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Abstract

Ulceration of the lower limb is a chronic, debilitating condition affecting an 

increasing percentage of the adult and elderly populations. Conservative 

treatment options are limited, and generally result in surgery or amputation. 

The purpose of this research was to investigate the feasibility of using 

intermittent pneumatic compression for the treatment and management of 

chronic non-healing leg ulcers. The aim was to develop a system capable of 

improving the healing of leg ulcers of varying causes through improving distal 

blood flow; whilst also being comfortable and easy to use, to encourage 

patient compliance.

Using Doppler ultrasound, it was demonstrated that intermittent pneumatic 

compression was capable of producing a distal blood flow response in the 

limb of a healthy volunteer. Further investigations examined the effect on this 

distal response of altering the cuff design, pressure and cycle duration; in 

order to determine the optimal compression regime for enhancing the distal 

circulation; the ultimate objective being to use intermittent pneumatic 

compression to improve the healing of chronic leg ulcers by improving distal 

blood flow.

The optimal sequence involved a 3-chamber thigh cuff, using a pressure of 

60mmHg and a short sequential cycle which was operated within a 2 minute 

on and off sequence. The optimal system was investigated for distal blood



flow effects in a group of 20 healthy volunteers, and 14 patients with leg 

ulcers of differing aetiologies.

A distal hyperaemic response was achieved during the 2 minutes without 

compression, consequent upon changes incluced in the venous circulation 

during the 2 minutes of compression. A greater response was detected in the 

patient group as compared with the healthy volunteer group.

A 3 month case study of the clinical effects of the new system resulted in the 

complete healing of the patients long standing non-healing leg ulcer. Further 

case studies are required to determine the significance of this finding.
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Introduction

Chronic non-healing leg ulcers are a considerable source of morbidity and a 

potential huge resource problem to the NHS, impinging on an increasing 

percentage of the population, with prevalence figures of approximately 1% in 

the adult populace, and 3-5% in the populace over 65 years of age, (Mekkes 

et al. 2003).

Leg ulcers commonly arise due to impaired blood flow, as a result of 

atherosclerosis (occlusive arterial disease) or venous insufficiency. The 

presence of a painful, malodorous, unsightly leg ulcer is not only disconcerting 

and restrictive to the patient, but the current management and treatment of 

the ulcer is protracted and inconvenient.

The treatment of ulceration involves improving the circulation of blood. For 

ischaemic and diabetic ulcers, conservative treatment options are few, 

generally resulting in some form of surgery, ultimately an amputation, which 

incur associated risks and complications, (Montori et al. 2002). The current 

treatment of venous ulceration involves compression bandaging, which can 

be labour intensive for the nursing staff, varying in efficacy dependant on the 

skill of the health care professional in application of bandaging, relying on 

patient compliance for a treatment that can be uncomfortable, unsightly and 

inconvenient..Consequently, improved ulcer healing techniques are indicated, 

which incur greater efficacy.
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Intermittent pneumatic compression (IPC) is a technique which has been 

successfully used in the past for the prophylaxis of deep vein thrombosis 

(DVT), for the reduction of oedema and improvement of venous return, and 

for the symptomatic reduction of peripheral arterial disease, (Chen et al. 

2001). Various degrees of pressure are transmitted to the underlying 

subcutaneous tissue, muscle and blood vessels during the ‘cyclic mechanical 

compression of the limb’, (Sayegh 1987) resulting in a range of physiological 

effects. The ability of IPC to assist in the management of vascular diseases, 

lies, not only in mechanical effects, which initiate alterations in the dynamics 

of blood flow, but also in its ability to stimulate the release of biochemical 

mechanisms of the circulation, (Chen et al. 2001). The consequences of IPC 

may be summarised as oedema reduction, increased blood flow, and in acute 

ischaemia, the use of IPC encourages the formation of collateral circulation, 

(Koch 1997). However, arterial and venous applications have developed 

separately, with different cuff designs, pressures and compression 

sequences.

Although the number of studies examining the application of IPC to the 

treatment of ulcers are limited, and their reliability is questioned, (Mani et al. 

2004), it is known that IPC has the ability to enhance vascular fluid flow, which 

essentially is the basis for initiating ulcer healing; consequently, IPC devices 

may represent an ‘effective and safe limb salvage therapy for patients with 

wounds and critical limb ischaemia’, (Montori et al. 2002). The advantages of 

IPC, namely its non-invasive nature, and ease of use with minimal associated 

risks, along with good patient compliance (Kumar and Walker 2002), would be
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beneficial for patients with chronic non-healing leg ulcers, if it is found through 

investigation to be efficient in enhancing the wound healing process by 

improving the distal circulation.

The aim of this research was to investigate the feasibility of using intermittent 

pneumatic compression for the treatment and management of chronic non­

healing leg ulcers of varying aetiologies.

A review of the literature relating to leg ulcers and intermittent pneumatic 

compression is included in chapter 1 of the thesis; chapter 2 describes the 

equipment used in the research.

Chapters 3 and 4 relate to the preliminary investigations which were carried 

out on a single healthy volunteer; chapter 3 refers to those experiments 

conducted with the two different uniform compression cuffs, and chapter 4 to 

the two multiple chamber compression cuffs.

Investigations on a group of healthy volunteers are reported in chapter 5, 

whilst those investigations on patients with leg ulcers of differing causes are 

referred to in chapter 6. A small number of case studies were also attempted 

to conclude the research which are detailed in chapter 7.
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Chapter 1: Literature Review

1.1 Introduction
(

A review of the literature relating to the pathophysiology and management of 

chronic leg ulceration, and intermittent pneumatic compression and its 

application to vascular diseases has been composed. However, a synopsis of 

the cardiovascular system has been included prior to the main subject matter 

of the review, due to the central role occupied by the characteristics of blood 

flow in this research.
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1.2 The Cardiovascular System

The cardiovascular system is a continuous circuit, responsible for the ‘rapid 

convective transport’ of substances, such as oxygen, nutrients, waste 

products and heat around the body, (Levick 2000). The system involves two 

distinct circulations, namely the pulmonary^ circulation and the systemic 

circulation. The pulmonary circulation is a short circuit extending from the 

heart to the lungs and back to the heart again, enabling gaseous exchange by 

diffusion between the blood and the alveoli of the lungs. The systemic 

circulation is responsible for the transportation of oxygen and nutrients to all 

other organs and tissues of the body, and the removal of carbon dioxide and 

other waste products, (Marieb 2001).

This research is concerned primarily with the systemic circulation; the 

anatomy and physiology described therefore concentrates predominantly on 

this element of the cardiovascular system.

1.2.1 Arteries

On contraction of the left ventricle of the heart, high pressure blood is ejected 

into the largest artery, the aorta, before progressing through a branched 

system of arteries of continually diminishing calibre, (Levick 2000).

Leaving the left ventricle, the aorta veers downwards at the aortic arch, from 

which branches supply the head, arms and heart. The visceral organs are 

supplied with blood from branches of the descending aorta, whilst the pelvis 

and legs are delivered with blood from the right and left iliac arteries,
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bifurcations of the descending aorta, (Aaronson et al. 2004). Therefore, 

excluding the liver, the principal organs of the body are all supplied with blood 

from arteries which branch from the aorta. This ‘parallel arrangement’ of the 

systemic circulation guarantees an independent blood supply, driven at high 

pressure to each organ of the body, hence insuring the delivery of highly 

oxygenated blood to each site, (Aaronson et al. 2004).

Within the lower limb, the external iliac artery continues into the femoral 

artery, which traverses down through the thigh and branches into the 

profunda femoris artery. The popliteal artery originates above the knee as a 

continuation of the femoral artery, branching into the anterior and posterior 

tibial arteries below the popliteus muscle. The anterior tibial artery descends 

anteriorly; lateral to the tibia bone. At the ankle, midway between the malleoli, 

the anterior tibial artery becomes the dorsalis pedis artery, which runs 

anteromedially supplying the foot. However, it is the posterior tibial artery 

which provides the principal blood supply to the foot, (Moore and Agur 1995). 

The posterior tibial artery descends the posterior lower limb inferomedially 

until reaching the ankle, where it runs posterior to the medial malleolus and 

into the foot, whilst its branch the peroneal artery travels along the medial side 

of the fibula and into the dorsum of the foot.

Arteries may be described as viscoelastic tubes, which are capable of altering 

their diameter, causing a resultant pulsatile pressure, (Nichols and O'Rourke 

1990). There are different types of arteries, characterised by their size and by 

the varying compositions of the three layers making up the wall of the artery.
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The three layers of tissue constituting the arterial wall are namely, the tunica 

interna, tunica media and the tunica externa or adventitia (Moore and Agur 

1995). The tunica interna is an inner layer of endothelium, whilst the tunica 

externa is an outer layer comprising fibrous tissue. It is the composition of 

elastic and smooth muscular tissue in the Middle layer, the tunica media 

which generally distinguishes one type of artery from the other.

Elastic arteries, such as the aorta and its major branches, are the largest type 

of artery, and as their name suggests are highly elastic, enabling expansion 

during cardiac contractions. The smaller muscular arteries however, 

encompass a high composition of circularly disposed smooth muscle fibres, 

which are capable of constricting the vessel lumen, thus controlling the 

distribution of blood to the various organs and tissues of the body as required.

The smallest category of artery is the arteriole, also termed a resistance 

vessel due to its ability to control the resistance to blood flow, (Levick 2000). 

Arterioles regulate blood flow and hence the degree of pressure within the 

arterial system by dilating (vasodilation) or constricting (vasoconstriction). The 

arterioles also control the flow of blood into the capillaries, thus impinging on 

capillary exchange, (Levick 2000).

1.2.2 The Microcirculation

The microcirculation is a collective term used to describe the flow of blood 

from the smallest arteriole, through a capillary bed to a venule. An important 

part of the cardiovascular system, the microcirculation is responsible for the
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ultimate objective of the exchange of water, gases, nutrients and waste 

materials between the blood and tissue cells, (Smith and Kampine 1984).

Blood enters the microcirculation through small muscular arterioles, the tone 

of which controls the flow of blood entering the terminal arterioles and thus 

many capillaries. The terminal arterioles behave as precapillary sphincters for 

the capillaries into which they divide, regulated by local metabolic factors. 

Under basal conditions, the terminal arterioles exhibit vasomotion, a periodic 

constriction and relaxation of the arteriole walls, which results in rhythmic 

fluctuations in the flow of blood entering the capillaries, (Aaronson et al. 

2004).

In some instances, there are through channels, called metarterioles, which 

run directly from the arteriole to the venule. Capillaries branch directly from 

the metarteriole, whilst precapillary sphincters at their point of origin control 

the inflow of blood, (Smith and Kampine 1984).

The capillaries are the smallest of the blood vessels, comprising a thin tunica 

interna only, which in some instances may be one endothelial cell thick. They 

function as a network called a capillary bed. Capillaries vary with respect to 

their anatomy and function dependant on their location within the body; 

however, in general there are three principal varieties. These are known as 

continuous, fenestrated and discontinuous capillaries. Each is identified with 

respect to ‘the continuity of their filtration barriers’, (Aaronson et al. 2004), 

such that the continuous capillaries have an uninterrupted wall of endothelial
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cells, the fenestrated capillaries are similar, although some of their endothelial 

cells contain pores or fenestrations, whilst the discontinuous capillaries 

contain large intercellular gaps, (Marieb 2001). Hence, the continuous 

capillaries are permeable to small molecular substances and gases only, 

whilst the fenestrated and discontinuous capillaries allow the passage of large 

proteins and cells, (Aaronson et al. 2004).

Capillaries merge to form postcapillary venules, which merge to form venules. 

Postcapillary venules are composed of endothelium only and are highly 

porous, allowing fluid and white blood cells to move through their walls, whilst 

venules contain a few layers of smooth muscle cells, (Marieb 2001). It is the 

venules which unite to form veins.

1.2.3 Veins

Veins are responsible for the return of blood to the heart from the capillary 

beds. Veins from the organs and tissues of the body unite to form two major 

conduits returning blood to the right atrium of the heart; the inferior vena cava, 

collecting blood from organs in the lower body, and the superior vena cava, 

which amasses blood from the upper body, (Vander et al. 2001). In general, 

veins are located in close proximity to their corresponding arteries.

The veins have thinner walls than the arteries, although still consisting of the 

same three layers; and they have a larger lumen. The tunica media is thinner 

and weaker having less elastic and muscular tissue, whilst the tunica externa

9



is the thickest of the venous wall layers comprising longitudinal bundles of 

collagen fibres and elastic networks, (Marieb 2001).

The veins are highly compliant vessels at low pressures, consequent upon 

their thin walls, which allow the veins to collapse at low internal pressures, 

(Aaronson et al. 2004). The veins are also known as the capacitance vessels. 

With small changes in venous blood pressures the veins are capable of 

expanding considerably to accommodate large increases in blood volume, 

due to their large lumen and high expandability. However, there is a limit on 

the expandability of the veins. At high pressures, venous compliance 

decreases, preventing blood pooling, for example on standing, (Aaronson et 

al. 2004). Up to 65% of the total blood supply of the body may be found within 

the veins at any instant.

The return of blood to the heart is assisted by the contraction of muscles 

within the legs which squeeze the veins and force blood back towards the 

heart; whilst the presence of valves within the peripheral veins prevent the 

backflow of blood, (Aaronson et al. 2004). Venous valves are formed by a fold 

in the tunica interna, which is strengthened by connective tissue.

1.2.4 Blood Pressure

Blood pressure originates from the contraction of the ventricles. It is defined 

as the force per unit area exerted by the blood on the wall of the blood vessel, 

(Marieb 2001) and is measured in units of millimetres of mercury (mmHg) or 

in kilo Pascals (kPa).
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The blood pumped out of the heart by the contraction of the ventricles has a 

pressure called the systolic pressure. When the heart is resting with no 

ejection of blood, the pressure of blood in the vessels is termed the diastolic 

pressure. Unless otherwise stated, ‘blood pressure’ implies systemic arterial 

blood pressure in the large arteries near the heart, (Marieb 2001). The blood 

pressure is recorded as the systolic value (maximum arterial pressure) over 

the diastolic value (minimum arterial pressure), and the difference between 

them is known as the pulse pressure. In a normal young adult, the blood 

pressure is usually 120/80mmHg.

Blood is maintained in perpetual motion by the pressure gradient that exists 

within the vascular system; from a high pressure within the arteries to the 

much diminished pressure within the venous side of the vasculature, (Levick

2000).

1.2.5 Arterial Blood Pressure

Pressure within elastic vessels is governed by the elasticity of the vessel and 

the volume of fluid contained within them, (Marieb 2001).

The rhythmic emptying of the left ventricle produces the pulsatile nature of 

blood flow within the large arteries. Blood ejected from the left ventricle strikes 

the column of blood already present within the ascending aorta, generating a 

pressure wave^in the blood, which is rapidly dissipated towards the arterioles, 

(Aaronson et al. 2004). Pulsatile flow arises as the pressure wave progresses
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along the large arteries, producing transient pressure gradients, driving blood 

locally forward in short bursts.

The elasticity of the arterial walls causes them to expand with the progression 

of the pressure wave. Recoil of the arterial walls assists in driving the blood 

forward along the arteries during diastole, and causes reverse flow in the 

peripheral arteries.

Effectively, the elastic arteries may be thought of as ‘pressure reservoirs’, 

storing some of the energy of the pressure wave during systole, and then 

transferring it back to the blood during diastole, (Marieb 2001). This has the 

effect of gradually damping the pulsatility of blood flow as it progresses along 

the arterial tree.

1.2.6 Arteriole Blood Pressure

The muscular arteries are active in vasoconstriction, due to the high 

composition of smooth muscle within their walls as compared with the elastic 

arteries; however, it is the smaller arterioles which demonstrate the highest 

resistance to blood flow. The contractile capability of the arterioles helps to 

control the flow of blood into the capillaries and helps to maintain arterial 

blood pressure. On constriction of the arterioles, blood flow and hence blood 

pressure are reduced, distal to the arterioles; whilst simultaneously arterial 

blood pressure is raised. These blood vessels are therefore known as the 

‘resistance’ vessels.
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The high blood pressures present in the large elastic arteries decline with 

progression through the systemic arterial system of ever decreasing calibre. 

This arises due to the drag present between blood and the vessel walls, and 

the diminishing elasticity of the vessel. Pressures within the arterioles may 

have values of between 40 and 60 mmHg, (Smith and Kampine 1984) as 

compared with pressures of the order of 120mmHg in the large elastic 

arteries.

1.2.7 Venous Blood Pressure

The pressure of blood within the veins is considerably lower than within the 

arteries. As a consequence of the large cross-sectional area of the venous 

system, the resistance to blood flow is greatly reduced as compared with the 

arterial system, and hence, the pressure gradient required to drive blood 

through the veins is relatively low; 15mmHg as compared with 80mmHg in the 

arterial system, (Aaronson et al. 2004).

1.2.8 Maintenance of Normal Blood Pressure

There are a number of factors involved in the maintenance of normal blood 

pressure; cardiac output, blood volume, peripheral resistance, arterial wall 

elasticity and venous return.

The stroke volume is the volume of blood ejected by the heart at each 

ventricular contraction, whilst cardiac output is defined as the volume of blood 

ejected by the ventricles every minute. An increased cardiac output results in

13



an increased blood pressure, however an increase in stroke volume raises the 

systolic pressure more so than the diastolic pressure.

In order to maintain blood pressure homeostasis, it is necessary to have a 

sufficient volume of blood circulating within the blood vessels. Typically, the 

total blood volume is approximately 5 to 6 litres.

As previously mentioned, the contractile capability of the arterioles facilitates 

in maintaining arterial blood pressure by altering the peripheral resistance to 

blood flow; vasoconstriction initiating an increase in arterial blood pressure, 

and vasodilation decreasing arterial blood pressure.

The elasticity of the arterial walls enables their distension and relaxation 

during fluctuations in the blood volume, hence sustaining normal blood 

pressure.

Cardiac output is dependant on the volume of blood returned to the heart by 

the superior and inferior venae cavae. The arterial pressure is not sufficient in 

itself to drive blood back to the heart; hence there are other factors which 

assist in venous return. Muscular contraction within inelastic compartments 

exerts pressure on the veins, which prevents blood stasis and aids venous 

return. Respiratory movements also assist venous return. During inspiration, 

the chest expands creating a negative intra-thoracic pressure, whilst the 

descent of the diaphragm increases the intra-abdominal pressure. Both of 

these effects are active in facilitating venous return. Another factor which aids
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the return of blood to the heart is body position and hence gravity, assisting 

the return of blood from the head and neck, for example when standing.

Blood pressure is directly related to cardiac output, peripheral resistance and 

blood volume (since cardiac output is dependant upon blood volume. See 

equation 1.)

Blood Pressure = Cardiac Output x Peripheral Resistance 
BP = CO x PR

Equation 1

Alterations in one of these variables, which threatens blood pressure 

homeostasis are compensated for by changes in the other variables, (Marieb 

2001).

There are neural and hormonal controls within the body which determine 

cardiac output and peripheral resistance, and other local controls which help 

to regulate arterial blood pressure.

Local controls are mechanisms independent of nerves and hormones, by 

which vascular beds are capable of altering their own arteriolar resistances for 

the purpose of self-regulating their blood supply, (Marieb 2001). They have 

two principal functions.

15



1. Under basal conditions, local mechanisms regulate vascular resistance in 

order to maintain blood flow at a constant level for a range of arterial blood 

pressures; this is known as flow autoregulation.

2. When the metabolic needs of a tissue increase, local mechanisms initiate 

vasodilation to increase blood flow; this is known as metabolic or active 

hyperaemia, and reactive hyperaemia. An active hyperaemia refers to the 

increase in blood flow which arises in response to an increase in metabolic 

activity, whilst a reactive hyperaemia describes the dramatic increase in 

blood flow which occurs in response to the removal of a complete 

occlusion to the blood supply. (Aaronson et al. 2004).

There are two mechanisms involved in the process of flow autoregulation; a 

metabolic response and a myogenic response. Vasodilating metabolites 

produced during cellular metabolism, which are present in extracellular 

spaces, impart a direct effect upon the vascular tone of the nearby arterioles, 

(Aaronson et al. 2004). When blood flow increases, the vasodilating 

metabolites are removed from the tissues more rapidly than they are 

produced, resulting in constriction of the arterioles and a consequent 

reduction in blood flow, (Vander et al. 2001). Conversely, a reduction in blood 

flow leads to an accrual of metabolites, which initiates arteriolar dilation and a 

resultant increase in blood flow.

The vasodilation of flow autoregulation involves a similar metabolic 

mechanism to the vasodilation of active hyperaemia; it is the precipitating

16



factor which differs between the two local controls, whether an alteration in 

intravascular blood pressure or metabolic activity, (Vander et al. 2001).

The myogenic mechanism of flow autoregulation involves a vascular response 

to alterations in intravascular pressures. Arteriolar smooth muscle is believed 

to respond directly to alterations in stretch arising due to changes in blood 

pressure. When the blood pressure increases, arteriolar smooth muscle 

responds to the consequent increase in stretch exerted upon it by constricting; 

whilst a decrease in stretch arising due to a decrease in intravascular blood 

pressure leads to a reduction in vascular tone and dilation, (Vander et al.

2001).

In addition to the local controls there are also extrinsic controls which regulate 

arterial blood pressure. Extrinsic controls provide for the needs of the body as 

a whole, by diverting blood to the organs and tissues which require it the 

most, (Pocock and Richards 2006). Information concerning the blood 

pressure and blood volume throughout the cardiovascular system is conveyed 

to the brain through afferent nerves, whilst the autonomic nervous system and 

a variety of hormones form the efferent aspect of the regulatory circuit, 

initiating the appropriate response from the heart and vasculature.

The autonomic nervous system is an efferent system of nerves conveying 

signals from the brain for the regulation of the involuntary function of most 

organs, (Aaronson et al. 2004). Autonomic activity is capable of 

countermanding the action of the local controls for the benefit of providing for
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the body as a whole. It is comprised of two divisions, the sympathetic and 

parasympathetic branches, which have their individual functions and 

anatomical origins, (Pocock and Richards 2006).

The sympathetic system originates from the intermediolateral column of the 

thoracic and lumbar regions of the spinal cord, (Pocock and Richards 2006). 

In general terms, the function of the sympathetic division of the autonomic 

nervous system is to prepare the body for activity. The parasympathetic 

branch of the autonomic nervous system derives from the brainstem and 

sacral segments of the spinal cord, whose function involves initiating 

restorative processes.

One of the principal roles of the autonomic nervous system entails the 

maintenance of blood pressure homeostasis. Autonomic innervations impart a 

basal level of vascular tone. Sympathetic neurons within arterioles release the 

hormone norepinephrine which causes vascular smooth muscle to constrict, 

(Vander et al. 2001). Altered activity of the sympathetic nerves can increase 

or decrease this level of tone in order to decrease or increase the flow and 

pressure of the blood. Sympathetic stimulation can also increase the heart 

rate and the force of ventricular contraction. Parasympathetic activity does not 

in general contribute any effect to the tone of the vasculature (although there 

are a few vasodilatory exceptions), although it does stimulate a reduction in 

heart rate, (Pocock and Richards 2006).
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In addition to the activation of efferent nerves, there are also a number of 

hormones which upon their release into the circulation are capable of altering 

the tone of the vasculature. Epinephrine is a hormone which travels in the 

blood supply, capable of causing generalised constriction of the arterioles, 

except in skeletal and cardiac muscle, where epinephrine initiates 

vasodilation, (Marieb 2001). Norepinephrine, as previously mentioned, and 

angiotensin II are vasoconstrictive, whilst atrial natriuretic peptide (ANP) 

which is secreted by the heart atria has a vasodilative action.

Vascular tone may also be altered as a consequence of substances secreted 

from endothelial cells. In response to chemical and local stimuli, endothelial 

cells release paracrine agents which diffuse to the smooth muscle cells 

inducing either vasoconstriction or vasodilation, (Vander et al. 2001). Nitric 

oxide is an important paracrine vasodilator, which is released continuously in 

the arterioles, contributing to basal conditions. Shear forces between the 

endothelium and blood flow contribute to nitric oxide release, contributing to 

basal conditions and the local control of blood flow, (Aaronson et al. 2004). 

Prostacyclin is another vasodilator released by endothelial cells, whilst 

endothelin-1, if present in high enough concentrations can cause widespread 

vasoconstriction of the arterioles.

1.2.9 Blood Flow

Blood flows frorrv regions of high pressure to regions of lower pressure, along 

a pressure gradient. The flow of blood across a vessel is not uniform. Normal 

resting blood flow is laminar; layers of blood which slide across each other at
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different velocities. The slowest blood flow occurs at the vessel wall, whilst the 

faster blood flow is generally observed in the centre of the vessel.

If there is a significant increase in the velocity of blood flow, for example due
4

to a stenosis, the streamline nature of resting blood flow is disturbed, and 

vortices arise.

The changes in blood flow across the vessel are referred to as the velocity 

profile. Flow profiles across a blood vessel are described as either blunt or 

parabolic. A blunt profile refers to blood which is moving at a similar velocity 

across the vessel diameter, whilst in a parabolic profile the central blood is at 

a higher velocity than the blood near the vessel wall. The variation in flow 

profile arises due to the viscous drag caused by the blood vessel walls, which 

causes the layer of blood at the wall to remain stationary, (Thrush 2003).

Viscosity is the internal friction between adjacent layers of a fluid which aim to 

resist flow. Blood flow is indirectly proportional to the viscosity of blood. Blood 

is classed as a non-Newtonian fluid, which implies that its viscosity decreases 

as the shear rate increases. Shear rate is the rate of change of velocity at 

which one layer of fluid passes over an adjacent layer. In the case of blood, 

shear rate is determined by the velocity of blood flow and by the size of the 

blood vessel. High shear rates are typically present in the large arteries where 

blood flow velocity is high, while low shear rates are typical in the 

microcirculation where blood flow velocity is lower. Viscosity also increases as 

the haematocrit and plasma concentration of blood increase. Therefore, under
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basal conditions, the viscosity of blood within the circulation at any instant and 

any location varies depending upon the shear rate within that particular vessel 

and the cellular fraction of blood, (Eckmann et al. 2000).

Haemodynamics is the study of the relationship between blood pressure, the 

resistance to blood flow, and blood flow within the cardiovascular system, 

using physical laws which govern the flow of fluids through single tubes, 

(Aaronson et al. 2004).

Blood pressure is the pressure exerted by the blood and its magnitude varies 

throughout the vascular system. In order to determine blood flow, the 

difference in blood pressure between the relevant points and the resistance to 

blood flow should be known, (Vander et al. 2001). Blood flow, pressure and 

resistance are related by the following equation (equation 2).

Blood Flow = Pr essure Difference (between 2 points) x Resistance 
F = A P x R

Equation 2

The resistance to blood flow is dependant upon the viscosity of blood and the 

dimensions of the blood vessel, as given in equation 3.
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Equation 3 
(Nichols and O'Rourke 1990)

From equation 3 it can be seen that the resistance is directly proportional to 

the viscosity and the length of the vessel, whilst it is inversely proportional to 

the fourth power of the vessel’s radius. Since the length of blood vessels 

within the body is constant and if the viscosity of blood is considered to be 

constant, the flow of blood is dependant upon the radius of the blood vessel. 

Small changes in the radius of a blood vessel produce dramatic changes in 

blood flow. For example, at constant pressure, if the radius is halved, the 

resistance increases by a factor of 16, whilst blood flow decreases by a factor 

of 16. However, these relationships describe the flow of fluids through single 

tubes, and are therefore only an approximation of the dynamics of blood flow 

through the vasculature, where the radius of blood vessels is continually 

altering. Nevertheless, the principles still apply, such that small dilations or 

constrictions of the arterioles within the vascular beds can greatly adjust the 

flow of blood to that particular organ.
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1.3 Leg Ulcers

Ulceration of the lower limb is a chronic, debilitating condition impinging on an 

increasing percentage of the population, with prevalence figures of 

approximately 1% in the adult populace, and 3-5% in the populace over 65 

years of age (Mekkes et al. 2003).

An ulcer can be described as a ‘local defect, or excavation, of the surface of 

an organ or tissue, which is produced by the sloughing of inflammatory 

necrotic tissue’ (Negus 1995). Chronic ulceration develops when the normal 

wound healing process is interrupted.

Ulceration may arise due to various aetiologies. The principal origins include 

arterial and venous insufficiency; however infection, inflammatory disorders, 

congenital abnormalities, malignancy and trauma are also recognised causes 

of ulceration.
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1.3.1 Arterial (Ischaemic) Ulcers

Figure 1.1 Example of an arterial ulcer.

(http://www. edu. rcsed. ac. uk/Wound%20Management/Lea%20Ulcer%20Arteri 

al.htm)

Arterial disease is the consequence of an insufficient blood supply. Ischaemia, 

necrosis and subsequently ulceration may ensue.

Ischaemia is most frequently associated with arteriosclerosis. The term 

arteriosclerosis covers a variety of macrovascular conditions; atherosclerosis 

dominating under this heading. Atherosclerosis is a chronic, progressive 

disease, in which the arteries become increasingly narrowed and hardened. 

This arises as a consequence of an accumulation of fats, cholesterol, calcium, 

and other products on the intimal layer, due to endothelial dysfunction.

Endothelial dysfunction is believed to arise from a deficit in nitric oxide activity 

(Schulz et al. 2004). Nitric oxide, an effective vasodilator, also protects the 

intimal, endothelial lining from impairment. However, a surplus of oxygen free
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radicals is considered to deplete the nitric oxide supply, promoting 

atherosclerotic damage (Taddei et al. 2004).

The accumulation of substances in the intimal lining is termed an 

atherosclerotic plaque, and continues to develop, restricting the vessel lumen 

and the flow of blood. The diminished blood flow influences the oxygen supply 

to the tissues of the lower limb. Intermittent claudication is the term used to 

describe pain in the leg muscles (most commonly the calf muscles) on 

exercise, and is a consequence of hypoxia.

Intermittent claudication may progress into rest pain; the final phase 

preceding gangrene. In this case, the oxygen demand exceeds the supply 

even when resting; distal tissues become ischaemic, and the patient 

experiences pain on rest. Controlled exercise may assist in alleviating the 

discomfort caused by claudication and rest pain, by encouraging the 

development of collateral circulation, without precipitating damage.

An intramural restriction or complete occlusion may arise, either due to 

extensive plaque formation, or thrombus development. A thrombus ensues 

when a plaque ruptures. The roughened surface of the plaque acts as a focus 

for an accrual of blood coagulation products. The amassing thrombus may 

entirely impede the blood vessel at the site of its formation, instigating an 

acute ischaemia. An embolus may also occlude the blood supply. This arises 

when a piece of the plaque becomes dislodged and travels in the blood flow 

until it becomes wedged in a smaller vessel.
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When the required blood supply is not achieved, chronic or acute ischaemia 

ensues, and due to the depleted or inhibited perfusion of nutrients, necrosis 

and ulceration follow accordingly, distal to the site of the 

obstruction/occlusion. The risk factors for the development of arteriosclerosis 

include diabetes, smoking, hyperlipidaemia, hypertension, obesity and age, 

(Mekkes et al. 2003).

Ulceration can also develop due to ischaemia in the microvasculature. 

Thromboangiitis obliterans or Buerger’s disease is one such condition. 

Buerger’s disease afflicts smokers in the populace under 50 years of age, and 

involves ischaemia in the microvasculature of distal tissues and/or nomadic 

phlebitis, due to severe inflammation (Cutler and Runge, 1995).

Vasculitis is the term used to describe a class of conditions involving 

inflammation of the blood vessel walls. Various vasculitic disorders associated 

with autoimmune conditions such as rheumatoid arthritis and systemic lupus 

erythematosus (SLE) may lead to ulceration of the lower limb; as also will 

Raynaud’s syndrome (vasospastic disease). Raynaud’s syndrome involves a 

severe reaction to the cold. Arteriolar vasoconstriction occurs in the 

extremities, resulting in pallor (whiteness) and coldness. Cyanosis (blueness) 

may follow, due to an accumulation of deoxygenated haemoglobin. Minutes to 

hours later, when relaxation occurs and blood returns to the microcirculation, 

the extremities exhibit rubor (redness), and become very hot and painful. This 

reaction signifies the commencement of a chronic systemic disease, which
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with advancement, may lead to the extremities becoming gangrenous and 

ulcerated.

Arterial ulceration usually arises distal to the obstruction/occlusion, at the 

extremities. Hence, ischaemic ulcers are commonly located on the toes, the 

dorsum of the foot and the heel; however they may also arise on the anterior 

lower limb or above the medial/lateral malleolus.

Clinically, an ischaemic ulcer has a pale base, with potential eschar (dry 

scab), and is free of exudates and oedema. The periphery is scantily 

epithelialised and is clearly delineated from the surrounding tissue; often 

described as having a ‘punched out’ appearance. Ischaemic ulcers can 

extend deep into the limb; in the acute instance revealing deep fascia and 

tendons. The surrounding tissue may be shiny, dry, free of hair, and 

inflammation is only apparent when infection prevails, (Sieggreen and Kline 

2004).

Primary clinical tests for distinguishing ischaemic ulcers from other aetiologies 

include determination of skin temperature, as ischaemic tissue is cooler to the 

touch than the proximal skin; palpating pulses, and measuring the ankle- 

brachial pressure index (ABPI). Weak or absent peripheral pulses, and 

decreased blood pressure in the lower limbs is characteristic of patients 

suffering with arterial insufficiency. A normal ABPI has a value of greater than 

1; arterial insufficiency is considered to be present for an ABPI of less than 

0.8, although discrepancy exists in the exact cut off value, (Vowden and
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Vowden 2002). For reduced ABPI values, the degree of ischaemia becomes 

increasingly critical. The need for a more extensive investigation would 

indicate the use of ultrasound, MRI or x-ray angiography.

1.3.2 Venous Ulcers

Figure 1.2 Example of a venous ulcer. 

(http://www.bu.edu/woundbiotech/index.html)

Chronic venous insufficiency arises due to the incompetence of the 

mechanisms which aid venous return. Pathophysiological processes initiating 

venous hypertension precede chronic venous insufficiency, and the 

subsequent blood stasis within dilated, tortuous veins, concludes in oedema, 

anoxia and ultimately necrosis, (Sarkar and Ballantyne 2000).

There are three prime pathophysiological mechanisms by which venous 

hypertension may arise; perforating venous valve incompetence, deep venous 

thrombosis leading to post-thrombotic syndrome, and calf muscle pump
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dysfunction. Regardless of origin, venous hypertension may be conveyed to 

the capillaries, resulting in their distension. A consequent increase in capillary 

permeability, leads to an accrual of fluid in the extravascular space. This 

oedema instigates the commencement of a progressive inflammatory 

process.

The route from oedema to ulceration involves dermal microcirculatory failure; 

however the precise pathogenesis is unclear. Nonetheless several 

hypotheses do exist.

In 1982 Browse and Bumand proposed the fibrin cuff theory. It was 

hypothesised that due to the distension of the capillaries, macromolecules, 

such as fibrinogen, (a soluble plasma protein), are capable of escaping from 

within. Extramurally, fibrinogen may polymerise to form pericapillary fibrin 

cuffs, which prevent the perfusion of oxygen and nutrients in surrounding 

tissues. Hence, necrosis and ulceration ensue. However, currently this 

supposition is believed to be an effect and not a cause of ulceration, as fibrin 

cuffs are detectable in other wound aetiologies, (Sarkar and Ballantyne 2000).

A further theory was suggested by Coleridge Smith et al. This notion implied 

that leukocytes could become deposited within the capillaries, subsequent to 

the decreased blood flow during venous hypertension. These ‘trapped’ 

leukocytes, once activated initiate the destruction of the capillary walls, 

hindering the filtration of nourishment to tissue. Another conjecture entails 

growth factor trapping. Falanga and Eaglstein postulated a theory which
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considered fibrinogen and other macromolecules to ensnare growth factors 

and other homeostatic substances, extramurally. Due to the unavailability of 

reparatory substances, slight trauma could progress into chronic ulceration, 

(Valencia et al. 2001).

These are the principal theories; however others do exist, including 

arteriovenous shunting and combinations of those mentioned. The treatment 

and management of venous ulceration would benefit from elucidation of the 

precise processes involved.

Venous ulceration is preceded by a progressive inflammatory response to the 

inhibited nutrient perfusion. An area of erythema, due to congestion of the 

capillaries may be the primary clinical feature, followed by 

lipodermatosclerosis; an induration of the skin, due to tissue fibrosis. The 

definitive Inverted champagne bottle* appearance can be attributed to a 

lipodermatosclerotic encircling of the limb, with oedema residing above.

The skin may acquire a red/brown hyperpigmentation, due to capillary 

leakage, followed by the development of eczema, and subsequent atrophie 

blanche. Atrophie blanche appears as small, smooth, ivory white plaques of 

scar tissue, interspersed with dilated capillaries, which are highly susceptible 

to ulceration.

Venous ulceration is commonly situated on the gaiter’s area over the malleoli; 

most frequently on the medial side; either as a result of trauma or spontaneity.
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The size of a venous ulcer can vary from a few centimetres, to circumferential 

around the entire area above the malleoli. The base of the wound is shallow, 

and irregularly shaped, with a pink/red colour due to the dilated capillaries. 

Venous ulcers are moist, often with a purulent exudate, an associated putrid 

odour; and are usually set amidst lipodermatosclerotic skin or atrophie 

blanche.

Patients at an increased probability of developing venous disease and 

subsequent ulceration include the overweight, women (often multiparous 

women), and those with familial tendency to develop varicose veins.

1.3.3 Diabetic Ulcers

Figure 1.3 Example of a diabetic neuropathic foot ulcer. 

(http://www.bu.edu/woundbiotech/index.html)
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Plantar ulceration is a frequent complication of diabetes mellitus. It is 

estimated that 15% of all diabetic patients will acquire an ulcer at some stage 

during their lifetime, (Ulbrecht et al. 2004), which in the acute instance may 

conclude in amputation. The presence of diabetes mellitus not only increases 

the predisposition to ulceration, but also contributes precipitating factors for 

ulcer progression.

Diabetic neuropathy is a frequently attained complication of diabetes, 

considered to ensue secondary to prolonged hyperglycaemia, (or occasionally 

hypoglycaemia), and manifesting as peripheral nerve dysfunction, (Bhadada 

et al. 2001). Peripheral pain sensation may be lost as a consequence of 

sensory neuropathy, precipitating ulceration by incurring deficient patient 

awareness. Motor neuropathy of the muscles controlling foot motion results in 

abnormal plantar pressure loading, and combined with sensation loss in the 

lower limb, increases susceptibility to skin breakdown and subsequent 

progression into ulceration, (Jeffcoate and Harding 2003).

Autonomic neuropathy involving the lower limbs affects blood pressure 

regulation and perspiration. Thus, dysfunction of the autoregulatory response 

to changes in blood pressure leads to increased blood flow and arteriovenous 

shunting; capillary hardening due to calcium accrual follows, with subsequent 

oedema and diminished nutrient perfusion. Consequently, due to the ensuing 

ischaemia at the microvascular level, tissue necrosis commences. Decreased 

perspiration results in skin dryness, prone to fissure formation. Ulceration is 

imminent with the conjunction of these factors.
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Charcot foot is a neuropathic arthropathy of the foot joints. Due to sensory 

and motor nerve dysfunctions, fractures or sprains of the foot may be 

overlooked. The consequences are vast, ultimately resulting in deformity, 

which if unrelenting, may lead to ulceration.

Neuropathy alone is not sufficient to instigate plantar ulceration; however, in 

combination with minor trauma, foot deformities or ischaemia, the threat of 

ulcer formation is significantly increased, (Jeffcoate and Harding 2003). 

Ulceration in diabetic patients may be broadly categorised as neuropathic, 

neuroischaemic or ischaemic; macrovascular ischaemic ulceration arising due 

to the aetiologies previously mentioned, and in the microvessels as a 

consequence of autonomic nerve dysfunction. Infection is also another 

causative factor for ulceration, the ensuing ulcer arising due to the altered 

ability of diabetic tissue to respond to mild infection.

Diabetic ulcers are prone to delayed healing, due to recurrent trauma with 

absence of awareness and due to secondary infection. Inadequate footwear is 

a common wound exasperator amongst patients with diabetic neuropathy, 

(Ulbrecht et al. 2004).

As previously mentioned diabetic ulcers typically occur on the plantar region 

of the foot, due to abnormal pressure bearing. However, ulcers may also 

appear distally on. the toes, or on the dorsum of the foot if ischaemia is 

involved, (Negus 1995). Neuropathic ulcers may be readily differentiated from 

those ischaemic in nature as they tend to be painless, bleed easily, and are
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surrounded by thick, dry skin. Both have a ‘punched out’ appearance; 

however, neuropathic ulcers generally have a pink base whilst ischaemic 

ulcers are very pale. The foot with a neuropathic ulcer is warm, pulses may be 

palpated and vein distension is apparent. Infectious ulcers are set amidst 

cellulitis, and include discharge as a feature.

The afore mentioned ABPI is not indicated in patients with diabetes, as 

calcified vessels hinder an accurate result. As a substitute, the toe-brachial 

pressure index (TBPI) may be measured, as calcification of blood vessels in 

the toes is rarely encountered, (Teodorescu et al. 2004).

1.3.4 The Physiology of Wound Healing

Wound healing arises through the ‘interaction of a complex series of 

phenomena that eventuates in the resurfacing, reconstitution and 

proportionate restoration of tensile strength of wounded skin’, (Deodhar and 

Rana 1997). Disruption of this process results in chronic wounds, which are 

very slow to heal, or may not heal at all.

Ordinarily, there are four principal stages to the healing process; haemostasis 

(inhibition of blood loss by vasoconstriction and activation of coagulators), 

inflammation (influx of neutrophils and macrophages to eliminate bacteria and 

to supply growth factors for the formation of granulation tissue), proliferation 

(granulation tissue formation and epithelialisation) and remodelling, (MacKay 

and Miller 2003). Chronic wounds arise when the inflammatory or proliferative 

stages are interrupted due to hypoxia, infection, metabolic disorders (for
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example, diabetes mellitus), malignancy and other chronic illnesses (Deodhar 

and Rana 1997), thus preventing the healing process from progressing.

Wound healing is a function of the tissues of the body, hence it is not viable to 

“heal an ulcer” per se; but it is feasible to enhance the wound healing process 

by excluding or reducing those factors by which it is impeded.

1.3.5 Current Treatment Methods

The management of lower limb ulceration involves ‘correction of the cause 

and stimulation of healing’, (Eaglstein and Falanga 1997) hence accurate 

discrimination of aetiology is essential to promote recuperation, as treatment 

methods vary.

Ischaemic ulcer healing involves improving the blood supply to the wound, 

whilst treatment of venous insufficiency entails assisting venous drainage and 

reducing oedema. In each situation enhancing vascular fluid flow is instigated, 

but the means by which this is achieved varies.

In ischaemic ulceration, conservative techniques such as elimination of risk 

factors, body positioning and exercise are primary considerations. Inclination 

of the bed, such that the patient is positioned in a feet down angle, would 

enable gravity to.assist in augmenting blood flow to the lower limbs; and so as 

to encourage collateral vessel formation, regular, appropriate exercise should 

be undertaken, (Sarkar and Ballantyne 2000).
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If rest pain and/or infection are present, surgery may be indicated. The 

principal operative procedures currently in place include endarterectomy, 

percutaneous transluminal angioplasty with optional stent insertion and/or 

bypass grafting; employed so as to remove an occlusion, enlarge the vessel 

lumen and circumvent the occluded vessel respectively.

Venous ulcer treatment involves reversal of venous hypertension and 

reduction of oedema. Elevation of the limb to a height above the heart will 

assist venous drainage; however, the foremost therapeutic technique used for 

patients with chronic venous insufficiency is compression.

The principle behind compression is to decrease the superficial venous 

pressure, and to reduce oedema by promoting the return of fluid to within the 

capillaries. Compression also enhances the functioning of the calf muscle 

pump, improving venous return, (Laing 1992).

Various compression techniques exist; the Unna boot is a non-elastic 

bandage which is suitable for the ambulatory patient. The bandage is 

impregnated with a paste containing, amongst other substances, zinc oxide, 

which assists in alleviating discomfort by soothing the skin, and hardens 

following application, resulting in the formation of a semi-rigid boot structure, 

(Eaglstein and Falanga 1997). The Unna boot exerts high pressures on the 

limb during calf muscle contraction, and slight pressure at rest. Elasticated 

bandages not only apply high pressures during exercise but also at rest, the 

most effective elasticated bandaging being a multilayered system. The 4-
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layered graduated bandage incurs increased healing rates as compared with 

single layer elasticated bandages, (Laing 1992).

The necessary qualities in compression bandaging are to have sufficient 

pressure applied to the ankle, and decreasing graduated compression 

thereafter towards the knee, (Negus 1995), so as to proportionately 

counteract venous hydrostatic pressures, and encourage fluid drainage. 

Following ulcer healing, it is usually recommended to wear graduated 

compression stockings to prevent oedema and consequently ulcer 

recurrence.

Superficial and/or perforating vein ligation may be beneficial in the absence of 

deep venous incompetence, however, it has not been acknowledged whether 

ulcer healing rates are affected by the removal of these veins. Another 

surgical procedure which may be more readily accessible in the future, 

involves restoration of inefficient venous valves. Valvuloplasty or 

transplantation processes, have been demonstrated to be effective in pain 

relief, healing chronic ulceration and allowing the patient to walk again, (Laing 

1992).

The foremost objectives in managing diabetic ulceration are to establish 

whether any infection prevails, indicating the need for thorough surgical 

debridement; whether any associated ischaemia may be revoked by 

revascularisation; and to protect any prominences, deformities of the feet 

which act as focal points for ulceration, (Jeffcoate and Harding 2003).
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As demonstrated, the number of conservative treatment options for the 

management of chronic, non-healing leg ulcers is limited. For ischaemic 

ulcers, this implies controlled exercise and adaptation of risk factors, which 

are not always effective. Ischaemic and diabetic ulcers generally conclude in 

some form of surgery, which in itself has associated risks, such as the 

formation of an embolus or thrombus, the introduction of infection or the 

eventual loss of a limb, (Labropoulos et al. 1998). Following amputation, non­

operative treatment options available to the patient are few, (Montori et al. 

2002). Compression bandaging systems utilised for venous leg ulcers, 

although successful for some patients, are not in others, in whom compliance 

is an issue due to the unsightliness, discomfort and inconvenience of the 

technique, (Ginsberg et al. 1999).

The yearly expenditure for the treatment of lower limb ulcers is believed to 

approximate £400 million to the NHS in the United Kingdom, (Simon et al. 

2004). With the aging population, and a high susceptibility for ulceration in the 

elderly, this expense is liable to increase.

Hence, an alternative conservative treatment method which may enhance the 

wound healing process, reducing the incidence of surgical procedures 

amongst ischaemic and diabetic limbs, whilst simultaneously incurring good 

patient compliance is advocated.

A common feature amongst those ulcer aetiologies mentioned is an inefficient 

vascular flow, and the subsequent need for flow restoration to promote ulcer
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healing. A treatment method which has incurred great research interest and 

promising results in its ability to enhance vascular fluid flow, and hence wound 

healing, is intermittent pneumatic compression.
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1.4 Intermittent Pneumatic Compression (IPC)

Intermittent pneumatic compression and its application to vascular 

pathologies is not a new concept. It is currently utilised for the prophylaxis of 

deep venous thrombosis, and has been demonstrated to have beneficial 

results in the treatment of lower extremity arterial disease, venous ulcer 

healing and the reduction of oedema (whether arising due to lymph or venous 

pathologies), (Chen et al. 2001).

Various degrees of pressure are transmitted to the underlying subcutaneous 

tissue, muscle and blood vessels during the ‘cyclic mechanical compression 

of the limb’, (Sayegh 1987), resulting in a range of physiological effects. The 

ability of intermittent pneumatic compression to assist in the management of 

vascular diseases, lies, not only in mechanical effects, which initiate 

alterations in the dynamics of blood flow, but also in its ability to stimulate the 

release of biochemical mechanisms of the circulation, (Chen et al. 2001).

Arterial compression, applied so as to occlude arterial blood flow, instigates 

ischaemia; and on release of the compression, a reactive hyperaemia ensues. 

A reactive hyperaemia occurs following the release of a complete obstruction 

to the blood flow. During the period of inhibited blood flow, arterioles dilate, 

possibly due to similar mechanisms as those proposed for the hyperaemia 

induced by venous compression; and on release of the obstruction, an 

increase in flow arises.

Venous compression enhances the function of the muscle pumps, increasing 

venous return and hence venous flow velocity, preventing blood stasis and
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consequently reducing venous hypertension. Oedema diminishes as a 

consequence of an increased interstitial pressure, which favours the return of 

accrued extravascular fluid into the capillary circulation.

Venous compression has also been demonstrated to produce an increase in 

arterial blood flow, (Collens and Wilensky 1936b), which was originally 

believed to arise as compensation for the ‘blood flow debt’ consequent on 

compression, (Lewis and Grant 1925); however, the precise physiology 

behind this hyperaemia is not entirely understood, although many conjectures 

exist.

Intermittent pneumatic compression was primarily considered in the 1930’s by 

Collens and Wilensky. Following on from the work of Lewis and Grant upon 

reactive hyperaemia, Collens and Wilensky developed a device to ‘produce 

alternating periods of venous congestion and release of congestion’, so as to 

beneficially implement the observation, that release of a venous obstruction is 

associated with active vasodilation of the arteries, and a consequent increase 

in arterial flow by as much as 600%, (Collens and Wilensky 1936b). It was 

proposed that loss of vascular tone and hence vasodilation appeared due to 

an accumulation of metabolites in the blood vessels during venous 

congestion, and the degree of the resulting hyperaemia was directly 

proportional to the length of congestion, (Lewis and Grant 1925).

A further theory suggested an increase in the arterio-venous (A-V) pressure 

gradient; whereby the difference between arterial and venous blood pressures
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is believed to increase, due to the decrease in venous pressure brought about 

by compression, (van Bemmelen et al. 2000). Increased blood flow is 

considered to ensue, due to an increase in the effective perfusion pressure. 

However, since a hyperaemia was still obtained in patients with arterial 

obstruction, a subsequent conjecture involved a decrease in peripheral 

vascular resistance, (Kumar and Walker 2002). This was believed to transpire 

due to the release of relaxing factors by endothelial cells, consequent on 

increased shear forces on the endothelial lining of the vessel. Morgan et al, 

(1991) supported the hypothesis that nitric oxide is released in the 

microcirculation due to pressure changes in the venous circulation, leading to 

vasodilation and a resulting hyperaemia. In view of the fact that the half life of 

physiological nitric oxide has more recently been discovered to be in the 

range of a few seconds, and that hyperaemias vastly in excess of this time 

scale are observed; this theory is questioned by some, who propose the 

release of endothelium derived prostacyclin, which has a longer half life, but 

similarly leads to vasodilation, (Morris and Woodcock 2004).

Additional hypotheses include suspension of the venoarteriolar reflex, and a 

myogenic mechanism. The venoarteriolar response to an increase in venous 

pressure is a neural control, involving a sympathetic axon reflex, which 

instigates arteriolar vasoconstriction. Peripheral vascular resistance 

increases, preventing an increase in arterial blood flow. It has been suggested 

that the reduced venous pressure produced by compression, suppresses the 

venoarteriolar reflex; allowing arterioles to dilate, and enabling a hyperaemia 

to ensue, (Delis et al. 2001). The proposed myogenic mechanism is a
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vascular response to alterations in intravascular pressures. Arteriolar smooth 

muscle is believed to respond directly to the increased distension arising due 

to raised intravascular pressure by constricting; and conversely, a loss in 

vascular tone and hence dilation occurring in response to a decrease in 

intravascular pressure. However, the precise mechanism responsible for 

these changes in the vasculature has not been elucidated.

In summary, venous compression has been demonstrated to produce an 

arterial hyperaemia; nonetheless, whether this hyperaemia arises as a 

consequence of an accrual of metabolites, alterations in the arterio-venous 

pressure gradient, due to the release of relaxing factors, subsequent to 

suspended neural controls, due to a myogenic mechanism, or possibly even 

as a result of a combination of these hypotheses, is yet to be clarified.

The consequences of I PC may be summarised as oedema reduction, 

enhanced vasodilation, increased blood flow, and in acute ischaemia, the use 

of IPC encourages the formation of collateral circulation, (Koch 1997).

In addition to these physiological benefits, IPC has been reported to have 

good patient compliance, (Kumar and Walker 2002). The importance of 

patient compliance was recognised by van Bemmelen et al, (2001), where it 

was noted that there was a ‘direct correlation between compliance and clinical 

outcome’; optimal results being achieved in those patients using their device 

for longer time periods. Those factors which assist in achieving patient 

conformity include its non-invasiveness, the potential for use in the out-patient
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or home care setting, with the possibility for treatment to be controlled by the 

patient, low complication rate and good treatment results; however, discomfort 

and the application timescale could contribute to inadequate use. As regards 

the expense, long term costs may be reduced as a consequence of fewer 

surgical interventions and hospitalisations, (Koch 1997).

The application of IPC to arterial and venous pathologies has been 

extensively researched, especially over recent years. A summary is included 

accordingly for the different aetiologies, with particular reference to the use of 

IPC in ulcer healing, up until the present.

1.4.1 IPC and its Application to Arterial Pathology

The use of intermittent compression was first applied to the treatment of 

peripheral arterial disease by Collens and Wilensky, (1936a). Using proximal 

compression at pressures approaching diastolic, a noticeable improvement in 

pain relief, walking ability, and ulcer healing was perceived. Further subjective 

results followed, demonstrating similar advantages. Recent years have seen a 

rise in more objective work; benefiting from the advent of non-invasive 

techniques such as Doppler ultrasonography, which could quantify any 

haemodynamical alterations. In 1983, Gardner and Fox demonstrated the 

venous foot pump, which on weight bearing, was shown to aid venous return, 

(Abu-Own et al. 1993). IPC applied to the foot was initially utilised to augment 

the return of blood to the heart; however, in 1991, Morgan et al investigated 

the effects of foot impulse compression on popliteal artery blood flow in 

healthy individuals, and also in patients with peripheral vascular disease. With

44



the subjects seated and the limb under observation in the dependant position, 

(so as to ensure venous filling), compression was found to increase the mean 

popliteal artery flow by 93% in healthy individuals and by 84% in patients; 

whilst in the supine position, compression did not have any significant effect, 

(Morgan et al. 1991).

Following on from the work of Morgan and colleagues, Abu-Own et al, (1993) 

demonstrated that IPC of the foot imparted altered microcirculatory function in 

patients with peripheral occlusive arterial disease and claudication. Significant 

increases in laser Doppler flux and transcutaneous oxygen tension (tcp02) 

were obtained on dependency, indicating enhanced skin blood flow and skin 

perfusion, due to compression induced vasodilation, (Abu-Own et al. 1993). 

Intermittent calf compression was subsequently discovered to increase 

popliteal artery blood flow in limbs with arterial insufficiency, (van Bemmelen 

et al. 1994); as also did the ensuing combination of foot and calf compression, 

(Eze et al. 1996; Labropoulos et al. 1998). Delis et al, (2001) compared the 

acute effects on popliteal artery blood flow, following calf, thigh and combined 

calf and thigh compression. Although thigh compression was found to be the 

least effective of the three techniques, producing an increase in popliteal 

artery volume flow of 114% in normal individuals and 57% in claudicants; 

Delis’ study demonstrated that IPC of the thigh was an alternative method of 

achieving enhanced arterial inflow to previous techniques involving calf and/or 

foot compression. Combined calf and thigh compression produced an 

increased volume flow of 424% in normal subjects, and 229% in claudicants; 

hence, it was postulated that only part of the mechanism generating
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augmented blood flow may be activated during thigh compression, (Delis et 

al. 2001).

As previously mentioned, compression has been applied with the subject 

seated, as supine compression has generally been considered to produce 

inefficient results. However, Morris and Woodcock, (2002) correctly 

hypothesised that increases in arterial flow could be obtained using IPC 

without requiring dependency; achieving increases of 21% in healthy subjects, 

and 29% in subjects with peripheral arterial disease. The ability to apply 

compression to the supine subject also implies that thigh compression may be 

more readily employed.

The results obtained by Morris and Woodcock are very much lower than those 

produced by Delis et al. However, comparison between the studies is not 

justified, as the results obtained by the two groups represent different 

quantities. This problem is addressed by Morris and Woodcock (2002); it is 

noted that those figures attained by Delis et al, are only indicative of the 

change in volume flow ‘at one instant’ in the IPC cycle. Their measurements 

do not consider the net change in blood volume flow incurred over the entire 

IPC cycle, and hence falsely imply that the use of IPC increases blood flow 

by, for example 424%. The results produced by Delis et al could therefore be 

subject to incorrect interpretation. In the work carried out by Morris and 

Woodcock, the results obtained are extrapolated from the area under the 

curve during the IPC cycle, consequently indicating the percentage increase 

in flow acquired by IPC as compared with a pre-compression value.
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As a consequence of the acute effects obtained following lower limb 

compression, it was proposed that compression therapy could have potential 

long term beneficial effects in the management of ischaemic limbs, with 

associated rest pain and ulceration.

Delis and colleagues, (2000) were amongst the first to examine the long term 

clinical, as well as haemodynamical effects of IPC in patients with 

claudication. Patients received foot compression daily for 4.5 months, 

resulting in an increase in claudication distance of greater than 100%, along 

with a 36% increase in arterial calf inflow. Their work also demonstrated 

maximum benefits during the first 3 months of therapy, and treatment gains 

were maintained at least 12 months following cessation of compression, 

(Delis et al. 2000). Van Bemmelen et al, (van Bemmelen et al. 2001) also 

investigated the clinical effects in patients with critical limb ischaemia following 

3 months of combined foot and calf IPC. Using rapid, high pressure 

compression for an advised 4 hours a day, a 70% limb salvage occurrence 

was achieved at 2.5 years follow-up.

As regards compression specific to the treatment of ischaemic ulceration; little 

has been accomplished. Dillon, since the 1980’s has investigated the use of 

the circulator boot in patients with peripheral vascular disease. The circulator 

boot is an ‘end-diastolic pneumatic compression boot therapy’, which has 

been demonstrated to augment arterial blood flow in the lower limbs, (Dillon 

1997a). Even'though the technique used differs from the IPC therapy 

considered here, the fundamental mechanisms resulting in enhanced blood
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flow may be similar, (van Bemmelen et al. 1994). Dillon reported partial to full 

ulcer healing in patients with various ulcer aetiologies as a consequence of 

receiving circulator boot therapy, (Labropoulos et al. 2002). However, the 

foremost study demonstrating the advantages of IPC in nonhealing ischaemic 

ulcer treatment was performed by Montori et al, (2002). Their observational 

review of patients with critical limb ischaemia and active ulcers, using rapid, 

graduated, sequential compression of the calf for an advised 6 hours a day, 

revealed unexpectedly high rates of ulcer healing. Subsequently, it was 

implied that IPC may have disturbed the normal clinical progression of 

nonhealing wounds. Total wound healing and amputation prevention was 

achieved in approximately half (47%) of the patients observed, (Montori et al. 

2002). Moses and Yoffe, (2002) also demonstrated complete wound healing 

in a patient with rest pain and leg ulcers, 3 weeks following commencement of 

IPC therapy.

From the evidence here presented, it would seem that IPC could be used 

clinically, as a treatment option for nonhealing ischaemic ulcers, although 

further long term clinical studies are implicated. However, even though the 

outcomes of these investigations were all positive, there was significant 

variance in the results obtained between different trials. This discrepancy 

could be attributed to the difference in assessment method, treatment regime 

and/or the disease itself. No disorder manifests in one person, in exactly the 

same way as the next person; consequently, the needs of one person differ 

from those of'another; additionally, the diseases targeted in different trials 

may not have been the same.
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1.4.2 IPC and its Application to Venous Pathology

Intermittent pneumatic compression has had a long history of use in the 

prophylaxis of deep venous thrombosis, due to its proven ability to reduce 

venous stasis. The high flow pulsatility produced by IPC is considered to drain 

the veins intermittently, consequently clearing the soleal sinuses, axial veins 

and valve sinuses, (Nicolaides et al. 1980) which act as focal points for 

thrombi formation. Following further research demonstrating that IPC was also 

capable of influencing fibrinolysis, tissue oxygenation, oedema and venous 

return, (Vowden 2001), ensuing work suggested that venous ulcer healing 

may profit from IPC therapy.

As with all ulcer aetiologies, the key to achieving complete healing is to 

improve the perfusion of nutrients to the tissues surrounding the ulcer. The 

prerequisite for venous ulcer healing in particular is a reduction in oedema. 

Pflug, (1975) correctly appreciated that oedema, of venous or lymphatic 

origin, should be conservatively targeted at the microcirulatory level; aiming to 

attain net absorption of interstitial fluid into the vasculature. Consequently, 

Hazarika and Wright, (1981) designed a compression technique which aimed 

to decrease intracapillary pressure, anticipating enhanced transcapillary fluid 

exchange and improved cell nutrition. In their study of 21 ulcer patients, 

receiving daily treatment for an average of 26.7 weeks, it was deduced that 

IPC had an advantageous effect on chronic leg ulcers. Although complete 

healing was not achieved, in each patient there was a ‘definite subjective 

improvement’. '
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Subsequent investigations demonstrated the effect of combining IPC therapy 

with standard conservative treatments, in comparison to standard therapy 

alone. Pekanmaki et al, (1987) performed an open clinical trial on patients 

with persistent or recurrent post-thrombotic leg ulceration receiving IPC 

therapy. An IPC device subjecting the limb to sequential graded compression 

was demonstrated to decrease the mean ulcer healing time from 13 weeks, 

with conservative compression treatment, to 5 weeks when included in the 

regime. An increase in tcp02 of approximately 80% was also noted during a 

single treatment session in a small subgroup of patients from whom the 

measurement was extrapolated. The increased tcpC>2 is believed to be 

justification for augmented capillary perfusion due to a reduction in 

extravascular fluid. This was substantiated by a progressive diminution in leg 

circumference during each IPC session. A one year follow up indicated that a 

single ulcer had recurred in the 8 patients included in the study.

An objective analysis involving daily home use of sequential pneumatic 

compression therapy for the treatment of venous ulceration was performed by 

Coleridge Smith and colleagues, (1990). A 3 month comparative study 

examined the addition of IPC to the standard treatment of graduated 

compression stockings, in contrast with standard treatment alone. The IPC 

device was applied on top of the stocking. A significant difference in ulcer 

healing rates between the two groups was obtained; 2.1% of the ulcer area 

healing per week in the control group as compared with 19.8% of the ulcer 

area per week1 in the group receiving IPC therapy. At the end of the study 

period, complete healing had occurred in 11% of the control ulcers, whilst the
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addition of IPC increased this figure to 48%. However, the reliability of these 

results is questioned by Vowden, (2001) due to the difference in the number 

of ulcers per patient between the two groups, (1.5 in the control group as 

compared with 1 in the IPC group), and no indication of the number of ulcers 

healed in the control group.

Mulder et al, (1990) conducted a similar trial in which sequential IPC was 

combined to standard Unna’s boot therapy. The patients involved acted as 

their own control, having undertaken previous failed treatment with the Unna’s 

boot. It was concluded that the improvement in ulcer healing attained was 

consequent on direct treatment of the underlying pathology, decreasing 

venous hypertension and blood pooling, and enhancing venous return. 

Additionally, it was suggested that the fibrinolytic effect of IPC may assist in 

reducing pericapillary fibrin cuffs, which are hypothesised to inhibit the 

perfusion of nutrients.

These trials seemed to demonstrate that the addition of IPC therapy to 

standard treatments improved ulcer healing rates. The results obtained when 

direct comparison was made between IPC and standard compression 

techniques in venous ulcer healing however, did not produce a significant 

variance in their efficacy. The work accomplished by Schuler and colleagues, 

(1996) which compared the use of IPC with the Unna boot, did not 

demonstrate a significant difference between the therapies; with healing rates 

of 76% and 64% obtained respectively. It was considered however, that the 

IPC device was as effective as the Unna boot, but did not include the
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disadvantages associated with the boot. Similarly, Rowland (2000) concluded 

that there was no difference between the effectiveness of compression 

bandages and IPC in the healing of ulcers or the management of oedema, 

following a randomised cross-over study. 11 patients were included in the 

investigation, of which 3 ulcers had healed within 4 months, one of which was 

originally from the IPC group; whilst no additional ulcers had healed by 6 

months. However, a questionnaire completed by the patients revealed that 

IPC incurred greater compliance than bandaging, due to its ease of use and 

comfort.

Ginsberg et al, (1999) also performed a randomised cross-over trial in 

patients with severe post-phlebitic syndrome; although their study differed 

slightly in that it involved a comparison between two different IPC treatments. 

A therapeutic pressure of 50mmHg was compared with a placebo pressure of 

15mmHg. Treatment was assessed by questionnaire, and only considered to 

be successful if the patient concomitantly revealed that the therapeutic 

pressure was preferred, and intended to continue pump use, and the 

difference between the pressures was deemed at least slightly important. On 

these grounds, an 80% success rate was achieved, following a 2 month trial.

From those trials mentioned, even though the studies involved small patient 

cohorts and the studies undertaken varied in compression technique, length, 

assessment method and outcome, it would seem that there is evidence 

implicating IPC as an alternative treatment method for chronic non-healing 

venous ulcers. The comparisons undertaken between IPC devices and
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standard conservative treatments did not seem to reveal any significant 

differences between their clinical outcomes; however, when IPC was 

combined with bandaging or compression stockings, a considerable 

improvement in the healing rate of venous ulceration was achieved. The 

implications of this suggest that whilst IPC therapy may produce acute 

transient alterations in blood flow and oedema, predominantly, other 

measures are required to maintain these changes long-term. Hence, 

compression bandages or stockings are worn either intermediately between 

IPC sessions, or continually with the IPC cuff placed on top. Other measures 

were also advised to assist compression therapy, such as limb elevation, and 

avoiding standing for long periods of time.

It is stated in the Cochrane review, (Mani et al. 2004) that there is no 

conclusive evidence for improved ulcer healing as a consequence of IPC, 

either in comparison with or when combined with standard compression 

techniques . Although there seems to be a beneficial effect, the size of the 

studies and their quality are not sufficient to provide conclusive evidence, and 

larger random controlled studies in both the inpatient and home settings are 

advocated.

1.4.3 IPC and its Application to Diabetic Ulceration

The application of IPC to diabetic ulceration, has never received due 

attention, in paft owing to the complexity of factors involved. Leg ulceration in 

a diabetic patient may arise as a consequence of venous and/or arterial
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insufficiency, and neuropathy may also be involved; although the majority of 

diabetic ulcers occur as a consequence of arterial disease. Some trials 

concerned with IPC and its influence on ischaemic limbs however, include 

patients with concomitant diabetes. In particular, the review conducted by 

Montori et al, (2002) on the use of IPC for non-healing ischaemic ulceration 

involved 107 patients, of whom 64% were diabetic. The study demonstrated 

that IPC significantly enhanced ulcer healing in diabetic patients; complete 

healing attained in 51% of those patients with diabetes.

Dillon, (1997b) considers the function of the Circulator Boot in treating 

peripheral neuropathic ulcers. A case report is described of a patient with 

poorly controlled diabetes, which had progressed into an infected ulcer, with 

amputation imminent. Antibiotic injections were administered in conjunction 

with the circulator boot, and the patient was eventually discharged 

ambulatory, having avoided amputation, to continue boot therapy as an 

outpatient. The circulator boot was believed to be effective in distributing the 

antibiotic, and in enhancing blood flow throughout the infected foot.

Dillon, (1997a) also investigated the effectiveness of the circulator boot in the 

treatment of foot and leg lesions associated with diabetes and peripheral 

arterial, venous and neuropathic disease. Relapse following treatment 

appeared to be more likely in diabetic patients than non-diabetics, although 

amputation rates amongst these two groups were very similar. Overall, the 

percentage of diabetic and non-diabetic lesions, found to heal was
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comparable; however the significance of this comparison may be 

questionable due to the variety of wounds included in the study.

The inference which can be acquired from these studies is the implication that 

some diabetic ulcers may also benefit from compression treatment.

1.4.4 The Device

It has been established that compression therapy may have potential as a 

treatment method for chronic non-healing lower limb ulcers of varying 

aetiologies; but, what exactly does the technique of intermittent pneumatic 

compression entail? Great conjecture exists concerning the optimal 

compression regime, consequent on the varying hypotheses regarding the 

associated physiological response.

Intermittent pneumatic compression therapy involves the application of an air­

tight cuff about the limb, which is connected to a pump, enabling inflation of 

the cuff to a preset pressure for a given time, and deflation to another set 

pressure, (Sayegh 1987); the cycle is then repeated for a fixed period. 

However, the type of cuff, the pressures used, and the inflation and deflation 

times vary between arterial and venous treatment regimes, and also from one 

author to the next.

Originally, inteijnittent pneumatic compression devices consisted of a single 

compartment which was applied to the calf, at pressures below diastolic. 

Multi-compartmental devices followed subsequently, which could enclose a
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greater part of the limb and enable varying pressures to be applied to different 

aspects of the leg, (Koch 1997). The graduated sequential compression 

device was designed specifically for the enhancement of venous return. It has 

been postulated, but never proven, that the single compartment device 

occludes the proximal before the distal veins, and in doing so trapping a 

volume of blood distally. The mechanism of action of the graduated sequential 

device, which involves inflation of the most distal compartment first, followed 

by a proximally directed progressive inflation of the remaining compartments, 

ensures complete venous emptying, applying a ‘milking’ affect on the leg, and 

in doing so augmenting venous return.

With regards chronic venous insufficiency and venous leg ulcers, both single 

and multiple chamber devices have been demonstrated to have beneficial 

results. Hazarika and Wright, (1981) and Rowland, (2000) employed a single 

chamber device in their studies on venous ulcer healing. The Flowtron system 

(Huntleigh Healthcare, Luton, UK) utilised applies uniform compression to the 

calf at pressures ranging from 30 to 90 mmHg, with equal periods of inflation 

and deflation lasting 90 seconds each.

Salvian et al, (1988) compared the use of a single chamber compression 

device with two different sequential compression devices. The PAS pulsatile 

anti-embolism system (American Hamilton, Two Rivers, Wisconsin) is a single 

chamber device, utilised at a pressure of approximately 45mmHg, with a 15 

second compression period and 60 second recovery period, and complete 

inflation is attained after 5 seconds. The Thrombogard (Gaymar Industries,
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Orchard Park, NY) is a knee length sequential device with four chambers, 

each inflating to a pressure of 45mmHg; with an associated cycle of 16 

seconds compression and 60 seconds deflation. A Kendall SCD sequential 

compression device (Kendall Healthcare products, Mansfield, MA) was also 

utilised at a similar pressure. This device has three chambers placed over the 

distal and proximal calf and the distal thigh, which are sequentially inflated for 

11 seconds and deflated for 60 seconds. Various comparisons between the 

devices were made on normal and postphlebitic legs, in supine and sitting 

positions. Although each device produced a comparable increase in peak 

blood flow velocity, it was demonstrated that the mean velocity increase in 

femoral vein flow was greater for the PAS and the Kendall devices; similar 

results were obtained for normal subjects and postphlebitic patients, position 

not influencing the results. Salvian et al query the significance of the 

difference between the mean velocity flows, suggesting that it is the peak 

velocity flow which is of greatest importance in reducing blood stasis; 

however, the peak velocity measurement is indicative of one instant in the 

compression period, whilst the mean includes the entire compression period. 

Consequently, one would assume that the mean velocity flow is a more 

accurate representation of the efficacy of a compression device, and hence it 

could be suggested that sequential compression encompassing the entire 

limb is the optimal device for augmenting venous return. The Kendall SCD 

device has also been used by Coleridge Smith et al, (1990) and Mulder et al, 

(1990).
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Another sequential compression device was implemented by Ginsberg et al, 

(1999), namely the Jobst extremity pump (Jobst, Inc., Toledo, Ohio). This 

device can be used at pressures ranging from 20 to 120 mmHg, although in 

the study by Ginsberg et al, a pressure of 50 mmHg was administered 

therapeutically. This system involves a long compression period of 190 

seconds, approximately 60 seconds compression by each of three chambers, 

with a 50 second recovery period.

Sequential compression progressed to the application of graduated sequential 

compression. A full leg Kendall sequential gradient IPC system (Kendall 

Healthcare products, Mansfield, MA) was demonstrated by Schuler et al, 

(1996) to be as effective as standard Unna’s boot therapy. The device applies 

graduated pressures at intervals of 2.5 seconds to the ankle, calf and thigh of 

50, 45 and 40 mmHg respectively, and involves a cycle of 12 seconds 

compression with 60 seconds of relaxation.

Compression therapies used in the management of venous disease at 

present are generally either sequential devices or graduated sequential 

devices applied to the calf and/or the thigh, implemented at pressures below 

diastolic blood pressures in order to ascertain that arterial compression does 

not arise. The recovery period needs to be of adequate length to enable 

maximal venous refilling following compression, as it has been hypothesised 

that the greater the venous congestion, the greater the volume of the expelled 

blood, and hen6e the higher the increase in blood flow velocity, (Nicolaides et 

al. 1980). Consequently, there is a tendency to use a recovery period of
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approximately 60 seconds duration. The compression period varies 

considerably amongst the different devices; the majority of those devices 

mentioned use a compression period of between 11 and 16 seconds, 

however, exceptions include the Flowtron pump and the Jobst extremity 

pump, implementing compression periods of 90 and 190 seconds 

respectively.

Consequent on the discovery that venous compression could also induce an 

arterial hyperaemia, systems devised to take advantage of this finding began 

to appear. Collens and Wilensky’s original system for augmenting arterial 

blood flow by venous compression was applied to the thigh. The long cycle 

adopted was consequent on the hypothesis that an accrual of metabolites 

resulted in the observed hyperaemia. Long compression periods were aimed 

at producing maximal vasodilation, and hence maximal hyperaemia. Earlier 

devices also involved a slow inflation cycle, consistent with the belief that 

compression increased the arterio-venous pressure gradient, by squeezing 

blood from within the veins, (Morgan et al. 1991).

Following Gardner and Fox’s discovery of the venous foot pump in 1983, a 

compression device was designed in order to imitate the normal 

haemodynamical response of ambulation. The AV Impulse system 

(Novamedix, Andover, Hampshire, UK) is a foot compression device with a 

single small chamber applied to the mid foot, which inflates very rapidly. 

Originally, this1 device was utilised for the prophylaxis of deep venous 

thrombosis, the rapid inflation generating immediate propulsion of venous
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blood towards the heart and clearance of the valve sinuses, (Gardner and Fox 

1992). Inflation is achieved within 0.4 seconds; consequently a short duration, 

high pressure compression of 3 seconds is adequate to empty the veins of the 

foot, within a 20 second cycle. In 1991, Morgan et al, demonstrated that the 

AV Impulse device also produced a popliteal artery hyperaemia. The cycle 

used was identical to that implemented for DVT prophylaxis, which comprised 

a pressure of the order of 130mmHg. The AV Impulse compression device 

was subsequently employed by others in their investigations on arterial 

haemodynamics, (Abu-Own et al. 1993; Delis et al. 2000).

The ArtAssist device (ACI Medical Inc, San Marcos, California) enables 

compression of greater proportions of the lower limb. Eze et al, (1996) and 

Labropoulos et al, (1998) utilised the ArtAssist for investigating the effect of 

compression of the foot and calf on popliteal artery blood flow. The device 

applies compression to the foot, ankle and calf using a 12cm chamber applied 

to the dorsum of the foot, and a 22cm chamber applied to the muscular area 

of the calf, (Labropoulos et al. 1998). Both compartments are inflated to a 

maximum pressure of 120mmHg; however, the foot is compressed 

approximately 1 second before the calf. Although cycles of 15 seconds 

(Labropoulos et al. 1998) and 30 seconds (Eze et al. 1996) have been 

utilised, a 20 second cycle seems to have been established as standard, with 

compression times of 3 or 4 seconds, (Labropoulos et al. 2002).

The Aircast ArterialFlow system (Aircast Inc, Summit, New Jersey) used by 

Montori et al, (2002) is a graduated, sequential compression device applied to
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the calf. It is comprised of two chambers; the distal compartment inflating to a 

pressure of 95mmHg 0.3 seconds before inflation of the proximal 

compartment to 85mmHg. A similar cycle of 20 seconds with 2 seconds of 

compression is utilised.

The 3 devices mentioned are all applied with the treated limb in the 

dependant position. Even though the compression devices differ with respect 

to the area of the limb to which they are applied, the cycles used demonstrate 

some similarities. Compression regimes, utilised for the treatment of arterial 

disease, generally involve compression of the foot and/or the calf, and a 

typical cycle of 20 seconds duration, with a short period of 2-4 seconds 

compression. However, foot compression involves higher pressures than calf 

compression. The devices similarly inflate very rapidly, ordinarily within 

approximately 0.3 seconds.

Morris and Woodcock provided an alternative treatment regime which 

involved simultaneous calf and thigh compression in the supine position. The 

DVT-30 cuff was used with a Flowtron pump at a lower pressure of 60mmHg, 

to prevent arterial compression, but ensure complete venous emptying. A 

comparison between two different cycles was undertaken; a 60 second cycle 

with 10 seconds of compression, and a 120 second cycle with 60 seconds of 

compression. The cycles involved in this study are of a longer duration than 

those previously mentioned due to longer inflation times. It was demonstrated 

that similar duration hyperaemias were encountered with both cycles,
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although higher velocities were achieved with the long cycle, (Morris and 

Woodcock 2004).

One of the benefits associated with venous compression concerns the 

compression pressure utilised. Venous compression employs a lower 

pressure than arterial compression, which implements pressures greater than 

systolic blood pressures so as to completely occlude the blood supply. 

Consequently venous compression is more comfortable for the patient, which 

assists in incurring good compliance. Arterial compression is not frequently 

used, due to the pain inflicted by these pressures, and the possibility of 

exacerbating ischaemia by the occlusion and hence diminution of the blood 

supply. This poses a further advantage for venous compression, as at no 

instant during the compression cycle is the blood supply depleted.

In summary, arterial flow enhancement is achieved by venous compression, 

at pressures below systolic; however, the exact pressure depends on which 

part of the limb is being compressed. Foot compression implements higher 

pressures than full limb compression, and cycle durations are also shorter 

with foot compression than when the entire limb is compressed. A frequently 

observed foot, or foot and calf compression cycle is 20 seconds in length, with 

compression duration of a few seconds. The compression garment generally 

implemented for arterial flow improvement is a single compartment device, 

applying uniform compression. Venous return augmentation utilises lower 

pressures to prevent arterial compression, and a sequential or graduated 

sequential compression device, with higher pressures applied in the most
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distal chambers. The cycles employed in venous return enhancement are 

longer than those in arterial cycles, with recovery periods of approximately 60 

seconds to ensure venous refilling. Inflation times vary for both systems; 

some systems implement rapid inflation, whilst others involve slow inflation, 

however; slow inflation is usually associated with calf and/or thigh 

compression, and rapid inflation devices involve compression of the foot. 

Generally, venous compression for arterial or venous flow augmentation has 

required the limb to be in the dependant position to allow complete venous 

refilling, however recent evidence implies that this is not essential, and supine 

compression is feasible. No substantial evidence exists regarding the duration 

of treatment sessions. In the review conducted by Vowden, (2001) concerned 

with IPC for the treatment of venous leg ulceration, it is suggested that a two 

hour session repeated twice daily is successful in outcome and in obtaining 

patient conformity; whilst Montori et al, (2002) suggest a minimum of six hours 

to be received daily for treatment of ischaemic ulceration.

It has been established that intermittent pneumatic compression is beneficial 

in the management of some vascular diseases; however, the remaining 

subject area which has failed to be mentioned so far, regards the methods by 

which the competence of compression systems has been evaluated.
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1.5 Imaging Methods

The efficacy of compression devices has been assessed by varying subjective 

and objective measurements over the years. Subjective measurements 

generally involve patient judgement regarding any alterations in sensations, 

for example pain perception; the patient may be requested to grade their level 

of pain on a scale of 1 to 10. These clinical indications may provide an 

approximate guide as to the consequences of compression therapy; however, 

the reliability of these measurements is suspect as they depend upon the 

accuracy and perception of the individual. Comparison between individuals is 

therefore not validated as human perception varies from one person to the 

next.

Objective measurements entail a precise quantification of the physiological 

effects of compression. These measurements are dependant on the individual 

extrapolating the information; subsequently, if the same individual collects the 

results from all subjects involved in a trial, comparison of results may be 

justifiable.

Originally an objective assessment of compression therapy involved invasive 

techniques such as angiography; which comprised the introduction of a 

contrast medium via injection into the vasculature and the production of a 

series of digital x-ray images. The images could not only be used for 

diagnostic purposes, but also for demonstrating any alterations in the 

vasculature pre and post compression therapy. Only in recent years has a 

non-invasive objective measurement been viable, following the development
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of techniques such as ultrasonography and photoplethysmography, which 

could relatively accurately quantify any haemodynamical alterations.

1.5.1 Medical ultrasound

Medical ultrasound enables structures within the body to be imaged and blood 

flow characteristics to be extrapolated. The interaction of ultrasound waves 

with boundaries or moving targets inside the body is used to produce a cross- 

sectional image of tissues and organs within the body, or to determine a 

velocity.

Ultrasound is a high frequency sound wave; a longitudinal wave which 

propagates through physical media (Martin and Ramnarine 2003). As a sound 

wave passes through a medium, particles oscillate backwards and forwards 

along the direction of wave propagation, the frequency of the wave 

corresponding to the frequency of particle oscillations. This results in regions 

of compression, or increased pressure, where particles have moved closer 

together, and regions of rarefaction, or decreased pressure, where particles 

have moved away from each other. In this way, the sound wave and its 

energy are conveyed through the medium without any overall movement of 

the medium itself.

Medical ultrasound implements sound waves at frequencies in the range of 1 

to 15 MHz. uytrasound waves are produced using an electromechanical 

transducer, which converts an electrical signal into an ultrasonic pulse using a 

piezoelectric crystal. A voltage transmitted across a piezoelectric material
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causes it to expand or contract; conversely, if a piezoelectric material is 

compressed or expanded, a voltage may be generated, (Martin and 

Ramnarine 2003). Hence, transducers are also capable of converting the 

ultrasound echo back into an electrical signal.

As an ultrasound pulse travels through tissues and organs of the body, some 

of its energy may be reflected at an interface between two or more surfaces 

and scattered from small tissue irregularities. Reflection and scattering occur 

when the ultrasound wave encounters a change in acoustic impedance at 

tissue boundaries. The acoustic impedance (z) of a medium is a measure of 

the particles’ response to a sound wave of a particular pressure, (Martin and 

Ramnarine 2003), and is given by the ratio of sound pressure (p) to particle 

velocity (v), or the product of the density of the medium (p) and the speed of 

sound (c) (see equation 4, where k is the stiffness of the medium).

Equation 4

Most tissues of the body have similar acoustic impedances; however, 

exceptions include bone, which has a high acoustic impedance, making 

imaging structures beyond bone very difficult, as a large proportion of an 

ultrasound wave:may be reflected at tissue-bone interfaces. A similar problem 

is encountered with air, which has a low acoustic impedance. In order to
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minimise the occurrence of reflection between the skin surface and the 

transducer an ultrasound coupling gel is used, which eliminates the air gap.

The reflected and some of the scattered ultrasound signals are directed back 

towards the transducer. The time taken for the echo to be received back at 

the transducer and the amplitude of the echo is indicative of the distance the 

pulse has travelled and the intensity or brightness of the reflection. 

Consequently, the series of echoes received by the transducer contains 

sufficient information to produce a grey scale image of the structures within 

the body from which the ultrasound has been reflected. This image is known 

as a B-mode image or brightness mode image, in which each echo is 

presented as a point.

Real time B-mode imaging is used in most diagnostic ultrasound procedures 

to obtain anatomical images, and to observe the changes which occur in the 

image over time. Due to the high rate of image production, for example, 30 

images per second, and the negligible delay between data acquisition and 

image display, it is possible to observe tissue motion, such as the beating of a 

foetal heart, (Martin 2003). Real time imaging also enables the sonographer 

to visualise and explore different aspects of structures within the body by 

altering the direction of the scan plane.

The M-mode or motion mode of ultrasound scanning enables measurements 

of tissue motion with time. As with B-mode imaging, ultrasound pulses are 

transmitted into the tissue and echoes are received back at the transducer.
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The M-mode scanning technique involves a vertical brightness modulated 

display line, which moves slowly across the screen following each pulse-echo 

sequence. A horizontal line represents a stationary structure, whilst the 

vertical movement of echoes across the screen indicates a moving structure.

The Doppler effect makes it possible to use ultrasound for the detection of 

tissue and blood motion, (Hoskins 2003). First derived in 1845 by the Austrian 

physicist C.J. Doppler, the Doppler effect describes the change in the 

detected frequency when a source of sound moves relative to an observer. If 

a source of sound is moving towards an observer, the apparent frequency 

increases, where as a source of sound moving away from an observer 

produces a decrease in the apparent frequency. The same is also true if the 

source is stationary and the observer is in motion. The change in the 

observed frequency is known as the Doppler shift, and its magnitude is 

proportional to the velocity between the source of sound and its observer.

When an ultrasound beam is transmitted towards a blood vessel, it is 

scattered at a frequency which varies dependant on the movement of red 

blood cells. Doppler ultrasound systems therefore, measure the change in 

frequency of the ultrasound scattered from the moving blood, (Hoskins 2003), 

and this information may be used to determine the velocity of blood. The 

Doppler shift frequency (fd) detected is given by the difference between the 

transmitted (ft) and the received (fr) frequencies, (equation 5).
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Equation 5

In equation 5, Vb represents the velocity of blood, c the velocity of ultrasound 

through tissue, whilst 0 is the angle of insonation, or the angle between the 

direction of blood flow and the ultrasound path. The angle of insonation can 

vary as a consequence of variations in the orientation of the ultrasound probe 

or the blood vessel, (Hoskins 2003). In order to obtain the maximum Doppler 

shift frequency an angle of insonation of zero is required. CosO is a maximum 

when Q is equal to zero, and hence, the Doppler shift frequency is also a 

maximum when 0 equals zero. This occurs when the blood vessel and the 

ultrasound beam are aligned, which is not always possible in practice. 

Providing the angle between the blood vessel and the ultrasound beam is less 

than 60°, a good signal is obtainable.

The multiple two in equation 5 arises as a consequence of the two Doppler 

shifts which occur between the transmission of the ultrasound beam and the 

detection of the echo back at the transducer. The first Doppler shift transpires 

when the ultrasound reaches the moving blood (stationary source and 

observer in motion), whilst the second arises when the scattered ultrasound is 

travelling back towards the receiving transducer (source in motion and 

stationary observer).
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If the angle of insonation and the Doppler shift frequency are known, it is 

therefore possible to determine the velocity of blood flow, as given in equation 

6.

, where c »  vb
2 /  cos 0

Equation 6

There are two differing Doppler ultrasound systems: continuous wave and 

pulsed wave. Continuous Doppler ultrasound systems transmit a continuous 

ultrasound wave. Separate piezoelectric elements are required within the 

transducer to transmit and receive the ultrasound signals; a continuously 

transmitting element and a continuously receiving element. The Doppler 

signal is obtained from the region in which the transmitted and received 

ultrasound beams overlap.

Pulsed wave Doppler ultrasound systems implement a single element which 

both transmits short pulses of ultrasound and receives the returning signal. A 

pulsed wave system can be utilised for the detection of signals from known 

depths. This is achieved using a range gate; the depth and length of which 

controlling the region from which the signal is obtained. The depth and length 

of the gate can be manually controlled.

There are a ngmber of different Doppler ultrasound display modes, namely 

spectral Doppler, duplex ultrasound and colour flow imaging. Spectral Doppler 

provides information on the range of frequencies or velocities detected from a
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single location within the blood vessel. The information is displayed in the 

form of a frequency shift (or velocity) -  time plot, with the grayscale indicating 

the amplitude of each frequency shift (or velocity).

The amalgamation of B-mode scanning with spectral Doppler ultrasound 

enables a Doppler signal to be obtained from a known anatomical location, for 

example from the centre of a blood vessel, or distal to a stenosis. This 

Doppler display mode is known as duplex ultrasound. Colour flow imaging 

superimposes the Doppler signal on to a real time B-mode image. The 

Doppler signal is displayed as a two dimensional colour image, where the 

colour of each pixel is indicative of the amplitude and direction of the Doppler 

shift. Through the infiltration of colour to the grayscale B-mode image, blood 

flow patterns may be visualised. The fundamental colours implemented are 

red and blue for directions towards and away from the transducer, whilst a 

third colour, occasionally green, is utilised for the illustration of turbulent flow.

Colour duplex imaging combines duplex and colour flow imaging, enabling the 

simultaneous visualisation of blood flow within vessels and quantification of 

the velocity of flow from specific locations within the vasculature.

Doppler ultrasound scanning is frequently used to assess vascular diseases. 

Pathology may be identified from the Doppler frequency or velocity spectrum; 

by observing the presence and directions of blood flow in a colour duplex 

image, and from the basic B-mode image, which may demonstrate calcium 

hardening or plaque formation due to the greater reflectivity of calcium.
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Ultrasound techniques may also be utilised to quantitatively assess alterations 

in blood flow arising as a consequence of compression, by comparing results 

extrapolated pre, during and post compression sessions.

The method by which arterial and venous blood velocity measurements may 

be extrapolated varies as a consequence of their differing flow characteristics. 

Arterial flow is influenced by the cardiac cycle, producing a pulsatile Doppler 

spectrum, enabling average velocities to be automatically calculated by the 

system over a specified number of cardiac cycles. Venous flow is not pulsatile 

to the extent of arterial flow. This is due to a combination of factors, including 

their distance from the heart, the compliance of the vein walls which allows 

absorption of pressure changes, and the further masking of cardiac pressure 

changes by respiratory pressure changes. Consequently, venous velocity 

measurement involves manual extrapolation of a value from the Doppler 

spectrum.

1.5.2 Laser Doppler Flowmetry

Laser Doppler flowmetry (LDF) has also been utilised in some studies to 

assess the affect of compression on skin blood perfusion. This technique 

similarly implements the Doppler effect, transmitting laser light through the 

skin, which is reflected and Doppler shifted by moving blood cells. The 

quantity of Doppler shifted laser light corresponds to the concentration of 

blood cells, whilst the mean frequency shift depicts the mean blood flow 

velocity, (Abu-Own et al. 1994). The laser flux value detected which 

corresponds to microvascular perfusion is the product of blood cell volume
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and their mean velocity. However, this technique is difficult to calibrate, and 

therefore is used mainly to measure changes in flux.

1.5.3 Photoplethysmography

Photoplethysmography (PPG) is a technique which enables determination of 

any alterations in blood volume. This method involves the transmission of 

infra-red light within the skin, which is absorbed dependant on the volume of 

blood contained in a selected area of tissue. Hence, changes in blood volume 

can be deciphered from the quantity of light reflected. Venous and arterial 

blood volume changes may be detected. There are two types of PPG probe, 

reflection probes and transmission probes. The reflection probe contains an 

LED and a photodetector which lie side by side, enabling reflected light to be 

detected; whilst in a transmission probe the LED and the photodetector are 

opposite to one another, such that the tissue area under investigation is 

placed between the light source and the detector. Reflection probes may be 

utilised for the analysis of venous or arterial blood volume changes, however 

the transmission probe is particular to the analysis of the arterial side of the 

circulation. In general the probes are applied to distal areas, such as the digits 

for examination of the microcirculation. By observing the form of the volume 

curve over time, vascular abnormalities may become apparent. For example, 

rapid venous refilling times are indicators for the presence of venous 

insufficiency, whilst damping of the normal pulsatile arterial signal may signify 

arterial pathology. The use of PPG may be indicated for the analysis of the 

efficacy of compression devices, as any blood volume alterations incurred as 

a consequence could be verified.
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1.5.4 Electrical Impedance

Electrical impedance measurements may also assess alterations in blood 

volume. The underlying principle of the technique involves detection of the 

distribution of electrical impedances throughout the cross-section of a 

conducting tissue, by placing electrodes on the surface of the medium, (Vonk 

Noordegraaf et al. 1997). Pairs of electrodes are placed on the skin surface, 

and a series of small currents are applied to a pair of consecutive electrodes. 

The current applied travels through the body along paths of least impedance, 

and potential difference measurements are obtained from the remaining pairs 

of electrodes. Blood volume fluctuations are determined as a result of the 

alterations in impedance arising due to alterations in blood vessel volumes.

1.5.5 Assessment of IPC

The efficacy of a compression device is generally assessed by monitoring any 

alterations in blood flow dynamics, whether this involves Doppler or duplex 

ultrasound techniques, PPG and/or electrical impedance measurements. 

Each of these methods is non-invasive, and does not incur any risks to the 

subject or the operator provided the instrument is used correctly. These 

techniques are implemented for the assessment of acute changes in blood 

flow dynamics incurred as a consequence of compression. Transcutaneous 

oxygen partial pressure (tcp0 2 ) measurements have been deemed by some 

to provide a reliable indication of the degree of ischaemia, demonstrating the 

disparity between oxygen supply and consumption; consequently, tcp0 2  

measurements could be implemented to determine the degree of tissue 

oxygenation, and whether oxygen perfusion is improved by the use of IPC. In
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a longer clinical trial, for example investigating the affect of compression on 

ulcer healing rates, additional measurements may be required in conjunction 

with quantitative analysis of blood flow dynamics, such as, measurement of 

ulcer area, walking distances, leg circumference, skin temperature and colour, 

etc.
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1.6 Summary

Chronic non-healing leg ulcers are a considerable source of morbidity and a 

potential huge resource problem to the National Health Sen/ice. The presence 

of a painful, malodorous, unsightly leg ulcer is not only disconcerting and 

restrictive to the patient, but the current management and treatment of the 

ulcer is protracted and inconvenient, and may often conclude in surgery 

and/or amputation. Consequently, improved ulcer healing techniques are 

indicated which incur greater efficacy.

This review has examined the method of intermittent pneumatic compression 

and its application to vascular disorders. In the past, IPC has been utilised for 

the prophylaxis of DVT, for the reduction of oedema and improvement of 

venous return, and for the symptomatic reduction of peripheral arterial 

disease; however, IPC and its specific application to the healing of ulcers has 

not been researched adequately. Although the number of studies examining 

the application of IPC to the treatment of ulcers are limited, and their reliability 

is questioned, it is known that IPC has the ability to enhance vascular fluid 

flow, which essentially is the basis of initiating ulcer healing; consequently the 

assumption that IPC has potential as an adjuvant treatment method for the 

healing of chronic leg ulceration seems plausible.

Current treatments of venous ulceration can be labour intensive for the 

nursing staff, Varying in efficacy dependant on the skill of the health care 

professional in application of compression bandaging, relying on patient
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compliance for a treatment that can be uncomfortable, unsightly (especially 

for women) and inconvenient. Arterial and diabetic ulcer therapy tends to veer 

towards medication and surgery, which incur associated risks and 

complications. It would seem therefore that the advantages of IPC, namely, its 

non-invasive nature, and its ease of use with minimal associated risks, would 

be beneficial for patients with chronic non-healing leg ulcers if it is found 

through investigation to be efficient in enhancing the wound healing process 

by improving the circulation. However, prior to trials on patients suffering from 

ulcers of various aetiologies, there is a need to evaluate the acute effects of 

the proximal IPC system on the dynamics of blood flow, distally, at the wound 

site. This is the first element by which this research differs from previous 

studies. Are there any effects incurred by IPC of the thigh (and/or the calf) on 

blood flow proximal to the wound site?

It would seem that the use of IPC proximally, if demonstrated to be 

successful, would be more agreeable to the patient, as it would not interfere 

with the wound itself. The second innovative element of this research involves 

investigating the feasibility of a single compression regime which may 

concurrently enhance arterial inflow and venous outflow. Hence, ulcers of 

different aetiologies could benefit from the application of this device.

However, outcome of the research in differing ulcer type may vary due to the 

variance in aefiology, and these differences will need to be considered for 

short term and long term benefit.
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Chapter 2: Equipment

2.1 Introduction
This chapter discusses the equipment used in the chapters which follow.

2.2 Ultrasound and Photoplethysmography (PPG).

The research involved investigating the effect of differing intermittent 

pneumatic compression techniques on distal blood flow in healthy volunteers 

and patients. Doppler ultrasound and Photoplethysmography were 

implemented in all parts of the research to assess the acute effects of 

compression on distal blood flow, whilst colour duplex imaging was also 

utilised for assessing the absence of, or degree of vascular pathology in 

healthy volunteers and patients.

2.2.1 Doppler Ultrasound Frequency Spectrum Analysis Systems.

Two different spectral Doppler ultrasound systems were used in this research, 

namely:

a. the SciMed QVL-120 Doppler frequency spectrum analysis system, 

and

b. DopStudio software suite.

Both systems were used to extract real time blood flow velocity information 

from the distal vasculature; the general principles behind which are described 

in chapter 1.
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Figure 2.1 The SciMed QVL-120 Doppler frequency spectrum analysis 

system.

The QVL-120 system measures the range of frequencies detected from a 

single location within a blood vessel. Blood flow velocities are calculated 

automatically, by assuming that the angle of the probe is 45 degrees with 

respect to the direction of blood flow. The frequency (or velocity) spectrum is 

displayed with the time on the horizontal axis, and in this research, the vertical 

axis represented the velocity in centimetres per second (cm/s). Within the 

spectrum, the amplitude of the individual velocities was represented by the 

greyscale, whilst the maximum velocity envelope of the spectrum was also 

displayed. The maximum and mean velocity traces are used to calculate 

measurements such as the pulsatility index, resistance index, and the time 

average maximum (TAM) velocity which are displayed alongside the 

spectrum. The TAM blood flow velocity is determined from the average of the 

maximum velocity envelope for every three cardiac pulses. It was the TAM
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blood flow velocity which was recorded for the arterial investigations in this 

study. Other parameters were recorded for the venous studies, such as the 

peak velocity and the duration of blood flow.

The DopStudio software suite enables Doppler signals to be obtained on a 

standard laptop by means of a ‘pocket Doppler device’, which is connected to 

the laptop via an industry standard sound card. The pocket Doppler device 

converts measured Doppler shifts into an audio output, which is processed to 

provide a real time spectral Doppler signal. As with the QVL-120 system, 

various measurements are calculated from this signal, such as the pulsatility 

index and the time average maximum (TAM) blood flow velocity. The TAM 

blood flow velocity is similarly used for arterial investigations.

The frequency of the transducer implemented depends upon the depth of the 

blood vessel to be investigated within the body. Ultrasound is attenuated as it 

passes through the tissues and organs of the body; the energy of the 

ultrasound beam decreasing due to reflection, scattering, refraction, 

absorption and beam divergence. Generally, the intensity of the scattered 

wave (the ultrasound power lost) increases very rapidly with frequency, thus, 

for structures deep within the body, a low frequency (high penetration) 

ultrasound transducer is necessary, whilst for structures closer to the skin 

surface, a higher frequency (lower penetration) ultrasound transducer is 

sufficient to gain the required information. In this research, a flat 8MHz 

continuous wave ultrasound transducer was used to locate and gain 

information from the dorsalis pedis artery and the posterior tibial vein, which
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Figure 2.2 The flat 8MHz continuous wave transducer, positioned to locate 

a signal from the dorsalis pedis artery in a healthy volunteer, and held in place 

using micropore tape.

2.2.2 Colour Duplex Imaging

Colour duplex imaging was used to identify the presence and severity of 

vascular pathology in the patients who were to participate in the study. Colour 

duplex imaging combines duplex imaging with colour flow imaging, allowing 

the simultaneous visualisation of blood flow within the vessels and 

quantification of the velocity of flow from specific locations within the 

vasculature (see chapter 1.5.1).

Vascular pathotogy may be identified from colour duplex imaging though a 

variety of techniques. The basic B-mode image may demonstrate calcium 

hardening or plaque formation due to the greater reflectivity of calcium, whilst

are relatively superficially located in the lower limb. Figure 2.2 demonstrates 

the positioning of the 8MHz flat transducer for locating a signal from the 

dorsalis pedis artery.
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the absence of and characteristics of blood flow in the colour flow image could 

indicate the presence and degree of a stenosis, a thrombus, or venous reflux 

due to venous valve incompetence. The dampening of the Doppler frequency 

or velocity spectrum is also an indicator for arterial disease.

The colour duplex imaging was performed by a clinical scientist within the 

department of medical physics at the University Hospital of Wales (UHW) and 

at West Wales General Hospital (WWGH). The colour duplex system used 

was the Toshiba Xario.

2.2.3 Venous Photoplethysmography (VPPG)

Venous photoplethysmography (VPPG) enables relative changes in 

microcirculatory blood volume to be measured. Infra red light is transmitted 

into the skin, which is absorbed dependant upon the volume of blood present 

in the selected area of tissue. Changes in blood volume are therefore 

determined from the amount of light reflected.

Figure 2.3 The Huntleigh Healthcare Vascular Assist (Huntleigh

Healthcare, Luton, UK).
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The Vascular Assist was used in this research to obtain PPG signals. The 

Vascular Assist is a portable vascular assessment system, which combines 

Doppler ultrasound, PPG and BP (blood pressure measurement). The dual 

channel PPG allows bilateral ABPI measurements, and screening for DVT’s 

(deep vein thromboses) and venous insufficiency. In this research however, 

PPG was used to detect changes in distal microcirculatory blood volume as a 

consequence of venous empting and refilling due to intermittent compression.

2.2.4 Laser Doppler Flowmetry

Laser Doppler Flowmetry (LDF) measures blood cell perfusion in the 

microcirculation. The blood cell flux, or perfusion detected, represents the 

movement of blood cells through the microcirculation, and is the product of 

blood cell volume and their mean velocity.

The Oxford Array laser Doppler system was used in this research to examine 

the effects of compression on distal skin blood perfusion. This system 

measures real time blood cell perfusion at up to 12 different sites. Each of the 

probes was secured in a different place on the distal skin surface with 

micropore tape. The Laser Doppler signal, which is measured in units of BPU 

(blood perfusion units), is a relative units scale, therefore the results produced 

demonstrate the changes in skin blood perfusion.
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2.3 Compression cuffs and Pumps.

In this section, the different compression cuffs and air pumps used in the 

research are described.

2.3.1 Compression cuffs

Initial investigations examined the action of four differing intermittent 

pneumatic compression cuffs, manufactured by Huntleigh Healthcare, Luton, 

UK.

■ The Huntleigh DVT 30 cuff

Figure 2.4 The Huntleigh DVT 30 compression cuff.

The Huntleigh DVT 30 cuff is a uniform whole leg compression garment. It 

consists of two chambers, one for the calf and one for the lower thigh. The 

cuff is positioned around the limb with the chambers sitting at the back of the 

leg and secured in place using the Velcro straps. The chambers are
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connected to a pump through a single plastic tube, enabling both to be 

inflated simultaneously. The Huntleigh DVT 30 cuff is primarily used with the 

Flowtron range of pumps for DVT prophylaxis, however in this research its 

use is being investigated for improving both the distal venous and arterial 

blood flows.

The following graph demonstrates the pressure time analysis for the Huntleigh 

DVT 30 cuff, connected to a Flowpac pump (Huntleigh Healthcare, Luton, 

UK), using a 60 second cycle and a pressure of 60mmHg.
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Figure 2.5 Pressure time analysis for the Huntleigh DVT 30 cuff.

As can be seen from figure 2.5, it takes approximately 3-4 seconds for the 

Huntleigh DVT 30 cuff to reach the required pressure.
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A uniform thigh cuff

Figure 2.6 The uniform thigh compression cuff.

The uniform thigh garment is a single chamber cuff, with an air bladder that 

sits at the back of the thigh. It is secured in place with Velcro attachments, 

and is inflated via a single plastic tube which connects to a Flowpac pump.
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Figure 2.7 Pressure time analysis for the uniform thigh cuff.
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Figure 2.7 displays the pressure time analysis for the uniform thigh cuff, using 

a 60 second cycle and a pressure of 60mmHg. The uniform thigh cuff inflates 

more rapidly than the Huntleigh DVT 30 cuff, reaching 60mmHg within 

approximately 2 seconds. This is due to the smaller chamber size.

■ A 3  chamber whole leg cuff

Figure 2.6 The 3-chamber whole leg compression cuff.

The 3-chamber whole leg garment consists of a two-chamber cuff about the 

calf and a single chamber cuff about the thigh. The air bladders similarly sit at 

the back of the leg, and the cuffs are held in place by the Velcro attachments. 

Each chamber is individually connected by a plastic tube to a Flowpac pump, 

allowing the chambers to be inflated and deflated sequentially.
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A 3 chamber thigh cuff

Initially, it was proposed that the 3-chamber thigh cuff should comprise a large 

central chamber with two narrower chambers either side. It was intended for 

the narrow chambers to behave like venous valves preventing venous reflux. 

However, experimentation with different sized chambers did not reveal any 

benefits for having narrower chambers, therefore the 3-chamber thigh cuff

consisted of three equally sized chambers. The chambers in this cuff were
%

circumferential about the limb, therefore compression was also applied 

circumferentially. The garment was secured using Velcro tabs.

Figure 2.7 The 3-chamber thigh compression cuff.

Each chamber was connected by a plastic tube to either a Flowpac pump or 

to the adapted Flowtron AC300-R (Huntleigh Healthcare, Luton, UK).
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Initially, the 3-chamber thigh cuff was as demonstrated in figure 2.7, being 

made of knitted nylon laminated to polyurethane film; however, after 

experiments had started, it was noticed that the cuff was slipping down the 

leg. A new cuff was manufactured using a non-slip fabric.

2.3.2 Intermittent Pneumatic Compression Pumps

Two different air pumps, manufactured by Huntleigh Healthcare were used in 

the studies; the Flowpac pump and the Flowtron AC300-R.

■ The Flowpac pump

HmUcilA

Figure 2.8 The Huntleigh Healthcare Flowpac pump.

The Huntleigh Healthcare Flowpac pump is routinely used with zip-up 

circumferential leg or arm cuffs, to treat venous ulcers and oedema. The
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Flowpac can operate at pressures in the range 2 0 -  160 mmHg. The pressure 

is set by the user, and displayed on a gauge which has an accuracy of ± 

5mmHg. The cycle times can be varied between 5 and 95 seconds in 

increments of 5 seconds; and the sequence can be set to run continuously or 

for a specified treatment time.

A single Flowpac pump was used with the Huntleigh DVT 30 and the uniform 

thigh cuff, whilst three Flowpac’s were used with the 3-chamber compression 

cuffs.

■ The Flowtron AC300-R

Figure 2.9 The Flowtron Flowpress AC300-R. An adapted Huntleigh 

Healthcare Flowtron Flowpress AC300 pump.

The Flowtron Flowpress AC300-R is a modified version of the Huntleigh 

Healthcare Flowtron Flowpress AC300 pump. The existing AC300 has been
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manufactured by Huntleigh Healthcare for more than 15 years, and has been 

used for enhancing vascular and lymphatic flow in limbs.

The existing AC300 cycle comprised a 120 second sequential cycle followed 

by a rest period of 60 seconds. This cycle was adapted for the benefits of this 

research and as a consequence of the results of the preliminary 

investigations. The new operating cycle associated with the modified pump 

consisted of six consecutive 20 second sequential cycles followed by 120 

seconds rest.

All 3 chambers of the 3-chamber thigh cuff are connected to the one pump, 

which has polarised connectors to ensure the chambers are connected in the 

correct sequence.

The Flowpress pump is compact and lightweight, allowing the patient to 

transport it with little difficulty. The pressure has been fixed at 60mmHg, so 

the patient only needs to start and stop the pump as and when required.
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Chapter 3: Preliminary Investigations: Uniform Compression

3.1 Introduction

The aim of the preliminary investigations was to examine the distal 

haemodynamical effects of intermittent pneumatic compression on a healthy 

volunteer in order to develop an understanding of the physiological effects of 

compression and how they were affected by variations in cuff design, cycle 

duration and pressure. At the conclusion of the preliminary investigations, the 

optimal compression regime for enhancing the distal circulation in a healthy 

individual had been obtained.

3.2 Method

3.2.1 Variables

The variables examined for their effects on the distal circulation of a healthy 

volunteer were cuff design, pressure, inflation duration and deflation duration. 

Four differing cuff designs had been decided upon; a uniform whole leg cuff, a 

uniform thigh cuff, a 3-chamber whole leg cuff and a 3-chamber thigh cuff. 

The cuffs are described in detail in chapter 2.3. The two uniform compression 

garments were addressed primarily, in order to examine the effects of altering 

different aspects of the compression regime on distal blood flow, before 

applying the acquired information to the two sequential garments.

For each of the^jniform compression garments, a series of investigations was 

conducted in order to examine the effects of pressure and cycle duration on
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distal blood flow. The aim was to determine the optimal compression regime, 

which required individual investigation of the variables, pressure, inflation 

duration and deflation duration, for each differing compression garment.

A standard cycle encompassing a moderate pressure of 60mmHg, 15 

seconds inflation and 45 seconds deflation was used throughout the 

investigations for those variables which were maintained constant. For 

example, whilst examining the effects of pressure on distal blood flow, a cycle 

of 15 seconds compression and 45 seconds deflation was maintained.

The investigated variables were to be examined at values between pre­

determined ranges, based upon information acquired during the literature 

review. A moderate pressure range of 50 to 90 mmHg was to be studied. 

These pressures would compress the veins, improving venous return and 

inducing an arterial hyperaemia. This pressure range had also been chosen 

as it was considered to be more comfortable for the patient, ultimately aiding 

treatment compliance. Each investigation consisted of recording blood flow 

measurements before, during and after ten cycles of compression at 

pressures within this range, varied in increments of 10 mmHg.

Due to the size of the compression garments and hence the time taken for the 

cuff to completely inflate, the inflation duration was varied between 5 and 30 

seconds, in increments of 5 seconds. Investigations progressed as with 

altering the pressure, recording distal blood flow measurements before, during 

and after a period encompassing ten cycles of compression.
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The deflation period needed to be of adequate duration to enable complete 

venous refilling following the release of compression. Generally, complete 

venous refilling is attained within 30 to 40 seconds in people with no venous 

insufficiency (Morris et al. 2002), therefore, for investigative purposes, the 

deflation duration was varied between 15 and 60 seconds in increments of 15 

seconds.

3.2.2 Data Acquisition

The preliminary investigations were conducted on a single healthy volunteer. 

The aim of these investigations was to understand the effects of compression, 

and the effects of altering different aspects of the compression sequence on 

normal healthy distal blood flow, for the purpose of optimising a compression 

regime to treat and manage patients with leg ulcers; and due to the number of 

experiments which were to be undertaken in order to achieve this and due to 

time restrictions, all investigations were carried out on a single volunteer. 

During each test, the volunteer was required to lie supine on a scanning 

couch, with their head on a pillow and their trousers removed. One of the IPC 

garments had been placed about the left lower limb of the volunteer, which 

was connected to a Huntleigh Flowpac pump. All investigations were carried 

out in a temperature controlled room (approximately 23 degrees Celsius).

Doppler ultrasound was used to locate the required blood vessels, and to 

observe blood flow during the studies. The QVL Doppler ultrasound system 

(see chapter 2) and an 8MHz flat transducer were used to locate the dorsalis 

pedis artery for the arterial studies, and the posterior tibial vein for the venous
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studies. Once the required blood vessel had been located, the ultrasound 

transducer was secured in place using micropore tape. A blanket was then 

placed over both legs and feet of the volunteer to prevent cooling. Prior to the 

commencement of the study, a period of approximately 10 minutes was 

considered necessary to allow blood flow to stabilise.

Investigations were repeated for both the distal arterial and distal venous 

circulations. However, the measurements taken from the different blood 

vessels varied due to the differences between the arterial and venous blood 

flows.

The Doppler system calculates a time average maximum (TAM) blood flow 

velocity from the pulsatile arterial blood flow signal. The maximum velocity 

envelope of the Doppler spectrum is averaged for every three successive 

cardiac cycles, and displayed alongside the signal. In the arterial studies the 

TAM blood flow velocity is recorded from the display every 5 seconds 

throughout the test, and noted in a table by the investigator. Each arterial test 

is composed of a period of 180 seconds resting pre-compression, followed by 

10 cycles of compression and then a further 180 seconds resting post 

compression.

Venous blood flow is not pulsatile to the extent of arterial blood flow. This is 

due to the distance of the veins from the heart, the compliance of the vein 

walls, and alsotlue to the effects of respiratory pressure changes which mask 

any cardiac pressure fluctuations. Therefore, the TAM blood flow velocity is
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not suitable for venous measurements. As an alternative, the peak velocity 

and the duration of venous blood flow were measured. Resting distal venous 

blood flow is not detectable by Doppler ultrasound due to the low velocities 

involved; only on release of compression is distal venous blood flow detected. 

Therefore, the peak velocity and duration of venous flow were measured 

following each deflation of the cuff. This was repeated for ten cycles of 

compression.

In some instances, contradictory results were obtained between the arterial 

and venous circulations, therefore further studies were conducted using 

photoplethysmography (PPG). PPG examines changes in microcirculatory 

blood volume. PPG sensors were placed on the sole of the left foot and lateral 

to the medial malleolus. Following the calibration of the PPG device, 

compression was started, and a blood volume signal was recorded. Each 

signal comprised a period of 600 seconds compression.

3.2.3 Data Analysis

Each arterial study was repeated six times. Results were normalised (see 

appendices) and then averaged together and plotted as a line graph in SPSS. 

An existing computer program, written in Turbo Pascal for the research of 

Morris and Woodcock, (2002) was also used to determine objectively the 

percentage change in blood flow as a consequence of compression. Each raw 

data set was entered into the program which calculated the percentage 

change in blood flow during compression as compared with a baseline
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extrapolated from the resting period pre and post compression. The results 

obtained were averaged together, and a standard deviation was calculated. 

Venous results were repeated three times, providing 30 data values for each 

level of the variable investigated. The data were entered into SPSS, where 

mean values were determined, and error bar plots were constructed. One way 

ANOVA was also performed to determine whether there were any significant 

differences between different levels of the variables.

Where PPG was implemented, each study was repeated ten times, and the 

signals averaged together and plotted using Excel.
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3.3 Results and Discussion

The results of the preliminary studies have been compiled in the order in 

which each garment was approached.

3.3.1 Huntleigh DVT 30

The initial objective was to discover whether compression produced any distal 

haemodynamical effects. From investigations with the Huntleigh DVT 30 cuff, 

which provides uniform compression to the calf and lower thigh, it can be 

concluded that there is both a distal arterial and venous blood flow response 

to IPC. The nature of the distal arterial response to compression comprises an 

increase in blood flow velocity following the release of compression, over and 

above the decrease in blood flow velocity arising during compression. The 

distal venous response is characterised by the presence of a short duration of 

accelerated venous flow following cuff deflation, indicative of a trapped 

volume of blood being released.

The following Doppler signals demonstrate the distal arterial and venous 

responses to the release of compression. Figure 3.1 displays resting distal 

arterial blood flow in a healthy volunteer; figure 3.2 is the distal arterial blood 

flow response obtained when compression is released, and figure 3.3 is the 

distal venous response to the release of compression.
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Figure 3.1 Resting distal arterial blood flow in a healthy volunteer.
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Figure 3.2 The distal arterial blood flow response obtained following the 

release of compression.

Figure 3.2 displays the hyperaemic response obtained distally, when 

compression is released. In figure 3.2 the signal has developed a third phase, 

as compared with the biphasic blood flow demonstrated in figure 3.1; and it



can also be seen from the quantity and colour of each individual velocity 

detected that blood flow is at a greater velocity in figure 3.2 as compared with 

resting blood flow in figure 3.1.
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Figure 3.3 The distal venous blood flow response to the release of 

compression.

A resting distal venous signal has not been included as it is not possible to 

record resting distal venous blood flow due to the low velocities involved. 

Figure 3.3 demonstrates the distal venous response to the release of 

compression, a distally trapped volume of blood being released back towards 

the heart.

Investigations progressed into studies of the effect on this distal 

haemodynamic response, of altering various aspects of the regime. The effect 

of altering the pressure, inflation duration and deflation duration on distal 

arterial and venous blood flow was examined.
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The graphs below (figures 3.4 -  3.8) represent the results obtained with the 

Huntleigh DVT 30 cuff for altering the pressure between 50 and 90 mmHg in 

increments of lOmmHg. The horizontal axis represents time in seconds, and 

the vertical axis represents the averaged normalised time averaged maximum 

(TAM) blood flow velocity in cm/s. The red lines indicate when compression is 

started, whilst the green lines are indicative of when the cuff deflates. The 

grey line represents the end of ten cycles of compression.

There appears to be a general trend amongst the graphs. Blood flow 

decreases during compression and increases following the deflation of the 

cuff. This is represented by a trough during compression (following a red line), 

and a peak following cuff deflation (after a green line). It is unknown precisely 

what causes the increase in arterial blood flow; however it appears to arise 

consequent upon changes induced in the venous circulation by compression.

5  14 -
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Figure 3.4 The distal arterial blood flow response obtained whilst using the

Huntleigh DVT 30 compression cuff at a pressure of 50mmHg.
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Figure 3.5 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff at a pressure of 60mmHg.
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Figure 3.6 The distal arterial blood flow response obtained whilst using the

Huntleigh DVT 30 compression cuff at a pressure of 70mmHg.
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Figure 3.7 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff at a pressure of 80mmHg.
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Figure 3.8 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff at a pressure of 90mmHg.
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There does not seem to be a great difference between the amounts by which 

blood flow decreases during compression for the different pressures; however 

the amount by which blood flow increases following the release of 

compression does seem to vary. As the pressure is increased, the peaks 

following deflation tend to increase. Figures 3.7 and 3.8, representing 80 and 

90 mmHg respectively, appear to demonstrate a greater distal response than 

figures 3.4, 3.5 and 3.6, which represent 50, 60 and 70 mmHg.

It is very difficult however, to decide conclusively whether one pressure 

setting is more advantageous than another. The aim of intermittent pneumatic 

compression (IPC) is to improve the circulation of blood. Therefore, from the 

graphs of the different pressure settings studied, it needs to be determined 

whether or not there is a net increase in blood flow; whether the increases in 

blood flow following cuff deflation are greater than the decreases in blood flow 

during compression. This is very difficult to ascertain simply by observing the 

graphs, hence the use of the computer program. The program uses the data 

obtained during the 180 second resting periods pre and post compression to 

place a hypothetical baseline through the entire data set. The area above the 

baseline is then calculated. This area represents the change in blood flow 

during compression as compared with the baseline. A negative value implies 

that the ‘troughs’ are greater than the ‘peaks’, whilst a positive value indicates 

that there is a net increase in blood flow over and above resting flow. The 

results obtained along with their standard deviations are given in Table 3.1.
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Pressure
(mmHg)

50 60 70 80 90

% change 
in blood 
flow

-2.4 9.21 4.66 7.9 3.92

% Standard 
deviation 
(2 d.p)

5.31 7.43 5.88 11.78 8.09

Table 3.1 The percentage change in blood flow arising during 

compression with the Huntleigh DVT 30 cuff, as compared with a baseline 

extrapolated from the resting periods pre and post compression for differing 

pressures; and the associated standard deviations.

As can be seen from the results, pressures in the range 60 to 90 mmHg 

produce a net increase in blood flow, whilst 60mmHg produces the greatest 

increase in blood flow of 9.21%. The standard deviations are quite high in 

comparison with the results obtained for the mean percentage change in 

blood flow, however; this is to be expected when the results have only been 

repeated six times. Further repetitions were not possible due to the number of 

different variables being investigated and hence the number of tests which 

needed to be undertaken. The standard deviations are lower for 50, 60 and 70 

mmHg, which coincides with the maximum percentage change in blood flow 

of 9.21% which was achieved for 60mmHg. It is assumed that 60mmHg will 

be above the diastolic blood pressures of most volunteers / patients.

Similar studies were conducted to investigate the effect of altering the inflation 

duration of compression on distal blood flow. A pressure of 60mmHg and a 

deflation duration of 45 seconds were maintained throughout the experiments,
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whilst the inflation duration was varied between 5 and 30 seconds in 

increments of 5 seconds. Figures 3.9 -  3.14 demonstrate the results obtained.
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Figure 3.9 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with an inflation duration of 5 seconds.
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Figure 3.10 The distal arterial blood flow response obtained whilst using the

Huntleigh DVT 30 compression cuff with an inflation duration of 10 seconds.
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Figure 3.11 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with an inflation duration of 15 seconds.
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Figure 3.12 The distal arterial blood flow response obtained whilst using the

Huntleigh DVT 30 compression cuff with an inflation duration of 20 seconds.
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Figure 3.13 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with an inflation duration of 25 seconds.
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Figure 3.14 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with an inflation duration of 30 seconds.

Figures 3.9 -  3.14 demonstrate a similar trend to the results obtained for

altering the pressure of compression. Blood flow decreases during
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compression, and increases following the release of compression. However, 

the graphs obtained for altering the inflation duration do not appear to produce 

the same magnitude of increased blood flow as those graphs produced for 

altering the pressure.

The results obtained for differing inflation durations appear to be very similar; 

it is very difficult to determine whether one compression period produces a 

greater increase in blood flow. However, the results obtained from the 

computer program for calculating the percentage change in blood flow 

demonstrate that a compression period of 15 seconds produces the greatest 

net increase in blood flow during compression as compared with resting blood 

flow. Table 3.2 displays the percentage increase in blood flow during 

compression for each of the differing compression periods, and the 

associated standard deviations.

Inflation
duration
(seconds)

5 10 15 20 25 30

% change 
in blood 
flow

-0.95 1.11 9.21 1.68 0.26 0.50

Standard 
deviation 
(2 d.p)

8.46 11.47 7.43 10.34 4.45 7.73

Table 3.2 The percentage change in blood flow arising during 

compression with the Huntleigh DVT 30 cuff, as compared with a baseline 

extrapolated from the resting periods pre and post compression for differing 

inflation durations; and the associated standard deviations.
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The compression periods between 10 and 30 seconds all produced a net 

increase in blood flow; however, excluding 15 seconds, the increase was 

generally very small and the standard deviations are quite high.

An inflation duration of 15 seconds and a pressure of 60mmHg were 

maintained constant for investigations into the effect of varying the deflation 

duration on distal arterial blood flow. The period when the cuff was deflated 

was examined at 15, 30, 45 and 60 seconds duration. Figures 3.15 -  3.18 are 

the results obtained.
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Figure 3.15 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with a deflation duration of 15 seconds.
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Figure 3.16 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with a deflation duration of 30 seconds.
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Figure 3.17 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with a deflation duration of 45 seconds.
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Figure 3.18 The distal arterial blood flow response obtained whilst using the 

Huntleigh DVT 30 compression cuff with a deflation duration of 60 seconds.

The graphs obtained for the longer deflation durations similarly demonstrate 

the presence of arterial hyperaemias following deflation of the compression 

cuff. The response obtained for 15 seconds deflation also demonstrates 

increases in arterial blood flow; however they do not occur at a regular 

instance within the compression cycle. This could be consequent upon the 

deflation duration being too short; not allowing adequate time for blood flow to 

resume a normal level before compression is started again.

The computer program results are demonstrated in table 3.3. Optimal results 

have been obtained for 15 and 45 seconds duration. Even though the greatest 

net increase in blood flow has been obtained for 15 seconds deflation, this is 

considered to be too short a duration to be used therapeutically. The distal 

arterial response to a short deflation period is not a regular decrease in blood 

flow during compression followed by a hyperaemia on release of
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compression; and over a longer duration of compression, the overall increase 

in blood flow demonstrated by the program may not apply. If the venous 

circulation is considered in conjunction with the arterial, 15 seconds would not 

be an adequate period of time for complete venous refilling. The high 

standard deviation obtained for 15 seconds deflation supports this conclusion.

Deflation
duration
(seconds)

15 30 45 60

% change in 
blood flow

12.22 -8.77 9.21 -0.16

Standard 
deviation 

J? d.p)........

11.51 9.37 7.43 4.26

Table 3.3 The percentage change in blood flow arising during 

compression with the Huntleigh DVT 30 cuff, as compared with a baseline 

extrapolated from the resting periods pre and post compression for differing 

deflation durations; and the associated standard deviations.

As can be seen from figure 3.16, for 30 seconds deflation, the decreases in 

blood flow during compression are quite large in comparison with the 

increases in blood flow following the release of compression. This explains 

the negative result, revealing an overall reduction in blood flow of 8.77%.

Therefore, it would seem that a deflation duration of 45 seconds would 

produce the optimal distal arterial blood flow response.
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Similar studies were conducted to investigate the effects of pressure and 

cycle duration on the distal venous blood flow response.

Figures 3.19 and 3.20 are the results obtained for the effect on distal venous 

blood flow of altering the pressure. Figure 3.19 shows the effect of altering the 

pressure on the mean peak velocity of distal venous blood flow, while figure 

3.20 represents the effect of altering the pressure on the duration of venous 

blood flow.

The peak velocity and the duration of venous blood flow were recorded 

following each deflation of the cuff. Each test encompassed 10 cycles of 

compression and each test was repeated 3 times. The results were averaged 

together and plotted as a graph using SPSS.

>  10-

5-

0-

70 80 9050 60
Pressure (mmHg)

Figure 3.19 The mean peak venous blood flow velocity post compression

obtained for pressures in the range 50 to 90 mmHg using the Huntleigh DVT

30 compression cuff.
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Figure 3.20 The mean duration of venous blood flow post compression for 

pressures in the range 50 to 90mmHg using the Huntleigh DVT 30 

compression cuff.

Figures 3.19 and 3.20 demonstrate some interesting trends, as did the 

following figures for varying the inflation and deflation durations. However, it 

was discovered that the methods used were producing erroneous results.
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Figure 3.21 The mean peak venous blood flow velocity post compression for 

inflation durations in the range 5 to 30 seconds, using the Huntleigh DVT 30 

compression cuff.
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Figure 3.22 The mean duration of venous blood flow post compression for

inflation durations in the range 5 to 30 seconds, using the Huntleigh DVT 30

compression cuff.
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Figure 3.23 The mean peak venous blood flow velocity post compression for 

deflation durations in the range 15 to 60 seconds, using the Huntleigh DVT 30 

compression cuff.
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Figure 3.24 The mean duration of venous blood flow post compression for

deflation durations in the range 15 to 60 seconds, using the Huntleigh DVT 30

compression cuff.



Each test was undertaken in such a way that the variable under investigation 

was increased (or decreased) systematically from one level of the variable to 

another. For example, a study examining the effect on venous blood flow of 

altering the pressure of compression would commence with recording 10 

measurements at 50mmHg, and then progress to 10 measurements at 

60mmHg, 70mmHg etc.., or, if starting at 90mmHg, the study would progress 

to 80mmHg, 70mmHg, and so forth. It was discovered however, that 

conducting the studies in this manner was producing erroneous results. Those 

measurements taken at the commencement of the study were not relative to 

those taken at the end of the study, due to the relaxation of blood flow over 

the time taken to complete the study. Therefore, results recorded for 50mmHg 

could not be compared with those recorded for 90mmHg. This was examined 

by conducting a test which maintained a constant pressure of 60mmHg, and a 

constant cycle of 15 seconds inflation with 45 seconds deflation. Every 10 

minutes, three cycles of compression were initiated, and the peak venous 

velocity and the duration of venous flow were recorded following each 

deflation of the cuff. This was continued for 90 minutes. Each set of three 

results was averaged together and plotted as a graph. Figure 3.25 displays 

the average peak venous velocity obtained every 10 minutes. As can be seen, 

there is a definite decline in the average peak venous velocity with time.
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Figure 3.25 The results obtained using uniform thigh compression whilst 

testing for the relaxation of blood flow over time. A constant cycle of 60mmHg, 

15 seconds inflation and 45 seconds deflation was maintained.

In order to correct for this anomaly all studies were repeated, however in this 

second set of investigations, the levels of the variable under investigation 

were randomised using a random number generator. For example, each 

investigation examining the effect of altering the pressure on distal venous 

flow involved a total of 50 measurements; 10 measurements for each 

pressure setting randomly ordered.

The results obtained for the randomised experiments appeared to be more 

consistent and differed substantially from those previously obtained.

Figures 3.26 and 3.27 are the results obtained for the effect on distal venous 

blood flow of altering the pressure.
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Figure 3.26 The mean peak venous blood flow velocity post compression for 

pressures in the range 50 to 90 mmHg, using the Huntleigh DVT 30 

compression cuff. These results were obtained using the randomised method.
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Figure 3.27 The mean duration of venous blood flow post compression for

pressures in the range 50 to 90 mmHg, using the Huntleigh DVT 30

compression cuff. These results were obtained using the randomised method.



The error bars in figures 3.26 and 3.27 are indicative of the 95% confidence 

interval, which implies that 95% of the data lies within these limits.

As can be seen from figures 3.26 and 3.27, it would appear that varying the 

pressure of whole leg compression between the moderate pressure range of 

50 to 90 mmHg does not impart an effect on the distal venous circulation; 

confirmed by the one way ANOVA (p=0.970, 0.943 for peak velocity and 

duration respectively).

Since the distal venous response is not affected by varying the pressure of 

compression, the optimal pressure can be deduced from the results of the 

arterial studies, which in this instance would imply a pressure of 60mmHg.

Figures 3.28 and 3.29 are the results obtained for altering the inflation 

duration of the Huntleigh DVT 30 cuff. It was revealed that the distal venous 

blood flow response increases for increasing inflation durations, as 

corroborated by p values of less than 0.005 for each variable using the one­

way ANOVA.
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Figure 3.28 The mean peak venous blood flow velocity post compression for 

inflation durations in the range 5 to 30 seconds, using the Huntleigh DVT 30 

compression cuff. These results were obtained using the randomised method.
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Figure 3.29 The mean duration of venous blood flow post compression for

inflation durations in the range 5 to 30 seconds, using the Huntleigh DVT 30

compression cuff. These results were obtained using the randomised method.
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These results seem to support the hypothesis that blood is trapped distally in 

the foot during compression, and is released when the cuff deflates. In order 

to further test this hypothesis, some investigations were repeated with a cuff 

inflated around the foot for the duration of the experiment, so as to empty the 

foot of blood and reduce the volume of blood trapped within the foot during 

compression of the limb. Intermittent compression of the leg was then carried 

out as previously, with similar measurements being recorded. If blood is 

trapped distally in the foot, the results should be reduced as compared with 

previous measurements.

Using the standard cycle of 60mmHg, 15 seconds compression and 45 

seconds deflation, investigations were conducted to test the hypothesis that 

blood is trapped distally in the foot during compression. Two tests were 

conducted; the first involved the measurement of the peak velocity and 

duration of distal venous blood flow following 10 cycles of compression with 

the Huntleigh DVT 30 cuff, whilst the second test involved the addition of 

continuous foot compression to the proceedings of the first test. The foot cuff 

was inflated to a pressure of approximately 50mmHg. The results were 

entered into SPSS, where the mean was plotted, as demonstrated in figures 

3.30 and 3.31.
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Figure 3.30 The mean peak venous blood flow velocity following 10 cycles of 

compression with the Huntleigh DVT 30 compression cuff, for tests without 

and with continuous foot compression.
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Figure 3.31 The mean duration of venous blood flow following 10 cycles of 

compression with the Huntleigh DVT 30 compression cuff, for tests without 

and with continuous foot compression.
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As can be seen from figures 3.30 and 3.31, the peak velocity and duration of 

distal venous blood flow following the release of compression is greatly 

reduced when continuous compression is applied to the foot. This implies that 

blood is trapped distally during compression, which is released on deflation of 

the cuff.

From the results obtained for the effect of altering the inflation duration on 

distal venous blood flow, it would seem that the longer the duration of 

compression, the more blood accumulated in the foot, and consequently, the 

greater the peak velocity and the duration of blood flow. However, this 

increase in volume cannot continue indefinitely, due to the limited distensibility 

of the blood vessels within the foot. There must be a maximum compression 

duration above which no further increase in the volume of blood which may be 

contained within the foot can be obtained. To estimate the volume of blood 

flow post compression, and hence the volume of blood trapped within the foot, 

an approximation may be obtained by multiplying the duration of blood flow by 

the average maximum velocity of flow (TAM velocity). Figure 3.32 

demonstrates the outcome of this calculation.
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Figure 3.32 An approximation of the blood volume trapped within the foot for 

inflation durations within the range 5 to 30 seconds.

Figure 3.32 displays an increase in volume for increasing inflation durations. 

However, the slope of the graph does appear to be decreasing towards the 

higher inflation durations, indicating that the maximum volume which may be 

contained within the foot could have been attained at 30 seconds duration, or 

might only require a small increase in inflation duration to achieve.

The optimal distal venous blood flow response is attained using a long 

inflation period, however, as previously mentioned a 15 second inflation 

period produced optimal results in the arterial study. Therefore, PPG 

measurements were carried out in order to establish a compromise between 

the arterial and venous study results. The inflation durations 15, 20, 25 and 30 

seconds were investigated, whilst maintaining a pressure of 60mmHg and a
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deflation period of 45 seconds. 10 signals were obtained for each 

compression period which were averaged together. The graphs are displayed 

in the following pages, (figures 3.33 -3.36).

The graphs represent changes in microcirculatory blood volume; an increase 

in the signal represents a decrease in blood volume, whilst a decrease in the 

signal represents an increase in blood volume. As can be seen from the 

graphs, the shape of the signal is consistent for the different compression 

durations.

A large peak is obtained following cuff deflation. This peak represents a 

decrease in blood volume due to distally trapped blood being released. Blood 

volume then slowly starts to increase as the veins refill during the relaxation 

phase of the cycle, and continues to increase during compression.

There appears to be an overall decrease in blood volume over the first few 

cycles of compression, before reaching a constant level for the remainder of 

the signal. This is most noticeable for the 30 second compression period. This 

compression period also appears to produce the greatest decrease in blood 

volume within each cycle.
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Figure 3.33

Huntleigh DVT 30,15 seconds inflation, 45 seconds deflation, 60mmHg
(average of 10 signals)
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Figure 3.34

Huntleigh DVT 30, 20 seconds inflation, 45 seconds deflation, 60 mmHg 
(average of 10 signals)
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Figure 3.35

Huntleigh DVT 30, 25 seconds inflation, 45 seconds deflation, 60mmHg
(average of 10 signals)
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Figure 3.36

Huntleigh DVT 30, 30 seconds inflation, 45 seconds deflation, 60mmHg
(average of 10 signals)
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However, a more objective analysis is required to determine which of the 

inflation durations produces the optimal results. The optimal compression 

period should produce the maximum venous emptying, in turn producing the 

maximum arterial supply. Therefore, in order to determine the optimal 

compression period, the volume of venous blood moved in a given time period 

needs to be determined for each differing cycle. The longer compression 

period may produce a greater reduction in venous blood volume per cycle 

than a shorter compression period, however, over a given period of time the 

shorter compression period, incurring more cycles than a longer compression 

period, may produce an overall greater reduction in venous blood volume.

The volume of blood emptied from the veins for a given period of 

compression, may be estimated from the results of the venous studies. The 

volume of venous blood emptied per cycle may be determined by multiplying 

the mean peak velocity and the mean duration of venous blood flow. This is 

an approximation which assumes that the diameter of the veins remains 

constant. This volume approximation may be determined for each of the 

differing inflation durations, and then multiplied by the number of times the 

cycle occurs during a 10 minute time period to obtain the volume of blood 

emptied in 10 minutes. The results are demonstrated in table 3.4 and graph 

3.37 below.
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Inflation duration (seconds) Approx. volume per 10 minutes 
compression (3s.f.)

15 720
20 732
25 712
30 701

Table 3.4 The approximate volume emptied in 10 minutes of compression 

for different inflation durations.
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Figure 3.37 The approximate volume emptied during 10 minutes of 

compression for different inflation durations.

From the graph above it can be seen that the optimal inflation duration for 

whole leg compression is of 20 seconds duration.

Finally, the effect of altering the deflation duration on distal venous blood flow 

was investigated. Originally, as with the arterial study, investigations 

examined the deflation durations 15, 30, 45 and 60 seconds; however, it was
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felt that smaller increments within the range 15 to 60 seconds were required in 

order to decipher an accurate representation of the effect incurred on distal 

venous blood flow. Therefore, the deflation duration was varied between 15 

and 60 seconds, in increments of 5 seconds. A pressure of 60mmHg, and an 

inflation duration of 15 seconds were maintained throughout these studies. 

Each test comprised 5 measurements at each deflation setting, whilst each 

test was repeated 6 times. Figures 3.38 -3.40 display the results obtained.
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Figure 3.38 The mean peak venous blood flow velocity post compression for 

deflation durations in the range 15 to 60 seconds, using the Huntleigh DVT 30 

compression cuff. These results were obtained using the randomised method.
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Figure 3.39 The mean duration of venous blood flow post compression for 

deflation durations in the range 15 to 60 seconds, using the Huntleigh DVT 30 

compression cuff. These results were obtained using the randomised method.
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Figure 3.40 An approximation of the blood volume trapped within the foot for 

inflation durations within the range 5 to 30 seconds.
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Upon increasing the deflation duration of the Huntleigh DVT 30 cuff between 

15 and 60 seconds in increments of 5 seconds, an increase in the distal peak 

venous velocity and approximate venous volume was observed, as displayed 

in figures 3.38 and 3.40.

The one-way ANOVA revealed that there was a significant difference (p-value 

0.005) between the peak velocities obtained for different levels of the deflation 

duration investigated; however, significant results were not achieved for the 

duration of venous flow and the approximate volume, (p-values 0.881 and 

0.484 respectively).

Therefore, it would seem that a long deflation duration produces the optimal 

response in the distal venous circulation. In keeping with the results of the 

arterial studies, the optimal deflation duration for concurrently enhancing the 

distal arterial and venous blood flows is 45 seconds.

In addition to the studies performed using Doppler ultrasound and 

Photoplethysmography, a study was conducted implementing laser Doppler 

flowmetry (LDF), which measures tissue blood perfusion. A cycle of 15 

seconds compression, 45 seconds deflation and 60mmHg was implemented, 

whilst the sensors were placed around the foot. The following graph (figure 

3.41) demonstrates the tissue blood perfusion in the foot whilst compressing 

the leg with the Huntleigh DVT 30 cuff. The graph demonstrates distal tissue 

blood perfusiort during 180 seconds without compression, followed by ten 

cycles of compression and a further 180 seconds without compression.
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Distal skin blood perfusion before, during and after compression. Huntleigh DVT 
30 cuff, 15s compression, 45s deflation, at 60mmHg.
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Figure 3.41 Distal skin blood perfusion in the foot of a healthy volunteer 

during compression with the Huntleigh DVT 30 compression cuff.

Figure 3.41 demonstrates that compression enhances the perfusion of blood 

in distal tissues.

3.3.1.1 Summary of Huntleigh DVT 30 findings

The investigations carried out have revealed that there is a distal 

haemodynamical response produced with the Huntleigh DVT 30 compression 

garment, and its associated optimal compression regime for concurrently 

enhancing the distal arterial and venous circulations has been found to 

involve a pressure of 60mmHg, and a cycle of 20 seconds compression and 

45 seconds deflation.
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3.3.2 Uniform Thigh Cuff

Similar investigations to those carried out with the Huntleigh DVT 30 cuff were 

also conducted with a uniform thigh cuff.

Figures 3.42 -  3.46 are the results obtained for varying the pressure between 

50 and 90 mmHg in increments of 10mmHg, whilst using the uniform thigh 

cuff.
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Figure 3.42 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a pressure of 50mmHg.
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Figure 3.43 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a pressure of 60mmHg.
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Figure 3.44 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a pressure of 70mmHg.
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Figure 3.45 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a pressure of 80mmHg.
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Figure 3.46 The distal arterial blood flow response obtained whilst using the

uniform thigh compression cuff at a pressure of 90mmHg.
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The results obtained with the Huntleigh DVT 30 cuff for the corresponding 

arterial tests demonstrated a regular decrease in blood flow during 

compression and an increase in blood flow on release of compression; 

however, the results obtained with the uniform thigh cuff (figures 3.42 -  3.46) 

display no such trend. Increases and decreases in blood flow are apparent; 

however they do not occur at regular intervals or at fixed points within the IPC 

cycle.

There are several possibilities which could explain the perceptible discrepancy 

between the distal response obtained for the whole leg garment and that 

obtained for the thigh garment. The whole leg garment imparted a direct effect 

on the distal circulation due to the extent of the leg receiving compression. 

However, with the thigh garment, on release of compression, the initial 

response would be conveyed to the more proximal vasculature around the 

knee area. Therefore, there would be a time delay before the response 

reaches the distal vasculature. The magnitude of the response detected at the 

distal vasculature may also be smaller for thigh compression, due to the 

damping of the response as it travels distally.

Due to these considerations, it is possible that the response imparted by the 

thigh garment is regular in the same way as the response obtained from the 

Huntleigh DVT 30 cuff; however by the time the thigh cuff response is 

conveyed to the distal circulation, it may involve a different timing, and 

therefore may not be as apparent from the graphs.
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There does not appear to be a great difference between the graphs obtained 

for the different pressures, however, upon entering the data into the computer 

program for calculating the percentage change in blood flow during 

compression, it was revealed otherwise. The results of the program are given 

in table 3.5.

Pressure
(mmHg)

50 60 70 80 90

% change 
in blood 
flow

0.75 5.87 5.88 3.41 10.01

Standard 
deviation 
(2d.p)_ _

5.86 4.46 18.23 3.13 17.02

Table 3.5 The percentage change in blood flow arising during compression 

with the uniform thigh cuff, as compared with a baseline extrapolated from the 

resting periods pre and post compression for differing pressures; and the 

associated standard deviations.

A net increase in blood flow was obtained for each of the pressures 

implemented; it would seem however, that the optimal response has been 

obtained for a pressure in the 60/70 mmHg range, as 90mmHg is too high a 

pressure to be used comfortably. The result obtained for the standard 

deviation also supports an optimal pressure of 60mmHg.

Similar graphs were obtained for investigations examining the effect of altering 

the inflation duration on distal arterial blood flow. In these investigations, a
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pressure of 60mmHg, and a deflation duration of 45 seconds were maintained 

constant throughout, whilst the inflation duration was increased from 5 to 30 

seconds in increments of 5 seconds. The results are demonstrated in figures 

3.47 -  3.52 below.
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Figure 3.47 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at an inflation duration of 5 seconds.
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Figure 3.48 The distal arterial blood flow response obtained whilst using the

uniform thigh compression cuff at an inflation duration of 10 seconds.
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Figure 3.49 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at an inflation duration of 15 seconds.
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Figure 3.50 The distal arterial blood flow response obtained whilst using the

uniform thigh compression cuff at an inflation duration of 20 seconds.
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Figure 3.51 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at an inflation duration of 25 seconds.
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Figure 3.52 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at an inflation duration of 30 seconds.
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From figures 3.47 -  3.52, it would appear that the optimal response is 

achieved for an inflation duration of 20 seconds, which is confirmed by the 

results obtained from the computer program. An inflation duration of 20 

seconds produces an increase in blood flow of 9.81% over and above resting 

blood flow. The complete set of results calculated by the program along with 

their standard deviations is given in table 3.6.

Inflation
duration
(seconds)

5 10 15 20 25 30

% change 
in blood 
flow

-1.27 6.44 5.87 9.81 2.51 -2.72

Standard 
deviation 
(2 d.p)

3.44 4.90 4.46 7.41 4.68 6.30

Table 3.6 The percentage change in blood flow arising during compression 

with the uniform thigh cuff, as compared with a baseline extrapolated from the 

resting periods pre and post compression for differing inflation durations; and 

the associated standard deviations.

Therefore, the optimal compression period using the uniform thigh cuff is of 20 

seconds duration. In comparison, a 15 second inflation duration produced 

optimal results for the whole leg garment, giving rise to a 9.21% increase in 

blood flow during compression as compared with resting blood flow. Hence, a 

longer period of thigh compression is required to produce a similar increase in 

blood flow during compression as a shorter duration of whole leg 

compression.
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The effect of altering the deflation duration on distal arterial blood flow was 

investigated through studies which maintained an inflation period of 15 

seconds and a pressure of 60mmHg. The deflation duration was increased 

from 15 to 60 seconds in increments of 15 seconds. The graphs obtained did 

not reveal any great differences between the results obtained for the varying 

deflation periods, as demonstrated in figures 3.53 -  3.56.
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Figure 3.53 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a deflation duration of 15 seconds.
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Figure 3.54 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a deflation duration of 30 seconds.
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Figure 3.55 The distal arterial blood flow response obtained whilst using the

uniform thigh compression cuff at a deflation duration of 45 seconds.
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Figure 3.56 The distal arterial blood flow response obtained whilst using the 

uniform thigh compression cuff at a deflation duration of 60 seconds.

Results extrapolated from the computer program demonstrated that in each 

case a net increase in blood flow was produced during the compression 

period, however optimal results were obtained for 15 and 45 seconds.

Deflation
duration
(seconds)

15 30 45 60

% change in 
blood flow

6.71 1.26 5.87 0.97

Standard 
deviation 
(2 d.p)

11.94 9.95 4.46 14.41

Table 3.7 The percentage change in blood flow arising during compression

with the uniform thigh cuff, as compared with a baseline extrapolated from the 

resting periods pre and post compression for differing deflation durations; and 

the associated standard deviations.
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As demonstrated by table 3.7, the greatest percentage change in blood flow 

arising during compression was obtained for 15 seconds deflation, although 

45 seconds deflation also produced a significant result. This was also the 

case for the Huntleigh DVT 30 cuff. A deflation period of 15 seconds is 

generally considered to be too short a time scale for complete venous refilling. 

Some patients may have a short venous refill time due to venous valve 

incompetence and would therefore benefit from a short deflation period; 

however, a deflation duration of 45 seconds would be more widely acceptable 

allowing an adequate period for all differing venous refill times. A high 

standard deviation of 11.94% was obtained for 15 seconds, in comparison 

with the lower 4.46% which was obtained for 45 seconds; verifying the 

conclusion that 45 seconds deflation would be preferable.

Similar investigations were also conducted to examine the effect of thigh 

compression on distal venous blood flow. The effects of altering the pressure, 

the inflation duration and the deflation duration of thigh compression were 

examined on distal venous blood flow.

As with the Huntleigh DVT 30 cuff, the initial venous study results obtained for 

the uniform thigh cuff required repeating with randomised settings, in order to 

account for the effect of arterial relaxation over time. The following figures 

demonstrate the initial non-randomised results obtained with the uniform thigh 

compression cuff.
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Figure 3.57 The mean peak venous blood flow velocity post compression 

obtained for pressures in the range 50 to 90 mmHg using the uniform thigh 

compression cuff.
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Figure 3.58 The mean duration of venous blood flow post compression for 

pressures in the range 50 to 90mmHg, using the uniform thigh compression 

cuff.
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Figure 3.59 The mean peak venous blood flow velocity post compression 

obtained for inflation durations in the range 5 to 30 seconds, using the uniform 

thigh compression cuff.
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Figure 3.60 The mean duration of venous blood flow post compression for 

inflation durations in the range 5 to 30 seconds, using the uniform thigh 

compression cuff.
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Figure 3.61 The mean peak venous blood flow velocity post compression 

obtained for deflation durations in the range 15 to 60 seconds, using the 

uniform thigh compression cuff.
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Figure 3.62 The mean duration of venous blood flow post compression for 

deflation durations in the range 15 to 60 seconds, using the uniform thigh 

compression cuff.
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Therefore, the effects of altering the pressure, and cycle duration of uniform 

thigh compression on distal venous blood flow was re-examined using the 

randomised method as previously utilised for the Huntleigh DVT 30 cuff.

The results obtained from the randomised experiments were not in complete 

agreement with the results previously attained, as demonstrated below.

Figures 3.63 -3.65 are the results obtained for the effect of altering the 

pressure of compression on distal venous blood flow. A cycle of 15 seconds 

compression and 45 seconds deflation was maintained throughout, whilst the 

pressure settings ranged from 50 to 90 mmHg in increments of 10mmHg.
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Figure 3.63 The mean peak venous blood flow velocity post compression for 

pressures in the range 50 to 90 mmHg, using the uniform thigh compression 

cuff. These results were obtained using the randomised method.
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Figure 3.64 The duration of venous blood flow post compression for 

pressures in the range 50 to 90 mmHg, using the uniform thigh compression 

cuff. These results were obtained using the randomised method.
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Figure 3.65 The approximate volume of venous blood flow post compression 

for pressures in the range 50 to 90 mmHg, using the uniform thigh 

compression cuff. These results were obtained using the randomised method.
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These results display a similar trend to those obtained whilst using the 

Huntleigh DVT 30 cuff, although the magnitudes of the individual results are 

greater for the Huntleigh DVT 30 cuff. It would appear that varying the 

pressure of uniform thigh compression between the moderate pressure range 

of 50 to 90 mmHg does not impart an effect on the distal venous circulation. 

The one way ANOVA substantiated this finding, revealing that there were no 

significant differences between the different pressures examined; p=0.124 for 

peak velocity, p=0.252 for duration and p=0.442 for approximate volume. 

Since the pressure of compression does not affect the post compression distal 

venous blood flow response, the optimal pressure of thigh compression which 

may be used to concurrently enhance distal arterial and venous blood flow 

may be governed by the results obtained from the arterial studies.

The effect of altering the inflation duration of uniform thigh compression on 

distal venous blood flow produced the following results (figures 3.66 -  3.68). 

The pressure was maintained at 60 mmHg, and the deflation duration at 45 

seconds. The inflation settings were randomised between 5 and 30 seconds 

in increments of 5 seconds, ensuring 10 measurements for each inflation 

setting within each test.
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Figure 3.66 The mean peak venous blood flow velocity post compression for 

inflation durations in the range 5 to 30 seconds, using the uniform thigh 

compression cuff. These results were obtained using the randomised method.
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Figure 3.67 The duration of venous blood flow post compression for inflation

durations in the range 5 to 30 seconds, using the uniform thigh compression

cuff. These results were obtained using the randomised method.
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Figure 3.68 The approximate volume of venous blood flow post compression 

for inflation durations in the range 5 to 30 seconds, using the uniform thigh 

compression cuff. These results were obtained using the randomised method.

From these graphs, it can be seen that there is a clear trend; the longer the 

period of compression, the greater the distal venous response. This seems to 

be a reasonable result; the longer the period of compression, the greater the 

volume of blood trapped distally and hence the greater the peak velocity, 

duration and volume of venous blood flow released on deflation of the cuff. 

Therefore, to produce an optimal venous response, a long inflation duration is 

required. The one-way ANOVA confirmed this trend, revealing that there was 

a statistically significant difference between the varying compression periods; 

p < .005 for peak velocity, duration and approximate volume. Multiple 

comparisons with Tukey’s HSD test demonstrated that there were significant 

differences between the majority of consecutive pairs of inflation periods;
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therefore, each 5 second increase in compression period produced a 

statistically significant improvement in the distal venous response.

However, the results of the arterial study demonstrated beneficial results for 

10 to 20 seconds compression, with a 20 second inflation duration producing 

the optimal response. It would seem that a compromise needs to be arrived 

at. In order to facilitate this decision, further investigations into the optimal 

compression period were undertaken with Photoplethysmography (PPG).

Using a pressure of 60mmHg, and a deflation period of 45 seconds, the 

compression periods 15, 20, 25 and 30 seconds were investigated. PPG 

sensors were placed on the sole of the foot and behind the medial malleolus, 

and a blanket was placed over both legs. Compression was commenced 

immediately following calibration of the PPG device, and was continued for a 

total duration of 10 minutes. This was repeated 10 times for each inflation 

period, and the signals were then averaged together. The results obtained are 

demonstrated in the following pages (figures 3.69 -  3.72).

The graphs represent changes in microcirculatory blood volume; an increase 

in the signal represents a decrease in blood volume, whilst a decrease in the 

signal represents an increase in blood volume. As can be seen from the 

graphs, the shape of the signal is consistent for the different compression 

durations
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Figure 3.69
Thigh cuff, 15 seconds inflation, 45 seconds defla tion , 60m m Hg

(average of 10 signals)
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Figure 3.70

Thigh cuff, 20 seconds inflation, 45 seconds deflation, 60mmHg
(average of 10 signals)
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Thigh cuff, 25 seconds inflation, 45 seconds deflation, 60mmHg
(average of 10 signals)
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Figure 3.71
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Figure 3.72

Thigh cuff, 30 seconds inflation, 45 seconds deflation, 60mmHg 
(average of 10 signals)
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During compression (as indicated by the period between ‘on’ and ‘off’ in the 

graphs), there is a peak in the signal, indicative of an initial decrease followed 

by an increase in blood volume. When compression is started, there may 

initially be a suction effect, whereby blood is drawn up the venous circulation, 

therefore decreasing the distal blood volume. Once the veins are completely 

closed, blood volume starts to increase as blood is trapped distally. On 

deflation of the cuff, distal blood volume decreases once again (although not 

to the same extent as during compression), due to the trapped blood being 

released. Following this, blood volume slowly increases to a normal level 

before compression is resumed.

In the 20, 25 and 30 second inflation duration graphs, there appears to be an 

overall reduction in blood volume over the first 3 cycles of compression, 

before reaching a relatively constant level for the remainder of the signal. 

There may not be a greater reduction in blood volume due to the absence of 

venous insufficiency.

From the results obtained for the PPG experiments, a compression period of 

30 seconds seems to produce the greatest reduction in blood volume within 

each cycle. However, a more objective analysis is required. The blood volume 

approximation used to determine the optimal inflation period for the Huntleigh 

DVT 30 compression cuff may also be used in this instance. The results are 

demonstrated in the table and graph below.
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Inflation duration (seconds) Approx. volume per 10 minutes 
compression (3s.f.)

15 348
20 387
25 433
30 421

Table 3.8 The approximate volume emptied in 10 minutes of compression 

for different inflation durations.
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Figure 3.73 The approximate volume emptied during 10 minutes of 

compression for different inflation durations.

From graph 3.73 it can be seen that a compression period of 25 seconds 

produces the greatest reduction in venous blood volume over a 10 minute 

period. Therefore, it would seem that for thigh compression, the optimal 

inflation duration is of 25 seconds duration.
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Finally, the effect of altering the deflation duration on distal venous blood flow 

was investigated. As with the study for whole leg compression, the deflation 

duration was varied between 15 and 60 seconds in increments of 5 seconds, 

whilst the pressure was maintained at 60mmHg and the inflation duration at 

15 seconds.

The results obtained from investigations which examined the effect of altering 

the deflation duration of uniform thigh compression on distal venous blood 

flow, demonstrated a different trend to that which was observed with the 

Huntleigh DVT 30 cuff. Upon increasing the deflation duration of the Huntleigh 

DVT 30 cuff, an increase in the distal peak venous velocity and approximate 

venous volume was observed, however, whilst using uniform thigh 

compression, varying the duration of deflation did not have an effect on the 

distal venous response. Figures 3.74 -  3.76 demonstrate the results obtained.
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Figure 3.74 The mean peak venous blood flow velocity post compression for 

deflation durations in the range 15 to 60 seconds, using the uniform thigh 

compression cuff. These results were obtained using the randomised method.
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Figure 3.75 The mean duration of venous blood flow post compression for

deflation durations in the range 15 to 60 seconds, using the uniform thigh

compression cuff. These results were obtained using the randomised method.
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Figure 3.76 The approximate volume of venous blood flow post compression 

for deflation durations in the range 15 to 60 seconds, using the uniform thigh 

compression cuff. These results were obtained using the randomised method.

It appears that altering the deflation duration does not seem to impart an 

effect on the distal venous blood flow response following cuff deflation. This is 

supported by the one-way ANOVA, which demonstrated that there were no 

significant differences between deflation durations for peak velocity, p=0.928, 

duration of venous blood flow, p=0.837, and approximate volume, p=0.977.

Therefore, for uniform thigh compression, the optimal pressure and deflation 

duration would be consequent upon the results of the arterial study.
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The effect of altering the deflation duration of an IPC regime appears to impart 

a different effect on the distal venous circulation dependant on whether 

uniform whole leg or uniform thigh compression is being used. Investigations 

of uniform thigh compression did not reveal any differences in the distal 

venous response achieved for the range of deflation periods implemented, 

whilst uniform whole leg compression demonstrated an increase in peak 

venous velocity following cuff deflation for increasing deflation durations. This 

could be related to the location of the compression cuff; the Huntleigh DVT 30 

cuff being in closer proximity to the distal circulation than the thigh cuff.

Laser Doppler flowmetry was similarly implemented with the uniform thigh cuff 

to determine the effect of compression on distal tissue blood perfusion. Figure 

3.77 displays the signal obtained.

Distal skin blood perfusion before, during and after compression. Uniform thigh 
cuff, 15s compression, 45s deflation, at 60mmHg.
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Figure 3.77 Distal skin blood perfusion in the foot of a healthy volunteer 

during compression with the uniform thigh compression cuff.
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The graph above demonstrates that uniform thigh compression does increase 

blood perfusion in distal tissues; however, the magnitude of the increase is 

greater for uniform whole leg compression than for uniform thigh compression.

3.3.2.1 Summary of uniform thigh cuff findings

The investigations carried out have revealed that there is a distal 

haemodynamical response associated with the uniform thigh compression 

garment. In summary, the optimal uniform thigh compression cycle for 

enhancing both the distal arterial and venous blood flows would involve a 

pressure of 60mmHg, a compression period of 25 seconds and a deflation 

period of 45 seconds.
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3.4 Conclusions for Investigations with Uniform Compression Cuffs

Investigations of the distal haemodynamical effects of uniform whole leg and 

uniform thigh compression have revealed that, in the first instance, there is a 

distal blood flow response to compression of the entire leg, and to 

compression of part of the leg; and in the second instance, that this distal 

haemodynamical response may be optimised by varying different aspects of 

the compression sequence.

The following six figures (figures 3.78 -  3.82) summarise and compare the 

results obtained for varying the compression duration for the two uniform 

compression garments.
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Figure 3.78 A comparison of the percentage change in arterial blood flow 

arising during compression as compared with resting blood flow pre and post 

the compression period for uniform whole leg compression and uniform thigh 

compression.
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Figure 3.79 The standard deviations associated with the percentage change 

in arterial blood flow arising during the compression period as compared with 

resting blood flow, for uniform whole leg compression and uniform thigh 

compression.

From figure 3.78, it can be seen that the results obtained using the computer 

program, which demonstrate the percentage change in arterial blood flow 

arising during the compression period as compared with resting blood flow pre 

and post compression, are similar for the two differing uniform compression 

garments. The graphs are a similar shape; however, the peak in each graph 

corresponds to a different inflation duration; 15 seconds for whole leg 

compression, and 20 seconds for thigh compression. The physiology behind 

the arterial hyperaemia is unclear; however it appears to have been induced 

by changes arising in the venous circulation during compression.
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The standard deviations of the computer program results are shown in figure 

3.79. The graphs representing the different cuffs display similar trends; 

however, the standard deviations associated with the thigh cuff are lower than 

those obtained for whole leg compression. The standard deviations are quite 

high, which is in accordance with a low repetition of results, which were all 

extrapolated from one individual; however, due to the number of differing 

variables, and hence the number of experiments which needed to be 

conducted in order to optimise a compression technique, it was not possible to 

conduct any further investigations on additional volunteers. The techniques 

used aimed to distinguish which compression garment and sequence should 

be further investigated on a number of healthy individuals and patients with 

leg ulcers, in the most scientific / objective method possible. It is assumed that 

if the results had been repeated a greater number of times, these standard 

deviations would reduce.

Therefore, from figures 3.78 and 3.79, there does not appear to be a 

significant difference between the effect imparted on distal arterial blood flow 

by uniform whole leg compression and uniform thigh compression, except that 

a longer compression duration is required with the thigh cuff in order to 

produce a similar increase in arterial blood flow to that produced with a shorter 

duration of whole leg compression.

Figures 3.80 -  3.82 compare the results obtained from the venous studies for 

each of the uniform compression garments.
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Figure 3.80 A comparison of the mean peak venous velocities obtained post 

compression associated with varying compression durations, for uniform 

whole leg and uniform thigh compression.
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Figure 3.81 A comparison of the mean venous blood flow durations obtained 

post compression, associated with varying inflation durations, for uniform 

whole leg and uniform thigh compression.
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Figure 3.82 A comparison of the approximate venous volume post 

compression, associated with varying inflation durations, for uniform whole leg 

and uniform thigh compression.

It can be seen from figures 3.80 -  3.82 above that there is a very clear trend 

in the distal venous response to compression. As previously mentioned, the 

longer the compression duration the greater the peak velocity, duration and 

approximate volume of distal venous blood flow. The graphs above display 

the conformity of the results obtained for the different compression garments; 

thigh compression however produces much lower results to those obtained 

using whole leg compression. As demonstrated earlier in the chapter, blood is 

trapped distally in the foot during whole leg compression and in the foot and 

calf during thigh compression. Blood trapped in the foot will be at a much 

greater pressure than blood trapped in the foot and calf, producing higher
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venous velocities and volumes when the trapped blood is released. However, 

thigh compression does also impart a similar effect on distal blood flow, 

although not of the same magnitude.

The following figure 3.83 displays the volume of blood emptied from the 

venous circulation during 600 seconds of compression for the longer inflation 

durations.
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Figure 3.83 A comparison of the volume of venous blood emptied during 600 

seconds of compression associated with varying inflation durations for uniform 

whole leg and uniform thigh compression.

Similarly, the volumes of venous blood emptied over a period of 600 seconds, 

are greater for whole leg compression than for thigh compression, and the
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peak values correspond to differing compression durations; 20 seconds for 

whole leg compression, and 25 seconds for thigh compression. It can 

therefore be inferred from these results that the compression duration which 

produces the optimal venous emptying would also produce the optimal arterial 

supply.

By comparison of the results obtained using the different uniform compression 

garments, it can be seen that the underlying mechanisms which initiate 

changes in the distal circulation are the same, although activated to a lesser 

extent with thigh only compression. This result demonstrates the feasibility 

and efficacy of utilising thigh only compression in those situations where 

whole leg compression may not be viable, for example, in those patients with 

chronic leg ulceration of the lower limb.
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Chapter 4: Preliminary Investigations: Multiple Chamber Compression

4.1 Introduction

In chapter 3, it was discovered that uniform compression of the whole leg and 

of the thigh imparted an effect on the distal circulation of a healthy volunteer; 

and optimal compression sequences were obtained for each of the garments. 

In this chapter, using results obtained from the previous chapter, 

investigations aim to discover whether multiple chamber compression 

similarly affects the distal blood flow of a healthy volunteer, and also to obtain 

the optimal operating sequence for each of the garments.

4.2 Methods

4.2.1 Variables

The investigations in this chapter implemented the 3 chamber whole leg 

compression cuff and the 3 chamber thigh compression cuff. In each of the 

garments, the widths of the individual chambers were approximately equal.

For the purpose of investigating the distal haemodynamical response of the 

multiple chamber garments, seven different cycles were constructed which 

covered all possible variations in the compression sequence. In each of the 

block diagrams, the red box represents the first chamber, which is the most 

distal of the three chambers; the green box represents the middle chamber, 

and the blue box represents the most proximal chamber. The seven cycles 

are as follows.
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Cycle 1
Pressure: 60mmHg,

Sequence: 30s compression, 45s deflation in each chamber,

staggered by 15s,

Single cycle time: 75s.

Chamber 1

Chamber 2

Chamber 3

0 15 30 45 60 75 90 105 120 135

Time (seconds)

Cycle 2
Pressure: 60mmHg,

Sequence: 10s compression, 15s deflation in each chamber,

staggered by 5s.

Single cycle time: 25s.

0 10 20 30 40 50 60 70  80 90

T im e (seco n ds)
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Cycle 3
Pressure: 60mmHg,

Sequence: 30s compression, 30s deflation in each chamber,

staggered by 15s.

Single cycle time: 60s.

      *
0 15 30 45 60 75 90 105 120 135

Time (seconds)

Cycle 4
Pressure: 60mmHg,

Sequence: 10s compression, 10s deflation in each chamber,

staggered by 5s.

Single cycle time: 20s.

0 10 20 30 40 50 60  70 80 90

T im e  (seco n ds)
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Cycle 5
Pressure: 60mmHg,

Sequence: Chamber 1: 15s compression, 5s deflation,

Chamber 2 & 3: 10s compression, 10s deflation,

Chamber 2 starts at 5s, chamber 3 starts at 12s.

Single cycle time: 20s.

0 10 20 30 40 50 60 70 80 90

Time (seconds)

Cycle 6
Pressure: 60mmHg,

Sequence: Chamber 1: 30s compression, 10s deflation,

Chamber 2 & 3: 20s compression, 20s deflation, 

Chamber 2 starts at 10s, chamber 3 starts at 25s. 

Single cycle time: 40s.

0 10 20 30 40 50 60 70 80 90

T im e  (seco n d s )

182



Cycle 7
Pressure: 60mmHg,

Sequence: Chamber 1: 30s compression, 10s deflation,

Chamber 2: 25s compression, 15s deflation,

Chamber 3: 20s compression, 20s deflation,

Chamber 2 starts at 10s, chamber 3 starts at 25s.

Single cycle time: 40s.

          *
0 10 20 30 40 50 60 70 80 90

Time (seconds)

Cycles 1 and 2 involve a similar configuration; however, cycle 2 is a shorter 

duration version of cycle 1. The same is true of cycles 3 and 4. Cycles 1 , 2 , 3  

and 4 were decided upon in order to compare a variety of factors; firstly, a 

long versus a short cycle; and secondly, a complete deflation period following 

each individual cycle (as seen in cycles 1 and 2) versus continuous 

compression (cycles 3 and 4).

The aim of cycles 5, 6 and 7 is to prevent venous reflux. The distal chamber 

inflates and pushes blood along the veins. The middle chamber then inflates, 

pushing blood further along the venous circulation. The proximal chamber
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inflates before the first and second chambers deflate, therefore when the 

distal chambers simultaneously deflate, the inflated proximal chamber 

prevents reverse venous flow. The distal chamber then re-inflates before the 

proximal chamber deflates. This cycle is proposed to be beneficial in those 

patients with incompetent venous valves. Cycle 5 is a shorter duration version 

of cycle 6, whilst cycle 7 is similar to 6; although the first and second 

chambers deflate independently.

From the results obtained for the uniform compression garments, it was 

decided to conduct all investigations at a pressure of 60mmHg. The deflation 

durations implemented in cycles 1 and 2 were the deflation durations which 

produced optimal results with the uniform compression garments; 15 and 45 

seconds, whilst 30 seconds compression was decided upon since optimal 

venous results were obtained for longer inflation durations.

4.2.2 Data Acquisition

The methods of data collection were similar to those implemented for the 

uniform compression cuffs, as described in chapter 3.2.2.

However, it was not possible to obtain a single pump which was capable of 

sequentially inflating the three chambers in each cuff; therefore three Flowpac 

pumps were used, where each chamber was connected to an individual 

Flowpac pump. This required each pump to be started at a different time, 

dependant upomthe timings of the cycle.
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4.2.3 Data Analysis

The arterial studies were repeated three times. The results were then 

analysed as described in chapter 3.2.3.

The venous results were repeated three times, providing 20 data values for 

each cycle investigated. The results were similarly analysed as detailed in 

chapter 3.2.3.

PPG signals were collected for each cycle. At least three signals of varying 

lengths (between 600 and 1800 seconds) were collected per cycle, however it 

was not possible to average the signals together, due to differences in the 

start time, and duration of each signal. The PPG results were used to 

determine whether the compression sequence of the multiple chamber 

garments had an effect on distal microcirculatory blood volume.
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4.3 Results and Discussion

4.3.1 Three Chamber Whole Leg Cuff

Sequential compression is routinely implemented for enhancing venous 

return. The compression ‘wave’ which progresses up the limb accelerates 

venous blood back towards the heart. The first objective of the studies with 

the three chamber whole leg cuff was to determine whether or not sequential 

compression impinged on a distal arterial hyperaemia. However, results 

indicated that sequential compression produced both a distal venous and a 

distal arterial blood flow response.

The following figures demonstrate the distal arterial response to three 

chamber whole leg compression for each of the seven differing cycles. The 

time averaged maximum (TAM) blood flow velocity was recorded every 5 

seconds, as with previous studies, for a test which comprised 180 seconds 

without compression, ten cycles of compression, and a further 180 seconds 

without compression. In figures 4.1 -  4.7, the coloured vertical lines represent 

the start of compression for each of the three chambers; red for chamber 1, 

green for chamber 2 and blue for chamber 3. The grey line indicates the end 

of ten cycles of compression.

Three sets of data were collected for each cycle, which were normalised and 

averaged together and plotted in the following graphs.
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Figure 4.1 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 1 (30 s compression, 45 s 

deflation in each chamber, staggered by 15 s).
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Figure 4.2 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 2 (10 s compression, 15 s 

deflation in each chamber, staggered by 5 s).
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Figure 4.3 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 3 (30 s compression, 30 s 

deflation in each chamber, staggered by 15 s).
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Figure 4.4 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 4, (10 s compression, 10 

s deflation in each chamber, staggered by 5 s).
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Figure 4.5 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 5, (15 s compression, 5 s 

deflation in chamber 1; and 10 s compression, 10 s deflation in chambers 2 

and 3). The grey lines represent the start of each compression cycle. It was 

not possible to insert additional lines in this figure.
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Figure 4.6 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 6, (30 s compression, 10 

s deflation in chamber 1; and 20 s compression, 20 s deflation in chambers 2 

and 3).
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Figure 4.7 The distal arterial blood flow response obtained whilst using the 

three chamber whole leg compression cuff for cycle 7, (30 s compression, 10 

s deflation in chamber 1; 25 s compression, 15 s deflation in chamber 2; and 

20 s compression, 20 s deflation in chamber 3).

These graphs are more complicated than those obtained for the uniform 

compression garments. It is very difficult to determine whether there is a 

regular response due to the sequential nature of each cycle. However, the 

graphs obtained for cycles 1 and 6 do seem to demonstrate a regular 

increase in blood flow throughout the ten cycles of compression. In cycle 1 

there appears to be a peak in the graph following each blue line which would 

indicate an increase in distal arterial blood flow on deflation of chamber 1; 

whilst in cycle 6 there seems to be a peak on or near to each red line, which 

would correspond to an increase in blood flow following the simultaneous 

deflation of chambers 1 and 2. Cycles 1 and 6 are long cycles in comparison 

with cycles 2, 4 and 5. The length of the cycle could determine whether or not 

a response is demonstrated in the graphs. A long cycle would enable a
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hyperaemia to occur and for it to be detected before another compression 

cycle commences; whilst in the shorter cycles, a hyperaemia may still occur, 

however, it may be detected at different instances within the compression 

cycle. For example, in figure 4.5, there appears to be a gradual increase in 

arterial blood flow over the first three cycles of compression, which then 

decreases before increasing again over the last three cycles. The data was 

entered into the computer program for determining the percentage change in 

blood flow which occurs during the compression period as compared with 

resting flow pre and post compression; and hence an objective comparison of 

the differing sequential cycles was obtained. The results, along with their 

associated standard deviations are displayed in table 4.1.

Cycle 1 2 3 4 5 6 7
% change 
in blood 
flow

23.10 19.66 -5.09 9.33 22.53 17.72 15.77

% standard 
deviation 

_(2d.p)

21.61 14.81 2.20 6.44 26.59 7.49 14.23

Table 4.1 The percentage change in blood flow arising during 

compression with the three chamber whole leg cuff, as compared with a 

baseline extrapolated from the resting periods pre and post compression for 

the seven different cycles; and the associated standard deviations.

The lowest percentage change in arterial blood flow occurs for cycles 3 and 4, 

which do not have a total deflation period. This could imply that for a 

hyperaemia to occur, a period of no compression is required; this would 

accord with previous studies of proximal effects (Morris and Woodcock 2002).

191



The results obtained for the percentage change in blood flow do appear to 

agree with the graphs (figures 4.1 -  4.7). The graphs obtained for cycles 3 

and 4 do not seem to demonstrate any variation in distal arterial blood flow 

during the compression period from the resting periods, which would concur 

with the results obtained from the computer program. The greatest arterial 

response was obtained for cycle 1, which again corresponds with the 

noticeable increases in blood flow displayed in the graph. Cycle 5 however, 

produces an unexpectedly high increase in arterial blood flow during 

compression, which is comparable to that which was obtained with cycle 1. 

Cycle 5 is a very rapid cycle; each rotation is only of 20 seconds duration, 

however, as previously described, a gradual increase in arterial blood flow is 

apparent over the first three and last three cycles of compression, which 

would explain the high percentage increase in arterial blood flow during the 

compression period.

The standard deviations associated with these percentage changes vary 

considerably between the different cycles. The low standard deviations for 

cycles 3, 4 and 6 would imply that their results are fairly reliable; however, the 

standard deviations associated with cycles 1 and 5 are very high, which would 

indicate that there is a considerable range in the data values. Further 

repetitions of the tests would aim to reduce the degree of error and therefore 

the standard deviation associated with the results; however, due to the 

number of variables being investigated and consequently the number of 

studies, along with a limited timescale, this was not possible, and therefore 

the most scientific conclusions were to be drawn from the results obtained.
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It would seem therefore that the optimal sequential cycles for improving distal 

arterial blood flow with the 3-chamber whole leg garment are cycles 1, 2 and 

5. The results of the venous studies in conjunction with the results of the 

arterial studies should clarify whether one of these cycles is more favourable 

than the others.

The seven different cycles were investigated for their effects on the distal 

venous circulation. The peak velocity, duration and approximate volume were 

recorded following each chamber deflation. For cycles 1, 2 3, 4 and 7 this 

implied recording measurements three times per cycle; whilst cycles 5 and 6 

only incurred 2 deflations, since the distal and middle chambers deflated 

simultaneously. However, it was found that not all deflations incurred a result. 

Cycles 1, 2, 3 and 4 only produced a result for the deflation of the most distal 

and middle chambers. The proximal chamber could be too far away to impart 

any considerable effect on the distal vasculature which is capable of being 

detected by Doppler ultrasound. Similarly, for cycles, 5, 6 and 7 there was no 

distal venous response detected when the proximal chamber deflated. In this 

case however; the first chamber has re-inflated before the proximal chamber 

has deflated, therefore hindering a distal venous response when the proximal 

chamber does deflate.

The number of results produced per individual cycle varied between the 

different sequences, therefore, in order to compare the results obtained from 

differing cycles,-the results were added together for the different chamber
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deflations, before mean values were calculated in SPSS. This enabled direct 

comparison of the results obtained for a single repetition of each cycle.

The following graphs (figures 4.8 -  4.10) demonstrate the results obtained for 

the mean peak velocity, mean duration and mean approximate volume of 

distal venous blood flow for each of the seven different cycles.
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Figure 4.8 The mean peak venous blood flow velocity following the 

deflation of the distal and middle chambers of the 3-chamber whole leg 

compression garment for each cycle of the seven different sequences.
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Figure 4.9 The mean duration of venous blood flow following the deflation 

of the distal and middle chambers of the 3-chamber whole leg compression 

garment for each cycle of the seven different sequences.
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Figure 4.10 The mean, approximate volume of venous blood flow following 

the deflation of the distal and middle chambers of the 3-chamber whole leg 

compression garment for each cycle of the seven different sequences.

Figures 4.8 -  4.10 demonstrate the results obtained per individual cycle. As 

can be seen from these graphs, the longer cycles (cycles 1, 3, 6 and 7) 

produce the greatest distal venous response per cycle. This is a reasonable 

result to acquire. The longer the compression period, the greater the volume 

of blood which is trapped distally in the foot and therefore the greater the peak 

velocity, duration and volume of venous blood which is accelerated along the 

venous circulation back towards the heart on deflation of each chamber of the 

compression cuff.

The one way ANOVA confirmed the presence of significant differences 

between the cycles for peak velocity (p < .005), duration (p=.001), and
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approximate volume (p < .005). In general, the multiple comparisons 

corroborated the finding that the longer cycles produced a significantly greater 

distal venous blood flow response than the shorter cycles (cycles 2, 4 and 5).

These results however are indicative of the distal venous response per cycle, 

where the seven cycles used in these investigations range in length from 20 

seconds to 75 seconds. Even though the long cycles produce the greatest 

results for each repetition of the sequence, over a given period of time, the 

shorter sequences will incur a greater number of repetitions, and may 

therefore produce an overall greater distal venous response. To analyse this, 

the volume of venous blood emptied from the distal vasculature over 600 

seconds compression was determined for each cycle. The results are 

demonstrated in table 4.2, and figure 4.11.

Cycle Approx. volume per 600 seconds 
compression (cm3, 3s.f.)

1 582
2 915
3 639
4 820
5 1756
6 1353
7 1139

Table 4.2 The approximate volume of venous blood emptied with the 3- 

chamber whole leg compression cuff during 600 seconds of compression for 

each of the seven different cycles.
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Figure 4.11 The mean volume of distal venous blood emptied with the 3- 

chamber whole leg compression cuff during 600 seconds of compression for 

each of the seven different cycles.

This graph displays a completely different result to that which was obtained 

per cycle. Over a period of 600 seconds, the shorter cycle 5 produces the 

greatest distal venous emptying. This result is in agreement with the results 

obtained from the distal arterial studies, where cycle 5 produced an increase 

in arterial blood flow during compression of 22.53% as compared with the 

resting period’s pre and post compression. It is also to be expected that the 

cycle which produces the greatest arterial supply should also as a 

consequence produce the greatest venous drainage. Cycle 2 produces an 

interesting result between the two studies, generating an increase in distal
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arterial blood flow of 19.66%, and a greater distal venous response than 

cycles 1, 3 and 4. Cycles 2 and 5 are of a similar duration, 25 and 20 seconds 

respectively, however, cycle 2 has a complete ‘off’ period, whilst cycle 5 

involves continuous compression. It had been expected that a total deflation 

period would be required in order to obtain a distal arterial response; however, 

from these results this does not appear to be the case. Perhaps further 

investigations could compare the distal blood flow response obtained with 

cycles 2 and 5.

The following figures 4.12 and 4.13 demonstrate examples of the 

photoplethysmography (PPG) signals obtained for cycles 2 and 5. The cycle 2 

signal is of 1200 seconds duration, whilst the cycle 5 signal is of 900 seconds 

duration. The difference in the length of the signal is attributed to the timing of 

the Flowpac pumps losing their synchronicity. This proved to be a problem 

when a long test was being undertaken. The Flowpacs would be started at 

their correct timings, and within a few minutes, the pumps would have lost 

their co-ordination. This was also more of a problem with the shorter cycles, 

and especially with cycle 5, which required the simultaneous deflation of two 

of the chambers.

PPG sensors were placed on the sole of the foot, and also above the medial 

malleolus. In the following graphs, the pink line represents the signal obtained 

from the sole of the foot, and the blue line from the ankle.
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3 chamber whole leg garment. Cycle 2, 60mmHg.
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Figure 4.12 The photoplethysmography signal obtained from the sole of the 

foot and the ankle, whilst using the 3-chamber whole leg compression cuff 

with cycle 2.

2 0 0



3 chamber whole leg garment. Cycle 5, 60mmHg.
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Figure 4.13 The photoplethysmography signal obtained from the sole of the 

foot and the ankle, whilst using the 3-chamber whole leg compression cuff 

with cycle 5.

In both figures 4.12 and 4.13, there appears to be a generally increasing trend 

to the signals, which implies that the microcirculatory blood volume is 

decreasing. In the graphs obtained from the PPG studies, an increase in the 

signal represents a decrease in blood volume, whilst a decrease in the signal 

is indicative of an increase in blood volume. Therefore, a decrease in the 

venous microcirculatory blood volume indicates that compression is promoting 

the return of venous blood to the heart.

In conjunction with the variation in blood volume per cycle, and the general 

trend for the blood volume to be gradually decreasing, there could also be a
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rhythmic thermoregulatory variation in blood volume during the signals 

obtained for both cycles.

It would seem therefore, that cycle 5 is the optimal sequence with the 3- 

chamber whole leg compression cuff, whilst cycle 2 also produces favourable 

results, although not quite of the same magnitude as cycle 5.

202



4.3.2 Three Chamber Thigh Cuff

The same seven cycles were investigated using the 3-chamber thigh garment; 

however, prior to the commencement of the tests, the effects of the sizes of 

the chambers in the thigh garment were investigated using 

photoplethysmography and Doppler ultrasound. It was queried whether the 

distal and proximal chambers could be narrower than the central chamber, 

which would consequently allow the central chamber to be considerably 

wider. The theory behind this configuration was that the distal and proximal 

chambers were acting as valves, preventing venous reflux, and that the larger 

central chamber was accelerating the venous blood back towards the heart. 

However, when the effectiveness of the narrow chambers was examined, they 

were demonstrated to be too narrow to produce any variation in the distal 

microcirculatory blood flow, although on examination of proximal venous 

blood flow, a response was detected for both the narrow and the larger 

chambers. The proximal venous response however, was greater for the wider 

chamber than for the narrower chambers. It was decided that three equal 

sized chambers should be used, whereby the proximal and distal chambers 

would still prevent venous reflux, whilst all three chambers would contribute to 

enhancing venous return.

The seven graphs below (figures 4.14 -  4.20) demonstrate the distal arterial 

blood flow response to compression using the 3-chamber thigh garment for 

each of the seven different corqpression sequences.
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Figure 4.14 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 1 (30 s compression, 45 s 

deflation in each chamber, staggered by 15 s).

10-

Figure 4.15 The distal arterial blood flow response obtained whilst using the
I

three chamber thigh compression cuff for cycle 2 (10 s compression, 15 s 

deflation in each chamber, staggered by 5 s).
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Figure 4.16 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 3 (30 s compression, 30 s 

deflation in each chamber, staggered by 15 s).

T im * (seconds)

Figure 4.17 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 4 (10 s compression, 10 s 

deflation in each chamber, staggered by 5 s).
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Figure 4.18 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 5 (15 s compression, 5 s 

deflation in chamber 1; and 10 s compression, 10 s deflation in chambers 2 

and 3). In this graph, the grey lines represent the start of each compression 

cycle. It was not possible to insert additional lines in this figure.

2 0 -

05-

Figure 4.19 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 6, (30 s compression, 10 s 

deflation in chamber 1; and 20 s compression, 20 s deflation in chambers 2 

and 3).
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Figure 4.20 The distal arterial blood flow response obtained whilst using the 

three chamber thigh compression cuff for cycle 7, (30 s compression, 10 s 

deflation in chamber 1; 25 s compression, 15 s deflation in chamber 2; and 20 

s compression, 20 s deflation in chamber 3).

Figure 4.19, which represents the results obtained for cycle 6, appears to 

demonstrate a regular increase in distal arterial blood flow for each repetition 

of the sequence. Nevertheless, since the baseline appears to be relatively 

high, and there are some large troughs during the compression period, it is 

difficult to determine whether or not cycle 6 produces a net increase in blood 

flow during the compression period. The remainder of the graphs obtained 

whilst using the 3-chamber thigh compression cuff demonstrate an irregular 

distal arterial blood flow response; there are hyperaemias observed during the 

compression periods, however, they do not occur regularly within the cycle. 

Figure 4.15 displays an interesting result whereby the distal arterial blood flow
i

response is characterised by a gradual increase and decrease throughout the 

duration of the compression period, which indicates a large net increase in
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arterial blood flow. Cycle 5 produced optimal results with the 3-chamber whole 

leg cuff, however, from the graph obtained for cycle 5 with the 3-chamber 

thigh garment (figure 4.18), it is difficult to say for certain whether there is an 

overall increase in distal arterial blood flow or not. The results obtained from 

the computer program aim to clarify the findings displayed in the graphs.

Cycle 1 2 3 4 5 6 7
% change 
in blood 
flow

-5.71 37.02 7.87 23.90 10.64 -10.20 -8.63

% standard 
deviation 
(2 d.p)

13.72 77.19 6.30 12.38 8.64 4.22 7.96

Table 4.3 The percentage change in blood flow arising during 

compression with the three chamber thigh cuff, as compared with a baseline 

extrapolated from the resting periods pre and post compression for the seven 

different cycles; and the associated standard deviations.

The first point worth noticing is that three out of the four longer cycles produce 

a negative percentage change in distal arterial blood flow. Cycles 1, 6 and 7 

therefore all produced a decrease in distal arterial blood flow during the 

compression period as compared with resting blood flow. This is in complete 

contrast to the results obtained with the 3-chamber whole leg cuff, where 

these three cycles all produced relatively high increases in distal arterial blood 

flow of 23.10%, 17.72% and 15.77% respectively. This could be associated 

with the ‘amount’ of limb receiving compression. The difference in the results 

between the two cuffs could be as a direct consequence of whether or not the 

calf is being compressed.
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Cycle 2 produces the greatest increase in distal arterial blood flow of 37.02%, 

confirming the results demonstrated in the graph, figure 4.15. However; the 

standard deviation associated with this result is very high at 77.19%. This 

raises the possibility of the result being an anomaly; however, since cycle 2 

also produced a relatively high result with the 3 chamber whole leg cuff, it is 

possible that cycle 2 did produce an increase in distal arterial blood flow, but, 

an unusually high result could have been obtained for one data set as 

compared with the other two data sets, resulting in a large standard deviation. 

As previously mentioned, further repetitions of the tests would aim to clarify 

whether the result obtained is a true indication of the distal blood flow 

response; however, due to time constraints this was not possible. Cycle 5 has 

also produced a net increase in distal arterial blood flow during compression, 

however, the result is approximately half the result obtained for whole leg 

compression. This is a plausible result to have obtained since less of the leg 

is receiving compression with thigh only compression as compared with whole 

leg compression.

Therefore, it would seem that cycle 2 produces the optimal results with the 3- 

chamber thigh cuff, which also produced good results with the 3-chamber 

whole leg garment; whilst cycle 5, which was optimal with the 3-chamber 

whole leg cuff, produced a good result with the 3-chamber thigh cuff. 

Dependant upon the findings of the venous studies, this result could imply that 

further investigations should be carried out to compare the two different cycles 

for one of the multiple chamber garments, or the use of the two multiple 

chamber cuffs with one of the cycles.
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The venous studies examined the effect of the seven different cycles on the 

peak velocity, duration and approximate volume of distal venous blood flow, 

with the 3-chamber thigh cuff. As with the 3-chamber whole leg garment, not 

all of the chamber deflations produced a result. In contrast to the 3-chamber 

whole leg cuff, the 3-chamber thigh cuff produced a result for all three 

chambers with cycles 1 and 3, for the middle and proximal chamber for cycle 

2, and for the middle chamber only with cycle 4, whilst the other cycles 

remained the same. A result was recorded for each chamber with the longer 

cycles 1 and 3, possibly due to the closer proximity of the chambers in the 

thigh cuff, as compared with the whole leg garment; however, the 

discrepancies with cycles 2 and 4 could be associated with the rapidity of 

these two cycles, in addition to the size of the chambers. The results obtained 

from the different chamber deflations have been summed for each cycle, and 

plotted in the following graphs.
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Figure 4.21 The mean peak venous blood flow velocity following the 

deflation of the chambers in the 3-chamber thigh compression garment for 

each cycle of the seven different sequences.
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Figure 4.22 The mean duration of venous blood flow following the deflation

of the chambers in the 3-chamber thigh compression garment for each cycle

of the seven different sequences.
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Figure 4.23 The mean, approximate volume of venous blood flow following 

the deflation of the chambers in the 3-chamber thigh compression garment for 

each cycle of the seven different sequences.

Figures 4.21 -  4.23 demonstrate the distal venous results per cycle. Once 

again, the graphs seem to imply that the longer sequences produce the 

optimal results per cycle; however, cycle 2 also appears to have produced 

reasonable results. As described earlier, this is a realistic finding; the longer 

the compression duration, the greater the volume of blood trapped distally, 

and hence the greater the peak velocity, duration and approximate volume of 

blood released on deflation of the chambers.

The one way ANOVA demohstrated that there were significant differences 

between the cycles for peak velocity (p < .005), duration (p < .005) and
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approximate volume (p < .005) of distal venous blood flow, whilst multiple 

comparisons confirmed that, in general, these differences occurred between 

the longer cycles 1, 6 and 7, and the shorter cycles.

The volume of venous blood emptied from the distal veins per 600 seconds 

has been calculated for the results obtained with the 3-chamber thigh cuff. 

Table 4.4 and figure 4.24 display the outcome of this calculation.

Cycle Approx. volume per 600 seconds 
compression (cm , 3 s.f)

1 136
2 357
3 161
4 130
5 171
6 132
7 156

Table 4.4 The approximate volume of venous blood emptied with the 3- 

chamber thigh compression cuff during 600 seconds of compression for each 

of the seven different cycles.
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Figure 4.24 The mean volume of distal venous blood emptied with the 3- 

chamber thigh compression cuff during 600 seconds of compression for each 

of the seven different cycles.

The greatest volume of distal venous blood moved during the 600 second 

time period was produced for cycle 2, which emptied 357 cm3 of blood per 

600 seconds from the distal vasculature. This result is at least double the 

volume produced with any of the other remaining six cycles. Cycle 5 produced 

the second highest result of 171 cm3 per 600 seconds. These results are 

demonstrated in figure 4.24.

The optimal venous result obtained for cycle 2 coincides with the optimal
|

result obtained from the arterial study, where cycle 2 produced an increase in 

distal arterial blood flow of 37.02% during the compression period. The same
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is true for cycle 5, which produced a 10.64% increase in distal arterial blood 

flow.

It is interesting that cycles 2 and 5, which produced the overall optimal 

performance with the 3-chamber whole leg cuff, also performed optimally with 

the 3-chamber thigh cuff. This can be seen when the results obtained for the 

percentage change in distal arterial blood flow and the volume of venous 

blood moved during a 600 second time duration for the two different 3- 

chamber cuffs are plotted on the same graph. Figures 4.25 and 4.26 compare 

the results for the 3-chamber whole leg and the 3-chamber thigh cuffs.

I T

CuffType
□  3CT
□  3CWL

Cycle

Figure 4.25 A comparison of the results obtained for the percentage change 

in distal arterial blood flow dtiring compression with cycles 1-7, for the 3- 

chamber whole leg compression cuff and the 3-chamber thigh cuff.
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Figure 4.26 A comparison of the results obtained for the volume of venous 

blood emptied during 600 seconds of compression with cycles 1-7, for the 3- 

chamber whole leg compression cuff and the 3-chamber thigh cuff.

The distal arterial results obtained with the two different 3-chamber cuffs are 

of a similar magnitude, regardless of the amount of the leg which is receiving 

compression. The percentage change in distal arterial blood flow for cycle 2 

with the 3-chamber thigh cuff, is greater than any of the results obtained with 

the 3-chamber whole leg garment, although, it is also worth mentioning that 

the standard deviation associated with this result is a very high 77.19%. One 

of the interesting aspects of; figure 4.25 is the consistency of the results 

obtained for the different cuffs. For example, it seems clear that cycle 3 is of 

no particular benefit to distal arterial blood flow, especially in comparison with
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some of the other cycles investigated; whilst cycles 2, 4 and 5 appear to 

produce consistently favourable results. The contrast in the results produced 

by cycles 3 and 4 is unexpected. Cycles 3 and 4 involve the same sequence; 

although cycle 3 is a longer duration version of cycle 4, and yet, cycle 4 has 

produced reasonably good arterial results whilst cycle 3 has performed poorly 

in comparison. On further examination of figure 4.25, it is apparent that the 

cycles which have produced the greatest distal arterial blood flow response 

are the more rapid cycles 2, 4 and 5; particularly with the 3-chamber thigh 

cuff, and it is also these cycles, in addition to cycle 3, which demonstrate an 

agreement between the results obtained for the two different cuffs. It is 

possible that the timings of the shorter cycles 2, 4 and 5, which involve single 

cycle durations of 25, 20 and 20 seconds respectively, are such that the distal 

arterial response is optimised.

Figure 4.26 compares the results obtained for the volume of venous blood 

emptied per 600 seconds of compression for each of the 3-chamber cuffs. 

The magnitude of the results obtained for the 3-chamber whole leg cuff 

significantly exceeds the magnitude of the results obtained for the 3-chamber 

thigh cuff; however, as previously mentioned, this was to be expected when 

the ‘amount’ of limb being compressed was compared. If the difference in the 

magnitude of the results is put aside, on examination of the graphs it can be 

seen that there is a resemblance between the results. Cycles 2 and 5 produce 

optimal results for each of the 3-chamber cuffs. This result in combination with 

the results demonstrated in figure 4.25 is very encouraging; both figures
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support the advantages of cycles 2 and 5 for optimally enhancing the distal 

arterial and the distal venous circulations.

Initially, it was presumed that a longer compression cycle would induce 

maximal arterial inflow and venous outflow. This supposition was based upon 

the concept that the longer the compression duration, the greater the volume 

of blood trapped distally, the greater the volume of blood released back to the 

heart on deflation of the cuff, and consequently the greater the resulting 

arterial hyperaemia. However, this presumption, whilst true for a single cycle 

of compression, did not prove to be accurate when the compression cycle 

was prolonged over a given length of time. The results have demonstrated 

that the shorter cycles are more efficient in enhancing venous return and 

consequently improving the arterial supply over the given time duration. 

Cycles 2, 4 and 5 are executed very rapidly as a consequence of their short 

cycle times, and this fast turnaround of the sequence maintains a continuous 

‘wave’ of compression up the leg, accelerating blood back towards the heart. 

Although the longer sequences, cycles 1 , 3 , 6  and 7, similarly implement a 

‘wave-like’ action up the leg, they are much slower systems, which in the first 

instance would not be moving the same volume of blood in a given time 

period, and secondly, may be impeding the arterial blood flow. The veins have 

a limited distensibility; therefore, during compression with the longer cycles, 

after a specific time duration the veins distal to the compression cuff may 

have been distended to their maximum capabilities, and are no longer able to 

accommodate any more blood; prolonging compression any further would be 

futile. In addition, the arteries could be affected by the extended compression
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period, whereby they are partially compressed, and hence the arterial flow 

could be reduced as a consequence.

The difference in the arterial results obtained for the two cuffs for cycles 1, 6 

and 7 could be associated with the ‘amount’ of the leg receiving compression. 

The 3-chamber thigh cuff produced negative results for these three cycles, 

whilst the 3-chamber whole leg cuff produced very high positive results. Since 

high percentage changes have been obtained for the 3-chamber thigh cuff 

with other cycles, for example cycles 2 and 4, the answer is not that the cuff is 

not capable of achieving a comparable arterial response to the whole leg 

garment. The solution could be related to whether or not the calf is being 

compressed. The high results demonstrated with the 3-chamber whole leg 

cuff could be as a consequence of a hyperaemia occurring due to the 

compression of the veins in the calf; whilst the negative results obtained with 

the 3-chamber thigh cuff represent an absence of an effect in the calf.

As yet, the complication of external factors has not been mentioned. Blood 

flow is highly sensitive to variations in temperature; if the surrounding 

temperature was too hot or too cold, the blood flow was affected, resulting in 

continuous forward flow (hyperaemia), as the arteries dilated or constricted 

(dependant on whether the individual was too hot or too cold) to try and 

resume a normal temperature.

Other factors which could have affected the results include the amount of time 

that the individual allowed for the blood flow to relax before commencing the
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study; how long the individual had been lying down collecting results for; 

whether there were any unexpected distractions or disturbances in the 

department which could have increased the heart rate and consequently the 

blood flow; whether the individual had recently consumed food or a 

caffeinated drink; any medications that the individual may have been taking, 

and also whether the individual smoked cigarettes. In this particular case, 

since all of the investigations were conducted on a single healthy individual, 

many of these factors were controlled, for example, the individual does not 

smoke, does not drink any caffeinated drinks during the day, and a period of 

at least 600 seconds was allowed prior to the commencement of any tests to 

let the blood flow relax.

Many PPG signals were collected for the 3-chamber thigh cuff, and as with 

the 3-chamber whole leg cuff, they varied in duration and start time, and 

therefore could not be averaged together. In order to compare with the signals 

included for the 3 chamber whole leg cuff, the following signals (figures 4.27 

and 4.28) were obtained for cycles 2 and 5 with the 3-chamber thigh cuff.
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3 chamber thigh garment. Cycle 2, 60mmHg.

1000

900

800

700

600

400

300

200

T——■ Ankle f  
1  Sole of foot f100

0
548 1095 1642 2189 2736 3283 3830 4377 4924 5471 6018 6565 7112 7659 8206 8753 9300 9847 103941

Figure 4.27 The photoplethysmography signal obtained from the sole of the 

foot and the ankle, whilst using the 3-chamber thigh compression cuff with 

cycle 2.

3 chamber thigh garment. Cycle 5, 60mmHg.
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Figure 4.28 The photoplethysmography signal obtained from the sole of the 

foot and the ankle, whilst using the 3-chamber thigh compression cuff with 

cycle 5.
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Figure 4.27 represents the signal obtained with cycle 2 over a period of 

approximately 1600 seconds, whilst figure 4.28 is that obtained for cycle 5 

over a period of 600 seconds. Even though the response demonstrated for 

cycle 2 is not as clear as that demonstrated for the 3 chamber whole leg cuff 

in figure 4.12, what is important is that a distal microcirculatory response has 

been obtained with 3-chamber thigh compression. The signal in figure 4.27 is 

of a longer duration than the signal obtained with the 3-chamber whole leg 

cuff, which should be considered when comparing the two sets of results.

The signal obtained for cycle 5 (figure 4.28) displays a very clear response. 

The amplitude of the signal is comparable if not greater than the amplitude of 

the response obtained with the 3-chamber whole leg cuff (figure 4.13). The 

effects which do not seem to be appearing in the signals obtained with the 3- 

chamber thigh cuff, are the general trend for the signal to be increasing, 

representing a decrease in microcirculatory blood volume, and the longer 

cyclic variation in the signal. However, these signals are not averages, and 

only represent a very short period of time, and if the signals were repeated 

many times, these effects could possibly become more apparent.
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4.4 Conclusion for the Preliminary Investigations

In summary, it would appear that multiple chamber compression does not0

hinder a distal arterial response, and that in some instances a net increase in 

distal arterial blood flow was observed. From the investigations carried out, it 

appeared that there were two cycles which generally exceeded the 

performance of the other five sequences with both the 3-chamber whole leg 

cuff and the 3-chamber thigh cuff; these were cycles 2 and 5, which have a 

cycle time of 25 and 20 seconds respectively.

The preliminary investigations, which have been discussed in chapters 3 and 

4, were conducted as a means of determining the optimal compression 

garment and compression sequence for enhancing the distal circulation. The 

methods used were considered to be the most practical and scientific given 

the number of different compression cuffs and sequence variations which 

required investigation within a restricted period of time. The results obtained 

are deemed to be a reasonable indication of the effects of compression on the 

distal haemodynamics. It remains to be decided which of the cuffs, with which 

sequence should be investigated further on healthy volunteers and 

subsequently on patients with chronic leg ulcers.

The optimal compression sequence obtained for each of the four compression 

garments has been compared in the following figures (figures 4.29 -  4.34). 

The figures compare the results obtained for the percentage change in distal 

arterial blood flow during compression and the associated standard deviation, 

the peak velocity, duration and approximate volume of distal venous blood
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flow per cycle, and the volume of distal venous blood flow during 600 seconds 

of compression. The optimal compression sequences for the different 

compression cuffs are given in table 4.5.

Cuff Optimal compression sequence
Huntleigh DVT 30 60mmHg,

20 seconds inflation, 
45 seconds deflation.

Uniform thigh 60mmHg,
25 seconds inflation, 
45 seconds deflation.

3-chamber whole leg 60mmHg, 
Cycle 5.

3-chamber thigh 60mmHg, 
Cycle 2.

Table 4.5 The optimal compression sequence for each of the different 

cuffs investigated.

Figures 4.29 and 4.30 compare the percentage change in distal arterial blood 

flow and the standard deviation which was obtained for each of the different 

cuffs and their associated compression sequence.
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HuntteighDVT 30 Uniform Thigh 3CWholeLeg 3CThigh

CuffType

Figure 4.29 A comparison of the results obtained for the percentage change 

in distal arterial blood flow during compression for the four different 

compression cuffs and their optimal compression sequences.

8 0 -

HuntteighDVT30 UniformThigh XW holeLeg 3CThigh

CuffType

Figure 4.30 A comparison of the results obtained for the standard deviation 

associated with the percentage change in distal arterial blood flow during 

compression for the four different compression cuffs and their optimal 

compression sequences.
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It is very clear that the multiple chamber cuffs produce a greater distal arterial 

response than the uniform compression cuffs, and of the two multiple 

chamber cuffs, the 3-chamber thigh cuff performs optimally. The graph which 

demonstrates the standard deviations associated with the percentage change 

in distal arterial blood flow is of a similar shape to the graph representing the 

percentage change in distal arterial blood flow. So, even though the 3- 

chamber thigh cuff produces the greatest distal arterial response, it has also 

incurred the greatest associated standard deviation.

The following figures are indicative of the distal venous response obtained per

cycle.

30-

HuntleighOVT30 UnlformThigh XWhdeLeg SCThigh

CuffType

Figure 4.31 A comparison of the results obtained for the peak velocity of

distal venous blood flow following deflation, for the four different compression
|

cuffs and their associated optimal compression sequences.
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Figure 4.32 A comparison of the results obtained for the duration of distal 

venous blood flow following deflation, for the four different compression cuffs 

and their associated optimal compression sequences.

4 0 -

HuntletghDVT30 UniformThigh 3CWholeLeg 3CThigh

CuffType

Figure 4.33 A comparison of the results obtained for the approximate 

volume of venous blood flow following deflation, for the four different 

compression cuffs and their associated optimal compression sequences.
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It would appear that in general, the uniform compression cuffs produced a 

greater distal venous response than the multiple chamber compression cuffs, 

although the 3-chamber whole leg cuff produced the greatest peak venous 

velocity following cuff deflation. However, as previously, the best way of 

determining the optimal cycle for enhancing distal venous return is to compare 

the volume of venous blood flow emptied over a 600 second duration. The 

results are demonstrated in figure 4.34.

2000 -

n
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HuntleighDVT30 UniformThigh 3CWholeLeg 3CThigh

CuffT ype

Figure 4.34 A comparison of the results obtained for the volume of venous 

blood emptied during a 600 second duration, for the four different 

compression cuffs and their associated optimal compression sequences.

Figure 4.34 demonstrates that the optimal compression regime for improving 

distal venous return is the 3-chamber whole leg cuff. The results obtained for
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the thigh cuffs appear to be very similar, whilst the Huntleigh DVT 30 has 

performed slightly better.

When the findings of the venous studies are combined with those obtained 

from the arterial studies, it would seem that the 3-chamber thigh cuff produces 

the optimal arterial results whilst the 3-chamber whole leg cuff produces the 

optimal venous results. Further investigations carried out on healthy 

volunteers could compare the two different 3-chamber cuffs, or could compare 

two different cycles with one of the cuffs. It was decided that since the original 

objective was to implement thigh only compression for enhancing the distal 

circulation, that further investigations should examine in more detail the 

effects of the 3-chamber thigh cuff. Thigh only compression, if demonstrated 

to be successful, would be more agreeable to the patient with leg ulceration, 

as it would not interfere the wound itself, and would be easier for the patient to 

use in the home environment. Therefore, it was decided that investigations on 

healthy volunteers would compare the distal haemodynamical effects of 

cycles 2 and 5 with the 3-chamber thigh cuff; and the optimal cycle would then 

be examined on patients with leg ulcers of arterial, venous, diabetic and / or 

mixed aetiologies.
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Chapter 5: Healthy Volunteers

5.11ntroduction

Chapters 3 and 4 described the preliminary investigations of this research; the 

purpose of which were to determine the optimal intermittent pneumatic 

compression system for enhancing the distal circulation in a healthy volunteer. 

The effects of different compression cuffs, compression sequences and 

pressures on distal blood flow were examined, and it was concluded that the 

3-chamber compression garments were the most effective in increasing distal 

blood flow. Since the ultimate objective of the research is to treat patients with 

chronic leg ulceration, it was decided that the 3-chamber thigh compression 

garment would be more agreeable to patients, as it would not interfere with 

the wound itself, and would be easier for the patient to use in the home 

environment. Following on from the work carried out in the previous chapters, 

further investigations on a number of healthy volunteers compared the effects 

of cycles 2 and 5 with the 3-chamber thigh compression garment, on distal 

blood flow.

5.2 Methods 

5.2.1 Variables

The 3-chamber thigh compression cuff was investigated with cycles 2 and 5 

(see chapter 4.2.1), at a pressure of 60mmHg on a number of healthy 

volunteers for distal arterial anti venous effects.
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5.2.2 Data Acquisition

The methods of data acquisition did not vary significantly from those 

mentioned in chapters 3.2.2 and 4.2.2. Volunteers were recruited from the 

Department of Medical Physics, UHW, and asked to sign a consent form after 

reading a participant information sheet. A favourable ethical opinion had been 

obtained for the research from the South East Wales Local Research Ethics 

Committee Panel C.

The volunteer was asked to lie supine on a scanning couch in a temperature 

controlled room, with their head on a pillow. The 3-chamber thigh cuff was 

placed about the left leg of the volunteer, over their trousers, and connected 

to three Flowpac pumps. The QVL Doppler ultrasound system (see chapter 2) 

and an 8MHz flat transducer were used to locate the dorsalis pedis artery for 

the arterial studies, and the posterior tibial vein for the venous studies. Once 

the required blood vessel had been located, the ultrasound transducer was 

secured in place using micropore tape. A blanket was then placed over both 

legs and feet of the volunteer to prevent cooling. Before starting the study, a 

period of approximately 10 minutes was considered necessary to allow blood 

flow to stabilise.

Measurements were repeated for cycles 2 and 5. The arterial study involved 

recording the TAM blood flow velocity (see chapter 3.2.2) every 5 seconds 

throughout a test comprising 180 seconds of resting followed by ten cycles of 

compression and then a further 180 seconds of resting; whilst in the venous 

study the peak velocity and‘duration of venous blood flow were recorded
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following the deflation of each chamber within each cycle. This was repeated 

ten times. Photoplethysmography signals were also recorded for 600 

seconds, at the same time as the venous study.

5.2.3 Data Analysis

Data was collected from 20 volunteers. The arterial results were normalised 

and averaged together and plotted as a line graph in SPSS. Additional graphs 

were plotted which compared the results obtained from the male and female 

volunteers, and also compared the results obtained from the volunteers of 25 

years and under and the volunteers over 25 years.

The percentage change in distal arterial blood flow which occurred during the 

compression period as compared with resting blood flow pre and post 

compression was calculated using the computer program written in Turbo 

Pascal, as previously. Mann-Whitney U tests were performed to compare the 

differences between the results which were obtained for male and female 

volunteers, and volunteers 25 years and under with volunteers over 25 years.

Ten results were obtained for each volunteer for the peak velocity and the

duration of distal venous blood flow following the deflation of each chamber

within each cycle of the sequence. Where multiple results were obtained for a

single repetition of the sequence, the results were added together in order to

allow comparisons between cycles 2 and 5. An approximate volume of distal

venous blood moved per cycle was calculated by multiplying the duration of
»

venous blood How by the average maximum velocity of blood flow (TAM
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velocity). However, since cycles 2 and 5 vary in duration, the volume of 

venous blood moved during 600 seconds was determined by multiplying the 

approximate volume per cycle by the number of cycles which occur during 

600 seconds. The data was entered into SPSS where error bar charts were 

plotted of the means and a two sample T-test was performed to compare the 

mean data values for each of the cycles.

PPG signals were recorded for each volunteer; however, it was not possible 

to average them together since the start times varied.

»
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5.3 Results and Discussion

Initially, investigations were carried out on seven healthy volunteers and the 

results were examined. A problem was encountered with the results obtained 

from the arterial studies. It was found that, in all instances, the arterial blood 

flow was decreasing during the ten cycles of compression, and that a 

hyperaemia was occurring following the end of the compression period. This 

was in conflict with the results previously obtained in the preliminary 

investigations (see figures 4.15 and 4.18), whereby net increases in distal 

arterial blood flow during the compression period of 37.02% and 10.64% were 

calculated by the computer program for cycles 2 and 5 respectively. A 

decrease in the arterial blood flow during compression would not be very 

beneficial to the patient with leg ulceration and could cause further damage if, 

as was originally proposed, the patient received continuous compression for a 

minimum of two hours daily. The results obtained for cycles 2 and 5 are 

demonstrated in figures 5.1 and 5.2.
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Figure 5.1 The average of the normalised distal arterial blood flow

response obtained from seven healthy volunteers. The grey lines represent
I
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the start and end of ten cycles of compression using cycle 5 with the 3- 

chamber thigh cuff.
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Figure 5.2 The average of the normalised distal arterial blood flow 

response obtained from seven healthy volunteers. The grey lines represent 

the start and end of ten cycles of compression using cycle 2 with the 3- 

chamber thigh cuff.

The grey lines represent the start and the end of the ten cycles of 

compression. As can be seen, once compression commences, there is a 

decrease in distal arterial blood flow, which is followed by a large hyperaemia 

once compression has ended. It would seem that the ten cycles of 

compression were acting as one long compression period, resulting in a 

hyperaemia on release of compression.

It was very clear from the results obtained from the seven volunteers that

cycle 5 was having a greater effect on distal blood flow than cycle 2. This was
I
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apparent from the graphs above (figures 5.1 and 5.2), whereby the 

hyperaemia observed for cycle 5 is far greater than that observed for cycle 2; 

and, in the venous studies, cycle 2 did not produce results in all of the 

volunteers.

1 2 -

1 0 -

8 -

£
u
o

>
J£
n
•

6 -

Q.
O

4 -

10

2 -

0 -

Cyde5Cycte2

Figure 5.3 The average peak velocity of distal venous blood flow obtained 

following the deflation of the chambers in the 3-chamber thigh cuff, for seven 

healthy volunteers, whilst using cycles 2 and 5.
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Figure 5.4 The average duration of distal venous blood flow obtained 

following the deflation of the chambers in the 3-chamber thigh cuff, for seven 

healthy volunteers, whilst using cycles 2 and 5.
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Figure 5.5 The average approximate volume of distal venous blood flow 

obtained following the deflation of the chambers in the 3-chamber thigh cuff, 

for seven healthy volunteers, whilst using cycles 2 and 5.
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The three graphs above (figures 5.3 -  5.5) demonstrate the average of the 

distal venous results obtained from the seven healthy volunteers for cycles 2 

and 5 with the 3-chamber thigh cuff. It can be seen from figures 5.3 — 5.5 that 

cycle 5 produces a greater peak velocity and approximate volume of distal 

venous blood flow; however, cycle 2 produces a greater duration of distal 

venous blood flow following deflation of the compression cuff. Cycle 2 

comprises three deflations, since each chamber empties independently; 

therefore the results above for flow duration represent the sum of the results 

obtained for each of the three chamber deflations. In cycle 5, chambers one 

and two deflate simultaneously, whilst chamber three deflates with chamber 

one inflated; hence, in cycle 5, a result is obtained for the simultaneous 

deflation of chambers one and two only. This explains why cycle 2 has 

produced a greater average duration of distal venous blood flow following the 

deflation of the chambers, when results were not always obtained for this 

cycle. It is also worth mentioning the size of the error bars that have been 

obtained for each of the cycles. In figures 5.3 -  5.5, the error bars for cycle 2 

are considerably larger than those obtained for cycle 5.

A question which arises from these initial results is why there is an absence of 

hyperaemias during the compression period when venous return is clearly 

being improved? Arterial blood flow is always subjected to increased 

peripheral resistance during compression with cycle 5, since at least one 

chamber is always inflated; and perhaps the 5 second deflation period within 

cycle 2 is too short to allow a distal hyperaemia to ensue. However, the

238



sequential action of the three chambers is such that venous return is 

improved even when the arterial supply is not.

It was decided to adapt Cycle 5 in order to allow the arterial hyperaemias to 

occur during the compression sequence by splitting the regime into two 

minutes of compression and two minutes without compression. Therefore, 

there were six cycles of compression and then two minutes deflation. The 

theory behind this regime was that during compression venous return was 

being enhanced, and then the deflation period would allow the arterial 

hyperaemia to arise.

This sequence was examined on the same seven volunteers to determine 

whether or not any improvement was observed. The distal arterial response 

obtained with the adapted sequence of cycle 5 was significantly improved as 

compared with the original response demonstrated in figure 5.1. The following 

figure 5.6 demonstrates the average response obtained from the seven 

healthy volunteers. The TAM blood flow velocity was recorded every 5 

seconds throughout a test which comprised 180 seconds of resting followed 

by five repetitions of the two minute on and off sequence, and then a further 

60 seconds of resting.

t
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Figure 5.6 The average of the normalised distal arterial blood flow 

response obtained from seven healthy volunteers for the adapted sequence of 

cycle 5 and the 3-chamber thigh compression cuff. The grey lines represent 

the start and end of each two minute compression period.

The red lines in figure 5.6 represent the start of each 2 minute compression 

period and the blue lines represent the start of each 2 minute deflation period. 

As can be seen from figure 5.6, blood flow decreases during the 2 minute 

compression period, which is followed by a large hyperaemic response when 

the cuff deflates.

The investigations on healthy volunteers were continued using the two minute 

on and off sequence of cycle 5 for the distal arterial studies. Cycle 2 was no 

longer examined on the volunteers for distal arterial results as it was 

considered that cycle 5 produced a significantly greater distal response. The 

venous studies examined both cycles 2 and 5 for a distal effect.

I
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21 healthy volunteers agreed to participate in the study, however a complete 

set of results was not obtained from one individual due to unrelated ill health; 

therefore this individual was excluded from the study.

The graph below demonstrates the average distal arterial response which was 

obtained from the 20 healthy volunteers. The red lines represent the start of 

two minutes / six cycles of compression, and the blue lines represent the start 

of two minutes deflation.
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Figure 5.7 The average of the normalised distal arterial blood flow 

response obtained from 20 healthy volunteers for the adapted two minute on 

and off sequence of cycle 5 with the 3-chamber thigh cuff.

The first 180 seconds of figure 5.7 demonstrate a normalised baseline blood 

flow velocity of approximately 1. There is a slight peak at the very beginning of 

the graph which is probably an indication that the test was started a little bit

prematurely, and the volunteer’s blood flow had not relaxed enough. During
I
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compression (following a red line), blood flow velocity decreases, as 

previously demonstrated in figures 5.1 and 5.6. When the cuff is completely 

deflated (following a blue line), a hyperaemia ensues. The hyperaemia 

persists throughout the 2 minutes whilst the cuff is deflated.

In order to calculate the percentage change in distal arterial blood flow which 

arises during the two minute on and off sequence of cycle 5, the computer 

program which had been used previously needed to be altered. Previously, 

the program extrapolated a baseline from the three minutes of resting blood 

flow pre and post compression, and then calculated the change in blood flow 

during the compression period as compared with the baseline. In figure 5.7 

however, there is only one minute of resting blood flow post compression 

since the two minutes prior to the final minute are part of the compression 

sequence. The program was therefore adapted to calculate a baseline from 

the three minutes pre compression and the final 30 seconds of the signal.

The average percentage change in distal arterial blood flow which was 

obtained for the twenty volunteers was calculated to be -1.20%. This result 

implies that distal arterial blood flow has decreased during the compression 

period as compared with the resting periods. However, the results produced 

by the program must be interpreted carefully. The hypothetical baseline which 

is ‘drawn’ through the compression period can be highly skewed dependant 

upon the mean blood flow velocities calculated from the resting periods pre 

and post compression. In this case in particular, two of the final three minutes 

are part of the compression sequence, and the hyperaemic response occurs
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in these two minutes; therefore blood flow velocity may be very high in the 

final minute in comparison with blood flow pre compression, and a highly 

skewed baseline will have been obtained. The protocol did not allow sufficient 

time for the blood flow to return to a true baseline, and so the calculated value 

does not signify a real reduction in flow.

The table below provides general information on the group of healthy 

individuals who participated in the study.

t
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Male Female Total

Total 10 10 20

Smoker 1 0 1

Age group: 

1 8 -2 5  yrs 5 6 11

26 -  35 yrs 2 1 3

36 -  45 yrs 3 0 3

46 -  55 yrs 0 3 3

BMI:

Underweight: <18.5 0 0 0

Normal: 18.5-24.9 8 7 15

Overweight: 25-29.9 2 3 5

Obesity: > 30 0 0 0

History o f ... 

Vascular Disease 0 0 0

Cardiovascular Disease 0 0 0

Diabetes 0 0 0

Medications: 

Contraceptive pill 0 6 6

Other 0 3 3

Table 5.1 Information gathered from the 20 healthy volunteers who 

participated in the study.
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There were 10 male healthy volunteers and 10 female healthy volunteers 

within the group, and 11 volunteers age 25 and under and 9 volunteers age 

over 25 years. Additional comparisons were performed of the distal arterial 

response for gender and age group.

1111 r n 111111

—  Male
—  Female

11 i-n t n  11 rrrt 1111111111 n 1111 n 111
_______    3 333 33 34 444 44 46 656 55 66 686 66 77 777 77 88 688 69 99 999 91 1111111111111111111111111111
50 50 50 023 56*912457*013467902358*245 7# 01 34 67 90 23 5*0 91 24 57 *01 34 *79 00 00 00 01 11 11 12 22 22 22 33 33 33 34 4

-----------------0505050506OS0SQSO SO 609050505050SO 50505OS050 SOSOS05002386*912467*01 34 679 02 356*9 12
50606-----------------------------------------------

Tim e (seconds)

Figure 5.8 The average of the normalised distal arterial blood flow 

responses which were obtained from 10 healthy male volunteers and for 10 

healthy female volunteers for the adapted two minute on and off sequence of 

cycle 5 with the 3-chamber thigh cuff.
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Figure 5.9 The average of the normalised distal arterial blood flow 

responses which were obtained from healthy volunteers age 25 years and 

under and healthy volunteers age over 25 years for the adapted two minute 

on and off sequence of cycle 5 with the 3-chamber thigh cuff.

Figures 5.8 and 5.9 demonstrate that the hyperaemic response is greater in 

the male volunteers than in the female volunteers, and in the volunteers age 

over 25 years as compared with the volunteers age 25 years and under, even 

though the amount by which the blood flow decreases during compression 

appears to be similar for each comparison. It is difficult to explain why a 

greater response should have been obtained in the male volunteers, perhaps 

with further experiments on a larger group of healthy volunteers the difference 

between the male and female volunteers would have reduced, and a similar 

response would be seen in both groups.

1
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A greater response was observed in the volunteers aged over 25 years, which 

is a good result to have obtained since it implies that a similar result may be 

obtained from patients, who are generally in this age category.

The average percentage change in distal arterial blood flow which occurred 

during the compression period for male and female volunteers and for 

volunteers 25 years and under and volunteers over 25 years were calculated, 

and the Mann-Whitney test was performed to compare the averages. The 

Mann-Whitney test was chosen as the non-parametric equivalent to the 

independent samples T-test.

Even though the mean percentage change in distal arterial blood flow for the 

male volunteers (M = 0.17%, SD = 22.22%) was greater than the percentage 

change in distal arterial blood flow for the female volunteers (M = -2.56%, SD 

= 8.40%); a Mann-Whitney U test failed to show significance: U = 48.0; exact 

p = 0.912 (two-tailed).

Figure 5.9 clearly demonstrates that the volunteers over 25 years of age 

produce a greater distal arterial response than the volunteers age 25 years 

and under. However, the mean percentage change in distal arterial blood flow 

for the volunteers over 25 years (M = -2.17%, SD = 21.49%) has been found 

to be less than the mean percentage change in distal arterial blood flow for 

the volunteers age 25 years and under (M = -0.40%, SD = 11.86%). The 

discrepancy in the result produced is due to the computer program being 

applied to data which does not have an adequate period of post compression
i
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resting blood flow. A Mann -  Whitney U test however, failed to show a 

significant difference: U = 38.0; exact p = 0.412 (two-tailed). It would seem 

therefore, that the most accurate results are demonstrated in the graphs 

(figures 5.7 -  5.9).

Figures 5.10 - 5.12 demonstrate the results obtained from the distal venous 

studies where cycles 2 and 5 were compared on 20 healthy volunteers.
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Figure 5.10 The average peak velocity of distal venous blood flow obtained 

following the deflation of the chambers in the 3-chamber thigh cuff, for twenty 

healthy volunteers, whilst using cycles 2 and 5.
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Figure 5.11 The average duration of distal venous blood flow obtained 

following the deflation of the chambers in the 3-chamber thigh cuff, for twenty 

healthy volunteers, whilst using cycles 2 and 5.
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Figure 5.12 The average approximate volume of distal venous blood flow 

obtained following the deflation of the chambers in the 3-chamber thigh cuff,

for twenty healthy volunteers, whilst using cycles 2 and 5.
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Figures 5.10 -  5.12 do not differ very greatly from figures 5.3 -  5.5 which 

represent the results obtained from the first 7 volunteers, the main difference 

being the size of the error bars. The error bars have reduced in size with the 

addition of volunteers to the study.

Cycle 5 produced results in all of the twenty volunteers, producing on average 

the greatest peak velocity and approximate volume of distal venous blood 

flow; cycle 2 failed to produce a single result in seven of the volunteers, 

however, despite this cycle 2 managed to produce on average the greatest 

duration of distal venous blood flow. The reason behind this, as previously 

mentioned, is due to cycle 2 producing multiple results for each cycle as a 

consequence of the sequential deflation of the three chambers, whilst cycle 5 

produces a single result as the first two chambers deflate simultaneously.

A Wilcoxon matched pairs, signed ranks test was performed in order to 

compare the mean values which were obtained for peak velocity, duration and 

approximate volume for each of the cycles 2 and 5. A related pairs t test was 

decided upon since each volunteer underwent compression with both cycles, 

and a non-parametric test was chosen since scatter plots of the results 

obtained for cycle 5 against those obtained for cycle 2 demonstrated a 

number of outliers.

The Wilcoxon matched pairs, signed ranks test showed that the difference 

between the peak velocity which was obtained for cycle 5 (M = 7.971 cm/s, 

SD = 5.690 cm/s) and the peak velocity which was obtained for cycle 2 (M =
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5.487 cm/s, SD = 7.891) was significant beyond the 0.05 level: exact p = 

0.024 (two-tailed). The difference between the duration of venous blood flow 

which was obtained for cycle 5 (M = 1.268 s, SD = 1.392 s) and the duration 

of venous blood flow which was obtained for cycle 2 (M = 1.638 s, SD = 2.706 

s) was not significant beyond the 0.05 level: exact p = 0.956 (two-tailed); and 

similarly, the difference between the approximate volume of distal venous 

blood flow which was obtained for cycle 5 (M = 6.761 cm3, SD = 9.933 cm3) 

and the approximate volume of distal venous blood flow which was obtained 

for cycle 2 (M = 6.195 cm3, SD = 11.888 cm3) was not significant at the 0.05 

level: exact p = 0.245 (two-tailed).

In summary, cycle 5 produces a significantly greater peak velocity of distal 

venous blood flow during compression than cycle 2; however the duration and 

approximate volume of distal venous blood flow produced by each of the 

cycles are not significantly different. Other factors to consider are that cycle 5 

always produced a result in the volunteers whilst cycle 2 did not, and that 

cycle 5 produced a greater distal arterial blood flow response than cycle 2.

The following bar chart compares the results which were obtained for the 

volume of distal venous blood flow emptied during 600 seconds of 

compression for cycles 2 and 5.
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Figure 5.13 A bar graph to compare the volume of distal venous blood 

emptied during 600 seconds of compression for cycles 2 and 5 with the 3- 

chamber thigh cuff.

Figure 5.13 demonstrates that cycle 5 empties a greater volume of venous 

blood from the distal circulation during 600 seconds of compression than 

cycle 2; 303 cm3 per 600 seconds as compared with 216 cm3 per 600 

seconds respectively.
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5.4 Conclusions for Investigations with Healthy Volunteers

The distal arterial blood flow response which has been obtained with the 

healthy volunteers differs from that which was obtained with the single 

volunteer who participated in the preliminary investigations. In the preliminary 

investigations, it was demonstrated that distal arterial blood flow increased 

during the compression period, and resumed a normal blood flow following 

the end of the compression period. Initial investigations on healthy volunteers 

were in complete disagreement with previous results; distal arterial blood flow 

decreased during the compression period and then a large hyperaemic 

response was observed following the completion of ten cycles of 

compression. Cycles 2 and 5 are both very rapid cycles, with single cycle 

times of 25 and 20 seconds respectively, and whilst cycle 2 does include 5 

seconds of complete deflation within each cycle; cycle 5 involves at least one 

chamber always being inflated. Therefore, the composition of each of these 

cycles could be such that the arterial blood flow is subjected to a prolonged 

increase in peripheral resistance, which prevents the occurrence of a 

hyperaemic response during the compression period.

Following the adaptation of cycle 5 to a sequence which involved 2 minutes of 

compression or 6 cycles, followed by 2 minutes without compression; testing 

on healthy volunteers revealed that a hyperaemic response was obtained 

during the deflation period which extended throughout the 2 minutes without 

compression, whilst distal arterial blood flow decreased during the 2 minutes 

of compression. However, from figure 5.7 it would appear that the increase in 

blood flow which arises during the deflation period was greater than the
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decrease in blood flow which occurred during the compression period, 

therefore producing an overall net increase in distal arterial blood flow during 

the five repetitions of the 2 minute on and off sequence.

It was also demonstrated in the graphs (figures 5.8 and 5.9) that the distal 

arterial response which was obtained from 10 healthy male volunteers was 

greater than that which was obtained for 10 healthy female volunteers, and 

that the distal arterial response in volunteers over the age of 25 years was 

greater than that for volunteers of 25 years and under. It can be concluded 

therefore that the greatest response was seen in the older male volunteers. 

However, obtaining a greater response in the older volunteers is a significant 

result since in general patients with leg ulcers tend to be in this age category.

A comparison of the distal venous blood flow responses which were obtained 

for cycles 2 and 5 revealed that cycle 5 produced a significantly greater peak 

velocity following the deflation of the chambers. Even though the difference 

between the duration, and the approximate volume of distal venous blood flow 

was not significant, the fact that cycle 5 always produced a result in each of 

the volunteers and that cycle 5 produced the greatest improvement in venous 

return over 600 seconds corroborates the conclusion that cycle 5 produces 

the optimal distal venous response with the 3-chamber thigh cuff.

It was found during the experiments on healthy volunteers that the 3-chamber 

thigh cuff had a tendency to slip down the leg as the cycle was progressing. 

This was thought to be as a] result of the lining of the cuff which was quite
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smooth. To prevent the cuff slipping, a new cuff was manufactured from a non 

slip fabric.

The next objective of the research was to investigate the effects of 

compression on patients with leg ulcers of varying aetiologies. It was decided 

as a result of the investigations on healthy volunteers, that investigations 

would examine the 3-chamber thigh compression garment with cycle 5 within 

a 2 minute on and off sequence, at a pressure of 60mmHg.

i
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Chapter 6: Leg Ulcer Patients

6.1 Introduction

It was concluded in chapter 5 that the optimal compression system for 

enhancing the distal blood flow in healthy volunteers was the 3-chamber thigh 

garment with cycle 5 within a 2 minute on and off sequence, at a pressure of 

60mmHg. In this chapter this system was investigated on patients with leg 

ulcers of different causes for distal arterial and venous responses, to 

determine whether a similar or perhaps an even greater response could be 

achieved as compared with the healthy volunteers.

6.2 Methods

6.2.1 Variables

The 3-chamber thigh cuff system was investigated on a number of patients 

with leg ulcers of arterial, venous, diabetic, mixed or other causes. The patient 

exclusion criteria were as follows:

■ absence of vascular pathology;

■ congestive heart failure;

■ pulmonary oedema;

■ known or suspected deep vein thrombosis (DVT) or phlebitis;

■ any local condition in which the garments would interfere, such as 

gangrene, untreated/infected wounds, recent skin grafts, or dermatitis;

■ inability to give informed consent;

■ dementia. 1
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6.2.2 Data Acquisition

Patients were recruited from West Wales General Hospital in Carmarthen, by 

the Vascular Surgeon Mr Locker, and the Tissue Viability Nurse Mrs James. 

Ethical approval had been obtained to carry out the research on patients, from 

the Dyfed Powys Local Research Ethics Committee. Those patients who met 

the inclusion and exclusion criteria were provided with an information sheet 

and asked to participate in the study. If the patient agreed to participate, a 

consent form was signed and an appointment was made for the patient to 

return to the hospital to partake in the investigations.

A duplex scan would have been performed prior to the patient participating in 

the study, by the medical physicist Dr N. Pugh; so that the vascular pathology 

of the patient was known, and also therefore, the cause of the ulceration.

The patient was asked to lie on the scanning couch and to remove their shoes 

and socks. The experimental procedure was explained to the patient prior to 

commencing. The 3-chamber thigh cuff was placed around the thigh of the 

patient, over their trousers, and Doppler ultrasound was used to locate the 

dorsalis pedis artery and posterior tibial vein in the patients ulcerated leg. It 

was not always possible to locate these two particular blood vessels 

dependant upon the location and severity of the patient’s vascular disease, 

and so Doppler signals were attempted from other distal blood vessels. If, for 

example, an arterial signal was not possible, due to the severity of the arterial 

disease, venous results were obtained and the arterial experiment was 

abandoned.
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Initially, three Flowpac pumps were used to inflate the 3-chamber thigh cuff as 

in previous studies; however, a single pump capable of inflating and deflating 

the three chambers in the specific action of cycle 5 within a 2 minute on and 

off sequence had been produced by Huntleigh Healthcare Ltd, and therefore 

some of the patients who participated in the study used the new pump, a 

modified version of the the Flowtron AC300-R (see chapter 2).

The tests proceeded as with the healthy volunteers. The arterial study 

involved recording the TAM blood flow velocity (see chapter 3.2.2) every 5 

seconds throughout a test which comprised 180 seconds of resting followed 

by five repetitions of cycle 5 within a 2 minute on and off sequence, followed 

by a further 60 seconds of resting. The venous study involved recording the 

peak velocity and duration of distal venous blood flow following the 

simultaneous deflation of chambers one and two. This was repeated ten 

times. Photoplethysmography signals were also recorded for 10 minutes.

6.2.3 Data Analysis

The arterial results were normalised and averaged together and plotted as a 

line graph in SPSS. Additional graphs were plotted which compared the 

results obtained from the male and female volunteers, from different ulcer 

aetiologies and age groups.

The percentage change in distal arterial blood flow which occurred during the 

compression period as compared with resting blood flow pre and post 

compression was calculated using the computer program written in Turbo
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Pascal, as in chapter 5. Non-parametric tests were performed to compare the 

differences between the results which were obtained for male and female 

volunteers, ulcers of different aetiologies and age groups.

Ten results were obtained for each volunteer for the peak velocity and the 

duration of distal venous blood flow following the simultaneous deflation of 

chambers one and two within each cycle. An approximate volume of distal 

venous blood moved per cycle was calculated by multiplying the duration of 

venous blood flow by the average maximum velocity of blood flow (TAM 

velocity).

The arterial and venous results which were obtained from the patient studies 

were also compared with those results obtained from the studies with healthy 

volunteers.

PPG signals were recorded for each volunteer; however, it was not possible 

to average the signals together. After the PPG system had calibrated, the 

three Flowpac pumps were started in succession in the sequence of cycle 5; 

however, as the pumps were started manually, there was no guarantee that 

the pumps were functioning at exactly the same timings for each patient. In 

addition, after the PPG system had calibrated, it started recording 

immediately, and the time at which the first pump was started after the PPG 

system started recording varied for each patient. Due to these reasons it was 

not possible to average the signals together.
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6.3 Results and Discussion

6.3.1 Arterial Study

15 patients were recruited to participate in the study; however, one patient 

was excluded as the cuff would not fit the leg. Data was therefore collected 

from 14 patients with varying ulcer aetiologies.

Of the 14 patients who participated, only 7 produced results in the arterial 

study. The arterial study involved locating a pulsatile distal arterial signal for 

the QVL 120 Doppler system to be capable of calculating the TAM (time 

average maximum) blood flow velocity. The QVL system calculates the TAM 

velocity by identifying three consecutive cardiac pulses and averaging the 

maximum velocity envelope; however, in many of the participants, the distal 

arterial blood flow signal was very weak due to the degree of disease present, 

and therefore it was not possible to obtain the TAM blood flow velocities.

The data from the 7 patients producing a complete set of arterial results was 

normalised and averaged together, and plotted as a graph. The results are 

demonstrated in figure 6.1. The red lines correspond to the start of 2 minutes 

compression, while the blue lines represent the start of 2 minutes rest.
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Figure 6.1 The average of the normalised distal arterial blood flow 

response obtained from 7 patients with ulcers of differing aetiologies, during 

compression with the 3 chamber thigh cuff, using cycle 5 within a 2 minute on 

and off sequence and a pressure of 60mmHg.

This graph displays a very similar trend to figure 5.7, which represents the 

average normalised distal arterial blood flow response obtained from 20 

healthy volunteers. The distal arterial blood flow decreases during the 

compression periods, followed by a hyperaemia when compression is 

released. A Wilcoxon signed ranks test was performed to compare the 

patients’ average distal arterial blood flow during the compression periods 

with the average hyperaemic blood flow arising during the resting periods. 

The test showed that the difference between the patients’ average normalised 

distal arterial blood flow during the compression period (M = 1.135993028, SD 

= 0.14760281) and during the hyperaemic period (M = 1.358141807, SD = 

0.182939295) was significant beyond the .01 level: exact p < .005 (two-tailed). 

From the mean values calculated during the compression and hyperaemic
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periods, it would appear that there is a 20% (2 s.f) increase in distal arterial 

blood flow during the hyperaemic periods as compared with blood flow during 

the compression periods.

The percentage change in distal arterial blood flow which arises during the 

two minute on and off compression sequence as compared with baseline 

distal arterial blood flow was calculated using the adapted computer program 

as used in chapter 5. The baseline is extrapolated from the data collected 

during the three minutes prior to the commencement of the compression 

sequence, and the final 30 seconds of the signal. The average percentage 

change in the patients’ distal arterial blood flow was calculated to be 4.76%; 

which implies that there is an overall net increase in distal arterial blood flow 

during the treatment period as compared with baseline distal arterial blood 

flow, even though blood flow decreases during each two minutes of 

compression. As previously mentioned, the results produced by this program 

should be interpreted with care; however, it is evident from figure 6.1 that 

distal arterial blood flow is improving with treatment progression, and hence 

the result calculated by the computer program substantiates the findings 

displayed in the graph.

Figure 6.2 compares the results obtained from the patients with those 

obtained from the healthy volunteers.
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Figure 6.2 A comparison of the average normalised distal arterial blood 

flow response which was obtained from 20 healthy volunteers and 7 patients 

with leg ulcers of differing aetiologies, as a consequence of compressing the 

limb proximally with the 3 chamber thigh cuff, using cycle 5 within a 2 minute 

on and off sequence.

In figure 6.2, both graphs demonstrate a decrease in distal arterial blood flow 

during the 2 minutes of compression and an increase during the 2 minutes 

rest; a hyperaemia occurring in response to the release of compression. The 

hyperaemic responses appear to be of a comparable size and duration, as 

also do the reductions in blood flow which occur during compression. There is 

however one interesting difference between the results obtained from the two 

different groups of participants. Initially the two graphs seem to be 

overlapping, whilst as time progresses the graphs begin to diverge; the results 

for the healthy volunteer group remain level, whilst the results for the patient 

group are gradually rising, there being an overall upwards trend.
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Why is this an interesting result? The results obtained for the healthy 

volunteer group demonstrate that the proximal compression system does 

produce a hyperaemic response when compression is released; however, 

there is no overall net increase in distal arterial blood flow. The results 

obtained for the patient group similarly demonstrate a hyperaemic response 

during the 2 minutes following compression, however, as the sequence is 

progressing, the distal arterial blood flow baseline is gradually increasing. This 

implies that the compression sequence is having an overall positive effect on 

distal arterial blood flow in patients, increasing the distal supply of blood to the 

tissues. It is possible that the same effect is not demonstrated in the results 

obtained from the healthy volunteers as they could already have optimal 

arterial blood flow, as compared with the patients who could be subject to 

reduced blood flow, and therefore there is ‘room for improvement’.

A Mann-Whitney U test demonstrated that the difference between the overall 

results obtained for the patient group (M = 1.224454561, SD = 0.205154431) 

and those obtained for the healthy volunteer group (M = 0.985320978, SD = 

0.154852673) was significant beyond the .01 level: exact p < .005 (two-tailed).

The following table (table 6.1) provides information on the patients who 

participated in the study.
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Patient Gender Ulcer Age Smoker

1* M Diabetic 39 No

2* M SLE 60 No

3 M Mixed 77 No

4* M Venous 75 No

5* F Venous 72 Yes

6 F Arterial 69 No

7 M Diabetic 81 No

8* M Arterial 78 No

9 F Arterial 82 history of

10 M Mixed 67 history of

11* F Venous 73 No

12 M Arterial 72 No

13* F SLE 73 No

14 M Arterial 73 No

Table 6.1 Information on those patients who participated in the study. 

Patients marked with an asterisk produced complete arterial results. SLE is an 

acronym for Systemic Lupus Erythematosus.
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The data in table 6.1 is summarised in table 6.2.

Male Female Total

Total 9 5 14

Smoker:

Current 0 1 1

History of 1 1 2

Ulcer Aetiology: 

Arterial 3 2 5

Venous 1 2 3

Mixed 2 0 2

Diabetic 2 0 2

SLE 1 1 2

Age Group: 

< 60 yrs 2 0 2

61 -  70 yrs 1 1 2

71 -  80 yrs 5 3 8

81 -  90 yrs 1 1 2

Table 6.2 A summary of the patients who participated in the study.

The graphs below compare the results which were obtained from different 

groups of patients; gender, ulcer type and age.
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Figure 6.3 A comparison of the average normalised TAM blood flow 

velocities obtained from male and female patients with leg ulcers of varying 

aetiologies, whilst receiving compression with the 3-chamber thigh cuff, using 

cycle 5 within a 2 minute on and off sequence and a pressure of 60mmHg.
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Figure 6.4 A comparison of the average normalised TAM blood flow 

velocities obtained from patients with leg ulceration of varying aetiologies of 

age 60 years and under, and over 60 years, whilst receiving compression with 

the 3-chamber thigh cuff, using cycle 5 within a 2 minute on and off sequence, 

and a pressure of 60mmHg.
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Figure 6.5 A comparison of the average normalised TAM blood flow 

velocities obtained from patients with leg ulcers of arterial, venous, diabetic 

and SLE ulcers, whilst receiving compression with the 3-chamber thigh cuff, 

using cycle 5 within a 2 minute on and off sequence, and a pressure of 

60mmHg.

Figure 6.3 demonstrates those results obtained from male and female 

patients. There are 3 female patients, 2 having venous ulcers and 1 with SLE, 

and 4 male patients, 1 with arterial ulceration, 1 venous, 1 diabetic and 1 with 

SLE. A greater net increase in distal arterial blood flow is apparent in the 

results obtained from the female patients as compared with the male patients; 

significant beyond the .01 level: exact p < .005, (two-tailed) by the Mann- 

Whitney U test. This difference is likely to be as a result of ulcer aetiology, 

rather than gender, as demonstrated in figure 6.5. It can be seen that patients 

with venous pathology produce the greatest distal arterial response (possibly 

since there is no arterial disease), followed by patients with SLE, arterial 

disease and finally diabetes. The difference between the distal arterial 

responses obtained for the varying ulcer aetiologies are significant beyond the
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.01 level: exact p < .005, as calculated by the Kruskal-Wallis test; however, it 

is worth remembering that the group included 1 patient with arterial disease 

and 1 patient with diabetes.

It would appear that the 3-chamber thigh system is having a beneficial effect 

on the distal arterial blood flow of patients with ulcers of varying aetiologies; 

however, the degree of the distal response observed over the duration of the 

study, depends upon the degree of arterial pathology.

6.3.2 Venous Study

Studies were also conducted to determine the effect of the 3-chamber thigh 

system on distal venous blood flow in patients with leg ulceration of varying 

aetiologies. 13 out of the 14 patients who participated in the study produced a 

complete set of venous results. It was not possible to locate a distal venous 

signal in one of the patients with venous disease. The patient had had a left 

leg below knee amputation many years ago and was suffering from 

circumferential venous ulceration in the right leg. The extent of the venous 

disease prevented a distal venous signal being located.

As with the healthy volunteers, accelerated distal venous blood flow was 

observed following the simultaneous deflation of the first and second 

chambers of the 3-chamber thigh cuff. 10 measurements of the peak velocity 

and duration of distal venous blood flow were recorded for each of the 

patients. The results were entered into SPSS, and comparisons were 

performed with those results which had been obtained from the healthy
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volunteers. Figures 6.6 and 6.7 display the results obtained for patients and 

healthy volunteers for peak distal venous blood flow velocity and duration of 

distal venous blood flow following the simultaneous deflation of the first and 

second chambers.
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Figure 6.6 A comparison of the mean peak distal venous blood flow 

velocities obtained whilst using the 3-chamber thigh cuff system for patients 

and healthy volunteers.
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Figure 6.7 A comparison of the mean duration of distal venous blood flow 

obtained whilst using the 3-chamber thigh cuff system for patients and healthy 

volunteers.

From figures 6.6 and 6.7, it can be seen that there is a greater increase in 

distal venous blood flow in the patient group as compared with the healthy 

volunteer group. The Mann-Whitney U test showed that the difference 

between the mean peak distal venous blood flow velocity for the patient group 

(M = 10.754 cm/s; SD = 7.0843 cm/s) and for the healthy volunteer group 

(M = 7.971 cm/s; SD = 5.9367 cm/s) was significant beyond the .01 level: 

exact p < .005 (two-tailed); and similarly, the difference between the mean 

duration of distal venous blood flow for the patient group (M = 1.4431 s; 

SD = 1.25256 s) and for the healthy volunteer group (M = 1.2684 s; SD = 

1.42048 s) was significant beyond the .01 level: exact p = 0.001 (two-tailed).
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As with the arterial study, it is quite likely that the greater response observed 

in the patient group is due to the inadequate blood flow which results from 

their differing vascular diseases, and the consequent need for improved blood 

circulation.

The following graph (figure 6.8) displays the results obtained for the 

approximate volume of distal venous blood flow accelerated following the 

deflation of the first and second chambers of the 3-chamber thigh cuff system. 

This is an approximation, calculated from the duration of distal venous blood 

flow and the average maximum velocity (TAM) of distal venous blood flow.
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Figure 6.8 A comparison of the mean approximate volume of distal venous 

blood flow obtained whilst using the 3-chamber thigh cuff system for patients 

and healthy volunteers.
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The graph demonstrates that there is a greater improvement in the 

approximate volume of distal venous blood flow in the patient group as 

compared with the healthy volunteers; which is confirmed by a Mann-Whitney 

U test showing that the difference between the patient group (M = 7.61007 

cm3; SD = 8.695838 cm3) and the healthy volunteers group (M = 6.76105 cm3; 

SD = 10.325796 cm3) is significant beyond the .05 level: exact p = 0.026 (two- 

tailed).

Therefore, there is a significant improvement in the distal venous blood flow 

response associated with the use of the 3-chamber thigh cuff system in 

patients with circulatory disorders, as compared with the healthy volunteers. 

This is an excellent result, seemingly satisfying one of the objectives of the 

research in improving distal blood flow in patients with leg ulceration of 

differing aetiologies; however it is unknown at this stage whether long term 

use of the 3-chamber thigh cuff system would improve the healing of the 

ulcer.

As with the arterial study, the venous results were investigated for effects 

relating to gender, age and ulcer aetiology. The results for gender are 

displayed in figures 6.9 -  6.11 below.
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Figure 6.9 The mean peak distal venous blood flow velocity obtained whilst 

using the 3-chamber thigh cuff system for male and female patients with leg 

ulcers of varying aetiologies.
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Figure 6.10 The mean duration of distal venous blood flow obtained whilst 

using the 3-chamber thigh cuff system for male and female patients with leg 

ulcers of varying aetiologies.
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Figure 6.11 The mean approximate volume of distal venous blood flow 

obtained whilst using the 3-chamber thigh cuff system for male and female 

patients with ulcers of varying aetiologies.

Figures 6.9 -  6.11 demonstrate that the male patients produce a slightly 

greater distal venous blood flow response than the female patients; however, 

a Mann-Whitney U test did not support this observation for peak velocity, 

showing that the difference between the mean distal venous peak blood flow 

velocity for the male patients (M = 11.416 cm/s; SD = 6.7658 cm/s) and for 

the female patients (M = 9.562 cm/s; SD = 7.5478 cm/s) was not significant 

beyond the .05 level: exact p = .199 (two-tailed). Additional Mann-Whitney U 

tests were performed for the duration and approximate volume of distal 

venous blood flow for male and female patients. The difference between the 

mean duration of distal venous blood flow for male patients (M = 1.6552 s; SD 

= 1.29117 s) and the female patients (M = 1.0614 s; SD = 1.09143 s) was 

significant beyond the .01 level: exact p < .005 (two-tailed); and the difference
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between the mean approximate volume of distal venous blood flow obtained 

from the male patients (M = 7.93724 cm3; SD = 8.099008 cm3) and from the 

female patients (M = 7.02116 cm3; SD = 9.737379 cm3) was significant 

beyond the .05 level: exact p = .024 (two-tailed). Even though some of the 

results for the difference between male and female patients have been 

calculated to be significant, it is more than likely that this variation is 

associated with the ulcer type and underlying pathology of the patients within 

each group and not gender, as previously mentioned for similar comparisons 

in the arterial study.

The following three graphs (figures 6.12 -  6.14) demonstrate the results 

obtained for the comparison of results obtained from different age groups.
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Figure 6.12 A comparison of the mean peak distal venous blood flow

velocity obtained using the 3-chamber thigh cuff system for leg ulcer patients

of different age groups.
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Figure 6.13 A comparison of the mean duration of distal venous blood flow 

obtained whilst using the 3-chamber thigh cuff system for leg ulcer patients of 

different age groups.
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Figure 6.14 A comparison of the mean approximate volume of distal venous 

blood flow obtained whilst using the 3-chamber thigh cuff system for leg ulcer 

patients of different age groups.
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There is a similar trend apparent amongst the three graphs above (figures 

6.12-6.14), whereby the younger and the older groups of patients produce a 

greater distal venous response than those patients in the 61 -  80 years 

categories. However, there are only two patients in the 60 years and under, 

and 81 years and over categories, and in addition, the error bars are much 

larger for these age groups; any significant difference between the results 

which is attributed to the age of the patient is considered to be slightly 

dubious, whilst the true variance is considered to be, as with previous 

comparisons, related to the variety of vascular diseases present amongst the 

patients.

A Kruskal -  Wallis test demonstrated that there was a significant difference 

between the results obtained for patients of different age groups for mean 

peak velocity, mean duration and mean approximate volume of distal venous 

blood flow: exact p < .005 in each comparison.

The final comparison examines the difference between the results obtained 

for patients with ulcers of different aetiologies. Figures 6.15 -  6.17 display the 

graphical results of these comparisons.
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Figure 6.15 A comparison of the mean peak distal venous blood flow 

velocities obtained whilst using the 3'Chamber thigh cuff system for patients 

with leg ulcers of different aetiologies.
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Figure 6.16 A comparison o f the mean duration of distal venous blood flow

obtained whilst using the 3-chamber thigh cuff system for patients with leg

ulcers of different aetiologies.
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Figure 6.17 A comparison of the mean approximate volume of distal venous 

blood flow obtained whilst using the 3-chamber thigh cuff system for patients 

with leg ulcers of different aetiologies.

From the graphs above (figures 6.15 -  6.17), the greatest distal venous 

response is apparent in the diabetic patients, followed by patients with arterial 

disease, mixed arterial and venous disease, SLE and finally venous disease. 

There is a considerable difference in the size of the error bars in the graphs, 

being greater in size for the patients with diabetic, arterial and mixed ulcer 

causes. Not only is this apparent in these graphs, but the error bars and 

standard deviations are in many instances throughout this chapter quite large. 

This is due to the small numbers of patients who participated in the study; it is 

hoped that with greater repetition of the tests, the error bars would reduce in 

size. A Kruskal Wallis test showed that the differences between the mean 

peak velocities of distal venous blood flow for the patients with arterial disease
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(M = 13.838 cm/s; SD = 6.5047 cm/s), venous disease (M = 3.777 cm/s; SD = 

3.0144 cm/s), mixed arterial and venous disease (M = 8.830 cm/s; SD = 

5.0016 cm/s), diabetes (M = 19.870 cm/s; SD = 1.9271 cm/s) and SLE (M = 

6.315cm/s; SD = 1.1962 cm/s) were significant beyond the .01 level: exact 

p < .005. Similarly, the Kruskal -  Wallis test demonstrated that the differences 

between the mean durations of distal venous blood flow for the patients with 

arterial disease (M = 1.6576 s; SD = 0.84093 s), venous disease (M = 0.6720 

s; SD = 0.55579 s), mixed arterial and venous disease (M = 1.1525 s; SD = 

0.70914 s), diabetes (M = 3.1670 s; SD = 1.92001 s) and SLE (M = 0.6305; 

SD = 0.14515 s) were also significant beyond the .01 level: exact p < .005; as 

were the differences between the mean approximate volumes of distal venous 

blood flow for patients with arterial disease (M = 9.66548 cm3; SD = 8.465911 

cm3), venous disease (M = 1.23960 cm3; SD = 1.084768 cm3), mixed arterial 

and venous disease (M = 5.01255 cm3; SD = 4.652516 cm3), diabetes (M = 

20.13485 cm3; SD = 8.085907 cm3) and SLE (M = 2.10000 cm3; SD = 

0.397222 cm3): exact p < .005.

Different degrees of distal blood flow response are to be expected amongst 

patients with different vascular conditions; it is of no surprise that those 

patients without any venous disease should produce a more pronounced 

distal venous response than patients with significant venous pathology, and 

similarly with the arterial study, the greatest distal arterial response was 

detected in patients with no signs of arterial disease, but with venous 

disorders. What is of importance is that a distal arterial and venous response 

was identified in patients with each of the different vascular diseases

281



addressed in the study. The objective of the research was to optimise an 

intermittent pneumatic compression technique for the improvement of 

vascular inflow and outflow proximal to the site of a leg ulcer of varying cause; 

therefore, from the results demonstrated in this chapter, it can be seen that 

the 3-chamber thigh cuff system does improve the distal arterial and venous 

blood flows in the legs of patients with leg ulcers of arterial, venous, diabetic, 

SLE and mixed aetiologies; the ultimate intention is that with long term use of 

the system an improvement in the healing of the ulcer will transpire.

PPG (photoplethysmography) signals were recorded from each of the 

patients, however; it was not possible to average the signals together as the 

start times varied. Examples of the signals obtained are shown in figures 6.18 

and 6.19.

The PPG signal obtained from a patient with arterial disease, during compression 
with the 3-chamber thigh cuff system.
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Figure 6.18 The PPG signal associated with the use of the 3-chamber thigh 

cuff system, from a patient with arterial disease.
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The PPG signal obtained from a patient with venous disease, during compression 
with the 3-chamber thigh cuff system.
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Figure 6.19 The PPG signal associated with the use of the 3-chamber thigh 

cuff system, from a patient with venous disease.

The PPG signals represent the changes in microcirculatory blood volume 

which occur in response to compression of the thigh with the 3-chamber 

system. PPG sensors were placed on the sole of the foot and also above the 

medial malleolus; the pink and blue lines in the figures representing the signal 

obtained from each location respectively.

Figure 6.18 represents the result obtained from a patient with arterial disease 

while figure 6.19 displays the result obtained from a patient with venous 

disease. In the graphs, an increase in the signal is indicative of a decease in 

microcirculatory blood volume, whilst a decrease in the signal represents an 

increase in microcirculatory blood volume. The shape of both signals, from 

each location are very similar; microcirculatory blood volume gradually
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increases during compression, as blood is trapped distal to the compression 

garment, then as the first two chambers simultaneously deflate, the blood 

volume immediately decreases as the distally trapped blood is released and 

accelerated along the veins back towards the heart. There appears to be a 

slightly greater variation in microcirculatory blood volume in the sole of the 

foot of the patient with venous disease, which is encouraging, since it is the 

patient with venous pathology who is in greatest need of improved venous 

blood flow; however, this result represents a single individual, and although it 

supports those results obtained in the arterial and venous studies, it is not 

representative of the group as a whole.
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6.4 Conclusions for Investigations with Patients

This chapter has examined the distal blood flow response associated with the 

use of the 3-chamber thigh cuff system in patients with leg ulcers of different 

causes. The results have been very encouraging; it would appear that the use 

of the 3-chamber thigh cuff system does instigate an improvement in distal 

blood flow in patients with leg ulcers. The distal arterial response comprises a 

reduction in blood flow during the two minutes of compression, which is 

followed by a hyperaemic response during the two minutes of rest. In this 

way, the distal arterial response obtained in the patient group was identical to 

that observed in the healthy volunteer group; however, an overall rising trend 

was also apparent in the distal arterial response recorded from the patients, 

whereby the baseline seemed to be increasing with the progression of the 

sequence, signifying a gradually increasing supply of blood to the distal 

tissues. This difference was attributed to the patients’ deficient blood flow 

associated with their different vascular diseases, and their subsequent need 

for improved blood flow, as opposed to normal blood flow in the healthy 

volunteers. The distal venous blood flow response was similar to the response 

demonstrated in the healthy volunteers, accelerated venous return following 

the simultaneous deflation of the first two chambers of the cuff, however, the 

average response recorded from the patient group was greater than the 

average response recorded from the healthy volunteer group, possibly for 

similar reasons to those proposed for the difference between the arterial 

studies.
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Patient recruitment proved to be a challenging aspect of the research. 

Patients with leg ulceration tend to be elderly; in this study, the mean patient 

age was 71 years (to the nearest year). It was found that patients did not want 

to make separate journeys to the hospital to participate in the study due to 

their age and consequent reduced mobility, and also due to the weather 

during the winter months; however, due to a lack of available rooms at the 

hospital, it was not possible to conduct the study at the time of their initial 

appointment with the vascular surgeon. Another factor which excluded a 

number of patients was the size of the cuff. According to the tissue viability 

nurse at WWGH, there were a number of leg ulcer patients eligible to 

participate in the study who were prevented from doing so due to the size of 

the cuff. The cuff being used in the study allowed for a range of limb 

circumferences; however, it would not fit those patients who were overweight / 

obese.

Due to the limited number of patients recruited from WWGH, additional 

research sites were included in the study. Prince Philip Hospital in Llanelli 

contributed some patients to the study, as also did Saundersfoot Medical 

Health Centre. Apart from the problems encountered with recruitment, the 

patient study did not pose any other major difficulties.

The patient study is the culmination of the work which preceded in the other 

chapters. Extensive preliminary investigations on a single healthy volunteer 

provided insight into the effects of altering the pressure, inflation and deflation 

durations and cuff design of intermittent pneumatic compression on the distal
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haemodynamics of the individual. A new cuff design resulted from these initial 

experiments, which was tested firstly on a group of healthy volunteers, and 

finally on the target users; the leg ulcer patients of this chapter.

Going back to chapter 1 and the research proposals, it would appear that the 

objectives have been satisfied, in so far as a proximal intermittent pneumatic 

compression technique has been optimised for simultaneously improving 

distal arterial and venous blood flows in patients with leg ulcers. There were 

two new aspects to this research, which have never been addressed prior to 

this study; namely, the use of thigh only compression for improving distal 

blood flow, and the use of a single compression technique for simultaneously 

improving distal arterial and venous blood flows, each of which have been 

demonstrated through the studies completed to be successful in achieving 

their aims. It would appear that proximal compression could be implemented 

as a viable alternative in those instances where whole leg or calf compression 

is not possible, and distal arterial and venous blood flows can both be 

improved using a single intermittent pneumatic compression system.

The implications of the results which have been achieved are very 

encouraging. A system capable of improving both distal arterial and venous 

blood flows, which therefore would be applicable to the majority of patients 

with chronic non-healing leg ulcers; which is easy for the patient to use; does 

not require the ulcer to be covered, minimising discomfort and therefore aiding 

patient compliance; and has the potential to improve the healing of chronic leg 

ulcers with long term use. When asked, patients recruited in this study
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assured that the system was very comfortable, whilst the sequential action of 

the cycle was ‘therapeutic’.

In order to complete the research, a small number of case studies were 

carried out to investigate the long term use of the 3-chamber thigh cuff 

system, the effects on ulcer healing and the practicalities of using the system 

in the home environment. The case studies are described in the next and final 

chapter.
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Chapter 7: The Home Study

7.1 Introduction

In previous chapters, the distal haemodynamic effects of various compression 

garments and operating regimes have been investigated in order to determine 

the optimal compression system for enhancing distal blood flow, ultimately for 

treating and managing chronic leg ulcers. It was determined that the 3- 

chamber compression garments produced a greater distal response than the 

uniform compression garments. A decision then had to be made as to which 

of the three chamber garments should be further investigated on healthy 

volunteers and patients; the 3-chamber thigh garment produced a greater 

distal arterial response whilst the 3-chamber whole leg garment produced a 

greater distal venous response. It was concluded that the 3-chamber thigh 

garment would be more agreeable to the patient, as it would not interfere with 

the wound site, since leg ulceration is generally below the knee; and the 3- 

chamber thigh garment would also be easier for the patient to use in the home 

environment. The 3-chamber thigh garment was therefore investigated on a 

group of healthy volunteers, comparing the effects of two different cycles. 

Cycle 5 was demonstrated to be the optimal compression sequence; 

however, due to a decrease in distal arterial blood flow arising during 

compression and a hyperaemia occurring when compression ended, the cycle 

was adapted slightly to allow for the hyperaemic response to occur. Cycle 5 

was consequently operated within a 2 minute on and off sequence. This final 

compression regime was investigated for distal arterial and venous effects on
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a number of healthy volunteers, and a group of patients with leg ulcers of 

different causes, where improved distal circulation was observed during the 

studies. It now remains to be determined whether any clinical benefits are 

achievable as a consequence of using the 3-chamber thigh cuff system over 

an extended period of time. Therefore, a home study was proposed which 

would involve patients taking a 3-chamber thigh cuff system home with them 

for daily use over approximately 3 months, in order to assess the clinical 

benefits of the compression system and also to assess the practicalities of 

using the compression system in the home environment.

7.2 Equipment

Previously, the 3-chamber thigh cuff has been operated with three Flowpac 

pumps, one pump per chamber. It was not deemed practical for patients to 

take three Flowpac pumps home with them as they are not only bulky and 

heavy, but their use would require the patient to accurately start the pumps at 

the specific timings of cycle 5.

A new pump was developed by Huntleigh Healthcare which allowed the 3- 

chamber thigh cuff to be operated by a single pump, and which only required 

the patient to press start and stop. The pump, an adapted Flowtron AC300-R, 

performed the compression sequence of cycle 5, as described in chapter 2.
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7.3 The Case Studies

7.3.1 Introduction

Although a number of patients were identified to be suitable to participate in 

the home study, consent was difficult to obtain. Agreeing to participate did 

involve a high level of commitment on the patients’ part, and therefore 

perhaps for further trials with the system, some form of incentive might be 

required. However, two patients did consent to take a 3-chamber thigh cuff 

system home with them for the 3 month period.

Ethical approval had been obtained to conduct the trial, from the Dyfed Powys 

Local Research Ethics Committee.

7.3.2 Case Study 1

The first patient was recruited from WWGH by the Tissue Viability Nurse. The 

details of the study were explained to the patient, and a consent form was 

signed. The patient was male, aged 77, and was a non-smoker of average 

height and weight. From here on the patient will be referred to as Mr H.

The patient presented with an ulcer on the right foot of uncertain aetiology. It 

was suggested that the ulcer could have been caused as a result of both 

arterial and venous pathologies. Mr H described ‘excruciating’ pain after 

getting out of bed.
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A duplex scan of the right leg, performed a week prior to start of the study 

demonstrated a ‘short segment CFA (common femoral artery) occlusion, very 

diseased SFA (superficial femoral artery)’, whilst examination of the veins 

revealed ‘gross SFJ / I (sapheno-femoral junction incompetence) only’. ABPI 

of the right leg was 0.55.

Mr H was not eligible for reconstructive surgery due to a previous mitral valve 

replacement. The mechanical mitral valve has a tendency to cause blood 

clots, which could lead to a stroke if they are dislodged and travel in the 

circulation; it is therefore necessary for Mr H to take warfarin on a regular 

basis in order to prevent the occurrence of a clot. For Mr H to have arterial 

reconstructive surgery he would have to stop taking the warfarin and take 

heparin, increasing the risk of a stroke.

Mr H was willing to try anything that could help heal the ulcer and relieve the 

unbearable pain that he was experiencing. He was therefore provided with a 

cuff and pump, an instruction sheet and contact telephone numbers and 

shown how to use the equipment. Pictures were taken of his ulcer for 

comparative purposes.
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Figure 7.1 Ulcer of mixed aetiology of Mr H. at the start of the home study.

A week later a phone call was made to Mr H to check on his progress. Mr H 

was happy with the equipment and had been using it daily for the last week. 

He had been using the pump for approximately 3 hours every day during the 

first week, which was not as long as he would have liked but he had been 

very busy. He was hoping to be able to increase the amount of usage over the 

next few weeks. He noted that he had not encountered any difference in his 

ulcer or pain level as yet, and queried when it might be expected to notice a 

change. He was informed that it was difficult to know when to first expect a 

change, but that maybe after a few more weeks he may start to encounter an 

improvement. Mr H appeared very committed to the study, and was hopeful 

that using the system would reduce his pain.
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About a month later a phone call was received from Mr H to say that he had 

not been doing very well with the system. After the first conversation, he had 

continued to use the cuff and pump, until his foot started swelling. He stopped 

using the equipment, and the other foot also became swollen. It took a long 

time for the swelling to reduce. The swelling was not considered to be as a 

result of the compression system since it was present in both legs; therefore, 

it was likely to be as a result of infection, or related to his pre-existing heart 

condition. Once he felt that he was ready to recommence compression, he 

developed shingles, and was quite unwell. At the time of the conversation he 

was beginning to recover, and was hopeful that he would be able to slowly 

start compression again within a weeks’ time.

At the completion of the 3 month period, Mr H was contacted to organise an 

appointment for returning the equipment and to see whether he had had any 

success with the treatment. Mr H had not used the equipment since the first 

few weeks of the study. He had experienced many complications with his 

ulcer, related to the type of dressing used, and he was suffering with the level 

of pain he was experiencing. He had met with Mr Locker, and even though 

there were considerable risks, they were considering surgical intervention.

Even though Mr H was enthusiastic and committed about the study, it would 

seem that the complexity of his existing medical conditions and the pain he 

was experiencing did not make him the ideal candidate to participate in the 

home study.
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7.3.3 Case Study 2

The second patient was recruited by the District Nurses at Saundersfoot 

Medical Health Centre. She had previously participated in the Patient study 

discussed in chapter 6.

Mrs A was 73 years of age, and a non-smoker of average height and weight. 

She had been diagnosed with Systemic Lupus Erythematosus (SLE) in 1989, 

polymyalgia rheumatica in 2000, having a Thompson hemiarthroplasty of the 

left hip in 2000, and a further left girdlestone arthrodiesis in 2003; she suffered 

a transient ischaemic attack (TIA) in 2004, and was diagnosed with ischaemic 

heart disease in 2006. She was also hypertensive, but was taking medication 

to control this.

Mrs A first developed a varicose ulcer in 1973. It was treated with Bactigras 

dressings and Scherisorb until 1991; she was fitted for support stockings and 

found to be allergic to Ichthopaste dressings in 1993. The ulcer did not heal 

completely until November 1993. The ulcer returned in March 1996 and was 

infected. Granuflex was used to dress the ulcer, which was painful and 

produced a large amount of discharge. The ulcer was healing well by July 

1996, however, it recurred once more in August 1997 and was again infected. 

The ulcer was applied with Intrasite gel and a Tegaderm dressing for the 

remainder of 1997. In September 1998, Mrs A was referred to a wound care 

specialist. The ulcer recurred again in 1999, and on this occasion, 3 and 4 

layer bandaging was used until the ulcer was almost healed in early 2000. 

Mrs A developed phlebitis later in 2000, and a recurrence of the ulcer. She
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continued to wear support stockings, and have her ulcer dressed until the 

present day.

The pictures in figures 7.2 and 7.3 demonstrate Mrs A’s ulcer at the start of 

the home study.

Figure 7.2 Venous /  SLE ulcer of Mrs A at the commencement of the home

study.

i
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Figure 7.3 Venous /  SLE ulcer of Mrs A at the commencement of the home

study.

Mrs A was very enthusiastic about participating in the home study. She used 

her system most days throughout the 3 month study, excluding a period of 

about a week to ten days when she was in hospital for an unrelated surgical 

procedure. She used the system every evening, going to bed earlier than 

normal and putting the cuff on for two hours whilst reading or listening to the 

radio. She would set an alarm to go off after 2 hours to ensure she did not fall 

asleep with the cuff still going.

Mrs A did not encounter any problems with the equipment; she found it easy 

to use and very comfortable, and was encouraged when she could see that 

her ulcer was improving.

297



The following pictures demonstrate the progress her ulcer had made after 2 

months using the system.

Figure 7.4 Almost healed ulcer of Mrs A, 2 months following the start of the 

study.

Figure 7.5 Almost healed ulcer of Mrs A, 2 months following the start of the 

study.
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At the end of the 3 month period, her ulcer had completely healed.

Figure 7.6 Mrs A ’s completely healed ulcer at the end of the 3 month study.

Mrs A was extremely pleased that her ulcer had healed; having suffered with 

recurrent ulceration for many years, she was delighted that her ulcer had 

improved within such a short period of time. She enquired whether she would 

be able to use the system again should her ulcer recur in the future. She was 

very grateful that she had been given the opportunity to participate in the 

study, and was surprised that other patients had not been keen to partake.
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7.7 Conclusion

A home study was conducted in order to investigate the clinical effects of the 

3-chamber thigh cuff system, and to assess the practicalities of using the 

system in the home environment. It was aimed to enrol a small group of 

patients to participate in the home study; however, due to a shortfall in ulcer 

patients, and the level of commitment required of the patient, only two patients 

were recruited. The first patient had other medical conditions which caused 

him a great deal of pain, and prevented him from using the system 

consistently. He used the system enthusiastically at the start of the trial; 

however, once pre-existing and complicating medical conditions became 

involved, use of the system came to an end. Therefore, of the two patients 

recruited, only one used the equipment routinely throughout the 3 month trial. 

The second patient used the system for 2 hours every day (excluding a period 

in hospital for a non-related surgical procedure), and improvement in the 

healing of the ulcer was noticeable early in the trial, complete healing having 

been achieved by the end of the 3 months.

The result obtained with Mrs A was very encouraging. However, since it is a 

single result, its significance is questionable. The study would need to be 

repeated on a larger group of ulcer patients in order to determine whether the 

ulcer healed as a consequence of using the 3-chamber thigh cuff system.

The purpose of the home study was also to assess the practicalities of using 

the system in the home environment. Both patients found the system easy to
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use, easy to transport and comfortable. Neither patient had any problems or 

difficulties with the system itself.

Although a positive result was obtained from the home study for both clinical 

effects and the practicalities of using the system, the significance of the 

results cannot be relied upon due to the number of participants involved. 

Further research is required to support the outcome of this study.
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Conclusions and Future Research

The aim of this research was to determine whether or not intermittent pneumatic 

compression (IPC) produced a distal blood flow response, and dependant upon 

the presence of a distal effect, whether compression could be used as a viable 

treatment option for chronic non-healing leg ulcers of different aetiologies. 

Previous research has always investigated the proximal effects of intermittent 

pneumatic compression, so this element of the project was completely new.

Investigations demonstrated that there was a distal blood flow response 

associated with IPC. When the compression cuff deflated, a distal arterial 

hyperaemia was detected. Even though distal arterial blood flow decreased 

during compression, the size of the hyperaemia was such that there was an 

overall increase in distal arterial blood flow. At the same instant, when the cuff 

deflated, a volume of distal venous blood was accelerated back towards the 

heart, indicative of a distally trapped volume of blood being released.

The size of the distal response was found to vary dependant upon the type of 

compression cuff, a greater effect being observed with the 3-chamber cuffs as 

compared with the uniform cuffs. However, a distal response was obtained with 

thigh only compression, which in itself is a good result. Thigh only compression 

has never been investigated as a method for improving blood flow; the results of 

this study seem to imply that thigh only compression could potentially be used as
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a means of improving the distal circulation in those patients who are not suitable 

for whole leg or calf compression.

Another new aspect of this research examined the potential of improving both 

distal arterial and venous blood flows using a single compression sequence. It 

was established that a rest period was required within the compression sequence 

for a distal arterial hyperaemia to ensue, whilst improved distal venous blood flow 

occurred within a fairly rapid sequential compression cycle. The final result was a 

20 second sequential cycle which was operated within a 2 minute on and off 

sequence; thereby improving distal venous blood flow during the 2 minutes of 

compression, and allowing a distal arterial hyperaemia to transpire during the 2 

minutes rest.

The final product; a 3-chamber thigh compression cuff, with the afore mentioned 

compression sequence, operated by a modified Flowpress AC300-R pump was 

investigated on a group of patients with ulcers of varying aetiologies. The results 

were very encouraging, revealing that use of the system over a short period of 

time produced a net increase in distal arterial blood flow, and an improvement in 

distal venous return. However, the number of patients who participated in the 

study was small; 14 in total, and only 7 produced distal arterial results, therefore 

further investigations would be required to substantiate the findings. 

Nevertheless, the implications of these results suggest the potential of the 

system, which, in addition to improving the distal circulation of patients with
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vascular pathologies, and consequently having the potential to enhance ulcer 

healing, is also simple to use, lightweight and easily transportable, comfortable 

and inexpensive.

It was hoped to conduct a small number of case studies as an insight into the 

clinical results of the new system, and also to determine the practicalities of using 

the system in the home environment. However, it proved very difficult to recruit 

patients into the 3 month study, possibly due to the amount of commitment 

involved. Of the two patients who consented to participate in the study, only one 

used the system on a regular basis and consequently produced any results. The 

lady with SLE (Systemic Lupus Erythematosus) and a long standing varicose 

ulcer used the pump for on average 2 hours daily for 3 months, and noticed 

almost immediate results. By the end of the study, her ulcer had practically 

healed. Even though this is only a single result, it leads the way for further long 

term trials of the system.

This research has demonstrated the potential of using proximal compression for 

improving the distal haemodynamics in patients with leg ulcers related to 

circulatory disorders, and has also generated a new product which appears to be 

capable of achieving these results. It is hoped that this study is the preliminary 

stage of a future trial, which is aimed at confirming the beneficial results which 

were achieved in the case study.
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Appendix

Method used for normalising the results obtained from the distal arterial 

studies

1. The results obtained for the first 180 seconds of the study were 

averaged together by totalling the TAM velocities, and dividing by the number 

of results that were recorded during the 180 second time period.

2. The entire data set was then divided by this pre-compression average, 

in order to obtain a set of results that were normalised, or relative to unity.

3. The purpose of normalising the results was to enable comparison 

between data sets, and the ability to average data sets together.
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