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SUMMARY

The first comprehensive genetic study of central African forest elephants (CAEs) is 

presented here based on mitochondrial DNA (mtDNA) and nuclear microsatellite loci. 

MtDNA analysis revealed low genetic divergence between most groups. Haplotype 

distribution was not correlated with geographical localities, indicating high levels of gene 

flow. Two divergent haplogroups, illustrated by a bimodal distribution of pairwise 

differences in the control region, implies that secondary contact and ongoing 

introgression has occurred between populations expanding from at least two putative 

glacial refugia. Similarly, microsatellite analysis revealed low genetic differentiation 

among sites, suggesting high levels of gene flow as well as regional admixture with two 

genetically-based clusters inferred from Bayesian analyses. It is important to note 

through, that although both mtDNA and microsatellites identified two groups or genetic 

clusters, assignment o f hdividuals to these clusters was not consistent across genomes 

possibly a result of differential admixture in nuclear and mitochondrial DNA No 

correlation was found between genetic and geographical distances for both genomes.

Previous phylogenetic analyses, using either on genetic or morphological characters, 

were based on a very limited number of forest elephant samples. A large-scale re­

assessment of mitochondrial DNA diversity in CAEs compared to published data on both 

forest and savannah forms revealed a complex phylogeographic history for African 

elephants, and an evolutionary trajectory more complex than prevailing two-taxon 

models have assumed. Mitochondrial control region and Cytochrome b sequences were 

analysed for CAEs and compared to other African elephant data. CAE populations fell 

into at least two lineages with West African elephants (both forest and savannah) sharing 

their mitochondrial history almost exclusively with Central African forest elephants. 

Extant African elephant populations therefore seem to have originated from multiple 

refugia lineages that have subsequently undergone introgression. Thus, the complex 

phylogeographic history of African elephants does not support a simple two-taxon model 

and management strategies incorporating the two-taxa model could be misinformed until 

further data give clarifies the origins of elephant populations throughout Africa.
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CHAPTER 1

General Introduction

1.1 Evolution of Proboscidea

Living elephants comprise the only remaining family (Elephantidae) in the Order 

Proboscidea, so named because of their most distinguishing feature, the proboscis-like 

trunk, although the term pachyierm meaning “thick skin” is also used to describe 

elephants. The ancestors of modem elephants first emerged 60 million years ago in the 

Paleocene and from this time to the end of the Pleistocene, 10,000 years ago, the 

Proboscideans underwent a spectacular radiation and occupied extreme environments, 

from swamps, tundra, boreal forests, deserts, to savannas, tropical rainforest and from sea 

level to high elevations (Sukumar, 2003). Their fossils have been found all over Africa, 

Eurasia and the Americas (Spinage, 1994), providing evidence of a remarkable, 

flourishing evolution (Kingdon, 1979). This radiation was accompanied by large 

morphological changes including gigantism and dwarfism, and a change in dentition, 

which was driven by climate change and the consequent variation in vegetation. As a 

result, adaptations in anatomy and physiology of the ancestral proboscideans were as 

diverse as the range of habitats they occupied (Kingdon, 1979; Sukumar, 2003). Today, 

only two major lineages of elephants exist, the African elephant {Loxodonta sp) and the 

Asian elephant {Elephas sp).

In the past, a larger number of proboscideans existed, including the mammoths, 

stegodons, phiomia and deinotheria. The very first proboscidean-like creature was called 

Phosphatherium whose fossil was discovered in phosphate deposits in Morocco, 

appearing 60 million years ago during the Paleocene (Gheerbrant et al., 1996). By the 

early Eocene (55 million years ago), the global climate had become warmer and tropical
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forests expanded into the polar Arctic and Antarctic. Most of the mammalian orders 

known today emerged during this period (for example primitive deer, the earliest horse 

and lemur-like creatures). Between the early and the middle Eocene, several 

proboscideans prospered (Figure 1.1), such as Moeritherium, a hippopotamus-like 

creature with incipient tusks living in marshy habitat (Sukumar, 2003). Towards the end 

of the Eocene, the global climate became drier, creating new types of vegetation. During 

this period the proboscideans began a general increase in body size (from Moeritherium) 

and developed prominent ridged teeth leading to the emergence of an elephant-like 

animal named Barytherium (Sukumar, 2003). The Oligocene Epoch (36 million years 

ago) was more climatically stable and marked by seasons. During this time, the 

Paleomastodon emerged, which from fossil records appears to have been two metres tall 

and was an inhabitant of forest and open woodland. Paleomastodon gave rise to two 

proboscidean branches: the mammutids and the gomphotheres (Spinage, 1994). The latter 

of which, the gomphotheres, are the sister-groups of modem elephants (Sukumar, 2003) 

The Miocene (24 million years ago), mostly characterised by a warm and dry climate, 

was a time of substantial geological changes with the creation of the seas such as the 

Mediterranean, the formation of mountain ranges and the establishment of climatic 

patterns with an emphasis of contrast between hot and cold in higher and lower latitudes.
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This period saw the proboscideans flourishing (Sukumar, 2003). The gomphotheres, of the 

genus Gomphotherium, were the most widely distributed of the proboscidean groups. 

They originated in Africa and migrated to all continents, differentiating into diverse forms 

and existed until the Pleistocene. Their upper and lower lips both carried a pair of tusks 

and a short prominent trunk. The mammutids were also very successful during this period 

and fossil records suggest that their dentition had changed such that they were well 

adapted to browsing (Sukumar, 2003). Another proboscidean occurred during this period, 

Deinotherium, which survived for about 20 million years and exhibited a pair of 

descending-pointing tusks.

During the Miocene, increasing aridity led to the dominance of grasslands, which in turn 

influenced dental and other adaptations in herbivorous mammals that would enable the 

inclusion of grasses in their diet and a derived and advanced form of gomphothere, the 

stegodontids emerged (Sukumar, 2003). The stegodons were possibly browsers because 

of their low-crowned teeth that allowed them to have a diet of forest leaves and bamboo 

shoots and are generally recognised as being the ancestors of the earliest African 

elephantids. The three lineages of modem elephants, Loxodonta, Elephas and 

Mammuthus (family Elephantidae) originated in sub-Saharan Africa (Tassy & Debruyne, 

2001; Thomas et al., 2000). According to frssil records, Loxodonta would have diverged 

first, at the beginning of the Pliocene (about 5 million years ago) followed by 

Mammuthus (Mammoth) and Elephas. However, their phylogenetic relationship is still 

controversial. Some morphological studies indicate that Elephas and Mammuthus were 

more closely related than with Loxodonta (Kalb et al., 1996) while further investigation 

in genetic studies had advanced the debate. Thomas et al (2000) supported the mammoth - 

African elephart clade in common with Tassy & Debruyne (2001). In Thomas et al 

(2000)’s study they did not find sufficient statistical support to reject the Mammuthus -  

Elephas clade , while Rohland et al (2007), with a complete mitochondrial genome of the 

Mammut americanum, show that the ancestors of African elephants diverged from the 

mammoth-Elephas clade approximately 7.6 million years ago. In the same study, African 

savannah and forest elephants were shown to have diverged approximately four million
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years ago. But at this time Loxodonta was well differentiated in Africa with the first 

recognizable species, Loxodonta adaurora (Sukumar, 2003). While the Pliocene saw the 

three modem genera flourishing, the Pleistocene (less than 1 million years ago) was the 

period of their greatest divergence (Kingdon, 1997). Pleistocene was also a time that saw 

the extinction of the gomphotheres and mammutids (Sukumar, 2003).

During the Pleistocene (about 2 million years ago) the world was characterised by 

alternating glacial and interglacial phases: intense periods of cold interrupted by warmer 

episodes. This epoch led to the migration of mammals and consequently to their 

evolution (Sukuma r, 2003). While the genus Loxodonta never left the African continent, 

Elephas migrated to Asia and eventually disappeared in Eurasia and Africa 20,000 years 

ago. Mammuthus went extinct at the end of the Pleistocene and the beginning of the 

Holocene (approximately 10,000 years ago) with some populations surviving until very 

recently (Sukumar, 2003). During the Holocene, forests expanded in the tropics with 

warmer climate and high rainfall. Loxodonta by this time was very widespread 

throughout Africa and was present from the lower Nile area throughout the North Africa 

boarding the Mediterranean (Sukumar, 2003).

1.2 The Taxonomy of modern elephant: Loxodonta

Taxonomy in pachyderms has been and is still a controversial subject based on fossil 

remains and morphological differentiation. The taxonomy of modem Loxodonta remains 

rather unclear. In terms of nomenclature, Linne in 1758 classified Asian and African 

elephants in a single genus, Elephas , while later in 1797, the German naturalist 

Blumenbach distinguished two subspecies of elephant Elephas africanus and Elephas 

asiaticus based on differences in tooth patterns (Spinage, 1994). The following year 

(1798) Cuvier reconsidered Blumenbach’s distinction finding sufficient differences in the 

dental patterns that he created the new genus Loxodonta for the African elephant 

(Spinage, 1994). Meanwhile, Illiger in 1811 created Proboscidea to name all elephant 

families in a single Order. Elephants were successfully adapted to a variety of ecological
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conditions, developing numerous traits in body size, ear, tusk and skull shape, skin 

texture and colour. Subsequently, 25 subspecies of elephants have been described 

(Kingdon, 1997).

However, Matschie (1900) reduced the number of the so-called subspecies of African 

elephants considerably when he divided them into four, based on geographical location, 

ear and skull morphology. The subspecies he described were (1) Loxodonta africana 

africana (Blumenbach, 1797) from the Cape, (2) L. a. knochenhauri (Matschie, 1900) 

from Tanganyika, (3) L. a. oxyotis (Matschie, 1900) from eastern Sudan and (4) L. a. 

cyclotis (Matschie, 1900) from southern Cameroon. This view persisted until the 1940s 

when two subspecies of the African elephants were generally recognized: L. a. africana, 

the larger bush or savannah elephant, and L. a. cyclotis, the smaller forest elephant. Much 

debate has occurred about the taxonomy of the forest elephant leading to a proposed 

reclassification as a new species based on morphological characters (Grubb et al., 2000) 

and genetics (Roca et al., 2001) (discussed in more detail in Chapter 4). There are also 

cranial and social differences (Grubb et al., 2000; White et a l , 1993): savannah elephants 

have a social organisation consisting of one or more related adult females and their 

offspring while the mother-offspring unit is the most frequent family unit for forest 

elephants (White et al. 1993). Their diet and habitat have also been compared. Elephants 

in east and southern Africa, for instance, have a diet dominated by grasses in open 

grassland areas while their forest counterparts at the Lope National Park have a diet 

including diverse items such as leaves, bark and fruit (White et al. 1993). However the 

two forms do interbreed in places where their habitats come into contact (Kingdon, 1997; 

Spinage, 1994). The African Elephant Specialist Group believes that premature allocation 

into more than one species may leave hybrid s in an uncertain taxonomic and conservation 

status (Blanc et al., 2003). Therefore, the World Conservation Union (former 

International Union for Conservation of Nature), IUCN, currently recognizes Loxodonta 

africana as a single species encompassing both forest and savannah populations (African 

Elephant Specialist Group, 2004). Based on the findings from this study and IUCN one- 

species recognition, only L. a. cyclotis and L. a. africana will be used to name forest and 

savannah forms, respectively.
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1.3 Morphological differences

1.3.1 African elephant vs Asian elephant

Figure 1.2. Morphological differences between a) African elephant (forest type) and b) 

Asian elephant. Note ears shape and size differences (proportionally to the head), also 

forehead differences (photos: B. Goossens)

Two genera remain today: Loxodonta and Elephas, the African and the Asian elephant 

respectively. The most obvious difference between African and Asian elephants is the 

size of their ears (Figure 1.2 above). However there are other morphological differences, 

some are listed below:

African elephant (savannah type: Grubb et 

al. 2000; Kingdon, 1997)

Asian elephant (Shoshani & Eisenberg, 

1982)

Sub-Sahara region of Africa 

Larger ears

Bulls can weigh up to 7 tonnes and reach 4 

m at the shoulder

Females weigh up to 3.5 tonnes and reach 

3.4m at the shoulder height

Southeast of Asia 

Smaller ears

Large bulls weigh 5.4 tonnes and are 3.20 

m at the shoulder

Females average weight is 2.7 tonnes and 
average height is 2.24 m
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Tusks in both sexes

Two finger-like on the trunk tip

“Floppy” trunk

4 nail- like on forefoot and 3 on rear foot 

Concave back

Tusks mostly in males 

One finger-like on the trunk tip 

Trunk more rigid

5 nail- like on forefoot and 4 on rear foot 

Convex back

Three subspecies of Asian elephants were recognized (Shoshani & Eisenberg, 1982): 

Elephas maximus maximus from Sri Lanka,

- E. m. indicus from the Asian mainland,

E. m. sumatrensis from Sumatra.

Recently, genetic data on Bornean elephants support their recognition as a unique 

subspecies: Elephas maximus bomeensis (Fernando et al., 2003b). Two subspecies of the 

African elephants were recognized until recently:

Loxodonta africana africana, the larger bush or savannah elephant,

L. a. cyclotis, the smaller forest elephant.

1.3.2 African forest elephants Vs African savannah elephants

The African forest elephant is distinguished from its savannah counterpart by its small 

size, 2.4 to 3.0 m tall at the shoulder in the male and 1.8 to 2.4 m in the female, and a 

weight of 2.0 to 4.0 tonnes (Grubb et al., 2000; Kingdon, 1979; Spinage, 1994). It has 

characteristic rounded and small ears, unlike the “map of Africa” shape of the savannah 

elephant, and almost straight, downwardly pointing tusks while its counterpart has 

upwardly curved tusks (see Figure 1.3). Its body is more compact and nearly straight 

compare to the more slender body of its counterpart with a concave back. The savannah 

elephant has a higher carriage of the head, which is low in the forest elephant. Grubb et 

al., (2000) portrayed differences at the skull level with a more flared rostrum in savannah 

than in forest elephants. Forest and savannah elephants are also distinguishable in their 

behaviour and ecology. The former occurs in moist semi-deciduous and rainforest, and it 

is mostly a browser and frugivore rather than the grazer and browsing elephant found in
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arid woodland and savannah (Grubb et al., 2000). The brest elephant has a nuclear 

family of 2 to 4 individuals, while savannah elephant family groups can extend up to 14.

Figure 1.3. Morphological differences between a) African forest elephant and b) African 

savannah elephant. Note mainly, the ears and tusks shape dissimilarities (Photos: a) from 

M. Cazemajor; b) from Google)

1.3.3 West African elephants

Based on morphological features, Frade (1955) separated forest and bush elephants into 

two different species. However elephants from west Africa could not be determined as an 

individual could have some traits from both types forest and bush elephant. These 

elephants are taxonomically indeterminate (Frade, 1955) and have been described as 

having an intermediate morphology (Groves, 2000). Alternatively, Eggert et al (2002) 

proposed the west African elephant as a third taxonomic group as their study revealed 

that west African populations are genetically distinct from other forest and savannah 

elephants.
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1.3.4 The distribution of Loxodonta

During the Holocene, Loxodonta was widespread throughout Africa, including North 

Africa (Spinage, 1994; Sukumar, 2003). Today, Loxodonta is found in sub-Saharan 

Africa ranging from west African coastal regions, through the equatorial rainforests of 

the Congo Basin and savannah woodlands of South and East Africa, mountains of East 

Africa, to semi-desert in Namibia and Mali (Spinage, 1994).

Illegal hunting for ivory has massively reduced the number of African elephants over the 

past three decades. From the five to 10 million estimated in 1930 (Stuart and Stuart, 

1997), only 600,000 are estimated to have remained by 1992 (Spinage, 1994; Stiles, 

2004). Elephants in West Africa have suffered an intensive slaughter for their ivory for 

many centuries, during which international trade was well established, supplying North 

Africa, Europe and North America with ivory (Bames, 1999). The intense hunting, rapid 

growth of the human population and consequent loss of habitat and these factors 

combined, led the elephants of West Africa in an decline from which they have never 

recovered (Blake, 2007). Today, elephants are found in fragmented zones with isolated 

populations, which are vulnerable to poaching and general human disturbance such as 

accessibility of remote forests by roads, railways, navigable rivers, plus forest destruction 

and fragmertation (Bames, 1999; Blake, 2007). Consequently, African elephant 

populations became fragmented and its distribution is mainly concentrated in Central, 

East and northern parts of Southern Africa (Figure 1.4).
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Figure 1.4: Map of the distribution of African elephants (from African Elephant 

Database IUCN/SSC/AfESG in collaboration with UNEP/GRID.
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1.4 The central African forest elephant: L. africana cyclotis

Found in the tropical lowland forest of central Africa, the forest elephant, unlike its 

counterpart of the savannah, has been the subject of relatively few studies because 

visibility is often restricted either at ground level or overlapping canopies (Tutin et al.,

1997). Consequently, elephant population structure, social organization and behavioural 

information are based mainly on data obtained from savannah elephants. Forest elephant 

population studies have been based on tracks (Blake et al., 2007; Morgan, 2007), dung 

analysis (Barnes et al., 1997; Eggert et al., 2003; Fay, 1991; Walsh & White, 1999; 

White, 1994), feeding ecology (Morgan & Lee, 2007; White et al., 1993b), and satellite 

tracking (Bames et a l , 1997; Blake, 2007; Blake et al., 2001) to determine their 

movements and range. Forest elephant populations, particularly in Central Africa are 

difficult to monitor because of a crucial lack of infrastructure, staff and funding (Walsh & 

White, 1999).

Direct observations are extremely difficult for individual identification, behavioural 

studies, and habituation (Turkalo & Fay, 1996; Turkalo & Fay, 2001). Researchers of 

populations in African savannahs (Archie et al., 2007; Archie et al., 2006; Lee & Moss, 

1986; Moss, 2001) and Asian dry forests (Fernando & Lande, 2000) do not encounter 

these types of issues. However the discovery of clearings in the African forest habitat, 

called bais, which are often salt-licks or serve as other sources of nutrients, has made 

field observations less difficult (Momont, 2007; Turkalo & Fay, 1996). Other natural 

open habitats such as the mosaic forest-savannah zones found at the Lope National Park 

in Gabon (Momont, 2007; White et al., 1993b), or the coastal habitat at Loango National 

Park, Gabon where free ranging forest elephants have been observed (Morgan & Lee, 

2003) are also used for observational studies.

In general, indirect study methods are used for census, observation and genetic studies of 

elephant populations occurring in dense woodlands and forests. Mark-recapture methods 

have been suggested (Morley & Van Aarde, 2007) as a reliable estimator of population 

size for elephants in habitat with low visibility, while Wood et al. (2005) proposed an
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accurate and precise census technique using a seismic sensors (geophone) to record 

footfalls of elephants. Most genetic studies rely on non-invasive sampling methods 

(Goossens et al., 2003) for which field-workers do not need to see individual animals but 

rather collect their remains. Many genetic studies on diverse species with the aim to 

investigate genetic structure, population size or geographic distribution were based on 

dung (Fernando et al., 2000; Goossens et a l , 2000; Okello et al., 2005b; Zhan et al.,

2006), hair (Anthony et a l,  2007a; Clifford et a l,  2002; Goossens et a l, 2005; Jeffery et 

a l, 2007; Jensen-Seaman & Kidd, 2001), feathers (Segelbacher, 2002; Taberlet & 

Bouvet, 1991); with museum samples, phylogeographic studies can even be done without 

going to the field (Debruyne, 2005; Moodley & Bruford, 2007).

1.4.1 Distribution

Since the Pleistocene, L. a. cylotis has been tied to the humid forests of Central Africa 

(Sukumar, 2003) in spite of the numerous cyclical phases of forest contraction and 

expansion typical of the period. In fact it is known from the fossil record (Kingdon, 1979) 

that the Elephas recki lineage dominated a wide range of the African continent, except 

tropical forest areas, throughout the entire Pleistocene period. Therefore, Loxodonta was 

probably restricted to the forest and retained adaptive features (e.g. small size and small 

family units). Forest elephant habitat in central Africa covers almost 2 million km2 and it 

was believed to be a vast and remote refuge for the 172,400 elephants estimated to exist 

in the late 1980s (Blake, 2007). The Democratic Republic of Congo (DRC) and Gabon 

were estimated to be home to approximately 64,000 and 60,000 elephants, respectively. 

In total one third of Africa’s elephants can be found into the dense forest of the Congo 

Basin in central Africa, which ranges from Camerooit Gabon, Equatorial-Guinea, Congo, 

Central African Republic, and DRC, and almost all elephants from those areas are forest 

populations (Blake, 2007).
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1.4.2 Ecology- Habitat / Diet

Forest elephants are often documented to be generalist feeders because they consume a 

wide variety of plants. Their feeding behaviour depends largely on the seasonal 

availability of food. Forest elephants, for instance, in Lope National Park (Gabon) have a 

diet comprising of, at least, 307 separate items, most of which are leaves and bark (White 

et al., 1993). Fruit is also an important part of the diet in tropical forest habitats. At least 

72 species of fruits are consumed at Lope (White et al., 1993) and elephants need to 

move in small groups to be able to access patchily available resources. This contrasts 

with the diet of eastern and southern savannah elephants where grasses dominate.

The diet in a population may be influenced by the specific needs of younger versus older 

individuals and by females versus males (Momont, 2007). In the coastal habitat at 

Loango NP (Gabon), elephants consumed fruits of at least 49 species (Morgan & Lee,

2007). Studies by Barnes et al. (1991) and OHvier(1978) showed that both African and 

Asian elephants have a preference for secondary forests. Elephants are attracted to this 

type of forest by the greater diversity of food plants, which grow faster and have less 

toxins and tannins (Barnes et al., 1991). The study by Barnes et al. (1991) also found 

higher concentrations of elephants in marshes during the dry season. In Lope National 

Park (Gabon) where both forest-savannah mosaic and savannah marsh habitat can be 

found, females with their dependant offspring have been shown to have a high preference 

for savannah habitat (Momont, 2007).

In addition, high densities of elephants in Lope regularly used marantaceae forests to feed 

on herbaceous plants (White et al., 1993) and forests where the tree Sacoglottis 

gabonensis is the dominant species during fruiting (Momont, 2007; White, 1994). Gallery 

forests and woodlands are also used for feeding on leaves and small shrubs. Momont’s 

(2007) study suggested that elephants at Lope strategically use their diverse habitat 

according to their food needs with seasonal shifts. He mentioned that at Ivindo National 

Park, elephants move between their core area in mature forest and the clearings to feed on 

mineral salts (Turkalo & Fay, 1996; White et al., 1993). Hence, elephant movements are
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driven by food availability in different types of habitat and by seasonal fluctuations. They 

structure their habitats by creathg network of paths (Turkalo & Fay, 1996) which are 

used regularly for long distance migrations and for foraging (Vanleeuwe & Gautier-Hion,

1998).

1.4.3 Reproduction

A long-term and complete study of elephant life history could take over six decades as 

elephants are long-lived mammals with a relatively long period before sexual maturity 

and a slow rate of reproduction (Moss, 2001). Elephants, as with most mammals, are 

polygynous: males mate with several females (Sukumar, 2003). Puberty in the male 

occurs (both Asian and African) between eight and 15 years of age while sexual maturity 

occurs between two to three years later (Sukumar, 2003). Sexual maturity in the bull 

elephant dictates its social behaviour. An adult bull secretes a fluid from its temporal 

gland and may constantly trickle urine. This phenomenon is called musth and has been 

well documented in Asian elephants since ancient times (Sukumar 2003). The adult male 

in musth lives a period of intense aggression toward other males and has a sexual interest 

in oestrous females. Asian and African elephants in musth express the same variable 

behaviours, postures, vocalizations and urine excretion (Sukumar, 2003). There is at least 

one bull in musth at any given time of the year (Sukumar, 2003). Musth, as well as tusks, 

may act as sexual characters that influence female choice of mates (Sukumar, 2003). In 

the African female elephant, puberty is attained somewhere between 9-18 years of age, 

with 12 years being the average (Moss, 2001) while in the Asian elephant puberty in the 

cow is estimated to occur between 16 and 18 years (Spinage, 1994).

The interval between birth and the next conception varies from nine months to about four 

years in the African savannah elephant (Moss, 2001) and is between 3.5 and 4 years in 

forest elephants at Dzanga clearing in CAR (Turkalo & Fay, 2001). Pregnancy lasts 

between 20 and 22 months and elephants usually bear a single young. Weaning is a very 

gradual process, which begins during the first year of life. The African cow has a
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reproductive life until the age of 52 or a total period of 40 years (Spinage, 1994) with a 

maximum female lifetime of 65 years (Moss, 2001).

1.4.4 Social structure

The elephant is considered to have one of the most advanced mammalian social 

organizations (Sukumar, 2003). The size of elephant groups (close spatial associations of 

members of a population) is a product of social evolution, habitat features, resource 

availability and dispersion, seasonality, and levels of human disturbance (Sukumar, 

2003). The basic unit of the elephant social structure is the mother-offspring association. 

This is the most common family unit for forest elephants at Lope NP and Dzanga 

clearing (Turkalo & Fay, 2001; White et al., 1993a). Males are generally solitary. The 

mean group size in forest elephants is 2.7 to 3.1, excluding solitary individuals (Dudley 

& Mensah-Ntiamoah, 1992; Merz, 1986; Morgan, 2007; Turkalo & Fay, 1996; Turkalo & 

Fay, 2001; White et al., 1993b), which is generally smaller than those recorded in 

savannah populations (Douglas-Hamilton, 1972; Rugiero, 1989). In Amboseli National 

Park, the mean group size was 15.1 during a drought year when food was scarce and 45.9 

in a rainy year with abundant food (Moss, 1988) This can be characteristic of a fission- 

fusion social system. In other mammals, members of the same group form frequently 

changing subgroups, for instance in wild communities of chimpanzees (Lehmann & 

Boesch, 2004) and orang-utans (Van Schaik, 1999). The major benefit to grouping is 

principally social with mating opportunities, protectio n and socialization of infants (Van 

Schaik, 1999). In savannah areas elephants tend to aggregate when fresh grass is 

abundant (Moss, 1988; Rugiero, 1989; Western & Lindsay, 1984) unlike forest elephants 

which do not aggregate even when their preferred food is available and abundant 

(Turkalo & Fay, 1996). Further, sub-adults and juveniles of both sexes have been 

observed roaming without familial ties (Turkalo & Fay, 2001).

Most African populations show a higher number of adult females than males, which may 

be due to selective human hunting. However in the Dzanga population in Central African 

Republic, Turkalo and Fay (2001) observed that the number of females and males visiting
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clearings were almost equal (733:665), which may indicate that both sex are equally 

hunted.

The social group allows the development of social interactions between young calves and 

between calves and older elephants. These interactions can be friendly or unfriendly, 

particularly when involving males associated temporarily with a group, and tend to 

initiate aggressive behaviour toward young elephants (Turkalo & Fay, 1996). In Dzanga 

clearings, certain young males rejoin their maternal groups occasionally and do not 

remain consistently in any group. While they are in the clearing they associate 

temporarily for few minutes to a day (Turkalo & Fay, 1996). The interactions between 

individuals include a wide repertoire of informative acts, which are used to communicate 

(Sukumar, 2003). These include physical, visual, auditory, and chemical signals. Studies 

in east and southern Africa have revealed coordinated movements of elephant groups and 

the maintenance of contact using inffasonic calls over distances up to 5 km (Poole et al., 

1988). Minerals in bais (clearings) attract elephants but possibly social activity is also a 

major attraction (Turkalo & Fay, 1996). Young elephants can learn about interaction 

activities, females have a better chance to be inseminated by prime bulls, and males can 

establish a dominance hierarchy. This social behaviour, in general, is expressed in a 

familiar area that is determined by the movement of the matriarch. In savannah elephants, 

it has been demonstrated that the oldest female or matriarch, which leads the family units, 

is the repository of enhanced discriminatory abilities of the whole group (McComb et al., 

2001), which may derive to a higher fitness benefits for female groups, an access to 

resources, a lower risk of predation/conflict with humans by avoiding unprotected areas, 

and a lower expenditure of energy during the dry season (Wittemyer et al., 2007). This 

social discrimination could harm the family group, as matriarchs are mainly the target of 

hunters or poachers because of their large size (McComb et al., 2001). Given that in 

forest, there is no predation beside humans (Turkalo & Fay, 2001), food is patchy though 

abundant in fruiting season, forest elephants are more optimally spread in small numbers 

in order to avoid food competition (Turkalo & Fay, 2001).
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1.4.5 Movements

The ranging behaviour of elephants is strongly influenced by their need for water and 

forage of a certain type and quality. In habitats with low and medium-rainfall, from desert 

through to semi-arid savannahs and woodlands to deciduous forests, the home-range of 

elephants shrinks in the dry season and increases during the wet season (Sukumar, 2003). 

Knowledge of elephant movement in tropical rain forests is very limited. The study in 

Dzanga NP revealed that in the Dzanga Sangha-Nouabale Ndoki complex, elephants 

migrate from the north-west to the south-east in an annual cycle (Blake et al., 2001). One 

female African forest elephant was tracked by GPS telemetry in the rain forest of the 

Dzanga-Sangha region of CAR and Congo, and ranged over 880 kn^ within a year. In 

Waza National Park (Cameroon), Tchamba et al (1995) estimated a mean range of 785 

km2 for resident females and 2,775 km2 for migrant females. A tracked mother with her 

infant migrated 2000 km back and forth across the Ndoki forest from Dzanga bai (Central 

African Republic) to Goualougo Triangle (Congo), whereas a small female in Ivindo 

National Park had a home range of 52 km? (Blake, 2007). However both elephants 

walked around 6.5 km per day, a comparable distance to that (7.2 km) recorded in a study 

by Momont (2007) of elephants in Lope.

Migration appears to be correlated with diet (Turkalo and Fay, 1996; White, 1994) and 

there are regular tracks as opposed to evidence of random movements in the forest 

(Vanleeuwe & Gautier-Hion, 1998). A similar regular migration was observed in 

savannah elephant populations in northern Kenya (Thouless, 1995). Their movements 

were associated with rainfall between dry and wet seasons. At Odzala, Nouabale-Ndoki 

and Dzanga-Sangha National Parks in Congo and CAR, long distance elephant 

movements, were associated with visits to forest clearings for mineral deposits and 

Marantaceae forests for herbaceous plants as well as fruit (Blake & Inkamba-Nkulu, 

2004; Turkalo & Fay, 1996; Vanleeuwe & Gautier-Hion, 1998). Turkalo & Fay (1996) 

indicated that forest elephant males may be more mobile and migrate from greater 

distances than females, and probably form the migratory segment of the population and 

that bull elephants can create their own “home range” when they disperse. Tracked
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elephants, at both Lope and Langoue bai (Ivindo National Park, Gabon), ranged on 

average 445 km2 and 615 kirf, respectively (Momont, 2007), much lower than the ranges 

mentioned above. Momont summarized all previous observations in ranging behaviour 

but because each study used different methods, a statistical comparison was not made.

1.4.6 Poaching and habitat loss

Elephant populations declined in the 1970s and 1980s because of poaching for ivory 

(Blake et a l , 2007; Stiles, 2004) and approximately 700,000 were killed for ivory trade 

around the world (Douglas-Hamilton, 1989). The status ofsavannah elephant populations 

is apparently stable or increasing with generally low poaching rates in Eastern, Southern 

and western Africa (Blanc et al., 2003). On the other hand, the status of forest elephants 

in Central Africa is poorly known because of the difficulties to monitor and the lack of 

logistic necessary for reliable population surveys (Walsh & White, 1999). Barnes et al 

(1995)’s survey shows Gabon to have one of the largest elephant populations on the 

continent with an estimate of 61,800 ± 20,200 elephants, although there are significant 

factors, which currently threaten the integrity of those populations. Human population 

growth, industrial logging, road and infrastructure expansion, all increase hunting 

pressure (Naughton-Treves & Weber, 2001; Wilkie & Laporte, 2001). Some studies show 

that roads had significant negative impact on forest elephants as the level of road 

avoidance increases with hunting pressure (Blake et al., 2007; Laurance et al., 2006). 

Elephant poaching was the heaviest in Central and Eastern Africa between 1979-2002 

(Stiles, 2004) while Southern African elephant populations were growing. Despite the 

1989 CITES ban of the African elephant ivory trade, elephant populations continued to 

decline in some countries such as the Central African Republic, Democratic Republic of 

Congo and Sudan (Blake et a l , 2007; Blanc et al., 2003; Fay & Agnagna, 1991), 

showing that other poaching determinant factors exist, such as the lack of law 

enforcement, political stability and good governance (Blake et a l, 2007; Stiles, 2004).

Forest cover in Central Africa is close to 2 million km2 (Blake, 2007) and the Congo 

Basin was believed to be a vast and inaccessible refuge for elephants compared to West
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Africa where elephants have been persecuted for their ivory for centuries. West African 

elephants were accessible to humans thanks to roads and railways, which led to their 

eradication following hunting, forest destruction and fragmentation, and human 

population expansion (Blake, 2007). In Central Africa the situation seems to be the 

opposite with a larger number of elephants inside a remote vast and dense forest, and a 

low human population size (Blake, 2007), though little is known on the status of central 

African forest elephants (Barnes et al., 1991; Blake et al., 2007). This is in contrast to its 

savannah counterpart, which has been studied intensively for almost three decades 

(Barnes et a l , 1991). In 2003-2004, a regional survey was carried out by the Monitoring 

of the Illegal Killing of Elephants (MIKE) Programme with the goal of providing 

information needed for elephants. The results of the programme showed that forest 

elephant numbers and range have drastically declined around the last twenty years 

(Blake, 2007). In 1999, a 2000 km continuous survey called the Megatransect, passed 

through six protected areas from Northern Congo to the Gabonese coast. One of the aims 

of the Megatransect was to provide information on diversity and abundance of large 

mammals (Fay, 1999). The Megatransect survey revealed that elephants were more 

abundant inside protected areas than in the surrounding forest and also showed a positive 

relationship between abundance and increasing distance from the roads (Fay, 1999). 

Barnes (1991) found the same relationship in Gabon as did Stromayer & Ekobo (1992) in 

Southeastern Cameroon, and they proposed that present-day elephant distribution is 

mostly governed by the distribution of human activities not by the vegetation.

1.5 Justification of the study

After many years of neglect the forest elephant has recently regained the spotlight after a 

series of genetic studies advocated species status (Roca et al., 2001), rather than being a 

subspecies of African elephant. Currently the IUCN does not recognize this species 

status, and still lists the forest elephant as Loxodonta africana cyclotis. Morphologically, 

socially and ecologically, L. a. cyclotis, is very distinct from its savannah relative. 

Cranial, ear and tusk morphology, in addition to overall body size and weight (Grubb et
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al., 2000), differentiate these two taxa, as do group size, diet and habitat, yet most of our 

conceptions of elephants are based on the larger, more spectacular and more accessible 

savannah elephant of the plains of eastern and southern Africa (Kingdon, 1997). Urgent 

calls for more extensive genetic studies to resolve the taxonomic status of forest elephant 

types have recently been made (IUCN, 2002).

The status o f the forest elephant appears critical, as both habitat destruction and poaching 

seriously threaten its existence. Countries with low population densities and / or 

extensive forest cover become key habitat areas for the forest elephant, such as Gabon 

(White et al., 1993b), Republic of Congo (Fay & Agnagna, 1991), the Democratic 

Republic of Congo (Alers et al., 1992) and the Central African Repub lie (Fay, 1981). The 

dense vegetation of the tropical rain forest renders visual contact with forest-dwelling 

mammals difficult and unpredictable. The discovery of forest clearings (Turkalo & Fay, 

2001) has rendered the forest elephant visible and revolutionized our understanding of 

forest elephant socio-ecology. It plays an important role in determining the structure and 

species composition of tropical forests (White et al., 1993b). The loss of the elephant 

from tropical forests would therefore have profound effects on this ecosystem.

In order to improve conservation efforts, we need an improved understanding of their 

social organization, migration patterns, and the genetic variability within and between 

central African populations, which can only be brought about through the application of 

non-invasive genetic techniques. Genetic studies on L. a. cyclotis will also reveal 

important information on the evolution of elephants in Africa, since it appears that the 

ancestral type resided in forests and that adaptation to drier habitats is relatively recent 

(Kingdon, 1997). Given the current interest in forest elephants as a potentially new 

species, and the lack of information on basic ecology and demographics of populations, 

and the fact that non-invasive genotyping has made considerable progress recently in 

producing reliable methods for generating phylogenetic and phylogeographic data, it was 

timely to initiate a study examining the genetic variability within and between 

populations of the forest elephant across varying ecological settings within their tropical 

rainforest habitat in Central Africa.
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1.6 Genetics

There are a variety of molecular markers, which were used to study population and 

evolutionary genetics of a wide range of organisms, incorporating also conservation 

genetic studies of endangered species (Anthony et al., 2007b; Bruford et a l , 1996; 

Fernando et a l, 2003b; Goossens et a l, 2005; Taberlet, 1996; Zhanet a l, 2006).

1.6.1 Choice of molecular marker

Polymerase Chain Reaction using non-invasive samples.

The invention of the Polymerase Chain Reaction (PCR) revolutionized molecular biology 

and the entire field of population biology allowing researchers to amplify very small 

quantities and any desired fragment of DNA from almost any biological source including 

dung (Fernando et a l, 2000; Johnson et a l, 2007; Kohn & Wayne, 1997; Zhane/ al, 

2006; Zhan et a l, 2007), hairs (Anthony et a l, 2007b; Clifford et a l, 2004; Jeffery et a l, 

2007), plants (Bom et a l,  2006; Muloko-Ntoutoume et a l, 2000), feathers (Segelbacher, 

2002; Taberlet & Bouvet, 1991); museum material (Moodley & Bruford, 2007; Yang et 

a l, 1996) and even fossils up to several thousands of years old (Cooper & Drummond, 

2004; Cooper & Poinar, 2001; Gilbert & Wilson, 2004; Thomas et a l, 2000).

PCR also comes with several disadvantages including mis- incorporation of nucleotides, 

recombination among the amplification products, failure of PCR reactions for many 

reasons and contamination issues resulting in interpretive errors. Some PCR problems 

occur due to the small quantities of DNA used during genetic typing of ancient samples, 

forensic samples, museum specimens, hair, and faecal samples of free ranging animals. 

These non-invasive samples, usually from species of conservation concern, generate (i) 

the possibility of not detecting alleles in individuals and (ii) the problem of PCR- 

generating false alleles (Taberlet et a l, 1996). As PCR is powerful enough to amplify
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small target DNAs millions of times, it is essential to avoid degraded or contaminated 

template. More and more experimental procedures have been developed to produce 

reliable genotyping results (Fernando et al., 2003a; Goossens et al., 2000; Goossens & 

Waits, 1998; Morin et al., 2007; Taberlet et al., 1996).

Mitochondrial DNA (mtDNA)

Genetic markers such as mtDNA have been widely utilized in phylogeography since the 

late 1970s, and since the advent of molecular techniques genetic analysis has become 

more feasible, cheaper, and less time consuming. Animal cells contain several hundred 

mitochondria each comprising a circular DNA molecule of 15-20 kilobases (kb) in length 

and composed of 37 genes coding for 22 tRNAs, 2 rRNAs, and 13 mRNAs, a “Control 

Region” (CR) or Dloop of about 1 kb, which initiates replication and transcription 

(Avise, 1994). The entire mtDNA genome is involved in the coding function without 

introns, large families of repetitive DNA and pseudogenes.

Animal mtDNA is maternally inherited (from mother to offspring) in most species but 

several exceptions to strict maternal inheritance are known, for example marine mussels 

(Mytilus) where “paternal leakage” is common (Avise, 1994). In addition, mtDNA does 

not recombine and is passed from mother to offspring as a single entity therefore making 

it especially useful as a genetic marker.

Gene arrangement is generally stable in mtDNA but some variation can appear that 

distinguishes higher animal taxa. Mitochondrial DNA normally evolves rapidly at the 

sequence level, and control region has a high mutation rate and is highly variable, 

allowing us to specifically trace female lineages, or migration patterns and also to 

distinguish taxa (Frankhamet al., 2003).

The biology of the mitochondrion differs substantially from the nuclear genome and this 

affects the pattern and process of its evolution. For example, the mitochondrial genome is 

about only 0.00055% of the total human genome in size so it is untenable to infer general
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patterns from a small particular fraction of the genome (Ballard & Whithlock, 2004). The 

mitochondrial and nuclear genomes have other differences such as the ploidy, mode of 

inheritance, degree of recombination, number of introns, effective population size, and 

mutation rate (Scheffler, 1999). Ballard and Whithlock (2004) assert that the lack of 

recombhation in mtDNA means that the entire molecule has a single history determined 

by mutation and selection, and that can infer only one part of the true story of the species 

since mtDNA is a haploid genome and is usually maternally inherited. In the last three 

decades, mtDNA was the main tool for inferring the evolutionary and demographic past 

of both populations and species. However, in recent years, researchers in molecular 

ecology and phylogeography have demonstrated an increasing awareness that this single 

molecule alone will not always be sufficient to answer the many interesting questions 

asked of it (Ballard & Whithlock, 2004; Moodley et al., 2008). Many studies have 

combined both mitochondrial and nuclear microsatellite DNA markers to assess genetic 

diversity and population genetic structure of wild African species such as the plains zebra 

(.Equus quagga) (Lorenzen et a l , 2008), the African malaria vector, Anopheles arabiensis 

(Temu & Yan, 2005), and also wild fish species in North American coast such as the 

striped bass (Morone saxatilis) (Brown et al., 2005).

Nuclear integrations o f mitochondrial DNA (Numts)

The nuclear genomes of most multicellular organisms contain integrated fragments of 

mtDNA (Zhang & Hewitt, 1996). Such insertions may be inadvertently amplified and 

mistaken for organelle DNA when mtDNA sequences from samples such as hair, are 

amplified by PCR. Several studies have reported the existence of Numts (Anthony et al., 

2007a; Clifford et al., 2004; Clifford et a l,  2002; Gamer & Ryder, 1996; Horai & 

Hayasaka, 1995). Greenwood and Paabo (1999) reported that in Asian elephant, hairs 

amplify a majority of nuclear mtDNA sequences due possibly to a higher ratio of nuclear 

genomes to mitochondrial genomes in hair than in blood. Thus, the amplification of 

Numts may lead to misleading results when samples such as hair (perhaps other unusual 

tissues) are used. In the same paper, Greenwood and Paabo (1999) advised the cloning of 

PCR products whenever direct sequencing yields ambiguous results (Eggert et al., 2002).
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However, to date no pseudogenes have been reported in genetic study of elephants based 

on mtDNA markers (Barriel et a l , 1999; Debruyne, 2005; Eggert et al., 2002; Fernando 

et a l, 2003b; Nyakaana et a l, 2002; Roca et a l, 2005).

Microsatellite DNA

Microsatellites are sequences predominantly found in the nuclear genome. Microsatellite 

loci consists of a short tandem repeat (or STR) of mostly di-, tri-, or tetranucleotide units, 

which can be highly variable, giving numerous alleles at each locus within a population. 

Population variation is often much higher at STR loci than with mtDNA due to the high 

mutation rate of microsatellites (about 10'3 or 10'4 per locus per gamete and per 

generation). PCR primers allow the screening of genotypes at specific STR loci, by 

displaying the co-dominant alleles in simple electrophoretic systems. These alleles can be 

separated using electrophoresis on acrylamide gels according to size.

Microsatellites have advantages over other DNA markers as they combine high 

variability with biparental co-dominant inheritance (suitable fcr introgression studies, for 

example) and they can be typed following non-invasive sampling (Frankham et a l, 

2003). They provide one of the most powerful and practical means currently available for 

analysing genetic diversity in threatened species. However it should be borne in mind that 

primers developed in some species may detect lower levels of variation among species 

that are not closely related (Primmer et a l, 1996).

1.7 An overview on African elephant genetic studies

The first genetic study carried out on elephants examined the molecular phylogeny of 

extant and extinct Elephantidae, including one forest elephant from Sierra Leone, using 

the cytochrome b mitochondrial gene (Barriel et a l, 1999). The analysis showed that the 

single L. a. cyclotis sample used was highly divergent from L. a. africana, but they did 

not conclude that they were separate species. Roca et a l (2001) then examined DNA
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sequence variation in four nuclear genes (1732 base pairs) from 21 elephant populations 

(four forest and 17 savannah) and based on their data, estimated that forest and savannah 

elephants diverged approximately 2.63 (± 0.94) million years ago. Comstock et al., 

(2002) examined 16 microsatellite loci and found a lower genetic diversity in savannah 

elephants compared to the forest elephants. As with Roca et al (2001), they found 

evidence for hybridization in Garamba (a forest site in north-east of the Democratic 

Republic of Congo, DRC) where one elephant possessed intermediate genotypes from 

forest and savannah forms. Despite this possible “hybrid zone” they recognised the 

species-level distinctions between African taxa. One drawback of these studies was the 

absence of West African elephant samples, since Groves (2000) suggested that forest and 

savannah elephants found elsewhere on the continent coexist and can interbreed in this 

region of West Africa.

Frankham et al. (2003) defined the introgressionas the mixture of alleles between species 

or sub-species. Introgression is particularly important for closely related sympatric taxa 

where hybridization is more likely and viable hybrids can be formed (Rokas et al., 2003). 

Horizontal transfer of haplotypes through introgression is possible where reproductive 

barriers between lineages are incomplete. Rokas et al. (2003) called this transfer 

‘ introgressive hybridization’, because haplotypes from different species from, for 

example, a given glacial refuge are more similar than individuals of the same species 

across refuges.

Molecular studies using mtDNA including the mtDNA data from the study by Roca et al. 

(2005) point to a more complex evolutionary scenario for African elephants. Debruyne 

(2005) examined several thousand base pairs of mtDNA from wild bom elephants from 

across Africa and although he also reported two highly divergent molecular lineages, 

these did not conform to the morphological delineations of cyclotis and africana. He 

interpreted these results as a consequence of incomplete isolation between forest and 

savannah African elephant populations, followed by recurrent and ongoing introgression 

between the two forms. Debruyne (2005) also performed morphometric analysis of 

museum elephant skulls, and found a continuum in the morphology of the two
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morphotypes rather than two groups, suggesting that, despite historical events that 

promoted subdivision, these two forms freely interbreed wherever their ranges intersect

Roca et al. (2005) obtained very similar mitochondrial results but explained the non­

concordance between mitochondrial and nuclear markers as a result of “cytonuclear 

genomic dissociation'1'' such that the mitochondrial tree did not reflect the species tree. 

The mtDNA results observed were proposed to have arisen due to episodes of 

backcrossing between successive generations of savannah males with forest females, 

leading to half of extant savannah elephants surveyed possessing ‘forest’ typical 

mitochondrial haplotypes but almost exclusively ‘savannah’ nuclear X and Y- 

chromosomal DNA. According to Roca et a l (2005), larger savannah males out-compete 

forest males when they come into contact, consequently forest males and hybrids would 

be reproductively disadvantaged and a dilution or limited spread of forest nuclear 

sequences in many savannah elephants. Based on this phenomenon of cytonuclear 

dissociation, Roca et al., (2005) concluded that African forest and savannah elephants are 

distinct species separated by a hybrid zone.

Eggert et al. (2002) included samples from West Africa in their study time and found a 

more complex picture using mtDNA and nuclear microsatellites, and suggested that 

western savannah and forest elephants formed a potential third Loxodonta taxonomic 

unit.

All the above-mentioned studies are characterised by a pronounced lack of forest 

elephant sequences. The nuclear DNA studies of Roca et al. (2001, 2005), Comstock et 

a l (2002) and Wasser et al., (2004) featured extremely limited sampling from central 

African forest elephant populations. Despite describing a narrow hybrid zone between the 

two elephant types only one population located in this zone (Garamba, DRC) was 

included and none from elsewhere in DRC or from West Africa were examined. 

Elsewhere, Debruyne (2005) included elephants from across the DRC in his study but 

was again limited by small sample sizes. Eggert et al. (2002) included samples of forest 

and savannah elephants from West Africa but subsequent analysis (Debruyne, 2005) with
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more populations grouped these elephants with central forest counterparts, potentially 

undermining the conclusion of the genetic uniqueness of western elephants. To date, no 

study has addressed the partitioning of elephant genetic diversity on a large scale in the 

equatorial forests of Africa. Further, the potential effect of Pleistocene forest refugia, 

previously reported as having a major influence on large mammal (Anthony et al., 

2007b) distribution and range dynamics has yet to be addressed in African elephants.

1.8 Hypotheses and aims

Part of my study examines hypotheses to explain the evolutionary history of Central 

African forest elephants, and to determine their genetic structure and gene flow across 

their range of distribution. The forest elephant is a highly mobile animal that is 

widespread throughout tropical forests in central Africa (IUCN, 2005). It is physically 

able to disperse through wide ranges of habitats and migrate over long distances with no 

obstruction from ecological and geographical barriers. Further, this animal is assumed to 

live in strong matrilineal social groups characterised by female philopatry as with its 

savannah counterpart. Male-biased gene flow, widely recognised in mammals 

(Greenwood, 1980; Slatkin, 1985), would lead to homogenization of nuclear alleles while 

the maternally inherited mitochondrial marker should detect any population structure 

present (Nyakaana & Arctander, 1999).

Currently, little is known about forest elephant social behaviour. Our best knowledge of 

its social structure would lead us to predict that:

• Low levels of genetic differentiation, based on nuclear microsatellite markers, 

should be observed among populations since the extent of gpne flow is related to 

the dispersal potential of individuals (Slatkin, 1987) which has been observed to 

be high in male forest elephants while

• Mitochondrial (maternally inherited) DNA should show greater genetic 

subdivision among populations because of more limited female dispersal.
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• Alternatively, since females and their dependents can also potentially move over 

large distances (Blake, 2007) mitochondrial haplotype admixture is expected to be 

detected between adjacent and very distant populations and a limited relationship 

between geographical and genetic structure should be found.

• The distribution of mitochondrial lineages in forest elephants in the Congo Basin 

is expected to reflect climate-mediated forest fragmentation and concomitant 

allopatric divergence during the Pleistocene. Climate change is known to have 

influenced the evolutionary history of many African mammals such as gorillas 

(Anthony et al., 2007b; Clifford et a l , 2004), hippopotamus (Okello et al., 2005a) 

and many African bovids (Arctander et al., 1999; Flagstad et al., 2001; Nersting 

& Arctander, 2001; Van Hooft et al., 2002) Hence, forest elephant is likely to 

exhibit a complex evolutionary and demographic history related to climatic 

variation.

My study used DNA obtained non-invasively from faeces of forest elephants from 

Central Africa. The overall aim of this research project was to assess the genetic structure 

of forest elephant populations by investigating genetic diversity and gene flow, using 

mitochondrial and microsatellite DNA markers (Chapters 3 and 5). Further, the status and 

phylogeography of the African elephant will be assessed across its range of distribution 

(Chapter 4 and published article in Appendix). Mitochondrial DNA has a greater ability 

to detect population genetic structure at large geographical scales while microsatellites 

are more useful in detecting admixture, introgression and dispersal. Mitochondrial and 

microsatellite data in combination can provide different levels of resolution and more 

valuable complementary information of the evolutionary history of the African elephant.

The mitochondrial genome and microsatellite loci used in this study were equivalent to 

those in previously published studies, allowing us to examine forest elephant sequences 

with the largest possible sample set within the largest geographic coverage.
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Chapters in this study are all self-contained with their own reference lists. Tables and 

figures are inserted in each Chapter’s text. All appendices are found at the end of the 

thesis.

Chapter 4 has been published in BMC Evolutionary Biology (Johnson et al., 2007), and 

is attached at the end of the thesis.
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CHAPTER 2

Materials and Methods 

2.0 Abstract

This chapter describes the sampling approach, laboratory procedures and general data 

analysis approaches in the thesis. Non-invasive samples, such as faeces have been shown 

to be suitable and reliable for population genetic studies, and were the only option for 

sampling African forest elephants in this study. Mitochondrial DNA (mtDNA) and 

microsatellites were selected as molecular markers to reveal the genetic structure of the 

forest elephant populations sampled. A 630 base pair (bp) fragment of mtDNA control 

region was amplified for the phylogeographic study, with twelve polymorphic 

microsatellite loci.

2.1 Study sites

This study included twelve sites across the Congo basin (see Figure 2.1,). Sites were 

located in Gabon, Republic of Congo and the Central African Republic (CAR). The study 

sites include those of the Lope National Park and the Langoue saline bai in Gabon, 

Nouabale-Ndoki National Park in Congo and Dzanga-Sangha saline bai in CAR. Each 

location has a different predominant forest type (Table 2.1), from swamp forest to 

savannah-forest mosaic, including saline clearings surrounded by canopy forest where 

forest elephants congregate (Figure 2.2).
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Figure 2.1. Study sites in west central Africa.
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2.2 Sampling strategy

Sampling was carried out in collaboration with a number of organisations. The Wildlife 

Conservation Society (WCS Gabon, Congo, and CAR) was the principal field partner 

being well established in the region. The NGO “Habitat Ecologique et Liberte des 

Primates (HELP)” was also a main partner in Congo in the Conkouati-Douli National 

Park. Sampling was carried out from mid-February to mid-July 2004. Each sampling 

team was supplied with tubes (about 30-50 per site) containing RNAlater (QIAGEN 

buffer for RNA preservation but suitable for DNA) or silica gel. The WCS office in 

Libreville, Gabon provided a convenient and important central point for sampling 

organisation as it was the meeting point of all collaborators and is a very important centre 

for conservation in central Africa with many different conservation organisations basing 

their offices there. CITES permits were not necessary for faecal samples, however the 

appropriate permits from the Centre of Documentation (CEDOC) were obtained when 

exporting samples abroad. Authorisations from the Ministry of the Water and Forestry in 

Gabon, CAR and Congo were obtained.
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Table 2.1. Description of each site with habitat type (see Figure 1), and partner in charge 

with sampling in the locality. NP = National Park; CIRMF = Centre International de 

Recherche Medicale in Franceville (Gabon); WCS = Wildlife Conservation Society; 

CENAREST = Centre National de la Recherche Scientifique et Technologique (Gabon); 

HELP = Habitat Ecologique et Liberte des Primates (Congo), MEF = Ministere des Eaux et 

Forets.

Site Country Habitat type Partner Code
Lope, NP Gabon Forest-savannah mosaic CIRMF, WCS LOP

North of Ogouee River Gabon Closed canopy forest CIRMF NOG
Waka, NP Gabon Closed canopy forest WCS WAK
Ivindo, NP Gabon Saline clearing within forest WCS IVI
Monts de Cristal, NP Gabon Closed canopy forest WCS MDC

Rabi-Ndogo, NP Gabon Closed canopy forest WCS RAB

Nyonie Gabon
Mangroves and lagoons, seasonally 

inundated and coastal forest

CENAREST,

CIRMF
NYO

Loango/Mayumba NP Gabon
Mangroves and lagoons, seasonally 
inundated and coastal forest

Project Loango, 
WCS, MEF

LOA

Plateaux Bateke, NP Gabon Degraded forest CIRMF, WCS PBA

Conkouati-Douli, NP Congo
Seasonally flooded and swamp 
forest

HELP, WCS CKT

N ouabale -Ndoki NP Congo Lowland rainforest WCS NN

Dzanga-Sangha NP CAR Saline clearing within forest WCS CAR
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Saline clearingForest-savannah mosaic

Closed canopy forest

Lowland forest inundated Mangroves and lagoons, coastal

Figure 2.2. Different forest types where forest elephants congregate
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2.2.1 Sample collection and training of field researchers.

It was essential to provide training on how to correctly collect elephant dung samples. A 

handout was prepared (see Appendix 1) after several samples were received from the 

field, which were over-filled and the medium was inadequate to preserve the sample 

which became mouldy or were incorrectly labelled and thus useless as the geographic 

origin was unknown. Practical training was given to field researchers in Conkouati- Douli 

National Park, Congo (23 April-2 May 2004), and in Lope National Park, Gabon (20-23 

June 2004) (Figure 2.3).

Figure 2.3: Mireille Johnson giving practical training to field research assistant.

2.2.2 Non-invasive sampling

It is essential that methods for DNA analysis are sensitive and specific enough to be able 

to detect host DNA in different types of sample (e.g. faeces, skin, muscle or blood). Field
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workers cannot usually use blood-derived products for molecular analysis, as this 

requires direct intervention with the animal, which is neither ethical nor practical (Morin 

& Woodruff, 1996; Taberlet et al., 1999). Molecular scatology has become the method of 

choice for most field studies (Kohn & Wayne, 1997), and much research has focused on 

improving the reliability of results generated from DNA analysis when the source 

material yields a small amount of DNA (Fernando et al., 2003; Flagstad et a l, 1999; 

Gerloff et al., 1995; Morin et al., 2001a; Reed et al., 1997). Field samples are subject to a 

variety of conditions, which degrade the small amounts of DNA present in the sample. 

Field collection techniques have focussed on preserving the sample and reducing the 

action of degrading enzymes before the sample reaches the laboratory (Frantzen et al., 

1998; Wasser et al., 1997).

Using dung from elephants as a source of DNA should in theoiy provide sufficient 

material for analysis, as elephants defecate up to 20 times per day (White & Edwards, 
2000) and fresh dung piles are relatively easy to locate, even in dense forest. The brown 

dots in Figure 2.4 are flies, which are good indicators to find hidden dung piles and were 

often used to help locate samples.

Figure 2.4. Collection of forest elephant dung sample in central African rainforest. 

A fresh dung pile detected thanks to small flies (dots on the picture).
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2.2.3 Dung sample preservation

Faecal collections commenced in 2002 and samples were available from early 2003. 

Faeces were first collected in a variety of different ways: into silica gel, 95% ethanol or 

RNAlater (Ambion). Samples considered fresh were between 0 to 24 hours old and were 

shiny (due to the presence of a mucus layer) when collected. An initial test was carried 

out to check the best preservation medium and the age of the dung (results not shown). 

We collected samples from the same dung pile and stored them in each medium (silica 

gel, ethanol and RNAlater) and also collected samples from dung piles of different ages 

from 5min to 200 hours in order to determine the best storage medium, the easiest 

method for field transportation and the optimal for quality of DNA extract. We stopped 

using ethanol because it easily leaks and evaporates in the field. Good quality of dung 

sample mainly depends of its age (< 24h). The best media we finally used for dung 

collection were silica gel and RNAlater. However, we used ethanol when both former 

were not available. Nyakaana et al (2002) and Eggert et al (2002) preserved their laecal 

and/or tissue samples in 25 % dimethylsulfoxide (DMSO) saturated with sodium chloride 

(Amos & Hoezel, 1991).

2.2.4 Extraction

Faecal, blood and tissue extraction facilities and techniques had already been established 

at CIRMF for primate species and protocols were developed at UGENET (Darwin 

Initiative: Conservation Biology and Genetics of Lowland Gorillas). Consequently no 

pilot study was needed. We used a laboratory dedicated to the extraction of faecal 

samples with a biological safety hood and another laboratory available for blood, tissue 

and hair extraction with the aim of avoiding cross-contamination between faecal samples 

and the other types of samples.

53



Faecal extraction

Faecal samples were extracted with the QIAmp® DNA Stool Mini Kit (QIAGEN, 

Germany, catalogue number 51504) following the manufacturer protocol’s with samples 

stored in RNAlater buffer, samples on silica gel were dry and need a longer incubation 

time (>lh) in the lysis buffer until the sample was well soaked.

Before each extraction process, the spatially isolated laboratory was decontaminated: the 

bench was sterilized with bleach (10%) and equipment inside the hood was exposed to 

UV-light (>30 minutes). Each sample was extracted twice. One blank sample (negative 

control) was used per sample batch, and care was taken to avoid cross-contamination 

between different samples. Instead of eluting in 200 pi water as recommended by the 

QIAGEN protocol, the DNA was eluted in a final volume of 150 pi to concentrate the 

extracted DNA.

Blood and skin tissue extraction

Opportunistic blood/skin samples were collected during captures to attach radio-collars. 

DNA from blood and ear skin of forest elephants were sampled at Lope National Park, 

Langoue saline bai and Iguela in Gabon. Two skin samples from Mpassa, Plateaux 

Bateke National Park (South-East) in Gabon were collected from corpses (a mother and 

her infant). Blood sample extractions were carried out using a standard 

phenol/chloroform protocol (Sambrook et al., 1989) and DNA was eluted in 50 pi water. 

Skin samples were extracted with QIAamp® DNA Mini kit (QIAGEN) and eluted in 100 

pi of sterile water (Sigma).
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2.3 Molecular techniques

2.3.1 Mitochondrial DNA (control region and cytochrome b) sequencing

A 630 bp fragment of mtDNA was analysed, including the 3’ end of the cytochrome b 

gene, threonine and proline transfer RNAs and 358 bp of the control region. This region 

was amplified using the primers MDL3 and MDL5 (see primer sequences Table 2.2) 

(Fernando et al., 2000) from good quality DNA. As DNA extracted from non-invasive 

samples can be highly degraded, only short DNA fragments could be amplified reliably 

and primers (Table 2.2) AFDL1 and AFDL2 (400 bp from the 3’end of the cytochrome b 

gene through the 5’ end of the control region), and AFDL3 and AFDL4 (377 bp from the 

3’ end of tRNA proline to the 5’end of the control region; Eggert et al. 2002) were 

employed. In addition only DNA from fresh dung piles (less than 24 hours) was 

attempted.

A 494 bp fragment of cytochrome b was also used in this study. This part of the gene was 

amplified with the primers L I5024 and H I5516 (Barriel et al. 1999).

Table 2.2: Primer sequences for PCR amplification and direct sequencing for control 

region and cytochrome b gene.

Primer Sequence Literature reference

MDL3 5 ’ - CCC AC AATT AAT gggCCCgg AgCg- 3 ’ Fernando et al. 2000

MDL5 5 ’ - TT AC AT g AATT ggC AgCC AACC Ag- 3 ’ Fernando et al. 2000

AFDL1 5 ’ - TT AC ACC ATT ATCggCC AA AT Ag- 3 ’ Eggert et al. 2002

AFDL2 5 ’ -TgAC AC ATT gATT AAAC AgT ACTT gC- 3 ’ Eggert et al. 2002

AFDL3 5 ’ - CTTCTT AAACT ATTCCCT gC AAgC -3 ’ Eggert et al. 2002

AFDL4 5 ’ - gTT g AT ggTTTCTCgg AggT Ag- 3 ’ Eggert et al. 2002

LI 5024 5 ’ -TCT gCCT ATAC AC AC AC ATT ggA- 3 ’ Barriel et al. 1999

H15516 5 ’ -TAgTT gTC AgggTCTCCT AgT- 3 ’ Barriel et al. 1999
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Amplification

PCR reactions were performed in a final volume of 25 pi containing 2 pi of DNA extract, 

2 pi 100 mg/ml BSA, 2 pi reaction buffer, 1.25 mM of dNTP mix, 0.5 pi of 10 pM 

primers, 0.2 pi of Taq DNA polymerase (Invitrogen) and 14.55 pi of water. 

Amplifications for control region were carried out in a Perkin Elmer 9700 programmable 

DNA thermocycler as follows: a denaturation step for 4 min at 95°C followed by 40 

cycles of 94°C denaturation for 45 sec, primer annealing at 63°C for 45 sec and 1 min of 

primer extension at 72 °C. For cytochrome b, amplifications were carried out following a 

denaturation step for 3 min at 94°C with 40 cycles of 94°C denaturation for 1 min, primer 

annealing at 55°C for 1 min and 2 min of extension at 72 °C. PCR products were 

visualized under UV light on a 1.5 % agarose gel stained with 0.5 pg/ml ethidium 

bromide. Extraction blanks and reaction blanks containing only PCR reagents were also 

included in order to control for potential contamination.

Sequencing

PCR products were purified using the Qiaquick PCR Product purification kit (Qiagen, 

Germany catalogue number 28104) following the manufacturer’s instructions and were 

either cloned into the PCR2.1-TOPO vector (TOPO TA cloning kit, Invitrogen, catalogue 

number K4500-40) prior to sequencing with M l3 Forward (-20) and M l3 reverse primers 

or directly sequenced using the PCR primers. Thirty pi of purified PCR product was sent 

via DHL to Europe and later to South Korea to be sequenced commercially (Sequentia, 

France, and Macrogen, South Korea).

Several published elephant haplotypes of known geographic provenance were also 

included in the phylogenetic analyses. These sequences are available in Genbank under 

the accession numbers indicated in Appendices 2 and 3. A collaborator from Makerere 

University, Uganda, Silvester Nyakaana (SN) kindly provided 27 unpublished 

cytochrome b sequences (see Appendix 3).
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Cloning

Selected PCR products were cloned to test for the presence of nuclear copies. As had 

been found by Eggert et al. (2002), nuclear integrations of mitochondrial sequences or 

Numts were suspected which could lead to erroneous interpretations of the data. Numts 

have already been described in the elephant (Greenwood & Paabo, 1999) Nyakaana et al. 

(2002) carried out RT-PCR in order to check for nuclear copies although they had no 

reason to suspect pseudogenes in their study. Phylogenetic analysis of the control region 

revealed 4 major groupings (described in Chapter 4). Two individuals from each 

mitochondrial group were selected and between five and 10 clones (depending on the 

cloning yield (45.5%)) were sequenced. If multiple (nuclear or heteroplasmic 

mitochondrial) copies were present, some distinct sequences among individual clones 

would be expected, but all clones were identical to the original sequence.

2.3.2 Microsatellite analysis

Screening

A battery of 37 microsatellite loci (Table 2.3) has been characterised for both African and 

Asian species (Archie et al., 2003; Comstock et al., 2000; Eggert et al., 2000; Nyakaana 

& Arctander, 1998; Nyakaana et al., 2005). They were all tested to see if they amplified 

robustly and were polymorphic with forest elephant faecal samples. Each microsatellite 

locus was amplified in order to optimise the PCR reaction, then to define the annealing 

temperature and the number of cycles appropriate for each locus. The screening process 

was carried out with a PCR reaction conducted in a 10 pi volume containing 5 pi of 

QIAGEN Multiplex PCR Master Mix (from QIAGEN® Multiplex PCR Kit), 1 pi of the 

10X primer mix (0.2pM of each primer, forward and reverse), 2pl of DNA, lpl of 0.5X 

Q-Solution (provided in the kit) and 1 pi of water. The amplification profile consisted of 

a denaturation step at 95°C for 15 min, followed by 35-45 cycles of 94°C denaturation for 

30 sec; 1.5 min of primer annealing from 55 °C to 60°C and 1.5 min of primer extension at 

72°C, depending of the primer. Control extraction blanks and PCR reaction controls for
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which no DNA was added were included in each batch of amplifications. Five faecal 

DNA samples were chosen randomly to be screen with each locus. PCR products were 

run on a Spreadex® ready-to-use gel using an Elchrom™ SEA2000 electrophoresis 

system with M3 marker for Spreadex® gels. They were stained with ethidium bromide 

and visualised using UV light.

Table 2.3. Microsatellite primers selected from the literature and used for forest elephant 

screening.

Locus Fluorescent dye Size range (bp) Author

FH1 HEX 81 Comstock et al., 2000

FH19 6FAM 185 Comstock et al., 2000

FH39 NED 242 Comstock et al., 2000

FH40 6FAM 243 Comstock et al., 2000

FH48 NED 178 Comstock et al., 2000

FH60 6FAM 148 Comstock et al., 2000

FH65 5TET 241 Comstock et al., 2000

FH67 6FAM 97 Comstock et al., 2000

FH71 NED 69 Comstock et al., 2000

FH127 6FAM 150-174 Comstock et al., 2002

FH153 NED Comstock et al., 2002

LA2 HEX 227-241 Eggert et al., 2000

LA4 5TET 117-137 Eggert et al., 2000

LA5 5TET 130-154 Eggert et al., 2000

LA6 6FAM 158-214 Eggert et al., 2000

LAFMS01 5TET 189-204 Nyakaana & Arctander, 1998

LAFMS02 HEX 134-154 Nyakaana & Arctander, 1998

LAFMS03 6FAM 140-150 Nyakaana & Arctander, 1998

LAFMS04 6FAM 143-159 Nyakaana & Arctander, 1998

LAFMS05 Unlabeled 160 Nyakaana & Arctander, 1998

LAFMS06 Unlabeled 138-156 Nyakaana et al., 2005

LAFMS07 VIC 154-170 Nyakaana et al., 2005
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LAFMS08 Unlabeled 175-189 Nyakaana et al., 2005

LAFMS09 Unlabeled 144-160 Nyakaana et al., 2005

LAFMS10 Unlabeled 108-116 Nyakaana et al., 2005

LAFMS11 Unlabeled 130-136 Nyakaana et al., 2005

LAT05 VIC 255-307 Archie et al., 2003

LAT06 Unlabeled 281-366 Archie et al., 2003

LAT07 VIC 340-398 Archie et al., 2003

LAT08 VIC 166-234 Archie et al., 2003

LAT13 Unlabeled 234-262 Archie et al., 2003

LAT16 Unlabeled 295-327 Archie et al., 2003

LAT17 Unlabeled 323-355 Archie et al., 2003

LAT18 Unlabeled 286-318 Archie et al., 2003

LAT24 Unlabeled 211-231 Archie et al., 2003

LAT25 6FAM 298-318 Archie et al., 2003

LAT26 6FAM 352-392 Archie et al., 2003

Multiplex constitution

Sixteen microsatellite loci, consisting of both di- and tetra- nucleotide repeats, were 

polymorphic and fulfilled the conditions of annealing temperature, number of cycles and 

size range in order to make four multiplexes designated M l, M2, M3 and M4 (Table 2.4). 

Each multiplex was assembled taking into account the allele size (from the original study) 

and the non-overlap of fragment sizes for loci labelled with the same fluorescent dyes. 

After the screening process, four tetra-nucleotide loci (LAT07, LAT25, LAT26, LAT05) 

were removed from the study because of difficulties in amplification. Okello et al (2005) 

in their study successfully amplified these tetra-nucleotides, though they observed a 

higher error rate in the tetra-nucleotide than di-nucleotide microsatellite loci.
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Genotyping criteria

Specific conditions were followed for genotyping. PCR was carried out for each locus on 

each extraction at least twice. Given the initial number of samples (roughly 400 samples 

from eight populations), time and financial considerations prevented us from typing each 

individual as many time as recommended Taberlet et al., (1996) when genotyping nuclear 

loci of very low DNA samples. Their study suggested three positive PCR to assign 

heterozygous individual and four additional positive PCR for homozygous and further 

experiments for individual with ambiguous results. Given the use of the QIAGEN 

multiplex kit, which significantly improves the PCR conditions and increases the yield of 

DNA amplified and the power of recent automated sequencers and efficient genotype 

software analysis the PCR success rate of microsatellite loci used in this study was high, 

with an average of 61% success per locus genotyped. Therefore alternative criteria were 

used instead of those recommended by (Taberlet et al., 1996). An individual was typed as 

heterozygous if both alleles appeared at least twice within the four replicates, and a 

homozygous was typed if it appeared at least three times otherwise it was repeated one 

more time or eliminated. PCR products were run on an ABI 3740 XL (Applied 

Biosystems/Perkin-Elmer), automated genetic analyser with LIZ 500 standard size 

(Applied Biosystems/Perkin-Elmer) by a commercial company, Macrogen, in South 

Korea.
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Table 2.4. Panel of microsatellite multiplexes with the fluorescent dye of each locus used 

for screening in this study. The size range was from the original study.

Multiplex Locus Repeat motif Dye ° C x cycles Allele size Authors

Ml FH39 Di-nucleotide NED 55 ° C x 38 242 Comstock et al. 2000

FH67 Di-nucleotide 6-FAM 97 Comstock et al. 2000

FH127 Di-nucleotide 6-FAM 340-398 Comstock et al. 2002

LAT07 Tetra- 

nucleotide

VIC 298-318 Archie et al  2003

LAT25 Tetra- 

nucleotide

6-FAM 69 Archie et al  2003

M2 FH71 Di-nucleotide NED 58 ° C x 37 142 Comstock et al. 2000

LAFMS03 Di-nucleotide 6-FAM 154-170 Nyakaana & Arctander, 

1998

LAMS07 Tetra- 

nucleotide

VIC 352-392 Nyakaana et al. 2005

LAT26 Tetra- 

nucleotide

6-FAM 148 Archie et a l  2003

M3 FH60 Di-nucleotide 6-FAM 60 ° C x 37 158-214 Comstock et al. 2000

LA6 Di-nucleotide NED 166-234 Eggert et al. 2000

LAT08 Tetra- 

nucleotide

VIC 185 Archie et al  2003

M4 FH19 Di-nucleotide RED 60 ° C x 40 243 Comstock et al. 2000

FH40 Di-nucleotide 6-FAM 178 Comstock et al. 2000

FH48 Di-nucleotide NED 255-307 Comstock et al. 2000

LAT05 Tetra- 

nucleotide

VIC Archie et al. 2003

Dye colors: NED:yellow, 6-FAM: blue; VIC: green; RED: red
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2.4 Data analysis

2.4.1 Mitochondrial DNA

Sequence alignment

Forward and reverse sequences for each individual and the consensus sequences for all 

individuals were aligned using SEQUENCHER (Gene Codes Corporation 1998, version 

3.1.1) and rechecked by eye. All consensus sequences saved in a file were converted into 

NEXUS format and used for appropriated analyses.

Genetic diversity

Genetic diversity was estimated using haplotype (h) and nucleotide ip) diversity indices 

as implemented in ARLEQUIN ver. 3.11 (Excofflere/ al., 2005). Haplotype diversity is 

defined as the probability that two randomly chosen haplotypes in a sample are different 

(Nei, 1987), and nucleotide diversity is the probability that two randomly chosen 

homologous nucleotides are different (Nei, 1987).

Genetic differentiation and analysis o f  molecular variance (AMOVA)

Populations were defined according to their geographical locality. Genetic differentiation 

between pairs of localities was tested using the exact test using 10,000 Markov chain 

steps, as implemented in ARLEQUIN ver. 3.11, and this program was also employed for 

nested analysis of molecular variance (AMOVA) to test for patterns of population genetic 

structure (Weir & Cockerham, 1984). The correlation among haplotype distances is used 

as an F- statistic analog (Phi) at various hierarchical levels where the total variance is 

partitioned into covariance components due to inter-individual differences, and/or inter­

population differences. In the case of a simple hierarchical genetic structure consisting of 

haploid individuals in populations (such as is generated using mitochondrial DNA), the 

implemented form of the algorithm produces a fixation index PhisT. In the case of a
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hierarchical genetic structure with nested groups of populations, the significance of the 

fixation indices is tested using a non-parametric permutation approach described in 

(Excoffler et al., 1992), consisting of permuting haplotypes within populations among 

groups (Phisr), permuting haplotypes among populations within groups (Phisc), and 

permuting populations among groups (Phtr).

Phylogenetic relationships

Hamming distances, which are the sum of nucleotide differences between two sequence 

types (Bandelt et al., 1999), was used to derive a median joining network (MJN) with the 

program NETWORK V4.1.1.1. Haplotype networks more effectively portray the 

relationship among sequences for populations within species than maximum likelihood or 

maximum parsimony phylogenies which are the traditional methods developed to define 

interspecific relationships, leading to poor resolution at the population level (Posada & 

Crandall, 2001). Furthermore, networks allow multi-furcations and also permit 

geographic location to be used to infer topological positioning of haplotypes in a 

phylogeny (Crandall & Templeton, 1993).

However, a phylogenetic analysis was also carried out with MODELTEST 3.06 (Posada 

& Crandall, 1998) to determine the substitution model (or model of evolution) that best 

fitted the data according to a hierarchical likelihood ratio test. Sequences were analyzed 

by the neighbor-joining (Saitou & Nei, 1987) method implemented in PAUP 4.01b 

(Swofford, 1998) using the appropriate model. Node support was tested using 1000 

bootstrap replicates. A phenogram was constructed using Neighbor-Joining (Saitou & 

Nei, 1987). A bootstrap consensus tree was inferred fom 1000 replicates (Felsenstein, 

1985). Branches corresponding to partitions reproduced in less than 50% bootstrap 

replicates were collapsed and the percentage of replicate trees in which associated taxa 

clustered together is shown next to the branches.
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Analysis o f population demography

Tests were performed to detect evidence of past demographic change in central African 

forest elephants. ARLEQUIN ver. 3.1 was used to perform a pairwise haplotype 

mismatch distribution in the total sample and for the haplogroups identified by the MJN 

analysis, comparing the distribution of the observed pairwise nucleotide site differences 

with the expected distribution in an expanding population (Rogers & Harpending, 1992). 

In a single origin, demographically expanding population, mismatches should follow a 

unimodal Poisson distribution, whereas in ppulations at demographic equilibrium or 

with sub-groups or genetic substructure, the distribution is expected to be multimodal. 

The mismatch distribution also allowed estimation of the time of the demographic 

expansion event by calculating the value of three parameters assuming that an initial 

female population at equilibrium with a size 0 = 0o, grows rapidly to a new size at which 

0 = 0i, and this burst of growth is assumed to occur tau (c) units of mutational time 

before the present (Rogers & Harpending, 1992). The goodness-of fit was tested for the 

observed data to a simulated model of expansion with the sum of square deviations (SSD) 

and the Harpending’s raggedness index r which takes larger values for multimodal 

distributions found in stationary population than for unimodal and smoother distributions 

typical of expanding populations (Rogers & Harpending, 1992). Population history was 

inferred using Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) tests of neutrality to 

examine whether all mutations are selectively neutral. A negative value of Tajima’s D 

statistic reflects a relative excess of low-frequency polymorphisms (Tajima, 1989), and 

Fu’s Fs, which is a powerful test for rejecting the hypothesis of neutrality of mutations 

(Fu, 1997), tends to be negative when there is an excess of recent mutations. Both tests 

can therefore be used to detect the signal of a demographic expansion, where low 

frequency mutations are expected.

2.4.2 Nuclear microsatellite loci

Several genetic studies of wild animals have relied on the use of non-invasive samples 

(Clifford et al., 2004; Clifford et al., 2002; Gamer & Ryder, 1996; Morin et al., 2001b).
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Hence, faecal samples provide a reliable source of genomic DNA for population studies 

(Flagstad & Roed, 1999; Goossens & Waits, 1998; Wasser et a l , 1997). However, there 

is may be an impact on genotyping results due to genotyping errors with samples 

containing degraded and/or tiny amount of DNA (Morin et a l , 2001b; Wandeler et a l , 

2003). Samples used in this study were obtained non-invasively (dung collection) and 

were therefore likely to contain low and/or degraded DNA quality. In this case, incorrect 

genotypes can be scored due to an allele failing to amplify (Miller & Waits, 2003), large 

allele drop out or short allele dominance (Wattier et a l , 1998) or slippage during PCR- 

amplification (Shinde et a l , 2003). Such genotyping errors must be detected prior to 

following population genetic analyses as they can cause bias in differentiation estimators 

such as F st and genetic distance (Chapuis & Estoup, 2007; Dakin & Avise, 2004). A 

variety of programs can help detecting genotyping errors such as MICRO-CHECKER

2.2.1 (Van Oosterhout et a l, 2004). This software was used in this study to identify 

genotyping errors (null alleles, large allele dropout, and scoring of stutter peaks).

Genetic diversity analysis

GENETIX 4.05 (Belkhir et a l, 1998) was used to perform all standard population genetic 

analyses: mean number of alleles per locus (A), allele frequencies differentiation between 

populations at each locus, gene diversity (He) and observed heterozygosity (H0). 

Heterozygote deficiency was tested, as compared to Hardy-Weinberg equilibrium for 

each locus. Deviation from Hardy-Weinberg equilibrium were tested calculating Weir & 

Cockerham’s estimate of Fis(Weir & Cockerham, 1984) for each locus and also globally, 

using GENETIX with 1000 permutations. Significant positive values of fis indicate 

heterozygote deficiency, and significant negative values indicate heterozygote excess. 

Genotypic linkage disequilibrium was performed for each pair of loci per population and 

across all populations using ARLEQUIN 3.1.1.

Genetic differentiation between populations was determined by estimating Wright’s Fsr 

statistics (Weir & Cockerham, 1984; Wright, 1951), using GENETIX, and pairwise 

estimates of gene flow between populations were calculated using the same program. To
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test for correlations between genetic and geographical distances (isolation by distance) a 

Mantel test was performed using ARLEQUIN. F s t  was used as the genetic distance and 

linear distances (km) measured from a map between population locations were used as 

geographic distances. Values of the correlation (r) and probability (p) were obtained after 

10000 permutations.

Analysis o f molecular variance

We examined the hierarchical genetic structuring based on an analysis of molecular 

variance (AMOVA; Excoffier et a l, 1992), as executed in ARLEQUIN. AMOVA 

measures the partitioning of variance at different levels of population subdivision 

(individuals into populations and populations into groups), giving rise to an analogue of 

F -statistics called <E> -statistics. The different genetic variance components (within 

populations and among populations) were estimated for the whole sample.

Population structure and genetic admixture analysis

The genetic structure of the forest elephant population was investigated using a clustering 

method based on Bayesian model: STRUCTURE version 2.2 (Falush e/ al., 2003; Falush 

et al., 2007; Pritchard et al., 2000). The number of populations is treated as an 

unknown parameter processed by the Markov Chain Monte Carlo (MCMC) 

computations. STRUCTURE was used as it is the standard reference software to infer 

population structure and assign individuals to source clusters (or jointly to two or more 

clusters in cases of admixture) using multilocus genotype data. Both, no-admixture and 

admixture models assume there is Hardy-Weinberg equilibrium and linkage equilibrium, 

but in this study the admixture model was considered as it is more likely that in practice 

each individual may have recent ancestor in more than one population (Falush et al., 

2003). Unlike Pritchard et al. (2000) who assumed a model with independert allele 

frequencies in different populations, Falush et al. (2003) recommended a correlated allele 

frequencies model which would be more accurate and may improve performance on
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cases with subtle population structure. This method also includes studying hyb rid zones, 

identifying migrants and admixed individuals. STRUCTURE’S procedure consists in 

running several MCMC with different values for K  populations in order to cluster 

individuals into populations and estimate, for the admixture model, the proportion of 

membership in each population for each individual. Several runs for each K, from K = 1 

to 10, were performed in order to verify the consistency of the results. The mean posterior 

probability, which is the mean value of the log likelihood of the data at each step of the 

MCMC, was calculated for each K  over its runs and was also used to identify the true 

number of populations K  using the maximum value of the mean likelihood.
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CHAPTER 3

Population genetic structure of forest elephants in west central 

Africa based on mitochondrial DNA control region variation 

3.0 Abstract

The genetic diversity and structure of the African forest elephant was investigated for the 

first time in 12 populations from Gabon, Congo and the Central African Republic using 

mitochondrial DNA control region sequences. Our results reveal relatively low nucleotide 

diversity (0.013 ± 0.007) and high haplotype diversity (0.95) in forest elephant 

populations. Despite the sometimes large geographical distances between sampled 

populations, very low genetic divergence was observed between most groups. Haplotypes 

were distributed with little restriction to geographical localities, indicating high levels of 

gene flow. Two divergent haplogroups, illustrated by a bimodal distribution of pairwise 

differences in the control region, implies that secondary contact and ongoing 

introgression has occurred between populations expanding from at least two putative 

refiigia formed whe n the central African forest belt retracted during the last glacial period 

in Central Africa.

3.1 Introduction

During the late Quaternary, cyclical climatic fluctuations are believed to have had a 

substantial impact on the distribution and range dynamics of many African taxa (Maley, 

1996). The arid climate experienced at this time led to the retraction of tropical forest into 

a few favourable regions, forming refugia and fostering allopatric divergence between

74



isolated populations of the fauna and flora associated with these isolated regions (Grubb, 

2001). Unlike certain forest-dwelling species such as gorillas, that are restricted to closed 

canopy forest and do not occur in forest-savannah mosaic habitats (Tutin et al., 1997; Yu 

et al., 2004), forest elephants seem to be a less restricted and more dispersive species, 

with a wide range of associated habitats including flooded forest, swamps, savannah, 

forest/savannah mosaic, gallery forest and closed canopy forest (Momont, 2007; Morgan 

& Lee, 2007; Tutin et al., 1997; White, 1994).

Very little has been reported in the literature about forest elephant movements, social 

behaviour and structure until the last decade when researchers started using Global 

Positioning System (GPS) telemetry to track the movements of individuals (Blake et al., 

2001), and discovered forest clearings ,known as bais (Turkalo & Fay, 1996a) which 

allow direct observations and studies on social behaviour. While GPS telemetry, today, 

gives a high level of detail on daily and seasonal movements of forest elephants (Blake et 

al., 2001), genetic studies have been almost entirely lacking and are needed to support 

and complement such ecological data.

Migrations in forest elephant appear to be correlated with diet (Turkalo & Fay, 1996; 

White, 1994) since elephants can move over long distance to visit forest clearings for 

mineral deposits, Marantaceae forests for herbaceous food and fruit found in mature 

forest (Blake & Inkamba-Nkulu, 2004; Turkalo & Fay, 1996b; Vanleeuwe & Gautier - 

Hion, 1998). These movements provide regular tracks in the forest (Vanleeuwe & 

Gautier-Hion, 1998) . Similar regular migrations have been observed in savannah 

elephant populations, northern Kenya (Thouless, 1995) where their movements are 

associated with rainfall between dry and wet season ranges. Forest elephant bulls, in 

Dzanga-Sangha National Park, are more mobile than females and migrate further 

(Turkalo & Fay, 1996b), however Blake et al. (2001) reported a collared female in 

Noubale-Ndoki National Park (NNNP, Congo) crossing an international border from 

NNNP to Dzanga-Sangha National Park (DSNP, south Central African Republic) moving 

a straight line distance of 60 km. They suggested that the movements observed may not 

be seasonal migration but short-term displacements within a range. Larger movements
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may occur over regional areas between Central and Eastern Africa and between Central 

and West Africa (Blanc et a l , 2007) . In addition, cross-border movements are known to 

occur between Congo, Gabon, Cameroon, and Equatorial Guinea (Blanc et al., 2007). 

Some studies shown that avannah elephants are not confined in designated protected 

areas (Douglas-Hamilton et a l , 2005; Thouless, 1995) but they move through 

unprotected corridors between their favourite core zones (Douglas-Hamilton^/ a l , 2005). 

The same movement patterns have been observed with forest elephants in Cameroon 

(Nzooh et a l , 2005). Home range or migratory movements in savannah elephants are 

determined by the availability of resources (Douglas-Hamilton et a l , 2005; Thouless, 

1995), which are as sparse in forest (for fruiting trees) as they are in many savannah 

habitats (for primarily water sources) (Blake et a l , 2001). Water is not a range limit 

factor in the forest, unlike in the savannah where large seasonal fluctuations occur. Thus, 

forest elephants have the ability to cover long distances in response to geographic 

distribution of resources over a large spatial scale (White, 1994). However, poaching for 

meat and ivory and habitat loss may disturb these continuous movements, though it is 

difficult to determine the impact that these threats may be having on forest elephant 

populations (Blanc et a l , 2007) because of the difficulties of monitoring in forest and the 

lack of infrastructure necessary to monitor elephant populations (Walsh & White, 1999). 

Human activities (poaching, logging, oil concessions, villages and roads) have been 

found to strongly influence elephant dispersal patterns (Barnes et a l , 1991; Blake et al., 

2007; Buij et a l, 2007; Laurance et a l,  2006). Blake et a l (2007) showed that the 

probability of elephant presence increased with distance to roads whereas human signs 

declined. Consequently, these factors might also influence social and population structure 

of elephants.

To date, no molecular studies have assessed the patterns of population genetic structure 

for forest elephants in central Africa. Analysis of mtDNA has provided important insights 

into understanding genetic diversity and population structure in African savannah 

elephants (Charif et a l, 2005; Muwanika et a l, 2003; Nyakaana & Arctander, 1999; 

Nyakaana et a l,  2002), Asian elephants (Fernando et a l, 2000), and several other key 

African mammal species such as wildebeest (Arctander et al, 1999); gorillas (Anthony
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et al., 2007; Clifford et a l, 2004), hartebeest (Flagstad et al., 2001) and bushbuck 

(Moodley & Bruford, 2007)

Nyakaana et al (1999) revealed how poaching and habitat loss have strongly affected the 

genetic diversity of elephant populations in Uganda using mitochondrial and nuclear loci. 

They found a significant genetic differentiation between their three remaining 

populations, which are presently restricted in protected areas suggesting limited gene 

flow. However, they have reported high levels of heterozygosity and negative local 

inbreeding (Fis) values. They explained this result in terms of male-biased gene flow, and 

a social organisation where most matings involved females and unrelated males, since 

males at sexual maturity are expelled from their natal group. The same study also 

revealed a low level of nucleotide diversity (1.4 %) compared to other large mammals in 

East Africa. In 2002, Nyakaana et al. studied the population structure of the African 

savannah elephant in a regional scale using the same molecular markers. They observed 

2.0 % nucleotide diversity and 85 % haplotype diversity, and found a significant genetic 

differentiation between populations within and among regions. The nucleotide diversity 

was lower than other largp African mammals such as Grant’s gazelle and buffalo which 

have 10.9% and 5.0%, respectively (Arctander et al., 1996; Simonsene/ al., 1998). They 

reported that Pleistocene refugia could explain the observed regional genetic subdivision 

as a result to population divergence in allopatry with recent admixture following 

population expansion. The evolution of many other large African mammals has also been 

influenced by climatic change during the Pleistocene (Anthony et al., 2007; Arctander et 

al., 1999; Clifford et al., 2004; Flagstad et al., 2001; Muwanika et al., 2003; Okello et al., 

2005).

Bottlenecks or declines in population size are known to affect present chy genetic 

diversity. Intense poaching pressure in Ugandan parks has been reported to affect the 

genetic diversity of several species (Muwanika et al., 2003). Molecular narkers have 

proved to be valuable in describing extreme reductions in nucleotide diversity using 

mitochondrial DNA. They also have depicted a social behaviour breakdown in 

populations, which have suffered stress led by severe poaching in the past (Nyakaana et
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al., 2001). In the light of factors such as migration, habitat loss or social stress, and 

Pleistocene climate change, which are known to govern the social and population 

structure in several well studied large African mammal populations, including savannah 

elephants, I could ask the question, what we would expect to discover in forest African 

elephants populations?

(i) Since these elephants can move very long distances, high levels of gene flow between 

different sampled sites and local admixture would be expected.

(ii) The contraction and expansion of the forest in the Congo Basin during the Pleistocene 

has likely played an important role in the evolutionary history of African forest elephant 

populations, and the genetic signature of these events are expected to be detected using 

mtDNA, such as evidence for recent population expansions from refugial areas within the 

region.

In this study, the geographical distribution of genetic variation within forest elephants in 

central Africa was examined to shed light on the population genetic structure and 

evolutionary history of this group.

3.2 Materials and Methods

3.2.1 Samples

Tissue and faecal samples were collected from 12 sites in west central Africa (Table 3.1; 

Figure 3.1, and see Appendix 4 for sample details). The geographic locations are: Gabon: 

LOP, Lope National Park (NP); LOA, Loango NP; RAB, RabkNdogo NP; WAK, Waka 

NP; IVI, Ivindo NP; PBA, Plateaux Bateke NP; MDC, Monts de Crystal NP; NOG, 

North of Ogooue River in Lope NP area; NYO, Nyonie, north Wonga-Wongue Reserve; 

Republic of Congo: CKT, Conkouati-Douli NP and NN, Nouabale-Ndoki NP; CAR,
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Dzanga-Sangha NP in Central African Republic.

Samples were stored in RNAlater (Ambion RNAlater® and Qiagen RNA later™), 100% 

ethanol or silica gel, and DNA was extracted from faecal, blood and tissue samples using 

the QIAamp DNA stool mini kit (Qiagen, Hilden, Germany, catalogue #51504), and the 

Dneasy Blood & Tissue kit (Qiagen, Hilden, Germany, catalogue # 69504), respectively 

following the manufacturer’s protocol.
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Table 3.1. List of sample sites, site code, site number, country of origin and the 

number of samples analysed per site. Sample details are shown in Appendix 4.

Site Site code Site No. Country No. of samples

Lope LOP 1 Gabon 11

Ivindo IVI 2 Gabon 16

Loango LOA 3 Gabon 8

Monts de Cristal MDC 4 Gabon 2

Waka WAK 5 Gabon 5

Plateaux Bateke PBA 6 Gabon 11

Rabi RAB 7 Gabon 8

Nyonie NYO 8 Gabon 1

North Ogooue NOG 9 Gabon 8

Dzanga-sangha CAR 10 CAR 16

Conkouati CKT 11 Congo 1

Nouabale-Ndoki NN 12 Congo 9
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igure 3.1. Map of Congo basin showing the sampling areas. The geographic locations are described 

s: LOP, Lope National Park (NP); LOA, Loango NP; RAB, Rabi-Ndogo NP; WAK, Waka NP; IVI, 

/indo NP; PBA, Plateaux Bateke NP; MDC, Monts de Crystal NP; NOG, North of Ogooue River in 

ope NP area; NYO, Nyonie, north Wonga-Wongue Reserve; CKT, Conkouati Douli NP; NN, 

louabale-Ndoki NP; and CAR, Dzanga-Sangha NP.
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3.2.2 Laboratory procedures

The control region section was amplified in 96 samples using primers MDL3 and MDL5. 

Primers AFDL1 and AFDL2 (situated 400 bp from the 3’end of the cytochrome b gene 

through to the 5’ end of the control region), and AFDL3 and AFDL4 (situated 377 bp 

from the 3’ end of proline tRNA to the 5’end of the control region) were employed to 

gain overlapping sequence fcr some degraded samples. Amplifications were performed as 

described in Chapter 2.

3.2.3 Analysis of genetic diversity and differentiation

Genetic diversity for the total sample and individual populations was estimated using 

haplotype ifi) and nucleotide f?) diversities as implemented in ARLEQUIN ver. 3.1 

(Excoffier et al., 2005). A median joining network (MJN) was estimated using 

NETWORK 4.1.1.1 (Bandelt et al., 1999). Genetic differentiation among populations for 

the entire data set was analysed, by implementing a simple hierarchical analysis of 

molecular variance (AMOVA, Excoffier et al., 2005, as executed in ARLEQUIN version 

3.1.). AMOVA was also tested to confirm the subdivided groups defined by MJN. The 

hierarchy yields three sources of variation: among groups, among populations within 

groups and among populations between groups. To evaluate the amount of population 

genetic structure, we estimated pairwise genetic differentiation (Phi^r) among all 

populatbns studied based on the number of differences observed between haplotypes, 

using ARLEQUIN. The statistical significance of Phi-statistics was estimated using 1000 

permutations.

A phylogenetic analysis was carried out using HKY 85 + G + I (Hasegawa et al., 1985), 

the best-fit model selected by MODELTEST 3.06 (Posada & Crandall, 1998) with an 

assumed proportion of invariable sites (I) of 0.93 and a shape parameter of the gamma 

distribution of 0.58. The program ARLEQUIN 3.1 was used to implement a Mantel test 

of the correlation between Phisr and geographic distance by permutation (Smouse et al., 

1986), for the entire data set and the subdivided groups defined by MJN. The significance
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of the observed correlation between these two distances matrices was assessed using 

1000 permutations. Linear geographic distances were measured between the defined 

populations since forest elephants are not known to be constrained in their movements by 

elevation or rivers.

3.2.4 Analysis of population demography

ARLEQUIN was used to compute mismatch distributions (Rogers & Harpending, 1992) 

based on a sudden population expansion model for the total sample and the main groups 

of forest elephants defined by MJN. Demographic expansion parameters 0o, 0i (size of 

population before and after population growth) and x (expansion time) were also 

estimated (Rogers & Harpending, 1992). The same program was used to test fcr the 

selective neutrality with Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997). Details are in 

Chapter 2.

3.3 Results

3.3.1 Sequences and haplotype analysis

Twenty-four polymorphic sites, comprising 21 transitions, three transversions, and no 

insertions/deletions were observed. Thirty-two haplotypes (Table 3.2; Figure 3.2 a) were 

defined of which 34% (HOI to H07 and H20, H22, H25, H27) were shared between more 

than one population and the remaining 66% (H08 to H19 and H21, H23, H24, H26, H28 

to H30 and H32) were observed only once. PBA (site 6) possessed the highest number of 

unique haplotypes (H08, H09, H24, H28, H30), followed by IVI, (HI6, H I8, HI9, H32) 

and CAR (HI3, H21, H23, H29). Three, four and 13 haplotypes were locality specific in 

Congo, CAR, and Gabon respectively. Two haplotypes (H20, H27) were shared between 

NN and CAR localities, and only NOG from Gabon (site 9) shared two haplotypes, H22, 

H25, with CAR and NN, respectively. Haplotype H04 had the highest frequency (13.5%)
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and occurred in 50% (six) of the populations studied. Thirty-four percent of the 

haplotypes only occurred in IVI (site 2; n = 16) with 21 % in CAR (site 10; n = 16) and 

they shared no haplotypes. Haplotype HOI was widely distributed in Gabon but not in 

CAR and Congo.
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able 3.2. Description of the haplotypes distribution between sampled populations.

1 Haplotype LOP IVI LOA MDC WAK PBA RAB NYO NOG CAR CKT NN Total
1 4 1 1 2 9

H02 3 5
H03 3 1 2 1 10
H04 4 1 2 4 1 1 13
H05 1 2
H06 1 1 2
H07 1 2 3
H08 1 1
H09 3 3
H10 3
HI 1 1
H12 1
H 1 3 1
H14
H15

1
1
1H16

H17 . 1
H18 1 1
H19 1 1

111 6
4

7
4

H22 1 4
H23 2 2
H24 1
H25 1 2
H26 1 . 1
H27 1 6
H28 1
H29 1 1
H30 . 1
H31 1 1
H32 1 . 1

Total 11 16 8 2 5 11 8 1 8 16 1 9 96
Different 4 11 3 1 2 8 7 1 4 7 1 5
Unique 1 4 1 0 0 5 1 1 1 4 1 2
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Figure 3.2. Geographic distribution of 32 haplotypes (a) representing by different colours 

and detailed in Table 1; and (b) the distribution of both haplogroups A (in black) and B 

(in grey). The size circle is proportional to the number of sequences at each site and 

number inside each circle is the site number defined in Table 1.
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The median joining network (Figure 3.3) generated in this study revealed two main 

haplogroups (A and B) but no major groupings consistent with a defined geographical 

location. Haplogroup A (n = 53) and Haplogroup B (n = 43) were geographically 

overlapping and spanned from northeastern Congo and southern CAR to almost all sites 

in Gabon, except haplotypes from MDC, NOG and CKT that only occurred in 

Haplogroup B (see also Figures 3.2 a and b. Sites 4, 9 and 11 and haplotypes from WAK 

and NYO did not possess haplogroup B (see also Figure 3.2, sites 5 and 8). Fifty-eight 

percent of all the individuals in Haplogroup A were sampled at the Gabon sites and 42 % 

from NN and CAR localities. However, only 9 % of individuals in Haplogroup B were 

sampled in Congo and CAR sites with the remaining 91 % mainly being sampled in IVI 

and LOP National Parks in Gabon (Table 3.2; Figures 3.2 a and b). Note that haplotype 

H31 (n = 1) sampled in CKT, southwestern Congo (Conkouati-Douli National Park) 

belonged to Haplogroup B and grouped with haplotypes from Gabon. Figure 3.2 b shows 

the distribution of both haplogroups as described above.

Phylogenetic reconstruction with the 32 haplotypes used for the network revealed 2 main 

groups with neighbour-joining (NJ) bootstrap support of 96 % (Figure 3.4).
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Figure 3.3. Median joining network of forest elephant sequences. Each circle represents a 

haplotype and its size is proportional to the haplotype frequency. Black dots are median 

vectors of unsampled or extinct ancestral sequences. Numbers indicates the nucleotide 

sites that have undergone substitutions. Each colour represents the sampled site where the 

haplotype has occurred
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Table 3.3. Description of each haplogroup with its haplotypes and sequences.

HAPLOGROUP A HAPLOGROUPS
Haplotype Sample Haplotype Sample
H02 IVI05a6, IVI05b8, WAK0817, RAB032, LAN209 HOI IVI06b2, IVI06c4, IVI088, IVI0910, KES0721, 

LOA062, AFE79LOP, RAB044, RAB1118
H04 IVI043, RAB0215, WAK0512, WAK0613, 

WAK0715, LOP 146, LOP154, LOP167, LOP1810, 
LOA0310, MPA0319, WAK0410, IGL032

H03 NOG014, LOP067, LOP175, NOG026, NOG038, 
RAB0113, LAN027, MPA01, MPA028, LOP51al4

H09 KES0211, KES 0314, KES0415 H05 IVI1011, RAB067
H12 NYO0310 H06 RAB131, LAN015
H14 AFE85IGL, AFE86IGL, AFE87IGL, AFE88IGL, 

AFE89IGL
H07 MDC012, MDC024, AFE82LAN

H15 NN0713 H08 KES0819
H16 IVI1012 H10 LOP0710, LOP0914, LOP1016
H17 NN059 HI 1 RAB275
H19 LAN16014 H13 CAR309
H20 CAR274, CAR297, CAR3111, CAR3417, 

CAR4210, CAR5813, NN2911
H18 LAN15911

H21 CAR3315, CAR381, CAR405, CAR441 H22 CAR5712, NOG053, NOG066, NOG078
H23 CAR3214, CAR394 H24 PBA0612
H27 CAR3622, NN232, NN267, NN279, NN3014, 

NN3116
H25 NOG025, NN3218

H28 PBA0714 H26 NOG0810
H29 CAR3519 H30 PBA023
H32 LAN1566 H31 CKT04al4
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Figure 3.4. Neighbour-joining bootstrap consensus tree of forest elephant mitochondrial 

HVR1 haplotypes. Numbers above tree branches represent the percentage of bootstrap 

replicates for that branch. Estimates of bootstrap support are based on 1000 replicates and 

the tree is unrooted. Haplogroups A and B are indicated and matched to MJN in Figure 3.
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3.3.2 Genetic diversity and population structure

The estimated haplotype diversity in the total sample was 95%, and ranged within 

populations from 40% (WAK) to 96% (RAB). Nucleotide diversity in the total sample 

was 0.013 (± 0.007), with the highest value in Gabon (0.013 ± 0.007) whereas CAR and 

NN possessed values of 0.006 (± 0.003) and 0.007 (± 0.005), respectively. Within 

populations, nucleotide diversity varied considerably from zero in MDC and NYO, 0.005 

(± 0.003) in LOA to 0.015 (± 0.009) in PBA (Table 3.4), which was lower than has been 

observed in savannah elephants (2 %; Nyakaana et al, 2002), Asian elephants (1.8 %; 

Fernando et al., 2000), and in several African mammals examined to date in Clifford et 

al. (2004) for the western lowland gorillas (6.2 %), in Nersting & Arctander (2001) for 

impala (3.6 %) and kudu (3.2 %), in Muwanika et al. (2003) for the common warthog 

(1.5 %), the savannah buffalo (4.7 %) and the common hippopotamus (1.84 %), and in 

Moodley & Bruford (2007) with the African bushbuck where both subspecies 

Tragelaphus scriptus scriptus and T. s. sylvaticus possessed nucleotide diversities of 3.5 

% and 6.2%, respectively.

The analysis of molecular variance showed a significant differentiation among 

populations in the total sample PhisT = 0.33; P < 0.005, with the majority of the variance, 

66.97%, being partitioned within populations. AMOVA was also tested for the two 

haplogroups defined from MJN and NJ (Haplogroups A and B). The test revealed a 

highly significant subdivision among populations in both samples (PhisT = 0.792, P 

<0.005), among populations within groups (Phisc = 0.335, P < 0.005) and, as expected, 

among defined haplogroups (Phicr = 0.687, P <0.005; see Table 3.5).

Pairwise population differentiation tests revealed varying levels of subdivisions, with 

Phisi ranging from -  0.23; P > 0.05 (RAB-CKT) to 1.00; P > 0.05 (NYO -  MDC). There 

was significant population differentiation in 48.5 % of the pairwise comparisons, where 

PhisT values were at the P < 0.05 significance level (see details in Table 3.5).
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Table 3.4. Summary statistics for the control region variation in forest elephant populations with five or more samples in 

Gabon, CAR, NN, and for haplogroups A and B, and the entire sample.

LOP IVI LOA WAK PBA RAB NOG CAR NN Haplogroup A Haplogroup B Total

n 11 16 8 5 11 8 8 16 9 53 43 96

A 4 11 3 2 8 7 4 7 5 16 16 32

H 78 93 61 40 93 96 79 82 72 89.6 89.4 94.7

P 1.1 1.4 0.5 0.2 1.5 1.2 0.5 0.6 0.7 0.5 0.4 1.3

n = sample size; A = number of haplotypes in each population; H = percent haplotypes diversity; p = percent nucleotide

diversity.
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Table 3.5. Analysis of molecular variance (AMOVA) based on mitochondrial haplotypes.

Among
populations

Within
populations

Among
populations

Among 
populations 
within groups

Among groups

Total sample Two groups

^  F-statistics P-value ^  F-statistics P-valuevariance variance
33T03 0 3 0  P < 0.005

66.97

20.83 P h is i = 0.792 P<  0.005

10.49 P h is c =  0.335 P<  0.005

68.68 P h b r =  0.687 P<  0.005
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Table 3.6. Pairwise F sr values between forest elephant population in Central Africa, based on variation in mitochondrial DNA. The level of 

significance shown as * denotes significance atP  = 0.005.

LOP IVI LOA MDC WAK PBA RAB NYO NOG CAR CKT NN

LOP 76 328 204 152 352 288 248 16 580 400 620

IVI 0.034 388 268 196 304 348 328 80 512 416 552

LOA 0.365* 0.253* 352 200 488 50 258 340 902 256 940

MDC 0.357 0.206 0.819* 284 556 344 122 192 692 528 740

WAK 0.397* 0.253* 0.117 0.923* 324 156 260 168 704 256 740

PBA 0.029 0.029 0.294* 0.298 0.312* 436 572 368 588 330 604

RAB -0.052 -0.040 0.424* 0.194 0.452* 0.027 124 192 856 220 896

NYO 0.070 -0.107 -0.113 1.000 0.000 -0.122 0.152 248 796 528 844

NOG 0.298* 0.271* 0.749* 0.212 0.809* 0.289* 0.214* 0.739 572 416 612

CAR 0.478* 0.313* 0.381* 0.731* 0.425* 0.361* 0.496* 0.134 0.692* 872 52

CKT -0.100 -0.042 0.681 1.000 0.887 -0.057 -0.234 1.000 0.029 0.665 900

NN 0.368* 0.264* 0.078 0.740* 0.197* 0.284* 0.419* -0.161 0.695* 0.174* 0.581



3.3.3 Population demography

The mismatch distribution showed a bimodal pattern when the total sample was analysed 

(Figure 3.5a), reflecting the existence of two differentiated haplogroups. When forest 

elephants were subdivided into the two groups corresponding to Haplogroups A and B, as 

defined by the network, the patterns observed were unimodal, and visually, they fitted 

well with their corresponding distributions expected under a sudden expansion model 

(see Figures 5b an 5c). Furthermore, the model parameters 0o and 0i calculated for 

Haplogroup A and B separately, showed values expected under a model of rapid growth 

in both cases (see Table 3.7). Tests for the goodness-of-fit of the observed data 

supportedthe expansion model as showed SSD value for both Haplogroup A and 

Haplogroup B (SSD = 0.001, P  = 0.90; and SSD = 0.003, P = 0.89, respectively; see 

Figures 3.5b and 5c. The small raggedness index (r) value supported a smooth 

distribution and a sudden expansion hypothesis (Table 3.7). The neutrality test supported 

the expansion model for the total sample with a negative value (Fs = -6.68; P = 0.006), 

and for both haplogroups A and B with negative Fs values, although it was not significant 

for Haplogroup B (P = 0.08) (Table 3.7).
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c) Haplogroup B
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Figure 3.5. Mismatch distribution showing frequencies of the pairwise differences for the 

entire sample (a), and within each haplogroup A (b) and B (c) of forest elephants in 

Central Africa.
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Table 3.7. Summary statistics for population expansion at the HVR1 of mtDNA.

n h 0o 0i X r SSD Fs D

Haplogroup A 53
16

(0.896 ± 0.000)
0.000 11.03 3.54

0.014 

(P = 0.94)

0.001 

(P = 0.90)

-4.829* 

(P = 0.03)

0.137 

(P = 0.60)

Haplogroup B 43
16

(0.894 ± 0.000)
0.000 8.93 5.80

0.0094 

(P = 0.98)

0.003 

(P = 0.89)

-3.743 

(P = 0.08)

1.045 

(P= 0.87)

Total sample 96 32
0.015 

(P = 0.57)

0.016 

(P = 0.21)

-6.679 

(P = 0.06)

1.80 

(P<  0.005)

Note: n = number of sequences; h = number of haplotypes (haplotype diversity ± SD shown in parentheses); 0o, 0i 

and x are the parameters of the demographic expansion; r = raggedness statistic; SSD = sum of square of deviation; 

Fs = Fu’s statistic and/) = Tajima’s statistic. * significance atp<  0.05.
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A Mantel test, performed to check for isolation by distance, using Phisr, revealed, for the 

total sample, a correlation coefficient equal to 0.10, which was not significantly different 

from zero (P = 0.31) indicating no relationship between geographical and genetic 

distances. For example, the genetic differentiation between WAK and MDC was 0.923 (P 

= 0.036) with 284 km separating both sites, while the most geographically isolated 

populations, LOA and NN, were not significantly (P = 0.127) differentiated genetically 

(Table 3.6). When Haplogroup A and Haplogroup B were tested separately, the analyses 

revealed that the correlation between genetic and geographic distances was 0.29 (P = 

0.093) for Haplogroup A and 0.25 (P = 0.088) for Haplogroup B. Both correlations were 

not significantly different from zero. These results are consistent with the distributions 

from Figure 3.6 a, b and c.
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Figure 3.6. Graph showing the relationships between pairwise geographical distances (in 

km) and genetic distances from Table 3.6, estimated from mtDNA in total sample (a), 

haplogroup A (b), and haplogroup B (c). Red dots indicated significant values of Phist at 

P < 0.05 level of significance.
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3.4 Discussion

This study presents the first extensive analysis of genetic structure (featuring 

mitochondrial DNA or any other marker) among forest elephant populations on a 

regional scale in central Africa. The multiple expansions and contractions to refugia that 

the African tropical forest has experienced during the Pleistocene may have promoted 

divergence between fragmented populations. In this study, haplotype distributions and 

haplotype relationships within and among populations (Figures 3.2 a, b, 3 and 4), 

AMOVA analysis (Table 3.5), mismatch distribution (Figures 3.5a, b, c), and an absence 

of differentiation by distance (Figure 3.6a, b and c), suggest the existence of two main 

haplogroups, but portrayed a lack of broad geographical structure

In Ugandan elephant populations (Nyakaana & Arctander, 1999), two strong divergent 

clades (A and B) were defined but the phylogenetic relationships of some haplotypes did 

not coincide with their geographic distribution. A similar contrast has been observed in 

western lowland gorillas, where some genetic exchange between adjacent phylogroups 

was detected despite their very strong geographical sub-structuring (Anthony et a l , 2007; 

Clifford et al., 2004). Likewise, at the subspecies level within African bushbuck, very 

strong genetic structure was inferred using ecoiegion biogeographic history despite some 

connectivity between these ecoregions (Moodley & Bruford, 2007). In forest elephants, 

some haplotypes were geographically widespread, while related haplotypes were 

localized and in addition genetic exchange was not limited to the closest populations 

given that CAR and NN shared haplotypes with NOG, which was the nearest sampled 

population between CAR/Congo and Gabon. For example, H01, H03 and H04, the 

highest frequency haplotypes in six of nine Gabonese populations (LOP, IVI, LOA, 

WAK, PBA and RAB) were not found in CAR or Congo. Haplotypes H20 and H27 

appeared in CAR/Congo but not in Gabonese populations. Two haplotypes, H22 and 

H25, were however shared between the two zones. This pattern suggests both retention of 

shared ancestral haplotypes, and recent maternal gene flow (Avis se t al., 1987). Perhaps 

surprisingly, given recent results for other African herbivores, both nucleotide and 

haplotype diversities observed for forest elephants are low, and this is especially clear
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when compared to savannah elephant populations as shown in the studies of Nyakaana et 

al. (2002) for African elephants, and to Asian elephants in Fernando et al. (2000).

This analysis mostly shows that the majority of genetic variation is partitioned within 

populations. Significant genetic subdivision between populations and groups of 

populations has been reported in several African large mammals and particularly in 

savannah elephants where variation was partitioned between populations in Uganda, East 

Africa (Nyakaana & Arctander, 1999; Nyakaana et al., 2002). This subdivision was 

correlated with a limited female dispersal between the three studied populations, while at 

a regional scale Nyakaana et al. (2002) reported a significant genetic differentiation 

between populations within regions and also among regions. They have discussed the 

mitochondrial control region DNA results as an allopatric divergence in refugia 

accompanied by a recent population admixture following a recent population expansion 

because they observed shared haplotypes between eastern and southern African savannah 

elephants. Several species of African ungulates have shown similar patterns (Arctander et 

al., 1999; Birungi & Arctander, 2000; Flagstad et al., 2001; Lorenzen et al., 2007; Van 

Hoofl et al., 2002). In western lowland gorillas (Anthony et al., 2007; Clifford et al.,

2004), substantial proportion of the total molecular variance was attributable to 

differences among the main haplogroups of the control region in a subspecies which 

occurs in the same geographic area as forest elephants in west central Africa.

Findings from this study also suggested significant pairwise genetic differentiation 

observed between populations, which may be due to female philopatry, since African 

savannah elephants often display strong natal and breeding-site fidelity (Georgiadis et al., 

1994). However, a female with her infant has been observed, by GPS telemetry, to 

migrate 2000 km back and forth across the Ndoki forest in central Africa (Blake, 2007). 

Social organisation involving dispersal or migration (Hoelzel, 1998); reproductive 

isolation (Brown et al., 2007); diversity of natural ecosystems (Moodley & Bruford, 

2007) and more substantially past isolation events during climatic fluctuations of the 

African Quaternary (Anthony et al., 2007; Arctander et al., 1999; Flagstad et al., 2001) 

may strongly influence the genetic structure of populations, sub-species or species. In
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African savannah elephants, a significant genetic subdivision of the mitochondrial control 

region sequences between populations in Uganda has been revealed, suggesting limited 

female dispersal among populations (Nyakaana & Arctander, 1999). In this study, a 

significant subdivision was observed between close populations such as LOP and NOG 

{P = 0.014) separated only by 16 km, CAR and NN (P  = 0.024) separated by 52 km, and 

no significant differentiation between LOP and IVI (P = 0.178) separated by 76 km, 

though LOP is separated from NOG and IVI by the Ogooue River and the Sangha River 

separates NOG from CAR and NN. Figure 2 shows clearly lineage haplotypes exchange 

among most of the populations in Gabon and some genetic exchange between CAR and 

NN. The Ogooue and Sangha Rivers would probably have a little effect on the genetic 

diversity of central African forest elephant populations. This latter result conflicts largely 

with other taxa studied to date in Central Africa. The above rivers have played a role in 

genetic differentiation between western lowland gorilla haplogroups (Anthony et al., 

2007); the Ogoous River was also responsible of the divergence of mandrill populations 

in Cameroon and northern Gabon from those in southern Gabon (Telfer et a l, 2003). 

Other rivers such as the Congo, Ubangi, Ivindo and Sanaga have been reported to 

influence the genetic structure of bonobos {Pan paniscus) (Eriksson et al., 2004), 

chimpanzees {Pan troglodytes troglodytes), and western lowland gorillas (Anthony et al., 

2007). However, forest elephants have been observed crossing the Ogooue River at Lope 

National Park (Momont, 2007). An elephant likely could cross a river during the dry 

season when the depth of waters is low, and far from the estuary. Rivers can also change 

size and shape over time. Consequently, the influence of rivers as barriers to gene flow is 

likely limited as our data show significant differentiation between populations separate by 

a river such as NOG and LOP, NOG and WAK, though LOP and IVI are not significantly 

differentiated. Despite the NOG-LOP, NOG-CAR and NOG-NN subdivision, they still 

share haplotypes, indicating the Ogooue and Sangha rivers could constitute incomplete 

barriers to dispersal as shown with gorillas (Anthony et al., 2007).

Elephants are highly mobile and their movements are not random but are driven 

according to diverse factors including human activities (Barnes et al., 1991), which could 

limit their dispersal. In this study, Mantel test results indicated a lack of correlation
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between genetic and geographic distances, which was also observed in savannah 

elephants in Uganda (Nyakaana & Arctander, 1999) as they likely had historical migrants 

or common ancestral populations. Forest elephants have the ability to live in different 

ecological habitats, from the coastal ecosystem with inundated forest and mangroves 

through forest/savannah mosaic and mineral clearings, to closed canopy forest. This 

ecological plasticity could be responsible of the lack of geographical structuring among 

haplotypes observed in the phylogenetic tree and the median joining network, despite 

significant frequency differentiation between populations. Similar patterns were shown in 

the common hippopotamus {Hippopotamus amphibius) populations in eastern and 

southern Africa (Okello et al., 2005).

In the light of the results obtained with the sequences used here, alternative explanations 

for the history of African elephants become evident and suggest that forest elephants have 

been affected by cyclical climatic changes that occurred over the last 2.6 million years 

such as the colder drier periods experienced during Pleistocene. These periods are 

believed to have led to the repeated retraction of forest cover into refugial zones followed 

by re-expansion, fostering allopatric divergence between isolated populations (Van Hooft 

et al., 2002), and by periods of secondary contact during climatic amelioration. In 

Europe, Pleistocene ice ages have inferred as likely engineers of the genetic structure of 

populations and species (Hewitt, 1996). However, the absence of phylogeographic 

patterning is expected in species with high migration rates (Hofreiter et al., 2004) such as 

the European wolf (Hofreiter et al., 2004; Vila et al., 1999) which shows little 

partitioning of haplotypes on continental or regional scalesln this study, the extensive 

distribution of some haplotypes (H04 for example within haplogroup A) shows a likely 

history of past bottleneck followed by a recent population expansion. The forest 

elephant’s distribution range is therefore likely to have become centred around (but not 

exclusive to, given this taxon’s ecological flexibility) such refugia on several occasions. 

The dataset presented here shows the first indications of at least two different refugia in 

the central African region harbouring distinct elephant populations that diverged 

allopatrically. If this was the case, forest elephants possessing distinct mitochondrial 

genotypes are likely to have come into contact relatively rapidly after the end of the last
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glaciation (12,000 years BP), when the forests re-expanded. Such a scenario might 

explain not only the two haplogroups present in forest elephants but also the lower 

nucleotide diversity that characterises elephant populations found in forest habitat. 

Clifford et al. (2004) and Anthony et al. (2007) made similar suggestions about complex 

evolutionary histories within lowland gorillas located in the same area than this study 

zones (Gabon, CAR and Congo). They suggested a fluvial refuge in the restricted 

southern CAR and adjacent Congo and Anthony et al. (2007) suggested refugial origins 

in the Monts de Cristal in northwestern Gabon and adjacent Equatorial Guinea, and in the 

Massifs du Chaillu and Monts Doudou in southern Gabon. Muloko-Ntoutoume et al 

(2000)’s study also suggested the same refugia locations for Okoume (Aucoumea 

klaineana) an endemic tree queries in Gabon. Roca et al. (2001) and Nyakaana et al. 

(2002) depicted similar results in their study on the African savannah elephant, based on 

nuclear genes and mitochondrial control region, respectively. Lowland gorillas and forest 

elephants, two inhabitants of the dense equatorial forest in the Congo basin, would have 

experienced the same complex demographic history during the Pleistocene, giving the 

patterns observed today.

This scenario might also explain the high microsatellite diversity reported for forest 

elephants (Comstock et al., 2002) If several populations diverged in isolation, 

accumulating different microsatellite profiles, and subsequently became sympatric as the 

forest expanded, the large single population that today comprises two central African 

forest elephant lineages might be expected to harbour higher microsatellite diversity.

The mitochondrial data presented in this study advances our understanding of the 

population genetic structure and evolutionary history of African elephants inhabitant the 

rainforest of central Africa. Phylogenetic analysis with MJN and NJ, and the bimodal 

pattern of mismatch distribution indicated that changes in the distribution of forest 

vegetation during the Pleistocene could have formed two main refugia (with the two 

haplogroups observed), and fostered allopatric divergence between isolated populations 

of forest elephants. A reduction of population size (bottleneck) likely happened at this 

time, decreasing the nucleotide diversity, but a population expansion brought the isolated 

populations into secondary contact increasing haplotype diversity. The lack of geographic
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structure, showed by Figures 3.2 (a and b) and Mantel test (Figures 3.6 a, b and c), might 

be due to the absence of geographic barriers, although this can not be total since some 

local population structure was observed, which could indicate either a female philopatry 

or a recent negative impact of human activities with mainly poaching and habitat 

destruction, isolating some populations.
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CHAPTER 4

Complex phylogeographic history of African elephants does 

not support a two-taxon model

4.0 Abstract

Previous phylogenetic analyses of African elephants have included a very limited number 

of forest elephant samples. A large-scale assessment of mitochondrial DNA diversity in 

forest elephant populations reveals a more complex evolutionary history in African 

elephants as a whole than current two-taxon models assume. The hypervariable region 1 

of the mitochondrial control region was analysed for 71 certral African forest elephants 

and the mitochondrial Cytochrome b gene from 28 samples and these sequences were 

compared to other African elephant data. The central African forest elephant populations 

fell into at least two lineages and west African elephants (both forest and savannah) 

shared their mitochondrial history almost exclusively with central African forest 

elephants. Central African forest populations also showed lower genetic diversity than 

those in savannahs, indicative of a recent population expansion.

Our data do not support the separation of African elephants into two different taxa. The 

evolutionary status of African elephants seems more complex, with a combination of 

multiple refugial lineages and recurrent hybridization among them rendering a simple 

forest/savannah elephant split inapplicable to modem African elephant populations.
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4.1 Introduction

The taxonomic status of the African elephant (Loxodonta africana) has been debated 

since the turn of the 20th century (Matschie, 1900) and up to 22 subspecies have been 

described (Krumbiegel, 1950). However, modem taxonomy refers to two types, with 

their names reflecting the habitat in which they are found, namely the larger savannah 

(Loxodonta africana africana) (Blumenbach 1797) and the smaller forest elephants 

(Loxodonta africana cyclotis) (Matschie 1900). It has become increasingly established in 

the literature that forest and savannah elephants are distinct species (L. africana and L. 

cyclotis) (Barriel et al., 1999; Comstock et al., 2002; Roca et al., 2005; Roca et al., 2001; 

Wasser et al., 2004), with recent publications considering their datasets in the light of this 

concept. The most persuasive genetic basis for a two-taxon model originates from a series 

of studies exploring patterns of differentiation at nuclear loci, culminating in a study 

using male inherited Y-chr, and bi-parentally inherited X-chr sequences (Roca et al.,

2005) that concluded ‘'there was a deep and almost complete separation between African 

forest and African savannah elephants ”. In this study, divergent nuc lear DNA sequences 

segregated with either forest or savannah elephant morphological types. There were, 

however, a number of exceptions, including a forest elephant from Garamba in the 

Democratic Republic of Congo (DRC, where forest and savannah populations are 

sympatric) that had nuclear sequences typical of savannah elephants and two savannah 

elephants from Cameroon (at the limit of the forest-savannah transition zone) that had 

nuclear sequences typical of forest elephants (Roca et al., 2005). The study estimated the 

divergence between the savannah and forest elephants to be three million years. The 

two-taxon argument has also been used to explain data from two nuclear microsatellite 

DNA (Comstock et al., 2002; Wasser et al., 2004) and one morphological study (Groves, 

2000; Grubb et a l, 2000). However, recently Debruyne (2005) performed a 

morphometric analysis of museum elephant skulls, and found evidence for a continuum 

between two morphotypes, suggesting that, despite historical separation that promoted 

subdivision, these two forms interbreed wherever their ranges intersect.

118



In fact, molecular studies using mitochondrial (mt) DNA(Debruyne, 2005; Eggert et al., 

2002) including data from the study by Roca et al (Roca et a l, 2005) point to a more 

complex scenario for African elephants. Debruyne (2005) examined several thousand 

base pairs of mtDNA from elephants across Africa and although he also reported two 

highly divergent molecular clades, these did not conform to the morphological 

delineations of cyclotis and africana. He interpreted these results as a consequence of 

incomplete isolation between forest and savannah African elephant populations, followed 

by recurrent and ongoing introgression between the two forms. Roca et al. (2005) 

obtained very similar mitochondrial results but explained the non-concordance between 

mitochondrial and nuclear markers as a result of cytonuclear genomic disassociation such 

that the mitochondrial tree did not reflect the species tree. The mtDNA results observed 

were explained as having arisen during episodes of backcrossing between successive 

generations of savannah males with forest females, leading to half of extant savannah 

elephants surveyed possessing ‘forest’ typical mitochondrial haplotypes but almost 

exclusively ‘savannah’ nuclear X and Y-chromosomal DNA. Eggert et al. (2002),in 

addition to Nyakaana et al.’s (2002) mitochondrial sequences included samples from west 

Africa and found a more complex picture using mtDNA and nuclear microsatellites, 

suggesting that western savannah and forest elephants formed a potential third Loxodonta 

taxonomic unit.

The above-mentioned studies largely share a pronounced lack of forest elephant data. The 

nuclear DNA studies (Eggert et a l,  2002; Roca et al., 2001) featured extremely limited 

sampling from central African forest elephants. Despite describing a narrow hybrid zone 

between the two elephant types, only one population located in this zone (Garamba, 

(DRC)) was included and none from elsewhere in DRC or from west central Africa were 

examined. Elsewhere, Debruyne (2005) included elephants from across the DRC in his 

study but was again limited by small sample sizes. The study by Eggert et al. (2002) was 

limited by the inclusion of only two populations of Central African forest elephants, both 

from the edge of the forest range in Cameroon which may conceivably have influenced 

their conclusion of the genetic uniqueness of forest and western elephants. To date, no 

study has addressed the partitioning of elephant genetic diversity in the equatorial forests
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of Africa. Further, the potential effect of Pleistocene forest refugia was partially 

addressed by Eggert et al. (2002) and also previously reported as having a major 

influence on large mammal distribution and range dynamics (Arctander et a l , 1999; 

Clifford et al., 2004; Flagstad & Roed, 2003; Hewitt, 1996; Tosi et a l , 2005) has yet to 

be addressed in African elephants. The results from the most extensive sample of forest 

elephants are reported here, from the core of their range, and these results were compared 

with previously published DNA sequences for savannah elephants from east and southern 

Africa and populations from west Africa and DRC.

The phylogeographic history, population structure and past demography of African 

elephants were examined using patterns of molecular diversity for the mtDNA control 

region and cytochrome b sequences. Since mtDNA is maternally inherited, this marker 

provides a female-oriented view of population history and structure. The most variable 

mtDNA segment, the hypervariable region 1 (HVR1) of the control region was included 

since it has a high rate of nucleotide change, allowing recently diverged lineages to be 

distinguished (Douzery & Randi, 1997; Flagstad et a l, 2001; Van Hooft et a l, 2002). 

This segment is equivalent to data previously published by Eggert et a l (2002) and 

Debruyne (2005), allowing us to examine forest elephant sequences within the context of 

a sample set with the largest geographic coverage. Roca et al’s (2005) mtDNA sequences 

were not used as he studied a different fragment (ND5 instead of control region).

4.2 Materials and Methods

4.2.1 Sampling and laboratory procedures

Elephant sequences from 66 sites across Africa were incorporated into the complete 

dataset (Figure 4.1). New forest elephant samples (HVR1 mtDNA: n = 71; Cyt b 

mtDNA: n=28) were obtained from 12 sites in the central African forest block (red dots, 

Figure 4.1). Sample storage and mtDNA amplification were described in Chapter 2.
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Figure 4.1. Map of Africa showing approximate sampling sites from previous mtDNA 

studies combined with those from this study. The green, yellow and blue dots are 

sampling sites from Nyakaana et al. (2002), Eggert et al. (2002) and Debruyne (2005), 

respectively. The red dots are the sites from this study.
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4.2.2 Analysis of genetic diversity and differentiation

Genetic diversity for all geographic locations was estimated using haplotype h and 

nucleotide p  diversities as implemented in ARLEQUIN ver. 3.0 (Excoffier et al, 2005). 

Paired ttests were carried out to assess whether there was significant difference in 

nucleotide diversity between forest and savannah elephants. Genetic differentiation 

between pairs of populations was tested using the exact test using 10,000 Markov chain 

steps, as implemented in ARLEQUIN ver. 3.0, and this program was also employed for 

nested analysis of molecular variance (AMOVA) to test for patterns of spatial genetic 

structure. Individual haplotypes from genbank used in this study were previously defined 

as “forest” (L. a. cyclotis) and “savannah” (L. a. Africana) types by authors based on their 

morphology (Debruyne, 2005) and their original habitat (Debruyne, 2005; Nyakaana et 

al., 2002; Eggert et al, 2002). Haplotypes produced in this study originated from the core 

of Congo Basin (Equatorial west central African forest), then defined as forest type. The 

dataset was divided in forest and savannah groupings and then four regional populations 

were defined (west, central, east and south). Using AMOVA the correlation among 

genotype distances is used as an F- statistic analog (Phi) at various hierarchical levels.

Median joining network (MJN) was analysed with the program NETWORK V4.1.1.1.

4.2.3 Analysis of population demography

Analyses were carried out to detect evidence of past demographic change using the 

program ARLEQUIN ver.3.0. A pairwise mismatch distribution analysis was performed, 

comparing the distribution of the observed pairwise nucleotide site differences with the 

expected distribution in an expanding population (Rogers & Harpending, 1992). The 

goodness-of-fit of the observed data to a simulated model of expansion with the sum of 

square deviations (SSD) and the Harpending’s raggedness index r were tested, using 

ARLEQUIN. Population history was also inferred using Fu’s F s test of neutrality (Fu, 

1997).
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4.3 Results

4.3.1 Central forest samples

We sequenced 316 bp of HVR1 of the control region from 71 samples and 396bp of the 

cytochrome b from 28 samples. No nuclear copies of mitochondrial DNA (Numts) were 

detected for either sequence.

4.3.2 Genetic diversity

For HVR1, we analysed 189 sequences from 66 sites across Africa in both forest and 

savannah elephants (Figure 4.1). Of these 189 sequences, 102 were from forest elephants 

(71 samples from the present study and 31 from Genbank) and 87 savannah elephants (all 

from Genbank). The combined dataset comprised eighty-eight haplotypes (33 and 51 

from forest and savannah elephants, respectively) and four haplotypes found in both 

types. Of the 21 individual central African forest haplotypes identified in this study, 17 

were novel (Genbank accessions EU096114 -  EU096130). Mean nucleotide diversity (p) 

for HVR1 sequences for all African elephants was 0.030 (SD=0.015), while mean 

haplotype diversity (,h) was 0.985 (SD=0.003). When haplotypes were divided into forest 

and savannah, based on prior designation, the forest population p  was 0.022 (SD=0.11), 

significantly lower than for savannah elephants (0.034, SD=0.017; /K0.001). The mean 

haplotype diversity for forest and savannah populations was 0.960 (SD=0.007) and 0.986 

(SD=0.004), respectively. The lowest nucleotide diversity of all groupings was for the 

new central African forest samples in this study (0.013, SD=0.007), while haplotype 

diversity was 0.947 (SD=0.009) (Table 4.1a).

For cytochrome b, 100 sequences were analysed, 28 from this study, 27 provided by SN 

and 45 from Genbank. Forty- four haplotypes were identified including three and 22 new 

forest and savannah elephant sequences, respectively (Genbank accessions EU115995 -  

EU116019; see the sequences in Appendix 3). Of the 44 haplotypes, 32 were found in
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savannah elephants and 10 in forest elephants, with two haplotypes found in both. Mean 

p  for cytochrome b was 0.023 (0.012) for all elephants. When forest and savannah 

elephants were subdivided, p  was again significantly lower for forest populations (0.009, 

SD=0.005) than for savannah populations (0.026, SD=0.013; /K0.001) (Table 4.1b). 

These results contrast with the study of Roca et al. (2005) who reported 15 haplotypes for 

281 elephants at the mitochondrial ND5 locus and described low genetic diversity as 

being typical for savannah elephants.

Table 4.1 Summary statistics for (a) HVR1 variation in central forest sequences alone 

and with the combined data set; and (b) cytochrome b with the combined data set. 

a)

Groupings
HVR1

Forest only (552 bp)
Combined short fragment (316 bp)
All African Forest Savannah

n 96 189 102 87

Hap 32 88 39 55
Ti/Tv 22/3 51/4 28/3 45/2

h 0.9474 (±0.0092) 0.9845 (±0.0026) 0.9604 (±0.0074) 0.9858 (±0.0042)

P 0.0135 (±0.0071) 0.0304 (±0.0155) 0.0221 (±0.0116) 0.0337 (±0.0172)

b)

Groupings
Cytochrome b
All African Forest Savannah

n 96 42 54

Hap 44 12 34

Ti/Tv 45/6 15/0 40/6

h 0.9254 (±0.0181) 0.7131 (±0.0725) 0.9448 (±0.0230)

P 0.0233 (±0.0120) 0.0089 (±0.0051) 0.0256 (±0.0132)

n = number of sequences, Hap = number of haplotypes, Ti/Tv = transition/transversion 

ratio, h = haplotype diversity and p = nucleotide diversity
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4.3.3 Population structure

The median joining networks (MJN) for HVR1 and cytochrome b (Figure 4.2 and 

Figure 4.3) exhibit patterns consistent with a complex demographic history. The HVR1 

pattern is more complex (comprising four haplogroups - labelled HVR1 Haplogroup I, II, 

III and IV) than for cytochrome b (three haplogroups - labelled Cytb Haplogroup I, II and 

III). For the HVR1 region, the most obvious feature is that central African forest 

elephants (excluding those from DRC) fall into two separate groups (HVR1 Haplogroups 

I and II) with little geographic structuring, consisting of 19 (HVR1 Haplogroup I) and 20 

(HVR1 Haplogroup II) haplotypes with variable frequencies. Only two forest elephants 

from DRC, share the same haplotype with other forest elephants in HVR1 Haplogroup II. 

The remaining seven DRC forest elephant haplotypes (all south-east of the Congo River) 

group with sequences in HVR1 Haplogroup III (which additionally comprises savannah 

elephants from eastern and southern Africa and one savannah elephant from Cameroon). 

The other striking feature is that for West African elephants, both forest and savannah 

types possess haplotypes found almost exclusively within the same haplogroup as central 

African forest elephants (HVR1 Haplogroups I and II). Twenty-five out of 26 individuals 

from west Africa are more closely related to central Forest elephants from Gabon, Congo 

and CAR. A single western savannah individual can be found in HVR1 Haplogroup IV 

which groups with savannah elephants from eastern, southern and central Africa. 

Analysis of Molecular Variance (AMOVA) of HVR1 sequences revealed a non­

significant (p=0.065) genetic structure (18.62% variation among populations) when 

populations were grouped according to geographic distribution (west, central, east and 

southern Africa). As expected, Cytochrome b was less variable than HVR1. 

Unfortunately, direct comparison between patterns obtained from both regions is 

compromised due to a lack of equivalent individuals examined at both loci, specifically 

for savannah elephants. However the overall pattern when individuals from different 

populations were examined is consistent with the pattern obtained with HVR1, despite 

the resolution of only three haplogroups as opposed to four. Savannah elephant 

haplotypes fall into two distinct haplogroups (Cyt b Haplogroup II and III) as do forest 

elephant haplotypes (Cyt b Haplogroups I and II). Cytochrome b Haplogroup II, which is
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divided into two haplogroups for HVR1, is characterised by a network structure in which 

forest and savannah elephant samples are not overlaid (see Figure 4.3). Again all 

western elephants, both forest and savannah, cluster with central African forest elephants 

(Cyt b Haplogroup I).
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Figure 4.2. Median-joining networks for African elephants HVR1 mtDNA haplotypes. 

Circle size is proportional to haplotype frequency. The numbers on the connecting line 

determine the number of substitutions estimated by NETWORK V.4. 1. 1. 1. The entire 

list of haplotypes for both HVR1 and cytochrome b MJN can be found in Table 4.2.
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Figure 4.3. Median-joining networks for African elephant Cytochrome b mtDNA 

haplotypes. Circle size is proportional to the haplotype frequency. The numbers on the 

connecting line determine the number of substitutions estimated by NETWORK V.4. 1. 

1.1. The entire list of haplotypes for both HVR1 and cytochrome b MJN can be found in 

Table 4.3.
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Table 4.2. HVR1 haplotypes used in the Figure 4.2. Haplotype frequency is indicated in brackets when

there is more than one.

Haplotype Taxon Designation* Geographic Genbank accession Author
___________________________________________________________ origin_____________numbers_____________________
HOI Loxodonta

africana
africana

Angola 1 Angola AY741072 Debruyne 2005

H02 (2) L. a. africana Botswana 1, BOT4 Botswana AY741074, AF106230 Debruyne 2005, 
Nyakaana et al. 
2002

H03 (3) L. a. africana, 
L. a. cyclotis

BOT2, BOT21, DRC4 Botswana, DRC AF106228,
AF 106234, AY359275

Nyakaana et al. 
2002, Debruyne 
2005

H04 (2) L. a. africana BOT9, Zimbabwe2 Botswana,
Zimbabwe

AF 106231, AY741329 Nyakaana et al. 
2002, Debruyne 
2005

H05 L. a. africana BOT15 Botswana AF 106232 Nyakaana et al. 
2002

H06 (3) L. a. africana. BOT16, DRC 1, Zimbabwe4 Botswana, DRC, AF 106233, Nyakaana et al.
L. a. cyclotis Zimbabwe AY359277,

AY742799
2002, Debruyne 
2005

H07 (4) L. a. cyclotis Bmbo6, Dja39, CAR3214, 
CAR394

Cameroon, CAR AF527653, AF527647 Eggert et al. 
2002, this study

H08 L. a. cyclotis Cameroon 1 Cameroon AY359267 Debruyne 2005
H09 (4) L. a. cyclotis Cameroon2, Bmbol, Bmbo37, Cameroon, AY359269, Debruyne 2005,

NYO0310 Gabon AF527646, AF527649 Eggert et al. 
2002, this study

H10 (7) L. a. cyclotis Bmbol6, Bmbo43, CAR274, Cameroon, CAR, AF527648, Eggert et al.
CAR297, Congo2, NN0713, CR AF527650, AY359268 2002, Debruyne
NN2911 2005, this study

HI 1 L. a. cyclotis Dja34 Cameroon AF527651 Eggert et al. 
2002

H12 (3) L. africana, L.a. 
fricana, L. a  
cyclotis

DRC 13**, B l, DRC9 DRC, Cameroon AY741081,
AY359279,
AF527654,

Debruyne 2005, 
Eggert et al. 
2002

H13 (2) L. a. africana B7, W azal5 Cameroon AF527655, AF527659 Eggert et al. 
2002

H14 (3) L. a. africana B8, WazalO, Sudani Cameroon, Sudan AF527656,
AF527658, AY741073

Eggert et al. 
2002, Debruyne 
2005

H15 (2) L. a. africana Waza27, Mali2 Cameroon, Mali AF527660, AF527666 Eggert et al. 
2002

H 16 (4) L. a. cyclotis CAR3622, NN059, NN279, 
NN3014

CAR, CR This study

H I7 (2) L. a. cyclotis CAR3315, CAR381 CAR This study
H 18 (4) L. a. cyclotis CAR5712, AFE821an, 

MDCO12, NOG053,
CAR, Gabon This study

H19 L. a. cyclotis CAR1 CAR AY359272 Debruyne 2005
H20 L. a. cyclotis CAR309 CAR This study
H21 L. a. cyclotis CAR3519 CAR This study
H22 (5) L. a. africana Chadl, K.68, R W 15, Molel3, 

WA6
Chad, Ghana AY741080,

AF527643,
AF527641,
AF527676, AF 106243

Eggert et al. 
2002, Debruyne 
2005,
Nyakaana et al. 
2002

H23 (10) L. a. cyclotis NN3218, Lan027, LOP067, 
LOP51al4, NOG014, NOG025, 
NOG026, MpaOl, Mpa028, 
RAB0113

RC, Gabon This study

H24 L. a. cyclotis Congo1 RC AY359266 Debruyne 2005
H25 (2) L a. cyclotis CKT04al4, RAB275 RC, Gabon This study
H26 L. a. cyclotis DRC2 DRC AY359270 Debruyne 2005
H27 (4) L. a. africana 

and L. a. 
cyclotis

K.V8, MF1, MF5, DRC3 Uganda, DRC AF 106206,
AF 106209,
AF106210, AY359271

Nyakaana et al. 
2002, Debruyne 
2005

H28 (2) L. a. cyclotis DRC6, DRC8 DRC AY359273,
AY359274

Debruyne 2005
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H29 L. a. cyclotis DRC5 DRC AY359276 Debruyne 2005
H30 (2) L. a. africana DRC11, AMI DRC, Kenya AY741078, AF 106217 Nyakaana et al. 

2002, Debruyne 
2005

H31 (2) L. africana and 
L. a. africana

DRC17**,QE13 DRC, Uganda AY742802, AF106213 Nyakaana et al. 
2002, Debruyne 
2005

H32 (2) L. a. cyclotis IVI1011, RAB067 Gabon This study
H33 (11) L. a. cyclotis Igl032, AFE85Igl, AFE86Igl, 

AFE88Igl, IVI1012, IVI043, 
LOA0310, LOP 146, Mpa0319, 
RAB0215, WAK0410

Gabon This study

H34 (3) L. a. cyclotis LanOl 5, Lanl5911, RAB131 Gabon This study
H35 (5) L. a. cyclotis Lanl566, IVI05a6, IVI05b8, 

RAB032, WAK0817
Gabon This study

H36 L. a. cyclotis Lanl6014 Gabon This study
H37 (3) L. a. cyclotis Gabon2, LOP0710, PBA023 Gabon AY359265 Debruyne 2005, 

this study
H38 (8) L. a. cyclotis IVI06b2, Kes0721, Kes0819, 

LOA068, AJFE79LOP, 
PBA0510, RAB044, RAB1118

Gabon This study

H39 (4) L. a. cyclotis Kes0211, Kes0314, Kes0517, 
PBA0714

Gabon This study

H40 L. a. cyclotis Gabon 1 Gabon AY359278 Debruyne 2005
H41 L. a. cyclotis NOG0810 Gabon This study
H42 L. a. cyclotis PBA0612 Gabon This study
H43 L. a. cyclotis IVI05a5 Gabon This study
H44 (3) L. a. cyclotis Bia3, Bia69, Liberia 1 Ghana, Liberia AF527677,

AF527680, AY741079
Eggert et al 
2002, Debruyne 
2005

H45 L. a. cyclotis Bia48 Ghana AF527678 Eggert et al 
2002

H46 (6) L. a. cyclotis 
and L. a. 
africana

Bia64, RVV22, Mole9, WA3, 
WA14,Mali7

Ghana, Mali AF527679,
AF527642,
AF527675,
AF 106242,
AF 106245, AF527667

Eggert et al 
2002, Nyakaana 
et al 2002

H47 (2) L. a. africana Mole3, Mali 14 Ghana, Mali AF527674, AF527668 Eggert et al 
2002

H48 L. a. africana Mole33 Ghana AF527683 Eggert et al 
2002

H49 (2) L. a. cyclotis Tai6, Tail 7 Ivory Coast AF527670, AF527671 Eggert et al 
2002

H50 (2) L. a. cyclotis Tail9, Tai29 Ivory Coast AF527672, AF527673 Eggert et al 
2002

H51 L.a.africana IvoryCoast 1 Ivory Coast AY741327 Debruyne 2005
H52 (2) L. a. africana SouthAfrica3, Zimbabwe 1 South Africa, 

Zimbabwe
AY741320,
AY741321

Debruyne 2005

H53 L. a  africana MM4 Kenya AF106214 Nyakaana et al 
2002

H54 L. a. africana MM 19 Kenya AF106215 Nyakaana et al 
2002

H55 L. a. africana MM20 Kenya AF 106216 Nyakaana et al 
2002

H56 L. a. africana AM2 Kenya AF106218 Nyakaana et al 
2002

H57 L. a. africana AM 10 Kenya AF 106219 Nyakaana et al 
2002

H58 L. a. africana AM 12 Kenya AF 106220 Nyakaana et al 
2002

H59 L. a. africana SA8 Kenya AF 106221 Nyakaana et al 
2002

H60 L. a. africana Mali28 Mali AF527669 Eggert et al 
2002

H61 L. a. africana Mozambique 1 Mozambic AY741076 Debruyne 2005
H62 (5) L. a. africana Namibial, Addo5, Ugandal, 

QE1, Zimbabwe 10
Namibia, South 
Africa, Uganda, 
Zimbabwe

AY741325, 
AF527682, 
AF106211, 
AY741323,

Nyakaana et al 
2002, Eggerte? 
a l2002, 
Debruyne 2005
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iY742800|
H63 L. a. africana KH2 Namibia AF 106239 Nyakaana et al 

2002
H64 L. a. africana Addol South Africa AF527681 Eggert et al 

2002
H65 L. a. africana KG1 South Africa AF 106240 Nyakaana et al 

2002
H66 (3) L. a. africana K.G2, Tanzania2, Zimbabwe7 South Africa,

Tanzania,
Zimbabwe

AF106241,
AY741070,
AY741067

Nyakaana et al 
2002, Debruyne 
2005

H67 L. a. africana Tanzania 1 Tanzania AY742801 Debruyne 2005
H68 (4) L. a. africana QE4, Zambia 1, Af9, AflO Uganda, Zambia, 

Kenya
AF106212, 
AY741328, 
AF527639, AF527640

Nyakaana et al 
2002, Eggertef 
a l 2002, 
Debruyne 2005

H69 (2) L. a. africana Uganda2, KV1 Uganda AY741077, AF 106203 Nyakaana et al 
2002, Debruyne 
2005

H70 L. a. africana KV2 Uganda AF 106204 Nyakaana et al 
2002

H71 L. a. africana KV7 Uganda AF 106205 Nyakaana et al 
2002

H72 L. a. africana K.V17 Uganda AF 106207 Nyakaana et al 
2002

H73 L. a. africana K.V28 Uganda A F106208 Nyakaana et al 
2002

H74 L. a. africana WC2 Namibia AF 10623 5 Nyakaana et al 
2002

H75 L. a. africana WC4 Namibia AF 106236 Nyakaana et al 
2002

H76 L. a. africana WC6 Namibia AF 106237 Nyakaana et al 
2002

H77 L. a. africana WC13 Namibia A F106238 Nyakaana et al 
2002

H78 L. a. africana WA11 Ghana AF 106244 Nyakaana et al 
2002

H79 L. a. africana Af8 Kenya AF527638 Eggert et al 
2002

H80 L. a. africana ZBE1 Zimbabwe AF 106222 Nyakaana et al. 
2002

H81 L. a. africana ZBE2 Zimbabwe AF 106223 Nyakaana et al. 
2002

H82 L. a. cfricana ZBE3 Zimbabwe A F106224 Nyakaana et al. 
2002

H83 L. a. africana ZBE4 Zimbabwe AF 106225 Nyakaana et al. 
2002

H84 L. a. africana ZBE5 Zimbabwe AF 106226 Nyakaana et al. 
2002

H85 L. a. africana ZBE6 Zimbabwe A F106227 Nyakaana et al. 
2002

H86 L. a. africana Zimbabwe3 Zimbabwe AY741069 Debruyne 2005
H87 L. a. africana Zimbabwe6 Zimbabwe AY741071 Debruyne 2005
H88 L. a. africana Zimbabwe5 Zimbabwe AY741322 Debruyne 2005

* Original name from each author (Debruyne, 2005; Eggertetal. 2002; Nyakaana et al. 2002; and this study. ** Sample sharing both,
forest and savannah haplotypes, according to the author (Debruyne, 2005).
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Table 4.3. Cytochrome b haplotypes used in Figure 4.3. Haplotype frequency is indicated in brackets when
there is more than one.

Haplotype Taxon Designation* Geographic origin Genbank accession 
numbers

Author

HOI (12) L. a. africana AM 1, AM2, QE51, WC4, BO 1, Kenya, Uganda, AY741074, SN,
DRC11, M Ol, NA1, TA1, UG1, Namibia, Botswana, AY741078, Debruyne
UG3, ZI10 DRC, Mozambique, 

Tanzania, Zimbabwe
AY741076,
AY741325,
AY742801,
AY741323,
AY741324,
AY742800

2005

H02 L. a. africana AM12 Kenya 34
H03 L. a. africana AN1 Angola AY741072 Debruyne

2005
H04 L. a. africana BOT13 Botswana 94
H05 (6) L. a. cyclotis, DRC1, DRC4, DRC 17**, BOT17, DRC, Botswana, AY359275, Debruyne

L.a. africana. ZI2, ZI4 Zimbabwe AY359277, 2005, SN
L. africana AY742802,

AY741329,
AY742799

H06 L. a. africana BOT18 Botswana 94
H07 L. a. africana BOT1 Botswana 94
H08 L. a. africana BOT21 Botswana 94
H09 L. a. africana BOT25 Botswana 94
H10 L. a. africana BOT2 Botswana 94
HI 1 (2) L.a. africana BOT4* ET1 Botswana 94
H12 L.a. africana BOT9 Botswana 94
H I3 (5) L. a. cyclotis, 

L.a.cfricana, L. 
africana

DRC2, DRC9, DRC 13**, KV8, MF5 DRC, Uganda AY359270,
AY359279,
AY741081

Debruyne 
2005, SN

H14 L. a. cyclotis DRC3 DRC AY359271 Debruyne
2005

H15 L. a. cyclotis DRC5 DRC AY359276 Debruyne
2005

H16 (22) Loxodonta DRC6, DRC8, Cameroon2, CAR1, DRC, Cameroon, AY359268, Debruyne
africana Congo2, CAR274, CAR297, CAR, RC, Gabon AY359269, 2005, MJ
cyclotis CAR3315, CAR3417, CAR405, 

CAR3723, CAR4311, IVI1012, 
KES0819, LOP146, NN0713, 
NN232, NN267,NN279, NN2911, 
NN3116, NN3218

AY359272,
AY359273,
AY359274

H17 L. a. cyclotis Cameroon 1 Cameroon AY359267 Debruyne
2005

H18 L.a. africana Chadl Chad AY741080 Debruyne
2005

H19 L. a. cyclotis CKT04al4 RC MJ
H20 (5) L. a  cyclotis Congo 1, MPA01, MPA02, NOG014, 

NOG026
RC, Gabon AY359266 Debruyne 

2005, MJ
H21 (3) L. a. cyclotis Gabon2, Gabon 1, NN255 Gabon, RC AY359265, Debruyne

AY359278 2005, MJ
H22 L.a. africana Ivory Coast 1 Ivory Coast AY741327 Debruyne

2005
H23 (2) L. a. cyclotis IVI06c4, LOPAFE79 Gabon MJ
H24 L. a. cyclotis KES0314 Gabon MJ
H25 (2) L.a. africana Zi5, KG1 Zimbabwe, South 

Africa
AY741322 SN,

Debruyne
2005

H26 (2) L.a. africana KG2, South Africa3 South Africa AY741320 Debruyne 
2005, 94

H27 L.a. africana KV19 Uganda 94
H28 L.a. africana K.V2 Uganda 94
H29 L. a. cyclotis Liberia 1 Liberia AY741079 Debruyne

2005
H30 L.a. africana MM 19 Kenya 94
H31 L.a. africana MM20 Kenya 94
H32 L.a. africana Namibia2 Namibia AY741326 Debruyne
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2005
H33 L.a. africana QE48 Uganda SN
H34 L.a. africana Sudani Sudan AY741073 Debruyne

2005
H35 L.a. africana WA13 Ghana
H36 (2) L.a. africana WA14, WA15 Ghana 94
H37 L.a. africana WA6 Ghana ^4
H38 L.a. africana WC6 Namibia
H39 L.a. africana Zambia 1 Zambia AY741328 Debruyne

2005
H40 L.a. africana ZBE1 Zimbabwe 94
H41 L.a. africana ZBE3 Zimbabwe 94
H42 L.a. africana ZBE4 Zimbabwe 94
H43 L.a. africana ZBE5 Zimbabwe 94
H44 L.a. africana Zimbabwe 1 Zimbabwe AY741321 Debruyne

2005

* Original name from each author (Debruyne, 2005; this study SN=Silvester Nyakaana and MJ=Mireille 
Johnson)
** Sample sharing both, forest and savannah haplotypes, according to the author (Debruyne, 2005).

4.3.4 Demographic history

The HVR1 mismatch distribution of all African elephant haplotypes shows a bi modal 

pattern, with the highest peak similar to that expected for an expanding population 

(Figure 4.4), and Fu’s Fs was highly negative (-24.2605; P  = 0.0006), strongly 

suggesting also a recent population expansion. When HVR1 sequences from forest and 

savannah elephants were examined separately (Figure 4.5), Fu’s Fs was -14.2954 

(P=0.0021) and -24.4427 (p<0.0001), respectively. Although significant values can 

indicate historical population expansion, the multimodal pattern for the forest elephant 

groups suggests that these populations encompass several subgroups as indicated in the 

networks. When we examined each haplogroup separately for signatures of demographic 

change (Table 4.4), a smooth and predominantly unimodal pattern was observed for 

HVR1 Haplogroup I, indicating a recent demographic expansion (Figure 4.6), while 

HVR1 Haplogroups II, III and IV were more complex, including the presence of some 

divergent haplotypes.
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Figure 4.4. Mismatch distribution of the HVR1 haplotypes of: all African elephants, and 

forest and savannah African elephants, separately.
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Figure 4.5. Mismatch distribution of the HVR1 forest and savannah African elephants 

haplotypes.
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Figure 4.6. Mismatch distribution of the HVR1 haplogroups of African elephants.

Table 4.4. Indicators of demographic change in all African, forest and savannah 

elephants, and in different haplogroups with HVR1 mtDNA marker.

All Forest Savannah Haplogroup I Haplogroup II Haplogroup III Haplogroup IV

Fu’s Fs -24.2605 -14.2954 -24.4427 -7.30 -6.34 -4.61 -22.44

p-value 0.0006 0.0021 <0.000 0.006 0.015 0.034 <0.0001
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4.4 Discussion

In the light of the results obtained with the mitochondrial sequences used here, alternative 

explanations for the history of African elephants become evident and suggest that the 

conclusions drawn in previous studies may have been hampered by incomplete sample 

sets. The former genetic studies largely shared a pronounced lack of forest elephant data. 

The nuclear and mitochondrial DNA studies featured extremely limited sampling from 

central African forest elephants. The study by Roca et al. (2001) was limited on three 

populations from central African forest. Despite describing a narrow hybrid zone between 

the two elephant types (forest and savannah), only one population located in this zone 

(Garamba, (DRC)) was included and none from elsewhere in DRC or from west central 

Africa were examined. Eggert et al. (2002)’s study was limited on only two groups of 

forest elephant from central Africa both from the edge of the forest range in Cameroon, 

which may conceivably have influenced their conclusion of the genetic uniqueness of 

forest and western elephants. Elsewhere, Debruyne (2005) included elephants from 

across the DRC in his study but was again limited by small sample sizes. The results 

reported here have clearly shown that having a more extensive sample of forest elephants 

from the core of their range brought more information at the mitochondrial DNA 

sequences about the phylogeography, demographic history and the genetic structure of 

African elephants. Savannah populations, especially those in the south, would not have 

been affected by forest expansion since these areas remained unforested and thus habitat 

would not have been lost. Those savannah populations that may have been affected are 

those that may have occurred in areas that subsequently became forested. One 

explanation for the close genetic proximity between forest and savannah genotypes in 

DRC could be introgression of savannah mitochondrial haplotypes into forest elephants 

as the forests expanded and savannah habitat was lost. Such introgression would, in 

theory, be in the opposite direction to that proposed by Roca et al (Roca et al., 2005; 

Roca et al., 2001).

The results obtained for elephants in west and central Africa have strong implications for 

the division of elephants into forest and savannah species. These elephants are
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taxonomically indeterminate (Frade, 1955) and have been described as having an 

intermediate morphology (Groves, 2000). Mitochondrially, all Wfest African elephants 

are found in the same haplogroups as the (two) forest elephant lineages of central Africa. 

If ancient female-mediated introgression between the two forms followed by 

backcrossing into savannah populations is the reason why western sa\annah elephants 

possess largely ‘forest’ haplotypes then nuclear markers at these loci should resemble 

predominantly those of southern and eastern savannah elephants today. Alternatively 

these elephant populations could be an example of protracted gene flow between two 

forms of elephant, which is ongoing (or was until recently) and that west African 

savannah elephants are not distinguishable at the genetic or morphological level from 

their forest counterparts (thus undermining the two-taxon model). A third explanation 

could be a ‘second movement’ of elephants out of the forest (from either west or central 

Africa) and into the savannah. There are insufficient data to determine whether there was 

a single movement from forest to savannah habitat or whether the se were multiple events, 

precipitating the morphological changes observed today. Whatever the origin of the two 

types, our data would support continued extensive hybridisation between the two 

proposed forms.

Our data do not support the separation of current African elephant populations into two 

different species. The evidence for this is most clear in west Africa where savannah 

elephants are indistinguishable at both the mitochondrial and morphological level from 

their forest African counterparts. The proposed two species model cannot be applied in 

this region and neither do west African elephants represent a third taxonomic entity. 

Central African elephant populations west of the Congo river also pose questions for the 

current classification. Forest elephants fall into two major mitochondrial DNA groups. 

Previous studies also found two major groups, savannah and savannah/forest, perhaps 

suggesting ancient introgression between forest females and savannah males in the past. 

However the inclusion of a larger central forest sample in this study suggests that this 

explanation is too simple and that African elephants were subject to a more complex 

demographic history. The classification of species is important for many reasons but with 

the massive extinction of species in the wild in the last 50 years accurate descriptions are
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essential for management of wild resources. To develop management strategies 

incorporating the current two-taxon model could be misleading without further research 

and until further lines of evidence give us a clearer picture of the origins and current 

conservation needs of elephants populations throughout the continent. Future studies will 

need to analyse multiple nuclear DNA markers from across the range of forest and 

savannah elephants, especially in transition zones before any firm conclusions can be 

made.

138



4.5 References

Arctander P, Johansen C, Coutellec-Vreto M-A (1999) Phylogeography of three closely 

related African bovids. Molecular Biology and Evolution 16, 1724-1739.

Barriel V, Thuet E, Tassy P (1999) Molecular phylogeny of Elephantidae. Extreme 

divergence of the extant forest African elephant. C.R. Acad. Sci. Paris, Sciences 

de la vie 322, 447-454.

Clifford S, Anthony NM, Bawe-Johnson M, et al. (2004) Mitochondrial DNA 

phylogeography of western lowland gorillas {Gorilla gorilla gorilla). Molecular 

Ecology 13, 1551-1565.

Comstock KE, Georgiadis N, Pecon-Slattery J et al. (2002) Patterns of molecular 

variation among African elephant populations. Molecular Ecology 11, 2489- 

2498.

Debruyne R (2005) A case study of apparent conflict between molecular phylogenies: the 

interrelationships of African elephants. Cladistics 21, 31-50.

Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary 

patterns and phylogenetic content. Molecular Biology and Evolution 14, 1154- 

1166.

Eggert LS, Rasner CA, Woodruff DS (2002) The evolution and phylogeography of the 

African elephant inferred from mitochondrial DNA sequence and nuclear 

microsatellite markers. Proceedings o f the Boy a Society o f London B 269, 1993- 

2006.

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics 

Online 1, 47-50.

Flagstad O, Roed K (2003) Refugial origins of reindeer (Rangifer tarandus L.) inferred 

from mitochondrial DNA sequences Evolution 57, 658-670.

Flagstad O, Syvertsen P, Stenseth N, Jakobsen K (2001) Environmental change and rates 

of evolution: the phylogeographic pattern within the hartebeest complex as related 

to climatic variation. Proceedings o f the Royal Society o f London B 268, 667-677.

139



Frade F (1955) Ordre des proboscidiens (Proboscidea Illiger, 1811). In: Traite de 

Zoologie. Grasse, P.-P. edn. Masson & Cie, Paris, pp 715-875.

Fu YX (1997) Statistical test of neutrality of mutations against population growth, 

hitchhicking and backgroung selection. Genetics 147, 915-925.

Groves CP (2000) What are the elephants of West Africa? Elephant 2, 7-8.

Grubb P, Groves CP, Dudley JP, Shoshani J (2000) Living African elephants belong to 

two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis 

(Matschie, 1900). Elephant 2,1-4.

Hewitt G (1996) Some genetic consequences of ice ages and their role in divergence and 

speciation. Biological Journal o f the Linnean Society 58, 247-276.

Krumbiegel I (1950) Von neuen und unentdeckten Tierarten.

Matschie P (1900) Uber geographische Abarten des Afrikanischen elephantens. 

Sitzungsberichte Gesellschaft Naturforschunde Freunds Berlin 8, 189-197.

Roca AL, Georgiadis N, O'Brien SJ (2005) Cytonuclear genomic dissociation in African 

elephant species. Nature Genetics 37, 96-100.

Roca AL, Georgiadis N, Pecon-Slattery J, O'Brien SJ (2001) Genetic evidence for Wo 

species of elephant in Africa. Science 293, 1473-1477.

Rogers A, Harpending H (1992) Population growth makes waves in the distribution of 

pairwise genetics differences. Molecular Biobgy and Evolution 9, 552-569.

Tosi AJ, Detwiler KM, Disotell TR (2005) Y-chromosomal markers suitable for non­

in vasive studies of guenon hybridization. International Journal o f Primatology 

26, 685-696.

Van Hooft W, Groen A, Prins H (2002) Phylogeography of the African buffalo based on 

mitochondrial and Y-chromosomal loci: pbistocene origin and population 

expansion of the Cape buffalo subspecies. Molecular Ecology 11, 267-279.

Wasser SK, Shedlock AM, Comstock KE, Ostrander EA, Mutayoba B (2004) Assigning 

African elephant DNA to geographic region of origin: applications to the ivory 

trade. PNAS 101, 14847-14852.

140



CHAPTER 5

Population genetic structure of forest elephants 

in west central Africa

5.0 Abstract

The genetic diversity and structure of the forest elephant (Loxodonta africana cyclotis) in 

west central Africa was examined using 12 polymorphic microsatellite loci identified 

from savannah African elephant. DNA was amplified from faecal samples collected from 

sites across Gabon, Nouabale-Ndoki National Park in Congo, and Dzanga-Sangha 

National Park in the Central African Republic. High levels of genetic diversity were 

detected within samples with a mean number of alleles of 10.3 per locus; mean expected 

and observed heterozygosities of 0.81 and 0.79, respectively, with evidence for admixture 

in some regions. Genetic differentiation among sites was generally low with Fst values 

ranging from 0.004 to 0.045, suggesting high levels of gene flow. No correlation was 

found between genetic and geographical distance (P = 0.943). Results also showed the 

existence of a contact zone in the area of Ivindo (Gabon) from where sampled individuals 

were symmetrically assigned to two genetically-based clusters inferred from Bayesian 

analyses. These genetic results should be considered when management strategies are 

established to ensure the conservation and sustainable management of elephants and their 

habitats in central Africa.
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5.1 Introduction

Tropical rain forest is the predominant vegetation which defines the Congo Basin in 

Central Africa, but areas of savannah also occur such as the extensive and continuous 

grasslands of the highland Plateau Bateke highland in Gabon and Congo (Tutin et al.,

1997), and other areas of savannah mosaic with forest fragments (e.g. Lope National 

Park, Gabon) adjacent to continuous forest, also exist (Tutin et a l , 1997). Additionally, 

mineral-rich clearings, often with permanent water bodies, surrounded by forest, (locally 

known as bais) are an important habitat feature found in tropical forest ecosystems 

(Turkalo & Fay, 1996). The majority of this tropical forest ecosystem is inhabited by 

forest elephants loxodonta africana cyclotis\ Blanc et al, 2007). Unlike its savannah 

counterpart in eastern and southern Africa, little is known about the status, the 

distribution and population structure of the forest elephant (Barnes et a l , 1991; Blanc et 

a l , 2007). A substantial lack of reliable information on the situation of forest elephants 

exists in central African countries because of an absence of infrastructure necessary to 

monitor populations, the difficulties of accessing the forest and a substantial lack of 

institutional capacity and resources (Blanc et a l , 2007; Walsh & White, 1999). However, 

some studies have been carried out to monitor forest elephants (Blake et al, 2001; Fay, 

1991; Fay, 1999; Fay & Agnagna, 1991; Nzooh et a l, 2005) and to determine their 

distribution, density and biomass (Barnes et al, 1991; Morgan, 2007), and the impact of 

human activities on their distribution (Barnes et a l, 1991; Buij et a l, 2007) . It has been 

widely reported that intense poaching for both elephant ivory and meat occurs in Central 

Africa and that the region is the main centre for the current ivory trade (Blanc et al, 

2007). Activities such as logging, mining and oil extraction provide access to remote 

areas, increasing hunting, which is often targeted at elephants (Blanc et al, 2007). These 

threats almost certainly have had a negative impact on elephant populations, but this is 

difficult to determine because of a lack of information. There are, however, a few studies 

which have shown the effect of roads and hunting, or more broadly, the influence of 

human activities on forest elephants (Barnes et a l, 1991; Buij et a l, 2007; Laurance et 

al, 2006). Surveys for estimating elephant abundance have provided the highest level of 

data quality only in Gabon and the Central African Republic (Blanc et al, 2007). Other
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countries such as Congo and Democratic Republic of Congo currently have a lower level 

of data quality, with censuses based mainly on best guesses.

The wide variety of habitats where forest elephants occur would be expected to have an 

influence on their distribution, as human disturbance would similarly do. Few data exist 

on patterns of use by large mammals of natural forest fragments (Tutin et al., 1997). 

Momont (2007) has shown that elephants in Lope and Langoue bai, both in Gabon, 

exploit all different types of habitat according to seasonal changes, to benefit from the 

available food and mineral salts. Recent advances in global positioning system (GPS) 

technology have provided quality data to evaluate ranging, seasonal movements and the 

distribution of African elephants (Blake et al., 2001; Douglas-Hamiltone/ al., 2005). The 

same system was also used to study the influence of social relationships on spatial 

population structure and ranging strategies on the elephants inhabiting the Samburu and 

Buffalo Springs National Reserve in northern Kenya (Wittemyer et al., 2007). It is 

essential to understand the ecology of any species studied genetically, since population 

dynamics, spatial distribution and genetic structure are closely tied to patterns of 

movement (Pough et a l, 1998). Forest elephant movements are related to the acquisition 

of necessary resources (Vanleeuwe & Gautier-Hion, 1998; White, 1994). Furthermore, 

their capacity to survive in variable habitats potentially allows wide dispersal thanks to 

their high mobility of up to 2000 km during their lifetime (Blake, 2007), although 

poaching and logging (with habitat loss) are a considerable menace (Blake & Hedges, 

2004; Blanc et al., 2007), and would impose a further cost on dispersal. African elephants 

have a matrilineal social structure characterised by a polygynous mating system where 

females are philopatric, strongly faithful to their natal group, and males have a high 

tendency to migrate and to exchange individuals between populations (Nyakaana & 

Arctander, 1999; Nyakaana et al., 2002). Any dispersal from the natal area or group in a 

philopatric species will inevitably reduce the probability of mating with a close relative 

(Greenwood & Harvey, 1982). Recent studies have examined the evolution of dispersal 

as a mechanism of inbreeding avoidance in African elephants (Archie et al., 2007; 

Moore, 2007) and also in birds (Szulkin & Sheldon, 2007). The former study has shown 

that elephants recognize close paternal kin and avoid mating with them. The consequence
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of inbreeding, defined as the reproduction of individuals sharing ancestors (Wright 1922), 

is to increase the level of homozygosity in a population. Thus, some species develop 

strategies such as sex-biased dispersal or relative recognition to prevent inbreeding 

depression. Gene flow describes the movement of reproducing migrants from one 

population to another (Slatkin, 1985), although this migration can be restricted because of 

geographical features, such as rivers, highways, mountain ranges (Coulon et al., 2006; 

Eriksson et al., 2004; Keller et ah, 2004; Luiselli & Capizzi, 1997; Slatkin, 1987; 

Whitlock & McCauley, 1999) and human disturbance such as poaching and habitat 

fragmentation (Cegelskief al., 2003; Luiselli & Capizzi, 1997).

Few studies have analysed the genetic diversity of African elephants using microsatellite 

markers. The studies of Nyakaana et al. (1999, 2002) based on four microsatellite loci 

have shown a high level of polymorphism in savannah elephant populations at regional 

and continental scales. They found a lack of concordance based on genetic structures 

when they compared nuclear and mitochondrial markers. Their microsatellite data 

depicted weak differentiation among populations compared to mtDNA, a finding they 

mainly explained to be the result of the matrilineal elephant social structure characterised 

by female natal philopatry favouring male biased gene flow (Nyakaana and Arctander, 

1999). Meanwhile, Comstock et al. (2002) studied genetic variation among African 

elephant populations using 16 microsatellite loci across 20 populations and found lower 

genetic diversity in savannah elephants than in forest elephants. Only three sites were 

assessed from African equatorial rain forests. The aim of this Chapter was to investigate 

the genetic diversity and structure of L. a. cyclotis within and among populations using 

12 polymorphic microsatellite DNA loci identified in the African elephant, and to 

compare these results with the mtDNA data in Chapter 3. The results were used to 

understand highlight mechanisms, which could be inferred from the observed population 

structure of forest elephants in Central Africa. I also expected to find, based on 

microsatellite analysis, (i) evidence fcr high levels of gene flow, (ii) a genetic signature 

of Pleistocene allopatric differentiation (see Chapter 3), coupled with (iii) detectable 

effects of human disturbance. However, the discussion of my findings will necessarily be 

limited because of the hck of data on social behaviour for L. a. cyclotis.
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5.2 Materials and Methods

5.2.1 Study area

The study area included Gabon, northern Republic of Congo and south-west Central 

African Republic (CAR), where faecal samples were collected from 249 elephants from 

eight populations (see Figure 5.1 and Table 5.1 for details). Each location includes 

different forest types, from swamp forest to savannah-forest mosaic, including saline 

clearings (bais) surrounded by canopy forest

Figure 5.1. Map of the study area of forest elephant in the western part of the Congo 

Basin.
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Table 5.1. Description of the 8 populations studied, their geographic origin, number of samples collected per site, 

and habitat features.

Geographic origin Population Code n Forest type

West coast Gabon Rabi-Ndongo NP RAB 21 Closed canopy forest

West coast Gabon Loango NP LOA 23 Mangroves and lagoons, inundated coastal

West coast Gabon Nyonie NYO 35 Mangroves and lagoons, inundated coastal

Central Gabon Lope NP LOP 77 Forest-savannah mosaic

Central Gabon Ivindo NP IVI 38 Saline clearing within forest

Southern CAR Dzanga-sangha NP CAR 35 Saline clearing within forest

North-eastern Congo Nouabale-Ndoki NP NN 40 Lowland rainforest

South-eastern Gabon Plateaux Bateke NP PBA 21 Degraded forest

NP = National Park 

n = number of samples
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5.2.2 Sampling and DNA amplification

Dung samples were collected and extracted as described in Chapter two. DNA was 

amplified using the Polymerase Chain Reaction (PCR) and genotyped with a multiplex 

panel of 12 polymorphic microsatellite loci: FH19, FH39, FH40, FH48, FH60, FH67 and 

FH71 (Comstock et al, 2000); FH127 (Comstock etal., 2002); LA6 (Eggert et al, 2000); 

LAFMS03 (Nyakaana & Arctander, 1998); LAFMS07 (Nyakaana S et a l, 2005); and 

LAT08 (Archie et a l, 2003). Table 5.2 shows the constitution of each multiplex with the 

primer dye and size range (from the original study).

Table 5.2. Panel of microsatellite multiplexes used for genotyping in this study.

Multiplex Locus Dye Size range °C (annealing temp.) 
and # cycles

Ml FH39 NED (Yellow) 198-256 55 ° C : 38
FH67 6-FAM (Blue) 90-116
FH127 6-FAM (Blue) 147-203

M2 FH71 NED (Yellow) 61-137 58 ° C : 37

LAFMS03 6-FAM (Blue) 137-157
LAMS07 VIC (Green) 132-168

M3 FH60 6-FAM (Blue) 139-167 60 ° C : 37
LA6 NED (Yellow) 153-175
LAT08 VIC (Green) 162-300

M4 FH19 RED (Red) 187-213 60 ° C : 40
FH40 6-FAM (Blue) 226-272
FH48 NED (Yellow) 152-180

For each locus, the forward primer was dye-labeled and the PCR amplification was 

carried out in a 10 pi volume containing 5 pi of QIAGEN Multiplex PCR Master Mix 

(from the QIAGEN® Multiplex PCR Kit), 1 pi of the 10X primer mix (0.2pM of each 

primer, forward and reverse), 2pl of DNA, lpl of 0.5X Q-Solution (provided in the kit)
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and 1 fil of water. The amplification profile consisted of a denaturation step at 95 °C for 

15 min, followed by a 94°C denaturation for 30 sec; 1.5 min of primer annealing and 1.5 

min of primer extension at 72°C. The number of cycles and the annealing temperature 

depended on the multiplex as shown in Table 5.2. A control extraction blank and PCR 

reaction control, to which no DNA was added, were included in each batch of 

amplification. Genotypes were determined using Peak Scanner (Applied Biosystems).

5.2.3 Population genetic analyses

Genetic diversity

Genotypes were assessed using MICRO-CHECKER 2.2.1 (Van Oosterhout et al., 2004). 

The mean number of alleles per locus and population was calculated using GENETIX, 

and the observed (Ho) and expected (H) heterozygosities were also estimated per 

population and per locus using GENETIX and ARLEQUIN version 3.11 (Excoffier et al, 

2005), respectively. Deviation of observed genotype frequencies from those expected 

under Hardy-Weinberg equilibrium (HWE) was examined per population across loci and 

per population and locus by calculating Weir & Cockerham’s inbreeding coefficient (Fis) 

using 1000 permutations. Genotypic linkage disequilibrium (LD) and allele frequencies 

were also estimated using GENETIX. LD was measured using the correlation coefficient. 

A permutation approach was applied to determine the significance level (P < 0.05). 

Genetic differentiation and gene flow among populations were estimated using the F st  

analogue (theta) of Weir and Cockerham (1984) implemented by GENETIX, and a 

Mantel test was conducted using ARLEQUIN to test for the correlations between genetic 

and geographical distances (isolation by distance). GENETIX was used to visually 

explore patterns of genetic differentiation between individuals in all populations using 

Factorial Correspondence Analysis (FCA) based on allele frequencies (Belkhir et a l,

1998).
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The significance of the population structure was analysed by analysis of molecular 

variance (AMOVA) with 10,000 permutations, among and within populations, executed 

by ARLEQUIN3.il.

Population structure

Population structure was further inferred using the Bayesian clustering procedure 

implemented in STRUCTURE. Populations or individuals were assigned to one cluster if 

their proportion of membership (g) to that cluster was equal to or larger than an accepted 

threshold of 0.800 (Randief al., 2003). Individuals are assigned probabilistically to one 

(the population of origin) or more than one cluster (the parental populations) if their 

genotypes indicated that they were admixed. Most parameters were set to their default 

values as recommended in the STRUCTURE 2.0 user’s manual (Pritchard & Wen, 2003). 

The admixture model and the option of correlated allele frequencies were chosen. The 

length of the burn-in period and the number of MCMC were set to 100,000 and 1,000,000 

respectively. The range of possible numbers of partitions in the data (X) tested was 1 to 5. 

Ten runs were performed for each value of K, in order to verify that the estimates were 

consistent across runs. The mean posterior probability was calculated for each K  over its 

runs, and the true K  is the maximal value of the estimated logarithm of probability of the 

data In Pr(X|K) (Pritchard et a l, 2000)
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5.3 Results

5.3.1 Genetic diversity

A total of 249 individuals from eight populations were genotyped using 12 microsatellite 

loci (Appendix 5). Two hundred and four different alleles were observed in the whole 

sample and the mean number per locus was 17, ranging from eight (LAFMS07) to 48 

(LAT08) (Figure 5.2). The level of polymorphism per population was also high, with a 

mean number of alleles of 10.3, ranging from 8.6 (PBA) to 12.3 (LOP and NN) (Table 

5.3). The mean expected (He) and observed (Hc) heterozygosity per population were high 

across loci, ranging from 0.78 (NYO) to 0.84 (NN) and 0.73 (PBA) to 0.83 (RAB), 

respectively (Table 5.3). Allele frequency distribution by locus and population is shown 

in Appendix 6. The frequencies of the alleles generally showed multimodal distributions 

with more than two common alleles and a range of other alleles at low frequencies, 

except for the locus FH40, which had a single common allele with high mean frequency 

of 54 % over all populations.

Assessment of genotyping errors was implemented using MICRO-CHECKER (Van 

Oosterhout C et al., 2004) as DNA degradation, low DNA concentrations and primer-site 

mutations may result in the incorrect assignment of microsatellite genotypes, biasing 

population genetic analyses. The results across populations for each locus gave no 

evidence for scoring error due to stuttering, no evidence for large allele dropout, but 

notified the potential presence of null alleles at some loci due to a general excess of 

homozygotes for most allele size classes. Populations were mainly found to conform to 

Hardy Weinberg equilibrium but some loci, such as FH127, LAT08, FH19, FH67, LA6, 

FH71 showed evidence of null alleles in LOP, CAR, NN and IVI. Only one locus showed 

evidence for null alleles in LOA, PBA and NYO (FH40, LAT08 and FH71, respectively). 

Since the calculated null allele frequencies (see Appendix 7) were generally negligible, 

little bias was expected in the analysis of population structure (Chapuis & Estoup, 2007;
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Dakin & Avise, 2004). Hence, the downstream analyses were carried out with the twelve 

loci, with no adjustment of allele frequencies or removal of the affected loci.

Locus

Figure 5.2. Total number of alleles per locus across all forest elephant populations.

5.3.2 Deviations from Hardy-Weinberg equilibrium and linkage disequilibrium 

(LD)

Across all loci, He varied from 0.78 (NYO) to 0.84 (NN), and H0 varied from 0.73 (PBA) 

to 0.83 (RAB) (Table 3). Hc values were slightly higher, generating low but significant 

Fis values observed mainly for two loci (LAT08 and FH71). These loci exhibited 

significant deviation from HWE proportions for four and three populations, respectively, 

as differences were observed between Hc and H0 (Table 3). This departure could be due 

to null alleles detected, since these loci were implicated as demonstrating null alleles in 

most populations where nulls were suspected. A significant deviation from HWE was 

found in 4 populations (LOP, CAR, NN and PBA) across loci with a deficit of 

heterozygosity as shown in Table 5.3. NYO showed a low but not significant (P = 0.445)
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excess of heterozygosity. Significant LD (P < 0.05) was found between some loci and in 

some populations (see appendix 8). LOP, RAB and PBA presented the highest number of 

significant comparisons (58, 59 and 55, respectively). Pairs of loci comprising LAT08 

and FH71 exhibited the most significant LD values, on average 6.9 across populations 

(SD = 0.85), probably because of the suspected null alleles reported above. LD can be 

due to a variety of factors, including physical linkage, admixture and demographic 

fluctuation. Migration and admixture among two or more populations can generate LD, 

for example after recent introgression of novel haplotypes into a population, 

recombination may not had have time to break down LD (Hedrick, 1985). Epistatic 

interactions between loci can also maintain LD, but this explanation seems less likely 

with supposedly neutral microsatellites markers. Hence, this significant LD might suggest 

admixture between groups of populations and/or population structure (Pfaff et al., 2001; 

Pritchard & Wen, 2003).

5.3.3 Population structure

Genetic differentiation among populations was low but significant for most of the 

pairwise comparisons, with the exception of CAR-NN (F st  = 0.004), RAB-LOA ( F st  =  

0.006), NN-PBA (Fst = 0.009), NN-RAB (psr = 0.013) and LOA-PBA (Fsr = 0.017), 

indicating substantial movements between those populations and effective gene flow 

(Tables 5.4 and 5.5).
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Table 5.3. Average number of alleles across populations (Aa), observed (HQ) and expected 

(Hc) heterozygosities and departures from Hardy-Weinberg proportions (Fis) for 

populations and all loci, and mean number of alleles per population (MNA).

Population LOP CAR NN IVI RAB LOA PBA NYO

Locus n 59 32 35 37 17 20 16 33 Na

FH39 He 0.72 0.80 0.83 0.75 0.76 0.80 0.79 0.78 12

H0 0.73 0.70 0.94 0.97 0.71 0.90 0.73 0.78

He -0.022 0.137 -0.121 -0.279 0.077 -0.093 0.102 0.018

NS NS NS * NS NS NS NS

FH127 Ho 0.86 0.85 0.85 0.86 0.85 0.82 0.79 0.80 13

H0 0.74 0.81 0.97 0.84 0.94 0.75 0.69 0.94

F* 0.143 0.067 -0.126 0.042 -0.108 0.084 0.160 -0.149

NS NS NS NS NS NS NS NS

FH67 Ht 0.81 0.79 0.81 0.77 0.84 0.77 0.84 0.79 10

Ho 0.78 0.66 0.78 0.70 0.94 0.90 0.87 0.90

Fts 0.046 0.181 0.047 0.106 -0.123 -0.150 -0.014 -0.135

NS NS NS NS NS NS NS NS

FH71 Ho 0.82 0.78 0.86 0.86 0.94 0.92 0.78 0.92 29

H0 0.78 0.63 0.60 0.64 0.94 0.75 0.81 0.73

Fs 0.068 0.205 0.319 0.274 0.004 0.187 -0.010 0.209

NS NS * * * *** NS NS NS **

LAFMS03 Ho 0.80 0.82 0.83 0.74 0.70 0.78 0.80 0.66 11

Ho 0.73 0.84 0.74 0.78 0.53 0.80 0.62 0.82

FB 0.103 -0.015 0.121 -0.042 0.271 0.002 0.227 -0.229

NS NS NS NS NS NS NS NS

LAFMS07 Ho 0.81 0.80 0.84 0.80 0.81 0.76 0.81 0.78 8

Ho 0.90 0.81 0.83 0.83 0.82 0.74 0.81 0.85

Fe -0.097 0.015 0.033 -0.025 0.009 0.056 0.027 -0.078

NS NS NS NS NS NS NS NS

FH60 Ho 0.84 0.82 0.86 0.81 0.85 0.82 0.82 0.74 13

Ho 0.83 0.74 0.83 0.83 0.82 0.89 0.73 0.88

Fjs 0.015 0.109 0.048 -0.012 0.037 -0.059 0.135 -0.164

NS NS NS NS NS NS NS NS

LA6 Ho 0.74 0.79 0.80 0.68 0.82 0.74 0.76 0.77 12

Ho 0.73 0.58 0.74 0.66 0.88 0.67 0.75 0.85

F  E 0.019 0.284 0.090 0.050 -0.041 0.134 0.048 -0.088
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NS * NS NS NS NS NS NS

LAT08 Hc 0.95 0.93 0.96 0.94 0.94 0.94 0.93 0.93 48

H0 0.77 0.79 0.84 0.86 0.94 0.85 0.75 0.88

Fis 0.203 0.165 0.143 0.106 0.004 0.099 0.224 0.053
* * * * * NS NS NS * NS

FH19 He 0.86 0.88 0.89 0.89 0.82 0.86 0.84 0.86 14

Ho 0.77 0.90 0.76 0.83 0.76 0.95 0.71 0.73

F* 0.116 -0.009 0.163 0.078 0.098 -0.082 0.182 0.155

NS NS NS NS NS NS NS NS

FH40 Ho 0.81 0.58 0.66 0.66 0.64 0.67 0.66 0.62 19

Ho 0.72 0.59 0.73 0.65 0.82 0.47 0.61 0.73

Fb 0.119 0.002 -0.085 0.028 -0.255 0.296 0.103 -0.164

NS NS NS NS NS NS NS NS

FH48 Ho 0.83 0.84 0.86 0.85 0.85 0.87 0.85 0.79 15

Ho 0.94 0.80 0.84 0.83 0.82 0.90 0.69 0.81

FB -0.129 0.063 0.038 0.033 0.061 -0.038 0.197 -0.004

NS NS NS NS NS NS NS NS

Total Ho 0.82 0.81 0.84 0.80 0.81 0.80 0.80 0.78

(SD) (0.06) (0.08) (0.07) (0.08) (0.08) (0.07) (0.06) (0.09)

Ho 0.78 0.74 0.80 0.79 0.83 0.80 0.73 0.82

(SD) (0.07) (0.10) (0.10) (0.10) (0.12) (0.13) (0.08) (0.07)

Fs 0.052 0.102 0.060 0.035 0.004 0.034 0.117 -0.038
*♦* * * * * NS NS NS * NS

MNA 12.3 11.0 12.3 11.2 8.8 8.9 8.6 9.3

n  =  sample size, NS = non significant, * = p < 0.05, ** p  < 0.01,*** A O

oo
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Table 5.4. Pairwise genetic differentiation (Fst; Weir & Cockerham, 1984) between 

forest elephant populations (below diagonal) and straight line geographical distances in 

km (above diagonal).

LOP CAR NN IVI RAB LOA PBA NYO

LOP - 580 620 76 288 328 352 248

CAR 0.030 - 52 512 856 902 588 796

NN 0.025 0.004 - 552 896 940 604 844

IVI 0.020 0.022 0.018 - 348 388 304 328

RAB 0.039 0.031 0.013 0.027 - 50 436 124

LOA 0.031 0.033 0.020 0.019 0.006 - 488 258

PBA 0.026 0.018 0.009 0.017 0.020 0.017 - 572

NYO 0.045 0.045 0.032 0.030 0.019 0.020 0.033 -

Bold numbers are non significant values o f F st (F > 0.05)

Table 5.5. Pairwise estimates of Nm gene flow between forest elephant 

populations.

LOP CAR NN IVI RAB LOA PBA

CAR 8.07 -

NN 9.89 62.15 -

IVI 12.12 11.09 13.58 -

RAB 6.14 7.86 19.15 8.91 -

LOA 7.79 7.36 12.10 13.18 38.23 -

PBA 9.38 13.66 26.23 14.13 12.37 14.76 -

NYO 5.31 5.24 7.66 8.13 12.68 12.03 7.29
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NN and RAB Fst was low despite a straight line geographic distance of 896 km between 

them. The estimation of gene flow (Tables 5.4 and 5.5) showed that the populations, 

which have exchanged more individuals mostly have a shorter geographical distance 

between them (Table 5.4). This is not the case for LOP and IVI, which were 

approximately 76 km distant, with a significant (P < 0.001) , but low Fst = 0.020. NN 

and LOA are geographically separated by 940 km and had the same genetic 

differentiation (Fsr = 0.020) as between LOP and IVI, as shown in Table 5.4. A Mantel 

test showed no correlation (r = -0.29, P = 0.943) between genetic and geographical 

distance (isolation by distance) in forest elephant populations (Figure 5.3). Little structure 

was observed from the FCA plot of individual microsatellite genotypes (Figure 5.4) 

although there is some evidence of two groups and an intermediate zone where the 

groups are in contact. One group included LOP, CAR, NN and PBA, and the second is 

mainly the coastal populations, with LOA, RAB and NYO. IVI was distributed between 

both groups, and overlaps the contact zone. It is important to point out that these groups 

are not supported by 95% confidence elipses and are indicative only. The AMOVA test 

for the whole sample showed that 97 % of the genetic variation was within populations, 

with a significant but low differentiation among populations (P < 0.05, Fst = 0.028).

0.05 i

0.045 -

0.04 -

0.035 -

0.03 - 

2 0.025 - 

0.02 -

0.015 -

0.01 -

0.005 -

600200 400 800 1000
D istance (km)

Figure 5.3. Correlation between pairwise genetic distances (F s t )  and geographical 

distances (km) in 8  populations of forest elephants (F = 0.943).
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Figure 5.4. Factorial Correspondence Analysis showing relationship among multilocus 

genotypes of individual forest elephants from 8  populations in west central Africa.

Bayesian clustering

The estimated log likelihood of the data, In Pr(X | K), was maximal at K = 2 (Table 5.6). 

STRUCTURE revealed that the most likely genetic structure for the whole data set 

consisted of two dusters (K = 2). When K increased (K = 3-5), the results showed the 

same pattern as with K = 2 (Figure 5.5). One cluster grouped together all three populations 

from the Gabonese coast, i.e. RAB, LOA and NYO, the second cluster grouped LOP, 

CAR, NN and PBA, whereas IVI was distributed between both clusters. The proportions 

of membership of each sampled population in the two inferred clusters are shown in Table 

5.7. Forest elephants from LOP, CAR NN and PBA were assigned to cluster I with q\ = 

0.904, 0.922, 0.898 and 0.908, respectively, while elephants from RAB, LOA and NYO 

were assigned to cluster II with q\\ = 0.935, 0.907, 0.928. IVI comprised individuals from 

both clusters I and II assigned with a probability larger than 0.800 (q\ -  0.836 and <711 = 

0.901, respectively). Thirty-eight and 27 % of the individuals from IVI were assigned in
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both cluster I and II, respectively. Results showed that 90.91 % of the individuals from 

NYO were correctly assigned to their original population. The percentage of assigned 

individuals was in the range of 59 % to 75 % in the other populations. The unassigned 

individuals were assigned to both clusters (I and II) with probability lower than 0.800, 

indicating that they are admixed (Randi et al. 2003). Potential migrants observed within 

sampled populations (Table 5.7) are the number of individuals assigned with a probability 

larger than 0.800 in the opposite cluster, for instance LOP contained one individual 

assigned with q = 0.935 in cluster II while 68 % of the sampled population were assigned 

in cluster I. NN and PBA have received 4 and 2 migrants, respectively, from cluster II, 

whereas RAB and LOA comprised 2 and 3 migrants at the time of sampling, respectively. 

No potential migrants were observed at CAR and NYO.

Table 5.6. Inference for the number of populations (fC). The posterior probability of the 

number of populations was maximum with K -  2.

K In Pr(X|X)

1 -12713.2

2 -12599.8

3 -12692.1

4 -12873.5

5 -12706.0
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Table 5.7. Bayesian clustering analysis in forest elephants performed using 

STRUCTURE (Pritchard et al. 2000). The table shows the proportion of membership (g) 

of each predefined sampled population in each of 2 inferred clusters. Each sampled 

population was assigned to a single cluster if qt (i = I-II) = 0.800. The number (in 

parentheses) and percentage of total individuals assigned are indicated. Proportions of 

membership of potential migrants are indicated with their original cluster (I or II) (see 

text for details), n = population size.

Population (n)
Cluster 

I n

Potential

migrants

Unassigned

individuals

% of total* 

assigned 

individuals

LOP (59) 0.904 (40) 0.096 (0) 0.935 (1)„ 18 69.49

CAR (32) 0.922 (20) 0.078 (0) 0 12 62.50

NN (35) 0.898 (23) 0.102 (0) 0.873 (4)ii 8 77.14

IVI (37) 0.836 (14) 0.901 (10) - 13 64.86

RAB (17) 0.065 (0) 0.935 (8) 0.828 (2)i 7 58.82

LOA (20) 0.093 (0) 0.907 (12) 0.892 (3)i 5 75.00

PBA (16) 0.908 (8) 0.092 (0) 0.879 (2)n 6 62.50

NYO (33) 0.072 (0) 0.928 (30) 0 3 90.91

* including potential migrants
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Figure 5.5. Clustering results (K = 2) for all sites, according to STRUCTURE analysis. 
Each individual is represented as a vertical line partitioned into coloured segments. 
Sampled sites are separated by black vertical line and labelled below the figure.
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5.4 Discussion

This study presents the first extensive analysis of genetic structure in forest elephants in 

west central Africa based on microsatellite markers. The results showed a high level of 

genetic diversity within forest elephant populations. Comstock et al (2002) found that 

savannah elephant populations have a lower level of genetic diversity compared to the 

three forest elephant populations (Dzanga-Sangha, Lope and Garamba) they studied. 

Significant departures from HWE were observed mainly at two bci (FH71 and LAT08) 

in three and four populations, respectively. Departure from HWE and the observed LD 

could be the result of recent admixture, migration or hybridization (Randi et al. 2003). 

These deviations may have been also due to null alleles detected by MICRO-CHECKER, 

but as their frequencies were negligible, they are extremely unlikely to affect the analysis 

of population structure. A deficit of heterozygosity was observed across loci in LOP, 

CAR, NN and PBA. Since the detected null alleles were minor, inbreeding within those 

populations might explain significant positive values of F\§ However, inbreeding is 

perhaps less plausible, as the analysis of AMOVA showed 97 % of the genetic variation 

segregating within populations.

Gene flow in forest elephants seems to be sporadic, with dispersal sometimes being high 

over short distances (CAR-NN) but also occurring over much longer distances (NN- 

PBA). In contrast, NYO-LOP (248 km) or LOP-IVI (76 km), for instance, had significant 

but low restricted genetic exchange. Momont (2007) did not observe any one individual 

in both LOP and IVI during his study, although these sites are not far from each other. He 

concluded that the two elephant populations may be demographically separate. These 

unpredictable moveme nts are corroborated by the lack of correlation between 

geographical and genetic distance shown by the Mantel test in Figure 5.3. Similar results 

were found with mitochondrial DNA data in Chapter 3. However, the high level of gene 

flow between NN, CAR and PBA suggests the existence of 2 main corridors, along which 

elephants regularly move (between NN and CAR, and between NN and PBA), 

confirming the observation of cross-border movements between Congo, Central African 

Republic and Gabon (Blanc et al, 2007). Elephants moving between NN and CAR have
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been reported to form a single trans-boundary population (Blanc et al., 2007). Clearly, 

another corridor occurs between LOA and RAB.

The results showed that NYO was slightly differentiated from other populations, with the 

exception of its immediate neighbours LOA and RAB. This differentiation was shown 

with Bayesian analyses and Fst values among populations, although these values are 

considered to be low when they range from 0 to 0.05 (Balloux & Lugon-Moulin, 2002). 

Various landscape traits such as estuaries, the Atlantic Ocean, a national road, a railway, 

and a zone of lakes and swamps surrounding NYO could be partly responsible for this 

partial isolation, as the population is located inside and in the vicinity of Wonga-Wongue 

National Park. It has been reported that coastal populations do not move or disperse very 

much, since they are able to find all necessary resources in the vicinity (Blake, pers. 

comm.). Furthermore, it is well known that in many species, populations are often 

subdivided into smaller units because of ecological or behavioural factors (Hedrick, 

1985), which could be the case in this study. However, because elephants are highly 

mobile, gene flow must occur frequently enough to produce widespread genetic 

homogeneity (Slatkin, 1985), reducing differentiation among populations. Despite the 

low differentiation observed, elephants from NYO have apparently received significant 

migration from other populations. The low and significant (P < 0.001) deficit of 

heterozygotes observed in LOP (Fis = 0.05) could be attributable to a recent effect of 

human disturbance. Although, LOP is a well protected National Park with limited human 

activities inside, it also has a history of logging, and is surrounded by a large river 

(Ogooue), a railway, a national road, and villages (Momont, 2007).

How much does human disturbance affect the structure of forest elephants in central 

Africa? A regional forest elephant status survey was carried out about two decades ago, 

and reported that forest elephants have undergone slaughter by poaching, as have 

elephants in the rest of Africa (Blake, 2007). No reliable data are available in terms of the 

number of elephant killed across the Congo Basin with the exception of MIKE survey 

teams (2003-2004) which reported recently that poaching for ivory in remote national 

parks has had a devastating impact on at least some populations (Blake, 2007). Thus,
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LOP, CAR, NN and PBA elephants might have suffered intensive poaching for ivory 

recently since they inhabit areas where there is little or no effective policy against 

elephant poachers (Blake, 2007).

Table 5.3 presents different estimates of heterozygosity per population, but when all 

populations were pooled together, a deficiency of heterozygotes, assuming Hardy- 

Weinberg proportions, was observed (He = 0.81, f t  = 0.79), illustrating a potential 

Wahlund effect in the forest elephant of west central Africa. This observation is 

consistent with the two groups of populations with an intermediate population shared 

between groups, shown by FCA (Figure 5.4), and also well supported by posterior 

Bayesian analysis, with an inferred value of K = 2 clusters. This result agrees with the 

two haplogroups found in Chapter 3, based on the mitochondrial genome. One group was 

made up of populations from the coastal area (NYO, LOA, RAB), and a second group 

consisted of populations farther from the coast (CAR, NN, LOP, PBA). Individuals from 

IVI were more or less equally distributed amongst both clusters. IVI is thus likely to be a 

contact zone. Fragmentation of forests in Central Africa during the Pleistocene possibly 

led to a bottleneck (but with rapid recovery), resulting in the observed low deficiency of 

heterozygotes in different populations that were fragmented in the past (Wahlund effect).

Populations of forest elephants in west central Africa have likely experienced different 

degrees of admixture. All sampled populations had a proportion of individuals assigned 

to both clusters. The results of STRUCTURE (Table 5.7 and Figure 5.5) show evidence 

of intermixing between populations or clusters. IVI in particular presents almost equal 

proportions of individuals assigned to both clusters. This site, located in the eastern part 

of Gabon, has been already described as a population “made up of a mixture of highly 

divergent haplogroups” or a “heavily admixed” population in lowland gorillas (Anthony 

et al. 2007). In Chapter 3, the same site of Ivindo was the most variable in terms of 

mitochondrial DNA haplotypes when compared to CAR, which has the same number of 

samples. Again this may be the signature of Pleistocene changes when the forest 

underwent contraction and fragmentation during the drier and colder periods and
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expanded in the interglacial (Hewitt, 2004). Secondary contact has possibly occurred at 

Ivindo for both lowland gorilla and forest elephant.

Pleistocene retraction and expansion is likely to have shaped the genetic structure of 

elephants, as is the case for lowland gorillas (Anthony et al., 2007; Clifford et al., 2004) 

in central Africa and for numerous bovid species in east and southern Africa (Arctander 

et al., 1999; Flagstad et al., 2001; Nersting & Arctander, 2001; Van Hooft et al., 2002). 

However, human activity has been shown to be a major determinant of forest elephant 

distribution (Barnes et al., 1991; Buij et al., 2007), and the negative impact of this 

disturbance should not be neglected since several studies have reported a loss of genetic 

diversity following intensive poaching and habitat loss (Nyakaana S et al., 2001; 

Nyakaana & Arctander, 1999; Whitehouse & Harley, 2001).

'y
Forest cover in central Africa is about 2 million km and all of this is believed to be 

suitable elephant habitat (Blake S, 2007). Furthermore, it has been reported that DRC and 

Gabon together account for nearly half of the elephant estimates in Central Africa (Blanc 

et al, 2007). Hoare & du Toit (1999) showed that there is no correlation between the 

observed elephant density and human population density until a threshold of human 

density is reached about 15.6 inhabitants / km2.,Human density is still relatively low in 

central Africa, ranging from 1 to 6 inhabitants / km2 (IUCN, 2005). Therefore, in theory, 

forest elephants should be unaffected. However, the reality seems very different since the 

genetic diversity assessed in this study does not reflect the current situation, but rather 

past history. The high level of genetic diversity currently observed may be explained by 

the past presence of a large population of elephants throughout the central African rain 

forest and the long generation time of this species, allowing the retention of diversity 

within populations for long periods. Similar explanations have been proposed for orang­

utans in Sabah (Malaysia), which show a high level of genetic diversity in fragmented 

populations (Goossens et al., 2005). Nevertheless, the more immediate threats to 

elephants in the west central African rainforest are illegal killing for ivory and habitat 

loss with the increase of logging, road expansion associated with human population 

growth (Cropper & Griffiths, 1994; IUCN, 2005; Laurancee/a/., 2006).
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In conclusion, this study revealed a high level of genetic diversity and confirms the 

existence of connectivity between forest elephant populations, which are split into two 

clusters. It also showed that the site of Ivindo is a likely admixture zone for elephants. 

This has also been shown for gorillas in the west central African Binforest (Anthony et 

al., 2007). Genetic studies should be regarded as important information sources, able to 

produce outputs that can help to achieve the main objectives of strategies established by 

conservation organisms such as IUCN to “ensure the conservation and sustainable 

management o f elephants and their habitats in central Africa" (IUCN, 2005).
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CHAPTER 6

General Discussion

There has been continued debate over the taxonomy of the forest elephant, which 

eventually led to its reclassification to species level based on both morphological (Grubb 

et a l, 2000) and genetic characters (Barriel et al., 1999; Comstock et a l, 2002; Roca et 

al, 2001). However, this information has been based on remarkably few samples and the 

IUCN (2002) has urgently requested more extensive genetic studies to resolve the 

taxonomy of African elephants across their range. Poaching and habitat destruction pose 

serious threats to the survival of forest elephants in central Africa. Illegal hunting for 

ivory has massively reduced the number of African elephants over the past three decades. 

From five to 10 million individuals estimated in 1930 (Stuart & Stuart, 1997), only 

600,000 African elephants remained by 1992 (Spinage, 1994; Stiles, 2004). 

Consequently, African elephant populations have become fragmented with animals 

concentrated in central, east and northern parts of southern Africa.

The current study used non-invasive techniques to investigate the genetic structure within 

and among African elephant populations, and to assess migration patterns of forest 

elephants in central Africa. Findings from this study could have substantial implications 

for the conservation of forest elephant populations by guiding future management 

planning and decision-making processes.

The central African forest elephant exhibits a low level of nucleotide diversity (1.3 %) 

compared to that observed in its savannah counterpart (2 %, Nyakaana et al, 2002) and 

other mammals such as western lowland gorillas (6.2 %, Clifford et a l, 2004), African 

buffalo (5.0 %, Simonsen et a l, 1998) and Grant’s gazelle (6.2 %, (Arctander et a l, 

1996). Low levels of nucleotide diversity generally indicate long-term small effective 

population sizes, which could be the result of extended demographic bottlenecks
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(Nyakaana et al., 2002). However, the high level of mitochondrial haplotype diversity 

and bimodal mismatch distribution in the forest elephant sample analysed here reflects a 

more complex population history and / or the presence of substantial population structure. 

That two haplogroups were found within forest elephants (Chapters 3 and 4) with no 

apparent geographical structure, was unexpected and is consistent with a scenario 

involving expansion from refugia and subsequent introgression (Hewitt, 1996). Indeed, 

the phylogeographic patterns found in forest elephants are comparable with those 

observed in savannah populations of the African buffalo (Van Hooft et al., 2002). In 

contrast, other large African mammalian taxa have been shown to exhibit strong genetic 

subdivision despite their potential for high rates of genetic exchange. This is the case of 

numerous bovids such as, for example, the hartebeest and bushbuck (Arctander et al., 

1999; Flagstad et al., 2001; Moodley & Bruford, 2007). Further, lineage diversification 

does not always coincide with major climatic change factors as found by Brown et al., 

(2007) in African giraffe, suggesting a potentially important role for reproductive 

isolation among previously isolated populations. There appear to be no simple 

generalisations currently possible for African mammals.

Chapters 3 and 5 present the first spatially extensive genetic study of mitochondrial and 

nuclear markers in the forest elephant populations of central Africa. MtDNA analysis 

revealed low genetic divergence between most groups. Haplotypes were distributed with 

little restriction to geographical localities, indicating high levels of gene flow. Similarly, 

nuclear microsatellite loci revealed that genetic differentiation among sites was generally 

low, suggesting high levels of gene flow as well as regional admixture. No correlation 

was found between genetic and geographical distances. Further the existence of a contact 

zone between formerly allopatric populations from different putative refugia (Chapter 5) 

was also indicated for the area of Ivindo (eastern Gabon). MtDNA and microsatellite data 

were concordant, both indicating a high level of gene flow in forest elephants. It is 

important to note through, that although both mtDNA and microsatellites identified two 

groups (or genetic clusters), assignment of individuals to these clusters was not consistent 

across genomes, possibly a result of differential admixture in nuclear and mitochondrial 

DNA, due to variation between the sexes in introgression or dispersal. Indeed, 28.3% of
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the individuals in Haplogroup A (in Chapter 3, which corresponds to HVRI Haplogroup 

II in Chapter 4) grouped together in cluster I, while 7.5% individuals grouped in cluster II 

and 20.75% were unassigned neither in cluster I nor in cluster II. Similarly, 18.6% of the 

individuals in Haplogroup B (= HVRI Haplogroup I) co-assigned to cluster I, 6.9% were 

from cluster II and 13.9% individuals were unassigned. A lack of strict genomic 

concordance between genomes has been previously observed in savannah elephants 

(Nyakaana & Arctander, 1999; Nyakaana et a l , 2002). This discordance was explained 

by the social organization observed in savannah elephants (Nyakaana & Arctander, 

1999), which have a strong matrilineal social structure characterised by female natal 

philopatry favouring male-biased gene flow. This social structure is usually reflected in a 

low level of genetic differentiation at nuclear loci. A high level of gene flow and 

haplotype exchange was found between the closest but also the most distant forest 

elephant populations with both nuclear and mtDNA markers. This may be the result of 

their high mobility and ability to live in various ecological habitats, thus no geographic 

barriers have obviously shaped the observed structure of forest elephant populations. One 

comparable study of African buffalo (Syncerus coffer) showed a similar lack of 

differentiation among populations despite the reported strong philopatric social structure 

of this animal (Simonsenef al., 1998; Van Hooft et a l , 2002).

Bayesian analysis suggested that forest elephants form two distinct genetic clusters, 

whose origins possibly relate to climatic changes during the Pleistocene. They therefore 

seem to have initially diverged allopatrically in refugia, followed by population 

expansion, bringing the isolated populations into secondary contact within an admixture 

zone around Ivindo. This same location was also found to be an admixture zone for 

lowland gorillas (Anthony et a l,  2007) and the observed admixture may explain the high 

level of genetic variation (Amiga et a l, 2007) and reduced bottleneck effect with the low 

deficiency of heterozygotes in past fragmented populations (Wahlund effect). During the 

Pleistocene, a substantial reduction in population size (bottleneck) was likely, which is 

predicted to have decreased genetic diversity in forest elephants (Chapter 4). 

Demographic events, such as bottlenecks, migration or admixture, may also explain the 

linkage disequilibrium (Hedrick, 1985) observed in each population. Forest elephants
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have undergone complex evolutionary histories (see Chapters 3, 4 and 5): a similar 

finding to studies of western lowland gorillas (Anthony et al. 2007; Clifford et al. 2004) 

found into the same equatorial rain forest. The latter authors proposed refugia located in 

the Monts de Cristal, Massifs du Chaillu and Monts Doudou in Gabon. Muloko- 

Ntoutoume et al (2000) suggested that okoume (Aucoumea klaineana), an endemic 

pioneer forest tree species in Gabon, had similar refugial origins as gorillas. A fluvial 

refuge for gorillas (Anthony et al., 2007) was also suggested in the restricted southern of 

Central African Republic (CAR) and adjacent Congo. In Clifford et al. (2004)’s study, 

the authors identified one haplogroup (D) comprising western gorillas from CAR, Congo, 

Equatorial Guinea and Gabon, and one museum sample from southern Cameroon. This 

haplogroup, genetically divided in three subgroups Dl, D2 and D3, coincided with the 

locations of several major forest refugia in Equatorial Guinea, CAR, Gabon and adjacent 

Congo, respectively. Unfortunately, no samples from Monts de Cristal in northwestern 

Gabon and Equatorial-Guinea were available in the current study in order to corroborate 

the existence of a possible Monts de Cristal refuge.

6.1 Two-species model versus a complex evolutionary history 
of African elephant

The studies by Roca et al (2005, 2007) suggest a two species model for African 

elephants. These studies proposed that a limited nuclear gene flow from savannah 

elephants into forest elephant population is consistent species-level distinction. Though 

the existence of a hybrid zone with identified intermediate morphotypes (Groves and 

Grubb, 2000), Roca et al (2005, 2007) suggested that an extrinsic mechanism would 

prevent forest or hybrid males from reproducing successfully with savannah elephant 

populations, strongly reducing the contribution of forest elephants in the savannah 

nuclear genome. Recurrent backcrossing would mostly have occurred between hybrid 

females and large savannah males, a repeated unidirectional hybridization leading to a 

savannah morphotype in savannah elephant habitats. However, a major weakness of 

Roca’s studies and consequently, potentially, this hypothesis is limited sampling, in both 

central forest areas and more even importantly in West Africa.
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The current study revealed a complex evolutionary history for African elephants during 

the Pleistocene. Forest elephant populations in central Africa form two distinct lineages, 

the origin of which possibly relates to populations separated during past climatic changes. 

These populations seem likely seem to have diverged in allopatry in Pleistocene refugia, 

followed by population expansion. These isolated populations have come back into 

secondary contact within an admixture zone. However our data do not support the 

separation of current African elephant populations into two different species. The 

evidence for this is most clear in West Africa where savannah elephants are 

indistinguishable at the mitochondrial level from their west African forest counterparts 

and where, most importantly, all individuals in our study are found in the same 

haplogroups as the forest elephant mitochondrial lineages of central Africa. The most 

parsimonious explanation for this observation implies a forest ancestor for both modem 

west African forest and savannah elephants, implying rapid morphological change 6r 

elephants in forest and savannah habitats regardless of their mitochondrial (or nuclear) 

DNA affiliation. Further, even in the unlikely event that the converse was true (that west 

African elephants gave rise to modem central African forest elephants) this would still 

imply rapid morphological adaptation within a mitochondrial haplogroup.

The existence of two divergent nuclear genomes has been cited by Roca et al (2005, 

2007) as evidence of species-level divergence between forest and savannah elephants. 

However, given the rapid rate of morphological evolution implied from our studies of 

central and west African elephants and the fact nuclear DNA divergence seemingly fails 

to impede introgression where it is present, the tempo and mode of nuclear DNA 

evolution seems irrelevant to the question of the establishment of savannah and forest 

morphologies. Thus, while two nuclear DNA lineages clearly exist, there is no a priori 

reason to suppose that these lineages correlated with savannah or forest elephant 

morphologies in the past and are likely to have been engendered by a long period of 

allopatric isolation in the Pleistocene which could have involved forest, savannah, or a 

mixture of both.
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African forest and savannah elephant populations could therefore be an example of long- 

lasting gene flow between two ecological forms, which is ongoing (or was until recently). 

If ancient female-mediated introgression between the two forms followed by 

backcrossing into savannah populations is the reason why western savannah elephants 

possess largely ‘forest’ haplotypes then nuclear markers at these loci should resemble 

predominantly those of southern and eastern savannah elephants today. This is not the 

case (Eggert et al 2002) and west African elephants most closely resembb central 

African elephants at nuclear microsatellite markers.

Another explanation could be a ‘second movement’ of elephants out of the forest (from 

either west or central Africa) and into the savannah. It is difficult to determine whether 

there was a single movement from forest to savannah habitat or whether these were 

multiple events, precipitating the morphological changes observed today. Further data are 

necessary to confirm the origin of West African elephant. Whatever the origin of the two 

types, our data would support continued extensive hybridisation between the two 

proposed forms. Thus the classification of species into savannah and forest may not 

reflect their recent evolutionary history. However, West African elephants seem to group 

with, and potentially have originated from, forest elephant lineages in central Africa (and 

do not share mtDNA with widespread savannah lineages) and seem to have subsequently 

diverged into West African forest and west African savannah elephants. This seems 

likely to have happened in sympatry through ecological divergence (Rice & Hostert, 

1993) since there is no evidence for mtDNA monophyly in west African forest and 

savannah haplotypes associated with either of the two rainforest haplogroups. Therefore 

this phylogeographic history of African elephants does not obviously support the 

suggested two-taxa model: although two clearly differentiated nuclear genomes exist 

(Roca et al 2005), these do not correlate with four demographic groups identified here 

and have evolved over different timescales (e.g. Zink & Barrowclough, 2008).

Additionally to previous morphological, mitochondrial and nuclear DNA sequence 

studies, research on adaptive gpnes could provide relevant information in order to detect 

local adaptations that elephants might develop according to their habitat. Further
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sampling in areas of hybrid zone and West Africa is also needed to understand the 

historical evolutionary and population movement of African elephants.

To develop management strategies, incorporating current simple two-taxon model could 

therefore be misleading without further research and until further lines of evidence give 

us a clearer picture of the origins and current conservation needs of elephant populations 

throughout the continent. Hence, the taxonomic uncertainty of African elephants persists.

6.2 Conservation implications for central African forest 

elephants

Two major mitochondrial lineages have been defined in central African forest elephants 

with no geographical structure, while microsatellite loci described two genetic clusters 

with one comprising coastal populations from Gabon (Nyonie, Loango and Rabi) and the 

other inland populations (Lope, Plateaux Bateke, Ivindo, Nouabale-Ndoki and Dzanga- 

Sanga; see Chapter 5). Three main corridors were detected (Chapter 5) implying elephant 

movements between sites at short (Rabi Loango, Dzanga-Sanga-Noubale-Ndoki) and 

longer (Nouabale-Ndoki-Plateaux Bateke) distances. Haplotype exchange between 

adjacent populations (Chapter 3), enable inference of movements between Rabi and 

Conkouati (southwest Congo). It is important to maintain this gene flow to ensure long­

term genetic diversity, given that intensive poaching and the loss of forest habitat 

currently threaten elephants. A number of factors have been reported (RJCN, 2005) 

which directly or indirectly negatively impact on elephant populations in central Africa. 

Threats with direct impact are for example illegal killing, habitat loss and fragmentation. 

Many studies have indicated that elephants tend to avoid human settlement areas (Blake 

& Hedges, 2004). Unfortunately logging roads give poachers access to remote forest 

where elephants occur, thus facilitating the ivory trade. Other, indirect effects include 

institutional weakness and political instability (Lee & Graham, 2006) with insufficient 

and / or ineffective legal frameworks and weak application of the law, encouraging 

poachers often equipped with powerful firearms. Conservationists met in 2005 in Limbe
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(Cameroon) in order to establish a sub-regional strategy for the conservation and 

management of central African elephants (IUCN, 2005). They identified four main 

objectives to:

1. reduce the illegal killing of elephants and trade elephant products

2. ensure connectivity between elephant populations

3. improve knowledge of elephant populations and their habitats

4. gain more support from the public for elephant conservation.

A series of activities (including genetic studies) were suggested in order to achieve these 

objectives. This study has already identified potential corridors, which could contribute to 

achieving Objective 2 above. Objective 1 could be assisted by using highly polymorphic 

DNA markers (e.g. Wasser et al., (2004) combined with new statistical methods 

(Bayesian assignment tests) (Manel et al., 2002). In this way, the source of slaughtered 

individuals could be detected in order to identify areas of illegal activity and enable steps 

to be put in place to reduce illegal killing of elephants in central Africa. The high level of 

genetic diversity found here in the current populations of forest elephants, coupled with 

the maintenance of uninterrupted forest blocks in central Africa, if managed correctly, 

does provide suitable refuge for diverse and large elephant populations. Hence, the 

implementation of the above strategy is crucial for the long-term survival of forest 

elephants.

Future studies will need to analyse multiple nuclear DNA markers from across the range 

of forest and savannah elephants, especially in transition zones before any final 

taxonomic or phylogenetic conclusions can be made. Phylogeographic analyses have 

found two main mitochondrial DNA haplogroups in central Africa, indicating the 

existence of populations originating from different Pleistocene refugia. It is important to 

extend the sampling in south Cameroon, Equatorial Guinea, northwest Gabon in Monts 

de Cristal since these areas are also known to encompass candidate refugia (Anthony et 

al., 2007; Clifford et al., 2004; Maley, 1996). More samples from West Africa, north and 

central Cameroon, north CAR and the Democratic Republic of Congo (e.g. Garamba, 

Salonga), where in some cases savannah and forest elephants may co-occur (Blanc et al.,
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2007), would help to elucidate movements of elephants during the contraction and 

expansion phases of the last glacial maxima and in some cases will enable a detailed 

study of ongoing introgression. Furthermore, in order to improve conservation efforts for 

forest elephants, it is essential to better understand their social behaviour.

The outcomes of this thesis provide novel and potentially useful information to challenge 

the validity of the two-taxon model of the African elephant. The use of mitochondrial and 

microsatellite DNA showed broadly congruent results that forest elephants are grouped in 

two genetic units with little geographical structure. However, they have indicated the 

existence of refugial divergence, an important degree of population admixture with a 

contact zone located in Ivindo (Gabon), and a number of corridors allowing movement of 

elephants. Therefore, further management recommendations should be informed by 

detailed genetic studies.
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Appendix 1. Handout showing how to collect elephant dung sample.
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Appendix 2.

HVR1 sequences submitted on Genbank with accession numbers: EU096114 — 

EU096130, respectively.

>H apl6

CCAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CTATACTTAATCTTACATAGACCATACCATGTATAATCGTGCATCACATTATTTACCCCATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

T AGTTC ATGG AT ATT ATTT ACCT ACG AT A  A  ACC AT AGTCTT AC AT AGC AC ATT AAAGCTCTT G A  

TCGTACATAGCGCATTACTGAGAAATCTCTAGTCATCATGCATATCACCTCCAACGGTTG  

>Hap 17

CCAACCCGCTATGTACATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CT ATACTTA ATCTT AC AT AG ACC AT ACT ATGT AT AATCGTGC AT C AC ATT ATTT ACCCC ATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

T AGTTC AT GG AT ATT ATTT ACCT ACG AT A  AACC AT AGTCTT AC AT AGC AC ATT AAAGCTCTTG A  

TCGTACATAGCGCATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACGGTTG  

>Hapl8

CTAACCCGCTATGTACATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CT AT ACTT AATCTT AC AT AG ACC AT ACTAT GT AT AATCGTGC ATC AC ATT ATTT ACCCC ATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCCTGTAGATCCACAGATCATGTTC  

T AGTTC ATGG AT ATT ATTC ACCT ACG AT AAAT CAT AGTCTT AC AT AGC AC ATT AAAGCCCTT G A  

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACAGTTG  

>Hap20

CTAACCCGCTATGTACATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CTAT ACTT AATCTTACATAGACCATACTATGTATAATCGTGCATCACATT ATTT ACCCCATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC  

TAGTTCATGGAT ATT ATTCACCTACGATAAACCATAGTCTTACATAGCACATTAAAGCTCTTGA  

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACAGTTG  

>Hap21

CCAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CTATACTTAATCTTACATAGACCATACTATGAATAATCGTGCATCACATTATTTACCCCATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

TAGTTCATGGAT ATT ATTT ACCT ACG AT A A  ACC AT AGTCTT AC AT AGC AC ATT AAAGCTCTTG A 

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACGGTTG  

>Hap23

CTAACCCGCTATGTACATCGTGCATTAAATGCTTGTCCCCATACATAATGATATATATTACTAA
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CTATACTTAATCTTACATAGACCATACCATGTATAATCGTGCATCACATTATTT ACCCCATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC 

TAGTTCATGGATATTATTCACCTACGATAAACCAT AGTCTTACATAGCACATTAAAGCCCTTG 

ATCG T AC AT AGC AC ATT ACT G AG A AATCTCT AGT C ACC ATGC AT ATC ACCTCC AAC AGTT G 

>Hap25

CTAACCCGCTATGTACATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CTATACTTAATCTTACATAGACCATACCATGTATAATCGTGCATCACATTATTTACCCCATGCT 

T AT AAGC AAGT ACTGTTT AACT AATGT GTC AAGTC AT ATTCCTGT AGATTC AC AG ATC ATGTTC 

T AGTTC ATGG AT ATT ATTC ACCTACG AT AAACCAT AGTCTT AC AT AGC AC ATT A A AGCCCTT G 

ATCGTACATAGCACATTACTGAGAAATCTCTAGTCATCATGCATATCACCTCCAACAGTTG  

>Hap32

CTAACCCGCTATGTACATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA 

CT AT ACTT AATCTT AC AT AGACC AT ACT AT GT ATAATCGTGC ATC ACATT ATTTACCCC ATGCT 

T AT A AGC A AGT ACTGTTT AACT A AT GT GTC AAGT CAT ATTCCT GT AG ATTC AC AG AT CAT GTTC 

T AGTTC ATGG AT ATT ATT C ACCTACG AT AAACCAT AGTCTT AC AT AGC AC ATT AAAGCCCTTG 

ATCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACAGTTG 

>Hap33

CCAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA 

CTATACTTAATCTTACATAGACCATACCATGTATAATCGTGCATCACATTATTTACCCCATGCT 

TAT AAGCAAGT ACTGTTTAACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

T AGTTC ATGG ATATT ATTT ACCT ACG AT AAACCAT AGTCTT AC AT AGCACATT AAAGCTCTTG A  

TCGTACATAGCACATTACTGAGAAATCTCTAGTCATCATGCATATCACCTCCAACGGTTG 

>Hap34

CT AACCCGCT ATGT AC ATCGTGC ATT AAAT GCTCGTCCCC A T AC AT AATG AT AT AT ATT ACT AA  

CTATACTTAATCTTACATAGACCATACTATGTATAATCGTGCATCACATT ATTTACCCCATGCT 

TAT AAGCAAGTACTGTTT AACTAATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC 

TAGTTCATGGAT ATT ATTC ACCT ACG AT AAAT CAT AGTCTT AC AT AGCACATT AAAGCCCTT G A 

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACAGTTG 

>Hap35

CCAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA 

CTATACTT AATCTT ACATAGACCATACTATGTAT AATCGTGCATCACATTATTTACCCCATGCT 

TAT AAGCAAGTACTGTTT AACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

TAGTTCATGGATATTATTTACCTACGATAAATCATAGTCTTACATAGCACATTAAAGCTCTTGA 

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACGGTTG 

>Hap36

CCAATCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA 

CT AT ACTTA ATCTTAC AT AG ACC AT ACT ATGT AT AATCGTGCATCACATT ATTT ACCCCATGCT
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TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCGTGTAGATTCACAGGTCATGTTC 

T AGTTC ATGG AT ATT ATTT ACCT ACG AT AAACCAT AGTCTT AC AT AGCACATT AAAGCTCTTGA 

TCGTACATAGCACATTACTGAGAAATCTCTAGTCATCATGCATATCACCTCCAACGGTTG  

>Hap38

CTAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA 

CT AT ACTT AATCTT AC AT AG ACC AT ACC A T GT AT AATCGTGC AT C AC ATT ATTT ACCCC ATGCT 

TAT AAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC  

T AGTTC ATGG AT ATT ATTC ACCT ACG ATAAACC AT AGTCTT ACAT AGCACATT AAAGCTCTTGA 

T CGT AC AT AGCACATT ACTG AG AAATCTCT AGTC ATC ATGC AT ATC ACCTCC AAC AGTTG 

>Hap39

CCAATCCGCTATGTATATCGTGCATTAAATGCTTGTCCCCATACATAATGATATATATTACTAA  

CTAT ACTT AATCTT ACAT AG ACC AT ACT AT GT AT AAT CGTGC ATC AC ATT ATTT ACCCCATGCT 

TATAAGCAAGCACTGTTTAACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTC  

T AGTTC ATGG AT ATT ATTT ACCT ACG AT AAACCAT AGTCTT ACAT AGCACATT AAAGCTCTTGA 

TCGTACAT AGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACGGTTG  

>Hap41

CT AACCCGCT AT GT AC ATCGT GC ATT AAAT GCTCGTCCCC AT ACAT AATG AT AT AT ATT ACTAA  

CT AT ACTT AATCTT ACAT AGACC AT ACT AT GT AT AAT CGTGC ATC AC ATT ATTT ACCCCATGCT 

TATAAGCAAGTACTGTTTAACTAATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC  

T AGTTC ATGG AT ATT ATTC ACCT ACG AT AAAT CAT AGTCTT ACAT AGCACATT AAAGCCCTTG A  

TCGTACATAGCACATTACTGAGAAATCTCTAGTCATCATGCATATCACCTCCAACAGTTG  

>Hap42

CTAACCCGCTATGTATATCGTGCATTAAATGCTCGTCCCCATACATAATGATATATATTACTAA  

CT AT ACTT AATCTT ACAT AG ACC AT ACC ATGTAT AATCGTGCATCACATT ATTTACCCC ATGCT 

TATAAGCAAGTACTGTTT AACT AATGTGTCAAGTCATATTCCTGTAGATTCACAGATCATGTTC  

TAGTTCATGGAT ATTATTCGCCTACGATAAACCATAGTCTTACATAGCACATT AAAGCCCTTG 

ATCGTGCAT AGCACATT ACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACAGTTG  

>Hap43

CCAACCCGCTATGT AT ATCGTGCATTAAATGCTCGTCCCCATACATAATGATATAT ATTACTAA  

CTAT ACTT AATCT T AC AT AG ACC AT ACT AT GT AT AATCGT GC AT C AC ATT ATTT ACCCCATGCT 

TATGAGCAAGTACTGTTT AACTAATGTGTCAAGTCATATTCATGTAGATTCACAGGTCATGTTT 

TAGTTCATGGAT ATT ATTT ACCT ACG AT AAAT CAT AGTCTT ACAT AGCACATT AAAGCTCTT G A  

TCGTACATAGCACATTACTGAGAAATCTCTAGTCACCATGCATATCACCTCCAACGGTTG
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Appendix 3.

Cytochrome b sequences submitted on Genbank with accession number EU115995 — 

EU116019, respectively.
>SNHap_2

ATTGGACGAAACATCTACTATGGGTCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA

TT ACTACT AATC ACC AT AGCC ACCGCCTTC AT AGGAT ATGTCCTTCCGTG AGG AC AAAT ATC A

TTCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACCTA

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTTAAATCGATTTTTCGCCCTC

CATTTCATTCTTCCATTTACTATAATTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATTAAA GACTTC

>SNHap_4

ATT GG ACGG AAC ATCTACTAT GG ATCCT ACCT AT ACTCGG AAACCTG AAAT ACCGGC ATT AT A  

TT ACT ACT AAT C ACC AT AGCC ACCGCCTTC AT AGG ATATGTCCTTCCGTGAGG AC AAATGTC A  

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCTTACATCGGCACAAACCTA 

GT AG AATG AAT CT G AGG AGGCTTTTCGGT AG AT AAAGC AACCTT AAATCG A TTCTTC GCCCTC 

C ATTT C ATTCTTCC ATTT ACT AT AACTGC ACTCGC AGGAGT AC ACCT AACCTTTCTTCACG AAA  

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>SNHap_6

ATT GG ACGG AAC ATCT ACT AT GG ATCCT ACCT AT ACTCGG AAACCTG AAAT ACCGGC ATT AT A

TTACTACTAATCACCATAGCCACCGCCTTCATAGGAT ATGTCCTTCCGTGAGGACAAATGTCA

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAACCTA

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGC AACCTTAAATCGATTCTTCGCCCTC

CATTTCATTCTTCCATTTACTATAACTGCACTCGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATCAAAGACTTC

>SNHap_7

ATTGGACGGAACATCTACTATGGATCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA

TTACTACTAATCACCATAGCAACCGCCTTCATAGGATATGTCCTTCCGTTAGGGCAAATGTCAT

TCTGAGGGGCAACCGTTATCACTAACTCCTTCTCAGCAATTCCCTACATCGGCACAAACCTAG

TAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTTAAATCGATTCTTCGCCCTCC

ATTTCATTCTTCCATTTACTATAACTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAAC

AGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA

TACCATCAAAGACTTC
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>SNHap_8

ATT GG ACGG AAC ATCT ACTATGG ATCCT ACCT AT ACTCGG AAACCT GAAATACCGGCATTATA 

TT ACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATGTCA  

TTCTG AGGGGC AACCGTAAT C ACTA ACCTCTTCTC AGC AATTCCCTAC ATCGGC AC AAACCTA  

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGC AACCTTAAATCGATTCTTCGCCCTC 

CATTTCATTCTTCCATTTACTATAACTGCACTAGCAGGAGTACACTTAACCTTTCTTCACGAAA 

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>SNHap_9

ATTGG ACGG AAC ATCT ACT ATGG ATCCT ACCT AT ACTCGGAAACCTGAAATACCGGC ATT ATA

TT ACT ACT AAT C ACC AT AGCC ACCGCCTTC AT AGGAT AT GTCCTTCCGTG AGG AC AA ATGTC A

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAGACCTA

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC

CATTTCATTCTTCCATTTACTATAACTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATCAAAGACTTC

>SNHap_10

A TTGG ACGG AAC ATCT ACT AT GG AT CCT ACCT AT ACTCGG AAACCTG AAAT ACCGGC ATT AT A

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCCTCCGTTAGGACAAATGTCAT

TCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAACCTAG

TAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGC AACCTTAAATCGATTCTTCGCCCTCC

ATTTCATTCTTCCATTTACTATAACTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAAC

AGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA

TACCATCAAAGACTTC

>SNHap_ll

ATTGGACGAAACATCTACTATGGGTCCTACCTATACTCGGAAACTTGAAATACCGGCATTATA 

TTACTACTAATCACCATAGCCACCGCTTTCATAGGATATGTCCTTCCGTGAGGACAAATATCAT 

TCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACCTAG  

TAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGC AACCTT AAATCGATTTTTCGCCCTCC 

ATTTC ATTCTTCCATTTACTAT AATT GC ACT AGCAGG AGTAC ACCT AACCTTTCTTCACGAAAC 

AGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA  

TACCATTAAAGACTTC  

>SNHap_12

ATTGGACGGAACATCTACTATGGATCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA  

TTACTACTAATCACCATAGCCACCGCCTTCATAGGAT ATGTCCTTCCGTGAGGACAAATGTCA 

TTTTGAGGGGCAACCGTAATCACTAACTTCTTCTCAGCAATTCCCTACATCGGCACAGACTTA 

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC
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CATTTCATTCTTCCATTTACTATAACTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATCAAAGACTTC

>SNHap_27

ATTGGACGGAACATCTACTATGGGTCCTACCTATACTCGGAAACTTGAAATACCGGCATTATA

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATATCA

TTCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACCTA

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTTAAATCGATTTTTCGCCCTC

CATTTCATTCTTCCATTTACTATAATTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

AT ACC ATT A AGG ACTT C

>SNHap_28

ATTGGACGAAACATCTACTATGGGTCCTACCTATACTCGGAAACTTGAAATACCGGCATTATA  

TTACTACTAATCACCATAGCCACCGCTTTCATAGGATATGTCCTTCCGTGAGGACAAATATCAT 

TCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACTTAG  

TAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGC AACCTTAAATCGATTTTTCGCCCTCC 

ATTTC ATT CTTCC ATTT ACT AT AATTGC ACT AGC AGG AGT AC ACCT AACCTTTCTT C ACG AAAC  

AGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA 

TACCATTAAAGACTTC  

>SNHap 30

ATTGGACGGAACATCTACTATGGGTCCTACCTATACTCAGAAACCTGAAATACCGGCATTATA  

TTACTACT AATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATATCA  

TTCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACCTA 

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAGGC AACCTTAAATCGATTTTTCGCCCTC 

C ATTTC ATTCTTCC ATTT ACT AT AATT GC ACT AGC AGG AGT AC ACCT AACCTTTCTTC ACG A AA  

CAGGCTCAAACAACCCACTGGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATTAAGGACTTC 

>SNHap_31

ATTGG ACGG AAC ATCTACT ATGGGTCCT ACCT AT ACTCGGAAACTTG AAAT ACCGGC ATT ATA

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATATCA

TTCTGAGGGGCAACCGTAATCACTAACCTTTTCTCAGCAATCCCTTGTATCGGCACAAACCTA

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTT AAATCGATTTTTCGCCCTC

CATTTCATTCTTCCATTTACTATAATTGCACTCGCAGGAGTACACATAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATTAAGGACTTC
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>SNHap_33

ATT GG ACGG AAC ATCT ACT AT GG ATCCT ACCT AT ACTCGG AAACCTG AAAT ACCGGC ATT AT A  

TT ACT ACT AAT C ACC AT AGCC ACCGCCTT CAT AGGAT ATGTCCTTCCGTGGGG AC AA ATGTC A  

TTCTGAGGGGCAACCGTAATCACTAACTTCTTCTCAGCAATTCCCTACATCGGCACAAACCTA 

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGC AACCTTAAATCGATTCTTCGCCCTC 

C ATTTC ATT CTTCC ATTT ACT AT AACT GC ACT AGC AGG AGT AC ACCT AACCTTTCTTC ACG AAA  

CAGGCTCAAACAACCCACTAGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>SNHap_35

ATT GG ACGG A AC ATCT ACT AT GGGTCCT ACCT ATACTCGG AAACCTG A AAT ACCGGC ATT AT A

TTACTACTAATCACTATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATATCAT

TCTGAGGGGCAACCGTAATCACTAACCTCTTATCAGCAATTCCCTACATCGGCACAAGCCTAG

TAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGC AACCTT AAATCGATTCTTCGCCCTCC

ATTTC ATTCTTCCATTTACT AT AATTGCACT AGCAGGAGT AC ACCT AACCTTTCTTC ACGAAAC

AGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA

TACCATCAAAGACTTC

>SNHap_36

ATTGG ACGG AAC ATCTACT AT GGGTCCT ACCT ATACTCGGAAACCTGAAATACCGGCATT AT A  

TT ACT ACT AATC ACT AT AGCC ACCGCCTTC AT AGGAT ATGTCCTTCCGTGAGGAC AAAT ATC AT 

TCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAGCCTAG 

TAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTCC 

ATTTC ATT CTTCC ATTT ACT AT AATTGCACT AGCAGGAGT AC ACCT AACCTTTCTT C ACG AAAC  

AGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACTA  

TACCATCAAAGACTTC  

>SNHap_37

ATTGGACGGAACATCTACTATGGATCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA  

TT ACTACT AATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATATCA  

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAGCCTA  

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC 

C ATTTC ATTCTTCCATTTACT AT AATTGC ACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA  

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>SNHap_38

ATTGGACGGAACATCTACTATGGATCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA  

TTACTACTAATCACCATAGCCACCGCCTTCAT AGGATATGTCCTTCCGTGAGGACAAATGTCA 

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCTTACATCGGCACAAACCTA 

GTAGAATGAATCTGAGGAGGCTTTTCGGT AGATAAAGCAACCTT AAATCGATTTTTCGCCCTC
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C ATTT C ATTCTTCC ATTT ACT AT AATTGCACT AGC AGG AGT AC ACCT AACCTTTCTTC ACG AAA

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATCAAAGACTTC

>SNHap_40

ATTGGACGGAACATCTACTATGGATCCTACCTATACTCGGAAACCTGAAATACCGGCATTATA 

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGAGGACAAATGTCA 

TTCTGAGGGGCAACCGTAATCACTAACTTCTTCTCAGCAATTCCTTACATCGGCACAAACCTA 

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC 

C ATTT C ATTCTTCC ATTT ACT AT AACT GC ACT AGCAGGAGT AC ACCT AACCTTTCTTC ACG AAA  

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>SNHap 41

ATT GG ACG AAAC ATCT ACT AT GGGTCCT ACCT AT ACTCGG AAACTTG AAAT ACCGGC ATT AT A 

TT ACT ACT AAT C ACC AT AGCC ACCGCCTT CAT AGGAT AT GTCCTTCCGTG AGG AC AAAT ATC A  

TTTT G AGGGGC AACCGT AAT C ACT AACCTTTTCTC AGC AATCCCTT AT ATCGGC AC AAACCT A  

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTT AAATCGATTTTTCGCCCTC 

C ATTT C ATTCTTCC ATTT ACT AT AATTGCACT AGCAGGAGT AC ACCT AACCTTT CTTC ACGAAA  

C AGGCTC AAAC AATCC ACTGGGCC T C ACTTC AG ACTC AG AC AA AAT CCCCTTT C ACCC AT ACT 

ATACCATTAAGGACTTC 

>SNHap 42

ATTGG ACG AA AC AT CT ACT AT GGGTCCT ACCT AT ACT CGG AAACTTG AAAT ACCGGC ATT AT A  

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTTAGGACAAATATCAT 

TCTG AGGGGC AACCGTT ATC ACT AACCTTTTCTC AGC AATCCCTT AT ATCGGC AC AAACTT A GT 

AGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTTAAATCGATTTTTCGCCCTCCA 

TTTC ATTCTTCC ATTT ACT AT AATTGCACT AGCAGGAGT AC ACCT A ACCTTTCTT C ACG AAAC A  

GGCTCAAACAATCCACTGGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCATACTAT 

ACCATTAAGGACTTC 

>SNHap 43

ATTGGACGAAACATCTACTATGGGTCCTACCTATACTCAGAAACCTGAAATACCGGCATTATA

TT ACTACT AATCACCATAGCCACCGCCTTCAT AGGATATGTCCTTCCGTGAGGACAAATATCA

TTCTGAGGGGC AACCGT AATCACTAACCTTTTCTCAGCAATCCCTTATATCGGCACAAACCTA

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTTAAATCGATTTTTCGCCCTC

CATTTCATTCTTCCATTTACTATAATTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAA

CAGGCTCAAACAACCCACTGGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT

ATACCATTAAAGACTTC
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>MJHap_19

ATTGGACGGAACATCTACTATGGATCCTATCTATACTCGGAAACCTGAAATACCGGCATTATA  

TTACTACTAATCACCATAGCCACCGCCTTCATAGGAT ATGTCCTTCCGTGAGGACAAATATCA 

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAGCCTA 

GTAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC 

C ATTTC ATTCTTCC ATTT ACT AT AATT GC ACT AGCAGGAGT AC ACCT AACCTTT CTTC ACG AAA  

CAGGCTCAAACAACCCACTAGGCCTCACTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC  

>MJHap_23

ATT GG ACGG A AC ATCT ACT ATGG ATCCT ACCT ATACTCGG AAACCTG AAAT ACCGGC ATT AT A  

TT ATT ACTAATC ACC AT AGCC ACCGCCTTC AT AGGATATGTCCTTCCGTGAGGACAAATATC AT 

TCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAGCCTAG  

TAGAATGAATCTGAGGAGGCTTTTCGGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTCC 

ATTTCATTCTTCCATTTACTATAATTGCACTAGCAGGAGTACACCTAACCTTTCTTCACGAAAC 

AGGCTC AAAC AACCC ACT AGGCCTC ACTTC AGACTCAGAC AAAATCCCCTTTC ACCCGT ACT A 

TACCATCAAAGACTTC  

>MJHap_24

ATT GG ACGG AAC ATCT ACT AT GG ATCCT ACCT AT ACTCGG AAACCTG AAAT ACCGGC ATT AT A  

TTACTACTAATCACCATAGCCACCGCCTTCATAGGATATGTCCTTCCGTGGGGACAAATATCA 

TTCTGAGGGGCAACCGTAATCACTAACCTCTTCTCAGCAATTCCCTACATCGGCACAAACCTA 

GTAGAATGAATCTGAGGAGGCTTTTCAGTAGATAAAGCAACCTT AAATCGATTCTTCGCCCTC 

C ATTTC ATTCTTCC ATTT ACT AT AACTGC ACT AGCAGGAGT ACACCTAACCTTTCTTC ACGAAA  

CAGGCTCAAACAACCCACTAGGCCTCATTTCAGACTCAGACAAAATCCCCTTTCACCCGTACT 

ATACCATCAAAGACTTC
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Appendix 4. Details of list of samples used in Chapter 3. Sample ID is mentioned with its locality, coordinates, type of sample and 
preservation, date of collection and the collector. * indicated samples collected while the animal was collared.

Sample ID Locality Country GPS Type Preservation Date Collector
Lop067 Lope NP Gabon 789788 / 9978573 Faecal RNAlater 27/03/2001 L. Momont
Lop0710 Lope NP Gabon 791843/9978868 Faecal RNAlater 04/04/2001 L. Momont
Lop0914 Lope NP Gabon 790757 / 9979849 Faecal RNAlater 20/11/2001 L. Momont
Lopl016 Lope NP Gabon 790757 / 9979849 Faecal RNAlater 21/11/2001 L. Momont
Lopl46 Lope NP Gabon 790180/9978751 Faecal RNAlater 21/11/2001 L. Momont
Lop154 Lope NP Gabon 791027/9979045 Faecal RNAlater 21/11/2001 L. Momont
Lop167 Lope NP Gabon 790180/9978751 Faecal RNAlater 22/11/2001 L. Momont
Lopl75 Lope NP Gabon 789432/9978176 Faecal RNAlater 23/11/2001 L. Momont
Lopl810 Lope NP Gabon 790180 / 9978751 Faecal RNAlater 23/11/2001 L. Momont
Lop51al4 Lope NP Gabon 789499 / 9977702 Faecal RNAlater K. Abemethy
AFE79Lop* Lope NP Gabon Blood 29/07/2003 L.Momont
Loa0310 Loango NP Gabon Faecal Silica gel 10/10/2002 S. Lahm
Loa068 Loango NP Gabon Faecal Silica gel 15/10/2002 S. Lahm
Igl032 Loango NP Gabon S2°20.150/E9°36.510 Faecal Silica gel 02/12/2002 N. Anthony
AFE85Igl* Loango NP Gabon S2°21.505/E9°36.893 Blood S. Blake
AFE86Igl* Loango NP Gabon Sl°53.162/E9°17.244 Blood S. Blake
AFE87Igl* Loango NP Gabon Blood S. Blake
AFE88Igl* Loango NP Gabon Blood S. Blake
AFE89Igl* Loango NP Gabon Blood S. Blake
Rab0113 RabiNP Gabon Faecal RNAlater 17/06/2002 S. Lahm
Rab0215 Rabi NP Gabon Faecal RNAlater 17/06/2002 S. Lahm
Rab032 RabiNP Gabon SI °56.229/E9°51.336 Faecal RNAlater 18/06/2002 S. Lahm
Rab044 RabiNP Gabon SI °56.872/E9°51.542 Faecal RNAlater 17/06/2002 S. Lahm
Rab067 Rabi NP Gabon SI °54.859/E9°52.392 Faecal RNAlater 18/06/2002 S. Lahm
Rablll8 Rabi NP Gabon Sl°52.083/E9°51.217 Faecal RNAlater 17/06/2002 S. Lahm
Rabl31 RabiNP Gabon SI °54.859/E9°52.392 Faecal RNAlater 30/05/2002 S. Lahm
Rab275 RabiNP Gabon SI °56.229/E9°51.336 Faecal RNAlater 15/06/2002 S. Lahm
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Appendix 5.

249 forest elephant individuals from 8 populations were genotyped using 12 polymorphic 
microsatellite loci (below at the left-hand column). Pop 1 to 8 are populations (LOP, CAR, NN,
IVI, RAB, LOA, PBA and NYO, respectively). Lines represent individuals with their genotypes at 
each locus (1 to 12).

1 FH39
2 FH127
3 FH67
4 FH71
5 LAFMS03
6 LAFMS07
7 FH60
8 LA6
9 LAT08
10 FH19
11 FH40
12 FH48

Pop 1
LOP024,
LOP036,
LOP041,
LOP0710,
LOP0812,
LOP1016,
LOP202,
LOP2313,
LOP2415,
LOP284,
LOP347,
LOP366,
LOP509,
LOP51al5,
LOP5315,
LOP5418,
LOP631,
LOP753,
LOP765,
LOP777,
LOP8312,
LOP8613,
LOP8715,
LOP9718,
LOP9819,
LOP9922,
LOP 1476,
LOP1499,
LOP15112,
LOP15214,
LOP15823,
LOP 17016,
LOP1391,
LOP 1403,
LOP1411,
LOP1423,
LOP17117,
LOP17322,

1 2 3 4 5 6 7 8 9 10 11 12
240240 155155 096100 075081 141149 152164 161161 155167 000000 191191 230242 172174
240242 161163 100104 069085 147149 132152 139141 163167 202278 191195 228240 156164
246252 153155 096100 081085 141145 160164 157165 157167 294294 193197 248250 166170

240246 153155 096100 075081 145147 160164 141167 155165 274278 195201 228260 166170
242246 153159 096100 085095 139145 148160 139157 155157 266266 195207 228260 156166
240250 159163 096100 069081 137143 132156 141157 165169 212218 191209 240268 166178

240250 159161 092100 081085 147149 132164 149155 155155 210252 205205 228250 156178 
240250 153163 096100 085085 147147 132164 139155 163167 278294 187191 240268 156170
240246 169169 092094 069089 141143 160160 139155 155167 256274 191205 228268 156164

238240 159161 092100 081085 145149 132160 149155 155155 252256 201205 228250 170178
240250 155163 102102 081085 141147 148164 139141 155163 278286 191197 240240 156166
240240 155163 096104 075085 147147 160164 139155 163167 234294 191201 228268 156172
238240 159161 092100 081085 145149 132160 149155 155155 252256 201205 228250 170178

240242 159163 096100 085095 139147 152160 139139 155163 220294 191191 228250 156164 
238240 155161 096100 081093 139143 132132 157157 155165 234290 201205 228240 166170
234242 147153 094098 081093 139147 152164 161163 155165 214294 195203 228228 166170

240240 147147 094098 067081 137143 132148 141157 155155 250274 189201 240268 156174
240250 155163 098102 081085 141147 148164 139141 155163 278286 191197 240240 156166
240240 155159 092102 069075 137145 148160 139141 159159 212212 193193 228242 156166
236242 147147 096098 073075 139145 160164 139141 157165 238238 195201 252252 166170

240240 147159 092098 081081 143147 132168 141155 155167 206242 000000 228228 156164
240242 155161 092096 081085 139145 132164 141155 155167 194226 213213 228240 164170
240242 161163 098104 069085 145147 132152 139141 163167 202278 191195 228240 156164
240240 153153 092098 095095 143147 132160 141155 157167 262290 195209 228252 156166
240240 155163 096104 075085 147147 160164 139155 163167 234294 191201 228268 156172
242246 159165 094096 081085 139139 160164 159163 155157 230230 199201 230250 156166
240240 147155 096096 075085 145145 152156 153155 155169 186190 201205 240240 156178
000000 000000 100100 069081 137143 000000 157163 155155 212230 207207 240252 166166

240240 159161 092094 079079 143147 148164 139155 165167 194222 195205 226248 164174
242246 147161 092102 081085 141147 156164 141157 155155 206214 199205 228228 156160
240240 165165 096096 081091 141147 164164 141157 155169 190190 203205 000000 170174
240240 147161 094102 085085 143143 160164 155155 157157 190190 191191 228228 164170

244256 161161 096096 075075 147147 148148 157157 155167 000000 000000 000000 000000
236240 155155 096098 069075 143147 156164 155157 155155 212278 193207 252268 172178
240250 155161 094096 067081 147147 132164 153157 167171 262290 189191 240258 164178
242250 157161 092094 067069 143147 132164 153163 167171 256262 189189 228240 156178

240240 147157 096096 085093 147147 132164 141155 155167 000000 191191 000000 000000
240240 149155 096102 081081 143143 148152 139163 155155 000000 000000 240240 164170

201



LOP1741, 240240 147169 094094 069081 143145 132148 139139 165167 256256 191195 228230 156166
LOP17523, 234240 147147 094094 069081 143145 132132 139139 167167 256256 191191 230230 156166
LOP1763, 000000 155155 096102 081081 143143 148152 139139 153155 OOOOOO OOOOOO OOOOOO OOOOOO
LOP177A5, 242246 155157 096096 081089 143143 148164 139157 155155 194208 197205 228240 156164
LOP178alO, 240246 159163 096100 085095 143143 132152 153155 155169 226270 191191 228228 166166
LOP179M 5, 236242 147161 096098 073075 139139 160164 139141 163165 218234 191201 252268 172178
LOP18019, 240242 155159 102102 085093 139141 148160 139141 155167 266270 193213 240240 152164
LOP1818, 242244 155161 092094 085087 141157 152156 141157 167167 OOOOOO OOOOOO 228240 OOOOOO
LOP18210, 234244 161161 092102 081081 139147 148164 141153 165167 234234 195197 228228 156166
LOP18312, 240242 159159 094096 081089 145147 132148 161163 155155 194242 191201 226260 156172
LOP1889, 238252 153153 096104 067067 139147 132164 139151 167169 194226 201209 230260 164178
L0P121, 240242 147159 094100 067067 139145 132164 149159 155167 238242 197213 268268 166178
LOP153, 242246 159169 096096 067069 139145 132148 139149 155167 238242 191213 242268 166170
LOP176, 240242 157157 092096 075089 141143 152160 155157 155167 274278 193205 262268 164174
LOP197, 234248 161161 092096 071073 139147 156164 139157 155157 290290 191205 230266 166166
LOP219, 240242 155203 096102 081085 141147 152164 139161 155161 178234 201201 228268 166174
NOG013, 234240 147161 092100 081095 143147 152152 139139 155171 242290 211213 228228 156166
NOG026, OOOOOO 147157 096100 OOOOOO 143147 152164 139159 155155 OOOOOO OOOOOO OOOOOO OOOOOO
NOG037, 242250 155161 096100 081081 145145 152160 155159 155155 166270 201203 228260 OOOOOO
NOG05, 240248 149161 098098 085093 143143 132164 141141 155165 222222 195203 228234 OOOOOO
NOG09, 240240 155159 094094 085085 143145 152156 139141 155167 208262 187191 228250 156180
Pop 2
CAR187, 234236 151161 096098 069069 147155 156160 153157 155167 188218 191199 228228 160170
CAR199, 238242 151157 098102 085089 143143 152168 155159 155157 216226 207207 242260 OOOOOO
CAR2114, 238240 147157 098098 075075 141143 152168 155155 155157 212266 197209 228228 156172
CAR2216, 242248 153157 096102 081089 145147 148152 157159 155155 174216 187207 228260 164166
CAR273, 240240 147159 094110 077085 141145 156164 141155 155167 210238 195205 228228 164172
CAR286, 234238 161161 096098 067081 145145 164168 141141 167169 218238 191197 228248 170172
CAR298, 234234 155161 098098 069085 141145 148152 163163 157157 230230 205205 228260 158170
CAR3010, 242256 147159 094098 085085 145147 152160 141159 165171 252274 199205 228268 162166
CAR3112, 236244 153161 098100 075081 141155 152152 141159 155171 226230 191205 OOOOOO 156164
CAR3213, 242248 147153 100100 069069 147147 OOOOOO 155155 165165 210210 191203 OOOOOO 158166
CAR3316, 242248 157165 096104 085109 143155 132160 159163 155155 202206 191201 228260 156156
CAR3418, 234242 149161 092098 069073 141145 152152 155163 157157 220266 191201 228228 156172
CAR3520, 234248 155161 098098 069069 139145 132148 155157 157167 230294 197201 228228 166172
CAR3621, 240240 159159 098104 081085 145147 152152 141155 157159 278282 197203 228228 156156
CAR3724, 240248 153159 098098 069085 143147 152160 155155 157167 170190 201203 228240 156166
CAR382, OOOOOO OOOOOO 092096 069085 147155 148160 OOOOOO OOOOOO 190190 195205 228228 OOOOOO
CAR393, 242250 155157 092096 OOOOOO 141141 132164 139139 169169 220266 197197 228228 164172
CAR406, 240240 159159 092092 073081 139141 132164 141159 155167 190216 203205 228258 160164
CAR429, OOOOOO 153153 092092 OOOOOO 141153 132156 155167 155155 OOOOOO 195213 228258 168174
CAR4312, 240242 153159 094116 075081 147151 152156 141159 167167 226230 191201 228228 162164
CAR442, 240240 155155 090100 069069 155155 148152 143167 155155 OOOOOO OOOOOO OOOOOO 156166
CAR454, 234242 161163 096096 073091 141143 132160 163163 155159 196196 191213 228258 156164
CAR477, 242248 151161 096098 085085 141143 132160 143155 165169 278282 195209 228262 164172
CAR489, 234240 153157 092098 085085 145149 132160 155157 169169 186206 193197 232262 156156
CAR4911, 240240 153159 096098 069085 145155 132152 153157 163169 OOOOOO 191197 230262 156168
CAR5013, 240240 153153 098098 073097 139141 148164 155157 157167 190234 191193 228228 156166
CAR5115, 242242 147153 094104 069069 141147 152164 157165 155167 206222 191209 228228 170170
CAR521, 240242 155163 094094 075085 145147 160164 141159 167167 174230 201209 240248 168168
CAR533, 246248 153157 098102 069069 141145 160160 155159 155155 190190 191209 228250 164170
CAR545, 240248 153159 098098 069085 143147 152160 155155 157167 170190 201203 228242 156166
CAR5610, 240240 155159 098104 081085 145147 152152 141155 157159 170278 197203 228228 156156
CAR5711, 246248 153157 098102 069069 141145 160160 155159 155155 190190 191209 228250 164170
Pop 3
NN479, 234242 157159 092094 069073 141145 148152 155161 155157 210224 203209 226260 156168
NN4914, 238252 153165 098098 081081 147147 148168 155161 157167 246246 203203 228248 156166
NN5117, 240242 151157 092098 069085 141141 148164 157157 165171 252300 191195 228260 162174
NN684, 234244 147153 092094 081087 141147 132148 155157 167169 222276 193201 232248 170170
NN7110, 240242 153159 100100 085085 139139 152156 139153 167169 OOOOOO 193211 226268 164164
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NN7416, 242248 155157 094098 075075 139143 160160 165165 155155 212212 203203 000000 164170
NN752, 240250 147157 092098 085087 141143 156164 157159 155169 000000 203213 228268 166172
NN762, 242248 153159 098098 073097 143149 132152 155159 157163 234270 191191 228228 156174
NN775, 240242 157159 090102 085085 139141 160164 139167 155173 170248 207209 228242 164170
NN784, 242248 153155 094094 087087 139147 132160 157163 167167 248248 201205 228248 164166
NN0713, 238242 159165 092094 071085 141145 148156 153153 155155 294246 193195 242250 164174
NN0815, 242242 157159 092098 089089 147153 132152 139153 155165 230252 201201 250262 156164
NN092, 234236 157159 092092 073073 139143 148164 139157 163169 190218 203213 228228 154166
NN104, 240242 153159 090098 069075 145145 152156 153155 155167 234238 187197 228250 156170
NN1616, 238242 147151 098102 061085 139151 132152 141161 165169 194294 191209 228248 156168
NN1718, 240240 147159 092096 067085 139147 148168 163165 155155 208218 195201 228228 168168
NN2121, 234256 147157 092102 079087 139147 152152 153155 169169 198206 191207 228242 170178
NN035, 240242 153161 098098 071085 139147 132148 155159 167169 178226 000000 228248 170172
NN047, 242252 155159 000000 067085 143155 148152 139155 155157 190190 197197 228258 164172
NN059, 242256 153161 094098 071087 143145 156164 141155 155155 222230 193195 228242 160170
NN231, 240246 151153 096104 075089 141149 132168 153155 155167 256266 197197 000000 000000
NN332, 234240 157165 090098 081081 141141 132164 157159 157167 226294 193193 228228 000000
NN3710, 240242 147153 092094 069081 139141 132164 153155 165167 220282 193201 228228 156156
N N 3811, 000000 151157 098102 069069 141145 160160 155159 155155 OOOOOO 209209 228250 OOOOOO
NN4117, 234250 151151 090098 081085 143149 132164 149155 155159 198300 191195 228228 166172
NN011, 240246 147149 094100 063081 141143 132160 155157 159165 214260 197207 228260 156172
NN0611, 242256 153161 094098 071087 143145 156164 141155 155155 222230 193195 228240 160170
NN139, OOOOOO 153159 OOOOOO 069075 145145 156156 155155 157167 OOOOOO 193195 228230 156156
NN2019, 234242 151161 094098 067081 141145 164164 153159 155155 274278 193195 228228 166172
NN2223, 234244 147155 092092 069069 145145 164168 141155 157165 266278 203209 228260 166170
NN2912, 238240 153159 OOOOOO 081081 147155 160160 139139 165175 226226 OOOOOO 228258 170172
NN367, 234240 157165 090098 081081 141141 132164 157159 157167 222294 191193 228228 160178
NN3913, 234248 155159 092096 085085 139145 132164 141149 155169 214260 189201 228250 166170
NN4016, 240244 147157 096098 067085 147151 148168 141141 165175 234238 197199 228260 166170
NN4219, 242250 153159 096110 081081 145145 132160 151155 155169 220282 195203 228228 168170
Pop 4
LAN028, 234240 153161 098100 065085 141147 156156 139159 155167 256286 197211 228248 156174
LAN044, 240250 151157 096096 081081 143145 156168 157157 155169 206224 195209 228242 156164
LAN056, 240246 161161 092100 069081 139147 132132 141155 157169 222226 203211 256258 172174
LAN068, 240256 159161 094100 069075 145147 148164 141141 155167 218286 197213 262268 170172
LAN0812, 238240 147165 092100 067093 145147 148160 155159 157157 OOOOOO 201201 228230 154166
LAN0914, OOOOOO 153157 092100 073093 141143 OOOOOO 141155 165165 OOOOOO 197205 228228 OOOOOO
LAN1118, 242246 155163 092094 OOOOOO 137143 160164 159161 155155 220220 191197 228250 164174
LAN 1220, 238240 151161 096096 085085 145147 160164 139163 157157 220246 187197 228242 152164
LAN 1322, 240242 147151 100102 089089 143145 148164 155155 155157 186220 205209 228228 170178
LAN2010, 240242 155159 094100 081085 147147 132148 159163 155167 196226 187209 266268 156170
LAN2112, 242248 153153 098110 063085 141145 152164 141157 155163 234290 201213 228262 166172
LAN232, 240242 153161 096096 081095 145145 132160 141159 OOOOOO 194194 201209 228240 166170
LAN2812, 236240 147157 094098 069081 139145 164164 141155 155169 194274 209211 228258 156156
LAN 1541, 242248 159159 100100 085093 143147 160164 141141 155167 190270 195195 228230 156156
LAN 1565, 240242 151155 100100 071095 143145 148164 155159 155157 216234 191197 228248 174176
LAN15810, 240248 159161 096098 073093 141147 132160 141141 157167 186252 201205 228228 156172
LAN 15912, 240242 153159 092100 089089 143145 132168 155159 155155 194294 187191 228262 166166
LAN16013, 240240 157161 092100 071081 143147 160160 155157 155155 234234 191197 228258 160166
LAN1619, 240242 151159 094100 085093 143145 160164 155163 155165 244248 195199 228228 156172
LAN 16211, 240242 151155 100100 071095 143145 148164 155159 155157 216234 191197 228248 174176
LAN 1664, 234240 147153 094100 069085 143143 148148 000000 155157 208208 193193 260260 164174
LAN1688, 240242 151155 100100 071095 145145 148164 155159 155157 216234 195197 228228 174176
LAN 16910, 000000 155159 096100 071081 145145 132148 141159 155155 234234 201201 228228 164164
IVI031, 198242 147155 094102 089089 141145 152160 139161 155155 252282 209209 228254 156164
IVI05a6, 240242 155155 094100 081089 143145 148164 155157 155157 258294 195195 228228 156164 
IVI076, 240248 153155 094096 069081 139143 148160 159163 155155 194260 191209 228240 170178
IVI111, 240250 147157 094096 069069 147147 132164 155159 167169 186252 195209 230230 164174
IVI135, 240250 151153 092100 069085 143147 148160 139159 155155 162246 191199 228262 156178
IVI147, 240242 155155 092098 087087 139147 148160 155159 167171 162222 197209 228228 166170
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IVI1713, 240250 151157 096100 081081 143145 156168 157157 155169 206224 195209 228240 156164
IVI1815, 242250 157165 096096 085085 143145 156160 139157 157169 186206 195197 228268 164174
IVI1917, 240248 151161 094100 085085 137145 160164 157159 157165 186234 187193 228228 164164
IVI2019, 238240 147151 092092 069069 141143 132148 157159 155157 210222 205209 228268 170172
IVI2121, 240242 147159 094094 085085 143145 148160 141163 155155 178246 197203 228230 156156
IVI2223, 000000 161161 096096 075075 143143 132148 155159 OOOOOO 220234 OOOOOO 228228 156164
IVI2314, 246256 151161 100102 069085 145145 132148 141163 155165 226242 193207 228228 166170
IVI249, 242244 147151 096100 069081 143145 164164 155159 155155 186210 193199 260268 156164
Pop 5
RAB0215, 242256 157159 090096 085091 141141 132160 159159 159169 202222 191195 228248 154166
RAB067, 240240 157161 092100 067113 145145 144156 157159 165169 190220 187203 228248 164166
RAB0914, 242256 157159 096100 085091 141141 132160 159159 159169 202222 191195 228248 154166
RAB155, 242244 153157 094102 081097 141141 132148 155157 157157 186226 191205 228228 156178
RAB167, 240240 157161 092100 067113 145145 144156 157159 165169 190220 187203 228248 164166
RAB1812, 242246 157161 096100 081089 141145 164164 155157 155155 212222 197203 228260 164164
RAB1914, 240250 151161 096098 085099 141145 156164 141153 157167 220278 195205 228240 164174
RAB2322, 240246 155159 096100 063073 141143 148164 153155 155169 190212 191201 228250 168170
RAB263, 236240 155165 096100 075137 139141 148148 159161 165167 260274 205205 228248 166166
RAB275, 242244 153157 094096 089089 139143 132156 155163 155159 202270 195195 228250 164170
RAB288, 242242 155161 098098 081089 139141 148148 139161 155167 212230 191201 228260 170178
RAB299, 242242 153153 094102 097123 139141 148156 161167 155157 194198 191191 228228 156178
RAB3012, 234242 147157 092096 135137 143143 132164 139155 155159 220230 195197 228260 170172
RAB3215, 242244 153157 094096 089091 139143 132156 155163 155159 202270 195195 228250 164170
RAB3317, 242242 151155 092094 071089 141145 148164 159159 163167 206206 191213 228228 154170
RAB3522, 242250 151153 098102 083095 141141 144156 155157 159165 186224 191213 252268 172172
RAB3623, 234242 147157 092096 135137 143143 132164 139155 155159 220230 195197 228260 170172
Pop 6
IGL032, 242242 157157 094098 069085 139141 160164 139157 169169 206270 191195 228228 172174
IGL0812, 246248 153153 096100 081085 139141 160160 155161 155169 194274 197199 260262 156164
LOAOllO, 234246 147159 096100 075095 141145 144160 139141 155169 220224 203205 228228 156164
LOA0212, 240242 153161 094096 075085 143147 132156 141159 155155 202242 197201 228228 166170
LOA031, 238242 157163 096100 071071 143145 132160 155161 155155 242246 207209 260272 170178
LOA043, 236238 159161 092096 067087 143143 160164 155159 175175 178194 195205 260260 156178
LOA067, 242250 153161 094100 089089 145145 148160 139159 155157 190206 195199 230230 170172
LOA079, 240242 155157 092096 071075 143145 OOOOOO OOOOOO OOOOOO 202212 195205 OOOOOO 170178
LOA0811, 240242 155161 092104 075105 143145 164164 159159 155159 202212 195203 228260 166170
L 0A 116, 242246 155161 092096 071071 141147 164164 141141 159159 194194 191205 228228 164170
LOA1514, 240250 157157 092094 081123 139143 132148 139153 159159 194242 187193 228250 156164
LOA1615, 236242 155157 096100 075091 145145 160164 139141 157167 218230 201205 228228 164166
LOA339, 242242 157157 098100 123123 139143 148164 139159 155157 270274 201203 228228 164170
LOA3514, 248250 153159 092094 069093 143147 132132 141153 155169 190208 191205 242260 154172
LOA3820, 242250 157157 096096 085091 141141 164164 141153 OOOOOO 190208 193203 228230 156164
LOA436, 236242 155157 094096 071081 139141 148164 155159 155159 190212 205209 228228 164164
LOA448, 242246 159161 096104 069091 143147 132164 143155 155163 186208 203203 230248 164164
LO A4611, 234236 153155 094098 071071 145147 160168 139157 155159 198230 195205 228228 154178
LOA4816, 240250 153161 096096 069091 143147 132164 139159 155157 206206 195203 228250 174176
LOA4917, 240250 153161 094096 093127 141143 156164 139159 155157 206206 195203 228250 174176
Pop 7
PBA023, 242246 157163 098100 081085 145147 148148 141159 169169 186230 OOOOOO 228230 170170
PBA036, 236236 161163 092102 081103 141147 132156 139141 155167 174222 203203 228248 164164
PBA0510, 242244 153153 098098 085085 145145 156160 141141 155167 190190 197197 228230 160160
PBA0714, 242250 163163 096100 073081 141143 160164 139161 163167 190222 201203 230260 160166
PBA082, 242248 153161 092096 069085 141143 148160 151155 165167 218218 193197 228228 168170
PBA117, 242242 159161 098102 085097 147155 156160 141141 163169 192206 197205 228228 164166
PBA2011, 234242 149159 092102 081089 143145 148160 139159 167167 186206 191197 230240 164166
PBA2113, 242244 153159 092100 081085 145145 148152 141163 159167 220220 197209 228228 172174
PBA2422, 246246 159159 092094 071081 147147 160160 141159 167167 222222 OOOOOO OOOOOO 156156
KES019, 240242 153159 090100 081081 139139 148164 139155 155167 190238 197209 258260 156178
KES0415, 240242 159161 090100 081081 143145 148156 157159 155155 210250 209211 228228 174178
KES0721, 242252 153159 098100 085089 145145 132164 139139 155167 194214 191201 228228 156164
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KES0819, 240250 159159 096098 071097 143145 156160 155155 159165 242246 191197 258268 156164
MPA01, OOOOOO 153155 094096 085091 141141 132160 141153 155165 194198 195195 000000 164164
MPA02, 250250 155155 094096 091097 143145 152152 000000 155165 194198 195195 000000 164166
MPA0319, 234242 157159 096096 081085 139141 132164 157159 155165 178216 203209 228230 156164
Pop 8
WW24 , 242246 147157 096100 075097 141145 164164 139157 171173 220252 195205 228250 166166
WW47 , 234242 147155 096100 085089 145145 160164 139155 155169 216270 193197 228228 166172
WW59 , 240242 155157 096102 085087 141145 148164 139153 157161 202294 205205 228228 172176
WW611, 240242 151153 096100 087091 143145 132148 139141 155161 290294 197205 228258 160164
WW816, 240246 155157 098100 075075 143145 132148 139141 155155 182194 195197 228248 166170
W W917, 238242 151153 096100 091091 143145 132148 139141 155155 290294 197205 228258 160164
WW1019, 242246 147157 096100 075097 141145 164164 139157 171173 220252 195205 228250 166166
NZA19, 242246 151157 098100 067087 143143 160164 141159 155167 274274 195199 228260 170170
NZA211, 242256 157167 000000 067081 141143 132160 139159 159167 260290 195195 228260 170172
NZA314, 234242 155157 094098 075075 141141 132164 141159 155157 274286 199201 250264 170176
NZA416, 240242 157161 098100 067067 141143 148160 139159 159167 274282 195197 228260 166170
NZA619, 242250 151157 094100 067067 141141 164164 141159 155157 182286 199201 228250 154176
NZA721, 240242 157161 098100 067067 141143 148160 139159 159167 274282 195195 228260 166170
NZA823, 234242 155157 094098 067075 141143 148164 141159 155157 274286 199201 250264 170174
NZA91, 242250 155161 098100 067085 143145 148168 159163 155159 294294 193195 228228 156170 
NZA103, 236242 153167 092096 085093 141143 152160 157159 155155 214290 191209 240260 164166
IFK39, 242242 153155 094098 073089 143145 132156 139159 155167 212290 197197 228250 170172
IFK615, 236248 155163 092100 081093 141145 148152 139157 157167 220252 191191 228228 170176
IFK718, 240242 151161 094100 081085 141145 148164 139159 155165 202202 193205 228228 170170
RIO 120, 242250 155155 096100 091129 141145 152160 139157 167169 286294 193201 228228 156170
R I0323, 242242 155157 096096 129129 141143 152152 157159 159169 222286 191201 228250 156172
R I041, 240240 155157 096102 085091 145145 148164 159159 155165 216286 193193 228250 164170
R I053, 234234 157159 092098 081095 143145 148160 141155 155167 216234 191205 228260 166170
RI065, 234240 157157 096096 089089 141145 160164 159159 155167 274290 195195 228258 164170
R I077, 000000 000000 092098 081095 143145 148160 141157 155167 216234 191205 228258 166170
R I089, 234234 157159 092098 081095 143145 148160 141157 155167 216234 191205 228258 166170
R I0911, 234240 155157 096100 089089 141145 160164 159159 155167 274290 195197 228258 164170
RIO1013, 240250 153155 094098 071085 143145 148160 139159 155155 190224 195207 228228 166176
R I01217, 240240 155157 096102 085091 145145 164164 159159 155165 216286 193193 228228 164170
RIO 1320, 234250 149161 092098 091093 141145 148160 139159 155171 224290 191205 228228 166170
R I01421, 234234 153161 092100 061091 141145 148160 157159 171171 282290 205209 228240 166166
RI01523, 234242 155157 096096 071089 143145 148160 139159 155167 290290 195195 228256 000000
RIO 186, 246250 153161 096098 071081 143145 152160 139141 155165 224282 195207 228268 176176
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Appendix 6. Allele frequency distribution by locus and population.
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Appendix 7.

Summary statistics null allele estimates

No evidence for scoring error due to stuttering. 
No evidence for large allele dropout.
Null alleles may be present at this locus, as is suggested by the general excess of 
homozygotes for most allele size classes.

LOP
Locus Null Present O osterhout C hakraborty Brookfield 1 Brookfield 2

FH39 no -0.0031 -0.0154 -0.013 0.1234
FH127 yes 0.0638 0.0721 0.062 0.1015
FH67 no 0.0165 0.0193 0.017 0.017
FH71 no 0.0246 0.0304 0.0266 0.0746
LAFM S03 no 0.0495 0.0495 0.042 0.042
LAFM S07 no -0.0569 -0.05 -0.0472 0.0317
FH60 no 0.0028 0.0031 0.0028 0.0028
LA6 no 0.0062 0.0052 0.0044 0.0044
LAT08 yes 0.0968 0.1074 0.0947 0.2669
FH19 yes 0.0541 0.0564 0.0496 0.2187
FH40 no 0.0545 0.058 0.0491 0.2045
FH48 no -0.0724 -0.0647 -0.0626 0.1499

Several loci show ev idence for a null allele.
This population is p o ss ib ly  in H ardy W einberg  equ ilib rium  w ith loci FH 127, LAT08, FH19, show ing signs o f  a null 
allele.

CAR
Locus Null Present Oosterhout C h akraborty Brookfield 1 Brookfield 2

FH39 no 0.0701 0.0642 0.0535 0.178
FH 127 no 0.026 0.0258 0.0231 0.096
FH67 yes 0.0807 0.09 0.0727 0.0727
FH71 no 0.1026 0.1045 0.083 0.2037
LAFM S03 no -0.0194 -0.0153 -0.014 0
LAFM S07 no 0.0053 -0 .0006 -0.0006 0.0842
FH60 no 0.0433 0.0484 0.0415 0.1147
LA6 yes 0.1343 0.1552 0.1189 0.1822
LAT08 yes 0.0774 0.08 0.0714 0.2172
FH19 no -0.0169 -0.0125 -0.0119 0.0635
FH40 no 0.001 -0 .0077 -0.0057 0.2154
FH48 no 0.0258 0.0237 0.0211 0.1452

Several loci show ev idence for a null allele.
This population is possib ly  in H ardy W einberg  equ ilib rium  w ith  loci FH 67, LA6, LAT08, showing signs o f  a null 
allele.

NN
Locus Null Present O osterhout C h ak rab o rty Brookfield 1 Brookfield 2

FH39 no -0.0737 -0.0637 -0.0616 0.0773
FH 127 no -0.0743 -0 .0654 -0.0643 0
FH67 no 0.0137 0.0157 0.0138 0.1781
FH71 yes 0.1535 0 .1804 0.1417 0.1417
LAFM S03 no 0.0566 0 .0565 0.0486 0.0486
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LAFM S07 no 0.0056 0.0095 0.0086 0.0086
FH 60 no 0.0089 0.0172 0.0156 0.0156
LA6 no 0.048 0.0393 0.0337 0.0337
LAT08 yes 0.0634 0.0677 0.0621 0.229
FH19 yes 0.073 0.0798 0.0695 0.1714
FH40 no -0.0633 -0.0476 -0.0398 0.1249
FH48 no 0.01 0.0114 0.0105 0.1637

Several loci show  evidence for a null allele.
This population is possib ly in H ardy W einberg  equilibrium  w ith  loci FH71, LAT08, FH19, show ing sig
allele.

IVI
Locus Null Present Oosterhout C hakraborty Brookfield 1 Brookfield 2

FH39 no -0.1865 -0.1276 -0.1255 0.0897
FH127 no 0.0139 0.0144 0.0131 0.0131
FH67 no 0.0419 0.0485 0.0403 0.0403
FH71 yes 0.1289 0.1499 0.1209 0.1723
LAFM S03 no -0.0311 -0.0273 -0.0239 0
LAFM S07 no -0.0241 -0.0193 -0.0176 0.0659
FH60 no -0.0196 -0.0129 -0.0117 0.0681
LA6 no 0.0169 0.018 0.0143 0.1511
LAT08 yes 0.0471 0.0478 0.0443 0.1357
FH19 no 0.0302 0.0329 0.03 0.0891
FH40 no -0.0119 0.007 0.0055 0.0055
FH48 no 0.0123 0.0096 0.0088 0.0773

Several loci show  evidence for a null allele.
This population is possib ly  in H ardy W einberg  equilibrium  w ith  loci FH 71, LAT08, show ing signs o f  a null allele.

RAB
Locus N ull Present Oosterhout C hakraborty B rookfield 1 Brookfield 2

FH39 no 0.0175 0.0239 0.0199 0.0199
FH127 no -0.0791 -0.0646 -0.0625 0
FH67 no -0.0885 -0.0709 -0.0686 0
FH71 no -0.0114 -0.013 -0.0126 0
LAFM S03 no 0.1146 0.138 0.0998 0.0998
LAFM S07 no -0.0104 -0.0106 -0.0096 0
FH 60 no 0.0061 0.0031 0.0028 0.0028
LA6 no -0.0387 -0.0345 -0.0323 0
LAT08 no -0.0156 -0.013 -0.0126 0
FH19 no 0.035 0.0349 0.0304 0.0304
FH 40 no -0.2249 -0.124 -0.1106 0
FH48 no 0.0136 0.0155 0.014 0.014

No loci show evidence for a null allele.
T his population is probably  in H ardy W einberg equilibrium .

LOA
Locus N ull Present Oosterhout C hakraborty Brookfield 1 Brookfield 2

FH39 no -0.0593 -0.0557 -0.0526 0
FH 127 no 0.0359 0 .0299 0.0257 0.0257
FH67 no -0.0898 -0.0803 -0.0757 0
FH71 no 0.0827 0.0881 0.0765 0.0765
LAFM S03 no -0.014 -0.0119 -0.0105 0
LAFM S07 no 0.018 0.0148 0.0126 0.1321

FH 60 no -0.0453 -0.0411 -0.0387 0.0839
LA6 no 0.0241 0.0557 0.0451 0.2325
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LA T08 no  0 .0399 0.0382 0.0352 0.0352
FH 19 no  -0.0566 -0.0512 -0.0498 0
FH 40 yes 0 .149 0.1566 0.1066 0.2156
FH 48 no  -0.0285 -0.0308 -0.0291 0

One locus show s ev idence for a null allele.
This pop ulation is possib ly  in H ardy W einberg equilibrium  w ith locus FH40, show ing signs o f  a null allele.

PBA
Locus Null Present O osterhout

FH39 no -0.0036
FH 127 no 0.0585
FH67 no -0.0224
FH71 no -0.0191
LAFM S03 no 0.0965
LAFM S07 no -0.0057
FH 60 no 0.053
LA6 no 0.0039
LAT08 yes 0.0976
FH19 no 0.0676
FH 40 no 0.0612
FH48 no 0.0804

C hakraborty Brookfield 1 Brookfi

0.0351 0.0299 0.1606
0.0688 0.0568 0.0568
-0.0228 -0.0213 0
-0 .0209 -0.0187 0
0 .1086 0.0857 0.0857
-0.0024 -0.0022 0
0.0531 0.0453 0.1686
0.0078 0.0067 0.0067
0.107 0.0931 0.0931
0.0789 0.0667 0.2681
0.0326 0.025 0.343
0 .0904 0.0749 0.0749

One locus show s ev idence for a null allele.
This population is possib ly  in H ardy W einberg  equ ilib rium  w ith  locus LAT08, show ing signs o f  a null allele.

NYO

Locus Null Present Oosterhout C hakraborty Brookfield 1 Brookfield 2

FH39 no -0.0074 0.0009 0.0008 0.0866
FH 127 no -0.0905 -0.0759 -0.0733 0.0417
FH67 no -0.0768 -0.07 -0.0664 0.0476
FH71 yes 0.0973 0 .1074 0.092 0.092
LAFM S03 no -0.1294 -0.1086 -0.0966 0
LAFM S07 no -0.0559 -0.0447 -0.0408 0
FH 60 no -0.0902 -0.082 -0.0763 0
LA6 no -0.062 -0.0491 -0.0449 0
LAT08 no 0.0186 0.0192 0.018 0.018
FH 19 no 0.0718 0.075 0.0639 0.0639
FH 40 no -0.1264 -0.082 -0.0681 0
FH48 no -0.0245 -0.0168 -0.015 0.0756

One locus show s ev idence for a null allele.
This population is possib ly  in H ardy W einberg  equilibrium  w ith  locus FH71, show ing signs o f  a null allele.
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Appendix 8.

Tests of linkage disequilibrium (LD). LD was measured using the correlation 

coefficient. The significance at P < 0.05 by pair of loci and for each population is

represented with *. NS = non significant.

Locus 1 Locus 2 LOP CAR NN rvi RAB LOA PBA NYO
FH39 FH127 * * * He He He He He

FH39 FH67 * NS NS NS He NS He He

FH39 FH71 * NS * NS He He He He

FH39 LAFMS03 * NS NS NS He NS He NS
FH39 LAFMS07 * * * He He He He NS
FH39 FH60 * * NS He He He He NS
FH39 LA6 NS * NS NS He He NS NS
FH39 LAT08 * * * He He He He He

FH39 FH19 * * NS He He NS He He

FH39 FH40 * NS NS He He He He NS
FH39 FH48 NS NS He NS He He He NS
FH127 FH67 * * NS NS He NS He NS
FH127 LAFMS03 * NS He NS He He NS NS
FH127 LAFMS07 * NS NS NS He He He NS
FH127 FH60 * * NS He He NS He NS
FH127 LA6 * NS He He He He He *
FH127 LAT08 * * He He He He He He

FH127 FH19 * * He NS He He He He

FH127 FH40 * NS NS He NS He He NS
FH127 FH48 * NS NS NS He NS He NS
FH67 FH71 * * He He He NS He He

FH67 LAFMS03 * * NS He He NS He NS
FH67 LAFMS07 * * He He NS NS He NS
FH67 FH60 * * He NS NS He NS NS
FH67 LA6 * * NS He He He He NS
FH67 LAT08 * * He He He NS He He

FH67 FH19 * * He He He NS He He

FH67 FH40 * NS NS NS NS NS NS NS
FH67 FH48 * * NS He He NS He NS
FH71 LAFMS03 * NS He He He He He He

FH71 LAFMS07 * * He He He He He He

FH71 FH60 * * He He He NS He NS
FH71 LA6 * NS He He He He He He

FH71 LAT08 * * He He He He He He

FH71 FH19 * * He He He NS He He

FH71 FH40 * NS He NS He He He He

FH71 FH48 * NS He He He He He He

LAFMS03 LAFMS07 NS * He NS He NS He NS
LAFMS03 FH60 * * He NS He NS He NS
LAFMS03 LA6 * NS He He He He He He

LAFMS03 LAT08 * NS He NS He He He NS
LAFMS03 FH19 * NS He NS He NS He He

LAFMS03 FH40 NS NS He He He NS He NS
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LAFMS03 FH48 * *
LAFMS07 FH60 NS NS
LAFMS07 LA6 NS *
LAFMS07 LAT08 * *
LAFMS07 FH19 * NS
LAFMS07 FH40 * NS
LAFMS07 FH48 * NS
FH60 LA6 * *
FH60 LAT08 * *
FH60 FH19 * *
FH60 FH40 * NS
FH60 FH48 * NS
LA6 LAT08 * *
LA6 FH19 * *
LA6 FH40 * *
LA6 FH48 NS *
LAT08 FH19 * *
LAT08 FH40 * NS
LAT08 FH48 * *
FH19 FH40 * NS
FH19 FH48 * *
FH40 FH48 * NS

NS NS * NS He NS
* * * NS He He

NS NS * NS NS He

* * * * He He

* NS * NS He He

NS NS NS NS NS NS
NS NS * NS He NS
* NS * * He He

* * * * He He

* NS * * He He

NS NS * NS He NS
* NS * NS He NS
* NS * * He He

* NS * He He He

NS NS NS He NS NS
* NS * He He He

* * * NS He He

* * * He He He

* NS * He NS He

* * * He NS He

NS * * NS He He

NS NS * He NS He
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A b str a c t
Background: Previous phylogenetic analyses of African elephants have included limited numbers 
of forest elephant samples. A large-scale assessm ent of m itochondrial DNA diversity in forest 
elephant populations here reveals a m ore  com plex evolutionary history in African elephants as a 
whole than tw o-taxon  m odels assume.

Results: W e analysed hypervariable region I of th e  m itochondrial control region for 71 new 
central African fo rest elephants and th e  m itochondrial cytochrom e b gene from 28 new samples 
and com pare these  sequences to  o th e r  African elephant data. W e  find tha t central African forest 
elephant populations fall into a t least tw o  lineages and th a t w est African elephants (both forest and 
savannah) share the ir m itochondrial history alm ost exclusively with central African forest 
elephants. W e  also find th a t central African fo rest populations show  low er genetic diversity than 
those in savannahs, and infer a recen t population expansion.

Conclusion: O u r data do n o t support th e  separation of African elephants into tw o evolutionary 
lineages. The dem ographic history of African elephants seem s m ore complex, with a combination 
of multiple refugial mitochondrial lineages and recu rren t hybridization among them  rendering a 
simple forest/savannah elephant split inapplicable to  m odern African elephant populations.

B ack grou n d
The taxonom ic status o f  the African elephant (Loxodonta 
africana) has been debated since the turn o f  the 2 0 th cen ­
tury [1] and up to 22  subspecies have b een  described [2], 
However, m odern taxonom y refers to  tw o types, w ith  
their nam es reflecting the habitat in w hich  they are found,

nam ely the larger savannah (Loxodonta africana africana) 
(Blum enbach 1797) and the sm aller forest (Loxodonta afri­
cana cyclotis) (M atschie 1900) elephants. It has becom e  
increasingly established in the literature that forest and 
savannah elephants are distinct species (L. Africana and L. 
cyclotis) [3-7], w ith recent publications considering their
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datasets in the light o f  th is concept. The m ost persuasive 
genetic basis for a tw o-taxon  m od el originates from  a 
series o f  studies exploring patterns o f  d ifferentiation at 
nuclear loci, cu lm inating in  a study u sing  m ale inherited  
Y-chr, andbi-parentally inherited  X-chr sequ en ces [6] that 
concluded "there was a deep and almost complete separation 
between African forest and African savannah elephants." In 
this study, divergent nuclear D N A  sequences segregated  
with either forest or savannah elep h an t m orp hologica l 
types. There were, however, a num ber o f  exceptions, 
including a forest elep han t from  Garamba in  the D e m o ­
cratic Republic o f  C ongo (DRC, w here forest and savan­
nah populations are sym patric) that had nuclear  
sequences typical o f  savannah elep han ts and tw o savan­
nah elephants from C am eroon (at the lim it o f  the forest- 
savannah transition zo n e) that had nuclear sequ en ces typ­
ical o f  forest elephants [6]. The stud y estim ated  the diver­
gence between the savannah and forest elep han ts to  be 3 
m illion  years. The tw o-taxon argum ent has also b een  used  
to explain data from tw o nuclear m icrosatellite D N A  [5,7] 
and on e m orphological study [8,9], H owever, su b se­
quently Debruyne [10] perform ed a m orphom etric analy­
sis o f  m useum  elephant skulls, and foun d  evidence for a 
continuum  between tw o m orphotypes, suggesting that, 
despite historical separation that prom oted  su bd iv ision , 
these two forms freely interbreed wherever their ranges 
intersect.

M olecular studies using m itochondrial (m t) D N A  [10 ,11]  
including data from the study b y Roca et al [6] have  
pointed  to a m ore com plex scenario for African elephants. 
Debruyne [10] exam ined several thou sand  base pairs o f  
m tDNA from elephants across Africa and although he also  
reported tw o highly divergent m olecular d ad es, these did  
not conform  to the m orphological d elin eation s o f  cyclotis 
and africana. He interpreted these results as a con seq u en ce  
o f  incom plete isolation  betw een  forest and savannah Afri­
can elephant populations, fo llow ed  by recurrent and  
ongoing introgression betw een  the tw o form s. Roca et al. 
[6] obtained very sim ilar m itochondrial results but 
explained the non-concordance betw een  m itochon d ria l 
and nuclear markers as a result o f  cytonuclear gen om ic  
disassociation such that the m itochondrial tree d id  n ot  
reflect the species tree. The m tD N A  results observed were 
explained as having arisen during ep isod es o f  backcross- 
ing between successive generations o f  savannah m ales  
with forest fem ales, leading to h a lf o f  extant savannah e le­
phants surveyed possessing 'forest' typical m itochon d ria l 
haplotypes but a lm ost exclusively 'savannah' nuclear X 
and Y -chrom osom al DNA. Eggert et al. [11] (in  ad d ition  
to Nyakaana et al.’s m itochondrial sequences [12])  
included sam ples from w est Africa and foun d  a m ore  
com plex picture using m tD N A  and nuclear m icrosatel­
lites, suggesting that western savannah and forest e le ­
phants form ed a potential third Loxodonta taxon om ic

unit. Finally, Roca et aZ. [13]recently revisited the question  
w ith  a statistical re-analysis o f  eight m orphological and  
genetic datasets (nuclear and m itochondrial) including  
their ow n  and those o f  Eggert et al. [ 11 ] and Debruyne [10] 
and reconfirm ed their initial interpretation o f  a tw o taxon  
m od el w ith  cyto-nuclear genom ic dissociation.

The ab ove-m ention ed  studies largely share a pronounced  
lack o f  forest elephant data. The nuclear DNA studies 
[4 ,11] featured lim ited  sam pling from central African for­
est elephants. D espite describing a narrow hybrid zon e  
b etw een  the tw o elephant types, on ly  on e population  
located  in th is zo n e  (Garamba, (DRC)) was included and 
n o n e  from  elsew here in DRC or from  w est central Africa 
were exam ined. Elsewhere, Debruyne [10] included ele­
phants from  across DRC in  h is study but was again lim ited  
b y sam ple size. The study by Eggert e ta l. [11] was lim ited  
b y the in clu sion  o f  o n ly  tw o populations o f  Central Afri­
can forest elephants, b oth  from the edge o f  the forest 
range in  C am eroon w hich  m ay conceivably have influ­
enced  their con clu sion  o f  the genetic uniqueness o f  forest 
and w estern elephants. To date, n o  study has addressed 
the partitioning o f  genetic diversity in  the equatorial for­
ests o f  Africa. Further, the potential effect o f  Pleistocene 
forest refugia w as partially addressed by Eggert et al. [11] 
and also previously reported as having a m ajor influence 
o n  large m am m al distribution and range dynam ics [14- 
18] has yet to  be addressed in  African elephants. Here we 
report results from the m ost extensive sam ple o f  forest ele­
phants to  date, from  the core o f  their range, and com pare 
these results w ith  previously published  m itchondrial 
D N A  sequences for savannah elephants from east and 
southern  Africa and populations from w est Africa and  
DRC.

W e exam ined  the phylogeographic history, population  
structure and past dem ography o f  African elephants using  
patterns o f  m olecular diversity for the m tD N A  control 
region and cytochrom e b gene. Since m tD N A  is mater­
nally  inherited, this marker provides a fem ale-biased view  
o f  p op u la tion  history and structure. W e included the m ost 
variable m tD N A  segm ent, the hypervariable region 1 
(HVR1) o f  the control region since it has a high rate o f  
n ucleotid e change, a llow ing recently diverged lineages to 
be d istingu ished  [19-21]. This segm ent is equivalent to 
data previously published  by Eggert eta l. [11] and Debru­
yne [10], a llow in g  us to exam ine forest elephant 
sequences w ith in  the context o f  a sam ple set w ith the larg­
est geographic coverage. W e could  n ot use Roca's m tDNA  
sequences as he studied a different fragment (N D 5 instead  
o f  control region).
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Figure I
Map o f Africa showing approxim ate sam pling sites from  previous m tD N A  studies com bined with th ose  from  
this study. The green, yellow and blue dots are  sampling sites from  Nyakaana e t al. [12], Eggert et al. [I I] and Debruyne [10], 
respectively. The red dots are the  sites from this study.
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Results
Central forest sam ples
We sequenced 31 6  bp o f  HVR1 o f  the control region  from  
71 sam ples and 396  bp o f  the cytochrom e b from  28 . N o  
nuclear copies o f  m itochondrial D N A  (N u m ts) were 
detected for either sequence.

Com bined sequences
Genetic diversity
For HVR1, w e analysed 189 sequences from  66 sites across 
Africa in both forest and savannah elep han ts (Figure 1). 
O f these 102 were from forest e lep han ts (71 sam ples from  
the present study and 31 from  G enbank) and 87  savannah  
elephants (all from G enbank). The com b in ed  dataset 
com prised eighty-eight h ap lotypes (33  and 51 from  forest 
and savannah elephants, respectively) and four h a p lo ­
types found in both  types. O f  th e 21 central African forest 
elephant haplotypes identified  in  th is study, 17 were 
novel (G enbank accessions E U 096114  -  E U 0 9 6 1 3 0 ). 
Mean nucleotide diversity {n) for HVR1 sequ en ces for all 
African elephants was 0 .0 3 0  (SD  = 0 .0 1 5 ), w h ile  m ean  
haplotype diversity (h) w as 0 .9 8 5  (SD = 0 .0 0 3 ). W hen  
haplotypes were divided in to  forest and savannah, based  
on  prior designation, the forest p op u la tion  n  w as 0 .0 2 2  
(SD = 0 .11 ), significantly low er than  for savannah e le ­
phants (0 .034 , SD = 0.017; p < 0 .0 0 1 ). The m ean  h a p lo ­
type diversity for forest and savannah p op u la tion s was 
0 .960  (SD = 0 .007 ) and 0 .9 8 6  (SD  = 0 .0 0 4 ), respectively. 
The low est nucleotide diversity o f  all groupings w as for 
the new  central African forest sam ples in  th is study  
(0 .013 , SD = 0 .0 0 7 ), w h ile  haplotype diversity w as 0 .9 4 7  
(SD = 0 .009).

For cytochrom e b, 100 sequences were analysed, 28  from  
this study, 27  provided by SN and 45  from  G enbank. 
Forty-four haplotypes were identified  in clu d in g  three and  
22 new  forest and savannah elep han t sequences, respec­
tively (G enbank accessions E U 1 15995  -  E U 11 6 0 1 9 ). O f  
the 44 haplotypes, 32 were found  in savannah elep han ts  
and 10 in forest elephants, w ith  tw o h ap lotypes fou n d  in  
both. M ean ;rfor cytochrom e b w as 0 .0 2 3  (0 .0 1 2 )  for all 
elephants. W hen forest and savannah elep han ts w ere su b ­
divided, n  was again significantly low er for forest p o p u la ­
tions (0 .009 , SD = 0 .0 0 5 ) than for savannah p op u la tion s  
(0 .026 , SD = 0.013; p < 0 .0 0 1 ). These results contrast w ith  
the study o f  Roca et al. (2 0 0 5 ) w h o  reported 15 h a p lo ­
types for 281 elephants at the m itochondrial N D 5  locus  
and described low  genetic diversity as b ein g  typical for 
savannah elephants.

Population structure
The m edian joining networks for the HVR1 and cyto­
chrom e b sequences (Figures 2 and 3, respectively), 
exhibit patterns consistent w ith  a com p lex  dem ographic  
history. The HVR1 pattern is m ore com p lex  (com p risin g

four haplogroups -  here labelled  HVR1 H aplogroup I, II, 
III and IV) than for cytochrom e b (three haplogroups - 
labelled  Cytb H aplogroup I, II and III). H aplotype desig­
n ation s for this and previous studies for both  sequences 
are foun d  in Table 1 (HVR) and Table 2 (cyt b). For the 
HVR1 region, the m ost ob vious feature is that central Afri­
can forest elephants (excluding those from DRC) fall into  
tw o separate groups (HVR1 H aplogroups I and II) w ith  lit­
tle geographic structuring, consisting o f  19 (HVR1 H aplo­
group I) and 20  (HVR1 H aplogroup II) haplotypes with  
variable frequencies. O nly  tw o forest elephants from  
DRC, share the sam e haplotype w ith  other forest ele­
phants in  HVR1 H aplogroup II. The rem aining seven DRC 
forest elephant haplotypes (all south-east o f  the Congo  
River), group w ith  sequences in HVR1 H aplogroup III 
(w h ich  additionally  com prises savannah elephants from  
eastern and southern Africa and on e savannah elephant 
from  C am eroon). The other striking feature is that for 
W est African elephants (from  Eggert et al 2002 , see Table 
1 for haplotype designations), both  forest and savannah  
types p ossess haplotypes found  alm ost exclusively w ithin  
the sam e haplogroup as central African forest elephants 
(HVR1 H aplogroups I and II). Twenty-five out o f  26 hap­
lotypes from  w est Africa are m ore closely  related to central 
Forest elephants from  Gabon, C ongo and CAR. A single 
w estern savannah sequence (H 15) can be found in HVR1 
H aplogroup IV grouping w ith savannah elephants from  
eastern, southern and central Africa. Analysis o f  M olecular 
Variance (AMOVA) o f  HVR1 sequences revealed a n o n ­
significant (p = 0 .0 6 5 ) genetic structure (18.62%  variation  
a m on g p opu lations) w hen  p opulations were grouped  
according to  geographic distribution (west, central, east 
and southern Africa).

As expected, C ytochrom e b is less variable than HVR1. 
H owever, direct com parison  betw een  patterns obtained  
from  b oth  regions is com prom ised  here due to a lack o f  
equivalent individuals exam ined at both  loci, specifically  
for savannah elephants. However the overall pattern 
w h en  individuals from different p opulations were exam ­
ined  is consistent w ith  the pattern obtained  w ith HVR1, 
d espite the resolution  o f  on ly  three haplogroups as 
o p p osed  to  four. Savannah elephant haplotypes fall into  
tw o distinct haplogroups (Cyt b H aplogroup II and III) as 
d o forest elephant haplotypes (Cyt b H aplogroups I and 
II). C ytochrom e b H aplogroup II, w hich  is divided into  
tw o haplogroups for HVR1, is characterised by a network 
structure in  w hich  forest and savannah elephant sam ples 
are n o t overlaid (see Figure 3). Again all western ele­
phants, b oth  forest and savannah, cluster w ith central 
African forest elephants (Cyt b H aplogroup I).

Demographic history
W hen HVR1 sequences from forest and savannah ele­
phants were exam ined separately, Fu's Fs was -14 .2954
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Figure 2
Median-joining netw orks for African e lephants HVRI m tD N A  haplotypes. Circle size is proportional to  the haplo­
type frequency. The num bers on the  connecting line determ ine the  num ber of substitutions estimated by NETW ORK V.4. I. I 
I. The entire list of haplotypes for HVRI MJN can be found in Table I.

(P =  0 .0021) and -24 .4427  (P < 0 .0 0 0 1 ), respectively. 
Although significant values can indicate historical p op u la ­
tion expansion, the m ultim odal pattern (Figure 4 ) for the  
forest elephant groups suggests that these p op u la tion s  
encom pass several subgroups as indicated in the net­
works. W hen we exam ined each haplogroup separately

for signatures o f  dem ographic change (Table 3), a sm ooth  
and predom inantly unim odal pattern was observed for 
HVRI Haplogroup I, indicating a recent dem ographic 
expansion (Figure 5), w hile HVRI Haplogroups II, III and 
IV were m ore com plex, including the presence o f  som e  
divergent haplotypes.
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Table I: HVRI haplotypes used in the Figure 2. Haplotype frequency is indicated in brackets when there is more than one.

Haplotype Taxon Designation* Geographic origin Genbank accession 
numbers

Author

HOI Loxodonta africana 
africana

Angola I Angola AY74I072 Debruyne 2005

H02 (2) L a. africana Botswana I, BOT4 Botswana AY741074. AF106230 Debruyne 2005, 
Nyakaana et al. 2002

H03 (3) L a. africana, L a. 
cyclotis

BOT2, BOT2I, DR.C4 Botswana, DRC AF106228. AF106234. 
AY359275

Nyakaana et al. 2002, 
Debruyne 2005

H04 (2) L a. africana BOT9, Zimbabwe2 Botswana,
Zimbabwe

AF 106231. AY741329 Nyakaana et al. 2002, 
Debruyne 2005

H05 L a. africana BOTI5 Botswana AF 106232 Nyakaana et al. 2002
H06 (3) L a. africana, L a. 

cyclotis
BOT16, DRC I, Zimbabwe4 Botswana, DRC, 

Zimbabwe
AF 106233. AY359277. 
AY742799

Nyakaana et al. 2002, 
Debruyne 2005

H07 (4) L a. cyclotis Bmbo6, Dja39, CAR32I4, CAR394 Cameroon, CAR AF527653. AF527647 Eggert et al. 2002, this 
study

H08 L a. cyclotis Cameroon I Cameroon AY359267 Debruyne 2005
H09 (4) L a. cyclotis Cameroon2, Bmbo I, Bmbo37, 

NYO03I0
Cameroon, Gabon AY359269. AF527646. 

AF527649
Debruyne 2005, Eggert 
et al. 2002, this study

HIO (7) L a. cyclotis Bmbo 16, Bmbo43, CAR274, 
CAR297, Congo2, NN07I3, 
NN29I I

Cameroon, CAR, 
CR

AF527648. AF527650. 
AY359268

Eggert et al. 2002, 
Debruyne 2005, this 
study

HI I L a. cyclotis Dja34 Cameroon AF52765I Eggert et al. 2002
HI2 (3) L africana, La. 

fricana, L a. cyclotis
DRC 13**, Bl, DRC9 DRC, Cameroon AY74I08I. AY359279. 

AF527654.
Debruyne 2005, Eggert 
et al. 2002

HI3 (2) L a. africana B7, Waza 15 Cameroon AF527655. AF527659 Eggert et al. 2002
HI4 (3) L a. africana B8, Waza 10, Sudan I Cameroon, Sudan AF527656. AF527658. 

AY74I073
Eggert et al. 2002, 
Debruyne 2005

HI5 (2) L a. africana Waza27, Mali2 Cameroon, Mali AF527660. AF527666 Eggert et al. 2002

HI6 (4) L a. cyclotis CAR3622, NN059, NN279, 
NN30I4

CAR, CR This study

HI7 (2) L a. cyclotis CAR33I5, CAR381 CAR This study

HI8 (4) L a. cyclotis CAR57I2, AFE82lan, MDC0I2, 
NOG053,

CAR, Gabon This study

HI9 L a. cyclotis CAR I CAR AY359272 Debruyne 2005

H20 L a. cyclotis CAR309 CAR This study

H2I L a. cyclotis CAR35I9 CAR This study

H22 (5) L a. africana Chad I, K68, RW 15, Mole 13, WA6 Chad, Ghana AY74I080. AF527643. 
AF52764I. AF527676. 
AF 106243

Eggert et al. 2002, 
Debruyne 2005, 
Nyakaana et al. 2002

H23 (10) L a. cyclotis NN32I8, Lan027, LOP067, 
LOP5Ial4, NOGOI4, NOG025, 
NOG026, MpaOl, Mpa028, 
RABOI13

RC, Gabon This study

H24 L a. cyclotis Congo I RC AY359266 Debruyne 2005

H25 (2) L a. cyclotis CKT04al4, RAB275 RC, Gabon This study

H26 L a. cyclotis DRC2 DRC AY359270 Debruyne 2005

H27 (4) L a. africana and L 
a. cyclotis

KV8, MFI, MF5, DRC3 Uganda, DRC AF 106206. AF 106209. 
AF 106210. AY3592Z1

Nyakaana et al. 2002, 
Debruyne 2005

H28 (2) L a. cyclotis DRC6, DRC8 DRC AY359273. AY3592Z4 Debruyne 2005

H29 L a. cyclotis DRC5 DRC AY359276 Debruyne 2005

H30 (2) L a. africana DRC I I, AMI DRC, Kenya AY74I078. AF 106217 Nyakaana et al. 2002, 
Debruyne 2005

H31 (2) L africana and L a. 
africana

DRC 17**, QEI3 DRC, Uganda AY742802. AFI062L3 Nyakaana et al. 2002, 
Debruyne 2005

H32 (2) L a. cyclotis IVIIOI I, RAB067 Gabon This study

H33 (II) L a. cyclotis Igl032, AFE85lgl, AFE86lgl, 
AFE88lgl, IVIIOI2, IVI043, 
LOA03I0, LOP 146, Mpa03l9, 
RAB02I5, WAK04I0

Gabon This study

H34 (3) L a. cyclotis LanO15, Lanl59l I, RABI3I Gabon This study
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Table I: HVRI haplotypes used In the Figure 2. Haplotype frequency is indicated in brackets when there is m ore than one. (Continued)

H35 (5) L o. cydotis Lan 1566, IVI05a6, IVI05b8, 
RAB032, WAK08I7

Gabon This study

H36 L a. cydotis Lan 16014 Gabon This study
H37 (3) L a. cydotis Gabon2, LOP07I0, PBA023 Gabon AY359265 Debruyne 2005, this 

study
H38 (8) L a. cydotis IVI06b2, Kes0721, Kes08l9, 

LOA068, AFE79LOP, PBA05I0, 
RAB044, RABI II8

Gabon This study

H39 (4) L a. cydotis Kes0211, Kes0314, Kes05l7, 
PBA07I4

Gabon This study

H40 L a. cydotis Gabon I Gabon AY359278 Debruyne 2005
H4I L a. cydotis NOG08I0 Gabon This study
H42 L a. cydotis PBA06I2 Gabon This study
H43 L a. cydotis IVI05a5 Gabon This study
H44 (3) L a. cydotis Bia3, Bia69, Liberia I Ghana, Liberia AF527677. AF527680. 

AY74I079
Eggert et al 2002, 
Debruyne 2005

H45 L a. cydotis Bia48 Ghana AF527678 Eggert et al 2002
H46 (6) L a. cydotis and L 

a. africana
Bia64, RW22, Mole9, WA3, 
WAI4, Mali7

Ghana, Mali AF527679. AF527642. 
AF527675. AF 106242. 
AF 106245. AF527667

Eggert et al 2002, 
Nyakaana et al 2002

H47 (2) L. a. africana Mole3, Mali 14 Ghana, Mali AFS27674. AFS27668 Eggert et al 2002
H48 L a. africana Mole33 Ghana AF527683 Eggert et al 2002
H49 (2) L a. cydotis Tai6, Tail7 Ivory Coast AF527670. AF52767I Eggert et al 2002
H50 (2) L a. cydotis Tail9, Tai29 Ivory Coast AF527672, AF5276Z3 Eggert et al 2002
H5I l_ a. africana IvoryCoastl Ivory Coast AY741327 Debruyne 2005
H52 (2) L a. africana SouthAfrica3, Zimbabwe I South Africa, 

Zimbabwe
AY741320. AY741321 Debruyne 2005

H53 L a. africana MM4 Kenya AF 106214 Nyakaana et al 2002
H54 L a. africana MMI9 Kenya AF 106215 Nyakaana et al 2002
H55 L a. africana MM20 Kenya AF 106216 Nyakaana et al 2002
H56 L a. africana AM2 Kenya AF 106218 Nyakaana et al 2002
H57 L a. africana AMIO Kenya AF106219 Nyakaana et al 2002
H58 L a. africana AM 12 Kenya AF 106220 Nyakaana et al 2002
H59 L a. africana SA8 Kenya AF 106221 Nyakaana et al 2002
H60 L a. africana Mali28 Mali AF527669 Eggert et al 2002
H6I L a. africana Mozambique I Mozambic AY74I076 Debruyne 2005
H62 (5) L a. africana Namibia I, Addo5, Uganda I, Q EI, 

Zimbabwe 10
Namibia, South 
Africa, Uganda, 
Zimbabwe

AY74I325. AF527682. 
AF 106211. AY741323. 
AY742800

Nyakaana et al 2002, 
Eggert et al 2002, 
Debruyne 2005

H63 L a. africana KH2 Namibia AF 106239 Nyakaana et al 2002
H64 L a. africana Addol South Africa AF52768I Eggert et al 2002
H65 L a. africana KG I South Africa AF106240 Nyakaana et al 2002
H66 (3) L a. africana KG2, Tanzania2, Zimbabwe7 South Africa, 

Tanzania, Zimbabwe
AF 106241. AY74I070. 
AY74IQ67

Nyakaana et al 2002, 
Debruyne 2005

H67 L a. africana Tanzania I Tanzania AY742801 Debruyne 2005
H68 (4) L a. africana QE4, Zambia I, Af9, AflO Uganda, Zambia, 

Kenya
AF 106212. AY741328. 
AF527639. AF527640

Nyakaana et al 2002, 
Eggert et al 2002, 
Debruyne 2005

H69 (2) L a. africana Uganda2, KVI Uganda AY741077. AF 106203 Nyakaana et al 2002, 
Debruyne 2005

H70 L a. africana KV2 Uganda AF 106204 Nyakaana et al 2002
H7I L a. africana KV7 Uganda AFLQ62D5 Nyakaana et al 2002
H72 L a. africana KVI 7 Uganda AF106207 Nyakaana et al 2002
H73 L a. africana KV28 Uganda AF 106208 Nyakaana et al 2002
H74 L a. africana WC2 Namibia AF106235 Nyakaana et al 2002
H75 L a. africana WC4 Namibia AF106236 Nyakaana et al 2002
H76 L a. africana WC6 Namibia AF 106237 Nyakaana et al 2002
H77 L a. africana W CI3 Namibia AF 106238 Nyakaana et al 2002
H78 L a. africana WAI I Ghana AF 106144 Nyakaana et al 2002
H79 L a. africana AF8 Kenya AF527638 Eggert et al 2002
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Table I: HVRI haplotypes used in the Figure 2. Haplotype frequency is indicated in brackets when there is more than one. (Continued)

H80 L a. africana ZBEI Zimbabwe AF 106222 Nyakaana et al. 2002
H8I L a. africana ZBE2 Zimbabwe AF 106223 Nyakaana et al. 2002
H82 L a. africana ZBE3 Zimbabwe AF 106224 Nyakaana et al. 2002
H83 L a. africana ZBE4 Zimbabwe AF 106225 Nyakaana et al. 2002
H84 L a. africana ZBE5 Zimbabwe AF 106226 Nyakaana et al. 2002
H85 L a. africana ZBE6 Zimbabwe AF 106227 Nyakaana et al. 2002
H86 L a. africana Zimbabwe3 Zimbabwe AY74I069 Debruyne 2005
H87 L a. africana Zimbabwe6 Zimbabwe AY741071 Debruyne 2005
H88 L a. africana Zimbabwe5 Zimbabwe AY74I322 Debruyne 2005

* Original name from each author (Debruyne, 2005; Eggert et al. 2002; Nyakaana et al. 2002; and this study. ** Sample sharing both, forest and 
savannah haplotypes, according to  the author (Debruyne, 2005).

Discussion
In the light o f  the results ob ta in ed  w ith  the m itochondrial 
sequences used here, additional interpretations o f  the h is­
tory o f  African elephants b ecom e evident and suggest that 
the conclusions drawn in  previous studies m ay have b een  
hampered by incom plete sam ple sets. Forest elephants  
have been affected by cyclical clim atic changes that 
occurred over the last 2 .6  m illio n  years as the colder drier 
periods experienced during P leistocene glacial m axim a  
are believed to have led to the repeated retraction o f  forest 
cover into refugial zon es fo llow ed  by re-expansion, foster­
ing allopatric divergence betw een  isolated  p op u lation s  
[22] and secondary contact. The forest elep han t range is 
therefore likely to have b ecom e centred around such refu- 
gia on  several occasions. The dataset presented here raises 
the possibility o f  at least tw o different refugia in  the cen ­
tral African region harbouring distinct elep han t p op u la ­
tions that diverged allopatrically. If this w as the case, 
forest elephants possessing distinct m itochondrial g en o ­
types are likely to have com e in to  contact relatively rap­
idly after the end o f  the last glaciation (1 2 ,0 0 0  years BP), 
w hen the forests re-expanded [23]. Such a scenario m ight 
explain not on ly  the two haplogroups present in forest 
elephants but also the low er n ucleotid e diversity that 
characterises elephant popu lations foun d  in forest h ab i­
tat.

This scenario m ight also explain the high  m icrosatellite  
diversity reported for forest elephants [5]. If several p o p u ­
lations diverged in isolation, accum ulating different m ic­
rosatellite profiles, and subsequently becam e sym patric as 
the forest expanded, the large single p op u la tion  that today  
com prises tw o central African forest elep h an t lineages  
m ight be expected to have engendered higher m icrosatel­
lite diversity. Savannah populations, especially  th ose  in  
the south and east, w ou ld  n ot have b een  affected by forest 
expansion since these areas rem ained unforested and thus 
habitat w ould  not have been  lost. T hose savannah p o p u ­
lations that m ay have been  affected are th ose that m ay  
have occurred in areas that subsequently b ecam e forested. 
One explanation for the close genetic proxim ity b etw een  
forest and savannah genotypes in DRC cou ld  be introgres-

sion  betw een  savannah haplotypes in to  forest genom es as 
forests expanded and savannah habitat was lost. Such 
introgression w ou ld  be in the op posite  direction to  that 
proposed  by Roca et al. [4,6].

The results obtained  for elephants in  w est and central 
Africa have strong im plications for the d ivision  o f  ele­
phants in to  forest and savannah species. These elephants 
are taxonom ically  indeterm inate [24] and have been  
described as having an interm ediate m orp hology  [8]. 
M itochondrially, W est African elephants are found  in  the 
sam e haplogroups as the (tw o) forest elephant lineages o f  
central Africa. If ancient fem ale-m ediated introgression  
b etw een  the tw o form s fo llow ed  b y  backcrossing into  
savannah p opu lations is the reason w hy western savan­
nah elephants possess largely 'forest' haplotypes then  
nuclear markers at these loci sh ould  resem ble predom i­
n antly th ose o f  southern and eastern savannah elephants 
today. Alternatively these elephant popu lations could  be 
an exam ple o f  protracted gene flow  betw een  tw o forms o f  
elephant, w hich  is on go in g  (or was until recently) and 
that w est African savannah elephants are n o t distinguish­
able at the genetic or m orphological level from  their forest 
counterparts (thus underm ining the tw o-taxon m odel). A 
third explanation  cou ld  be a 'second m ovem ent' o f  ele­
phants out o f  the forest (from  either w est or central Africa) 
and in to  the savannah. There are insufficient data to deter­
m in e w hether there was a single m ovem en t from forest to 
savannah habitat or w hether these were m ultip le events, 
precipitating the m orphological changes observed today. 
W hatever the origin o f  the tw o types, our data w ould  sup­
port con tinu ed  extensive hybridisation betw een the two  
proposed  forms.

C onclusion
Our m itochondrial analysis does n ot support the sim ple  
separation o f  m od em  African elephants in to  two groups. 
The evidence is m ost clear in w est Africa where savannah  
elephants are indistinguishable at b oth  the m itochondrial 
and m orphological level from their forest counterparts. 
The tw o species m odel cannot be easily applied in this 
region and neither do w est African elephants represent a
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Table 2: cytochrome b haplotypes used in Figure 3. Haplotype frequency is indicated in brackets when there is more than one.

Haplotype Taxon Designation* Geographic origin Genbank accession 
numbers

Author

HO I (12) La. africana

H02 L o. africana
H03 L a. africana
H04 L a. africana
H05 (6) L a. cyclotis, La. 

africana, L africana

H06 L a. africana
H07 L a. africana
H08 L a. africana
H09 L a. africana
HI0 L a. africana
HI I (2) La. africana
HI2 La. africana
H13 (5) L a. cyclotis, La. 

africana, L africana
HI4 L a. cyclotis
HI5 L a. cyclotis
H 16(22) Loxodonta africana 

cyclotis

H 17 L a. cyclotis
H 18 La. africana
HI9 L a. cyclotis
H20 (5) L a. cyclotis

H2I (3) L a. cyclotis
H22 La. africana
H23 (2) L a. cyclotis
H24 L a. cyclotis
H25 (2) La. africana
H26 (2) La. africana
H27 La. africana
H28 La. africana
H29 L a. cyclotis
H30 La. africana
H3I La. africana
H32 La. africana
H33 La. africana
H34 La. africana
H35 La. africana
H36 (2) La. africana
H37 La. africana
H38 La. africana
H39 La. africana
H40 La. africana
H4I La. africana
H42 La. africana
H43 La. africana
H44 La. africana

AM I, AM2, QE51, WC4, BO I, 
DRC I I, MO I, NAI, TAI, UGI, 
UG3, ZIIO

AM 12 
AN I 
BOTI3
DRC I, DRC4, DRC 17**, BOTI7, 
ZI2, ZI4

BOTI8
BOTI
BOT2I
BOT25
BOT2
BOT4, ETI
BOT9
DRC2, DRC9, DRC 13**, KV8,
MF5
DRC3
DRC5
DRC6, DRC8, Cameroon2, CAR I, 
Congo2, CAR274, CAR297, 
CAR33I5, CAR3417, CAR405, 
CAR3723, CAR43I I, IVIIOI2, 
KES08I9, LOP 146, NN07I3, 
NN232, NN267, NN279,
NN29I I, NN31 16, NN32I8 
Cameroon I 
Chad I 
CKT04a 14
Congo I, MPAOI, MPA02, 
NOGOI4, NOG026 
Gabon2, Gabon I, NN255 
Ivory Coast I 
IVI06c4, LOPAFE79 
KES03I4 
Zi5, KG I
KG2, SouthAfrica3
KVI 9
KV2
Liberia I
MMI9
MM20
Namibia2
QE48
Sudan I
WA I3
WA14, WA15
WA6
WC6
Zambia I
ZBEI
ZBE3
ZBE4
ZBE5
Zimbabwe I

Kenya, Uganda,
Namibia, Botswana,
DRC, Mozambique,
Tanzania, Zimbabwe
Kenya
Angola
Botswana
DRC, Botswana,
Zimbabwe

Botswana 
Botswana 
Botswana 
Botswana 
Botswana 
Botswana 
Botswana 
DRC, Uganda

DRC
DRC
DRC, Cameroon, CAR, 
RC, Gabon

Cameroon
Chad
RC
RC, Gabon

Gabon, RC 
Ivory Coast 
Gabon 
Gabon
Zimbabwe, South Africa
South Africa
Uganda
Uganda
Liberia
Kenya
Kenya
Namibia
Uganda
Sudan
Ghana
Ghana
Ghana
Namibia
Zambia
Zimbabwe
Zimbabwe
Zimbabwe
Zimbabwe
Zimbabwe

AY741074. AY74I078. 
AY74I076,
AY7428QI,
AY74I324. AY7428QQ

AY74I072

AY742802.
AY742799

AY35927Q. AY359279. 
AY741081 
AY35927I 
AY359276 
AY359268.
AY359272.
AY359274

AY359267
AY74I080

AY359266

AY74I327

AY74I322
AY74I320

AY74IQ79

AY74I326

AY74I073

AY74I328

AY741321

SN, Debruyne 2005

SN
Debruyne 2005 
SN
Debruyne 2005, SN

SN
SN
SN
SN
SN
SN
SN
Debruyne 2005, SN

Debruyne 2005 
Debruyne 2005 
Debruyne 2005, MJ

Debruyne 2005 
Debruyne 2005 
MJ
Debruyne 2005, MJ

Debruyne 2005, MJ 
Debruyne 2005 
MJ 
MJ
SN, Debruyne 2005 
Debruyne 2005, SN 
SN 
SN
Debruyne 2005
SN
SN
Debruyne 2005 
SN
Debruyne 2005
SN
SN
SN
SN
Debruyne 2005
SN
SN
SN
SN
Debruyne 2005

* Original name from each author (Debruyne, 2005; this study SN = Silvester Nyakaana and MJ = Mireille Johnson)
and savannah haplotypes, according to the author (Debruyne, 2005).

Sample sharing both, forest
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third distinct entity. Central African elep han t p op u la tion s  
west o f  the C ongo river also  q uestion  the current classifi­
cation. Forest elephants fall in to  tw o m ajor groupings  
with m itochondrial DNA. Previous studies foun d  tw o  
major groups for all African elephants, savannah and  
savannah/forest perhaps suggesting ancient introgression  
between forest fem ales and savannah m ales in  the past. 
However the inclusion  o f  a larger central forest sam ple in  
this study w ould  suggest that th is exp lanation  is to o  s im ­
ple and that African elephants were subject to  a m ore  
com plex dem ographic history. P hylogenetic and phyloge-  
ographic reanalysis o f  species is im portant for m an y  rea­
sons but w ith the m assive extinction  o f  species in  the w ild  
in the last 50 years accurate descriptions are essential for 
m anagem ent o f  w ild  resources. For elephants, the classifi­
cation o f  species into savannah and forest m ay n o t reflect 
their evolutionary history but sim p ly  the habitat in  w hich  
they currently exist. W hile ecotypic d ifferentiation  has 
been show n to be the predom inant factor driving m o lec­
ular divergence in one w id ely  distributed African herbiv­
ore recently [25], this m ay n ot apply in  elephants and if  it 
does, may not conform  to a sim p le forest versus savannah  
habitat driven divergence. To d evelop  m anagem ent strat­
egies incorporating a sim ple forest/savannah m od el cou ld  
be m isleading until further lin es o f  evidence give us a 
clearer picture o f  the origins and current conservation  
needs o f  elephants p opulations through out the con tinent. 
Future studies should  analyse nuclear D N A  markers, 
including those w hich evolve rapidly, across the range o f  
forest and savannah elephants and especially  in  transition  
zon es to investigate this com p lex  o n g o in g  process further.

M ethods
Sampling and laboratory procedures
Elephant sequences from 66 sites across Africa w ere incor­
porated (Figure 1). N ew  forest elep han t sam ples (HVRI 
mtDNA: n = 71; Cyt b mtDNA: n = 2 8 ) w ere ob ta in ed  
using feces from 12 sites in the central African forest b lock  
(red dots, Figure 1).

Samples were stored in RNAlater (A m bion  RNA later® and  
Qiagen RNA later ™) or silica gel, and D N A  w as extracted  
from these using the Q iagen D N A  stoo l m in i kit (Q iagen, 
Hilden, Germany) kit fo llow in g  the manufacturer's p roto­
col.

An approximately 630 bp fragment o f  m itochondrial 
DNA was am plified, encom passing the 3' end o f  the cyto­

chrom e b gene, transfer RNAs (Threonine, Proline) and 
35 8  bp  o f  the control region. The control region section  
was am plified  in 71 sam ples using primers MDL3 and 
MDL5 [26]. Primers AFDL1 and AFDL2 (situated 400  bp 
from  the 3'end  o f  the cytochrom e b gene through to the 5' 
end  o f  the control region), and AFDL3 and AFDL4 (situ­
ated 3 7 7  bp from  the 3' end o f  tRNA proline to the 5'end  
o f  the control region) were em ployed  to gain overlapping  
sequ en ce for som e degraded sam ples [11]. A 4 9 4  bp frag­
m en t o f  cytochrom e b was analysed separately w ith 28  
sequences using the primers LI5 024  and H I 5516  [3]. 
A m plifications were performed in 50  pi containing 50  
m M  KCl, 10 m M  Tris-HCl, 1.5 mM Mg2+, 20 0  pm ol o f  
each dNTP, 0 .2  p m ol o f  each primer, 1.5 U Taq DNA  
polym erase (Q iagen) and approx. 10 ng o f  genom ic DNA. 
Thirty to  40  cycles were carried out using a Perkin-Elmer 
Cetus 9 6 0 0  or 9 7 0 0  D N A  therm ocycler w ith denaturation  
at 94 ° C for 45s, annealing at 63 ° C for 45s, and extension  
at 72 °C  for 45s. PCR products were purified using the 
Q iagen PCR purification kit and subsequently sequenced  
com m ercially  (M acrogen, Korea).

Analysis o f  g en etic  diversity and differentiation
Forward and reverse sequences for each individual and  
the con sensu s sequences for all individuals were aligned  
using SEQUENCHER (G ene Codes Corporation 1998, 
version  3 .1 .1 ) and rechecked by eye. G enetic diversity for 
all geographic locations was estim ated using haplotype h 
and nucleotid e n  diversities as im plem ented  in Arlequin  
ver. 3 .0  [27]. Paired t-tests were carried out to assess 
w heth er there w as significant difference in nucleotide  
diversity betw een  forest and savannah elephants. Genetic 
differentiation betw een  pairs o f  popu lations was tested  
using  the exact test using 10 ,000  Markov chain steps, as 
im plem en ted  in  ARLEQUIN ver. 3 .0 , and this program  
w as also em p loyed  for nested analysis o f  m olecular vari­
ance (AM OVA) to test for patterns o f  spatial genetic struc­
ture. The dataset was divided in  forest and savannah  
groupings and then  four regional populations were 
d efined  (west, central, east and south). U sing AMOVA the 
correlation am ong genotype distances is used as an F-sta- 
tistic analog (Phi) at various hierarchical levels.

W eighted m axim um  lik elihood  distances [28] were used  
to  derive a m edian  joining network (MJN) w ith the pro­
gram NETWORK V 4 .1.1.1. H aplotype networks m ay m ore 
effectively portray the relationships am ong sequences for 
pop u lation s than m axim um  likelihood  or m axim um  par-

Table 3: Indicators of demographic change.

Haplogroup I Haplogroup II Haplogroup III Haplogroup IV

Fu's Fs -7.30 -6.34 -4.61 -22.44
p-value 0.006 0.015 0.034 <0.0001
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Figure 4
Mismatch distribution of th e  HVRI fo rest and savannah African elephants haplotypes.
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Figure 5
Mismatch distribution of the  HVRI haplogroups of African elephants.
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sim ony w hich are the traditional m eth od s developed  to  
define interspecific relationships, leading to p oor resolu­
tion at the p opulation  level [29].

Analysis o f  popu la tion  dem ograph y
Tests were performed to  detect evidence o f  past d em o ­
graphic change. We used ARLEQUIN ver.3.0 to perform  a 
pairwise m ism atch distribution, com paring the distribu­
tion o f  the observed pairwise n ucleotid e site differences 
with the expected distribution in  an expanding p op u la ­
tion [30]. In a single origin, dem ographically  expanding  
population, m ism atches sh ou ld  fo llo w  a u n im od al Pois- 
son  distribution whereas in p op u la tion s at dem ographic  
equilibrium  or with sub-groups, the d istribution  is u su ­
ally m ultim odal. W e tested the good ness-of-fit o f  the 
observed data to a sim ulated m od el o f  exp an sion  w ith  the  
sum  o f  square deviations (SSD) and the H arpending’s rag­
gedness index r, using ARLEQUIN.

Population history was also inferred u sing  Fu's Fs test o f  
neutrality [31] as im plem en ted  in  ARLEQUIN. W e ch ose  
this test because it is the m ost powerful coalescent-based  
neutrality test for detecting p op u lation  grow th for larger 
sam ple sizes.
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