with the appropriate concentration of agents. Optical 
densities were read after 2 day incubation at 37°C. CHX; chlorhexidine diacetate, CPC; cetylpyridinium 
chloride, DMSO; dimethyl sulfoxide.
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2.4.1.3 Antibiotic MIC determination

Susceptibility of M. smegmatis me2155 to a number of antibiotics was investigated 

using E-test strips (section 2.3.10). The results (Table 2.11) showed that based on the 

MIC breakpoints recommended by the Clinical and Laboratory Standards Institute 

(CLSI) (formally the National Committee for Clinical Laboratory Standards 

[NCCLS]) (1160), and the clinical breakpoints defined by the European Committee 

on Antimicrobial Susceptibility Testing (EUCAST:

http://www.srga.org/eucastwt/MICTAB/index.html), M. smegmatis me 155 was 

resistant to ceftazidime, azithromycin, and piperacillin. It was susceptible to amikacin, 

tobramycin, ciprofloxacin, imipenem, meropenem, and trimethoprim- 

sulfamethoxazole.

Table 2.11. Antibiotic MICs and sensitivity of M. smegmatis mc2155 as
determined by E-test strips.

Antibiotic Broth microdilution breakpoints pg/ml

Susceptible Intermediate Resistant

MIC pg/ml
(±SD )

Sensitivity

Aminoglycosides
Amikacin <16 32 >64 1(0) S
Tobramycin <4 8 >16 2.5 (0.7) S

Cephalosporins
Ceftazidime* <4 >8 >256 (0) R

Carbapenems
Imipenem <4 8 >16 0.75 (0) S
Meropenem* <2 >8 1.75 (0.35) S

Macro I ides
Azithromycin* <0.5 >2 14 (2.83) R

Penicillins
Piperacillin* <16 >16 >256 (0) R

Quinolones
Ciprofloxacin <1 2 >4 0.125 (0) S

Sulfonamides
Trimethoprim- <2 >4 0.027 (0.006) S
sulfamethoxazole (1/19)

Others
Chloramphenicol 16(8) Nd

Drugs and breakpoints recommended by NCCLS document M24-T2 (1160). * Based on clinical 
breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 
http://www.srga.org/eucastwt/MICTAB/index.html. Nd; not determined.
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2.4.1.4 Mutant generation

M. smegmatis me 155 was transformed with the mariner-based transposon 

mutagenesis vector pM272B (Figure 2.5). The vector was first used by Gao et al

(324) to successfully generate M. marinum transposon mutants. It was constructed by 

inserting a mariner transposon cassette into the plasmid backbone of pPR27 (812). 

The mariner family of transposable elements is named for the original element 

discovered in Drosophila mauritiana (409). They are transposons of the short inverted 

terminal repeat class and very useful molecular tools.

Plasmid pM272B was extracted from the host E. coli JM109 (section 2.3.11.2), and 

checked on an agarose gel (section 2.3.12), before being used in transformation 

experiment (section 2.3.15.1). As M. smegmatis me 155 was sensitive to 25 pg/ml

kanamycin, M. smegmatis me 155 transformants containing the vector (hence the
/

KAN resistance (KANr) gene) were selected on agar contaning the above 

concentration of kanamycin. Transposon mutants were isolated using sucrose counter-

selection (section 2.3.15.1.2). Frequency of spontaneous resistance to KAN in M  

smegmatis me 155 and the efficiencies of transposition (transposon mutation) and 

pM272B transformation in M. smegmatis me 155 were determined. These were 

expressed as frequency of competent me 155 cells used for transformation to 

transformants collected, to determine transposition efficiency, and frequency of 

transformants to mutants generated, to determine transposition (mutation) frequency.

The spontaneous KAN resistance frequency of M. smegmatis me2155 was 10'7, in the 

same order as that reported by Snapper et al. (993), who calculated the spontaneous
o o nmutation frequency of me 155 and its parental strain me 6 for this agent to be 10' -

o ^
10'. Although the pM272B transformation frequency was low (in the order of 10 ), 

only one transformant containing the pM272B was needed for subsequent successful 

counterselection. The frequency of transposition was much higher (10*2) and 3000 M.

smegmatis me 155 transposon mutants were isolated.

Since the vector contained the mariner transposon with a KANr gene for positive 

selection and a sacB gene for counterselection, the me2155 transformants should have 

contained both the KANr and sacB genes. In contrast, the mutants which should have

121



had chromosomal insertion(s) of mariner, with loss of the delivery vector, would 

therefore have just contained the KANr gene with loss of the sacB gene. This was 

tested by examining the presence of both the KANr and the sacB genes in a number of 

randomly picked me 155 transformants and mutants using PCR (section 2.3.13). 

Results of the PCR amplification (Figure 2.12) demonstrated that mutants possessed 

the correct genotype. For the KANr gene amplification, products of the expected size 

(~ 620 bp) were obtained with DNA from the pM272B control and all transformants 

and mutants tested (Figure 2.12), which indicates that they all contained the KANr 

gene. In the sacB gene amplification, PCR products of expected size (~ 1422 bp) were 

obtained with DNA from the pM272B vector and the transformants. No PCR products 

were obtained with DNA from the mutants (Figure 2.12). This was in accordance with 

the fact that none of the mutants should contain a copy of the sacB gene due to loss of 

the delivery vector after the transposition event. Results of the PCR amplification 

suggested successful transformation of the M. smegmatis me 155 strain with the 

pM272B vector and integration of the transposon into the chromosome.

DNA hybridization was used to check for single random insertion of the mariner

transposon into the M. smegmatis genome. Southern blots of Pstl, Hindlll and Sail

(none of these enzymes cuts within the probe sequence) digested genomic DNA from 

randomly selected me2155 mutants were probed with the KANr gene sequence (Figure 

2.13). Both positive and negative controls were included and they were M. smegmatis

me2155 genomic DNA, which does not contain the KANr gene, as a negative control, 

and vector DNA as a positive control. There was no hybridization band seen in any 

Southern blot using M. smegmatis me 155 genomic DNA digest, and a single band 

was seen in all blots when vector DNA digests were used. In most mutants, Southern 

blot yielded a single hybridization fragment, suggesting a single transposition event 

for each mutant. In some mutants (e.g. mutant 5, Figure 2.13) more than one band was 

seen. This could be due to a number of reasons including genomic rearrangement in 

the mutants, mutants colonies were not pure, or simple multiple transposition of the 

mariner system. The latter was reported by Gao et al.{324) in 4% of M. marinum

mutants generated using the same transposon system. The Southern blot results also 

showed that many of the hybridization fragments had a unique size, indicating that 

transposon had inserted at different sites in the chromosome. Taken together, these 

results proved that the mutant generation protocol (Figure 2.6) used lead to integration
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of the mariner transposon into the chromosome of M. smegmatis me 155 mainly at 

random sites and usually as a single copy per genome.

/
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Figure 2.12. Confirmation of transformation and mariner element transposition into M. smegmatis mc2155 by PCR.

Transformation of M  smegmatis with pM272B vector and subsequent insertion of the mariner transposon into the genome was tested by PCR amplification of 
two genes carried on the pM272B plasmid, the sacB gene (B l-2) and the KANr gene (A 1-2) carried on the mariner part o f the vector. Transformants containing 
the pM272B plasmid should prove positive for both genes, whereas mutants which lost the vector sequence after transposition o f the mariner element, should 
be positive for the KANr gene (green arrows, ~ 620 bp) and negative for the sacB gene (red arrows, ~ 1422 bp). 1; l-kb+ DNA ladder size marker, 2; pM272B 
DNA (positive control), 3-12; 10 randomly selected transformants, 3’-12’; 10 random mutants, 13; M. smegmatis mc2155 DNA (negative control).
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Figure 2.13. Confirmation of single random transposition of the mariner transposon in 
M. smegmatis me2155 by southern blot.

Genomic DNA from 12 randomly selected M. smegmatis mutants (2-13) was digested with Hindlll
(A), Pstl (B), and Sail (C), and probed with the KANr gene sequence. 1; negative control (M.
smegmatis genomic DNA digests), 14; positive control (pM272B plasmid DNA digests). Mutant 5 
appeared to have either some genomic rearrangement, or it was not a pure colony, resulting in more 
than one band seen in all southern blots.
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2.4.1.5 Mutant screening for altered biocide sensitivity

2.4.1.5.1 General screening of the mutants

The M. smegmatis me 155 mutant library generated by the ra<zr/«er-transposon system 

was screened for altered biocide sensitivity (section 2.3.15.2) at the following 

concentrations: triclosan at 0.4, 0.6, 0.8, 1, and 1.2 pg/ml, or/Zzo-phthalaldehyde at 

1400, 1600, 1800, 2000, and 2200 pg/ml, cetylpyridium chloride at 0.5, 2, 4, 5, and 8 

pg/ml, and chlorhexidine diacetate at 0.1, 0.25, 0.5, 0.75, and 1 pg/ml. The screening 

was done on 7H11 agar and at concentrations that included both the biocide MIC, a 

concentration above the MIC (to detect resistance) and concentrations below the MIC 

(to detect increased susceptibility). Although a large number of mutants were 

screened (3000), we failed to isolate mutants which showed any significant change in 

sensitivity to any of the biocides tested.

2.4.1.5.2 Screening of specific mutants

As the general screening failed to isolate any M. smegmatis me 155 biocide mutants, 

6 mutants with possible cell surface alteration have been selected for more detailed 

screening. These mutants (10-A1, 2-B8, 15-E3, 3-A10, 2-A5, and 14-H1) showed 

different colony morphologies compared to the wild type strain, they had a drier and 

waxier appearance compared to the parental strain, suggesting possible alteration in 

cell surface composition. Hence they were good candidates for testing for altered 

biocide sensitivity. Along this panel of mutants, a M. smegmatis recA mutant was also 

investigated. The RecA protein lies in the heart of homologous recombination, and is 

a central component of the SOS response, and DNA repair (557, 1100). The RecA is 

both ubiquitous and well conserved among a range of prokaryotes. In 1998, 

Papavinasasundaram et al. (789) reported the isolation of a recA deletion mutant of M.

smegmatis by homologous recombination. The mutant designated HS42, exhibited 

enhanced sensitivity to UV radiation, and failed to undergo homologous 

recombination. The mutant was successfully complemented with the recA gene from 

both M. smegmatis and M. tuberculosis. Due to the importance of the recA gene, it 

was interesting to investigate if deletion of this gene would have an effect on biocide 

sensitivity in M. smegmatis.
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The altered morphology mutants along with the recA mutant were screened at more 

stringent concentrations in an attempt to detect any level of altered sensitivity for two 

of the biocides known to act on cell membrane, chlorhexidine diacetate and 

cetylpyridinium chloride. These concentrations were as follows: for chlorhexidine 

diacetate, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, and 1.4 pg/ml. For 

cetylpyridinium chloride, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 pg/ml. The result of 

the screening however did not show any alterations in sensitivity to these two biocides 

in any of the mutants tested. We concluded that a much larger mutant bank was 

probably needed to isolate the desired mutants.

2.4.2 M. chelonae and M. abscessus

M. chelonae and M. abscessus, two of the most antimicrobial resistant species of 

RGM, were used in this'Study, to determine their biocide and antibiotic susceptibility, 

and to compare their sensitivity with that of the M. smegmatis me 155. The two 

strains chosen were the type strains M. chelonae NCTC 946 and M. abscessus ATCC 

19977.

2.4.2.1 Colony morphology and growth on solid media

Both strains of M. chelonae and M. abscessus grew well on Middlebrook 7H11 agar, 

supplemented with 0.5% glycerol and 10% OADC. The two strains were cultivated at 

different temperatures to achieve optimal growth, 37°C for M. abscessus and 30°C for 

M. chelonae. Slower growth, especially with M. chelonae, was observed on the less 

rich TSA. When cultured on the same agar plates, M. smegmatis me 155 grew well, 

whereas growth of both M. chelonae and M. abscessus was affected (Figure 2.14). In 

the presense of M. smegmatis me 155 both M. chelonae and M. abscessus showed 

slower and limited growth compared with their growth under the same conditions in 

the absence of M. smegmatis me 155 (Figure 2.14). This suggests that when present in 

the same environment with limited resources, competition for nutrients favours the 

faster growing M. smegmatis me 155 over M. chelonae or M. abscessus. Other 

possible explanation for the above observation is that M. smegmatis me 155 may be 

producing some inhibitory compound(s) that limits or inhibits the growth of other 

organism including M. chelonae and M. abscessus. This can only be speculated about
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and further investigations are needed to prove or disprove this speculation. On agar, 

colonies of M. chelonae and M. abscessus started to appear after 2 days incubation, 

and reached optimal growth after 4 days. Colonies appeared smooth and did not 

develop pigmentation even after 7 days incubation (Figure 2.8).

2.4.2.2 M. chelonae, and Af. abscessus growth curves and relationship between 

OD and viable count

The different stages of growth and their length were determined for both M. chelonae

and M. abscessus. Growth curves of the organisms were generated from cultures 

growing in 7H9 broth and incubated at the appropriate temperature as described for 

M. smegmatis (section 2.4.1.1.3). The curves were then used to determine the mean 

exponential growth rates and mean doubling times for the organisms. M. chelonae and 

M. abscessus cultures both showed all the characteristic stages of bacterial growth 

(Figure 2.15). Both had a relatively short “lag phases” as the medium was inoculated 

with freshly grown cultures. However, there were differences in the length of the “lag 

phase” for the two organisms. Compared to M. smegmatis, the “lag phase” for M.

chelonae was longer and extended over (5-6 h). M. abscesus had a “lag phase” length 

intermediate between that ofM  smegmatis and M. chelonae (2-2.5 h).

The exponential “log phase” of growth of both organisms were relatively longer that 

that of M  smegmatis, extending over approximately 17 h and 22 h for M. abscessus

and M. chelonae respectively. M. chelonae and M. abscessus grew slower than M.

smegmatis, with M. chelonae being the slowest. Exponential growth rate and doubling 

time values were p = 0.17 h^and g = 4.0 h for M. abscessus, and p = 0.15 h' 1 and g =

4.6 h for M. chelonae. The “stationary phase” was observed for both organisms after a 

deceleration period and started after 20 h and 30 h incubation for M. abscessus and M.

chelonae respectively. Relationship between the OD readings of M. chelonae and M.

abscessus cultures and their viable counts was also determined (Figure 2.10). Results 

showed that cultures with an OD value of 0.5 contained approximately 108 cfu/ml for 

both M. chelonae and M. abscessus.
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M. smegmatis me 155

M. abscessus

M. chelonae

Figure 2.14. Effect of M. smegmatis growth on that of M. chelonae and M. abscessus.

Growth was tested on 7H 11 agar and at 37°C for 3 days. W hen M. sm egm atis was present, both M. abscessus and M. chelonae  showed 
slow and lim ited growth. W hen M  smegmatis was absent, M. abcessus and M. chelonae  gew well.
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Figure 2.15. Growth curves of mycobacterial species studied.

Cultures were grown in 100 ml 7H9 broth with gentle shaking at 37°C (M 
smegmatis, M. abscessus) or 30°C (M. chelonae). The points represent mean 
values and the error bars represent standard error of the means. Exponential 
growth rate (p) and doubling time (g) of the cultures are shown on the graph.
Symbols: M ;M  smegmatis, ♦ ,  M  chelonae, # ;M  abscessus.
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2.4.2.3 Biocide MICs for M, chelonae and M. abscessus

Susceptibility of M. chelonae and M. abscessus strains to four biocides (triclosan, 

cetylpyridinium chloride, chlorhexidine diacetate, and ort/zo-phthalaldehyde), and 

their DMSO sensitivity were investigated in the same way as M. smegmatis me 155 

(section 2.4.1.2). MICs for the four biocides were determined both in agar (7H11) and 

liquid media (TSB, and 7H9 broth). Agar MIC values were taken as the minimal 

biocide concentrations that completely inhibited growth after 4 days incubation at 

37°C and 30°C for M. abscessus and M. chelonae respectively. Broth MICs were 

determined as the minimal concentrations of biocides that resulted in cultures with 

mean OD values which showed no statistically significant difference from the mean 

value of the blank (with no bacterium) after 4 days incubation at the same above 

temperatures.

The results (Table 2.12, Figure 2.16), showed that in 7H9 broth DMSO concentrations 

above 2% affected growth of M. chelonae and M. abscessus as was the case for M.

smegmatis. Concentrations needed to completely inhibit growth were however much 

higher (15%). Lower concentrations were able to achieve the same effect in TSB (8% 

and 6% for M. abscessus and M chelonae respectively). As noted earlier, the 

maximum concentration of DMSO used in this study was 2%, hence DMSO toxicity 

was not a concern.

MIC values for chlorhexidine diacetate in the two media used (7H9 broth and TSB) 

were comparable in all mycobacterial species, even though they contained different 

concentrations of organic matter. This was not the case with cetylpyridinium chloride, 

where the MIC values in 7H9 broth were much higher than those in TSB, especially 

for M. abscessus and M. chelonae. Another observation from the results, was that 

relatively low concentrations of triclosan, cetylpyridinium chloride and chlorhexidine 

diacetate were needed to inhibit growth in all mycobacterial species in both solid and 

liquid media (triclosan was not tested in broth). This was not the case with ortho-

phthalaldehyde, where concentrations of 2000 pg/ml or above were needed to achieve 

the same effect. Chlorhexidine diacetate was the most mycobacteriostatic agent in 

both solid and liquid media for all the mycobacterial strains, followed closely by 

triclosan and cetylpyridinium chloride. The results also showed that there are
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differences in biocide susceptibility for mycobacterial strains. For example, in the 

case of chlorhexidine diacetate, M. abscessus was much more resistant to this agent 

that the other two species, with the M. smegmatis me 155 being most sensitive. M.

smegmatis strain was more sensitive to all agents tested than were the other two 

species which shower varying degrees of resistance in comparison.
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Table 2.12. Biocide MICs and DMSO toxicity for mycobacterial species studied.

Agent
...... .. ...... ................. ...  —j

M. smegmatis me 155 M. abscessus ATCC 19977 M. chelonae NCTC 946

Agar MIC*
7H11

Broth MIC* Agar MIC* Broth MIC* Agar MIC* Broth MIC*
7H9 TSB 7H11 7H9 TSB 7H11 7H9 TSB

CHX 0.75 (0.3) 3(1.4) 2 (0) 8.75 (8.8) 7.5 (3.5) 7.5 (3.5) 3.75(1.7) 2 (0) 2(1.4)

CPC 5 (0.7) 7.5 (3.5) 3.5 (2.1) 25 (7) 70(14) 1 0(0) 30(14) 45 (7) 5 (2.8)

OPA 2000(700) Nd Nd 2250 (354) Nd Nd 2250 (354) Nd Nd

TRI 1 (0) Nd Nd 25 (7) Nd Nd 22.5 (3.5) Nd Nd

DMSO* Nd 10(2.8) 8 (2.8) Nd 15(7) 8 (2.8) Nd 15(7) 6 (0)

TRI; triclosan, OP A; orf/zo-phthalaldehyde, CPC; cetylpyridinium chloride, CHX; chlorhexidine diacetate, DMSO; dimethyl sulfoxide, Nd; not determined
* MIC values expressed in pg/ml (± standard deviation)
# [DMSO] expressed in % (v/v)
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Figure 2.16. Broth MICs of cetylpyridinium chloride, chlorhexidine diacetate, and DMSO for M.
chelonae and M. abscessus strains.

MICs were determined in 7H9 broth supplemented with the appropriate concentration of agents. Optical densities 
were read after 4 day incubation at 3 c C  and 30°C for M  abscessus and M. chelonae respectively. Error bars 
represent standard error of the means. CHX; chlorhexidine diacetate, CPC; cetylpyridinium chloride, DMSO;
dimethyl sulfoxide. H ; M  abscessus,B  M  chelonae.
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2.4.2.4 Antibiotic susceptibility of M. chelonae and M. abscessus strains

Susceptibility of M. chelonae and M. abscessus strains to a number of antibiotics was 

investigated using E-test strips (section 2.3.10) and compared to that of M. smegmatis

me2155 (section 2.4.1.3). Susceptibility or resistance were determined based on MIC 

breakpoints recommended by the Clinical and Laboratory Standards Institute (CLSI) 

(1160), and the clinical breakpoints defined by the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST:

http://www.srga.org/eucastwt/MICTAB/index.html). Results (Table 2.13) showed that M.

chelonae was resistant to amikacin, ceftazidime, meropenem, azithromycin, and 

trimethoprim/sulfamethoxazole, but was susceptible to tobramycin, and ciprofloxacin. M.

abscessus was resistant to tobramycin, ceftazidime, azithromycin, meropenem,
f

ciprofloxacin, and trimethoprim/sulfamethoxazole, and was susceptible to only amikacin.

When compared with M. smegmatis me2155, M. abscessus ATCC 19977 had a higher 

MIC for all agents tested (Table 2.13) except for ceftazidime (both species had MIC >256 

pg/ml). M. chelonae NCTC 946 had higher MIC values compared to M. smegmatis

me2155 for most antibiotic tested with the exception of azithromycin and ciprofloxacin 

where MIC values were lower than that of the M. smegmatis strain (Table 2.13) and 

ceftazidime where both species had MIC value >256 pg/ml. Although having slightly 

different MIC values, based on breakpoint for the agents, the strains of M. chelonae and 

M. abscessus had similar susceptibility for most agents with the exception of amikacin, 

tobramycin, and ciprofloxacin. MIC values for chloramphenicol were 16, 64 and >256 

pg/ml for M. smegmatis, M. chelonae, and M. abscessus strains respectively. The results 

would indicate that M. chelonae NCTC 946 and M. abscessus ATCC 19977 are much 

more resistant to antimicrobial agents compared to M. smegmatis me2155, and that 

amikacin and tobramycin susceptibility is a good way to separate the two former species 

(Table 2.13, Figures 2.17-18).
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Table 2.13. Antibiotic MICs for mycobacterial species as determined by E-test 
strips.

Antibiotic MIC pg/ml (± SD)
M. smegmatis

mc2155
M. abscessus
ATCC 19977

Af. chelonae
NCTC 946

Aminoglycosides
Amikacin
Tobramycin

1 (0) 
2.5 (0.7)

S
s

4(1.1) 
128 (34)

S
R

64(17.5) 
12 (3.35)

R
S

Cephalosporins
Ceftazidime* >256 (0) R >256 (0) R >256 (0) R

Carbapenems
Imipenem
Meropenem*

,0.75 (0) 
1.75 (0.35)

S
S

Nd
>32 R

Nd
>32 R

Macrolides
Azithromycin* 10(2.83) R 10 (2.83) R 4(1.6) R

Penicillins
Piperacillin* >256 (0) R Nd Nd

Quinolones
Ciprofloxacin 0.125 (0) S >32 R 0.064 (0.02) S

Sulfonamides
Trimethoprim-
Sulfamethoxazole
(1/19)

0.027 (0.006) S >32 R >32 R

Others
Chloramphenicol J6(8) Nd >256 Nd 64(43.1) Nd

S; susceptible, R; resistant

Susceptibility and resistance are based on breakpoints recomm ended by NCCLS document M 24-T2 (1160),

and clinical breakpoints defined by EUCAST http://www.srga.org/eucastwt/M ICTAB/index.htm l.

Nd; not determined.
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Figure 2.17. Antibiotic susceptibility o f mycobacterial species to ciprofloxacin, amikacin, and
tobramycin as determine by E-test strips.

MIC values were read after 2 and 4 days incubation at 37°C for M. smegmatis and M. abscessus respectively, and 
4 days incubation at 30°C for M. chelonae. All tests were carried out on 7H11 agar.
CIP, ciprofloxacin; AMK, amikacin; TOB, tobramycin; 1, M. smegmatis me2155; 2, M. abscessus ATCC 19977; 
3, M. chelonae NCTC 946.
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Figure 2.18. Antibiotic susceptibility of mycobacterial species to trimethoprim/sulfamethoxazole,
meropenem, and chloramphenicol as determine by E-test strips.

MIC values were read after 2 and 4 days incubation at 37°C for M. smegmatis and M. abscessus respectively, and 4 
days incubation at 30°C for M. chelonae. All tests were carried out on 7H11 agar.
SXT, trimethoprim/sulfamethoxazole (1/19); MEM, meropenem; CHL, chloramphenicol; 1, M. smegmatis mc2155; 
2, M. abscessus ATCC 19977; 3, M. chelonae NCTC 946.
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2.5 DISCUSSION

Growth characteristics and the biocide and antibiotic susceptibility profiles of three 

rapidly growing mycobacterial species: M. smegmatis me2155, and M. chelonae and M.

abscessus type strains were described. We also report attempts to isolate M. smegmatis

mutants with altered biocide sensitivities. Minimal media such as TSB and Sauton were 

shown to sustain growth of M. smegmatis and could be used in routine experiments where 

richer media such as 7H9 broth are not desired. Testing biocide sensitivity is an example, 

where organic load is known to interfere with biocide action. Hence, more accurate 

determination of biocides activity in mycobacteria could be achieved in such minimal 

media. This was the case in this study, as biocide MICs for all three organisms were 

shown to be equal to or higher in richer medium than in a minimal one. Therefore we 

speculate that the actual' MICs for these biocides (and probably antibiotics) against the 

mycobacterial species tested would be lower than those reported.

Natural differences in susceptibility to antimycobacterial agents in the three species tested 

were noted. These differences occurred even within the closely related M. chelonae-M.

abscessus group, highlighting the difficulties in adopting routine therapy or disinfection 

procedures against these organisms. Tobramycin and amikacin were both shown to be 

effective in distinguishing between the two M. chelonae and M. abscessus strains. In 

general terms, the former two strains were more resistant to antimicrobial agents than M 

smegmatis me 155.

One factor that may play a role in this observation is differences in cell wall composition 

and permeability of these species. The mycobacterial cell wall contains large amount of 

lipids which, along with the organisation of its components, form an important 

permeability barrier. M. chelonae is one of the most drug-resistant species of 

mycobacteria, and was shown to be also more resistant to biocides compared to the 

distantly related M. smegmatis. Cell wall characteristics and permeability of M. chelonae

have been studied by Jarlier and Nikaido (493) and that of M. smegmatis by Trais and 

Benz (1074). Permeation of cephalosporins and small hydrophilic molecules such as
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glucose, glycerol, glycine, and leucine across the cell wall was used to determine 

permeability. It was reported that the permeability coefficients for small hydrophilic 

solutes \vere considerably lower in M. chelonae and M. smegmatis compared to those in 

Gram-negative bacteria such as E. coli and P. aeruginosa. For instance in M. chelonae,

the permeability coefficient of cephalosporins was shown to be 10 and 1000-fold lower 

than that reported for P. aeruginosa and E. coli respectively (493). However, differences 

between mycobacterial species were also noted. Although both M. smegmatis and M.

chelonae were less permeable to cephalosporins than E. coli and P. aeruginosa, they had 

different permeability coefficients. These agents crossed the cell wall of M. smegmatis 10 

times faster than in M. chelonae.

Another factor influencing permeability is the presence of porins in the mycobacterial 

cell wall. These have already been reported in M. chelonae and M. smegmatis and were 

shown to have similar properties. However, despite the similarities, the pore diameter of 

the porin from M. smegmatis was around 3 nm, larger than that found in M. chelonae, 

which may also explain differences in permeability (1074).

Sensitivity of M. smegmatis me 155 to the agents tested could also be explained by the 

fact that me 155 has slightly different cell wall properties and permeability than its

parental strain. Etienne et al. (274) studied and compared the cell envelope properties of
2 .

M. smegmatis me 155 with its parental strain M. smegmatis ATCC 607. Investigators

showed that the me2155 cell envelope lacked polar glycolipids, namely the 

lipooligosaccharides and the polar subfamilies of glycopeptidolipids. Moreover, there 

was an apparent difference in the distribution of glycolipids and phospholipids between 

the outermost and deeper layers of the cell envelope in the two strains. Glycolipids are 

major lipids in M. smegmatis and were shown to significantly contribute to the 

permeability barrier of the cell envelope of the bacteria (274). Etienne et al. (274) 

reported that the altered nature of the surface-exposed and cell envelope composition in 

strain me 155 was coupled with enhanced permeability. The strain was shown to uptake 

small hydrophobic molecules much faster than its parent was. This enhanced 

permeability may also affect sensitivity to both antibiotics and biocides in this strain.
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The attempt to isolate M. smegmatis me2155 mutants with significant alteration in biocide 

sensitivity was not successful. However, it did show that the mariner-transposon system 

was an effective way for generating random transposon mutants in mycobacteria. The 

system has already been used to generate transposon mutants in M. marinum and M.

smegmatis (324, 891), and was proven to successfully transpose in other bacteria and 

protozoa independent of host-specific factors (382, 891). This makes the mariner family 

of transposons a valuable mutagenesis and genetic manipulation tool.

One of the possible reasons for the failure to isolate biocide mutants in this study was the 

size of the mutant library generated. The preliminary results of the genome sequencing

and annotation of M. smegmatis me2155 show that the genome of the strain is nearly 7
/

Mbp in size containing nearly 7000 genes. Therefore, a mutant library of 3000 mutants 

was probably not big enough to cover the whole genome. Nevertheless, the availability of 

the genome sequence of this organism makes it possible to study genes involved in 

biocide resistance or susceptibility. Possible ways of achieving this can be as follows.

1) Using site directed mutagenesis to target genes in M. smegmatis which are

already know to be involved in biocide sensitivity in other bacteria. A number of 

genes have been reported to affect biocide susceptibility in bacteria (section 1.5). 

Genes such as the qac (qacG, qacJ, qacA, qacB), smr and oprR genes involved in 

QAC resistance. The cepA gene involved in chlorehexidine resistance, the marA,

soxS, and accAB genes for triclosan resistance and the imp/ostA gene conferring 

resistance to GTA. Using targeted mutagenesis to inactivate these genes or their 

homologues in M. smegmatis, would be a good way to test for their role in biocide 

resistance in this organism. An example is the M. tuberculosis H37Rv efpA gene, 

which is also present in M. leprae, M. bovis, M. avium and M. intracellular and 

encodes a putative efflux protein EfpA. The latter was shown to have a similar 

secondary structure to Pur8, MmrA, TcmA, LfrA, EmrB, and other members of 

the QacA transporter family (QacA TF) which mediate antibiotic and QACs 

resistance in bacteria (242). The efpA gene has been detected by Southern
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hybridization in a number of rapidly growing mycobacterial species including M.

smegmatis (242). Hence, this gene may play a role in biocides, namely QACs, 

resistance in this organism, and targeting it using site directed mutagenesis would 

be a good way to test this hypothesis.

2) Targeting genes involved in antibiotic resistance in mycobacteria or other

bacteria. The genetic basis of antibiotic resistance in bacteria has been well 

studied, and a large number of genes have been identified that confer increase 

susceptibility or resistance to these agents including in mycobacteria (section 

2.1.7.4.3). Because of some similarities in the way antimicrobial agents enter and 

affect the cells, it is possible that genes conferring resistance to antibiotics will 

also affect biocide sensitivity (94). This has been shown numerous times, whereby 

biocide sensitive mutants in both mycobacteria and other bacteria have also 

expressed altered antibiotic susceptibility profiles. For instance, the inhA mutation 

in M. smegmatis also conferred isoniazid resistance (683). In addition, the 

expression of the E. coli multiple antibiotic resistance mar A gene (also involved 

in triclosan resistance) in M. smegmatis produced increased resistance to multiple 

antimicrobial agents, including rifampin, isoniazid, ethambutol, tetracycline, and 

chloramphenicol (675). Hence targeting antibiotic resistance genes or their 

homologues, or screening the already isolated antibiotic sensitive or resistant 

mutants in M. smegmatis (Table 2.3) would be a good way to identify genes 

involved in biocide sensitivity.

3) Targeting genes that may influence biocide sensitivity. The sequencing of the M 

smegmatis genome revealed that the bacterium has up to 7000 genes, and nearly 

5000 of these have already been assigned functions. It is therefore possible to 

target genes with functions that may be involved in biocide sensitivity. For 

instance, genes involved in biosynthesis of cell wall components such as, the 

peptidoglycan, mycolic acids or other lipids. The inhA gene in M. smegmatis

involved in lipid biosynthesis and conferring triclosan resistance is a good 

example. Some genes involved in cell wall biosynthesis have already been

142



identified by the genome sequencing project including genes encoding the 

mycolic acid synthesis protein “methoxy mycolic acid synthase 1”, the 

peptidoglycan pathway proteins such as the “UDP-N-acetylmuramoyl-tripeptide— 

D-alanyl-D-alanine ligase” and “phosphoglucosamine mutase (GlmM)”, and 

surface polysaccharides and lipopolysaccharides biosynthesis proteins such as 

“cyclopropane-fatty-acyl-phospholipid synthase 1” and “acetyl-coenzyme A 

synthetase”. Because of their role in cell wall biosynthesis and the importance of 

the latter as a permeability barrier in mycobacteria, we can speculate that 

inactivation of some of these genes in M. smegmatis, may cause changes in 

antimicrobial sensitivities.

Other possible target genes include genes encoding cell membrane transporters,
/

porins, milti-drug resistance proteins, and efflux pump systems. A porin has 

already been identified in M. smegmatis (734), and from the genome sequencing, 

a number of drug resistance proteins, efflux pumps and transporters have been 

identified. These include ABC-type multidrug transporter systems, SMR family 

multidrug resistance proteins, MFS transporters including the Bcr/CflA subfamily 

drug transporters, membrane permeases and transporters (e.g. YgbN, Ydff, UspE, 

YddQ, SfuB, YjfF, YddQ, YphF, RutG), membrane proteins (e.g. MmpSl, 

MmpL) and lipoproteins (e.g. Lpps, YaeC, YaeQ, nlpa, MK35).

Although we can only speculate about the involvement of some of the above proteins 

in biocide resistance in mycobacteria, it is a fact that resistance to many antimicrobial 

agents including biocides have been linked to genes encoding proteins with some of 

the above functions (683). Moreover, examples exist in mycobacteria themselves, for 

instance the inhA gene in M. smegmatis involved in fatty acid synthesis and 

conferring triclosan resistance when deactivated (683). The IfrA gene encoding a 

membrane efflux pump of the MSF family in M. smegmatis (1045) is another 

example. The gene has been shown to be involved in resistance of mycobacteria to a 

number of antimicrobial agents, including several quinolones (617, 939). In M 

smegmatis disruption of the IfrA gene rendered the mutant more susceptible to
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ethidium bromide, acriflavine, ciprofloxacin, doxorubicin, and rhodamine 123 (two- 

to eightfold decrease in MICs) (939). The IfrA gene is homologous to qacA from S.

aureus which has already been shown to be involved in QACs resistance (798, 804, 

887), and appeared to recognize some QACs in M. smegmatis (1045). Hence, we can 

speculate that this gene may play a role in QAC resistance in this organism.

2.6 CONCLUSION

• The mycobacterial strains tested had different biocide and antibiotic 
susceptibilities, with M. smegmatis me 155 being more susceptible to 
antimicrobial agents than the M  chelonae or M. abscessus type strains.

• Chlorhexidine diacetate was the most effective biocide at inhibiting growth of the 
mycobacterial strains tested.

• Low concentrations of chlorhexidine diacetate, cetylpyridinium chloride, and 
triclosan were mycobacteriostatic. However, high concentrations of ortho-
phthalaldehyde were required to inhibit growth.

• Based on agar MICs, chlorhexidine diacetate, cetylpyridinium chloride, and 
triclosan at the “in-use” concentrations are all effective at inhibiting growth of M 
smegmatis me 155.

• Chlorhexidine diacetate, and triclosan, at the “in-use” concentrations are also 
effective at inhibiting growth of M. chelonae NCTC 946 and M. abscessus ATCC 
19977.

• The “in-use” concentration of ortho-phihalaldehyde appears to be not effective at 
inhibiting growth of the mycobacterial strains tested. However, it is important to 
note that the killing concentrations rather than agar MICs are the main measure of 
biocide effectiveness. In this context, a 0.5% concentration of OP A (lower than its 
“in-use” concentration) was shown to be rapidly mycobactericidal against a range 
of NTM and more importantly against GTA-resistant mycobacterial strains (311).

• Transposon mutagenesis using a mariner-based system was not successful at 
isolating M. smegmatis me2155 mutants with altered biocide susceptibility.
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CHAPTER III

MOLECULAR BASIS OF BIOCIDE

RESISTANCE AND SUSCEPTIBILITY IN

SERRATIA
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ABSTRACT

Serratia marcescens is a problematic opportunistic pathogen that frequently causes nosocomial 
infections due to it ability to contaminate solutions or devices. S. marcescens resistance and 
susceptibility to antibiotics is well known, however, very little is known about the mechanisms of 
Serratia resistance and susceptibility to biocides. Agents such as triclosan (TRI), chlorhexidine 
diacetate (CHX), quaternary ammonium compounds and aldehydes are widely used in the home 
and clinical settings as a mean to disinfect instruments and clean surfaces. This study aimed to 
identify the molecular basis of biocide resistance and susceptibility in S. marcescens Dbll, a 
model strain for which the complete genome sequence is available. The strain is non-pigmented, 
grew well overnight at 37°C on TSA and TSB and was shown to have a typical bacterial growth 
curve. The growth inhibitory and killing effects of four biocides; TRI, cetylpyridinium chloride 
(CPC), CHX and alkaline ort/zo-phthalaldehyde (OPA) on S. marcescens Dbl 1 were investigated. 
From the Minimal Inhibitory Concentration (MICs) of the biocides it was shown that CHX and 
CPC were most effective at inhibiting bacterial growth with agar MIC ranges of 16-20 pg/ml and 
90-110 pg/ml respectively. TRI and OPA demonstrated less inhibition, possessing MIC values of 
3800-4000 jig/ml and 2800-3200 pg/ml, respectively. Antibiotic susceptibility profile for S.
marcescens Dbll was also determined and showed that the strain was resistant to amikacin, 
tobramycin, chloramphenicol and azithromycin, but susceptible to ceftazidime, ciprofloxacin, 
imipenem, piperacillin, and meropenem. To determine the genes involved in susceptibility to the 
four biocides, 6000 S. marcescens Dbll random transposon mutants (generated using a mini- 
Tn5Km2 transposon system) were screened on agar containing a concentration of biocide just 
below its respective MIC. Eighty mutants showed varying degrees of sensitivity to at least one of 
the four biocides, 26 of these were further investigated along with two control mutants. The 
mutants did not show major changes in biocide susceptibility as indicated by agar MIC values. 
However, the changes were shown to be reproducible, and were confirmed by results of other 
tests notably broth MICs, lethality and potassium leakage tests. The genetic basis of 24 mutants 
was determined and demonstrated putative mutations in genes encoding proteins with varying 
functions. These included anabolism and catabolism, gene regulation, cell envelope biosynthesis, 
porin, energy production, and virulence. A number of the disturbed genes were in close proximity 
to other genes encoding regulatory proteins, membrane transporters, antimicrobial resistance 
efflux proteins, and proteins with other important cellular functions. Mutational polar effect in 
some of the disrupted genes may have contributed to the mutants’ observed phenotype. Two 
mutants, one deficient in the outer membrane protein A (OmpA), and another deficient in the 
nucleoid-associated protein (NdpA), were chosen for complementation analysis. 
Complementation of the ndpA mutant which showed increased resistance to CPC and CHX but 
was sensitive to TRI, lead to restoration of the wild type phenotype. Complementation of the 
ompA mutant, which showed multiple sensitivity to CHX, TRI and OPA however, did not restore 
the wild type phenotype as the cloned ompA gene was shown to be transcribed but not translated 
in the complemented mutant. In summary, the genetic basis for biocide resistance in S.
marcescens Dbl 1 is multi-factorial and encoded by several novel loci worthy of further study.
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3.1 INTRODUCTION

3.1.1 Taxonomy of the genus Serratia

The genus Serratia belongs to the family Enterobacteriaceae which includes other well 

known genera such as Escherichia, Shigella, Salmonella and Yersinia. Many species of 

Serratia produce a non-diffusible, water-insoluble red pigment, prodigiosin (2-methyl-3- 

pentyl-6-methoxyprodiginine). The earliest manifestation of the organism was traced by 

many authors (328,402) back to antiquity as blood-like drops on pieces of bread. In 1823 

Bizio (80) demonstrated that these blood-like manifestations were due to the development 

of a microorganism which he named “Serratia marcescens”. A year later, Sette (969) also 

linked the blood-like spots on food to an organism which he named Zaogalactina
t

imetrofa. Unfortunately the red-pigmented microorganisms studied by Bizio and Sette 

were not preserved. Working in Germany on the same phenomenon, Ehrenberg (257) 

isolated a motile organism which he named Monas prodigiosa and he concluded that this 

organism was the cause of the red spots on food. Unfortunately, Ehrenberg’s strain was 

also not preserved and the identity of M. prodigiosa is uncertain. In 1884, R. Koch 

isolated a red-pigmented bacterium from the digestive tract of a monkey in India. The 

strain was preserved (ATCC 4002) and named Bacillus indicus (259). Since then a large 

number of red-pigment producing organisms have been isolated and named. However, it 

was not until early 1900s when Hefferan classified rod-shaped red-pigment nomenspecies 

into 4 groups one of which was the prodigiosus group which correlated to red-pigmented 

enterobacteria (417).

The first generic name for a recognizable red-pigmented enterobacterium was 

Erythrobacillus given by Fortineau in 1904 (300). However, the nomenclature used in 

Bergey’s Manual (68) and other authors imposed the use of the generic name Serratia. In 

the same manual, Serratia, the sole genus in the tribe Serrateae, was included in the 

family Enterobacteriaceae (99). From the first to the seventh editions of Bergey’s

Manual, the number of species in the genus Serratia dropped from 23 to 5. These five 

species were S. marcescens, S. indica, S. plyrauthicum, S. kilensis, and S. piscatorum.
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The taxonomic status of Serratia was still unclear with species being rejected or 

reestablished into the genus. In 1957, Davis et al. (220) suggested that the genus Serratia

should include only one species S. marcescens. This concept of mono-specified genus 

Serratia was almost universally accepted in the 1960s even after the inclusion of the 

genus into the tribe Klebsielleae in 1962 (275). Later, taxonomic work demonstrated the 

existence of at least 4 species in the genus Serratia with different biotypes: S.

marcescens, S. liquefaciens, S. plymuthica, and S. marinorubra. Currently, the taxonomic 

information recognizes the following species within the Serratia genus: S. ficaria, S.

fonticola, S. grimesii, S. liquefaciens, S. marcescens, S. marinorubra, S. entomophila, S.

odorifera, S. plymuthica, S. proteamaculans, S. quinivorans, S. rubidaea, and S.

ureilytica. Some of these species such as S. liquefaciens form complexes.

(

3.1.2 Characteristics, habitats and clinical significance of the genus Serratia

3.1.2.1 Characteristics of the genus Serratia

Serratia are Gram-negative, facultative anaerobic rods ranging from 0.3 to 1.0 pm in 

width to 0.6 to 6.0 pm in length. Like other Enterobacteriaceae, Serratia grow well on 

ordinary media under anaerobic and aerobic conditions. While some strains of S.

plymuthica may not grow at 37°C, most members of this genus grow well between 25 and 

37°C. Growth is inhibited at temperatures above 45°C, while variable growth has been 

observed at 5°C and 40°C. Optimal pH for growth of these organisms has been shown at 

pH 9, and they are inhibited at pH less than 4. Colonies of Serratia have long been known 

to produce red pigment. However, pigmentation is observed in only small percentage of 

isolated cultures and it is variable depending on species and other factors such as 

incubation period. Three species are known to produce the red pigment prodigiosin, and 

they include some strains of S. marcescens and most strains of S. rubidaea and S.

plymuthica. Grimont et al. (371) however, also reported that strains of S. marinorubra

also produced the pigment.

148



Biochemical characteristics of Serratia species have been well studied and are used to 

differentiate between species within the genus and the family. In 1977 Grimont et al

(371) undertook a large study on 156 isolates of Serratia and related bacteria including 

representatives of Enterobacter and Erwinia, using 223 morphological, physiological, 

biochemical and carbon source utilization tests. The results of the study determine some 

of the basic characteristics of species in the genus Serratia (Table 3.1) and the differences 

between this genus and other closely related organisms. Grimont et a l (371) reported that 

all the bacteria studied were catalase positive, utilized glucose by fermentation, and 

utilized N-acetylglucosamine, aspartate citrate, D-fructose, gluconate, D-glucose, L- 

malate, mannitol and D-ribose as sole carbon sources. Investigators also reported that all 

strains studied were negative for growth at pH 4, phenylalanine deaminase, urease, and 

for growth on a number of compounds as sole carbon source (371). Along with the 

production of red pigment, production of special enzymes by species of Serratia has been 

used to differentiate the genus from other closely related Enterobacteriaceae, especially 

Enterobacter. Examples of such enzymes include chitinase, DNAse, esterase, gelatinase, 

lecithinase, and lipase.

3.1.2.2 Habitats of the genus Serratia

Members of the genus Serratia are very widely spread and have been isolated from soil, 

air, water, plants, insects, animals and humans. Because of the taxonomic confusion 

regarding this genus, early ecological information is not clear. Red-pigmented Serratia

are able to be traced back to early publications if they have been preserved, whereas non- 

pigmented species are difficult to trace even in more recent work. Red-pigmented gram- 

negative bacilli isolated from air, water, and soil have been recorded as early as the 1900s 

(639, 710). Members of the Serratia genus have been isolated from both residual (938) 

and seawater (372). Serratia occurs naturally in soil, and strains of soil origin have 

appeared in a number of studies (21, 204, 491, 530).

Serratia associated with plants have also been reported (66, 368, 374, 513, 1162), and its 

origins are thought to be the soil, although there are exceptions such as the case of
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Serratia associated with figs of the Calimyma variety, where it is of insect source (1016). 

In the course of an ecological survey, Grimont et al. (370) isolated Serratia from number 

of plant species including: Eucalyptus, Pistacia, bitter cherry, Acacia, coconuts, sorghum, 

grass, mushrooms, tomatoes, leeks, green onions, brussels sprouts, lettuce, broccoli, 

artichokes, radish, spinach, carrots, and figs. Serratia are often associated with insects of 

many orders including Orthoptera, Isopteran, Coleopteran, Lepidoptera, Hymenoptera, 

and Diptera (370). Serratia species frequently have been recovered from healthy, 

diseased, or dead insects (124, 125, 635, 1010) and more than 70 species of insects were 

found susceptible to Serratia infections (124, 370, 485, 508, 832, 1009, 1011, 1128). 

Association of Serratia with animals has been well documented (370). The organism was 

isolated from cold blooded vertebrates (138, 370, 484) as well as from both wild and 

domesticated animals (47, 90, 370, 453, 514, 888, 1150, 1185). Species of Serratia exist 

in the organs and intestines of fish (54, 659), and S. liquefaciens is considered a fish 

pathogen reported to have caused infection in Atlantic salmon populations (680), in 

juvenile cultured rainbow trout (25), and in turbot (1093).
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Table 3.1. Biochemical characteristics of members of the genus Serratia. Adapted and modified from Abbot (1).

Species Production of: Mai utilization Acid production from: Red pigment Odour

LDC ODC Ara Rha Xyl Sue Adon Sorb Cello Arab

S. entomophila - - - - - V + - - - V - -

S.ficaria - - - + V + + - + + + - V

S. fonticola + + V + V V V + + - + - -

S. liquefaciens + + - + V + + - + - - - -

S. marcescens + + - - - - + V + - - V -

S. marcescens
biogroup 1

V + - - - - + V + - - NA -

S. odorifera
biogroup 1

+ + - + + + + V • + + - - +

S. odorifera
biogroup2

+ - - + + + - V + + - - +

S. plymuthica - - - + - + + - V V - + -

S. rubidaea V - + + - + + + - + V + -

LDC; lysine decarboxylase, ODC; ornithine decarboxylase, Ara; arabinose, Mai; malonate, Rha; rhamnose, Xyl; xylose, Sue; sucrose, Adon; adonitol, Sorb;
sorbitol, Cello; cellobiose, Arab; arabitol, +; >90%  o f  strains, V; 10-90% o f  strains, -; <10% o f  strains, N A; not available.
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3.1.2.3 Clinical significance of the genus Serratia

A healthy human has little chance of being infected by Serratia, which was long 

considered a normal commensal of the intestine and a saprophyte, and used as the 

indicator bacteria in studies to trace bacterial transmission and penetration in man (556, 

839). Nowadays the organism is known to be an important opportunistic pathogen, of 

which S. marcescens is the most common species associated with human diseases, 

followed by strains of the S. liquefaciens complex (368). Grimont and Grimont (370) 

mentioned that no significant infections due to S. plymuthica have been reported. Also, S.

marinorubra represented less than 4% of Serratia isolated from human samples (372, 

416). Strains of the S. liquefaciens complex have also been isolated from human clinical 

specimens (86, 368), and are known to predominantly cause sepsis and bloodstream 

infections via contaminated clinical equipment and blood component (89, 251, 271, 376, 

400, 699,968).

S. marcescens is undoubtedly the most common Serratia associated with human diseases, 

and is the only named species of the genus that is really nosocomial (368). The 

pathogenicity of this organism to humans was first noted in 1913 where it was reported to 

be the cause of a pulmonary infection (1161). However, the prevalence of S. marcescens

in human diseases had been underestimated for years before the first known outbreak of 

nosocomial S. marcescens infection in 11 cases at Stanford University Hospital was 

reported (1139). Since then, infections with the organism have been noted with increasing 

frequency. Taxonomic studies have shown that non-pigmented S. marcescens belong to 

biotypes and serotypes that are different from pigmented S. marcescens and that non- 

pigmented S. marcescens are the most important in hospital infections (368). Moreover, 

the non-pigmented S. marcescens are usually more resistant to antibiotics than the 

pigmented isolates which are rarely responsible for hospital outbreaks (23).

S. marcescens possesses a number of virulence factors that allow it to be an important 

opportunistic pathogen. One aspect of this pathogenicity is the ability of this organism to 

adhere to the target tissue surface. Adhesion to epithelial cells mediated by the type 1
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fimbriae of S. marcescens has been described (599, 1175), and the fimbriae of S.

marcescens have been shown to contribute to superoxide production (661) and 

phagocytosis (717). S. marcescens lipopolysaccharides are also important for 

pathogenicity and virulence, and are crucial for the biological activity of endotoxins. 

Palmora et al. (785) showed that bactericidal action on S. marcescens depended upon the 

O-side chain length of lipopolysaccharides. In addition, the organism has been reported to 

produce a number enzymes involved in pathogenicity including proteases, nucleases, 

lipases, chloroperoxidase, a chitinase, a lecitinase and a hemolysin (425) and cytotoxin 

(139).

As mentioned above S. marcescens is a notorious nosocomial opportunistic pathogen and 

its predominant mode of transmission is from person to person. Other modes of 

transmission include spread through various contaminated medical apparatuses, 

intravenous fluids, and clinical solutions. These solutions included saline in plastic bottles 

(673), water in ultrasonic nebulisers (871, 882), solutions used for inhalational treatment 

(694, 940), quaternary ammonium disinfectant solutions (258) and hand lotions (727). 

The ability of S. marcescens to cause infections was once thought to be limited to patients 

with chronic debilitating disorders. However, the organism has now been implicated in 

very diverse kinds of human infections.

S. marcescens is often involved in respiratory tract colonization and infection in nurseries 

and patients in intensive care units (22, 134, 674, 694, 1013), as well as in urinary tract 

infections especially in patients with indwelling catheters (580, 648). Some of these 

outbreaks can be prolonged, lasting more than a year (424, 630, 779, 926). Infection or 

superinfection of surgical wounds is another commonly reported S. marcescens

manifestation (134, 1145), and can lead to the development of S. marcescens septicemia 

which is frequently fatal (1145). Other reported cases of S. marcescens septicemia 

include a case of nosocomial epidemic of S. marcescens septicemia ascribed to 

contaminated blood transfusion bags (426), an epidemic outbreak in a hemodialysis unit 

(813), following artificial kidney dialysis (270), posttransfusion (443) and post-abortion 

(287) cases, and even a case in a previously healthy woman have been reported (224).
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Occasionally, S. marcescens is associated with meningitis (368, 811) which can be fatal 

(496), brain abscesses (368, 934), bullous cellulites (191), and conjunctivitis (687). 

Treatment of infections caused by S. marcescens may be difficult because the organism is 

resistant to a variety of antibiotics including ampicillin and both first and second 

generation cephalosporins (38), adaptive antibiotic resistance may also develop (section 

3.1.5).

3.1.3 Genetics of Serratia

Early studies on Serratia genetics were carried out by Laurent (585) who found in 1890 

that UV rays from the sun induced non-pigmented mutants of the Kiel bacillus. Since 

then molecular methods have been used extensively in determining the taxonomic status 

of the genus, and have advanced studies of virulence and quorum sensing (section 3.1.4). 

The following is an overview of the Serratia genome and its G+C content, transduction, 

and plasmids and conjugation in this genus.

The G+C content of Serratia DNAs is usually given as 54-60 % (187, 437), and the 

59.51% G+C content of the recently sequences genome of S. marcescens strain Dbl 1 is a 

good example. The range of G+C content of DNA for a number of Serratia species was 

determined as follows: S. marcescens, 57.5-60.4% (average around 58%); S. liquefaciens,

52.6-54.4%; S. plymuthica, 53.3-56.3%; and S. marinorubra, 53.5-58.3% (187, 371, 437, 

653). Gillis et al. (349) determined the genome size of one strain of S. marcescens and 

found it to be 3.57 x 109 Da with a C+G content of 59.9%. Grimont and Grimont (370) 

reported that S. marcescens DNA has the highest G+C content among enteric bacteria 

and that compared to the genome of E. coli K12, the genome of S. marcescens is larger 

by 109 Da. They concluded that these differences in size and composition of DNA 

between S. marcescens and E. coli suggest that the enzymatic regulations and the genetics 

of S. marcescens might be different from those of E. coli.

Recently the genome sequencing of S. marcescens Dbll was completed at the Sanger 

institute (http://www.sanger.ac.uk/Projects/S_marcescens/), and results revealed that the
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genome consists of a single circular chromosome of 5,113,802 bp with a G+C content of 

59.51%. The isolation of the non-pigmented S. marcescens Dbll strain, (Db for 

Drosophila bacterium) was first reported by Flyg et al. (298) during their investigation 

into the insect pathogenic properties of the species. Flyg and colleagues isolated S.

marcescens strain DblO from moribund Drosophila melanogaster strain 153, from which 

a spontaneous mutant Dbl 1 which was resistant to 100 pg/ml streptomycin was isolated 

(298). Strain Dbll was shown to have similar pathogenicity as the parental DblO and 

was lethal to Drosophila when given in the food or by injection (298).

Transduction in Serratia was demonstrated as early as 1956 when Belser & Bunting (61) 

described genetic transfer between auxotrophic mutants of S. marcescens HY that was 

suggestive of a transduction mechanism. Although the HY strain had not been shown to 

be lysogenic, some mutants of the strain were shown later to produce a phage (phage y) 

(516). A second transduction system that used S. marcescens HY and phage kappa ( k )

was described by Steiger et al. (1007), and using both systems (phages y and k ), 18 

auxotrophy genes were mapped in this bacterium (1003). In 1973, a generalized 

transduction system was studied with S. marcescens Sr 41 and phage PS 20 (666, 667). In 

1991, Regue et al. (862) reported another generalized transducing phage in S.

marcescens, 03M, belonging to the Myoviridae family. Until recently, no transducing 

phage capable of infecting S. marcescens Dbl 1 had been found. However, in 2006, Petty 

et al. (823) reported the isolation and characterisation of a likely virulence phage OIF3 

capable of mediating generalized transduction in S. marcescens Dbll.  Investigators 

concluded that this transduction system would be a valuable tool for functional genomic 

analysis of the host.

Plasmids and conjugation have also been described in Serratia. Grimont and Grimont 

(370) noted that no chromosomal transfer via conjugation was found in any species of the 

genus Serratia. Attempts at chromosomal conjugation from Hfr strains of E. coli to S.

marcescens were reported to be unsuccessful or limited to the transfer of “F factors” 

without integration in S. marcescens chromosome (279, 937). Different types of plasmids 

have been reported in Serratia (415, 597), although most work was concentrated on S.

155



marcescens. Plasmids found in Serratia include metabolic plasmids demonstrated in S.

liquefaciens (587), plasmid pCP-1 reported in S. plymuthica (1067), and multiple 

resistance plasmids which are especially common in nosocomial strains of S. marcescens

(416, 951). According to Grimont and Grimont (370), six plasmid incompatibility groups 

(L, S, C, M, P, and Fn) have been shown in S. marcescens, with the L group found only 

in S. marcescens.

R plasmids are common in nosocomial strains of Serratia conferring resistance 

phenotype to antibiotics and toxic heavy metals. Examples of these include a plasmid 

conferring resistance to aminoglycosides reported in S. marcescens S-95 (239) and the 

R478 plasmid isolated from a clinical isolate of S. marcescens (691) and shown to confer 

resistance to tetracycline, chloramphenicol, kanamycin, mercury, silver, copper, arsenic, 

and tellurite (350). R plasmids are usually detected by their transferability to E. coli K12, 

and although plasmid transfer from Serratia to E. coli is considered inefficient (416), 

such transfer has been described (369, 416, 598, 950, 951). Platt and Sommerville (830) 

described a simple conjugation system for the transfer of plasmids from Serratia species 

to members of the genus Enterobacter.

3.1.4 Quorum sensing in the genus Serratia

3.1.4.1 General overview

Microorganisms are consistently subjected to environmental stimuli including changes in 

temperature, osmolarity, pH and nutrient availability. In response, bacteria have 

developed sophisticated mechanisms that sense, gather, process, and transduce 

environmental fluctuations, which allow adaptation to these changes (794). One such 

mechanism is “quorum sensing” (320), the process of cell-to-cell communication via the 

use of small signalling molecules termed “autoinducers” or “pheromones. The 

extracellular concentration of these molecules is related to the population density of the 

producing organism. They can be sensed by cells and this allows the whole population to 

initiate a concerted action once a critical concentration (corresponding to a particular cell
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density) has been achieved (1088, 1142). There is a vast assortment of different classes of 

chemical signals employed in quorum sensing (51, 297, 444, 449, 952, 1025), of which 

the iV-acyl-homoserine lactones (AHLs) are the most commonly used in Gram-negative 

bacteria (586). Individual species of bacteria can use more than one chemical signal 

and/or more than one type of signal to communicate.

Quorum sensing signaling systems control diverse physiological functions in gram- 

negative and gram-positive bacteria. Few examples are bioluminescence in V. flscheri

(749), biofilm formation in P. aeruginosa and S. gordonii (218, 686), conjugal transfer of 

the Ti plasmids from Agrobacterium tumefaciens (1194), production of extracellular cell- 

wall-degrading enzymes in Erwinia carotovora (828), production of antibiotics in E.

carotova, Photorhabdus luminescens and Streptomyces coelicolor (34, 234, 1040), 

induction of virulence factors in P. aeruginosa (584, 809), competence in S. pneumoniae

(405), and competence and sporulation in B. subtilis (1065).

3.1.4.2 Quorum sensing in Serratia

Quorum sensing in Serratia has been identified and shown to control a wide range of 

biological and ecological functions, and often interconnect with other global regulators. It 

was reported to command swarming and sliding motility in S. marcescens MG1 (256) 

and S. marcescens SS-11 (450) respectively, as well as biosurfactant production in the 

latter (450). Quorum sensing directs the expression of the LipB protein translocation 

system in S. marcescens MG1 and S. proteamaculans B5a (164, 879), as well as the 

production of a number of extracellular enzymes. These include protease, chitinase and 

haemolytic activity in S. marcescens strain 12 (196), nuclease in S. marcescens SS-1 

(450), nuclease, chitinase and protease in S. plymuthica RVH1 (1088), and pectate lyase 

and cellulase in Serratia sp. ATCC 39006 (989, 1059). The production of prodigiosin 

(373), a reddish pigment described as a secondary metabolite (122) with a number of 

biological properties including antibacterial, antimalarial, antifungal and antiprotozoal 

activities (229, 1147), as well as potent immunosuppressive, proapoptic and anticancer 

properties (64, 654, 815, 816), is also controlled by quorum sensing (450, 989, 1059).
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The latter also directs the production of antibiotics in a number of Serratia species 

including S. plymuthica RVH1 (1088), S. marcescens strain 12 (196), and Serratia sp. 

ATCC 39006 (678, 679). This form of cell-to-cell communication has also been reported 

to control biofilm formation in S. marcescens MG1 (255, 575, 872).

3.1.4.3 Quorum sensing in pathogenic bacteria, a potential antimicrobial target?

Because quorum sensing regulates an array of biological functions including virulence 

factors in a number of pathogenic bacteria, it is considered as an ideal target for inhibition 

of infections by “ antipathogenic”  drugs which specifically inhibit bacterial virulence 

rather than kill or inactivate organisms (12). The principle of this approach is that 

interference with cell-cell signaling by a small molecule antagonist (quorum-sensing 

blocker), which competes for the signal molecule-binding site of sensor or transcriptional 

activator proteins would switch off virulence gene expression and so attenuate the 

pathogen (292). A number of quorum-sensing blockers have been reported (254, 353, 

445, 672, 1037, 1055), and promising results have been demonstrated in P. aeruginosa

(429, 430) and S. aureus (669).

3.1.5 Serratia and antimicrobial agents

3.1.5.1 Antibiotic resistance in S, marcescens

S. marcescens is naturally resistant to a many antibiotics, a large number of which are 

carried on multi-resistance R-plasmids. These plasmids are found almost exclusively in 

non-pigmented biotypes, and the lack of antibiotic resistance plasmids in pigmented S.

marcescens has been reported (327). In 1968, Medeiros and O’brien (416) studied the 

contribution of the R-factors to the multiple antibiotic resistance of Serratia. They 

reported that multiple drug resistance is more prevalent in Serratia than in any other 

commonly isolated member of the Enterobacteriaceae, and that the R-factors not only 

mediated resistance to drugs to which the strain was previously susceptible but also 

conferred additional degrees of resistance to drugs to which the organism was already
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resistant. Investigators also found that 95% of the multi-resistant isolates they studied 

transferred at least part of their resistance (416).

Stock et al. (1022) studied the natural susceptibility of 77 strains of S. marcescens and 41 

strains of the S. liquefaciens complex, to 70 antibiotics using micro-dilution procedure. 

They reported that all species were naturally resistant to benzylpenicillin, oxacillin, 

cefaclor, cefazolin, cefuroxime, numerous macrolides including erythromycin, 

roxithromycin and clarithromycin, lincosamides, streptogramins, glycopeptides, 

rifampicin and fusidic acid. Uniform natural sensitivity was found to most 

aminoglycosides, several acylureidopenicillins, ticarcillin, newer cephalosporins, 

carbapenems, aztreonam, quinolones and antifolates (1022). Differences in susceptibility 

to antibiotics between the Serratia species were also noted. For instance, in contrast to 

species of the S. liquefaciens group which were sensitive to all aminoglycosides, S.

marcescens was naturally sensitive and intermediate to netilmicin and tobramycin and 

less susceptible than S. liquefaciens to amikacin and ribostamycin. Moreover, S.

marcescens was the only species that was uniformly naturally resistant to tetracycline, 

amoxycillin, amoxycillin/clavulanate and loracarbef (1022). S. marcescens is also known 

to be highly resistant to polymyxin B. In a survey of 95 strains of S. marcescens, Wilfert 

et al. (1144) reported that all strains were not inhibited by a concentration of 100 pg/ml 

of polymyxin B. They were uniformly sensitive to gentamicin, and an apparent resistance 

to kanamycin and nalidixic acid among endemic strains was also noted. Antibiotic multi- 

resistant strains of S. marcescens have also been reported (1026).

3.1.5.1.1 Resistance to p-lactam antibiotics

Resistance to p-lactams in many Enterobacteriaceae including Serratia arises by a 

number of mechanisms. These include high level production of chromosomal Ambler 

class C-type cephalosporinase (565), acquisition of an Ambler class A extended-spectrum 

p-lactamase (1177), acquisition of metallo-P-lactamases (1177), decreased permeability, 

and efflux (404, 567, 1132). One of the most important factors contributing to resistance 

of S. marcescens to P-lactam antibiotics is the inducible overproduction of
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cephalosporinase (414). The production of the Ambler Class C P-lactamase (AmpC 

cephalosporinase) (876) encoded by the chromosomal ampC gene (773) in S. marcescens

has inducible expression conferring resistant to many narrow-spectrum cephalosporins 

(1022). Moreover overproduction of AmpC (414) as well as variants of the enzyme (652, 

775, 1180) were both linked to resistance of S. marcescens to expanded-spectrum 

cephalosporins including cefepime, ceftazidime, and cefpirome.

Acquisition of the Class B metallo-p-lactamases also confers resistance to expanded- 

spectrum cephalosporins (1177). The first plasmid-mediated carbapenemase was reported 

in P. aeruginosa (1127) and characterised as a class B metallo-p-lactamase (131). Ito et

al. (482) detected the bla\u?-\ gene coding the metallo-P-lactamase in S. marcescens in 

Japan. They noted that strains which acquired the plasmid mediated blam? gene were 

highly resistant to imipenem and were involved in nosocomial infections. Recently, Zhao 

et al. (1196) analyzed 19 imipenem-resistant S. marcescens clinical isolates. Six of these 

isolates were shown to contain the bla\M? and blajEu genes on a single plasmid, which 

were expressed constitutively. The investigation concluded that the IMP- and TEM-type 

p-lactamases play a critical role in the resistance of clinical isolates of S. marcescens to 

ampicillin, cefoxitin, cefotaxime, a limited role to imipenem, but are not responsible for 

the resistance to aztreonam.

Other mechanisms of resistance to P-lactams have also been identified in S. marcescens, 

including decreased membrane permeability as well as question of Amber Class A p- 

lactamases and other P-lactamases. Palomar et al. (786) investigated the effect of the O- 

side chain on the permeability of the S. marcescens outer membrane to p-lactam 

antibiotics. They found that O-side chain-defective spontaneous mutants of S. marcescens

had lower MICs for various p-lactam antibiotics compared with the wild type, and that 

the outer membrane permeability of the organism to these agents depended on the O- 

antigen. Naas et a I.(142) characterised the blasme-i gene of the carbapenem resistance S.

marcescens S6, which conferred resistance to carbapenems, penicillins, aztreonam, 

cefamandole, and cephalothin. Sequence alignment revealed that the carbapenem-
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hydrolyzing Sme-1 is a class A serine P-lactamase with 70% amino acid identity to the pi 

6.9 carbapenem-hydrolysing p-lactamase, NMC-A, from E. cloacae NOR-1.

3.1.5.1.2 Resistance to aminoglycosides

Resistance to aminoglycosides is acquired by bacteria by preventing the drug from 

reaching its target site in the ribosome in one of two ways: firstly, alteration in the cell 

envelope which renders the cell impermeable to the drug, and, secondly the drug itself 

can be modified by inactivating enzymes which adenylate, acetylate, or phosphorylate the 

aminoglycoside hydroxyl and amino groups (991). Drug modification is thought to be the 

more important and most effective, as alteration in the cell envelope usually confers only 

low level resistance to these agents.

The netilmicin-sensitive, gentamicin-resistant pattern of resistance seen in S. marcescens

is probably due to. the expression of the acetyltransferase AAC(3)-I, an enzyme that 

inactivates gentamicin but not tobramycin, netilmicin, or amikacin (829). The 

chromosomally-encoded 6'-A-acetyltransferase (AAC(6')-Ic) of S. marcescens which 

shows activity against amikacin, kanamycin, netilmicin and tobramycin (146), is also 

involved in aminoglycosides resistance. Although sensitive strains of S. marcescens

exhibit the naturally-occurring phenotype of a low level expression of AAC(6')-Ic (407), 

increased production of the enzyme leads to the development of resistance. Garcia et al.

(326) found that 90% of their S. marcescens isolates were gentamicin-resistant. Dot blot 

hybridization revealed that the aac(6’)-Ic gene was present in all the S. marcescens

isolates examined, and that it was the only amikacin resistance marker in 72% of these 

isolates. Moreover, the aac(6)-Ia and aac(6)-Ib genes encoding AAC(6’) activity were 

also found in a number of these isolates. Most of the S. marcescens isolates examined 

(70%), had a triple combination of enzymes AAC(3)-V, AAC(6’)-I and APH(3’)-I which 

caused resistance to gentamicin, amikacin, netilmicin and tobramycin.

161



3.1.5.1.3 Resistance to quinolones

Quinolones are effective antimicrobial agents against S. marcescens, and 90% of S.

marcescens isolates were reported to be inhibited by 0.13 pg/ml of ciprofloxacin (282). 

However, S. marcescens has been found to be resistant to a number of quinolones (555), 

a resistance that was reported shortly after the initial clinical use of these antibiotics 

(319). Masecar and Robillard (664) reported that quinolone resistance in a spontaneous S.

marcescens mutant was due to mutation in the DNA gyrase (gyrA) gene. Kim et al. (544) 

characterised the gyrA gene of S. marcescens ATCC 14756 and determined the mutations 

in the gyrA genes of several quinolone-resistant clinical isolates. They concluded that a 

mutational alteration in gyrA is a common mechanism of quinolone resistance in S.

marcescens.

Another important mechanism of resistance to quinolones is the decreased accumulation 

of the antibiotics inside the cell, as mediated by efflux pumps. Kumar and Worobec (567) 

reported a proton gradient-dependent efflux of fluoroquinolones as a resistance 

mechanism in S. marcescens, and identified a putative RND-pump encoding gene (sdeB).

In a later study, Kumar et al. (566) identified another RND-pump encoding gene sdeD, in 

three S. marcescens isolates and characterised the SdeAB RND family multidrug efflux 

pump. SdeAB was shown to pump out a diverse range of substrates that include 

fluoroquinolones, chloramphenicol, detergent, ethidium bromide, and organic solvents, 

and was over expressed in S. marcescens strains that are multidrug resistant.

3.1.5.2 Serratia and biocides

3.1.5.2.1 Biocide resistance in Serratia

Gram-negative bacteria resistance to biocides has been reported for many years. For 

instance, members of genera Pseudomonas, Proteus and Serratia were all shown to have 

relatively high resistance to tenside-based disinfectant, and could develop higher 

resistance if exposed to sub-inhibitory concentrations of these disinfectants (676). In 

addition, infections caused by biocide resistant organism such as S. marcescens and B.
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cepacia found in solutions of QACs and chlorhexidine have also been reported (796). 

However, very few studies have looked at the molecular basis of biocide resistance and 

susceptibility in these organisms including in the genus Serratia. One problem is 

determining whether a strain is resistant or sensitive to a particular antiseptic or 

disinfectant. Resistance to disinfectants is often used as a relative term in a scientific 

context. Russell (911) stated that microorganisms are said to be resistant if they are “not 

killed... by a disinfectant at a concentration used in practice, or if they are not killed by a 

concentration that kills the majority of cells in a culture or when a strain is not killed by 

an agent that kills similar strains at a specified concentration”.

Nosocomial outbreaks due to Serratia strains resistance to biocides, contamination and 

prolong survival in disinfectant and antiseptics have been reported. One common source 

of Serratia contamination is hand-washes and liquid soaps in medical environments such 

as hospitals. Sartor et al. (945) reported the extrinsic contamination of hospital soap 

bottles with S. marcescens which acted as a continuous source of the organism leading to 

many outbreaks of infections. They concluded that although the soap used, of which the 

active ingredients were triethanolamine laurysulfate and betalne, was marketed as 

bacteriostatic, it did support the growth of S. marcescens, and the application of strict 

disinfection measures were necessary to stop the S. marcescens outbreaks (945).

S. marcescens resistance to biocides has been shown as early as 1951, when Chaplin 

(150) studied bacterial resistance to QAC disinfectants. He reported that great QAC 

disinfectant resistance was readily acquired by S. marcescens and that apparently there 

was no limit to the finally tolerated concentration of the disinfectant. He was able to 

adapt a S. marcescens strain to tolerate a concentration of the compound 

alkyldimethylbenzyl ammonium chloride 1000 times its normal MIC for the bacterium. 

Chaplin (150) also noticed biochemical changes in the tolerant strain including decrease 

in electrophoretic mobility and that resistance was removed by treatment with lipase. He 

concluded that the acquired resistance to the QAC disinfectant was dependent upon the 

increase lipid content in the tolerant cells.
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S. marcescens contaminations of antiseptic and disinfectant solutions with QACs as 

active agents have been reported (949). Nakashima et al. (746) investigated outbreaks of 

the rare septic arthritis due to S. marcescens in an office practice. They determined that 

patients developed S. marcescens septic arthritis following joint injections where a 

contaminated canister of soaked cotton balls of the compound “Zephiran” was used for 

antisepsis and disinfection. Zephiran is an aqueous stock solution of the QAC 

benzalkonium chloride and was used for antisepsis and disinfection. Cotton amongst 

other materials have been shown to inactivate aqueous QACs after prolong contact (570), 

which may explain the survival of the epidemic S. marcescens strain. Investigators also 

concluded that contaminated multiple-dose vials of the steroid medication, 

methylprednisolone also known as “Depo-Medrol”, used in the joint injections might 

have played a key role in the S. marcescens septic arthritis outbreaks. The preservative in 

the latter product is y-myristyl picolinium chloride, an aqueous QAC.

In a follow up study, Nakashima et al. (746) investigated the epidemic strain of S.

marcescens further by comparing its growth characteristics and susceptibility to QACs 

with control strains obtained from unrelated nosocomial outbreaks. It was reported that 

the epidemic strain was able to tolerate 1:100 dilutions of benzalkonium chloride after 72 

h, and to grow in multiple-dose vials of methylprednisolone. Control strains on the other 

hand could not be recovered after 24 h in the same solutions. Investigators concluded that 

the epidemic strain of S. marcescens causing the septic arthritis outbreaks was resistant to 

low concentrations of the QAC benzalkonium chloride, and speculated that the strain was 

also cross-resistant to y-myristyl picolinium chloride, a compound chemically related to 

benzalkonium chloride.

Chlorhexidine and related biocides solutions contaminated by Serratia species have also 

been reported. Stickler and Thomas (1019) studied the sensitivity of Gram-negative 

organisms causing urinary tract infections to a number of antiseptics and disinfectants. 

They isolated S. marcescens with a chlorhexidine MIC value of 800 pg/ml, well above 

the level of 10-15 pg/ml originally reported to inhibit the growth of Gram-negative 

bacteria (219). In another study, Vigeant et al. (1092) reported an outbreak of nosocomial
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infections in a university tertiary-care hospital due to a S. marcescens contaminated 

alcohol-free chlorhexidine solutions. The contamination was suspected to be a result of 

change in the formulation of the chlorhexidine solution from a 4% solution with added 

isopropyl alcohol to one without alcohol. The solution was further diluted before use. 

They isolated S. marcescens from 84% of the chlorhexidine containers used in the 

hospital including from the used 4% undiluted solutions. They attributed 80% of S.

marcescens patients’ infections and colonization directly to the contaminated 

chlorhexidine solutions. Removing the contaminated chlorhexidine and reinstating the 

original alcohol containing formula resulted in cessation of the epidemic. Vigeant et al.

(1092) concluded that chlorhexidine without alcohol should not be used as an antiseptic.

A number of studies have reported that various contact lens solutions, especially 

formulations with chlorhexidine digluconate, are susceptible to contamination by S.

marcescens (4, 241, 668, 795). Gandhi et al. (323) investigated growth and physiological 

changes that allow S. marcescens to survive in contact lens disinfectant solutions 

containing chlorhexidine gluconate. The latter is commonly used at concentrations of 

0.05% in formulations for skin disinfectants. At this concentration, chlorhexidine 

digluconate has been reported to reduce the population of S. marcescens by greater than 

99.999% within 10 min (230). Contact lens solutions however, are usually formulated 

with only 0.005 to 0.006% concentrations of the chlorhexidine gluconate salt. Gandhi et

al. (323) reported that the S. marcescens isolates they studied were able to grow and 

persist in certain chlorhexidine-based disinfecting solutions recommended for rigid gas- 

permeable contact lenses. They postulated that S. marcescens adapts to chlorhexidine 

whereby initial exposure to the agent only damages the cells which then recover and 

adapt. These chlorhexidine-adapted cells had an MIC for chlorhexidine in saline 8-fold 

higher than non-adapted cells, and exhibited changes in the proteins of their outer 

membrane and increased adherence to polyethylene. Interestingly the chlorhexidine- 

adapted cells also persisted and grew in other contact lens solutions with different 

antimicrobial agents, including polyquatemium-1 and benzalkonium chloride (323).
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S. marcescens prolonged survival in chlorhexidine solutions has been demonstrated by 

Marrie and Costerton (662). They investigated numerous S. marcescens infections in a 

hospital, and found that contaminated chlorhexidine solutions were the source of the 

outbreaks. The organism was found to survive in chlorhexidine for over 27 months, and 

isolates from the contaminated solutions were morphologically abnormal showing cell 

wall disruption or cytoplasmic changes. S. marcescens clinical isolates were reported to 

have a chlorhexidine MIC value of 90 fig/ml, whereas strains from the contaminated 

stock solutions had an MIC value of 1,024 pg/ml and were able to survive in 

concentrations up to 20,000 pg/ml (662). In another study, Okuda et al. (779) reported 

that during a prolonged S. marcescens outbreak of nosocomial urinary tract infections, 

118 of their 1315. marcescens isolated were highly resistant to chlorhexidine with MIC 

that inhibited the growth of 90% of isolates ranging from 100 to 400 jig/ml. In addition to 

resistance to chlorhexidine, the strains were resistant to number of antibiotics including 

sulbenicillin, cefmetazole, gentamicin, and amikacin.

Lannigan and Bryan (582) investigated the mechanism of decreased susceptibility of S.

marcescens to chlorhexidine. They used the chlorhexidine gluconate resistant S.

marcescens strain 100 (1018) with a chlorhexidine MIC rage of 800-1000 pg/ml much 

higher than that of S. marcescens 303 or E. coli 400 which had MIC ranges of 10-20 

pg/ml and 1-25 pg/ml respectively (582). Based on the observation that chlorhexidine 

caused release of potassium ions from yeast cells (264), Lannigan and Bryan (582) 

investigated the release of these ions from the resistant S. marcescens 100 when exposed 

to specific concentrations of chlorhexidine. The results showed that whereas S.

marcescens 303 and E. coli 400 showed significant efflux of potassium when exposed to 

6 pg/ml chlorhexidine, the resistant strain, S. marcescens 100, did not. Spheroplast 

preparations of Serratia isolates were also tested for potassium efflux, and revealed that 

the presence of the outer membrane had little effect on potassium release. It was 

concluded that the mechanism of increased resistance of S. marcescens 100 to 

chlorhexidine was a change in the inner membrane (582).
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Contamination of triclosan formulations with Serratia has also been reported (49). 

McNaughton et al. (687) specifically described a case of Serratia infection due to 

intrinsically contaminated triclosan in infants in a newborn nursery. S. marcescens was 

isolated from the 0.5% triclosan soap that was used for admission baths and unopened 

bottles of the biocide. Although the effectiveness of 1.5% triclosan soap in eliminating S.

marcescens has been reported, especially following repeated use (50), in the case of the 

0.5% triclosan soap, the organism was clearly able to survive. As a result of the 

investigation, the soap was withdrawn from the hospital and replaced with non-medicated 

single-use bar soap, and no further cases of infection with S. marcescens were identified 

(687).

Reports of Serratia contamination of other biocide solutions included that by Bosi et al.

(88) who described S. marcescens nosocomial outbreaks in 16 patients attributed to 

contaminated hexetidine antiseptic solution. Stephen and Lalitha (1015), investigated 28 

S. marcescens strains during a two-month outbreak of infection in 17 obstetric patients 

and 11 newborns. The source of infection was attributed to a contaminated batch of 

cream containing cetrimide that was used during pelvic examination. Ehrenkranz et al.

(258) demonstrated S. marcescens contamination of the QAC disinfectant dimethyl 

benzyl ammonium chloride, which was sprayed before operations in a heart surgery 

room. Infections by the contaminating organism complicated the cardiopulmonary bypass 

operations and were shown to be able to grow in two to four formulations of the QAC 

disinfectant. Langsrud et al. (581) reported the isolation of strains of S. marcescens from 

disinfecting footbaths containing TEGO 103G (amphoteric disinfectant) or TP-99 (alkyl 

amino acetate-based disinfectant) in five of six dairy factories. These strains were not 

killed by the recommended in use concentrations of the disinfectants TEGO 103G, TEGO 

51 or benzalkonium chloride, but were eliminated with disinfectants based on peracetic 

acid, hypochlorite, QACs, and alkyl amino acetate. The ability of S. marcescens to 

survive and multiply in the in-use concentrations of disinfectants was attributed to 

disinfectant resistance.
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3.1.5.2.2 Molecular basis of biocide resistance and susceptibility in Serratia

One of the few studies which looked at the molecular basis of biocide resistance or 

susceptibility in Serratia, was that undertaken by Codling et al. (179). The authors used 

random transposon mutagenesis to investigate the genes involved in Serratia resistance to 

the QAC biocide, polyquatemium-1, used commercially in a contact lens disinfecting 

solution. Using the mini-Tn5Km2 transposon system, 92 S. marcescens mutants with 

increased susceptibility to polyquatemium-1 were isolated, because they failed to grow at 

sub-lethal concentration of the biocide. The genes dismpted by the transposon insertions 

were identified in 19 of the randomly chosen polyquatemium-1 susceptible mutants 

(Table 3.2). These genes fell into five major functional classes: membrane-associated 

(including efflux pumps and permeases), biosynthesis and metabolism, gene regulation, 

vimlence, and unknown function (179). The fact that several genes associated with cell 

membranes were dismpted in the susceptible mutants was not surprising as the QAC 

biocide has already been shown to damage the cytoplasmic membrane of S. marcescens

(180). Another interesting result of the study was that over 75% of the S. marcescens

polyquatemium-1 susceptible mutants exhibited decrease susceptibility to at least one 

antibiotic tested (Table 3.2). However, 36% of the susceptible mutants also showed an 

increased resistance to at least one of the following antibiotics; ciprofloxacin, ticarcillin, 

meropenem or trimethoprim (Table 3.2). These results suggested that antimicrobial 

resistance mechanisms in bacteria are often linked at the molecular level, and disruption 

of one of these mechanisms may influence not only biocide susceptibility but also 

antibiotic resistance patterns.

The molecular basis of Serratia resistance to formaldehyde has also been investigated. 

Resistance to this disinfectant has been reported in many bacteria especially in Gram- 

negatives such as members of the family Enterobacteriaceae and Pseudomonas species 

(523, 941, 1157). Kaulfers and Brandt (523) isolated a conjugative plasmid determining 

formaldehyde resistance in E. coli. This plasmid-mediated resistance was also 

demonstrated in a clinical strain of S. marcescens that was 4-6 times more resistant to 

formaldehyde than other strains. Conjugation, transformation and plasmid curing
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experiments demonstrated that the formaldehyde resistance in the S. marcescens strain 

was plasmid mediated and transferable to E. coli (525). This resistance was further 

investigated by Kaulfers et al. (524) where the authors examined the outer membrane of 

E. coli and S. marcescens strains both lacking and containing the resistance plasmid. 

They noticed that although there was no significant immunological difference in the 

lipopolysaccharide of the strains, sensitive variants had higher protein content in their 

outer membrane than the resistant strains, and had less surface hydrophobicity. Further 

investigations into the plasmid mediated formaldehyde resistance in E. coli VU3695 

revealed that cell extracts of latter and other formaldehyde-resistant strains of S.

marcescens, Citrobacter freundii, E. cloacae and K. pneumoniae, all showed 

formaldehyde dehydrogenase activities (941).

A later study by Kummerle et al (569) confirmed that the formaldehyde resistance 

mechanism in the formaldehyde-resistant E. coli VU3695 was based on the enzymatic 

degradation of formaldehyde by a formaldehyde dehydrogenase. They sequenced a large 

4.6 Kb plasmid DNA fragment containing the formaldehyde resistance gene from the E.

coli VU3695 strain, and demonstrated that it contained a single open reading frame 

(ORF) encoding a glutathione-dependent formaldehyde dehydrogenase (569). The latter 

is a member of the superfamily of zinc-containing alcohol dehydrogenases found in 

animal, plant, yeast, and bacterial cells (1081). In E. coli VU3695 clinical isolate, the 

gene conferring formaldehyde resistance was identified as the adhC gene located within 

the large self-transmissible plasmid pVU3695 (569). Further work suggested that E. coli

VU3695 contains 2 copies of the adhC gene, a chromosomal and a plasmid copy, which 

are actively expressed, with the latter being involved in resistance to exogenous 

formaldehyde (246). Furthermore, hybridization studies showed that formaldehyde 

resistant isolates of S. marcescens, E. cloacae, C. freundii, and K. pneumoniae harbor a 

gene highly related to that cloned from pVU3695 (526). Wollmann and Kaulfers (1157) 

used a large 4.1 Kb DNA fragment of the pVU3695 plasmid which contained the 

formaldehyde resistance gene as a probe against DNA from formaldehyde-resistant 

strains of S. marcescens, E. cloacae, C. freundii, and K. pneumoniae . DNA hybridization 

studies showed that all of the above strains hybridized with the DNA probe, indicating
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that the resistance gene in E. coli pVTJ3695 and other formaldehyde-resistant 

Enterobacteriaceae have high degree of homology.
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Table 3.2. Disrupted genes in the polyquaternium-1 susceptible S. marcescens transposon mutants. Adapted and modified from 
Codling et al. (179).

Mutant Disrupted gene Decreased MICs Increased MICs

SM2 Hypothetical unknown PIP, TMP
SM3 UDP-galactose-4-epimerase PIP
SM4 Hypothetical unknown AMP, PIP
SM5 Transcriptional regulator PIP
SM6 Membrane protein CIP
SM8 Hypothetical unknown TIC
SM10 Sugar binding or transport AMP, PIP, TMP
SM12 ATP-binding component of amino acid transport system AMP, CHL, PIP
SM14 Microcin H47 secretion protein CIP
SM15 Transcriptional regulator MEM
SM16 Hypothetical unknown PIP
SMI 8 Hypothetical unknown AMP, CHL, PIP, TMP
SM19 Serralysin (metalloprotease) AMP, CHL, PIP
SM20 ArgD (aminotransferase) AMP
SM22 Periplasmic murein peptide-binding protein AMP, CHL, PIP, CIP
SM24 Arylsulphatase AMP, CHL
SM25 Long chain fatty acid CoA ligase AMP, CHL, MEM, PIP
SM27 Transporter transmembrane protein AMP, CHL, PIP, CIP
SM28 Inner membrane protein, tolerance to colicin E2 TMP

AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; MEM, meropenem; PIP, piperacillin; TIC, ticarcillin; TMP, trimethoprim.
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3.2 AIMS

The main aim of this study was to determine the molecular basis of biocide 

susceptibility and resistance in S. marcescens. This was to be achieved by:

a) Examining the susceptibility of the model S. marcescens strain Dbll to 

biocides (o/t/zo-phthalaldehyde, triclosan, cetylpyridinium chloride, and 

chlorhexidine diacetate) and antibiotics.

b) Using transposon mutagenesis to generate random S. marcescens Dbll 

mutants and subsequently screening these mutants to isolate biocide 

resistant/sensitive derivatives.

c) Evaluating the level of susceptibility of the isolated mutants to the four 

biocides described above using agar and broth MICs and lethality tests.

d) Using the DNA sequence flanking each transposon in the mutant to identify 

the disrupted gene by correlation to the S. marcescens D bll genome 

sequence, and confirming the result by complementation.

e) Comparing the antibiotic profiles of the wild type S. marcescens D bll with 

those of the biocide mutants to determine any cross-susceptibility between 

biocides and antibiotics.

The overall hypothesis was that gene transposon mutagenesis would enable the 

molecular basis of biocide resistance or susceptibility in S. marcescens D bll to be 

determined. The complete experimental strategy to be followed is outlined 

schematically in Figure 3.1.

172



MODEL ORGANISM

S. marcescens Dbl 1

ISOLATION OF MUTANTS

Transposon mutagenesis using 
mini-Tn5Km2 transposon

BIOCIDES AND ANTIBIOTICS +
SUSCEPTIBILITY PROFILES

• Agar MICs
• Broth MICs
• lethality/killing tests
• Potassium leakage test

^  BIOCIDES AND ANTIBIOTICS
SUSCEPTIBILITY PROFILES

• Agar MICs
• Broth MICs
• lethality/killing tests
• Potassium leakage test

MOLECULAR BASIS FOR BIOCIDE SUSCEPTIBILITY &
RESISTANCE

Identification and confirmation of disrupted genes using PCR, DNA 
sequencing, bioinformatics, and complementation

Figure 3.1. Experimental strategy used in the current study.

The experimental strategy used in this study was divided into three major sections: Firstly, biocide and 
antibiotics susceptibility profiles were to be determined for the model organism S. marcescens Dbll. 
This was to be achieved by evaluating agar and broth MICs, the killing effect of biocides, the amount of 
potassium leaked from biocide-treated cells, and determining the agar MICs for selected antibiotics. 
Secondly, transposon mutagenesis using mini-Tn5Km2 transposon was to be used to generate and 
isolate biocide mutants of S. marcescens Dbl 1. The biocide susceptibility profiles of these mutants were 
to be determined as for the wild type S. marcescens Dbl 1. Agar MICs of selected antibiotics were also 
to be determined for the biocide mutants to find out whether change in susceptibility to biocides had an 
effect on antibiotic sensitivity. Thirdly, the molecular basis of the phenotypic change in the biocide 
mutants was to be determined by identification of the transposon-disrupted gene in the mutant’s genome 
using molecular techniques including PCR, DNA sequencing and bioinformatics. The results were to be 
confirmed by complementation analysis.
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3.3 MATERIALS AND METHODS

3.3.1 Media, bacteria, and plasmids

3.3.1.1 Strains and plasmids

Bacteria strains and plasmids used in this study are described in Table 3.3.

Table 3.3. Bacterial strains and plasmids.

Strain or plasmid Reference/ catalogue
number

Comments

Strains

Serratia marcescens Dbl 1 (298) A spontaneous mutant o f a non-pigmented S.
marcescens strain isolated from Drosophila
melanogaster

Escherichia coli S17.lA.pir Cardiff collection Containing the delivery vector pUT, carrying
mini-Tn5Km2 transposon

Escherichia coli Dh5a Containing pURF047 cloning vector

Escherichia coli
OmniMax™2 T1 phage
resistant

Invitrogen Corporation,
Paisley, UK

Cloning strain used for transformation with
the SABE constructs and subsequent transfer
to S. marcescens Dbl 1 mutants

Escherichia coli NCTC 1048 Reference strain

Escherichia coli HB101 (290) Containing mating “helper plasmid”
pRK2013, KANr, Tra+, Mob+, ColEl replicon

Plasmids

pUT delivery vector (223) Carrying mini-Tn5Km2 transposon

pURF047 (1034) IncW, AMPr, GENr, Mob_, lacZ_, Par_,
derivative o f pURF043

SABYLompA This study pURF047:\ompA

SABE ndpA This study \>\JKE0Al::ndpA

KAN; kanamycin, GEN; gentamicin, AMP; ampicillin, r; resistance
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3.3.1.2 Media and growth condition

Both TSB (Difco) and LB broth were used to grow S. marcescens cultures and the E.

coli strains, S17.1Apir, NCTC 10418, and Dh5a. In the case of E. coli S17.1A,pir the 

liquid medium was supplemented with 30 pg/ml KAN, and with 10 pg/ml GEN in the 

case of Dh5a::pURF047 strain. In mating experiments, SOB medium was also used 

(SOB: 20 g bacto-tryptone, 5 g bacto-yeast extract, 0.5 g NaCl, 2.5 ml 1 M KC1, 10 

ml 1 M MgCl2, 900 ml H2O, pH 7). Growth on solid agar was achieved using TSA 

(Difco). When required, both solid and liquid media used to grow S. marcescens and 

E. coli S17.1Apir were supplemented with the appropriate concentration of antibiotic. 

Unless mentioned otherwise, all bacteria were grown at 37°C. Freezer stocks of 

bacterial strains were prepared by addition of 8% (v/v) DMSO (Fisher Scientific) to a 

fresh suspension of bacteria. Strains were stored at -80°C.

3.3.2 Bacterial growth

Growth of bacterial strains was quantified using viable count and by the measurement 

of optical density. The principles of these methods are outlined in sections 2.3.4 and

2,3.5 respectively. Growth characteristics of bacteria in broth were determined by 

growth curves showing the change in OD readings at 630 nm of the cultures over time 

(section 2.3.5). The relationship between OD and viable counts for bacterial strains 

was also determined and the method was as outlined in section 2.3.6.

3.3.3 Antimicrobial agents

The biocides used in this study were triclosan, chlorhexidine diacetate, 

cetylpyridinium chloride, and or/Zzo-phthalaldehyde. Biocide solutions were prepared 

fresh on the day as outlined in section 2.3.7. Antibiotics used in this study were 

kanamycin (KAN), gentamicin (GEN), and polymyxin B (PXB) (Sigma Aldrich, 

Gillingham, UK). Stock solutions of these antibiotics were prepared in deionised 

water, filter sterilized, and stored at -20°C. E-test strips (AB Biodisk, Bio-Stat Ltd) 

containing amikacin (AMK), azithromycin (AZM), chloramphenicol (CHL), 

ciprofloxacin (CIP), tobramycin (TOB), trimethoprim/sulfamethoxazole (SXT),
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meropenem (MEM), ceftazidime (CAZ), imipenem (IPM), and piperacillin (PIP) were 

also used.

3.3.4 Biocides MICs determination

Biocides MICs were determined in both liquid and solid media. Biocide solutions 

were made up fresh on the day of use as described in section 2.3.7, and diluted to the 

required concentration of use. For MIC determination in liquids, 96-well plates were 

filled with growth medium containing the appropriate concentration of biocide tested. 

A culture of the organism to be tested was diluted to an OD of 0.5 (~ 108 cfu/ml) and 

used to inoculate the 96-well plates using a multi-inoculator. The plates were then 

incubated at 37°C overnight. Inhibition of growth was determined by reading the OD 

of cultures at 630 nm using an automated plate reader and comparing the results 

against controls grown in the absence of the biocide. Broth MICs were taken as the 

minimal concentrations of biocides that had mean OD values which showed no 

statistically significant difference from the mean value of the blank. MIC of DMSO 

for the tested organisms was also determined in broth as described above to evaluate 

DMSO toxicity on the organisms. Similarly, MICs on agar were determined using 

TSA plates containing the appropriate concentrations of biocides, inoculated with 

bacterial cultures of OD630nmOf 0.5, and observing inhibition of growth after overnight 

incubation at 37°C.

3.3.5 Determination of biocides lethal effects

The lethal effects of triclosan, orf/zo-phthalaldehyde, cetylpyridium chloride and 

chlorhexidine diacetate on suspensions of S. marcescens were determined as follows:

3.3.5.1 Preparation of cell suspensions

S. marcescens cultures were grown overnight at 37°C. Cells were then washed twice 

in 0.85% saline after collection by centrifugation at 3000 rpm for 10 minutes, to 

remove culture media which might interact with the test biocides. The cells were 

resuspended in 0.85% saline and diluted to an OD630nm of 0.5 (~ 6.108 cfu/ml).
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3.3.5.2 Controls and neutraliser tests

A) Sterile deionised water control

Sterile deionised water was used as a general control. A 100 pi of the washed cells 

suspension prepared in section 3.3.5.1, were added to 900 pi of sterile deionised 

water. The suspension was left for 5 minutes then a viable count was performed on 

the suspension.

B) The neutraliser effect test

To ensure that the neutraliser used to terminate biocide activity was not toxic to the 

tested organism, 100 pi of the washed bacterial suspension (section 3.3.5.1) was 

added to 900 pi of the neutraliser and left for 5 minutes. Viable counts were 

performed on the suspension and the number of viable cells was compared to that of 

the sterile deionised water control.

C) The neutraliser efficiency test

To ensure that the neutraliser being used was effective at terminating the activity of 

the biocides tested, 100 pi of biocide at a lethal concentration to the bacteria tested 

was added to 800 pi of neutraliser. A 100 pi of the washed cells (section 3.3.5.1) was 

then added to the mixture and left in contact with the biocide and the neutraliser for 5 

minutes. Viable counts were performed on the suspension and the number of viable 

cells was compared to that of the sterile deionised water control. The following 

neutralises were tested for efficiency and effect on cells: 0.75% azolectin in 5% 

Tween 80, 0.5 % (w/v) sodium bisulphite and 5% (w/v) glycine. The neutraliser that 

was most efficient at terminating the activity of the test biocide while having the least 

effect on the test cells was used for further suspension test experiments.

3.3.5.3 Suspension (killing) tests

The lethal effects of triclosan, ort/zo-phthalaldehyde, cetylpyridium chloride and 

chlorhexidine diacetate on suspensions of S. marcescens Dbll  were determined by 

transferring 100 pi of the washed cell suspension (section 3.3.5.1) into 900 pi of 

biocide. The cells were left in contact with the biocide for a set period of time (5, 10, 

20 and 30 min) at room temperature. After the contact period ended a 100 pi of the
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suspension (cells and biocide) was transferred into 900 pi of the appropriate 

neutraliser to terminate the activity of the test biocide. Triclosan, cetylpyridium 

chloride, and chlorhexidine diacetate were neutralised in 0.75% azolectin in 5% 

Tween 80, while or^o-phthalaldehyde was neutralised in 5% (w/v) glycine. The 

suspension was left for a further 5 min then the viable cells enumerated on TSA. The 

number of viable cells was compared to a control whereby the biocide was replaced 

with sterile deionised water. The biocide lethal effect on the cells was expressed as a 

logio reduction in cell number as follows: 

logio reduction in cell number = Log Nc -Log Nt

where Nc and Nt represent the number of cfu/ml in the control and the biocide test 

solutions.

3.3.5.4 DMSO toxicity test

As both triclosan and or/Zzo-phthalaldehyde were dissolved in DMSO, DMSO toxicity 

to the cells was also determined. The maximum concentration of DMSO used in this 

study was 2%. A 100 pi of cells suspension prepared in section 3.3.5.1 was put in 

contact with 900 pi of a 6% DMSO solution, and a viable count on the cells was 

performed after 5, 10, 20 and 30 min exposure. The logio reduction in number of 

cfu/ml in the cell suspensions was calculated and compared to a control to determine 

the effect of DMSO on cells.

3.3.6 Determination of potassium leakage

The amount of potassium leakage from bacterial cells exposed to biocides was 

measured using an atomic absorption spectrophotometer. The method was adapted 

from that used by Suller and Russell for measuring triclosan-induced cytoplasmic 

membrane damage via potassium leakage (1031). Briefly, cultures were grown on the 

surface of TSA plates at 37°C for 24 h. Cells were then emulsified in 5 ml of 0.9% 

NaCl (Sigma Aldrich, Gillingham, UK), washed three times by centrifugation and 

resuspended in the appropriate volume of 0.9% NaCl to give a bacterial concentration
o

of ~ 6.10 cfu/ml. The cells were then exposed to the appropriate concentration of 

biocide for a specific period of time. The suspensions were then filtered through a 0.2 

pm cellulose nitrate filter (Sartorius, Gottingen, Germany) to remove cellular
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material. The potassium concentration in the supernatant was then measured using an 

atomic absorption spectrophotometer. As a negative control, cells were incubated in 

biocide-free NaCl solution, and the potassium concentration in the supernatant was 

measured.

3.3.7 Antibiotic MICs determination

Antibiotic MICs for bacteria were determined using E-test on TSA agar according to 

the manufacturer’s instructions (AB Biodisk, Bio-Stat Ltd). Briefly, organisms to be 

tested were grown in TSB overnight at 37°C as described in section 3.3.1.2. When 

Serratia transposon mutants were tested, TSB was supplied with kanamycin to a 

concentration of 100 pg/ml. Cells were then washed twice by centrifugation at 3000 

rpm for 10 min to remove culture media, which might interact with the test antibiotic. 

An inoculum of approximately 108 cfu/ml was then obtained by serial dilution in 

0.85% saline. A sterile swab was immersed into the cell suspension, excess culture 

was removed, and the culture was then spread evenly in three directions across a well 

dried TSA agar plate. Plates were then left to dry for 15 min at room temperature, 

prior to the application of the E-test strip onto the agar surface. Plates were then 

incubated for 24 h at 37°C and analysed. Determination of the antibiotics MICs by E- 

test were performed in triplicate whenever possible, and the MICs were interpreted at 

the point of intersection between the inhibition zone and the E-test strip (Chapter 2, 

Figure 2.4).

3.3.8 Nucleic acid extraction and manipulation

3.3.8.1 Genomic DNA extraction

Three methods were used for DNA extraction from bacteria: the chelex 100 resin 

method, the boiling method, and the lysis and salting out method. Principles of the 

first two methods are outlined in section 2.3.11.1. DNA extraction using the lysis and 

salting out method was as follows.

Cultures used for isolating genomic DNA were grown overnight in 3 ml of the 

appropriate broth at 37°C. The bacterial suspension was centrifuged for 10 min at 

3000 rpm and the pellet thoroughly resuspended in 100 pi of TE buffer (10 mM Tris-
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Cl pH 8, 10 mM EDTA pH 8). A 100 pi of the resulting suspension was added to 500 

pi of lysis buffer (1% SDS, 50 mM Tris-Cl pH8, 50 mM EDTA pH 8) containing 0.5 

mg/ml pronase, contained in 2 ml screw cap tube with about 500 pi of 0.1 mm 

diameter washed glass beads. The tube was then placed in a mechanical beater at 

(speed setting 25) for 10 sec prior to incubation at 37°C for 60 min. The tube was then 

centrifuged at 13000 rpm for 1 min to pull down the formed bubbles and 200 pi of 

saturated ammonium acetate was added to the lysate and mixed by pulsing on bead- 

beater for 5 sec at (20 speed). The tube was then centrifuged at 13000 rpm for 1 min 

to pull down the formed bubbles and 600 pi of chloroform was added to the lysate. 

The tube was pulsed on bead-beater for 5 sec at (20 speed) to mix then centrifuged at 

13000 rpm for 3 min. Following centrifugation the top, clear, aqueous phase of the 

lysate (~ 400 pi) was removed to a clean sterile 1.5 ml Hi-Yield micro-tube 

containing 1 ml 100% ethanoL The tube was inverted several times to mix until an 

observable DNA cloth was obtained. DNA was collected by centrifugation at 13000 

rpm for 5 min, and the pellet washed in 500 pi of 70% ethanol. All the ethanol was 

removed and the resulting DNA pellet was dried under vacuum for 10 min. DNA was 

then dissolved in either 300 pi TE (10 mM Tris-Cl pH8, 0.1 mM EDTA), or 300 pi 

sterile polished water both containing 0.5 pg/ml RNase (Sigma-Aldrich Ltd, UK) and 

incubated at 37°C for 1 to 2 h. DNA was stored at 4°C or deep-frozen at -20°C prior to 

further use.

3.3.8.2 Plasmid DNA preparation

Plasmid DNA was extracted from bacterial cultures using The Wizard® plus DNA 

purification system. The Wizard® plus SV mini-prep DNA purification system was 

used according to the manufacturer’s instruction (Promega Biosciences Inc, 

Couthampton, UK) to prepare plasmid DNA from 5 ml bacterial cultures. Plasmid 

DNA extraction using the standard alkaline lysis method, which principles are 

outlined in section 2.3.11.2, was also used

3.3.8.3 RNA extraction

RNA was extracted from cells in their mid-log phase of growth as follows. Bacteria 

were grown in the appropriate growth medium until they reached their mid-log phase
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of growth. The suspensions were then diluted to an OD of 0.5 at 630 nm to achieve
8  Iequal number of cells (~ 6.10 cfu/ml). The cells were then harvested by 

centrifugation (5000 g) for 5 min at 4°C and the supernatants completely removed. 

The cells were then snap frozen in liquid nitrogen and left at -80°C overnight. The 

following day, the bacterial pellets were loosened by flicking the bottom of the tubes 

and resuspended in 100 pi of TE buffer containing 1 mg/ml lysozyme. A 350 pi of 

buffer RLT (Qiagen Ltd, UK) was added to the samples, mixed thoroughly by 

vortexing and then 250 pi of 100% ethanol was added. The samples were mixed 

thoroughly by pipetting before being applied to the specialised RNeasy mini columns 

placed in a 2 ml collection tube (Qiagen Ltd, UK). The samples were then centrifuged 

at 8000 g  for 15 sec and the flow-through discarded. A 700 pi of buffer RW1 (Qiagen 

Ltd, UK) was then added to the samples which were then centrifuged at 8000 g  for 

another 15 sec. The RNeasy columns were then transferred into a 2 ml collection tube 

and 500 pi of buffer RPE (Qiagen Ltd, UK) was added, followed by a centrifugation 

step at 8000 g  for 2 min. The RNeasy columns were transferred into new 1.5 ml 

collection tubes and RNA was eluted by the addition of 30 pi of RNase-free water 

directly onto the RNeasy silica-gel-membranes of the columns, and centrifugation at 

8000 g  for 1 min. RNA samples were stored at -20°C for further use.

3.3.9 Whole cell protein extraction and analysis

Whole cell protein was extracted from cells and analysed using protein gel 

electrophoresis system and reagents (Bio-Rad Laboratories Ltd, Hertfordshire, UK) 

according to the manufacturer’s instructions. Briefly, overnight suspensions of cells 

were centrifuged at 3000 rpm for 10 min and the pellet resuspended in phosphate 

buffered saline (PBS) to an OD of 1 at 600 nm. A 1 ml of the resuspension was then 

transferred into a 1.5 ml micro-tube, centrifuged at 13000 rpm for 2 min, then 

resuspended in 250 pi PBS. A 100 pi of the resulting suspension was then mixed with 

33 pi of 4X XT sample buffer (Bio-Rad Laboratories Ltd, Hertfordshire, UK) and 6.6 

pi of 20X XT reducing agent (Bio-Rad Laboratories Ltd, Hertfordshire, UK). Varying 

dilutions of the cell suspension in PBS were also used as appropriate to determine the 

dilution that gives the optimum clearly visible protein profile on gel. The mixture was 

boiled for 5 min in a water bath, centrifuged at 13000 rpm for 3min to removed 

cellular debris and the supernatant was placed into a clean 1.5 ml micro-tube. The

181



protein samples were loaded into the gel according to the manufacturer’s instructions 

(Bio-Rad Laboratories Ltd, Hertfordshire, UK) and run in 10X Tris/glycine/SDS 

running buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% SDS) (Bio-Rad 

Laboratories Ltd, Hertfordshire, UK) at 80 volts for 1 hr. The gel was then stained 

with Bio-Safe coomassie strain according to the manufacture’s instructions (Bio-Rad 

Laboratories Ltd, Hertfordshire, UK). A precision Plus dual colour protein standard 

was used for sizing (Bio-Rad Laboratories Ltd, Hertfordshire, UK).

3.3.10 Polymerase chain reaction (PCR)

PCR primers and target DNA for amplification are listed in Table 3.4. Primers were 

ordered from MWG Ltd Biotech (Milton Keynes, UK). The primers were dissolved to 

100 pmol/pl in accordance with the manufacturer’s instructions, then checked on an 

agarose gel. Novel primers designed in this study were generated using “primer 3” 

software (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3 www.cgi) or 

designed manually. Regions of DNA were amplified using the polymerase chain 

reaction (933) as described by Sambrook et al (936). Unless otherwise stated, PCR 

amplifications were performed using Promega PCR kit reagents (Promega corporation 

Inc, Southampton, UK), and in a standard 25 pi reaction mixture containing PCR 

buffer (IX manufacturer’s stock), 1.5 mM MgC^, 200 pM of each of the 

deoxynucleotide triphosphates (dNTPs: dATP, dCTP, dGTP, dTTP), 1 unit of Taq 

polymerase, 5 to 10 pmol of each forward and reverse primers and roughly 10-50 

ng/pl of DNA template. Both a positive (template DNA) and negative (sterile 

polished water) control were included to confirm amplification of the correct DNA 

sequence. DNA amplification was carried out with a MJ Research PTC-200 Thermal 

cycler using block control and a heated lid. The standard reaction program consisted 

of initial 5 to 10 min DNA denaturation at 94°C as appropriate, followed by 30 cycles 

of 30 sec to 1 min denaturation at 94°C, 30 sec to 1 min of primer annealing at the 

appropriate temperature (Table 3.4), and a 1.5 to 3 min elongation step at 72°C. The 

process was terminated by a final elongation stage for 5 min at 72°C. Specific 

conditions used for non-standard PCR are stated in the appropriate section.

Randomly amplified polymorphic DNA (RAPD) analysis was performed on the S.

marcescens Dbl 1 transposon mutants to confirm that they were all the same strain of

182

http://www.cgi
http://www-genome.wi.mit.edu/cgi-bin/primer/primer3


Serratia. The analysis was performed using primer 270 (644) (Table 3.4), and results 

confirmed using primer 272 (644) (Table 3.4). The RAPD PCR reaction mixtures (25 

pi) were set up as described above, containing PCR buffer, 1.5 mM MgCl2, 200 pM 

of each of the deoxynucleotide triphosphates (dNTPs), 1 unit of Taq polymerase, 40 

pmol of primer 270, or 272, and roughly 10-50 ng/pl of DNA template. DNA was 

extracted from bacteria using chelex method (sections 2.3.11.1.1). DNA from the S.

marcescens Dbll,  S. marcescens Dbll  transposon mutants, and E. coli S17.Rpir 

were included in the analysis. DNA simplification was carried out with a MJ Research 

PTC-200 Thermal cycler using block control and a heated lid and consisted of two 

steps. Step 1 consisted of initial 5 min DNA denaturation at 94°C, followed by 4 

cycles of 5 min denaturation at 36°C, 5 min of primer annealing at 72°C, and a 5 min 

elongation step at 94°C. Step two consisted of 30 cycles of initial 1 min DNA 

denaturation at 94°C, followed by 1 min denaturation at 36°C, 1 min of primer 

annealing at 72°C, and a 1 min elongation step at 72°C. The process was terminated 

by a final elongation stage for 10 min at 72°C. RAPD products were then separated by 

electrophoresis (section 2.3.12) in 1.5% agarose gels at 100 volts for 3 h. After the 

gels were stained and photographed, the RAPD fingerprints were analyzed by eye to 

determine similarities.
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Table 3.4. Details of the PCR primers and DNA targets used in this study.

Primer Sequence 5’- 3’ Product
size (bp)

Annealing
temperature

Specificity/ use Reference
/source

NPTII F
NPTIIR

CTTGCTCG AGGCCGCG ATT AAATT
TTCCATAGGATGGCAAGATCCTGG

676 61°C
61°C

Amplify the nptll kanamycin
resistance gene.

(498)

Primer 270
Primer 272

TGCGCGCGGG
AGCGGGCCAA

See section
3.3.10

RAPD analysis (644)

Primer 1
Primer 2a
Primer 2b
Primer 2c
Primer 3
Primer 4

TTTTTACACTGATGAATGTTCCG
GGCC ACGCGTCG ACT AGT ACNNNNNNNNNN AG AG
GGCCACGCGTCGACTAGTACNNNNNNNNNNACGCC
GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT
CGGATTACAGCCGGATCCCCG
GGCCACGCGTCGACTAGTAC

See section
3.3.12

Amplify the mini-Tn5Km2 insertion
junction in the S. marcescens Dbl 1
mutants chromosome

(655)

ompAF
ompAR

GCTACCCAATTGCTGACGAT
AGCCCTGAGGCTGAGTTACA

743

LSI 
LA

o 
o

o 
o

o 
n Amplify within the ompA gene. This study

ompAFEco
ompAREco

TATTATGAATTCTTGGCAAAGATCCCAAG *
TTATTAGAATTCTCGGCTGGTTGCCTGAG *

2417 50°C
50°C

Amplify the ompA gene with ZscoRI
tails for cloning.

This study

ndpA-F-Bam
ndpA-R-Bam

TATAGGATCCCGACGACATGCTGAAGGC **
TATA GGATCCCACACCACCGGATTGAGG **

2739 58°C
58°C

Amplify the ndpA gene with BamRl
tails for cloning

This study

* ZscoRI tails are shown in bold and underlined

** BamHl tails are shown in bold
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3.3.11 Mutant generation and screening

3.3.11.1 Conjugational transfer of plasmids to S. marcescens

The method used was modified from Lewenza et al. (602). Overnight cultures of both 

donor and recipient strains, E. coli S17.1Apir and S. marcescens Dbl 1 respectively, were 

grown in SOB medium (section 3.4.1.2) at 37°C. The cultures were then centrifuged at 

2000 rpm for 5 min and washed with SOB medium. The washing was repeated a second 

time, then cultures were resuspended in 3 ml of LB broth. In a new sterile tube, 1 ml of 

each of the donor and recipient bacteria were mixed. 100 pi of the mixed E. coli and S.

marcescens strains were spotted onto sterile 0.2 pm pore-size nitrocellulose filters 

(Whatman, Miadstone, UK), placed on TSA containing 10 mM MgS04, and incubated 

for 5 h at 37°C. The donor and recipient strains were also spotted individually as 

described above for controls. After incubation, the filters were removed from the plates 

and the cells resuspended in 1 ml of LB broth. The cells were spread plated (100 pi per 

plate) onto TSA agar plates containing 100 units/ml PXB (to select for S. marcescens and 

kill E. coli) and 100 pg/ml KAN (to select for cells containing mini-Tn5Km2). The plates 

were incubated for 24 h at 37°C and then checked for transconjugants. Viable counts on 

the S. marcescens recipient were carried out as described in section 2.3.4 to determine the 

frequency of transconjugation.

3.3.11.2 Mutants screening and isolation of biocides sensitive/resistant mutants

Out of the transconjugants that grew on the selective TSA plates after 24 h, 6000 colonies 

were picked into 96-well plates containing 150 pi LB with 100 pg/ml KAN and 

incubated overnight at 37°C. The following day the appropriate volume of DMSO to 

make up 8% of the total culture volume in each well was added and the plates were 

stored at -80°C. Triclosan, cetylpyridium chloride, chlorhexidine diacetate, and ortho-

phthalaldehyde sensitive mutants were isolated by replica plating from the 96-well plates 

onto first master TSA plates containing 100 pg/ml KAN and onto selective TSA plates 

with 100 pg/ml KAN and containing different screening concentrations of biocides
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(Chapter 2, Figure 2.7). These were as follows: triclosan at 2500, 3000, 3500, and 4000 

|ig/ml, or/Ao-phthalaldehyde at 2400, 2800, 3000, and 3200 pg/ml, cetylpyridium 

chloride at 50, 70, 90, and 110 pg/ml, chlorhexidine diacetate at 10, 14, 18, and 26 pg/ml. 

After overnight incubation at 37°C, those mutants that grew on the master TSA/KAN 

plates but not on the selective, biocides containing plates, were picked, re-plated, and 

stored in TSB containing 8% DMSO at -80°C. Colonies that grew at higher biocide 

concentrations were also isolated for probable resistance. These mutants were further 

characterised along with two random mutants which showed no changes in sensitivity to 

any of the biocides and which were used as controls.

3.3.12 Identification of disrupted genes

The site of insertion of the mini-Tn5Km2 transposon into the biocide mutants was 

determined by sequencing the transposon-chromosome insertion junction. This was 

achieved by a two stage PCR which was adapted from a previously described method 

(655), which uses a two modified primers 1 and 3 (Table 3.4) which were re-designed 

(498) to target the primers to mini-Tn5Km2. The method also included alterations to 

accommodate the use of three second primers (2a, 2b, and 2c) (Table 3.4) simultaneously 

in a multiplex PCR reaction to increase the chance of amplifying the target gene 

sequence. Figures 3.2 and 3.3 show a schematic of the principles of the two stage PCR 

reaction and the reaction conditions respectively.

The resulting PCR products were purified using the QLAquick PCR purification kit 

according to the manufacturer’s instructions (Qiagen Ltd, UK). The products were then 

sequenced using sequencing reactions using 1.6 pmol of primer 3 with Applied 

Biosystems Big Dye Terminator ready reaction mix version 3.1 and analysed using an 

ABI-PRISM 3100 Genetic Analyser capillary electrophoresis system running 

Performance Optimised Polymer 6 (POP-6) according to the manufacture’s instructions 

(Applied Biosystems, Foster City, CA, USA). The transposon sequence was then 

removed and the chromosome sequence at the point of insertion was obtained. This
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sequence was then used along with A rtem is software (929) to pinpoint the exact location 

o f insertion o f  the transposon into the S. marcescens Db 11 genome (Appendix I).

Transposon
Chromosome

3 1

Figure 3.2. PCR am plification o f the mini-Tn5Km2 transposon insertion junction.

In the first PCR reaction, chromosomal DNA is amplified using primer 1 (transposon 
specific) and primer 2 (degenerate mixture designed to hybridize at any site in genome, with a 
unique 5 ’ end sequence). In the second PCR reaction, theproduct o f  first PCR is amplified 
using primer 3 (transposon specific) and primer 4 (hybridizes to the unique sequence 
introduced at the end o f  primer 2). The result is the amplification o f  the transposon- 
chromosome junction
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1st PCR

95°C 5 min

2nd PCR

X8

X30

94 C 30 sec

39 C 35 sec

72 C 45 sec

95 C 5 min

94°C 30 sec

43 C 35 sec

72 C 45 sec

Final hold 4UC

X30

Final hold 4UC

94 C 30 sec

95 C 2 min

72 C 45 sec

Figure 3.3. Two step PCR reaction used to amplify and sequence the mini-Tn5Km2
transposon insertion in S. marcescens D bll genome (655).

PCR protocol for the first and second PCR reactions (Figure 3.2) used to amplify the 
mini-Tn5Km2 transposon-chromosome junction in the S. marcescens Dbl 1 mutants.
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3.3.13 Complementation of mutants

Biocide mutants with disrupted genes identified were complemented as follows:

3.3.13.1 Cloning vector extraction and primer design for mutated genes

Plasmid pURF047 was chosen to be used as a vector for complementation in S.

marcescens. The plasmid was extracted from E. coli DH5a using The Wizard® plus SV 

mini-prep DNA purification system as described in section 3.3.8.2. The wild type 

sequences of transposon-mutated genes to be complemented were analysed using 

DSGene (Accelrys Softwar Inc, Cambridge, UK) to identify the position of restriction 

sites. Restriction endonucleases cutting sites that fell inside the disrupted target genes 

were not used in the cloning steps as it is necessary to keep the target genes intact. The 

primers were designed to introduce EcoRl, or BamHl restriction sites, and 6 bp tails 

containing only adenine and thiamine to assist effective endonuclease reactions.

3.3.13.2 Epicentre “Failsafe” PCR amplification of disrupted genes for
complementation

To ensure error-free amplification of DNA, the epicentre “Failsafe” PCR PriMix 

selection kit was used to amplify the disrupted genes at optimal levels of MgCb and 

FailSafe™ PCR Enhancer with Betaine. The system includes the FailSafe™ PCR 

enzyme mix, a blend of thermostable enzymes with at least 3 times the nucleotide 

incorporation accuracy of the Taq DNA polymerase. Along with the FailSafe™ PCR 

enzyme mix, the system includes a set of 12 FailSafe™ PCR PriMixes that cover a 

matrix of enzyme-specific PCR conditions that are optimal for amplifying different 

sequences.

PCR reactions were carried out in a 50 pi reaction mixtures using a MJ Research PTC- 

200 Thermal cycler as described in section 3.3.10. The PCR reactions consisted of an 

initial denaturation at 94°C for 2 min, followed by 30 cycles of 1 min denaturation at 

94°C, 1 min of primer annealing at the appropriate temperature (Table 3.4), and a 2 min
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elongation step at 72°C. The process was terminated by a final elongation stage for 5 min 

at 72°C. PCR products were visualized by agarose gel electrophoresis (section 2.3.12). 

The Failsafe PCR reaction that gave the most concentrated and discrete electrophoresis 

band of the correct size of each gene, was purified into 30 pi of sterile polished water, 

using the QIAquick PCR purification system according to the manufacturer’s instructions 

(Qiagen Ltd, Crawley, UK).

3.3.13.3 Ligation of the amplified DNA fragments into pURF047 vector

Restriction endonuclease digests using EcoRl, or BamHl as appropriate were used to cut 

both the pURF047 vector and the Failsafe PCR reaction products. The digest was 

performed according to the manufacturer’s instructions (Promega Corporation Inc, 

Southampton, UK) in 50 pi reaction mixture for the vector pURF047 and 20 pi reaction 

for the Failsafe PCR fragments. The digests were incubated at 37°C for 5 h then heat 

inactivated at 65°C for 15 min and checked using agarose gel electrophoresis (section 

2.3.12). DNA fragments were ligated in 20 pi reaction mixtures using a ligation kit 

(Promega Corporation Inc, Southampton, UK) and according to the manufacturer’s 

instructions. The reaction mixtures contained 2 pi of 10X ligation buffer (10% v/v), 1 pi 

T4 DNA ligase, 4 pi vector DNA, and 8 pi of substrate DNA. A vector control reaction 

where the substrate DNA was replaced with sterile polished water was also included. The 

ligation mixtures were left incubated at 19°C overnight before use for transformation.

3.3.13.4 Transformation of the One Shot OmniMAX™ 2 T1 phage-resistant
chemically competent E. coli

The One Shot OmniMAX™ 2 T1R E. coli cells (Invitrogen Corporation, Paisley, UK) 

were thawed on ice, and 2.5 pi of the ligation mix (section 3.3.13.3) was gently mixed 

with 50 pi aliquot of the competent cells. The cells were incubated on ice for 30 min then 

heat-shocked at 42°C for 30 sec. The cells were then incubated on ice for a further 2 min 

before a 250 pi of a pre-warmed SOC medium (Invitrogen) was added. The 

transformation mix was then incubated with shaking at 225 rpm for 1 h at 37°C before 

700 pi of SOC medium was added to the mix to bring the final volume to 1 ml. 100 pi

190



aliquots of the transformation mix were then spread onto TSA plates containing 10 pg/ml 

gentamicin to select for the plasmid, and XTRA-Blue Plus X-Gal/IPTG solution (MP 

Biomedicals, London, UK) at 2.8 pl/ml to enable the growth of individual clones to 

produce visible colonies. The plates were incubated at 37°C and the growing colonies 

were then analyzed.

3.3.13.5 Confirmation of cloned genes by PCR and by DNA fragment excision

White colonies resulting from the transformation experiment (section 3.3.13.4) were 

isolated and used to generate both genomic DNA and plasmid pURF047 containing 

inserts. PCR reactions using the appropriate primers for the insert’s amplification were 

carried out using genomic DNA and pURF047 containing inserts from the transformants. 

Transformants which were positive for the right insert were used for further 

complementation analysis experiments. In some cases, the successful cloning of the gene 

was confirmed by extracting the vector from the cells and excising the cloned DNA 

fragment by digestion with the appropriate restriction enzyme.

3.3.13.6 Tri-parental mating to transfer the cloned gene construct to the host by

conjugation

Tri-parental mating was used to introduce the pURF047 construct containing the cloned 

gene of interest into both the wild type S. marcescens Dbll and mutant hosts by 

conjugation. Bacterial strains were gown on TSA containing the appropriate selection 

overnight at 37°C as follows. Donor One Shot OmniMAX™ 2 T1R E. coli transformants 

(section 3.3.13.4) containing the pURF047 construct (with gene of interest), or donor E.

coli Dh5a containing pURF047 were grown on TSA containing 10 pg/ml gentamicin. E.

coli HB101 harboring the “helper plasmid” (pRK2013) was grown on TSA containing 50 

pg/ml kanamycin. Recipient cells included wild type S. marcescens Dbl 1 grown on TSA 

or S. marcescens mutants grown on TSA containing 100 pg/ml kanamycin. Bacterial 

strains from plates were suspended in 5 ml TSB with the appropriate selection and grown 

overnight at 37°C. Cells were harvested by centrifugation for 10 min at 3000 rpm,
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washed twice in TSB containing 10 mM MgSC>4, centrifuged and resuspended in 3 ml 

TSB containing 10 mM MgSCU. At this stage 1 ml of each of the parental strains (donor, 

recipient and helper) were combined and a 100 pi of the mating mixture was spotted onto 

sterile 0.2 pm pore-size nitrocellulose filters (Whatman, Maidstone, UK), placed on a dry 

TSA containing 10 mM MgSCU, and incubated for 5 h at 37°C. A 100 pi of each of the 

parental strains were also individually spotted and incubated as above. After incubation, 

bacteria were resuspended from the filters by vortex-mixing in 1 ml TSB, and serial 

dilutions of the suspensions were plated onto selective TSA plates. For tri-parental 

mating with wild type S. marcescens Dbll as recipient, the selective plates were TSA 

containing 10 pg/ml gentamicin and 100 units/ml PXB. For mating involving mutants as 

recipients, 100 pg/ml kanamycin was added to the above selective plates. After 24 h 

incubation at 37°C, colonies from the mating mixture growing on the selective plates 

were picked and tested for presence of the right construct (section 3.3.13.5).

For every mutant complemented, the pURF047 construct with the cloned gene was 

introduced not only into the mutant but also into the wild type S. marcescens Dbll to 

determine whether the introduction of a second copy of the gene into the wild type would 

have any effect on phenotype. Similarly, for each complementation, tri-parental mating 

was used to introduce the pURF047 plasmid into the wild type S. marcescens Dbl 1 and 

into the mutants using E. coli Dh5a as a donor. This was to determine if the introduction 

of the pURF047 cloning vector on its own had an effect on the phenotype of the wild 

type or mutants. All complemented mutants and derivatives (wild type containing 

pURF047, wild type containing pURF047 with cloned gene, and mutant containing 

pURF047) were stored at -80°C (section 3.3.1.2).

3.3.13.7 Phenotypic complementation analysis

Transconjugants showing a successful insertion of the pURF047 containing the right 

insert (section 3.3.13.6), were used in phenotypic complementation analysis. MICs of the 

biocides were determined for the complemented mutants, and results were compared to 

those of the wild type S. marcescens Dbl 1, S. marcescens Dbl 1 containing the pURF047
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vector, S. marcescens Dbl 1 containing recombinant pURF047 with the right gene insert, 

the non-complemented mutant, and the mutant containing only pURF047.

3.3.13.8 Reverse transcriptase PCR (RT-PCR)

The reverse transcriptase polymerase chain reaction (RT-PCR) was used to test if target 

genes were being expressed at the mRNA level. The procedure was performed using 

Promega RT-PCR kit and according to the manufacturer’s instructions (Promega 

Corporation Inc, Southampton, UK). The RT-PCR reactions used in this study are 

summarised in Table 3.5. cDNA generated from the RT-PCR reaction was then used to 

amplify the target gene using the appropriate primers and standard PCR (section 3.3.10).
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Table 3.5. Reverse transcriptase PCR.

Volume added (pi)

u
S3o

•-C
Experiment No-RTc Negative control Positive control

a
* c

aus-«-»Gt
S3

(no-template)

"Os
&

V■a
-a

Nuclease-free H2O 2 2 4 2

< S3
A
c

Random primer 1 1 1 l a

W )ua
H

o
•-n
03JB

2
aoo

RNA

Total volumed

2

5

2

5 5

2 b

5

Experiment No-RTc Negative control Positive control

Nuclease-free H2O 4.5 5.5 4.5 4.5
co•p* X10 Buffer 4 4 4 4
f i .
u
Q
VI

MgCl2 (lOmM) 4 4 4 4
S3oau+* dNTP 1 1 1 1
o>Viu RNasin Inhibitor 0.5 0.5 0.5 0.5
>
oc ImProm-II Revers 

trascriptase

1 - 1 1

Total volume 15 15 15 15

a) 0.5 pg of OHgo(dT)i5 primers, b) 1 pg of 1.2 Kb kanamycin positive control RNA, c) 

reactions not containing the reverse transcriptase enzyme, d) volume added to the reverse 

transcription reaction.
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3.4. RESULTS

3.4.1 Growth characteristics of S. marcescens Dbll

S. marcescens Dbll grew well in both TSB and TSA, and good growth was observed 

after overnight incubation at 37°C. On agar, the organism formed smooth mucoid 

colonies which had entire margins and umbonate elevation. Unlike some other S.

marcescens strains which are chromogenic and produce the red pigment prodigiosin, 

strain Dbl 1 is non-pigmented (Figure 3.4). Growth characteristics of S. marcescens Dbl 1 

in broth was determined by generating growth curves for the organism using OD values 

(at 630 nm) of S. marcescens Dbl 1 cultures read at different times over a period of 15 h 

(section 3.3.2). As seen from Figure 3.5, growth of S. marcescens Dbl 1 followed typical 

bacterial growth phases. The initial “lag phase” was short extending over 1 h, followed 

by a “log phase” of growth over approximately 4 h. The “stationary phase” started with a 

deceleration phase and was the longest phase of growth. The S. marcescens Dbll mean 

specific growth rate (p) and the culture doubling time (g) were both calculated and had 

values of 0.9 h'1 and 0.77 h respectively. The above investigation was also performed on 

the control reference strain used in this study (E. coli NCTC 1048), and the p and g 

values for this strain were 1 h 1 and 0.68 h respectively. Statistical analysis demonstrated 

that the E. coli mean specific growth rate was statistically significantly different from that 

of S. marcescens Dbl 1 (Table 3.11).

The relationship between the OD630 nm values of a S. marcescens Dbl 1 culture and its 

viable count was also investigated (section 3.3.2) to determine the number of cfu present 

per ml of a standard inoculum used in further investigations. The standard inoculum 

chosen was a culture with an OD630 nm value of 0.5. The results showed that the 

relationship between the OD values and the viable count was linear (Figure 3.6), and that 

the relationship remained uniform up to an OD value of over 1. A culture with an
o

OD630nm value of 0.5 had approximately 6.10 cfu/ml of bacteria (Figure 3.6).
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3.4.2 S. marcescens D bll biocide MICs

Susceptibility of S. marcescens Dbll to four biocides was investigated by determining 

the MICs of these biocides for the bacterium (section 3.3.4). The four biocides used were 

triclosan, cetylpyridinium chloride, chlorhexidine diacetate, and or^o-phthalaldehyde. 

As both triclosan and or^o-phthalaldehyde were dissolved in DMSO, toxicity of the 

latter to S. marcescens Dbl 1 was also investigated. The reference E. coli NCTC 1048 

was also included in the investigations and used for comparative purposes.

MICs for the four biocides were determined in TSA and in TSB, whereas DMSO MICs 

were determined only in broth (section 3.3.4). Results (Figure 3.7) showed that DMSO 

only started to have a significant effect on bacterial growth at concentrations over 4% 

(v/v), much higher than any concentration of this agent used in this study (2%). Hence, it 

was concluded that DMSO did not have a significant effect on S. marcescens Dbll 

growth in our investigations. The results of biocide MICs (Table 3.6) showed that MIC 

values were higher in agar than in liquid broth for all biocides. On agar chlorhexidine 

diacetate was the most effective biocide at inhibiting the growth of S. marcescens Dbl 1 

with an MIC value of 18 pg/ml, followed by cetylpyridium chloride (MIC =100 pg/ml). 

MICs for orrAo-phthalaldehyde and triclosan were much higher with values of 3000 

pg/ml and 3900 pg/ml respectively.

In liquid media on the other hand, cetylpyridium chloride was more effective at 

inhibiting growth than chlorhexidine diacetate, and these agents had MIC values of 5.5 

pg/ml, and 7.5 pg/ml respectively (Figure 3.7). Broth MICs of triclosan and ortho-

phthalaldehyde were not determined as the interaction between these biocides and the 

bacterial suspensions resulted in change in the colour of the medium (turning into a milky 

white colour with increasing concentrations of triclosan and a dark colour, ranging from 

green to black, depending on concentration, with or/Zio-phthalaldehyde), hence making 

readings ODs impossible. MIC values for the reference strain E. coli NCTC 1048 (Table 

3.6), showed that on agar, the latter was more sensitive than S. marcescens Dbl 1 for all 

biocides tested with the exception of or/Zzo-phthalaldehyde. Interestingly, the E. coli

NCTC 1048 MIC value for triclosan on agar was 30000 times lower than that of S.
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marcescens Dbl 1, while the two organisms had similar MICs for ort/iophthalaldehyde. 

In broth, E. coli NCTC 1048 had also MIC values lower than those of S. marcescens

Dbll, for both cetylpyridium chloride and chlorhexidine diacetate. However, the 

difference in MIC values between the two organisms for these biocides was not as high 

as that seen on agar (Table 3.6), nevertheless it was statistically significant at the 95% 

confidence level.

3.4.3 Biocides suspension (killing) tests on S. marcescens Dbll

The lethal effects of triclosan, ort/iophthalaldehyde, cetylpyridium chloride, and 

chlorhexidine diacetate on S. marcescens Dbll was determined using suspension tests 

(section 3.3.5). The viable counts of a S. marcescens Dbl 1 culture subjected to a specific 

concentration of a biocide was determined at different times of exposure (0, 5, 10, 20, 

and 30 min). These results were used to calculate the logio reduction in number of cells 

caused by the biocide at the corresponding exposure times, hence determining the 

biocide’s lethal effect. The E. coli NCTC 1048 reference strain was also included in the 

investigations and used for comparative purposes. A number of neutralisers were used to 

neutralise the biocides in the suspension tests. Both the efficiency and effects of these 

neutralisers on the S. marcescens Dbl 1 cells were also investigated (section 3.3.5.2).

3.4.3.1 Neutraliser effect on cells

The effect of neutralisers on S. marcescens Dbl 1 cells was investigated (section 3.3.5.2). 

Three different neutralisers were studied: 0.5 % (w/v) sodium bisulphite, 5% (w/v) 

glycine and 0.75% azolectin in 5% Tween 80 tested for neutralisation of ortho-

phthalaldehyde, and 0.75% azolectin in 5% Tween 80 tested for neutralisation of 

triclosan, cetylpyridium chloride and chlorhexidine diacetate. The results (Table 3.7) 

showed that both 5% (w/v) glycine and 0.75% azolectin in 5% Tween 80 had no 

statistically significant effect on the survival of S. marcescens cells, whereas 0.5 % (w/v) 

sodium bisulphite had a lethal effect. The 0.75% azolectin in 5% Tween 80 neutraliser 

caused only 0.03 logio reduction in number of cells, whereas 5% (w/v) glycine cause a 10 

fold higher (0.30 logio) reduction.
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3.4.3.2 Neutraliser efficiency

The efficiency of the three neutralisers at inhibiting the activity of biocides was also 

investigated. The results (Table 3.8) showed that 0.75% azolectin in 5% Tween 80 was 

the appropriate neutraliser to use with triclosan, cetylpyridium chloride, and 

chlorhexidine diacetate, as it was effective at neutralizing all these biocides. Out of the 

three neutralisers investigated for ort/io-phthalaldehyde, 5% (w/v) glycine was the best at 

neutralizing the biocide followed by 0.75% azolectin in 5% Tween 80. The efficiency of 

0.5 % (w/v) sodium bisulphite at neutralizing ort/io-phthalaldehyde was not possible to 

measure due to the lethal effect this compound had on the cells (Table 3.7). However, a 

study by Shackelford et al. (970) concluded that 0.5 % (w/v) sodium bisulphite was 

satisfactory at neutralizing the activities of up to 0.5 (w/v) ort/io-phthalaldehyde. This 

suggests that the large reduction in number of viable cells observed when 0.5 % (w/v) 

sodium bisulphite was used was due to its own lethal effect on the cells rather than its 

inefficiency at neutralizing or//zo-phthalaldehyde. From the neutraliser efficiency and 

effect tests, 0.75% azolectin in 5% Tween 80 was chosen to neutralise triclosan, 

cetylpyridium chloride and chlorhexidine diacetate, and 5% (w/v) glycine was selected 

for neutralizing ort/zo-phthalaldehyde.

3.4.3.3 Biocide killing (lethal) effect on S. marcescens D bll

The lethality effect of ort/iophthalaldehyde, triclosan, cetylpyridium chloride, and 

chlorhexidine diacetate on S. marcescens D bll, at concentrations of 100 pg/ml, 4000 

pg/ml, 8 pg/ml, and 50 pg/ml respectively, was investigated over a 30 min exposure 

period (Figure 3.8). As both triclosan and ort/io-phthalaldehyde were dissolved in 

DMSO, toxicity of 6% (v/v) DMSO, a concentration 3-fold higher than the maximum 

used in the investigation, was also determined in a similar manner. Results of these 

investigations are summarized in Table 3.9 and illustrated in Figure 3.8. It can be seen 

that 6% DMSO did not have a significant effect on the cells, and its reduction in number 

of viable cells was negligible even over long exposure time. Hence it was concluded that
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DMSO at the concentrations used in this study (all of which were below 6%) did not 

effect the viability of S. marcescens Dbl 1.

The results (Table 3.9) also showed two different patterns of killing (Figure 3.8), one for 

cetylpyridium chloride and chlorhexidine diacetate, and the other for ortho-
phthalaldehyde and triclosan. The number of cells killed by chlorhexidine diacetate and 

cetylpyridium chloride increased as time of exposure was extended. However, triclosan 

and orf/jophthalaldehyde had maximum kill at 5 min exposure, then there was no 

significant change in the number of cells killed as time of exposure increased. These 

observations suggest that the mechanisms by which triclosan and orf/io-phthalaldeliyde 

enter and kill the cells may be different from those of cetylpyridium chloride and 

chlorhexidine diacetate. Another observation from the lethality tests results is that 

although on agar chlorhexidine diacetate was the most effective biocide at inhibiting the 

growth of S. marcescens Dbll, it is cetylpyridium chloride that was more effective at 

killing the bacterium causing over 4 logio reduction in the number of viable cells after 30 

min of exposure at a concentration of only 8 pg/ml. Triclosan seemed to be the least 

effective biocide at killing S. marcescens Dbl 1 as a concentration of 4000 pg/ml caused 

only a 3.09 logio reduction in the number of viable cells after 30 min exposure time.

3.4.4 Potassium leakage from biocides-exposed S. marcescens D bll cells

When the membrane of a bacterium is damaged, materials are able to leak out through the 

disrupted area. One of the early indicators of membrane damage is the release of 

potassium ions (578). This leakage usually occurs very rapidly upon exposure to a 

biocide active against the membrane, and is often completed within 5 min (559, 578). A 

positive correlation between the amount of potassium leaked and the concentration of the 

biocide is usually an indication that the biocide induces membrane damage. This is 

because low levels of the biocide would have smaller effect on the membrane, whereas 

higher concentrations are expected to cause greater membrane damage, allowing larger 

amounts of potassium to be released.
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The amount of potassium leaked from a biocide-treated S. marcescens Dbl 1 culture was 

determined at specific exposure times over a 30 min period (section 3.3.6). The organism 

was exposed to 8 pg/ml cetylpyridinium chloride, 20 pg/ml chlorhexidine diacetate, 4000 

pg/ml triclosan, and 50 pg/ml ort/zo-phthalaldehyde. The amount of potassium present in 

biocide free suspensions of the test organism was also determined and taken into account 

during the interpretation of the results (Figure 3.9). The latter showed that there was a 

positive correlation between time of exposure to the biocide and the amount of potassium 

leaked for cetylpyridinium chloride, chlorhexidine diacetate, and to a lesser extent ortho-

phthalaldehyde. The amount of potassium released did not increase as time of exposure to 

triclosan increased, and leakage reached a plateau level after 5 min exposure. These 

observations supports the results of the lethality tests (Table 3.9, Figure 3.8), which 

showed that at the tested concentrations, triclosan and ort/zo-phthalaldehyde cause the 

maximum amount of kill after 5 min exposure time, after which the number of cells killed 

did not show significant increase. The concentration of chlorhexidine diacetate used had 

a great lethal effect on Dbl 1 cells and the amount of potassium released was also highest 

when this biocide was used. On the other hand, it is interesting that 8 pg/ml 

cetylpyridinium chloride, a concentration which was effective at killing the S.

marcescens Dbll in the lethality tests, cause only small amount of potassium to be 

leaked from these cells.

3.4.5 Antibiotics MICs of S. marcescens D bll

Susceptibility of S. marcescens Dbl 1 to a number of antibiotics was investigated using E- 

test strips (Table 3.10). Susceptibility profile of the E. coli NCTC 1048 reference strain 

was also determined, and the results are summarized in Table 3.10. Based on the British 

Society for Antimicrobial Chemotherapy (BSAC) MIC breakpoints for 

Enterobacteriaceae (640), the E. coli NCTC 1048 reference strain was sensitive to all but 

one of the ten antibiotics tested (tobramycin). S. m arcescens Dbll on the other hand 

showed resistance to the two aminoglycosides; amikacin and tobramycin, as well as to 

chloramphenicol. It also showed great resistance to azithromycin with an MIC value of 

over 256 pg/ml. S. marcescens Dbll was susceptible to ceftazidime, ciprofloxacin,
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imipenem, piperacillin and meropenem. When susceptibility was compared with that of 

the E. coli reference strain, S. marcescens Dbl 1 was more resistant to all antibiotics tests 

with the exception of piperacillin where both organisms had the same MIC value. S.

marcescens Dbll was also sensitive to 10 pg/ml gentamicin and 20 pg/ml kamamycin 

but was resistant to 100 units/ml polymyxin B.
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Table 3.6. Biocide MIC values for S. marcescens D bll.

Agent MIC pg/ml (± SD)

S. marcescens D bll E. coli NCTC 1048

Agar (TSA) Broth (TSB) Agar (TSA) Broth (TSB)

Cetylpyridinium chloride 100 (28.3) 5.5 (0.70) 12 (28.3) 2 (0.00)
Chlorhexidine diacetate 18 (2.83) 7.5 (0.70) 4 (0.00) 1 (0.00)

Triclosan 3900(141) Nd 0.1 (0.00) Nd
<9rt/zo-phthal aldehyde 3000 (283) Nd 3000 (283) Nd

Dimethyl sulfoxide * Nd 10 (0.00) Nd Nd

SD; standard deviation, Nd; not determined.
* [Dimethyl sulfoxide] expressed in % (v/v)
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Table 3.7. Neutraliser effect on cells.

Neutraliser Number of cfu/ml * Logio reduction in cfu/ml 
(± SD)

None 5.5 108 0.00
0.5 % (w/v) sodium bisulphite 0.00 8.74 (0.00)

5% (w/v) glycine. 2.7 108 0.30 (0.02)

0.75% azolectin in 5% Tween 80 5.1 10s 0.03 (0.01)

* Number of cfu/ml after 5 min exposure of 100 pi o f a S. marcescens D b ll suspension
containing 5.5 108 cfu/ml to 900 pi suspension of neutraliser. SD; standard deviation.

Table 3.8. Neutraliser efficiency tests.

Biocide Neutraliser Number of cfu/ml * Logio reduction in 
cfu/ml (± SD)

None None 7.5 108 0.00

OPA 0.5 % (w/v) sodium bisulphite 0.00 8.87 (0.00)

OPA 5% (w/v) glycine 3.1 108 0.38 (0.03)

OPA 0.75% azolectin in 5% Tween 80 3.3 107 1.35 (0.07)

TRI 0.75% azolectin in 5% Tween 80 6.8 10s 0.04 (0.20)

CPC 0.75% azolectin in 5% Tween 80 5.5 108 0.13(0.18)

CHX 0.75% azolectin in 5% Tween 80 5.5 108 0.13 (0.21)

* Number of cfu/ml after addition of 100 pi o f a S. marcescens Dbl 1 suspension containing 7.5
108 cfu/ml to a 900 pi mixture of biocide and neutraliser (1:8 v/v), and left for 5 min.
TRI; triclosan, OPA; o/7/m-phthalaldehyde, CPC; cetylpyridinium chloride, CHX; chlorhexidine
diacetate, SD; standard deviation.
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Table 3.9. Lethal effect of biocides on S. marcescens D bll.

Exposure time 
(min)

Logio reduction in cfu/ml (± SD)

CPC 
8 pg/ml

CHX 
50 pg/ml

OPA 
100 pg/ml

TRI 
4000 pg/ml

DMSO 
6% (v/v)

0 0.00 0.00 0.00 0.00 0.00

5 2.37 (0.19) 2.19(0.28) 3.12(0.33) 3.04 (0.34) 0.03 (0.03)

10 3.28 (0.20) 2.87 (0.10) 3.22 (0.09) 3.07 (0.06) 0.06 (0.04)

20 3.58 (0.39) 4.50 (0.28) 3.30 (0.08) 3.09 (0.37) 0.04 (0.23)

30 4.42 (0.22) 5.30 (0.34) 3.32 (0.20) 3.09 (0.58) 0.04 (0.04)

TRI; triclosan, OPA; ort/2 0 -phthalaldehyde, CPC; cetylpyridinium chloride, CHX; chlorhexidine
diacetate, DMSO; dimethyl sulfoxide, SD; standard deviation
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Table 3.10. Antibiotic MIC values for S. marcescens D b ll

Antibiotic BSAC MIC breakpoint

(fig/ml)

E. coli NCTC 1048 S. marcescens Dbl 1

Susceptible < Resistant > MIC Oig/ml) ± SD Interpretation* MIC (pg/ml) ± SD Interpretation*

Amikacin 4 8 2  ± 0 .0 0 S 8  ± 0 .0 0 R

Azithromycin - - 4.6 ±0.00 - >256 ±0.00 -

Ceftazidime 2 4 0.5 ±0.00 S 0.71 ±0.31 S
Chloramphenicol 8 16 4 ± 0.00 S 24 ±8.00 R

Ciprofloxacin 1 2 0.016 ± 0 .0 0 s 0.17 ±0.04 S
Imipenem 4 8 0.25 ±0.00 s 0.59 ±0.09 S
Piperacillin 16 32 2  ± 0 .0 0 s 2  ± 0 .0 0 S

Tobramycin 1 2 2  ± 0 .0 0 R 25.1 ±8.55 R

Trimethoprim/ - - 0.094 ±0.00 - 0.65 ±0.13 -

sulfamethoxazole * * 

Meropenem 4 8 0.05 ±0.01 s 0.12 ±0.05 S

* Susceptibility based on BSAC MIC breakpoints for Enterobacteriaceae (640).
** Trimethoprim/sulfamethoxazole (1/19).
SD; standard deviation. Susceptible phenotype is highlighted in red, and resistance in blue.



Figure 3.4. Colony morphology of chromogenic S. marcescens and non-pigmented S. marcescens Dbll.

S. marcescens forms smooth mucoid colonies which have entire margins and umbonate elevation when grown on TSA. Some 
strains o f  S. marcescens (B) (511) are chromogenic and produce the red pigment prodigiosin, whereas others such as strain 
Dbl 1 (A) are non-pigmented.
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Graph showing the  relationship betw een logio o f  the O D 630mn o f  a  S. m arcescens  D b l 1 
culture and tim e. The bacterium  w as grow n in TSB at 37°C over a period o f  15 h. 1 , 2 ,  
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error o f  the means. The culture had a “log” phase that extended over 4  h w ith a specific 
growth rate p  =  0.9 h ' 1 and a culture doubling tim e g  =  0.77 h.
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culture and its ODesonm values. The points represent mean values and the error bars represent 
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be seen that a S. m arcescens  D b l 1 culture o f  an OD630nm value o f  0.5 has approxim ately 6.108 
cfu/ml o f  bacteria.

208



2 i

1.8

^  1 6  "  
|  1 . 4

®  1-2 -  v©
G 1
O 0 . 8  -

0.6  -  

0 . 4  - | 

0.2

0 n n
2 1 

1.8 -

^  1-6 -

|  1 . 4  
O
fO 1 .2  -so
O 1 -
O 0 . 8  -

0.6  -  

0 . 4  -  

0.2

0

C 1 3 4 5 6

[CHX] pg/ml
8 10 15

La i  i ■ ■
C 1 2 3 4 5 5.5 6 8 10 15

[CPC] pg/ml

1.8 -]

1.6  -

? 1 4  
O 1 2
S 1
O 0 . 8  - 

0.6  -  

0 . 4  -

0 . 2  - I  

0 - n

i

n
0.5% 1% 2% 3% 4%

[DMSO] (v/v)
5% 6% 8% 10% 15%
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agents. OD 630nm values were generated after 1 day incubation at 37 C. The bars represent 
m ean values and the error bars represent standard error o f  the m eans. CHX; chlorhexidine 
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The follow ing exposure concentrations are plotted:
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dim ethyl sulfoxide at 6%  (v/v). The points represent m ean values and the error bars 
represent standard error o f  the m eans.
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Leakage after exposure to he follow ing is shown:
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3.4.6 Generation of S. marcescens D b ll mutants and their screening for biocide

susceptibility

Random transposon mutagenesis using the mini-Tn5Km2 transposon was used to 

generate a S. marcescens D bll mutant library (section 3.3.11). Mating between the 

wild type S. marcescens Dbl 1 and the E. coli S17.lX.pir containing the delivery vector 

pUTmini-Tn5Km2 was used to deliver the transposon into the S. marcescens Dbll 

genome. Successful mini-Tn5Km2 transposon insertion into the S. marcescens

genome was checked by PCR amplification of the nptll (knamycin resistance) gene 

carried on the mini-Tn5Km2 transposon using primers NPTII F and NPTII R (Table 

3.4). Genomic DNA (used as a template for the nptll amplification) was extracted 

from the wild type S. marcescens Dbl 1, the E. coli S17.lX.pir donor strain and from 

three random S. marcescens D bll mutants. A PCR product of the expect size (676 

bp) for the nptll gene was produced for both the E. coli S17.lX.pir and the three 

mutants (Figure 3.10). No PCR product was seen in the wild type S. marcescens

Dbl 1. This confirmed that the mini-Tn5Km2 transposon has successfully inserted into 

the mutants’ genomes. Previous studies on another S. marcescens strain had shown 

that the single insertion of the mini-Tn5Km2 transposon into the S. marcescens

genome was random with the complete loss of the delivery vector after transposon 

insertion (179), therefore this was not checked in this study.

The conjugative transfer of the pUTmini-Tn5Km2 delivery vector into S. marcescens

Dbl 1 and subsequent transposon insertion into its genome was performed so that only 

S. marcescens D bll mutants containing the mini-Tn5Km2 were isolated onto the 

selective TSA plates containing 100 pg/ml KAN and 100 units/ml PXB. The S.

marcescens Dbl 1 recipient strain was not able to grow on TSA containing 100 pg/ml 

KAN, but was resistant to 100 units/ml PXB. Similarly, the E. coli S17.lX.pir donor 

strain was resistant to 100 pg/ml KAN, due to the presence of the pUTmini-Tn5Km2 

plasmid, but was sensitive to 100 units/ml PXB. Both donor and recipient strains did 

not grow onto the selective TSA plates when plated individually as controls. The S.

marcescens D bll transposon mutants on the other hand, were able to grow onto the 

selective plates because of the presence of the mini-Tn5Km2 (enabling them to grow 

on agar containing 100 pg/ml KAN), and their natural resistance to PXB (enabling 

them to grow on agar containing 100 units/ml PXB). These controls did not eliminate
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the possibility of contamination of the selected mutants either by a mutated donor E.

coli S17.17pir or another naturally resistant organism. RAPD analysis (below) was 

used to eliminate this possibility.

A S. marcescens Dbl 1 mutant bank containing 6000 mutants was screened on agar at 

the following biocide concentrations to isolate biocide sensitive or resistant mutants. 

Triclosan at 2500, 3000, 3500, and 4000 pg/ml, ort/io-phthalaldehyde at 2400, 2800, 

3000 and 3200 pg/ml, cetylpyridium chloride at 50, 70, 90, and 110 pg/ml, and 

chlorhexidine diacetate at 10, 14, 18, and 26 pg/ml. Eighty mutants showed varying 

degrees of sensitivity to at least one of the four biocides; of these, 26 mutants that 

showed the clearest phenotype were isolated and used for further analysis. Two 

randomly selected mutants which showed no change in their biocide susceptibility 

compared to the wild type were also selected and used as controls for further 

investigations. To make sure that the 26 biocide mutants and the two controls chosen 

for further investigation were actually S. marcescens D bll, RAPD analysis was 

performed on the S. marcescens Dbl 1 transposon mutants.

The PCR fingerprinting analysis used primer 270 and 272 (section 3.3.10, Table 3.4) 

both of which were already used to produce discriminatory polymorphisms from CF 

isolates of P. aeruginosa and B. cepacia (644, 645). Initially the analysis used primer 

270 and the results were later confirmed using primer 272. DNA from all the 26 S.

marcescens D bll biocide mutants and the two controls was extracted using chelex 

method (section 2.3.11.1.1), and used as template for the RAPD PCR reactions. DNA 

from parent S. marcescens Dbl 1 was used as a positive control. As one of the main 

possible sources of contamination of the mutants was the donor E. coli S17.1Apir, 

DNA from the latter was used as a negative control. The RAPD results obtained with 

primer 270 (Figure 3.11), showed that all the transposon mutants had the same RAPD 

fingerprint profiles as the parent S. marcescens D bll. RAPD profiles obtained with 

DNA from E. coli S17.1Apir were clearly different. These results were confirmed by 

the RAPD fingerprints obtained using primer 272, concluding that all the transposon 

mutants investigated in this study were derived only from S. marcescens strain Dbl 1.
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3.4.7 Mutants growth rates

All the isolated S. marcescens Dbl 1 mutants grew well on agar or in broth media with 

or without kanamycin. However, for a minority of mutants, visually there was 

noticeable difference in their growth when compared to the wild type. To determine 

whether the mutants were as growth fit as the wild type, the mean growth rates of the 

26 biocide mutants and the two controls were compared to that of the wild type S.

marcescens D bll by t-test at the 95% confidence level. The growth rates were 

calculated from growth curves generated using an automated plate reader. The mean 

growth rate of the reference E. coli NCTC 1048 strain was also calculated and 

included in the comparison. The results (Table 3.11) showed that except for 6 

mutants, the mean growth rate of the mutants was not significantly different from that 

of the wild type S. marcescens Dbl 1. The mean growth rates for mutants N2-F3, 22- 

D5, N6-B2, N5-G1, N5-B5 and N5-B6, were significantly different from the wild 

type, and so was that of the reference strain E. coli NCTC 1048.
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Figure 3.10. Confirmation of mini-Tn5Km2 insertion into S. marcescens Dbl 1 genome using PCR

A 1.5% agarose gel show ing the n p tll  gene PC R products obtained with both the E. coli S17.lA.pir donor and the S.
m arcescens  D b l l  recipient strains, and three random  S. m arcescens  D b l l  m utants: 1, 2, and 3 resulting from  the 
m ating betw een donor and recipient. S. m arcescens  D bl 1 and sterile polished w ater (pP^O ) were used as negative 
controls, while the E. coli S17.lX.pir donor strain was used as a positive control. The 1-Kb+ DNA ladder was the size 
m arker. A, B, and C, respectively represent three different DN A  concentrations o f  the strains used ( -5 0 , - 5 ,  and ~0.5 
ng/pl). Strong PC R  products o f  the expected size (676 bp) were obtained for both the positive control and all the S.
m arcescens  D b l 1 m utants. N o PC R product w as observed in the recipient S. m arcescens  D b l 1 strain.
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Figure 3.11. Randomly amplified polymorphic DNA (RAPD) from A. marcescens D bll mutants

DNA from wild type S. marcescens Dbl 1 (lane 3) and S. marcescens Dbl 1 mutants (lanes 4-31), along with DNA from E. coli S17.1 Xpir 
(lane 2) were used as template for amplification with primers 270 (A) and 272 (B). Lanes 1 and 32 represent 1 -Kb+ DNA ladder, lanes 4-31 
represent respectively the following mutants: 10-B6, 10-E7, 9-D5, 3-A4, 19-D3, 3-F2, 9-D10, 11-B8, 12-F6, 8-C7, 7-C10, 18-A3, 22-D5, 27- 
B 8 , N6-B2, N5-B5, N5-G6, N5-B6, N2-F3, N3-B8, N5-D9, N2-F1, N4-F6, N2-B3, N2-A8, N1-C5, N3-C10 and N5-G1. E. coli S17.lA.pir 
had different amplification patterns from those of the wild type S. marcescens Dbl 1. All mutants had the same patterns as the wild type with 
both primers.
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Table 3.11. Growth rates of&  marcescens D b l l  and its biocide mutants.

O rganism M ean ji (h ' ) SE mean P-value

S. marcescens Dbl 1 0.9095 0.0125 -

E. coli NCTC 1048* 1.014 0 .0 0 2 1 0.036

S. marcescens mutants

Mutants un-altered in growth rate
3-F2 0.9095 0.0125 1.000
7-C10 0.8150 0.0050 0.090
12-F6 0.8710 0.0260 0.409
27-B8 0.8835 0.0385 0.637
8-C7 0.8835 0.0385 0.637
19-D3 0.9735 0.0005 0.123
N1-C5 0.8150 0.0050 0.090
N2-F1 0.8450 0.0000 0.123
N2-B3 0.7300 0.0130 0.064
3-A4 0.8715 0.0005 0 .2 0 2

10-B6 0.8585 0.0385 0.427
N2-A8 0.7940 0.0260 0.156
9-D10 0.8715 0.0005 0 .2 0 2
N3-B8 0.8525 0.0075 0.159
10-E7 0.8065 0.0385 0.238
N5-G6 0.8250 0.0050 0 .1 0 1
N4-F6 f 0.7940 0.0260 0.516
18-A3 0.7945 0.0005 0.069
N5-D9 0.8070 0.0130 0.111
9-D5 0.9095 0.0385 1.000
11-B8 0.8580 0.0130 0.214
N3-C1 0.9309 0.0330 0.349

Mutants altered in growth rate*
N2-F3 0.5760 0.0130 0.034
N6-B2 0.5425 0.0255 0.031
N5-G1 0.8325 0.0125 0.049
22-D5 0.5250 0.0130 0.030
N5-B5 0.7435 0.0005 0.048
N5-B6 0.6020 0.0130 0.037

ji: exponential growth rate, SE; standard error, P-value; P-value for the two-sample t-test. *; 
growth rates which w ere statistically significantly different from that of the wild type S.
marcescens Db 11 are highlighted (red).
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3.4.8 Determination of biocide agar MICs for the S. marcescens Dbll mutants

Biocides agar MICs were determined using TSA plates containing the appropriate 

concentrations of biocides, inoculated with bacterial cultures (~ 108 cfu/ml) using a multi- 

inoculator, and checking for inhibition of growth after overnight incubation at 37°C. Agar 

MICs of the 26 isolated biocide mutants were determined for the four biocides, the results 

are summarized in Table 3.12. MICs for the E. coli NCTC 1048 reference strain and two 

S. marcescens mutant controls were also determined. Out of the 26 biocide mutants 

investigated 30% were chlorhexidine diacetate sensitive, 53% were cetylpyridium 

chloride sensitive, 42% were triclosan sensitive and 42% were orf/to-phthalaldehyde 

sensitive. The proportion of resistant mutants was 23% for chlorhexidine diacetate, 11% 

for cetylpyridium chloride and ort/zo-phthalaldehyde, and 7% for triclosan. It was 

noticeable that the most dominant sensitivity was to cetylpyridium chloride whereas 

resistance to chlorhexidine diacetate was the most common resistance phenotype. 

Furthermore, 84% of the mutants showed some sensitivity or resistance to more than one 

biocide.

The other general observation from the data was that the relative increase in sensitivity or 

resistance to biocides in the mutants was low in most mutants. Mutants 9-D5 and 3-A4 

(Table 3.12) showed the highest increase in sensitivity of 40% to cetylpyridium chloride, 

whereas the highest increase in resistance was seen in mutant N3-B8 (Table 3.12) which 

showed a 100% increase in resistance to the above biocide compared to the wild type. 

The biocide MICs for the two control mutants were similar to those of the wild type. 

Only changes in triclosan MICs for the E. coli NCTC 1048 reference strain, mutant N5- 

B6, and N2-F3 were statistically significant at 95% confidence level. However, it was 

noted that biocide MICs changes in the mutants were reproducible and constant in all our 

replica experiments. To investigate this further, the ratios between the biocide MIC 

values of the mutants and the wild type were determined. Ratios were calculated for both 

the maximum and the minimum MIC values determined for each biocide from our replica 

experiments (Table 3.13).
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A number of observations could be made regarding the results:

1) The ratios, as expected, revealed that the largest difference in MIC values 

between the mutants and the wild type was in mutants 9-D5 and 3-A4 for the 

sensitive phenotype and N3-B8 and 19-D3 for resistance phenotype.

2) The ratio values for many mutants were close to 1, the largest deviation from the 

latter number did not exceed 0.55 for susceptible phenotypes and 1.83 for 

resistance.

3) The ratio values were reproducible and constant whether it was the maximum or 

the minimum biocide MIC values used to generate them.

These observations, suggested that although the changes in biocide resistance or 

susceptibility in the mutants were small, these changes were genuine, and reproducible. 

Hence the mutants phenotypes determined from the agar biocide MICs were taken as the 

basis for further investigations and the results from further tests, including biocide broth 

MICs (Table 3.14 and 3.15), suspension tests (Table 3.16) and potassium leakage 

experiments (Table 3.17), were used to confirm these phenotypes using different assays.

3.4.9 Biocide growth inhibition of S. marcescens D b ll mutants in broth

Inhibition of maximal growth in broth for both chlorhexidine diacetate and 

cetylpyridium chloride was determined by inoculating 96-well plates filled with TSB
o

containing the appropriate concentration of biocide tested, with test cultures (~ 10 

cfu/ml) using a multi-inoculator. The plates were then incubated at 37°C overnight, and 

inhibition of growth was determined by reading the OD630nm of cultures using an 

automated plate reader and comparing the results with controls grown in the absence of 

the biocide. The mean OD630nm values were calculated from replica for each tested mutant 

and were compared to that of the wild type using t-test. The biocide concentrations tested 

were 5 and 6 pg/ml for cetylpyridium chloride and chlorhexidine diacetate respectively.
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In the control plates, which did not contain biocides, all mutants grew to OD630nm values 

comparable to that of the wild type with no statistically significant differences noted. The 

wild type S. marcescens Dbll grew to an OD630nm value of 1.42 in TSB containing 5 

pg/ml cetylpyridium chloride, while the control grew to an OD630nm value of 1.7. The 

same biocide concentration had varying effect on the S. marcescens Dbl 1 mutants (Table

3.14). Statistical analysis showed that after overnight growth at 37°C, cultures of mutants 

3-A4, 10-B6, 22-D5, 8-C7, 10-E7, 9-D5, 18-A3, N6-B2, N4-F6, N2-A8, 9-D10, and N5- 

Gl, all grew to OD630nm values that were significantly lower than that of the wild type 

culture grown in same cetylpyridium chloride concentration. Similarly the analysis 

showed that cultures of mutants 19-D3, N3-B8, and N5-B5 grown at same biocide 

concentration as the wild type, grew to OD630nm values that were significantly higher than 

that of the wild type. The OD630nm values of the cultures of the remaining mutants were 

not different from that of the wild type.

Results of the chlorhexidine diacetate broth growth inhibition (Table 3.15) showed that S.

marcescens Dbll grew to an OD630nm value of 1.38 in TSB containing 6 pg/ml 

chlorhexidine diacetate, while the control (not exposed to the biocide) grew to an OD630nm 

value of 1.7. The same biocide concentration had varying effect on the S. marcescens

Dbll mutants (Table 3.15). Statistical analysis showed that after overnight growth at 

37°C, cultures of mutants 12-F6, 18-A3, 9-D5, N4-F6, N2-A8, N5-G1, N6-B2, and N2- 

FI, all grew to OD63oniT1 values that were statistically significantly lower than that of the 

wild type culture grown in same chlorhexidine diacetate concentration. Similarly 

statistical analysis showed that cultures of mutants 19-D3, N3-B8, and N5-G6 grown at 

same biocide concentration as the wild type, grew to OD630nm values that were 

statistically significantly higher than that of the wild type. The OD630nm values of the 

cultures of the remaining mutants were not different from that of the wild type.
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3.4.10 Suspension (killing) tests on S. marcescens Dbll mutants

The lethal effects of triclosan, ort/zo-phthalaldehyde, cetylpyridium chloride, and 

chlorhexidine diacetate on S. marcescens Dbl 1 and its mutants were determined using 

suspension tests (section 3.3.5.3). The viable counts of cultures subjected to a specific 

concentration of a biocide were determined at different times of exposure. These were 10 

min for cultures exposed to 8 pg/ml cetylpyridinium chloride or 20 pg/ml chlorhexidine, 

and 5 min for cultures exposed to 4000 pg/ml triclosan or 50 pg/ml ortho-

phthalaldehyde. The viable counts results were used to calculate the logio reduction in 

number of cells caused by the biocide at the corresponding exposure times, hence 

determining the biocide’s lethal effect. The biocides’ lethal effects on the mutants were 

statistically compared to those on the wild type S. marcescens Dbl 1. The killing effect of 

the biocides was also determined for the E. coli NCTC 1048 reference strain.

The results (Table 3.16) showed that all four biocides were effective at killing the E. coli

NCTC 1048 reference strain, and with the exception of or/Zzo-phthalaldehyde, they all 

lead to the complete killing of the E. coli NCTC 1048 cells at the end of the exposure 

time. All of biocides had a greater killing effect on the reference E. coli NCTC 1048 

compared to the wild type. When subjected to 8 pg/ml cetylpyridinium chloride for 10 

min, there was a 3.13 logio reduction in number of cells in the wild type S. marcescens

Dbll culture. The same concentration of the above biocide for 10 min, caused a greater 

logio reduction in number of cells in cultures of mutants 10-B6, 10-E7, 9-D5, 3-A4, 9- 

D10, 22-D5, N4-F6, N5-G1 and 18-A3 (Table 3.16). This suggests that the biocide had a 

greater lethal effect on these mutants than the wild type. Cetylpyridinium chloride had a 

less significant killing effect on mutants 19-D3, N5-B5, and N3-B8 compared to the wild 

type (Table 3.16).

Similarly, 10 min exposure to 20 pg/ml chlorhexidine diacetate had a greater lethal effect 

on mutants 9-D5, 12-F6, 7-C10, 18-A3, 22-D5, 27-B8, N4-F6, N2-B3, N2-A8, N5-G1, 

and N2-F1 and achieved lower killing in mutants 3-A4, 19-D3, N5-G6, and N3-B8 

compared to the wild type (Table 3.16). The lethal effect of exposure to 4000 pg/ml
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triclosan for 5 min was higher in mutants 3-A4, 9-D10, 12-F6, 7-C10, 22-D5, N6-B2, 

N5-B5, N5-G6, N3-B8, N5-D9, and N2-B3, and lower in mutants 10-B6, 8-C7, 18-A3, 

27-B8, and N4-F6, compared to the wild type (Table 3.16). The lethal effect of exposure 

to 50 pg/ml ort/iophthalaldehyde for 5 min was higher in mutants 10-E7, 3-F2, 11-B8, 

12-F6, N6-B2, N5-B5, N5-G6, N2-F3 and N2-B3, and lower in mutants 10-B6, 19-D3, 8- 

C7, 18-A3, and N2-A8, compared to the wild type (Table 3.16). All biocides had a 

greater killing effect on the reference E. coli NCTC 1048 compared to the wild type.

3.4.11 Potassium leakage experiment on S. marcescens D bll mutants

To determine differences in biocide-induced membrane damage on S. marcescens Dbll 

mutants, the amount of potassium leaked from these mutants when subjected to a 

particular biocide was measured (section 3.3.6). The results (Table 3.17) were statistically 

compared with those generated using the wild type S. marcescens Dbll. Potassium 

leakage from the E. coli NCTC 1048 reference strain was also determined and used for 

comparative purposes. Exposure to 8 pg/ml cetylpyridinium chloride for 10 min caused 

the highest proportion of mutant (64%) to leak larger amounts of potassium than the wild 

type. This proportion was 42% for mutants exposed to 4000 pg/ml triclosan, 32% for 

mutants exposed to 50 pg/ml orr/zo-phthal aldehyde for 5 min, and 28% after exposure to 

20 pg/ml chlorhexidine diacetate for 10 min. The results were reversed for the percentage 

of mutants leaking smaller amounts of potassium than the wild type when exposed to the 

biocides. Exposure to 20 pg/ml chlorhexidine diacetate for 10 min had the highest 

percentage of such mutants (21%), followed by 8 pg/ml cetylpyridinium chloride (14%), 

50 pg/ml orr/io-phthalaldehyde (7%) and finally 4000 pg/ml triclosan (3%). As 

potassium leakage is a measure of biocide-induced membrane damage, it was expected 

that the results of this experiment will mirror those obtained from the suspension tests 

(Table 3.16). Indeed for most mutants the results of potassium leakage experiments were 

a mirror to those of the suspension tests and in many cases to those generated by agar and 

broth MICs. Moreover, in general, mutants which were resistant to a particular biocide 

leaked less potassium than the wild type when it was exposed to the same biocide. 

Sensitive mutants leaked more potassium than the wild type when exposed to the
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corresponding biocide. Such correlation between the level of resistance to a particular 

biocide and potassium leakage from cells exposed to this biocide has been reported in S.

marcescens (582)

However, for some mutants such as mutant 8-C7 this was not the case. In the potassium 

leakage experiments, the latter mutant was shown to leak larger amounts of potassium 

compared to the wild type when individually exposed to all four biocides. This was not 

expected as the same mutant showed increased resistance to both chlorhexidine diacetate 

and triclosan on agar (Table 3.12) and was more resistant than the wild type to the killing 

effect of the above two biocides as well as ort/io-phthalaldehyde (Table 3.16). The fact 

that the negative control suspension of mutant 8-C7 (mutant incubated in biocide-free 

saline solution) had an unusually higher potassium concentration, may explain the above 

result.

3.4.12 Antibiotic susceptibility profiles of the S. marcescens mutants

Antibiotic MICs for S. marcescens D bll transposon mutants were determined using E- 

test on TSA (section 3.3.7), and the results were statistically compared to those of the 

wild type (Table 3.18). All mutants showed changes in their antibiotic phenotype 

compared with the wild type, and with the exception of the control mutant N1-C5, all 

remaining mutants had at least two or more changes in their antibiotic susceptibility 

profiles compared with the wild type. Moreover, 90% of the mutants showed increased 

susceptibility to at least one antibiotic. In addition, a high number of mutants (70%) also 

showed increased resistance to at least one antibiotic as well. Mutants 27-B8 and 18-A3 

in particular, respectively demonstrated increased resistance to 8 and 7 out of 10 

antibiotics tested. The most common antibiotic to have decreased MICs was meropenem 

with 65% of the susceptible mutants possessing increased sensitivity to this antibiotic. On 

the other hand, amikacin was the most common antibiotic to have increased MICs; 52% 

of all resistant mutants possessed increased tolerance to this antibiotic. No mutant showed 

increased susceptibility to ceftazidime and only 3% of all mutants showed decreased 

MICs to chloramphenicol or trimethoprim/sulfamethoxazole. Increased resistance to
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azithromycin was not seen as the wild type was already resistant to the maximum amount 

of this antibiotic assayable by E-test (MIC >256 (pg/ml).

There was a noticeable correlation between the mutants’ sensitivities to the two 

aminoglycosides, amikacin and tobramycin, as all the mutants which showed increased 

resistance to tobramycin also showed increased resistance to amikacin. Moreover, nearly 

80% of the mutants with increased susceptibility to tobramycin, were also sensitive to 

amikacin. The correlation was not as clear cut with the two carbapenems, imipenem and 

meropenem. Increased sensitivity to meropenem correlated with increased sensitivity to 

imipenem as all imipenem-susceptible mutants were also susceptible to meropenem. 

However, this correlation was not apparent with the resistant phenotype, and only 33% of 

imipenem-resistant mutants were also resistant to meropenem

In order to determine if there was a correlation between biocide sensitivity and antibiotic 

susceptibility changes, the percentages of mutants with a particular biocide susceptibility 

phenotype showing increased or decreased susceptibility to particular antibiotics were 

determined. Increased susceptibility to amikacin and tobramycin were the most common 

phenotypes amongst the chlorhexidine diacetate-sensitive mutants. Of these mutants, 

75% showed decreased MICs to amikacin and nearly 63% were sensitive to tobramycin. 

Meropenem sensitivity was the most common phenotype amongst chlorhexidine 

diacetate-resistant mutants, as nearly 84% of the latter had increased susceptibility to this 

antibiotic. Increased sensitivity to meropenem was also the most common phenotypes 

amongst cetylpyridinium chloride-sensitive mutants, and 56% of the latter had decreased 

MICs to this antibiotic. It is interesting however that all of the cetylpyridinium chloride- 

resistant mutants were also sensitive to meropenem. Meropenem and azithromycin 

sensitivity was the most common phenotype among mutants susceptible to triclosan and 

orf/zo-phthal aldehyde. Over 72% of all ort/io-phthalaldehyde-susceptible mutants had 

increased sensitivity to meropenem and nearly 55% were sensitive to azithromycin. 

Identical results were obtained with triclosan-sensitive mutants, with the addition that 

55% of these mutants had also increased sensitivity to piperacillin.
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Table 3.12. Agar M ICs for wild type S. marcescens D b ll  and biocide mutants.

CHX M IC 
(yig/ml) ± SD

CPC M IC 
(pg/ml) ± SD

TRI M IC
(pg/ml) ± SD

OPA M IC 
(pg/ml) ± SD

Biocide

S. marcescens Dbl 1 18 ±(2.83) 100 ±(28.3) 3900 ±(141) 3000 ±(283)

E. coli NCTC 1048 4 ± (0 ) 12 ±(28.3) 0.1 ± (0 ) 3000 ±(283)

Susceptible phenotype

10-E7 18 ±(2.83) 70 ± (14.1) 3900 ±(141) 2800 ±(283) CPC, OPA
9-D5 14 ±(2.83) 6 0 ±  (14.1) 3900 ±(141) 3000 ±(283) CHX, CPC
3-F2 18 ±(2.83) 95 ± (7.07) 3900±(141) 2800 ±(283) CPC, OPA
9-D10* 18 ±(2.83) 75 ± (7.07) 3900 ±(141) 3000 ±(283) CPC
11-B8 18 ±(2.83) 100 ±(28.3) 3900±(141) 2700 ±(424) OPA
12-F6 15 ±  (1 -41) 100 ±(28.3) 3200 ± (283) 2700 ±(141) CHX, TRI, OPA
7-C10 18 ±(2.83) 100 ±(28.3) 3200 ± (566) 2600 ±(283) TRI, OPA
18-A3 15 ± (1.41) 85 ± (7.07) 3900 ±(141) 3000 ±(283) CHX, CPC
22-D5 18 ±(2.83) 80 ± (14.1) 3900 ±(141) 2800 ±(283) CPC, OPA
N6-B2 18 ±(2.83) 75 ±(7.07) 2800 ± (283) 2600 ±(141) CPC, TRI. OPA
N5-B6 18 ±(2.83) 90 ± (14.1) 3300 ±(141) 3000 ±(283) CPC, TRI
N5-D9 18 ±(2.83) 100 ±(28.3) 3000 ±(283) 3000 ±(283) TRI
N4-F6 16 ±(2.83) 80 ±(14.1) 3900± (141) 3000 ±(283) CHX, CPC
N2-B3 15 ± (1.41) 85 ± (7.07) 3600 ±(141) 2600 ±(283) CHX, CPC, TRI, OPA
N2-A8 16 ±(2.83) 9 0±  (14.1) 3900 ±(141) 3000 ±(283) CHX, CPC
N5-G1 17 ± (1.41) 9 0±  (14.1) 3900± (141) 3000 ±(283) CHX, CPC
N2-F1 16 ± (1.41) 100 ±(28.3) 3900 ± (141) 3000 ±(283) CHX

Resistant phenotype

19-D3 31 ±(7.07) 160 ±(28.3) 3900 ±(141) 3100 ±(283) CHX, CPC, OPA
8-C7 24 ±(2.83) 100 ±(28.3) 4100 ± (141) 3000 ±(283) CHX, TRI
27-B8* 18 ±(2.83) 100 ±(28.3) 4000 ± (283) 3200 ±(283) TRI, OPA

Mixed phenotype

10-B6 18 ±(2.83) 80 ± (14.1) 3900± (141) 3200 ±(283) CPCS, OPAr
3-A4 30 ±(5.66) 6 0 ±  (14.1) 3300 ± (283) 3000 ±(283) CHXr, CPCS, TRF
N5-B5 18 ±(2.83) 140 ±(28.3) 3600 ±(283) 2700 ±(283) CPCr, TRF, OPAs
N5-G6 28 ±(2.83) 100 ±(28.3) 3400 ±(566) 2600 ±(283) CHX1, TRF, OPAs
N2-F3 28 ±(2.83) 100 ±(28.3) 3300 ±(141) 2800 ±(283) CHXr, TRF, OPAs
N3-B8 26 ±(2.83) 200 ±(28.3) 3300 ±(424) 3000 ±(283) CHX1, CPCr, TRF

Controls

N3-C1* 18 ±(2.83) 100 ±(28.3) 3900±(141) 3000 ±(283)
N1-C5 18 ±(2.83) 100 ±(28.3) 3900 ± (141) 3000 ±(283)

SD; standard deviation, TRI; triclosan, OPA; orz/jo-phthalaldehyde, CPC; cetylpyridinium chloride, 
CHX; chlorhexidine diacetate, r, resistant, s, susceptible.
Increased resistance is highlighted in blue and increased sensitivity in red.
* Mutants not sequenced
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Table 3.13. Biocide M IC ratios for the S. m arcescens D b ll  mutants.

CHX CPC T R I OPA Phenotype

MAX MIN MAX MIN MAX MIN MAX MIN

Susceptible

10-E7 1.00 1.00 0.66 0.66 1.00 1.00 0.93 0.92 CPC, OPA
9-D5 0.80 0.75 0.58 0.55 1.00 1.00 1.00 1.00 CHX, CPC
3-F2 1.00 1.00 0.83 1.00 1.00 1.00 0.93 0.92 CPC, OPA
9-D10 1.00 1.00 0.66 0.77 1.00 1.00 1.00 1.00 CPC
11-B8 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.85 OPA
12-F6 0.80 0.87 1.00 1.00 0.85 0.78 0.87 0.92 CHX, TRI, OPA

7-C10 1.00 1.00 1.00 1.00 0.90 0.73 0.87 0.85 TRI, OPA
18-A3 0.80 0.87 0.75 0.88 1.00 1.00 1.00 1.00 CHX, CPC
22-D5 1.00 1.00 0.75 0.77 1.00 1.00 0.93 0.92 CPC, OPA
N6-B2 1.00 1.00 0.66 0.77 0.75 0.68 0.87 0.92 CPC, TRI. OPA
N5-B6 1.00 1.00 0.83 0.88 0.85 0.84 1.00 1.00 CPC, TRI
N5-D9 1.00 1.00 1.00 1.00 0.80 0.73 1.00 1.00 TRI
N4-F6 0.90 0.87 0.75 0.77 1.00 1.00 1.00 1.00 CHX, CPC
N2-B3 0.80 0.87 0.75 0.88 0.92 0.92 0.85 0.87 CHX, CPC, TRI, OPA
N2-A8 0.90 0.87 0.83 0.88 1.00 1.00 1.00 1.00 CHX, CPC
N5-G1 0.90 1.00 0.83 0.88 1.00 1.00 1.00 1.00 CHX, CPC
N2-F1 0.90 0.87 1.00 1.00 1.00 1.00 1.00 1.00 CHX

Resistant

19-D3 1.80 1.62 1.50 1.55 1.00 1.00 1.03 1.03 CHX, CPC, OPA
8-C7 1.30 1.37 1.00 1.00 1.05 1.05 1.00 1.00 CHX, TRI
27-B8 1.00 1.00 1.00 1.00 1.05 1.00 1.06 1.07 TRI, OPA

Mixed

10-B6 1.00 1.00 0.75 0.77 1.00 1.00 1.06 1.07 CPCS, OPAr
3-A4 1.70 1.62 0.58 0.55 0.87 0.81 1.00 1.00 CHX", CPCS, TRF
N5-B5 1.00 1.00 1.33 1.33 0.95 0.89 0.87 0.85 CPCr, TRF, OPAs
N5-G6 1.50 1.62 1.00 1.00 0.95 0.78 1.00 1.00 CHXr, TRI8, OPA8
N2-F3 1.50 1.62 1.00 1.00 0.85 0.84 0.93 0.92 CHX", TRI8, OPA8
N3-B8 1.40 1.50 1.83 2.00 0.90 0.78 1.00 1.00 CHX", CPC", TRF

Controls

N3-C1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
N1-C5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TRI; triclosan, OPA; ort/jo-phthalaldehyde, CPC; cetylpyridinium chloride, CHX; chlorhexidine diacetate. 
MAX and MIN represent respectively ratios generated from the maximum and the minimum MIC values 
for the biocide. Ratios represent the mutant values over those of the wild type, r; resistant (blue), s; 
sensitive (red)



Table 3.14. Effect o f cetylpyridium  chloride on maximal growth optical density o f S.
m a rcescen s D b ll  and its mutants in broth.

Organism Mean OD^onm SE P-value

S. marcescens Dbll 1.4213 0.0159
E. coli NCTC 1048 0.2847 0.0127 0.000
S. marcescens mutants:

Value not different from th a t of the wild type
3-F2 1.2170 0.1480 0.303
N2-F3 1.4383 0.0671 0.828
7-C10 1.2370 0.1260 0.283
12-F6 1.2200 0.0640 0.093
N1-C5 1.3583 0.0149 0.319
N2-F1 0.7210 0.2970 0.143
N2-B3 0.7880 0.2800 0.152
27-B8 1.1017 0.0397 0.121
N5-G6 1.1480 0.0723 0.149
N5-B6 1.5053 0.0558 0.285
N5-D9 1.5410 0.0311 0.549
11-B8 1.1980 0.1460 0.269
N3-C1 1.3450 0.2930 0.900
N5-G1 1.1860 0.0544 0.053

Value lower than that of the w ild type
3-A4 1.1670 0.0538 0.045
10-B6 0.5920 0.0439 0.003
22-D5 0.9260 0.0338 0.006
N2-A8 0.8770 0.0342 0.005
9-D10 0.6410 0.1830 0.050
8-C7 0.9467 0.0721 0.023
10-E7 0.6040 0.0778 0.009
9-D5 0.4730 0.1260 0.017
18-A3 0.9327 0.0170 0.000
N6-B2 0.2293 0.0213 0.000
N4-F6 0.7673 0.0853 0.017

Value higher than that of the wild type
N3-B8 1.6003 0.0317 0.037
N5-B5 1.4793 0.0367 0.040
19-D3 1.4947 0.0026 0.045

M ean OD63 0 nm; m ean OD^o™  value o f  culture o f  the organism  grow n overnight at 37°C in TSB
containing 5 pg/ml cetylpyridium  chloride. SE; standard error. P-value; P-value for the two-
sample t-test. M utants with mean O D ^nm  values that were statistically significantly different
from that o f  the wild type S. marcescens Db 11 at 95%  confidence, are highlighted (red; value
significantly smaller than that o f  the wild type, blue; value significantly higher than that o f  the
wild type).
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Table 3.15. Effect o f chlorhexidine diacetate on maximal growth o f  S. m arcescens
Dbll and its mutants in broth.

Organism M ean OD^onm SE P -value

S. marcescens Dbl 1 1.3800 0.0223
E. coli NCTC 1048
S. marcescens mutants:

0.2166 0.0028 0.000

Value not different from th a t of the w ild ty pe

3-F2 1.3617 0.0357 0.692
N2-F3 1.4630 0.0276 0.101
7-C10 1.4033 0.0248 0.535
27-B8 1.3623 0.0639 0.818
8-C7 1.4197 0.0391 0.443
N1-C5 1.4083 0.0699 0.736
3-A4 1.4123 0.0347 0.490
10-B6 1.3380 0.0380 0.411
9-D10 1.3807 0.0729 0.994
11-B8 1.2420 0.1040 0.325
N2-B3 1.4847 0.0384 0.100
10-E7 1.2873 0.0288 0.084
N5-B5 1.3803 0.0632 0.996
22-D5 1.2043 0.0672 0.131
N5-B6 1.4513 0.0681 0.424
N5-D9 1.2783 0.0758 0.327
N3-C1 1.2988 0.0788 0.890

Value low er than that of the w ild type
N2-F1 1.1183 0.0398 0.011
N6-B2 0.6460 0.0707 0.010
12-F6 0.8003 0.0282 0.001
N5-G1 1.0387 0.0468 0.022
18-A3 1.0153 0.0423 0.005
N2-A8 1.0490 0.0333 0.004
N4-F6 0.8533 0.0290 0.001
9-D5 0.9423 0.0228 0.001

Value higher than that of the w ild type
19-D3 1.4990 0.0159 0.022
N5-G6 0.6177 0.0542 0.006
N3-B8 1.5550 0.0167 0.008

Mean OD630nm; mean OD^onm value of culture of the organism grown overnight at 37°C in TSB 
containing 6 fig/ml chlorhexidine diacetate, SE; standard error. P-value; P-value for the two- 
sample t-test. Mutants with mean OD630nni values that were statistically significantly different 
from that of the wild type S. marcescens Dbl 1 at 95% confidence, are highlighted (red; value 
significantly smaller than that of the wild ty pe, blue; value significantly higher than that of the 
wild type).



Table 3.16. Suspension tests for the S. marcescens D b l l  mutants.

Log,,j reduction  in cfu /m l

Organism C PC * C H X ** T R I*** O PA ****

S.marcescens D b l l  ±  (SD ) 3.13 ±(0.48) 2.57 ±(0.22) 3.11 ±(0.14) 1.18±(0.10)
E. coli N CTC  1048

S. marcescens mutants:
Increased killing

8.97 8.97 8.97 5.57

10-E7 42 0 2.77 2.87 2.16
9-D5 3.90 2.99 3.17 1.13
3-F2 3.46 2.64 2.92 2.60
9-D10 3.83 2.66 4.03 1.14
11-B8 . 1.80 2.45 2.77 1.95
12-F6 2.88 3.76 4.47 4.09
7-C10 2.86 3.53 5.04 1.26
22-D5 3.93 2.99 3.49 1.29
N6-B2 2.93 2.77 3.93 1.41
N2-F3 2.94 2.45 3.04 1.62
N5-D9 2.87 2.89 3.89 1.19
N2-F1 2.83 4.86 3.20 1.16
N2-B3 2.86 2.98 3.82 2.30
N5-G1
Reduced killing

3.99 3.38 2.83 1.19

19-D3 2.56 1.96 2.92 1.03
8-C7
Mixed phenoty pe

2.69 2.16 2.61 0.96

10-B6 3.90 2.88 2.72 0.79
3-A4 4.20 1.81 6.04 1.30
18-A3 3.61 3.10 2.54 1.03
27-B8 2.84 2.98 2.18 1.09
N5-B5 2.56 2.86 3.69 1.51
N5-G6 2.97 2.08 3.88 1.38
N3-B8 2.55 2.20 4.33 1.09
N4-F6 3.99 3.35 1.83 1.09
N2-A8
Phenoty pe similar to the w ild type

2.92 3.04 2.80 1.02

N5-B6 3.60 2.44 3.07 1.02
N1-C5 3.04 2.59 2.88 1.19
N3-C1 3.01 2.60 2.99 1.14

SD; standard deviation, TRI; triclosan, OPA; ort/7 0 -phthalaldehyde, CPC; cetylpyridinium chloride, CHX; 
chlorhexidine diacetate. Mutants with logio reductions in cfu/ml that are statistically significantly different 
at 95% confidence from that of the wild type are highlighted (blue; value statistically significantly lower 
than that o f the wild type, red; value statistically significantly higher than the wild type). *; exposed to 8 
(ig/ml cetylpyridinium chloride for 10 min, **; exposed to 20 fig/ml chlorhexidine diacetate for 10 min, 
***; exposed to 4000 pg/ml triclosan for 5 min, ****; exposed to 50 pg/ml ortho-phthalaldehyde for 5 min.
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Table 3.17. Potassium leakage (in ppm) from biocide-treated S. marcescens Dbl 1 mutants.

Organism TRI* OPA** CPC*** CHX****

S. marcescens D b ll  ± (SD) 0.8 ±(0.08) 0.5 ± (0.08) 0.1 ±(0.008) 1.07 ±(0.09)
E. coli NCTC 1048

S. marcescens mutants:
Increased leakage

1.0156 0.7131 0.6652 0.9652

10-E7 0.8508 0.7234 0.7418 1.1332

9-D5 0.8090 0.4340 0.3173 1.5114
3-F2 0.8102 0.4511 0.2901 1.0778
9-D10 0.7984 0.4401 0.2034 1.0545
11-B8 0.7987 0.7239 0.1205 1.0731
12-F6 0.9639 0.6930 0.1069 1.7667
8-C7 2.4849 1.3118 0.7458 2.8085
7-C10 0.9698 0.5911 0.1091 1.0577
18-A3 0.7561 0.4820 1.7741 1.8325
22-D5 0.8100 1.8090 0.2228 1.0771
27-B8 0.7124 0.4448 1.1082 1.1453
N6-B2 0.9632 0.7811 0.5000 1.1313
N5-B6 0.9618 0.4900 0.3115 0.9840
N5-D9 0.9530 0.5105 0.9970 1.0565
N4-F6 1.5305 0.5182 0.1516 1.3529
N2-B3 0.8322 0.6848 0.0938 1.5542
N2-A8 0.8197 0.5162 0.1430 1.4046
N5-G1
Reduced leakage

0.8052 0.4703 0.1231 1.7423

19-D3 0.6024 0.2459 0.0860 0.4348
N2-F1
Mixed phenotype

0.8481 0.4701 0.0867 0.9378

10-B6 0.8072 0.3386 0.6789 1.0708
3-A4 1.0677 0.4480 0.8953 0.8160
N5-B5 1.5971 0.5929 0.0621 0.6439
N5-G6 0.9634 0.8930 0.0890 0.6520
N2-F3 1.6496 1.0723 0.1150 0.8150
N3-B8
Phenotype similar to the w ild type

1.1013 0.5013 0.0800 0.7128

N1-C5 0.7792 0.5053 0.0921 0.9314
N3-C1 0.8977 0.5697 0.1034 0.9876

SD; standard deviation, ppm; parts per million, TRI; triclosan. OP A; or/Zro-phthalaldehyde, CPC; cetylpyridinium
chloride, CHX; chlorhexidine diacetate. Mutants with potassium concentrations that are statistically significantly
different at 95° o confidence from that of the wild type are highlighted (blue; value statistically significantly lower than
that o f  the wild type, red; value statistically significantly higher than the wiki type). *; exposed to 4000 pg/ml triclosan
for 5 min, **; exposed to 50 pg/ml or/^o-phthalaldehyde for 5 min, ***; exposed to 8 pg-'ml cetylpyridinium chloride
for 10 min, ***•; exposed to 20 pg/ml chlorhexidine diacetate for 10 min.
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Table 3.18. Antibiotics agar M ICs for A. m arcescens D b ll  mutants.

A ntibiotic C L
(Mg/m!)

M P
Gig/ml)

C l
(Mg/m I)

TM
(Mg/ml)

TS
(Mg/ml)

A Z
(Mg/ml)

PP
(Mg/ml)

TZ
(Mg/ml)

IP
(Mg/ml)

A K
(Mg/m!)

S. marcescens Db l l 24 0.12 0.17 25.1 0.65 >256 2 0.71 0.59 8
(dr SD) (8.00) (0.05) (0.04) (8.55) (0.13) (0) (0) (0.31) (0.09) (0)

E. coli NCTC 1048 4 0.050 0.016 2 0.094 4.66 2 0.5 025 2

S. marcescens mutants

10-E7 16 0.047 0.125 32 0.38 128 2 0.5 0.38 12
9-D5 32 0.094 0.25 16 0.5 128 3 0.6 1.5 4

3-F2 32 0.064 0.19 48 0.5 >256 2 0.75 0.38 12
9-D10 32 0.079 0.25 24 0.75 >256 3 1.5 1.5 12

11-B8 32 0.094 0.19 32 1 192 3 0.75 0.38 12

12-F6 8 0.109 0.19 56 0.46 101.3 1.5 0.85 2.25 12

7-C10 16 0.064 0.19 32 0.5 64 2 0.75 1.5 12

18-A3 48 0.19 0.25 24 1.5 >256 4 2 2 8

22-D5 32 0.064 0.19 12 0.75 >256 2 0.5 0.38 8

N6-B2 16 0.064 0.125 16 0.75 96 1.5 0.5 0.38 4

N5-B6 16 0.047 0.25 32 1 >256 1 1 025 4

N5-D9 32 0.19 0.25 16 1 >256 3 1.5 1 6

N4-F6 32 0.19 0.25 12 1 >256 2 1 1 3

N2-B3 16 0.047 0.125 24 0.38 96 1.5 0.25 0.25 6



Table 3.18. Antibioitics agar MICs for A. m arcescens D b l l  mutants (continued).

A ntibiotic C L
(MK/ml)

M P
(jig/m l)

C l
(Mg/ml)

T M

....<M/n*D...
TS

(jag/ml)
A Z

Oig/rnl)
PP

(Pg/m l)
T Z

(Mg/ml)
IP

(Mg/ml)
A K

(jig/m l)

N2-A8 32 0.19 0.19 16 1 >256 2 1 1 6
N5-G1 96 0.19 0.19 16 1.5 >256 4 1 2 4

19-D3 32 0.064 0.19 72 1.5 >256 2 0.5 1 24

8-C7 24 0.064 0.19 48 1 >256 2 0.75 0.62 12
27-B8 48 0.19 0.25 32 1.5 >256 3 2 2 12
10-B6 24 0.094 0.094 32 0.75 >256 3 1.5 1.5 8
3-A4 32 0.064 0.25 32 0.75 192 3 0.75 6 12
N5-B5 16 0.047 0.19 32 0.5 >256 1.5 0.5 025 8
N5-G6 24 0.047 0.125 24 0.75 >256 1.5 0.38 0.25 6
N2-F3 32 0.047 0.094 48 0.19 >256 2 0.75 0.19 12

N3-B8 24 0.064 0.125 32 1 96 2 0.5 0.25 8

N2-F1 64 0.125 0.19 16 1.5 192 3 1 0.75 6

N1-C5 32 0.064 0.19 32 0.75 >256 2 0.75 0.38 8

N3-C1 32 0.064 0.19 32 0.75 >256 2 0.75 0.25 8

CL; chloramphenicol, MP; meropenem, Cl; ciprofloxacin, TM; tobramycin, TS; trimethoprim/sulfamethoxazole (1/19), AZ; azithromycin, PP; piperacillin, TZ; 
ceftazidime, IP; imipenem, AK; amikacin, SD; standard deviation.
Statistically significant increases in resistance (blue) or susceptibility (red) are highlighted.



3.4.13 Determination of the disrupted genes in the S. marcescens Dbll mutants

The site of insertion of the mini-Tn5 transposon into the genome of the S. marcescens

Dbl 1 mutants was determined by sequencing the product of the two steps PCR reaction 

described in section 3.3.12. The PCR reaction amplified the transposon-chromosome 

junctions in each mutant. This site was sequenced as described in section 3.3.12. The 

resulting sequence was used in conjunction with bioinformatic analysis to determine the 

exact location of the transposon insert and the disrupted gene affected. Artemis (929) 

program along with BLAST homology searches against the GeneBank 

(www.ncbi.nlm.nih.govl were used to annotate the disrupted gene and its surrounding 

DNA in the S. marcescens Dbl 1 mutants (section 3.3.12). Out of the 26 biocide mutants 

and the two control mutants only three were not able to be sequenced. The transposon 

insertions in the sequenced mutants were located in 14 genes coding for putative proteins 

with varying functions (Table 3.19). Transposon insertions mapping into the same genes 

were also observed; one putative gene had transposon insertion in nine of the mutants 

sequenced. The transposon-disrupted putative genes in the sequenced mutants were as 

follows.

3.4.13.1 Putative carbamoyl-phosphate synthase large subunit gene (carB), mutant 

8-C7.

The transposon insertion in mutant 8-C7 was shown to be in an ORF coding for a 1075 

amino acids long putative protein. The latter had a carbamoyl-phosphate synthase large 

subunit conserved domain, and showed high homology with the CarB from S.

proteamaculans. On agar, mutant 8-C7 demonstrated resistance to both triclosan and 

chlorhexidine diacetate (Table 3.12). However, resistance to the latter biocide was not 

apparent in broth (Table 3.15). Suspension tests showed that triclosan, ortho-

phthalaldehyde and chlorhexidine diacetate were all more effective at killing the mutant 

compared to the wild type (Table 3.16). These results were confirmed by those from the 

potassium leakage experiment, where the mutant was shown to leak larger amounts of 

potassium compared to the wild type when subjected to the above biocides (Table 3.17).
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Mutant 8-C7 is therefore more resistant to inhibition of growth by triclosan and 

chlorhexidine diacetate, however it is more sensitive to the killing effect of these two 

biocides. Antibiotic susceptibility profiles for the 8-C7 mutant indicated that it showed 

increase resistance to the two aminoglycosides amikacin and tobramycin but was more 

susceptible than the wild type to meropenem (Table 3.18).

Upstream of the putative carB gene was a 395 amino acid long putative carbamoyl- 

phosphate synthase small subunit encoding gene {carA) (Figure 3.12). The protein had a 

carbamoyl-phosphate synthase small subunit conserved domain, involved in both amino 

acid and nucleotide transport and metabolism in the cell. The protein had high homology 

with the CarA of S. proteamaculans and a number of other Enterobacteriaceae species. 

Adjacent to the putative car A, was a putative dihydrodipicolinate reductase {dapB) gene 

(Figure 3.12). The latter coded for a 284 amino acid long protein with high homology to 

the DapB from S. proteamaculans involved in amino acid transport and metabolism in 

the cell. Downstream from the putative carB gene was an ORF coding for a 216 amino 

acid long protein (Figure 3.12). It had a glutathione-regulated potassium-efflux system 

ancillary protein KefF conserved domain and showed high homology with the product of 

the yabF gene from Shigella boydii. All of the ORFs described above were transcribed in 

the same direction, including the one disrupted by transposon insertion (Figure 3.12). A 

summary of information about the gene disrupted by transposon insertion in mutant 8-C7 

and its surroundings is shown in Table 3.30.

3.4.13.2 Putative DeoR family transcriptional regulator gene, mutants 10-E7, 3-F2,

18-A3, 9-D5,3-A4,11-B8, 7-C10, N2-B3, and N2-F3.

The transposon insertions in nine mutants (10-E7, 3-F2, 18-A3, 9-D5, 3-A4, 11-B8, 7- 

C10, N2-B3, and N2-F3) were all located in a single ORF encoding a 266 amino acid 

long protein (Figure 3.21). The protein had a putative transcriptional regulator of the 

DeoR family conserved domain and showed high homology to the DeoR from species of 

Serratia and Burkholderia. All but three of the above mutants showed increased 

sensitivity to cetylpyridinium chloride, and six of the mutants were sensitive to ortho-
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phthalaldehyde. Mutants 3-A4, N2-B3, 7-C10, and N2-F3 were also sensitive to triclosan, 

and mutants 18-A3, 9-D5 and N2-B3 all showed increased sensitivity to chlorhexidine 

diacetate. Interestingly, mutants 3-A4 and N2-F3 expressed a resistant phenotype to the 

latter biocide (Table 3.12). Results of the killing tests (Table 3.16) and the potassium 

leakage experiments (Table 3.17) largely supported the mutants’ above phenotypes. 

These tests showed that mutants sensitive to a particular biocide were more readily killed 

by that biocide and leaked larger amounts of potassium when exposed to the same 

biocide than did the wild type. On the other hand, mutants with resistant phenotypes, such 

as 3-A4 which showed increased resistance to chlorhexidine diacetate, leaked less 

potassium and suffered less killing when exposed to the biocide compared to the wild 

type. Antibiotic susceptibility profiles for the mutants (Table 3.18) showed that nearly 

67% of these had increased sensitivity to azithromycin and a similar percentage to 

meropenem. Amikacin resistance was seen in 56% of the mutants. Mutant 18-A3 was of 

particular interest as it developed resistance to 8 out of the 10 antibiotics tested (Table

3.18).

Upstream of the putative DeoR regulator, was an ORF coding for a 226 amino acid long 

protein (Figure 3.21). The BLAST search did not show any conserved domain in the 

protein, however the latter showed high homology to an integral membrane protein from 

Bradyrhizobium sp. BTAil. The protein is predicted to be a divalent heavy-metal cation 

transporter involved in inorganic ion transport and metabolism. Adjacent to this, laid an 

ORF coding for a 213 amino acid long protein. The latter did not show any conserved 

domains, however it showed homology with the hypothetical protein Spro_0996 from S.

proteamaculans and the N-terminal of the heat shock protein DnaJ of P. syringae. Both 

of the above ORFs were encoded in direction opposite to that of the putative DeoR 

regulator gene (Figure 3.21). Downstream of the latter were located four ORFs (Figure

3.21). The first coded a short 148 amino acid long protein with a glyoxalase/bleomycin 

resistance conserved domain belonging to the dioxygenase protein superfamily. Adjacent 

to it and encoded in the opposite direction was an ORF coding for a 331 amino acid 

protein that showed high homology to a LysR family transcriptional regulator. The 

protein had a LysR substrate binding domain similar to that of periplasmic binding
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proteins. Adjacent to the putative LysR regulator and encoded in the opposite direction 

were two ORFs. The first coded a 300 amino acid long protein with a pirin conserved 

domain. The protein showed homology to pirin-like proteins from species of Serratia,

Burkholderia, and Pseudomonas. The second ORF coded for a 256 amino acid long 

protein with high homology to the product of the ycaC gene of E. coli. The protein had a 

YcaC related amidohydrolases conserved domain related to the isochorismatase family of 

hydrolase enzymes. A summary of information about the gene disrupted by transposon 

insertion in mutants 10-E7, 3-F2, 18-A3, 9-D5, 3-A4, 11-B8, 7-C10, N2-B3, and N2-F3 

and its surroundings is shown in Table 3.20.

3.4.13.3 Putative succinate dehydrogenase hydrophobic membrane anchor protein
gene (sdhD), mutant 22-D5.

The transposon insertion in mutant 22-D5 was shown to be in a putative succinate 

dehydrogenase hydrophobic membrane anchor protein gene (sdhD) (Figure 3.20). On 

agar, the mutant demonstrated increase susceptibility to or/Zzo-phthalaldehyde and 

cetylpyridinium chloride (Table 3.12). Sensitivity of mutant 22-D5 to cetylpyridinium 

chloride was also confirmed in broth (Table 3.14). Compared with the wild type, the 

mutant was more readily killed by triclosan, cetylpyridinium chloride and chlorhexidine 

diacetate, but not ort/zo-phthalaldehyde (Table 3.16). It was also shown that when 

subjected to ort/zo-phthalaldehyde or cetylpyridinium chloride, the mutant leaked larger 

amounts of potassium compared to the wild type (Table 3.17). Mutant 22-D5 showed 

increased sensitivity to both meropenem and tobramycin (Table 3.18).

The protein encoded by the putative sdhD gene was 176 amino acids long with a 

succinate dehydrogenase D (SdhD) subunit conserved domain. The protein belongs to the 

succinate, quinone oxidoreductase type C subfamily involved in electron transport and 

energy production and conversion in the cell. The protein showed high homology with 

the SdhD protein from Yersinia species. Upstream of the putative SdhD gene, and 

encoded in the opposite direction, laid a 1293 bp ORF coding for a 430 amino acids long 

putative protein (Figure 3.20). The protein had a type II citrate synthase conserved

236



domain known to be involved in energy production and conversion, and showed high 

homology with the GltA from Serratia, Yersinia, Salmonella, Escherichia and other 

Enterobacteriaceae.

Downstream from the putative SdhD gene, were three ORFs all encoded in the same 

direction as the putative sdhD gene (Figure 3.20), The first coded for a 588 amino acids 

long protein with high homology to the succinate dehydrogenase catalytic subunit SdhA 

of many Enterobacteriaceae, including species of Serratia, Yersinia, Salmonella, 

Shigella and Escherichia. The protein had a succinate dehydrogenase flavoprotein 

subunit conserved domain known to be involved in the energy production and conversion 

in the cell. The second ORF encoded a 261 amino acids long protein also thought to be 

involved in energy production and conversion. The protein had a putative succinate 

dehydrogenase iron-sulfur subunit conserved domain and showed high homology with 

the succinate dehydrogenase and fumarate reductase iron-sulfur protein from Serratia and 

the succinate dehydrogenase iron-sulfur catalytic subunit (SdhB) of many other 

Enterobacteriaceae. The final ORF coded for a larger, 938 amino acids long protein, with 

high homology to the 2-oxoglutarate dehydrogenase El component (SucA) from a 

number of Enterobacteriaceae. Dehydrogenase (El) component conserved domain of the 

protein is involved in the process of energy production and conversion in the cell.

All of the ORFs described, including that which has the transposon insertion, had a G+C 

content within a close range of the mean 59.5% of the S. marcescens Dbll genome 

(Table 3.21). The putative sdhD gene disrupted by the transposon insertion in mutant 22- 

D5 appears to be part of a putative operon involved in energy processes in the cell, which 

includes at least three genes (sdhA, sdhB, and sdhD). These genes are known to encode 

for components of a four member succinate dehydrogenase enzyme complex that forms a 

trimeric complex. The SdhA/B are the catalytic subcomplex and can exhibit succinate 

dehydrogenase activity in the cell in the absence of SdhC/D which are the membrane 

components and form cytochrome b556 (188, 1044). A summary of information about 

the gene disrupted by transposon insertion in mutant 22-D5 and its surroundings is shown 

in Table 3.21.
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3.4.13.4 Putative cell envelope biogenesis operon genes, mutants N4-F6, N2-A8, N2- 

Fl, N5-G1, and N5-D9.

Five biocide mutants mapped to the same cluster of genes part of a putative operon 

consisting of at least four ORFs. The first of these ORFs had a low 45.5% G+C content 

and coded for a 445 amino acid long putative protein. BLAST searches showed that the 

protein had a methyltransferase conserved domain, and showed homology with the 

methyltransferase type 11, product of the wbbD gene, from species of Klebsiella,

Burkholderia, and Pseudomonas. Adjacent to the putative wbbD gene was another low 

G+C content ORF (47.3%) coding for a large, 1219 amino acid long, putative protein. 

The protein had a glycosyltransferase conserved domain, known to be involved in the 

biosynthesis of disaccharides, oligosaccharides and polysaccharides. The protein also 

showed homology with the mannosyltransferase A, product of the wbdA gene from 

Klebsiella and E. coli and with group 1 glycosyltransferase from species of 

Pseudomonas, Prochlorococcus and Methylobacterium. Both proteins are known to be 

involved in the cell envelope’s lipopolysaccharides biogenesis. The third ORF had a 

42.2% G+C content and coded for a 381 amino acid putative protein which also had a 

glycosyltransferase group 1 conserved domain. The protein showed homology to the 

WbdB (mannosyltransferase B) from Klebsiella and E. coli, and glycosyltransferase 

(WbpY) from Pseudomonas species. The final ORF also had a low G+C content (44.5%) 

and coded for a 378 amino acid long putative protein with a glycosyltransferase group 1 

conserved domain. It showed homology with the glycosyltransferase (WbpZ) from 

Pseudomonas species and the WbcW protein from Yersinia enterocolitica. The putative 

wbbD, wbdA, wbdB, and wbpZ genes appear to be part of a putative outer membrane 

lipopolysaccharides biogenesis operon.

Upstream from the above putative operon, and encoded in the same direction, was a 1320 

bp ORF, with a low 44.2% G+C content, coding for a 439 amino acid long putative 

protein. The latter had a KpsT/Wzt ABC transporter subfamily conserved domain, 

involved in extracellular polysaccharide export. The protein showed high homology with 

the product of the wzt gene from E. coli and Pseudomonas species. Downstream from the
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putative operon, and also encoded in the same direction, laid an ORF with a 57.4% G+C 

content coding for a 468 amino acid long putative protein. The latter showed high 

homology with the 6-phosphogluconate dehydrogenase coded by the gnd gene of a 

number of Enterobacteriaceae, including species of Serratia, Yersinia, and Klebsiella.

The protein conserved domain (6-phosphogluconate dehydrogenase) is involved in 

carbohydrate transport and metabolism and act by catalyzing the formation of D-ribulose 

5-phosphate from 6-phospho-D-gluconate in the cell. The low G+C content of all of the 

above ORFs compared to that of the S. marcescens Dbll genome (Table 3.22, Figure

3.15), suggests that both the putative biogenesis operon and its two surrounding genes 

may be located on an acquired piece of DNA not native to the organism.

Transposon insertions in 4 mutants (N4-F6, N2-A8, N2-F1 and N5-G1) were located 

within the putative wbdA gene (Figure 3.15). On agar, all these mutants showed increase 

susceptibility to chlorhexidine diacetate and three out of the four (N4-F6, N2-A8, and 

N5-G1) also showed increase sensitivity to cetylpyridinium chloride (Table 3.12). Broth 

MICs (Table 3.14) confirmed the results from the agar experiments. Suspension tests 

(Table 3.16) showed that all four mutants were more readily killed by chlorhexidine 

diacetate than was the wild type, and that two of them (N4-F6 and N5-G1) were more 

susceptible to the killing effect of cetylpyridinium chloride compared with the wild type. 

With the exception of mutant N2-F1, all mutants leaked more potassium than the wild 

type when exposed to chlorhexidine diacetate or cetylpyridinium chloride. These results 

strongly suggested that disruption of the wbdA gene lead to increase sensitivity to 

chlorhexidine diacetate and cetylpyridinium chloride both in terms of inhibition of 

growth and killing effect. Antibiotic susceptibility profiles for the above four mutants 

(Table 3.18) showed that all had increased sensitivity to the two aminoglycosides, 

amikacin and tobramycin, and that three of them showed increased resistance to 

meropenem.

A fifth mutant (N5-D9) had a transposon insertion in the putative wbpZ gene (Figure

3.15). The mutant showed increased sensitivity to triclosan on agar, and was shown to be 

more readily killed and leaked greater amounts of potassium when exposed to the same
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biocide compared with the wild type. Evidence of increase sensitivity to the killing effect 

of chlorhexidine diacetate and cetylpyridinium chloride was also observed (Tables 3.16). 

Mutant N5-D9, similar to the above four putative wbdA mutants also showed increased 

sensitivity to amikacin and tobramycin, and increased resistance to meropenem. It also 

was more resistant than the wild type to ciprofloxacin, piperacillin, and ceftazidime 

(Table 3.18). A summary of information about the genes disrupted by transposon 

insertion in mutants N4-F6, N2-A8, N5-G1, N2-F1 and N5-D9 and their surroundings is 

shown in Table 3.22.

3.4.13.5 Putative outer membrane protein A gene (ompA), mutant 12-F6.

The transposon insertion in mutant 12-F6 was mapped to an ORF that coded for a 371 

amino acid long putative protein with high homology to the outer membrane protein A 

(OmpA) from a number of Enterobacteriaceae, including species of Serratia, Yersinia, 

Shigella and Klebsiella. The OmpA-like transmembrane domain of the protein is a 

member of the outer membrane beta-barrel protein superfamily clan involved in cell wall 

and membrane biogenesis. OmpA is a porin, involved in diffusion of non-specific small 

solutes across the outer membrane. On agar, mutant 12-F6 showed increased 

susceptibility to triclosan, o/t/io-phthalaldehyde, and chlorhexidine diacetate (Table 

3.12). Increased sensitivity to the latter biocide was also confirmed in broth (Table 3.15). 

The mutant was more susceptible to the killing effect of the three biocides (Table 3.16), 

and leaked greater amounts of potassium when exposed to these biocides compared with 

the wild type (Table 3.17). Mutant 12-F6 showed increased sensitivity to 

chloramphenicol, azithromycin, and piperacillin. It was however also more resistant than 

the wild type to two aminoglycosides, amikacin and tobramycin, and to imipenem (Table

3.18).

Downstream from the putative ompA and encoded in the opposite direction was an ORF 

coding for a small, 161 amino acid long, putative protein. The latter had a hypothetical 

protein multidomain of unknown function and showed high homology to a number of 

conserved hypothetical proteins from a number of Enterobacteriaceae as well as the
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putative cytoplasmic protein YcbG from E. coli. Adjacent to the above ORF and encoded 

in the opposite direction was an ORF which coded for a 594 amino acid long putative 

protein. Blast searches revealed that the protein had high homology with a number of 

ATP-dependent proteases from Enterobacteriaceae especially the Lon protease of 

Serratia and Yersinia. The protein conserved domain (ATP-dependent protease) is known 

to be involved in posttranslational modification and protein turnover and acts as 

chaperone in the cell.

Upstream from the putative ompA, was a low G+C content ORF coding for a small 178 

amino acid long putative protein. It had a SOS-response cell division inhibitor conserved 

domain involved in cell cycle control and the control of mitosis and meiosis by blocking 

the FtsZ ring (77, 210) formation during cell division and chromosome partitioning. The 

protein showed high homology with the cell division inhibitor SulA of Serratia. Adjacent 

to the putative sulA, and encoded in the opposite direction, was an ORF coding for a 228 

amino acid long putative protein with a Tfox conserved domain. Tfox is known to be a 

regulator of competence-specific genes. Downstream from the above ORF and encoded 

in the same direction as the putative ompA, was an ORF coding for a large 730 amino 

acid long putative protein. The protein had a bacterial membrane protein of unknown 

function conserved domain. This family consists of several putative bacterial membrane 

proteins of unknown function. A number of genes coding for such proteins have been 

annotated as putative efflux transporters such as that of Salmonella and Yersinia, whereas 

the gene from E. coli has been annotated as yccS. The protein showed high homology 

with hypothetical membrane protein of Serratia, and the putative efflux transporter (PET) 

family from Yersinia and Salmonella. A summary of information about the gene 

disrupted by transposon insertion in mutant 12-F6 and its surroundings is shown in Table 

2.23.
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3.4.13.6 Putative ribonucleotide-diphosphate reductase alpha subunit gene (;nrdA), 

mutant N5-B6.

The transposon insertion in mutant N5-B6 was traced to an ORF coding for a 780 amino 

acid long putative protein with a ribonucleotide reductases conserved domain (Figure

3.22). These proteins are found in all organisms and provide the only mechanism by 

which nucleotides are converted to deoxynucleotides. They catalyze the reductive 

synthesis of deoxyribonucleotides from their corresponding ribonucleotides, therefore 

providing the precursors necessary for DNA synthesis. The encoded protein showed high 

homology with product of the nrdA gene (ribonucleotide-diphosphate reductase a 

subunit) from Shigella, and Yersinia. The N5-B6 mutant showed increased sensitivity to 

triclosan and cetylpyridinium chloride on agar (Table 3.12). Although suspension tests 

did not show any increase in the killing effect of the two biocides on the mutant, it leaked 

greater amounts of potassium than the wild type when exposed to these two biocides 

(Table 3.17). Antibiotic susceptibility profiles for the N5-B6 mutant (Table 3.18) showed 

that it had increased sensitivity to the two carbapenems, meropenem and imipenem, as 

well as to piperacillin, and amikacin. The mutant was however more resistant than the 

wild type to ciprofloxacin.

Downstream from the putative nrdA gene was an ORF coding for a 384 amino acid long 

putative protein with high homology to the ribonucleotide-diphosphate reductase p 

subunit (NrdB) from a number of Enterobacteriaceae. The protein’s conserved domain is 

part of the superfamily of ferritin-like diiron-carboxylate proteins and is involved in 

nucleotide transport and metabolism in the cell. It appears that the nrdA and nrdB genes 

are part of a putative operon whos products result in the formation of a multimeric 

complex, NrdA/NrdB. Upstream of the putative nrdA gene laid two ORFs encoded in 

opposite directions and coding for a 280 and a 885 amino acid long putative proteins 

respectively. The first protein had a methyltransferase (3-demethylubiquinone-9 3- 

methyltransferase) conserved domain, involved in ubiquinone biosynthesis and coenzyme 

metabolism. The protein showed high homology with 3-demethylubiquinone-9 3- 

methyltransferase proteins, products of the pufX  gene from Yersinia and the ubiG genes
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of Erwinia, Escherichia, Klebsiella and other Enterobacteriaceae. The second ORF 

coded for a larger putative protein with a DNA gyrase subunit A conserved domain. DNA 

gyrase is involved in negatively supercoiling closed circular double-stranded DNA and is 

an important protein in DNA replication, recombination and repair in the cell. BLAST 

searches showed that the protein was identical to the GyrA from S. marcescens. A 

summary of information about the gene disrupted by transposon insertion in mutant N5- 

B6 and its surroundings is shown in Table 3.24.

3.4.13.7 Putative nucleoid-associated protein gene (ndpA), mutant N3-B8.

Agar MICs demonstrated that mutant N3-B8 had increased sensitivity to triclosan. In 

contrast it increased resistance to cetylpyridinium chloride and chlorhexidine diacetate 

(Table 3.12). Increase resistance to the two biocides was also confirmed in broth (Tables 

3.14 and 3.15). Triclosan was shown to kill the mutant more effectively than it did the 

wild type (Table 3.16), and that the mutant leaked larger amounts of potassium when 

exposed to this biocide than the wild type (Table 3.17). The mutant was killed less 

effectively by cetylpyridinium chloride and chlorhexidine diacetate and released smaller 

amounts of potassium when exposed to these two biocides compared to the wild type 

(Tables 3.16 and 3.17). These results demonstrated that triclosan was more effective at 

killing and inhibiting the growth of mutant N3-B8 compared with the wild type. 

However, the mutant was more resistant to the killing and the growth inhibitory effects of 

cetylpyridinium chloride and chlorhexidine diacetate than the wild type. Antibiotic 

susceptibility profiles for the N3-B8 mutant (Table 3.18) showed that it had increased 

sensitivity to the two carbapenems, meropenem and imipenem, as well as to ciprofloxacin 

and azithromycin.

The ORF disrupted by transposon insertion in mutant N3-B8 coded for a 341 amino acid 

long putative protein which had a nucleoid-associated protein NdpA conserved domain. 

The protein showed high homology to the 37-kDa nucleoid-associated protein from S.

proteamaculans and the NdpA from other Enterobacteriaceae including Erwinia, 

Escherichia, Klebsiella, Salmonella and Yersinia. Upstream of the putative ndpA were
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three ORFs, all encoded in the opposite orientation to the putative ndpA (Figure 3.22). 

The first ORF coded for a 594 amino acid long putative protein with high homology to 

the Serratia sulfatase and to the product of the yejM gene from a number of 

Enterobacteriaceae including, Escherichia, Salmonella and Shigella. The protein had 

both a predicted hydrolase of alkaline phosphatase superfamily conserved multi-domain, 

and a phosphodiest domain. The second ORF coded for a small 153 amino acid long 

putative protein with a conserved domain that belonged to a family of small 

uncharacterised proteins. In a DNA-binding protein from Caulobacter vibrioides this 

domain is found next to a DNA binding helix-tum-helix domain, suggesting that this is 

some kind of ligand binding domain. The third ORF coded for a 373 amino acid long 

putative protein which showed high homology to acyltransferase 3 from Ralstonia,

Anabaena, and Burkholderia and to the putative acyltransferase transmembrane proteins 

from Ralstonia species. The protein’s predicted acyltransferases conserved domain is 

involved in lipid metabolism. The noticeably low G+C content of this ORF (37.7%) 

compared to that of the S. marcescens Dbl 1 DNA suggests that it could be related to its 

function rather than it being not native to this organism.

Downstream of the putative ndpA were four ORFs, two of which were encoded in the 

same direction as the putative ndpA and the other two were encoded in the opposite 

direction (Figure 3.22). The first ORF immediately adjacent to the putative ndpA, had a 

low G+C content (47.1%) and coded for a small 129 amino acid long putative protein 

with high homology to the 50S ribosomal subunit protein L25 (RplY) from a number of 

Enterobacteriaceae. The protein is involved in ribosomal proteins synthesis and 

modification and the process of translation. Next to the putative rplY was an ORF coding 

for 600 amino acid long putative protein. The protein had homology with proteins of the 

DNA or RNA helicases of superfamily II involved in transcription and DNA replication, 

recombination, and repair. The third ORF coded for a 267 amino acid long putative 

protein with homology to the ribosomal small subunit pseudouridine synthase A (RsuA) 

from Escherichia and Yersinia, and other 16S rRNA uridine-516 pseudouridylate 

synthase and related pseudouridylate synthases. Pseudouridine synthases catalyze the 

isomerization of specific uridines in an RNA molecule to pseudouridines (395). The
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putative rsuA was adjacent to a fourth ORF coding for a 432 amino acid long putative 

protein. The latter showed high homology to a drug resistance transporter of the Bcr/CflA 

subfamily from S. proteamaculans, and the bicyclomycin resistance protein (Brc) from 

Escherichia, Salmonella, Shigella and Erwinia. The protein had a multidrug resistance 

protein D (EmrD) conserved domain, a protein belonging to the MFS pumps superfamily, 

and to the bicyclomycin/multidrug efflux system protein involved in sulfonamide 

(sulfathiazole) and bicyclomycin resistance (65). A summary of information about the 

gene disrupted by transposon insertion in mutant N3-B8 and its surroundings is shown in 

Table 3.25.

3.4.13.8 Putative pili operon gene, mutant N5-B5.

Mutant N5-B5 had a transposon insertion located within a low G+C content (48%) ORF 

that coded for a 249 amino acid long putative protein (Figure 3.14). The protein had a 

FimC, P pilus assembly protein, chaperone PapD conserved domain, which is involved in 

cell motility as well as intracellular trafficking and secretion. The protein showed high 

homology to the pili assembly chaperone of S. proteamaculans and the PapD protein of 

E. coli. Agar MICs showed that mutant N5-B5 was more sensitive to triclosan and ortho-

phthalaldehyde than the wild type but had increased resistance towards cetylpyridinium 

chloride (Table 3.12). The latter phenotype was confirmed by broth experiments (Table 

3.14). Similarly, suspension tests demonstrated that larger numbers of N5-B5 cells were 

killed upon exposed to triclosan or o/t/zo-phthalaldehyde compared to wild type (Table

3.16). On the other hand, cetylpyridinium chloride exposed to the mutant had a lesser 

killing effect than that observed with the wild type (Table 3.16). Compared with the wild 

type, N5-B5 was also shown to leak greater amounts of potassium when exposed to 

triclosan but leaked less potassium when exposed to cetylpyridinium chloride (Table

3.17). These observations confirmed that mutant N5-B5 was more resistant to both the 

killing and inhibitory effects of cetylpyridinium chloride. In contrast, it was more 

sensitive to growth inhibition by ort/zo-phthalaldehyde and triclosan and to the killing 

effect of at least the latter. Mutant N5-B5 exhibited increased sensitivity to the two 

carbapenems, meropenem and imipenem, as well as to piperacillin.
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Upstream of the transposon disrupted gene were located two ORFs. The first was 

immediately adjacent to the disrupted ORF, with a low G+C content (51.8%) and 

encoded in the same orientation. It coded for a 221 amino acid putative protein with high 

homology to the mannose sensitive type I fimbriae major structural subunit, product of 

the safA gene of S. marcescens, and to the P pilus assembly protein, pilin FimA from E.

coli. The protein’s FimA conserved domain, is a member of the bacterial adhesin 

superfamily clan involved in cell motility, secretion, and cell adhesion. The second ORF 

is encoded in the opposite direction of the putative safA, and coded for a 250 amino acid 

long putative protein with an inner membrane protein conserved domain. In BLAST 

searches the protein showed homology to the putative carrier/transport protein, product of 

the yccA gene from Shigella and Escherichia, to the hypothetical protein ECA1763 from 

Erwinia, and to the protein of unknown function UPF0005 from Serratia.

Immediately downstream of the disrupted gene was an ORF encoded in the same 

direction and coding for a large 834 amino acid long putative protein. The protein had 

homology with the FimD, P pilus assembly protein (porin PapC), conserved domain 

involved in cell motiiity, intracellular trafficking and secretion in the cell. It also had 

homology with the fimbrial usher protein conserved domain which is involved in 

biogenesis of gram negative bacterial pili. BLAST searches demonstrated that the protein 

was highly homologous to the PacC of E. coli, and to the fimbrial biogenesis outer 

membrane usher protein of S. proteamaculans. In Gram-negative bacteria the biogenesis 

of fimbriae (pili) requires a two-component assembly and transport system which is 

composed of a periplasmic chaperone and an outer membrane protein which has been 

termed a molecular “usher” (104). The location and function of the above ORF, the 

putative safA and the transposon disrupted gene suggested that they may be part of a 

putative pili operon in S. marcescens Dbl 1.

Downstream of the putative pili operon were located three short, low G+C content, 

ORFs, all encoded in the same orientation (Figure 3.14). The first coded for a 374 amino 

acid long putative protein with no detected conserved domain and which showed
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homology to the hypothetical proteins EcolEl_01003164 from E. coli and Spro_4156 

from S. proteamaculans. This ORF was also the site of transposon insertion in the control 

mutant N1-C5. The second ORF coded for a shorter, 188 amino acid long, putative 

protein with low homology to the conserved domain of RelB, DNA-damage-inducible 

protein J, involved in DNA replication, recombination, and repair in the cell. The putative 

protein showed low homology to both the DNA-damage-inducible protein J from S.

boydii and to the hypothetical protein Spro_4157 from S. proteamaculans. The final ORF 

coded for another short, 178 amino acid long, putative protein with a GerE, bacterial 

regulatory protein of the luxR family, conserved domain. This family is a member of the 

helix-tum-helix clan involved in sequence-specific DNA regulation. BLAST searches 

showed that the protein had low homology to the two-component transcriptional regulator 

of the LuxR family from Rubrobacter xylanophilus. The above three ORFs all had low 

G+C content (Table 3.26) and may have been acquired from a foreign source.

Adjacent to these three ORF and encoded in the opposite direction was another short 

ORF coding for a putative redox-sensitive transcriptional activator soxR. The putative 

164 amino acid long protein had a helix-tum-helix transcriptional regulator SoxR 

conserved domain. In E. coli, this global regulator up-regulates gene expression of 

another transcription activator, SoxS, which directly stimulates the oxidative stress 

regulon genes (14). The soxRS response renders the bacterial cell resistant to superoxide- 

generating agents, macrophage-generated nitric oxide, organic solvents, and antibiotics 

(703, 743, 885). Finally downstream of the putative soxR, and encoded in the opposite 

direction, was an ORF coding for a 403 amino acid long putative protein with homology 

to the RND efflux membrane fusion protein precursor (MexH). The protein had a 

multidrug efflux system subunit MdtA conserved domain, known to be part of a tripartite 

efflux system composed of MdtA, MdtB and MdtC, which confers resistance against 

novobiocin and deoxycholate. A summary of information about the gene dismpted by 

transposon insertion in mutant N5-B5 and its surroundings is shown in Table 3.14.
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3.4.13.9 Putative 6-phosphofructokinase gene (pfkA), mutant N6-B2.

The transposon insertion in the genome of mutant N6-B2 was located within an ORF 

coding for a 352 putative protein which had a phosphofructokinase conserved domain 

(Figure 3.18). The latter is a key regulatory enzyme in glycolysis, and catalyzes the 

phosphorylation of fructose-6-phosphate to fructose- 1,6-biphosphate. The putative 

protein showed high homology with the 6-phosphofructokinase of Serratia and the 

product of pfkA gene of Escherichia and a number of other bacterial species. Agar MIC 

tests indicated that mutant N6-B2 was more sensitive to triclosan, or^o-phthalaldehyde, 

and cetylpyridinium chloride than the wild type (Table 3.12). Increased sensitivity to the 

latter biocide was also confirmed in broth (Table 3.14). Similarly, suspension tests 

showed that the mutant was more effectively killed, and leaked larger amounts of 

potassium when exposed to the three above biocides than the wild type (Tables 3.16 and

3.17). These results indicated that the mutant was more sensitive to both the killing and 

the growth inhibitory effect of triclosan, orr/zo-phthalaldehyde, and cetylpyridinium 

chloride than the wild type. Antibiotic susceptibility profiles for mutant N6-B2 (Table

3.18) showed that it had increased sensitivity to 6 out of the 10 antibiotic tested. These 

were meropenem, ciprofloxacin, tobramycin, azithromycin, piperacillin and amikacin.

Downstream from the putative pfkA gene were two ORFs (Figure 3.18), the first of which 

was immediately adjacent to it and encoded in the same direction. This ORF coded for a 

390 amino acid long putative protein with high homology to the sulfate transporter 

subunit of Escherichia and the periplasmic sulfate-binding protein of Shigella, both of 

which are products of the sbp gene. The highest homology was with the sulfate ABC 

transporter, periplasmic sulfate-binding protein of S. proteamaculans. The putative 

protein conserved domain is involved in inorganic ion transport and metabolism in the 

cell. The second ORF, encoded in the opposite orientation to the putative pfkA, coded for 

a 282 amino acid long putative protein. It had a triosephosphate isomerase conserved 

domain and showed high homology with triosephosphate isomerase proteins (TipA) from 

Serratia, Salmonella, Yersinia, Erwinia and other Enterobacteriaceae. These proteins are 

glycolytic enzymes that catalyze the interconversion of dihydroxyacetone phosphate and
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D-glyceraldehyde-3-phosphate in the cell, and play an important role in several metabolic 

pathways, and are essential for efficient energy production (228).

Upstream of the putative pfkA were three ORFs (Figure 3.18), the first two of which were 

adjacent to each other and encoded in the same direction. The first of these ORFs coded 

for putative 339 amino acid long protein, with a FieF, ferrous iron efflux protein F 

conserved domain, a member of cation diffusion facilitator family involved in inorganic 

ion transport and metabolism. The protein is membrane-bound and induced by both zinc 

and iron, but does not induce resistance to zinc. It can transport zinc (II) in a proton- 

dependent manner and it is known to induce iron resistance (572, 1168). The putative 

protein coded by the above ORF showed high homology with the FieF of many 

Enterobacteriaceae, as well as the other cation diffusion facilitator family transporters 

such as the cadmium, zinc, and cobalt cation transporters.

The second ORF, coded for a smaller, 162 amino acid long, putative protein with 

homology to the P pilus assembly/Cpx signaling pathway, periplasmic inhibitor/zinc- 

resistance associated protein from Serratia, Yersinia and Escherichia, as well as a 

number of hypothetical proteins such as YPDSF 3831, YP00075 and YPTB0071 from 

Yersinia, ESA04124 from Enterobacter and Z5458 from Escherichia. The protein had a 

CpxP conserved domain, a periplasmic repressor of the Cpx envelope stress response 

pathway (214). Cpx repression by CpxP occurs via periplasmic interactions with CpxA 

(1174).

The third ORF was encoded in the opposite direction of the putative pfkA, and coded for a 

234 amino acid long putative protein. The protein showed high homology with the CpxR 

transcriptional regulatory from a number of Enterobacteriaceae, and had a DNA-binding 

response regulator in two-component regulatory system with CpxA conserved domain. A 

summary of information about the gene disrupted by transposon insertion in mutant N6- 

B2 and its surroundings is shown in Table 3.27.
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3.4.13.10 Putative outer membrane biogenesis operon gene (1wzzE), mutants 19-D3
and 10-B6.

The ORF disrupted by transposon insertion in both mutant 19-D3 and 10-B6 coded for a

359 amino acid long putative protein. The protein had a lipopolysaccharide biosynthesis

protein WzzE conserved domain and showed high hom ology to lipopolysaccharide

biosynthesis proteins and to the enterobacterial common antigen polysaccharide chain

length modulator from a number o f  Enterobacteriaceae , all products o f  the wzzE  gene.

These proteins are chain length determinant proteins involved in the cell envelope (outer

membrane) biogenesis. Agar MICs and broth tests showed that mutant 19-D3 had

increased resistance to cetylpyridinium chloride and chlorhexidine diacetate (Tables 3.14

and 3.15). The mutant was also resistant to ort/zo-phthalaldehyde on agar (Table 3.12). In

addition, the mutant showed increased resistance to the killing effect o f  the above three

biocides, leaking smaller amounts o f  potassium upon exposure to these compounds than

the wild type (Tables 3.16 and 3.17). Mutant 10-B6 was similar to 19-D3 in that it

showed increased resistance to both the killing and growth inhibitory effects o f  ortho-

phthalaldehyde (Tables 3.16 and 3.12). However, the mutant showed increased sensitivity

to cetylpyridinium chloride both in broth and on agar (Tables 3.12 and 3.14). The

biocide was also more effective at killing the mutant than the wild type, leading to

leakage o f  greater amount o f  potassium upon exposure to this biocide (Tables 3.16 and

3.17). Antibiotics susceptibility profiles for the two mutants (Table 3.18) showed that

both mutants exhibited increased resistance to 3 out o f  the 10 antibiotic tested, and

increased sensitivity to one antibiotic. However, there were no similarities between the

antibiotic susceptibility profiles o f  the two mutants.

The putative wzzE  gene was surrounded by four ORFs, two from each side and all

encoded in the same direction as the disrupted gene (Figure 3.17). The first o f  the two

ORFs upstream o f  the putative wzzE  was immediately adjacent to the disrupted gene and

coded for a 391 amino acid putative protein. The latter had a Rfe (UDP-A-acetylmuramyl

pentapeptide phosphotransferase/UDP-A-acetylglucosamine-1 -phosphate transferase)

conserved domain involved in the cell envelope (outer membrane) biogenesis. The
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protein had high hom ology to the product o f  the rfe gene from a number o f  bacterial

species including the undecaprenyl-phosphate alpha-A-acetylglucosaminyl 1

phosphatetransferase involved in synthesis o f  enterobacterial common antigen in E. coli.

The second ORF upstream o f  the putative wzzE coded for a 423 amino acid long putative

Rho transcription termination factor. The putative protein conserved domain was an

RNA-DNA helicase that actively releases nascent mRNAs from paused transcription

complexes.

The ORF immediately downstream o f  the putative wzzE gene coded for a 398 amino acid

long putative protein. The protein showed high hom ology to the UDP-N-acetyl

glucosamine-2-epimerase, product o f  the wecB and rffE genes from a number o f

Enterobacteriaceae, including Escherichia, Serratia, Klebsiella, Salmonella and

Yersinia. The protein conserved domain (W ecB) is involved in cell envelope (outer

membrane) biogenesis. Immediately adjacent to the putative wecB gene was an ORF

coding for a 462 amino acid long putative protein. It had a WecC, UDP-TV-acetyl-D-

mannosamine dehydrogenase, conserved domain and showed high hom ology to the

products o f  the wecC and rffD genes from a number o f  Enterobacteriaceae, including the

UDP-glucose/GDP-mannose dehydrogenase from Yersinia, and the UDP-A-acetyl-D-

mannosamine dehydrogenase from Erwinia. The putative wzzE, rfe, rffE and rffD genes

appear to be part o f  a putative operon involved in the cell outer membrane biogenesis. A

summary o f  information about the gene disrupted by transposon insertion in mutant 19-

D3 and 10-B6, and its surroundings are shown in Table 3.28.

3.4.13.11 Putative chaperonin genes (groES, groEL), mutant N5-G6.

The site o f  transposon insertion in mutant N5-G 6 was located within a region o f  the S.

marcescens D bl 1 genome that consisted o f  five ORFs, four o f  which were encoded in the

same direction (Figure 3.16). The first ORF, encoded in direction opposite to the other

four, coded for a 493 amino acid long putative protein. The protein had an aspartase-like

conserved domain, which contains a group o f  proteins similar to aspartase (L-aspartate

ammonia-lyase) and fumarase class II enzymes, members o f  the Lyase class I family.

These proteins catalyze the reversible deamination o f  aspartic acid. The protein showed
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high homology with the AspA (aspartate ammonia-lyase) from a number o f  bacterial

species, which catalyses the formation o f  fumarate from aspartate. The second ORF

coded for a small, 165 amino acid long, putative FxsA cytoplasmic membrane protein.

The latter is known to be a suppressor o f  F-plasmid exclusion o f  phage T7 in number o f

bacterial species including species o f  Yersinia, Erwinia, Salmonella and Shigella. The

third ORF, also coded for a small putative protein (132 amino acid long), which had a

GroES co-chaperonin conserved domain. The protein showed hom ology with the

chaperonin CpnlO from Serratia and Enterobacter as well as the co-chaperonin GroES

from a number o f  other bacterial species. Adjacent to the putative groES gene, was an

ORF coding for a 552 amino acid long putative protein, which showed high homology

with the 60-kDa chaperonin, GroEL, from a number o f  Enterobacteriaceae.

Chaperonins are 'helper' m olecules required for correct folding and subsequent assembly

o f  some proteins. They are required for normal cell growth and are stress-induced, acting

to stabilise or protect disassembled polypeptides under heat-shock conditions. In

eubacterial, the 10-kDa chaperonin GroES, cooperates with GroEL to encapsulates non-

native substrate proteins inside the cavity o f  the GroEL-ES complex and promotes

folding by using energy derived from ATP hydrolysis (527, 618, 619). Adjacent to the

putative groEL gene, laid an ORF coding for a 578 amino acid long putative protein. The

protein had hom ology with the methyl-accepting chemotaxis protein and the methyl-

accepting chemotaxis protein IV peptide sensor receptor, products o f  the cheD and tap

genes respectively, in a number o f  bacterial species.

The site o f  the transposon insertion in mutant N5-G6 was intergenic between the putative

groES and putative groEL genes (Figure 3.16). The location o f  the insertion meant that

the transposon was able to disrupt one or both o f  these genes. On agar, the mutant

showed increased sensitivity to both triclosan and or^o-phthalaldehyde and was resistant

to chlorhexidine diacetate (Table 3.12). Increased resistance to the latter biocide was also

confirmed in broth (Table 3.15). Results o f  the suspension tests and potassium leakage

experiments showed that the mutant was more sensitive to the killing effect o f  triclosan

and ort/m-phthalaldehyde, leaking larger amounts o f  potassium than the wild type when

subjected to the same biocides (Tables 3.16 and 3.17). Results also demonstrated that
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chlorhexidine diacetate was less affective at killing the mutant than it was at killing the

wild type (Table 3.16). The mutant leaked smaller amounts o f  potassium than did the

wild type when subjected to chlorhexidine diacetate (Table 3.17). From these results it

can be concluded that mutant N5-G 6 had increased sensitivity to both the killing and the

growth inhibitory effects o f  triclosan and ort/zo-phthalaldehyde, and had increased

resistance to the same effects caused by exposure to chlorhexidine diacetate. Antibiotic

susceptibility profiles (Table 3.18) showed that N5-G 6 had increased resistance to four

antibiotics, the two carbapenems, meropenem and imipenem, chloramphenicol and

piperacillin. The mutant was also more sensitive than the wild type to the two

aminoglycosides, amikacin and tobramycin, as well as (1/9)

trimethoprim/sulfamethoxazole. A  summary o f  information about the gene disrupted by

transposon insertion in mutant N5-G6, and its surroundings is shown in Table 3.29.
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Table 3.19. Sum m ary o f the m ini-Tn5 insertions identified on the S. m arcescens D b l l  mutants.

Mutant Phenotype Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

8-C7 CHXr, TRF carB 62.4 Carbamoyl-phosphate synthase large
subunit

PRK00320 97 0

10-E7, 3-F2
18-A3, 9-D5
3-A4
11-B8
7-C10
N2-B3
N2-F3

CPCS, OPAs
CPC, CHXS
CPCS, CHXr, TRIS
OPAs
OPAs, TRF
CPCS, CHXS, OPAs, TRT
CHXr, OPAs, TRIS

64.2 DeoR family transcriptional regulator Pfam00455 76 7e-107

22-D5 CPCS, OPAs sdhD 55.1 Succinate dehydrogenase hydrophobic
membrane anchor

CD03494 86 5e-42

N4-F6, N2-A8,
N5-G1

CPC, CHXS wbdA 47.3 MannosyltransferaseA/
glycosyltransferase group 1

Pfam00534 65 0

N2-F1 CHXS

N5-D9 TRF wbpZ 44.5 Glycosyltransferase (WbpZ) Pfam00534 58 le-128

12-F6 CHXS, OPAs, TRF ompA 54.3 Outer membrane protein A PRK10808 99 0
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Table 3.19. Sum m ary o f the m ini-Tn5 insertions identified on the S . m arcescens D b l l  m utants (continued).

Mutant Phenotype Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

N5-B6 CPCS, TRI8 nrdA 57.9 Ribonucleotide-diphosphate reductase a
subunit

CD01679 93 0

N3-B8 CPCr, CHXr, TRI8 ndpA 60.9 Nucleoid-associated protein NdpA PRK00378 87 3e-162

N5-B5 CPCr, OPAs, TRI8 - 48.0 Pili assembly chaperone COG3121 63 6e-75

N6-B2 CPC8, OPA8, TRI8 pfkA 57.9 6-Phosphofructokinase CD00763 97 3e-177

19-D3
10-B6

CPCr, CHXr, OPAr
CPC8, OPAr

wzzE 60.2 Lipopolysaccharide biosynthesis protein PRK11638 92 4e-176

N5-G6 CHXr, OPA8, TRI8 groES
groEL

50.3
57.3

Co-chaperonin GroES
Chaperonin GroEL

PRK05005
CD03344

87
99

4e-46
0

N1-C5 Same as the wild type - 50.8 Hypothetical protein EcolEl_01003164 - 62 8e-110

TRI; triclosan, OP A; ort/m-phthalaldehyde, CPC; cetylpyridinium chloride, CHX; chlorhexidine diacetate, G+C; guanine+cytosine, % identity; %
amino acid identity, r; resistant, s; susceptible.
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Table 3.20. M apping of DNA around the transposon disrupted gene in mutants 10-E7, 3-F2, 18-A3, 9-D5, 3-A4, 11-B8, 7-C10,
N2-B3, and N2-F3.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

- 58.8 Hypothetical protein Spro_0996 - 67 9e-79
10-E7, 3-F2, - 63.4 Integral membrane protein COG0428 61 2e-46
18-A3, 9-D5,
A A A 11 T*> O

- 64.2 DeoR family transcriptional regulator Pfam00455 76 7e-107
3-A4, 11-B8, 
7-ClO, N2-B3,

- 64.6 Glyoxalase/bleomycin resistance protein Pfam00903 81 2e-53

N2-F3 - 66.5 LysR family transcriptional regulator Pfam03466 92 le-155
- 61.1 Pirin domain protein Pfam02678 94 4e-156
- 59.7 Isochorismatase hydrolase CD01012 96 4e-l 16

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.

Table 3.21. Mapping of DNA around the transposon disrupted gene in mutant 22-D5.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

gltA 58.3 Citrate synthase PRK05614 99 0
22-D5 sdhD 55.1 Succinate dehydrogenase hydrophobic membrane anchor protein CD03494 86 5e-42

sdhA 61.2 Succinate dehydrogenase/fumarate reductase, flavoprotein 
subunit

PRK08958 97 0

sdhB 56.3 Succinate dehydrogenase and fumarate reductase iron-sulfur 
protein

PRK05950 95 5e-134

sucA 60.4 2-Oxoglutarate dehydrogenase El component COG0567 92 0

Site o f the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.



Table 3.22. Mapping of DNA around the transposon disrupted genes in mutants N4-F6, N2-A8, N5-G1, N2-F1, and N5-D9.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

wzt 44.2 ATP binding component of ABC-transporter CD03220 78 0
wbbD 45.5 Methyltransferase type 11 Pfam08241 54 7e-123

N4-F6, N2-A8, 
N5-G1, N2-F1

wbdA 47.3 Mannosyltransferase A/ glycosyltransferase group 1 Pfam00534 65 0

wbdB 42.2 Mannosyltransferase B/glycosyltransferase group 1 Pfam00534 59 9e-134

N5-D9 wbpZ 44.5 Glycosyltransferase (WbpZ) Pfam00534 58 le-128
gnd 57.4 6-Phosphogluconate dehydrogenase PRK09287 93 0

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.

Table 3.23. M apping of DNA around the transposon disrupted gene in mutant 12-F6.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

lonB 58.2 Lon protease COG 1067 88 0
- 48.5 Hypothetical protein y2737 PRK05097 84 8e-57

12-F6 ompA 54.3 Outer membrane protein A PRK10808 99 0
sulA 49.9 Cell division inhibitor SulA COG5404 97 le-80

~ 58.9 Regulator of competence-specific genes COG3070 75 le-86
- 59.1 Hypothetical membrane protein Pfam05976 90 0

Site o f the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.



Table 3.24. M apping o f DNA around the transposon disrupted gene in mutant N5-B6.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

gyrA 60.0 DNA gyrase subunit A PRK05560 99 0
ubiG 59.6 3-Demethylubiquinone-9 3-methyltransferase Pfam08241 85 8e-122

N5-B6 nrdA 57.9 Ribonucleotide-diphosphate reductase alpha subunit PRK05134 93 0
nrdB 56.4 Ribonucleotide-diphosphate reductase beta subunit PRK09101 94 0

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.

Table 3.25. M apping of DNA around the transposon disrupted gene in mutant N3-B8.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

her 61.7 Bicyclomycin resistance protein/multidrug efflux system PRK11102 71 2e-141
rsuA 61.4 Ribosomal small subunit pseudouridine synthase A CD02553 88 5e-l 17

- 64.2 DNA or RNA helicases of superfamily 11 COG 1061 85 0
rplY 47.1 50S ribosomal protein L25 PRK05943 78 6e-42

N3-B8 ndpA 60.9 Nucleoid-associated protein NdpA PRK00378 87 3e-162
yejM 60.4 Sulphatase COG3083 64 0

- 53.0 Hypothetical protein H S1396 Pfam03681 56 2e-38
- 37.7 Acyltransferase transmembrane protein COG 1835 30 2e-24

Site of the mini-TnJ insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.



Table 3.26. M apping o f DNA around the transposon disrupted gene in mutants N5-B5 and N1-C5.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

yccA 57.7 Carrier/transport protein PRK10447 79 5e-73
safA 51.8 Mannose sensitive type I fimbriae major structural subunit COG3539 94 3e-90

N5-B5 - 48.0 Pili assembly chaperone COG3121 63 6e-75
- 55.8 Fimbrial biogenesis outer membrane usher protein Pfam00577 64 0

N1-C5 - 50.8 Hypothetical protein EcolElJ) 1003164 - 62 8e-l 10
- 43.3 DNA-damage-inducible protein J COG3077 38 6e-06
- 48.6 Two component transcriptional regulator, LuxR family Pfam00196 27 7e-06

soxR 60.0 Redox-sensitive transcriptional activator soxR CD01110 63 8e-50
mexH 64.6 RND efflux membrane fusion protein precursor PRK11556 63 4e-96

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.

Table 3.27. M apping of DNA around the transposon disrupted gene in mutant N6-B2.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

tipA 59.7 Triosephosphate isomerase proteins CD00311 93 4e-l 19
sbp 57.2 Periplasmic sulfate-binding protein COG1613 93 4e-172

N6-B2 pfkA 57.9 6-Phosphofructokinase CD00763 97 3e-l 77
fieF 59.7 Ferrous iron efflux protein F PRK09509 82 le-132
cpxP 55.2 Periplasmic repressor of the Cpx envelope stress response 

pathway
PRK 10363 92 4e-46

cpxR 59.0 CpxR transcriptional regulator PRK 10955 91 le-104

Site o f the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.



Table 3.28. M apping of DNA around the transposon disrupted gene in mutants 19-D3 and 10-B6.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

rho 54.6 Rho transcription termination factor PRK09376 99 0
rfe 55.1 UDP-alpha-TV-acetylglucosaminyl 1 -phosphatetransferase COG0472 95 9e-168

19-D3, 10-B6 wzzE 60.2 Lipopolysaccharide biosynthesis protein PRK 11638 92 4e-176
wecB/rffE 59.4 U DP-TV-acety 1 gl ucosam i ne 2-epi merase COG0381 86 0
wecC/rffD 59.7 UDP-N-acety 1-D-mannosam i ne dehydrogenase PRK 11064 94 0

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.

Table 3.29. M apping of DNA around the transposon disrupted gene in the intergenic mutant N5-G6.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID %
Identity

E-value

aspA 57.1 Aspartate ammonia-lyase CD01357 98 0
ficsA 60.0 Suppressor of F plasmid exclusion of phage T7 COG3030 87 3e-67

N5-G6 groES 50.3 Co-chaperonin GroES PRK05005 87 4e-46
groEL 57.3 Chaperonin GroEL CD03344 99 0
cheD 62.7 Methyl-accepting chemotaxis protein PRK09793 42 le-85

Site of the mini-Tn3 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.



Table 3.30. M apping o f DNA around the transposon disrupted gene in mutant 8-C7.

Mutant Disrupted
gene

%
G+C

Protein putative function Protein ID % Identity E-value

dapB 61.5 Dihydrodipicolinate reductase COG0289 89 2e-125
carA 59.1 Carbamoyl-phosphate synthase small subunit COG0505 95 0

8-C7 carB 62.4 Carbamoyl-phosphate synthase large subunit PRK00320 97 0
yabF 58.0 NAD(P)H oxidoreductase PRK00871 67 3e-64

Site of the mini-Tn5 insertion is highlighted in red. G+C; guanine+cytosine, % identity; % amino acid identity.
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Figure 3.12. M apping o f DNA around the transposon disrupted gene in m utant 8-C7

Artemis (929) screen view of the putative carbamoyl-phosphate synthase large subunit mutant 8-C7 and the surrounding genes marked in blue. Full 
details o f the mutants and the genes are given in Table 3.30. Position o f the mini-Tn5 insertion into the S. marcescens Dbl 1 genome is indicated in 
green. The DNA G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content o f the S.
marcescens Dbl 1 genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation of the Dbl 1 
genome, and the vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF. DapB; 
dihydrodipicolinate reductase, CarA; carbamoyl-phosphate synthase small subunit, CarB; carbamoyl-phosphate synthase large subunit, YabF; 
NAD(P)H oxidoreductase.
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Figure 3.13. M apping o f D N A around the transposon disrupted gene in m utant N3-B8

Artemis (929) screen view of the putative nucleoid-associated protein (NdpA) mutant N3-B8 and the surrounding genes marked in blue. Full details o f 
the mutant and the genes are given in Table 3.25. Position of the mini-Tn5 insertion into the S. marcescens Dbl 1 genome is indicated in green. The DNA 
G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content o f the S. marcescens Dbl 1 
genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation of the Dbl 1 genome, and the vertical 
lines indicate stop codons. The putative protein products are shown under the corresponding ORF. Bcr; bicyclomycin resistance protein, RsuA; 
ribosomal small subunit pseudouridine synthase A, RplY; 50S ribosomal protein L25, NdpA; nucleoid-associated protein, YejM; sulphatase, HP; 
hypothetical protein HS 1396.
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Figure 3.14. M apping o f DNA around the transposon disrupted genes in m utants N5-B5 and N1-C5

Artemis (929) screen view of the putative pili assembly chaperone mutant N5-B5 and the putative hypothetical protein EcolEl_01003164 control 
mutant N1-C5, and the surrounding genes marked in blue. Full details o f the mutants and the genes are given in Table 3.26. Positions of the mini-Tn5 
insertions into the S. marcescens Dbl 1 genome are indicated in green. The DNA G+C content plot is shown on top of the screen view, and the line 
crossing the graph represents the mean G+C content of the S. marcescens Dbl 1 genome (59.5%). The blue rectangles represent open reading frames 
(ORFs) derived from the automatic annotation of the Dbl 1 genome, and the vertical lines indicate stop codons. The putative protein products are shown 
under the corresponding ORF. YccA; carrier/transport protein, SafA; mannose sensitive type I fimbriae major structural subunit, LuxR; two component 
transcriptional regulator (LuxR family), SoxR; redox-sensitive transcriptional activator, MexH; RND efflux membrane fusion protein precursor.
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Figure 3.15. M apping of DNA around the transposon disrupted genes in mutants N4-F6, N5-G1, N2-A8, N2-F1, and N5-D9

Artemis (929) screen view of the putative mannosyltransferase A (WbdA) mutants N4-F6, N5-G1, N2-A8, N2-F1 and the putative glycosyltransferase 
(WbpZ) mutant N5-D9 and the surrounding genes marked in blue. Full details of the mutants and the genes are given in Table 3.22. Positions of the 
mini-Tn5 insertions into the S. marcescens Dbl l  genome are indicated in green. Site 1; transposon insertion in mutant N4-F6, site 2; transposon 
insertion in mutants N5-G1 and N2-A8, site 3; transposon insertion in mutant N2-F1. The DNA G+C content plot is shown on top of the screen view, 
and the line crossing the graph represents the mean G+C content of the S. marcescens Dbl 1 genome (59.5%). The blue rectangles represent open 
reading frames (ORFs) derived from the automatic annotation of the Dbl 1 genome, and the vertical lines indicate stop codons. The putative protein 
products are shown under the corresponding ORF. The ORFs wzt, wbbD, wbdA, wbdB and wbpZ were all part of a low G+C content region of the S.
marcescens Dbl l  that extended over 14,000 bp. Wzt; ATP binding component of ABC-transporter, WbbD; methyltransferase type 11, WbdA; 
mannosyltransferase A, WbdB; mannosyltransferase B, WbpZ; glycosyltransferase, Gnd; 6-phosphogluconate dehydrogenase.
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Figure 3.16. M apping o f DNA around the transposon disrupted gene in m utant N5-G6

Artemis (929) screen view of the putative chaperonin mutant N5-G6 and the surrounding genes marked in blue. Full details o f the mutant and the 
genes are given in Table 3.29. Position of the mini-Tn5 insertion into the S. marcescens Dbl 1 genome is indicated in green. The DNA G+C content 
plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content of the S. marcescens Dbl 1 genome (59.5%). 
The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation o f the Dbl 1 genome, and the vertical lines indicate 
stop codons. The putative protein products are shown under the corresponding ORF. AspA; aspartate ammonia-lyase, FxsA; suppressor of F plasmid 
exclusion of phage T7, GroES; co-chaperon in, GroEL; chaperonin, CheD; methyl-accepting chemotaxis protein.
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Figure 3.17. Mapping of DNA around the transposon disrupted gene in mutants 19-D3 and 10-B6

Artemis (929) screen view o f the putative lipopolysaccharide biosynthesis protein (WzzE) mutants 19-D3 and 10-B6, and the surrounding genes 
marked in blue. Full details o f the mutants and the genes are given in Table 3.28. Positions of the mini-Tn5 insertions into the S. marcescens Dbl 1 
genome are indicated in green. The DNA G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean 
G+C content of the S. marcescens Dbl l  genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic 
annotation of the Dbl 1 genome, and the vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF. 
Rho; transcription termination factor, Rfe; UDP-alpha-A-acetylglucosaminyl 1-phosphatetransferase, WzzE; lipopolysaccharide biosynthesis protein, 
WecB; UDP-A-acetylglucosamine 2-epimerase, WecC; UDP-TV-acetyl-D-mannosamine dehydrogenase.
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Figure 3.18. Mapping of DNA around the transposon disrupted gene in mutant N6-B2

Artemis (929) screen view of the putative 6-phosphofructokinase (PfkA) mutant N6-B2, and the surrounding genes marked in blue. Full details o f the 
mutant and the genes are given in Table 3.27. Position of the mini-Tn5 insertion into the S. marcescens Dbl 1 genome is indicated in green. The DNA 
G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content o f the S. marcescens Dbl 1 
genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation of the Dbl 1 genome, and the 
vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF. TpiA; triosephosphate isomerase proteins, 
Sbp; periplasmic sulfate-binding protein, PfkA; 6-phosphofiructokinase, FieF; ferrous iron efflux protein F, CpxP; periplasmic repressor of the Cpx 
envelope stress response pathway, CpxR; transcriptional regulator.
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Figure 3.19. Mapping of DNA around the transposon disrupted gene in mutant 12-F6

Artemis (929) screen view of the putative outer membrane protein A (OmpA) mutant 12-F6 and the surrounding genes marked in blue. Full details of 
the mutant and the genes are given in Table 3.23. Position of the mini-Tn5 insertion into the S. marcescens Dbl 1 genome is indicated in green. The 
DNA G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content of the S. marcescens
Dbl 1 genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation of the Dbl 1 genome, and the 
vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF.
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Figure 3.20. Mapping of DNA around the transposon disrupted gene in mutant 22-D5

Artemis (929) screen view of the putative succinate dehydrogenase hydrophobic membrane anchor protein (SdhD) mutant 22-D5 and the surrounding 
genes marked in blue. Full details o f the mutant and the genes are given in Table 3.21. Position of the mini-Tn5 insertion into the S. marcescens Dbl 1 
genome is indicated in green. The DNA G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean 
G+C content of the S. marcescens Dbl 1 genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic 
annotation of the Dbl 1 genome, and the vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF. 
GltA; citrate synthase, SdhD; succinate dehydrogenase hydrophobic membrane anchor protein, SdhA; succinate dehydrogenase/fumarate reductase, 
flavoprotein subunit, SdhB; succinate dehydrogenase and fum arate reductase iron-sulfur protein, SucA; 2-oxoglutarate dehydrogenase E l
component.
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Figure 3.21. Mapping of DNA around the transposon disrupted gene in mutants 10-E7,3-F2,18-A3, 9-D5,3-A4,11-B8, 7-C10, N2-B3 and 
N2-F3

Artemis (929) screen view o f the putative DeoR family transcriptional regulator mutants 10-E7, 3-F2, 18-A3, 9-D5, 3-A4, 11-B8, 7-C10, N2-B3 and N2- 
F3 and the surrounding genes marked in blue. Full details of the mutants and the genes are given in Table 3.20. The blue rectangles represent open 
reading frames (ORFs) derived from the automatic annotation of the Dbl 1 genome, and the vertical lines indicate stop codons. The putative protein 
products are shown under the corresponding ORF. Positions of the mini-Tn5 insertions into the S. marcescens Dbl 1 genome are indicated in green. Site 
1; transposon insertion in mutant 3-A4, site 2; transposon insertion in mutant N2-B3, site 3; transposon insertion in mutant N2-F3, site 4; transposon 
insertion in mutant 7-C10, site 5; transposon insertion in mutants 10-E7 and 3-F2, site 6; transposon insertion in mutant 11-B8, site 7; transposon 
in sertion  in m utants 18 -A 3  and 9 -D 5 .
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Figure 3.22. Mapping of DNA around the transposon disrupted gene in mutant N5-B6

Artemis (929) screen view of the putative ribonucleotide-diphosphate reductase alpha subunit (NrdA) mutant N5-B6 and the surrounding genes marked 
in blue. Full details of the mutant and the genes are given in Table 3.24. Position of the mini-Tn5 insertion into the S. marcescens Dbl l  genome is 
indicated in green. The DNA G+C content plot is shown on top of the screen view, and the line crossing the graph represents the mean G+C content of 
the S. marcescens Dbl 1 genome (59.5%). The blue rectangles represent open reading frames (ORFs) derived from the automatic annotation of the Dbl 1 
genome, and the vertical lines indicate stop codons. The putative protein products are shown under the corresponding ORF. GyrA; DNA gyrase subunit 
A, UbiG; 3-demethylubiquinone-9 3-methyltransferase, NrdA; ribonucleotide-diphosphate reductase alpha subunit, NrdB; ribonucleotide-diphosphate 
reductase beta subunit.
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3.4.14 Detailed analysis of the ompA biocide mutant

Mutant 12-F6 showed increased sensitivity to triclosan, ort/zo-phthalaldehyde, and 

chlorhexidine diacetate in the initial biocide screenings. The disrupted gene in the 

mutant was identified as the putative ompA gene encoding for the outer membrane 

protein A in S. marcescens D bll (Table 3.23, Figure 3.19). The mutant phenotype 

was investigated further by determining its biocides agar and broth MICs, biocides 

lethality effects on the mutant, potassium leakage tests, and the mutant’s antibiotic 

susceptibility profile. On agar, the mutant showed 10%, 17% and 18% increase in 

susceptibility to or^o-phthalaldehyde, chlorhexidine diacetate and triclosan 

respectively (Table 3.31). Statistical analysis showed that the differences in MIC 

values between the wild type S. marcescens D bll and the ompA mutant were only 

significant at 60% confidence level for chlorhexidine diacetate and ortho-

phthalaldehyde, and at 80% confidence level for triclosan.

However, it was noted that the decrease in the agar MIC values for these biocides was 

reproducible and generally constant in all our replica tests. The results of the agar 

MIC ratios (Table 3.13) confirmed the above observation. They showed that for 

chlorhexidine diacetate the ratio values between the mutant and the wild type for the 

maximum and the minimum MICs generated in our replica tests were 0.8 and 0.87 

respectively. Similarly, the ratio values for the same above parameters were 0.85 and 

0.78 for triclosan and 0.87 and 0.92 for orf/zo-phthalaldehyde. These results showed 

that although the increase in susceptibility of the ompA mutant to ortho-

phthalaldehyde, triclosan and chlorhexidine diacetate, was small, it was nevertheless 

reproducible and genuine. Broth MICs for the ompA mutant were also determined for 

chlorhexidine diacetate and cetylpyridinium chloride (Table 3.31). For the latter, there 

was no significant difference between the MIC values for the ompA mutant and the 

wild type S. marcescens D bll. For chlorhexidine diacetate on the other hand, the 

mutant showed a 20% increase in susceptibility to this biocide compared to the wild 

type, and this increase in sensitivity was statistically significant at the 95% confidence 

level.

The lethality effect of the four biocides on the ompA mutant was investigated by 

suspension (section 3.3.5.3) and potassium leakage tests (section 3.3.6). Results of the
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former (Table 3.32) showed that the number of the ompA mutant cells killed after 

exposure to 8 pg/ml cetylpyridinium chloride for 10 min was not statistically 

significantly different from that of the wild type. On the other hand, exposure to 20 

pg/ml chlorhexidine diacetate for the same period of time cause 7.3% more cell death 

in the mutant compared with the wild type. A 5 min exposure to 4000 pg/ml triclosan 

led to 44% more mutant cells killed than it did for the wild type. The biggest increase 

in cell mortality (247%) was observed after mutant exposure to 50 pg/ml ortho-

phthalaldehyde for 5 min. All the above increases in cell mortality compared with the 

wild type were statistically significant at the 95% confidence level.

The other parameter used to determine the lethality effect of the above concentrations 

of biocide on the mutant was to measure the amount of potassium leaked from a 

biocide-treated suspension of mutant and compare it with the wild type. The results 

(Table 3.32) showed that all three biocides, chlorhexidine diacetate, triclosan and 

ort/zo-phthalaldehyde, at the above concentrations and exposure times, lead to more 

potassium to be released from the mutant suspensions than the wild type. These 

increases were of 20%, 38%, and 64% for triclosan, ort/zo-phthalaldehyde and 

chlorhexidine diacetate respectively. The increases in the extracellular potassium in 

the mutants suspensions compared with the wild type were all statistically significant 

at the 95% confidence level.

The antibiotic susceptibility profile of the ompA mutant was determined for ten 

antibiotics. The results (Table 3.33) showed that compared with the wild type, the 

ompA mutant was more resistant to amikacin, tobramycin and imipenem. It also 

showed increased sensitivity to azithromycin, piperacillin, and chloramphenicol. All 

these changes in MIC values were statistically significant at the 95% confidence level. 

No changes in MICs were observed for the mutant with ceftazidime, meropenem, 

ciprofloxacin or (1/19) trimethoprim/sulfamethoxazole. The mutant was also sensitive 

to 10 pg/ml gentamicin but resistant to 100 pg/ml kamamycin and to 100 units/ml 

polymyxin B.
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3.4.14.1 Complementation of the ompA mutant

3.4.14.1.1 Complementation steps

To confirm that the phenotypic change in the ompA mutant was due to the disruption 

of the ompA gene, complementation of the mutant was attempted as described in 

section 3.3.13. A construct, SABEomp^f, was generated by ligation of a S. marcescens

Dbl 1 DNA fragment containing the ompA gene, its putative promoter region, and its 

translation start and stop signals as described by Braun and Cole (95) (Figure 3.23), 

to the pURF047 cloning vector. Tri-parental mating (section 3.3.13.6) was used to 

introduce the construct into the ompA mutant and into the wild type S. marcescens

Dbll to determine the effect of harbouring an extra copy of the ompA gene on the 

organism. Moreover, tri-parental mating was used to introduce a copy of the cloning 

vector pURF047 into both the wild type S. marcescens Dbl 1 and the ompA mutant to 

determine whether the presence of the vector alone would influence the mutant or the 

wild type phenotype.

Three ompA mutant derivatives (MSI, MS2, and MS3) and one wild type derivative 

(WS1) were isolated and the successful introduction of the SABEom/?^ into these 

transconjugants was checked using PCR. The results (Figure 3.24) confirmed that the 

ompA gene construct had been successfully introduced into the MS2 and MS3 

transconjugants. Further investigations to determine whether the phenotypic 

complementation of the ompA mutant was successful (section 3.3.13.7) were then 

undertaken.

3.4.14.1.2 Phenotypic complementation analysis

The results from the ompA PCR amplification suggested that in transconjugants MS2 

and MS3, ompA complementation had been successful in terms of introducing a wild- 

type copy of the gene into the mutant. To investigate further, phenotypic 

complementation analysis was performed on both transconjugants to check for 

restoration of the wild type phenotype. No noticeable difference in growth was seen 

in the wild type or in the ompA mutant cells containing the pURF047 vector or in the 

transconjugants compared to the wild type S. marcescens D bll. This suggested that
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the presence of the pURF047 vector or the introduced copy of the ompA gene in the 

cells did not affect their growth fitness. The results of agar biocide MICs on the MS2 

and MS3 transconjugants (Table 3.34) showed no significant difference in their MIC 

values from those of the ompA mutant. This meant that there was no restoration of the 

wild type phenotype in these transconjugants. Moreover the results also showed that 

the presence of the pURF047 vector or the introduced extra copy of the ompA in the 

wild type had not affected biocide susceptibility.

3.4.14.2 Reverse transcriptase reaction (RT-PCR)

The complementation analysis showed that there was no restoration of the wild type 

phenotype in the ompA-containing transconjugants MS2 and MS3. To investigate this, 

a study of the ompA expression at the mRNA level was undertaken. A reverse 

transcriptase (RT) PCR was performed on cDNA generated from RNA extracted from 

both the wild type S. marcescens Dbl 1 and the ompA mutant and all their derivatives 

(section 3.3.13.8). The result of the RT-PCR (Figure 3.25) showed a PCR product of 

the expected size was generated with the wild type S. marcescens D bll and its 

derivative SW1, but also in transconjugant MS3. No PCR product was seen with the 

ompA mutant or its complemented strains MSI and MS2. MS3 was the only 

complemented mutant to express the ompA transcript.

Evidence of the ompA transcription in the wild type and its derivatives (S.

marcescens Dbll::pURF047 and WS1) was not surprising as they all contained the 

original functional ompA gene. Similarly, as the ompA mutant and the ompA

mutant: :pURF047 derivative both contain a disrupted copy of the ompA gene, lack of 

evidence of transcription of the gene was also not surprising. On the other hand, in 

the MS3 transconjugant which contained an intact ompA copy as well as the disrupted 

one, there was evidence that the ompA gene was being transcribed but still 

demonstrated no restoration of the wild type phenotype. This indicated that no protein 

synthesis from this RNA occurred.
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: 3.4.14.3 Whole cell protein electrophoresis

To investigate further, whole cell protein electrophoresis was performed on the wild 

type S. marcescens Dbl 1, the ompA mutant and all their derivatives (section 3.3.9) to 

check whether the OmpA protein was being translated in these cells and could be 

observed at the protein level. Bioinformatics analysis showed that the S. marcescens

Dbl 1 OmpA has a molecular weight of ~ 39-kDa similar to that already reported by 

Braun and Cole (95). The results of the protein electrophoresis (Figure 3.26) showed 

that as expected the OmpA protein was present in the wild type S. marcescens Dbl 1 

and all its derivatives. The OmpA however was not present in the ompA mutant or in 

any of its derivatives including MS3. The size of the protein absent in the ompA

mutant and its derivatives was ~ 30-kDa, smaller than the OmpA predicted size. This 

could be due to protein processing in the cell or to the gel conditions. Results of the 

protein electrophoresis suggested that although the ompA gene was being transcribed 

in MS3, the OmpA protein was not being translated, which explained the MS3 

phenotype. There was no evidence of increased expression of the OmpA in the SW1 

transconjugant even though it contained and extra copy of the ompA gene.

3.4.14.4 Biocide exposure and OmpA expression in S. marcescens D bll

Increased sensitivity of the ompA mutant to triclosan, orf/io-phthalaldehyde, and 

chlorhexidine diacetate, suggested that the OmpA protein may be linked to resistance 

to these biocides. An attempt was made to determine whether exposure to increasing 

concentrations of these biocides induced or increased the OmpA expression in S.

marcescens Dbl 1. Cultures of the latter were grown in the presence of 1, 4, 8, and 14 

pg/ml chlorhexidine diacetate and in 10, 20, 30, and 40 pg/ml triclosan. Proteins were 

extracted from cells and analyses (section 3.3.9), to produce protein profiles for each 

of the cultures. Visual analysis of the results (Figure 3.27) showed that there was no 

significant increasing in the OmpA expression in cells exposed to biocides. The levels 

of OmpA seemed to be similar to that of the control cultures, even at increased 

concentrations of the two biocides. There was also no change in expression of any 

other proteins.
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Table 3.31. A gar and bro th  M ICs for both wild type S. m arcescens D b ll and the

ompA m utant.

Biocide Broth (TSB) MIC jag/ml (± SD) Agar (TSA) MIC pg/ml (± SD)

S. marcescens D bll ompA mutant S. marcescens D bll ompA mutant

CPC 5.5 (0.70) 5.5 (0.70) 100 (28.3) 100 (28.3)

CHX 7.5 (0.70) 6(1 .41) 18(2.83) 15(1.41)

TRI Nd Nd 3900(141) 3200 (283)

OPA Nd Nd 3000 (283) 2700(141)

SD; standard deviation, TRI; triclosan, OPA; or/Zw-phthalaldehyde, CPC; cetylpyridinium 
chloride, CHX; chlorhexidine diacetate, Nd; not determined.
Only values that were statistically significantly different at 95% confidence level from those 
of the wild type are highlighted (red).

Table 3.32. Comparison between S. marcescens D bll and the ompA mutant using 
tw o biocide lethality measuring parameters.

Biocide Suspension tests Potassium leakage tests
[Logio reduction in cfu/ml] [Potassium released (ppm)]

S. marcescens D bll ompA mutant S. marcescens D bll ompA mutant

CPC 3.13 2.88 0.10 0.10

CHX 2.57 2.76 1.07 1.76

TRI 3.11 4.47 0.80 0.96

OPA 1.18 4.09 0.50 0.69

TRI; triclosan at 4000 pg/ml after 5 min exposure, OPA; orf/zo-phthalaldehyde at 50 pg/ml 
after 5 min exposure, CPC; cetylpyridinium chloride at 8 pg/ml after 10 min exposure, CHX; 
chlorhexidine diacetate at 20 pg/ml after 10 min exposure. Only values that were statistically 
significantly different at 95% confidence level from those o f the wild type are highlighted 
(red).
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Table 3.33. A ntib iotic M IC s for the w ild  type S. m arcescens  D b l l  and the om pA
mutant.

Antibiotic MIC (pg/ml) Mutant sensitivity

S. marcescens D b l l  ompA mutant Compared to
BSAC MIC

breakpoints*

Compared to
S. marcescens

D b l l
Aminoglycosides
Amikacin 8 12 R R
Tobramycin 25.1 56 R R

Cephalosporins
Ceftazidime 0.71 0.85 S Nc

Carbapenems
Imipenem 0.59 2.25 S R
Meropenem 0.12 0.109 S Nc

Macro/ides
Azithromycin >256 1.01.3 - S

Penicillins
Piperacillin 2 1.5 S S

Quinolones
Ciprofloxacin 0.17 0.19 s Nc

Sulfonamides* * *
Trimethoprim/ 0.65 0.46 Nc
sulfamethoxazole

Others
Chloramphenicol 24 8 s ** S

Statistically significant increase in resistance (blue) or susceptibility (red) are highlighted 
* Susceptibility based on BSAC MIC breakpoints for Enterobacteriaceae (640).
** The only change in sensitivity based on BSAC MIC breakpoints 
*** Trimethoprim/sulfamethoxazole (1/19).
R; resistant, S; susceptible, Nc; no change in sensitivity
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Table 3.34. Phenotypic complementation analysis of the ompA mutant.

Organism Agar MICs pg/ml

CPC CHX TRI OPA

S. marcescens Db 11 100 18 3900 3000

S. marcescens D b l 1:: pU RF047 100 18 3900 3000

ompA mutant 100 15 3200 2700

ompA mutant:: pURF047 100 15 3200 2700

SW1 100 18 3900 3000

MS2 100 15 3200 2700

MS3 100 15 3200 2700

TRI; triclosan, OP A; or/Zzo-phthal al dehy de, CPC; cetylpyridinium chloride, CHX; chlorhexidine 
diacetate, SW1; S. marcescens Dbl 1:: SABEompA, MS2 and MS3; ompA mutant:: SABEompA.
Increased susceptibility is highlighted in red.
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Figure 3.23. Complementation of the 12-F6 (ompA) mutant

Artem is screen (929) showing the m ap o f  DNA surrounding the disrupted putative outer m em brane protein A  (Om pA) gene in 
m utant 12-F6 (in yellow) and the surrounding genes (in blue). The putative protein products are shown under the corresponding 
ORF. Sites 1 and 2 represent prim er om pA  F and om pA R respectively, used for ompA  am plification (Table 3.4). Sites 3 and 4 
represent prim ers o m p A F E c o  and om pA R Eco respectively, used for the am plification o f  the ompA  gene for cloning and 
com plem entation (Table 3.4). Sites 5, 6, and 7 represent the prom oter region, translation start and stop signals respectively for the 
ompA  gene as described by Braun and Cole (95). Tn represents the site o f  insertion o f  the mini Tn5K m 2 transposon in m utant 12-F6.
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Figure 3.24. PCR confirmation of the cloning of the ompA gene into the ompA
mutant

A 1% agarose gel show ing the PCR products from the ompA  gene am plification using 
prim ers o m p A F  and om pA _R (Table 3.4). Lane 1; 1-Kb+ DNA ladder used as size 
m arker, lane 10; sterile polished water control. Lanes 2 to 9 represent DNA from, wild 
type S. marcescens D b l l ,  the ompA m utant, S. marcescens D bl l::pU R F047, ompA
m utant::pURF047, and W S1, MSI ,  M S2, and MS3 transconjugants respectively. It can be 
seen that PCR products o f  the expected size (743 bp) were obtained in all w ild type 
derivatives and both M S2 and MS3 transconjugants.
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F ig u re  3.25. T h e  om pA  rev e rse  t ra n s c r ip ta s e  (R T ) p o ly m erase  c h a ir  rea c tio n  (P C R )

A 1% agarose gel showing the products of ompA PCR using primers o m p A F  and o m p A R  (Table 3.4) and cDNA generated by reverse transcriptase 
reactions using RNA extracted from wild type S. marcescens Dbl 1, ompA mutant and number of their derivatives. Wild type DNA was used as a positive 
control for the ompA gene (lane 2), Sterile polished water was used as negative control (lane 3). Lanes 4 to 10 represent PCR products using cDNA generated 
by reverse transcriptase reaction using RNA extracted from: S. marcescens Db l l ,  S. marcescens Dbl 1 ::pURF047, WS1 (S. marcescens Dbl 1:: 
SABE ompA), the ompA mutant, ompA mutant: :pURF047, and MS2 and MS3 transconjugants (ompA mutant:: SABE ompA) respectively. Lanes 11 to 17 
represents the negative controls for the RT reactions for S. marcescens Dbl 1, S. marcescens Dbl l::pURF047, WS1, ompA mutant, ompA mutant::pURF047, 
and MS2 and MS3 transconjugants respectively (Table 3.5). Lane 18 represents the RT negative control (Table 3.5), and lane 19 the RT reaction positive 
control (1.2 Kb kanamycin positive). Lanes 1 and 20 represents 1 Kb+ DNA ladder.
It can be seen that PCR products of the expected size (743 Kb) resulted in both positive ompA PCR control and from cDNA generated from wild type S.
marcescens Dbl 1 and its derivatives. Also PCR product was seen in the reaction which used cDNA from MS3 transconjugant. No PCR products were seen in 
the ompA mutant, ompA mutant::pURF047, or MS2 and in all the RT negative control reactions.
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Figure 3.26. The ompA mutant whole cell protein electrophoresis

Whole cell protein gel electrophoresis o f wild type S. marcescens D bl 1, the ompA mutant and 
their derivatives. Lanes 1 and 11 represents precision Plus dual colour protein standard used 
as a size marker. Lanes 2, 9 and 10 represent proteins from wild type S. marcescens D b l l .  
Lanes 3 to 8 represent proteins from: S. marcescens Dbl l::pURF047, WS1, the ompA mutant, 
ompA mutant::pURF047 and MS2 and MS3 transconjugants respectively. It can be seen that 
the OmpA protein, ~  30-kDa (arrow), is present in the wild type and its derivatives but not in 
the ompA mutant or its derivatives (yellow circle). This confirmed that the ompA mutant lacks 
the OmpA protein but also that the OmpA protein failed to be expressed in MS2 and MS3 
transconjugants.
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Figure 3.27. B iocide exposure and expression o f  O m pA in S. m arcescens  D b ll

Protein profiles o f  S. m arcescens  D b l 1 grow n in biocide free TSB (lanes 2 and 11), and 
biocide treated S. m arcescens  D b l l  cultures. Lanes 1 and 12 represent precision Plus 
dual colour protein standard used as a size m arker. Lanes 2, 3, 4, and 5 represent protein 
profiles from S. m arcescens  D b l 1 cultures grown in TSB in the presence o f  40, 30, 20 
and 10 pg/ml triclosan respectively. Lanes 6, 7, 8, and 9 represent protein profiles from 
S. marcescens D b l l  cultures grown in TSB in the presence o f  14, 8, 4, and 1 pg/ml 
chlorhexidine diacetate. The Om pA protein  is indicated by the arrow. N o evidence o f 
increase expression o f  the O m pA  was observed in the biocide-treated cultures.
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3.4.15 Detailed analysis of the ndpA biocide mutant

Mutant N3-B8 showed increased sensitivity to triclosan, and resistance to 

cetylpyridinium chloride and chlorhexidine diacetate in the initial biocide screenings. The 

disrupted gene in the mutant was identified as the putative ndpA gene encoding for a 

putative nucleoid-associated protein in S. marcescens D bll (Table 3.25). The mutant 

phenotype was investigated further by determining its biocides agar and broth MICs, the 

biocides lethality effects on the mutant, potassium leakage tests, and the mutant’s 

antibiotic susceptibility profile. On agar, the mutant showed 100% and 44.5% increase in 

resistance to chlorhexidine diacetate and cetylpyridinium chloride respectively (Table 

3.35). It also showed over 15% increase sensitivity to triclosan (Table 3.35). Statistical 

analysis showed that the differences in MIC values between the wild type S. marcescens

Dbl 1 and the ndpA mutant were significant at 90%, 85% and 70% confidence levels for 

chlorhexidine diacetate, cetylpyridinium chloride and triclosan respectively.

However, as with the ompA mutant, we noted that the change in the agar MIC values for 

these biocides was reproducible and generally constant in all our replica tests. The results 

of the agar MIC ratios (Table 3.13) confirmed the above observation. They showed that 

for chlorhexidine diacetate the ratio values between the mutant and the wild type for the 

maximum and the minimum MIC values generated in our replica tests were 1.4 and 1.5 

respectively. Similarly, the ratio values for the same above parameters were 0.9 and 0.78 

for triclosan and 1.83 and 2 for cetylpyridinium chloride. These results showed that 

although the change in susceptibility of the ndpA mutant to cetylpyridinium chloride, 

triclosan and chlorhexidine diacetate, was not large, it was nevertheless reproducible and 

genuine. Broth MICs for the ndpA mutant were also determined for chlorhexidine 

diacetate and cetylpyridinium chloride (Table 3.35). The mutant showed at least 172% 

and 34% increase in resistance to cetylpyridinium chloride and chlorhexidine diacetate 

respectively. This increase in resistance was statistically significant at the 95% 

confidence level.
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The lethality effect of the four biocides on the ndpA mutant was investigated by the 

suspension (section 3.3.5.3) and the potassium leakage tests (section 3.3.6). Results of the 

former (Table 3.36) showed that the number of the ndpA mutant cells killed after 

exposure to 50 pg/ml orf/zo-phthalaldehyde for 5 min was not statistically significantly 

different from that of the wild type. On the other hand, 10 min exposure to 20 pg/ml 

chlorhexidine diacetate or to 8 pg/ml cetylpyridinium chloride caused nearly 14.5% and 

19% respectively less cell death in the mutant compared with the wild type. A 5 min 

exposure to 4000 pg/ml triclosan lead to 40% more mutant cells killed than it did for the 

wild type. All the above differences in cell mortality compared with the wild type were 

statistically significant at the 95% confidence level.

The other parameter used to determine the lethality effect of the above concentrations of 

biocide on the mutant was to measure the amount of potassium leaked from a biocide- 

treated suspension of mutant and compare it with the wild type. The results (Table 3.36) 

showed that exposure to the two biocides, chlorhexidine diacetate and cetylpyridinium 

chloride, at the above concentrations and exposure time, lead to less potassium to be 

released from the mutant suspension than the wild type. The decreases in the amount of 

potassium released were of 20% and 33.6% for cetylpyridinium chloride and 

chlorhexidine diacetate respectively. A 5 min exposure to 4000 pg/ml triclosan on the 

other hand, caused 37.5% more potassium to be released in the mutant than it did in the 

wild type. The changes in the extracellular potassium in the mutants suspensions 

compared with the wild type were all statistically significant at the 95% confidence level.

The antibiotic susceptibility profile for the ndpA mutant was determined for ten 

antibiotics and compared to that of the wild type. The results (Table 3.37) showed that on 

the bases of the BSAC MIC breakpoints for Enterobacteriaceae (640) the ndpA mutant 

was resistant to the two aminoglycosides; amikacin and tobramycin as well as to 

chloramphenicol, but sensitive to the two carbapenems; imipenem and meropenem, as 

well as to antibiotics from other classes including ceftazidime, piperacillin, and 

ciprofloxacin. When the antibiotic MIC values for the mutant were compared with that of 

the wild type, the mutant was more sensitive than the wild type to the two carbapenems;
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imipenem and meropenem, as well azithromycin and ciprofloxacin. All these changes in 

MIC values were statistically significant at the 95% confidence level. No changes in MIC 

values were observed for the mutant with amikacin, tobramycin, chloramphenicol, 

ceftazidime, piperacillin or (1/19) trimethoprim/sulfamethoxazole. The mutant was also 

sensitive to 10 pg/ml gentamicin but resistant to 100 pg/ml kamamycin and to 100 

units/ml polymyxin B.

3.4.15.1 Complementation of the ndpA mutant

3.4.15.1.1 Complementation steps

To confirm that the phenotypic change in the ndpA mutant was due to the disruption of 

the ndpA gene in S. marcescens Dbl 1, complementation of the mutant was attempted as 

described in section 3.3.13. It involved the amplification of a wild type S. marcescens

Dbll DNA fragment containing the ndpA gene (Figure 3.28) using primers 

ndpA F Bam, and ndpA R Bam (Table 3.4) by epicentre “Failsafe” PCR (section 

3.3.13.2). These primers also introduced a unique BamYW restriction sites tails at each end 

of the PCR product. A genetic construct, SABEndpA was generated by ligation of the 

above epicentre “Failsafe” PCR product to a BamHl digested pURF047 cloning vector. 

One Shot OmniMAX™ 2 T1 chemically competent E. coli was transformed with the 

SABEompA construct (section 3.3.13.4), and used in tri-parental matings to introduce the 

SABEndpA construct into the ndpA mutant (section 3.3.13.6). A number of 

transconjugants including NS9, NS12, NS14, NS15 and NS18 were isolated. Similarly 

the SABEndpA construct was introduced into the wild type S. marcescens Dbll to 

determine the effect of harbouring an extra copy of the ndpA gene on the organism, and 

four transconjugants WSa, WSb, WSc and WSd were isolated. Moreover, tri-parental 

mating was used to introduce a copy of the cloning vector pURF047 into the ndpA mutant 

to determine whether the presence of the vector alone could influence the mutant’s 

phenotype.
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Successful introduction of the SABE ndpA into the transconjugants was checked by 

extracting the construct from these cells and excising the cloned DNA fragment 

containing the ndpA gene using BamHl digestion. The results were visualised by agarose 

gel electrophoresis. Results (Figure 3.29) showed that BamHl digestion caused the 

linearization of the pURF047 vector and the excision of the cloned DNA fragment of the 

correct size (2739 bp) from two (SWc and SWd) out of the four wild type transconjugants 

and from four (NS12, NS14, NS15, and NS18) out of the five mutant transconjugants 

tested. The result confirmed that the ndpA gene construct had been successfully 

introduced into the SWc, SWd, NS12, NS14, NS15, and NS18 transconjugants. Further 

investigations to determine whether the phenotypic complementation of the ndpA mutant 

was successful (section 3.3.13.7) were then undertaken.

3.4.15.1.2 Phenotypic complementation analysis

The above results confirmed that in transconjugants NS12, NS14, NS15, and NS18, the 

ndpA complementation had been successful in terms of introducing a wild-type copy of 

the gene into the mutant. To investigate further, phenotypic complementation analysis 

was performed on transconjugants to check for restoration of the wild type phenotype. 

The study also included wild type transconjugants, as well as wild type and ndpA mutant 

containing the pURF047 vector. No noticeable difference in growth was seen in the ndpA

mutant cells containing the pURF047 vector or in the transconjugants compared to the 

wild type S. marcescens Dbl 1. This suggests that the presence of the pURF047 vector or 

the introduced copy of the ndpA gene in the cells did not affect their growth fitness. The 

results of agar biocide MICs on the NS12, NS14, NS15, and NS18 transconjugants 

showed no significant difference in their MIC values from those of the wild type. For 

instance, for cetylpyridinium chloride, growth of the wild type, the wild type 

transconjugants and the ndpA mutant transconjugants was inhibited at concentration of 

100 pg/ml, while the ndpA mutant grew at a concentration of 240 pg/ml. These agar MIC 

results meant that there was restoration of the wild type phenotype in the NS12, NS14, 

NS15, and NS18 transconjugants. Moreover the results also showed that the presence of
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the pURF047 vector in both the wild type and the ndpA mutant or the introduced extra 

copy of the ndpA in the wild type had not affected biocide susceptibility.
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Table 3.35. Agar and broth M ICs for both w ild type S. m arcescens D b l l  and the
ndpA mutant.

Biocide Broth (TSB) MIC pg/ml (± SD) Agar (TSA) MIC pg/ml (± SD)

S. marcescens D bll ndpA mutant S. marcescens D bll ndpA mutant

CPC 5.5 (0.70) >15 100 (28.3) 200 ± (28.3)

CHX 7.5 (0.70) >10 18(2.83) 26 ± (2.83)

TRI Nd Nd 3900(141) 3300 ± (424)

OPA Nd Nd 3000 (283) 3000(283)

SD; standard deviation, TRI; triclosan, OPA; ort/zo-phthalaldehyde, CPC; cetylpyridinium 
chloride, CHX; chlorhexidine diacetate, Nd; not determined.
Only values that were statistically significantly different at 95% confidence from those of the 
wild type are highlighted (red; statistically lower, blue; statistically higher).

Table 3.36. Comparison between S. marcescens D bll and the ndpA mutant using 
two biocide lethality measuring parameters.

Biocide Suspension tests Potassium leakage tests
[Logio reduction in cfu/ml] [Potassium released (ppm)]

S. marcescens D bll ndpA mutant S. marcescens Dbl 1 ndpA mutant

CPC 3.13 2.55 0.10 0.08

CHX 2.57 2.20 1.07 0.71

TRI 3.11 4.33 0.80 1.10

OPA 1.18 1.09 0.50 0.50

TRI; triclosan at 4000 pg/ml after 5 min exposure, OPA; ort/io-phthalaldehyde at 50 pg/ml after 
5 min exposure, CPC; cetylpyridinium chloride at 8 pg/ml after 10 min exposure, CHX; 
chlorhexidine diacetate at 20 pg/ml after 10 min exposure. Only values that were statistically 
significantly different at 95% confidence from those of the wild type are highlighted (red; 
statistically higher, blue; statistically lower).
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Table 3.37. A ntibiotic M ICs for the w ild  type S. m arcescens D b l l  and the ndpA
mutant.

Antibiotic MIC (pg/ml) Mutant sensitivity

S. marcescens D b ll ndpA mutant Compared to
BSAC MIC

breakpoints*

Compared to
S. marcescens

D b ll
Aminoglycosides
Amikacin 8 8 R Nc
Tobramycin 25.1 32 R Nc

Cephalosporins
Ceftazidime 0.71 0.5 S Nc

Carbapenems
Imipenem 0.59 0.25 S S
Meropenem 0.12 0.064 S s

Macrolides
Azithromycin >256 96 - s

Penicillins
Piperacillin 2 2 S Nc

Quinolones
Ciprofloxacin 0.17 0.125 s S

Sulfonamides**
Trimethoprim/ 0.65 1 Nc
sulfamethoxazole

Others
Chloramphenicol 24 24 R Nc

Statistically significant increases in susceptibility (red) are highlighted 
* Susceptibility based on BSAC MIC breakpoints for Enterobacteriaceae (640). 
** Trimethoprim/sulfamethoxazole (1/19).
R; resistant, S; susceptible, Nc; no change in sensitivity
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Figure 3.28. Complementation o f the N3-B8 (ndpA) mutant

Artemis screen (929) showing map o f the DNA surrounding the disrupted putative nucleoid-associated protein (NdpA) gene in 
mutant N3-B8 (in yellow) and the surrounding genes (in blue). The putative protein products are shown under the corresponding 
ORF. Sites 1 and 2 represent primer n d p A F B a m  and ndpA R Bam respectively, used for the amplification o f the ndpA gene for 
cloning and complementation (Table 3.4). Tn represents the site o f  insertion on the mini Tn5Km2 transposon in mutant N3-D8. 
Bcr; bicyclomycin resistance protein, RsuA; ribosomal small subunit pseudouridine synthase A, RplY; 50S ribosomal protein L25, NdpA; 
nucleoid-associated protein, YejM; sulphatase, HP; hypothetical protein HS_1396.
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Figure 3.29. Confirmation of the cloning of the ndpA gene into the ndpA mutant

A 1% agarose gel showing confirm ation o f cloning o f the S. marcescens D bl 1 ndpA gene into the ndpA mutant. Plasmids 
were extracted from both wild type and ndpA mutant transconjugants and cut with Bam Hl to excise the cloned fragment o f 
DNA containing the wild type ndpA gene. Lane 1; negative control, lane 13; 1-Kb+ DNA ladder used as size marker, lane 
2; uncut pURF047, lane 3; pURF047 cut with BamHl. Lanes 4, 5, 6, and 7 represent wild type transcongugants (S.
marcescens Db l l : :  SABE ndpA) WSa, WSb, WSc, and W Sd respectively. Lanes 8, 9, 10, 11, 12 represent ndpA mutant 
transconjugants (ndpA mutant: :SABEndpA) NS9, NS12, NS14, NS15 and NS18 respectively. Digestion o f the SABE ndpA
construct with Bam Hl would excise the cloned DNA fragment containing the ndpA gene and linearize the pURF047 vector. 
It can be seen that this was the case with transconjugants SWc, SWd, NS12, NS14, NS15, and NS18, where the excised 
DNA fragments o f  the expected size (2739 bp) were observed along with the linearized pURF047.
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3.5 DISCUSSION

3.5.1 S. marcescens D b ll and antimicrobial agents

In this study, the non-pigmented S. marcescens D bll was chosen as a model 

organism to study the molecular basis of biocide resistance and sensitivity in Serratia.

Susceptibility of S. marcescens Dbl 1 to both the inhibitory and killing effects of four 

biocides (triclosan, chlorhexidine diacetate, cetylpyridinium chloride, and ortho-

phthalaldehyde), and its antibiotic profile for 10 agents (amikacin, azithromycin, 

chloramphenicol, ciprofloxacin, tobramycin, trimethoprim/sulfamethoxazole, 

meropenem, ceftazidime, imipenem, and piperacillin) were determined.

The two surface-active agents chlorhexidine diacetate and cetylpyridium chloride 

were the most effective at inhibiting the growth of S. marcescens D bll with agar 

MIC values of 18 pg/ml and 100 pg/ml respectively. 07/*o-phthalaldehyde and 

triclosan were less effective and had higher agar MIC values of 3000 pg/ml and 3900 

pg/ml respectively. The large difference in MIC values between the latter two agents 

and those of the two surface active agents could be due to interaction between the 

agar and the biocides, which in the case of triclosan and or/Zzo-phthalaldehyde could 

play a role in affecting their antimicrobial action. Interaction between biocides and 

agar appears to also affect the growth inhibitory action of both surface active agents. 

However, this effect seems to be less significant in relation to chlorhexidine diacetate, 

as it had a broth MIC value o f 7.5 fig/ml compared to 18 pg/ml on agar. From MIC 

values, cetylpyridium chloride on the other hand, is nearly 20 times more effective at 

inhibiting growth of S. marcescens Dbl 1 in broth than it is on agar.

Evidence of the biocides lethal effect on the S. marcescens D bll cells was observed 

from both the killing and the potassium leakage experiments, where two killing 

patterns were identified. The first was in relation to the surface active agents, 

cetylpyridium chloride and chlorhexidine diacetate, where the amount of killing 

increased with time of exposure to the biocide. The other pattern was in relation to 

triclosan and to a lesser extent to or/Tzo-phthalaldehyde, where most of the killing 

occurred in the first 5 min of exposure, after that there was no significant change in
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the killing effect of the two biocides. Lethal effects of chlorhexidine diacetate and 

cetylpyridinium chloride were measured at levels much lower than their “in-use” 

concentrations. The concentrations tested for triclosan and ort/zo-phthalaldehyde were 

comparable to those used in practice. Based on the killing tests results, the 

chlorhexidine diacetate and cetylpyridinium chloride “in-use” concentrations are 

effective at reducing the total S. marcescens D bll cell counts, whereas those of 

triclosan and or^o-phthalaldehyde may not be.

S. marcescens is naturally resistant to many antibiotics including penicillins, 

cephalosporins, and polymyxins, and is able to rapidly acquire resistance to other 

agents (section 3.1.5). Although resistant strains have been reported (192), 

aminoglycosides have good activity against S. marcescens. In a study by Stock et al.

(1022) on 77 S. marcescens isolates, they found that 100% of strains tested were 

susceptible to amikacin, and 80% showed intermediate or susceptible phenotype to 

tobramycin. All strains were susceptible to the P-lactams, ceftazidime, imipenem, and 

meropenem and 75% were sensitive to piperacillin. The percentages of isolates 

susceptible to the quinolones ciprofloxacin and to the sulphonamide 

trimethoprim/sulfamethoxazole were 100% and 83% respectively. It was also reported 

that the majority of the strains (90%) were resistant to the macrolide azithromycin and 

that 75% of the isolates were also resistant to chloramphenicol. Comparison between 

the above and the antibiotic susceptibility results for S. marcescens Dbl 1 (based on E- 

test MIC values and the BSAC MIC breakpoints for Enterobacteriaceae (640)), in 

this study shows some contradictions. In this study S. marcescens Dbl 1 was resistant 

to both aminoglycosides used (amikacin and tobramycin) as well as to 

chloramphenicol. It was however, sensitive to all other agents tested including to 

representative from the p-lactam family.

The natural cell impermeability of S. marcescens and its production of antibiotic 

inactivating enzymes could explain the observed response of the organism to 

aminoglycosides. As the MIC value for amikacin (8 pg/ml) was on the upper limit of 

the intermediate susceptible phenotype according to the BSAC MIC breakpoints, this 

low level resistance could be explain by the natural cell impermeability of S.

marcescens and by the possibility of low level expression of acetyltransferase 

AAC(6') which is active against amikacin (section 3.1.5.1.2). The same mechanisms
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could be involved in tobramycin resistance in strain Dbl 1, although the high level of 

resistance observed in this strain suggests that other factors may be involved. The 

production of the other known S. marcescens aminoglycoside inactivating enzyme, 

acetyltransferase AAC(3)-I which is active against gentamicin (section 3.1.5.1.2), is 

unlikely as strain Dbl 1 was sensitive to 10 pg/ml gentamicin.

In comparison to the Gram-positive S. aureus, S. marcescens D bll is more resistant 

to antimicrobial compounds. This becomes apparent when the agar MIC values of 

agents are compared for the two species. Antibiotics MIC values of the S. aureus

reference strains NCTC 6571, ATCC 25923 and ATCC 29213 (17) show that for 

amikacin, tobramycin, azithromycin, chloramphenicol, imipenem and meropenem, S.

marcescens D bll is more resistant than S. aureus. While this comparison is by no 

means accurate, and does not relate to the wide range of antibiotic resistant S. aureus

strains, it is indicative that Serratia is generally more resistant to antibiotics than 

Gram-positives such as S. aureus.

The same observations can be made for biocides, where for example in a study by 

Seaman et al. (965) the MIC value of triclosan for a number of S. aureus strains was 

reported to be 0.063 pg/ml. Similarly in a study of triclosan resistance in S. aureus, 

which including several MRS A strains, Suller and Russell (1031) reported that 

triclosan MIC values for the strains studied ranged from 0.025 fig/ml to 1 pg/ml. The 

control strain NCTC 6571 had an MIC value of 0.025 pg/ml. Comparison between 

triclosan MIC values for S. aureus NCTC 6571 and S. marcescens Dbl 1 shows that S.

marcescens D bll is 160000 times more resistance to triclosan than S. aureus NCTC 

6571. Differences in susceptibility to other biocides are also apparent. Chlorhexidine 

MIC values for S. aureus reported by Wallhausser (1116) were 0.5-1 pg/ml, and 

Yamamoto et al.{\ 176) reported them to be 1.56-6.25 jig/m 1 in the strains they 

studied, with the MRSA strain O3 being most resistant. Seaman et al. (965) reported 

chlorhexidine MIC values of 1 -3 pg/ml for the S. aureus strains they studied and in a 

study by Irizarry et al. (479) they found that MIC values for chlorhexidine did not 

exceed 2 pg/ml in 83% of methicillin-sensitive S. aureus. Although antibiotic 

resistant S. aureus such as MRSA were shown to be more resistant to chlorhexidine 

than sensitive strains (479), the above still shows that S. aureus is much more 

sensitive to this agent than S. marcescens Dbl 1, which had an MIC of 18 pg/ml.

297



Similar observations can be made for the QAC, cetylpyridinium chloride. Seaman et

al. (479) reported MIC values for the agent to be 1-3 pg/ml in all S. aureus strains 

they tested. Irizarry et al. found that as for chlorhexidine, the majority (93%) of 

methicillin-sensitive S. aureus tested had MIC value for cetylpyridinium chloride 

equal or lower than 2 pg/ml. The study also showed that MRSA have increased MIC 

to cetylpyridinium chloride compared to the sensitive strains (479), an observation 

also reported by Suller and Russell (1030) who found MRSA to have MIC values for 

the QAC 2- to 4-fold higher than sensitive strains. Nevertheless, the above reports 

show that compared with S. marcescens Dbl 1 with a cetylpyridinium chloride MIC of 

100 pg/ml, S. aureus is much more sensitive to the agent than the Serratia strain.

Serratia resistance to antimicrobial agents is not only apparent in comparison to 

Gram-positive bacteria but also to many Gram-negatives, including very close 

relatives in the Enterobacteriaceae family such as E. coli. In fact the levels of S.

marcescens resistance are comparable to those of P. aeruginosa, which shows high 

intrinsic resistance to many antimicrobial agents (157). In this study, S. marcescens

Dbl 1 was more resistant than the E. coli NCTC 1048 reference strain for nearly all 

antibiotics tested. Similar observations are seen if the antibiotics MICs of S.

marcescens Dbl 1 calculated in this study were to be compared to those of other E.

coli reference strains such as NCTC 10418 and ATCC 25922 (17). In fact, for many 

antibiotics, the MIC values of S. marcescens D bll are comparable to those reported 

for P. aeruginosa reference strains NCTC 10662 and ATCC 27853 (17). Strain Dbl 1 

is even more resistant than the above two P. aeruginosa strains for the 

aminoglycosides amikacin and tobramycin.

The level of antimicrobial resistance in S. marcescens Dbl 1 compared to other Gram- 

negatives extends to biocides. Results of the biocides MICs determination and both 

the killing and potassium leakage experiments showed that S. marcescens D bll is 

more resistant than E. coli NCTC 1048 to both the inhibitory and killing effects of the 

biocides tested. From agar MICs, E. coli NCTC 1048 was 39000 times more sensitive 

to triclosan than S. marcescens D b ll. The triclosan MIC value of the latter is 

comparable to that of P. aeruginosa PAOl which was shown to resist triclosan 

concentrations higher than 1000 pg/ml due to its efflux mechanisms (167). The P.
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aeruginosa chlorhexidine MIC of 5-60 pg/ml reported by Wallhausser (1116) is also 

comparable to that of S. marcescens Dbl 1.

Large aspects of the tolerance of S. marcescens D bll to antimicrobial agents 

compared to Gram-positives such as S. aureus or even to close relatives such as E.

coli could be explained in relation to its membrane permeability, porins and efflux 

systems. As a Gram-negative, S. marcescens D bll has an extra outer membrane 

which Gram-positives such as S. aureus do not have. This membrane provides an 

extra permeability barrier which significantly limits the uptake of antimicrobial agents 

by the cells. Of importance in this context are the lipopolysaccharides and outer 

membrane proteins of the cell which have been discussed in section 1.5.1.1. For 

instance, the characteristic resistance of S. marcescens and Proteus species to 

polymyxins B and E and to the polycationic antimicrobial proteins found in 

granulocyte granules (1094) in comparison to other enteric bacteria, has been related 

to differences in the lipopolysaccharide core composition between these two bacteria 

and E. coli K-12 and S. typhimurium (848).

In conclusion, S. marcescens D bll has been shown to be more affected by surface- 

active agents such as chlorhexidine and cetylpyridium chloride than by the phenolic 

compound triclosan or the aldehyde ort/io-phthalaldehyde. This strain was interesting 

in that unlike many other reported S. marcescens strains, it was resistant to the 

aminoglycosides and sensitive to P-lactams. Although it is not possible to arrive at a 

generalised conclusion from the study of a single strain, nevertheless, results from this 

study and reports in the literature demonstrate that S. marcescens is relatively resistant 

to antibiotics and biocides compared to the Gram-positive S. aureus and to its close 

relatives in the Enterobacteriaceae family such as E. coli. It is clear that the outer 

membrane of S. marcescens represents an important permeability barrier protecting it 

from the effect of antimicrobial agents. The organism contains a number of multidrug 

efflux pumps and porins, which along with its other outer membrane components has 

an impact of its antimicrobial susceptibility. The organism can also produce and 

secrete a number of proteins and enzymes which are able to degrade or inactivate 

antimicrobial agents (section 3.1.5). We can speculate that the relative resistance to 

antimicrobial agents seen in S. marcescens Dbl 1 can be at least in part a result of its 

outer membrane characteristics.
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3.5.2 5. marcescens D b ll mutants

3.5.2.1 Overview

The study set out to (i) identify the molecular basis of biocide susceptibility and 

resistance in the Gram-negative S. marcescens strain D bll, and to (ii) determine if 

there is a relationship between biocides and antibiotic susceptibility in this organism. 

Random transposon mutagenesis using the mini-Tn5Km2 transposon was used to 

generate 26 S. marcescens D bll mutants with altered biocide sensitivity compared 

with the wild type. These mutants along with two control mutants were all confirmed 

to be S. marcescens D b ll by RAPD analysis and their specific growth rate values 

demonstrated that the majority of them were as growth fit as the wild type.

Biocide susceptibility patterns were determined by investigating both the growth 

inhibitory and killing effects of the four biocides on the mutants. Biocides agar MICs 

demonstrated that changes in biocides susceptibility of the mutants tested were 

relatively small. However, these changes were reproducible. The results also showed 

that 84% of the mutants tested had increase in sensitivity or resistance to more than 

one biocide. The most dominant sensitivity was to cetylpyridium chloride whereas 

resistance to chlorhexidine diacetate was the most common resistance phenotype. Out 

of the 26 biocide mutants investigated, the percentage of mutants sensitive to 

chlorhexidine diacetate, cetylpyridium chloride, triclosan and or/Zzo-phthalaldehyde 

were 30%, 53%, 42% and 42% respectively. The proportion of resistant mutants was 

23% for chlorhexidine diacetate, 11% for cetylpyridium chloride and ortho-

phthalaldehyde, and 7% for triclosan. Antibiotic susceptibility profiles for all mutants 

were determined and revealed that with the exception of one control mutant, all 

remaining mutants had at least two or more changes in their antibiotic susceptibility 

profiles compared with the wild type. The results showed that 90% of the mutants had 

increased susceptibility to at least one antibiotic, and an interesting high percentage 

(70%) demonstrated increased resistance to at least one antibiotic as well.

The locations of transposon insertion in all but three of the mutants were determined, 

and 14 putative genes coding for putative proteins with varying functions were found 

to be disrupted. These functions included anabolism and catabolism, gene regulation,
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cell envelope biosynthesis, porin, energy production, and virulence. Multiple 

insertions into the same genes were also observed in 21% of the disrupted gene, and 

one putative gene coding for a putative DeoR family transcriptional regulator, had 

transposon insertion in nine of the mutants sequenced. One possible explanation for 

the mini-Tn5Km2 multiple insertions into the same gene could be due to the gene 

being an “insertion hotspot” for the transposon, whereby the latter inserts into the 

gene preferentially. There is evidence for and against this possibility. Codling et al

(179) reported the single random insertion of the mini-Tn5Km2 transposon into the S.

marcescens genome with the complete loss of the delivery vector after transposon 

insertion. However, Payne (807) noted multiple insertions of the mini-Tn5Km2 into 

the same genes in some B. vietnamiensis G4 transposon mutants.

3.5.2.2 Transposon-disrupted genes in S. marcescens D b ll biocide mutants

3.5.2.2.1 Putative ribonucleotide-diphosphate reductase alpha subunit gene

(nrdA)

Transposon insertion in mutant N5-B6 was traced to a nrdA gene coding for a putative 

ribonucleotide-diphosphate reductase a subunit. The N5-B6 mutant showed increased 

sensitivity to triclosan and cetylpyridinium chloride on agar as well as increased 

susceptibility to meropenem, imipenem, piperacillin, and amikacin. The mutant was 

however more resistant to ciprofloxacin than the wild type. Ribonucleoside- 

diphosphate reductase a subunit is part of the ribonucleotide reductases multisubunit 

enzyme responsible for the reduction of ribonucleotides to their corresponding 

deoxyribonucleotides, thus generates all precursors for DNA synthesis intended for 

DNA replication and repair (505, 554). Ribonucleotide reduction occupies a central 

role in the regulation of the pool sizes of the four dNTPs required for DNA synthesis, 

even though deoxynucleoside kinases and nucleotidases are also important (554).

The first ribonucleotide reductase was reported in in E. coli (864) followed by another 

in Lactobacillus leichmannii (81) a few years later. Nowadays a number of 

ribonucleotide reductases are known and are grouped into different classes depending 

on the metal cofactors for their catalytic activity (863, 1024). Many organisms have 

more than one class of ribonucleotide reductases present in their genomes. Class I
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enzymes contain a diiron-oxygen cluster and are found in some bacteria and viruses 

and in practically all eukaryotic organisms, from yeast and algae to plants and 

mammals (442, 504). Class II ribonucleotide reductases, found in bacteria and 

bacteriophages, use coenzyme B12 as the cofactor for their activity. Class III 

enzymes, found in anaerobic bacteria, bacteriophages, and archaea, use a 4Fe-4S 

iron-sulfur cluster coupled to S-adenosylmethionine to generate activity. Although 

the three different classes of ribonucleotide reductase enzymes depend on different 

metal cofactors for the catalytic activity, the functional and structural similarities 

suggest that the present-day ribonucleotide reductases have all evolved from a 

common ancestral reductase (554).

It was reported that ribonucleotide reductase from E. coli could be purified into two 

inactive subunitis, proteins B1 and B2, which when mixed, enzyme activity was 

readily generated (117, 118). It is now known that in Enterobacteria the enzyme’s 

two subunits R1 and R2 proteins are encoded by the nrdA and nrdB genes 

respectively. The genes constitute a tightly regulated transcriptional unit where 

transcription is coupled to the cell cycle and is increased by DNA damage (140, 503, 

1032). Gibert et al. (337) found that induction of the SOS response in E. coli

enhanced the expression of the nrdA and nrdB genes. The mammalian ribonucleotide 

reductase is also composed of two different dimeric proteins (R1 and R2), and in 

mouse the genes coding for these proteins (nrdA, and nrdB) are regulated separately 

and are located on separate chromosomes (505).

The importance of ribonucleotide reductase in the mechanisms of cell proliferation 

and DNA repair (471, 1164), and the observation that expression of the enzyme is 

altered in malignant cells (1131), have made it a target in chemotherapeutic strategies 

(972, 1131). The genetic changes underlying cancer conversion and progression are 

accompanied by a decrease in genomic stability of cells (172, 1158) which leads to 

heterogeneity of tumor cell populations, alterations in response to chemotherapy, and 

increased malignant potential. For instance Huang et al. (455) found that altered 

expression of the R2 component of the ribonucleotide reductase enzyme is capable of 

significantly modifying drug sensitivity properties of tumor cells. Because of the key 

role ribonucleotide reductase play in mammalian cells, the enzyme is viewed as an 

important target for anticancer and antivirus agents, and several different classes of
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ribonucleotide reductase inhibitors have been generated and studied, including 

triapine, gemcitabine, cytarabine, cladribine and many more (972).

The important role of ribonucleotide reductases in bacteria suggests that disruption of 

the nrdA gene in S. marcescens D b ll would have an effect on the function of 

ribonucleotide reductase protein. Many antimicrobial agents exert their effect by 

interfering with DNA synthesis. For instance quinolones are known to act by blocking 

DNA synthesis via inhibition of DNA gyrase needed for this process. Biocides such 

as acridines dyes act by binding to the double stranded DNA by intercalation between 

adjacent bases on the same strand blocking replication and transcription (577). 

Alkylating agents such as ethylene oxide and formaldehyde, affect nucleic acids 

because of their interaction with the amino groups on the purine and pyrimidine bases 

(622). Modification of purine and pyrimidine bases is also seen in the action of the 

vapour-phase disinfectant, ozone (362).

Moreover, biocides such as triclosan and cetylpyridinium chloride, especially at 

higher concentrations have been shown to affect multiple targets within the cell. 

Hence it can be speculated that in a NrdA-deficient mutant, where DNA synthesis and 

repair are affected, the cell is more sensitive to antimicrobial action. If a biocide 

causes DNA damage in such a mutant, repair of the damaged DNA would not be as 

efficient as in the wild type, making the mutant more susceptible to the biocide. This 

could explain the increase in sensitivity of the NrdA-deficient mutant N5-B6 to 

triclosan and cetylpyridinium chloride. The mutant also became more resistance to 

ciprofloxacin compared with the wild type. Ciprofloxacin is known to act by 

interfering with DNA gyrase, hence inhibiting DNA synthesis. It can be speculated 

that in a mutant where DNA synthesis and repair are inefficient, the actions of a drug 

that acts on such processes would be inefficient as well. This would make the mutant 

more resistant to such a drug. Another speculation is related to the putative DNA 

gyrase subunit A gene located in the vicinity of nrdA. Transposon insertion in nrdA

could have had a polar effect on the expression of the DNA gyrase subunit A gene, 

leading to increased resistance to ciprofloxacin, which has DNA gyrase as a target. 

Further studies including complementation of the nrdA mutant are needed to 

investigate the above speculations
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3.5.2.2.2 Putative chaperonin genes (groES and groEL)

The site of the transposon insertion in mutant N5-G6 was located at the junction 

between the putative groES and putative groEL genes. The location of the insertion 

meant that the transposon was able to disrupt one if not both of these genes. On agar, 

the mutant showed increased sensitivity to both triclosan and or^o-phthalaldehyde 

and was resistant to chlorhexidine diacetate. The antibiotic susceptibility profile for 

mutant N5-G6 showed that it had increased resistance to meropenem, imipenem, 

chloramphenicol and piperacillin. It was at the same time more sensitive than the wild 

type to the two aminoglycosides tested as well as to trimethoprim/sulfamethoxazole.

GroEL belongs to the chaperonin family of molecular chaperones required for the 

proper folding of many proteins in bacteria. To function properly it requires a co- 

chaperonin complex GroES. In eukaryotes the heat shock proteins Hsp60 and HsplO 

are structurally and functionally nearly identical to GroEL and GroES respectively. 

Chaperonins are ubiquitous, essential multisubunit ATPases, in which the subunits 

form a cylindrical structure (a ring) enclosing a central cavity. They are thought to 

assist the folding of their target proteins by providing a sequestered environment 

conducive to correct folding in which extended proteins can fold while shielded from 

nonproductive interactions with other proteins (128, 403, 981, 1170). Two classes of 

chaperonin have been defined on the basis of sequence relationships and the 

requirement for cochaperonin (545). Those which function in conjunction with a 

cochaperonin such as GroEL, belong to class I chaperonins found in prokaryotes and 

the organelles descended from them. Chaperonins which do not require a 

cochaperonin are found in archaebacteria and in the cytosol of eukaryotes, and belong 

to class II. Only one kind of chaperonin molecule generally exists in any given 

cellular compartment, therefore, any chaperonin must be capable of facilitating the 

correct folding of a range of target proteins (757).

In E. coli, GroEL with the aid of GroES, encapsulates non-native substrate proteins 

inside the cavity of the GroEL-ES complex and promotes folding by using energy 

derived from ATP hydrolysis. GroEL is thought to act by first binding partially folded 

or misfolded proteins in its central cavity, thus preventing their aggregation (174, 

194). The second phase of action involves the central cavity of GroEL, where the
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isolated protein folding intermediate is actively folded, after being unfolded, if 

necessary, to states more committed toward correct folding (1136, 1169). The actions 

of GroEL and other chaperonins is therefore essential for the folding of proteins in the 

cell, as well as ensuring the correct expression of genes by correcting the inevitable 

and potentially irreversible mistakes in protein folding generated from errors in 

transcription and translation processes (981). In E. coli, chaperonin GroEL (together 

with its cochaperonin GroES) is thought to participate in the facilitated folding of 2 to 

7% of newly synthesized proteins (267, 621), and the complex is considered to be a 

major component of cellular machinery for refolding misfolded cytosolic proteins 

(1122).

Whether GroEL and/or GroES are directly involved in bacterial resistance and 

susceptibility to antimicrobial agents is not clear. Interestingly however, Hallett et al.

(393) found that E. coli cells resistant to DNA gyrase inhibitor, ciprofloxacin, 

overproduced a 60-kDa protein homologue to GroEL. Moreover, as mentioned above 

the proteins Hsp60 and HsplO are structurally and functionally nearly identical to 

GroEL and GroES. Heat shock proteins are known to be induced under different 

stress conditions. Ramos et al. (853) reported that different subsets of heat shock 

proteins are induced by different stress conditions in bacteria. Induction of the 

aromatic degradation pathway in P. putida has been shown to involve heat shock 

response (660). In addition Cudic et al. (202) demonstrated that proline-rich cationic 

antibacterial peptides such as pyrrhocoricin killed P-lactam-, tetracycline- or 

aminoglycoside-resistant strains of E. coli, S. typhimurium, K. pneumoniae, 

Haemophilus influenzae, Moraxella catarrhalis and even P. aeruginosa, by binding to 

the 70-kDa heat shock protein DnaK and inhibiting protein folding. Chen et a l (148) 

found that heat shock proteins in S. aureus were induced 5.1-fold following treatment 

with triclosan. Moreover, Rees (860) reported that a chlorhexidine resistant mutant of 

B. cenocepacia had a disruption in a gene coding for a heat-shock-like protein.

It is clear that a mutant deficient in either GroEL or GroES or in both proteins, would 

not be able to efficiently refold misfolded proteins. Many antimicrobial agents 

including biocides are highly reactive chemicals and strongly interact with bacterial 

proteins (section 1.3.). For instance, aldehydes, alkylating and oxidizing agents all 

readily react with amino, carboxyl, sulphydryl and hydroxyl groups on proteins
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causing irreversible modification of the protein structure (676). Protein coagulation 

can also occur as result of biocide action. Compounds such as chlorhexidine, phenols 

and QACs have all been reported to cause such effect (676). Protein damage caused 

by biocides in a GroEL-GroES deficient mutant would have a significant effect on the 

cell, as newly produced proteins may not be properly folded and misfolds in proteins 

may not be corrected. The latter would heighten the effect of the antimicrobial agent 

on the mutant, making it more sensitive to these compounds. Both triclosan and 

or/Ao-phthalaldehyde are known to act on proteins in the cell, which may explain the 

increased sensitivity of mutant N5-G6 to these agents.

A similar explanation may be given for the increase sensitivity of the mutant to the 

two aminoglycosides tested, amikacin and tobramycin, both known to act by 

inhibiting protein synthesis by binding to bacterial ribosomes. Inhibited protein 

synthesis coupled with inefficiency at folding proteins or correcting the misfolding in 

others could make the mutant become more sensitive to these antibiotics. It is 

interesting that the mutant showed increased resistance to meropenem, imipenem and 

piperacillin which are known to act by inhibiting bacterial cell wall synthesis. Site 

directed mutagenesis of each of the two genes (groES or groEL) individually and 

Subsequent complementation analysis would give a better insight into the role of these 

genes in antimicrobial susceptibility.

3.5.2.2.3 Putative nucleoid-associated protein gene (ndpA)

Transposon insertion in mutant N3-B8 was located in a gene coding for a putative 

protein with high homology to a 37-kDa nucleoid-associated protein from S.

proteamaculans and the NdpA from other Enterobacteriaceae including Erwinia, 

Escherichia, Klebsiella, Salmonella and Yersinia. Agar MICs demonstrated that the 

mutant had increased sensitivity to triclosan, but also increased resistance to 

cetylpyridinium chloride and chlorhexidine diacetate. The mutant also showed 

increased sensitivity to meropenem, imipenem, ciprofloxacin as well as azithromycin. 

Complementation of the ndpA gene, restored the wild type phenotype in the mutant, 

confirming that ndpA disruption was responsible for the phenotypic changes noted in 

the mutant.
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The nucleoid-associated proteins, formerly known as histone-like proteins, constitute 

a superfamily of proteins that have genome structuring functions in bacteria. These 

proteins characterised by the relatively low molecular mass of their monomeric 

subunits and their ability to dimerize or oligomerize (643), are able to bind DNA and 

were referred to as histone-like proteins because their biochemical properties 

resemble eukaryotic histones (250, 822). Nucleoid-associated proteins are considered 

to be structural proteins setting the overall DNA conformation in the nucleoid, not 

only by wrapping or packaging DNA but also by introducing bending or coiling 

(250). The association of these proteins, however, influences not only the 

conformation but also other DNA processes such as replication, recombination, 

repair, and transcription (212, 244). There are many families of nucleoid-associated 

proteins isolated from different bacterial species. In E. coli, Azam and Ishihama (30) 

were able to express and purify 12 species of DNA-binding proteins. Five of these 

were found to bind to specific DNA sequences, while the other seven showed 

sequence-nonspecific DNA binding activity.

One of best described nucleoid-associated proteins are the histone-like nucleoid 

structuring protein (H-NS), best characterised in E. coli and other Enterobacteriaceae.

This family of proteins not only contributes to bacterial chromosome architecture but 

can also generate nucleoprotein complexes in the vicinity of specific promoters to 

influence transcription (243). Studies have also shown that proteins belonging to the 

H-NS family can silence large AT-rich chromosomal segments that are probably 

acquired by horizontal gene transfer (627, 748). Evidence of effect of nucleoid- 

associated proteins on gene expression includes the actions of the Hha-YmoA family 

which has been shown to be involved in gene regulation in many Gram-negative 

bacteria. For example, hha and ymoA mutants exhibited varying phenotypes including 

altered plasmid supercoilling (141), increased insertion sequence transposition (701), 

and increased production of the toxin a-haemolysin in E. coli (354). Further studies 

showed that Hha controls the expression of other E. coli virulence factor genes (729, 

730, 973), as well as the expression of many genes unrelated to pathogenesis (39). 

Balsalobre et al. (39) studied the effect of the hha mutation on the overall protein 

pattern of E. coli cells, and interestingly found that among the proteins whose 

expression was modified, both OmpA and protein IIAGlc of the phosphotransferase 

system could be identified. The latter enzyme participates in the regulation of the
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synthesis of cyclic AMP (cAMP) and hence influences the catabolite repression 

system in the cell.

In S. typhimurium, Hha plays a role in the environmental regulation of the hilA gene, a 

transcriptional activator of invasion genes (276). Silphaduang et al (983) found that 

Hha is the major repressor responsible for silencing virulence genes carried in 

Salmonella pathogenicity island 2 prior to bacteria sensing an intracellular 

environmental invasion. The Y. enterocolitica YmoA protein is a key regulator of 

virulence gene expression by environmental conditions. In addition to its role in the 

temperature-dependent production of the Yop proteins and YadA adhesin in 

Y. enterocolitica (193, 702), YmoA also modulates invasin production in 

Y. enterocolitica (268) and the type III secretion system in Y. pestis (486).

A number of mechanisms have been proposed by which H-NS effect gene expression: 

(i) binding to AT-rich sequences forming a nucleoprotein bridge' which obstruct the 

access to RNA polymerase (842), (ii) interfering with either promoter clearance or 

RNA progression (642, 955, 975), and (iii) affecting DNA topology which changes 

transcription from supercoiling sensitive genes (718). Whatever way these proteins 

act, they clearly have an effect on gene expression and their influence extends over a 

wide range genes. Hence the expression of many genes in the NdpA-deficient mutant 

N3-B8, could have been effected. We can only speculate about the nature of these 

genes altered by the ndpA mutation. However, the increase in resistance to both 

cetylpyridinium chloride and chlorhexidine diacetate in the mutant suggests that the 

mutation either through lack of NdpA or due to a polar effect may have affected some 

kind of efflux system. Of particular interests is the gene encoding a putative 

bicyclomycin resistance protein (Bcr)/multidrug efflux system protein (EmrD), which 

is encoded downstream from ndpA.

Bicyclomycin has a weak antibiotic activity against certain Gram-negative organisms 

including E. coli, but is inactive against Gram-positive organisms (768). Bentley et a l

(65) reported that the bcr gene from E. coli encoded a protein with homology to 

bacterial transmembrane proteins such as those mediating chloramphenicol and 

tetracycline resistance, and that it conferred resistance to a single drug, bicyclomycin. 

However, Nishino and Yamaguchi (770) found that the gene seems to confer a
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moderate increase in resistance to some other compounds including, tetracycline, 

fosfomycin, kanamycin, and acriflavine.

As mentioned above the gene also showed high homology to EmrD, a proton- 

dependent secondary transporter from E. coli belonging to the MFS efflux 

superfamily. EmrD was first identified as an efflux pump for uncouplers of oxidative 

phosphorylation such as meta-chloro carbonylcyanide phenylhydrazone and 

tetrachlorosalicylanilide, which can rapidly arrest growth in bacteria by depleting the 

proton gradient (560, 747). In a later study, Nishino and Yamaguchi (770) showed 

that EmrD could also transport detergents such as benzalkonium and sodium 

dodecylsulfate. It is therefore possible that a polar effect from the mutation in ndpA

gene somehow influenced the expression of the bcr/emrD efflux system downstream 

leading to the resistant phenotype seen in the mutant.

Efflux pumps are an important mechanism of bacterial intrinsic resistance to 

antimicrobial agents (section 1.5.1.2.). Evidence of efflux pumps presence in S.

marcescens and their role in resistance to antimicrobial compounds has been 

accumulating in the last few years. Chen et al. (157) cloned genes responsible for 

drug resistance from clinical S. marcescens isolates which were highly resistant to 

antibiotics into the drug-hypersensitive strain of E. coli, KAM32. Clones carrying the 

sedXY genes were found to display reduce susceptibility to several antimicrobial 

agents including erythromycin, tetracycline, norfloxacin, benzalkonium chloride, 

ethidium bromide, acriflavine, and rhodamine 6G. Small increases in the MIC were 

also observed for ampicillin, triclosan and chlorhexidine gluconate (156). Similarity 

searches showed that SdeY is a member of the RND family of multidrug efflux 

proteins and SdeX is a member of the membrane fusion proteins. Investigators 

concluded that SdeXY was the first RND-type multidrug efflux pump to be 

characterised in S. marcescens, and that the pump had a wide range of antimicrobial 

agent substrates.

Berlanga et al. (69) suggested the presence of an efflux mechanism for ciprofloxacin 

and other fluoroquinolones in S. marcescens. This suggestion was investigated further 

by Kumar and Worobec (567), who studied the presence of such pump in a number of 

fluoroquinolones resistant S. marcescens clinical isolates. They confirmed the
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presence of a proton-gradient-dependent efflux mechanism in S. marcescens. One 

clinical isolate, T-861 and a S. marcescens mutant UOC-67WL, both were shown to 

efflux ciprofloxacin and ofloxacin and to overexpress an AcrA-like protein. AcrA is 

part of the well characterised AcrAB pump in E. coli which belongs to the RND 

efflux family (1075). AcrAB multi-drug pump was shown to transport a number of 

antibiotics and microbial agents such as tetracycline, ciprofloxacin, chloramphenicol, 

fluoroquinolones, p-lactams, nalidixic acid, rifampin, and novobiocin as well as 

ethidium bromide, acriflavine, phenylethylalcohol, sodium dodecyl sulfate, and 

deoxycholate (636-638, 744, 780).

In fact Kumar and Worobec (567) revealed the presence of at least two AcrA-like 

proteins in S. marcescens. In addition, they sequenced a portion of the gene encoding 

the inner membrane component of an RND pump protein in the wild type S.

marcescens strain UOC-67, and they reported that it showed similarity to the mexF

gene expressed in nfxC mutants of P. aeruginosa. The nficC mutants express the efflux 

pump, MexEF-OprN, and exhibit resistance to fluoroquinolones, imipenem, and 

chloramphenicol, and hypersusceptibility to (3-lactam antibiotics (665). A follow up 

study on fluoroquinolones resistance in S. marcescens revealed the presence of two 

different loci involved in efflux in the organism. The first sdeAB, encoded a 

membrane fusion protein and an RND pump, and is responsible for the efflux of a 

diverse range of substrates including ciprofloxacin, norfloxacin, ofloxacin, 

chloramphenicol, sodium dodecyl sulphate, ethidium bromide, and w-hexane. The 

pump was overexpressed in multidrug resistant S. marcescens strains. The other loci, 

sdeCDE, coded for a membrane fusion protein and two different RND pumps but did 

not result in change in susceptibility to the above agents.

Kumar and Worobec (568) identified a tolC-like gene (hasF) in S. marcescens

genome, with a protein product which had 80% amino acid homology with the E. coli

TolC. The latter is part of the AcrAB-TolC multidrug efflux complex in E. coli

responsible for transport of different varieties of antimicrobial agents (636-638, 744, 

780). When the hasF was introduced to a tolC-deficient E. coli, the strain displayed 

64-fold increase in resistance to sodium dodecyl sulphate and ethidium bromide, but 

no change was seen in susceptibility to fluoroquinolones or chloramphenicol. The
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hasF product therefore was shown to play a role in the proton-gradient dependent 

efflux of at least sodium dodecyl sulphate and ethidium bromide.

Other efflux systems have also been reported in S. marcescens including the copper 

efflux pump CopA. The latter is a copper-translocating P-type ATPase which has 

been shown to be involved in copper resistance in E. coli (866). Williamson et al.

(1148) demonstrated that inactivation of the cop A gene homolog in the prodigiosin 

producing S. marcescens Sma 274, resulted in increased sensitivity to copper. This 

confirmed that CopA plays a role in the copper homeostasis in S. marcescens Sma 

274. Only recently, Shahcheraghi et al. (971) characterised the first MFS efflux pump 

(SmfY) in S. marcescens. Introduction of the smjY gene from S. marcescens into the 

drug-hypersensitive E. coli KAM32 lead to increased resistance to a number of agents 

including norfloxacin, benzalkonium chloride, tetraphenylphosphonium chloride, 

methyl viologen, acriflavine, 4’,6-diamino-2-phenylindol, and ethidium bromide. The 

pump is thought to play an important role in S. marcescens resistance to the common 

QAC antiseptic, benzalkonium chloride.

3.5.2.2.4 Putative cell envelope biogenesis operon genes

A number of biocide mutants had transposon insertions which were located in a 

putative cell envelope biogenesis operon consisting of at least four genes. These were 

wbbD, encoding a putative type 11 methyltransferase, wbdA and wbdB encoding for 

putative mannosyltransferase A, and B respectively (group 1 glycosyltransferases), 

and wbpZ encoding for another glycosyltransferase. Upstream of the putative operon 

was a wzt-like gene encoding a putative ATP binding component of an ATP-binding 

cassette (ABC) transporter involved in extracellular polysaccharide export. In E. coli

serotypes 08 and 09a, Wzt is the nucleotide-binding component of the ATP-binding 

cassette involved in the polymannan O-antigenic polysaccharides synthesis via the 

transporter-dependent pathway (206). Downstream of the putative operon was a 

putative gnd gene coding for a putative 6-phosphogluconate dehydrogenase involved 

in carbohydrate transport and metabolism in the cell.

The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the 

action of hundreds of different glycosyltransferases. These enzymes catalyse the
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transfer of sugar moieties from activated donor molecules to specific acceptor 

molecules, forming glycosidic bonds. These bacterial enzymes are involved in various 

biosynthetic processes including exopolysaccharide biosynthesis, biosynthesis of the 

slime polysaccaride colanic acid and lipopolysaccharide core biosynthesis. In the 

latter context, many of the above genes were shown to be involved in this process. 

Lipopolysaccharides constitute a major component of the outer membrane of Gram- 

negative bacteria, and contribute greatly to the structural integrity and pathpogenecity 

of these organisms (272). They are composed of three parts: (i) lipid A, (ii) a core 

oligosaccharide, and (iii) an O-polysaccharide (O-antigen) made up of multiple copies 

of an oligosaccharide unit (600). Biosynthesis of the O-polysaccharide has been 

extensively studied and was shown to involve the action of many glycosyltransferases 

(538-540, 1183). Three major pathways have been proposed for O-polysaccharide 

biosynthesis: (i) wzy-dependent (62, 215, 380), (ii) ABC-transporter-dependent (671, 

932), and (iii) synthase-dependent (849).

The O-antigenic polysaccharide portions of the lipopolysaccharide molecules in E.

coli serotypes 08  and 09a (and its minor variant 09) are synthesised via an ABC 

transporter-dependent pathway (Figure 3.30). They involve the action of wee A,

located outside the O-antigenic polysaccharide synthesis locus, and primes synthesis 

through the transfer of a A-acetylglucosamine-1 -phosphate to the undecaprenol 

phosphate carrier lipid. O-antigenic polysaccharide polymerization is achieved via the 

action of mannosyltransferases products of the wbdA, wbdB, and wbdC genes, located 

in the O-antigenic polysaccharide biosynthesis cluster (540). The WbdD enzymes of 

the E. coli 08 and 09a biosynthesis systems are required for the addition of the non-

reducing terminal modifications to the nascent polymer (175). The addition of these 

terminal residues is required not only for polymerization termination and chain-length 

regulation but also for the export of O-antigenic polysaccharides from the cytoplasm. 

Wzm and Wzt constitute the ABC transporter required for the export system (540). 

The number of O-units per lipopolysaccharide molecule is not constant, but usually 

the majority of molecules have chain lengths clustered around a modal value. This 

characteristic O-antigen modal value is determined by the long chain determinant 

Wzz (previously Cld or Rol) (52, 53).
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Because they are vital components of lipopolysaccharides molecule, which in turn are 

major components of the outer membrane of Gram-negative bacteria, relatively minor 

changes in the composition of the O-antigenic polysaccharide chains brought up by 

defective genes would have substantial implications on the cell membrane and its 

biological characteristics. Mutations in gene coding for glycosyltransferases have 

been shown to cause such effects. Kido and Kobayashi (538) found using site-directed 

mutagenesis of the wbdA gene, that a single amino acid substitution in the WbdA 

protein of E. coli 09, converted the 09  polysaccharides into 09a. Riley et a l (881) 

found that mutation in the wbbD gene of the 07  lipopolysaccharide biosynthesis 

cluster in E. coli VW187, coding for a glycosyltransferase, lead to the mutant not 

being able to form 07  lipopolysaccharides. Yi et al. (1183) functionally inactivated 

the wbnl gene coding for a glycosyltransferase involved in the O-polysaccharide 

biosynthesis in E. coli 086. They reported that the mutant strain produced a different 

polysaccharide lacking a side chain residue at a lower yield compared with the wild 

type.

Yethon et al. (1182) demonstrated that mutation of the core glucosyltransferase (a 

glycosyltransferases which enable the transfer of glucose) encoded by waaG of E.

coli, resulted in alterations in the lipopolysaccharide molecule. The mutation also 

destabilized the outer membrane and compromised its barrier function. The mutant 

showed increased susceptibility to sodium dodecyl sulfate and novobiocin (1182). 

Grebe et al. (361) reported that piperacillin resistance in S. pneumoniae was mediated 

by mutations in a novel gene, cpoA, that also confer transformation deficiency and a 

decrease in penicillin-binding protein la. CpoA was shown to be a homologue to 

glycosyltransferases that act on membrane-associated substrates, such as enzymes 

functioning in lipopolysaccharide core biosynthesis of Gram-negative bacteria. 

Investigatores concluded that CpoA, a putative glycosyltransferase, was a novel 

resistance mechanism against P-lactams (361).

In this study, transposon insertions in 4 mutants (N4-F6, N2-A8, N2-F1 and N5-G1) 

were located within the putative wbdA gene of S. marcescens Dbl 1. On agar, all these 

mutants showed increase susceptibility to chlorhexidine diacetate and three out of the 

four (N4-F6, N2-A8, and N5-G1) also showed increase sensitivity to cetylpyridinium 

chloride. All four wbdA-defective mutants showed increased sensitivity to the two
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aminoglycosides tested, amikacin and tobramycin, and three of them showed 

increased resistance to meropenem. A fifth mutant (N5-D9) had a transposon insertion 

in the putative wbpZ gene and showed increased sensitivity to triclosan on agar. 

Evidence of increase sensitivity to the killing effect of chlorhexidine diacetate and 

cetylpyridinium chloride was also observed. Similar to the above four wbdA mutants, 

the w^pZ-deficient mutant also showed increased sensitivity to two amikacin and 

tobramycin, and increased resistance to meropenem. It was also more resistant than 

the wild type to ciprofloxacin, piperacillin, and ceftazidime.

Given the important role glycosyltransferases play in the determining the structure of 

the outer membrane of the cell, and their effect on its function as a permeability 

barrier, it is not surprising that mutants defective in such proteins would have altered 

antimicrobial susceptibility. It can be speculated that transposon disruption of the 

wbdA or wbpZ genes could have led to changes in lipopopysaccharides of the cell, 

leading to alteration in the outer membrane structure and properties. This in turn 

would have caused changes in the membranes permeability making these mutants 

more sensitive to the actions of biocides. The two main phenotypic changes noted in 

the mutants were increase sensitivity to chlorhexidine and cetylpyridium chloride. 

Both of these biocides are membrane-active agents known to target the outer 

membrane of bacteria by binding to phosphate head groups and fatty acid chains in 

phospholipids, affecting the membrane potential and electron transport chains, and 

causing membrane damage.

Indeed evidence of increased susceptibility to chlorhexidine due to mutation in a 

glycosyltransferase has already been presented by Rees (860). In a study on the 

molecular basis of triclosan and chlorhexidine resistance in B. cenocepacia, Rees 

(860) isolated a chlorhexidine mutant, also showing resistance to the QAC cetrimide, 

which had a transposon mutation within the gltA gene coding for a 

glycosyltransferase. Inactivation of the gene affected other cellular processes in the 

mutant including, reduced growth rate and increased lag phase, reduced viability 

following long term storage (-80°C), reduced motility, and a detectable change in its 

lipopolysaccharide profile when compared to the wild type.
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Changes in membrane permeability may have facilitated the passage of 

aminoglycosides into the cell, leading to the increase sensitivity to amikacin and 

tobramycin seen in all the mutants. A large number of the mutants showed increased 

resistance to meropenem, a carbapenem belonging to the p-lactam antibiotics. 

Members of this family act by inhibiting the synthesis of the peptidoglycan layer of 

bacterial cell walls. The final transpeptidation step in the synthesis of the 

peptidoglycan is facilitated by transpeptidases known as penicillin-binding proteins. 

Grebe et al. (361) showed that resistance to p-lactams can arise from mutation in a 

putative glycosyltransferase which also lead to decrease in a penicillin-binding 

proteins la  in S. pneumoniae. It might be possible that a similar effect may have 

occurred due to mutation in the wbdA gene which lead to increased resistance to 

meropenem. Similar explanation could be given for the increased resistance of the 

wbpZ mutant to the p-lactams meropenem, piperacillin, and ceftazidime.

The position of the transposon insertion in the wbpZ within the putative 

lipopolysaccharide biogenesis operon may explain its reported phenotype. Although 

the mutation was within the same putative operon which included wbdA, the wbpZ

mutant did not show increased sensitivity to either chlorhexidine or cetylpyridium 

chloride, as did the wbdA mutants. This could be explained by its position within the 

putative operon. The wbpZ gene is located downstream from wbdA toward the end of 

the operon (Figure 3.15). This meant unlike the case for a wbdA mutation, mutation in 

the wbpZ gene would not stop the synthesis of most of the operon-encoded proteins 

and other proteins needed for lipopolysaccharide synthesis (Wzt, WbbD, WbdA, and 

WbdB). A mutation in the wbpZ gene would therefore have less effect on the 

lipopolysaccharide synthesis pathway than a mutation in the wbdA gene. Further 

investigations including complementation of both the wbdA and the wbpZ mutants are 

needed to explore the above speculations.

3.5.2.2.5. Putative outer membrane biogenesis operon gene {wzzE)

Two mutants 19-D3 and 10-B6 with predominantly increased biocide resistance 

phenotype had transposon insertion mapped into a putative wzzE gene. As mention 

earlier (section 3.5.2.2.4), Wzz proteins regulate the degree of polymerization of the 

O-antigen subunits in lipopolysaccharide biosynthesis. The disrupted gene appeared

315



to be part of a putative cell lipopolysaccharide biosynthesis operon composed of at 

least three other genes (Figure 3.17). These were wecB (rffE) and wecC (rffD), 

involved in the synthesis of enterobacterial common antigen, a mannosaminuronic- 

acid-containing exopolysaccharide that can be attached to core lipid A in 

Enterobacteriaceae (692), and rfe, also involved in biosynthesis of the enterobacterial 

common antigen, as well as certain O-polysaccharides (550, 877). The biological 

function of the Wzz proteins is well known from studies on wzz mutants. These 

typically display a random, non modal distribution of O-antigen chain lengths 

compared with the wild type (52, 53, 306). Franco et al. (307) reported that O-antigen 

chain length heterogeneity in E. coli strains is a result of amino acid sequence 

variation of the Wzz protein, after they showed that the model value of chain length in 

E. coli Ol, 02, 07  and 0157 could be changed by specific amino acid substitutions in 

wzz.

Wzz proteins belong to the “Polysaccharide Co-Polymerases” super family, members 

of which are involved in the chain length regulation of polysaccharide including O- 

antigen, capsule polysaccharides, and exopolysaccharides (56). Wzz proteins are 

characterised by two transmembrane segments located in the amino-terminal and 

carboxy-terminal, with a large hydrophilic loop located in the periplasm (724). Wzz 

genes have been identified in many Gram-negative species, suggesting an importance 

in survival and pathogenesis. Burrows et al. (129) characterised wzz gene in P.

aeruginosa and showed that wzz knockout mutants expressed O-antigens with chain 

lengths markedly different from their parental strains. Murray et al. (739) reported 

that S. typhimurium posses two functional wzz genes which results in bimodal O- 

antigen chain distribution. One gene ( w z z st)  is responsible for long modal length 

lipopolysaccharides with 16-35 O-antigen repeat units, and wzzfepE is responsible for 

very long modal length containing over 100 O-antigen repeat units.

O-polysaccharide moieties of lipopolysaccharides have been shown to mediate many 

biological effects, including resistance to killing by normal, non-specific serum (740, 

837), resistance to phagocytosis by monocytes, and resistance to killing by cationic 

peptides (854, 1135). O-antigens are important in virulence and their biological 

activities have been correlated to their size and distribution on the surface of the 

bacterial cell (379, 494, 497, 641, 819). Given the position of the wzzE gene in the S.
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marcescens Dbl 1 genome, disruption of the gene could have altered the expression of 

not only WzzE, but also that of WecB and WecC. This would result in alteration of 

the O-antigen chain length and changes in lipopolysaccharide structure, therefore 

outer membrane permeability.

The WzzE-deficient mutant 19-D3 had increased resistance to cetylpyridinium 

chloride, chlorhexidine diacetate and or/Zzo-phthalaldehyde. The other WzzE-deficient 

mutant 10-B6 was similar to 19-D3 in that it showed increased resistance to ortho-

phthalaldehyde, but interestingly was sensitive to cetylpyridinium chloride. Antibiotic 

susceptibility profiles for the two mutants showed that both mutants exhibited 

increased resistance to 3 out of the 10 antibiotic tested, and increased sensitivity to 

one antibiotic. However, there were no similarities between the antibiotic 

susceptibility profiles of the two mutants. 19-D3 showed increased resistance to the 

two aminoglycosides amikacin and tobramycin as well as to sulphonamide 

trimethoprim/sulfamethoxazole, and was more susceptible than the wild type to the 13- 

lactam meropenem. Mutant 10-B6, showed increased resistance to p-lactams 

(piperacillin, ceftazidime and imipenem) but was more sensitive than the wild type to 

the quinolone, ciprofloxacin. The general phenotypic trend in both mutants was 

increased resistance to biocides and antibiotics and it can be explained by alteration in 

the outer membrane barrier as result of deactivation of either the wzz gene alone or 

wzz and the genes downstream from it in the putative operon.

However, the two mutants disrupted in the same gene showed markedly different 

phenotypic changes especially in relation to their antibiotic susceptibility. This could 

also be explained by referring to the above study by Franco et al (307), who reported 

that single amino acid changes in the Wzz protein, resulted in expression of different 

O-antigen chain lengths in E. coli. When mapping the location of the transposon 

insertions in mutants 19-D3 and 10-B6, it was observed that, although within the 

same gene, insertions were not in the exactly same location in the two mutants. In the 

unlikely, but possible, event that an altered WzzE protein was still expressed in one or 

both mutants, the O-antigens of the mutants would be different. This could result in 

differences in antimicrobial susceptibility. A similar situation was reporter in the 

above study by Burrows et al. (129), where P. aeruginosa knock out mutants, using 

gentamicin resistance cassette, still expressed O-antigens with chain lengths markedly
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different from their parental strains. This is only a speculation, and further tests are 

needed to confirm or reject this hypothesis. RT-PCR could be used to check at the 

mRNA level whether the disrupted wzzE gene is transcribed in either mutant. 

Similarly, translation and expression of the WzzE in the mutants could be checked by 

determining their protein profiles.

3.5.2.2.6 Putative succinate dehydrogenase hydrophobic membrane anchor

protein gene (sdhD)

Transposon insertion in mutant 22-D5 was shown to be in a putative succinate 

dehydrogenase hydrophobic' membrane anchor protein gene (sdhD). The latter 

appeared to be part of a putative succinate dehydrogenase operon involved in energy 

production and conversion in the cell, which includes at least three genes (sdhA, sdhB,

and sdhD). On agar, the mutant demonstrated increase susceptibility to ortho-

phthalaldehyde and cetylpyridinium chloride. The mutant also showed reduce growth 

rate and increased sensitivity to both meropenem and tobramycin.

Succinate dehydrogenase, also referred to as succinaterquinine oxidoreductase, or 

Complex II, is a functional member of both the citric acid cycle and aerobic 

respiration (944). Succinate dehydrogenase catalyses the oxidation of succinate to 

fumarate coupled with the reduction of ubiquinone in the membrane (145). The action 

of succinate dehydrogenase is shared by fumarate reductase, which is involved in a 

form of anaerobic respiration with fumarate as the terminal electron acceptor (558). 

Collectively, succinate dehydrogenase and fumarate reductase are referred to as 

succinaterquinine oxidoreductases and are predicted to share similar structure (579). 

The complexes consist of two hydrophilic, and one or two hydrophobic, membrane- 

integrated subunits (391). The larger hydrophilic subunit A is a flavoprotein, and the 

smaller subunit B is an iron-sulfur protein. In E. coli, these are SdhA and SdhB 

respectively. The succinate dehydrogenase in E. coli has two hydrophobic membrane- 

integrated subunits (ShdC and ShdD) which contain one heme b and provide the 

biding site for ubiquinone (145).

Given the important role succinate dehydrogenase plays in energy production and 

electron transfer in the cell, it is not surprising that the SdhD-deficient mutant showed
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decreased growth rate compared to the wild type. Given the position of sdhD in S.

marcesence D bll genome at the beginning of the putative succinate dehydrogenase 

operon (Figure 3.20), mutation in this gene has the potential to not only disrupt sdhD

but also alter the expression of the two hydrophilic subunits SdhA and SdhB. This 

could result in a complete disruption of the electron transfer chain in the cell. Indeed 

such disruption has been reported by Weiner et al. (1133) who identified a mutation 

within the membrane-intrinsic domain of the terminal electron-transfer enzyme 

fumarate reductase of E. coli. As mentioned above fumarate reductase and succinate 

dehydrogenase have the same catalytic function and have similar structures. The 

fumarate reductase of E. coli is a complex iron-sulfur flavoenzyme composed of four 

subunits, FrdA and FrdB (a membrane-extrinsic catalytic domain) and FrdC and FrdD 

(a transmembrane anchor domain). Weiner et al. (1133) found that a mutation within 

the transmembrane anchor domain (FrdC) altered the electron transfer properties of 

the iron-sulfur and flavin-redox centers of the catalytic domain. This resulted in 

impairment of the functional electron flow in the electron transport chain. These 

results confirmed the important role of the anchor subunit in functional electron 

transport, and alterations within this subunit could have major effects on the electron 

transport in the cell.

In addition, a number of biocides are known to exert their action by altering or 

targeting the membrane potential and electron transport chains within bacteria. 

Biocides acting on the cytoplasmic membrane level may inhibit the energy processes 

in the cell by disrupting the proton motive force (section 1.3). The latter is involved in 

active transport, oxidative phosphorylation and ATP synthesis in bacteria (461, 714, 

715), and is generated by oxidation-reduction reactions occurring during electron 

transport. In a mutant where the electron transport chain is impaired, such biocides 

could have a more substantial effect. Biocides known to have such mode of action are 

the surface-active agents chlorhexidine and QACs including cetylpyridium chloride. 

For instance, studies on E. coli have shown that chlorhexidine collapses the 

membrane potential of the bacterium (574). Barrett-Bee et al. (48) studied the 

membrane destabilising action of chlorhexidine in a number of bacterial species 

including E. coli, S. aureus, Morganella morganii and P. aeruginosa. They reported 

that the agent cause inhibition of oxygen utilisation in the bacteria that was related to 

fall in cellular ATP levels. Therefore it is not surprising that the SdhD-deficient
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mutant was more sensitive to the membrane-active agent cetylpyridium chloride than 

the wild type.

3.5.2.2.7 Putative pili operon gene

Agar MICs showed that mutant N5-B5 was more sensitive to triclosan and ortho-

phthalaldehyde than the wild type but had increased resistance towards 

cetylpyridinium chloride. The mutant exhibited increased sensitivity to the two 

carbapenems, meropenem and imipenem, as well as to piperacillin. Mutant N5-B5 

had a transposon insertion located within a putative FimC encoding gene. The 

putative protein showed high homology to chaperone PapD of E. coli. The disrupted 

gene was flanked to the left by a gene coding for a putative FimA protein, a member 

of the adhesin superfamily, and to the right by a gene coding for a putative fimbrial 

biogenesis outer membrane usher, with homology to the PacC of E coli.

An important initial event during the establishment of infections by pathogenic Gram- 

negative bacteria is the attachment of bacteria to host cell receptors. This process is 

mediated by adhesive surface organelles termed pili or fimbriae (466, 998). Gram- 

negative bacteria produce a diverse array of pili that mediate this microbe-microbe 

and host-pathogen interactions important in the development of disease. Pili are large, 

heterooligomeric protein filaments anchored to the bacterial outer membrane, and 

their biogenesis requires the orchestration of a complex process that includes protein 

synthesis, folding, secretion, and assembly (467). Periplasmic chaperones are part of 

a general secretory pathway required for the assembly of pilli, and act by stabilizing 

pilus subunits in the periplasm through the formation of distinct periplasmic 

complexes (468, 564). The PapD-like proteins are the best characterised periplasmic 

chaperones, and currently there are more than 30 known such chaperones facilitating 

the assembly of both pilus and non-pilus organelles (469). Much of the knowledge 

about the function of PapD-like periplasmic chaperones comes from the study of 

PapD and FimC, which assemble P and Type 1 pili, respectively, in E. coli (465, 499, 

610).

Type 1 pili are produced by nearly all Enterobacteriaceae (104), they are 0.5-2 pm 

long and 7 nm wide filaments (548) consisting of a short tip fibrillum containing the
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FimH adhesin, joined to the distal end of a pilus rod. Overall, nine different E. coli

proteins are involved in the biogenesis of Type 1 pili, whose genes are clustered at the 

fim  operon (467). FimA is the main structural pilus subunit and comprises about 98% 

of all pilus proteins, while the residual 2% are comprised by FimF, FimG, the adhesin 

FimH, and possibly FimI (548). The outer membrane protein FimD anchors the pilus 

to the bacterial surface and represents its assembly platform, while the cytosolic 

proteins FimB and FimE regulate the transcription of pilus genes (547). The assembly 

of the pilus relies on FimC, a pilus chaperone in the periplasm (499). The chaperone 

functions in concert with an outer membrane usher protein, FimD. This oligomeric 

protein allows translocation of the pilus subunits to the cell surface and their 

incorporation into the growing pilus (238, 466, 548).

Given the location of the transposon insertion in mutant N5-B5 in the middle of the 

putative pilus biosynthesis operon, it is possible that the mutation would have 

disrupted not only the expression of FimC but also other proteins transcribed 

downstream such as the usher FimD. The result would be a significant disruption of 

the whole pilus biosynthesis apparatus in mutant N5-B5. Given the important role of 

pili in determining the outer surface of cells, and their vital contribution to virulence, 

it is not surprising that mutants with altered pili biosynthesis would exhibit different 

antimicrobial susceptibility profiles. Chen et al. (155) reported that different 

mutations in the pilQ  gene encoding a member of the secretin family of proteins 

which functions in type IV pilus organelle biogenesis in Neisseria gonorrhoeae (247), 

lead to mutants exhibiting varying phenotypes. These included decreased piliatio'n and 

transformation efficiency, loss of hemoglobin utilization phenotype, decreased entry 

of free heme, increase sensitive to the toxic effect of free heme, hypersensitivity to the 

detergent Triton X-100 and multiple antibiotics. These results show that disruption in 

pilus biosynthesis could result in alteration in membrane permeability. It is interesting 

that mutant N5-B5 showed increased sensitivity to P-lactams known to act on cell 

wall synthesis. ,

3.5.2.2.8 Putative outer membrane protein A gene (ompA)

Transposon insertion in mutant 12-F6 was located within an ORF that coded for a 371 

amino acid long putative protein with high homology to the outer membrane protein
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A (OmpA) from a number of Enterobacteriaceae, including species of Serratia, 

Yersinia, Shigella and Klebsiella. On agar, mutant 12-F6 showed increased 

susceptibility to triclosan, or^o-phthalaldehyde, and chlorhexidine diacetate. It also 

exhibited increased sensitivity to chloramphenicol, azithromycin, and piperacillin. It 

was however more resistant than the wild type to the two aminoglycosides, amikacin 

and tobramycin, and to imipenem.

OmpA is one of the best characterised major outer membrane proteins in E. coli. In 

strain K-12, the protein is 35-kDa and is one of the few abundant polypeptides in its 

outer surface spanning the membrane (159). The E. coli K-12 gene, ompA, has been 

cloned, and its nucleotide sequence has been determined (55, 428, 731, 732). 

Extensive evolutionary and functional studies followed, which revealed that in E. coli

the protein has a two domain configuration in which the amino-terminal with 177 

amino acid residues is in the membrane, while the carboxyl-terminal consisting of 148 

residues is situated in the periplasm (100, 963). OmpA has been identified in all 

Gram-negative bacteria tested which include 17 genera (58), among these are 

Serratia, Shigella, Yersinia, Klebsiella, Salmonella, and Enterobacter. Evolutionary 

studies found that although OmpA was highly conserved among Enterobacteriaceae

(551), it was suggested that during the evolution of this family, some parts of the 

OmpA polypeptide, referred to as “variable regions”, had undergone extensive 

divergence, and are probably all located on the extracellular side of the outer 

membrane. The other parts which had remained unchanged, called “constant regions”, 

are located within the membrane or periplasm (95-97, 316).

In combination with lipoproteins (98), OmpA is thought to contribution to the 

structural integrity of the outer membrane and the generation of normal cell shape 

(996). In addition to its structural role, OmpA serves as a receptor of colicin and 

several phages (301, 723) including K3 (399) and 0x2 (528), and it is required in F- 

conjugation (553, 962). OmpA has been shown to have porin activity producing a 

diffusion channel allowing a slow penetration of small solutes (1027). The protein has 

also been implicated in various host defense processes, although this role seems to be 

indecisive. OmpA has been shown to be of importance for the invasive capacity of E.

coli, and for resistance to antibacterial activity of serum, which suggest that it acts as 

a virulence factor. Indeed OmpA mutants were reported to be significantly less
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virulent in embryonic chicken and neonatal rate models (1134), and their ability to 

invade brain microvascular endothelial cells to be largely reduced (838). On the other 

hand, OmpA is a direct target for neutrophil elastase, and OmpA deficient mutants 

were shown to resist degradation by the latter and to survive better than the wild type 

E. coli inside neutrophils (60). Fu et al. (318) reported that OmpA deficient E. coli

activated human neutrophils and were more susceptible than the wild type to 

membrane-acting bactericidal peptides. Therefore OmpA can facilitate the immune 

clearance of the bacteria from the host. An E. coli deletion mutant was also shown to 

be significantly more sensitive than the parent strain to sodium dodecyl sulfate, 

cholate, acidic environment, high osmolarity, and pooled human serum (1125).

Other outer membrane proteins have been identified in S. marcescens, many of which 

were described as porins. Malouin et al. (651) reported the presence of a suspected 

41-kDa porin in the outer membrane of S. marcescens as well as the OmpA. They 

also concluded that S. marcescens possesses a greater permeability barrier than E. coli

because of the expression of this pore-forming protein. The pore size of the protein 

was calculated at 1.06 nm, and had conductance intermediate between those of E. coli

K-12 OmpC and OmpF porins. A later study by Puig et al. (843) reported that the 41- 

kDa porin band reported by M a lo u in al. (651) was actually a combination of three 

separate outer membrane proteins. They determined that S. marcescens has at least 

four major outer membrane proteins, named Ompl (42-kDa), Omp2 (40-kDa), Omp3 

(39-kDa), and OmpA (37-kDa). They also reported similarity in behaviour between 

Omp2 and Omp3 from Serratia with OmpC and OmpF of E. coli, suggesting that they 

are both porins. Ompl however, did not correspond to any protein in E. coli outer 

membrane. In a follow up study, Ruiz et al. (892) determined the molecular and 

functional characteristics of Ompl. The protein was cloned and sequences and 

showed homology with the family of outer membrane porins that comprises the 

general porins of enteric bacteria. Ompl was shown to be highly cation-selective and 

that it has a single channel conductance similar to that of other porins from enteric 

bacteria. Expression of the Ompl in a porin deficient E. coli strain conferred high 

susceptibility to different hydrophilic antimicrobial agents such as p-lactams and 

chloramphenicol. On the other hand no changes in susceptibility were observed for 

ciprofloxacin and tetracycline.
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The literature is full of reports linking expression of outer membrane proteins, 

including OmpA, to changes in antimicrobial susceptibility. Porins, been shown to not 

only be involved in the passage of molecules through the cell but also to alter the cell 

surface hydrophobicity of & marcescens, which affects its permiability. Mallick (649) 

studied the cell surface hydrophobicity in pigmented and non-pigmented S.

marcescens mutants, and reported the presence of an extra 40-kDa outer membrane 

protein in the highly hydrophobic non-pigmented mutant, concluding that this protein 

may be responsible for higher surface hydrophobicity of the mutant. The involvement 

of outer membrane proteins in determining the cell surface hydrophobicity of S.

marcescens was also reported by Bar-Ness and Rosenberg (42) who demonstrated 

that a 70-kDa outer-surface protein was promoting cell-surface hydrophobicity of S.

marcescens RZ known to posses pronounced outer membrane hydrophobicity.

Clark (173) studied imipenem resistance in two Acinetobacter baumannii isolates (A- 

1 and A-24), and reported that this resistance was related to decreased expression of a 

33-36-kDa outer membrane protein. In another study, Limansky et al. (609) reported 

similar results when they investigated imipenem resistance in multi-drug resistant 

isolates of A. baumannii. They found that resistance corresponded with the loss of a 

29-kDa polypeptide from the outer membrane of the organism. No carbapenemase 

activity was detected in any of the strains isolated.

Imipenem resistance has also been linked to loss of outer membrane proteins in a 

number of other bacterial species. Bradford et al. (91) described that imipenem 

resistance in K. pneumoniae can occur when high levels of p-lactamases are produced 

in combination with loss of a major (42-kDa) outer membrane protein. Chow and 

Shlaes (163) noted that an imipenem-resistant strain of E. aerogenes showed loss of a 

40-kDa outer membrane protein, decreased expression of 42- and 44-kDa proteins, 

and increased expression of a 50-kDa protein in its outer surface, when compared 

with imipenem-susceptible clinical isolates. They concluded that the 40-kDa protein 

might be required for the normal diffusion of the antibiotic across the outer membrane 

of E. aerogenes. Buscher et al. (130) reported that imipenem resistance in P.

aeruginosa was linked to marked decrease oh either a 46- or 45-kDa protein in the 

outer membrane. In a latter study Martinez-Martinez et al. (663) demonstrated that 

decreased activity of imipenem in a P. aeruginosa strain eluted from siliconized latex
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urinary catheters, was related to loss of an OprD-like protein and to the expression of 

a new 50-kDa outer membrane protein.

Outer membrane proteins have been linked to resistance to other antimicrobial agents 

in P. aeruginosa. Gimeno et al. (351) studied the outer membrane protein profiles of 

122 P. aeruginosa isolates and related the results to imipenem, ceftazidime, and 

ciprofloxacin resistance. They noted alterations in the expression of porins OprC, 

OprF, and OprD in some of the isolates. Nicas and Hancock (756) reported that 

increased resistance to the chelator ethylenediaminetetraacetate and to the cationic 

antibiotic polymyxin B in P. aeruginosa cells grown in magnesium-deficient medium, 

was related to increased level of outer membrane protein HI. They proposed that the 

protein acts by replacing the magnesium at a site on the lipopolysaccharide which can 

otherwise be attacked by the cationic antibiotic or ethylenediaminetetraacetate. In a 

study by Li et al. (604), it was found that OprF, the most abundant outer membrane 

protein in P. aeruginosa PA01161, was absent in a toluene-resistant strain. 

Investigators proposed that OprF could be an important protein in the diffusion of 

toluene across the membrane of P. aeruginosa.

Association between outer membrane proteins OmpW and STM3031 and ceftriaxone 

resistance in S. typhimurium has been reported (454). Similarly, carbapenem 

resistance in E. coli was linked to deficiency in a 38-kDa outer membrane protein 

(1006), and ceftazidime susceptibility to expression of 37- and 39-kDa outer 

membrane proteins in the same organism (35). In S. dysenteriae, p-lactam 

permeability was lower across a clinical isolate which lacked a 43-kDa outer 

membrane protein compared with a p-lactam sensitive strain expressing it (519). 

Cefamandole resistance in K. pneumoniae was linked to lack of the outer membrane 

proteins, OmpF (1087).

Other authors correlated reduced amounts of outer membrane porins with increase 

resistance to p-lactams in S. marcescens, and showed that highly resistant strains may 

be defective in outer membrane proteins used for p-lactams penetration (314, 315). 

Gutmann et al. (388) studied in vitro mutants of Klebsiella, Enterobacter, and 

Serratia cross-resistant to nalidixic acid, trimethoprim, and chloramphenicol that were 

similar to mutants found in vivo. They found that the sole mechanism for this type of
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resistance appeared to be a reduction in permeability of the cell envelope. They also 

noted that in the outer membrane of the mutants, the amount of at least one major 

protein, possibly a porin, with a molecular size of approximately 40-kDa, was 

decreased. They concluded that the resistance seemed likely to be due to the reduction 

in quantity of outer membrane proteins, possibly porins. Traub and Bauer (1071) 

reported that S. marcescens clinical isolates which had altered outer membrane 

proteins were significantly less susceptible to amikacin, cefotaxime and lamoxactam 

than the wild type strains which were susceptible to these agents.

Hashizume et al. (404) studied the porin expression of two clinical isolates of S.

marcescens which over produced cephalosporinase and had decreased outer 

membrane permeability in comparison with reference strains. Investigators isolated 

three outer membrane proteins, an OmpF-like (45-kDa) porin, and two OmpC-like 

(44- and 43-kDa) porins. They noted that the clinical isolates which overexpressed the 

44-kDa or 43-kDa porins but had no significant changes in expression of the other 

outer membrane proteins, had significantly lower outer membrane permeability 

compared with a reference strain. After characterising the 40-kDa OmpC (472) and 

the 41-kDa OmpF (473) porins from S. marcescens, Hutsul et al. (473) concluded that 

these general diffusion porins produced by S. marcescens are similar to E. coli OmpF 

and OmpC.

As OmpC and OmpF from E. coli and other enterobacteria serve as p-lactam 

penetration channels, the role of the S. marcescens OmpF and OmpC in resistance to 

these agents was investigated by Weindorf et al. (1132). They looked at the 

contribution of both porins in high and low level resistance to p-lactam antibiotics in 

S. marcescens clinical isolates. They reported that low level resistance was caused by 

overproduction of P-lactamase alone, while high level resistance was due to p- 

lactamase overproduction as well as defects in OmpF or OmpF and OmpC. The 

results mirrored those reported by Hechler et al. (414), and demonstrated that the S.

marcescens porins contribute to the high level resistance to P-lactams. Hechler et al.

(414) studied antibiotic resistance in S. marcescens clinical isolates, and looked at the 

relative contributions to resistance by the functioning of periplasmic p-lactamase, 

synthesis of this enzyme, and limitation of antibiotic penetration by the bacterial outer 

membrane. They reported that although low level resistance to cefotaxime,
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ceftizoxime, ceftazidime, aztreonam and latamoxef was due to solely the 

overproduced p-lactamase, high resistance was due to not only p-lactamase action but 

also to decreased permeability to antibiotics.

The role of S. marcescens outer membrane in the accumulation of quinolones has 

been investigated by Berlanga et al. (69). They studied the passage of quinolones 

through the outer membrane in both lipopolysaccharide-deficient and porin deficient 

mutants. They reported that the lipopolysaccharide layer formed a very efficient 

barrier for highly hydrophobic quinolones such as nalidixic acid. On the other hand, 

quinolones with lower hydrophobicity were shown to pass preferentially though the 

water filled Omp3 porin channels.

Guasch et al. (381) reported a 17-kDa outer membrane protein Omp4 closely 

resembling a family of small outer-membrane proteins of Enterobacteriaceae whose 

known functions appear to be related with virulence. They reported that 

overexpression of this protein decreased the amount of OmpA, OmpF and/or OmpC 

in the cell. Omp4 was reported to confer partial resistance to bacteriocin 28b when 

expressed in E. coli. (381). Evidence from the characterised S. marcescens outer 

membrane proteins suggest that these proteins and possible other uncharacterised 

membrane proteins play a role in the antimicrobial resistance of the organism.

Given the abundance of OmpA in Gram-negative bacteria, and its structural and 

biological functions, changes in susceptibility seen in the S. marcescens Dbl 1 OmpA 

mutant are not surprising. Loss of OmpA from the mutant might have caused 

structural changes in the outer membrane leading to alteration in its permeability 

barrier. Increase susceptibility to triclosan, orf/m-phthalaldehyde, and chlorhexidine 

diacetate suggest that OmpA might not be involved in the mechanisms by which these 

agents enter the S. marcescens Dbl 1 cell. Moreover, the fact that the mutant did not 

show changes in sensitivity to cetylpyridinium chloride, suggests that the two 

membrane active agents (chlorhexidine and cetylpyridinium chloride) may cross the 

outer membrane via different mechanisms.

The antibiotic susceptibility profile of the OmpA mutant, showed that it had increased 

susceptibility to chloramphenicol, azithromycin, and piperacillin, but was more
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resistant than the wild type to two aminoglycosides, amikacin and tobramycin, and to 

imipenem. Referring to the above reports of altered antibiotic susceptibility linked to 

outer membrane protein changes, it can be seen that the antibiotic phenotype of the 

OmpA mutant could be explained. Imipenem resistance has been linked to loss of 

outer membrane proteins in many bacterial species (see above), and it was the case in 

this study. OmpA might therefore be one of the mechanisms by which imipenem gain 

access to the S. marcescens D bll cell. Moreover, E. coli OmpA mutants have been 

shown to resist the bactericidal effects o f neutrophil elastase, a serine protease that 

hydrolyzes many proteins. It is therefore interesting that S. marcescens D bll OmpA 

mutant became more resistant to the two aminoglycosides amikacin and tobramycin; 

both know to act at the protein level.

The OmpA from S. marcescens has been cloned and sequenced (95), and it was 

shown that the three regions of the protein likely to be exposed on the cell surface 

were different from the corresponding regions of E. coli polypeptides and all other 

OmpA proteins tested. Information about the nucleotide sequence of the OmpA gene 

in S. marcescens was used to complement the OmpA mutant. To make sure OmpA 

would be expressed in the complemented mutant, the DNA fragment cloned into the 

mutant contained the whole OmpA gene along with its promoter region and 

translation start and stop signals reported by Braun and Cole (95) (Figure 3.23). The 

complemented mutant however did not show restoration of the wild type phenotype. 

Further analysis including RT-PCR and comparison of the mutant’s protein profile 

with that of the wild type showed that OmpA was transcribed in one mutant construct 

but not translated. Therefore, expression of the OmpA was stopped somehow at the 

translation step. An explanation for this is difficult to derive.

3.5.2.2.9 Putative 6-phosphofructokinase gene (pfkA)

Transposon insertion in the genome of mutant N6-B2 was located within a putative 

phosphofructokinase encoding gene (pflcA). Phosphoffuctokinase is a key enzyme in 

glycolysis and catalyzes the phosphorylation of ffuctose-6-phosphate to fructose-1,6- 

biphosphate. Glycolysis is the initial step of most carbohydrate catabolism, and is 

responsible for converting glucose to pyruvate and generating ATP in the process. 

The main functions of glycolysis are:
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• Generation of high-energy molecules (ATP and NADH)

• Production of pyruvate

• Production of variety of six- and three-carbon intermediates compounds, 

which may be used at various steps in the process and for other cellular 

purposes.

Glycolysis is important for maintaining a supply of carbon skeletons for biosynthesis, 

as many of the metabolites in the glycolytic pathway are used by anabolic pathways. 

These pathways include

• Gluconeogenesis, which generates glucose from non-sugar carbon substrates 

such as pyruvate, lactate, glycerol, and glucogenic amino acids.

• Lipid metabolism

• The pentose phosphate pathway, which is a cytosolic process that serves to 

generate NADPH and the synthesis of pentose (5-carbon) sugars.

• The citric acid cycle, which in turn leads to both amino acid and nucleotides 

biosynthesis

Given the central role of glycolysis in catabolism, maintaining energy levels in the 

cell, and providing carbon skeletons for biosynthesis, the process is highly regulated. 

One key enzyme in this control is phosphoffuctokinase, which in bacteria is shown to 

comprise two similar roles, one involved in ATP binding and the other housing both 

the substrate-binding site and the allosteric site. The latter is a regulatory site affecting 

enzyme activity which is distinct from the active site. Phosphoffuctokinase is in itself 

under tight regulation by the ratio of ATP/AMP in the cell. High levels of ATP inhibit 

phosphoffuctokinase by attachment of the molecule to its allosteric site and reducing 

its affinity for ffuctose 6-phosphate, while AMP can reverse the inhibitory effect of 

ATP. Levels of citrate, an early intermediate in the citric acid cycle, also affect the 

activity of phosphoffuctokinase, as the compound enhances the inhibitory effect of 

ATP. This allows a negative feedback control of glycolysis, whereby abundant 

biosynthetic precursors inhibit glycolysis which is a source of carbon skeletons for 

biosynthesis.
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E. coli has two phosphofructokinase activities. Pfk-1, an allosteric enzyme (82) 

representing 90% of the phosphofructokinase activity in the wild type strain, and Pfk- 

2, apparently not allosteric and which represent the remaining enzymatic activity in 

the cell (211). Pfk-1 is coded by the pjkA gene (1057), while the expression of the 

minor phosphofructokinase Pfk-2 is determined by the pfkB locus (211). The two 

phosphofructokinase activities are the reason why pjkA mutants, even deletions, still 

contain phosphofructokinase activity (884). These levels are however insufficient for 

normal growth on sugars, and such mutants were found to grow slowly or not at all on 

carbon sources whose major route of degradation is via fructose-6-phosphate (31, 

726).

A similar situation is possible in S. marcescens Dbl 1, where by mutant N6-B2 which 

has a transposon insertion in the pjkA genes was able to be isolated and grow on TSA 

and TSB. However as it was the case with E. coli pjkA mutants, N6-B2 grew much 

slower than the wild type and had a statistically significantly lower growth rate value 

than the parent strain (Table 3.11.). The mutant grew nearly 40% more slowly than 

the wild type as deduced from growth rate values. The mutant also exhibited an 

increased susceptibility phenotype whether it was for biocides or antibiotics. Agar 

MIC tests indicated that the pjkA mutant was more sensitive to triclosan, ortho-

phthalaldehyde, and cetylpyridinium chloride than the wild type. Antibiotic 

susceptibility profiles showed that the mutant had increased sensitivity to 6 out of the 

10 antibiotics tested. These were meropenem, ciprofloxacin, tobramycin, 

azithromycin, piperacillin and amikacin.

Given the crucial role phosphofructokinase plays in catabolism, maintaining energy 

balance, and biosynthesis in the cell, the mutant phenotype is not surprising. As 

mentioned above, although phosphofructokinase is involved in carbohydrate 

catabolism, the process is linked to many biosynthesis pathways within the cell. 

Hence, a phosphofructokinase deficient mutant could suffer from nutrients deficiency. 

This also could explain its slow rate of growth compared with the wild type. There 

have been many reported linking nutrients limitation or deficiency, growth rate, and 

antimicrobial susceptibility. This is because growth limitation by different nutrients 

gives rise to cells with reduced growth rates and coincidentally radically altered 

envelopes (114, 116, 266, 447, 576).
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In Gram-negative bacteria susceptibility changes have been shown to be associated 

with modifications of both the outer and cytoplasmic membranes (266, 628, 774). 

These changes have been widely reported to influence greatly susceptibility to 

antimicrobial agents (116, 344) and to antibiotics (115, 222) for a wide range of 

organisms (112, 338, 447, 709). Cell size is also altered as a function of growth rate 

(240, 340, 562, 826, 977), which in turn affects the cell surface area/volume ratio, and 

alters the outer surface characteristics of the cell. Variation in cell size has been 

shown to change the exclusion resistance to antimicrobial agents (977), and the 

susceptibility to drugs which bind strongly to or act at the cell envelope such as 

polymyxin and tetracycline (113).

Agents which interact with, or specifically act on, the cell envelope are particularly 

relevant in this context. For instance alteration in susceptibility as result of changes in 

surface properties related to nutrients limitation and growth rate were reported for 

biguanides (119, 474, 549), gentamicin (810), and polymyxin (291, 1166), all of 

which interact directly with specific envelope lipids. Gilbert and Brown (339) showed 

that E. coli grown in carbon-limited environment, was particularly susceptible to the 

actions of substituted phenols and 2-phenoxyethanol. Similarly, Wright and Gilbert 

demonstrated that sensitivity of E. coli to chlorhexidine and to n-

alkyltrimethylammonium bromides was greatly influenced by both growth rate and 

the type of limited nutrients in the media (1165, 1166). They argued that alterations in 

envelope lipophilicity through changes in the growth rate and nutrients limitation 

could be the reason for the observed changes.

In relation to antibiotics, p-lactams are highly affected by nutrients limitation and 

growth rate changes. This is because the expression of penicillin-binding proteins is 

tightly correlated to growth rate (115, 199, 1076). For example, the p-lactam CGP 

17520 which acts on penicillin-binding proteins (111), is particularly effective against 

slowly growing cultures (199, 1077). Similar to the p-lactams, the aminoglycoside 

antibiotics tobramycin and streptomycin (733, 857) as well as quinolones agents such 

as ciprofloxacin, are all growth rate dependent in their action (1190, 1191). The 

activity of polymyxin is also governed by nutrient limitation and growth rate (245, 

1166). For instance, when the effect of polymyxin B on E. coli growing at various
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nutrients limitation was assessed, it was found that the actions of the agent were 

different depending on the nutrient lacking from the media (1166). Similar 

observations were noted with P. aeruginosa. When the organism was grown in 

magnesium-depleted media, the bacterium lost susceptibility to EDTA and polymyxin 

B, depending on other metal cations present in the medium (114). The organism also 

became particularly susceptible to the above two agents as its growth rate increased 

(291).

From the above, it is possible to speculate a chain of thoughts that would explain the 

phenotype seen in the phosphofiuctokinase-deficient mutant N6-B2. Transposon 

insertion would have inactivated the pfkA gene, however the enzyme would have still 

been produced at low level as it is the case in E. coli mutants (884). These levels are 

not sufficient for normal growth and this could be the cause of the low growth rate 

seen in the mutant. Deficiency in such a key enzyme would also mean that the cell is 

nutrients deficient as the levels of key intermediates in many biosynthetic pathways 

are altered. Changes in growth rate and nutrients deficiency would have altered cell 

size, and both cytoplasmic and outer membrane characteristics of the cell. This in turn 

would have affected the antimicrobial susceptibility of the mutant. The mutant 

became more sensitive to biocides that act on the membrane such as cetylpyridinium 

chloride. Changes in surface layer would also have made it easier for other biocides 

such as triclosan and orf/io-phthalaldehyde to gain access to the cell and exert their 

action. Triclosan is known to inhibit lipid biosynthesis (685), while glycolysis 

intermediate compounds fuel the former process. This could also explain the increase 

sensitivity of the mutant to triclosan.

Antibiotics susceptibility of the mutant could also be explained based on the 

relationship between growth rate, nutrients limitation and antimicrobial sensitivity. 

The mutant showed increased susceptibility to meropenem, ciprofloxacin, 

tobramycin, azithromycin, piperacillin and amikacin. As mentioned above, 

aminoglycosides such as tobramycin are growth rate dependent in their actions, and 

so are some quinolone agents such as ciprofloxacin. In addition, since the expression 

of penicillin-binding proteins is highly growth rate dependent, the susceptibility to p- 

lactam antibiotic such as meropenem, azithromycin and piperacillin could also be 

affected. Further investigations are needed to explore the above speculations. These
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could include complementation of the mutant, detection of phosphofructokinase 

activity using protein profiling, and microscopy to determine changes in cell size.

3.5.2.2.10 Putative DeoR family transcriptional regulator gene

Transposon insertions in nine mutants (10-E7, 3-F2, 18-A3, 9-D5, 3-A4, 11-B8, 7- 

C10, N2-B3, and N2-F3) were all located in a single ORF encoding a putative DeoR 

family transcriptional regulator. This family of prokaryotic regulators is named after 

the E. coli DeoR repressor and is present in a variety of bacterial organisms, ranging 

from Gram-positives such as S. mutans to Gram-negatives such as P. aeruginosa

(265). The E. coli family of DeoR regulators has at least 14 members, which usually 

act as repressors in sugar metabolism (814). The deo operon in E. coli consists of four 

structural genes encoding ribonucleoside and deoxyribonucleoside catabolizing 

enzymes, which are controlled positively by the cAMP/CRP activator complex and 

negatively by the DeoR and CytR repressors (736, 995). These genes encode 

deoxyriboaldolase (deoC), phosphodeoxyribomutase (deoB), and thymidine 

phosphorylase {deoA), and purine nucleoside phosphorylase {deoD) (396).

Munch-Petersen and Mygind (735) demonstrated that in E. coli K-12, the nucleoside 

catabolizing enzymes are located inside the permeability barrier of the cell. DeoR also 

regulate the expression of NupG, a nucleoside transpoter protein (735), as well as Tsx 

a channel-forming protein (101). Given that DeoR regulates not only sugar 

metabolism but also the expression of a number of membrane barrier enzymes, 

transporters and channel-forming proteins, disruption in this gene would not only 

affect for instance the deoxyribonucleoside catabolism but also alter the membrane 

permeability. This may in turn alter the antimicrobial susceptibility of the cell.

Changes in antimicrobial susceptibility in the DeoR-deficient mutant could not only 

be a result of altered sugar metabolism and related enzymes but also as a result of its 

global regulatory effect. Indeed DeoR-type family of transcriptional regulators has 

been shown to effect the expression or a variety of different genes. Elgrably-Weiss et

al. (265) reported that DeoT, an E. coli protein with homology to DeoR-type family 

of transcriptional regulators, acts as a global regulator, repressing the expression of a 

number of genes involved in a variety of metabolic pathways including transport of
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maltose, fatty acid P-oxidation, and peptide degradation. In the context of 

antimicrobial susceptibility, Ramos-Aires et al. (852) reported that GlmR, a 

transcriptional regulator with amino acid sequence similarity to DeoR-family 

repressors, was able to affect susceptibility to a large variety of antibiotics in P.

aeruginosa. They found that a transposon mutant 19A, which was hypersusceptible to 

a wide range of antibiotics including aminoglycosides, p-lactams, fluoroquinolones, 

colistin, erythromycin, rifampin, and glycopeptides, had transposon insertion in the 

glmR gene coding for GlmR repressor.

Because of the influence of DeoR on gene expression and the possibility of polar 

effect from the mutation on genes downstream from the disrupted putative deoR, it 

was worth exploring the genes surrounding the site of transposon insertion in the 

mutants. The deoR locus was surrounded by genes coding the following putative 

proteins:

1) Glyoxalase: In living organisms, detoxification of a-ketoaldehydes substrates such 

as methylglyoxal, a mutagenic and cytotoxic compound mainly formed as a by-

product of glycolysis and amino acid catabolism, is achieved by the glyoxalase 

system (1060). a-Ketoaldehydes substrates are cytotoxic and mutagenic because they 

interact with functional groups such as amines and thiols, hence covalently 

modifying DNA, RNA, and proteins in cellular systems (512, 737, 943). Many 

biocides including heavy metals, aldehydes and oxidizing agents act by interaction 

with functional groups especially thiols (section 1.3). Hence a mutant with altered or 

deficient glyoxalase enzymes, unable to efficiently detoxify a-ketoaldehydes 

substrates, would probably be more susceptible to biocides than the wild type.

2) LysR family transcriptional regulator: The LysR-type transcriptional regulators 

were first described by Henikoff et al. (427), and are thought to constitute the largest 

family of prokaryotic DNA binding proteins, also present in diverse archaeal genera 

and algal chloroplasts (953). LysR-type transcriptional regulators are similarly sized 

molecules (300-350 amino acids) that activate the transcription of linked target genes 

or unlinked regulons encoding extremely diverse functions including nitrogen 

fixation, oxidative stress response and bacterial virulence (953). Given the influence 

of LysR regulators on other genes, alterations in the expression of these proteins are
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likely to influence a number of cellular processes. In this study, the gene encoding the 

putative divalent heavy-metal cations transporter involved in inorganic ion transport 

and metabolism, and that encoding a putative heat shock protein DnaJ homologue, 

both located downstream of the LysR coding gene could be potentially affected by 

LysR expression.

3) Pirin: The protein pirin is widely found and conserved from prokaryotic 

microorganisms, fungi, and plants to mammals (1137). Pirin is involved in a variety 

of biological processes, and was shown to act as transcriptional cofactor or an 

apoptosis-related protein in mammals (226). The protein was shown to be involved in 

seed germination and seedling development in Arabidopsis (583) and programmed 

cell death in tomato (783). Few prokaryotic pirin orthologs have been characterised, 

however Hihara et al. (436) showed that in cyanobacteria pirin was induced under 

stress conditions and was negatively regulated by a LysR family of transcriptional 

regulator encoded by pirR located immediately upstream of the pirin gene. PirR was 

reported to also repress expression of closely located ORFs in addition to the pirin 

gene and priR itself (436). In E. coli the protein was shown to act as a quercetinase 

involved in the degradation of the antioxidant quercetin (3). Recently, Soo et al. (997) 

demonstrated that the S. marcescens pirin (pirinsm) gene encoding an ortholog of pirin 

protein played a regulatory role in the process of pyruvate catabolism to acetyl 

coenzyme A through the interaction with the pyruvate dehydrogenase El subunit and 

in inhibiting the enzyme complex activity. Investigators observed significant increase 

in the activity of pyruvate dehydrogenase complex and in the concentration of ATP 

and NADH/NAD+ ratio in a S. marcescens mutant with disrupted (piling) gene (997). 

Hence it is clear that pirin protein has a wide range of functions and potentially able to 

influence many metabolic and energy process in the cell as well as affect the 

expression of other genes.

4) Isochorismatase: The enzyme isochorismatase belongs to the hydrolases family. It 

is also known as 2,3 dihydro-2,3 dihydroxybenzoate synthase or isochorismate 

pyruvate-hydrolase and catalyses the conversion of isochorismate, in the presence of 

water, to 2,3-dihydroxybenzoate and pyruvate (1184). The enzyme is involved in the 

biosynthesis of siderophore group nonribosomal peptides, which are important in the 

acquisition of iron from the environment. Iron is an essential nutrient for virtually all
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microorganisms because it is a cofactor for several electron-transport proteins 

involved in vital life processes like aerobic and anaerobic ATP biosynthesis. Iron is 

also important for invading pathogens, as it is considered essential for establishing 

infection (1053). The bioavailability of iron, which exists predominantly in its ferric 

form in aerobic environments, is very low, and micro-organisms used biosynthesis 

and excretion of high-affinity iron chelators known as siderophores to get hold of the 

available iron (249, 1053). Many siderophores are polypeptides that are

biosynthesised by members of the nonribosomal peptide synthetase multienzyme 

family (200). As iron is an important nutrient, and nutrient limitation has a great 

influence on antimicrobial sensitivity (section 3.5.2.2.9.), a mutant with a disrupted 

isochorismatase encoding gene, would be expected to have altered biocide and 

antibiotic susceptibility.

All but three of the deoR mutants showed increased sensitivity to cetylpyridinium 

chloride, and six of the mutants were sensitive to ort/zo-phthalaldehyde. Mutants 3- 

A4, N2-B3, 7-C10, and N2-F3 were also sensitive to triclosan, and mutants 18-A3, 9- 

D5 and N2-B3 all showed increased sensitivity to chlorhexidine diacetate. 

Interestingly, mutants 3-A4 and N2-F3 expressed a resistant phenotype to the latter 

biocide. Antibiotic susceptibility profiles showed that out of the 9 deoR mutants 6 had 

increased sensitivity to azithromycin and a similar number to meropenem. Amikacin 

resistance was seen in 6 mutants, and mutant 18-A3 was particularly interesting as it 

developed resistance to 8 out of the 10 antibiotics tested

The reason why so many mutants had transposon insertions into the deoR gene is not 

clear, however the diverse biocide and antibiotic phenotypes seen for the mutants 

could be explained as follows. From the information above, it is clear that deoR

controls the expression of a large number of genes involved in many cellular 

processes including genes for sugar metabolism, membrane barrier enzymes, 

transporters and channel-forming proteins. In addition, DeoR could also influence the 

expression of genes downstream from its location encoding a putative glyoxalase, 

pirin, and isochorismatase, all have the potential to influence antimicrobial 

susceptibility. As a result of its long distance regulation (213), DeoR could also 

regulate the expression of genes even further downstream from the ones mentioned 

above. Moreover, possible polar effects of the mutations in deoR, could effect the
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expression of the LysR regulator, which intum would alter the expression of genes 

downstream from its location, such as that of the putative heavy-metal cations 

transporter and putative heat shock protein DnaJ homologue, both of which have the 

potential to alter antimicrobial susceptibility. As a result, the location of transposon 

insertion in such a highly regulatory region of the S. marcescens D bll genome, 

containing a number of genes which have the potential to affect many cellular process 

and antimicrobial susceptibility, it is not surprising that the deoR mutants possessed 

such a varied phenotype. In addition to this, the transposon insertions in the putative 

deoR were not in the same location in all mutants (Figure 3.21), which could also 

explain the different phenotypes.

3.5.2.2.11 Putative carbamoyl-phosphate synthase large subunit gene (carB)

Transposon insertion in mutants 8-C7 was located within carB encoding a putative 

carbamoyl-phosphate synthase large subunit. The latter is part of a two subunit 

enzyme, carbamoyl-phosphate synthase, which catalyzes the formation of carbamoyl 

phosphate, a common intermediate in both arginine and pyrimidine biosynthesis 

pathways (825). As mentioned above, bacterial carbamoyl-phosphate synthase is a 

heterodimer of small and large subunits. The small chain encoded by car A (827), 

promotes the hydrolysis of glutamine to ammonia, which is used by the large chain, 

encoded by carB (776), to synthesise carbamoyl phosphate. The enzyme is therefore 

involved in both amino acid and nucleic acid biosynthesis, and transposon insertion in 

carB has the potential to disrupt both processes.

Mutant 8-C7 had a complex phenotype in that it was more resistant than the wild type 

to inhibition of growth by triclosan and chlorhexidine diacetate, however it is more 

sensitive compared with the wild type to the killing effect of the two biocides. 

Antibiotic susceptibility tests indicated that the mutant showed increased resistance to 

the two aminoglycosides amikacin and tobramycin but was more susceptible than the 

wild type to meropenem. Interference in key cellular processes such as amino and 

nucleic acid biosynthesis has the potential to affect the mutant fitness, growth, protein 

synthesis, and tolerance to antimicrobial agents. All these could contribute to the 

increased killing effect of biocides on the mutant. It is interesting however that the 

mutant became more resistant to the growth inhibitory action of triclosan and
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chlorhexidine diacetate as well as to the two aminoglycosides, known to act at the 

protein in the cell. This suggest that there might be other factors involved in the 

development of this phenotype, including possibility of other genes affected by the 

mutation such as those for efflux. Further studies are needed to investigate this matter, 

including complementation of the mutant.

3.6 CONCLUSION

This study set out to determine the molecular basis of biocide resistance and 

susceptibility in Serratia using the model strain S. marcescens D bll. The possible 

link between biocide and antibiotic susceptibility was also to be explored. Four 

biocides (triclosan, chlorhexidine diacetate, cetylpyridinium chloride, and ortho-

phthalaldehyde), and 10 antibiotics (amikacin, azithromycin, chloramphenicol, 

ciprofloxacin, tobramycin, trimethoprim/sulfamethoxazole, meropenem, ceftazidime, 

imipenem, and piperacillin) were used to investigate the above. The main conclusions 

from this study were:

• S. marcescens D bll was shown to be more effected by surface-active agents 

such as chlorhexidine and cetylpyridium chloride than by the phenolic compound 

triclosan or the aldehyde or/Zzo-phthalaldehyde.

• Dbl 1 was interesting in that unlike many other reported S. marcescens strains, 

it was resistant to aminoglycosides and sensitive to p-lactams.

• Results from this study and reported ones in literature suggested that strain 

Dbll is relatively resistant to antimicrobial agents compared to Gram-positives such 

as S. aureus and to related Gram-negatives such as E. coli. In fact the strain had levels 

of susceptibility in the range to those of some mycobacteria and P. aeruginosa. One 

exception was in relation to triclosan where only P. aeruginosa, known to have 

triclosan efflux systems, had comparable degrees of resistance to those of Dbl 1, while 

E. coli and mycobacterial strains were much more sensitive to the agent than Dbl 1.
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• It can be speculate that the relative resistance to antimicrobial agents seen in 

Dbll could be at least in part a result of its outer membrane characteristics. The 

organism contains a number of multidrug efflux pumps and porins, which along with 

its other outer membrane components has an impact on its antimicrobial 
susceptibility.

• Random transposon mutagenesis using the mini-Tn5Km2 transposon 

produced a number of mutants with altered biocide sensitivity compared with the wild 

type. However, biocides agar MICs demonstrated that changes in biocides 

susceptibility of the mutants tested were relatively small, although these changes were 

reproducible. This is probably a reflection of the multi-target action of biocides in 

bacteria.

• Altered antibiotic susceptibility was also evident in the mutants. Given the 

similarities in the mode of action of biocides and antibiotics and the way they enter 

the bacterial cell, this is not surprising.

• The locations of transposon insertion in all but 2 of the 26 biocide mutants 

examined were determined, and 14 putative genes coding for putative proteins with 

varying functions were found to be disrupted. These functions included anabolism and 

catabolism, gene regulation, cell envelope biosynthesis, porin, energy production and 

virulence.

• Complementation in one mutant disrupted in it putative nucleoid-associated 

protein gene (ndpA) successfully restored the wild type phenotype.

It is clear that complementation of all the remaining mutants is necessary to confirm 

the link between the antimicrobial sensitivity of the mutants and their respective 

disrupted genes. In addition, it is worth noting that only one strain, D bll, was 

investigated in this work and study of a larger pool of S. marcescens strains is needed 

to confirm the above conclusions. Nevertheless, this study has given an insight into 

the levels of antimicrobial sensitivity of S. marcescens D bll and into the molecular 

basis of biocide and antibiotic resistance and susceptibility in this strain.
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3.7 FUTURE WORK

• This work investigated biocide and antibiotic susceptibility in one strain of S.

marcescens, Dbl 1. It is therefore necessary to study a larger number of strains 

and isolates to be able to arrive at generalised conclusions about the level of 

resistance of S. marcescens to antimicrobial agents compared with other 

Gram-negatives, Gram-positives or mycobacteria.

• Complementation of all biocide mutants generated in this study is necessary to 

confirm that the disrupted genes are connected with the changes in phenotype 

observed. Introducing a functional copy of the disrupted genes into the 

mutants should restore the wild type phenotype, proving that these genes play 

a role in antimicrobial susceptibility. Moreover, site directed mutagenesis of 

genes downstream from the transposon insertions in the mutants may also be 

necessary in cases where the disrupted gene is a regulatory gene or in 

instances where a polar effect of the mutation is suspected.

• Analysis of the outer membrane characteristics of the biocide mutants 

including their proteins content, lipopolysaccharide structure and their 

permeability to determine whether there is detectable changes in the 

transposon mutants compared with the wild type would be beneficial. In this 

context, electron microscopy such as scanning electron micrographs and 

transmission electron micrographs could help determine whether cytological 

changes have taken place in the mutant including changes in membrane 

structure and cell size.

• Studying genes known or suspected to be involved in biocide resistance or 

susceptibility is also an option. These can be identified from literature and 

with the help of the published S. marcescens D bll genome sequence. For 

example, protein similarity searches against the translated S. marcescens Dbl 1 

genome sequence (www.sanger.ac.uk) for a number of known multidrug 

transporters and efflux systems revealed potential antimicrobial resistance
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proteins. The MF family drug transporters EmrB, EmD and MdfA/Cmr from 

E. coli showed respectively 75%, 55% and 70% amino acid sequence 

similarities with S. marcescens D bll putative proteins. In addition, proteins 

AcrA, AcrB, and TolC components of the well characterised AcrAB-TolC 

multidrug efflux system in E. coli, showed respectively 70%, 79%, and 70% 

amino acid sequence similarities with S. marcescens D bll putative proteins. 

This suggests that an AcrAB-TolC system homologue may be present in S.

marcescens Dbl 1 contributing to antimicrobial resistance in this strain.

Similarly, putative S. marcescens D bll proteins, showed 60%, 68% and 43% 

amino acid sequence similarities with MexA, MexB, and OprM, proteins 

respectively of the P. aeruginosa MexAB-OprM multidrug efflux system. 

These results suggest that homologues of at least some of the above drug 

resistance proteins may exist in S. marcescens Dbl 1. Indeed, according to the 

genome sequence of S. marcescens Dbll

(ftp://ftp.sanger.ac.uk/pub/pathogens/sm/), many other multidrug efflux pumps 

are expected to be present without any physiological characterisation. Genes 

encoding for potential efflux systems could be disrupted using site directed 

mutagenesis and the resulting effect characterised in S. marcescens D bll. 

Similarly, the same genes could be cloned into a drug hypersensitive bacterial 

strain such as E. coli KAM32 (158) and checked for increase antimicrobial 

resistance.
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WbdD

Figure 3.30. Model for O-antigen biosynthesis in E. co li 08. Adapted from Cuthbertson et al (206).

Synthesis o f  the O-antigen using the A TP-binding cassette (A BC)-transporter-dependent pathw ay is as follows:
Step A: synthesis is initiated by the transfer o f  N -acetylglucosam ine-l-phosphate by W ecA. G lycosyltransferases W bdABC then 
synthesize the polym annan O-antigenic polysaccharide through addition o f  m annose residues from  the guanosinediphosphate (GDP)- 
m annose donor to the nonreducing term inus. Step B: addition o f  a methyl group by W bdD causes term ination o f  polym annan growth. 
Step C: the ABC-transporter, consisting o f  W zm and W zt, relocate the finished polym er to the periplasm ic side o f  the inner mem brane. 
Step D: the O-antigenic polysaccharide is then transferred to the lipid A core m olecule in a reaction involving W aaL.
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