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ABSTRACT

In this thesis we investigate the influence of certain physical effects on the collapse and
fragmentation of isolated, low-mass, low-turbulence cores, in particular on the mass distribution,

binary statistics and kinematics of the resulting stars.

We perform numerical simulations using a Smoothed Particle Hydrodynamics code to
model this mode of star formation. Firstly we model acoustic oscillations of a self-gravitating
isentropic monatomic gas sphere using our SPH code and find that if the smoothing lengths are
adjusted so as to keep the number of neighbours in the range Ny + AN g5, ANz should be
set to zero, to reduce the level of numerical dissipation and diffusion. We suggest that this should
become a standard test for codes simulating star formation, since pressure waves generated by
the switch from approximate isothermality to approximate adiabaticity play a crucial role in the

fragmentation of collapsing cores.

We perform a large ensemble of SPH simulations of cores having different levels of turbu-
lence, using a new, more realistic treatment of thermodynamics, developed by Stamatellos et al.
(2007), which takes into account the thermal history of protostellar gas and captures the thermal
inertia effects. We compare the results with simulations using a standard barotropic equation
of state. We find that increasing the level of turbulence generally tends to reduce the fraction
of the core mass which is converted into stars, and increase the number of stars formed by a
single core. Using the new treatment results in more protostellar objects being formed, and a
higher proportion of brown dwarfs. Of the multiple systems that form, they tend to have shorter
periods, higher eccentricities and higher mass ratios. We also note that in our simulations the
process of fragmentation is often bimodal, in the following sense. The first protostar to form is
usually, at the end, the most massive, i.e. the primary. However, frequently a disc-like struc-
ture subsequently forms round this primary, and then, once it has accumulated sufficient mass,
quickly fragments to produce several secondaries. We believe that this delayed fragmentation
of a discjlike structure is likely to be an important source of very low-mass stars in nature (both

low-mass hydrogen-burning stars and brown dwarf stars).

We also model the evolution of an ensemble of prestellar cores in the Ophiuchus Main



Cloud using initial conditions for the sizes and levels of turbulence constrained by the obser-
vations of Motte et al. (1998) and André et al (2007), and the recently revised core masses of
Stamatellos et al. (2007). We find that star formation in these core is extremely efficient with
typically the formation of a single star, but we also see the formation of multiple systems in a
number of cores. We find that the number of stars formed by a core is highest if the core has
high mass, and/or if it has a high initial level of turbulence, and/or if it starts from a low initial

density. We explain why.

Finally we explore the effect metallicity has on the mass distribution and binary statistics
of stars formed from low-mass low-turbulence cores. We find that reducing the metallicity de-
creases the number of stars formed from a single core and reduces the number of brown dwarfs

formed. It also reduces the binary frequency.
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Chapter 1

Introduction

Star formation is a dynamical, violent process, which we do not yet fully understand.
The aim of astronomy is to understand how the Universe has previously evolved and
will continue to evolve. Since stars influence the structure of galaxies, which are an
important element in the structure of the universe, star formation plays a powerful and

crucial role.

Over the last few decades there have been some major developments in the ob-
servational techniques used to study star formation. We have seen the introduction of
infrared (IR) telescopes, such as IRAS and Spitzer, and also sub-millimetre telescopes
such as JCMT. We can now map clouds at a higher sensitivity than ever before, and even
observe young stellar objects and determine their properties, without the problems of
dust obscuration as in optical observations. The future of star formation research is also
very promising, with the commissioning of SCUBA-2, a second generation instrument,
designed to map large areas of sky up to 1000 times faster than SCUBA. This will pro-
vide us with a phenomenal amount of data, allowing us to probe the early stages of star

formation with increasing depth and accuracy.

Numerical simulations are required to explain the physics behind these observa-

tions. Star formation is a rapid, dynamical process which can scale over 20 orders of



2 CHAPTER 1. INTRODUCTION

magnitude in density, and involves self-gravitating, non-LTE fluid dynamics, so numer-

ical simulations require very powerful modern supercomputers.

In this thesis we perform numerical simulations to gain an insight into the way in
which stars are formed from dense molecular cores. Before we present the results, we

shall discuss the main stages of star formation to put our results into context.

1.1 Star formation in molecular clouds

Most young stellar objects form from the contraction of dense regions in huge molecular
clouds. These clouds are large condensations of interstellar gas and are concentrated in
the galactic disk near the spiral arms of a galaxy. Typically, their sizes range from
~ 0.1 pc to ~ 100pc in diameter, with masses from ~ 10> M, to ~ 10°M,. Clouds
with masses exceeding 10* M,, tend to be called Giant Molecular Clouds (GMCs). The
gas in GMG:s is so cold and dense, with temperatures below 100 K and densities from

102gcm™ to 10720g cm™3, that the gas is predominantly molecular hydrogen.

GMC:s have a hierarchical structure, consisting of small subclouds within large sub-
clouds. Their general structure can be mapped via molecular line observations of CO -
(e.g. Myers et al. 1983; Myers & Benson 1983). Observations show they tend to be
filamentary in shape, rather than spherical. An example of this is shown in Fig. 1.1
for the Taurus molecular cloud. Dense clumps have been observed in molecular clouds,
such as in Ophiuchus (Motte et al. 1998), also dense cores (André et al. 2007) which
are thought to be the precursors of protostars. These higher density regions within the
clouds can be mapped using the lines of NH; (e.g. Myers & Benson 1983), N,H*, CS
and HC;N.

One of the most intensively researched star-forming regions is Orion, which is ~

100 pc in size and has a mass of 10° M. This molecular cloud complex is located at a
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Figure 1.1: Taurus molecular cloud seen in extinction, taken from Dobashi et al. (2005) and
modified by Nutter (private communication). The contour levels are Av=1, 2,4.

distance of ~ 450 pc. A closer example is the quiescent low-mass star-forming region
Taurus, which is ~ 140 pc away (see Fig. 1.1). The stars most visible in Taurus are
referred to as T-Tauri stars; they have masses in the range of 0.5 - 1.0 MG, and are found
in small groups of < 10 members. This region is smaller in size than Orion, spanning
~ 20 pc. Orion is a far more violent region than Taurus, producing both high- and low-

mass stars, whereas Taurus appears to produce just low-mass stars.

The actual sites of star formation are in the dense cores within molecular clouds.
Here the densities are exceptionally high (£ 10-20g cm-3), and the temperatures are very
low (< 10K). When a core becomes gravitationally unstable, it contracts and reaches
sufficient densities for hydrogen fusion to occur. Hence, a star is formed. The first stage

of star formation occurs when a molecular cloud becomes gravitationally unstable.

Consider a non-rotating, non-magnetic molecular cloud of radius R, mass M, den-
sity p0 and temperaure 7. If this cloud is gravitationally bound, its maximum radius is

given by the Jeans length



4 CHAPTER 1. INTRODUCTION

15 '/ (L.1)
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where G is the gravitational constant, a. is the isothermal sound speed

a, = ('—‘Z)m, | (1.2)

and 7 is the mean gas particle mass. This cloud will contract if R > R, s, and collapse
if R > R,,,- We can also define a minimum mass that is required for a cloud to be

unstable, referred to as the Jeans mass

(375 )1/2 a’

M an ] G3pz”

~
JEANS

(1.3)

and collapse if M > M_, .. .

In this case, the cloud will contract if M > M, IEANS

JEANS ?

Substituting a temperature of ~ 10K and a density of 1022gcm™ for molecular
hydrogen results in a Jeans length far smaller than the size of a typical molecular cloud
and so these clouds should collapse. However, this is not what happens, since, if it
were the case, the rate of star forrhation in the Galaxy would be much higher than we -
observe. There must be some form of support that prevents collapse occurring on freefall
timescales. Thermal pressure alone is insufficient, so it is presumed that there are other
supporting mechanisms. Supersonic velocity dispersions are found to exist on large

scales within the clouds, which suggests the presence of turbulence (Larson 1981). This

IThese expressions for the Jeans radius and mass are derived on the basis of the time-dependent Virial
Theorem applied to a uniform-density cloud. If instead one invokes a critical Bonner-Ebert sphere, the
expressions become

a a
R = 182 —— = 0.763 ——,
JEANS (Gpc)1/2 (Gp)l/z
Mo = 443— % _ _ 186—" .
T T ganplz T T GRple

where p,. is the central density, and 5 is the mean density
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could provide the support against collapse. Magnetic fields may also contribute to the

support.

However, searching for a mechanism to provide this additional support may not
actually be required, since evidence suggests that the lifetime of a cloud is less than the
1 Gyr timescale previously thought. Therefore, molecular clouds are not equilibrium
structures but instead may be transient structures which assemble, produce stars, and

disperse over only a few dynamical times (Elmegreen 2000).

1.2 Cloud collapse

Magnetic fields may play an integral role in regulating cloud collapse. In molecular
clouds, the magnetic field is frozen to the gas, provided that the conductivity of the gas
is sufficiently high. The charged particles are then constrained to move along the field
lines by the Lorentz force. The neutral particles experience this Lorentz force indirectly,
when they collide with charged particles and transfer momentum. This causes there to
be an ‘ion-neutral friction’ generated when the neutrals slip relative to the ions and field,

making it hard for the neutral particles to move relative to the ions.

This process can be dealt with in two ways, via Magneto-hydrodynamics, MHD. In
ideal MHD, also referred to as single fluid MHD, we ignore the motion of the neutral
particles relative to the ions and hence relative to the field. However, in some situations,
this may not incorporate the whole process entirely and so we require non-ideal MHD,
also referred to as multifluid MHD. Here, the neutral particles diffuse through the ions
and the magnetic field. This is referred to as ambipolar diffusion (Mestel & Spitzer
1956). Modelling ambipolar diffusion requires at least two fluids, an ion fluid and a

neutral fluid, instead of just one as in the case of ideal MHD.

The process of ambipolar diffusion results in magnetic support being lost from the
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region and hence cloud collapsing occurring (Mestel & Spitzer 1956). Ambipolar diffu-
sion is quite rapid in molecular clouds because the ionisation fraction is low, typically

in the range of 1078 to 106 (Caselli et al. 1998).

An indication of whether magnetic support is sufficient to prevent collapse is given
by the ratio of the mass M of the cloud to the magnetic flux @ through it (Mouschovias
1976)

( M ) 0.151/2
cr

=) ~ == . 1.4
o, G (1.4)

For the cloud to undergo gravitational collapse, the mass to flux ratio must exceed this
critical value, making it magnetically supercritical. For it to withstand self gravity, the
cloud must be magnetically subcritical, with its mass to flux ratio less than the critical

value (Mouschovias & Spitzer 1976).

In a dense core, ambipolar diffusion acts to increase the mass to flux ratio, not
by dissipating magnetic flux, but by redistributing the matter in the central flux tubes
(Mouschovias 1976). Eventually self gravity overcomes the forces supporting the cloud

causing it to become gravitationally unstable to collapse.

Once the cloud becomes gravitationally unstable, collapse proceeds. During the
initial stages of collapse when the density is less than 10~*gcm™3, the condensation is
optically thin and the gravitational potential energy released is freely radiated away at
such a rate that the cloud remains isothermal at a temperature of ~ 10K. The cloud

collapses on a timescale close to the freefall time,

3r \'?
tFF - (32Gp°) ’ (1.5)

where p, is the central density. When the density in the core exceeds ~ 10~13gcm™, the
core becomes opaque to its own radiation and so increases in temperature. Eventually,
the thermal pressure in the core becomes high enough to slow down further collapse, at

~ 200K. The core then contracts quasistatically. At a temperature of 2000K, molecular
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hydrogen in the core is dissociated. The energy generated from the cloud collapse is used
in this dissociation and so the core remains at almost a constant temperature. Collapse
of the core continues once the dissociation of hydrogen is complete and the temperature
continues to increase once again. Finally, an opaque hydrostatic protostar forms at the
centre. This central protostar can then accumulate mass from the surrounding infalling

envelope and accretion disk.

1.3 Prestellar cores

\

A prestellar core represents the phase in which a gravitationally bound core has formed
in a molecular cloud and evolves through gravity towards higher degrees of central con-
densation, but does not yet have a central protostar (André et al. 2000; Ward-Thompson
et al. 2007). Sometimes this term is confused with the term ‘starless core’ but the term
‘starless core’ includes both prestellar cores and cores that are not gravitationally bound
(and therefore presumably will not form stars). Observations of a double-peaked veloc-
ity profile with a blue shifted larger peak shows the presence of infall in these prestellar

cores (Ward-Thompson et al. 1994).

Prestellar cores are very cold, and so they emit at far IR and sub-mm wavelengths.
The density profiles of prestellar cores have a flattened central region and then fall as ™7
with 2 < 1 < 5 in the outer regions, until eventually merging with the background (e.g.
Ward-Thompson et al. 1994; André et al. 1996; Ward-Thompson et al. 1999; André et
al. 2000).

Many different factors affect the timescale on which these prestellar cores collapse
to form one or multiple stars. More realistic models of core collapse include magnetic
fields, turbulence and rotation. However, we must be clear what effect each of these
physical processes have on the results, since many authors include all of these processes

simultaneously. In this thesis, we are concerned with exploring the collapse of prestellar
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cores, by means of numerical simulations, with a view to evaluating (a) how the statis-
tical properties of the resulting protostars depend on the initial conditions, and (b) what
role is played by thermal, chemical and radiative processes. Therefore, we adopt an ana-
lytic approach. That is to say, we do not seek to implement all the deterministic physical
effects, and hence we do not expect to reproduce all the observed aspects of real star
formation. Rather, we seek to establish whether particular physical effects, namely the
thermal and radiative processes, influence the outcome in a systematic way. Given the
complexity of star formation, and the limitations of numerical codes, this seems a more

fruitful approach to take.

‘

1.4 EVolutionary stages of star formation

A low-mass prestellar core evolves to form a young stellar object (YSO). YSOs are all
at different evolutionary stages and so we divide their evolution into 4 classes, forming
a sequence (Lada 1987; André et al. 1993). We note that this sequence is oﬁly well

established for low-to-intermediate mass stars.

Class 0

This is the earliest stage of protostar formation (André et al. 1993). Here, the protostar, '
which has just formed inside the core, has a mass less than that of the envelope. Its
spectral-energy distribution (SED) resembles a single temperature blackbody at ~ 15 -
30K. The SED peaks in the sub-mm, due to the dust grains in the infalling envelope
absorbing the radiation and re-emitting it in the sub-mm (André et al. 1993). The
protostar cannot be observed directly at this stage since it is deeply embedded in the
core. However, we may see indirect evidence of its presence either through a radio
continuum source, a collimated CO outflow, or an internal heating source. This is the
main accretion phase, lasting for ~ 10*yrs with a rate of accretion ont6 the central

object of 2 10°Myyr~'. At the end of this stage, the protostar should have reached

approximately half of its final mass.
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Class I

Objects that are in the Class I stage are sometimes referred to as late or evolved pro-
tostars. Here, a disk has started to form, through which the material with high angular
momentum can accrete onto the protostar. However, traces of the envelope can still be
seen. Whilst the SED still peaks in the sub-mm, there is also an excess of IR emission.
This is likely to be from the circumstellar disc being heated up by the central proto-
star. There is no optical emission from the central protostar due to it still being deeply
embedded. The Class I stage lasts for a few 10°yrs, now with a lower accretion rate

(~ 107*Myyr!) compared to the Class 0 phase.

Class 11

These objects are also known as classical T-Tauri stars. This phase corresponds to a
stage where the majority of the envelope has been dissipated and there now exists a
geometrically-thin optically-thick disc of mass ~ 0.01M,. These discs have been di-
rectly observed using the Hubble Space Telescope. The central object is no longer
embedded but is now optically revealed. Its SED peaks at IR wavelengths, attributed
to the heating of the dust in the disk and re-emission in the IR. The accretion rate has
now fallen to ~ 10"®Myyr~!. The material accreting onto the stellar surface produces
a strong Ha emission line and veiling of the UV absorption lines. This phase lasts for

~ 1 —4 x 10%yrs.

Class I11

Class III objects are also known as weak-line T-Tauri stars. Their SEDs show weak
Ha emission and no major IR excess, which must signify that the disk has dissipated
and there is little or no accretion occurring. After ~ 107yrs of this stage, the protostar

evolves onto the main sequence.
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1.5 Accretion Disks

Accretion discs form when circumstellar gas and dust attempt to fall onto the central pro-
tostar, but are prevented from doing so by centrifugal forces. The angular velocity of the
material increases and therefore forces it to collapse down to form a circumstellar disc.
The disc then evolves through angular momentum transport outwards and mass trans-
'port inwards onto the protostar, increasing its mass. This process of angular momentum
transport is required to solve the problem of conservation of momentum in star forma-
tion. We know that molecular cloud cores possess angular momentum, which may be
revealed as ordered rotation (velocity ~ 0.1 kms™!) or as turbulence. However, this an-
gular momentum cannot be conserved minutely and so must be removed or redistributed
otherwise centrifugal forces will prevent collapse and hence star formation (Mestel &
Spitzer 1956). The redistribution of angular momentum through the disk could be driven
by gravitational torques, or by viscosity. Another possible process is magnetic braking.
Here, angular momentum is transported to the outer regions via Alfvén waves. These
waves are generated from the magnetic field lines which are twisted into a helical pattern

from the rotation of the cloud.

Indirect observational evidence for the existence of discs can be found in the SEDs
of the protostellar cores. Dust in the disc is heated by stellar irradiation, compression
and viscous dissipation, which produces an IR excess in the SED. In the last few years
discs have been directly observed. Many of these observations have been made by the
Hubble Space Telescope, and by ground-based adaptive optics. Observations show that
these discs span 10 — 1000 AU with masses 0.001 — 0.1 M,,. As mentioned earlier, they
are present from very early in the evolution of a collapsing core to the final stages such

as in CTTs and WTTs.

Observations have shown that a small fraction of the accreted material'is ejected in
bipolar jets or outflows (e.g. Richer et al. 2000), which are perpendicular to the disk.

These are thought to carry away the excess angular momentum of the infalling matter.
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The jets extend to lengths of 1072 to 1 pc and are highly collimated, reaching velocities

of hundreds of kms™!.

Density perturbations can grow in protostellar discs causing them to become grav-
itationally unstable. A measure of their stability against fragmentation is the Toomre

stability parameter (Toomre 1964);

CK

0=—=—. (1.6)

where c is the sound speed, « is the epicyclic frequency, and X is the mass surface density

within the disc. For a disc to remain stable against self gravity, Q must exceed 1.

If a disc becomes gravitationally unstable and fragments, it is possible for multiple
systems to be formed. It has also been shown that discs can promote the formation of
low-mass stars in binaries and also boost the number of triple and quadruple systems

formed, via star-disc interactions (e.g McDonald & Clarke 1995).

1.6 Main Sequence stars and brown dwarfs

Once a star becomes sufficiently dense and hot enough to begin hydrogen burning, it en-
ters the main sequence phase. Here the energy created from the thermonuclear reactions
that convert hydrogen into helium provides enough pressure to stop further collapse of
the core. Not all stars at this stage have the required density and mass and so they never
reach the main sequence. These stars are called brown dwarfs. They are sometimes
referred to as ‘failed stars’. This is due to their masses being insufficient (approximately
< 0.08M,) for hydrogen burning to occur. Hence, they do not have a main sequence
phase. Instead, they are dense enough to be supported by electron degeneracy pressure.
Observations of brown dwarfs are extremely difficult to make since these objects are

very faint, with luminosities < 10™Lo. A significant number of young brown dwarfs
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have disks. Evidence of this is shown by the IR excess in their SEDs.

With improved sensitivity of telescopes, brown dwarfs are now routinely observed
(e.g. Martin et al. 2001; Wilking et al. 2004; Luhman 2004). However, the mechanism
behind their formation has not yet been confirmed. It is not known whether they form in

the same way as more massive stars, or whether a different process is involved.

There currently exist many possible theories, all plausible but none yet confirmed.
One theory is that brown dwarfs are formed by the ejection of low mass stellar embryos
from their prestellar cores (Reipurth & Clarke 2001). This is a result of fragmentation
producing multiple systems which then grow by competitive accretion. These systems
then interact dynamically, ejecting the lowest mass object. This could explain the lack
of brown dwarfs in close orbits around Sun-like main sequence stars (the Brown Dwarf
Desert). This method seems quite possible since it only requires a protostar of 0.08M,,
being in existence with two other protostars, which will almost inevitably result in the
lowest mass object being ejected. However, we see evidence of brown dwarfs in multiple
systems whereas this mechanism usually produces single brown dwarfs (Whifworth &
Goodwin 2005). Also, during the ejection process it is unlikely that they will retain their

disks.

Other theories of brown dwarf formation involve gravitational instabilities in cir-
cumstellar disks (Stamatellos et al. 2007b), opacity limited fragmentation in turbu-
lent molecular clouds (Boyd & Whitworth 2005) or photo-evaporation of massive cores
where a stable pre-existing core is overrun by a HII region (Whitworth & Zinnecker

2004).
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1.7 Plan of thesis

In this thesis, we investigate star formation in molecular cloud cores, with the aim of
understanding how the physical processes influence the mass distribution, kinematics

and binary statistics of the resulting hydrogen-burning stars and brown dwarfs.

In Chapter 2, we discuss the algorithms and features of the numerical code that we
use to model the prestellar cores. The code uses Smoothed Particle Hydrodynamics, and
we describe the additional features we have added to our code to improve its speed and

accuracy.

In Chapter 3, we test our numerical code by performing acoustic oscillations of
an isentropic sphere. This test is designed to measure the numerical dissipation and
numerical diffusion in a code. We show that it is an important test for codes used in

simulating star formation.

In Chapter 4, we simulate the collapse and fragmentation of isolated, low-mass
cores having different levels of turbulence. To treat the energy equation and associated
radiative transport, we use a new technique developed by Stamatellos et al. (2007a).
We discuss the effect this has on the resulting stars compared to those formed using a

barotropic equation of state.

In Chapter 5, we perform simulations of the prestellar cores in the Ophiuchus Main
Cloud. Each core has a different mass, a different initial density and a different initial
level of turbulence. We discuss the effects these parameters have on the mass distribu-

tion, kinematics and binary statistics of the resulting stars.

In Chapter 6, we investigate how the metallicity of the gas effects the mass distri-

bution and binary frequency of stars formed from a low-mass core.

In Chapter 7, we summarise the main conclusions drawn from this work and discuss
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our future plans.



Chapter 2

Smoothed Particle Hydrodynamics

In this chapter, we review Smoothed Particle Hydrodynamics (SPH), the technique we
employ to simulate astrophysical problems, in particular star formation. SPH is a par-
ticle method in which we represent a fluid by using particles, and follow their evolution
under the influence of certain forces such as pressure or gravity. We discuss the hydrody-
namical equations and how we incorporate these into the code. We also discuss modifi-
cations made to the code to improve its efficiency, such as an octal spatial-decomposition
tree to calculate the gravitational acceleration of a particle, and modifications to im-

prove the accuracy, such as artificial viscosity for shocked regions.

2.1 Self-Gravitating Compressible Flow

Numerical simulations play an increasingly important role in the study of star forma-
tion, and of other non-linear phenomena involving self-gravitating gas dynamics. These
include the development of cosmological structure, galaxy formation, star formation
and stellar collisions. To model such phenomena, we need to look at the equations of

hydrodynamics.

In order to describe the evolution of a self-gravitating, viscous, compressible, non-

15
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magnetic fluid, we must solve the continuity equation, Euler’s momentum equation and
the energy equation. By solving these we can determine the flow properties in terms of

the velocity v, pressure P, speciﬁc internal energy u and density p of each fluid element.

There are two possible forms for the equations; Eulerian and Lagrangian. In the
Eulerian formulation, the properties of the fluid are functions of position and time. We
define a fixed volume in space upon which the fluid moves. The time derivatives that
are calculated in this formulation are therefore partial derivatives and give the rate of
change of a quantity at a fixed position r. The equations of continuity, momentum and

energy take the following Eulerian forms:

¢ Continuity equation

ap v,
5 V- (ov) 2.1

This describes the conservation of mass i.e. the rate of decrease in density in an infinites-

imal volume of space at r equals the divergence of the flux of matter at that position.

¢ Euler’s momentum equation

ov

VP
E=‘V'VV‘7+3<;RAV

2.2)

Here the terms on the righthand side give the contributions to the rate of increase in
velocity due to (i) advection of momentum into the volume, (ii) the acceleration due to

the hydrodynamic pressure forces, and (iii) the gravitational acceleration.

¢ Energy equation

a_uz_v.vu_PV-v
ot

+H,,, (2.3)

The terms on the right hand side give the contributions to the rate of increase in internal
energy in an infinitesimal volume of space at r due to (i) advection of internal energy

into the volume, (ii) compressional heating, and (iii) radiative heating.

This is the formulation upon which most finite difference codes are based. The fluid
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quantities are defined on a regular spatial grid.

In the Lagrangian formulation, the properties of the fluid are associated with a

particular fluid element. Equations (2.1), (2.2) and (2.3) now take the Lagrangian forms:

¢ Continuity equation

i -pV-v 24)
¢ Euler’s momentum equation
dv vp
Pl + By (2.5)
¢ Energy equation
du PV.v
:it_ = - P + ?{RAD . (26)

In both formulations we relate the pressure of a gas to its density p and temperature
T via an equation of state. It is generally of the form P = P(p, u). If the gas is isothermal,

the equation of state is given by

P=dp (2.7)

where a, is the constant isothermal sound speed.

Grid based codes have certain advantages over Lagrangian codes, depending on the
type of physics we wish to model. However, during the evolution of a star formation
simulation, the local density may increase by many orders of magnitude and as a result
there may be a need for very high spatial resolution in certain parts of the computational
domain. Adaptive mesh refinement (AMR) has been developed to address this prob-

lem (Truelove et al. 1998). Here a high resolution grid is reconstructed at each new
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timestep in order to calculate accurate spatial derivatives where they are needed. This
can be computationally expensive, much more so than Lagrangian codes. Lagrangian
codes automatically concentrate resolution in regions where matter is concentrated, and
as these tend to be the regions where greater resolution is required, there is no need for
complex refinement algorithms. In this way they resolve regions of high density without
wasting computational effort on regions of low density. In addition, particle-based La-
grangian methods have no imposed geometrical constraints, and make much less use of
imposed grids. They are therefore well suited to handling complex geometries. These

are the two main reasons we choose to adopt a Lagrangian formulation.

2.2 The concept of SPH

Smoothed Particle Hydrodynamics (SPH) is a numerical technique introduced by Lucy
(1977) and Gingold & Monaghan (1977). It is used to model complex, non-axisymmetric
situations in astrophysics, for example star formation and also many problemé in other
areas of physics and industry, such as geophysics and engineering. SPH is a particle
method in which the fluid is represented by discrete points (particles) whose motion,
and therefore evolution, can be followed under the influence of forces representing pres-

sure, gravity, viscosity and magnetic fields.

Each of the NV SPH particles is defined by its own physical properties, such as po-
sition, mass and velocity. These properties are distributed or ‘smoothed’ over a finite
volume, to represent a continuous fluid. We compute the physiéal variables at the posi-
tion of particle i by summing contributions from all its neighbours j. A list of neighbours

of each particle is found by searching through an octal tree, as explained in Section 2.7.1.

A smoothing kernel is used to interpolate over the neighbouring particles. The

kernel is a weighting function and determines the strength and extent of a particle’s
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influence. The value of a continuum variable A at position r is given exactly by

A(r) = f A(r)S(r - ¥')d’r (2.8)

where 6(r — r’) is the Dirac delta function centred at r. In order to smooth over the
particles we replace the delta function by a finite interpolation kernel, W(r —r’, k). This
kernel has a scale length h and a radius of interaction of 2h. The chosen kernel function
should satisfy two conditions. Firstly the kernel must tend to a delta function as the

smoothing length tends to zero, i.e.
}li_r’x(m) [W(r -1, h)] =6 -r). (2.9)
Secondly, the kernel must be normalised such that
f W -1, hd’r = 1. (2.10)
With the substitution of the kernel, the smoothed value of A at position r is therefore

(A(r)) = f A()W(r - ', h)d’r. (2.11)

In order to find the value of function A at the position of particle i, we approximate the
integral interpolant (2.11) by a summation interpolant over the neighbouring particles,
Js
m .
Ar) = Y =AW —r,h), (2.12)
Zj: i’ ’

where m; is the mass of the particle, p; is the density at rj, and A; is the value of the
parameter A of j. Here m;/p; replaces the volume element @°r’. The gradient of A can

then be calculated by differentiating (2.12), so

ZIOEDY %A VW -1 h). (2.13)

j J
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2.3 Kernels

The first type of kernel used by Gingold & Monaghan (1977) was a Gaussian. Since
then, many kernels have been tested, but the most extensively used to date is the cubic
spline My kernel developed by Monaghan & Lattanzio (1985), and this is used in our

work. In 3-dimensions, the M4 kernel is

3 3
1-3u*+3u°, forO<u<l,

1
My(Ir; — x|, h) = e 12 —uy, forl<uc<?2, (2.14)

0, otherwise,

where u = |r; —r;|/h (Monaghan & Lattanzio 1985). The first derivative of this kernel is

3u-3u?, for0<uc<l,
1

My(r; —rjl,h) = — 3 32-w?, forl<u<2, (2.15)

0, otherwise.

This kernel has compact support, i.e. it is of finite extent. This is a realistic approach-
because physical quantities such as p and P are local and so need not be smoothed over
the entire fluid in the computional domain. This is a great advantage computationally
since it means smoothed variables only have contributions from a small number of close
neighbouring particles. By using the M, kernel, particles that are more than 2k away
from i do not interact and so are not considered, keeping the computational cost low.
In contrast, the Gaussian kernel of Gingold & Monaghan (1977) extends over the entire
spatial domain so that all particles in the simulation contribute to summations. If large

numbers of particles are used, this is computationally very expensive.
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2.4 SPH equations

With the use of SPH interpolation, the equations describing the evolution of a self-

gravitating, compressible flow, as given in Section 2.1, can be rewritten as;
¢ Continuity equation

The summation interpolant (2.12) can be used to give an expression for the density p; at

ri,

N
Pi= ijwij, (2.16)
j=1

where W;; = W|(r; — rj, h|. Using the time derivative of this expression (2.13), we can

rewrite the continuity equation as

B2 mvy VW, (2.17)

where v;; = v, —v;.

¢ Momentum equation

We can symmetrise the pressure force between two particles by using the identity

\Y P
= v()+ . (2.18)
Jo)

Using this expression, the momentum equation then takes the form
N

dV,‘ Pi P;
71— = ,— Z mj(p—2 + -P;;-)V,VVU] + Ay - (219)
j=1 i J

Therefore the pressure force between two particles is symmetric, hence linear and angu-

lar momentum are conserved.
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¢ Energy equation

We can symmetrise the energy equation using the identity

SV y=V. (Sv)—v : V(E). (2.20)

The rate of change of the specific internal energy of an SPH particle becomes

N
. 1 . P;
— = —5 E mj(p'—2 + _;)(Vi —Vj)- ViW;; + (}'{RAD . (2.21)
j=1 i J

2.5 Smoothing Lengths

The smoothing length essentially determines the level of resolution in SPH. The choice
of h is extremely important, since we must ensure we are resolving on a scale compara-
ble with or less than the scale of the physical processes we are interested in. Failing to

resolve on these scales means we may smooth over some important features.

When SPH was first introduced, smoothing lengths were constant in time and uni-
form in space (Gingold & Monaghan 1977). However it has since been demonstrated
that if each particle has its own & which is allowed to vary in time, the spatial resolution
is substantially improved (Hernquist & Katz 1989). By having a smoothing length that
varies in time and space, the number of neighbours of each particle can remain roughly
constant. This means that high density regions can be better resolved since a smaller A

is required in order to meet this condition.

The smoothing length of a particle is adjusted so that its neighbour list contains
Nye other particles. The choice of N, is a compromise between good sampling and
good resolution. If NV, is increased, the sampling is improved and hydrodynamic vari-
ables are smoother, but resolution is degraded. Conversely if N 1 reduced, sampling

is degraded and hydrodynamic variables are noisier, but resolution is improved. Having
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a larger N, also increases the computational time, so it is important to strike the right
balance. Experience suggests that N, = 50 is a good compromise. Many SPH simula-

tions in the literature allow N, to fluctuate within some tolerance AN,,,.

In Chapter
4, we show that if the tolerance is set to zero, there is a marked reduction in the rates of

numerical dissipation and diffusion .

Some SPH codes (e.g. Price & Monaghan 2004) do not specify the number of

neighbours, but instead, for each particle, iterate around a loop,

1/3
h o= h, [';—1] 2.22)

i
i
m

D _iw(lrf_r’l) (2.23)
L\ i '

until fractional changes in p, drop below a user-defined tolerance, €. Here A, is a constant

P,

of order unity, and the summation is over all neighbours j for which [r, —r| < 24, (i.e.
all particles within the smoothing kernel of particle i). Provided e is sufficiently small,

this is statistically equivalent to setting N, = 327h>/3 and AN, = 0.

2.6 Artificial Viscosity

Artificial viscosity is introduced in order to treat shocks correctly. When shocks are
simulated in SPH, small oscillations can occur behind the shock front. This is a result
of the discrete nature of the particles, and so the oscillations are unphysical. Another
problem that arises here is colliding streams of particles travelling at high Mach numbers
can penetrate each other. In these situations, an extra pressure term is added to the
momentum equation which produces a repulsive force between particles that are close
and ra{pidly approaching each other. This effectively slows the colliding streams down

and, in the case of shocks, allows the shocked region to be approximately resolved.

The standard form of artificial viscosity is described by Monaghan (1992). With
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artificial viscosity, the equation of motion for particle i is given by

dv
avi __ Z ( - Ty n”)v Wi+ 8y (2.24)
where II;; is
_aéijl-lij'f'ﬁl",gj
——=  (vi.rij) <05
m;={ Y (2.25)
0 (vij-rij) > 0;
and _
(vij.rij)hij

o ik 2.26
K9 egP v 00172, (2-26)

(Monaghan 1992). Here, r;j = r;— T}, Vij = Vi—V}, hij = (hi+h;)/2, pij = (pi +p;)/2 and
Cij = (C; + ¢;)/2, where ¢; and c; are the sound speeds for particles i and j respectively.

Similarly, the energy equation becomes

N
i —% Zm,(-—i + % + T )V = ¥,) - Vil + Hoy 227)
We stress that this extra viscosity is only incorporated when particles are approaching
i.e. (v;;.1;;) < 0, as required in shocks. @ and B are user defined parameters which con-
trol the strength of the viscosity. Good results are obtained with @ = 1.0 and 8 = 2.0
(Monaghan 1992). The @ term is a bulk velocity, and is dominant for small veloc-
ity differences e.g. subsonic velocity oscillations. The 8 term is a second order, von
Neumann-Richtmyer-type viscosity, and is dominant when there are large velocity gra-
dients e.g. high Mach number shocks. Standard artificial viscosity is symmetric, so that
two approaéhing particles, i and j, exert equal and opposite forces on each other, and
therefore linear momentum and angular momentum are conserved. This means we can

capture the basic jump conditions across a shock with acceptable accuracy.

However, this prescription is applied to the whole fluid, even though it is only
required where and when shocks occur. This can cause problems, because in regions

away from shocks where there are shear flows, it can lead to angular momentum being
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transported unphysically. To limit the level of shear viscosity produced, various switches
and forms of artificial viscosity have been devised, such as the Balsara switch and time-

dependent viscosity.

2.6.1 Time-dependent viscosity

This approach to reducing the amount of shear viscosity was proposed by Morris &

Monaghan (1997). In standard artificial viscosity, @, one of the parameters controlling

" the strength of viscosity, is set at a fixed value for all particles in the simulation. In

time-dependent viscosity, each particle is given its own viscosity parameter ;. a; is
then evolved according to the equation

@ a; — a

7 +Si. (2.28)

a* is the minimum value that @; decays to in the absence of shocks, over a timescale 7.
Morris & Monaghan (1997) adopt a* = 0.1, because it allows the effect of viscosity to
be reduced by an order of magnitude for particles away from the shock, but still treats
the particles in the shocked region with the required bulk velocity. S; is a source term,

which Rosswog et al. (2000) take as
S; = max(-V -v,0)2.0-a). (2.29)

S is chosen such that the viscosity grows as the particle approaches a shock front. The

timescale on which ¢; decays is chosen to be

T = (2.30)

b
CiC )
c; is the local sound speed in the fluid and C is a dimensionless parameter with value

0.1 < C < 0.2. Morris and Monaghan (1997) recommend C = 0.1 to obtain good

results. B3; is then set to 2a;.
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2.6.2 Balsara switch

Rather than having the level of Viscosity decay for particles away from shocked regions
as in time-dependent viscosity, the Balsara switch (Balsara 1995) is designed to simply
turn on viscosity for particles in shocked regions only. Here, a dimensionless factor fis
defined for a particle i and its neighbour j. It describes the local flow for each particle

and is given by
IV - vl;

fi = IV - v]; + |V x v]; + 0.0001c;/%;

(2.31)

For each particle-particle interaction, II;; is multiplied by f;; = (f; + f;j)/2. The factor
approaches unity in regions of strong compression i.e. shocked regions, since here |V -

v| 2 |[Vxv|. In regions of pure shear flow, the factor approaches zero, since |V-v| < [Vxv]|.

2.7 Gravity

In each form of the momentum equation given in this chapter, we have included a term to
describe the gravitational acceleration of i due to all of the other particles. For a system

of point masses, this is given by

N
mr;;
— J i
By = = D, T (2.32)
JeL i

Here we are using units such that G = 1. Generally SPH codes use kernel-softened
gravity to calculate the gravitational acceleration when the separation of particles is less
than 2h;;; this is to avoid violent gravitational scatterings. For all other situations, i.e.

when the separation is greater than 24;;, tree gravity is used.
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2.7.1 Tree Code Gravity

An accurate estimate of the gravitational acceleration can be made much more efficiently
using a tree to organise the particles into groups. We incorporate the Barnes-Hut octal
tree (Barnes & Hut 1986) in our star formation code. An alternative is to perform a
direct summation over all particles, but this is extremely computionally expensive. For
N nparticles, a direct summation requires O(N?) calculations, whereas using a tree we

can reduce this to O(NlogN).

The tree is constructed as follows. Firstly, we set the entire computational domain
as the rootcell of the hierarchy. This rootcell is then subdivided into 2" subcells (Where
n is the number of dimensions) and these in turn are repeatedly subdivided. This subdi-
vision continues until a cell contains a single particle or no particle at all. The rootcell is
at the top level of this hierarchy and its 2" subcells are the next level down. Any cell that
does not directly contain particles, but is subdivided, stores the centre of mass due to all
its lower level subcells. This means that the rootcell contains the centre of mass of the
whole computational domain. Each cell is defined by its total mass, centre of mass and
pointers to its subcells. The structure of a 2-dimensional tree constructed for a simple

distribution is shown in Fig. 2.1.

To calculate the gravitational acceleration on a particle, we must decide whether we
can treat the particles in a cell as a group. In order to make this decision, the following

criterion is applied to each cell in turn, starting at the top of the tree,
S
- <86. 2.33
- < (2.33)

d is the distance from i to the cell in question, S is the linear size of the cell, and 8 is the
maximum opening angle. If this condition is obeyed, the particles in the cell and all its
subcells are treated as a clusier. If not, the cell is opened and the subcells are examined.
If the cell contains a single particle then the gravitational acceleration is found by direct

calculation, i.e. a particle-particle interaction is calculated. Accurate estimation of the
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Figure 2.1: The structure of a 2-dimensional tree constructed for a simple distribution. De-
pending on the value of 6, we can determine whether to calculate the gravitational accelerations
directly or approximate the particles as a cluster.

gravitational acceleration requires 6 < 0.577 (Salmon, Warren & Winckelmans 1994).

We use 6 =0.5.

In addition to calculating the gravitational acceleration in an efficient manner, we
can use a tree to construct lists of the neighbours of each particle, which are required for

SPH summations.

2.7.2 Kernel Softened Gravity

From the calculation for the gravitational acceleration in Equation (2.32), due to the 1/r2
term, particles at small separations can experience large forces and hence violent accel-
erations. To avoid this we soften these interactions by smoothing the particle, no longer
treating it as a point mass. In this scenario the particles are taken to be spherically sym-

metric with finite extent of 24, When the inter-particle separation is less than 24y, i.e.
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the particles overlap, we use Gauss’ gravitational theorem to calculate the gravitational

acceleration.

In the vicinity of particle i, the mass interior to radius sh; is m(s) = m;W*(s) where
W*(s) = f Ans*W(s)ds. (2.34)
0

In accordance with Gauss’s gravitational theorem, we neglect the mass of particle i
outside of sh;. Hence, the contribution to the gravitational acceleration of particle j due
to particle i is

a ——m.W'('r—"’")i (2.35)
s = WA i |

The gravitational potential at distance r;; from particle i is then

o= [ Bw () 236)

Integrating by parts and multiplying by m;, the mutual potential energy of particles i and

Jj is given by
mm:; -
m®;; = - [W*(s) + W**(s)] (2.37)
ij
where
W**(s) = s f 4rns’W(s')ds'. (2.38)
For the M, kernel, W* and W** are
4053 - 365° + 1555, for0<s<1,
1
W* = — 805> — 90s* + 365 —5s°—2, forl <s<2, (2.39)

30
30, for s > 2;
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14 —20s% + 155* - 65°, forO0<s<1,

s | -
W** = 0 (2s + 1)(2 - )%, forl1 <s<2,

0, for s > 2.

2.8 Integration Scheme

(2.40)

In order to update the positions, velocities and accelerations of the SPH particles with

time, we use a second-order Runge-Kutta integration scheme. To advance a particle i

from the n™ to the (n + 1)* step, separated by time Az, we need the current acceleration

a’. This is found from Equation (2.19) which we write formally as
a; = f@f,v)).
The positions and velocities at the half timestep are then

r;'”/z =1} + VIAL/2,

n+l/2 _ _n n
Vv, = v +alAt/2.

1

We then use these to calculate the acceleration at the half timestep

ar.l+1/2 — f(l':”l/z,V:H-l/z).

1
This then gives the new positions, velocities and accelerations

il =+ v 2A,
n+l __ n n+1/2
vi©i=vi+a; YA,

l

a;:+1 = f(l‘;”l,V;H'l).

(2.41)

(2.42)

(2.43)

(2.44)

The choice of timestep At is of particular importance to avoid non-physical effects. We

choose the minimum of each timescale to prevent the timestep being so long that it
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evolves a particle for a time longer than that appropriate for the local conditions.

For each particle i, the maximum timestep Az; is

h. (h\V2 h

At = MIN[—', (—) : —']. (2.45)
v il o

Analysing Equation (2.45), we see it is dependent on various factors. The first two terms

inside the brackets, (h;/|v;[) and (h;/|a;|)!/?, ensure that the change in position is small.

The final term (h;/07;) ensures that the courant condition is obeyed, i.e. no disturbance

~ propagates faster than the local effective signal propagation speed,
ogi=c¢+ 1.2(0’(,',' +ﬁMAX[[1,J]) . (246)

a and B are the same viscosity parameters described in Section (2.6). 7y is the Courant

number and is usually set at 0.3.

2.9 Multiple Particle Timesteps

Multiple particle timesteps (MPT) is a scheme whereby each particle is assigned an in-
dividual timestep which can vary from step to step according to its needs (e.g. Bhattal
1996). This method is beneficial in simulations where both rapidly evolving regions (re-
quiring short timesteps) and slowly evolving regions (not requiring such short timesteps)
coexist. This means that particles are only evolved when necessary and so computation

time is decreased.

MPT creates a hierarchy of timestep bins each containing particles whose timesteps
are twice that of those in the next lower bin. To keep the system synchronised at reg-
ular intervals, particles are only allowed to move through these time bins and not with
arbitrary sized timesteps. The maximum timestep is At,,,, and each discrete timestep

used by particles in different bins is calculated as a fraction of this maximum timestep.
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Therefore the timesteps can have the values
Atmaxs Atmax|2, Atar]4, Dimax/8, ..oy Alyar/2m7, (2.47)

where N,;,, is the total number of available time bins.

At any time in the simulation At,,, = Af,;,2""=! and so we can express the cur-
rent position along the largest timestep as sAt,,;, where s is the step position of value
s = 0,1,2,3; .., 2¥n1_ At s = 0, particles are in-synch since this is at the start of

the maximum timestep.

The maximum timestep length Az; for a given particle i is initially calculated from
Equation (2.45). The particle is then put into the next smaller time bin n with Ar =

At,q,/2"%, where n is given by

M) +1. (2.48)

= INT(
" In2
It is required that all particles are synchronised at the end of A#,,,. In order to
ensure this, a timestep may only be used if the time from the beginning of the Az,
_ period is a multiple of the time this bin represents. If this is not the case, we use the next

descending acceptable time bin.

For example, if Nin = 5, this gives At = 16At,,,. If the timestep we are checking
is At = Aty /4 (n = 2), we can only use itif s = 0, 4, 8, 12. Otherwise, we assign
it the timestep At = Az,,,/8 (n =3)if s = 2, 6, 10, 14. If s is odd, we assign it the

lowest available timestep (here, n = 4). This is graphically represented in Fig. 2.2.
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Atmax | f % :
At max/2 > ; ; >
At max/16 >, 'A-%*vé » >—>, »

% E : {

Figure 2.2: Graphical representation of MPT for when n = 5. Arrows indicate the steps that are
allowed. By enforcing this, all particles will remain synchronised at the end of At,,;.
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2.10 Sink particles

In simulations of the collapse ’and fragmentation of a molecular cloud, the gas in the
cloud reaches very high densities. The particles that represent these regions become
so tightly packed that their smoothing lengths become very small. At this stage, the |
timestep required to follow their evolution becomes increasingly small, according to
Equation (2.45). This is not ideal, because eventually all the computational resources
are being used to follow the first protostellar condensation that forms. The simulation
grinds to a halt, preventing us from following the formation of any further stars, or
determining what their properties might have been. A solution to the problem has been
proposed by Bate et al. (1995). They introduce the concept of replacing high density

fragments with non-gaseous accreting particles, referred to as ‘sink particles’.

If we are not interested in the internal structure of a dense region, it can be replaced

by a sink particle only if it satisfies all of the following criteria:

e The density of one of the SPH particles i exceeds a particular threshold, pg.
Typically we set pg,, = 107! gcm™, though it must be ensured pgy, is se-
lected according to the resolution requirement of the simulation, to prevent spu-
rious sink formation. Bate et al. (1995) suggest pg,, should be 103 times the
initial cloud density. An alternative approach for determining pg,, involves us-
ing the Jeans criterion (Jeans 1928). In SPH the mass resolution of a code is
M, = N Mior /Ny, Where M is the total mass in the computational do-
main. M,,, is the minimum mass required to resolve any features and N, is
the total number of SPH particles. The Jeans condition requires the minimum

resolvable mass to be smaller than the Jeans mass, M, where

JEANS?

(375)1/3 a

M an ] G¥M2pl2”

JEANS —

(2.49)

Failure to do this means that gravitational instability can not be resolved properly
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(Bate & Burkert 1997). This can lead to clouds fragmenting when they should
be Jeans stable. However, with the kernel that we use it can be shown (Whit-
worth 1998; Hubber et al. 2006) that this does not lead to artificial fragmentation.

Rearranging Equation (2.49), the highest resolvable density p,., s is given as

375 )2’ 3 a

Pieans = ( an G3N2NE,BM2M . (2.50).

Psnx Must be smaller than p.,, ., in order for the condition to be satisfied.
e Particle i has negative velocity divergence.

e Particle i and its neighbours have net negative energy i.e. are bound.

By fulfilling these criteria, we can be sure that the region in question would continue to
collapsé under gravity to form a single star or a close multiple system, had it not been

replaced by a sink particle.

When a sink is formed, it incorporates all the neighbours of particle i within a dis-
tance R, . Typically, we set R, ~ 5 AU, depending on the resolution requirements
near the sink. Any particle which subseqently passes within Ry, and is bound to that
sink, is accreted. The mass, linear monentum and angular momentum of the accreted
particle is added to that of the sink. Removing particles reduces the number of force cal-
culations at each timestep, and hence speeds up the simulation. Therefore, incorporating
sink particles enables the evolution of the cloud and resulting protostars to be followed.
This is particularly important since observations of main sequence stars show that most
stars are in binary or multiple systems (Duquennoy & Mayor 1991). We must therefore

aim to explain their formation, and using sink particles is a way in which to do this.
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2.11 Summary

In this chapter we have describéd the concept of Smoothed Particle Hydrodynamics, the
technique we use to simulate star formation. We have discussed the features of a typical
SPH code, including the integration scheme, multiple-particle timesteps and artificial '
viscosity. In our work we use the Cardiff star formation code DRAGON (Goodwin et
al. 2004a). It is a standard SPH code, has all the features described in this chapter, and
has been extensively tested and optimised. The following chapters report the results of

simulations of certain star-forming scenarios performed using DRAGON.



Chapter 3

Acoustic oscillations of an isentropic
‘monatomic gas sphere

In this chapter, we investigate the levels of numerical dissipation and diffusion in our
SPH code. To do this, we simulate acoustic oscillations of a self-gravitating isentropic
monatomic gas sphere. This test was originally performed by Lucy (1977), and is a
highly relevant test for star formation codes. This is because pressure waves generated
by the switch from approximate isothermality to approximate adiabacity play a crucial
role in the fragmentation of collapsing cores. We find that, if the smoothing lengths in
an SPH code are adjusted so as to keep the number of neighbours in the range N, +
AN AN, should be set to zero, to reduce the level of numerical dissipation and

diffusion.

3.1 Introduction

It is important to test numerical codes using known analytic or semi-analytic solutions.
Such tests play an integral role in verifying that the code can model the same physical
phenomena that occur during star formation, such as gravitational fragmentation. They

also provide a good way of investigating the validity of different numerical modelling

37



38 CHAPTER 3. ACOUSTIC OSCILLATIONS

techniques. It is well known that an adaptive mesh refinement finite difference code
is in general more expensive computationally that an SPH code. However, ultimately
neither method is useful, unless it can be shown that the results are converged and are

not compromised by numerical artefact.

We propose such a test here, and in this chapter we apply it to our SPH code
DRAGON. This test involves acoustic oscillations of a self-gravitating, isentropic, monatomic
gas sphere in the fundamental radial mode. This test was originally performed by Lucy
(1977) in his seminal paper introducing SPH, and therefore we shall refer to it as the
Lucy test. It has been performed subsequently (e.g. Steinmetz & Miiller 1993; Nelson
& Papaloizou 1994), but infrequently. It is an appropriate test because it measures (i) the
level of dissipation associated with artificial viscosity, in the absence of shocks; (ii) the
extent to which transients, due to the discrete nature of particles (or cells), remove energy
from genuine modes and transfer it to other spurious modes (i.e. numerical diffusion);

(iii) the ability of the code to model acoustic oscillations, and in particular adiabatic

bounces; and (iv) the ability of the code to deal with free (or nearly free) boundaries.

Point (iii) is particularly important because it seems that collapsing prestellar cores
are most prone to fragment at the stage when the gas switches from being approximately
isothermal to being approximately adiabatic (e.g. Boss et al. 2000). Fragmentation at
this juncture is presumably due to interactions between the complex system of pressure
waves which is generated by adiabatic bounces in a converging but disordered inflow,
and it is therefore essential that spurious waves are not being generated. In this context it
is worth noting that the isentropic assumption is not strictly the same as adiabaticity, and
is made here for analytic convenience rather than realism. In simulations where shocks
develop, artificial viscosity must be incorporated, in which case, either the resulting
energy dissipation must be included in the energy equation, or — if the thermal timescale
is sufficiently short, and the main concern is not with the detailed structure of the shock
front — a barotropic equation of state may be invoked. There are no shocks in the present

simulation, and therefore the rate of energy dissipation due to artificial viscosity is low,
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but not negligible. The isentropic assumption then simply implies that the small amount
of energy dissipated by artificial viscosity is replenished from the background radiation
field.

It is also appropriate to point out that, although the gas in prestellar cores is largely
molecular, it behaves as a monatomic gas (i.e. the effective adiabatic exponenty = 5/3)
until the temperature rises above ~ 100 K. At lower temperatures the rotational degrees
of freedom are not significantly excited, since para-H, has its first excited level (J = 2)
at k,(512K), and ortho-H, has its first excited level (J = 3) at £,(854K) (e.g. Black &
‘ Bodenheimer 1975). Neglect of this fact can lead to artificially enhanced fragmentation
of collapsing prestellar cores, since with y = 5/3 the Jeans mass increases quite rapidly
with increasing density in the adiabatic regime (M, x p'/?), whereas with y = 7/5 it

increases much more slowly (M, x p'/'%).

3.2 Initial Conditions

The gas sphere modelled in these simulations is isentropic and monatomic. An isen-

tropic gas has the equation of state
P=Kp’ = Kp'*+ (3.1)

where K, y and n are constants; In[K] is the specific entropy and vy is the adiabatic
exponent. For a monatomic gas y = 5/3 and therefore n = 3/2. To set up a polytrope of

this type, we must first visit the Lane-Emden equation and its functions.
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3.2.1 Lane-Emden Equation

If a spherically symmetric self-gravitating polytrope is to be in hydrostatic balance we

require
1 dpP(r) _ GM(r)

p(r) dr 8(r) = - r2

; 3.2

where r is defined as the radial distance from the centre, p(7) is the density at r and M(7)

is the mass interior to r. This can be written as

2 apP@)
M(r)——Gp(r) e (3.3)

which differentiates to

dM(r) _ _lﬁl_(id_P@) (3.4)
dr — Gdr\p(r) dr )
Applying conservation of mass gives
M(r) = f p(ranr?dr 3.5
r'=0 ’
and hence
dM(r)
e p(r)anr?. (3.6)
By equating (3.4) with (3.6) we obtain
d( ¥ dP®r)
dr(;Tr) —2) +41Grp() = 0. 3G.7)
Substituting (3.1) in (3.7) gives
d _n, dp(M\ 4nGrro(r)n
4 (,2,am-1 ) _
dr( PO ka1 (3-8)
We introduce the dimensionless variables £ and 6,, defined as
r
&= (3.9)
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and
r=&R 1/n
0.0) = (ZLER0) (3.10)
where p, is the central density and Ry is a scale length, given by
_ K(n + 1) (1/,,_1))1/2
Ry —( 4G P . (3.11)
With substitution of these dimensionless variables, (3.8) reduces to the form
1d ( ,d6, n
= 726 —(f)) +(6:(8))" = 0. (3.12)
£deV d¢

Equation (3.12) is the Lane Emden (LE) equation.

3.2.2 Lane-Emden Functions

In order to solve the LE equation, we must find solutions which satisfy the boundary

conditions, which are as follows.

Firstly, from the definition of the dimensionless variable € in (3.10), it follows that

P(O) = pr[on(f = O)]n =Pc- (3.13)

Therefore

6,(0) = 1. (3.14)

The second boundary condition can be deduced from realising that there is no grav-

itational acceleration at the centre due to there being no central point mass. Therefore,
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the pressure gradient must be zero at the centre.

P, 1\ i ndo,
~r=0-= K<1+n)p r=00=0)

= kXD p0nmig < 0)
0

= 0.

Therefore,
dé,

d¢

0)=0.

(3.15)
(3.16)

(3.17)

(3.18)

There exist three analytical LE functions corresponding ton = 0, 1 and 5. However,

the polytrope to be examined is one in which n = 3/2, and so the LE function for this

case can only be found by numerical integration of the LE equation.

In order to divide this second-order equation into two first-order equations, we de-

fine the dimensionless variable

R el
= %
Hence, by differentiating we obtain
¢ _ .
= = £,
d¢
which has the boundary condition
(& =0)=0.

Also, by rearranging (3.19), we obtain

dae

L4
g &’

(3.19)

(3.20)

(3.21)

(3.22)
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Figure 3.1: Solution to the Lane Emden equation for n = 3/2
which has the boundary condition
0¢=0)=0. (3.23)

(3.20) and (3.22) must therefore be integrated in order to produce a tabulation of ¢ and
the corresponding values 6 and ¢. Since Equation (3.22) is singular at the origin, we

start with a series expansion valid for small £, i.e.

1, n
6=~1- Ef + mf“ - .. (3.24)
From (3.19), it follows that
ls n.s
o=~ 3§ 30§ + ... (3.25)

By incorporating this series expansion, 8 and ¢ are calculated accurately when ¢ « 1.
The variation of 8 with £ is shown in Fig. 3.1. 6 and ¢ are required for the next section
in which we set up a uniform density sphere and then stretch it radially to reproduce the

density profile of a polytrope with exponent 5/3.
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Figure 3.2: The two-dimensional lattice with inter-particle separation s.

3.2.3 Constructing the gas sphere

To set up the equilibrium isentropic sphere, we place equal-mass particles on an hexag-
onal close-packed array within a sphere of radius unity. Each particle has exactly 12
neighbours at an inter-particle separation s. This is achieved by firstly making a row of
equally spaced particles along the x-axis. This row is then copied into the x — plane by

translating each particle by the vector nr, where n = £1,+2,..., and

(3.26)

to produce an hexagonal close-packed layer. This layer is illustrated in Fig. 3.2.

In order to produce the next layer of the lattice, we translate each particle in this

layer by the vector n'r’, where n' = +1, £2,...,

(3.27)

A sphere of radius R01is then cut out of this array.

The next step is to stretch this uniform-density sphere radially to reproduce the

density profile of a polytrope with exponent 5/3.
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The sphere is initially of radius R, with particle i at a radius ;. Therefore, the mass
interior to that particle is

M(——)3. (3.28)

In order to make an isentropic sphere with y = 5/3, but still imposing that the radius
and mass are unity, this particle must be moved to a new radius r}", conserving the mass

interior to it. This position is defined as

r’ = &R.. - (3.29)

In the polytrope, each particle has a radius £/£&,, where &, is the value of £ at the
boundary, and a mass ¢(&;)/¢#(£p) interior to it. Hence, for each particle we must set the

new radius by first finding the value of &; which satisfies

8(&) = ¢(§b)(1%)3. (3.30)

The factor F by which the particle’s position must be scaled is then

F=ll 8 (331)

r; r

and so each particle is now at a position

x; = Fx;;
yr = Fy; (3.32)
Z}' = Fz;.

Fig. 3.3 shows the overall structure of the sphere for N, = 5, 895 particles. The
density profile of this unsettled sphere, compared to the analytical profile, is shown in

Fig. 3.4.



46 CHAPTER 3. ACOUSTIC OSCILLATIONS
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Figure 3.3: 2-D plot of the isentropic monatomic sphere, constructed as described in section
3.2.3.
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Figure 3.4: Density profile of sphere before settling. Red line represents the analytical solution;
green points represent the actual particle densities.
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Figure 3.5: Density profile of the settled distribution.

The system is then relaxed by evolving the particle positions using the SPH code,
until thé net kinetic energy falls to a very small value (relative to the magnitude of the
gravitational potential energy). The settled density profile is shown in Fig. 3.5. Another
check to ensure the sphere is settled is to look at the magnitude of the hydrostatic accler-
ation and gravitational acceleration of each particle. If the sphere is settled, they should
be equal. A plot of this is shown in Fig. 3.6. The red open squares show the magnitude
of the gravitational accelerations and the filled green circles show the magnitude of the

hydrostatic accelerations, both as a function of the radius.

The next step is to perturb the sphere in order to undergo oscillation. To do this we

must excite the fundamental radial mode.

3.2.4 Exciting the fundamental mode

To excite the fundamental mode, each particle is displaced radially from its equilibrium
radius R to a new radius R’ = R[1 + AZ(R/R.)], and then released from rest. Here £(s)

(0 < s < 1) is the eigenfunction of the fundamental radial mode of a self-gravitating
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r/R

Figure 3.6: Radial components of the gravitational accelerations (red open squares) and hy-
drostatic accelerations (filled green circles) of the particles in a settled sphere, as a function of
radius.

isentropic monatomic gas-sphere. This was very kindly supplied, in the form of a dense
look-up table, by Alfred Gautschy. A is the initial amplitude of the oscillation, which
we setto4 =0.1.

The density of the sphere then becomes

pP'(0 =p(Qfi +=wr i + + (3.33)

Originally, the gravitational acceleration is

GM(R)

fIGRAVC A) — R2 (334)
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however, upon perturbation this acceleration then becomes
GM(R
a::m\v(R’) = - R,g ) (3.35)
= Ao (R + £(R/R.)] (3.36)
> Ao (R{1 = 2{(R/R.)}. (3.37)
Likewise, the hydrostatic acceleration changes from being
___1 4
Ayyoro(R) = >R R (3.38)
d
= —yKp" (R 22 (3.39)
to
ad, R)= - pr'W'z)@‘;(R—If') (3.40)
dacy R
= oo R + ;(R/Ro)r”"“[l + 2@+ Roe| "1 - ‘;;(/—d;x
(2[1 +{R/R. )]- S + [1 + LR +RE ] [2 dRZ])} (3.41)
e (R
=~ Qo (RO + LRIRIT (1 + 2R/R) + RoE] {1 - dp(/ 23 x

(2[1+{(R/R°)]" +|1+swiR) + Rd{ ]4[2 dRZD} (3.42)

{1 = Gy = DLR/R - YRS - d” (Z)R
(2[2 2(R/R.) - RZ. dR] 2 [1 L(R/R.) - Rd{] j;i)} (3.43)

To be able to complete coherent radial oscillations, the restoring acceleration at
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each radius of the perturbed sphere must be proportional to the displacement, so that

d.  R) = d  R)+d, R) (3.44)
d R
= G R Gy - HURIR) + 7RG + o0
d{1d¢ ' d¢ 1, d%¢
(2[2 —22(R/R.) - Rd_R]Zi—R + [1 — Z(R/R.) - RER]RW)} (3.45)
(3.46)

=~ — w’R{(R/R,),

where w is the pulsation frequency. By ignoring the non-linear terms we obtain

{Rp(R) }JZ{ N {4p(R) + yR} a " {37_ 4 - Gal):I Ig;)}{(R/Ro) = 0. (3.47)

dp/dR)dR?> "~ \dp/dR dR

However, the equation of hydrostatic balance can be rewritten as

p(R) _ yKR2p""1(R)
p®JR ~  M® (.48)
_ R2P(R)
=~ M S

and so (3.47) simplifies to

}f’ﬁ . {wz_ (37‘4)GM(R)}1"(R)4(R/RO) = 0. (3.50)

PL, (4 GM® o)
dR R3 Y P(R)

dR? R R? P(R)
The eigenfunction {(R) and eigenfrequency w are obtained by solving this equation

subject to
(3.51)

(3.52)

]
p—

{(R/R.)
/4 _ B
ﬁ(R/Ro =0) =0.
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3.2.5 Numerical Details

We represeht the isentropic gas sphere with N, = 5,895 particles. Four simula-
tions are performed, each with the same initial conditions, but evolved with AN, =
0,2, 5, and 10. We use the star formation code DRAGON, described in Chapter 2.
The time-dependent artificial viscosity prescription is invoked (see Section 2.6.1 for a

description). Each simulation is evolved for 100 freefall times.

3.3 Results

Figures 3.7 and 3.8 show oscillations simulated with AN, =0, 2, 5, and 10. In Fig.

3.7, the quantity p]otted is the mean x-displacement
A(.m,r p ! )

(the mean being taken over all the particles, with equal weighting), as a function of time
(normalised to the central freefall time, ¢, in the unperturbed equilbrium state). x, is
the distance of particle i from the centre of mass on the x axis. In Fig. 3.8, the quantity
plotted is the total kinetic energy, normalised to the magnitude of the gravitational po-
tential energy in the equilibrium state (i.e. K/|Q,|, where X is the total kinetic energy,
Q is the total gravitational potential energy, and subscript O refers to values in the un-
perturbed equilibrium state), again as a function of time (normalised to #...). Some decay

parameters are recorded in Table 3.1.

In addition to the fundamental mode, some additional modes are unintentionally
excited from the outset. This is because, following relaxation, the equilibrium state of
an isentropic monatomic sphere is not modelled exactly, due to the smoothing inherent
in SPH. In particular, the density is underestimated near the centre and near the bound-

ary. (This can be improved by increasing N, and N, /N,g;, but that requires extra
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computational resource.) Furthermore, the fundamental mode is excited with finite am-
plitude, but the eigenfunction is derived on the assumption of infinitesimal amplitude.
(This can be moderated by adbpting a lower value for A, but the test is not then relevant
to real simulations of star formation, where ultimately we are concerned with non-linear

perturbations.)

3.3.1 Decay of the fundamental mode

Setting aside the effect of other modes present in the initial conditions, the subsequent
decay of the fundamental mode is in general due to two effects. First, the oscillation
energy may be dissipated by artificial viscosity. The dissipation of energy due to arti-
ficial viscosity occurs wherever two neighbouring SPH particles approach one another.
Second, the oscillation energy may be transferred to other modes. This occurs wherever
local density or velocity fluctuations are created by the discrete nature of the SPH parti-
cles, or by the ‘peculiar velocities’ of individual SPH particles. Both effects occur more
rapidly for larger values of AN, ;. (They also occur more rapidly for smaller values of

N and smaller values of N, but these parameters are not varied here.)

When AN, = 0, the neighbour list of an SPH particle changes very seldom,
and — when it does — very little. Therefore the acceleration experienced by the particle
varies very slowly, and the velocity field is very smooth. The upshot is that neighbour-
ing particles only approach one another very slowly, and the rate of dissipation due to
artificial viscosity is low. Notwithstanding the slow rate of dissipation, there are small
fluctuations in density and velocity, and these‘feed energy into other modes, so that the

fundamental mode decays (see Figs. 3.7 & 3.8).

As ANy, is increased, the neighbour list of an SPH particle changes more fre-
quently, and more abruptly. Therefore the acceleration experienced by the particle varies
in a more idiosyncratic manner, and the velocity and density fields are more noisy. The

upshot is that neighbouring particles often approach one another more rapidly, and the
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Figure 3.7: The mean x-displacement, X (where the mean is over all particles, with equal
weighting), against time, ¢ (in units of the freefall time in the equilibrium state, ¢.). The re-
sults are displaced vertically by Ax to fit them all on one plot. Reading from the top, (a)
ANgp =0,Ax =0; (b) AN = 2,Ax = -0.05; (c) ANy =5, Ax = -0.10; (d)
ANy =10, Ax=-0.15.

rate of dissipation due to artificial viscosity is therefore higher. In addition, the noisy
velocity and density fields are very effective at feeding energy into other modes, so that
the fundamental mode decays more rapidly (see Figs. 3.7 & 3.8).

In principle, the number of neighbours can change by 2AN,,, at each timestep,
from Ny — AN g 10 Ny + ANy 0T vice versa. Thus with N, = 50 and AN, =
10, the number of neighbours can change from 40 to 60 or vice versa. In practice
such large changes are unlikely, but it is still the case that increasing AN, results
in increased fluctuations in the neighbour lists. In particular, particles in condensing
regions tend to have N fluctuating between ~ N, and ~ (N, + AN;), Whilst
particles in expanding regions tend to have N fluctuating between ~ N, and ~ (N —
AN )-
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Figure 3.8: The total kinetic energy, K (normalised to the magitude of the self-gravitational
potential energy in the equilibrium state, [Q,[), against time, ¢ (in units of the freefall time in
the equilibrium state, #..). The results are displaced vertically by AK to fit them all on one
plot. Reading from the top, (a) ANz = 0, AK = 0; (b) AN = 2, AKX = -0.003; (c)
ANgr =3, AK = -0.006; (d) ANy = 10, AKX = —0.009 .
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3.3.2 Decay statistics

In Table 3.1, we record, for each value of AN, (column 1), the e-folding time of the
amplitude of the fundamental mode, T,, in terms of its period, P, = 3.7t (column
2); the oscillation energy left after ten periods, &,,, as a fraction of its initial value, &,
(column 3); and the simulation time to evolve the oscillating gas-sphere for 10 periods
on eight 2.2Ghz Opteron CPUs each with 8GB memory (column 4). The oscillation
energy is given by

E = K+ (T -T)+(€Q-9), (3.54)

where KX is the kinetic energy, 7" is the thermal energy, and Q is the gravitational poten-
tial energy. Again the subscript 0 indicates the unperturbed equilibrium state.

We note that the oscillation energy decays rather slowly due to dissipation, even
with AN, = 10. This is because the oscillations have low amplitude, and therefore the
relative velocities between neighbouring particles are always very subsonic. Not only
are the initial amplitudes low, but in the cases with high AN, the amplitudes decay
rapidly due to numerical diffusion. In other words, when AN, is high, the rate of
dissipation is reduced because diffusion rapidly spreads the oscillation energy amongst
many different modes and thereby reduces even further the relative velocities between
neighbouring particles. This is reflected in the results presented in Fig.3.8 and the third
column of Table 3.1. Because the decay of the fundamental mode is largely due to nu-
merical diffusion, the oscillation energy only falls by a few percent after ten periods
(see the third column of Table 3.1), whereas the amplitude of the variation in kinetic en-
ergy falls much more rapidly. The variation in Kinetic energy eventually disappears, not
because the kinetic energy itself disappears, but because numerical diffusion transfers
oscillation energy to other modes with different periods and different phases. Conse-
quentiy the oscillation energy becomes thermalised, and K is finite but approximately

constant.
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Table 3.1: Decay of the fundamental mode. The first column gives AN,;;. The second column
gives the e-folding time for the amplitude of the fundamental mode, T,, as a multiple of its
period, P,. The third column gives the net oscillation energy left after 10 periods, &,, as a
fraction of the initial oscillation energy, &,. The fourth column gives the simulation time to
evolve the oscillating gas-sphere for 10 periods on eight 2.2Ghz Opteron CPUs each with 8GB
memory, ;.

ANy T,/P, E10/Ey tols
0 13.6 0.955 9545

2 7.6 0.939 9403

5 3.8 0.927 8996
10 3.1 0.925 8164

The simulations presented here have been continued for 100 periods. In this limit,
there are so many modes excited, with so many different phases, that the gas-spheres

become virialised with
2K +27 +Q =~ 0 ' (3.55)

K is still finite.

3.4 Summary

From the plots in Figs. 3.7 & 3.8, and the above discussion, we infer that the results
obtained with AN, = O are far more reliable than those obtained with AN, = 10,
and significantly more reliable even than those obtained with AN, = 2, both in terms
of having less dissipation and — more importantly — in terms of having less numerical

diffusion.

Setting AN, = 0 also requires little extra computation. For example, to follow

10 oscillation periods with AN, = O takes only 17% longer than with ANgs = 10.
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Moreover, 7% of this increase is due to the fact that with AN, = 0 the sphere continues
to oscillate with a significant amplitude after 10 periods, and therefore the timestep
remains short. When allowance is made for this, the real cost of reducing AN, from

10 to O is only a 10% increase in computation.

Therefore our principal conclusions are (i) that AN, = 0 should be the default
option for SPH codes which adapt smoothing lengths in this way; and (ii) that the Lucy
test provides a very useful way of evaluating the fidelity of codes used in simulations of

star formation.

We emphasise that we have not set out to reproduce as accurately or economically
as possible acoustic oscillations of a self-gravitating isentropic sphere in the fundamen-
tal mode. We have simply demonstrated how the results produced using a standard SPH
code, with a modest number of particles (N, = 5, 895) depend on AN, ;. There are ad-
justments to SPH which will improve (extend) the timescales for numerical dissipation
and numerical diffusion in the present simulation. For example, using standard artificial
viscosity with @ = 0 and 8 = 0.1 increases the e-folding time for the fundamental mode
to ~ 60 oscillation periods, but at the same time compromises the shock-capturing abil-
ity of the code so that it can not then be used for simulations in which shocks are likely.
Similarly, the e-folding time for the fundamental mode can be extended by increasing
N 0f Nio: /N .- but this must inevitably be at the expense of resources which are

needed elsewhere, viz. to maximise the extent and/or duration of a simulation.

The useful duration of the present simulation can be identified with the e-folding
time of the fundamental mode, which with AN, = 0 is 13.6 oscillation periods, but
with AN, = 10is only 3.1 oscillation periods.

We propose that Adaptive Mesh Refinement codes used for simulating star for-
mation aim to reproduce or improve upon the results produced here, using comparable
computational resources. In addition, they should do so for a gas-sphere which moves

at constant velocity relative to the underlying Cartesian grid, in order to match the La-
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grangian advantages of SPH.



Chapter 4

Simulating star formation in molecular
cores

In this chapter we simulate the collapse and fragmentation of relatively isolated low-
turbulence cores. We perform multiple realisations of a large ensemble of cores, all
having the same mass, initial density profile and turbulent power spectrum, but with
three different initial levels of turbulence. This problem was first investigated by Good-
win et al. (2004b), using a simple barotropic equation of state. However, a barotropic
equation of state is not realistic, because it does not take into account the thermal his-
tory of protostellar gas, and it is unable to capture thermal inertia effects. We therefore
revisit this problem, but now using a new treatment of the energy equation devised by
Stamatellos et al. (2007b) which treats the energy equation and the associated radiative
transport more realistically. We quantify the differences between simulations performed
using a barotropic equation of state and simulations which use the new treatment of
the energy equation and associated radiative transport. We also compute the statistical
properties of the resulting stars, including their mass distribution, kinematics and binary

statistics.

59
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4.1 Introduction

Current observations suggest that a significant fraction of low-mass stars condense out
of small, relatively isolated, low-turbulence prestellar cores, with each core spawning a

small cluster of stars. The evidence for this mode of star formation is as follows.

Isolated cores

The evidence supporting the idea that the cores are relatively isolated comes from a
number of studies. André et al. (2007) have carried out a study of the L1688 protocluster
in the central Ophiuchus molecular cloud. They estimate the one-dimensional intercore
velocity dispersion (i.e. the dispersion in the bulk velocities of the cores relative to their
neighbours) to be Avyrecors = 0-36 kms™!, the collision cross-section between cores to
be 0oy = 1073 pc? (including the effect of gravitational focussing), and the number-

density of cores to be n_,. =~ 80 pc™>. Hence the mean time between collisions between

CORE

cores is

. ,
! = ~ 30,000 kyr. 4.1)

COLL
n’CORE o-COL AvINTERCORE

In contrast, the condensation timescale for a typical core is 7., ~ 100kyr. Therefore
a typical core is likely to have collapsed and fragmented, internally, before it interacts

with a neighbouring core.

Low turbulence

The observed turbulent motions in low-mass prestellar cores are estimated to be sub-
sonic, or occasionally transsonic (e.g. Myers 1983; Myers et al. 1991; Myers 1998;
André et al. 2007). Indeed, Myers (1998) concludes that the decay of turbulence to
subsonic levels may well be a prerequisite for the formation of low-mass protostars. If

the level of turbulence is characterised by the parameter

ETURB
4.2)

Egenl’

aTURB
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where E ., is the turbulent energy, and E,,, is the self-gravitational potential energy,
then the typical values in low-mass prestellar cores are mainly in the range 0 < @, ~
0.3 (see Jijina et al. 1999; and Fig. 2 in Goodwin et al. 2004a). We note that this is
much lower than the values used by Bate et al. (2002a,b, 2003) to initiate the evolution

of more massive cluster-forming cores.

Each core spawns only a few stars

The evidence that each core spawns only a few stars comes from the binary statistics
of young low-mass stars, which show that a high fraction are in binary or higher-order
multiple systems. The binary fraction decreases with decreasing primary mass, and with
. increasing age, but for a 1 Mg, primary it is still ~ 60% in the field (Duquennoy & Mayor
1991). Goodwin & Kroupa (2005) and Hubber & Whitworth (2005) have shown that
this high multiplicity requires newly-born stars to complete their early dynamical evo-
lution in small sub-clusters containing just a few stars (i.e. Nyqusex ~ 4 £ 1 stars).
This is because, in a small sub-cluster, N-body interactions tend rather quickly to de-
liver a tight binary, usually comprising the two most massive stars, and to eject most
of the remaining stars as singles (McDonald & Clarke 1993; Goodwin & Kroupa 2005;
Hubber & Whitworth 2005). Therefore, if N 1S increased, a higher proportion
of stars are ejected as singles, and therefore the primordial binary fraction is reduced, in

contradiction with the observations.

4.1.1 The influence of the level of turbulence

Goodwin et al. (2004a,b) were the first to explore how the level of turbulence affects the
collapse and fragmentation of small, relatively isolated prestellar cores. In their study,
they simulate the evolution of a large ensemble of cores. The cores are all of mass
M = 5.4M, and all have the same initial density profile and turbulent power spectrum.

They vary the initial level of turbulence, as measured by the ratio of the turbulent kinetic



62 CHAPTER 4. STAR FORMATION IN MOLECULAR CORES

energy to gravitational potential energy, so that

= Erugs = 0., 0.01, 0.025, 0.05, 0.10, 0.25. 4.3)

.
TR lEGRAV'

For each value of @, they perform many different simulations, each with a different

realisation of the initial turbulent velocity field, in order to obtain good statistics.

They find that the minimum level of turbulence required to produce multiple sys-
tems is @, = 0.05. Further to this, increasing the level of turbulence in the core
increases both the total number of stars formed, and the proportion of brown dwarfs.
The masé distribution produced appears to be bimodal. It consists of a low-mass peak
occupied by brown dwarfs ejected from the core before they can accrete much mass,
and a higher mass peak occupied by stars which have remained in the core and grown

by accretion to become hydrogen-burning stars.

In a subsequent paper, Goodwin et al. (2006) investigate the effect of the turbu-
lent power spectrum on the fragmentation of cores with low levels of turbulence. They
consider different turbulent power spectra, of the form P oc k™*, with x = 2, 3, 4and 5,
and find that increasing x results in more fragments. This is because increasing x gives
more turbulent power on long wavelengths, and hence more large-scale fragmentation

resulting in separate protostars.

However, in their simulations Goodwin et al. (2004a,b, 2006) use a simple barotropic
equation of state. In practice this is not realistic, because (a) a barotropic equation of
state does not take into account the thermal history of a protostar, which depends on its
environment, geometry and mass, and (b) a barotropic equation of state is unable to cap-
ture thermal inertia effects, which are critical at the stage when fragmentation occurs.
By thermal inertia we mean the situation when the thermal timescale is longer than the

dynamical timescale.

We have therefore revisited the study of Goodwin et al. (2004a,b), but now using
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a new treatment of the energy equation due to Stamatellos et al. (2007b). This new
treatment captures the critical thermal and radiative effects and is therefore much more
realistic than a barotropic equation of state. We shall describe this technique in more

detail later in the chapter.

4.2 Initial Conditions

We use the same initial conditions as Goodwin et al. (2004b). These initial conditions
are designed to fit the observed properties of prestellar cores, such as L1544. The density
| profiles of prestellar cores are approximately flat in a central region of a few thousand
AU, then fall as 7 with 2 < < 5 in the outer regions, until eventually merging with
the background (e.g. Ward-Thompson et al. 1994; André et al. 1996; Ward-Thompson
et al. 1999; André et al. 2000). A Plummer-like profile of the form

_ PrxerneL
PO = T4 (/R s P @4

gives a good fit to the observed density of these cores. p, ... is the central density
(3 x 107 gcm™) and R, is the radius inside which the density is approximately
uniform (5,000 AU). The core extends out to R, = 50,000 AU, so its total mass
M., = 5.4M,. The mass inside R, ., isonly M, ... = 1.1 M.

We start with an isothermal core at T = 10K, giving a ratio of thermal to gravita-

tional energy of

E
= 5% ~ (.3, 4.5)

T
We impose a divergence-free Gaussian random velocity field on each core (Bate et al.
2002a,b, 2003; Bonnell et al. 2003). This approach of initialising the velocity field
is normally referred to as turbulence, but we recognise that it is not self-consistent,
fully developed turbulence (c.f. Offner et al. 2008). We set the power spectrum of

the velocity field to P(k) o< k™4, which mimics that observed in giant molecular clouds
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and cores (Burkert & Bodenheimer 2000). The level of turbulence is characterised by
s = 0.05, 0.10, 0.25, where a ., is defined in Equation (4.3). This is a fairly low
level of turbulence in compaﬁson to some simulations (e.g. Bate et al. 2002a,b, 2003)
but we note these are typical values for the level of turbulence in observed low-mass

cores (see catalogue of Jijina et al. 1999).

4.2.1 Using a barotropic equation of state

At low densities (0 < pgy = 10713 gcm™>) the gas in a core is approximately isothermal
at T = 10K. Once the density exceeds p,, the cooling radiation becomes trapped
by the high optical depth. This results in the gas switching from being approximately
isothermal to being approximately adiabatic (Larson 1969; Tohline 1982; Masunaga &

Inutsuka 2000). This can be modelled using a barotropic equation of state:

PO) 2y = 2 [1 N ( p )2/3] @)
P CRIT
where P is the pressure, p is the density, ¢, is the isothermal sound speed and ¢ =
0.19kms™! is the isothermal sound speed in molecular gas at 7 = 10K. Until the tem-
perature rises above ~ 100 K, the rotational degrees of freedom of molecular hydrogen
are not significantly excited, and so the effective adiabatic exponent is y ~ 5/3. This in
turn means that the Jeans mass increases rather rapidly once the density exceeds P ;s
roughly as M, « p'/2. We note that the simulations of Bate et al. (2002a,b, 2003)
and Bonnell et al. (2003) use a similar barotropic equation of state but with y = 7/5
in the adiabatic regime; consequently their Jeans mass increases much more slowly,

1/10

M, < p'”", giving a greatly extended window of opportunity for fragmentation at

low masses.

Equation (4.6) gives a good fit to the run of temperature with density at the centre
of a collapsing non-rotating 1M, protostar, as obtained by the detailed computations of

Masunaga & Inutsuka (2000). However, simulations producing condensations which
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have masses below 1M,, and/or are non-spherical are compromised by this assumption.
Such condensations will tend to become opaque and heat up at a significantly higher
density. This is because the optical depths are lower, and because the rate of compres-

sional heating is slower.

In addition to this, a barotropic equation of state does not capture properly thermal
inertia effects, such as the complex system of interacting pressure waves which domi-
nates the dynamics when the gas becomes adiabatic. At this stage, the thermal timescale
suddenly becomes longer than the dynamical timescale. This is when fragmentation oc-
curs, as evidenced by the simulations of Boss et al. (2000). Therefore, capturing the
~ thermal inertia effects is crucial, and requires a more realistic treatment of the energy

equation and associated radiation transport.

4.2.2 New energy treatment

Stamatellos et al. (2007a) have introduced a new alogorithm for treating the thermal
and radiative effects influencing the energy equation. The algorithm allows the thermal
behaviours of protostars of different mass, in different environments and having differ-
ent metallicities to be distinguished, without having to treat in detail the associated 3-D,
frequency-dependent radiative transfer. It also captures the trapping of cooling radia-
tion, opacity changes, and internal energy changes due to the effect of rotational and
vibrational degrees of freedom of H,, H, dissociation and the ionization of H°, He® and

He*.

This algorithm uses an SPH particle’s density, p;, temperature, T;, and gravitational
potential, ¥;, to estimate the mean optical depth, 7;, between the SPH particle and the
ambient medium. The mean optical depth then determines the extent to which the SPH
particle is shielded from external radiation and the extent to which the SPH particle’s
cooling radiation is trapped. To determine this, a spherically-symmetric pseudo-cloud

is defined around each particle, through which the particle heats and cools. The details
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pseudo-cloud

SPH particle

possible positions of
the SPH particle

inside its pseudo-cloud
(dashed-circles)

Figure 4.1: Schematic representation of the pseudo-cloud around an SPH particle. The location of
the SPH particle inside its pseudo-cloud is not specified. Taken from Stamatellos et al. (2007a).

of the algorithm are explained here, but see Stamatellos et al. (2007a) for a detailed

description and various tests.

The SPH particle i is embedded at radius R = £R(), in the pseudo-cloud with cen-
tral density pc, scale-length RQ and polytropic index n. Fig. 4.1 shows a schematic
diagram of the pseudo-cloud around an SPH particle. pc and RQare chosen such that
they reproduce the actual density and gravitational potential of the SPH particle at the

dimensionless radius £, i.e.

Pc n o pi. (
-AnGpcR Im * ; | (4
where 0(g) is the Lane-Emden Function for index » (Chandrasekhar 1939),
d6
m + (4.9)
and the dimensionless boundary of the polytrope (see Section 3.2.1 for a derivation

of this function).
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By fixing n and giving £ an arbitrary value — but not exceeding &, — we obtain

pc = pid), (4.10)
_ | —vie©)
o = 47er,~¢<§)] @10

The central temperature of the pseudo-cloud is also chosen in the same manner to give

the actual temperature of the SPH particle, i.e.

T.0¢) = T, (4.12)
T, T:67'(©). (4.13)

The column density on a radial line from this radius to the boundary of the pseudo-cloud

is then given by

=£p
%) = j: P8 RydE
- i pi f!
[4rrG ¢(§)0"(§)] T @14

The pseudo-mean column density is obtained by taking a mass-weighted average of

X&) over all possible values of &, i.e.

2do ' [ 2
5 = [—fB —(5,,)] R GRAGT

[ vipi]*
4

(4.15)

[ 2 “o(ga)] is the total dimensionless mass of the polytrope, 6"(¢) £2d¢ is the dimen-

sionless mass element between £ and £ + d¢, and

d &)1
4,.=[ 2 "@B] f: f: o (E)de [ ¢(‘§)) £, 4.16)

We adopt a value of n = 2 which corresponds to a polytropic exponent of 3/2.
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To calculate the pseudo-mean optical depth, we take the same approach as with the
pesudo-mean column density. If the Rosseland-mean opacity is a function of density and
temperature only, k; (0, T), the radial optical depth from radius R = éR,, to the boundary

of the pseudo-cloud is

=,
7(6) = f Ky (pcg"(g:’), Tce(fr)) pcgn(fl) Rodfl
'=£

[—wipie"(f)]"z y
)

HE .
L; "(p ’[9(5) Tilee |) [ae] % *17)

and the mass-weighted pseudo-mean optical depth is

. =
W= [ege] 3 o e

19" [ 9€D ) 7O1"” .
““(” ’[e(.f)] ’T‘[e@) D ¢ )d§[¢(§>] A *-18)

We define a pseudo-mean mass opacity
T
I_(i = =, 4.19
5. (4.19)

which is a function of p; and T; (if » is fixed). This quantity needs only be calculated
once, and so can be stored in a dense look-up table. For point (o, T), the pseudo-mean

opacity is given by

_.1 —fg
/?R(P,T)=[ 2"9(5.,)] f: f
- g’
o . [6&) )[e"+2(§)
, T
= (p [ 0(§)J [0@)] e

From Equation 4.19 we can calculate the pseudo-mean optical depth 7;. This takes into

1/2

d¢’ £2d¢. (4.20)

account the radiation absorbed or emitted by i when it passes through the surround-

ing material, which will have a different density and temperature, and hence different
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opacity. The parameters are then used to calculate the net radiative heating rate

du; 4o, (T*-T})

_ , 421
dt o L2y (01, T)) + 4,7 (01, T)) @2

where o, is the Stefan-Boltzmann constant, and «,(p;, T;) is the Plank-mean opacity.
T, is the background temperature and the term involving T¢(r;) in Equation (4.21) rep-
resents the radiative heating due to the background radiation field. The negative term
involving T# represents the radiative cooling of the SPH particle. If T} > T2(r;), we can

neglect the heating term and consider two limiting regimes:

G) If if @i T) < k; Y(pi, T;), we are in the optically thin cooling regime and
' Equation (4.21) approximates to

du,-

> —40, T k@, T), (4.22)
dt |,

in exact agreement with the definition of the Planck-mean opacity.

(i) If 22k (0i, T:)) > «-'(pi, T;), we are in the optically thick cooling regime and
i "R P

Equation (4.21) approximates to

4 4
du; N 4o, T; _ cagT;

L o 0l el 4.23
dt o 22k (pi T) T “.2)

where c is the speed of light, a, is the radiant energy density constant. The second

expression is obtained by substituting 40, = cag, and Z; &, (i, T;) = 7.

Gas-phase chemistry

To treat the gas-phase chemistry we assume the gas is 70% hydrogen and 30% helium
by mass, since metals make very little contribution to the equation of state. Hydrogen
is molecular at low temperatures, but is dissociated as the temperature rises, and then

ionised. Helium is neutral atomic at low temperatures, but as the temperature increases it
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becomes ionised, first to He*, and then to He**. The Saha equations give the abundances
of these constituents (e.g. Black & Bodenheimer 1975). These equations assume that
the dissociation of H, is complete before ionization of H° begins; and similarly, that the

ionization of He® is complete before the ionization of He* begins.

Equation of state

We define y = nyo/2ny, to be the degree of dissociation of hydrogen, x = ny+/ny. to be
the degree of ionization of hydrogen, z; = nye+ /nge to be the degree of single ionisation
of helium, and z, = ny+/ny+ to be the degree of double ionisation of helium. The

mean molecular weight is then given by

X Y1!
w o= plonT) = [(1 +y+20) S+ (L+z +zlz2)z] : (4.24)

For densities up to ~ 0.03 gcm™ the ideal gas approximation holds, and hence the

gas pressure is

iky T;
p, = PikTi (4.25)
Himy

Specific internal energy of the gas

The specific internal energy (energy per unit mass) of an SPH particle i is given by

Ui = Un, + Uy +Uge +UH,DIss + UH ION + UHe ION + UHe* ION» (4.26)
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where

uy, = X(1-y) [% + c,-(T,-)] % R 4.27)

ug = Xy(l+x) 32";: (4.28)

uge = Y(1+2z1 +2122) 3:;:", (4.29)

uppiss = Xy Dz%:s (4.30)

mioy = Xy THON, 431)

ugeion = Yz1(1-2) l;Hc—n;O: , (4.32)

Ugeron = Y122 {:’%‘:N , (4.33)

Here, Dy,piss = 4.5¢€V is the dissociation energy of Hy; Tyion = 13.6€eV, Tyeion =
24.6eV and Jy+1on = 54.4€V are the ionisation energies of H°, He® and He*, respec-

tively; and the function

2
Tvm ) exp(Tvm /T:) (4.34)

Toor |
ciTy) = (T) ST+ ( T: ] [exp(Tyy/T) = 11"

with T, = 85.4K and T, = 6100 K accounts for the rotational and vibrational degrees
of freedom of H,.

Opacity

For the dust and gas opacity, Stamatellos et al (2007) use the parametrisation proposed
by Bell & Lin (1994), i.e.

k@, T) = k. T) = x,p°T". (4.35)

Here (k,, a, b) are constants which depend on the dominant physical process contributing

to the opacity in different regimes of density and temperature. Fig. 4.2 shows how the
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local Rosseland-mean opacity varies with density and temperature. At low temperatures
the opacity is due to icy dust grains. As the temperature reaches T ~ 150 K, these icy
dust grains evaporate and the opacity is dominated by metal grains up to T’ ~ 1,000 K.
Between T ~ 1,000 K and T ~ 2,000 K the opacity drops considerably and is now
mainly due to molecules. In this temperature range it is too hot for dust to exist and
too cold for H™ to contribute. Above ' ~ 2,000 K the opacity rises again due to H™
absorption, and then decreases above T ~ 10* K. At this stage free-free transitions

dominate. At even higher temperatures, electron scattering dominates the opacity.

To calculate the pseudo-mean opacity used in Equation (4.21), the local Rosseland-
and Plank-mean opacities in Equation (4.35) must be convolved with the polytropic
density and temperature profiles according to Equation (4.20). The resultant pseudo-

mean opacity is shown in Fig. 4.3.

This new method to treat the energy equation has been extensively tested by Sta-
matellos et al. (2007) and has shown to give a good fit to the computations of Masunaga
& Inutsuka (2000), of a collapsing, non-rotating 1M,, protostar. It has also been tested
against the analytic solutions of Spiegel (1957) and performs well in both the optically
thin and optically thick regimes. The algorithm is very efficient, and computationally
inexpensive since density, temperature and gravitational potential are already calculated
using the standard SPH formalism. When compared with an otherwise identical simula-
tion performed using our standard barotropic equation of state, a simulation performed

with the new treatment of the energy equation requires at most 4% more CPU time.
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Figure 4.2: The variation of the local Rosseland-mean opacity with density and temperature.
Isopycnic curves are plotted from p = 10718 gcm™ to p = 1 gecm™3, every two orders of magni-
tude (from bottom to top). The opacity gap is evident at temperatures ~ 1,000 to 3,000 K, over
a wide range of densities. Taken from Stamatellos et al. (2007).
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Figure 4.3: The variation with density and temperature of the pseudo-mean opacity. Isopycnic
curves are plotted as in Fig. 4.2. For comparison the local opacity at density p = 10 g cm™3 is
also plotted (dashed line). Taken from Stamatellos et al. (2007).
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4.3 Numerical Details

4.3.1 Setting up the cores

To produce the initial conditions described in Section 4.2 we start by placing a large
number of particles randomly in a cube, which we then settle using DRAGON to give
a relaxed uniform-density distribution. Next we cut out a sphere containing the number
of particles that we require, in this case 25,000. Finally we stretch this uniform-density

sphere radially to reproduce the Plummer-like density profile (Equation (4.4)).

4.3.2 Resolution

In computer simulations it is extremely important that there exists a suitable resolution,
to ensure we properly resolve the physical processes that occur. The simulations in this
study are performed with N, = 25,000 SPH particles. Hence the mass resolution is

M, -~ Moo Mron ~ 0.01M,. (4.36)

Nior

Any structures with mass below this value are therefore not resolved. We use sink parti-
cles to identify the stars in our simulations (see Section 2.10 for a description of sinks).
We adopt a sink density pg, = 107! gcm™ and a sink radius Ry, = 5 AU. Therefore,
the minimum linear resolution is 5 AU. The discs which form in these simulations typ-
ically have radius R,;. ~ 50 AU and half-thickness Z_;. ~ 5 AU, so they are only just
resolved in the vertical direction. However, we do not believe that this compromises our
results, since the fragmentation of a disc is essentially a two-dimensional process. The
forces which drive the accumulation of matter into a protofragment are in the plane of
the disc and so we do not need to resolve accurately the vertical direction. We note that
this is a different view to some authors, in particular Nelson (2006), who argues that

enhanced fragmentation is a direct consequence of failing to resolve a disc vertically.
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Turbulent, self-gravitating gas dynamics is very chaotic in nature and so to make
robust statistical inferences we require many realisations. Therefore, for each value
of a,,s (= 0.05, 0.10, 0.25) we perform an ensemble of 20 simulations using the
barotropic equation of state, and an ensemble of 20 simulations using the new treatment

of the energy equation.

The 20 simulations in each set all have the same treatment of the thermodynamics
(either the barotropic equation of state, or the new treatment of the energy equation)
and the same initial level of turbulence; they are distinguished solely by having different
realisations of the turbulent velocity field. We use a random-number seed to generate

the initial turbulent velocity field. We evolve each simulation for 300 kyr.

4.4 Results and Discussion

Table 4.1 lists, for each simulation performed with the barotropic equation of state, the
identifier (ip); the initial level of turbulence (@,g), the total mass which ends up in
stars (}.{M,}/M,), the total number of stars (N, ), and the total number of brown dwarfs
(N,p), at the end of the simulation; the types of multiple system that have formed; and
the masses of the individual stars (M, /M), with a superscript indicating which ones are
components of multiple systems. Table 4.2 lists the same information for.the simulations

performed using the new treatment of the energy equation.

4.4.1 Efficiency and timing of star formation

Table 4.3 records — for each treatment of the thermodynamics and each initial level of
turbulence — the number of different realisations (N, ), the efficiency (i.e. the mean
fraction of the core mass converted into stars after 300 kyr, n = >{M,}/M_..), and the

mean number of stars formed from one core (N*). With each treatment of the thermo-
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Table 4.1: Results of the simulations performed using the barotropic equation of state with
@rps = 0.05,0.10 and 0.25, at time ¢ = 300kyr. Column 1 gives the simulation identifier,
column 2 gives @5, column 3 gives the total mass of stars formed, 3.{M,}/Mo, column 4 gives
the total number of stars formed, Ny, column 5 gives the total number of brown dwarfs formed,
Nyp» column 6 gives the order of any multiple systems formed, and column 7 gives the masses of
individual stars, with a superscript to indicate those which are components of of binary systems
(Mf ), triple systems (M), or quadruple systems (Mf ).

ID angs  ZAM}/Me  Na Mult M,/Mp

Z
S

1.297%, 0.970, 0.749°, 0.715°

1.638¢, 1.204°, 0.472¢, 0.285, 0.268

1.216%, 1.111%, 0.386, 0.186, 0.383

1.1749, 1.1069, 0.8119, 0.8067, 0.049, 0.031, 0.024
0.956', 0.911%, 0.728, 0.712

1.0019, 0.9149, 0.694, 0.5937, 0.5837, 0.088, 0.042
3.646

0.998°, 0.892¢, 0.854‘, 0.763, 0.199, 0.108

2.319', 0.823",0.817°

NO71  0.05 3.731
NO72  0.05 3.867
NO73  0.05 3.282
NO74  0.05 4.001
NO75 0.05 3.307
NO76  0.05 3.915
NO77  0.05 3.646
NO78 0.05 3.814
NO79  0.05 3.959

NO80 0.05  3.700 3.700
NO81 005  3.690 3.690

NO82 0.05  3.928 1.322', 1.286', 1.214', 0.070, 0.036
NO83  0.05 3.905 2.459%, 1.446Y

3.056%, 0.931%
2.151%, 1.760%
1.0379, 1.0079, 0.7419, 0.7324, 0.219, 0.038

NO84  0.05 3.987
NO85  0.05 3911
NO86  0.05 3.774

NO87 0.05  3.404 3.404
NO88  0.05 3.874 3.874

NO89  0.05 3.491 1.005%, 0.934%, 0.695, 0.693, 0.164

N090  0.05 3.778 3.778

N001 0.10  3.570 1.0219, 0.9467, 0.7729, 0.7159, 0.116 ]

NOO2 0.10  3.529 0 1.9999, 0.3669, 0.2879, 0.2859, 0.203, 0.122, 0.100, 0.083, 0.055, 0.029
N003 0.10  3.596 3.596

NOO4 0.10  3.455 3.455

N0O5 0.10  3.342 1.2537, 0.8137, 0.674, 0.400, 0.160, 0.042

N0OO6 0.10  3.596 3.596

NOO7  0.10 3.519 1.6307, 0.6759, 0.6229, 0.4794, 0.082, 0.031

NO008  0.10 3.679 2.449%, 1.230°

NOO9 0.10  3.497 3.497

NO10 0.10 3.479
NO11 0.10 3.742
NOi2 0.10 3.785
NO13  0.10 3.286
NO14 0.10 2.962
NO15 0.10 3.696
NOi6  0.10 3.533
NO17  0.10 3.741
NO18  0.10 3.726
NO19 0.10 3.692
N0O20 0.10 3.602

1.0299, 1.0149, 0.7257, 0.7119
1.519%, 1.142", 1.081°

1.5724, 0.8817, 0.8819, 0.4519

0.597, 0.5931, 0.541%1, 0.415", 0.371, 0.3682, 0.365%2, 0.029, 0.007
0.919, 0.885, 0.545', 0.361, 0.174, 0.078
2.8159, 0.2967, 0.29579, 0.2907

3.553

1.3859, 0.9897, 0.5997, 0.5924, 0.103, 0.073
2.199%, 1.527%

1.108¢, 1.098*, 1.003¢, 0.310, 0.173

1.378, 0.952¢, 0.991%, 0.226, 0.078, 0.057

NO41  0.25 3.225
NO42  0.25 3.209
N043 025 3.312
NO4  0.25 3.402
N045 0.25 3.272
NO46 0.25 3.138
NO047 0.25 3.442
NO48  0.25 2.852
NO49  0.25 3.271
NOSO 025 3.291
NOS1  0.25 3.716
NO52 0.25 3.843
NO53 0.25 3.943
NO54 0.25 3.772
NOS5 0.25 3.762
NOS6 0.25 3.857
NOS7 0.25 3.007
NO58 025 3.769
NOsS9 025 3.723
NO60  0.25 3.866

0.7887,0.787", 0.712, 0.623, 0.315

2.0249, 0.3297, 0.3139, 0.3027, 0.164, 0.077
1.1039, 0.8259, 0.6947, 0.6907

1.560¢, 0.544, 0.502, 0.465, 0.331

0.5831, 0.5781, 0.57171, 0.5392, 0.53172, 0.409%2, 0.061
1.642%, 1.496°

0.927%, 0.8617, 0.59¢%, 0.581°, 0.483?

1.055, 0.5947, 0.469", 0.377,0.323, 0.034
2.0019, 0.3987, 0.3967, 0.3819, 0.095
1.0069, 0.9489, 0.6167, 0.6097, 0.112
1.0949, 1.0467, 0.7967. 0.7807
2.184%,0.834', 0.825'

1.2549, 1.0487, 0.7529, 0.7489, 0.141
1.1267, 1.0107, 0.7847, 0.7837, 0.040, 0.029
1.074%, 0.957, 0.819, 0.800%, 0.112

1.426°, 1.231%, 1.059", 0.105, 0.036

0.9037, 0.8387, 0.5439, 0.5419, 0.182
1.155%, 1.031%, 0.757", 0.374, 0.360, 0.092
1.2499, 1.0574, 0.6429, 0.6389, 0.109, 0.028
1.1699, 0.9567, 0.9079, 0.7829, 0.046, 0.006

N~ OO~ ONOOOCOO—~ 00~ O00=ONOO—~ OO0~ NOOOOO~0O—~O0OONOOOOO—~0O0oNOOOCOONOWOO O

O\O\O\MMUIO\MWAUIUIO\MN\]Ul-hG\U\G\(IINO\-—-AO\‘O-FM#»—-NQ\n—c\H»—-»—U\-AU\»—-»—-O\NNNU!)—tv—u)c\u—\).h\)u.mJ;
OOHOHHOOHOOOHEw3'-l,oo»-l-1qwomo—]:o—]omwow—lwmoomwmmowwwr-lmm-].-qm,o..]ow._;._l
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Table 4.2: Results of the simulations using the new treatment of the energy equation. Columns
follow the same labelling as Table 4.1.

ID s LiMu}/Mo N Ny Mult MM

TO71 005  3.161 8 3 B 0.825%, 0.8107, 0.622, 0.494, 0.346, 0.029, 0.020, 0.015

TO72 005 2212 6 1 BT 0.750%, 0.603%, 0.2817, 0.279*, 0.275°, 0.024

TO73 005  3.200 5 1 B 0.877%, 0.870%, 0.696, 0.678, 0.079

TO74 0.05  3.561 13 6 BT  0.830%, 0.828%, 0.439%/, 0.432, 0.427', 0.328, 0.154, 0.039, 0.034, 0.023, 0.013, 0.007

0.007

TO75 005  3.252 7 2 BB 0.753%1, 0.748%!, 0.599%2, 0.553, 0.5462, 0.032, 0.021

TO76 005 3918 9 5 Q 1.1189, 1.1049, 0.7229, 0.7159, 0.079, 0.070, 0.056, 0.029, 0.025

TO77 005  3.884 7 3 B 1.338%, 1.149%, 0.702, 0.635, 0.032, 0.017, 0.011

TO78 005  3.559 12 3 T 0.679, 0.678¢, 0.505°, 0.478", 0.435, 0.261, 0.191, 0.168, 0.087, 0.040, 0.023, 0.014

TO79 005 3410 10 1 T 0.733¢, 0.722, 0.487", 0.481’, 0.461, 0.186, 0.139, 0.095, 0.088, 0.018

TO80 0.05 3.894 4 1 B 1.480%, 1.237, 1.159, 0.018

To81 0.05 3.613 5 1 B 1.158%, 1.059%, 0.686, 0.645, 0.065

TOS2 005  3.741 7 2 T 0.907, 0.884', 0.758!, 0.754', 0.399, 0.026, 0.013

TO83  0.05 3.739 5 1 B 0.999, 0.983%, 0.912%, 0.815, 0.030

TO84 0.05 3.868 8 3 B 1.219%, 1.191, 1.123, 0.139, 0.092, 0.051, 0.031, 0.022

TO8S 0.05  3.749 7 2 B 0.882%, 0.850, 0.832, 0.804%, 0.332, 0.026, 0.023

TO86 0.05  3.898 6 1 Q 0.8637, 0.8507, 0.8497, 0.8407, 0.460, 0.036

TO87 005 3434 1 0 S 3.434

TO88 0.05 3.381 8 3 BB 1.435%! 1,073, 0.3322, 0.320%2, 0.164, 0.021, 0.019, 0.017

TO89 0.05 3.259 9 2 B 0.645%,0.617%, 0.612, 0.542, 0.342, 0.314, 0.146, 0.022, 0.019

TO90 005  3.811 7 2 T 2.100%, 1.032, 0.248', 0.187, 0.122, 0.058, 0.034

TOO1 0.10  3.434 6 0 T 0.6427, 0.622", 0.607, 0.5727, 0.528, 0.463

TO02 0.10 3.245 10 4 Q 1.0647, 0.8914, 0.3407, 0.3394, 0.336, 0.156, 0.078, 0.019, 0.012, 0.010

TO0O3 0.10  3.698 1 0 S 3.698

TOO4 0.10  3.481 1 0 S 3.481

TOO5 010  3.551 4 0 T 1.482!, 0.845', 0.824', 0.400

TOO6 0.10  3.456 4 0 B 0.958, 0.919%, 0.819”, 0.760

TOO7 010  2.790 1m 5 BT  0.719%, 0.659%, 0.421, 0.375, 0.248', 0.247*, 0.060, 0.035, 0.011, 0.009*, 0.006

TOO8 0.10  3.549 3 0 T 1.3927, 1.108', 1.049*

TO09 010  3.509 1 0 S 3.509

T010 010 3270 8 2 Q 0.7489, 0.6207, 0.4949, 0.4857, 0.445, 0.408, 0.052, 0.018

TO11 010  3.287 6 0 B 0.770%, 0.757%, 0.616, 0.526, 0.512, 0.106

TO12 0.0 3.771 7 1 BT  0.702, 0.686, 0.66%", 0.664', 0.532%, 0.501%, 0.017

TO13 010  3.761 12 6 Q 0.7919, 0.7859, 0.6029, 0.5539, 0.460, 0.353, 0.055, 0.041, 0.039, 0.033, 0.029, 0.020

TO14 010  3.422 7 3 B 0.966°, 0.966°, 0.681, 0.666, 0.055, 0.051, 0.037

TOIS 010  3.552 5 2 T 1.286°, 1.205', 0.918, 0.075, 0.068

TO16 010  3.115 6 1 B 0.989, 0.9592, 0.411%, 0.391, 0.387, 0.018

TO17 0.10 3.779 5 0 T 1.190%, 0.837*, 0.826°, 0.467, 0.459

TO18 0.10 3.524 12 6 T 0.914°, 0.869, 0.488, 0.466', 0.464, 0.194, 0.050, 0.032, 0.024, 0.009, 0.008, 0.006

TO19 0.10  3.802 4 0 Q 0.9749, 0.9687, 0.9337, 0.9279

TO20 010  3.054 1 4 BT  0.666', 0.664', 0.654%, 0.324', 0.239, 0.225, 0.136, 0.074, 0.044, 0.016, 0.012°

TO41 025  3.369 7 2 BT  0.821%, 0.80%, 0.782%, 0.778%, 0.138", 0.025, 0.016

TO42 025  3.055 4 0 T 1.083%, 0.932, 0.9131,0.127

TO43 025  3.306 9 3 BT 0.798', 0.586%, 0.585%, 0.494', 0.488', 0.271, 0.039, 0.033, 0.012

TO44 025  3.260 14 8 BB 0.763%1,0.762%!, 0.46222, 0.45072, 0.426, 0.235, 0.054, 0.032, 0.025, 0.016, 0.010,
0.009, 0.008, 0.008

To45 025  3.193 13 4 QT  0.4449,0.4387,0.37%, 0.378, 0.368', 0.3429, 0.3407, 0.332, 0.081, 0.034, 0.031,
0.018, 0.008

To46 025  3.362 5 0 T 0.853, 0.768", 0.768", 0.573', 0.400

TO47 025  3.024 12 5 BT 0.591%, 0.591%, 0.411°, 0.404', 0.403', 0.327, 0.110, 0.067, 0.057, 0.033, 0.019, 0.011

TO48 025  3.509 1 4 TT 0.653"1, 0.61472, 0.606'2, 0.509"!,0.506!, 0.372"2, 0.155, 0.040, 0.023, 0.023, 0.008

TO49 025  2.466 6 1 T 0.679, 0.678', 0.455°, 0.316, 0.312, 0.026

TO50 025  3.010 8 1 BT 0.729%, 0.697%, 0.325', 0.31%°, 0.317', 0.307, 0.282, 0.034

TOS1 025  2.669 10 2 BB 0.654%1, 0.526%1, 0.4402, 0.323, 0.274%2, 0.160, 0.129, 0.092, 0.048, 0.023

TOS2 025  3.717 13 6 Q 0.8597, 0.8569, 0.4429, 0.4397, 0.321, 0.318, 0.271, 0.057, 0.046, 0.037, 0.029, 0.024,
0.018

TOS3 - 025  3.343 12 5 T 0.762*, 0.687, 0.660, 0.385, 0.285, 0.267, 0.161, 0.044, 0.036, 0.026, 0.016, 0.014'

TOS4 025  3.506 12 5 B 0.779, 0.592%, 0.504, 0.466, 0.350, 0.334, 0.315, 0.073, 0.027, 0.026, 0.022, 0.018

TO5S 025  3.791 6 1 Q 0.9359, 0.9249, 0.8507, 0.8477, 0.182, 0.053

TO56 025  3.841 6 1 Q 1.1119, 1.0519, 0.5637, 0.5529, 0.531, 0.033

TO57 025  3.712 4 0 Q 1.1834, 0.9137, 0.8139, 0.8039

TO58 025  3.758 11 4 B 0.985, 0.966%, 0.547°, 0.457, 0.452, 0.105, 0.084, 0.059, 0.052, 0.032, 0.019

TO59 025  3.510 10 2 BBT  0.847%1,0.786%!, 0.663, 0.2987, 0.296, 0.289', 0.127%2, 0.122,%2 0.078, 0.014

TO60 025  3.882 8 3 T 1.155, 0.930¢, 0.885', 0.426', 0.418, 0.031, 0.023, 0.014
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Table 4.3: For each treatment of the thermodynamics (barotropic equation of state or new treat-
ment of the energy equation) and each value of the initial level of turbulence (@ s ), we record
the number of different realisations simulated (N, ), the efficiency (i.e. mean fraction of the
core mass converted into protostars, 7 = > {Mx}/M_ ), the mean number of stars formed from
a single core (N.), the numbers of singles (S'), binaries (B), triples (T) and quadruples (Q), the
multiplicity frequence (mf), the companion probability (cp), and the companion frequency (cf).

THERMODYNAMICS @rrs MNeeaL n N s B T @ mf cp of

BAROTROPIC 0.05 20 0.694 3.45 29 5 6 3 033 058 119
0.10 20 0.658 4.15 30 2 7 7 035 064 157
0.25 20 0.600 5.05 27 2 10 10 046 073 182

NEW TREATMENT 0.05 20 0.605 7.20 8 15 6 2 021 039 063
0.10 20 0.629 6.20 67 7 9 4 023 046 094
0.25 20 0.623 9.05 9% 12 13 5 023 046 090

dynamics, increasing the initial level of turbulence has the following effects.
Using a barotropic equation of state

Using a barotropic equation of state, increasing the level of turbulence (a) decreases
the efficiency of star formation, 7, and (b) increases the mean number of stars formed

from a single core, N,.

e Efficiency of star formation is reduced
Increasing the initial level of turbulence reduces the efficiency because the outer,
more diffuse parts of the core become more vigorously dispersed. At the end of
the simulation (300 kyr) these diffuse regions have not yet had time to fall back
into the core and be incorporated into stars, and so the fraction of the core mass

incorporated into stars is lowered.

® Mean number of stars formed from a single core increases
An increased initial level of turbulence increases the total number of stars formed
from a single core, because it drives more vigorous local compression in the core.
This results in regions becoming dense enough to be gravitationally unstable i.e.

the creation of more protostellar seeds.
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Using the new treatment of the energy equation

If the initial level of turbulence is increased, the monotonic trend seen when using a
barotropic equation of state disappears with the implementation of the new treatment of
the energy equation. The efficiency, and the mean number of stars formed from a single

core, are only weakly dependent on the initial level of turbulence.
Differences between using the two treatments of the thermodynamics

Switching from the barotropic equation of state to the new treatment of the en-
ergy equation reduces the efficiency, 7, somewhat, and significantly increases the mean
" number of stars formed from a single core, N,. There are two physical effects at work

here.

First, the new treatment of the energy equation promotes the condensation of very
low-mass stars, by taking proper account of the thermal history and environment of the
gas. With the new treatment of the energy equation, a small proto-fragment tends to be
cooler, and thereby more inclined to condense out. This is because the new treatment
takes account of the fact that, being of lower mass (and probably also non-spherical),
the column-density inhibiting the cooling of a low-mass proto-fragment is lower; and
because it contracts more slowly, its heating rate is lower. Consequently its temperature
is lower — at a given density — than the one prescribed by the barotropic equation of
state, since the latter is based on the behaviour at the centre of a collapsing, spherical,
non-rotating 1 Mg, protostar. This is illustrated in Fig. 4.4, which shows exactly the
same initial conditions, evolved first with the barotropic equation of state (top frames),
and then with the new treatment of the energy equation (bottom frames). It is evident
that disc fragmentation is far more advanced in the simulation using the new treatment

of the energy equation.

Secondly, because the stars formed are of lower mass, they are less effective at

mopping up the residual gas in the core, which in turn would increase their mass. This
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Figure 4.4: Simulation of the collapse and fragmentation of a 5.4 MO core, first evolved with
the barotropic equation of state (top row) and then with the new treatment of the energy equa-
tion (bottom row), using identical initial conditions. Each snapshot shows the logarithm of the
column density.

means they remain small, and so are more likely to be ejected by dynamical interactions
with other stars. Hence the amount of mass converted into stars is somewhat reduced,

and the efficiency is lower.

4.4.2 Fragmentation

There is a common pattern of star formation in many of these simulations, irrespec-
tive of the treatment of thermodynamics. The low angular momentum material in the
core collapses quickly to form the first star - hereafter the primary - on a timescale of
50 to 70 kyr, i.e. a bit longer than the initial freefall time at the centre of the core, which
is ~ 40 kyr. Then material with higher angular momentum forms a circumstellar disc
around the primary. This circumprimary disc grows in mass - the rate of infall onto the
disc is greater than the rate at which mass accretes from the inner disc onto the primary
- until the disc becomes Toomre unstable and fragments to form multiple secondaries.
The delay between the formation of the primary and fragmentation of the circumprimary
disc is typically between 10 and 100 kyr. During this time the disc is accumulating mass.

Once the disc becomes Toomre unstable it normally fragments to produce between 3 and
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Table 4.4: For each treatment of the thermodynamics (barotropic equation of state or new treat-
ment of the energy equation) we record the mean, 4, and the standard deviation, o, of the delay
times ¢, (¢, —t,)and (¢, —1,).

THERMODYNAMICS DELAY TIME H (o

BAROTROPIC t 623 6.3
t-1t) 29.8 243
(t-1) 20 17

NEW TREATMENT t, 606 6.0
t-1) 114 93
t,—-1t) 1.3 1.0

S stars, in the space of a few kyr.

This pattern of fragmentation is illustrated on Figs. 4.5 and 4.6, where, for a selec-
tion of simulations, we plot stellar masses as a function of time. On most of these plots,
we see the primary forming, then a delay whilst the circumprimary disc builds up, and
finally — when the circumprimary disc becomes Toomre unstable — the formation of a
clutch of secondaries. Some of these secondaries are quickly ejected, and therefore end
up as brown dwarfs, but others remain in the disc and accrete sufficient mass to become

hydrogen-burning stars. Occasionally some even grow bigger than the primary.

In Fig. 4.7, for each treatment of the thermodynamics, we show the distributions of
t, (the time of formation of the first star); z, — ¢, (the delay between the formation of the
first and second stars); and ¢, — ¢, (the delay between the formation of the second and

third stars). The mean and standard deviation of these values are shown in Table 4.4.

t, is the time it takes the low angular momentum material to assemble into the first
stars and should be compared with the freefall time at the centre of the core (~ 40 kyr).
It takes slightly longer for the first stars to form when using a barotropic equation of

state compared to when using the new treatment of the energy equation.
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Figure 4.7: (a,d) The delay, ¢,, between the start of the simulation and the formation of the first
star (the primary). (b,e) The delay, ¢, — ¢,, between the formation of the first and second stars.
(c,f) The delay, t, — t,, between the formation of the second and third stars. The top row (a,b,c)
is for the simulations performed with the barotropic equation of state, and the bottom row (d,e,f)
is for the simulations performed with the new treatment of the energy equation.

(#, —1,) is the time it takes to assemble a Toomre-unstable disc around the primary.
Using the new treatment of the energy equation, the disc becomes Toomre-unstable
quicker, shown by the distribution in Fig. 4.7(¢e) and the mean value in the table. This is
because the protofragments condense out sooner, since they tend to be cooler at a given
density. Again this is illustrated in Fig. 4.4 which shows the same initial conditions
evolved first with the barotropic equation of state (lefthand frames) and then with the

new treatment of the energy equation (righthand frames).

(¢, — t,) is the time delay between the formation of the first two disc fragments.
In both cases the mean of (¢, — ¢,) is short, which reflects the fact that when the disc
becomes unstable it becomes unstable over quite a large area, and therefore it tends to

spawn several stars in quick succession.

Another common feature of the accretion histories is that when the circumprimary
disc becomes Toomre unstable and fragments, the accretion rate onto the primary de-

clines rapidly. Material which up until this juncture had been spiraling inwards and onto
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Figure 4.8: The final mass (at 300 kyr) against the formation time. The top row gives the results
obtained with the barotropic equation of state for (a) @z = 0.05, open circles; (b) @ zs = 0.10,
open triangles; and (C) @z = 0.25, open stars. The lower row gives the results obtained with
the new treatment of the energy equation for (d) az; = 0.05, filled circles; (€) @z = 0.10,
filled triangles; and (f) @, = 0.25, filled stars.

the primary star is now being used to create secondaries in the disc. This can be seen
on most of the plots in Figs. 4.5 and 4.6, for example T002 (the top righthand plot in
Fig.4.6).

Fig. 4.8 shows the final mass of every star plotted against its formation time. Al-
though the more massive stars tend to form earlier, the correlation is fairly weak. In all
cases there is a delay before any brown dwarfs form. This is because brown dwarfs —
and also some low-mass hydrogen-burning stars — form in discs around more massive

stars, and these discs take time to accumulate.

4.4.3 The mass distribution of protostars

Material which is parked in a circumprimary disc has time to lose entropy — to an extent
that material which is compressed impulsively by turbulence does not. Consequently

the masses of disc fragments are low, as predicted by Whitworth & Stamatellos (2006),
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Figure 4.9: Normalised stellar mass distributions. The top row gives the mass distributions
obtained with the barotropic equation of state for (a) or*g = 0.05, (b) = 0.10, and (c)
gtturb = 0-25. The lower row gives the mass distributions obtained with the new treatment of
the energy equation for (d) & = 0.05, (e) or*g = 0.10, and (f) or*g = 0.25. The black
lines are histograms of the raw data, obtained using 15 equal logarithmic bins in the interval
- 2 <loglo(M*/M©O) < + 1, and the red lines are obtained by smoothing each protostellar mass
with a Gaussian whose width is proportional to the separation between neighbouring masses.

and demonstrated by detailed numerical simulations in Stamatellos et al. (2007b) and
Stamatellos & Whitworth (2008a,b). However, this effect can only be captured with
the new treatment of the energy equation, since this treatment takes account of the slow
rate of compressional heating for matter parked in the disc, and the relatively low local
column-densities through which its cooling radiation has to diffuse. In contrast, the
barotropic equation of state presumes that the matter is part of a spherical 1 Mo protostar,
which by virtue of collapsing more rapidly is heated more vigorously, and has to cool
through a larger column-density; therefore, at a given density, it is hotter and fragments

less readily (i.e. into more massive fragments, if at all).

The lower masses and greater numbers of stars formed with the new treatment of
the energy equation predisposes the stars to mutual dynamical interactions which eject

many of them before they have time to grow much by accretion. Fig. 4.9 shows the mass
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distributions obtained with the different combinations of thermodynamic treatment and
initial level of turbulence. The black line shows the histogram obtained by distributing

the final stellar masses into 15 logarithmic bins which are equally spaced in the interval

M,

-2 < logw(ﬁ—e) < 1.

The red line shows the mass distribution obtained when each stellar mass is smoothed
using a Gaussian smoothing kernel with adaptive smoothing lengths dictated by the
separation between masses ! . Both the histogram, and the smoothed distribution, are

normalised, in the sense that

M=co

f Prog g0 410810(M) = 1. (4.39)
M=0

From Fig. 4.9 we see that the initial level of turbulence has little influence on the form

of the mass distribution.

However, switching from the barotropic equation of state to the new treatment of
the energy equation not only increases the proportion of brown-dwarf stars formed, but
actually produces a bimodal mass distribution. The larger mode comprises hydrogen-
burning stars with masses concentrated in the range 0.3 to 1.0 M, whilst the smaller
mode comprises brown dwarf stars with masses concentrated in the range 0.02 to 0.06 M.
This smaller mode represents very low-mass stars formed by disc fragmentation (due to

the enhanced cooling which low-mass fragments enjoy with the new treatment of the

'The smoothed mass distributions are given by a sum of Gaussians,

< 1 —(u— )]\ du
pudu = Z} {(27[)] P exp > 0_12 }} T 4.37)
_ Hi — M1 2 Hiv2 — Hi-2 2
7 - () ey

where 1 = log,q (M) and y; = log, (M;). The standard deviation o; is evaluated by adding — in quadrature
— the mean separation between all masses across the entire mass spectrum (this is the first term on the
righthand side of Equation 4.38), and the mean separation between the five nearest masses (this is the
second-term on the righthand side of Equation 4.38). Thus o; combines a global and a local contribution
to the smoothing. This smoothing is essentially ad hoc, and is designed purely to enable us to extract the
large-scale features of the mass distribution, which are otherwise lost in the rather noisy histograms.
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energy equation) and then ejected by mutual interactions (before they can grow much

by accretion). )

However, we should not necessarily expect this bimodality to be reflected in the
overall Stellar Initial Mass Function. We have only modelled a single core mass and
a single density profile. For different core masses and/or different density profiles, the
trough between the two peaks is likely to move to different masses, and may even disap-
pear altogether. The overall Stellar Initial Mass Function will have contributions from
an ensemble of cores with a range of masses and density profiles, and the bimodality is

likely to be washed out.

4.4.4 Multiplicity statistics

There appears to be some confusion in the literature over the correct terminology when
discussing the statistics of stellar multiplicity. To eliminate this confusion, Reipurth
& Zinnecker (1993) introduced various definitions. Their nomenclature is adopted by

Goodwin et al. (2004b) and we follow the same nomenclature here.

Firstly we define a “system” to include single stars, and a “multiple system” to only
include systems containing more than one star. If S is the number of single stars, B the
number of binaries, T the number of triples, and Q the number of quadruples, etc., then
the total number of stars is (S +2B+3T +4Q+...). Similarly, the total number of systems
is (S + B+ T + Q + ...) and the total number of multiple systemsis (B+ T + Q + ...).

The multiplicity frequency measures the fraction of systems which are multiple, i.e.

_ B+T+Q+..
CS+B+T+Q0+...°

(4.40)

The companion probability, cp, measures the fraction of stars which are in multiple
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systems, i.e.
2B+3T +4Q + ...

P=3 +2B+3T +4Q+...

(4.41)

The companion frequency, from Goodwin et al. (2004b), measures the mean number of

companions which a star has (irrespective of whether it is a primary), i.e.

2B+ 6T + 120 + ...
Cf_S+ZB+3T+4Q+...° (4.42)

In Table 4.3 we record — for each ensemble of 20 simulations, representing a
particular combination of thermodynamic treatment and initial level of turbulence — the
“total numbers of singles (S), binaries (B), triples (T') and quadruples (Q) formed in all
simulations;' and the mean multiplicity frequency (mf), the mean companion probability

(cp), and the mean companion frequency (cf).

4.4.5 Periods

Fig. 4.10 shows the number of stars formed in a simulation plotted against the periods of
the multiple systems identified at the end of the simulation. These periods are derived on
the assumption that all multiple systems are hierarchical, which is not always true. Thus
the two periods for a triple system are extracted by finding the period for the pair with
the greatest specific binding energy, then treating this pair as a single star and finding
the period of its orbit relative to the third star. This is appropriate for stable hierarchical

systems, but of limited value for unstable non-hierarchical systems.

We should therefore expect some subsequent evolution in these distributions, with
mutual interactions tending to lead to close systems becoming more tightly bound (oc-
casionally with exchange of components) and wide systems being disolved. Eventually
there will also be interactions with stars formed in neighbouring cores. These inter-
actions will further disrupt the wider systems but have little effect on the closer sys-

tems. However, our simulations are not continued long enough for interactions with
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Figure 4.10: For each multiple system we plot the number of stars formed in that simulation,
N, against the period, P. (a) Results obtained using the barotropic equation of state; here open
circles represent aws = 0.05, open triangles @y, = 0.10, and open stars oy = 0.25. (b)
Results obtained using the new treatment of the energy equation; here filled circles represent
awrp = 0.05, filled triangles @y, = 0.10, and filled stars @, = 0.25.
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Table 4.5: For each treatment of the energy equation, we record the mean, piog,,(p), the standard
deviation, O7jog,,(P)> and the range of the period distribution.

THERMODYNAMICS ﬂlogl olP) o 10g10(P) RANGE (yl’)
BAROTROPIC EQUATION OF STATE 2.2 1.0 ~10-10*
NEW TREATMENT OF THE ENERGY EQUATION 1.7 1.0 ~3 - 10*

stars formed in neighbouring cores to be important.

Fig. 4.11 shows the period distributions obtained using each treatment of the ther-
modynamics, and Table 4.5 lists the statistics of the period distribution obtained using
each treatment of the thermodynamics. With the new treatment of the energy equation,
the periods are on average shorter (by about a factor of 3). This is because the new treat-
ment allows the gas — in particular, the gas in smaller proto-fragments — to stay cooler
to higher densities. Consequently the Jeans length, and hence the separations between

neighbouring stars, tend to be smaller.

There is no obvious dependence of the period distribution on the level of turbulence,
although this must be set against the poor statistics (between 26 and 53 periods for each

combination of thermodynamics and initial level of turbulence).

We should also caution that the low-period systems are poorly resolved, in the sense
that at periastron the stars are closer together than R, , and therefore their gravitational
interaction is softened. This means that they should probably be somewhat more tightly
bound. We have checked the formation of the individual stars in some of these close
systems, and established that in each case the two constituent stars (i.e. sinks) were

initially created from well-defined and separate Jeans-unstable density peaks.
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Figure 4.11: Period distributions. The top row gives the period distributions obtained with the
barotropic equation of state for (a) @z, = 0.05, (b) @prs = 0.10, and (¢) @y, = 0.25. The
lower row gives the period distributions obtained with the new treatment of the energy equation
for (d) @ = 0.05, (€) @y = 0.10, and (f) @y, = 0.25.

4.4.6 Eccentricities

Fig. 4.12 shows orbital eccentricities (e) plotted against periods (P), at the end of the
simulations. The eccentricities are not strongly correlated with period, nor — modulo
the poor statistics (see above) — do they appear to be correlated with the initial level of
turbulence. However, there is a noticeable difference between the distributions obtained
with the two different treatments of the thermodynamics. Using the barotropic equation
of state, the distribution is concentrated towards high eccentricities, but there is still a
substantial fraction, ~ 25%, of systems having approximately circular orbits, ¢ < 0.2.
Using the new treatment of the energy equation, the distribution of eccentricities is more
strongly skewed towards high values, and less than 6% have ¢ < 0.2. This is also
illustrated in Fig. 4.14, which shows the distribution of the orbital eccentricities for

each treatment of thermodynamics.

The barotropic equation of state facilitates the formation of low-eccentricity bina-
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Figure 4.12: Orbital eccentricities, e, plotted against periods, P, for multiple protostars: (a)
Results obtained using the barotropic equation of state; here open circles represent agp = 0.05,
open triangles aym, = 0.10, and open stars @, = 0.25. (b) Results obtained using the new
treatment of the energy equation; here filled circles represent oy, = 0.05, filled triangles oy, =
0.10, and filled stars g = 0.25.
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ries by making it harder for circumbinary discs to fragment. At a given density the gas
is hotter. Consequently, quite massive but relatively warm circumbinary discs resist fur-
ther fragmentation and instead act to dampen orbital eccentricities by accreting slowly
onto the existing binary components. In contrast, when the new treatment of the en-
ergy equation is used, massive circumbinary discs are relatively cool, so they fragment,
and interactions between these additional fragments and the original components of the

binary act to amplify the orbital eccentricities.

4.4.7 Mass ratios

Fig. 4.14 shows the distributions of mass ratio, g = M,/M,, at the end of the simula-
tions. The distributions are strongly skewed towards g ~ 1, i.e. nearly equal component
masses. The mass ratios do not appear to be correlated with the initial level of turbu-
lence, a,,,, but again the statistics are poor. Mass ratios are correlated with orbital
periods, in the sense that shorter-period systems tend to have higher mass-ratios, which
is comparable with observations (e.g. Mazeh et al. 1992). Since simulations conducted
with the new treatment of the energy equation tend to produce multiples with shorter

periods, they also tend to produce multiples with higher mass ratios.

A mechanism which drives mass ratios towards unity in simulations of star forma-
tion was first described by Chapman et al. (1992), and has subsequently been noted by
Burkert & Bodenheimer (1993) and by Bate & Bonnell (1998) (but see Ochi et al. 2005
for a different view and Clarke 2007 for a rebuttal of this different view). If a binary
system continues to grow by accretion, the specific angular momentum of the infalling
material (relative to the centre of mass of the binary system) tends to increase with time.
Consequently the component with lower mass (the secondary, M,), which necessarily is
on a more extended orbit, is better disposed to assimilate this material with high angular
momentum, and therefore it grows in mass until it is comparable with the primary (M,).

This is the mechanism that appears to be operating here. It is less effective in wide bi-



4.4. RESULTS AND DISCUSSION

95

o)
w0 I L ) LB
(a)
oL
*
z
o L
N
o .
0 0.2 0.4 0.6 0.8
eccentricity
Q
©0 1 | i ¥ L
(b)
oL
*
z
oL
Q
o .
0 0.2 0.4 0.6 0.8

eccentricity
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Figure 4.14: The distribution of mass ratios, g, for multiple protostars: (a) using the barotropic
equation of state; (b) using the new treatment of the energy equation.
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nary systems, because the components of a wide system tend to accrete from separate

reservoirs.

4.4.8 Competitive accretion

We note that there is little evidence for competitive accretion in our simulations in the
sense that it is rare to have a situation in which several protostars are competing to ac-
crete from the same reservoir of material. The first star to form (the primary) is often, but

not always, the most massive at the end. Stars forming later in the simulation frequently
| grow to masses comparable with, and occasionally even greater than, the primary. The
material which ends up in these stars is normally rather coherently located. For example,
once the circumprimary disc has formed, the material destined to form a particular sec-
ondary star accumulates in a particular range of radii, and sits there until it is mopped up
by the growing secondary star. Ejection does play a role in separating some stars from
the reservoir of material they might otherwise have accreted, and thereby creating very
low-mass stars. However, the material which accretes onto a star was in general present
at the star’s inception; its self-gravity contributed to the condensation which triggered

the formation of a sink by pushing the density above pg -

4.4.9 Missing physics

The switch from the standard barotropic equation of state to our new realistic treat-
ment of the energy equation produces significant changes in the statistical properties of
the stars resulting from the collapse and fragmentation of an isolated, low-turbulence,
5.4 M, core. However, there are several important physical effects missing from our
simulations. In particular, there is no feedback from the stars, there are no (non-ideal)

MHD effects, and the use of sink particles raises some concerns.

Feedback. Feedback from stars can take several forms.
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(i) The radiation from the stars will heat the surrounding dust and gas. Krumholz,
Klein & McKee (2007) have recently simulated the collapse and fragmentation of more
massive cores (100 and 200 M) with much higher initial levels of turbulence than those
invoked in our simulations. Their treatment of the thermodynamics takes account not
only of the energy equation and the transport of cooling radiation, but also of radiative
feedback from the forming stars in the core. They find that their cores only spawn a
small number of stars. This is because the primary protostar, which forms early on from
material with relatively low angular momentum, has a high luminosity, and therefore
stabilises the inner parts of its circumstellar accretion disc, by heating them up. Frag-
mentation is only possible in the outer more diffuse parts of the disc. We expect a similar
— but more modest — effect in low-mass, low-turbulence cores, more modest because the
primary luminosity will be much smaller. Nonetheless, it is likely that, even in the low-
mass regime, the luminosity of the primary star is sufficient to inhibit fragmentation of
the inner disc. The analytic work of Whitworth & Stamatellos (2006) predicts that a
disc around a Sun-like primary is unlikely to fragment inside ~ 100 AU, and this is con-
firmed by the simulations of Stamatellos et al. (2007b) and Stamatellos & Whitworth
(2008a,b). Consequently, the primary will end up more massive (by accreting the matter
which is unable to fragment); the circumprimary disc will take longer to grow to Toomre
instability; and the secondaries which then condense out of it will be smaller in number,

and at larger radii.

(i) Mechanical feedback, in the form of bipolar outflows will punch holes in the
core. Preliminary exploration of this phenomenon (Stamatellos et al. 2005) suggests
that it does not greatly change the efficiency of star formation, but it does slow it down
(i.e. the delay between the formation of the primary and the formation of the secondaries

is longer). This needs to be explored further.

(ii1) Ionising radiation and winds from massive stars produce more violent feed-
back. We have recently developed the numerical machinery to explore this (Bisbas et

al., in preparation), but it is not part of the star-formation mode we are concerned with



4.4. RESULTS AND DISCUSSION 99

here, which involves cores which have too little mass to form ionising stars.

MHD. Non-ideal MHD effects are likely to play an important role, and we have
introduced divergence cleaning into the code of Hosking & Whitworth (2004). However,
it is still a rather crude and inefficient code, and further work is ongoing to improve it to
the stage where it can be used to perform a large ensemble of simulations. Price & Bate
(2008) have simulated the collapse and fragmentation of a massive magnetised turbulent
core, using an ideal MHD code, with a barotropic equation of state. They find that the
magnetic field reduces both the efficiency of star formation (i.e. the fraction of the core
mass which ends up in stars) and the production of brown dwarfs. In an earlier paper

" (Price & Bate 2007), using more idealised initial conditions (a spherical uniform-density
cloud with an imposed m = 2 perturbation), they have shown that a magnetic field can
also inhibit disc fragmentation, by slowing the rate of disc growth and accelerating the

rate at which angular momentum is redistributed.

Sinks. Finally, we note that the use of sinks may compromise our results, in ways
which are hard to quantify. First, it means that all processes on scales below ~ 2R, =
10 AU are at best not properly resolved (e.g. orbits), and at worst excised completely
(e.g. the second collapse when molecular hydrogen dissociates). Second, the creation
of sinks favours N-body interactions, and hence ejections of stars, whilst suppressing
dissipative interactions between, and mergers of, stars. One can postpone the creation
of sinks until very high densities are reached. For example, Stamatellos et al. (2007b)

use po = 1072 gecm=3. However, this is very expensive computationally.

4.4.10 Comparison with observation

Since we only treat a single core mass, with a single initial radius and a single initial
density profile, and since — as discussed in the preceding section — there are several
potentially critical physical effects which are not included in our simulations, we do not

expect to reproduce all the observed statistical properties of real stars. Nonetheless, it is
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appropriate to rehearse the various counts on which the properties of stars formed in our

simulations conform to, or diverge from, reality; and to speculate on the reasons.

Mean number of stars per core, N,.. Our simulations form too many stars per core,
and furthermore this over-production of stars is significantly exacerbated by the switch
from the barotropic equation of state to the new, more realistic treatment of the energy
equation. This is because the new treatment allows circumstellar discs, and low-mass
fragments thereof, to stay cool to higher densities than the barotropic equation of state
(which treats all gas as if it were at the centre of a collapsing, non-rotating 1 M, pro-
tostar). The analytic results of Rafikov (2005), Matzner & Levin (2005), Kratter &
Matzner (2006) and Whitworth & Stamatellos (2006), and the numerical simulations of
Krumbholz, Klein and McKee (2007), Stamatellos et al. (2007b) and Stamatellos & Whit-
worth (2008a,b) all suggest that the inclusion of radiative feedback reduces the number
of stars formed, essentially by heating the inner disc, and thus suppressing Toomre in-
stability by increasing the cooling time (Toomre 1964; Gammie 2001). Whitworth &
Stamatellos (2006) show that, given a solar-mass primary star at the centre of the disc,
it can only fragment at large radii, R > 100 AU. The inclusion of mechanical feedback
(Stamatellos et al. 2005) and/or a magnetic field (Price & Bate 2008) is also likely to-
reduce the number of stars formed, and in particular the number of brown dwarfs, by
reducing the rate of accretion onto the primary and its circumprimary disc. Indeed, these
effects are probably essential to reduce the efficiency of star formation in low-mass cores
to the levels infered from observation. These levels are typically ~30% (e.g. Nutter &

Ward-Thompson 2007; Simpson et al. 2008).

Mass distribution. The overall mass distribution produced by a single core, as a
fraction of the core’s total mass, is not constrained by observation; if it were, we would
know how to map the observed core mass function into the stellar initial mass function.
One interesting feature of our results is the suggestion that, amongst the stars spawned by
a single core, there might be a bimodal‘distribution of masses, comprising primary stars

formed relatively early on, and secondary stars of much lower mass formed somewhat
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later by disc fragmentation. We also note that the mass of core that we are simulating
(~ 5.4M,) is rather larger than the average isolated core (e.g. Alvés et al. 2007; Nutter
& Ward-Thompson 2007). This further complicates any attempts to map the results of
these simulations onto the observed distributions which are the sum of a variety of core

masses, mostly somewhat smaller than our core.

Multiplicity. The multiplicity frequency of the stars formed in our simulations,
mf ~ 0.2, is too low, especially for the higher-mass stars; for the brown dwarfs and very
low-mass hydrogen-burning stars (those with M, < 0.1Mg) mf ~ 0.2 is actually in
the middle of the range inferred from the limited observations available (Burgasser et al.

' 2007; Luhman et al. 2007; Joergens (2008). The multiplicity frequency is expected to
rise if the inclusion of extra physics reduces the number of stars formed from a single
core. If this reduction is attributable to the suppression of fragmentation in the inner
parts of circumprimary discs, then the simulations of Stamatellos et al. (2008b) suggest
that it will increase the multiplicity frequency of the higher mass stars (M, ~M,), and
have little effect on the multiplicity frequency of the very low-mass stars (M, <0.1 Mg);
the simulations would then accord better with the observed distribution of multiplicity
frequency, which appears to be a monotonically decreasing function of primary mass

(e.g. Joergens 2008).

Binary periods. The periods, P, of the binary systems formed in our simulations
fall in the range 3 < [P/yr] < 10*. Systems with shorter periods cannot be resolved,
because the gravitational fields of sink particles are softened at distances closer than
R =5AU. Systems with longer periods must either form in more extended cores than
the one we have modelled here, or they must result from interactions between stars
formed in separate cores. An encouraging feature of the multiple systems formed in
our simulations is the fact that most of the very low-mass systems (M, < 0.1 Mp) have
periods in the range 10 to 100 yr, in good agreement with the separations of observed

very low-mass systems (e.g. Joergens 2008).
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Mass ratios and eccentricities. The mass ratios of the multiple systems formed in
our simulations are concentrated towards high values. This again accords. with what
is observed for very low-mass systems (e.g. Burgasser et al. 2007; their Fig. 5a),
but contrasts with the flatter distribution observed in higher-mass systems. The multi-
ple systems formed in our simulations are also skewed towards much more eccentric
orbits than observed systems. However, the eccentricity distribution at birth is almost
impossible to compare to the distribution in older systems. Firstly, close systems will
be circularised by tidal and other dissipative forces. Secondly, wider systems will be
subject to encounters which will rapidly change the birth eccentricity distribution be-
yond recognition (Parker et al., in preparation). Our simulations do not address these

possibilities.

4.4.11 Convergence

We have repeated one of our simulations with 50,000 and 80,000 spH particles, to check
whether our simulations are converged, in a statistical sense (i.e. whether the statistical
distributions of stellar parameters does not depend on the number of spH particles used).
For this purpose we have chosen simulation T011, which has an initial level of turbu-
lence @, = 0.10, and uses the new treatment of the energy equation; the mean number
of stars formed with this combination is N, = 6.2 (see Table 4.3). In the original TO11
simulation, with just 25,000 spH particles, 6 stars are formed. With 50,000 spu particles
6 stars are again formed. With 80,000 spH particles 8 stars are formed. We stress that
in this context convergence can only be discussed in a statistical sense. This is because,
with the low initial levels of turbulence we are using, the gravitational fragmentation
that ensues is seeded from two sources. There are the small density enhancements cre-
ated by subsonic converging flows due to the initial imposed turbulent velocity field;
these are reproducable when using different particle numbers. However, there is also
particle noise; this is not reproducable when using different particle numbers. Therefore

convergence can only be tested fully by repeating the whole ensemble of simulations
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with higher particle numbers, and this is not feasible with the computational resources
at our disposal. We are currently preparing a paper which demonstrates convergence in
a simulation of gravitational fragmentation by using very carefully relaxed initial condi-
tions; the imposed perturbation (which is reproducable) is then able to dominate particle
noise in seeding gravitational fragmentation. These simulations exhibit excellent con-
vergence, as do the simulations of Jeans instability presented by Hubber et al. (2006).
We are therefore confident that our code is capturing gravitational fragmentation faith-

fully.

45 Summary

We have performed a large ensemble of SPH simulations of the collapse and fragmenta-
tion of an isolated, turbulent 5.4 M, core, with a view to establishing how the statistical
properties of the resulting stars are influenced by (i) different initial level of turbulence,
and (ii) different treatments of the thermodynamics. We consider three initial levels of
turbulence, characterised by @, = 0.05, 0.10 and 0.25. We treat the thermodynamics
firstly with a standard barotropic equation of state, and secondly with a new treatment
of the energy equation which captures all the important energy modes of the gas and
takes account of radiation transport and variations in the opacity. The main results are

summarised as follows.

1. Increasing the initial level of turbulence tends to reduce the efficiency of star forma-
tion, 7 (i.e. the fraction of the core mass which is converted into stars after 300 kyr), and
to increase the number of stars formed by a single core, N,, but the effect is very small,

and all the other statistical properties of the stars formed are essentially independent of

Qs

2. We observe a common pattern in which the low—angular-momentum material in the

core collapses to form the primary after 50 to 70kyr, and then a massive disc builds
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up around the primary. As soon as this circumprimary disc becomes Toomre unstable
(which may take from 10 to 100Kkyr), it rapidly breaks up into a bunch of secondary
stars. Those secondaries that are quickly ejected from the disc normally end up as brown
dwarf stars, whereas those secondaries that stay in the disc tend to grow by accretion,

and sometimes they even grow larger than the primary.

3. Switching from the standard barotropic equation of state to our new more realistic

treatment of the energy equation has several systematic effects:

e the efficiency of star formation (7 = Y, {M,} /M_.) is reduced significantly (by
~15%);

e the number of protostars formed (N, ) is greatly increased (by ~40%);
e a higher proportion of brown dwarf stars is formed;

o the mean period of multiple systems is reduced (by a factor ~ 3);

e the orbital eccentricities of multiple systems tend to be higher;

e the mass ratios of multiple systems tend to be higher (i.e. more nearly equal

components).

All these trends can be attributed to the fact that the barotropic equation of state
assumes that all gas is at the centre of a collapsing spherical 1 M, protostar, and therefore
it becomes adiabatic at relatively low densities. In contrast, our new more realistic
treatment of the energy equation allows the gas in low-mass proto-fragments to remain
approximately isothermal to relatively high densities, because in a lower-mass proto-
fragment the column-density trapping cooling radiation tends to be smaller, and the
rate of contraction (and hence the rate of compressional heating) tends to be slower
— as compared with the rates at the centre of a collapsing spherically-symmetric 1 M,

protostar.
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4.6 Future work

We have extended this work to modelling prestellar cores in Ophiuchus, using the new,
more realistic treatment of the energy equation and the observations of Motte et al.

(1998) and Andr€ et al. (2007). The results are shown in Chapter 5.

Future plans involve taking into account more of the deterministic effects that occur
in star formation. In particular, we would like to explore the effect of radiative feedback
from stars. We predict that by modelling feedback we can reduce the efficiency of star
~ formation from the very high levels produced here (~60%) to values more compatible
with observation ( <30%; Alves et al. 2007; Nutter & Ward-Thompson 2007; Goodwin
et al. 2008).
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Chapter 5

The evolution of prestellar cores in the
Ophiuchus Main Cloud

In this chapter we extend our study of the collapse and fragmentation of low mass cores
using initial conditions constrained by observations. Specifically, we model the evolu-
tion of an ensemble of prestellar cores with properties matching those detected in the
Ophiuchus Main Cloud by André et al (2007). In contrast to the simulations in Chapter
4, we are here considering cores with a range of masses, sizes and levels of turbulence,
with a view to predicting the statistical properties of the stars they spawn. Previous
analyses of the Ophiuchus Main Cloud have assumed that these cores have dust temper-
atures in the range of 12K — 20K. Using a 3D radiative transfer model of this region,
Stamatellos et al. (2007c¢) find that the dust temperatures should be lower, which results
in the core masses being larger than previous estimates, by a factor of ~ 2 — 3. For
a sample of cores we set initial conditions using the sizes and levels of turbulence from
Motte et al. (1998) and André et al. (2007) and the adjusted core masses according to

Stamatellos et al. (2007c), and we then simulate their evolution.

107
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5.1 Introduction

The Ophiuchus molecular ‘cloud complex is one of the closest star-forming regions,
located at a distance of (139 + 6) pc (Mamajek 2008). The complex consists of two main
clouds, L1688 and 1.1689. In addition there are filaments extending from these clouds
towards the north-east (see Fig. 5.1). These are usually referred to as the ‘streamers’
or ‘cobwebs’ of Ophiuchus, and extend over tens of parsecs (Loren 1989). Fig 5.1 also

shows the star p Ophiuchus 1° to the north of L1688.

Ophiuchus is an active site of star formation, with star formation efficiency in the
range 14—40% (Vrba 1977). It is thought that the star formation may have been triggered
by the Upper Scorpious OB association, located to the west of L1688 and L1689. In this
scenario, cloud collapse is triggered by shocks associated with expanding HII regions,
stellar wind shells, and supernova remnants. The resulting star formation may trigger

further star formation, which propagates through the cloud.

L1688 is the more massive of the two clouds, with a mass of 1447 M,,, and spans
1pc X 2pc on the sky. It is for this reason L1688 is generally known as the Ophiuchus
Main Cloud.

Numerous studies show that the Main Cloud is populated with a large number of
prestellar cores and also protostars at different stages in their evolution (e.g Wilking et
al. 1989, Motte et al. 1998, Johnstone et al. 2000, Stanke et al. 2006, Simpson et
al. 2008). There are six major clumps observed in the Ophiuchus Main Cloud (Oph-
A, Oph-B, Oph-C, Oph-D, Oph-E and Oph-F). These clumps, shown in Fig. 5.2, are

approximately 0.3 pc in size, each with a mass of a few tens of solar masses.

The region containing the clumps has been mapped in a 1.2 mm continuum survey
by Motte et al (1998). They sample an area of order 1 pc?, using the molecular cloud
tracer DCO™ to identify dense clumps. They detect 58 prestellar cores and, by adopting
dust temperatures of T, = 12K — 20K, calculate masses in the range 0.1 — 3 M,, for
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Figure 5.1: 13CO map of Ophiuchus, taken from Loren (1989) and modified by Nutter et al.
(2006). The contour levels give antenna temperatures of4, 5, 6, 7, 8, 10, 12, 14, 18, 20K.
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1.3mm mosaic of pOph main cloud
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Figure 5.2: Millimeter continuum mosaic of the 6 major clumps in the Ophiuchus main cloud,

from Motte et al. (1998).
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these cores.

More recently, André et al. (2007) have re-observed the cores detected by Motte et
al., using the molecular lines N,H*(1 — 0), CS(2 — 1), CS(3 — 2),H,CO22, — 1)),
and HCO*(3 — 2). They find that the cores appear to be gravitationally bound and
prestellar in nature. They detect subsonic levels of internal turbulence within the cores.
They also detect strong evidence for infall in six of the cores in the Main Cloud (A-
SM2, B2-MM16, C-MMS, C-MM6, E-MM2d and E-MM4), with a further ten cores
showing weak evidence for infall. As in Motte et al. (1998), André at al. (2007) use

dust temperatures of 12K — 20K to estimate masses.

However, Stamatellos et al. (2007¢c) have estimated dust temperatures in the clumps
in the Ophiuchus Main Cloud by constructing a 3D radiative transfer model for the
region, taking into account external heating by (i) the interstellar radiation field, and (ii)
HD147889. The latter is a nearby luminous B2V star, thought to dominate the external
radiation field incident on the clumps. They conclude that the temperatures of the clumps
are lower than those which previous studies have assumed. Using the new temperatures,
they find that the core masses calculated from millimetre observations by Motte et al.
(1998) and André et al. (2007) are underestimated by a factor of ~ 2 — 3. The revised
core masses obtained by Stamatellos et al. (2007c) are listed in column 4 of Table 5.2
(Stamatellos, private communication). The resultant core mass function for this region

does not change significantly in shape, but moves to higher masses.

To continue this study of the Main Cloud, we use the temperatures and adjusted
masses calculated by Stamatellos et al. (2007¢) to simulate the evolution of an ensemble
of cores. Each core is modelled using the dimensions determined by Motte et al. (1998)
and the appropriate level of turbulence observed by André et al. (2007). This is a
different approach to that taken in Chapter 4, where we modelled a single core of fixed
mass and size, for many different realisations of the turbulent velocity field. Here we
simulate cores with a range of masses, sizes and levels of turbulence and determine their

evolution.
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5.2 Initial conditions

5.2.1 Density profile and mass

The density structure of a low-mass prestellar core is approximately flat in the centre of
the core, then falls off radially with exponent 2 < —dfog(p)/d€og(r) < 5 in the envelope.

To represent this, we use a spherically symmetric Plummer-like density profile,

r2 -1
p(r) = p, {1. + (;_b} . 5.1

P, is the density at the centre of the core, and a and b are the projected dimensions of
the core. The dimensions are taken from Table 2 in Motte et al. (1998), which lists the
full width half maximum (FWHM) of each core. We assume the core boundary to be
r, = (ab)!’?. C is defined so that the density contrast between the centre of the core and
its boundary is C + 1. Observations indicate that this contrast is typically comparable
with the value for a critical Bonnor-Ebert sphere, i.e. C + 1 ~ 14, so we put C ~ 13. Po

can then be adjusted to give the required total mass, i.e.

r=(ab)!/?
M, = f p(r)4nr? dr 5.2)
r=0 .
r=(ab)/? Crz -1
= Lo Po {1 + E} 4rr? dr. (5.3)
Using the substitution
)
cr _ tan?(0) 5.4)
ab

and the differential of Equation (5.4)

ab\'"?
dr = (—C-) sec’(6)do, (5.5)
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Table 5.1: Estimated temperatures for each clump.

Clump Oph-A Oph-Bl1 Oph-B2 Oph-C Oph-D Oph-E Oph-F
Temperature 6 7 7 7 7 7 8
X)
we have
ab 3/2 =tan~!(C!/2)
M, = 4np, (—) r tan®(6) do (5.6)
C 6=0
ab\*"? 6=tan~'(C'/2)
= 47rpo(—) [tan(o) - 9] (5.7)
(64 6=0
ab\*"?
= 4np, (?:‘) [c”z - tan"(C”z)]. (5.8)

Hence, we must set

DM.
pO — (Tb):;_-[?; N (5.9)
C3/2

D = O (5.10)

Since we set C = 13, this gives D = 1.62.

5.2.2 Temperature

We set the temperature of each core according to which clump it is located in. The tem-
peratures estimated by Stamatellos et al. (2007c) are shown in Table 5.1. The Oph-B1
clump is excluded from their study because it is flattened in shape, therefore a spherical
geometry cannot be assumed as with the other clumps. We assume that it has the same
temperature as the nearby clumps Oph-B2 and Oph-C, i.e. ~ 7K The Oph-E clump

is also excluded from their study, as it appears to be part of Oph-C and we therefore
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give it the same temperature as Oph-C, i.e. ~ 7K. The temperature values estimated by

association in this way are shown in bold in Table 5.1.

5.2.3 Turbulence

We use the levels of turbulence observed by André et al. (2007; Table 4), i.e.

. g, 2
R =( NT) (5.11)

aTHERM 0-'1'

where @, is the ratio of turbulent to gravitational energy, and @, is the ratio of
thermal to gravitational energy. To obtain a,, we calculate a,,,, for each core and
multiply by (o, /0;)? from column 11 of Table 4 in André et al. (2007). To create the
initial turbulent velocity field in a core, we use the same prescription as in Section (4.2)
and impose an initial divergence-free Gaussian random velocity field on that core. The

power spectrum of this velocity field is set to be P(k) o< k™.

5.2.4 Equation of state

The energy equation and the associated radiation transport are treated using the tech-
nique described in detail in Section (4.2). The method takes into account the thermal
history of protostellar gas, and also captures thermal inertia effects. This is a much more

realistic approach than invoking a barotropic equation of state.

5.2.5 Numerical details

For these simulations, we use the DRAGON SPH code, described in Chapter 2. We
adopt a sink density threshold pg,, = 1071°gcm™ and a sink radius Ry, = 1.92 AU.

Note that the cores modelled here typically have an initial central density an order of
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magnitude higher than those in Chapter 4. Hence we must increase the sink density
threshold to mitigate the risk of spurious creation of protostars. The minimum resolvable

mass is given by

M NNEIB MTUT N MTUT

~ —_— d
M Nior 400 (5:12)

and therefore depends on M_ . ; for the most massive cloud simulated here, M,,, =
25M, - 1t would be better to fix M,,,, and vary N, and this is the strategy we
will adopt in the future. However, with the computational resources available to us that
was not feasible. See Section 2.10 for further discussion of the resolution requirements

_ imposed by the Jeans condition (Bate & Burkert 1997).

To set up the initial conditions we firstly place a large number of particles (N >
60, 000) randomly in a cube and settle them using DRAGON to produce a relaxed
uniform-density distribution. We then cut out a sphere containing the required num-
ber of particles, which in this case is N = 20,000. Finally, we stretch the particle
distribution radially to produce the density profile in Equation (5.1).

We perform simulations for the observed prestellar cores in Oph-A, Oph-B1, Oph-
B2, Oph-C, Oph-E and Oph-F. We exclude the Oph-D clump because André et al.
(2007) do not calculate the levels of turbulence for the cores in this clump and we do not
have any information on which to base an estimate. There are also some cores within
the remaining clumps that do not have a calculated a,,,. We estimate their levels of
turbulence based on the levels of the other cores within the clump. These figures are

shown in bold in column 6 of Table 5.2.

Stamatellos et al. (2007¢) exclude the Oph-B1 clump from their simulations due
to the difficulty in modelling its flattened structure. The clump is located in the neigh-
bourhood of Oph-B2 and Oph-C, which are both estimated to be at 7K, so we assume
Oph-Bl is at the same temperature. We also assume a temperature of 7K for Oph-E,

because it appears to be part of Oph-C.
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5.3 Results

5.3.1 Basic parameters of the cores and the stars they spawn

For each core, Table 5.2 records the initial linear size (as projected on the sky, column 2);
the initial temperature (column 3); the total mass (column 4); the central density (column
5): the initial level of turbulence (column 6); the total number of stars at the end of the
simulation (including brown dwarfs, column 7); the total number of brown dwarfs at the
end of the simulation (column 8); the types of multiple systems formed (column 9); and
the masses of the individual stars (column 10). The bold values — in columns 3 and 6
respectively — indicate values of the initial temperature and level of turbulence adopted

in cases where there is no reliable observational or theoretical estimate.

5.3.2 Overview

In the remainder of this chapter we analyse the results of these simulations of Ophi-
uchus cores, and attempt to relate the distributions of stellar properties (stellar masses,
multiplicities, etc.) to the input parameters (core masses, M., central densities, p,, and

levels of turbulence, ;).

However, at the outset we should stress that the statistics are inevitably poor, since
we only have observed properties for 48 cores. We could improve the statistics by
performing multiple realisations of each core in the ensemble, invoking a different seed
for the turbulent velocity field each time. We have indeed performed a few additional
simulations in this spirit, and these simulations confirm that the results are credible in
the following sense. If we perform additional simulations of a core which collapses
and fragments to form many protostars, then it usually does so in mosf of the additional
simulations (typically 3 of the 4 additional simulations) — even though the realisation

of the turbulent velocity field is completely different in each simulation. Conversely, if
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Table 5.2: Results of the simulations of an ensemble of cores in the Ophiuchus Main Cloud,
evolved for 300kyr. Column 1 gives the name of the core, column 2 gives its size, FWHM,
column 3 gives its temperature, 7, column 4 gives its total mass, M, column 6 gives @ yzs,
column 7 gives the total number of stars formed, N, column 8 gives the number of brown dwarfs
formed, Ny, column 9 gives the order of any multiple systems formed, and column 10 gives the
masses of individual stars, with a superscript to indicate those which are components of binary

systems (M?), triple systems (M!), or quadruple systems (M7).

Source FWHM T My b, Crms Ne Npp Mult M,
(AU x AU) K) Mo) (gem™>) Mo)
A-MM4 4000 x 1400 6 0450 3.256x10°77 0.129 8 6 T 0.113, 0.092, 0.073, 0.061, 0.045,
0.008, 0.007*, 0.002
A-MMS 3700 x 2900 6 0739 2016 %1077 0009 1 0 0.705
SMIN 3000 x 1800 6 4179  3.193x107'6 0010 5 1 1.182, 1.059, 1.003, 0.782, 0.021
SM1 6100 x 2100 6 10287 2.151x1071¢ 0017 14 6 T 1.776, 1.177%, 1.660¢, 1.639, 1.337,
1.143, 0.538, 0.378, 0.076, 0.059,
0.056, 0.035, 0.027, 0.015
SM2 6200 x 3400 6 4179  4.140 1077 0014 2 0 B 2.091%, 1.960°
A-MMS8 2900 x 2100 6 0418  2667x10717  0.048 1 0 0.384
B1-MM1 400 x 400 7 0226 3386 x10°°  0.009 1 0 0.224
B1-MM2 3000 x 2100 7 0.384  2328x10°Y7 0035 1 0 0.342
B1-MM3 1800 x 1300 7 0361  9.670x10°'7 0022 1 0 0.345
B1-MM4 4600 x 3200 7 0474  8.047x107'% 0043 1 0 0.403
BIB2-MM1 2700 x 1800 7 0226 2.023x10°17 0.052 1 0 0.186
B1B2-MM2 4800 x 4100 7 0745  8.182x107'% 0.032 1 0 0.664
B2-MM1. 400 x 400 7 0316 4.734x10°®  0.007 1 0 0313
B2-MM2 4500 x 2400 7 1.061  2.866 x10°17 0017 1 0 1.030
B2-MM3 400 x 400 7 0271  4.060x107!5  0.032 1 0 0.268
B2-MM4 2100 x 960 7 0609  2.040%x107'6 0035 1 0 0.601
B2-MMS5 2200 x 960 7 0.587  1.834x107'¢ 0054 1 0 0.545
B2-MM6 4300 x 2700 7 1761 4268 x10"17  0.075 4 0 B 0.763%, 0.472%, 0.275, 0.209
B2-MM7 400 x 400 7 0519  7.775x10°!% 0037 1 0 0.515
B2-MMS8 4000 x 4000 7 338  5.073x10°7 0045 13 O Q 0.7379, 0.6879, 0.336, 0.2977, 0.291,
0.288, 0.233, 0.218, 0.058, 0.0579
0.023, 0.009, 0.007
B2-MM9 1600 x 960 7 0700 3256 x10°'¢ 0.068 3 0 T 0.492!, 0.107*, 0.088'
B2-MM10 3400 x 2200 7 1.354 6346 %1077 0044 1 0 1.318
B2-MM11 400 x 400 7 0339 5079x10°1¢ 0122 1 0 0.335
B2-MM12 2100 x 1300 7 0.880  1.871 x10°'¢  0.018 1 0 0.857
B2-MM13 400 x 400 7 0429 6427 %1075 0099 1 0 0.424
B2-MM14 2100 x 1800 7 0.971 1.267 x107'¢  0.095 4 1 B 0.420%, 0.253, 0.247%, 0.022
B2-MM15 400 x 400 7 0384  5753x10°5 0092 1 0 0.379
B2-MM16 2700 x 1300 7 0790  1.152x10°'¢ 0089 3 2 T 0.662', 0.056', 0.049"
B2-MM17 400 x 400 7 0519  7.775%x10°% 0017 1 0 - 0513
C-W 17000 x 8000 7 3.160 1.910x10°® 0035 5 1 B 1.652%,0.6807, 0.357, 0.253, 0.067
C-MM1 5900 x 3000 7 0.790 1.017 x10°7  0.050 1 1 0.735
C-N 10000 x 8800 7 3837 4457x107'% 0023 16 8 B 1.419, 0.752, 0.222, 0.193%, 0.160, 0.160,
0.121, 0.093%, 0.063, 0.039, 0.021
0.019, 0.018, 0.014, 0.009, 0.008
C-MM2 400 x 400 7 0.271 4060 x10° 0014 1 0 0.268
C-MM3 5400 x 640 7 0519  7.745x10°17  0.034 1 0 0.496
C-MM4 2400 x 1400 7 0.361 5.620 <1017 0.048 1 0 0.335
C-MM5 400 x 400 7 0226 3386 x10°15 0017 1 0 0.223
C-MM6 4000 x 3700 7 0745  1255x107'7 0049 3 2 T 0.555", 0.078", 0.066°
C-MM7 400 x 400 7 0293  4390x1071% 0013 1 0 0.290
E-MM1 23000 x 19000 7 6207  6515x10-° 0.033 10 4 T 4319, 0.165, 0.130%, 0.130, 0.093,
- 0.085*, 0.073, 0.043, 0.031, 0.031
E-MM2a 400 x 400 7 0.198 2967 %1075  0.020 1 0 0.196
E-MM2b 400 x 400 7 0.226  3.386xi0° 0017 1 0 0.224
E-MM2c 400 x 400 7 0226 3386 x10°5 0017 1 0 0.224
E-MM2d 4200 x 2700 7 1270  3.189x10°'7 0026 1 0 1.224
E-MM3 400 x 400 7 0226  3.386x10°15  0.017 1 0 0.223
E-MM4 6900 x 5300 7 1241  5.380x1078  0.047 1 0 1.127
E-MM5 7700 x 4600 7 1.185  5.645x107'% 0048 1 0 1.082
F-MM1 4300 % 2600 8 0.705  1.533x10°77  0.121 5 3 B 0.396%, 0.115, 0.074%, 0.052, 0.018
F-MM2 2700 x 1600 8 0339  3.620x10°7  0.149 1 0 0.287
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we perform additional simulations of a core which collapses to form a single star, then
again it uSually does so in most of the additional simulations (again typically 3 of the 4

additional simulations).

The reasons why we have not extended this procedure, by performing (say) five
realisations of each Ophiuchus core, are twofold. First, this would take quite a long time
and use quite a lot of computational resource. Second, there are other critical issues
with the analysis which we have used to extract initial conditions from the quantities
tabulated by André et al. (2007) (basically the formalism we have used for estimating
the initial level of turbulence is incorrect, and — as we explain in Section 5.3.9 — tends to
underestimate @, somewhat), and there are important additional aspects of the physics
which we need to include in our model before we can expect the results to mimic reality
(in particular radiative and mechanical feedback). We return to these issues at the end

of the chapter.

In the meantime, we should simply be aware that the results presented here are
probably less representative of what we can expect to happen in Ophiuch'us during the
next 300 kyr than we had originally intended. The results do nonetheless have a value,
in that they indicate the sense in which the properties of a star might be expected to vary

according to what sort of core that star is born in.

5.3.3 Star formation efficiency

Star formation in the Ophiuchus cores is predicted to be extremely efficient. Nearly
all (~ 90%) of the core mass endsb up incorporated into newly-formed stars. This high
efficiency may be attributable to the fact that many of the cores are quite dense at the
start of the simulations. The central densities range from 10~'8 cm= up to 107 cm™3,
and most of the cores start off significantly denser than the cores simulated in Chapter
4. Consequently, when a simulation is terminated after 300 kyr, even the outer parts of

the core have had time to fall into the centre and accrete onto a star.
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The core observations are necessarily biased towards regions of high volume- and
column-density, and may therefore be failing to detect the lower-density regions which
make up the outer parts of a core. Consequently the derived parameters of our core
ensemble may reflect only the inner parts of cores, which inevitably collapse quickly

and form protostars with high efficiency.

5.3.4 Cores producing single stars

73% of the cores spawn just a single star. Again this is partly because the cores start
off at quite high density, 1078 cm™ up to 107> cm™. Since the gas becomes optically
thick and heats up adiabatically once the density rises above 10~*cm™ to 1072 cm™
(depending on the mass of the condensation involved), the approximately isothermal
collapse phase has a rather short dynamic range. Hence, by the time the core becomes
adiabatic, its linear size has only decreased by a small factor, and consequently there has

not been much opportunity for initial density structures to be amplified by self-gravity.

The preponderance of single stars can also be attributed to the fact that initial levels
of turbulence are generally low, and therefore there is not much density structure for
self-gravity to amplify. Values of a,,, range from 0.009 up to 0.149, with an average
value of @, ,, = 0.03; in contrast, in Chapter 4 we performed simulations with @, ., =

0.05, 0.10, and 0.25.

Finally, many of the cores have extremely low masses, and therefore it is hard for

them to find sufficient mass to form more than one star.

5.3.5 Cores producing more than one star

27 % of the cores in the Ophiuchus ensemble form more than one star. These appear to

be the cores which have high total mass (M, ), and/or high initial turbulence (@ ;).
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and/or low initial density (o,). This is presumably because high-mass cores have the
material to form many stars. If they have a high initial level of turbulence they develop
a lot of substructure which can then. be amplified by self-gravity to form separate pro-
tostars. And if they start off at low initial density, then there is a large dynamic range
of approximately isothermal collapse during which self-gravity can amplify these sub-

structures.

There are three parameters, and there are small numbers, so looking for correlation
is not straightforward. We start by considering each parameter in turn, and then try to

combine them.

Fig. 5.3 shows a plot of the total number of stars formed in a core, N,, against the
total core mass, M, .. From this plot we see that less than 23 % of cores with M. <
1.4 M,, form more than one star, whereas 100 % of cores with M, > 1.4 M, form more
than one star. This corroborates the conclusion of Hubber (2006) who showed that if the
initial level of turbulence is held fixed at @, = 0.2, a core with mass M, = 4.34 M,
produces more stars than a core with mass M, = 2.17 M. Itis appropriaté to pre-empt
our overall conclusion by pointing out that the cores with relatively low masses which
nonetheless form more than one star tend to have quite high initial levels of turbulence

and/or low initial density.

Fig. 5.4 shows a plot of the total number of stars formed in a core, N,, against
the initial level of turbulence, @ ;. From this plot we see that a core with high a; is
more likely to form more than one star than a core with low @, . For example, less than
29 % of cores with @, < 0.06 form more than one star, whereas nearly 67 % of cores
with @, > 0.06 form more than one star. Again we pre-empt our overall conclusion
by pointing out that the cores with relatively low turbulence which nonetheless form
more than one star have quite high masses and/or low initial densities. It is important to
mention here that only a small fraction of cores have initial levels of tﬁrbulence greater

than a,,, < 0.06, and so we must be careful not to place to much weighting on this

conclusion.
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Figure 5.3: Logarithm of the total mass of a core (M) plotted against the number of stars

formed, N,.
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Figure. 5.4: For each simulation, we plot the logarithm of the initial level of turbulence in the
core (a@zp ) against the number of stars formed (N..)
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Figure 5.5: We plot the logarithm of the central core density, p, for the number of stars formed,
Ni

Finally Fig. 5.5 shows a plot of the total number of stars formed in a core, N,
against the initial central density, p,. From this plot we see that firstly there is a very
weak correlation, in that a core with low p, may be more likely to form more than
one star than a core with high p,. For example, nearly 44 % of cores with p, < 4 X
107'® g cm™ form more than one star, whereas no core with p, > 4 x 10716 gcm™3 forms
more than one star. However, this is a very weak correlation, and many more simulations

are required to see if this conclusion is still valid.

It would be very useful to formulate these trends more precisely, using Principal
Component Analysis, and it is our intention to do this when we have assembled better
statistics. For the time being we have experimented with combining the different factors

to create a single parameter thus:

— Trre 2 Mm : 14+10g10 (Po) ’
M = (0.06) +(1.2) +( 3 . (5:13)

Fig. 5.6 shows a plot of the total number of stars formed in a core, N,, against
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Figure 5.6: Total number of stars formed in a core, N, against the parameter M.

M. We see that there is a correlation, in the sense that cores with small M tend to
spawn a single star, and cores with large M tend to spawn more than one star. There is
potentially an interesting theorem here, which we will try to establish in the future. In
the meantime, there does not seem to be a link between the positions of the cores in Fig.
5.6 and the clump that they belong to. Repeated simulations will hopefully confirm if

this is indeed the case.

5.3.6 The role of disc fragmentation

In the cores that form more than one star, we frequently observe the same pattern as
was noted in Chapter 4, viz. a primary star forms from the material with lower angular
momentum, and then the material with higher angular momentum accumulates into a
circumprimary disc. The disc grows in mass until it becomes Toomre unstable, and then
fragments to produce one — or usually several — secondaries; the time taken for the disc
to accumulate and then fragment is typically ~ 20kyr. Some of the secondaries that

form in a disc are unable to accrete much mass before they are ejected, and so they end
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up as brown dwarfs or very low-mass hydrogen-burning stars. Other secondaries remain
in the disc and accrete sufficient mass to become comparable in mass with the primary;

sometimes they even grow more massive than the primary.

Fig. 5.7 shows the collapse and fragmentation of the core A-MM4 in Oph-A. This
core collapses to form a primary star, and then a circumprimary disc accumulates and

fragments to produce seven companions, of which six are brown dwarfs.

Fig. 5.8 illustrates the accretion histories for a sample of simulations. The trends
seen here are very similar to those discussed in Chapter 4. We see that there is sometimes
— although not always — a significant delay between the formation of the primary star
and the formation of the second star. During this delay, the circumprimary disc grows in
mass until it is Toomre unstable. Secondary stars then condense out of this disc in quick

succession.

5.3.7 The stellar mass distribution

Fig. 5.9 shows the mass distribution for the stars formed in our ensemble of cores in the
Ophiuchus Main Cloud. As in Section 4.4.3, the black line shows the histogram obtained
by distributing the final stellar masses into 15 logarithmic bins which are equally spaced

in the interval

-2 < loglo(%%) <1,

so that Alog,,(M,) = 0.2. The red line shows the mass distribution obtained when each
stellar mass is smoothed using a Gaussian smoothing kernel with adaptive smoothing
lengths dictated by the separation between neighbouring masses. Both the histogram,

and the smoothed distribution, are normalised, in the sense that

M=co

f Proggon 41081o(M) = 1. (5.14)
M=0
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Figure 5.7: Simulation of the collapse and fragmentation of a the A-MM4 core in Oph-A. Each
snapshot shows the logarithm of the column density.
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Figure 5.8: Stellar masses as a function of time (Myr), for a selection of simulations.
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log[M]

Figure 5.9: Normalised stellar mass distribution. The black lines are histograms of the raw
data and the red lines are obtained by smoothing with a Gaussian smoothing kernel (see text for
details).

The mass distribution shows one major peak, comprising masses in the range 0.1 to 0.6 MC,
This peak is made up of the the majority of single stars produced from the cores. With
the exception of a few cores, the typical mass of a core is in this range. Due to the high
density of the cores, nearly all the mass, even in the outer parts, has sufficient time to

accrete onto the central star before the simulation is terminated.

There also appears to be a secondary peak on the ‘shoulder’ of the larger mode,
with masses concentrated in the range 0.04 to 0.1 MO. This secondary peak comprises
brown dwarfs and very low-mass hydrogen-burning stars, formed by disc fragmentation

and then ejection before they can accrete much mass.

5.3.8 Stellar multiplicity statistics

A small number of cores in each clump form multiple systems, mainly binary and triple

systems. To calculate their multiplicity statistics, we take the same approach as in Sec-
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Figure 5.10: For each multiple system, we plot the number of stars formed in that simulation,
N, against the period, P.

tion 4.4.5, where we have assumed that all multiple systems are hierarchical. In this
situation, we compute the two periods for a triple system by finding the period for the
pair with the greatest specific binding energy. We then treat this pair as a single star and

find the period of its orbit relative to the third star.

Fig.5.10 shows the number of stars formed in a simulation plotted against the pe-
riods of the multiple systems identified at the end of the simulations. The period distri-
bution has a mean pyog,(p) = 3.2, with periods ranging from 102 yrIs to 108 yrs. There
appears to be no obvious dependence of the period distribution on the number of stars

formed.

Fig.5.11 shows the distribution of orbital eccentricity (e) plotted against period (P)
at the end of the simulations. It is clear that the eccentricities of the multiple systems
are not strongly correlated with their periods. However, the distribution of eccentricities
is similar to the distribution obtained using the new treatment of the ‘energy equation
in Chapter 4 (see Fig. 4.12). The protostars in a majority of systems tend to be on
highly elliptical orbits (¢ > 0.5). Only 4 of the 21 multiple systems have eccentricities
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Figure 5.11: For each multiple system we plot the orbital eccentricity, e against the period, P.

of e < 0.4. In section 4.4.5, less than 6% of the distribution have e < 0.2.

Uniike the binary systems discussed in Chapter 4, we do not see any substantial
evidence for the equalisation of mass. This is illustrated in Fig. 5.12, which shows the
distribution of mass ratios, ¢ = M,/M,, for each of the multiple systems detected at
the end of the simulations. The distribution is skewed towards systems in which the
components differ in mass by almost a factor of ten. One thought is that this could be
due to the difference in the power law of the density profile used here (Equation 5.1)
and that in Chapter 4 (Equation 4.4). However, future work on the effect of the initial

conditions on q is required to clarify this.
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Figure 5.12: The distribution of mass ratios, g, for multiple protostars at the end of the simula-

tions.

5.3.9 Revised initial conditions

Initial level of turbulence

Equation (5.11) is only valid, if we adopt the temperatures (and hence the thermal ener-

gies) used by André et al. (2007). Since we have actually used the significantly lower

temperatures estimated by Stamatellos et al. (2007c), it is necessary to allow for the

fact that now a much larger fraction of the FWHM of the observed N,H* lines has to be

attributed to non-thermal motions.

The turbulent energy is

and the thermal energy is

Ermy = —5%, (5.15)

(5.16)
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where o, and o, are - respectively — the non-thermal and thermal velocity dispersions,
as defined by André et al (2007). In particular, o~ is the thermal velocity dispersion for

a particle with the mean gas-particle mass, i.e.

1/2
o, = (E_I) . (5.17)

m

The non-thermal velocity dispersion is obtained from the FWHM of the fitted N,H*

lines, which is given by

FWHM? = 8InQ) (02, + 02,). (5.18)

™

Here o, is the thermal velocity dispersion for an N,H* molecule, i.e.

1/2
Ony = (%) , (5.19)

where m,, = 29my, is the mass of an N;H* molecule.

It follows that the turbulent energy is given by

M FWHM \? T
Enes = 3x10%erg (E) {(2.355kms-1) "(34881()}' (5:20)

Similarly the thermal energy is given by

_ 3MkT _ 6. (M ( T )
Eomw = s 36 x 10™ erg (_Mo) 3488K) (5.21)
and hence
Ome _ Ergs ( FWHM )2_( T ) {12( T )}" (5.22)
Crm Em \12.355kms™! 3488K 3488K/]

As examples of how this revised analysis affects the estimated levels of turbulence,

we recalculate @, /@y fOr three of the Ophiuchus cores. These three are chosen to
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Table 5.3: Sample of recalculated values of yzp /X rgerm -
CORE (ﬁn&s_) ( ZTuRB
. USED

Q. ¢ )
THERM THERM / ~RRECTED

B2-MM1 0.09 1.0
A-MM4 0.49 1.65
B2-MM11 1.69 7.68

be representative of the range of values spanned by Ophiuchus cores.

Since the corrected levels of turbulence are always significantly higher than those
we have used, we should expect that simulations using these corrected levels of turbu-
lence will result in many fewer cores producing just a single star. We have repeated a
small number of simulations with the correct levels of turbulence and can confirm that
this is the case, in the sense that each core produced more than one star in the sample
of 3 test cases that we used. However, more simulations are required before we can can

confirm that this result is statistically sound.

Initial aspect ratio

Our simulations may also be compromised by the assumption of spherical symmeﬁy.
Some cores have rather low aspect ratios, R = a/b. For example, SM-1 has projected
FWHM dimensions a = 6200 AU and » = 2100 AU, hence R = 0.34. Similarly, C-W
has a = 17000 AU and b = 8000 AU, hence R = 0.47.

The main difficulty here is that the intrinsic shape of a core is three dimensional,
but we only see them in projection; the intrinsic aspect ratios are in general more ex-
treme than the projected ones. We are looking into ways of de-projecting the observed
core shapes to obtain — in a statistical sense — estimates of the intrinsic éllipsoidal axes,

(@5, by, ¢,,), s0 that we can explore the effect of starting simulations with a density profile
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of the form

R
= £
b

-1
)} . (5.23)

Goodwin et al. (2002) have analysed the three dimensional shapes of cores in

p(x,y,2) = p, {1 + C(

S
| M

nearby star forming regions, and find that starless cores appear to be more flattened
than protostellar cores. It will be interesting to see whether this finding is reproduced
by our simulations, and whether elongated cores produce multiple systems, as has been
suggested by the classical work of Bonnell et al. (1991) and Nelson & Papaloizou
(1993).

5.3.10 Additional constitutive physics

A number of potentially important physical effects have not been included in our models.
In particular, no account has been taken of feedback from the stars that form. Such
feedback might be either radiative, or mechanical, or both. Nor do we include magnetic
fields. We briefly discuss how these effects might be included in future work.

Radiative feedback

It is relative straightforward to include radiative feedback from the stars that form in
the simulation, provided an expression can be formulated for the intrinsic luminosity
of a newly-formed star. This must include the intrinsic luminosity, due to internal con-
traction, plus the luminosity generated by accretion. Both these can be computed using
simple phenomenological models, provided the code is able to estimate the accretion

rate (i.e. by smoothing over the arrival of individual SPH particles).

Radiative feedback will heat the surrounding gas and dust, and this is expected to
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suppress fragmentation of the inner circumprimary disc (see Whitworth & Stamatellos
2006). Thus the circumprimary disc will probably have to accumulate for longer be-
fore it becomes Toomre unstable. As a result, the primary will become more massive
by accreting the material in the inner accretion disc (the material which cannot frag-
ment). Once the circumprimary discs does become sufficiently massive and extended
to be Toomre unstable and fragment, it will spawn fewer stars and they will tend to be

somewhat more massive.

Mechanical feedback

Mechanical feedback can also be modelled using a simple phenomenological prescrip-
tion, as has been shown by Stamatellos et al. (2005). Each time two additional SPH
particles have been assimilated by a sink, they are re-injected into the surrounding gas
with one tenth the mass that they came in with, and with equal and opposite velocities
of magnitude 100 kms™!, directed along the spin axis of the sink. This prescription ex-
ploits the observational and theoretical rule-of-thumb that the mass-loss rate is roughly
one tenth of the accretion rate (e.g. Pudritz 2003). (This prescription has the added
advantage that it obviates the need to de-allocate the memory used for SPH particles

assimilated by a sink.)

Our expectation is that mechanical feedback will both delay star formation, and

reduce the efficiency of star formation.

Magnetic fields

The existing Cardiff SPH code for handling non-ideal MHD effects is of limited use,
because it does not include divergence cleaning (therefore it cannot handle problems
with large dynamic range), and it is not parallelised (therefore it can only operate with

small numbers of particles). We have been rewriting and testing this code, but the new
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version is not yet in a state to use for this project.

The consequences of introducing magnetic fields are hard to predict. Our suspicion
is that it will reduce the efficiency of fragmentation, resulting in fewer stars, and in
particular fewer brown dwarfs. However, there is an even more fundamental problem,
and that is that the initial and boundary conditions for the magnetic field are even less
tightly constrained than those for the density and temperature field. Furthermore, if
non-ideal effects are to be captured, then the treatment of the energy equation must be
extended to include the ionisation balance. This is being done by Whitwoﬁh (private

communication), but the module is not yet available.

5.4 Summary

We have modelled the evolution of the ensemble of prestellar cores observed in the
Ophiuchus Main Cloud. The initial conditions for each core have been set up using the
revised temperatures and adjusted masses of Stamatellos et al. (2007c), and the sizes
and levels of turbulence measured by Motte et al. (1998) and André et al. (2007) (but

see below). The main results are summarised as follows.

e The cores in the Main Cloud are likely to collapse and form typically a single
star, on a timescale of 10 to 100 kyr. We find that star formation in these cores is
extremely efficient. This is probably due to the fact that the initial central densities
of the simulated cores are so high that, by the time the simulation is completed

after 300 kyr, even the gas in the outer parts has accreted onto the central star.

e Some cores (15 out of 48) form multiple systems, with as many as 16 stars forming
in one particularly prolific core. In these cores, once a primary star has formed
-from the material with low angular momentum, the material with higher angular

momentum forms a circumstellar disc around the primary. This disc normally
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grows in mass until it becomes Toomre unstable and fragments to form multiple

secondaries. .

e The number of stars formed by a core is highest if the core has high mass. There
is also a much weaker dependence on the initial level of turbulence and the initial
density, in that there tends to be more stars formed by a core if it has a high
initial level of turbulence, and/or if it starts from "a low initial density. We explain
why, and derive a parameter M (see Equation 5.14) which combines all these
dependencies. It is important to stress that these conclusions are based on small

statistics, and so require further investigation.

e There are 21 multiple systems formed in this ensemble of simulations. Most of
these multiple systems have highly eccentric orbits (e > 0.5). This is in agreement

with our findings in Chapter 4.

e Our simulations do not take account of radiative or mechanical feedback from
the stars that form (in particular, from the primary star in simulations that fqnn
more than one star). We predict that the inclusion of feedback would'reduce the
high efficiency of star formation we have reported here. We have also assumed
spherical symmetry in the initial cloud, which may be unrealistic for many of the
cores in the Ophiuchus ensemble. Finally we note that the levels of turbulence we
have invoked need to be revised upwards in order to be properly compatible with

the observations.

5.5 Future work

We plan to repeat these simulations using revised values for the initial levels of turbu-
lence. We will also look into ways of reproducing the observed projected shapes —in
some statistical sense — with triaxial ellipsoidal initial shapes. We will include radiative

and mechanical feedback in our simulations to ascertain what effect they have on the
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efficiency of star formation and the properties of the stars formed. Ultimately we would
also like to include the magnetic field. These revisions will all be introduced incremen-
tally, so that we are able to track cause and effect. We will also seek to improve the
sfatistics of our results by performing multiple realisations of the turbulent velocity field

and/or the de-projected three-dimensional shape.
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Chapter 6

The effect of metallicity on the binary
frequency

In this chapter we take a simplified look at the effect metallicity has on the collapse
and fragmentation of low mass cores. Machida (2008) recently modelled the evolution
of star-forming clouds for various metallicities and found that the binary frequency in-
creases as cloud metallicty lowers, and binary separations in lower metallicity clouds
are on average shorter than in higher metallicity clouds. His simulations support recent
observations made by Lucatello et al. (2005). We revisit this study but instead perform
simulations of relatively isolated, low turbulence, low-mass cores. We compute the sta-
tistical properties of the resulting stars, in particular the mass distribution and binary

properties, to compare with the findings of Machida (2008).

6.1 Introduction

To describe the elemental composition of a star, we use X to represent the fraction by
mass of hydrogen, Y to represent the fraction by mass of helium, and Z to represent the

mass of the other (in general, heavier) elements such as oxygen, carbon and nitrogen. Z

139
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is often referred to as the metallicity, and
X+Y+Z=1. (6.1)

The Sun, a Population I star, has an elemental composition of X = 0.70, ¥ = 0.28, and
Z = 0.02, and is referred to as metal-rich. Population I stars are relatively young stars

which have formed in the last few Gyrs. They are typically found in the disc of a galaxy.

Stars which formed very early in the Universe are termed Population III. Numerical
simulations of the collapse and fragmentation of primordial clouds indicate that these
stars were rather massive, with masses 2 20 M, (Bromm et al. 2002), and had zero
metallicity (Z = 0). No Population III star has ever been identified; if their masses were
2 20 M, they must have burnt out long ago. However, recently a number of extremely
metal-poor stars have been observed in the Galactic halo (Christlieb et al. 2001, Frebel
et al. 2005). These include HE 0107-5240 and HE 1327-2326 which have [Fe/H] < -5

(i.e. iron mass fraction ~ 5 X 107°Z)

6.1.1 Binary Frequency

It is thought that the binary frequency in the early universe was higher than that observed
today. Currently, 60% of young, low-mass stars in the field are in binary or higher-order
multiple systems (Duquennoy & Mayor 1991). Lucatello et al. (2005) examine the
radial velocities of a sample of carbon-enhanced, very metal-poor s-process-rich stars
(CEMP-s), and find that the binary fraction among these stars is higher than that found in
the field. Based on the fact that only a small fraction of these CEMP-s can be detected,
it is possible this fraction could be higher (5 100%). Lucatello et al. (2005) also find

that the binary separations of the stars are shorter than those of field stars.

Numerical simulations aiming to support this idea have recently been performed

by Machida (2008). He follows the evolution of rotating clouds with an initial ratio
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of rotational to gravitational energy 8, = 107! — 107 and metallicity Z = 0 — Z_. He
finds that cloud rotation promotes fragmentation, whilst fragmentation is suppressed in
clouds with higher metallicity. In the clouds that form multiple sysytems, he finds that
the binary frequency is a decreasing function of cloud metallicity. In addition, the binary
stars that form from low metallicity clouds have shorter orbital periods than those from

high metallicity clouds.

6.1.2 The effect of metallicity

Bromm et al. (2001) have studied the effect of metallicity on the evolution of the gas
~ in a collapsing dark matter mini-halo. They simulate two scenarios, one with a gas of
metallicity Z = 10™Z,, and the other with a gas of metallicity Z = 1073Z_. They
adopt a cooling function that takes into account the metal-line cooling, but assume that
cooling from molecular hydrogen is negligible in this scenario and so do not treat it.
They ﬁﬁd that the gas with the lower metallicity fails to undergo continued collapse and
fragmentation. In contrast, the gas with the higher metallicity collapses to form a disc-
like structure, which then becomes gravitationally unstable and undergoes fragmentation
forming a large number of high-density clumps. Therefore, Bromm et al. (2001) propose
that there exists a critical metallicity, Z.,, = 5 X 107 Z_, below which the presence of

heavy elements does not greatly affect the outcome.

Jappsen et al. (2007) have simulated the collapse of warm ionised gas in small pro-
togalactic halos. They find that at low metallicities (Z < 10~ Z_) metal-line cooling has
an almost negligible effect on the evolution of low-density gas. At this stage, molecular
hydrogen dominates the cooling of the gas, and so it is the amount of H, formed that

determines whether or not the gas can collapse and form stars.

In this chapter we revisit the work of Machida (2008) regarding the effect of various
metallicities on the binary frequency, by simulating the collapse and fragamentation of

low-mass, low-turbulence prestellar cores, rather than molecular clouds. Machida im-
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poses a m = 2 density perturbation to induce fragmentation, but this is not the approach
we take with our cores. Since we do not incorporate the cooling due to molecular hydro-
gen in our simulations, we model metallicities Z = Z,Z=0.1Z7Z andZ =0.01Z,. With
these metallicities, the gas is sufficiently cool that H, cannot contribute to the cooling,
since para-H, has its first excited level (J = 2) at k,(512K), and ortho-H, has its first
excited level (J = 3) at £,(854 K) (e.g. Black & Bodenheimer 1975). With the sink den-
sity we use here (og = 107! gem™), the gas temperature rarely rises above ~ 200K
and therefore the rotational levels of molecular hydrogen are not strongly excited. At
metallicities 1073 Z_ and below, cooling due to molecular hydrogen becomes important
(Jappsen et al. 2007), hence we do not perform simulations with metallicities below

0.01Z,.

We examine the effect that reducing the metallicity has on the number of binary
systems formed and their separations. We compare our findings with those of Machida

(2008) and the observations of low metallicity stars made by Lucatello et al (2005).

6.2 Initial conditions

We use the same initial conditions as those described in Chapter 4, which are designed to

fit the observed properties of prestellar cores. We adopt a Plummer-like density profile

p) = 0% /R PR

Here p, o = 3 X 1078 gem™ is the central density, and R, ., = 5,000 AU is the
radius of the central region within which the density is approximately uniform. The
core extends out to R, = 50,000 AU, so its total mass is M., = 5.4M, and the
density at the boundary of the core is 10* times lower than at the centre. We set the

initial temperature of the gastobe 7 = 10 K.
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As in Chapter 4, we impose an initial divergence-free Gaussian random velocity
field on each core. The power spectrum of this velocity field is set to be Pidk o< k4dk,

and we consider an initial level of turbulence

E
a = TRE. = 0.25. (6.3)

TR IE‘GRAV |

6.2.1 Maetallicities

To treat the energy equation and associated radiative transport, we use the technique
described in Section 4.2.2. Since metals make very small contributions to the equation of
~ state, we assume the gas is 70% hydrogen and 30% helium by mass (i.e. X =0.70, Y =
0.30, and Z = 0.) for the purpose of treating the gas-phase chemistry. However, metals
make a substantial contribution to the opacity, particularly at low temperatures where
dust dominates the opacity, and so to model cores of different metallicities we must
adjust the opacity accordingly. Depending on what factor we are reducing the metallicity
by, we reduce the opacity in the same way. The opacities in our code are evaluated once

and for all time, and stored in a dense look up for reference and interpolation.

6.2.2 Numerical details

The cores are set up in the same way as those in Section (4.3.1), by cutting out a sphere
of 25,000 particles from a settled uniform-density cube, and stretching it radially to
produce a Plummer-like profile (Equation 6.2).

To identify stars that form, we invoke sink particles (see Section 2.10 for a descrip-

tion), adopting a sink density threshold pg,, = 107! gcm™ and radius pg,, = 5 AU.

To account for the chaotic nature of the turbulent velocity field that we impose on

the cores, we must simulate multiple realisations. Therefore, we perform an ensemble
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Table 6.1: Results of the simulations performed with metallicities Z = Z, Z = 0.1Z, and
Z =0.01Z_, at time ¢t = 0.3 Myr. See text for a description of each column.

D  ZZo IIMJ/Mo Ne Ny Mult  MJMo

TO41 1.0  3.369 7 2 BT 0.821%, 0.8097, 0.782%, 0.778%, 0.138’, 0.025, 0.016

TO42 1.0 3.055 4 0 T 1.083, 0.932', 0.913¢, 0.127

TO43 1.0 3.306 9 3 BT 0.798', 0.586%, 0.585%, 0.494', 0.4887, 0.271, 0.039, 0.033, 0.012

T4 1.0 3.260 14 8 BB 0.763%1, 0.762%!, 0.46272, 0.450%2, 0.426, 0.235, 0.054, 0.032, 0.025, 0.016, 0.010,
0.009, 0.008, 0.008

TO45 1.0 3.193 13 4 TQ  0.4449,0.4387, 0.379', 0.378', 0.368', 0.3429, 0.3407, 0.332, 0.081, 0.034, 0.031,
0.018, 0.008

TO46 1.0 3.362 5 0 T 0.853, 0.768, 0.768', 0.573', 0.400

TO47 1.0 3.024 12 5 BT 0.591%, 0.591%, 0.4117, 0.404", 0.403', 0.327, 0.110, 0.067, 0.057, 0.033, 0.019, 0.011

TO48 1.0 3.509 11 4 TT 0.653"1, 0.61472, 0.6067, 0.509"1,0.506', 0.37222, 0.155, 0.040, 0.023, 0.023, 0.008

TO49 1.0 2.466 6 1 T 0.679", 0.678', 0.455', 0.316, 0.312, 0.026

TOSO 1.0 3.010 8 1 BT 0.729%, 0.697%, 0.325, 0.319, 0.317, 0.307, 0.282, 0.034

TOS1 1.0 2.669 10 2 BB 0.654%1, 0.526%!, 0.440%2, 0.323, 02742, 0.160, 0.129, 0.092, 0.048, 0.023

TOS2 1.0 3.717 13 6 Q 0.8597, 0.8569, 0.4429, 0.439, 0.321, 0.318, 0.271, 0.057, 0.046, 0.037, 0.029, 0.024,
0.018

TOS3 1.0 3.343 12 5 T 0.762!, 0.687, 0.660, 0.385, 0.285, 0.267, 0.161, 0.044, 0.036, 0.026, 0.016, 0.014*

TOS4 1.0 3.506 12 5 B 0.779%, 0.592%, 0.504, 0.466, 0.350, 0.334, 0.315, 0.073, 0.027, 0.026, 0.022, 0.018

TO5S 1.0 3.791 6 1 Q 0.9357, 0.9249, 0.8507, 0.8474, 0.182, 0.053

T056 1.0 3.841 6 1 Q 1.1119, 1.0519, 0.5637, 0.5529, 0.531, 0.033

TOS7 1.0 3.712 4 0 Q 1.1839, 0.9139, 0.8139, 0.8037

TOS8 1.0 3.758 11 4 B 0.985, 0.966%, 0.547%, 0.457, 0.452, 0.105, 0.084, 0.059, 0.052, 0.032, 0.019

TOS9 1.0 3.510 10 2 BBT  0.847%1, 0.786"!, 0.663, 0.298, 0.296', 0.289, 0.12722, 0.122,%2 0.078, 0.014

TOG0 1.0 3.882 8 3 T 1.155, 0.93(%, 0.885', 0.426, 0.418, 0.031, 0.023, 0.014

V0al 0.1 3330 3 3 Q 0.8079, 0.8047, 0.7587, 0.7487, 0.081, 0.054, 0.041, 0.037

vo42 0.1 3.198 10 2 BQ  0.9079,0.8997, 0.4742, 0.270, 0.164, 0.159, 0.097%, 0.096°, 0.069, 0.063

V043 0.1 3.354 6 0 BQ  0.715%,0.712%, 0.5107, 0.5097, 0.4567, 0.4529

Vo444 0.1 3.388 9 4 T 0.866°, 0.86(%, 0.559, 0.536, 0.495, 0.040, 0.011, 0.011, 0.010

vO45 0.1 2713 10 2 TT 0.523"1,0.515%1, 0.301%2, 0.291, 0.2887, 0.2742, 0.266"!, 0.185, 0.049, 0.021

V046 0.1 2.878 5 0 T 0.674', 0.590%, 0.584', 0.571, 0.459

voa7 0.1 3.509 8 1 TQ  0.613,0.611,0.5359, 0.5349, 0.4449, 0.4029, 0.362', 0.008

V048 0.1 3.369 11 5 BT 0.5987, 0.594', 0.528%, 0.524%, 0.483, 0.461°, 0.053, 0.05, 0.042, 0.024, 0.012

V049 0.1 3.302 3 0 T 1.400%, 0.960¢, 0.942*

V050 0.1 3.377 7 2 Q 0.8957, 0.8819, 0.6857, 0.6829, 0.189, 0.027, 0.018

Vo5t 0.1 3.614 5 0 B 0.755, 0.740, 0.710%, 0.705, 0.704>

V052 0.1 3.679 6 0 B 0.926, 0.846%, 0.740°, 0.577, 0.399, 0.191

V053 0.1 3.732 7 2 BQ  0.8007,0.7597, 0.7557, 0.7107, 0.645, 0.048”, 0.015*

V054 0.1 3.824 13 8 Q 0.9877, 0.9837, 0.613, 0.5197, 0.5129, 0.042, 0.042, 0.033, 0.029, 0.018, 0.017,

0.015, 0.014
V055 0.1 3.568 13 6 B 0.657%, 0.646%, 0.524, 0.464, 0.415, 0.358, 0.353, 0.043, 0.030, 0.029, 0.018,
0.017, 0.014
V056 0.1 3571 16 8 BQ  0.8097,0.7677, 0.4507, 0.4107, 0.360, 0.337, 0.133, 0.099%, 0.055, 0.033, 0.028,

0.026%, 0.022, 0.017, 0.016, 0.009
1.0539, 0.6469, 0.6147, 0.3837, 0.372, 0.298, 0.050, 0.025, 0.023, 0.011
1.0269, 1.0229, 0.8734, 0.8719, 0.016, 0.010
1.620%, 1.072%, 1.072°, 0.038, 0.015, 0.013, 0.010, 0.009
1.0729, 1.0719, 0.8639, 0.8607

Vo057 0.1 3.475
vos8 0.1 3.818
vos9 0.1 3.849
VOo60 0.1 3.886

w041 001 2440
w042 001  3.250
w043  0.01 3.250
w044  0.01 3.360
w045 001  3.250
W046 001  2.040
w047  0.01 3.340
w048  0.01 3.380
w049  0.01 2.770
w050 0.01 3.140
wo051  0.01 3.230
wWo05Z 0.01 3.760
w053  0.01 3.700
w054 0.01 3.850
wo0s5  0.01 3.710
w056 0.01 3.830
w057  0.01 3.850
w058 0.01  3.580
w059 001 3.890
W060 0.01  3.880

0.9667, 0.6459, 0.6387, 0.2657, 0.152, 0.023, 0.011
0.9297, 0.9187, 0.8869, 0.5197

0.8367, 0.8349, 0.6207, 0.6139, 0.179, 0.171

0.794¢, 0.792°, 0.585%, 0.583%, 0.562', 0.076, 0.015
0.845%, 0.637%, 0.4667, 0.4637, 0.4247, 0.4197

0.446', 0.427°, 0.424', 0.398, 0.344

0.867, 0.788, 0.555', 0.4317, 0.427", 0.276

0.622!, 0.594', 0.566”, 0.563", 0.482%, 0.377, 0.122, 0.038, 0.012
1.1407, 1.1059, 0.1919, 0.1889, 0.114, 0.020, 0.016
0.9389, 0.7099, 0.4529, 0.4507, 0.444, 0.145

0.9274, 0.926%, 0.6197,, 0.6174, 0.138

1.07¢¢, 0.784, 0.704', 0.674', 0.524

0.9929, 0.873,9 0.862¢, 0.7027, 0.108, 0.075, 0.051, 0.034
1.0284, 1.0249, 0.9067, 0.8949

0.9629, 0.9607, 0.7979, 0.7919, 0.132, 0.040, 0.026
1.0607, 1.0379, 0.8279, 0.8239, 0.060, 0.021

1.781%, 1.038*, 1.029°

0.9287, 0.9207, 0.8179, 0.8107, 0.049, 0.029, 0.020, 0.011
1.74¢%, 1.080%, 1.070

1.0999, 1.0629, 0.8687, 0.8467
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Table 6.2: We record the metallicity (Z/Z,), the number of different realisations simulated
(NgeaL)» the efficiency (i.e. mean fraction of the core mass converted into protostars, =
2{M}/ M), the mean number of stars formed from a single core (N, ), the numbers of singles
(S), binaries (B), triples (T') and quadruples (Q), the multiplicity frequence (mf), the companion
probability (cp), and the companion frequency (cf).

ZIZ, N n N, S B T Q mf cp of

1.00 20 0.623 9.05 98 12 13 5 0.23 046 0.90
0.10 20 0.643 825 81 8 8 11 025 051 1.19
001 20 0.624 5.80 37 3 7 13 038 0.68 1.81

metallicity has a much greater effect on the mean number of stars formed from a single

core, Ni. Lowering the metallicity reduces the number of stars substantially.

In all of these simulations we see the same pattern of star formation. We can see the
formation of the first star on a timescale of 50 to 70 kyr, and then the formation of a cir-
cumstellar disc around the primary from the material with too much angular momentum
to accrete onto the central object. This disc then grows in mass and eventually becomes
Toomre unstable and fragments to form multiple secondaries. This typically happens
10 to 100 kyr after the formation of the disc. Fig.6.1 and Fig.6.2 show the accretion his-
tories for simulations with Z = Z_, Fig.6.3 and Fig.6.4 for Z = 0.1 Z_, and Fig.6.5 and
Fig.6.6 for Z = 0.01 Z,. We can see this pattern of accretion in these plots. The majority
show the primary star forming, then a delay whilst the disc forms and increases in mass
and becomes Toomre unstable, and then fragments to produce a clutch of secondaries.
In the high metallicity simulations (Z = Z_) some of these secondaries are ejected and
become brown dwarfs, whilst the remaining secondaries stay in the disc and grow in
mass to become hydrogen-burning stars. In the low metallicity simulations (Z = 0.1Z,),
a smaller number of secondaries are ejected, with the majority staying in the disc and
accreting mass. This is because these fragments are initially higher in mass and fewer

in number, and so are less likely to be ejected through interactions.
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Figure 6.1: Stellar masses as a function of time, for simulations with Z =ZQ
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Figure 6.2: Stellar masses as a function of time, for simulations with Z = 7Q

6.3.2 Mass distributions

Fig.6.7 shows the mass distributions obtained for different metallicities of gas. The
black line shows the histogram obtained by distributing the final stellar masses into 15

logarithmic bins which are equally spaced in the interval

 AMS) A.

The red line shows the mass distribution obtained when each stellar mass is smoothed
using a Gaussian smoothing kernel with adaptive smoothing lengths dictated by the
separation between masses. Both the histogram, and the smoothed distribution, are
normalised, in the sense that

dioglom)y = 1. (6.4)

log10(M)

f

At solar metallicities (Fig.6.7(a)), the mass distribution is bimodal. Hydrogen-burning
stars of masses 0.2 to 1.0 MO make up the larger mode of the mass distribution, whilst

brown dwarfs with masses in the range 0.02 to 0.06 MO make up the secondary peak.
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Figure 6.4: Stellar masses as a function of time, for simulations with Z = 0.1 Z0.

However, reducing the metallicity to Z = 0.01 ZGremoves this bimodality com-
pletely, leaving only the larger mode. The switch from high to low metallicity increases
the broadness of this mode, meaning overall less stars are formed. It also increases the
height of its peak and shifts it to the right of the graph, resulting in more high-mass
stars, in the range 0.3 to 1.2 Mo. This larger mode now consists of the stars that are
too massive to be ejected by mutual ejections, and can enjoy more growth in mass via

accretion by sweeping up residual gas in the system.

6.3.3 Companion star frequencies

To see the effect that altering the metallicity has on the multiplicity of stars formed, we
use the same conventions as discussed in Section 4.4.4, of which we remind the reader
here. “Systems” are defined to include single stars, and “multiple systems” include only
systems that contain more than one star. We define S, B, T and Q as the number of

single, binary, triple and quadruple systems respectively.

The multiplicity frequency, m f, measures the fraction of systems which are multi-
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B+T+Q+..
mf =

CS+BHTH+AN+ .. 6.5)

The companion probability, cp. is the fraction of stars which are in multiple systems, i.e.

25 +37 +4<2+ ..

TS +25+37+4Q+ .. (6.6)

cp

The companion frequency, cf, measures the mean number of companions which a star

has (irrespective of whether it is a primary), i.e.

o 2567+ 122+ .
S+2#+ 37+ 40 + ..

(6.7)
In Table 6.2 we record — for each value of metallicity — the total numbers of

singles (5), binaries (B), triples (7) and quadruples (Q) formed in all simulations; and

the multiplicity statistics, mf; cp; cf.

A core with Z = 0.01 ZQspawns fewer single-star systems but more quadruple sys-
tems than a gas with Z = ZQ This is reflected in the calculated quantities (mf, cp,

cf). The fraction of stars in multiple systems (cp) increases as the metallicity decreases.
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Figure 6.7: Normalised stellar mass distribution. The black lines represent a histogram of the
raw data, and the red lines represent the distribution when smoothed by a Gaussian kernel.
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Further to this, the mean number of companions (cf) increases sharply, so that star for-
mation in a core with metallicity Z = 0.01 Z_ has twice as many companions.as a star
formed in a core with solar metallicity. This means that, of the multiple systems that

form, more are high-order systems (e.g triple or quadruple).

This result is in agreement with the findings of Machida (2008). He finds that
the binary frequency of clouds with low metallicity tends to be higher than for high
metallicity gas. We do not explore such a wide parameter space as Machida (2008;
Z = 0—Z,) since we do not take into account cooling by molecular hydrogen, and hence

modelling very low metallicities is not possible with our present code.

6.3.4 Orbital parameters

Fig. 6.8 shows — for each level of metallicity — the number of stars formed in a
simulation, plotted against the semi-major axis of the multiple systems identified at the
end of the simulation. The distribution of the semi-major axis for each system is shown

in Fig. 6.9.

By reducing the metallicity, it is clear that the number of stars formed in a simula-
tion decreases substantially. This is shown in Fig. 6.8c, in which no multiple system hés
more that 9 stars, where as in Figs. 6.8a, and b, the multiple systems have a maximum of
14 and 16 stars respectively. This can be attributed to the fact that when the metallicity
is low, the inner parts of the disc can cool better and fragment here, and so the stars that
form are higher in mass and fewer in number. With solar metallicity, the inner parts of
the circumbinary disc cannot cool as quickly, and so the secondaries tend to form in the
outer regions of the disc. Here the stars tend to be much lower in mass, and high in

number.

With a metallicity of Z = Z_, the semi-major axis distribution of multiple systems

formed has a mean piog,(s) =~ 1.2 and a standard deviation oog (o) =~ 0.8; withZ = 0.1Z,
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Figure 6.8: The total number of stars formed in a simulation, N* plotted against the semi-major
axis, a, of the multiple systems formed, with metallicities (a) Z = Z0, (b) Z = 0.1 ZQ and (c)
Z =0.01Zo.
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a mean Wiog (a) = 1.4 and standard deviation 0eg,(s) = 0.8; with Z = 0.01 Z, a mean
Miogo@ = 1.5 and a standard deviation orjeg,py = 0.7. Therefore, in our simulations
lowering the metallicity slightly increases the binary separation of multiple systems.
This is in contrast to the findings of Machida et al. (2008) who finds that the separation
actually decreases with low metallicity. However, the increase in separation that we see
is only marginal, and due to the fact that we impose a turbulent velocity field on the

cores modelled, more realisations may reduce the effect.

This trend is also reflected in the period distribution. Fig.6.10 shows orbital ec-
~ centricities, plotted against the periods. At a metallicity of Z = Z, the period distri-
bution of multiple systems formed has a mean p0,,(p) = 1.7 and a standard deviation
Oog,opy = 1.1; periods range from a few ~ 10* yrs down to ~ 5yr. With a metallic-
ity of Z = 0.1Z the distribution has a mean pog,,7) = 2.0 and a standard deviation
Oiog,op = 1.1. When we reach low metallicities of Z = 0.01 Z,, the period distribution
has a mean poq,p) = 2.1 and a standard deviation oreg,(py =~ 1.0, and no simulations

form more than 9 stars.

The multiple systems formed in the simulations with different metallicities show a
slight correlation between their eccentricities and periods. Multiple systems that have
elliptic orbits tend to have longer periods, and this correlation appears stronger in low
metallicity gas. It is also noticable that at low metallicites there is a lack of stars in the
top righthand corner of Fig. 6.10c. This could potentailly be related to the low number
of stars produced in this regime. If there are less stars produced then there are likely to be
a smaller number of dynamical interactions occuring which would alter the eccentricity
of the orbital systems produced (Parker et al., in preparation). However, to investigate

this further requires N-body simulations, in order to evolve the systems correctly.
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Figure 6.10: Orbital eccentricities, e, plotted against periods, P, for multiple prototars, with
metallicities (a) Z =7Q (b) Z =0.1ZG and (c) Z = 0.01 ZQ
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6.3.5 The effect of reducing the metallicity

It has been known since the work of Low & Lynden-Bell (1976) that — at least in the
regime where dust dominates the opacity — decreasing the metallicity increases the min-
imum mass for star formation. Hence it becomes harder to form brown dwarfs, and
this is exactly what we observe in our simulations (in common with Machida 2008).
In addition, we find that the separations of binaries increase somewhat with decreasing
metallicity, although this is a small effect (and in the opposite sense to what Machida
reports). These changes appear to be caused by a fundamental shift in the dominant
. pattern of star formation, due to the alteration in the cooling properties of the gas which

accompanies a decrease in the metallicity.

When the metallicity is solar, a primary star forms from the material with low an-
gular momentum, and then a disc often accumulates around this primary star. The inner
parts of this circumprimary disc cannot fragment, because they are unable to cool fast
enough (Gammie 2001; Stamatellos et al. 2008a). In contrast, the outer parts of the cir-
cumprimary disc usually fragment to produce a clutch of low-mass secondaries (brown
dwarfs and very low-mass hydrogen-burning stars). Many of the resulting multiple sys-
tems are the result of one of these secondaries being scattered inwards to form a tight
binary with the primary. However, many others are formed by two of the low-mass sec-
ondaries pairing up, and these systems also tend to be tight, because the components
are of low mass and therefore have normally been born quite close together. Because
there are usually many secondaries, there are multiple scattering events between the

secondaries, and many of them are ejected as single stars.

When the metallicity is low, a primary star again forms from the material with
low angular momentum, and again a disc often accumulates around this primary star.
However, the inner parts of the circumprimary disc are now better able to cool. As
a result more of the circumprimary discs fragments to produce secondaries, and these

secondaries tend to have larger masses and greater separations at birth. As a result,
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fewer very low-mass secondaries are produced, and hence fewer stars overall. Because
there are fewer secondaries, the binary systems which are formed by a secondary being
scattered inwards and pairing up with the primary are somewhat looser. And because
the secondaries formed in the outer parts of the circumprimary disc are further apart,
the binary systems that are formed by their pairing up also tend to be somewhat looser.
In addition, because there are substantially fewer secondaries formed, there are fewer
scattering events, and therefore fewer single stars are ejected. Consequently, the net

multiplicity frequency, companion probability and companion frequency are all higher.

6.4 Summary

In this chapter we have looked at the effect which reducing the metallicity has on the
mass distribution and binary statistics of stars formed from low-mass low-turbulence
cores. We have performed an ensemble of simulations of the collapse and fragmentation
of a 5.4 M, core with an initial level of turbulence a.,, = 0.25 (as in Chapier 4). We
have considered three different metallicities, Z = Z,, Z = 0.1Z; and Z = 0.01Z,.

Reducing the metallicity appears to have the following effects.

e The mean mass of the stars increases, and the mean number of stars decreases:
There appears to be little change in the efficiency of star formation, in the sense
that the fraction of the core mass converted into stars after 300 kyr is in all cases

63 + 1%.

e There are many fewer brown dwarfs formed. The bimodal mass distribution ob-
served with Z = Z,, changes with decreasing metallicity in the sense that the low-
mass mode (the one which comprises brown dwarfs and very low-mass hydrogen
burning stars) steadily wanes, and the high-mass mode (the one cdmprising Sun-
like stars) steadily waxes. Once the metallicity has decreased to Z = 0.01 Z, the

low-mass mode disappeares altogether, and is replaced by a flat extension to lower
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masses (see Fig. 6.7).

o The binary frequency increases substantially; this is in agreement with the results
of Machida (2008). However, in our simulations the binary separations increase
somewhat, in contrast with what Machida finds. This has to do with the change

in the pattern of disc fragmentation that accompanies a decrease in metallicity, as

explained in the preceding section.

e There is some evidence that eccentricities and periods are anti-correlated (i.e.

long-period systems tend to have low eccentricities).
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Chapter 7

Summary

7.1 Numerical diffusion and numerical dissipation in star

formation codes

In Chapter 3 we have measured the levels of numerical diffusion and numerical dissi-
pation in our Smoothed Particle Hydrodynamics (SPH) code (described in Chapter 2).
To do this we model acoustic oscillations of a self-gravitating isentropic monatomic
gas-sphere. We explain that this is a highly relevent test code for star formation codes,
in particular those that model the fragmentation of collapsing cores, since the pressure
waves generated by the switch from approximate isothermality to approximate adiabac-

ity play a crucial role at this stage of star formation.

We find that for SPH codes that adjust the smoothing length of a particle so as to
keep the number of neighbours in the range N, £ AN, AN should be set to zero.
This ensures that the level of numerical diffusion of oscillation energy to other modes,

and the level of numerical dissipation due to artifical viscosity, both remain low.

We propose that this should become a standard test for star formation codes, and

encourage users of Adaptive Mesh Refinement codes to attempt to reproduce the results
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obtained with SPH.

7.2 Treatment of the thermodynamics in collapsing cores

In Chapter 4 we have performed SPH simulations of the collapse and fragmentation of
cores having different initial levels of turbulence (@, = 0.05, 0.10, 0.25). We use a
new, more realistic treatment of the energy equation which captures (i) excitation of the
rotational and vibrational degrees of freedom of H,, dissociation of H,, ionisation of H
and He, and (ii) the transport of cooling radiation against opacity due to both dust and
gas (including the effects of dust sublimation, molecules and H™ ions). We have also
performed comparison simulations using a standard barotropic equation of state. The

main results are summarised as follows.

e Increasing the level of turbulence generally tends to reduce the fraction of the core
mass which is converted into stars, and increase the number of stars formed by a

single core.

e Many simulations show the same pattern of star formation, in which the core
collapses to form a primary after 50 to 70 kyr, with the accumulation of a mas-
sive disc around it. After 10 to 100 kyr this disc becomes Toomre unstable, and
fragments to form a clutch of secondaries. Many of these secondaries are brown
dwarfs or very low-mass hydrogen-burning stars. Some of them are ejected into

the field.

e Switching from the standard barotropic equation of state to the new treatment of
the energy equation has the following effects.
— The fraction of core mass converted into stars is reduced (by ~ 16%).

— The number of protostars formed from a single core is greatly increased

(~ 40%), with a higher proportion of brown dwarf stars.
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~ The mean period of multiple systems is reduced (by a factor ~ 3).
- The orbital eccentricities of multiple systems tend to be higher.

- The mass ratios of multiple systems tend to be higher (i.e. more nearly equal

components).

We conclude that the differences in results obtained depending on the treatment of ther-
modynamics is due to the fact that the standard barotropic equation of state is designed
to mimic the gross thermal behaviour of the gas at the centre of a collapsing, non-
rotating 1 M, protostar. Therefore it becomes adiabatic at low densities. Alternatively
~ the new treatment of the energy equation allows the gas in low-mass protofragments to
stay approximately isothermal to higher densities. This is because the column density
inhibiting the cooling of the fragments is lower, and their rate of contraction, and there-
fore rate of heating, is lower. Despite this method being still being an approximation for
radiatiQe transport, it is nevertheless a much more realistic treatment than a barotropic

equation of state.

7.3 Prestellar cores in the Ophiuchus Main Cloud

In Chapter 5, we have modelled the evolution of an ensemble of prestellar cores in
the Ophiuchus Main Cloud. We have simulated a range of masses, sizes and levels
of turbulence, using initial conditions constrained by observations, and also recently
revised dust temperatures, with a view to predicting the statistical properties of the stars

that will form from these cores. The main results are summarised as follows.

e The star formation in the cores is extremely efficient, with typically a single star
" being produced on a timescale of 10 to 100kyr. This is likely to be due to fact

that the cores modelled have very high central densities, and so at the end of the
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simulation all of the material in the outer parts of the core has had time to accrete

onto the central star.

e Some of the cores produce multiple systems, according to the same pattern of star
formation seen in Chapter 4, in which a primary star is formed followed by the
formation and subsequent fragmentation of a disc into multiple secondaries. Of

the multiple systems that form, the majority have highly eccentric orbits.

e The number of stars formed by a core is highest if the core has high mass. There is
also a weak dependence on the initial level of turbulence and the initial density, in
that cores with a high initial level of turbulence, and/or starting from a low initial

density may produce more than one star.

7.4 The effect of metallicity on the core collapse

In Chapter 6 we have performed an ensemble simulations of the collapse and fragmen-
tation of a 5.4 M,, core with an initial level of turbulence a,,, = 0.25, and explored the
effects of different metallicities Z = Z,, Z = 0.1 Z, and Z = 0.01 Z,. We summarise the

main results.

e Reducing the metallicity decreases the number of stars formed from a single core.

e Fewer brown dwarfs are formed at lower metallicities. At Z = Z,, the mass
distribution is bimodal, consisting of 2 modes, the first in the low mass region
comprising brown dwarfs and very low-mass stars, and the second in the higher
mass region comprising hydrogen-burning stars. At At Z = 0.01Z,, the low-mass

mode disappears completely.

e Reducing the metallicity increases the binary frequency, which is in agreement

with previous authors. However, it also increases the binary separations, which
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is not in agreement with the same authors. We explain this trend in terms of the

pattern of disc fragmenation and how it changes with different metallicities.

7.5 Future work

I plan to continue to develop and improve our star formation code DRAGON. In partic-
ular, I would like to improve the sink algorithm. The current version of the algorithm
may compromise our results, in terms of resolution. Physical processes may not be
~ properly resolved on small scales, which may result in different results for the binary
systems obtained in this thesis. Sinks also favour N-body interactions. We adopt grav-
itational softening for their interactions and this may cause stars to be wrongly ejected

from systems, whilst suppressing dissipative interactions between, and mergers of, stars.

I will perform more simulations of collapsing cores covering a wider parameter
space than that already explored, in order to further investigate what effects the initial
level of turbulence, the core mass and the metallicity, have on the mass distribution,
kinematics and binary statistics of the resulting stars. Also, I will perform more simula-
tions of the existing parameter space to improve upon the results I have already obtained.
The work in Chapter 5 on the models of prestellar cores in Ophiuchus will be revisited
using the revised initial levels of turbulence. It would be interesting to see if our initial
findings, regarding the effects that the core mass, initial level of turbulence and central
density have on the outcome, still stand. I will also look into a way of reproducing
the observed projected shapes, rather than assuming spherical geometry which is not

realistic for all of the cores in the ensemble.

I plan to continue a systematic investigation into determining whether certain phys-
ical effects influence the outcome in any way. The next stage is to introduce feedback,
both mechanical and radiative, into the simulations. The levels of star formation in the

current results are very high. Including radiative feedback from the surrounding stars,
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and mechanical feedback in the form of bipolar outflows is likely both to delay star

formation and to reduce the efficiency of star formation.

Finally, it is thought that magnetic fields will have a serious effect on the findings in
this thesis, and so I plan to continue to develop the existing Cardiff SPH code designed
for handling non-ideal MHD effects. The code currently does not include divergence

cleaning, and so I would like to develop this.
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