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Abstract

Interaction between discrete domains of the cardiac ryanodine receptor (RyR2) has emerged 
as a pivotal mechanism regulating channel function. RyR2 mutations perturb conformational 
intra-molecular constraints that are linked to dysregulated Ca2+ release. Previous work from 
this laboratory identified an interacting- or I-domain of human RyR2 that mediates interaction 
between the large cytoplasmic assembly and the transmembrane (TM) domain of RyR2. 
Bioinformatic approaches revealed striking structural homology between sub-fragments of the 
RyR2 I-domain and I-domain-like regions of inositol 1,4,5-trisphosphate receptors (IP3R). 
Acute expression of I-domain sub-fragments in human embryonic kidney (HEK) cells (where 
the rank order of expression is IP3R2  > IP3RI) was associated with profound loss of cell 
viability predominantly via apoptosis. This increase in apoptosis was linked to altered Ca2+ 
cycling (measured using a novel index of Ca2+ signal variability) and a remarkable loss of 
carbachol-evoked Ca2+ release. Intriguingly, increased apoptosis and perturbed Ca2+ handling 
was also observed in neighbouring cells that did not express recombinant I-domain proteins - 
a phenomenon termed the bystander effect. The bystander effect is likely mediated by transfer 
of signalling molecules via direct cell-to-cell coupling (gap junctions) and via diffusible 
mediators (extracellular route). This thesis supports the novel concept that IPsR-mediated 
Ca2+ handling and cellular phenotype can be exquisitely tuned by recombinant fragments of 
RyR2.
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Chapter 1 General Introduction

1.1. The cardiac ryanodine receptor (RyR2)

The ryanodine receptor (RyR) is the largest known membrane protein (~2.3MDa) located on 

the sarco-/endoplasmic reticulum (SR/ER) of both muscle and non-muscle cells (Lai et al., 

1988; Fleischer and Inui, 1989). RyRs are intracellular ion channels that release Ca2+ from 

intracellular stores to regulate a vast number of cellular processes that includes muscle 

contraction, neuronal function and fertilisation (Miyazaki et al., 1992; Furuichi et al., 1993; 

Gorza et al., 1993; Newton et al., 1994; Fujino et al., 1995; Giannini et al., 1995).

The RyR is a tetrameric protein, where each subunit is comprised of ~5000 amino acids. The 

cytosolic N-terminus and luminal C-terminus constitute approximately 90% and 10% of the 

protein structure, respectively (Tunwell et al., 1996) (See Figure 1.1). Three RyR isoforms 

have been identified (RyRl, RyR2 and RyR3) that bear functional and structural similarity; 

however, despite relatively high sequence homology (-66%), isoform-specific differences 

underpin their relative function and tissue distribution (Otsu et al., 1990; Fill and Copello, 

2002; Xiao et al., 2002; Meissner, 2004). These functional differences between RyRl, 2 and 3 

are possibly mediated by three regions of sequence divergence (DR1, 2 and 3) and are 

summarised in Table 1.1.

C-terminus

N-terminus

Figure 1.1 Three-dimensional reconstruction of RyR2

Three-dimensional (3D) reconstruction of RyR2 obtained by cryo-electron microscopy (cryo-EM) 
studies and single particle image processing, a technique that generates a 3D image based on the 
averaging of thousands of images. Perspectives displayed are A, cytoplasmic; B, transmembrane 
assembly (TA); C, side view. Numerical arrangements (1-10) represent established structural 
globular-shaped domains (Radermacher et al., 1994) in the folded 3D protein structure of RyR2 
although the primary sequences that form these structures remain unknown.

Modified from Sharma et al. 2006.



RyR l RyR2 RyR3

Monomer size Human: 5032 amino acids, 564kDa (Zorzato 
et al., 1990); Mouse: 5035 amino acids; 
Rabbit: 5037 amino acids, (Takeshima et al, 
1989)

Human: 4967 amino acids, 565kDa (Tunwell 
et al, 1996); Mouse: 4966 amino acids; 
Rabbit: 4969 amino acids, 565kDa (Otsu et 
al, 1990)

Human: 4870 amino acids, 552kDa (Leeb and 
Brenig, 1998); Mouse: 4888 amino acids; 
Rabbit: 4872 amino acids, 552kDa (Hakamata 
etal., 1992)

Gene locus Human: 19ql3 (MacKenzie etal, 1990; 
MacLennan etal, 1990); Mouse: 7A2-7A3 
(Mattei et al., 1994)

Human: lq42-43 (Otsu etal, 1993; Swan et 
al., 1999)
Mouse: 13A1-13A2 (Mattei et al, 1994)

Human: 15q 14-15 (Sorrentino et al., 1993); 
Mouse: 2E5-2F3 (Mattei etal, 1994)

Expression
distribution

Predominant isoform in skeletal and smooth 
muscle (Takeshima et al., 1989; Sorrentino 
and Volpe, 1993). Also expressed in brain 
(Giannini et al., 1995; Mori et al., 2000)

Predominantly expressed in cardiac muscle 
(Lai et al, 1987; Lai et al, 1988; Sorrentino 
and Volpe, 1993) and brain (Giannini et al., 
1995; Mori et al, 2000)

Always co-localised with other isoforms, 
RyR3 has a low expression yet broad tissue 
distribution including brain (Lai et al., 1992; 
Giannini et al, 1995; Mori et al., 2000) and 
diaphragm (Sorrentino and Volpe, 1993; 
Jeyakumar et al, 1998)

Divergent 
Regions (DR1- 
3) in human 
RyR

DR1: 4254-4631 
DR2: 1342-1403 
DR3: 1872-1923 
(Sorrentino and Volpe, 1993)

DR1: 4210-4562 (Liu etal, 2002)
DR2: 1353-1397 (Liu et al, 2004)
DR3: 1852-1890 (Sorrentino and Volpe, 
1993; Zhang et al, 2003)

DR1: 4100-4400 (Williams etal., 2001) 
DR2: absent (Williams et al., 2001) 
DR3: undefined (Coronado et al., 1994; 
Marziali et al, 1996)

Num ber of 
gene mutations 
linked to 
disease

>80 dominant mutations (Zhou et al, 2006) 
associated with Central Core Disease (CCD) 
and Malignant Hyperthermia (MH) (Quane et 
al., 1993; Zhang et al., 1993; Zhou et al., 
2006; Zhou et al., 2007; Anderson et al., 
2008; Tanabe et al, 2008).

>71 (Inherited arrhythmias database). 
Catecholamine polymorphic ventricular 
tachycardia (CPVT) (Priori et al, 2001). 
Arrhythmogenic right ventricular dysplasia 
(ARVD2) (Tisoetal., 2001).
Heart failure (HF) (Brillantes et al, 1992; 
Schumacher et al, 1995). HF has not yet been 
linked to mutations. Clinical phenotypes such 
as sino-atrial (SA) node & atrio-ventricular 
(AV) node dysfunction and atrial fibrillation 
(AF) (Bhuiyan et al., 2007b).

> 40 (Dettling et al., 2004), however no direct 
link to disease. Putative association with 
Alzheimer’s disease (Kelliher et al., 1999; 
O'Neill etal, 2001).

Table 1.1. Summary of differences between the three RyR isoforms
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Knock-out mouse models Transgenic/knock-in mouse models

RyRl Severe skeletal abnormalities and 
perinatal death in mice lacking functional 
RyRl (Takeshima et al., 1994a)

Mice homozygous for MH mutation Y522S exhibited skeletal defects and perinatal death, 
whereas heterozygousity causes muscle dysfunction and MH susceptibility (Chelu et al., 2006; 
Durham et al., 2008)

Heterozygous mice harbouring the R163C mutation displayed MH phenotype (Yang et al., 
2006a)

RyR2 Death at embryonic day 10 in mice 
lacking RyR2 gene (Takeshima et al., 
1998)

Mice harbouring CPVT mutation R4496C were predisposed to caffeine/isoproterenol- induced 
VT and VF (Cerrone et al., 2005; Liu et al., 2006)

R176Q mutation induced VT and cardiomyopathy (Kannankeril et al., 2006)

Ex vivo hearts from heterozygous and homozygous P2328S mice mutation displayed VT 
(Goddard et al., 2008)

Mice harbouring three amino acid mutations in RyR2 CaM binding site (W3587A/ L3591D/ 
F3603A) died by day 16. Hearts displayed reduced CaM inhibition, decreased RyR2 protein and 
disrupted Ca2+ cycling (Yamaguchi et al., 2007)

RyR2-S2808A mutant mice were moderately less vulnerable to HF progression attributable to 
ablated S2808 PKA phosphorylation site (Wehrens et al., 2006), but this has not been reproduced 
by others (Benkusky et al., 2007)

RyR3 No gross abnormalities but evidence of 
neurological dysfunction as a result of 
increased locomotor activity (Takeshima 
etal., 1996)

Not characterised

Table 1.2. Summary of RyR genetically modified mice
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1.1.1. Structure and function

RyRs were first visualised as ‘foot structures’ on the SR (Campbell et al., 1980; Franzini- 

Armstrong, 1980) that formed a junctional complex with voltage-gated Ca2+ channels 

(VGCC) on T-tubules (Lai et al., 1987; Block et al., 1988). RyRs were subsequently 

identified following specific high-affmity binding o f the alkaloid ryanodine (isolated from the 

South American shrub Ryania speciosa) {Pessah et al., 1985). The pivotal role of RyR 

channels is summarised in Table 1.2.

RyRs are characterised by structural and functional complexity. The N- and C-terminal 

domains are host to a myriad o f regulatory binding sites critical for normal function. Dynamic 

modulation of the channels is attributable to a number of distinct functional domains that 

reside within the RyR N-terminus, whereas the predominant function o f the C-terminus is to 

form the Ca2+ releasing pore (MacKrill, 1999). The pore is approximately 3A wide (Tu et al., 

1994) and 10.4A long (Tinker and Williams, 1995) and is proposed to comprise between six 

and ten transmembrane (TM) spanning domains per monomer (Zorzato et al., 1990; Tunwell 

et al., 1996; Du et al., 2002b). The confusion as to the precise number o f TM domains has 

stemmed from their identification via hydropathy analysis. Although latter studies have used 

experimental strategies to address this issue (Du et al., 2002a) it is difficult to predict whether 

hydrophobic-rich regions actually embed within the membrane or are non-integral ‘membrane 

associated’ domains. It has been suggested that a number o f the TM domains in the 10TM 

model proposed by Zorzato et al. (Zorzato et a l , 1990) formed hairpin loops and did not span 

the entire membrane (Balshaw et al., 1999; Williams et al., 2001; Du et al., 2002a). The 

precise RyR TM arrangement remains unclear, although current imaging-based research 

predicts assemblies comprising more than 10 domains (Takeshima et al., 1989; Zorzato et al., 

1990; Tunwell et al., 1996; Du et al., 2002a; Ludtke et al., 2005; Samso et al., 2005).

RyRs are possibly retained in ER/SR membranes by a TM retention signal localised to 

residues 4918-4943 in RyRl (Bhat and Ma, 2002b). This putative retention motif lies within a 

distal TM domain (Takeshima et al., 1989) conserved across RyR isoforms and species 

(Takeshima et a l , 1994b). In contrast, compelling findings place the membrane retention 

signal within the first TM domain (Meur et a l , 2007), which is consistent with IP3R targeting 

to the ER (via TM1 and 2) (Parker et a l , 2004). Taken together, this indicates a structural 

significance o f the first two TM domains in membrane retention. The significance of these 

TM domains is considered further in Chapter 3.
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1.1.2. Targeted phosphorylation of RyR2

RyR channels are substrates for a wide range of kinases and phosphatases (Figure 1.2 and 

Tables 1.3 and 1.4). Three highly conserved regions on the cytoplasmic face o f RyR2 serve as 

kinase and phosphatase attachment sites, referred to as leucine/isoleucine zipper (LIZ) motifs
a  I

(Marx et al., 2001b). Ca /calmodulin-dependent protein kinase II (CaMKII) and cAMP- 

dependent protein kinase A (PKA) are intricately involved in RyR regulation, although the 

precise details as to how they regulate RyR is of much dispute (Wehrens et a l , 2004b; Ai et 

al., 2005; Xiao et al., 2005; Guo et al., 2006; Ferrero et al., 2007).
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PKA. Tetramerie protein (two regulatory/two 
catalytic subunits) (Foss et al., 1994). Associates 
with mAKAP and binds RyR2 via LIZ3 (CoHedge 
and Scott, 1999). During adrenergic stress, PKA 
phosphorylates RyR2 increasing Po and enhancing 
contractility (Marx et al., 2000).

PP2A and PP1 bind RyR2 via adaptor proteins 
PR130 (LIZ2) and Spinophilin (LIZ1), respectively 
(Bers, 2004). Dephosphorylates RyR2 channels 
(Zhao et al., 1998) to regulate closed state (Marx ei 
al., 2000). PP1 also suggested to increase Po 
(Terentyev et al, 2003).

CaM binds to multiple sites on RyR2 (Balshaw ei 
al., 2001), and has both activating and inactivating 
functions depending on Ca‘ concentration (Balshaw 
et al., 2001; Rodney et al., 2001; Yamaguchi et al.,
2003).

CaMKII phosphorylation of RyR2 increases Ca' 
sensitivity and Po (Witcher et al., 1991; Wehrens e\ 
al., 2004b). CaMKII activity depends on presence o1 
Ca2+/calmodulin complexes (Pitt, 2007).

S2808 and S2815 phosphorylation sites in hRyR2. S2808 
and S2815 are proposed PKA and CaMKII sites 
respectively (Marx et al., 2000; Wehrens et al., 2004b). 
S2030 has also been suggested as a PKA site (Xiao et al., 
2005). Additional CaMKII sites also proposed (Rodriguez 
et a l, 2003).

LIZ3
(3,003-3,039)

( 1,603- 1, 631)

I
(555-604)

I I  I
LIZ are highly conserved
motifs that form targeting

f c "

sites for adaptor proteins to
I — permit channel modulation

via kinases and phosphatases
(Marx etal., 2001b).

Figure 1.2 Targeted phosphorylation of RyR2

Schematic respresentation of modulatory RyR2 phosphorylation and dephosphorylation sites. 17



PKA CaMKII

Size/structure/
isoforms

Regulatory and catalytic subunit sizes as follows: RIa 49kDa, Rip 54-55kDa, 
Rlla 51kDa, RIip 53kDa and all C subunits (a, p and y) were 40kDa (Foss et 
al., 1994)

Four subunits of 50-62kDa (Colbran et ai,  1989): a, p, 5 and y, of which 6 
associates with RyR2 (Currie et ai,  2004).

RyR2 (de-) 
phosphorylatio 
n sites

S2808 in human and mouse, S2809 in rabbit (Marx et al., 2000; Rodriguez et 
al., 2003). S2030 in human and mouse, and S2031 in rabbit (Xiao et al., 2005)

S2808 in human and mouse, S2809 in rabbit (Witcher et ai,  1991; Rodriguez et 
ai,  2003). S2814 in human and mouse, S2815 in rabbit (Wehrens et a i,  2004b). 
However, >8 CaMKII sites per monomer have been proposed. Stoichiometry of 
CaMKII phosphorylation is at least 4 times that of PKA (Rodriguez et ai,  2003; 
Stange et a i,  2003)

Effect on RyR2 Increased P0 (Takasago et al., 1991; Uehara et al., 2002; Reiken et al., 2003b), 
which was suggested to be via S2808/9 phosphorylation that caused 
FKBP12.6 dissociation (Marx et al., 2000). Although this is controversial 
(Jiang et al., 2002b; Xiao et al., 2004; Xiao et al., 2006; Benkusky et al., 
2007)

Increased P0 (Currie et a i,  2004; Ferrero et ai,  2007) but not via FKBP12.6 
dissociation (Wehrens et a i,  2004b). Also reported to decrease P0 (Lokuta et ai,  
1995). CaMKII decreased SR store load that was reversed by CaMKII inhibition 
(Ai et ai,  2005).

Transgenic
animals

Ablation of proposed PKA phosphorylation site (S2808) was suggested to 
protect from heart failure (Wehrens et al., 2006), however this was 
inconsistent with another study that showed that ablation of the PKA site in 
mice did not alter P*AR response, nor did it protect animals from stress- 
induced cardiac defects (Benkusky et al., 2007).

Mice with chronic myocardial CaMKII inhibition exhibited reduced action 
potential duration, increased PKA activity and a greater LTCC current (Li et ai,  
2006)

Cell-based
studies

PKA directly activated RyR2 (Hohenegger and Suko, 1993), but PKA 
inhibition did not reduce spontaneous Ca2+ release (Ai et al., 2005). S2808/9 
was targeted by PKA and CaMKII (Rodriguez et al., 2003), but S2030/1 was 
PKA specific (Xiao et al., 2005; Xiao et al., 2006), but this is of current 
dispute (Wehrens et al., 2006)

CaMKII achieved maximum RyR2 phosphorylation (Hohenegger and Suko, 
1993), which was associated with increased Ca2+ release (Ai et a i,  2005; Guo et 
ai,  2006; Kohlhaas et ai,  2006). S2808/9 was targeted by PKA and CaMKII 
(Rodriguez et ai,  2003) whereas S2814/5 was unique to CaMKII (Wehrens et ai,  
2004b)

Single RyR 
channels in 
lipid bilayers

Phosphorylation at S2808 increased P0 (Uehara et al., 2002) due to enhanced 
Ca2+ sensitivity (Valdivia et al., 1995), that eliminated subconductance states 
(Carter et al., 2006). PKA was associated with RyR2 in HF (Marx et ai,  
2000)

CaMKII both increased (Wehrens et ai,  2004b) and decreased RyR2 P0 (Lokuta 
et ai,  1995). RyR2 was equivalently phosphorylated by exogenous PKA and 
CaMKII (Hain et ai,  1995)

Modulation of 
other EC 
coupling 

jjroteins

Range of targets included NCX (Yeung et ai,  2007), LTCC (Haase et ai,  
1993), PLB (Colyer, 1998), Sorcin (Lokuta et ai,  1997)

Extensive targets included LTCC (Grueter et ai,  2006; Lee et ai,  2006; Pitt, 
2007), SERCA/PLB (Colyer, 1998; Li et ai,  2006; Picht et ai,  2007), PKCa , 
NCX. (Vila-Petroff et ai,  2007), P-AR (Curran et ai,  2007)

Table 1.3. Functional modulation of RyR2 by phosphorylation
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PP1 PP2A

Size/structure Approximately 160kDa (MacDougall et a l, 1991) with a 
catalytic subunit of 36kDa (Bodalina et a l, 2005)

Catalytic subunit of 36kDa (Bodalina et al, 2005) and regulatory 
subunit of 65kDa (Gergs et al, 2004)

RyR2 (de-) 
phosphorylation 
sites via adaptor 
proteins

Binds to RyR2 LIZ1 via spinophilin (Marx et a l, 2001b) Binds to RyR2 LIZ2 via PR130 (Marx et al, 2001b)

Effect on RyR2 Reversed phosphorylation of RyR induced by PKA (Marx et al, 
2001b; Bers, 2004), although elevated phosphatase levels 
increased P0 and depleted SR Ca2+ (Terentyev et al, 2003)

As perPP1

Transgenic
animals

Cardiac-specific overexpression of PP1 and PP2a catalytic 
subunits resulted in impaired contractility, dilated 
cardiomyopathy and death (Carr et al, 2002; Gergs et al, 2004)

As per PP1

Cell-based
studies

Increased Ca2+ spark frequency and depleted SR stores 
(Terentyev et al, 2003). Reduced CaMKII phosphorylation in 
vitro (Guo et al, 2006)

As per PP1

Single RyR 
channels in lipid 
bilayers

Decreased PP1 phosphorylation activated RyR2 by a route 
distinct from PKA (Carter et al, 2006), however PP1 also 
increased RyR P0 (Terentyev et al, 2003; Carter et al, 2006).

PP1 and PP2A dissociated from RyR2 in HF (Marx etal, 2000), 
but remained intact following acute p-AR phosphorylation of 
RyR2 (Reiken et al, 2003a).

Modulation of 
other EC 
coupling 
proteins

PP1 dephosphorylated PLB, inhibiting SERCA function 
(Berrebi-Bertrand et al, 1998)

PP2A reduced P0 of LTCC (Groschner et al, 1996)

Table 1.4. Functional modulation of RyR2 by dephosphorylation

Note that protein kinase and phosphatase modulation regulates other components of EC coupling and is not restricted to RyR.
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Although the controversy surrounding RyR phosphorylation may, in part, be due to different 

experimental conditions, it is also likely to mirror the diverse functional consequences of 

phosphorylation at numerous sites. Figure 1.3 illustrates the range of kinase target sites on 

RyR2, which, in combination with the large number of other regulatory phosphorylation sites 

underscores the potential plasticity of channel modulation.

(A) 2031 28082814

PKA ▼ ▼
2808 2814

CaMKII W 7  V V V V  V W  VV V V V
2808

2207 2506 2778 3153 3884

PKG ▼ ▼ ▼ ▼ ▼1Q», 4276
1958 3332 3547 4240

PKC ▼ ▼ T W

0 1000 2000 3000 4000 4967

Residues

•  77-466
•  1310-1423

•  1815-1903

•  2246-2534
•  2808

•  3583-3603 
4208-4489

Domain 

CPV TI 

DR2 

DR3 

CPVTII 

Kinase target 

CaM binding 

DR1

Figure 1.3 Proposed RyR2 phosphorylation sites

Schematic depicting the localisation of experimentally defined and 
predicted sites of phosphorylation by PKA, CaMKII, PKG and 
PKC (A) and how these epitopes may map onto the 3D structure 
(B). Black triangles represent phosphorylation sites determined 
experimentally, while other triangles represent sites predicted 
using Markov models (coloured triangles are based on 100% 
confidence, unfilled dotted line triangles are CaMKII sites based 
on 95% confidence, unfilled solid line triangles are both CaMKII 
and PKA sites based on 95% confidence). Domain numbering is 
explained in Figure 1.1.

From George, 2008.
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1.1.3. C h an n e l regu la tion

1.1.3.1. Physiological modulators

The combined action of the ions Ca2+ and Mg2+, and ATP exquisitely modulate RyR channel 

function. RyR regulation by Ca2+ involves the finely-tuned interplay between Ca2+ sensing 

sites on both luminal and cytoplasmic domains. A model based on a luminal RyR Ca2+ 

activation site was proposed (Sitsapesan and Williams, 1994; Gyorke and Gyorke, 1998; 

Ching et al., 2000), but this is disputed by the demonstration of cytoplasmic activation and 

inhibitory sites via a luminal Ca2+ ‘flow-through’ mechanism (Herrmann-Frank and 

Lehmann-Horn, 1996; Tripathy and Meissner, 1996; Xu and Meissner, 1998). More recently 

it has been shown that cytoplasmic Ca activation sites are targeted by both luminal and 

cytoplasmic Ca (Figure 1.4) that implicates a novel high-affinity cytoplasmic Ca 

activation site (Laver et al., 2007a). Furthermore, the same group have also suggested that 

RyR channels can differentiate between Ca2+ that has passed through their own pore and Ca2+ 

released from neighbouring channels (Laver et al., 2004).

Ca
Ca

L-site

Lumen .Ca

Figure 1.4 RyR2 Ca2+ binding sites

Ca2+ regulation of RyR2 via three binding 
sites; luminal Ca2+ activation site (or L-site), 
cytoplasmic activation site (or A-site) and 
cytoplasmic inactivation site (H-site). The Ij 
site refers to a dual Ca2+/Mg2+ cytoplasmic 
inhibitory site. RyR2 is activated upon Ca2+ 
interacting with the L-site. Cytoplasmic sites 
are subsequently accessible to Ca2+ flow 
through the channel that triggers either 
further activation via the A-site or channel 
closure via the H-site, a mechanism 
described as Ca feed-through.

From Laver, 2007.

The spatio-temporal versatility of Ca2+ signalling permits the regulation of diverse cellular 

processes via dynamic changes in intracellular Ca2+ concentrations. Ca2+ signalling is
i

dependent on amplitude, duration and localisation of RyR Ca release events, in addition to
• • 2 “b  # 2 "bthe number of channels recruited. Modest rises in intracellular Ca evoke localised Ca 

release, via CICR, through single RyR channels, referred to as a Ca2+ quark (Lipp and Niggli,
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1996). Propagative co-activation of ~20 RyR units (‘cluster’) will release a large localised 

Ca2+ transient, termed a Ca2+ spark. Further coordinated Ca2+ release, sequentially recruiting 

adjacent RyR clusters, will produce whole-cell Ca transients and waves (Keizer and Smith, 

1998).
9  +Modulation of RyR by Mg is imposed via two distinct mechanisms; channel 

inhibition at millimolar concentrations and channel activation at micromolar concentrations 

(Hymel et al., 1988; Laver et al., 1997). The dual control of both RyRl and RyR2 channel
9 4 - 9 4 -function by Ca and Mg have long been recognised (Hymel et al., 1988; Williams, 1992; 

Meissner, 1994; Chen et al., 1997; Kawano, 1998), and are summarised in Table 1.5. 

However, the precise mechanics of this regulation are highly controversial, and may have 

resulted from differences in experimental conditions, such as ionic concentration, redox 

environment and pH, and/or the precise functional status of RyR under study.

1.1.3.2. Redox modification

Redox-modification of proteins including RyR, L-type Ca2+ channel (LTCC) and sarco- 

/endoplasmic reticulum ATPase (SERCA) is emerging as a hugely relevant mode of EC coupling 

modulation. Cysteine residues serve as target sites for oxidation (Aracena-Parks et al., 2006; Zima 

and Blatter, 2006; Hool, 2008). Each monomer of RyRl and RyR2 is composed of 100 and 89 

cysteine residues respectively; of which about 20-30% are ‘free’ i.e. they have reactive sulphydryl 

groups. Protein oxidation is often mediated by mitochondrial-derived reactive oxygen species 

(ROS), a by-product o f oxygen metabolism that are fundamental mediators of cellular signal 

transduction (Thannickal and Fanburg, 2000). Enhanced metabolic activity and increased 

cytosolic Ca2+ elevates mitochondrial Ca2+ that promotes ROS production. It has been shown that 

this chain of events can lead to augmented RyR2 Ca2+ release that manifests as spontaneous Ca2+ 

sparks (Yan et al., 2008). The close spatial proximity of mitochondria to the SR facilitates this 

signalling loop.

The involvement of ROS in oxidative stress and pathology has been documented (Hool, 2006; 

Valko et al., 2007). ROS arise in three forms: hydrogen peroxide (H2O2), superoxide anion 

radicals (0 2 *') and hydroxyl radicals (OH*). ROS-induced oxidation increases RyR sensitivity to 

Ca2+ and ATP activation, in addition to attenuating Mg2+ inhibition of the channel (Bull et a l, 

2007). ROS are not only produced by respiratory processes but also through signalling molecules,
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that include nicotinic acid adenine dinucleotide phosphate (NAADP), nicotinamide adenine 

dinucleotides (NADH/NAD+), glutathione (GSH/GSSG), cyclic guanosine monophosphate 

(cGMP) and cyclic ADP ribose (cADPR, formed from NAD by O2”) (Kumasaka et al., 1999). 

ROS generated by NADPH oxidase is proposed to increase channel activity by RyR2 S- 

glutathionylation, a redox-sensitive modification characterised by the formation of GSH- 

disulphide bonds between GSSG and protein thiol groups (Sanchez et al., 2008). Furthermore, 

reactive nitrogen species (RNS) exert nitrosative stress through nitric oxide (NO) production, 

which induces RyR S-nitrosylation that is reported to activate RyRs (Anzai et al., 2000). S- 

nitrosylation of RyRl residue cysteine 3635 has been reported, as mutation rendered the channel 

non-responsive to NO (Sun et al., 2001). RyR2 is endogenously S-nitrosylated (Xu et al., 1998), 

and reduced S-nitrosylation has been associated with diastolic Ca2+ leak (Gonzalez et al., 2007).

1.1.3.3. Pharmacological regulators

Pharmacological agents including caffeine and ryanodine have been widely used to probe RyR 

modulation. Although neither could be considered physiological modulators, their broad utility as 

‘research tools’ in experimental studies is summarised in Table 1.5. Ryanodine only binds to 

channels in an open conformation therefore it is often used to assess the extent of channel activity. 

In addition, the rate of ryanodine binding and dissociation from the channel provides information 

on functional state, i.e. the ryanodine binds faster at greater P0, whereas decreasing P0 correlates 

with a slower dissociation rate (Du et al., 2001; Butanda-Ochoa et al., 2006).

Caffeine is a methylxanthine derivative with a rapid yet reversible activating action on RyR 

channels and hence is useful in quantifying RyR Ca2+ release. Caffeine sensitises RyR channels to 

Ca2+ activation, however it is not a specific agonist, and some effects may be due to 

phosphodiesterase (PDE) inhibition (Butcher and Sutherland, 1962).
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Physiological RyR regulation
Ca Activated and inhibited by pM and mM Ca , respectively (Chen et a l , 

1997). RyR2 has a greater sensitivity to Ca2+ than RyRl (Williams, 
1992; Meissner, 1994).

Mg^ Potent inhibitor of RyR at mM concentrations (Hymel et al., 1988; Chen 
et a l , 1997; Kawano, 1998). Unlike RyRl, RyR2 is inhibited by luminal 
Mg2+ (Laver, 2007). Defective RyRl Mg2+ is associated with MH 
phenotype (Laver et al., 1997; Steele and Duke, 2007).

ATP RyRl exhibits phosphorylation dependent ATP activation (Hymel et a l , 
1988; Chen et a l, 1997) (Butanda-Ochoa et a l, 2006) and exhibits a 
greater sensitivity than RyR2 (Williams, 1992; Meissner, 1994; Copello 
et a l, 2002). ATP stabilises RyR2 in open conformation (Chan et a l, 
2003) and facilitates Ca2+ activation (Hymel et a l, 1988).

NAADP
NADH/NAD+

NAADP activates RyRs (Gerasimenko et a l, 2003), whilst inhibition is 
mediated by the reducing agent NADH, but this effect can be reversed 
by NAD+ (Zima et a l , 2004).

cADPR cADPR evokes RyR Ca2+ release (Gerasimenko et a l, 2003) via weak 
competition for an ATP binding site (Sitsapesan et a l, 1994). However, 
high cytoplasmic levels of ATP may render RyRs insensitive to cADPR. 
cADPR may regulate RyRs via indirect mechanisms (Copello et a l , 
2 0 0 1 ).

GSH/GSSG GSH inhibits RyRs via reduction, while GSSG stimulates via oxidation. 
Redox regulation by GSH/GSSG altered the affinity o f CaM for RyR2 
(Balshaw et a l, 2001). GSSG involved in S-glutathionylation of RyR2 
(Sanchez et a l , 2008)

NO NO activates RyR by S-nitrosylation at >1 cysteine residue 
(Stoyanovsky et a l , 1997)

Pharmacological
Caffeine Caffeine activates RyRs (Chen et a l , 1997) via increasing Ca2+ 

sensitivity (Butanda-Ochoa et a l, 2006). More potently activates RyR2 
than other RyR isoforms (Zimanyi and Pessah, 1991).

Ryanodine At lower doses (nM to pM) ryanodine binds to a single site (a.a. 4863) 
on open RyRl (Michalak et a l, 1988; Wang et a l, 2003) and multiple 
sites on RyR2 (Michalak et a l, 1988) that results in a partially 
conducting (subconductance) state (Hymel et a l, 1988; Fill and Copello, 
2002). Higher concentrations (mM) lock RyRs in a closed formation 
(Zimanyi et a l, 1992; Fessenden et a l, 2001) that sensitise channels to 
Ca2+ activation (Du et a l, 2001; Masumiya et a l, 2001).

Table 1.5. RyR physiological and pharmacological regulators
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1.1.4. RyR:RyR inter-tetrameric interaction (arrays)

In situ RyRs are arranged in complex arrays in which neighbouring units physically and 

functionally interact via their large cytoplasmic domains (Hu et al., 2005a; Yin et al., 2005a; 

Liang et al., 2006) (Figure 1.5). RyR organisation into arrays permits simultaneous agonist 

responses, a mechanism that may help to explain the phenomenon of coupled gating (Marx et 

al., 2001a) (Figure 1.6). Coupled gating is thought to be an essential attribute in cardiac 

muscle, through which synchronous contraction during systole can be achieved, or to mediate 

rapid restoration of resting Ca2+ levels. Depletion of luminal Ca2+ was shown to destabilise 

channel coupling and induced rapid synchronous termination of Ca2+ release (Gaburjakova 

and Gaburjakova, 2008).

Figure 1.5. Physical association of RyR tetramers

Physical coupling between RyR tetramers in the checkerboard array. An 
electron micrograph of the cytoplasmic face of organised RyRs (left panel) 
and a projection map of RyR inter-molecular interaction following image 
processing (right panel). Arrows indicate physical coupling between adjacent 
RyR units now thought to be mediated by domain 6. Scale bar is lOOnm.

Adapted from Yin et al., 2005.
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Channel-associated proteins have also been proposed to stabilise coupled gating of RyRs. 

Initially it was proposed that the RyR accessory proteins (immunophilins) FKBP12 and 12.6 

(see Figure 1.8 and 1.12) mediated coupled gating of adjacent RyR channels (Ondrias et al., 

1998; Gaburjakova et al., 2001; Marx et al., 2001a) since RyR2 devoid of its ability to bind 

FKBP 12.6 exhibited an increased channel P0 and uncoupled gating (Wehrens et al., 2003). 

However, these studies were discounted by Hu et al. (Hu et al., 2005b), and RyR visualisation 

studies did not corroborate the site of FKBP binding and that of RyR tetramer interaction 

(domain 9 and 6 respectively) (Figure 1.8) (Wagenknecht et al., 1996; Yin et al., 2005a; Yin 

et al., 2005b; Sharma et al., 2006). Furthermore, the gating properties of single RyR2 

channels from FKBP12.6-deficient mice displayed no difference to wild type (Xiao et al., 

2007). Therefore, given this evidence it is extremely unlikely that FKBP acts as the ‘glue’ 

between tetramers. However, it is worth noting that chronic expression of FKBP 12.6 

suppressed RyR2-dependent Ca2+ fluxes and restored cellular phenotype in CHO cells 

(George et al., 2003b), indicating a potential signalling role for the FKBP:RyR2 complex.

Figure 1.6. Functional coupling 
between RyR2 tetram ers

In the heart, synchronous Ca 
release is enabled by coupled RyR 
units (systole). Inter-tetrameric 
interaction also permits the 
coordinated termination of Ca2+ 
release (diastole). ‘Uncoupling’ of 
RyR channels is considered a 
pathological event. Yellow arrows 
represent Ca2+ release.

C oupled Gating

Systole Diastole

U ncoupled Gating
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1.1.5. RyR:LTCC organisation

In addition to forming arrays with ‘self (Section 1.1.4), RyRl display intimate physical 

coupling with LTCC (Block et al., 1988; Flucher and Franzini-Armstrong, 1996; Paolini et 

al., 2004). Direct interaction between RyRl and LTCC in skeletal muscle generates high

speed Ca2+ signals required for contraction (Cheng et al., 2005) that facilitate the activation of 

RyRl by depolarisation-induced Ca2+ release (DICR). In contrast, LTCC assume a more 

irregular arrangement in cardiac muscle (Takekura et al., 2004) (Figure 1.7), and no physical 

(direct) interaction with RyR2 has been documented (Lu et al., 1994). This more random 

formation facilitates slower fine-tuned synchronous SR Ca2+ release compared to skeletal 

muscle (Bers, 2002). Ultimately, these differences in RyR:LTCC structural organisation 

reflect the distinct requirements of EC coupling in both muscles.

HEART

Figure 1.7. Skeletal and cardiac arrangements of LTCC and RyR channels

Note that LTCCs are arranged in clusters of four or ‘tetrads’ in skeletal muscule whereas 
cardiac muscle exhibits a more irregular pattern.

From Flucher et al., 1996
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1.1.6. RyR intra-subunit interaction

Interdomain interaction within ion channels has emerged as a novel mode of regulation, 

whereby extrinsic stimuli received via cytoplasmic and luminal sensing sites, are transduced 

to the TM domain to effect Ca2+ pore opening and closing (Yamamoto et al., 2000; Ikemoto 

and Yamamoto, 2002; George et al., 2004; Kobayashi et al., 2004; George et al., 2006). A 

similar mechanism has also been reported in both IP3R (Uchida et al., 2003) and voltage 

gated shaker K+ channels (Schulteis et al., 1996; Yao et al., 2000).

Ikemoto and colleagues utilised lipid bilayers to study the effect of synthetic RyR peptides 

(corresponding to discrete epitopes within RyRl and RyR2) on single RyR channel function 

in order to investigate the nature of RyR intramolecular (interdomain) interactions 

(Yamamoto et al., 2000; Shtifman et al., 2002; Oda et al., 2005; Bannister et al., 2007; 

Hamada et al., 2007b). Peptides were also applied to permeabilised muscle fibres to assess the 

dynamics of individual Ca release events. Their work pioneered the concept that interactions 

between cytoplasmic RyR domains profoundly modulated channel activity. Consistent with 

these studies, George and colleagues identified a region of RyR2 (amino acids 3722-4610) 

termed the interacting domain or I-domain, which mediated functional interactions between 

N- and C-terminal regions o f RyR2 (George et al., 2004). Moreover, arrhythmia-linked I- 

domain mutations caused defective interdomain interactions that triggered aberrant Ca 

release. The I-domain overlaps with DR1, which has been localised to the vicinity of domain 

3 and as such it is likely to be accessible to cytoplasmic modulation (Figure 1.8). The 

mechanisms and functional consequences of interdomain interaction are central to this thesis 

and the above concepts are more fully appraised in Chapter 3.
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Figure 1.8. RyR2 array-formation 
displaying potential I-domain epitopes 
and FKBP binding site
RyR2 complexes displaying putative 
localisation of I-domain (green, based 
on the localisation of DR1) and FKBP 
binding (blue) (Wagenknecht et al., 
1996).

Modified from Sharma et al., 2006.

1.1.7. N o n -c o n tra c tile  a sp e c ts  o f  R yR 2  fu n c tio n

The broad distribution of RyR isoforms in both contractile and non-contractile tissues points 

to their diverse functionality in an array of physiological events, which are not restricted to 

muscular contraction (Giannini et al., 1995). Such ‘non-contractile’ functions include 

excitation-secretion coupling in endocrine cells and neurons and roles in long-term memory 

development (Zhao et al., 2000). Notably, in a neural context, there is preliminary evidence 

that RyR2 dysfunction in the brain is linked to epilepsy (Lehnart et a l,  2008). In skeletal and 

cardiac muscle, RyR2 are also localised to nuclear membranes where they are proposed to 

participate in nuclear Ca2+ signalling and gene transcription (Guatimosim et al., 2008).

29



1.2. Excitation-contraction (EC) coupling in the heart

1.2.1. Ultrastructure of cardiac muscle

Cardiac muscle is composed of highly specialised cells known as cardiomyocytes 

(approximately 2 0 x 10 0 pm) that form fibres via longitudinal co-association at structures called 

intercalated disks. The branching nature of cardiomyocytes reinforces the tight association 

between adjacent muscle fibres, which is fundamental in action potential transmission and 

global cardiac contraction (Ruegg, 1990).

Cardiomyocytes contain actin-myosin filaments (the basic unit of contraction) surrounded by 

an extensive endoplasmic reticular network, known as the sarcoplasmic reticulum (SR) 

(Figure 1.9). Mononucleated cells are enclosed by the sarcolemma (cell membrane) and the 

association between the SR and invaginations of the sarcolemma, referred to as transverse 

tubules (T-tubules), is central to muscle contraction (Ayettey and Navaratnam, 1978). 

Cardiomyocytes also contain numerous mitochondria, reflecting the huge metabolic demand 

during continuous contractile cycles (Carafoli, 2002).

Muscle contraction is initiated by cross-bridge formation between actin and myosin filaments, 

during which the intrinsic ATPase activity of the myosin head enables the sliding motion of
j,

actin and myosin components. However, cross-bridge formation is dependent upon a Ca
94 -linked conformational change in troponin C (a Ca binding protein) that is triggered by a

 ̂I 94-
rapid transient rise in intracellular Ca (Ruegg, 1990; Davis et al., 2007). Elevated Ca 

levels induce a conformational change within troponin C that triggers actin and myosin cross

bridging, instigating global cellular contraction (systole) (Takeshima et al., 1998; Bers, 2002;
9 . t

Fill and Copello, 2002; Meissner, 2004). Subsequent Ca extrusion from the cell dissociates
9 i

Ca from troponin C returning the cell to diastole (Bers, 2002).
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Figure 1.9. Cardiac muscle ultrastructure

T-tubules are regularly spaced in-line with sarcomere Z-lines. The sarcolemma surrounds 
the cardiomyocyte and forms extensive folds at cell-to-cell junctions, which constitute 
the intercalated disks. The sarcomere is separated into functional units: H-zone, A-band 
and I-band. Adjacent sarcomeres meet at the Z-line.

1.2.2. C a rd ia c  action  po ten tia l

Cardiomyocytes have a resting electrostatic potential across their membranes (typically - 

85mV) attributable to the non-equivalent fluxes of Na+ and K+ ions. Membrane 

depolarisation, triggered by the massive inward influx of Na+ ions through surface membrane 

Na+ channels instigates the action potential (AP) and raises the membrane potential to 

approximately 50mV. In vivo, the AP is triggered by the pacemaker cells of the sinoatrial 

(SA) node and is transmitted via the atrioventricular (AV) node to the bundle of His and 

Purkinje fibres that branch around the base of the ventricles. The ionic fluxes occurring 

throughout the AP are defined by five key phases (Figure 1.10).
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LTCC triggered Ca2* amplification from RyR2 
release binds to cellular contractile elem ents 
initiating systole. ^  ^

>
E
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LTCC and RyR2 close. 
Ca2* is removed from the 
cell by NCX and PMCA 
or sequestered into the 
SR by SERCA

Ca2* influx
through
LTCC

Resting C a2* 
concentrations are 
restored. S tate  of 

\  Diastole

-100 —I 4

100ms

Figure 1.10. Phases of the cardiac action potential (AP)

Phase 0: cell-membrane depolarisation (Na+ influx, K+ efflux).
Phase 1: net outward current caused by Na+ channel (Navl .5) closure. 
Phase 2: plateau sustained by inward Ca2+ (LTCC) and outward K+ 
movement (several channels).
Phase 3: net outward current caused by K+ efflux alone. Ionic balance 
is restored via ion pumps that return membrane potential to — 85mV 
(Phase 4).
The corresponding movements o f Ca2+ are described on the figure (red 
dashed line, modified from Bers and Despa, 2006).

Activation of the p-AR pathway via the sympathetic nervous system increases cardiac output 

during episodes of stress, by enhancing both the magnitude of cardiac contraction (inotropy) 

and heart rate (chronotropy), often referred to as the ‘fight or flight’ response. Adrenaline or 

noradrenaline agonise p-adrenoceptors that couple via G-proteins to adenylate cyclase (AC) 

leading to increased cellular levels of cAMP. Localised cAMP concentrations stimulate PKA, 

which modifies the phosphorylation status of numerous EC coupling proteins (Bers, 2002; 

Berridge et al., 2003; Eisner et al., 2006). This modulation of EC-coupling machinery by 

microdomain-targeted phosphorylation enables a rapid functional adaptation in contractile 

performance in response to increased demand. Macromolecular complexes also allow the 

generation of highly localised signalling regions in which channels can be exposed to 

localised environments without interference from other cellular compartments.

1.2.3. B eta- ad re n e rg ic  (p-A R ) pa th w ay
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1.2.4. C IC R  an d  E C  coupling

Intracellular Ca2+ stores are maintained by controlled gating of SR membrane proteins RyR2 

and SERCA that function to release and re-sequester Ca2+ respectively (Chu et al., 1998; Sato 

et al., 1998). AP-induced Ca2+ entry via LTCC provides the trigger to stimulate a greater 

release of Ca2+ through RyR2 in a process termed CICR (Fabiato, 1983) (Figure 1.11). As 

described in Section 1.1.3.1 above, the temporal unison of Ca2+ sparks (possibly via coupled 

gating mechanisms) culminates in a propagative Ca2+ wave that recruits neighbouring

LTCC

A o O  c P

^  Myofilaments

. 1111 C)

PMCA

Figure 1.11. CICR triggers muscle 
contraction

Schematic representation of the 
physiological process of CICR. Ca2+ 
influx via LTCC activates a greater 
release of Ca2+ from the SR via RyR2. 
Increased cytoplasmic Ca2+ induces a 
conformational change within 
myofilaments that triggers contraction 
(systole). Diastole is restored by Ca2+ 
efflux mechanisms including those 
dependent on NCX, PMCA and 
SERCA. Yellow and grey spheres 
represent Ca2+ and Na+ respectively.

complexes via CICR (Keizer and Smith, 1998) and raises global cytoplasmic Ca2+ from 

~100nM to lpM. The physiological process that converts electrical stimulation into 

coordinated cellular contraction is termed EC coupling. The efficiency of EC coupling is 

dependent on the relative amplification of Ica mediated by CICR (Lai et al., 1988; Fill and 

Copello, 2002; Marban, 2002; Wehrens and Marks, 2004), and is expressed as EC coupling 

gain (Wier and Balke, 1999).
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04*Mechanisms governing termination of RyR Ca release events are incompletely understood. 

Previous studies have proposed a number of mechanisms, such as coupled gating, luminal 

Ca2+, Mg2+ inhibition and channel modulation via accessory proteins. Various effectors 

including FKBP have been implicated in promoting coupled gating, but as discussed above in 

Section 1.1.4, it is unlikely to directly contribute to Ca2+ release termination. A key role of 

luminal Ca in regulating coupled gating is emerging, and it has been suggested that lowered 

luminal Ca2+ can terminate Ca2+ release by de-stabilising channel coupling (Gaburjakova and 

Gaburjakova, 2008). In addition, luminal Ca2+ has also been reported to increase RyR 

sensitivity to cytoplasmic Ca2+ activation (Gyorke and Gyorke, 1998; Ching et al., 2000), 

which raises the possibility that depleted SR Ca2+ could de-sensitise the receptor, thereby 

inhibiting further Ca2+ release. The competitive binding of Mg2+ to a cytoplasmic Ca2+ 

activation site (A-site) (see Figure 1.4), imposes an inhibitory effect on RyR channels (Laver 

et al., 1997; Kawano, 1998). Mg2+ may displace Ca2+ at the A-site following channel
^  L

activation, thus terminating any further Ca release. Channel inactivation has also been
04-proposed to result from the association of Ca regulatory proteins and molecules with the 

channel, such as sorcin and calmodulin (Lokuta et al., 1997; Meyers et al., 2003; Xu and 

Meissner, 2004). It is possible that multiple regulatory mechanisms contribute to orchestrated 

Ca2+ channel closure.
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1.3. Macromolecular Ca2+ signalling network

RyR2 acts as a scaffold, associated with a vast network of proteins, pumps and exchangers. 

The precisely co-ordinated interplay between the components of this network exquisitely 

regulate intracellular Ca2+ (Kranias and Bers, 2007; Bers, 2008). The macromolecular Ca2+ 

signalling network encompasses two inter-linked modes of Ca2+ regulation, that which 

physically associates with and regulates RyR (illustrated in Figure 1.12), and the larger Ca2+ 

handling network (outlined in Table 1.6), which controls Ca2+ cycling throughout the cell.

Plasmalemmal ion channels such as LTCC regulate Ca2+ influx into the cytosol, whereas the 

Na+ Ca2+ exchanger (NCX), and the plasma membrane calcium ATPase (PMCA) control Ca2+ 

efflux mechanisms, maintaining intracellular Ca2+ homeostasis (Bers and Perez-Reyes, 1999; 

Bers and Weber, 2002). The tight control of SR Ca2+ concentrations is maintained by Ca2+ 

release via RyR2, and restoration of luminal free Ca2+ via the SERCA pump (Bers, 2002). 

Both RyR2 and SERCA function is modulated by the binding of various accessory proteins. 

The binding of the immunophillin FKBP 12.6 (FKBP 12 in skeletal muscle) to the RyR2
04-cytosolic domain has been proposed to stabilise the channel preventing diastolic Ca leak 

(Timerman et al., 1996; Marx et al., 2000). Another cytosolic protein that interacts with and
04*regulates the RyR2 is sorcin. Sorcin is a 22kDa Ca binding protein that binds RyR2 with 

high affinity reducing channel activity (Lokuta et al., 1997). Luminally, the RyR2 is 

modulated by association with the SR Ca2+ buffering protein calsequestrin (CSQ), which can 

bind up to 50 Ca2+ ions per molecule (Beard et al., 2004). CSQ traffics Ca2+ ions to the RyR
0*4*during systole facilitating Ca release. RyR2 and CSQ form a quaternary complex with the 

accessory proteins, junctin and triadin, both of which share similar sequence homology and 

are proposed to mediate interactions between CSQ and RyR2 governing Ca release (Zhang 

et al., 1997; Beard et al., 2005). Similar to CSQ, calreticulin is also a luminal Ca2+ binding 

protein expresed primarily in embryonic cells, but has a lower (approximately 50%) Ca 

binding capacity compared to CSQ (Treves et al., 1990; Milner et al., 1992; Nakamura et al.,

2001). Calreticulin will be discussed further in Chapter 5. The function of SERCA in 

relinquishing cytosolic Ca2+ back to the SR after systole is regulated by the phosphoprotein 

phospholamban (PLB). PLB binding to SERCA inhibits Ca2+ uptake into the SR during 

systole, while PLB phosphorylation during diastole results in its dissociation, enabling Ca to 

be relinquished to the SR in preparation for the next cardiac cycle (Toyofuku et al., 1994; 

MacLennan et al., 1997). See Figure 1.12 and Table 1.6 for more details on all the 

aforementioned Ca2+-associated proteins.
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Plasm a m em brane (PM) (S?)v • * /
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V»
NCX. 110kDa PM channels extrude cellular Ca2* by 
substitution of one Ca2* ion (eflux) for three Na* ions (influx) 
thus returning cytoplasmic Car2* to basal levels following systole 
(Bers and Weber, 2002). NCX can also operate in reverse 
mode if ionic levels are imbalanced (Piacentino et al., 2002; 
Weber et al., 2003).

Sorcin (soluble resistance-related Ca^-binding protein) of 
22kDa localises to the SR membrane. Interaction with RyR2, 
established in 1995, decreased channel open probability 
(Meyers ef al., 1995).

Triadin (TRD) and Junctin (X N ) are structurally similar 
transmembrane proteins with a high sequence homology. They 
anchor RyR2 to toe SR and facilitate its interacflon with CSQ to 

traffic Ca2* to the Ry R2 for systolic release (Zhang et al., 1997).

Calsequestrin (CSQ) binds Ca'* with high affinity in the SR 
lumen and completes the quaternary complex formed with 
RyR2, TRD and JCN (Zhang et al., 1997). The cardiac isoform, 
CSQ2 confers SR store Ca2* responsiveness to RyR2 
governing Ca2* release, but has a more inhibitory role at low 

luminal Ca2* (Beard et al., 2004; Betrd et al., 2005).

Sarcoplasmic Reticulum (SR) membrane

LTCC located in toe 
transverse tubules of 
the PM, are activated 
by membrane
depolarisation triggered 
by an action potential 
that induces Ca2* influx, 
lea  (Bers and Perez- 

Reyes, 1999).

0

$

tpcppcppcpcpcpcpqa

Plasma membrane Ca'* ATPase (PMCA) is a 153kDa fransport 
protein that catalyses Ca2* removal by ATP (Bers and Perez-Reyes, 
1999).

FKBP12.6 (Caistabin2) is toe cardiac isoform of this class of 
immunophillins. FKBP12.6 binds at a 1:1 ratio per monomer of RyR2 
in toe closed state, which has been suggested to stabilise toe 

channel during diastole (Marx ef al., 2000; Wehrens etal., 2003).

RyR2 is a 565KDa Ca'* channel protein that releases SR Ca'* in 
response to lea  (CICR). Ca2* interacts with contractile machinery to 
elicit myocyte contraction. RyR2 is open during systole and closed 
during diastole (Bers and Perez-Reyes, 1999).

Phospholamban (PLB) is a23kDa protein that inhibits SR Ca'* re
entry during systole via binding to SERCA. Phosphorylation at serine 
16 dissociates PLB from SERCA catalysing SR Ca2* influx (Cotyer, 
1998).

SERCA is a high affinity Ca2* channel protein to at replenishes Ca2* 
stores prior to systole, a role that is governed by PLB association 
(Mueller et al., 2004). SERCA2a is toe muscle-specific isoform 
(Hajjaretal., 1997a).

Cytoplasm  
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Figure 1.12. Schematic illustration of the macromolecular Ca2+ signalling network



1
LTCC

Study Ca2+ handling Observations Phenotypic consequence

Knock-
Out

Homozygous knock-out of 
LTCC (Cay 1.2) (Seisenberger 
e ta l , 2000)

CMs obtained from embryonic day 12.5 hearts displayed 
spontaneous beating despite Cavl.2 deficiency. Ca2+ influx 
through unidentified Ca + channels triggered contraction. 
mRNA for Cay 1.1 (skeletal muscle) and Cay 1.3 (neuro
endocrine) was present but no Cay 1.1 protein was detected

Death at embryonic day 14.5 
suggesting that LTCC is 
required for normal 
development

Transgenic Human LTCC overexpression 
(2.8-fold) in mice (Groner et 
a l , 2004)

HF

Cardiomyocytes (CM) from 
mice overexpressing the a l 
subunit of LTCC (Song et a l , 
2002)

Increased Ca2+ influx amplitude and SR Ca2+ release. 
Unaltered SR Ca2+ content, Ca2+ sparks and diastolic Ca2+ 
levels. NCX activity was increased accompanied by 
elevated protein expression. RyR2, SERCA and PLB 
protein levels were unchanged

Normal EC coupling gain, 
although LTCC Ca2+ influx 
and RyR Ca2+ release were 
increased.

Viral
expression

Adenoviral delivery of LTCC P 
subunits to young adult rat CM 
(Wei etal., 2000).

' j i 1
Enhanced Ca channel current density 3-4 fold and 
decreased voltage-dependent channel inactivation

Increased contractile function

LTCC double mutant (T1039Y 
and Q1043M) (Walsh et a l , 
2007) adenovirally delivered to 
rat CM.

lea reduced by 35% when exposed to dihydropyridine 
compound

Reduced sensitivity of channels 
to dihydropyridine

Case
report

Two paediatric patients with 
LTCC mutations (G402S or 
G406R) (Splawski et a l , 2005)

Mutations prolonged the QT interval and reduced the 
sensitivity of the channel to deactivation, a finding 
corroborated by G406R expression in CHOs (Splawski et 
a l , 2004).

LTCC mutations caused multi
system Timothy syndrome 
characterised by autism, 
syncope and fatal arrhythmia
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NCX

Study Ca2* handling Observations Phenotypic consequence

Knock-
Out

NCX1 ablation in mice 
(Reuter et al., 2003).

Ca2* transients are maintained at rest but upon 
stimulation cells displayed increased diastolic Ca2* and 
reduced Ca2* transients. No up-regulation of the 
sarcolemmal Ca2* pump was observed

Embryonic lethality; heart tube analysis 
showed diminished SR membranes. (Cardiac 
specific ablation in mice was viable, see 
‘Tissue-specific* below)

Transgenic Homozygous NCX 
overexpression (3-fold) in 
mice (Reuter et al., 2004; 
Pott et al., 2007a)

Enhanced Ca2* extrusion and prolonged action 
potential. Increased LTCC amplitude and slower 
inactivation of the current, unchanged SR Ca2* load but 
reduced SR Ca2* release. No difference in RyR2 levels

Decreased EC coupling gain (see Section 
1.2.4) that resulted in cardiac hypertrophy and 
enhanced susceptibility to heart failure

Tissue-
Specific

Cardiac specific knock-out 
of NCX1 in 80-90% of 
murine CM (Henderson et 
a l , 2004; Imahashi et a l , 
2005; Pott et a l, 2005; Pott 
et a l , 2007b; Pott et a l , 
2007c; Pott et a l, 2007d)

Unaltered resting Ca24-, SR Ca2* content and Ca2* 
transient amplitude, but a reduced transient decay, 
shortened action potential and a 50% reduction in 
LTCC current. Mice exhibit an increase in EC coupling 
gain. PMCA, SERCA, CSQ and LTCC protein levels 
were unchanged, despite a reduction in LTCC current. 
No compensation for NCX1 by NCX2 or 3.

Mice survived to adulthood and exhibited only 
a modest reduction in cardiac contractility. No 
cardiac hypertrophy and hearts were protected 
against ischemia-reperfusion injury due to 
absence of reverse-mode (inward) NCX Ca2* 
currents

Cardiac-specific NCX 
overexpressing mice 
(Terracciano etal., 1998)

•̂1
Increased SR Ca content. No difference in protein 
expression of SERCA2a, PLB or CSQ

Viral
expression

NCX overexpressing rabbit 
CM (Ranu et a l, 2002).

Lowered systolic and diastolic Ca2* levels, amplitude 
of contraction and depleted SR stores

Depressed contractility

Adenoviral-induced NCX 
overexpression in rabbit CM 
(Schillinger et a l, 2000)

Reduced SR load and frequency of shortening. Protein 
levels of SERCA, PLB and CSQ unchanged

Depressed contractility
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SERCA

Study Ca2* handling Observations Phenotypic consequence

Knock-Out Heterozygous SERCA2a KO 
mice (Talukder et a l, 2008)

Lower systolic and higher diastolic intracellular Ca2*. 
Reduced SERCA2a protein levels

Reduced contractility

Transgenic Mice overexpressing rat 
SERCA2 protein (Dillmann, 
1998)

Increased SR load, Ca2* transient release and myocyte 
re-lengthening.

Improved contractility

Mouse model with SERCA2a 
replaced by SERCA2b 
(Vangheluwe et a l, 2006)

Cardiac hypertrophy

Tissue-
Specific

SERCA2a overexpression in rat 
hearts (Maier et a l, 2005)

a  I
Myocytes displayed a 2-fold increase in SR Ca stores 
and reduced trans-sarcolemmal Ca2* flux (LTCC and 
NCX). Trend (ns) towards reduced levels of LTCC and 
NCX.

Improved contractility

Viral
expression

SERCA2a overexpression in 
rabbit CM (Terracciano et a l, 
2002).

Increased SR Ca2* stores, but decreased action potential 
duration and Ca2* entry through LTCC

SERCA2a overexpression 
(Davia et a l, 2001).

Increased SR Ca content and enhanced amplitude of 
contraction during stimulation

Enhanced contractile function

SERCA expression in 
myocytes from hypertrophied 
hearts (Reilly et a l, 2001)

Improved cardiac function in 
hypertrophic myocytes

SERCA overexpression in 
ventricular CMs from human 
HF model (del Monte et a l, 
1999).

Increased both SERCA expression and activity that 
increased cell shortening. Lower diastolic Ca2* and 
higher systolic Ca2* was observed when SERCA was 
overexpressed

Improved contractility in failing CMs

SERCA 1 overexpression in 
neonatal and adult rat CMs 
(Zhang et a l, 2001)

SERCA 1 infection caused 4-fold higher protein 
expression in neonatal and adult rat CMs

Apoptosis in neonatal cells, which 
was not observed in adult CMs
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l »

Study Ca2+ handling Observations Phenotypic consequence

Knock-
Out

PLB deficient mice (Chu et 
al., 1998)

Increased SGRCA activity and contractile function. Normal SERCA, CSQ or NCX 
protein levels, although RyR2 expression was down-regulated

Enhanced contractile function and reduced catecholamine responses 
consistent with previous studies (Luo et al., 1994). Down-regulated 
RyR2 may be a compensatory mechanism for increased SERCA 
activity.

Isolated CM from PLB-knock 
out mice (Li et al., 1998)

Increased Ca2+ store load and SERCA activity but reduced NCX activity, despite 
unaltered NCX protein expression. Normal actin expression.

Increased re-filling of SR stores (may cause SR overload and aberrant 
Ca2+ release).

PLB deficient mouse CM 
(Santana et al., 1997)

LTCC Ca2+ current amplitude was unchanged but SR Ca2+ transient was increased, 
enhancing EC coupling gain. Increased SR Ca2+ load, frequency and amplitude of 
spontaneous Ca2+ sparks suggest an increased RyR sensitivity to Ca2+

Increased SR load and sensitised RyR Ca2+ activation that could result 
in diastolic Ca2+ leak

Knock-In Mouse model of 
overexpressed mutant PLB 
(R9C) (Gramolini et al., 2007)

Increased diastolic Ca2+ levels and decreased contractile function. Increased 
expression of cytoskeletal and Ca2+ binding proteins.

Dilated cardiomyopathy from 8 weeks that resulted in death by -20 
weeks

Mouse model of mutant PLB 
(V49G) overexpression 
(Haghighi et al., 2001)

Reduced Ca2+ uptake leading to decreased cell shortening and re-lengthening. 
Increased rate of Ca2+ transient decay. Significantly depressed cardiac function and 
P-AR response.

Hypertrophy, dilated cardiomyopathy and death tty 6 months in male 
mice. Female mice exhibited hypertrophy by 3 months but normal 
systolic function up to one year.

Tissue-
Specific

Mouse model of PLB deletion 
of Arg-14 (Haghighi et al., 
2006)(*)

PLB mutant chronically suppressed SERCA affinity for Ca2+, decreasing re
sequestration of Ca2+ to the SR.

Increased heart size due to ventricular dilation, myocyte disarray and 
myocardial fibrosis, consistent with dilated cardiomyopathy observed in 
human carriers of Argl4 deletion. Overexpression of mutant in mice 
resulted in premature death, findings observed in human patients (#).

Viral
expression

PLB overexpression in rat CM 
(Davia et al., 1999)

Reduced SR Ca2+ stores, reduced transient amplitude and increased transient decay 
time. Normal SERCA2a expression.

Diminished contractility

T116G point mutation in rat 
CM and HEK293 cells 
(Haghighi et al., 2003)

Mutant PLB exhibited a loss of function: it failed to decrease cell shortening, lower 
SR transient amplitude and reduce the affinity of SERCA for Ca2+, characteristic of 
WT PLB. Diminished PLB expression, consistent with human patients. Human 
patients also had reduced SERCA expression but unchanged CSQ levels.

Mutation introduces a premature stop codon resulting in non-functional 
protein, which, in humans causes severe dilated cardiomyopathy.

Mutant PLB expression in 
failing rabbit CM (Ziolo et al., 
2005)

Increased Ca2+ transient amplitude and rate of decay. Increased SR load and 
enhanced force-frequency response. No changes in SERCA or NCX protein 
expression

Mutant PLB inhibition of endogenous PLB increased SERCA activity 
and restored contractile function in failing myocytes

Case-
study

Individuals homozygous for 
T116G mutation that 
introduced premature stop 
codon (Haghighi et al., 2003)

PLB mRNA was reduced by 50% whereas no PLB protein was detected. Dilated cardiomyopathy and heart failure requiring a heart transplant 
between adolescence and adulthood. Contrary results to those from 
PLB deficient mice (Chu et al., 1998).

Hereditary deletion of PLB 
Arg-14 (Haghighi et al., 
2006)(#)

Chronic suppression of SERCA activity No reported homozygosity. Heterozygous individuals exhibited 
contractile dysfunction, ventricular arrhythmias that predisposed them 
to HF and premature death. Findings that were corroborated in mice (*).
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|CSQ

Study Ca2+ handling observations Phenotypic consequence

Knock-Out Tissue specific only

Knock-In Mice carrying D307H mutation (Song 
etal., 2007)

Decreased SR load, slower transient release and Ca2+ re-uptake. 
Stimulation induced reduced Ca2+ transients, elevated cytosolic Ca2+ and 
spontaneous Ca2+ release. Reduced CSQ, but increased calreticulin and 
RyR2 (unaltered phosphorylation). Unaltered levels of FKBP12.6.

Mutation induced similar phenotype to cardiac specific CSQ 
KO mice (*). Structurally normal but mice exhibited 
ventricular arrhythmias, cardiac hypertrophy and reduced 
contractile function.

Transgenic Mice overexpressing CSQ (Knollmann 
et a l , 2000)

Developed contractile dysfunction after 60 days with a 
survival rate of only 40% by 6 months

Tissue-
Specific

Cardiac CSQ (CSQ2) null mice 
(Knollmann et a l, 2006) (*)

Myocytes had an increased SR volume. Catecholamine exposure caused 
diastolic Ca2+ leak. Decreased expression of JCN 8c TRD

Normal contractility at rest, but under stress mice 
phenocopied human arrhythmias

20-fold overexpression of cardiac CSQ 
in mice (Sato et a l , 1998)

Enhanced SR Ca2+ but reduced Ca2+ transient amplitude, cell shortening 
and re-lengthening. SERCA, PLB and calreticulin protein expression was 
up-regulated, but no change in RyR, JCN or TRD

Cardiac hypertrophy

2-6 fold overexpression of cardiac CSQ 
D307H (Dirksen et al., 2007)

Reduced SR transient amplitude and duration and increased Ca2+ spark 
frequency. Upon stimulation CM displayed spontaneous Ca2+ oscillations 
that resulted in DADs

Structurally normal hearts devoid of cardiac hypertrophy 
with intact ventricular contractility. Stress-evoked mice 
phenocopied human CPVT by developing arrhythmias such 
as non-sustained polymorphic VT

10 fold overexpression of cardiac CSQ 
in mice (Jones et a l, 1998)

Suppressed frequency and amplitude of Ca sparks. Increased (10-fold) 
SR Ca2+ release (following caffeine administration) and NCX current. 
RyR, JCN and TRD were down-regulated but SERCA and PLB were 
unaltered.

Severe cardiac hypertrophy associated with a 2-fold increase 
in cell size and heart mass.

Adenoviral CSQ overexpression in rabbit CM 
(Miller et al., 2005)

Increased SR Ca2+ content, LTCC current and Ca2+ transient amplitude, but 
reduced EC coupling gain. Increased expression (50%) of CSQ. No 
increase in LTCC subunit expression despite enhanced LTCC current

CSQ overexpression (3.5-fold) and 
reduced expression (30%) in rat CM 
(Kubalova et a l,  2004)

Ca2+ wave amplitude, period between waves and recovery of basal SR Ca2+ 
was increased in overexpressing CM. The opposite was observed in 
reduced CSQ CM. SR load was unchanged in both instances. No change in 
SERCA and PLB protein levels

Reduced CSQ increased levels of free Ca2+ and reduced the 
occurrence of spontaneous Ca2+ waves. Increased CSQ 
slowed recovery of free SR Ca2+ reducing the frequency of 
Ca2+ waves.

4-fold overexpression of D307H canine 
CSQ in rat CM (Viatchenko-Karpinski 
et a l, 2004)

Reduced SR Ca2+ and lowered transient amplitude, duration and time to 
peak.

Isoproterenol exposed mutant myocytes displayed 
spontaneous oscillations and DADs

Case-study Individuals harbouring CSQ D307H 
mutation (Eldar et a l, 2002; Lahat et 
a l,  2004)

Predisposition to autosomal recessive form of CPVT

Individuals harbouring CSQ nonsense 
mutations (Postma et a l, 2002).

All three CSQ mutations induced a premature stop codon 
resulting in phenotypically similar forms of CPVT 41



|JCN

Study Ca2+ handling observations Phenotypic consequence

Knock-Out Junctin ablation in mice 
(Yuan et al., 2007)

Unaltered LTCC current, but enhanced NCX current. 
Increased fractional shortening, Ca transient amplitude 
(54%), SR load and Ca2+ spark frequency/amplitude. 
Transients had a shorter decay. No significant changes in 
protein expression of CSQ, TRD, SERCA, PLB, FKBP12.6, 
LTCC or RyR S2808 phosphorylation. However NCX 
protein levels increased by 70%.

Increased cardiac function, but 
PVC and VT triggered by DADs 
upon stimulation. 25% of mice 
died by 3 months with no cardiac 
structural abnormalities.

Transgenic CM of mice 
overexpressing canine 
JCN (Zhang et a l , 2001)

Increased association between SR 
and T-tubules. Junctional SR is 
narrower and CSQ more compact

A remarkable 24-29-fold 
overexpression of canine 
JCN in mice (Hong et al., 
2002)

RyR2 and TRD down-regulation while LTCC was up- 
regulated

Bradycardia, atrial fibrillation and 
fibrosis.

Tissue-
Specific

Cardiac-specific JCN 
overexpression in mice 
(Kirchhefer et a l , 2006)

Decreased SR Ca2+ content and Ca2+ spark frequency. Down- 
regulated NCX expression and increased phosphorylation of 
RyR2 at S2808

Viral
expression

Adenoviral overexpression 
of JCN in rat CM (Gergs 
e ta l , 2007)

Decreased SR transient amplitude Reduced contractility
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TRD

Study Ca2+ handling observations Phenotypic consequence

Knock-Out Skeletal and cardiac TRD 
knock-out mice (Shen et 
a l , 2007).

Increased basal Ca and reduced Ca transients in skeletal 
muscle. Junctin and CSQ down-regulation in skeletal 
muscle

No obvious skeletal contractile 
dysfunction.

Transgenic 5-fold TRD 
overexpression in mice 
(Kirchhefer et a l , 2001)

Myocytes had a slower Ca2+ transient decay. Down- 
regulated RyR2 and JCN but unaltered SERCA and PLB 
levels

Reduced contractility, cell 
shortening and re-lengthening

Mice overexpressing TRD 
2.9-fold (Kirchhof et al., 
2007)

Normal JCN protein levels Repetitive VT at heart rate > 
600bpm

Tissue-
Specific

Cardiac specific 
overexpression of TRD in 
mice (Kirchhefer et a l , 
2004)

Increased SR Ca2+ content, peak transient height and 
transient decay

Decreased cardiac contractility

Adenoviral TRD overexpression in rat 
CM (Terentyev et a l , 
2005)

Increased frequency but decreased amplitude of Ca2+ sparks, 
lowered SR Ca2+stores and increased RyR2 P0

Stimulation-evoked arrhythmic 
oscillations

Table 1.6. Summary of functional studies exploring the roles of EC coupling-related proteins
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1.4. Ca2+ dysregulation and pathology

1.4.1. Arrhythmic diseases

Arrhythmia describes an irregular cardiac sinus rhythm, such as tachycardia and bradycardia 

(increased and decreased heart rate, respectively) (Bhuiyan et a l , 2007b). Arrhythmic 

conditions include: premature ventricular contractions (PVC), polymorphic tachycardia, atrial 

fibrillation (AF) and ventricular fibrillation (VF), the latter usually preceding sudden cardiac 

death (SCD) (Francis et a l, 2005; Vest et a l, 2005; Pizzuto et a l, 2006; Yano et a l, 2006). 

Rhythmic disturbances are intrinsically linked to perturbed fluxes of Na+, K+ and Ca2+ ions 

and often arise as a consequence of defects in EC coupling. The following section appraises 

some of the mechanisms linked to EC coupling dysfunction in arrhythmia.

I.4.I.I. Catecholaminergic polymorphic ventricular tachycardia (CPVT) and 
arrhythmogenic right ventricular cardiomyopathy (ARVC)

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic disease 

characterised by catecholamine-induced arrhythmic episodes. Due to the nature of the disease, 

CPVT usually only manifests following exercise or stress. Susceptible individuals experience 

palpitations and syncope, which frequently lead to death. In many individuals, their first 

CPVT episode is fatal (Priori et a l, 2002; Laitinen et a l, 2003) highlighting the need for 

preventative therapies (e.g. implantable cardioverter defibrillators [ICD]). CPVT exists in 

autosomal dominant (Priori et a l, 2002; Brini, 2004) and recessive forms (Lahat and Eldar,

2002) (CPVT1 and CPVT2 respectively). CPVT1 has been mapped to the RyR2 gene on 

chromosome lq42-43 (Swan et a l, 1999), whereas CPVT2 is linked to the CSQ2 gene 

located on the short arm of chromosome 1 (lpl3-21) (Lahat et a l, 2004). CPVT is frequently 

confused with a phenotypically similar disease called arrhythmogenic right ventricular 

cardiomyopathy (ARVC2), but unlike CPVT that occurs in the absence of structural heart 

disease, ARVC2 presents with a fibro-fatty structural thickening of the right ventricular wall 

(Tiso et a l, 2001; Scheinman and Lam, 2006). Although ARVC2 has been suggested to arise 

as a consequence of RyR2 mutation (Tiso et a l, 2001), this is contentious. In addition, the 

existence of another highly malignant autosomal recessive form of CPVT has been mapped to
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an alternative locus on chromosome 7 (7p 14-22), but the protein products of this rather large 

chromosomal region remains to be defined (Bhuiyan et al., 2007a).

CPVT2 was initially characterised in Bedouin families and resulted from a single point 

mutation in CSQ (D307H) (i.e. the replacement of Asp (negatively charged) with His 

(positively charged) (Lahat et al., 2001; Eldar et a l , 2002; Lahat and Eldar, 2002). Mice 

carrying the D307H mutation exhibited contractile abnormalities and stress-induced 

arrhythmias (Dirksen et a l,  2007; Song et a l, 2007) (see Table 1.6). The phenotype of CSQ2- 

null mice was entirely consistent with the human phenotype in patients lacking functional 

CSQ2 (Postma et a l, 2002).

I.4.I.2. RyR2 mutations

Mutation-induced RyR2 dysfunction perturbs intracellular Ca2+ cycling that results in 

irregular electrical episodes known as delayed after depolarisations (DADs). Ca2+ leak 

through destabilised RyR2 channels atypically triggers Ca2+ extrusion via NCX that induces 

Na+ influx. This abnormal depolarisation, termed DAD, may if sufficiently large or frequent, 

degenerate into VF (Priori and Corr, 1990; Paavola et a l, 2007).

Altered RyR2 function underpins CPVT and heart failure (HF) (Priori et a l , 2002; Wehrens 

and Marks, 2002; Wehrens et a l , 2006). Over seventy RyR2 mutations have been identified 

to date (Laitinen et a l, 2001; Priori et a l, 2002; Tester et a l, 2004; Postma et a l, 2005; 

Nishio et a l, 2008), however controversy surrounds the precise basis through which these 

mutations induce RyR2 dysregulation (Ikemoto and Yamamoto, 2002; Wehrens et a l, 2003; 

Jiang et a l, 2004b; George et a l,  2006; Terentyev et a l, 2006). Marks and colleagues 

propose that mutations ‘weaken’ the complex formed by RyR2 and FKBP12.6, which
i

destabilises the channel and induces Ca leak (Marx et a l, 2000; Wehrens et a l, 2003). 

However, several groups (including our own) contest this hypothesis (George et a l, 2005; 

Jiang et a l , 2005; Xiao et a l , 2005; Liu et a l , 2006; Xiao et a l , 2007).

The functional characterisation of published RyR2 mutations has lagged behind the speed at 

which they have been identified. To date, only twelve mutations have been functionally 

characterised (-15% of all those reported) (Table 1.7) with most of these revealing a gain of
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function phenotype whereby the mutation appears to sensitise the channel to Ca2+ release by a 

number of potential mechanisms (Jiang et al., 2002a; George et al., 2003a; Lehnart et a l, 

2004; Kannankeril et al., 2006). Notably, L433P was the first mutation to exhibit reduced Ca2+ 

sensitivity (Thomas et a l , 2004), a finding that was disputed by Jiang and colleagues (Jiang et 

al., 2005) who subsequently characterised A4860G as a loss-of-function mutation based on its 

diminished activation by luminal Ca2+ and normal activation by cytosolic Ca2+ and caffeine 

(Jiang et al., 2007). The A4860G mutation is located in a distal TM region of RyR2 that 

encompasses the pore inner helix, a region proposed to be critical in channel activation and 

gating (Wang et al., 2004). The I M mutation also resides in this region, but has a 

functionally diverse phenotype from A4860G (Jiang et al., 2005). In addition, A4860G was 

found to induce catecholaminergic idiopathic ventricular fibrillation in a 7-year old male, 

while a 9-year old female harbouring the S2246L mutation exhibited the same disease 

manifestation (Priori et al., 2002). Subsequent characterisation determined S L to be a 

gain-of-function mutation (George et al., 2003a; Jiang et al., 2005), inconsistent with A4860G. 

These findings underline the potential functional heterogeneity of RyR2-linked pathologies. 

The ramifications o f functional heterogeneity of mutant RyR2 for developing anti-arrhythmic 

therapies are substantial and have been reviewed elsewhere (Thomas et al., 2007).

The disproportionate clustering o f almost 40% o f published RyR2 mutations in the I-domain 

(representing just -18%  of the RyR2 polypeptide) underscores the critical functional role of 

this region. Figure 1.13 displays CPVT-linked RyR2 mutations and their relative clustering 

within functional domains. The severe R4497C I-domain mutation has been studied 

intensively and the arrhythmic phenotype has recently been reproduced in R4496C mutant mice 

(Cerrone et a l, 2005; Liu et a l,  2006). Other mouse models harbouring RyR2 mutations have 

also been recently generated (Kannankeril et a l, 2006; Lehnart et a l, 2008). In addition, 

Mark’s laboratory has suggested that R2474S not only predisposed mice to VT and SCD, but 

also induced epileptic episodes (Lehnart et a l, 2008). It is debatable whether mice carrying 

CPVT-linked mutations accurately mimic the causative arrhythmic mechanisms underlying 

the diseased phenotypes in humans, particularly when considering the species differences in 

EC coupling (Griffiths, 1999; Takagishi et a l, 2000; Hintz et a l, 2002). Nevertheless, these 

animal models represent a powerful approach to studying the molecular basis of fatal 

arrhythmias.
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Mutation Functional characterisation
Lipid bilayer and cell models Animal models

R176Q Unaffected basal Caz+ but reduced Caz+ dependent inhibition when co
expressed with T2504M (Thomas et al., 2005)

Spontaneous Caz+ 
oscillations that 
resulted in VT 
(Kannankeril et a l,  
2006)

Sustained high cytoplasmic Caz+ levels following stimulation (Thomas et al., 
2004)
Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et al., 2005)

L433P Unaffected basal Ca2+ but reduced Caz+ dependent inhibition (Thomas et al., 
2005)
Only mutation suggested to induce a loss of function, although cytoplasmic 
Ca2+ was sustained following stimulation (Thomas et al., 2004)
Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et al., 2005)

S2246L Normal basal Caz+, but augmented Caz+ release upon activation, unaltered 
FKBP12.6 association (George et al., 2003a)
Defective interdomain interaction destabilised channel (George et al., 2006)
Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et al., 2005)

P2328S Increased Caz+ sensitivity and reduced affinity for FKBP12.6 (Lehnart et a l,  
2004) causing polymorphic tachycardia (Laitinen et al., 2001)

N2386I Unaffected basal Cai+ but reduced Caz+ dependent inhibition (Thomas et al., 
2005)
Sustained high cytoplasmic Caz+ levels following stimulation (Thomas et al., 
2004)

R2474S Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et a l ,  2005)

Caused 
spontaneous 
seizures, exercise- 
induced VT and 
SCD (Lehnart et 
al., 2008)

T2504M Unaffected basal Caz+ but reduced Ca2+ dependent inhibition when co
expressed with R176Q (Thomas et al., 2005)
Sustained high cytoplasmic Caz+ levels following stimulation (Thomas et al., 
2004)
Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et al., 2005)

N4104K Normal basal Cai+, but augmented Caz+ release upon activation, unaltered 
FKBP12.6 association (George et al., 2003a)
Defective interdomain interaction destabilised channel (George et al., 2006)

Q4201R Increased Caz+ sensitivity and reduced affinity for FKBP12.6 (Lehnart et al., 
2004) causing polymorphic tachycardia (Laitinen et al., 2001)
Controversial demonstration o f enhanced SOICR and luminal Caz+ sensitivity 
and unaltered FKBP12.6 association (Jiang et al., 2005).

R4496C
(mouse)
R4497C
(Human)

Increased Caz+ sensitivity and Caz+ oscillations (Jiang et al., 2002a) Predisposed heart 
to VT and VF 
(Cerrone et a l,  
2005), without 
FKBP12.6 
dissociation (Liu et 
al., 2006)

Normal basal Caz+, but augmented Caz+ release upon activation, unaltered 
FKBP12.6 association (George et a l,  2003a)
Defective interdomain interaction destabilised channel (George et al., 2006)

I4867M Enhanced SOICR and luminal Caz+ sensitivity, unaltered FKBP12.6 
association (Jiang et a l ,  2005)

V4653F Increased Caz+ sensitivity and reduced affinity for FKBP12.6 (Lehnart et al., 
2004) causing polymorphic tachycardia (Laitinen et al., 2001)

Table 1.7. Functional characterisation of RyR2 mutations
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1.4.1.3. Heart failure

Heart Failure (HF) is a life-threatening disease characterised by a prolonged decline in cardiac 

contractility due to defective intracellular Ca2+ signalling. HF can arise through degenerative 

conditions such as cardiopathology, ischemia and hypertension, and is often characterised by 

a reduced SR load arising as a consequence o f RyR2 Ca2+ leak (Shannon et a l , 2003; Ai et 

al., 2005; Lehnart, 2007).

Marks and colleagues claimed that the pathogenesis o f HF specifically resulted from hyper- 

phosphorylation o f RyR2 at S2808, which dissociates FKBP12.6 and induces Ca2+ leak (see 

Section 1.4.5.2). This high profile, yet contentious theory has been proposed as a unifying 

pathologenic mechanism underlying both HF and CPVT (Wehrens et al., 2005a). In view that 

HF encompasses multiple components of the EC coupling machinery including NCX and 

SERCA (Hajjar et al., 1997; Terentyev et al., 2003; Hoshijima, 2005; Maier et al., 2005), and 

that CPVT has been linked to functionally diverse mutations throughout both RyR2 and CSQ 

(Priori et al., 2002; Laitinen et a l, 2003; Lahat et al., 2004), it is difficult to reconcile fully 

that two distinct diseases arising via separate modes o f dysfunction have the same 

mechanistic basis.

The precise interplay o f EC coupling components is central to Ca homeostasis and normal 

contractile function (see Section 1.2.4). Human HF is characterised by a reduced SR load, 

probably resulting from a combination of increased NCX activity over-compensating for 

reduced cellular levels o f  SERCA (Shannon et al., 2003). However, ‘leaky’ RyR2 channels 

are also the hallmark o f human HF and are observed experimentally in ‘failing myocytes’ as 

an increased frequency o f Ca2+ sparks (Kubalova et al., 2005). Other mechanisms also 

contribute to Ca2+ dysfunction in heart failure. It has been reported that reduced PLB 

phosphorylation in failing cardiac cells maintained the inhibitory action on SERCA, which 

also reduced cellular SR load (Sande et al., 2002). Furthermore, reduced EC coupling gain in 

HF is attributable to dysfunctional RyR2 gating and a decreased proximity of LTCC and 

RyR2 channels. Transverse tubule migration from the cardiomyocyte Z-line (see Figure 1.9) 

caused isolated ‘orphaned’ RyR2 channels that resulted in dyssynchronous Ca sparks and 

Ca2+ cycling interference (Song et al., 2006). Similarly, isolated RyR2 channels, referred to as 

‘rogue receptors’, independently decoded and responded to Ca signals, thus failing to 

participate in coordinated channel activity (Sobie et a l, 2006).
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1.4.2. Mechanisms of RyR2-linked arrhythmia

I.4.2.I. Defective interdomain interaction

Intra-molecular interactions within RyR2 are critical for normal channel function (section 

1.1.6), which can be destabilised as a consequence of mutation (e.g. in CPVT) (George et al., 

2006; Yano et a l, 2006) or following years o f chronic dysregulation (e.g. in HF). Despite the 

different aetiologies of these diseases, it is emerging that defective domain interaction may be 

a common mechanistic basis underlying RyR2 dysfunction (Oda et a l, 2005; Yano et a l, 

2005a; George et a l,  2006). In agreement with the hypothesis that RyR instability may be 

considered a generalised mechanism of channel dysfunction, defective inter-domain 

interactions within RyRl underlie malignant hyperthermia (MH). The mutational clustering 

discussed in Section 1.4.3 is striking when considering that the mutation-rich domains are 

regions involved in domain interaction (Figure 1.13). This concept is explored more fully in 

Chapter 3.
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1.4.2.2. PKA hyper-phosphorylation of RyR2 and FKBP12.6 dissociation

The term ‘hyper-phosphorylation’ was used to describe the status of PKA phosphorylation at 

serine 2808 (S2808) o f RyR2 in samples obtained from end-stage heart failure patients (Marx 

et al., 2000). However, it is a thoroughly misleading term since it corresponds to 

approximately 75% of full-stoichiometry (e.g. phospho-S2808 on 3 out of 4 RyR2 subunits). 

Their model further proposed that PKA ‘hyper-phosphorylation’, occurring as a result of 

increased p-AR drive, dissociated the channel stabilising protein FKBP12.6 (renamed 

calstabin2 by these same authors). This dissociation was reported to trigger abnormal Ca2+ 

release via destabilisation o f RyR2 (Marx et al., 2000; Wehrens et al., 2005a; Wehrens et a l, 

2006). This model has been corroborated by just one other laboratory (Doi et al., 2002; Oda et 

al., 2005; Yano et al., 2005b) and there are numerous inconsistencies emerging with studies 

from other laboratories. For example:

1) 75% PKA phosphorylation of S2808 represented the basal phosphorylation status and 

corresponded to low channel activity (Carter et al., 2006).

2) Full stoichiometric PKA phosphorylation at S2808 (100%) or introduction of a pseudo 

phosphorylated RyR2 (following mutation of S2808 to Asp), both failed to alter 

RyR2:FKBP12.6 interaction (Jiang et al., 2002b; Xiao et al., 2004). Similarly, 

sustained PKA phosphorylation did not elicit SR Ca leak (Tokuhisa et al., 2006)

3) FKBP12.6-deficient mice generated by another laboratory exhibited normal RyR2 

with no sign o f spontaneous Ca2+ release or stress-induced arrhythmias (Xiao et al.,

2007).

4) FK506-induced dissociation of FKBP12.6 had no effect on cardiac contraction 

(Milting et al., 2001).

5) Mice harbouring the CPVT-linked RyR2 R4496C mutation displayed unaltered 

FKBP12.6:RyR2 binding affinity, despite the occurrence of DADs (Liu et al., 2006).

6 ) In HL-1 cardiomyocytes, RyR2 mutations exhibited comparable binding of FKBP12.6 

to that determined with WT channels (George et al., 2003a; Jiang et al., 2005).

7) S2030 is suggested to be the principal PKA phosphorylation site (not S2808), and 

S2030 is not hyperphosphorylated in response to increased p-AR drive (Xiao et al., 

2005; Xiao et al., 2006).

8) CaMKII phosphorylation at S2808 (Kohlhaas et al., 2006) mediated SR Ca2+ leak via 

a mechanism independent of FKBP12.6 (Ai et al., 2005; Guo et al., 2006).
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9) Ablation of the S2808 phosphorylation site in mice did not alter P-AR response, nor 

did it protect the mice from stress-induced episodes (Benkusky et a l , 2007).

Taken together, these findings do not support the central role of FKBP12.6 as a ‘stabilising 

protein’, nor do they support the theory that PKA is the only kinase responsible for inducing 

Ca2+ leak in HF and CPVT.

1.4.2.3. SR C a2+ and lum inal C a 2+ sensitivity

As shown in Figure 1.13, the majority of CPVT-linked RyR2 mutations map to the 

cytoplasmic domain. Thus, it has proven difficult to reconcile the occurrence of cytoplasmic 

mutations with the strong regulation of RyR2 by luminal Ca2+ environments. A mechanism 

that provided a potential answer to the ‘cytoplasmic mutations’ versus ‘luminal regulation’ 

conundrum has been put forward. In a mechanism termed store-overload-induced-calcium- 

release, or SOICR, Chen’s lab showed that abnormal Ca2+ release though mutant RyR2 was 

linked to an increased sensitivity to SR Ca2+ store content (Jiang et al., 2004a; Xiao et a l , 

2004; Jiang et a l, 2005) (Figure 1.14). The group proposed that during periods of increased 

adrenergic drive, RyR2 mutations increase channel sensitivity to luminal Ca2+, resulting in 

abnormal Ca2+ leak. This was proposed as a common mechanism underlying the dysfunction 

of all gain-of-function CPVT-linked RyR2 mutations. However, not all RyR2 mutations are 

gain of function (e.g. L4 3 3 P) and recently the A4860G mutation was found to impose reduced 

luminal Ca2+ sensitivity and a lower propensity for SOICR (Jiang et a l,  2007).

/ \  Normal Sarcoplasmic Reticulum

Figure 1.14. Store-overload induced 
calcium release (SOICR)

Both normal (A) and CPVT (B) SR Ca2+ load 
at rest (left panels) and following
exercise/stress (right panels) are displayed. 
The red bar position signifies the relative 
SOICR threshold determined by RyR2, which 
is reduced in CPVT patients (B). The blue 
area represents SR free Ca2+, whereas the 
orange area depicts increased SR-free Ca2+ 
resulting from exercise or stress. In normal 
RyR2, either at rest or during stress, this level 
is below the threshold set by SOICR. 
However, in mutant RyR2, following stress, 
Ca2+ leak can occur due to Ca2+ load rising 
above the SOICR threshold. Ca2+ leak can 
trigger arrhythmia through the generation of
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1.4.3. Targeting RyR2 as a therapeutic intervention

Currently treatments for arrhythmic conditions are limited. The predominant use of 

pharmacological agents that modify ion channel function is a cost-effective but sub-optimal 

treatment and most individuals with severe or recurrent arrhythmias are candidates for 

implantable mechanical devices.

To date, implantable cardioverter defibrillators (ICDs) (Keating and Sanguinetti, 2001; Dai 

and Yu, 2005; Francis et al., 2005) are by far the most successful therapy for normalising 

arrhythmic episodes (Hentati et al., 2003; Werner et al., 2004; Napolitano and Priori, 2006). 

ICDs operate through monitoring cardiac rate and rhythm, and the detection of rhythmic 

irregularities triggers corrective therapy in the form of electrical pulses. However, ICDs are 

hugely expensive and are not indicated for use in all patients, particularly children. 

Consequently there is a clear need for new, more effective and safe alternative anti- 

arrhythmic strategies.

p-blockers have been used in the treatment of arrhythmias for many years and they have 

become the main pharmacological regime in the clinical management of CPVT. As discussed, 

CPVT manifests under episodes of stress and increased adrenergic drive, therefore attenuation 

of the p-AR response appears to be a valid strategy. In clinical trials, P-blocker therapy has 

been found fairly successful in reducing the occurrence of arrhythmias (Priori et al., 2002). 

However, due to the functional heterogeneity of CPVT and its incomplete penetrance, p- 

blockade was inconsistent and only partially controlled arrhythmic episodes (Sumitomo et al., 

2003; Postma et al., 2005). This finding was corroborated by incomplete protection afforded 

by P-blockers in the R4496C mouse model of CPVT (Cerrone et al., 2005). A more recent 

study suggests the implementation of Ca channel blockers increases the efficacy of P- 

blockers in the treatment of CPVT (Rosso et al., 2007), consistent with findings from 

previous studies (Sumitomo et al., 2003; Swan et al., 2005). The two groups of Marks and 

Matsuzaki have suggested that P-blockers restore the association of RyR2 and FKBP12.6 in 

HF, preventing Ca leak (Doi et al., 2002; Reiken et al., 2003c) but the beneficial effects of 

P-blockers in the absence of restored RyR2:FKBP12.6 binding should also be noted (George, 

2008).
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1 .4.3.1. Targeting intra-molecular instability

Novel drugs, such as JTV519 (K201), are currently under development for the treatment of 

arrhythmic conditions (Kohno et al., 2003; Wehrens et al., 2004a). JTV519 was first 

introduced by Kaneko in 1997 (Kaneko et al., 1997) and was adopted for use as an RyR2- 

centred therapeutic approach by Matsuzaki’s lab (Kohno et al., 2003). Following these early 

promising studies, it has since been promoted by Andrew Marks as the ‘universal’ treatment 

for all RyR2-related diseases, based on its apparent rescuing of the interaction between RyR2 

and FKBP12.6 (Wehrens et al., 2004a; Wehrens et al., 2005b). The authors argued for an 

unequivocal role for FKBP12.6 re-binding to RyR2 to restore normal Ca2+ cycling, and 

showed that JTV519 had no beneficial effect in the absence of FKBP12.6. In contrast, 

JTV519 modulated several EC coupling proteins including SERCA (James, 2007) and K+ 

channels (Nakaya et al., 2000) that suggested a lack of target specificity for RyR2. However, 

this broad targeting of JTV519 may underpin its successful implementation as a 

cardioprotective agent (Lehnart et al., 2004; Wehrens et al., 2004a; Wehrens et al., 2005b). 

Following on from the disastrous outcomes resulting from targeting single ion channels (Echt 

et al., 1991; Starmer et al., 1991), the markedly anti-arrhythmic effects o f JTV519 emphasise 

that future pharmacological interventions should seek to modify the EC coupling network and 

not concentrate on the potentially hazardous targeting of single molecules.

I.4.3.2. Targeting redox modification

Redox sensitivity of RyR channels poses a novel therapeutic target. As previously discussed, 

ROS play an important physiological role in signal transduction within cells, however, they 

also function in the development of pathological conditions (Davidson and Duchen, 2006; 

Hool, 2006). Carvedilol, a mixed action P-blocker with free radical scavenger effects 

corrected defective inter-domain interactions and normalised contractility in canine heart 

failure (Mochizuki et a l , 2007). Likewise, edaravone (MCI-186), a potent free radical 

scavenger, was reported to reduce cell and tissue damage as a result of ROS. It has also been 

associated with improved cardiac function following myocardial infarction (Onogi et al., 

2006), and stabilising RyR inter-domain interactions in canine heart failure (Yano et al., 

2005a). However, the therapeutic effects of this compound are not limited to cardiovascular 

diseases, it has also been successfully implemented in a range of oxidative-stress related 

conditions and is clinically licensed for use in reducing the extent of tissue damage following

54



neurological ischemia (stroke) (Ito et al., 2005; Asai et a l , 2007; Niyaz et al., 2007; Ito et al., 

2008). Edaravone also has anti-apoptotic qualities by means o f enhancing intracellular 

survival signalling cascades (Asai et al., 2007; Niyaz et al., 2007). However, edaravone may 

also generate ROS by reacting with a pterin (organic compound) derivative, the products of 

which triggered gross cell death (Arai et al., 2008). Consequently the use of edaravone in a 

cardiac context requires the generation of careful, trial-based data in population studies. 

Edaravone is discussed further in Chapter 7.
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2+
1.5. SR Ca release — a second player

1.5.1. Inositol trisphosphate receptor (IP 3R )

Inositol trisphosphate receptors (IP3 R) are a family of tetrameric Ca2+ release channels 

(Mignery et al., 1989; Taylor and Richardson, 1991; Berridge, 1993) Three isoforms of IP3 R 

have been identified (IP3 R I, 2  and 3), which display an overall sequence homology of 

approximately 70% (Mackrill et al., 1997) (Table 1.8). At least one isoform of IP3 R is present 

in all cells, although the relative expression and distribution is isoform-, tissue-type- and 

function- dependent (Vermassen et a l , 2004). IP3 RS are crucial for both general and localised
•y 1

Ca -mediated cellular signalling pathways, such as gene expression and regulation (Powell et 

al., 2001; Cardenas et a l, 2005), fertilisation (Miyazaki et a l, 1992), apoptosis (Sugawara et 

a l, 1997; Hajnoczky et a l, 2000) and vital other processes (Berridge, 1993). Their wide 

distribution in exocrine tissues also underlies a role in secretory functions throughout the 

body (Fujino et a l, 1995; Futatsugi et a l, 2005).

The involvement of IP3R in cardiac contraction was originally hypothesised in 1993 following 

the marked expression of IP3R ‘clusters’ in Purkinje cells (Gorza et a l, 1993), a role that has 

been corroborated by recent studies (Zima and Blatter, 2004; Li et a l, 2005). However, as 

cardiomyocyte IP3R mRNA levels are 50-fold lower than RyR2 mRNA (Moschella and 

Marks, 1993), the fundamental contribution of IP3R-dependent signalling to EC coupling has 

been largely overlooked. Nevertheless, recent compelling findings have shown that IP3R2 , the 

most abundant IP3R isoform expressed in the heart, localises to the nuclear envelope (NE) and 

the SR, and is involved in Ca -dependent processes such as gene transcription and signal 

transduction (Zima et a l , 2007). Moreover, IP3R may activate RyR2 via Ca -release events
< y ,

increasing Ca concentrations in the locality of RyR2 (Zima and Blatter, 2004; Domeier et 

a l, 2008). Despite conflicting reports (MacMillan et a l, 2005), this concept is appealing 

considering IP3R2  and RyR2 co-localise in the SR, and that RyR2 are known to be primed by
-y 1

localised Ca environments (i.e. the basis of CICR).

IP3 R are also composed of a large cytoplasmic N-terminus that constitutes -85%  of the 

protein, and a smaller transmembrane region that forms the Ca2+ releasing pore (Taylor and 

Richardson, 1991). Like RyR, IP3 RS are modulated by a vast array of regulators on both 

luminal and cytoplasmic faces (Table 1.9). The N-terminal residues 1-604 of IP3 RI bind IP3 ,
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which was enhanced by deletion of a ‘suppressor’ domain’ (a.a. 1-225) (Yoshikawa et al., 

1996; Yoshikawa et al., 1999) (Figure 1.15). The N-terminus is reported to be involved in 

channel gating via interaction with a conserved cysteine residue in the TM domain (2613 in 

IP3RI) (Uchida et al., 2003), which supports the functional intra-molecular interactions 

demonstrated in other studies (Boehning and Joseph, 2000; Schug and Joseph, 2006). 

Furthermore, mutation-linked disruption of the IP3R pore inactivated the channel (Schug et 

al., 2008). Following IP3 binding to the receptor, activation signals are transduced via the N- 

terminal and internal coupling domains to the gatekeeper domain, which causes a 

conformation change in the TM assembly that opens the channel (Figure 1.15). IP3R have six 

putative transmembrane (TM) spanning domains (Figure 1.15), of which TM1 and 2 are 

documented as essential for ER membrane retention (Parker et al., 2004). Various IP3R 

domains have been determined at a resolution (~2A, (Bosanac et al., 2002; Bosanac et al., 

2005)) superior to that presently obtained for RyR. Thus, in view of the high structural 

homology of RyR and IP3R (60-70%, Appendix I) it is anticipated that ongoing structural 

studies of IP3R may provide valuable insights into the relationship between RyR structure and 

function.
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Figure 1.15. Schematic 
representation of IP3R  
structure

The IP3R (shown here based 
on mouse IP 3R I) is composed 
of an N-terminal cytoplasmic 
IP3-binding domain (P-trefoil), 
C-terminal channel domain (a- 
helical) and an intermediate 
regulatory/coupling domain. 
IP3 binds to the N-terminus 
which elicits a conformational 
change via coupling domains 
that activates the channel.

From Mikoshiba, 2007.
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IPjRl IP3R2 ip 3r 3

Size Human:
2695 amino acids 
(Yamada et al. ,  1994) 
220kDa (Yamada et 
al. ,  1994)

Human:
2701 amino acids 
(Sudhof et al., 1991; 
Yamamoto-Hino et al., 
1994)
270kDa (Li et al., 
2005)

Human:
2671 amino acids 
(Yamada etal., 1994; 
Yamamoto-Hino et al., 
1994)
240kDa (Yamamoto- 
Hino et al., 1995)

Gene Location Human: 3p25-26 
(Yamada et al., 1994)

Human: 12pl 1 
(Yamada etal., 1994)

Human: 6p21 (Yamada 
etal., 1994)

Expression & 
Distribution

Brain and smooth 
muscle (Yoshida and 
Imai, 1997) and 
throughout the CNS 
(Furuichi et al., 1993). 
Detected in smooth ER 
and outer nuclear 
membrane (Yoshida 
and Imai, 1997).

Predominant cardiac 
isoform (Zima et al., 
2007), expressed six 
times higher in atrial 
myocytes than 
ventricular (Lipp et al., 
2000). Also expressed 
in liver, testis, lung, 
spleen and pancreas 
(Yoshida and Imai, 
1997). Localised to 
cardiomyocyte nuclear 
envelope (Bare et al., 
2005).

Widespread tissue 
distribution but 
expression was higher 
in pancreas, intestine, 
lung and brain 
(Yoshida and Imai, 
1997). Co-localised 
with mitochondria 
(Mendes et al., 2005).

Mutations/ 
Polymorphisms 
and animal 
models

Most IPsRl-null mice 
were embryonic lethal. 
Mice that survived 
displayed severe ataxia 
and seizures that 
caused death within 
weeks of birth 
(Matsumoto et al., 
1996).

IP3R2 -deficient mice 
were viable with no 
compensatory changes 
in either IP3RI or 
IP3R3. RyR, NCX and 
SERCA expression 
was unaltered (Li et 
al., 2005). IP3R2 and 3 
double knock-out mice 
were viable, but had 
severe exocrine 
abnormalities 
(Futatsugi et al., 2005).

IP3R3 deficient mice 
displayed abnormal 
taste perception 
(Hisatsune et al., 
2007). Natural 
polymorphism, P335L,
affected intracellular

 ̂ 1

Ca signalling by 
reducing IP3 binding 
and IICR (Kim et al., 
2005).

Link to Disease Long-term depression 
(Inoue et al., 1998). 
Epilepsy (Matsumoto 
and Nagata, 1999).

Linked to atrial 
fibrillation and 
arrhythmia (Mackenzie 
et al., 2002; Guo et al., 
2004; Zima and 
Blatter, 2004; Li et al., 
2005)

Table 1.8. Functional characteristics of IP3R isoforms

58



IIP3R
CaM 2+Inhibited IP3-mediated Ca release in all IP3R isoforms independent of 

Ca2+ (Patel et a l, 1999; Adkins et al., 2000)
IRBIT (IP3 
binding 
protein 
released with 
IP3)

Competes with IP3 for IP3-binding core on IP3R (Ando et a l , 2006) but 
was released from IP3R upon IP3 binding. IRBIT bound to IP3R in 
phosphorylated form and was only dissociated by IP3 during IICR (Ando et 
a l, 2003)

CABP1 (IP3R 
Ca2+ binding 
protein)

CABP1 bound with high affinity (~25nM) to IP3 binding region of all IP3R 
isoforms, and increased P0 (Yang et al., 2002). Conversely, CABP1 was 
reported to reduce IICR (Kasri et al., 2004)

ERp44 ERp44 is a luminal IP3R binding protein of 44kDa that interacted with the 
third luminal loop variable region of IP3R I, an association dependent on 
redox state. As this region was not conserved throughout isoforms, 
interaction does not occur with IP3R2  or 3. Decreased luminal Ca2+ 
concentration increased ERp44 interaction with IP3RI that attenuated 
channel response to IP3 and subsequently prevented store depletion (Higo 
et al., 2005).

Chromogranin
A/B
(CGA/CGB)

Both CGA and B are high-capacity, low-affinity luminal Ca2+ storage 
proteins. CGA and B interacted with the conserved region of the third 
luminal loop of all three IP3R isoforms (Kang et a l , 2007), but interaction 
with CGB was stronger than CGA (Thrower et al., 2003). CGA and B 
increased IP3R activity (Higo et al., 2005)

Homer Binds a proline-rich region in N-terminal suppressor region of IP3R and 
may physically couple IP3RS to metabotropic glutamate receptors 
(involved in IP3 and PKC production) (Tu et al., 1998)

Cytochrome C
'11

Cytochrome C binding blocked Ca dependent inhibition of IP3R, causing 
uncontrolled Ca2+ release. Sustained intracellular Ca2+ concentrations 
triggered global cytochrome C release from mitochondria, which induced 
apoptosis (Boehning et al., 2003; Sedlak and Snyder, 2006)

Carbonic- 
anhydrase 
related protein 
(CARP)

CARP bound to the modulatory domain o f IP3R I, which reduced IP3 
affinity, and inhibited IP3 binding (Hirota et al., 2003)

FKBP FKBP 12 bound to the internal coupling domain of IP3R (Cameron et al., 
1997). Agonist-induced Ca2+ release was unaffected by FKBP 12 (Bultynck 
et al., 2 0 0 1 )

Table 1.9. Functional and physical association of key proteins in IP3R regulation
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1.5.1.1. IP3R channel regulation

IP3R are primarily regulated by second messengers Ca2+ and IP3, as well as Mg2+ and ATP 

(Table 1.10). However, receptor function is also modulated by protein interactions (Table 1.9) 

and phosphorylation (Table 1.11) (Choe and Ehrlich, 2006). Extracellular stimuli are 

conveyed via G-protein coupled receptors (GPCR) in the plasma membrane, which activate 

phospholipase C (PLC). PLC stimulates hydrolysis of phosphatidyl inositol bisphosphate 

(PIP2) into IP3 and diacylglycerol (DAG), which participate in distinct, yet interconnected 

signalling events. IP3 induces conformational-dependent Ca2+ release (IICR) directly through 

IP3R (Mikoshiba et a l, 1994) whereas DAG may activate IP3R indirectly via downstream 

PKC-mediated events (Mikoshiba et a l , 1994; Arguin et a l, 2007; Mikoshiba, 2007).

Like RyR, IP3R are organised into lattice-like arrays and can function either individually or in 

synchronised clusters. A possible functional consequence of IP3R array formation is that the 

dynamic range of IICR from ER stores may be precisely tuned by the magnitude of the 

stimuli. Localised Ca2+ signalling events arise through single channel activation termed a Ca2+ 

‘blip’ which are synchronised into clusters termed Ca2+ ‘puffs’ that are analogous to a RyR- 

mediated ‘spark’. Co-ordinated ‘puffs’ can trigger propagative Ca2+ waves (Keizer and Smith, 

1998). In addition, IP3RI harbouring a mutation (K508A) that prevented an IP3-induced 

conformational change was also found to inhibit cluster formation and Ca2+ release (Tateishi 

et a l, 2005; Chalmers et a l,  2006). These findings, in line with previous studies, suggest that 

both intra-molecular and inter-protein communication is vital for normal channel function.
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IIP3R
Physiological
IPs IP3RI and 2 bind IP3 with high affinity (Kd ~50 and 15nM 

respectively) (Sudhof et al., 1991). IP3R2  is most sensitive isoform to 
IP3 (Miyakawa et al., 1999) and mobilised significantly more Ca2+ 
than IP3RI (Ramos-Franco et al., 1998). IP3R3 is least sensitive 
isoform to IP3 (Kd~160nM) (Miyakawa et a l,  1999).

Ca5+ IP3R I, but not IP3R2  was inhibited by mM cytoplasmic Ca2+ levels, 
(Ramos-Franco et al., 1998). All IP3RS were inhibited by mM luminal 
Ca2+, yet stimulated by pM luminal Ca2+. IP3R3 is the least sensitive 
isoform to Ca2+. Ca2+ inhibition o f IP3RS is inversely related to 
cytoplasmic IP3 concentration (Miyakawa et al., 1999).

Mg*+ Mg2+ inhibited IP3R and did not compete with IP3 or Ca2+ for binding 
sites (Volpe and Vezu, 1993; White et al., 1993), but this is 
controversial (Van Delden et al., 1993)

ATP Consensus ATP binding site between isoforms suggested a similar 
action on all IP3R isoforms (Yoshida and Imai, 1997) but rank order 
of IP3R sensitivity is IP3RI > IP3R2  > IP3R3 (Miyakawa et al., 1999; 
Maes et al., 2000). ATP increased IP3R P0, however, in the absence of 
ATP, higher [Ca2+]j was required for channel activation.

cADPR Contrasting to its actions on RyR, cADPR inhibited IICR (Missiaen et 
al., 1998).

Pharmacological
Carbachol Carbachol (a muscarinic receptor agonist widely used experimentally 

to stimulate IP3R) increases IP3 concentrations by GPCR activation of 
PLC (Arguin et al., 2007; Caron et al., 2007; Chaloux et al., 2007; 
Regimbald-Dumas et al., 2007). Carbachol-triggered Ca2+ release 
through PKC-phosphorylated IP3R was reduced (Arguin et a l , 2007).

Heparin Heparin blocks IP3R function (IP3R3 > IP3R I/ IP3R2 ) and 
competitively inhibits IP3 binding (White et al., 1993; Ramos-Franco 
et al., 1998; Zima and Blatter, 2004; Zima et al., 2007)

Thimerosal Oxidative agents potentially modulate IP3R function through 
enhancing receptor sensitivity to IP3. Redox state can modulate 
binding of the luminal protein ERp44.

Table 1.10. Main physiological and pharmacological regulators of IP3R
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1.5.1.2. IP3R phosphorylation

IP3R is a substrate for phosphorylation by an array of phosphatases and kinases, 

which, like RyR imposes a potentially huge functional plasticity on IP3R regulation 

(Table 1.11). For example, IP3RI phosphorylation by PKA at S1589 and S1755 

increased receptor sensitivity to IP3, whereas targeting o f PKG to identical sites 

inhibited IICR. In addition, CaMKII phosphorylation was reported to diminish IP3 

responses, but this function was suggested to underlie a negative feedback mechanism 

that modulated Ca2+ oscillations (Zhu et a l , 1996). A further kinase, protein kinase B 

(PKB, also termed Akt) binds to a C-terminal tail sequence present across all IP3R 

isoforms (Khan et al., 2006) and is proposed to modulate the binding of apoptosis- 

related proteins (Szado et a l, 2008).

I

IP 3R

CaM KII Phosphorylation reduced IP3R P0 (Ferris et al., 1991; Bare et al., 2005).

PKA Phosphorylation increased IP3R activity (Chaloux et al., 2007; Regimbald- 
Dumas et al., 2007) and sensitivity to IP3 (Tang et al., 2003). IP3RI is more 
sensitive to PKA phosphorylation than type 2 or 3 (Murthy and Zhou, 2003).

PKB Phosphorylation reduced Ca2+ efflux, which was associated with a lower 
susceptibility to apoptosis (Szado et a l , 2008).

PKC Phosphorylation was increased by Ca2+ and DAG (Ferris et al., 1991), and was 
associated with a decreased response to IICR and carbachol stimulation 
(Arguin et al., 2007; Caron et al., 2007).

PKG Phosphorylation inhibited IICR (Murthy and Zhou, 2003)

PP1/PP2A Dephosphorylation reversed PKA phosphorylation via the same site (a.a. 
1251-1287) (Tang et al., 2003), and regulated interactions between IP3R and 
IRBIT, influencing IICR (Devogelaere et a l , 2007).

Table 1.11. Functional regulation of IP3R by kinases and phosphatases
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1.5.2. F u n c tio n a l a n d  s t ru c tu ra l  s im ila ritie s  b e tw een  R y R  a n d  IP 3R

As described above, although RyR and IP3R constitute distinct intracellular Ca2+ 

release channels, they exhibit some similarities with respect to expression profiles and 

tissue restriction, modes of channel regulation and ‘domain-based’ structural 

organisation. Both are homotetrameric channels comprised of a large N-terminus that 

protrudes into the cytoplasm, and a comparably smaller C-terminus that forms the 

Ca2+ pore (Taylor and Richardson, 1991; Coronado et a l , 1994). In addition, there is 

a pronounced degree o f structural similarity that belies rather limited sequence 

homology between the IP3R and RyR channel families (Lai et al., 1987; Lai et al., 

1988; Mignery et a l, 1989; Mignery et a l, 1990), (see Appendix I). The activities of 

both receptor families are modulated by discrete interdomain interactions (Yamamoto 

et a l, 2000; Uchida et a l, 2003; George et a l, 2004), which are also sensitive to 

interactions with accessory proteins (e.g. FKBP and CaM), localised phosphorylation 

events and redox environments (Ferris et a l, 1991; Ai et a l, 2005; Aracena-Parks et 

a l, 2006; Joseph et a l, 2006; Mochizuki et a l, 2007). Taken together, these 

characteristics provide a basis for cross-communication between receptor families, 

and is a concept that has been explored by various laboratories (Lipp et a l, 2000; 

George et a l, 2003b; McCarron et a l, 2003; MacMillan et a l, 2005; Domeier et a l,

2008).
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1.6 . T h e s is  p r in c ip le

Discrete RyR2 protein domains interact to functionally regulate channel gating. RyR2 

mutations (CPVT) and chronic maladaptive responses in cardiac cells (HF) have been 

proposed to disrupt intra-molecular interactions, thereby impairing channel regulation, and 

leading to gross abnormalities in cellular Ca2+ handling.

The I-domain is an important region that mediates interactions within RyR2. A bioinformatic 

approach revealed that IP3R contain putative structural motifs similar to those of the RyR2 I- 

domain (Appendix I). Based on the pioneering in vitro studies of Ikemoto and colleagues, I 

hypothesised that the I-domain (and sub- fragments therein) could exquisitely modulate Ca2+ 

release channel function (RyR2 and IP3R) in a cellular context. The central tenet of this 

technique is that domain-targeted peptides can structurally and functionally interact with RyR 

via homologous sequences and modulate channel function. A similar approach demonstrated 

the feasibility of modulating IP3R function (Vamai et a l , 2005). This thesis presents the first 

characterisation of the phenotypic and functional consequences of manipulating cellular Ca2+ 

using recombinant I-domain fragments in living cells. Subsequently it aims to determine the 

nature and mode of cell damage induced by I-domain expression, and if this is a result of 

perturbed IP3R Ca signalling, whether under stimulated or resting conditions. This thesis 

will also assess the effect o f I-domain transfection on neighbouring non-expressing cells; in 

particular investigating the contribution of various cell signalling pathways.
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Chapter 2 General Materials and Methods

2.1. Materials
All reagents used were stored at room temperature (RT) unless otherwise stated.

2.1.1. M ic ro b io lo g y  reag en ts
° XL-10 Gold® Ultracompetent cells (Stratagene). Stored at -80°C.

° Luria-Bertani (LB) broth (1% (w/v) tryptone, 0.5% (w/v) NaCl, 0.5% (w/v)

yeast extract). Autoclaved and cooled to 37°C prior to antibiotic addition.

° Agar plates: LB broth with 1.5% (w/v) agar. Autoclaved and cooled to 50°C

prior to antibiotic addition. Plates were made fresh.

° NZY broth: 1.6% (w/v) NZ medium, 0.5% (w/v) yeast extract. Autoclaved.

° Wizard® Plus SV Minipreps DNA Purification System (Promega) including:

o Wizard® Plus SV Cell Resuspension Solution

■ 50mM Tris-HCl, lOmM EDTA, lOOpg/ml RNase A (to limit 

contamination by RNA); pH7.5

o Wizard® Plus SV Cell Lysis Solution

■ 0.2M NaOH and 1 % SDS (w/v)

o Wizard® Plus SV Neutralisation Solution

■ 4.09M guanidine hydrochloride, 0.759M potassium acetate,

2.12M glacial acetic acid; pH4.2

o Wizard® Plus SV Column Wash Solution

■ 60mM potassium acetate, 8.3mM Tris-HCl, 40pM EDTA, 60 

ethanol; pH 7.5

° Plasmid Maxi Kit (Qiagen®) including: 

o Resuspension buffer, PI

■ 50mM Tris-HCl, lOmM EDTA, lOOpg/ml RNase A; pH8.0 

o Cell Lysis buffer, P2

■ 0.2M NaOH and 1 % SDS (w/v)

o Neutralisation buffer, P3

■ 3M potassium acetate; pH5.5 

o Equilibration buffer, QBT
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■ 750mM NaCl, 50mM MOPS pH 7.0, 15% isopropanol (v/v),

0.15% Triton® X-100 (v/v)

o Column Wash buffer, QC

■ 1M NaCl, 50mM MOPS pH 7.0, 15% isopropanol (v/v) 

o  Elution buffer, QF

■ 1.25M NaCl, 50mM Tris-HCl pH8.5, 15% isopropanol (v/v)

° QIAquick Gel Extraction Kit (Qiagen®)

o Proprietary QIAquick agarose liquefying buffer (QG) containing 

guanidine isothiocyanate. 

o Proprietary QIAquick wash buffer (PE) containing 70% (v/v) ethanol, 

o Elution buffer, EB

■ lOmM Tris-HCl; pH8.5

2.1.2. M o le c u la r  b io logy  reag en ts

2 .I.2 .I. PC R  and sequencing

° Rapid DNA ligation kit (Roche)

o ATP-containing T4 DNA ligation buffer, 2x concentrated, 

o  DNA dilution buffer, 5x concentrated 

o  T4 DNA ligase, 5U/pl 

° Taq DNA Polymerase in buffer B (Promega). Stored at -20°C.

° Big Dye® sequencing mix (Applied Biosystems). Stored at -20°C.

° Sequencing primers for PCR :

o SPFOR12713 (TTTGAAATGCAGCTGGCG) (forward: pmRFP-Cl 

IDa), binding RyR2 12713-12730. 

o 24R (GG ACC A AT GGT AGC AGCT A) (reverse: pmRFP-Cl IDA), 

binding RyR2 11375-11393. 

o  BF13403 (ACAGATACGGAGAACCAG) (forward: pmRFP-Cl

IDb&c), binding RyR2 13403-13420. 

o  SPREV13343 (AACCC AGTCCCC AT GCCT G AGGT GC A) (reverse: 

pmRFP-Cl IDb&c), binding RyR2 13318-13343.
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2.1.2.2. Agarose gel electrophoresis

° Agarose powder (ultra-pure, Eurogentec)

° lx  TAE buffer: 40mM Tris, 20mM glacial acetic acid, ImM EDTA.

° Ethidium Bromide (EtBr), aqueous solution at lOmg/ml (Sigma-Aldrich).

° lkb DNA ladder (Invitrogen). Stored at -20°C.

° Agarose gel loading buffer: 50% glycerol (v/v), 50% lxTAE buffer (v/v) and 

Orange G (sufficient for colour change to yellow/orange).

2.1.2.3. DNA restric tion  enzymes

All restriction enzymes were purchased from New England BioLabs and were stored 

at -20°C:

Restriction
enzyme

Restriction site 
recognised

Optimal digest 
tem perature

Bam HI 5’-G|GATCC-3’ 37°C

Bgl II 5’-A|GATCT-3’ 37°C

Eco RI 5’-G|AATTC-3’ 37°C

Hind III 5’-A|AGCTT-3’ 37°C

N hel 5’-G|CTAGC-3’ 37°C

Pvu II 5’-CAG|CTG-3’ 37°C

Sal I 5’-G|TCGAC-3’* 37°C

X ba l 5’-T|CTAGA-3’ 37°C

X hol 5’-C|TCGAG-3’* 37°C

Table 2.1. R estriction enzymes and recognition sequences

* Compatible overhang permits T4-ligase mediated ligation of Sail / Xhol ends
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2.1.2.4. P ro tein  preparation , SDS-PAGE and W estern blot

° Proprietary protease inhibitor cocktail: lx  protease inhibitor cocktail tablet 

(Roche) dissolved in 20mM Tris, 5mM EDTA and 0.05% (v/v) Triton-X-100 

(25ml total volume), adjusted to pH7.4 with HC1.

° 1.5M Tris, pH 8 .8  adjusted with HC1.

° 0.5M Tris: pH6 .8  adjusted with HC1.

° Ammonium persulphate (10% (w/v)), freshly prepared.

° TEMED (Sigma-Aldrich).

° Acrylamide/Bisacrylamide solution (ratio of 37.5:1), 40% (Bio-Rad). Stored at

4°C.

° 5x SDS loading buffer: 250mM Tris pH6 .8 , 50% (v/v) glycerol, 10% (w/v)

SDS, 0.5% (w/v) bromophenol blue. Heated to 50°C prior to 10% (v/v) P- 

mercaptoethanol addition and loading.

° lx  SDS-PAGE running buffer: 25mM Tris, 250mM glycine, 0.1% (w/v) SDS.

° Pre-stained Kaleidoscope molecular weight markers (BioRad). Stored at -

20°C.

° Semi-dry transfer buffer: 48mM Tris, 39mM glycine, 0.037% (w/v) SDS and

2 0 % (v/v) methanol.

° lx  Tris-buffered saline (TBS): 20mM Tris, 137mM NaCl, adjusted to pH7.5

with HC1.

° lx  TBS-T: 0.1% (v/v) Tween-20 in lx  TBS, adjusted to pH7.5 with HC1.

° Milk blocking solution: 5% (w/v) non-fat dried milk in TBS-T.

° Imperial™ protein stain (Pierce). An optimised solution of Coomassie

Brilliant Blue ™ R250 dye

2.I.2.5. Antibodies

2 .I.2 .5 .I. P rim ary  antibodies

° Living Colours® DsRed polyclonal antibody (Clontech, Takara). Rabbit

antiserum raised against whole recombinant protein DsRed-express (an
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optimised variant of Discosoma sp. red fluorescent protein). Used at 1:750 for 

Western blot. Stored at -20°C.

° IP3RI (Affinity Bioreagents). Rabbit antiserum raised against a synthetic 

peptide in the N-terminus of IP3R1 ((1829) KKKDDEVDRDAPSRKKAKE (1848). 

Used at 1:1000 for Western blot and immunofluorescence. Stored at -20°C, 

specific for type 1 .

0 IP3R.2 (e-15) (Santa Cruz Biotech). Goat antiserum raised against an 

unspecified peptide specific to human IP3R2 . Used at 1:200 for Western blot 

and immunofluorescence. Stored at 4°C.

0 SERCA2 (Affinity Bioreagents). IgGl mouse monoclonal antibody clone IID8 

raised against native human SERCA2. Used at 1:2,500 for Western blot. 

Stored at -20°C.

0 Calreticulin. Rabbit polyclonal antiserum generated against the entire

recombinant protein, provided by Dr. D. Llewellyn, Cardiff University. Used 

at 1:1,000 for Western blot. Stored at -20°C.

2 .1 .2 .5.2. Secondary antibodies

0 Goat anti-rabbit: Horseradish peroxidase conjugated (Santa Cruz

Biotechnology). Used at 1:10,000 for Western blot. Stored at 4°C.

0 Rabbit anti-mouse: Horseradish peroxidase conjugated (Santa Cruz

Biotechnology). Used at 1:5,000 for Western blot. Stored at 4°C.

0 Donkey anti-goat: Horseradish peroxidase conjugated (Santa Cruz

Biotechnology). Used at 1:10,000 for Western blot. Stored at 4°C.

0 Goat anti-rabbit: Alexa Fluor® 488 conjugated (Molecular Probes, Invitrogen).

Used at 1:2,000 for immunofluorescence. Stored at -20°C.

0 Donkey anti-goat: Alexa Fluor® 488 conjugated (Molecular Probes,

Invitrogen). Used at 1:1,000 for immunofluorescence. Stored at 4°C.
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2.1.3. Cell Culture Reagents

° Dulbecco’s modified Eagle medium (DMEM) containing 4.5g/L L-glucose 

was supplemented with filter sterilised 10% (v/v) foetal bovine serum (FBS), 

1% (v/v) 2mM glutamine and lOOpg/ml penicillin/streptomycin

(supplemented medium referred to as complete DMEM [cDMEM]) (all from 

Invitrogen). Stored at 4°C and pre-warmed to 37°C prior to use.

° Clay comb medium (SAFC Biosciences) supplemented with filter sterilised

10% (v/v) foetal bovine serum (FBS), 1% (v/v) lOmM norepinephrine, 1% 

(v/v) 2mM glutamine and lOOpg/ml penicillin/streptomycin (supplemented 

medium referred to as complete Claycomb). Stored at 4°C and pre-warmed to 

37°C prior to use.

° lx  Trypsin-EDTA in Hepes buffered salt solution (HBSS) (Invitrogen), stored

at -20°C.

° Poly-L-lysine, 0.1% (w/v) solution (Invitrogen) for pre-coating cultureware.

Stored at 4°C.

° Gelatin-flbronectin (GFN) (lm g fibronectin in 79ml 0.02% gelatin).

Fibronectin supplied by Sigma-Aldrich. Filter sterilised and stored at -20°C.

° Cell freezing-down solution: FBS containing 10% (v/v) dimethyl sulphoxide

(DMSO), filter sterilised into 1ml aliquots stored at -20°C.

° Isotonic NaCl solution, 0.9% (w/v) (Baxter Medical Supplies).

° Phosphate buffered saline (PBS), pH7.4: 137mM NaCl, 2.7mM KC1, 4.3mM

Na2HP0 4 , 1.4mM KH2PO4, pH adjusted using HC1.

0 Cell fixing reagent: 4% (v/v) paraformaldehyde in PBS. Freshly prepared.

0 Effectene non-liposomal lipid-based cell transfection reagent (Qiagen): Used

as per manufacturers instructions. Stored at 4°C.

2 .1 .3 .1 . Cell cu lture assay reagents and kits

0 Proprietary alamarBlue™ reagent (Abd Serotec): used at 10% (v/v) in 

cDMEM prepared fresh. Stored at 4°C.
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° Trypan Blue™ reagent (Sigma-Aldrich), 0.4%: Used as an addition of 0.1ml 

to 0.5ml 1x10s cell suspension in PBS pH7.4.

° DeadEnd™ Tunel System (Promega): Used as per manufacturers instructions. 

Stored at -20°C.

o Equilibration buffer

■ 200mM potassium cacodylate pH6 .6

■ 25mM Tris-HCl pH6 .6

■ 0.2mM DTT

■ 0.25mg/ml BSA

■ 2.5mM cobalt chloride 

o  Nucleotide mix

■ 50pM fluorescein-12-dUTP

■ lOOpMdATP

■ lOmM Tris-HCl pH7.6

■ ImM EDTA

o Terminal deoxynucleotidyl transferase, recombinant enzyme (rTdT) 

o 20x SSC pH7.2

■ 175.4 mg/ml NaCl

■ 8 8 .2  mg/ml sodium citrate

° ENLITEN® rLuciferase/Luciferin reagent (Promega): Used as per

manufacturers instructions. Stored at -20°C. 

o  Reconstitution buffer 

o  rLuciferin/Luciferase reagent

o Proprietary composition but working reagent contains unknown 

amounts of luciferase, D-luciferin, Tris-acetate buffer (pH7.75), 

EDTA, magnesium acetate, BSA, DTT and 0.02% sodium azide 

(preservative).

2.1.4. C a  im ag in g  reag en ts

° Poly-L-lysine pre-coated 30mm coverslip chambers (MatTek Corporation).

° Fluo-4 acetoxymethyl (AM) ester (Molecular Probes, Invitrogen): Dissolved 

in 20% (w/v) pluronic acid F-127 in DMSO to give a stock concentration of
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3.2mM. Stored at -20°C. Fluo-4AM was used at 5pM following dilution in 

unsupplemented culture media.

° Carbamyl chloride (carbachol) (Sigma-Aldrich): Freshly prepared lOmM 

stock in DMEM.

° Caffeine (Sigma-Aldrich): Freshly prepared lOOmM stock in unsupplemented 

DMEM. Stock solutions were diluted in unsupplemented DMEM to a working 

concentration of 1 OmM.

° Thapsigargin (Sigma-Aldrich): Prepared ImM stock in DMSO and stored in 

20pl aliquots at -20°C. Used at a final concentration of 5pM.

° Ionomycin (Sigma-Aldrich): Prepared ImM stock in DMSO and stored in 

50pl aliquots at -20°C. Used at a final concentration of lpM.

° Edaravone (MCI-186) (Sigma-Aldrich): Prepared 1M stock in DMSO and 

stored in lOOpl aliquots at -20°C.

° Apyrase, grade I isolated from potato (Sigma-Aldrich): Prepared lOOU/ml 

stock in water and stored in lOOpl aliquots at -20°C. Used a working 

concentration of lOU/ml.

° Phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich): Prepared 250pM 

stock in DMSO and stored in 300pl aliquots at -20°C. Stock solutions were 

diluted in unsupplemented DMEM to give working concentrations of 10, 1, 

0.1 and 0.01 pM.
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2.2. Methods

2.2.1. Detecting recombinant proteins

The use of inherently fluorescent proteins (FPs) that require no accessory cofactors 

for fluorescence (e.g. green fluorescent protein (GFP)) has become commonplace 

over the past two decades (Chalfie et a l , 1994; Zhang et a l, 1996; Baird et a l, 2000; 

Campbell et a l , 2002). Their widespread implementation in protein imaging studies is 

due to a number o f advantageous features including the ready availability of plasmid 

DNA encoding spectral variants, a relative lack of adverse effects on the intracellular 

environment and a structural stability that precludes photobleaching. Current 

molecular biological techniques make it a relatively simple task to fuse a FP to the 

amino- or carboxyl-terminus o f a recombinant protein of interest, and as such these 

approaches have become the method of choice in most laboratories for the detection 

and visualisation of recombinant proteins in living cells.

Green fluorescent protein (GFP) was discovered in 1961 as a trace contaminant 

during the isolation and purification of the Ca -sensitive protein aequorin from 

Aequorea victoria jellyfish (Shimomura et a l , 1962, 1963). Since its adaptation for 

research purposes throughout the 1990s, selective mutagenesis of GFP has resulted in 

the generation of large numbers of spectrally distinct variants that emit in the blue- 

green region of the spectrum including yellow- (YFP), blue- (BFP) and cyan- (CFP) 

fluorescent proteins (Shaner et a l , 2007). The isolation of the first red fluorophore, 

DsRed from a coral of the Discosoma Sp. (Baird et a l , 2000; Fradkov et a l , 2000) 

has significantly augmented the spectral range of FPs. Although DsRed is potentially 

useful since it is spectrally distinct from tags based on A. victoria’s GFP, its 

fluorescence is entirely dependent on homo-tetramerisation and thus its utility as a 

fusion tag is limited. This problem was largely negated by mutagenesis of the 

oligomerisation domain of DsRed that resulted in the generation of a panel of 

monomeric red fluorescent proteins (mRFPs) with small but distinct alterations in 

their excitation and emission profiles (such as mCherry, mTomato, mMelon) (Shaner 

et a l , 2004; Muller-Taubenberger et a l , 2006; Shaner et a l , 2007). The mRFP used 

extensively in this thesis is the ‘first-generation’ mRFP originally derived from 

DsRed mutagenesis. The excitation and emission profile of mRFP and DsRed are
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585nm/608nm and 558/583nm respectively and can both be easily distinguished from 

eGFP tagged RyR2 and cellular Ca2+ monitored with green fluorescent dyes 

(excitation 485-495nm and emission 510-520nm).

2.2.1.1. mRFP as a fluorescent fusion protein

Monomeric red fluorescent protein (mRFP) (Campbell et a l , 2002) was derived from 

tetrameric DsRed by thirty-three point mutations. Its inherent rapid green-red 

maturation rate (>10 times faster than DsRed), significantly smaller size (682bp 

compared to >2700bp) and monomericity improved protein manipulation and makes 

it far more suited for use as a red fusion tag in this project (see Section 3.2.1).

2.2.I.2. eGFP as a fluorescent fusion protein

Enhanced green fluorescent protein (eGFP) was derived from GFP by two key point 

mutations (F64L and S65T) that resulted in an increased photostability and an 

augmented excitation peak that was shifted to 488nm, ideal for excitation with the 

argon laser commonly fitted on confocal microscopes. eGFP has been extensively 

used as a fusion tag in many studies performed in our laboratory (see Section 5.2.7).

2.2.2. DNA Cloning

2.2.2.1. Generation of plasmid DNA encoding RyR2 I-domain

RyR2 fragments corresponding to the I-domain (a.a. 3722-4610), IDA (a.a. 3722- 

4353), ID8 (a.a. 4353-4499) and IDC (a.a. 4353-4610) containing engineered Eco RI 

(5’) and Xho I (3’) flanking restriction sites were sub-cloned from pET29b (kindly 

provided by H. Jundi, WHRI) into pmRFP-Cl using an ‘in-frame’ EcoRl and Xho 

l/Sall strategy. Restriction fragments of the anticipated size were gel extracted using 

the QIAquick gel extraction kit (Qiagen) (Section 2.2.4.1). Ligation was done using
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the Rapid DNA ligation kit (Roche) and a 3:1 insert-to-vector molar ratio with 50ng 

vector. The lx  DNA dilution buffer was added to pre-mixed vector and insert DNA 

up to a total volume o f 25pi. T4 DNA ligation buffer (25pi) was then added to the 

reaction followed by the addition of lpl T4 DNA ligase. The ligation mix was 

incubated overnight at 16°C. This strategy placed the I-domain constructs in frame at 

the C-terminus of mRFP (see Figures 3.6 and 3.7, Chapter 3).

2.2.2.2. Generation of plasmid DNA encoding full-length RyR2

Human RyR2 fused at the C-terminus of eGFP was provided by Dr. Christopher 

George and was generated by the amplification of a cassette containing the CMV- 

promoter and entire reading frame of eGFP from peGFP-C3 (Clontech) using 

oligonucleotide primers containing Mlu I and Spe I. The CMV-eGFP cassette replaced 

the CMV region in pcDNA3 (Invitrogen) at the Mlu I and Spe I sites. (See Section 

5.2.7) (George et al., 2003a).
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2.2.3. Plasmid DNA propagation

2.2.3.I. Propagation of I-domain plasmid DNA

Bacterial transformation and subsequent isolation of plasmid DNA enables the 

production of large quantities of highly pure DNA suitable for eukaryotic cell 

transfection. Bacteria are an appropriate host as they replicate exogenous plasmid 

DNA with high fidelity independent of the bacterial genome, enabling it to be easily 

isolated.

The ultracompetent X L-10 Gold® Epicurian coli (E. coli) strain (Stratagene) was used 

due to its high transformation efficiency and stability for plasmid replication. George 

and colleagues previously showed that XL-10 was the only commercially available 

strain capable of propagating full-length RyR2 (George et al., 2003). XL-10s were 

‘primed’ with the reducing agent P-mercaptoethanol (2pi 0.5M per 50pl bacteria for 

10 min on ice) to facilitate plasmid ingress through the bacterial wall. XL-10s were 

incubated with lOng of plasmid DNA on ice for 30 min, then ‘heat-shocked’ at 42°C 

for 30 sec (optimum temperature for DNA uptake into E. coli) before returning to ice 

for 2 min. NZY media (a rich antibiotic-free broth) (700pl) was added to the cells and 

incubated at 37°C for lh  with gentle rotary agitation at 225rpm to permit the 

development of antibiotic resistance. Following the incubation period, lOOpl bacterial 

culture and lOOpl 5-fold concentrated culture were spread over two agar plates 

containing 25pg/ml kanamycin prior to incubation at 37°C for >15h until colony 

formation.

Typically between 5 and 10 colonies (l-2mm diameter) were selected and further 

cultured for ~15h in 3ml of Luria-Bertani (LB) media supplemented with 25pg/ml 

kanamycin. Upon visible culture ‘thickening’ 1ml was pelleted (1 min, 14,000xg) and 

recombinant DNA isolation was performed using the Wizard® SV plasmid 

purification system (Promega). To the remaining culture, 2ml of fresh antibiotic- 

supplemented LB broth was added to limit plateau-phase bacterial culture that may 

cause DNA recombination or degradation. Briefly, bacterial pellets were resuspended 

in 250pl resuspension reagent prior to a 3 min lysis using the lysis reagent. Addition 

of a high-salt neutralisation solution (350pl) precipitated cell debris and other
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contaminating protein via precipitation of potassium dodecyl sulphate (KDS), which 

was subsequently removed by centrifugation (10 min, 14,000rpm). The cleared lysate 

was carefully removed from each sample and applied to a mini spin-column 

containing a silica gel DNA binding membrane that retains DNA based on charge. 

Impurities were removed from the column by two washes with an 80% ethanol buffer 

and DNA was eluted from the column using lOmM Tris pH8.5 (typically 30pl). To 

verify the recombinant plasmid, isolated DNA was digested using Pvu II or Pst I 

restriction enzyme digestion for 2h at 37°C and the resulting fragments were analysed 

using agarose gel electrophoresis (Section 2.2.4). Large-scale (‘Maxi-prep’) plasmid 

isolation was carried out if the correct restriction fragments were observed. Typically, 

90-100% of colonies displayed the correct DNA restriction analysis.

Autoclaved LB broth (250-500ml; 25pg/ml kanamycin) was inoculated with 1ml of a 

discrete mini-culture (see above) and incubated overnight at 37°C with agitation at 

225rpm. After 16-20h, cultures were centrifuged (10 min, 8,000 xg) in an Avanti J.25 

(Beckman) pre-cooled to 4°C. Bacterial pellets were treated using the Qiagen® 

Plasmid Maxi Kit that consisted of 10ml resuspension reagent, 10ml cell lysis buffer 

and 10ml neutralisation (see Materials above). Following the neutralisation step 

samples were stored on ice for 30 min to increase precipitation of contaminants that 

were subsequently removed by centrifugation (45 min, 20,000 xg) at 4°C. Cleared 

lysate was applied to a large Q-500 silica gel column, before being washed twice with 

a high ethanol buffer, and elution of plasmid DNA using elution buffer (EB, 15ml). 

The addition of 0.7 volumes of 100% isopropranol precipitated the DNA to increase 

the final concentration and yield. DNA was centrifuged (20,000xg) at 4°C for 10 min, 

washed with 70% ethanol before a final 5 min spin (20,000xg) at 4°C. The DNA 

precipitate was air-dried and dissolved in 750pl lOmM Tris pH8.0. DNA purity and 

concentration was determined by UV spectrophotometry. DNA restriction mapping 

using Pvu II or Pst I enzymes was used to validate the integrity of the plasmid DNA 

as described above.
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2 . 2 3 . 2 .  Ultra violet (UV) spectrophotometry

UV spectrophotometry is a technique that quantitates light passage through a sample 

at a given wavelength, determining the relative DNA/protein concentration based on 

the amount of light absorbed. DNA exhibits peak absorbance at 260nm; an A260 value 

of 1 corresponds to 50pg/ml of double stranded DNA. Sample purity can be 

determined by dividing the A260 value by the A280 (peak absorbance of protein 

contaminants); a sample was considered of high purity between 1.8 and 2.5. DNA was 

diluted 1:50 and assayed on a Perkin-Elmer MBA 2000 spectrophotometer using a 

quartz cuvette.

2.2.4. Agarose gel electrophoresis

Agarose gel electrophoresis robustly separates DNA based on size, utilising the 

porosity of the matrix formed by agarose and the negative charge of DNA. The 

percentage of agarose gel used depends on the molecular weight of DNA to be 

separated. A high percentage gel (e.g. 2.5-3.5% (w/v) agarose) is used for improved 

resolution of low molecular weight DNA due to the low porosity matrix. Conversely 

a lower percentage gel (e.g. 1% (w/v) agarose) is typically used to separate higher 

molecular weight DNA. Ethidium bromide (EtBr, diluted to a final concentration of 

0.2ug per ml of agarose gel) is used to visualise DNA since it fluoresces upon 

intercalating with DNA. Consequently, larger DNA fragments will bind more EtBr so 

fluorescence is due to both amount and size of DNA.

Gels were prepared by heating agarose powder (ultra-pure, Eurogentec) in lx  TAE 

buffer to boiling point. Mixture was then cooled to 50°C for the addition of EtBr 

before pouring into a pre-assembled gel tray. Gels were allowed to set for >30 min 

prior to use. DNA samples were prepared with 30% (v/v) loading buffer prior to 

loading into the pre-formed wells of the gel. DNA samples were analysed alongside a 

molecular weight marker that consists of fragmented DNA of pre-determined sizes 

(Figure 2.1) for accurate size identification. The migration of negatively charged
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DNA toward the anode was driven by an applied potential 

difference (usually 10V per cm of gel). Gels were exposed 

to UV trans-illumination to visualise EtBr fluorescence and 

images were captured using a Bio-Rad system (Gel Doc), 

Hamamatsu camera and Quantity One analysis software.

Figure 2.1. DNA ladder for agarose gel electrophoresis

DNA ladder (lkb, 0.5pg) loaded on a 0.9% agarose gel. DNA 
stained with ethidium bromide.

Image modified from Invitrogen datasheet

2.2.4.1. DNA gel extraction

Gel extraction of DNA was achieved using the QIAquick gel extraction kit (Qiagen). 

Gel slices of -lOOrng were excised using a clean, sharp scalpel and were dissolved in 

3 ‘gel volumes’ of QG buffer at 50°C for 10 min (i.e. 300pl QG added to lOOmg gel 

slice). The buffer has an intrinsic pH indicator that changes colour from yellow to 

violet if pH is not optimal for DNA binding (< pH7.5) and if necessary pH was 

adjusted by the addition of lOpl 3M sodium acetate. Isopropanol (1 ‘gel volume’) was 

added to the sample and inverted five times for mixing and precipitation of DNA to 

provide a higher yield. The dissolved gel was applied to a QIAquick spin column and 

centrifuged for 2 min at 14,000 rpm to bind DNA. Two PE buffer wash steps, the first 

of 750pl and the second of 250pl, were applied to eliminate contaminants. DNA was 

eluted from the column in buffer EB (30pl). A small amount (typically 10% of 

recovered DNA) was run on a 1.0% agarose gel for analysis.

2.2.5. R estric tion  enzym e digestion

Restriction endonucleases are enzymes produced by bacteria that cleave double

stranded DNA at specific sequences, usually palindromic sequences of 6  nucleotide 

base-pairs (Table 2.1). Restriction enzymes, that are named according to the host
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bacterial strain, serve as a defence mechanism in bacteria as they cleave and inactivate 

foreign DNA. Their characterisation and isolation from bacteria was a break-through 

in molecular biology that enabled the development of gene cloning and DNA 

manipulation. They also serve as a diagnostic tool in the determination of successful 

cloning as they cleave specific DNA fragments that can subsequently be separated 

and analysed using techniques including agarose gel electrophoresis (see above).

Restriction enzymes were selected based on their recognition sequence within specific 

plasmid DNA. The typical digestion reaction is displayed in Table 2.2. DNA was 

digested at 37°C for 2h (see Table 2.1) and products were visualised using agarose gel 

electrophoresis.

Restriction Digest

Plasmid DNA 0.5-lpg

Restriction enzyme (5U/pl) lp l

1 OX buffer* 2.5pl

Distilled H2O to 25pl

Table 2.2. Restriction enzyme reaction
*Buffer appropriate to specific restriction enzyme. In the case of DNA 
digestion using two enzymes simultaneously, a manufacturer- 
recommended buffer suitable for both enzymes was used.

2.2.6. PCR and DNA sequencing

Sequencing of cloned plasmid DNA is the unequivocal test that no undesired 

insertions, deletions or mutations have been introduced. The polymerase chain 

reaction (PCR) amplification of DNA consists of three key stages. First the double 

stranded DNA is heat-denatured to separate the strands that serve as templates for 

subsequent strand formation. Primers (small single stranded DNA sequences typically
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10-24 bases) are designed for their complementary base pairing with the template 

DNA and anneal at the 3 ’ end of each strand, flanking the region to be amplified. The 

DNA is extended by the enzymic incorporation of deoxynucleotide triphosphates 

(dNTPs) in the 5’ to 3’ direction. There are numerous thermostable DNA polymerases 

suitable for use in PCR (e.g. Taq polymerase originally isolated from the bacterial 

strain Thermus aquaticus). The sequencing system commercially available via 

Applied Biosystems uses a proprietary ‘proof-reading’ AmpliTaq formulation to 

minimise incorrect base incorporation.

Various sequencing methods have been described; however the most frequently used 

is the chain-terminator developed by Fred Sanger (Sanger et a l, 1977). Nowadays, 

DNA sequencing uses PCR to amplify DNA incorporating dideoxynucleotides 

(ddNTPs) in addition to the standard dNTPs in the PCR reaction. ddNTPs lack the 3’- 

OH group that is essential for the formation of phosphodiester bonds between 

adjacent bases required for DNA elongation and thus the enzymic incorporation of a 

ddNTP terminates the nascent elongation of the DNA strand. Subsequently DNA 

amplified in the presence of mixes of dNTP and ddNTP will be synthesised in lengths 

of one-nucleotide increments encompassing the whole of the template DNA. The size 

and fluorescence of each sequence determines the location of each base in the chain. 

In the BigDye system presently used each ddNTP (adenine (A), cytosine (C), guanine 

(G) and thymine (T)) is labelled with a spectrally distinct dye that permits the 

products of the sequencing reaction to be analysed using laser-based excitation and 

emission from one lane of a sequencing-grade agarose gel at one base-pair resolution. 

DNA sequencing results are provided in a trace format that is converted to text 

alignment as displayed in Figure 2.2.

PCR reactions o f lOpl were set up as displayed in Table 2.3. Template DNA was 

amplified using a pre-determined optimal cycle on a PCR machine (Perkin-Elmer) 

that consisted of 25 cycles of 1) Denaturation; 96°C, 30 sec 2) Annealing; 50°C,15 sec 

and 3) Elongation; 60°C, 4 min.
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PCR reaction

Plasmid DNA 0.5gg
Sense/anti-sense primer (3.2pM) lul
5x Sequencing buffer 2\i\
Big Dye® sequencing mix 4(j.l
Distilled H20 to 1 OjLXl

Table 2.3. PCR reaction

Following amplification, DNA was precipitated by mixing with 80pl of 75% 

isopropanol (20 min, RT) prior to centrifugation (14,000rpm, 15 min). The pellet was 

washed once using with 250pl of 75% isopropanol before a final 15 min spin at 

14,000rpm. Isopropanol was aspirated from the pellet that was then air-dried. All 

sequence analysis was performed via the Central Biotechnology Service (CBS) of 

Cardiff University’s Medical School.

C A G C T  A C  G C T T  C G G T G C  G A  A

Figure 2.2. Typical DNA sequence trace

Example DNA sequencing trace, produced using the 
chain-terminator method. C=cytosine (blue), G= guanine 
(black), A=adenine (green), T=thymine (red).
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2.2.7. M ammalian cell culture

2.2.7.I. H um an em bryonic kidney 293 cells (HEK293)

Human embryonic kidney derived cells (HEK293, ATCC#CRL-1573) (Figure 2.3) 

are adherent cells of epithelial origin generated as an immortalised cell line by 

transformation with adenovirus-5 DNA (~4.5kb insert) (Graham et al., 1977; Louis et 

a l, 1997). The HEK cell line has been successfully implemented in our laboratory 

(Thomas et al., 2004; Thomas et al., 2005) and elsewhere (Kong et al., 2007; Tester 

et al., 2007) for the characterisation of recombinant RyR2. The high transfectability 

of this cell line coupled with the endogenous expression of IP3 R subtypes and the 

absence of RyR2 made it a suitable cell model for studying the phenotypic effects of 

RyR2 I-domain expression.

Figure 2.3. HEK293 cells

Bright-field confocal image 
of HEK293 cells at 63x 
magnification. Scale bar 
represents 25pm.

HEK cells (of > passage 100) were maintained in complete Dulbecco’s Modified 

Eagle Medium (cDMEM) (see Section 2.1.3) and in a controlled environment of 

37°C, 5% CO2 and 100% humidification (Heraeus). Cells were routinely passaged 

upon confluency (typically every 3-4 days) as follows. Adherent cells were washed 

twice with saline and detached using trypsin (5mg/ml) and EDTA (5mM) for 2 min at 

37°C. Detached cells were resuspended in 5ml cDMEM, pelleted by centrifugation 

(1,500 xg for 5 min) and resuspended in 5ml fresh cDMEM. A small volume of this 

suspension (~10pl) was used for haemocytometric counting (Neubauer 

haemocytometer (Reichert, USA)), and an appropriate number of cells were seeded in 

fresh culture ware followed by continued incubation at 37°C. All tissue culture was 

carried out in a Class I Microflow containment hood.

^  fp l* .
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Cell cryopreservation was carried out in freezing-down media (FCS, 90% (v/v), 

DMSO, 10% (v/v)). Cells (~5xl 06) were trypsin-detached and pelleted as above and 

resuspended in 1 ml of cold freezing-down media in labelled sealed (gas-tight) screw 

top cryo-vials (NUNC, UK). Vials were controlled-cooled to -80°C using l-2cm of 

insulating tissue paper prior to longer-term storage in liquid nitrogen. To re-establish 

cultures from stocks, cells were rapidly thawed by hand and taken up into a syringe 

containing 5ml pre-warmed cDMEM followed by pelleting by centrifugation (1,500 

xg, 5 min). Cells were resuspended in 6 ml cDMEM and seeded in a 25cm flask, prior 

to fresh media being exchanged after 4h.

2.2.7.2. HL-1 cardiom yocytes

HL-1 cardiomyocytes (Figure 2.4) are adherent cells obtained from the AT-1 atrial 

cardiomyocyte tumour lineage mouse model (Claycomb et al., 1998). HL-1 cells are a 

valuable tool for studying protein expression against a background of endogenous 

RyR2 and other EC coupling proteins including CSQ and FKBP12.6. HL-1 cells 

spontaneously contract while maintaining adult cardiomyocyte phenotype even after 

repeated passages.

Figure 2.4. HL-1 cardiomyocytes

Bright-field confocal image of HL- 
1 cells at 63x magnification.
Scale bar represents 25pm.

HL-1 cells (of passage 87) were grown on gelatin-fibronectin (GFN) coated flasks and 

maintained in Claycomb media (JRH Biosciences) supplemented as described in 

section 2.1.3. Upon confluency the cells were split using 0.1% trypsin/EDTA to the 

next passage or prepared for experiments. Unlike HEK, HL-ls were cultured to 

superconfluency (typically 2-3 days after initial confluency) prior to split. They 

require propagation at a density of 1:3 in order to preserve cardiomyocytic cell
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phenotype and avoid reversion to a non-contractile ‘fibroblastic’ state that results in 

the loss of many EC coupling proteins (George et al., 2003a).

2.2.7.3. DNA transfection

DNA transfection introduces recombinant DNA of a gene of interest into a eukaryotic 

cell for the purpose of investigating its function. Multiple methods have been 

established and have evolved over the past few decades. Calcium phosphate (CaPC>4 ) 

transfection was one of the first techniques to demonstrate a robust applicability 

(Chen and Okayama, 1987) whereby a precipitate is formed between plasmid DNA, 

calcium chloride and phosphate over several min that is then readily accepted by cells 

via endocytosis. The disadvantage of this method is its comparative toxicity and non

specific effects on cellular phenotype. Other more gentle methods of transfection 

utilise lipid-based delivery of DNA into cells, a technique referred to as lipofection. 

The negatively charged (anionic) DNA forms a lipid complex (usually with cationic 

lipids) that enters eukaryotic cells via fusion with the phospholipid cell membrane 

(Feigner et al., 1987). Effectene (Qiagen) is a novel lipid-based method that utilises 

an enhancer to condense the DNA prior to the formation of DNA-lipid complexes 

(Figure 2.5). In addition, the compatibility of the Effectene protocol with serum- 

containing medium means that it is less toxic to cells than other lipid-based delivery 

methods that require the removal of serum during and after the transfection procedure.

Figure 2.5. Principle of Effectene- 
based transfection

Effectene is a non-liposomal lipid- 
based reagent. DNA is first
condensed by the Effectene
enhancer that enables it to be coated 
by the cationic Effectene reagent 
for incorporation into eukaryotic 
cells. Effectene achieves high levels 
of transfection efficiency (typically 
>30%) and requires 5-fold less 
DNA than CaP0 4  and other lipid- 
based techniques.

Schematic representation obtained 
from Qiagen datasheet.
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HEK cells were maintained as described in Section 2.2.7.1. HEK were cultured in 6 

well plates or on poly-L-lysine coverslip chambers (MatTek Corporation) at a density 

of 5x10s or 5xl04 respectively (-70% confluency) 2h prior to transfection. One 

Effectene transfection was sufficient for 1 well of a 6 -well plate or 6-7 coverslip 

chambers. DNA (0.8pg) was made to a final volume of lOOpl with EC buffer before 

the addition of 6.4pl enhancer followed by vortex (10s). The transfection mix was 

incubated at RT for 5 min before the addition of 20pl Effectene and subsequent vortex 

(10s) and incubation (10 min, RT). During the 10 min incubation, media was removed 

from the cells and replaced with fresh cDMEM (1.2 ml per well or 150pl applied in a 

meniscus per coverslip chamber). cDMEM (600pl) was added to the transfection 

mixture, and after a brief mix was gently applied drop-wise to cells. All transfection 

mixture was added to one well of a 6 -well plate or lOOpl was added in a meniscus per 

coverslip chamber. Cells were left overnight at 37°C and fresh media was applied the 

following day. The level of cell transfection was assessed by the appearance of 

fluorescently-tagged recombinant proteins in cells after 24h using a Zeiss Axiovert 

200 fluorescent microscope, (Section 2.2.13.2).

2.2.7.3.1. Preparation of fixed cells for imaging studies

In order to preserve recombinant protein fluorescence, 48h post-transfection cells 

were washed twice in PBS (pH7.4) and fixed using paraformaldehyde (4% (v/v)) / 

PBS solution (10 min). Fixed cells were rehydrated (PBS (pH7.4), 2h) and briefly 

rinsed in distilled H2O prior to mounting on ethanol-cleaned microscope slides in 

FluoSave™ (Calbiochem), a reagent that preserves the fluorescence of mounted cells. 

Slides were dried at RT away from light for 30 min before storage at 4°C. Slides were 

viewed within seven days of processing.
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2.2.1 3 .2. Fluorescence microscopy for transfected cell visualisation

The in situ visualisation of recombinant I-domain tagged to mRFP was performed on 

a Zeiss Axiovert 200 fluorescent microscope. Images were obtained using lOx, 20x 

and 40x objectives, a condenser set at phase 0 and DAPI (brightfield images) and Cy3 

(mRFP fluorescence) filter sets. The Cy3 filter set permitted excitation and emission 

wavelengths at 528-552nm and 578-637nm respectively. All imaging parameters 

including camera exposure and autofocus were controlled using Axiovert software.

2.2.1 A . Flow cytom etry & fluorescence activated cell sorting (FACS)

Flow cytometry is a powerful technique that enables the precise quantification of 

levels of cellular fluorescence either via antibody-mediated labelling or following 

expression of a recombinant fluorescent protein. The cell stream is rapidly passed 

under high hydrodynamic pressure at 1 -1 0  thousand events/sec through a laser beam 

that excites the fluorophore with the resulting emission filtered through an appropriate 

filter and captured by a photomultiplier tube (PMT) (Figure 2.6). In addition, 

important information is collected as to how discrete cell populations scatter light, 

which is related to physical cell characteristics. In particular, forward scattering (FSC) 

is defined by cell size and the extent of side scattering is related to cell granularity. 

Although flow cytometry is predominantly used as an analytical technique, some 

apparatus enable the isolation of distinct cell populations that are characterised by 

discrete fluorescent emissions or morphological features. This latter technique is 

referred to as fluorescence activated cell sorting (FACS).
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Figure 2.6. Schematic representation of flow cytometric and FACS analysis

Cells are hydro-dynamically dispensed in a stream that is interrogated by a laser. 
The pattern of scattered light provides information on cell size and granularity. In 
addition, fluorescently labelled cells also emit light of a specific wavelength 
depending on the fluorophore. Dichroic mirrors chosen to suit the particular 
fluorophore in use deflect the light through an optical filter that is collected by a 
detector. In cell-sorting mode, the stream of cells is vibrated to separate them into 
one-cell droplets. Cells that emit light at the desired wavelength can be isolated 
from the stream by applying a charge and electrostatically deflecting them into a 
collection tube.

Image obtained from: http://www.rudbeck.uu.se/cellanalys/flowpic.html

89

http://www.rudbeck.uu.se/cellanalys/flowpic.html


2.2.8. C onfocal la se r scan n in g  m icroscopy  (C L S M )

CLSM enables ‘optical sections’ to be visualised in a sample by capturing emitted 

light from individual focal planes. Excitation of fluorophores occurs via high-powered 

lasers that emit at discrete wavelengths (e.g. Argon lasers emits lights in the blue- 

green range at 454, 488, 496 and 514nm) and fluorophore detection is via sensitive 

PMTs. The central premise of confocal microscopy is that a restrictive aperture 

prevents out of focus light from reaching the PMT (see Figure 2.7). The SP5 Confocal 

microscope (Leica Microsystems) was used for live cell experiments, and in 

experiments using paraformaldehyde-fixed cells. The acquisition of digital images 

was performed using 8 bit scaling i.e. fluorescence intensity is scaled between 0-256 

arbitrary units.
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Figure 2.7. SP5 CLSM principle

The laser is focussed through a pinhole aperture and is tunelled to the objective via acousto-optical beam splitting 
(AOBS). Fluorescence emission of the sample is passed through a second pinhole (the diameter o f which is 
precisely matched to the particular objective used) that restricts out-of-focus light en route to detection via a PMT. 
The PMT converts light into an electical signal that is recorded by the computer. Images were typically recorded at 
512x512 pixel resoultion.

Taken from www.zmb.uzh.ch/resources/download/CLSM.pdf

http://www.zmb.uzh.ch/resources/download/CLSM.pdf


2.2.8.1. Fluorescence analysis of fixed cells expressing I-domain

Paraformaldehyde-fixed cells mounted on glass coverslips were warmed to RT and 

were visualised using the resonance scanning (SP5) confocal microscope (Leica 

Microsystems) through a 63x 1.23 numerical aperture oil immersion objective. The 

561 He:Ne laser line at 20% power was used for the visualisation of mRFP, with the 

PMT set to detect emission at 600-630nm. At least 30 images from 5-10 fields of 

view were taken per transfection.

2.2.8.2. Im m unofluorescent analysis of fixed cells expressing IP3R

Immunodetection of endogenous IP3R types 1 and 2 in HEK293 cells using isoform- 

specific antibodies (Section 2.1.2.5) was performed as follows. Cells were fixed, 

rehydrated (Section 2.2.7.3.1) and permeabilised with 0.1% Triton X-100 in PBS 

(pH7.4) (30 min, RT) away from light. Coverslips were washed with PBS (pH7.4) (2x 

10 min) followed by blocking non-specific immunoreactivity using a solution of 10% 

(v/v) FBS in PBS for lh  at RT. Following the blocking step, cells were incubated with 

primary antibodies to IP3RI or IP3R2  for >15h at 4°C (see Materials above). 

Subsequently they were washed (2x PBS, 20 min) before applying secondary 

antibodies goat anti rabbit:Alexa Fluor® 488 for IP3RI, and donkey anti goat:Alexa 

Fluor® 488 for IP3R2  for >15h at 4°C. Cells were thoroughly washed with PBS (3 x 

10 min, 2  x 2 0  min) prior to rinsing in distilled H2O and then mounting as described 

in Section 2.2.7.3.1 above. Coverslips that were processed as above except that the 

incubation with primary antibody was omitted were used as controls to determine 

non-specific (background) immunoreactivity of the secondary antibodies.

2.2.8.3. In tracellu la r C a2+ imaging

HEK cells were seeded under a meniscus of cDMEM at a density of 5xl04 on pre

coated poly-L-lysine coverslip chambers (MatTek Corporation) 2h prior to 

transfection using Effectene (Qiagen). Two days after transfection cells were
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visualised for intracellular Ca2+ imaging experiments using CLSM. Cells were loaded 

under a lOOpl meniscus of unsupplemented DMEM containing the Ca indicator dye 

fluo-4AM (5pM in 20% (w/v) pluronic acid F-127) and incubated at 37°C for 60 min. 

Chambers were flooded with unsupplemented DMEM (2ml) and incubated for a 

further 10 min prior to imaging. The Ca -dependent fluorescence of fluo-4 was 

visualised using the 488nm laser line from an argon laser (set at 20% source power) 

focussed through a 63x 1.23 numerical aperture oil immersion objective and PMT 

detection at 510-540nm. A diode-pumped solid-state laser (DPSS) emitting at 561nm 

was used to excite recombinant mRFP-tagged proteins and fluorescence was detected 

at 600-63Onm. The two-channel data were recorded at 200 ms intervals for 120 sec 

duration (600 frames/experiment) at a 512x512 pixel resolution. The z-axis is less 

than 1pm, and therefore less than the thickness of a cell. Following an experimental 

series, 5-20 cells were selected (per coverslip) by an elliptical area of ~40pm (termed 

a region of interest (ROI)).

Calibration of resting fluorescence is described in Section 5.2.4. The Kd value used 

was based on the published value from Molecular Probes, Invitrogen (345nM).
^  I

Thomas et al have determined the Kd of various Ca dyes (Thomas et al., 2000), 

however the value established for fluo-4 (Kd=1000nM) gives unusually high resting 

Ca2+ values. Therefore, as previous studies have used the Kd value determined by 

Invitrogen (Collier et al., 2000; Peluso et al., 2001; Iwata et al., 2004) this value was 

seen as appropriate for use in my studies.

2.2.8.3.I. Chem ical-induced responses

Experiments were structured to either incorporate the addition of a known 

pharmacological modulator of intracellular Ca signalling (Chapter 5) or to analyse
94-signal variability in the Ca dependent fluo-4 traces in the absence of any addition to 

cells (Chapter 6 ). Data obtained prior to the addition of a modulator (first 300 frames)
94-was used to estimate resting fluo-4 dependent Ca signals. Following addition of a

94- 94-pharmacological agent, a comprehensive analysis of Ca signals including peak Ca 

transient height, time to peak, and rate of transient decay (shown in Chapter 5, Figure 

5.5) was performed. Chemical-induced responses are described in Chapter 5:
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carbachol (Section 5.2.2), thapsigargin (Section 5.2.3), ionomycin (Section 5.2.4), and 

caffeine (Section 5.2.9).

2.2.8.3.2. Analysis of C a2+ signal variability

Signal variability (termed noise analysis in much of the literature although this is
• ^ i

technically incorrect) defines the amplitude and temporal variation in Ca signals. 

Analysis of signal variability represents a powerful tool to investigate the minutiae of 

cellular Ca2+ handling including the effects of agonists on the Ca2+ cycling within a
04-cell, or to compare variations in basal Ca signals between different cells and 

following different experimental conditions. Chapter 6  describes the precise 

derivation of mathematical operations used to calculate signal variability in this thesis.
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2.2.9. S od ium  dodecy l su lp h a te  p o ly ac ry lam id e  gel e lec tro p h o res is
(SD S-P A G E ) a n d  W e ste rn  b lo tting

SDS-PAGE is a technique that separates detergent-denatured proteins in a sample 

based on relative molecular weight. Proteins are initially mixed with SDS that in 

addition to denaturing the polypeptides gives each protein a negative charge that is 

proportional to its size, and that can be distinguished in an electrophoretic field. 

Following SDS-PAGE, the separated proteins can either be stained using a protein- 

binding dye (e.g. Coomassie or Imperial™ stain) or transferred to a membrane for 

detection using protein-specific antibodies (known as immuno- or Western blotting). 

All SDS-PAGE and Western blotting experiments were carried out using standard 

published techniques (Laemmli, 1970; Burnette, 1981).

2.2.9.1. Protein isolation from HEK cells

For SDS-PAGE experiments, cells at days 1 to 4 post-transfection were trypsin- 

detached, pelleted and stored at -80°C. Pellets were resuspended in a hypo-osmotic 

protein inhibitor cocktail (see Materials) and passed ~15 times through a syringe 

attached to a 21G- 26G needle to homogenise the cells and begin disrupting surface 

membranes. Suspensions were then subjected to freeze-thaw sonication (5-10 cycles 

using liquid nitrogen and a waterbath sonication tank) to breakdown remaining cells. 

This detergent-free technique is not sufficient to breakdown nuclear membranes and 

therefore leaves nuclei intact, which can be removed by centrifugation (1500 xg, 10 

min) leaving the post-nuclear supernatant (PNS). Microsomal fractions were obtained 

by centrifugation of PNS at 55,000rpm for 45 min at 4°C using an Optima™ 

microcentrifuge (Beckman Coulter). The concentration of total protein in post-nuclear 

supernatants (containing cytoplasmic and microsomal fractions) and in microsomal 

fractions was determined using the BCA™ protein assay reagents (Pierce) (See 

section 2 .2 .9.1 .1).
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2.2.9.1.1. Protein assay

Protein concentration was measured using the BCAIM protein assay (Pierce) that 

utilises the colour change of the assay reagent to a blue/violet- complex by the 

reduction of Cu24 to Cu+ by protein in an alkaline medium. Peptides of three or more 

amino acids chelate Cu+ ions in the presence of sodium potassium tartrate to form the 

complex. The intensity of the colour change is proportional to the number of peptide 

bonds in the sample and is therefore a reflection of total protein concentration. The 

complex absorbs light at 560nm that can be detected using spectrophotometry 

techniques. The quantification is carried out in parallel with control concentrations of

Figure 2.8. BSA protein assay 
standard

A. Line plot of average optical 
density (OD) against protein 
concentration, where the R2 value of 
approximately 1 demonstrates 
rigorous correlation. Each point 
represents the average of three 
samples. BCA calibration was 
performed for every protein 
measurement

B. Protein assay standard reactions 
in triplicates following a 30 min 
incubation at 37°C. Increased 
protein concentration correlates with 
more pronounced colour change, as 
shown in A.

bovine serum albumin (BSA) protein of 0, 125, 250, 500, 750, 1000, 1500 and 

2000pg/ml in order to calibrate the absorbance of the reagent to the levels of protein 

present. Total sample protein concentration can then be determined by measuring 

absorbance at 560nm and extrapolating the concentration from the fitted regression 

equation (Figure 2.8A).

Both the BSA standards and samples were assayed in triplicates using a 96-well plate 

protocol as recommended by the manufacturer (Figure 2.8B). Working BCA reagent

y =0.0007x +0.124  
R2 = 0.9927

O)

Concen trat ion  (pg/ml)

2000 1500 1000 750 500 250 125 25 E
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(200pl) was added to each test well and incubated at 37°C for 30 min to allow 

complex formation. Typically, samples were diluted at 1:50 to obtain a concentration 

of 500-1000pg/ml. Absorbance was measured at 560nm using a plate reader 

(Labsystems Multiskan EX) and Genesis analysis software.

2.2.9.2. SDS-PAGE

SDS-PAGE gels consisting of different percentages of acrylamide were prepared 

using the Bio-Rad Proteome 2 mini casting chamber (assembled according to 

manufacturer’s instructions) and were of a 10 well, 1.5 mm thickness and 10cm x 7cm 

size. The separating gel was prepared as described in Table 2.4 (with the percentage 

acrylamide dictated by the size of the protein under study), and then layered with 

water. Once the separating gel was set the water was removed and the stacking gel 

(Table 2.4) was poured over the pre-set separating gel. To form the sample wells, a 

10-well comb was inserted, avoiding trapping air bubbles (Figure 2.9A). The final gel 

composition was approximately 70% separating and 30% stacking gel. The purpose of 

the stack is to ensure all protein samples migrate the same distance prior to their 

separation in the resolution gel, which is enabled by the slow migration of glycine 

behind protein samples at pH6 .8 . The stacking gel was allowed to set for >2h, the 

comb was removed, gels were secured in the gel apparatus (Bio-Rad) and submerged 

in lx SDS-PAGE running buffer. Protein samples were incubated with a 20% (v/v) 

final concentration of 5x Laemmli SDS sample buffer for 3 min at 95 °C, centrifuged 

at 14,000rpm before loading onto the gel. Total protein (50-400pg) (up to final 

volume in Laemmli loading buffer of 20-25pi) was loaded onto the gel alongside an 

appropriate molecular weight marker. Gels were subjected to electrophoresis at a 

constant current of 30mA for 2-4h using a Bio-Rad Proteome 2 mini electrophoresis 

chamber and power-pack (Figure 2.9B). Protein separation was visualised with 

Imperial stain (Bio-Rad) as detailed in Section 2.2.9.4. Alternatively gels were 

transferred onto polyvinylidene difluoride (PVDF) membranes for Western blot 

(Section 2.2.9.3).
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Separating Gel 4% 6 % 1 0 % 1 2 %

Distilled H2O 6345 5845 4845 4345
Tris-HCl pH8 .8 , 1.5M 2500 2500 2500 2500
SDS, 10% (w/v) 100 10 0 1 0 0 100

Acrylamide/Bis (37.5:1), 40% 1 0 0 0 1500 2500 3000

TEMED 5 5 5 5
Ammonium persulphate, 10% (w/v) 50 50 50 50

Stacking Gel 4£> /o

Distilled H2O 3170
Tris-HCl pH6 .8 , 0.5M 1250

SDS, 10% (w/v) 50

Acrylamide/Bis (37.5:1), 40% 500

TEMED 2.5

Ammonium persulphate, 10% (w/v) 25

Table 2.4. Composition of SDS-PAGE separating and stacking mini
gels
Quantities are in jxl and the total volume is sufficient for one 1.5mm thick 
mini-gel.
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Figure 2.9. SDS-PAGE and protein 
transfer

A. Mini-gels were secured in SDS- 
PAGE apparatus; comb was inserted 
into stacking gel to form wells.

B. Samples were loaded onto both 
mini-gels, which were then 
assembled in the electrophoresis tank.

C. Proteins were transferred onto 
PVDF membrane using semi-dry 
transfer apparatus.

2.2.9.3. Protein transfer and W estern blot

Proteins were transferred from an SDS-PAGE gel to a PVDF membrane (Immobilon- 

P, Millipore) using a semi-dry transfer apparatus (Hoefer) (Figure 2.9C). PVDF 

membranes were initially exposed to a 30 sec methanol soak to render the membrane 

hydrophilic before use, prior to a 2 0  min equilibration in semi-dry transfer buffer. 

Protein transfer was carried out at 300mA, limited to 25V, for l-2h. The high 

hydrophobicity of PVDF membranes means that proteins are retained by hydrophobic 

interactions alone. Membranes were briefly rinsed in distilled H2O before incubation 

in blocking buffer consisting of 5% (w/v) non-fat dried milk protein (Marvel) in TBS- 

T buffer for lh  at RT or >15h at 4°C. The membrane was incubated with primary 

antibody (diluted as recommended by the manufacturer) in blocking buffer overnight 

at 4°C, and then washed with blocking buffer ( 2 x 1 0  min, 4 x 5  min). The secondary 

antibody, conjugated to horseradish peroxidase (HRP) was similarly diluted in 

blocking buffer (typically 1:10,000) and applied to the membrane for 2h at RT. The 

membrane was then thoroughly washed with TBS-T (2 x 10 min, 4 x 5  min). 

Immuno-labelled proteins were visualised using enhanced chemiluminescence (ECL, 

GE Healthcare) and exposed to X-ray film (Hyperfilm, GE Healthcare) for a range of 

exposure intervals, dependent on the intensity of the chemiluminescent signal. The 

film was developed using a FujiFilm automated image developer.
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2.2.9.4. Protein Stain

Imperial stain (Bio-Rad) is a coomassie stain that exhibits greater sensitivity in 

protein detection than other commercially available protein stains. It was used for 

visualising protein profiles and to permit densitometric analysis of proteins separated 

by SDS-PAGE. Following SDS-PAGE, gels were briefly washed in distilled H2O 

before staining for 2-3h at RT until optimal colour development. Gels were de-stained 

by washing overnight in distilled H2O. Gel imaging and densitometric analysis was 

carried out using a Bio-Rad GS710 scanner controlled by Quantity One software. All 

gels and exposed Hyperfilm from Western blotting experiments were scanned at 

300dpi using a densitometer (GS-700, Bio-Rad). For permanent record, gels were 

dried on a horizontal slab gel drier (Hoefer) fitted with a vacuum pump for l-2h at 

75°C.

2.2.9.5. Densitometric quantification of protein and immunoblot signals

Densitometry quantifies the intensity of protein bands either following dye-based 

staining or immunoblotting techniques. Images obtained as described in 2.2.9.4 were 

saved and analysed as raw data files (*.lsc) using Quantity One software. 

Densitometric quantification was carried out by defining the optical intensity 

(measured in density per pixel) of an equal area around the band(s) of interest. 

Background correction was carried out using the automated background correction 

function applied to regions of the image that did not contain any protein-specific 

signal (enabling normalisation of individual lanes). All densitometry comparisons 

were based on equivalent amounts of protein added to each lane, and raw pixel data 

from I-domain bands were normalised to control (HEK). Following analysis images 

were archived using a standard HP 7000 desktop scanner.

Transmissive and reflective scans were automatically calibrated using the GS-700 

Biorad calibration step tablet and Quantity One software.
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2.2.10. Statistical Analysis

Unless stated, all data in this thesis is derived from at least 3 separate observations and is 

expressed as mean ± standard error of the mean (SEM), where SEM is defined as standard 

deviation / V(n-l) (n=number of observations or measurements). Data were considered 

statistically significant if  p<0.05. Significance between normally distributed data sets (tested 

using Prism (version 3.0, GraphPad) corresponding to control and experimental observations 

were tested using the impaired student’s t test. Where stated, datasets o f equal variance were 

also analysed by ANOVA. All graphs were constructed using GraphPad Prism software, and 

linear and non-linear regression equations were derived by best-fitting methods using the 

software.
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Chapter 3



Chapter 3 Phenotypic characterisation of cells expressing

recombinant I-domain

3.1. Introduction

As outlined in Section 1.6, the objective of this project was to investigate the 

functional consequences of cellular I-domain expression, both in the absence and 

presence of endogenous RyR2, with the prospect of manipulating intracellular Ca2+
4-environments using I-domain peptide probes. ‘Tuning’ Ca environments has 

recently been demonstrated to modulate cell phenotype and susceptibility to cell death 

(George et a l , 2007). In addition, Vamai and colleagues used a molecular approach 

and an inverted microscope to demonstrate that the recombinant ligand-binding 

domain of IP3RI tethered to an ER-retention signal could ‘tune’ IP3R Ca2+ release, the 

functional modulation of which was fully dependent on the proximity of recombinant 

protein to the ER membrane. The authors fused the ligand-binding domain to mRFP, 

and confirmed the localisation of ER tethered constructs by confocal microscopy. 

(Vamai et a l , 2005). These findings inspired the current project and therefore this 

chapter begins by describing the cloning and expression of the I-domain in 

mammalian cells to provide an insight into recombinant protein localisation and effect 

of expression on cell phenotype, prior to functional studies that are presented later in 

this thesis.

3.1.1. Intrinsic interdomain interaction regulates RyR channel
function

1

The molecular basis underlying dysfunctional Ca release as a result of RyR2 

mutation, and acquired defects such as HF is incompletely understood. A number of 

mechanisms have been proposed including SOICR and RyR2 hyperphosphorylation 

by PKA (discussed in Section 1.4.5.2); however, defective interdomain interaction has 

more recently emerged as a possible mechanism underpinning abnormal Ca 

handling.
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In 1996, Zorzato et a l first proposed the regulatory function of intramolecular 

interactions within RyR using an N-terminal antibody (a.a335-341) that interacted 

with RyR a.a.3010-3225, and increased channel activity (Zorzato et al., 1996). 

Yamamoto and colleagues described additional sites of interaction by using domain 

peptides (DP) that corresponded to RyR sequences (~35a.a.) to assess changes in RyR 

channel functionality (Yamamoto et al., 2000; Ikemoto and Yamamoto, 2002; 

Shtifman et a l , 2002; Kobayashi et a l , 2004; Oda et a l , 2005). Intimate interaction 

between two distinct regions of RyR 1, located within N-terminal and central domains 

(DPI, a.a.590-609 and DP4, a.a.2442-2477 respectively) altered the functional state of 

the channel (Yamamoto et a l , 2000; Shtifman et a l , 2002; Bannister et a l , 2007), 

and recently, other RyRl functional interaction sites have been identified (Oda et al., 

2005; Hamada et a l , 2007b; Laver et a l , 2007b; Mochizuki et a l , 2007) (Figure 3.2).

Although intrinsic channel regulation was initially proposed as a mechanism 

underpinning RyRl function (Yamamoto et al., 2000), it has since been applied to 

RyR2 (George et a l , 2004; Oda et a l , 2005). Addition of either DPclO or DPcl5 

(a.a.2460-2495 and a.a.4752-4773 respectively) to cardiomyocytes activated RyR2 

(Oda et a l , 2005; Laver et a l , 2007b), confirming that interactions within the cardiac 

isoform regulated channel function, which has since been corroborated by other 

studies (Hamada et a l , 2007b; Gangopadhyay and Ikemoto, 2008). These findings 

strongly support the concept that intramolecular interactions within RyR govern its 

functional state, (Figure 3.1). The close association of paired interacting sub-domains 

within RyRs form a ‘domain switch’ that results in a ‘zipped’ conformation, thus 

stabilising the closed channel in the non-activated state (Figure 3.1). During 

activation, EC coupling induces a decreased affinity between interacting domains 

(‘domain unzipping’) that permits controlled channel opening and Ca release 

(Ikemoto and Yamamoto, 2002) (Figure 3.1). RyR2 mutations have been suggested to 

interfere with these interactions by reducing conformational constraints between 

interacting sub-domains, which promotes abnormal ‘unzipping’. Mutation-induced 

weakening of interdomain interactions has been demonstrated (George et al., 2006; 

Murayama et a l , 2006) and is proposed to underlie channelopathies such as CPVT 

and ARVD (George et a l , 2006; Yang et al., 2006b) (Figure 3.1). Furthermore, RyR 

mutational hot-spots are confined to distinct sites in N-terminal, central, and C-
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terminal domains, which coincide with currently identified regions of intramolecular 

interaction, shown in Figure 3.2, suggesting a functional basis for mutation clusters.

(ARV D/pVT)

KH.J
UPPING

Domain Peptide

u n z ip p in g

leak

rrnlriil duiiiain

Domain
switch

mutationz ip p in g

N-fcrminfll domain

Figure 3.1. Schematic representation of RyR ‘unzipping’ hypothesis

RyR channels are stabilised when interacting domains that form a ‘domain switch’ are 
closely associated in the ‘zipped’ conformation. RyR2 mutations can induce channel 
de-stabilisation, termed domain ‘unzipping’, which was experimentally reproduced 
using domain peptides

Taken from Yano et al., 2005b

However, the scope of domain interaction sites is still emerging, and more work is 

needed to clearly understand the molecular basis of channel dysfunction arising from 

specific mutational loci (see Chapter 1 section 1.4.2.1).
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Figure 3.2. Mutation distribution in RyRl and RyR2 map to sites of interdomain interaction

Disease-linked mutations cluster in RyRl and RyR2 interacting domains as published: 1 (George et a l, 2004; George et al., 2006), 2 (Yamamoto et al., 2000; Ikemoto and Yamamoto, 
2002; Oda et al., 2005; Hamada et a l, 2007b), 3 (El-Hayek et al., 1999), 4 (Zorzato et al., 1996), 5 (Chen et al., 1993) and 6  (Wu et al., 1997). Also included are RyR2 regions of 
sequence diversity (DR) and sites of leucine/isoleucine zippers (LIZ). *refers to findings obtained with RyRl. DP refers to domain peptides used to probe sites of domain interaction.

RyR mutations adapted from Yano et al., 2006



3.1.2. Characterisation of the interacting domain (I-domain)

George and colleagues identified a surface-accessible region of RyR2  (a.a.3722- 

4610), termed the ‘interacting domain’ or I-domain that mediated functional 

interactions between N-terminal and C-terminal regions of the cardiac RyR. This was 

demonstrated when co-expression of N-terminal residues (a.a.1-4610) restored
04-caffeine sensitivity to the Ca pore forming TM domain (a.a.3722-4967) (George et 

al., 2004). These findings were augmented by sequence analysis that showed the I- 

domain was host to multiple regulatory binding sites (Wang et al., 1996; Bhat et a l, 

1997). It is also consistent with reports in which peptides corresponding to regions 

within and surrounding the I-domain in RyRl (3614-4210) mediated functional 

intramolecular interactions (Xiong et al., 2006). In addition, the RyRl C-terminal 

domain was reported to be sufficient to form an ion-conducting pore, but required N- 

terminal residues for channel modulation (Bhat et al., 1997). The aforementioned 

findings are all in support of an equivalent I-domain sequence in R yR l.

Recently, George et a l extended their domain interaction hypothesis further by 

showing that domains harbouring CPVT mutations (S2246L in N-terminal sequence, 

N4104K and R4497C in I-domain sequence) were associated with abnormal Ca2+ 

handling and conformational instability in agonist-stimulated cells. In addition, wild- 

type and mutant channels were functionally indistinguishable under non-stimulated 

conditions, which is consistent with the asymptomatic resting phenotype observed in 

most CPVT patients (Lehnart et al., 2005; Oda et al., 2005; Yano et al., 2005a; 

George et al., 2006; Bannister et al., 2007). Further elucidation of functional 

molecular interactions within normal and mutant RyR channels will provide a greater 

understanding of normal RyR conformation and associated channelopathies.

The I-domain was identified using confocal microscopy, and RyR2 sequences used 

were based on predicted TM domain topologies from the laboratories of Lai and 

MacLennan (Zorzato et al., 1990; Tunwell et al., 1996; Du et al., 2002a), and 

sequences with a proposed involvement in ionic sensitivity and channel gating 

(George et al., 2004), detailed below. The 6TM model, according to Tunwell et al. 

adapted with the nomenclature of Du et al is displayed in Figure 3.3.
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Figure 3.3. Sites of intra-m olecular interaction

Conformational representation of RyR2 revealing sites potentially involved in 
intrinsic channel regulation. The location of cardiac domain peptides DPclO and 
DPcl5 demonstrates the plausibility of an association between disparate protein 
sequences (illustrated by dashed arrows). Similarly, the I-domain (3722-4610, 
displayed in green) also shows an arrangement that may facilitate self-association. 
The I-domain incorporates the first two predicted TM domains. TM domains are 
termed M5, M6 , M7a, M7b, M 8  and M10, as published by Du et al. in 2002. Sites of 
divergent regions (DRI-3), LIZ motifs (LIZl-3) and reported phosphorylation loci 
(blue circles) are also labelled.
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Based on this TM topology, I-domain residues downstream of 4450 are likely 

involved in TM domain assembly, whereas amino acids 3722-4450 (reported by 

Zorzato to incorporate TM1-4) are proposed to constitute hydrophobic regions 

essential for the spatial assembly of the channel rather than bona fide TM domains 

(George et al., 2004). Therefore, as illustrated in Figure 3.3, and according to the TM 

models of Du et al. and Tunwell et al., residues 4353-4610 are host to two membrane- 

spanning regions (4499-4519 and 4572-4593) (Tunwell et al., 1996; Du et al., 2002a). 

This chapter sets out the strategy for more fully exploring the functional role of the I- 

domain and sub-regions therein on Ca channel regulation. The nomenclature of 

these fragments and their proposed role based on functional studies and TM 

topologies are listed in Table 3.1, and illustrated further in Figures 3.4 and 3.6B:

|  TM domains

I-domain

construct

Region

(a.a.)
Zorzato model

Tunwell/Du

models
Function

ID 3722-4610 1-6 1-2
Functional

interactions

IDa 3722-4353 1-4 None

Facilitated

intramolecular

interactions

ID8 4353-4499 None None

Facilitated

intramolecular

interactions

IDC 4353-4610 5-6 1-2

Increased

channel

functionality

Table 3.1. Nomenclature and functional basis of 1-domain constructs

I-domain construct nomenclature, the numbers of predicted TM domains that they 
encompass, and their proposed function as suggested by George et al., 2004. Note 
that ID8 is the only I-domain section that does not have any proposed TM domains
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Figure 3.4. I-domain conformation and the loci of disease-linked mutations

A. The I-domain was divided into three distinct regions: interacting (IDA), modulatory
D p  p  n

(ID ) and TM-containing ID . ID is composed of the modulatory region (ID ) plus 
two putative TM domains. Figure adapted from George and Lai, 2007. Reported 
mutations in each I-domain section (left bar graph) is adjusted for the number of 
mutations per 100 amino acids (right bar graph). Interestingly the majority of IDB is 
largely devoid of mutations, and the two reported mutations arise in the distal three 
amino acids (2% of the sequence). It could be argued that the paucity of mutations in 
IDb reflects that mutations within this region may be lethal.



3.1.3. Investigating RyR structure/function using cellular expression
systems

3.I.3.I. Transient recombinant protein expression

Cell models are valuable systems in which recombinant protein function and effects 

of protein expression on dynamic cell signalling pathways can be studied. 

Understanding the effect of I-domain expression in a cellular environment is 

fundamental to determining precisely how it modulates Ca signalling. RyR-null 

human embryonic kidney (HEK) cells and RyR2-competent HL-1 cardiomyocytes 

were the two cell lines used in this project for reasons detailed below.

Primary cardiomyocytes are derived from mammalian cardiac tissue and possess a 

full complement of cardio-regulatory proteins, which presents them as an optimal 

expression system for studying RyR2 function. The transfer of cDNA into primary 

cell lines is remarkably difficult, and usually stipulates the need for viral vectors 

(Hajjar et al., 1997; Wu et a l , 2004). However, the size of RyR2 precludes the use of 

viral-mediated transfer techniques (e.g. adenovirus and adeno-associated virus). An 

immortalised cardiomyocyte cell line (HL-1) from murine atrial tumour cells is 

amenable to conventional transfection methods, and also provides a cardiac 

environment in which to study RyR2 function. Nevertheless HL-1 cells are not an 

ideal cardiac cell model as they are a single nucleated immortalised cell line devoid of 

T-tubules (Claycomb et al., 1998). In addition, both primary cardiomyocytes and HL- 

1 cells express endogenous RyR2, which complicates the decoding of Ca signals 

that result from endogenous versus recombinant RyR2. The development of RyR-null 

skeletal myotubes (1B5) has eliminated these complications for RyRl and RyR3 

functional studies (Moore et al., 1998); however, currently no cardiomyocyte cell 

model lacking endogenous RyR2 has been generated. In light of these issues, RyR- 

deficient cell models have been implemented for recombinant RyR2 study. The use of 

RyR-null cell models has enabled the detection of functional differences between wild 

type and mutant RyR2 that may have been overlooked if assessed in cells with a 

background of endogenous RyR (Thomas et al., 2004; Thomas et al., 2005; Paavola 

et al., 2007). Recombinant RyR2 channels expressed in RyR-null HEK cells have
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1

been shown to exhibit comparable Ca and caffeine activation to channels obtained 

from native tissue (Chen et al., 1997). In addition, mutation-induced channel 

instability documented by George and colleagues was comparable in both RyR2 

proficient and deficient cell models (George et al., 2006) validating the use of RyR 

null expression systems, which also suggests that RyR2 regulation may not be 

completely dependent on cardiac-specific proteins.

Expression of recombinant RyR2 has been investigated in a number of RyR2-null cell 

models including HEK, Chinese hamster ovary (CHO) and green monkey fibroblast 

(COS-7) cells (Bhat and Ma, 2002a; Treves et al., 2002; Xiao et al., 2002; George et 

al., 2003c; George et al., 2006; George et al., 2007; Jiang et al., 2007), and are still 

widely used for this purpose. HEK are regularly used by virtue of their high 

transfection efficiency, tolerance to expression of the large size of RyR protein, and 

their human origin. It should, however, be noted that some laboratories have detected 

discrete levels of RyR in low passage (<25) HEK cells (Querfurth et al., 1998; Luo et 

al., 2005), and although other laboratories have disputed the endogenous expression 

of RyR in HEK (Gao et al., 1997; Du and MacLennan, 1998; Tong et al., 1999; Jiang 

et al., 2002a) low passage HEK cells were not used in this project to negate this issue.

3.I.3.2. Stable recombinant protein expression

Transient expression of recombinant proteins provides temporary (~48h) assessment 

of protein function. However, in order to investigate the long-term consequences of 

protein expression, stable cell lines are usually generated. Stable protein expression 

employs antibiotic selection to eliminate cells lacking the permanent integration of 

recombinant DNA at a transcriptionally active locus. Stable expression of RyR2 in 

both CHO and HEK cells has been previously documented, although it is associated 

with increased toxicity at higher expression levels (Bhat et al., 1999; Pan et al., 2000; 

Rossi et al., 2002; George et al., 2003c). This prompted the development of inducible 

stable systems that enable precise control of RyR2 expression levels (George et al., 

2004; Jiang et al., 2007; Stewart et al., 2008). In addition, the development of novel 

systems such as the Flp-In system (using mammalian cell lines that enable site-
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specific DNA integration) has further facilitated the generation of potentially 

cytotoxic stable cell lines and has been shown to be useful in the inducible expression 

of RyR2 (Jiang et a l 2005; Jiang et a l 2007).

3.1.4. Objective

This chapter describes the generation of I-domain constructs, and characterises the 

resultant phenotypes following their transient expression in HEK and HL-1 cell 

models.
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3.2 . M eth o d s

3.2.1. Cloning strategy o f  1-domain constructs

The fluorescent proteins eGFP and DsRed have both been implemented in our 

laboratory as fusion proteins in confocal imaging studies (George et a l , 2004), 

however the reasons for using monomeric red fluorescent protein (mRFP) in favour of 

eGFP and DsRed are detailed in Section 2.2.1.

mRFP was a gift from Professor R.Y. Tsien (University of California at San Diego 

[UCSD]). The mRFP expression vector, pmRFP-Cl (Figure 3.5), was generated by 

H.L. Roderick (Babraham Institute, Cambridge), following Nhe I and Hind III 

excision of mRFP from the pRSET bacterial expression vector (Campbell et al., 2002) 

and subsequent sub-cloning into the peGFP-C3 plasmid (Takara Biosciences, Japan) 

by direct substitution of mRPF for eGFP.

RyR2 DNA fragments corresponding to the I-domain (a.a.3722-4610) and regions 

within (IDa, 3722-4353; ID®, 4353-4499; IDC, 4353-4610) were cloned into pmRFP- 

Cl in frame with the open reading frame of mRFP, shown schematically in Figure 3.6 

using methods described in Section 2.2.2.1. DNA fragments of the correct sizes 

(mRFP 4648bp, I-domain 2648bp; IDA 1899bp; ID8  445bp; IDC 749bp) were excised 

from the gel, purified and cloned into pmRFP-Cl as described elsewhere (Section 

2.2.2.1). Figure 3.7 displays the predicted DNA digest patterns of I-domain constructs 

in pmRFP-Cl. Sequencing traces are displayed in Figure 3.8.

Nhe I

CMV
promotor mRFP

H in d  III
x ;'__ Eco Rf

r  Sal I*

pmRFP-C1 ]|

4 6 5 8 b p  //

Kanamycin resistance

Figure 3.5. pm RFP-Cl restriction enzyme 
map

mRFP (red arrow) expression is driven by the 
CMV promoter (pink arrow). Eco RI and Sal I 
restriction sites located in the multiple cloning 
site (MCS) (used for cloning of I-domain) are 
indicated (*) directly following the mRFP 
sequence. The resistance gene is kanamycin 
(pale blue arrow). See Appendix II for 
detailed pmRFP-Cl sequence.
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Figure 3.6. Schematic representation of pm RFP-Cl I-domain plasmid 
construction and their relation to the predicted RyR2 TM domain 
topology

A. I-domain constructs were PCR amplified from full-length RyR2 and ligated 
into pmRFP-Cl with Eco Rl & Xho I. Plasmid DNA was amplified and 
sequenced prior to transfection into HEK293 cells. B. The boundaries of all I- 
domain constructs are indicated and aligned with the C-terminus of RyR2.

114



576

3036bp mRFP
4658 bp

1014bp

576

1590
3036bp 608bp

1563bp
2198

2139

4863

608bp
2116bp

4255'

576

3036bp
1563bpIDA

6548 bp

2139

4088 1341bp
608bp

3481

576

3036bp IDB
5093 bp 1449bp

608bp 2025
2633

576

3036bp IDC
5432 bp

1753bp

608bp
23642972

B C

5,000.
3.000-
2 . 0 0 0 - 

1,500' 
1, 0 0 0 -

m R F P  ID ID* ID8 IDC

mRFP ID IDa ID8 IDC

3036bp 3036bp 3036bp 3036bp 3036bp

1014bp 2 1 16bp 1563bp 1449bp 1753bp

608bp 1563bp 1341 bp 608bp 608bp

608bp 608bp

Figure 3.7. Identification of pm RFP-Cl I-domain cloning by restriction digestion

A. Restriction maps of pmRFP-Cl I-domain sections using Pvu II (restriction sites are 
represented by dashed lines). Expected fragment size is shown between restriction sites. B. 
Electrophoretic mobility resolved restriction fragments from pmRFP-Cl I-domain digestion 
as shown in A. C. Expected Pvu II cleavage fragments.
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Figure 3.8. Sequencing of I-domain constructs in pm RFP-Cl

Top panels display the predicted linker sequences either side of I-domain constructs, labelled 
as 5’ (i) and 3’ (ii). Middle and bottom panels are electropherograms displaying the 5’ (i) and 
3’ (ii) ligation sites of I-domain cloning into pmRFP-Cl. Middle panels display 5’ sequencing 
trace obtained using the sense strand of DNA as a template and was subsequently reverse 
complemented to obtain coding amino acid sequence. Amino acids that code for mRFP and I- 
domain are highlighted. Lower panels display the 3’ sequencing trace obtained by using the 
antisense DNA strand as template. Coding amino acids are displayed above the trace and the 
residues corresponding to the I-domain are indicated. Linker sequences are shown in grey.
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3.2.2. HEK transfection with mRFP tagged I-domain constructs

Cells were transfected with mRFP-tagged I-domain constructs using Effectene (see 

Section 2.2.7.3) and were imaged by fluorescence microscopy (Section 2.2.7.3.2) and 

confocal microscopy (described in Section 2.2.8). Transfection efficiency was 

calculated 1 day post transfection by counting the proportion of fluorescent cells per 

field of view (2-3 fields of view per transfection). The percentage of mRFP and I- 

domain expressing cells and the appearance of the ‘rounded cell’ phenotype were 

assessed by evaluation of representative fields of view (1-4 days post-transfection).

3.2.3. Assessment of cell proliferation and metabolism

It is likely that the modulation of intracellular Ca would manifest as altered cellular 

growth and metabolism. AlamarBlue (AbD Serotec, UK) is an indicator dye that is 

reduced by cellular respiratory products such as NADH, and displays a relative 

fluorescent colour change from an oxidised non-fluorescent blue to a reduced 

fluorescent red (Exmax, 560nm; Emmax, 590nm). Fluorescence and colour changes can 

be quantified via fluorescence and absorbance respectively. Both reduced and 

oxidised forms of alamarBlue are non-toxic, cell permeable (permitting analysis of 

media) and stable (Pettit et al., 2005). The correlation of alamarBlue readings with 

cell number provides an indication of the extent of cellular metabolism.

Absorbance readings of reduced alamarBlue are dependent on the relative colour 

change at 560nm and 600nm. However, the pH indicator phenol red is present in most 

culture media, and this perceptively changes colour over 4 days and can significantly 

influence absorbance readings at 560nm (Figure 3.9). To preclude this issue, and 

since changing culture media was not a practical option (e.g. phenol red-free media), 

the fluorescence route was pursued instead.
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Figure 3.9. Absorbance measurements at 560nm and 600nm of alamarBlue 
in cDMEM (10% v/v)

A. The pH of cDMEM (indicated by phenol red) is not stable over seven days, 
which dramatically altered absorbance measurements at 560nm. n=l. B. Images 
showing media colour of both cDMEM and cDMEM with alamarBlue at 1, 2 and 
4 days after DMEM supplementation.

HEK cells and recombinant protein (I-domain/mRFP) expressing cells were seeded 4h 

post-transfection into four wells of a six well plate at a density of 5 xlO4  (one plate 

per construct, n=4) that also included two empty control wells (for cDMEM and 

cDMEM-alamarBlue). Three duplicate plates were set up for analysis on consecutive 

days (Dl-4). Cells were exposed to alamarBlue in 2ml cDMEM (10% v/v) for 4 h at 

24, 48, 72 and 96 h time points. Media (2 x 0.5ml) was removed from each well into 

lml cuvettes and immediately assayed using a LS50B fluorometer (Perkin-Elmer), 

with excitation and emission at 545nm and 590nm respectively, see Figure 3.10. 

Following experiments, cells were counted and paired with alamarBlue fluorescence 

readings to calculate cellular metabolism per 10,000 cells. Cell growth of HEK, 

mRFP and I-domain expressing cells was also quantified via daily haemocytometric 

counts over 4 days following transfection. Cells seeded 4 h after transfection (density 

of 5xl04) were labelled as day 0. Cell counts for day 1 were performed 20h later (i.e. 

24h post-transfection), and subsequent daily counts performed at 24h intervals until 

day 4.
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alamarBlue (in cDMEM) was applied to cells for 4h at 1-4 days post 
transfection, then analysed for fluorescence at 590nm
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3.2.4. Assessing cell viability using Trypan blue

The proportion of dead or dying cells within a cell population as a result of apoptosis 

and necrosis can be determined using cell viability assays, such as Trypan blue. 

Trypan blue is a negatively charged vital dye that stains the membranes of dead or 

dying cells blue, and has been routinely implemented in our laboratory (George et al., 

2003a; George et a l, 2003b).

The viability of naive HEK cells or those transfected with mRFP and recombinant I- 

domain fragments were assessed using Trypan blue over the four days following 

transfection. Following trypsinisation, cells were resuspended (~2xl05) in 250pl 

DMEM (no serum) with 50pl 0.4% Trypan blue (final concentration 0.08%) and 

incubated at RT for 5 min prior to haemocytometric counting (see Figure 3.11 and 

Section 2.2.7.1). Four separate wells (i.e. n=4) per day were assessed and each cell 

suspension was read in duplicate. Cells visibly stained blue were counted as non- 

viable.

1mm

1mm

Non-
Viable
Cells

Figure 3.11. Cell viability using 
Trypan blue

Haemocytometer slide displaying 
both viable (clear) and non- 
viable (blue) cell populations. 
The 0.1 pi grid (1mm x 1mm x 
0.1mm) is composed of a 5 x 5 
arrangement (with a 4x4 inner 
demarkation).

1 2 0



3.2.5. Immunoblotting of recombinant protein isolated from HEK
cells

HEK cells (1-lOxlO6) were harvested 1 to 4 days post-transfection and pelleted for 

protein isolation as described in Section 2.2.9.1. SDS-PAGE and Western blotting 

experiments were carried out on lOOpg of cellular post-nuclear supernatant (PNS) 

using standard published techniques (Laemmli and Quittner, 1974; Burnette, 1981) 

(Section 2.2.9). Membranes were probed with a polyclonal antibody to DsRed 

(Clontech) (used at 1:750) that reacts with the mRFP fusion tag (Section 2.1.2.5.1).

3.2.6. G418-mediated selection of cells expressing recombinant I- 
domain

Cellular expression of the neomycin gene confers resistance to geneticin (G418 

sulphate), a potent inhibitor of protein synthesis. G418 concentrations ranging from 

0.2mg/ml and 1 mg/ml have been administered to HEK cells to select stable 

expression of recombinant proteins (Stetzer et al., 1996; Rintoul et al., 2001; Rossi et 

al., 2002; Chapman et al., 2005; Hanson et al., 2008b), although higher 

concentrations have been used (Kunapuli et al., 1997; Dassanayake et al., 2007) 

suggesting a high resistance of HEK to G418 selection. In this project, HEK cells 

displayed a remarkable resistance to G418, surviving for 14 days in 2mg/ml G418 

(Figure 3.12A), while HL-1 cells died after only 2 days exposure to 500pg/ml G418 

(Figure 3.12B). In light of the high resistance of HEK to G418 selection, both mRFP 

and ID8 were re-cloned into a hygromycin vector in order to confirm that any 

phenotypic consequences following their expression via pmRFP-Cl was due solely to 

the recombinant I-domain fragments. For this study, ID8 was used because of its high 

transfection efficiency in comparison to other I-domain constructs, and for other 

reasons discussed in Section 5.3.3. ID8 and mRFP were excised from pmRFP-Cl and 

re-cloned into pcDNA3.1 using Nhe I and Kpn I, See Figure 3.13. Successful cloning 

of ID8 and mRFP in pcDNA3.1 was assessed by restriction digestion with EcoRl 

(Figure 3.14). Hygromycin was used at a concentration of 200pg/ml, which was 

sufficient to select for stable expression while preventing rapid cell loss. Similar to 

G418, hygromycin is also a potent inhibitor of protein synthesis. Prior to cloning, a
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dose-dependence curve was conducted on HEK cells to ensure that hygromycin 

would eliminate non-resistant cell populations, and also to determine a suitable 

working concentration (Figure 3.12C). Surviving cells were counted using 

haemocytometry as described in Section 2.2.7.1. A low seeding density was used to 

prevent the cells becoming confluent over the duration of the experiments since G418 

only works if the cells are actively growing. Similarly, HEK cells were seeded at a 

density of lx l 05 in wells of a 6-well plate and exposed to increasing concentrations of 

hygromycin (0, 200, 500, 800 and 1000pg/ml) for 2 days (n=3 per dose). A higher 

seeding density was used attributable to the rapid loss of cells induced by 

hygromycin. Cells remaining after 2 days were harvested and counted by 

haemocytometry (Section 2.2.7.1), shown in Figure 3.12.

Note that the cells used here were HEK293 and not the variant 293T cell line, which 

are HEK293 cells transformed by the T-antigen from the SV40 virus that confers 

G418 resistance (Lebkowski et al., 1985; Stewart and Bacchetti, 1991) and thus the 

high level of G418 resistance was unexpected.
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Figure 3.12. G418 and hygromycin dose- 
dependent elimination of non-resistant 
cell populations
A. HEK cell exposure to G418 (0-2 
mg/ml) for 14 days failed to effectively 
select cells, whereas HL-1 cell exposure to 
G418 (0-1 mg/ml) over 2 days resulted in 
a rapid elimination of cells (B). C. HEK 
cell exposure to hygromycin (0-1 mg/ml 
over 2 days also resulted in rapid cell 
death. Tox50 (dose at which antibiotic 
kills 50% of cells) is displayed on graphs 
B and C. n=3 for each dose.
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Figure 3.13. Cloning strategy for sub-cloning I-domain into pcDNA3.1 hygromycin

A. Schematic representation of IDB-mRFP and mRFP cloning into pcDNA3.1. Both constructs were excised from pmRFP-Cl and re-cloned into
n

pcDNA3.1 using Nhe I and Kpn I (cutting at bases 4 and 711, and 4 and 1146 of pmRFP-Cl for mRFP and ID respectively). B. pcDNA3.1 multiple 
cloning site (MCS) and C. Plasmid map displaying MCS, Nhe I and Kpn I restriction sites are highlighted. See Appendix III for full pcDNA3.1 map.
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Figure 3.14. Restriction digestion of pcDNA3.1 I-domain constructs

A. EcoRl restriction digest sites (represented by dashed lines) and loci (red figures) in 
pcDNA3.1 (V), pcDNA3.1-mRFP and pcDNA3.1-IDB. B. Restriction fragments on a 
0.8% agarose gel. A faint band (**) can be observed in the ID8  lane that represents the 
486bp fragment. *51 bp band from pcDNA3.1-mRFP digestion with Eco RI is too small 
to be resolved. Expected bands are summarised in C.
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3.3. Results

3.3.1. Generation of I-domain constructs

The cloning of I-domain constructs (ID, IDA, ID8 and IDC) in frame into pmRFP-C 1 

(in the absence of mutation) was confirmed by restriction digestion and sequencing, 

using the procedures described above in Section 3.2.1.

3.3.2. I-d o m ain  loca lisa tion  is n o t d e p en d e n t on c e llu la r  exp ression  o f
R yR 2

The typical transfection efficiencies of each construct in HEK cells were ID, 25% ± 

2.1; IDa, 38% ± 2.5; ID8, 52% ± 2.7; IDC, 40% ± 2 and mRFP, 56% ± 2.6
n

respectively. All I-domain fragments except ID had lower transfection efficiencies 

than mRFP and this was not determined by construct size (Figure 3.15). Transfection 

efficiency for HL-1 cells was not calculated because transfection efficiency was too 

low (<1%) to obtain meaningful data. The cellular localisation of I-domain constructs 

in both HEK and HL-1 cells was determined using confocal microscopy and unlike 

mRFP, all I-domain constructs were excluded from the nucleus (Figure 3.16). 

However, it should be noted that I-domain constructs did also appear to target nuclear 

membrane invaginations, which may correspond to the nucleoplasmic reticulum 

(Figure 3.16). Figure 3.17 displays the homogeneous expression in both nuclear and 

cytoplasmic compartments of the cyan and yellow fluorescent protein (CFP:YFP) 

fusion pair in HL-1 cardiomyocytes. This figure is good evidence that the lack of 

nuclear localisation of all I-domain sections is not due to size limitations, as the 

tandem pair (~55kDa) is larger than ID8 (~44kDa). Further distinct localisation 

patterns, consistent with ER lattice-like localisation were observed independent of cell 

background. This is particularly interesting since HL-1 and HEK are RyR2 sufficient 

and null respectively. In addition, note the highly punctuated pattern of ID that was 

displayed in both cell types (Figure 3.16). The relative fluorescence intensity per pixel 

was expressed as a ratio of cytoplasmic to nuclear fluorescence (Figure 3.18) and 

represents the semi-quantitative measurement of nuclear exclusion exhibited by all I- 

domain sections. The high level of fluorescence calculated for ID is skewed by the 

dense fluorescent aggregates (Figure 3.16).
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Figure 3.15. Transient transfection of I-domain constructs in HEK cells

A. Typical fields of view of transfected cells at lOx magnification. Left panels represent 
fluorescent images and right panels are the corresponding phase images. Scale bar 
represents 50pm. B. Standard transfection efficiencies, n represents the average of 2-3 
fields of view per transfection. +p<0.001 compared to mRFP expressing cell populations.
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Figure 3.16. Cellular localisation of I-domain constructs in HEK and HL-1 cells

Confocal images of HEK and HL-1 cells 48h after transient transfection with mRFP and I- 
domain constructs. Images are representative of typical localisation profiles. Inset in IDA 
panel displays Golgi staining of a HEK cell (Triantafilou and Triantafilou, 2004) using 
TRITC conjugated Concanavalin A (a lectin that specifically binds to mannosyl groups in the 
Golgi). N = nucleus. Scale bars represent 10pm.
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V
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Figure 3.17. C15Y, a 55kDa CFP.-YFP tandem expressed in HL-1 cardiomyocytes 
exhibits pronounced nuclear localisation

A. CFP and YFP tandem pair separated by 15a.a. linker sequence 
CSSCARARDAAVATM. B. Confocal images of a HL-1 cell transfected with CFP: YFP 
tandem fluorescent protein pair. Figure generated by Dr. Chris George.
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Figure 3.18. Comparison of cytoplasmic and nuclear localisation of recombinant proteins

Whole-cell and nuclear regions were selected, and total fluorescent counts were calculated for 
both whole cell and nucleus (scale bar = 10pm), which is represented by the area under the 
curve. Cytoplasmic counts were determined by subtracting nuclear fluorescent counts from 
whole cell counts. A ratio of average cytoplasmic fluorescence to nuclear fluorescence was 
obtained per cell (lower panels). Data is plotted as mean ± SEM, n represents number of cells.
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HEK cell size, measured by surface area, was also significantly reduced following I- 

domain expression compared to control cells (Figure 3.19). Similarly, HL-1 mRFP 

cells were larger than cells expressing all the I-domain fragments (p<0.01). However, 

it cannot be ruled out that reduction in surface area is due to greater cell depth as I- 

domain expressing cells become less adherent. All cells measured were viable.
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Figure 3.19. Effect of I-domain expression on cell size

WT HEK and HL-1 cells, as well as mRFP-transfected cells were significantly larger 
than all I-domain expressing cells. Data is plotted as mean ± SEM, n represents the 
number of cells.

3.3.3. P ro longed  I-dom ain  expression p ro found ly  a lte rs  cell
pheno type

Since cell size was significantly reduced by transient I-domain expression, other 

phenotypic consequences of I-domain expression were monitored using confocal 

microscopy for 4 days post-transfection. It was noted that an increasing number of I- 

domain expressing cells began to exhibit a ‘rounded cell’ phenotype compared with 

mRFP cells over the course of the 4 day protocol shown in Figure 3.20. The 

percentage of mRFP expressing cells was significantly greater than those expressing 

I-domain on days 2-4 (p<0.01) and exhibited a significantly lower proportion of 

‘rounded cells’ (p<0.01, days 2-4) as determined by visual assessment of phenotype.
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Figure 3.20. Cellular phenotypic observations in 
HEK
A. The increased occurrence of a ‘rounded’ cell 
phenotype in I-domain expressing cells is consistent 
with cell damage. I-domain expressing cells become 
more rounded over time compared with mRFP 
expressing cells (days 2-4) B. Relative expression of 
mRFP and I-domain cells over four-days determined 
by counting representative fields of view. Percentage 
of mRFP expressing cells is significantly greater than 
I-domain cells on days 2-4. Error bars represent 
mean± SEM. #p<0.01 compared to mRFP cells. C. 
Confocal images of mRFP and I-domain expressing 
cells on day 4. Scale bar =25pm.
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3.3.4. I-dom ain expression is associated with reduced cell viability

The ‘rounded cell’ phenotype observed routinely and robustly in I-domain expressing 

cells was consistent with cellular damage (Figure 3.20). Therefore in order to 

determine whether the ‘rounded cell’ phenotype was indicative of increased 

cytotoxicity, cell viability was determined using Trypan blue.

There was no difference in cell viability between WT or mRFP-expressing HEK cells 

(Figure 3.21). However, 2 and 3 days post-transfection, I-domain expressing cells 

were characterised by significantly lower viability than mRFP-expressing cells. On 

day 2, I-domain populations displayed 2-3 times more non-viable cells than mRFP 

and HEK. By 4 days post-transfection, the proportion of non-viable cells transfected 

with I-domain constructs was comparable to both HEK and mRFP (p=NS) (Figure

3.21).
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Figure 3.21. Cell viability following I-domain transfection in HEK cells

The non-viable cell populations in HEKwt, mRFP and I-domain transfected cells 
following transfection, expressed as a percentage of total cells. *p<0.05 and 
*p<0.01 compared to mRFP expressing cells, n = 4 for each construct.
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♦ IDa
• IDb
□ IDC
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3.3.5. I-domain expression reduces cell proliferation

When considering the reduced cell viability and altered cell phenotype following I- 

domain transfection (Figures 3.19, 3.20 and 3.21) it was pertinent to investigate cell 

proliferation and metabolism over the same period. Cells seeded at the same density 

were imaged on days 1-4 (Figure 3.22A). There were less adherent cells on day 1 in I- 

domain- and mRFP-transfected populations than HEK cells (p<0.01) and notably IDC 

adherence was even lower still (Figure 3.22B). The low adherence of mRFP cells 

following transfection suggests that transfection itself may subsequently play a role in 

the toxic phenotype. In light of the lower adherence of transfected cells, cell counts on 

days 2-4 were normalised to day 1 cell numbers for each construct (Figure 3.22C). 

Cell proliferation rates were suppressed on day 2 in IDA'C (p<0.01) transfected cells, 

on day 3 in IDC (p<0.05) and on day 4 in ID, IDA (p<0.05) and IDC (p<0.01) 

compared to mRFP transfected cells (Figure 3.22C).

3.3.6. Cellular metabolism was altered in cells expressing 
recombinant I-domain

In order to assess whether reduced growth rate of I-domain expressing cells was a 

consequence of altered metabolism, cells were assessed over a four day period using 

alamarBlue, as described in Section 3.2.3. Despite the apparent difference in trends in 

cellular metabolism between HEK, mRFP and I-domain constructs over the 4 days, 

this was not significant (p>0.05). However, daily metabolism did appear to be altered 

in IDa, IDb and IDC expressing cells most notably at 1, 2 and 3 days post-transfection 

compared to HEK and mRFP cells (Figure 3.23). More specifically, the metabolism 

of IDa'c cells was suppressed on day 1 (p<0.01), yet elevated on day 2 (IDA, p<0.05;
n  p

ID and ID , p<0.01) when compared with mRFP-expressing cells. Metabolism on 

day 3 was only significantly different between ID and mRFP (p<0.05). Day 4 

metabolism was significantly higher for both IDA and IDC (p<0.01) than mRFP cells, 

see Figure 3.23.
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Figure 3.22. Proliferation of WT HEK, mRFP and I-domain expressing cells

A. Images obtained at day 2, day 3 and day 4 from seeding 5x104  cells per well. B. 
Proportion of adherent cells 20h after seeding (5xl04), #p<0.01 compared to mRFP, n = 4. 
C. Cell growth based on daily cell counts per 10,000 cells standardised to day one cell 
counts. Statistical significance compared to mRFP: Day 2, #p<0.01 IDA'C; Day 3, *p<0.05 
IDC; Day 4, #p<0.01 IDC and *p<0.05 ID & IDA. n=4 for each cell line.
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Figure 3.23. HEK Cell metabolism assessed by alamarBlue

WT HEK and mRFP metabolism was not significantly different on any day, however ID, 
IDa, IDb and IDC all displayed altered metabolism compared to cells transfected withn
mRFP on different days. n=4 for each cell line. p<0.01 and p<0.05 compared to mRFP 
on the same day.
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3.3.7. I-domain elimination was confirmed by immunoblot

Immunoblotting was used to confirm the elimination of recombinant I-domain 

observed by confocal microscopy (Figure 3.20). I-domain immunoblots revealed a 

dramatic loss in protein expression over the 4 days post-transfection such that almost 

no recombinant protein was expressed by day 4. Notably there was consistent 

expression of mRFP throughout the 4 day protocol (Figure 3.24). This finding is also 

consistent with the loss of non-viable cells by day 4 in I-domain transfected 

populations (Figure 3.21).

3.3.8. I-domain elimination and associated toxicity was independent 
of expression vector

In order to determine that the cytotoxicity associated with recombinant I-domain 

protein expression was not a consequence of using the pmRFP-Cl expression vector, 

ID8 and mRFP were subcloned into the pcDNA3.1 hygromycin vector and assessed 

over a similar 4 day post-transfection study. Consistent with data obtained using 

pmRFP-Cl driven expression (Figure 3.20), pcDNA3.1-mediated expression of ID8 

in HEK cells was rapidly reduced by day 4, which was also linked to a ‘rounded-cell’ 

phenotype (Figure 3.25). These findings support the hypothesis proposed here that I- 

domain elimination was not a consequence of the antibiotic or expression vector 

system employed. In view of the data that I-domain expression could not be 

maintained past day 3-4 because of confounding toxicity issues, the failure of G418 

selection of I-domain in pmRFP-Cl did not negatively impact on subsequent 

experiments.

136



D1 D2 D3 D4 kDa
A

ID

IDA

IDB

IDC 

mRFP

B
T3

8
2n

> %  CO
i5 E Q> t
E IO C

i i ’
° !

Q
O

ik
ID ID* ID

I
IDC mRFP

I I Day 1 
l~ I Day 2 
l=l Day 3 
r~i Day 4 
ESI HEK

Figure 3.24. Progressive elimination of I-domain confirmed by immunoblotting 
of HEK cell PNS

A. Immunoblots displaying bands obtained for ID (129kDa), IDA (99kDa), ID8  

(44kDa) and IDC (57kDa) on days 1-4 (lanes 1-4). mRFP alone is represented by a 
27kDa band. Blots were based on lOOpg of total protein per lane. B. Densitometric 
quantification of I-domain blots on days 1 to 4 normalised to day 1. HEK cells served 
as a null-I-domain control. n=l for ID, IDA and ID8, n=3 for IDC and mRFP.
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Figure 3.25. Phenotype of HEK cells expressing mRFP and IDB via pcDNA3.1

Confocal images of mRFP and ID8  expressing cells on days 2-4. Cells transfected 
with mRFP display a ‘healthy’ phenotype after four days expression, however ID8  

cells exhibit the rounded ‘unhealthy’ phenotype comparable to that seen with pmRFP- 
C l. Scale bar =25pm.
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3.4. Discussion

3.4.1. Expression of recombinant I-domain subfragments exhibited 
unexpected cellular localisation and phenotypic alteration

I-domain expression was distinct from the homogenous cellular expression of mRFP (Figure 

3.16) indicating that this subcellular localisation results from I-domain-mediated targeting. 

Nuclear exclusion of ID8 (44kDa) appeared not to have been a consequence of I-domain 

construct size since the CFP:YFP fusion protein pair (with a molecular weight of 55kDa) was 

homogeneously distributed throughout HL-1 cells (Figure 3.17). In addition, expression of 

DsRed, a large tetrameric fluorescent protein of more than lOOkDa resulted in homogeneous 

cellular expression (Hess et al., 2003). In light of these findings, it would appear that nuclear 

exclusion is not a function of size and most likely is a consequence of an undetermined signal 

in the I-domain sequence. The lattice-like distribution characterised by ID is typical of RyR 

expression in the ER (Bhat and Ma, 2002a; Treves et al., 2002; George et al., 2003b; Thomas 

et al., 2004). Similar localisations have been reported for truncated RyR2 sequences encoding 

residues 3722-4967 and 4485-4967, but not N-terminal residues 1-3722 and 1-4353 (George 

et al., 2004). Considering that a.a.4499 represents the first TM in the putative TM 

arrangement of RyR2 (Tunwell et al., 1996), this characteristic lattice-like expression pattern 

may be a function of membrane-spanning domains. In addition, results obtained for IDC 

suggest that its aggregation, which did not occur with ID8, implies that residues 4499-4610 

may be entirely responsible for this marked clustering of recombinant protein, and could be a 

function of proximal membrane spanning sequences. The random aggregate formation and
• • p  #

lack of specificity of ID for intracellular structures indicates a possible self-interaction within 

this sequence. Such self-association has also been reported in the C-terminus of the IP3 R  

(Galvan et al., 1999; Magnino et al., 2001). This concept could be explained by the inherent 

hydrophobicity of ID promoting self-association, which is prevented by interactions within 

full-length ID. In view o f the initial objectives of this thesis, the aberrant localisation of IDC 

would preclude its use as a probe to target ER membranes. Importantly, the observed 

membrane targeting of I-domain constructs in the absence of RyR2 suggests association with 

other membrane proteins. Appendix I suggests that structural and functional similarity 

between RyR2 and IP3R Ca2+ channels may partly explain this finding.

Both ID and IDA encompass a hydrophobic span of <50 amino acids (after TM4, at a.a.4337 

(Zorzato et a l, 1990)) that potentially form a TM hairpin loop (Du et al., 2004). This
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structure has been suggested to mediate membrane association and is consistent with our data 

showing moderately dense localisation of both ID and IDA in a peri-nuclear environment. A 

similar staining pattern of Golgi in HEK has also been shown (Triantafilou and Triantafilou, 

2004), which supports the hypothesis that ID and IDA may associate with the Golgi apparatus 

(Figure 3.16).

3.4.2. Reduced cell viability correlated with expression of recombinant I-
domain protein

Together with cell rounding, reduced size and other characteristics described above, transient 

expression of I-domain sections also reduced cell viability, which was not observed with 

expression of mRFP (Figure 3.21). Notably, these phenotypic alterations correlated closely 

with the levels of recombinant I-domain proteins expressed in these cell populations. By day 

4, viable cell populations were comparable to control cells (Figure 3.21), which is consistent 

with rapid loss of I-domain expression (Figure 3.24).

The findings of this chapter revealed a profound toxicity associated with I-domain expression. 

The demonstration that cell viability returned to ‘normal’ levels following I-domain 

elimination corroborated these findings.

The following chapters aim to extend the present findings and delineate the signalling 
mechanisms involved in these phenomena.
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Chapter 4



Chapter 4 I-domain expression induces apoptosis

4.1. Introduction

Chapter 3 showed a distinct association of I-domain expression with cellular 

cytotoxicity. Specifically, cytotoxic I-domain expression was associated with an 

abnormal cell phenotype including reduced cell size and altered metabolism. 

Furthermore, recombinant I-domain expressing cells were rapidly eliminated by 4 

days post-transfection. This chapter explores the basis of these findings by 

investigating the precise mode of I-domain induced cell death using complementary 

techniques including flow cytometry and confocal imaging.

4.1.1. Routes of cell demise

Four morphologically distinct cell death pathways have been characterised: apoptosis, 

apoptosis-like programmed cell death (PCD), necrosis and necrosis-like PCD (Leist 

and Jaattela, 2001). However, studies have also demonstrated that cells can ‘switch’ 

between, or integrate components of different cell death paradigms (Leist et al., 1997; 

Leist et a l , 1999; Nicotera and Melino, 2004), underlining the plasticity of this 

signalling cascade.

Apoptosis (Greek for ‘falling off5) was initially adopted as a general term to describe 

PCD and can be triggered by either intrinsic or extrinsic stimuli. Intrinsic pathways 

are initiated by the release of cytochrome c from mitochondria (see Chapter 5), 

whereas extrinsic apoptosis is typically initiated by stimuli received via death 

receptors on the cell membrane (Figure 4.1). Apoptosis is characterised by 

phosphatidylserine exposure (an early indicator of apoptosis) and caspase-induced 

breakdown of the cytoskeleton, which causes cell shrinkage, chromatin condensation 

and DNA cleavage (‘laddering’). Caspases are a large family of cysteine protease 

enzymes responsible for protein breakdown in cells undergoing apoptosis. Thirteen 

caspases have been identified to date that are grouped into either initiator and effector 

caspases (Eamshaw et al., 1999) (Figure 4.1). Zeiosis or ‘blebbing’ of the cell 

membrane is a distinguishable hallmark of apoptosis that results in cell separation into
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Figure 4.1. Intrinsic and extrinsic apoptosis pathways

Apoptosis can be initiated via two distinct pathways. Intrinsic pathways are 
mediated by cell damage that triggers the release of cytochrome c from 
mitochondria, which activates initiator caspases such as caspase 9 and apoptosis 
activating factors (APAF-1). Initiator caspases activate effector caspases such as 
caspase 3. The role of Bcl-2 in apoptosis will be addressed in Chapter 5. Extrinsic 
pathways are initiated by extracellular stimuli, which result in the activation of 
initiator caspase 8 that subsequently activates effector caspase 7 committing the cell 
to apoptosis.

Adapted from (Zaffaroni et a l , 2005)

several vesicles referred to as ‘apoptotic bodies’ (Cohen et al., 1992). The 

translocation of phosphatidylserine from the inner to the outer leaflet of the plasma 

membrane permits recognition and removal of apoptotic bodies by nearby 

macrophages (Verhoven et a l, 1995). Apoptosis-like PCD exhibits characteristics 

similar to apoptosis, such as phosphatidylserine translocation and zeiosis, however, 

unlike ‘typical’ apoptosis: it is a caspase-independent form of cell death distinguished 

by incomplete chromatin condensation (Didenko et a l , 2002).

In contrast, cell necrosis was initially defined as ‘non-programmed’ cell death due to 

acute cellular injury or infection that triggered an inflammatory response (Trump and

143



Berezesky, 1992). However, necrosis can also result from disrupted cell signalling 

pathways by molecules such as ROS (Waring, 2005), as a consequence of mutation in 

apoptotic proteins (Chautan et a l , 1999), and even by aborted apoptosis via caspase 

inhibitors or anti-apoptotic proteins such as Bcl-2 (Leist et al., 1997; Melino et a l, 

1997; Leist et a l, 1999). This distinct necrotic cell death pathway is termed necrosis

like PCD and although it is morphologically identified by the absence of chromatin 

condensation and apoptotic body formation (Henriquez et a l, 2008), it can also 

exhibit characteristics consistent with apoptosis such as phosphatidylserine 

translocation (Brouckaert et a l , 2004).

4.1.2. Objective

The objective of this chapter was to determine the nature and mode of cell damage 

induced by I-domain expression that was reported in Chapter 3.
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4.2. M ethods

4.2.1. Flow cytometric quantification of mRFP-expressing cell
populations

Following on from immunoblot analysis that showed a progressive loss of 

recombinant I-domain protein over 4 days post-transfection, flow cytometry was used 

to more precisely determine the loss of I-domain expressing cells. Cells (~5xl05) 

were resuspended in 0.5ml PBS pH7.4 and sorted at a rate of 1,000 events/s, sorting 

up to 20,000 events using a FACSCalibur system (BD Biosciences). In addition to 

fluorescence measurements, flow cytometry also provides information on cell 

phenotype by virtue of forward scatter (FSC) and side scatter (SSC). FSC identifies 

changes in cell size, while SSC conveys alterations in cell granularity. A greater SSC 

is exhibited by apoptosing cells due to morphological changes (Pepper et a l, 1998; 

Sandstrom et a l, 2000). The relative fluorescence, FSC and SSC of recombinant 

protein expressing cells was determined on each day (1 to 4 days post-transfection). 

Cells expressing mRFP were also exposed to 0.01-lpM  concentrations of PMA (as 

described in Section 4.2.3) and analysed by flow cytometry to compare cell size and 

granularity following PMA-induced apoptosis. Analysis was performed using 

WinMDI version 2.8.

4.2.2. FACS enrichment of cell populations expressing recombinant
ID protein

Stable cell lines are achieved via culture and maintenance of transfected cells in the 

presence of a selection agent that depends on the resistance gene encoded for in the 

expression vector. Generation of stable cell lines often results in the survival of 

antibiotic resistant cells that lack recombinant protein due to ‘switching o ff  the 

recombinant protein of interest expression but retaining resistance (Zhang et a l, 

2006). Fusion of recombinant proteins with a fluorescent tag permits the identification 

of cell populations that express recombinant protein, and also serves to facilitate
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positive cell selection using a variety of techniques. Fluorescence activated cell 

sorting (FACS) has proven to be a hugely successful and sensitive technique for 

enriching stable recombinant protein expressing populations (George et al., 2003c; 

Zhang et a l , 2006).

As discussed in Section 3.2.6, G418 failed to positively select for cells expressing 

recombinant I-domain, but was used in this chapter to retain cell populations 

expressing I-domain that were subsequently to be selected via FACS. Cells expressing 

mRFP and mRFP-tagged ID were cultured in cDMEM supplemented with 500pg/ml 

G418 from 24 hours post-transfection to maintain selective pressure, then sequentially 

propagated to >1 x 107 cells/ml (-7  days) for FACS (MoFlo, Dako Cytomation). 

mRFP-positive cells exhibiting fluorescence greater than 10-fold above non

expressing cells were selected using a 543nm laser line. ID and mRFP expressing cell 

suspensions (~ lx l0 7) were sorted at <10,000 cells/second and collected in 2ml 

cDMEM in one well of a six-well plate. Media was immediately supplemented with 

500pg/ml G418 after FACS and cells were returned to culture. Cellular fluorescence 

was observed daily on an Axiovert 2000 fluorescent microscope (see Section 2.2.7.3.2 

and Figure 3.15A). ID and mRFP cells were then propagated (up to -1x10 ) for a 

second sort to further enrich recombinant protein expressing cells. I-domain cells 

were sorted alongside cells expressing mRFP alone, which served as a positive 

control for selection. Data was analysed using Dako Summit (Version 4.3).

4.2.3. Analysis of mode of death in cell populations

Many kits and reagents are available for detection of various stages of apoptosis using 

either morphological or biochemical markers, such as DNA fragmentation, 

phosphatidylserine translocation and caspase activation. Despite there being many 

factors that promote apoptosis, DNA fragmentation is a hallmark of end-stage 

apoptosis. This can be readily detected in situ using commercially available DNA 

end-labelling systems, as previously demonstrated (George et a l, 2003b). The 

DeadEnd™ Fluorometric TUNEL (TdT-mediated dUTP Nick-end labelling) System 

(Promega) was used, that catalytically incorporates fluorescein-12-dUTP at the 3’-OH
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end of fragmented DNA, utilising recombinant Terminal Deoxynucleotidyl 

Transferase (rTdT) since this system has been routinely used in our laboratory.

Cells expressing mRFP and I-domain constructs were seeded onto coverslip chambers 

following transfection at days 1-4. Cells were fixed in 4% (v/v) paraformaldehyde and 

rehydrated in PBS pH7.4 (see Section 2.2.7.3.1), and permeabilised in 0.1% (v/v) 

Triton-XlOO in PBS for 30 minutes at RT. Following permeabilisation, cells were 

washed twice in PBS for 5 minutes and then incubated with lOOpl equilibration buffer 

for 10 minutes. After equilibration, 50pl rTdT buffer was added (consisting of 

equilibration buffer, 45pl; nucleotide mix, 5pi and rTdT enzyme, lpl), then were 

covered with the provided plastic coverslips to prevent drying out and incubated for 

one hour at 37°C. A 20x SSC salt solution (see Section 2.1.3.1) was diluted to 2x and 

applied to cells for 15 minutes at RT to terminate the reaction. Cells were washed 

three times in PBS for 5 minutes to remove unincorporated fluorescein-12-dUTP, 

mounted with FluoSave™ as previously described and stored at 4°C for up to a week 

prior to imaging. Additional cells were also treated with 100pg/ml DNase I for 30 

minutes as a positive control for DNA fragmentation, prior to proceeding with the 

TUNEL system.

Green-channel images (TUNEL/fluorescein) were laid over red-channel images 

(mRFP-tagged recombinant protein) and the degree of transparency was adjusted to 

60% green: 40% red using Adobe Photoshop software. The TUNEL system is not 

quantitative and therefore does not enable the comparison of the extent of apoptosis in 

different cells within or between each field of view.

4.2.3.I. Control for C a2+-linked apoptosis

Phorbol 12-myristate 13-acetate (PMA) activates protein kinase C (PKC), a Ca2+ 

dependent protein kinase family of intracellular mediators (Park et al., 2001; Kim et 

al., 2003; Zong et al., 2004) involved in cell growth, differentiation and apoptosis 

(Basu and Miura, 2002). PMA induces the translocation of various PKC isoforms to 

the cell membrane (Chen et al., 1995a; Lin and Chen, 1998), which triggers apoptosis
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via isoform-specific mechanisms (Mandil et al., 2001; Gutcher et al., 2003). PMA 

enabled the assessment of the extent of apoptosis that resulted from Ca2+ associated 

pathways. PMA concentrations of 0 .0 1 -1  pM have previously been implemented to 

induce apoptosis in HEK cells (Kim et al., 2003; Zong et al., 2004). Cells expressing 

mRFP were incubated with 0, 0.01, 0.1 and 1 pM PMA in unsupplemented DMEM 

(as serum interferes with PMA associated pathways) for 1.5 hours, equilibrated in 

cDMEM for 4 hours then fixed, rehydrated and processed for the DeadEnd™ TUNEL 

system as described above.
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4.3. Results

4.3.1. F low  cy to m etry  reveals a p o ten tia l lin k  betw een  I-dom ain
exp ression  an d  apoptosis

The loss of recombinant I-domain expression over 4 days post-transfection was 

previously shown by immunoblotting analysis (Figure 3.24). Here flow cytometry 

was employed to quantitate the reduction in protein expression using mRFP 

fluorescence at the cellular level. Cells expressing both recombinant I-domain and 

mRFP were subjected to flow cytometry 1-4 days following transfection. Flow 

cytometric fluorescent counts for all I-domain constructs were normalised to mRFP 

day 1. The percentage of cells expressing mRFP alone was significantly greater than 

all I-domain expressing cells both 3 and 4 days post-transfection (p<0.05). In 

addition, flow cytometric analysis of I-domain expressing cells also reflected 

morphological changes induced by I-domain expression. Figure 4.2A regions i and ii 

denote untransfected cells (fluorescence below an arbitrary threshold of 150 

fluorescent units) and recombinant protein expressing cells (fluorescence above this 

arbitrary threshold) respectively, in the same cell suspension. Importantly, the 

analysis of these separate populations revealed that both I-domain expressing and 

non-expressing cells exhibited a greater SSC than did populations of mRFP cells. 

Note the striking positive relationship between ID8 fluorescence and magnitude of 

SSC when compared to that obtained with mRFP (Figure 4.2A). Figure 4.2Bi and ii 

clearly display that both transfected I-domain populations and cells with a low 

fluorescence (i.e. cells with low or non-detectable expression of the same recombinant 

protein) have a significantly increased granularity on both 1 and 2 days post 

transfection compared to mRFP transfected cells. Figure 4.2 thus provides compelling 

evidence that I-domain-induced cellular damage was not only restricted to cells 

expressing recombinant protein, but also adversely affected untransfected cells within 

the same cell populations.
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Figure 4.2. Flow cytometric quantification and phenotypic analysis during 1-domain elimination

A. Flow cytometric histograms represent data from day 2 HEK, mRFP and ID8 expressing populations, and clearly display that mRFP and ID8 exhibit greater fluorescence than HEK 
(region ii). SSC for both mRFP and ID8 populations is depicted in the lower panel, aligned against relative fluorescence, displaying a higher SSC of ID8 cells than mRFP cells, within 
both non-fluorescent (i) and fluorescent (ii) cell populations. B. Upper right panel displays flow cytometric selection of mRFP expressing cell populations over a 4 day period following 
transfection. The SSC of the non-fluorescent cell population is displayed in the middle panel corresponding to cells typical of population (i) in panel A, and SSC of cells exhibiting
greater than threshold fluorescence (>150 fluorescent units) is shown in the bottom panel (ii). Day 1 *p<0.05 for ID and ID8, #p<0.01 for IDA and IDC; day 2 *p<0.05 for ID, ID8 and
IDC, #p<0.01 IDa; day 3 and 4 p>0.05. A similar trend was also observed in NUCs compared to mRFP NUCs: day 1 *p<0.05 for ID, IDA, ID8  and IDC; day 2 *p<0.05 for ID, IDA and
ID8, #p<0.01 IDC. n=2, error bars represent mean± SD.



4.3.2. F luo rescence  ac tiva ted  cell so rtin g  (FA C S) failed  to en rich
rec o m b in a n t I-d o m ain  expression

Following transient expression of I-domain constructs (Chapter 3), the selection of 

cells positively expressing recombinant protein was required in order to more fully 

assess the relationship between recombinant I-domain expression and cellular 

phenotype/cytotoxicity. Our strategy aimed to generate stable I-domain expressing 

cells in order to assess the more chronic effect of I-domain expression. G418 was 

used to maintain plasmid selection and FACS was employed to positively select ID 

expressing cells (detailed in Section 3.2.6). Although immunoblotting experiments 

had revealed a dramatic loss of recombinant I-domain protein by day 4 (Figure 3.24), 

protein levels were not completely eliminated. In our approach, the focus was on 

enriching isolated cell populations that maintained expression of detectable levels of 

recombinant ID protein. Only the full-length ID construct was used in these 

experiments to provide an insight into whether this was a viable approach. FACS 

successfully enriched mRFP-positive cell populations that were able to maintain high 

levels of protein expression (Figure 4.3 A and B). In contrast, and despite selecting 

around 30,000 expressing cells (Figure 4.3C), bona fide I-domain expressing cells 

could not be maintained, and consequently a progressive loss in ID expressing cells 

over time was determined (Figure 4.3C and D). Time between sorts was shorter for ID 

cells than mRFP cells (8 and 10 days respectively) due to the time required to obtain 

sufficient cells to sort and as a consequence of the rapid loss of ID. In addition, as 

discussed in Section 4.2.1, FACS also has a robust utility in investigating alterations 

in cell phenotype that accompanied changes in I-domain expression using FSC which 

represents cell size, and SSC which represents cell granularity. Figures 4.3 and 4.4 

show the loss of mRFP fluorescence in ID populations between the first and second 

sort correlated with a decrease in cell size and granularity. Despite an increase in cell 

granularity observed in mRFP cells between first and second sorts, cells did not 

display a toxic phenotype (Figure 3.20). It is also important to note that after the first 

sort, ID transfected cells displayed greater granularity (Figure 4.3C) than mRFP cells 

implying more cell damage. Interestingly, despite few cells retaining ID expression at 

both first and second sorts (33440 and 657 respectively), a high number of ID 

transfected cells exhibited a SSC of >100 (68601 and 6914 respectively). In contrast,
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a SSC of >100 was displayed by fewer mRFP transfected cells (Figure 4.3A) 

compared to those retaining expression of recombinant mRFP protein (Figures 4.3B). 

FSC and SSC of ID transfected cells displayed a marked reduction between first and 

second sorts, which is the inverse observed with mRFP transfected cells. The reduced 

FSC and SSC following the second sort of ID, not observed with mRFP (Figures 4.3 

and 4.4), was fully consistent with ID elimination (Figures 3.20 and 3.24).
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Figure 4.3. FACS enrichment of ID and mRFP-positive cell populations

mRFP expressing HEK cells and mRFP-tagged ID were selected by mRFP fluorescence (high angle scatter). 
FSC and SSC provide information on cell size and granularity respectively. R2 gate defines cell populations 
exhibiting >30 fluorescence units and a FSC of >64 arbitrary units. R1 gate defines cell populations 
characterised by SSC >100 and FSC >64, and indicates total number of cells within gate. Only ID and mRFP 
were assessed in this manner.
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4.3.3. I-domain expression induced apoptotic cell death

The findings of the FACS experiments (Figures 4.2 to 4.4) demonstrate an increased 

cell granularity of I-domain expressing cells compared to mRFP cells, which is 

entirely consistent with cell damage observed previously (Figures 3.19, 3.20, 3.21 and 

3.25). In order to delineate the mechanisms behind the profound phenotypic changes 

and loss of cell viability following I-domain expression, cells were analysed for levels 

of apoptosis.

Apoptosis was elevated in all I-domain-expressing cells at 2 and 3 days post

transfection (p<0.05 compared to mRFP transfected cells), which returned to levels 

comparable with both HEK and mRFP cells (~2%) by day 6 (Figures 4.5 and 4.7A). 

Brightfield images demonstrate that the reduced levels of apoptosis by day 6 were not 

attributable to fewer cells per field of view. Apoptosis in ID expressing cells was not 

determined at 6 days post transfection due to low sample number. Importantly the 

elevated level of apoptosis in I-domain transfected cells was extended to neighbouring 

untransfected cells (NUCs) (clearly evident in Figure 4.5). This fully corroborated 

flow cytometric data that also demonstrated a similarly damaged phenotype in NUCs 

as observed in cells expressing recombinant I-domain (Figures 4.2 to 4.4). 

Furthermore, not all NUCs characterised by apoptosis were directly physically 

coupled with transfected cells (Figure 4.5, white arrows in ‘merged’ day 2 panel), 

suggesting that NUC apoptosis was not mediated by direct contact with I-domain 

expressing cells.

Figures 4.6 and 4.7B display a proportional increase in apoptosis with higher PMA 

concentrations, however this failed to induce apoptosis in all cell populations (see 

Section 4.4.1). DNase treated cells exhibited almost 100% DNA fragmentation as 

expected.
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Figure 4.5. I-domain expression was associated with an increase in apoptosis

A. Confocal images of brightfield, mRFP channel, TUNEL displaying degree of apoptosis and TUNEL-mRFP 
channel merge. White arrows in the merged panel of day 2 indicate apoptotic NUCs that are not coupled to a 
transfected cell. Scale bar =25pm.
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Figure 4.6. PMA-induced apoptosis in HEK cells

Confocal images displaying apoptosis in mRFP-expressing cells induced by Ca2+-linked 
mechanisms (PMA) or physical DNA damage (fragmentation using DNase I). Images 
displayed for each construct are brightfield, red channel (mRFP fluorescence) and green 
channel (TUNEL/fluorescein). Lower panels display ‘merge’ of green and red channels. 
Scale bar =25pm.
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B. Extent of apoptosis in mRFP expressing cells exposed to PMA (0.01-lpM ) or DNase 
treated cells, +p<0.001 compared to mRFP cells not exposed to PMA. ND = not determined.
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4.4. Discussion

4.4.1. Constitutive cellular I-domain expression triggers apoptosis

This chapter describes attempts to generate stable expression of I-domain constructs, however 

it failed to produce any viable expressing cells. Stable high-level expression of RyR2 in CHO 

cells has previously been shown to be cytotoxic, which was avoided by selection of discrete 

clonally-derived cells expressing lower levels of recombinant protein (George et a l, 2003c). 

However, selection of low-level I-domain expression was not achieved because FACS 

followed by subsequent culture did not enrich ID-expressing populations (Figures 4.3 and 

4.4). Using an inducible stable expression system may overcome these problems but was not 

suitable for this study since it was only intended to provide an insight into chronic constitutive 

I-domain expression. FACS data in Figure 4.2 demonstrated that loss of I-domain correlated 

with fewer damaged cells, which suggests that cellular survival is linked to the elimination of 

I-domain populations. This is also entirely consistent with the findings in Chapter 3, whereby 

viable cell populations were comparable to control cells by 4 days post-transfection (Figure

3.21) after the majority of recombinant I-domain expressing cells were eliminated. 

Interestingly, another study conducted in HEK cells whereby transfection of HtrA2 (serine 

protease) induced apoptotic morphological changes that included cells shrinkage and 

rounding (Suzuki et al., 2001). These findings are fully consistent with the changes observed 

in this and the previous chapter (Figures 3.21 and 4.5).

The extent of apoptosis (Figures 4.5 and 4.7A) and reduced cell viability (Figure 3.21) 

following I-domain transfection were comparable. However, in view that cell viability using 

Trypan blue does not discriminate between necrosis and apoptosis, it would appear that I- 

domain cytotoxicity was predominantly via apoptosis rather than necrosis. Nevertheless, 

necrosis probably contributes to the overall extent of cytotoxicity measured in this thesis. As 

discussed in Section 4.2.3.1, PMA was used to induce Ca2+-dependent apoptosis in view of 

the central role of RyR2 in Ca2+ signalling and the possibility that I-domain induces apoptosis 

via Ca2+ dependent mechanisms (to be addressed in Chapter 5). Previously it was shown that 

a 30 minute incubation with 0.0 lpM  PMA was sufficient to drive ANX-1 nuclear 

translocation (Kim et al., 2003). However, the group only measured this characteristic marker 

of apoptosis, and did not assess whether apoptosis was fully evoked. With reference to 

findings of this chapter (Figures 4.6 and 4.7B), a 1.5 hour incubation with 0.01 pM PMA and 

4 hours equilibration in complete media resulted in DNA fragmentation in ~40% of cells
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(Figure 4.7B). Therefore it is likely that the time frame of these present experiments may have 

only been sufficient for 40% apoptosis and accordingly, a longer time duration may be 

required to observe 1 0 0 % programmed cell death.

It should also be noted that a large number of mRFP cells displayed a greater FSC and SSC 

following second FACS (Figures 4.3 and 4.4), which suggests that prolonged expression of 

mRFP is not completely benign and does alter cell phenotype. However, transient expression 

of mRFP is largely compatible with cell viability (Figures 3.21, 4.5 and 4.7A) therefore these 

changes associated with chronic mRFP expression did not present any limitations in the 

context of these experiments.

4.4.2. I-domain associated abnormal phenotype was extended to
neighbouring untransfected cells (NUCs)

Analysis of cell granularity using flow cytometry indicated a greater proportion of damaged 

cells following I-domain expression (Figure 4.2), which was consistent with findings from 

apoptosis experiments (Figure 4.5 and 4.7A). In addition, these studies also revealed an 

intriguing finding that I-domain expression not only compromised cell phenotype in 

transfected cells, but also was detrimental to NUCs irrespective o f contact with a transfected 

cell (Figures 4.2 and 4.4). This fascinating finding provided the first glimpse that cellular 

cross-talk may be triggered by I-domain expression, and that abnormal signalling in a 

transfected cell could in some way be transmitted to its neighbours. Chapter 7 addresses these 

issues in more detail.

The profound toxicity and rapid elimination of recombinant I-domain constructs prompted 

further investigation into the underlying mechanisms of I-domain induced cell demise, which 

is the focus of the next chapter.

159



Chapter 5



Chapter 5 Investigating the effects of I-domain expression

on Ca2+ release channels in HEK cells

5.1. Introduction
^ I

As previously discussed, Ca plays an essential role in normal cellular homeostasis
^ I

and signalling. However, the complex interplay of Ca signalling components is also 

a critical determinant in the progression and mode of cell death (Trump and 

Berezesky, 1992, 1996; Pan et al., 2000). In view of the findings of Chapters 3 and 4, 

particularly that expression of recombinant I-domain was associated with lower cell 

viability and increased levels of apoptosis, it was important to elucidate the 

mechanistic basis of altered viability and metabolism in cells expressing I-domain 

fragments. The intimate association of Ca signalling and cell death pathways is 

highly documented but is particularly centred on the involvement of IP3R (Gutstein 

and Marks, 1997; Szalai et a l , 1999). This is particularly relevant to this thesis
^ 1

considering that HEK cells only express IP3R Ca release channels, and not RyR.
0 4Given that this data presented here is consistent with Ca -linked apoptosis in I- 

domain expressing cells, and a possible role for cellular cross-talk with neighbouring
0 4cells, it was hypothesised that perturbed cellular Ca cycling may underlie I-domain-

04 -linked cell death. This chapter aims to specifically determine the involvement of Ca 

signalling pathways, and their perturbation in I-domain cytotoxicity.

5.1.1. Ca2+ dependent cell death pathways

04"Perturbations in intracellular Ca have been intimately linked with cell damage 

(Hajnoczky et al., 2000; Pan et al., 2000; Schwab et al., 2002; Orrenius et al., 2003;
04 04 .Lim et al., 2008). Depletion of ER Ca stores and increased cytoplasmic Ca flux in 

CHO cells expressing recombinant RyR increased apoptosis (Pan et al., 2000; George
0 4et al., 2003b). Likewise, sustained high intracellular Ca concentrations in 

thymocytes and hepatoma cells initiated events that also induced apoptosis 

(Tsukamoto and Kaneko, 1993; Jiang et al., 1994). NCX and PMCA ion pumps in
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cardiomyocytes and PC 12 cells have been demonstrated to rapidly remove high 

intracellular Ca2+ into the extracellular environment, thus restoring lower resting Ca2+ 

concentrations (Garcia et al., 2001; Miyamoto et al., 2005). However, caspases have 

been shown to cleave both ion pumps during apoptosis, which results in the toxic 

accumulation of intracellular Ca2+ (Paszty et al., 2002; Schwab et al., 2002; Bano et 

al., 2007; Paszty et al., 2007). Similarly, cardiac myocytes from embryonic mice 

devoid of NCX1 displayed altered Ca handling and apoptosis (Wakimoto et al., 

2000). In addition, perturbed Ca2+ homeostasis as a result of ion channel cleavage was 

found to induce necrotic cell death (Schwab et al., 2002). The fine balance between 

apoptosis and necrosis has been proposed to be dependent on levels of ATP (Leist et 

al., 1997; Leist et al., 1999), which places mitochondria and cell metabolic pathways 

central to the execution of cell death programmes.

Apoptosis can also arise through an imbalance in cellular protein expression, 

particularly components of the Ca signalling machinery (referred to as the Ca 

signalosome). For example, Bobe and colleagues demonstrated that both increased 

and reduced ER load, attributable to overexpression of various SERCA isoforms, 

triggered ER stress and induced apoptosis (Bobe et al., 2004; Chaabane et al., 2006). 

Similarly calreticulin overexpression increased intracellular Ca2+, which was 

associated with reduced and elevated activity of the anti- and pro-apoptotic proteins 

Bcl-2 and Bax respectively (Lim et al., 2008). In addition, low-level expression of 

Bcl-2 protects against apoptosis, whereas high-level expression spontaneously
*y,

induced apoptosis in a Ca - and redox-dependent manner (Hanson et al., 2008a).

5.1.2. The role of IP3R in apoptosis

IP3RS are central to the progression of apoptosis (Boehning et al., 2003; Wang and El- 

Deiry, 2004; Boehning et al., 2005; Mendes et al., 2005). Sugawara and colleagues 

were the first to report that IPsR-deficient chicken DT40 B-lymphocytes were 

resistant to apoptosis (Sugawara et al., 1997), and manoeuvres intended to promote 

apoptosis in these cells failed to activate caspases 3 and 9 (Tantral et al., 2004). These 

findings suggest that IP3R are intimately involved in caspase-dependent apoptosis
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(See Figures 4.1 and 5.1). All IP3R isoforms have been reported to preferentially
^ l

transmit Ca signals into mitochondria (Mendes et al., 2005) inducing mitochondrial 

Ca2+ overload and cytochrome C release (Boehning et a l , 2003) that triggers 

apoptosis (Boehning et al., 2003; Mendes et al., 2005). In addition, depletion of ER 

Ca2+ induces influx via the plasma membrane Ca2+ channels, including store-operated 

channels (SOC) or Ca -release activated current (Icrac), due to an association between 

these channels and IP3R on the ER (Kiselyov et al., 1998). This association could
04- •further elevate [Ca ]j  promoting the progression of apoptosis.

IP3R expression is reported to be upregulated in HF and there is an association 

between increased apoptosis and pathological severity (Gutstein and Marks, 1997). 

Similarly, IP3R have also been linked to the onset of arrhythmia (Mackenzie et al., 

2002; Proven et al., 2006). Due to the abundance of endogenous RyR2 in 

cardiomyocytes in comparison to IP3R, these cardiopathological roles of IP3R are 

likely to be influenced by intracellular cross-talk with RyR2 (White and McGeown, 

2002; George et al., 2003b).
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Figure 5.1. Ca2+-associated apoptosis pathways

Schematic representation of the intimate association between Ca2+ signalling and the 
initiation of apoptosis. Activation of plasma membrane Ca2+ channels (such as LTCC) 
or G-protein coupled receptors (GPCR) induce IP3R Ca2+ release, which can elevate 
mitochondrial Ca2+ and initiate Ca2+-induced apoptosis cascades. High mitochondrial 
Ca2+ alters its membrane permeability, which triggers cytochrome C release (a) that 
binds to IP3R (b), enhancing IP3R Ca2+ release (c). Subsequently a global rise in 
cytosolic Ca levels (d) triggers high mitochondrial Ca concentrations that cause 
global cytochrome C release from mitochondria (e), i.e. a feed-forward mechanism. 
Cytosolic cytochrome C induces apoptosome formation, promoting late-stage 
apoptosis via caspase 9 activation (f) and finalising the apoptosis cascade by DNA 
cleavage. In addition, the pro-apoptotic protein Bid can be activated via so-called 
death receptors (cell surface receptors such as tumour-necrosis factor receptor), which 
induce ROS formation by specific targeting of mitochondria, thus promoting cell 
death (Ding et al., 2004). Furthermore IP3R also have a role in promoting cell 
survival via activation of proteins such as the transcription factor NF-kappa B and 
anti-apoptosis protein Bcl-2.

Adapted from Mattson and Chan, 2003
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^  I I

5.1.3. Monitoring intracellular Ca signalling using fluorescent Ca
indicators

■jt
The quantitative measurement of intracellular Ca cycling in living cells has been a 

pivotal development in the understanding of dynamic spatiotemporal signalling
94-underlying complex cellular processes. Ca indicators were originally derived from

•jt
BAPTA (a membrane permeable Ca chelating agent) and have evolved over the past 

30 years into indispensable tools for monitoring intracellular Ca2+ events (Tsien,
94*1980, 1992). Various Ca indicators are commercially available and can be classed as 

either ratiometric, such as Fura-2 or single-wavelength, such as fluo-3 and fluo-4. 

Ratiometric indicators can be used to measure the ratio of fluorescent signals at two 

distinct wavelengths, which enables the precise quantification of changes in Ca2+
94-concentration. Single wavelength indicators measure Ca fluorescence at a single

9 i
emission, the intensity of which is directly proportional to both ambient Ca and the 

concentration of the indicator at sub-saturating levels. Therefore, ratiometric 

indicators offer the advantage of eliminating artefacts that may arise due to indicator 

concentration. However, the majority of ratiometric indicators require UV excitation, 

which can damage living cells and increase autofluorescence. In addition, many 

confocal microscopes (including our own) are not fitted with a UV laser, precluding 

the use of ratiometric dyes (Niggli et a l, 1994; Novak and Rabinovitch, 1994; Sako et 

al., 1997). Single wavelength indicators, such as fluo-3 and fluo-4, are preferred due 

to their non-destructive and effective implementation in live cell confocal microscopy 

studies using an argon laser (Gee et al., 2000). Following cellular incorporation of the 

non-fluorescent acetoxymethyl (AM) conjugated form of the dye via facilitated 

passive uptake of the dye, the free (fluorescent) indicator is released into the 

cytoplasm by the hydrolysing action of endogenous esterases. In addition, removal of 

acetoxymethyl ester groups restores the hydrophobic properties of the dye, thus 

preventing leakage from the cell (Gee et al., 2000). Fluo-4 was synthesised from fluo- 

3 by the direct substitution of two fluorine molecules for two chlorines, which shifted 

the excitation maxima to the left (from 506nm to 494nm). This alteration improved 

fluorescence emission using an argon laser (488nm) (Mattson and Chan, 2003),
9-1-providing a more intense fluorescence signal at equivalent dye and Ca 

concentration. The left shift in emission maximum (526nm to 516nm) also permits a
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lower incidence of spectral overlap when used in combination with dyes that emit in 

the red spectrum (e.g. mRFP). Fluo-4 also has a higher affinity for Ca2+ than fluo-3 

(Kd of 345nM compared to 390nM) and a greater dynamic range (Gee et al., 2000).

5.1.4. Objective

In light of the crucial role of perturbed Ca cycling via IP3R in triggering apoptosis, 

this chapter investigates whether I-domain constructs pathologically alter cellular
^ l

IP3R-dependent Ca handling in HEK cells that ultimately leads to their demise.
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5.2. M ethods

5.2.1. Cellular Ca2+ imaging using fluo-4 and CLSM

 ̂ i
Intracellular Ca measurements were performed on both fluo-4 loaded resting (non

stimulated) and agonist-induced cells using an SP5 confocal microscope. Cells were 

loaded under a lOOpl meniscus of fluo-4 (5pM in 20% w/v pluronic acid F-12) in 

unsupplemented DMEM and incubated at 37°C for 60 minutes. Coverslip chambers 

were flooded with 2ml unsupplemented DMEM and further incubated at 37°C for 10 

minutes (to allow for additional fluo-4 de-esterification) prior to imaging.

5.2.2. Analysis of agonist-induced Ca2+ transients

Agonist-activation of Ca dependent pathways has revealed Ca handling 

dysfunction, such as via stimulation of mutant RyR2 using caffeine (Thomas et al.,
'y,

2005), and activation of pathways that trigger IP3-induced Ca release by carbachol 

(Luo et al., 2001; Futatsugi et a l , 2005). Carbachol (carbamylcholine, Figure 5.2) is a 

stable analogue of acetylcholine (Nathanson et al., 1978; Fedorov and Cherkasova, 

1997) that stimulates endogenous cell surface acetylcholine muscarinic G-protein 

coupled receptors (GPCR), resulting in a cascade of events that raises intracellular
I

levels of IP3 (Figure 5.2). Carbachol is widely implemented in Ca imaging 

experiments (Conklin et a l , 1992; Honda et a l , 1994; Schachter et a l , 1997; Tojyo et 

a l , 1997; Mundell and Benovic, 2000; MacMillan et a l , 2005).

Basal fluorescent signals were recorded for 60s (300 frames) prior to the addition of 

carbachol (lpM -lm M  dissolved in unsupplemented DMEM). To avoid confounding 

issues of cellular responses to successive carbachol additions, each dose was 

administered to cell populations on separate coverslips (n>5 coverslips). Figure 5.3 

displays a typical field of view of WT HEK cells in the right panel, before (A) and 

after (B) carbachol (ImM) addition. Coloured halos represent selected cellular regions 

of interest (~30pm), data from which was used to generate the transient response 

graphs in the left panel. Note the heterogeneity of the carbachol-induced response in 

HEK cells (Figure 5.3), which was observed at all carbachol doses.
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Figure 5.2. Schematic representation of signalling pathways triggered by 
carbachol

Carbachol stimulation of muscarinic G-protein coupled receptors (GPCR) activates G- 
protein, which by conversion of GTP to GDP triggers the hydrolysis of 
phosphatidylinositol-4,5-bisphosphate (PIP2) by phospholipase C (PLC) to IP3 and 
diacylglycerol (DAG). IP3 induces the release of stored Ca2+ via the IP3R, while DAG 
activates protein kinase C (PKC) that phosphorylates downstream proteins (including
IP3R).
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Figure 5.3. Carbachol-induced Ca2+ transients in HEK cells loaded with fluo-4

A. Fluo-4 fluorescence before ImM carbachol addition. B. Fluorescent image 
acquired after carbachol addition. Regions of interest (ROI) are highlighted, and the 
corresponding transients representative of the Ca2+ dependent change in fluo-4 
fluorescence are depicted in the left panel. Scale bar represents 10pm. Four ROI are 
displayed for illustration purposes, however typically 10-20 ROI were selected per 
experiment depending on number of cells per field of view.
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5.2.2.I. Ca2+ transient characterisation

Carbachol-evoked Ca2+ transients were heterogeneous in profile and were 

characterised as described in Figure 5.4.

Typical Sustained

Spontaneous
Slow

10 F.U Early non-induced 
response

2 0 s

Figure 5.4. Heterogeneity of carbachol-evoked Ca2+ transients
 ̂I t

Characteristic carbachol-induced Ca transients observed. Spontaneous 
transients occurred prior to addition of agonist, and were not used for 
analysis.

In this thesis, a Ca2+ transient is defined as a Ca2+-associated fluorescent increase 

greater than 10% o f the basal fluorescence. The analysis parameters of Ca2+ transient 

were:

I. Basal fluorescence: the average resting fluo-4 fluorescence obtained from 

the first minute (300 frames) before agonist addition.
i

II. Peak Ca release: the relative increase in fluo-4 fluorescence following 

agonist addition, measured as a percentage increase from basal fluorescence.

III. Rate of Ca release: the relative increase in fluo-4 fluorescence over time, 

from basal to peak fluorescence.

IV. Rate of transient decay: the relative decrease in fluo-4 fluorescence over 

time, from peak fluorescence until the trace plateaued

The analysis parameters are displayed in Figure 5.5.
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Rate of Ca2+ release = (F-FoV^-ti)

Rate of Ca2+ transient decay = (RD)/(t3-t2)

Figure 5.5. Schematic representation of analysis parameters implemented in 
assessment of Ca2+ release

Fo = basal fluorescence, F = peak fluorescence, D = fluorescence after transient decay, 
tj = time immediately before response, t2 = time at fluorescence peak, t3 = time after 
transient decay.
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5.2.3. U nderstanding the effect of PM T voltage on fluorescent signals

In order to assess the association between PMT voltage and fluorescence, regions of 

interest (~30pm2) from 3 separate experiments were selected. The average 

fluorescence intensities per pixel were obtained at photomultiplier tube (PMT) 

voltages ranging from 500-1250V in 50V increments, using a laser power of 20%. 

The relationship between PMT voltage and fluorescent intensity for each ROI was 

plotted for both fluo-4 and mRFP fluorescence (see below). The fluorescence signal is
o

saturated at high voltages due to an 8 -bit image resolution that results in 2 (or 256) 

levels of intensity for each pixel. Each ROI is represented by a grey line and the 

average is overlaid in black. The standard curves for both fluo-4 and mRFP define the 

relationship, and the respective equations are displayed below (Figure 5.6).

Fluo 4 (‘green’ on PMT1) mRFP (‘red’ on PMT2)

3 0 0 - ,
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100 -

5 0 0 7 5 0 1000 12 5 0
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V o lta g e  V o lta g e

Figure 5.6. Fluorescence intensity dependence on voltage

Relative fluorescence intensity plotted against PMT voltage, n= 8  for both mRFP 
and fluo-4. The data was fitted to a Boltzmann equation yielding non-linear 
regression of y=0.4347+(241.3 - 0.4347)/(l+exp((939.1 - x)/106.2)) for fluo-4 and 
y=6.728+(255.4 - 6.728)/(l+exp((810.2 - x)/75.36)) for mRFP.
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5.2.4. Using thapsigargin to estimate ER Ca2+ store content

In light of the dependence of intracellular Ca2+ release on ER/SR store load (Ranu et 

al., 2002; Terentyev et a l , 2003; Maier et a l 2005), ER Ca2 content was assessed. 

Thapsigargin is a selective blocker of SERCA with a low Kd (dissociation constant) 

that enables it to passively deplete the entire ER/SR store (Thastrup et a l , 1990). In 

most cells, this passive depletion manifests as a Ca2+ transient as a result of the steep 

gradient between ER Ca2+ (mM) and cytosolic Ca2+ (nM). Thapsigargin (5pM) was 

applied to WT HEK cells and those expressing mRFP and I-domain to estimate total 

ER Ca2+. Live cell imaging was performed as described in Section 2.2.8.3. A typical 

thapsigargin response trace is displayed below in Figure 5.7.

F-F

Figure 5.7. Typical thapsigargin response

Addition of thapsigargin induced a transient rise in 
[Ca2+], (F-Fo), which was measured as a percentage 
increase in fluorescence (F) from basal (Fo): (F- 
Fo)/Fo*100. Thapsigargin addition is indicated by the 
grey arrow.

5.2.5. Calibration of resting Ca2+ levels

Ionomycin is a pore-forming ionophore which mobilises [C a2+]i independent of 

cellular expression of RyR and IP3R. In the presence of extracellular C a2+, ionomycin 

can be used to calibrate the Ca2+-dependent fluorescence of fluo-4. Ionomycin (lpM ) 

was applied to cells following 30 sec imaging of basal fluo-4 fluorescence. Resting
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[Ca2+]j concentration was then calculated using the following equation (Grynkiewicz 

et al., 1985):

[Ca2+] = Kd (F-Fmi„)/(Fmax-F)

Where Kd, the dissociation constant for the rate of Ca dissociation from fluo-4 was 

taken from the published value of 345nM (Molecular Probes, Invitrogen). Fmjn and 

Fmax represent minimum and maximum fluorescent signals respectively, and F 

represents fluorescent signal at any time. Fmax was the peak fluorescence after addition 

of ionomycin (lpM ) and F mjn was the lowest fluorescent value determined in the 

presence of the Ca2+-chelating agent EGTA (20mM).

5.2.6. Immunoblot and immunofluorescence analysis of Ca
handling proteins

The rank order of IP3R subtype expression in HEK cells is reported to be IP3R2  

>IP3R 1 MP3R3 (Wojcikiewicz, 1995; Kaznacheyeva et a l , 1998). The endogenous 

expression levels of IP3R2  was detected 2 days post-transfection in microsomal 

fractions obtained from HEK, mRFP- and IDB-expressing cells (see Section 5.3.4.1). 

IP3RI, SERCA2 and calreticulin were detected in post-nuclear supernatant (PNS) in 

cells 2 days post-transfection. SDS-PAGE and immunoblotting procedures were 

performed as described in Section 2.2.9. SERCA and calreticulin (65-125kDa) were 

analysed using 10% gels, whereas IP3R (~220kDa for IP3RI; ~270kDa for IP3R2 ) was 

analysed using 6% gels. Membranes were probed with primary antibodies as detailed 

in Section 2.1.2.5.1.

Cells were assessed by immunofluorescence for localisation of I-domain constructs in 

relation to endogenous IP3R, in order to yield any insights as to whether interaction 

between I-domain and IP3R may underlie the Ca -linked cytotoxicity of I-domain 

expression. Cells expressing mRFP and I-domain constructs were fixed 2 days post

transfection and processed for CLSM (see Section 2.2.8). At least 30 fields of view 

were obtained per construct. Red (mRFP-tagged) and green (IP3R isoforms) channels
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were overlaid and quantified using the co-localisation module of Imaris Bitplane 

(version 6.0) (performed by Dr. Chris George).

5.2.7. G e n e ra tio n  o f  eGFPR yR 2 p lasm id  DNA

Enhanced green fluorescent protein (eGFP) was derived from GFP by two point 

mutations and additional silent mutations that resulted in an increased mammalian 

expression photostability and an excitation peak shift to 488nm that increased its 

fluorescent signal following argon laser excitation (Zhang et al., 1996). eGFP has a 

maximum excitation and emission spectra of 488nm and 512nm respectively, and has 

been successfully used in RyR2 studies in our laboratory. eGFP fusion to the N- 

terminus of RyR2 does not compromise channel function (Thomas et al., 2004; 

Thomas et al., 2005). Dr Chris George provided pcDNA3 containing human RyR2 

tagged with eGFP. eGFPRyR2 expression was driven by the CMV promotor and the 

protein product produced was 16.531 kb (~560kDa). See Figure 5.8.

Figure 5.8. pcDNA3-eGFPRyR2 plasmid

eGFP (green arrow) is tagged to the N- 
terminus of human RyR2 (grey arrow). 
The two sequences are separated by a 
four amino acid linker sequence (Thr-Ser- 
Gly-Ser). eGFPRyR2 expression is driven 
by the CMV promoter and the resistance 
genes encoded are ampicillin and 
neomycin. See Appendix III for detailed 
vector map.

Ampicillin CMV

Neomycin
resistance pcDNA3-

eGFPRyR2
21 kb

RyR2

resistance promotor

RyR2 DNA was propagated in XL-10 Ultracompetent E. Coli and purified using 

Qiagen Maxiprep Purification Kit (Qiagen), see Section 2.2.2.3. DNA was digested 

with Hind III, Eco RI, Bgl II and Bam HI and analysed using 1% (w/v) agarose gel 

electrophoresis to confirm the validity of the plasmid.
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5.2.8. RyR2:IDB co-transfection into HEK cells

HEK cells were transfected on coverslip chambers with eGFPRyR2 by the Effectene 

protocol (Section 2.2.7.3). Following a 6 h incubation at 37°C, the same coverslip was 

transfected with ID8  and incubated overnight at 37°C. Following 24 h post

transfection the coverslips were flooded with cDMEM and left for a further 24 h prior
94-to fixing for fluorescence imaging (Section 2.2.8.1) or loaded for Ca imaging 

experiments (Section 2.2.8 .3).

5.2.9. Immuno-localisation of RyR2 and IDB in HEK cells

Cells co-expressing eGFPRyR2 and ID8  were fixed 2 days post-transfection and 

visualised using SP5 CLSM (Section 2.2.8). At least 30 fields of view representative 

of distinct cell populations were obtained. Red and green channels were overlaid and 

quantified using the co-localisation module of Imaris Bitplane (version 6.0) 

(performed by Dr. Chris George).

5.2.10. Elucidating ID8 function in the presence of recombinant RyR2

9+ RCa signalling in cells co-expressing RyR2 and ID were analysed 2 days post

transfection. Cells transfected with RyR2 alone were used as controls. Caffeine- 

induced responses identified cells transfected with RyR2, as these cells could not be 

distinguished due to the overlapping fluorescence of fluo-4 and eGFP. Since eGFP 

fluorescence is not affected by caffeine addition (Thomas et al., 2004) all fluorescent 

changes are due to fluo-4. ID8  expressing cells were visualised via their inherent ‘red’ 

fluorescence (Figure 5.9). These parameters permitted the identification of different 

populations: ID8  alone, RyR2:ID8, RyR2 alone (without ID8) that were termed
B BRyR2:IDD n u c - Figure 5.9 displays a snapshot of RyR2:ID co-transfected cells 

immediately before and after lOmM caffeine addition. These experiments were
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specifically aimed to study the effect of IDB on RyR2 channel function therefore cells 

that were non-responsive to caffeine were not analysed (cells ‘A’ in Figure 5.9).

Fluo-4 mRFP

Figure 5.9. Snapshot of HEK cells expressing 
RyR2:IDB exposed to lOmM caffeine

Top panels display fluo4 and mRFP channels of the same 
field of view prior to caffeine (lOmM) addition; lower 
panels display the same cells immediately after caffeine 
addition. The three different cells are designated by A 
(ID8  expressing only), B (RyR2:ID8  expressing) and C 
(RyR2  expressing, IDBNUc)- Scale bar = 1 0 pm.
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5.3 R esu lts

5.3.1. PM T voltage is a critical determ inant o f fluorescence signal
intensity

Given the dependency of fluorescence signal intensity on voltage (Figure 5.6), 

experimental data acquired at different voltages would need correcting using the 

equations given in Figure 5.6. However, all experiments performed in this thesis were 

done at comparable voltages and less than 750V (Figure 5.10). The linear relationship 

between voltage and fluorescence exists at >750V (Figure 5.6). Consequently our 

experimental protocol/set-up negated the need to correct fluorescent signals post

acquisition.

7 5 0 n

<i> 5 00 -o>

2 5 0 -

HEK mRFP

Figure 5.10. Voltages used for Ca2+ imaging experiments on 1-domain cells in 
this thesis

n = the number of separate experiments that comprised the entire data set 
described in this thesis. There were no significant differences (p>0.05) between 
voltages used for all I-domain experiments compared to those used for mRFP 
expressing cells (analysed by ANOVA).
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5.3.2. I-domain expression alters cellular Ca2+ handling

As discussed previously, HEK cells are RyR2-null, which precludes the use of 

caffeine to study Ca2+ mobilisation (Tong et al., 1999). However, HEK cells express 

endogenous IP3 R Ca release channels, which have an active role in Ca -dependent 

apoptosis, as already discussed. Therefore carbachol was administered to I-domain 

and mRFP expressing cells in order to trigger muscarinic receptors on the cell surface, 

stimulating a cascade of events resulting in activation of IP3 R, as displayed in Figure 

5.2. Cells co-expressing RyR2 and ID8  activated by caffeine were used for 

comparison.

5.3.2.I. R ecom binant I-dom ain expression does not significantly elevate
[Ca2+]i

^ |
In light of reports that elevated intracellular Ca concentrations are associated with 

cell death (Gutstein and Marks, 1997; Garcia et al., 2001; Tantral et al., 2004; Lim et 

al., 2008), resting Ca2+ levels were assessed in HEK, mRFP and recombinant I- 

domain expressing cells.

The expression of recombinant I-domain induced persistently high [C a2+]j, although 

there were no statistically significant differences between cells expressing I-domain or 

mRFP. It is possible that elevated C a 2+ may occur as a consequence of transfection.

3 0 0  “i
p=0.055

i  200- P*0-5647 p=0.222 P=°'351

o
+

CM

HEK mRFP

Figure 5.11. Elevated [Ca2+]j in mRFP and I-domain expressing cells

Basal Ca2+ in I-domain and mRFP cells was determined following ionomycin 
calibration of fluo-4. p<0.05 compared to mRFP expressing cells, n number is 
displayed inside each bar and represents separate experiments.
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5.3.2.2. Cells expressing I-domain constructs exhibit reduced ER Ca2+ load

In order to ascertain whether alterations in intracellular stores contributed to I-domain 

associated cytotoxicity, thapsigargin was applied to HEK, mRFP and I-domain cells 

to estimate ER Ca2+ load. Thapsigargin experiments revealed that I-domain
^ I

expression was associated with lower ER Ca . Remarkably this phenomenon was 

observed in both transfected cells and NUCs (Figure 5.12).

Recombinant protein expressing cells NUC

a> 3 0 0 -
c<DaC/5
2
o  2 0 0 -3 p=0.255

c
a)</)
ro 1 0 0 -

oc
TO<D

CL HEK m R FP

<u 300-i

o  2 0 0 -

p=0.109

oj 100 -

HEK m R F P

Figure 5.12. ER Ca2+ load estimated by thapsigargin
 ̂ it •p<0.05 and p<0.01 compared to mRFP-expressing cells and mRFP NUC. 

Data obtained from >5 separate coverslips per cell type, n number is 
displayed inside each bar and represents separate experiments.

5.3.3. I-dom ain expression reduced IP3R agonist responses

Cells transfected with all I-domain constructs, except for ID8, were characterised by 

markedly decreased dose-dependent carbachol-induced Ca2+ release when compared 

to mRFP cells, which was observed at both ImM and 0.1 mM carbachol doses (Figure 

5.14). Lower carbachol doses (0.001-0.0ImM) did not evoke Ca2+ release in I-domain
•  • • O  Iand mRFP expressing cells (Figure 5.14). Interestingly the reduced Ca 

responsiveness of I-domain expressing cells was also broadly exhibited by NUCs, 

although significance was only reached at the highest dose of carbachol used (ImM)
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in IDC transfected cells (Figure 5.14). Figure 5.13 displays a typical field of view of 

cells transfected with ID , note that both transfected cells and NUCs exhibit
^  i •  •

diminished carbachol-induced responses. Loss of Ca response is most dramatic for 

ID and ID (Figure 5.14), and are the only regions encoding putative transmembrane 

sequences (Figure 3.4 and 3.6). In contrast, IDB expression did not reduce carbachol- 

induced Ca2+ responses, and interestingly the proportion of non-responsive ID8  cells 

was comparable to mRFP at all carbachol doses (Figure 5.14).

T ran sfec ted  R e sp o n se

✓

B

10 fluorescent I 
units

10 se c o n d s

f t
A B

Figure 5.13. Absence of agonist-induced responses in IDC expressing cells and NUC
i

Left panels display Ca traces from cells selected in the right confocal panel that were 
exposed to ImM carbachol. Coloured halos correspond to ID expressing cells and NUC. 
Both IDC expressing cells and NUC are non-responsive to carbachol (pink and blue halos for

p  t

ID expressing and NUC respectively). A corresponds to time before carbachol addition, 
whereas B corresponds to time directly after carbachol addition.

181



Recombinant protein expressing cells NUC

1mM
100-.

o , i  75- 
.2 °

108

HEK mRFP

100-1

75-

50-

25-
108 44

HEK mRFP

O.ImM
100-,

o J2 
.1 o

108

HEK mRFP

100-1

75-

50-

25-

108

HEK mRFP

0.01mM
jfl
8

100-
75-

|  o 50-

2  o

2 5-
z

0- ■
I

HEK mRFP

L  _E

ID* ID® IDP

50

25H

92

T

44 40

T

54 56 37

HEK mRFP ID ID* ID0 IDC

O.OOImM
100-.

o
os? 25-

HEK mRFP

100-]
75-

50-

25-

HEK mRFP

Figure 5.14. Non-responsive transfected cells and NUCs to carbachol.
<y I :

Cells that did not exhibit agonist-induced Ca release were analysed. Left panels 
represent recombinant protein expressing cells and right panels display the NUC 
responses from the same fields of view. *p<0.05, #p<0.01 compared to mRFP cells for 
recombinant protein expressing cells and mRFP NUC for I-domain NUC.
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In order to investigate the mode by which I-domain expressing cells result in altered 

signalling and loss of viability in NUCs, the proximity of NUCs to transfected cells in 

the context of the carbachol-induced Ca2+ transient was assessed. Figure 5.15 displays 

scatterplots for all I-domain constructs, and demonstrates a lack of association 

between NUC distance from a transfected cell and the relative agonist-induced 

response (F/Fo). Although, it is important to recognise that distance measurements 

were limited to within a field of view, and it is possible that in some instances 

recombinant protein-expressing cells outside the field of view may have been closer 

than those assessed. Nevertheless, this finding is consistent with the data presented in 

Figure 4.5 where apoptosis was observed in NUCs irrespective of their physical 

association with I-domain expressing cells.
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Figure 5.15. Distance of NUC from transfected cells was not associated with 
the magnitude of Ca2+ release evoked by ImM carbachol

Scatter plots for all I-domain constructs, displaying a lack of correlation between 
carbachol-evoked responses in NUC and their distance from a transfected cell. 
Each point represents a cell. R2 values are displayed on each graph.
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Although a large proportion of I-domain transfected cells were non-responsive to 

carbachol (Figure 5.14), I-domain expressing cells in which Ca2+ transients persisted 

were analysed. Characterisation of transients induced by ImM and O.lmM carbachol 

revealed a broadly similar distribution of transient types (characterised in Figures 5.4 

and 5.5) in mRFP and I-domain expressing cells (Figure 5.16). In line with this 

analysis, RyR2 and RyR2:IDB caffeine-induced Ca2+ transients were also 

characterised. Transient types were broadly comparable between RyR2 and 

RyR2:IDB, however more sustained transients were displayed by RyR2 only. More 

notable were the fewer typical transients exhibited by RyR2:IDBNuc than both RyR2  

and RyR2:IDB (Figure 5.16). Furthermore, an interesting finding was that three
D 0_1_

RyR2:ID co-expressing cells exhibited spontaneous Ca transients prior to caffeine 

addition, which was not observed in either RyR2 only expressing cells or 

RyR2:IDBNuc (Figure 5.16). The distribution of transient types following RyR2  

activation with ID8  are similar to those exhibited by activation of IP3 R in the presence 

of ID3  (Figure 5.16), which were also broadly comparable to transient types in the 

absence of ID8  expression. These findings suggest that I-domain constructs do not
9-4-alter these characteristics of agonist-induced Ca transients.

94-In order to evaluate the modulation of the temporal aspects of Ca transients induced 

by ImM carbachol, a detailed assessment of peak Ca2+ release, rate of Ca2+ release
9 1

and rate of Ca transient decay was performed, as displayed in Figure 5.17. The
94-robust peak height of Ca transients evoked by ImM carbachol were reduced in ID 

expressing cells compared with those expressing mRFP, whereas no significant 

difference was observed with any other I-domain fragment or with any NUC. Rate of 

Ca2+ release was lower in ID cells compared to mRFP cells, and in IDA and ID8  

NUCs compared to mRFP NUCs (p<0.01). The rate of Ca2+ transient decay was lower 

in ID and IDA expressing cells compared to mRFP, and this observation extended to 

IDa NUCs. IDc expression was tempered by marked cytotoxicity demonstrated by the 

few cells (7) responsive to ImM carbachol.
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Figure 5.16. Transient types of carbachol and caffeine responsive cells

A. HEK, mRFP and I-domain expressing cells displayed similar response types to ImM 
(upper panel) and O.lmM carbachol (lower panel). IDC transient types were not determined 
due to very few responding cells to either carbachol dose. n= number of cells analysed. B. 
Caffeine-induced (lOmM) transient types of HEK cells expressing RyR2 alone, RyR2:IDB 
and RyR2:IDBNuc represented as a percentage of total cells. Data obtained from at least 15 
separate fields of view per construct; n is representative of cell number.
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Figure 5.17. Characterisation of ImM carbachol-induced Ca2+ release in 1-domain 
expressing HEK cells and NUCs
Peak height (A), rate to peak (B) and rate of decay (C) characteristics of carbachol- 
induced responses of HEK, mRFP and I-domain expressing cells and NUC. *p<0.05 and 
#p<0.01 compared to mRFP cells and mRFP NUC. Data is plotted as average±SEM. Cell 
no. represents the total number of responsive cells from which the data was acquired.
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Carbachol-evoked Ca2+ release from intracellular stores was only significantly 

different for ID compared to mRFP. In order to relate these findings to total ER Ca2+ 

stores estimated by thapsigargin (Figure 5.12), Figure 5.18 displays the mean of data 

obtained from carbachol (ImM) experiments plotted against the mean of data 

obtained from thapsigargin experiments. Note that HEK and mRFP are distinct from 

I-domain constructs.
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Figure 5.18. Mean carbachol-evoked response against mean thapsigargin- 
evoked response

Carbachol-evoked responses (ImM) were plotted against thapsigargin (5pM) 
for HEK, mRFP and I-domain constructs. IDC was not included due to low n- 
numbers for carbachol-evoked Ca2+ release.
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4̂-5.3.4 Alterations in cellular levels of Ca handling proteins following
I-domain expression

5.3.4.1 A ltered expression of ER Ca2+ handling proteins following I-
dom ain expression

Figures 5.14 and 5.17 showed that in day 2 cells (when expression of I-domain 

constructs was highest) some I-domain fragments modulated the responsiveness of 

cells to agonist-stimulated IPaR-dependent Ca release. Thus, it was necessary to 

determine if the altered Ca2+ profiles were due to compensatory changes in 

endogenous expression of Ca2+ regulatory proteins. IP3R2  is the abundant isoform 

expressed in HEK cells (Wojcikiewicz, 1995), and due to the high nuclear localisation 

of this isoform (see Figure 5.22) both nuclear and microsomal fractions were 

examined for alterations in endogenous IP3R2  protein expression. However, as a 

consequence of difficulties encountered in the preparation of nuclear fractions due to 

high viscosity, protein content could not be determined. In addition, in view of 

immunofluorescent experiments (Figures 5.20, 5.22 and 5.23), IP3R2  was only 

immunoblotted in ID8  protein fractions. In order to test whether other components of
^ I

the Ca handling machinery of HEK cells were altered following I-domain 

transfection, endogenous levels of IP3RI, SERCA2 and calreticulin were also 

examined. There was no difference in expression of IP3RI, IP3R2 , SERCA or 

calreticulin following transfection with I-domain constructs (p>0.05) (Figure 5.19).
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Figure 5.19. Endogenous levels o f  IP3R1, IP3R2 , SER CA 2 and calreticulin

Immunoblots of IP3R1 (200pg total protein), IP3R2 (lOOpg total protein), SERCA2 (lOOpg total protein) 
and calreticulin (lOOpg total protein) 2 days post-transfection. The calculated molecular weight of 
calreticulin is ~47kDa but runs atypically at ~65kDa due to endogenous glycosylation. ID8 did not alter 
IP3R2 expression 2 days post-transfection. n=3 for IP3RI, SERCA and calreticulin. n=l for IP3R2 therefore 
p was not determined (ND).



5.3.4.2.1-domain co-localises with IP3R type 1 but not type 2

Immunoblot analysis did not reveal a reduced level of IP3RI in cell populations 

expressing I-domain (Figure 5.19), however, in view of the reduced carbachol 

responses of I-domain expressing cells (Figure 5.14) there could still be an interaction 

between the I-domain and IP3RI at the protein level. Therefore endogenous protein 

levels were also assessed in single cells. Co-localisation of I-domain constructs with 

both IP3R type 1 and 2 was assessed using CLSM (Figures 5.20 and 5.22, 

respectively). IP3RI was mainly localised within cytoplasmic compartments, however 

IP3R2  displayed predominant nuclear localisation. IP3RI expression was assumed to 

be lower than IP3R2 , since it required a higher voltage to observe localisation, 

although it should be noted that IP3R-isoform specific antibodies have a different titre 

/affinity (Section 2.1.2.5.1), which could have affected the required voltage for 

visualisation.

n p

ID and ID, and to a lesser extent ID displayed predominant co-localisation with 

IP3RI whereas IDA did not (Figures 5.23). There was very little co-localisation 

between all I-domain constructs and IP3R2  in cytoplasmic compartments (-25-30%, 

Figures 5.23). Furthermore, the high level of co-localisation of ID8  with IP3RI is also 

consistent with its co-localisation with recombinant RyR2 (Figure 5.21). ID8

9*4-expression did not appear to inhibit RyR2 Ca release, however the use of fluo-4 

meant that non-functional RyR2 channels could not be identified. Nevertheless about 

20-30% of cells per field of view were caffeine responsive, which correlates well with 

the expected transfection efficiency (Figure 5.2IB) suggesting that all transfected 

cells were expressing functional RyR2.
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Figure 5.20. Im m unofluorescence o f endogenous IP3R1 in mRFP and I-domain expressing cells

Confocal images of IP3R1 in I-domain and mRFP expressing cells two days post-transfection. Right panels display the boxed ‘zoomed- 
in’ regions shown in the left panels, in both red and green channels, and the overlay of both channels. Scale bar represents 10pm. 
Number of cells analysed: mRFP, 18; ID, 14; IDA, 13; IDB, 22; IDC, 39.



Given the structural homology between the I-domain of RyR2 and motifs within IP3 R (Appendix I), and the above finding that ID8  potentially 

interacted with IP3 RI and not IP3R2 , it was important to determine the co-localisation between eGFPRyR2 and mRFP-tagged ID8. 

Immunofluorescence revealed an approximately 75% co-localisation of both constructs, displayed in Figure 5.21.

GFPRyR2

Figure 5.21. RyR2:IDB co-localisation

A. HEK cells co-expressing RyR2 and ID8  were analysed by CLSM. Left two panels display 
typical cellular localisation of mRFPiDB and eGFPRyR2 channels. The boxed ‘zoomed-in’ region 
selected in the ID8  panel are magnified in the ‘zoomed in’ panels corresponding to ID8  (red), 
eGFPRyR2 (green) and the merged image (far right). Data is representative of those obtained from 
6 6  cells, scale bar represents 10pm. B. Transfection efficiency for cells co-transfected with ID8  

and RyR2 (representative of 8  separate fields of view). Total number of caffeine responsive cells 
(representative of 14 fields of view) is comparable to the number of RyR2 transfected cells 
indicating that ID8  does not inhibit RyR2 function.

Responsive

192

C
affeine 

resp
o

n
siv

e 
(%

)



mRFP signal
Zoom

Anti-IP3R2 Overlay

Figure 5.22. IP3R2 does not co-localise with I-domain fragments

Confocal images of IP3 R2 in cells two days post-transfection. Expression was predominantly observed in the 
nucleus. Right panels display boxed ‘zoomed-in’ region in individual red and green channels, and the overlay of 
both channels. Scale bar is 10pm. Number of cells analysed: ID, 28; IDA, 33; ID , 49; IDC, 28.
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100-,

p=0.07
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F ig u re  5 .2 3 . I -d o m a in  a n d  IP 3R  ty p e  1 a n d  ty p e  2 co -lo c a lisa t io n

IP3R type 1 (top panel) and 2 (bottom panel) co-localisation with mRFP and 
I-domain constructs. #p<0.01 and +p<0.001 compared to mRFP co-

n f

localisation. Blue bar represents RyR2:ID co-localisation.

5.3.4.3. ID8  dow nregulates IP3R type 1, but not type 2 -  a cellular analysis

The trend toward reduced levels of IP3 R1 in cell populations following I-domain 

expression (Figure 5.19) was more pronounced at the single cell level using 

immunofluorescence analysis. In single cells, the levels of IP3R type-1 were inversely 

proportional to ID8  expression levels (Figure 5.24). In contrast, mRFP expression had 

no effect on cellular levels of IP3 R1 expression (Figures 5.19 and 5.24), and likewise 

ID8  did not alter IP3 R2 expression (Figure 5.24).

194



A

B

D

a:

1 0 0

80

60

40

2 0

mRFP

R2 = 0.61

0 2 0  4 0  6 0  8 0  100

mRFp |qb fluorescence (%)

R2 = 0.11

a) 80

0 20  40 60  80 100

mRFP |Db fluorescence (%)

F ig u re  5 .2 4 . I D B e x p r e ss io n  is a sso c ia te d  w ith  th e  d o w n r e g u la tio n  o f  IP3RI in  
sin g le  ce lls
Relative fluorescence of mRFPIDB with antibody-labelled (fluorescein) IP3RI (A) and 
IP3R2 (B ), and cells expressing mRFP with IP3RI (C). Scatter plot of endogenous 
IP3RI (D ) and IP3R2  expression (E) against recombinant ID8  expression. Trendline 
for IP3RI in cells transfected with mRFP is shown in D. In D and E each data point 
represents one cell (IP3RI, n=61; IP3R2  n=39). Scale bar is 20pm.
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5.4. Discussion

Chapters 3 and 4 provided evidence that I-domain expression was detrimental to cell 

phenotype and was not compatible with cell viability. The present chapter extended these 

findings, and explored the basis of these findings in the context of cellular Ca2+ handling 
using confocal microscopy.

5.4.1. I-domain expression alters intracellular Ca2+ handling

The complex interplay of Ca2+ signals from IP3R and mitochondria are fundamental to the 

control of cell survival and cell death pathways, and altered resting [C a2+]j or ER Ca2+ can
2"b • •upset Ca homeostasis. This chapter revealed that I-domain expression was associated with a 

lower ER Ca load, however this was not substantiated by altered expression of IP3R I, IP3R2 

or SERCA (Figures 5.12, 5.19 and 5.24). Significance for lower expression of IP3R1 could 

potentially be gained upon increasing n numbers, however time limitations precluded these 

further experiments. In addition, with regard to IP3R2 immunoblot analysis, it should also be 

noted that no assessment could be made from an n of 1. Conceptually, lower ER Ca2+ content 

in combination with unaltered calreticulin expression would diminish the Ca2+ available for 

carbachol-induced release. In addition, reduced agonist responses in some I-domain cells (see 

Figures 5.14 and 5.17 for lack of clear trend) could be attributable to inhibition of IP3R 

activity by depleted ER stores (Figure 5.12). Also, a possible explanation for these findings 

may involve caspase-3 degradation. Activation of caspase-3 during apoptosis induces the 

specific cleavage of IP3R1 by binding to a conserved site at a.a. 1888-1891 (Assefa et al.,
1

2004). IP3R1 cleavage is reported to cause continual Ca leak from ER stores thus elevating 

[Ca ]j (Nakayama et al., 2004). In addition, IP3 binding to IP3R type 1 was demonstrated to 

result in the ubiquitination and degradation of the receptor (Wojcikiewicz et al., 1994; Zhu 

and Wojcikiewicz, 2000). Furthermore, the IP3R1 isoform is also sensitive to extracellular 

ATP activation whereas IP3R2 is unaffected (Miyakawa et al., 1999), which could also 

promote Ca2+ release through uncleaved IP3R1 channels. Trump and colleagues suggested 

that elevated [Ca2+]i preceded apoptotic and necrotic events (Trump and Berezesky, 1996; 

Trump et al., 1997). In line with this, other laboratories demonstrated that prolonged elevation 

of [Ca2+]j as a result of persistent intracellular store depletion triggered apoptosis (Jiang et al., 

1994; Szalai et al., 1999; Hajnoczky et al., 2000; Demaurex and Distelhorst, 2003; Cardozo et 

al., 2005). Nevertheless, although [Ca2+]j was relatively high in I-domain expressing cells
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(Figure 5.11), this was also observed in cells transfected with mRFP, in which levels of 

apoptosis were not significantly different from WT HEK. Therefore the data suggests that the 

presence of elevated Ca2+ may not be a determinant of whether a cell undergoes apoptosis or 

not.

The findings of this chapter indicate that I-domain expression triggered programmed cell 

death by interference or disruption of intracellular Ca2+ homeostasis. Some I-domain 

constructs reduced IP3R agonist responses, however, no clear trend emerged. For example, 

ID8 expression did not alter peak height, rate up or rate of transient decay, yet cellular 

expression was still associated with lower ER Ca2+ (Figure 5.12) and reduced cell viability 

(Figure 3.21). Although ID8  expression did not affect agonist-induced responses it did alter 

Ca2+ handling, and these findings indicate that the associated cytotoxicity may be due to 

altered basal Ca signals (signal variability). Chapter 6  explores the possibility that it is the 

precise way in which Ca levels are perturbed that may underlie the phenotypic observations 

described in this thesis.

Despite the data above showing that I-domain expression was linked to elevated levels of 

apoptosis, the possibility that I-domain expression could have resulted in the activation of 

anti-apoptotic pathways cannot be ruled out. The anti-apoptotic protein Bcl-2 lowers [Ca2+]j 

in response to apoptotic stimuli, either by decreasing ER Ca2+ to reduce the magnitude of C a2+ 

release or by inhibition of IP3R opening. These effects are concentration dependent; low 

levels are protective, whereas high levels can induce organelle fragmentation and cause cell 

death through Ca2+ and ROS dependent pathways (Hanson et al., 2008a; Hanson et al., 

2008b). Although it is possible that altered levels of Bcl-2 following I-domain expression 

could upset cellular Ca2+ balance and alter cell sensitivity to apoptosis, Bcl-2 expression has 

not been determined in this project. Nevertheless, the data presented in this chapter suggests 

that the activation of pro-apoptotic pathways exceeds the triggering of anti-apoptotic 

mechanisms.

Boehning and others demonstrated the inhibition of apoptosis via disruption of cytochrome C 

and IP3R interaction using a peptide targeting the cytochrome C binding site in IP3R C- 

terminus (2621-2636) (Boehning et a l, 2005). Interestingly ten amino acids of this sequence 

share a 60% and 70% identity with C-terminal regions (at a locus 300 amino acids upstream 

of the I-domain) in rat and human RyR2 and rat RyRl respectively. However, previous 

studies have suggested an interaction between residues within the I-domain and C-terminal
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tail regions of RyR2 (Hamada et al.9 2007b) and the schematic model of RyR2 conformation 

(Figure 3.6) suggests how such an interaction is feasible. A recent study revealed that the 

addition of synthetic prion (disease-inducing protein) peptides to cells depleted ER Ca2+ via 

IP3R and RyR, which raised [C a2+]j. Elevated cytosolic Ca2+ triggered apoptosis, which was 

associated with depleted GSH and an increase in free radicals (Ferreiro et a l , 2008). In 

addition to RyR and IP3R, recent research has suggested the existence of a novel intracellular 

Ca2+-release channel that is sensitive to NAADP activation, and is widely distributed on 

intracellular organelles including the ER (Mandi and Bak, 2008). This novel finding suggests
1

an even greater plasticity of the Ca signalosome and could provide an alternative but as yet 

unexplored Ca -dependent route of cell death following I-domain expression.

5.4.2. Expression o f recombinant I-domain revealed NUC death via the
‘bystander effect’

Data in this chapter demonstrated a lack of correlation between NUC distance from 

transfected cells and the relative agonist-induced response (Figure 5.15). This was consistent 

with increased levels of apoptosis observed in NUCs that were not physically coupled to I- 

domain expressing cells (Figure 4.5). Both these observations suggest that the NUC 

phenotype is not induced by cell-to-cell contact, but more likely it is due to a freely diffusible 

signalling molecule. The concept that I-domain expression alters transcellular communication 

via diffusible effectors forms the basis of Chapter 7.
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Chapter 6 Exploring the subtleties of intracellular Ca2+ 

handling — assessment of Ca2+ signal variability

6.1. Introduction

Chapter 5 indicated that Ca2+ handling characteristics in cells expressing recombinant 

I-domain were altered, however analysis of carbachol-induced transients failed to 

reveal any clear pattern that could be linked to apoptosis. George et al. showed 

previously that cytotoxicity was invoked by abnormal ER-to-cytoplasmic Ca2+ fluxes 

in the absence of persistently elevated [Ca2+]i (George et al., 2003b). This chapter 

focuses on the precise dissection of basal cellular Ca2+ signals to provide clues as to 

the specific perturbations in Ca2+ signalling that may underpin I-domain linked 

cytotoxicity.

6.1.1. Assessment o f cellular Ca2+ handling 

The spatio-temporal nature of Ca2+ signals is a fundamental aspect of cellular
04-signalling, and subtle changes in Ca coding determine cellular functions and 

promotion of cell survival or death pathways (Jiang et al., 1994; Lipp and Niggli, 

1996; Petersen and Burdakova, 2002). Therefore, decoding the amplitude and 

temporal variability in cellular Ca2+ handling can provide clues into cell health and 

normal function, and as such has become a useful tool in the diagnosis of pathological 

perturbations in Ca2+ signals (George et al., 2003b; George et al., 2007; Shuba la, 

2007).

An extraordinary feature of Ca2+ signalling is the way in which Ca2+ is able to exert 

this control on diverse processes simultaneously within the same cell. Localised or 

elementary Ca2+ events arise by either Ca2+ release from intracellular stores or via 

influx of extracellular Ca2+, which controls cell processes such as cell division, 

mitochondrial metabolism and vesicle secretion whereas co-ordinated intracellular 

Ca2+ release via IP3R  triggers a global intracellular Ca2+ wave that controls gene
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transcription and cell proliferation (see Figure 6.1). Elementary or global Ca2+ events 

can control these processes either by spontaneous Ca2+ transients, or by repetitive 

Ca2+ signals, referred to as Ca2+ oscillations.

E le m e n ta r y  e v e n t s
P lasm a

membrane

ER-'Sh

ATP

G lo b a l C a2 +  w a v e  ( in tra c e l lu la r )

Cell division 
Mitochondrial metabolism 

Vesicle secretion

Cell proliferation 
Gene transcription

Figure 6.1. Versatility of Ca2+ signalling
I

Differential regulation o f Ca underpins a range of cellular 
processes, either via specific delivery of elementary Ca2+ events or 
co-ordinated recruitment o f elementary events resulting in a Ca2+ 
wave.

Adapted from Berridge et a l,  1998

Various different temporal patterns of Ca oscillations have been reported, each 

dictating a precise cell function or process. These include regular peaks (termed 

‘spiking’), low and high peak oscillations, and periodic/chaotic signals (termed 

‘bursting’) (Schuster et al., 2002) (Figure 6.2). Ca2+ oscillations can convey different 

signals depending on their frequency and amplitude (Dolmetsch et al., 1997; 

Dolmetsch et al., 1998). Furthermore, Schuster et a l demonstrated in a theoretical 

model that controlling specific temporal dynamics of Ca2r signalling could 

independently regulate two proteins involved in distinct cellular processes (Schuster 

et a l , 2005).

George and colleagues demonstrated that decoding of spatio-temporal intracellular 

Ca2+ signals provided invaluable insights into pathologies that arise as a result of 

dysfunctional Ca2+ cycling (George et a l,  2003b; George et a l,  2006; George et a l, 

2007), which has since been demonstrated by other studies (Uhlen, 2004; Weisleder
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and Ma, 2006; Bray et al., 2007; Colella et al., 2008). A number of methods exist to 

enable a more informed understanding of cellular Ca2+ handling and to permit 

exquisite decoding and quantification of Ca2+ signals (Wood and Cadusch, 2005; 

George et al., 2006; George et al., 2007; Colella et al., 2008) and the application of 

these mathematical operations to biological systems is rapidly emerging.
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F ig u re  6 .2 . V a r ia b ility  in  C a 2+ s ig n a ls  
. . .A. Ca oscillations in the form of regular peaks (‘spiking’), varying in amplitude 

and temporal dynamics. Slower oscillations such as those in the top left panel 
control cell proliferation, whereas rapid oscillations (bottom right panel) control

94-gene transcription (Dolmetsch et al., 1998). B . Ca signals in high and low peak 
oscillations (top panel), and periodic or chaotic signals (bottom panel), referred to 
as ‘bursting’ (Schuster et al., 2002). Note the irregular oscillations (arrows).

Data from Dolmetsch et al., 1998, and Schuster et al., 2002.

6.1.2. O bjective

94 -  • • •  • •The present chapter elucidates the precise nature of Ca signal variability in cells 

expressing recombinant I-domain fragments. In view of the extremely high toxicity 

associated with the expression of ID and IDC (Figures 5.14 and 5.17), this chapter 

focuses exclusively on the effect of IDB expression on basal cellular Ca2+ handling.

2 0 2



6.2. M ethods

6.2.1. Analysis of temporal Ca2+ cycling

6.2.1.1. Quantification of Ca2+ signal variability

Analysis of signal variability quantifies subtle changes in cellular Ca2+ cycling and 

can be used to determine cell-to-cell signal variability, in addition to agonist-induced 

changes within the same cell (see Figure 6.4). George and colleagues recently 

developed a novel calculation to assess relative changes in Ca2+ signal variability in 

the same cell following administration of Ca2+ channel agonists, termed the relative 

signal variability (RSV) (George et al., 2006). This thesis developed SVm, a novel 

indicator of signal variability, to allow comparisons in basal Ca2+ homeostasis 

between different cells. The application of SVm as an index of signal variability more 

suited to use in the present study than other commonly used operations is outlined 

below.

6.2.1.1.1. Relative Signal Variability (RSV)

RSV is calculated by comparing the sum of point-to-point differences in Ca2+ signals 

following cellular activation (i.e. by Ca agonists) to pre-activation signals in the 

same trace (George et a l , 2006). Figure 6.3 displays the definition of signal 

variability (SV). SV can also be used to compare point-to-point variations in the 

intensity values of Ca2+ signals between traces from separate experiments, provided 

that they are normalised to mean fluorescence. Therefore, the RSV was used for 

analysis of agonist-induced transients where RSV= (SV b-SV a)/SV a*100, where SVB 

and SVA are post- and pre- agonist signal variabilities, respectively (Figure 6.4A). In 

this thesis, the analysis of Ca2+ traces between different non-stimulated cells was 

performed using signal variability (SV) normalised to mean fluorescence (SVm), 

Figure 6.4B.

For a se t of k intensity values; x1t x2, x3  \

SV= " l l  ( x„, - x„ ) I
n=1

Figure 6.3. Definition of SV

SV is the sum of the moduli of the differences between successive intensity values.
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RSV can be used to measure the relative change in cellular Ca2+ handling 
before (SVA) and after (SVB) agonist administration in the same cell (A ), 
whereas SVm compares the amplitude and temporal variation of resting Ca + 
in two separate cells (X and Y) normalised to their respective mean (SVm), 
SVmx and SVmY (B). SV = signal variability.

The rather limited utility of some commonly used indices of signal variability are 

clearly demonstrated in Section 6.3.1.1, and their calculations are summarised below.

6.2.1.1.2. F-Ratio test

F-ratio compares the variance (the square of the standard deviation) between two 

discrete sets of data obtained from experimental cells (Y) (e.g. mRFP-expressing 

cells) to wild-type cells (X) (e.g. WT HEK cells) by means of simple division. In our 

experiments the variance of Ca2+ signals from Y cells was compared with the variance 

of signals from X cells.

Variance of Y

F-ratio = -------------------

Variance of X

The F-ratio is generally used on log transformed data and has been implemented to 

measure Ca2+ signal variability previously within our laboratory (George et al., 2006). 

See Section 6.3.1.1.
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6.2.1.1.3. Coefficient of Variation

The coefficient of variation (CoV) is calculated by dividing the standard deviation of 

a dataset by the mean of that same dataset, and has been previously implemented in 

Ca2+ imaging studies to characterise Ca2+ signals (Mercan and Malaisse, 1996; Wang, 

1998), see Section 6.3.1.1.

Standard deviation

CoV = -------------------

Mean

6.2.2. Ca2+ signal variability in RyR2:IDB expressing HEK cells

SVm of cells expressing RyR2 and RyR2:IDB was determined as described in Section

6.3.1.1. Caffeine was used to evoke Ca2+ release via recombinant RyR2 through a 

mechanism that increases the Ca2+ sensitivity of the channel (see Section 1.1.3.3). 

SVm of basal Ca2+ signal variability and RSV of pre- and post- caffeine addition Ca2+ 

signals were assessed. Caffeine (lOmM dissolved in unsupplemented DMEM) was 

applied during Ca2+ imaging experiments to HEK cells expressing RyR2, and cells 

co-expressing RyR2:IDB. Data was acquired as described in Section 2.2.8 .3.
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6.3. R esu lts

6.3.1. Assessm ent and determination o f Ca2+ signal variability

6.3.1.1. Why variance-based methods cannot be used to decode 
intracellular Ca2+ signal variability in these experiments

Analysis of variability in Ca2+ signals can be used to determine the amplitude and 

spatiotemporal aspects of Ca2+ signalling in single cells. Methods of analysis used to 

monitor cellular Ca2+ signalling comprise relative signal variability (RSV), F-ratio 

and coefficient of variation (CoV) (Smith et a l, 1998; Wang, 1998; George et al., 

2006; George et a l, 2007). As described above, there is not a single method that 

represents the best tool for studying dysfunctional Ca2+ signalling under non

stimulated conditions.

In keeping with standard statistical and mathematical operations, initial assessment of 

Ca2+ signal variability was performed using both standard deviation and variance. The 

analysis revealed a striking and expected correlation between signal variability and 

relative fluorescence intensity (Figure 6 .6 A and B) that was partly negated by 

normalisation, either by considering the mean value (CoV) or by log transforming the 

data (Figure 6 .6 C and D). However, neither is ideal. This is particularly evident when 

considering the relationship between both CoV and log variance with ‘drift’ or 

gradient (dF/dT) in the acquired fluorescent signal (Figure 6.7). Despite only a very 

small change in dF/dT (<0.04), it precluded analysis using CoV or on log transformed 

data. Since small gradients in the fluorescence signal is frequently observed in CLSM 

experiments (see Figure 6.5), and it was crucial to choose a method of analysis that 

was not compromised by such ‘drift’. Therefore two options presented themselves: 

either to set a threshold of gradient above which data would be eliminated, or to 

identify a more robust method for assessing Ca2+ signal variability. Elimination of 

data would have sacrificed a large number of data points and hence was ruled out, 

stipulating the need for a new analytical tool.

(dF/dT)"* 0.04 

(dF/tfT)** 0 01

2 0  s e c o n d s

Figure 6.5. Example Ca2+ 
traces displaying ‘drift’ or 
gradient (dF/dT)
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Figure 6 .6 . Correlation between commonly used operations and fluorescence signals

Increased basal fluorescence was associated with enhanced variability, determined by 
standard deviation (A) and variance (B). This marked positive correlation was reduced by 
normalising standard deviation to relative resting fluorescence (i.e. deriving CoV), and log 
transforming the data prior to calculating the variance, (C) and (D) respectively.

The F-ratio has been previously implemented in analysis of Ca2+ signal variability to 

quantitatively compare the variance of Ca2+ traces under non-stimulated conditions. 

However, in light of its dependence on variance, which is somewhat proportional to 

the ‘drift’ in the experimental data, it was not suitable for analysis of the data 

presented here.
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Figure 6.7. Correlation between common indices of signal variability and gradient 
(dF/dT), or ‘drift’
Gradient in the fluorescent signal was associated with an increase in variability, 
determined by standard deviation (A), variance (B), CoV (C) and log transformed 
variance (D).

George and colleagues previously identified the RSV as a tool to measure relative 

changes in signal variability induced by agonist administration. The RSV compares 

the sum of point-to-point changes between pre- and post-agonist events (described in 

Section 6.2.1.1.1) and is independent o f gradient. Consequently, RSV can be applied 

where F-ratio, standard deviation and CoV cannot. However, SV is significantly 

influenced by basal fluorescence (Figure 6 .8 A), hence required normalisation to 

relative fluorescence. SVm displayed little relationship with fluorescence or gradient 

(Figure 6 .8 C and D) and was subsequently determined to be the most suitable 

parameter t6  assess basal cellular Ca2+ handling as it negated the need to eliminate 

data due to fluorescence-dependent gradient. It^is important to re-emphasise that 

although fluorescence is affected by voltage, as; disssissed in Section 5.2.3 this does

G r a d ie n t  (dF /dT )
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not apply to the data presented in this thesis due to voltage limited to <750V (Figure

5.10).
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Figure 6 .8 . Signal variability (SV) divided by mean fluorescence (SVm) is 
independent of fluorescence and gradient (dF/dT)
Scatter plots o f data obtained from HEK cells (n=221) showing the relationship between 
SV with mean fluorescence (A) and gradient (B), and the normalised SV obtained by 
dividing SV by mean fluorescence (SVm), against mean fluorescence (C) and gradient 
(D). E displays the R2 values of all parameters analysed against fluorescence (left panel) 
and gradient (right panel). Sd=standard deviation; CoV=coefficient of variation; 
Var=variance; Variog=log of variance.
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6.3.2. Elevated SV m w as exhibited by I-dom ain expressing cells

SVm was implemented to assess basal Ca2' signal variability in mRFP and I-domain 

cells two days following transfection, and also in cells co-expressing RyR2 and ID . 

I-domain cells exhibited elevated signal variability compared to mRFP and HEK cells 

(Figure 6.9). Similarly, SVm was significantly elevated in RyR2:IDB and Ry2:IDBNuc 

compared to cells expressing RyR2 alone (Figure 6.9). (See Figure 6.12B for an 

example trace displaying pre-activation Ca2+ signals which are greater in RyR2:IDB 

cells than when RyR2 is expressed alone).
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6.3.3. ID ex p ress io n  su p p re ssed  IP 3 R -d e p e n d e n t p o st-ac tiva tiona l
2+ m

C a signal v a ria b ility

Following the results of Chapter 5, carbachol-induced Ca2+ transients were analysed 

for pre- and post-activational signal variability. The relative signal variability (RSV), 

as detailed above, is a valuable tool for assessing alterations in post-activational Ca2+

signals. The RSV was calculated in cells that either did or did not exhibit transient
2+ .

Ca release in response to ImM carbachol (responsive and non-responsive cells, 

respectively) (see Figure 5.14). The RSV of responsive ID expressing cells and ID 

NUCs (but no other I-domain fragment) was significantly lower than that of mRFP 

and mRFP NUCs respectively (p<0.05) (Figure 6.10). In addition, the RSV in non

responding cells was not significantly different between any of the constructs (Figure

6.10). Therefore it is reasonable to conclude that the relative post-agonist Ca2+ signals

Recombinant protein expressing cells NUC

Responsive cells
75-i

50->
CO
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104

HEK mRFP
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104

HEK mRFP

Non-responsive cells
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1 0 - HEK mRFP

- 10 -

4 10
HEK mRFP -20 J

Figure 6.10. RSV o f carbachol-induced Ca2+ release (Im M ) in I-domain expressing HEK 
cells and NUCs

RSV o f  agonist-induced responses o f  HEK, m RFP and I-dom ain expressing cells and NUCs. 
Top panels represent the RSV o f  responsive cells, lower panels represent non-responsive cell 
RSV. *p<0.05 com pared to m RFP expressing cells or m R FPNUC. Data is plotted as 
m ean±SEM . Cell num ber data acquired from is displayed in the bars.
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in cells were largely unaffected by I-domain transfection, which is consistent with 

Figures 6.11 and 6.13. Moreover, the data suggests that RSV is not a determinant of 

whether a cell responds to agonist or not.

g
6.3.4. ID  does n o t a l te r  c a rb ac h o l-ev o k e d  resp o n ses in H E K  cells

Carbachol-evoked Ca2+ signals were largely unaffected by ID8  expression as shown 

in Figure 6.10 (also see Chapter 5). These findings are confirmed by the similar 

correlations between agonist-induced transient height and relative post-agonist signal 

variability when compared to mRFP cells (Figure 6.11).

150-1 R2 = 0.693

O' 50-

▼ P = 0.2158

R = 0.28

100 200 300 400

-50J  Peak Transient Height (F/F0)

m R FP (n = 55)

ID B (n = 27)

Figure 6.11. RSV and peak carbachol-induced transient height of ID8 

expressing cells
ID8- and mRFP-expressing HEK cells were stimulated by ImM carbachol. Peak 
transient height (F/F0) is plotted against respective RSV for every responsive cell, 
represented by each point.
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B 2+6.3.5. ID does no t m o d u la te  p o st-ac tiv a tio n a l R yR 2 C a signalling

Following exposure to lOmM caffeine, RyR2:IDB co-expressing cells were analysed 

for agonist-induced responses using RSV (as discussed in Section 6.2.1.1.1). The 

RSV in RyR2, RyR2:IDB and RyR2:IDBNuc cells did not reveal an effect of ID8  on 

RyR2 (Figure 6.12A). Representative traces of RyR2 and RyR2:IDB are displayed in 

Figure 6.12B, note the greater signal variability both before and after caffeine 

addition.
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Figure 6.12. RSV of cells exposed to caffeine
A. The RSV for cells expressing RyR2 alone or RyR2:IDB following exposure to 
lOmM caffeine was calculated. Data is plotted as mean±SEM (p>0.05). The number in 
each bar represents number of cells, and was obtained from 22 coverslips of RyR2, 19 
coverslips of RyR2:IDB and 15 coverslips of RyR2:IDBNUc- B. Representative traces of 
RyR2, RyR2:IDB and HEK cells exposed to lOmM caffeine. HEK cell Ca2+ trace 
displays that HEK are not responsive to caffeine.



RSV was also assessed in relation to peak Ca24 transient height induced by caffeine 
(similar to analysis with carbachol, Figure 6.11). RSV of both RyR2:IDB and RyR2 
alone was similarly proportional to peak transient height (F/F0) (Figure 6.13), 
suggesting that IDB did not alter caffeine-evoked signalling via RyR2. This data is 
consistent with the effect of IDB on IP3R-mediated signalling (Figure 6.10 and 6.11).

15CH
R = 0 .7355

* p = 0 .154

R = 0 .677650-

- RyR2 (n = 116) 

‘ RyR2:IDB (n = 43)

300

_50J Peak Transient Height (F/F0)

Figure 6.13. ID B does not alter caffeine-induced RSV in HEK cells

RyR2:IDB and RyR2 co-expressing HEK cells were stimulated by lOmM caffeine 
administration. Peak transient height (F/F0) is plotted against respective RSV for each 
responsive cell expressing either RyR2 alone or RyR2:IDB. Each point represents data 
obtained from a single cell.
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6.4. Discussion

6.4.1. Determination of Ca2+ signal variability using SVm

In light of the findings of Chapter 5 that cellular expression of I-domain constructs, in 

particular ID3, did not alter agonist-induced Ca2+ responses, it was necessary to decode basal 

intracellular Ca2+ signals to provide an insight into the cytotoxicity associated with I-domain 

expression. This project initially considered the use of (i) standard deviation, (ii) CoV and (iii) 

F-ratio using log-transformed variances. However, these operations would have caused 

significant error by virtue of their close relationship with fluorescent signal intensity and/or 

gradient (‘drift’) inherently present in confocal experiments (Figures 6 . 6  and 6.7). These 

concerns precluded them from this form of analysis. This chapter has shown the robust utility 

of SVm as a new method o f calculating Ca2+ signal variability independent of fluorescent and 

gradient variables.

6.4.2. Altered Ca signal variability induced by the I-domain

Calculation of SVm revealed a link between I-domain expression and increased Ca2+ signal 

variability compared to mRFP cells (Figure 6.9), which suggested that the I-domain induced 

perturbations in normal cellular Ca2+ cycling. SVm was also comparable between I-domain 

transfected cells and NUCs (Figure 6.9), which further corroborates a distinct signalling 

mechanism by which transfected cells are coupled to their neighbours; this is explored more 

fully in Chapter 7. Altered Ca2+ cycling in NUCs suggests that this mechanism may be 

associated with Ca2+-dependent pathways, however this is yet to be determined.
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6.4.3. ID8 increases basal Ca2+ signal variability of RyR2

RyR2 studies described in this chapter were performed in order to gain an insight into 

whether the co-localisation of IDB with RyR2 (Chapter 5) functionally modulated RyR2. ID3 

did not modulate RyR2 function following agonist exposure (Figures 6.12 and 6.13). 

However, a marked increase in basal Ca2+ signal variability was exhibited following 

transfection of RyR2 with ID3  that was not observed when cells were transfected with RyR2 

alone (Figure 6.9). This either suggests that ID3 functionally interacts with RyR2 via 

homologous sequences, or its expression could perturb some other aspect of the Ca2+ 

signalling pathway. A further study would be to assess the effect of ID3 expression on 

mutation-harbouring RyR2. In addition, in light that only ID suppressed RSV following IP3R 

activation (Figure 6.10), it would therefore be interesting to assess the effect of ID expression
*y 1

on RyR2-evoked Ca responses. However, time limitations precluded these interesting 

further investigations.
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Chapter 7 Elucidating signalling pathways underpinning

ID8 cytotoxicity

7.1. Introduction

As discussed in Chapters 5 and 6 , I-domain cytotoxicity results from perturbed Ca2+ 

handling and cell death. Intriguingly, these phenomena were also observed in 

neighbouring cells that did not express the recombinant protein (termed NUCs). 

Importantly, Figures 5.15 and 4.5 provided compelling evidence that this 

communication was not solely mediated by direct cell-to-cell contact.

The similar phenotypic manifestation and cell death observed in NUCs (Figures 4.3 

and 4.4), a characteristic of I-domain transfected populations, has been reported 

previously (Kettman and Skarvall, 1974; Hamada et a l , 2007a) and termed the 

‘bystander effect’. The bystander effect can be conferred via signalling molecules 

such as ROS or ATP (Lyng et al., 2002a; Vines et al., 2008), and may invoke cell 

surface channels such as hemichannels/gap junctions (Jiang and Gu, 2005; Udawatte 

and Ripps, 2005). This chapter aims to delineate the signal transduction mechanisms 

underpinning the profoundly abnormal phenotype of NUCs.

7.1.1. The mechanisms of cell-to-cell communication

The altered cell phenotype (Figure 4.2), Ca2+ signalling (Figures 5.12, 5.14 and 6.9) 

and cell death (Figure 4.5) observed in NUCs was typical of a ‘bystander effect’. This 

term describes the activation of cell death pathways in ‘untreated’ cells that is 

attributable to signals received from neighbouring ‘treated’ cells. It has recently been 

associated with cells exposed to ionising radiation (Lyng et al., 2002a; Grifalconi et 

a l , 2007), although it was first reported in the 1970s in relation to the primary 

immune response (Kettman and Skarvall, 1974). An accumulating body of research 

proposed that secretion o f factors into the media from irradiated cells can induce cell 

death signals in non-irradiated cells. In addition, cells incubated with conditioned 

media from irradiated cells displayed altered Ca2+ fluxes, increased ROS production
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and diminished mitochondrial membrane potential (Lyng et al., 2000, 2002b). This 

finding indicates that a diffusible signalling molecule was released into the media by 

irradiated cells that caused oxidative stress in non-irradiated cells. Furthermore, 

expression of a 30a.a. region of the transcriptional co-regulator (interacting factor-3) 

in cancer cells resulted in death of both expressing and non-expressing cells (Das et 

al., 2007). The authors suggested that cell death occurred via two distinct pathways; 

first that apoptosis was initiated in cells expressing the recombinant protein, and 

second that recombinant protein expressing cells released a soluble factor (such as 

ROS) into the media that induced apoptosis in non-expressing cells via the bystander 

effect. In addition, transfer o f media from these transfected cells to ‘naive’ cells (not 

previously exposed to noxious stimuli) also induced apoptosis (Das et al., 2007). 

Similarly, Grifalconi et al. reported that cells exposed to media removed from 

irradiated cells displayed an increase in non-viable and apoptotic cell populations. 

These cytotoxic effects were proposed to arise through the release of a soluble factor 

into the media, which was inconsistent with the effects of ROS (Grifalconi et a l , 

2007), suggesting that other soluble effectors are responsible for the bystander effect.

Bystander cell death has been proposed to be mediated by gap junctions and/or 

hemichannels (Cusato et al., 2003). Wilson and colleagues demonstrated that dye 

transfer between adjacent cells was maintained during apoptosis (Wilson et a l, 2000) 

indicating that cell-to-cell communication remains intact during this mode of cell 

demise, and that death signals can be conveyed to adjacent healthy cells irrespective 

of physical contact. However, the size of the cell death signalling protein cytochrome 

C and the caspase family o f enzymes precludes them from passing through the 

junctional pore and mediating this signalling cascade (Cusato et a l, 2006). 

Nevertheless, messengers such as ATP and ROS are able to freely pass through 

hemichannels, and have been suggested to be involved in extracellular signalling (De 

Vuyst et a l, 2006; Stamatakis and Mantzaris, 2006; Das et a l, 2007). In addition, 

considering that Ca2+ dysregulation has been associated with the bystander effect (Lin 

et a l, 1998), it is entirely feasible that Ca2+ pathways are involved in promoting and 

delivering cell death signals.
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7.1.2. Intercellular signal transduction mechanisms

Chapters 5 and 6  described the effect of I-domain expression on basal intracellular 

Ca signalling, and this project also revealed that the I-domain induced a profoundly 

altered phenotype in NUCs. In view of these findings, the scope of this thesis was 

broadened in order to determine the intercellular signal transduction mechanisms that
7-4-may have altered Ca signalling and caused death in neighbouring cells.

Indirect inter-cellular communication is dependent on signal transduction pathways 

mediated by molecules such as ATP and reactive oxygen species (ROS). Many 

studies have reported that ATP can act as an extracellular messenger to modulate an 

extensive range o f processes from signalling in the brain and CNS (Deitmer et al., 

2006; North and Verkhratsky, 2006; Stamatakis and Mantzaris, 2006) to respiratory 

muscle function (Govindaraju et ah, 2005) and immune responses (Hasko et al., 

2000). Cells typically maintain intracellular ATP concentrations in the millimolar 

range, and need to release <2 % in order to elicit an effect on neighbouring cells 

(Gordon, 1986; Braet et al., 2004). ATP release is via the stimulation of G-protein 

coupled receptors (GPCR) such as P2Y receptors, which are sensitive to nucleotide 

activation (Chen et al., 1995b; Ostrom et al., 2000). Various messengers such as Ca2+
7+and IP3 have been reported to trigger ATP release, which in turn can increase Ca 

concentrations, and hence acts as a diffusible feedback circuit (Ostrom et al., 2000; 

Braet et ah, 2004; Stamatakis and Mantzaris, 2006; Katsuragi et al., 2008). This 

intricate control is facilitated by the physical and physiological association between
7  »

the ER and mitochondria, which also enables the bi-directional transfer of Ca that
7*4*

regulates both cell survival and cell death pathways. Recycling of Ca from 

mitochondria back to the ER via SERCA can prevent ER store depletion (Amaudeau 

et al., 2001), whereas the fine-tuned decoding of ER Ca2+ signals by mitochondria 

regulates cellular metabolism (Hajnoczky et al., 1995; Csordas et al., 2006) and PCD 

(Rizzuto et al., 1993). Intracellular ATP concentrations have been demonstrated to 

control whether a cell is committed to apoptosis or becomes necrotic (Nicotera et al.,

1998). Specifically, depletion o f intracellular ATP results in cell damage and the 

initiation of cell death pathways (Eguchi et al., 1997; Nanavaty et al., 2002). This 

process could also be responsible for cell death in surrounding cells, since ATP 

released from dying cells can promote apoptosis in neighbouring cells (Bulanova et
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a l , 2005; Noguchi et al., 2008). Therefore two ATP-dependent routes of cell death, 

either ATP haemorrhage or ATP-induced signalling, could underpin the cytotoxicity 

that was associated with I-domain transfection.

Reactive oxygen species (ROS) (see Section 1.1.3.2) are actively involved in signal 

transduction pathways, and are generated in low concentrations (fM) during metabolic 

activity (Droge, 2002). They have been implicated to defend against infectious agents 

and protect from cell injury (Droge, 2002; Valko et a l, 2007). However, increased 

[Ca2+]i and elevated mitochondrial Ca2+ concentrations can stimulate over-production 

of ROS (Kruman and Mattson, 1999), which can induce oxidative stress by sensitising 

IP3R and RyR to Ca activation. This subsequently can lead to the generation of the 

permeability transition pore (PTP) and initiation of apoptotic signalling cascades 

(Hajnoczky et a l, 2006). In addition, ROS also function as second messengers, 

mediating intercellular signal transduction through binding to cell surface receptors 

such as the receptor tyrosine kinase family (Zent et a l, 1999; Chiarugi and Cirri, 

2003). This function is facilitated by the dynamic modulation imposed by ROS on 

many cellular proteins and receptors, and their generation during multiple signalling 

cascades (Adler et a l, 1999; Griendling et a l, 2000; Cakir and Ballinger, 2005). 

More recently, ROS release from damaged cells has been implicated to induce 

apoptosis in neighbouring cells, via the ‘bystander effect’ (Das et a l, 2007), see 

Section 7.1.1.
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7.1.3. Direct cell-to-cell coupling via gap junctions

Most cells have the inherent capacity to communicate with each other via specialised 

intracellular junctions, termed gap junctions. Gap junctions are formed by the 

association of two hemichannels (or connexons) o f neighbouring cells. Connexin 

hemichannels are composed of six connexin subunits, which are the fundamental 

components of gap junctions. Connexins are a family of -2 0  proteins of molecular 

weights ranging from 20 to 62kDa. Collectively they exhibit a wide tissue 

distribution, and although some tissues can express over four types of connexin 

(Stauffer and Unwin, 1992; Sosinsky and Nicholson, 2005), some are characterised by 

tissue segregation, e.g. connexin 26 is distributed in tissues that include liver and skin, 

whereas connexin 43 is expressed more abundantly in tissues such as brain and heart. 

Heterogeneous connexin expression can result in the formation of both homo- and 

heterotypic gap junctions (composed of either homo- or heteromeric hemichannels 

(Laird, 2006) (Figure 7.1). The pore formed by gap junctions is between 6  and 15A 

wide, which allows the passage of molecules <2kDa such as ions Na+, K+ and Ca2+, 

second messengers IP3 and cAMP, as well as small peptides and amino acids 

(Veenstra, 1996; Gong and Nicholson, 2001; Veenstra, 2001; Weber et al., 2004).

7.1.4. Cell signalling mediated by connexin hemichannels

The role of gap junctions in transducing signals to regulate critical processes such as 

differentiation, and proliferation has been previously reported (Pitts et a l , 1988; 

Charles et al., 1992; Neveu et a l , 1995; Cronier et a l, 1997; Yamori, 1998; Gramsch 

et a l, 2001; Kojima et a l, 2001; Princen et a l, 2001). However, more recently, 

connexins have been shown to have critical cellular functions that are independent of 

their role in mediating direct cell-to-cell communication (Verselis et a l, 2000; Jiang 

and Gu, 2005; Rodriguez-Sinovas et al., 2007). The signal transducing function of 

connexins, distinct from gap junctions occurs either by the formation of unopposed 

hemichannels or the independent activity of individual connexins (Jiang and Gu, 

2005) (Figure 7.1). To maintain homeostasis and cellular integrity, physiological 

conditions favour the closed state of hemichannels. In pathological states, for
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example, during metabolic suppression (Kondo et a l , 2000; Contreras et a l , 2002) or 

a decrease in extracellular Ca2+ via an extracellular Ca2+ binding site (Li et a l , 1996; 

Gomez-Hemandez et a l,  2003; Ye et a l, 2003; Thimm et a l, 2005) hemichannel 

opening can be triggered. In addition, rapid changes in intracellular Ca2+ (in the range 

of 0.2-1 pM) have also been proposed to activate hemichannel opening (De Vuyst et 

al, 2006). Hemichannels have been associated with the release of regulatory 

molecules that may be involved in the promotion of cell death in neighbouring cells 

(Contreras et a l, 2004; Garcia-Dorado et a l, 2004).

7.1.5. Objective

Gap junctions provide a means by which I-domain-expressing cells can transmit 

signals to neighbouring cells triggering their demise. However, a central tenet of this 

chapter is the previous finding that neighbouring cells still exhibited phenotypic 

alterations despite not being physically coupled to an I-domain expressing cell 

(Figures 4.5 and 5.15). Consequently, this chapter reports upon the role that 

unopposed hemichannels may play in cellular signalling in the experiments presented 

in this thesis (Contreras et a l,  2002; Contreras et a l, 2004; De Vuyst et a l, 2006).
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Cell A 

Cell B

F igure 7.1. G ap  ju n c tio n  an d  hem ichannel fo rm atio n

Association of plasma membrane hemichannels in the formation of gap junctions 
between adjacent cells (A and B). Each cell contributes a hemichannel to the junction, 
which is composed of six connexin subunits (in this case connexin 43 or 45). 
Hemichannels can be formed by the association of the same connexin type 
(homomeric) or different connexins (heteromeric), and similarly gap junctions can be 
composed of two hemichannels formed by the same type of connexin (homotypic) or 
by more than one type (heterotypic). Each connexin subunit is comprised of 4 TM 
domains and a long cytoplasmic domain that plays a role in intracellular signalling, as 
illustrated in the top schematics

Adapted from Laird, 2006
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7.2 . M eth o d s

7.2.1. Confocal analysis o f  C a2+ handling follow ing ID B expression

7.2.1.1. Design o f m edia tra n s fe r  assays

Previous experiments have demonstrated that media from ‘treated’ cells induced a 

similar phenotype when transferred to naive ‘untreated’ cells (Lyng et a l,  2002a, b; 

Das et al., 2007). The experiments detailed here are conceptually similar and are 

subsequently termed ‘media transfer assays’.

In order to establish whether a signalling messenger was released into the media by I-
• 74-domain expressing cells that altered Ca handling in bystander cells, media was 

removed from 24h-transfected IDB and mRFP cells and applied to wild-type HEK 

cells. Cells were incubated in the presence of the transferred media for lh, 6 h or 24h, 

as illustrated in Figure 7.2. Cells were loaded as previously described (Section 

2.2.8 .3) for the final hour of the 6 - and 24-h incubations. ‘Transferred’ media applied
94- 94-for lh was in the presence of Ca loading dye. All Ca imaging experiments were 

performed in the presence o f ‘transferred’ media. Cell viability was assessed as 

described elsewhere (Section 3.2.4).

m RFP 24 hour transfected cells

I I
© Media removed and transferred ( uck  ) 

to wild type HEK cells \ ^ y1 1
HEK cells exposed to

transfectant media for ^ —  ^ 1 ^ . x —
1 .6  or 24 hours ( ^ ^ ^ 1

Ca2+ imaging experiments performed on media-exposed HEK cells

Figure 7.2. S chem atic  o f m edia tra n s fe r  experim en ts

Media was transferred from mRFP and ID8  transfected cells to wild-type F1EK for 1, 6  

or 24h prior to Ca2+ imaging experiments.
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7.2.1.2. Hydrolysis of extracellular ATP using apyrase

Apyrase is an ATP hydrolase isolated from potato that converts ATP to ADP. It was 

used in this project to hydrolyse extracellular ATP to prevent ATP-driven signalling 

between cells. Apyrase has been used in similar experiments at concentrations 

between 0.1 U/ml and 30U/ml both transiently and for up to three days (Ostrom et al., 

2000; Gallagher and Salter, 2003; Ahmad et al., 2004; Eltzschig et al., 2006). In 

accordance with these studies, cells expressing mRFP and ID8 were exposed to 

lOU/ml apyrase during transfection and for 24h following transfection. All cellular 

manipulations including Ca2+ imaging were performed in the presence of apyrase. 

Cells were then imaged using CLSM as described in section 2.2.8 .3 and data was 

analysed as described in section 6 .2 .1 .1 .1 .

7.2.1.3. Scavenging reactive oxygen species (ROS) using edaravone

As detailed above, ROS can act as an intercellular messenger, conveying death signals 

to neighbouring cells (Bulanova et al., 2005; Noguchi et al., 2008). Edaravone (also 

termed MCI-186) is proposed to be a potent free-radical scavenger at concentrations 

ranging from 1.5pM to ImM (Yano et al., 2005a; Asai et al., 2007; Ito et al., 2008). 

Its mode of action has been reported to be by lipid peroxidation (Yagi et al., 2005; 

Noor et al., 2007), see Figure 7.3 for chemical structure. When used at O.lmM, 

edaravone alleviated oxidative stress in cardiomyocytes induced by ischemia 

(Yamawaki et a l, 2004). Therefore, edaravone (O.lmM) was administered to HEK 

cells prior to transfection with mRFP and ID8 and for 24h following transfection. 

Subsequently, Ca2+ imaging studies were performed (also in the presence of 

Edaravone) as previously described (Section 2.2.8.3).

Figure 7.3. Structure of edaravone
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7.2.2. Measurement of extracellular ATP

ATP released from metabolically active cells participates in signal transduction 

pathways (Ahmad et al., 2004; Bulanova et a l , 2005). In light of this, extracellular 

ATP concentrations were assessed to determine if I-domain transfection altered the 

efflux of ATP from cells. The chemiluminescent-based ENLITEN assay (Promega) 

utilises the ATP-dependence of the luciferase-catalysed reaction between D-luciferin 

and molecular oxygen to produce light in proportion to the levels of ATP. Released 

light rapidly decreases when ATP is the limiting factor. ENLITEN® has a sensitivity 

to measure ATP in the range of lpM  to lOOnM. The lyophilised rLuciferin/Luciferase 

(rL/L) was combined with the supplied reconstitution buffer (stable at RT for up to 

24h, or up to 14 days when stored at -20°C). Light output was measured using a 

Turner Designs 20/20 Luminometer.

An ATP standard curve was constructed using 10pl of lpM  to lOOnM ATP that was 

incubated with 100pi ENLITEN reagent for one min at RT. Light output was then 

measured in a Turner Designs 20/20 Luminometer using the programmed settings of 

delay (5s), integration (10s) and 60% sensitivity. Cells expressing mRFP and ID8 

were seeded in 12 well plates 6 h after transfection for analysis on consecutive days 

(Day 1-4). Cells were incubated for lh  with 1ml pre-warmed serum-free DMEM (as 

serum adversely effects the luciferase reaction). After lh, media was removed from 

the cells and snap-frozen for storage at -80°C prior to assay. The total cells per well 

were counted to correlate the ATP produced with cell number. All assays were 

performed in triplicate and the entire experiment was performed three times. Both 

mRFP and ID8 data were normalised to mean number of cells expressing mRFP per 

day.
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7.3 . R esu lts

7.3.1. ID b media transfer did not alter C a2+ handling

Previous studies have demonstrated an increase in apoptosis in naive cells receiving 

media transferred from cells treated with an apoptosis-inducing factor (Lyng et al., 

2002b; Lyng et al., 2006; Das et al., 2007). This, together with the occurrence of 

apoptosis in cells that were not physically coupled (Figure 4.5), prompted the study as 

to whether a signalling molecule released from IDB transfected cells underpinned the 

‘bystander effect’.

Confocal analysis of mRFP and ID8  ‘transferred’ media exposed cells showed no
• 9  i

differences in resting Ca dynamics at any of the time periods (Figure 7.4). In 

addition, cell viability was not significantly different in ID8  and mRFP media transfer 

experiments at the same time periods, despite there being a clear trend toward a lower 

viability in cells exposed to ID 8  media (Figure 7.5). Cell viability was also 

comparable to HEK and mRFP cell viability at 24 and 48h (1-2%) while non-viable 

populations of ID8  were about 3% and 6% at 24 and 48h respectively (see Figure 

3.21).

mRFP 1 6 24

Incubation time in IDB media (h)

Figure 7.4. SVm of ceils exposed to 24h ID 8 media for 1, 6  and 24h

HEK cells were exposed to media transferred from 24h transfected ID8  and mRFP 
cells for 1 ,6  and 24h. Cells were analysed for Ca2+ handling using SVm. Data were 
obtained from at least 11 separate experiments per condition, and ID8  SVm data 
were normalised to mRFP SVm data at the same time intervals.
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Figure 7.5. Cell viability following mRFP and IDB media transfer

Cell viability of HEK cells exposed to media transferred from mRFP and IDB cells 
24h post-transfection for durations of 1, 6  and 24h. Data was an average of two 
individual measurements obtained from 6  separate experiments per condition.
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7.3.2. E xtracellular A T P w as unaltered in cells expressing ID B

As displayed in Figures 7.4 and 7.5, the transfer of media removed from IDB cells 24h 

post-transfection to wild type HEK did not significantly affect NUC Ca2+ handling 

using the assays described above. This suggests that perhaps a rather short-lived or 

transiently-released molecule that requires the presence of I-domain transfected cells 

may have contributed to the bystander effect observed (Figures 4.5 and 5.15). In view 

of this, extracellular ATP levels were monitored in both mRFP and I-domain 

expressing cells to determine whether continual release o f ATP could induce the 

bystander effect. In addition, measurement of extracellular ATP also serves as a good 

index of hemichannel opening (Leybaert et al., 2003).

Calibration of ATP-dependent chemiluminescence (lpM  -  lOOnM) (Figure 7.6) was 

used to determine ATP levels in media from mRFP and IDB expressing cells (Figure 

7.7). At days 1-4 extracellular ATP was no different between mRFP and IDB 

expressing cells, which suggests that hemichannels were not persistently open 

following transfection with IDB, however, this does not exclude the possibility that 

hemichannels are transiently opened. From Figure 7.7 it is difficult to believe that day 

1 and day 4 ATP measurements are NOT statistically different in mRFP-expressing 

cells.

10-13 10-12 10-11 10'10 10-9 10 8 10-7 10-6

Moles of ATP

4321

Figure 7.6. ATP standard Curve

Calibration of ATP in media 
assessed using ENLITEN 
luciferin/luciferase reagent. n=3 for 
each ATP concentration. SEM was 
calculated but was less than the 
dimensions of each point.

Day

ID8 
mRFP

Figure 7.7. ATP released by ID 11 
expressing cells normalised to 
m RFP cell num ber

Data was acquired from triplicate 
experiments for each day and is 
given as mean±SEM.
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7.3.2.I. H ydro lysis  o f e x tra ce llu la r  A T P  d id  no t affect in tra c e llu la r  C a 2+
h an d lin g  in b y s ta n d e r  cells

Given the proposed role o f ATP as an extracellular signalling molecule in the 

promotion of cell death cascades (Ahmad et a l ,  2004; Eltzschig et a l ,  2006; Noguchi 

et a l, 2008), cells were exposed to apyrase to hydrolyse extracellular ATP, thus 

preventing ATP-driven cell-to-cell signalling. SVm of apyrase-treated mRFP and 

respective mRFPNUC were normalised to untreated mRFP and mRFPNUC cells 

respectively. Likewise, SVni o f ID 8  and IDBNUc apyrase-treated cells were normalised
B Bto I D D and I D '  n u c  untreated cells. Treated cells were normalised to control cells, 

which in this instance were their untreated counterparts, in line with previous studies. 

SVm was comparable between ID8NUc and apyrase treated IDBNUc (Figure 7.8). 

However, mRFP cells treated with apyrase displayed a pronounced reduction in SVm 

compared to untreated mRFP expressing cells (Figure 7.8). Although ID8  and I D Bn u c  

exhibited SVm comparable to their untreated counterparts, these were still 

significantly different from the normalised SVm of mRFP and mRFPNuc-

^  1.5-1
~o0)
-4— *
03
<D

m R F P /ID B m R FP/ID B M MNUC !DB IDBNUC 
NUC

Untreated

Figure 7.8. Apyrase exposed mRFP and ID cells

ID8  and mRFP (M) expressing cells were exposed to apyrase for 24h and analysed by 
confocal microscopy. Data were obtained from 10 separate experiments and assessed 
using SVm. Treated mRFP/ID 8  and mRFP/IDBNUc cells were normalised to untreated 
mRFP/ID8  and mRFP/IDBNuc cells respectively. Untreated cells were consequently 
expressed as 1. *p<0.05 compared to M, p<0.001 compared to Mnuc-
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7.3.3. Scavenging  free radicals did not rescue dysfunctional C a2+
handling in ID 8 transfected cells

Edaravone was administered to cells in view of its anti-oxidant qualities to investigate 

whether it could correct dysfunctional Ca2+ cycling in NUCs. The addition of 

edaravone did not alter the SVm in mRFP cells when compared to unexposed cells 

transfected with mRFP (Figure 7.9). However, ID1* expressing cells and IDBNUc 

displayed a significantly higher SVm to untreated cells indicating that edaravone
94-altered resting Ca handling in these cells.

_  2 . 0-1
~o
CD

mRFP/IDB mRFP/IDB M MNUC IDB IDBNUC 
NUC

U n trea te d

Figure 7.9. Edaravone exposed m RFP and ID 1* cells

SVm in IDb and mRFP (M) expressing cells and NUCs was analysed following a 24h 
exposure to edaravone. Data were obtained from at least 10 separate experiments and 
assessed using SVm. Treated mRFP/IDB and mRFP/IDBNUc cells were normalised to 
untreated mRFP/IDB and mRFP/IDBNuc cells respectively. Untreated cells were 
consequently expressed as 1 *p<0.05 compared to M , +p<0.001 compared to M n u c -

7.3.4. H E K  cells com m unicate  via gap junctions

In order to determine whether HEK cells possessed functional gap junctions that 

would permit cell-to-cell communication, Lucifer yellow was injected into a single 

HEK cell and assessed for subsequent dye transfer (Figure 7.10). Although HEK cells 

displayed dye coupling, the transfer of Lucifer yellow was extremely slow (tj/2  ~7 

min). Nevertheless, these findings corroborate the existence of functional gap 

junctions in HEK, and should be viewed in light o f low cell surface area contact 

between neighbouring cells (phase panel).
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Figure 7.10. Lucifer yellow (LY) dye transfer in HEK cells

Microinjection of a single WT HEK cell and the consequent dye transfer was monitored to assess the presence of functional gap junctions. Images were 
obtained between 1 and 20 min following microinjection and the number of cells fluorescing yellow were quantified. Scale bar represents 50pm.

Images taken by Hala Jundi
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7.4. Discussion

7.4.1. Bystander cell death was not mediated by ATP

Given that oxidative stress and Ca2+ signalling have been implicated in the occurrence of cell 

damage induced by neighbouring cells, this chapter explored whether either pathway was 

responsible for I-domain linked apoptosis in NUCs. As discussed in Chapter 5, the occurrence 

of the bystander effect was not dependent on cell-to-cell contact (Figure 5.15). In addition, the 

present experiments were carried out in view of the findings of Mothersill and Seymour, 

whereby irradiated cells released a factor into the media that was transduced to surrounding 

cells by a mechanism independent of gap junctions (Mothersill et a l, 2005). Furthermore, an 

accumulating number o f studies report that media exchange from irradiated cells to non

irradiated cells resulted in apoptosis and reduced cell viability (Lyng et al., 2002a, b; Das et 

al., 2007; Grifalconi et al., 2007). However, the data presented here showed that Ca2+ 

handling and cell phenotype of wild type HEK was not altered when exposed to media from 

ID8 expressing cells. Nevertheless, this approach was subject to time limitations, and for a 

more comprehensive insight, media transfer experiments should also be considered both at 

prolonged intervals (i.e. > 36h post-transfection) or within the first few hours following the 

appearance of recombinant I-domain protein.

Considering that cellular release of ATP can be triggered by both physical and chemical 

means, and its critical involvement in signal transduction processes (Ahmad et a l, 2004; 

Eltzschig et a l, 2006; Stamatakis and Mantzaris, 2006), it was vital that extracellular ATP 

concentrations were determined. In line with previous experiments, both mRFP and ID were 

assessed, and although there appeared to be a trend toward lower extracellular ATP released 

from ID8 cells, this was not significant. Furthermore, the finding that extracellular ATP 

concentrations were more comparable between mRFP and ID8 on day 3 (Figure 7.7), yet 

apoptosis at this time-point was still very high (Figure 4.5) strongly suggests that extracellular 

ATP does not mediate the bystander effect. Hydrolysis of extracellular ATP gave conflicting 

results; it considerably reduced Ca2+ signal variability in mRFP cells, an effect that was not 

observed in ID8 cells. An explanation for this finding has not yet been determined, however, 

since ID8 exhibited a higher basal Ca2+ signal variability than mRFP cells, it is likely that 

apyrase may have suppressed SVm proportionally in both cells. It is also important to note that 

apyrase does not alter intracellular ATP concentrations (Cotrina et a l, 1998) and therefore 

should not effect intracellular Ca2+ handing. Nevertheless, this is at odds with the reduced
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SVm measured in mRFP cells following apyrase treatment. Alternatively, there is the 

possibility that HEK cells can sense extracellular ATP, which models intracellular Ca2+ 

handling accordingly.

7.4.2. ROS did not mediate the bystander effect

Scavenging ROS using edaravone failed to alleviate dysfunctional Ca2+ handling in ID8 cells. 

Instead it was associated with higher SVm in both mRFP and ID8 cells (Figure 7.9), in line 

with a recent report that demonstrated its involvement in the promotion of oxidative stress and 

cell death (Arai et a l, 2008).

The studies performed in this chapter are consistent with previous research on the bystander 

effect, and suggest that I-domain expression mediates cell death via two pathways: 1) cells 

expressing recombinant protein are rapidly eliminated due to disrupted Ca homeostasis and 

2) NUCs are exposed to a soluble factor transiently released into the media by transfected 

cells, which alters Ca2+ homeostasis and commits cells to either apoptotic or necrotic cell 

death. The data presented in this chapter suggest that neither ATP nor ROS are likely 

candidates for mediating the bystander effects observed but it is acknowledged that this 

preliminary data does require further investigation. However, the data does allow the 

speculation that the bystander effect is probably mediated by a potent, transiently released, or 

short lived extracellular signalling molecule.
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Chapter 8 General Discussion

8.1. Localisation of 1-domain constructs is not dependent on cellular 
expression of RyR2

Cellular expression of ID was consistent with the localisation o f full-length RyR (Bhat and 

Ma, 2002b; Rossi et al., 2002) (Chapter 3). The comparable targeting o f I-domain fragments 

in HEK and HL-1 cells irrespective of RyR2 background (Claycomb et a l, 1998; Tong et al.,

1999), indicates that RyR2 is not necessary for the intracellular localisation of the I-domain. 

These findings also provided the first evidence that suggested the I-domain may interact with 

IP3R Ca2+ channels, which is in line with the hypothesis detailed in Chapter 1. Although the 

distinct localisation of ID and IDC supports the concept that the ER retention signal lies within 

the first two predicted TM spanning regions (aa4499-4519, 4572-4593) (Meur et al, 2007), it 

is still to be determined whether I-domain constructs exist as integral membrane proteins or 

are only associated with intracellular membranes. Further work is needed to address this 

issue.

8.2. I-domain expression induced apoptosis

Phenotypic observations of HEK cells transfected with I-domain sections revealed elevated 

levels of apoptosis 2-3 days post-transfection (Figure 4.5), which returned to normal levels 

following rapid elimination of recombinant I-domain protein (Figure 3.24). This phenomenon 

was also observed in studies using an alternative expression vector (Figure 3.25). The precise 

molecular pathways involved in I-domain mediated cell death were not fully characterised, 

however the results presented here strongly support the concept that I-domain expression 

interfered with IPsR-dependent Ca2+ signalling (Figure 8.1, Chapter 5). It is speculated that 

these cytotoxic events triggered by I-domain expression also involved mitochondria, 

consistent with other studies (Hajnoczky et a l, 1995; Szalai et a l, 1999; Wang and El-Deiry, 

2004; Mendes et a l, 2005; Hajnoczky et a l, 2006).

Ultimately the cytotoxicity associated with I-domain expression precluded the generation of 

stable cell lines. The successful enrichment of other cell populations (e.g. CHO cells) that 

expressed low levels o f RyR2 (George et a l, 2003c), which was not achievable with I-domain 

(Chapter 4), suggests that I-domain expression is more toxic to cells than expression of the
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w hole, fu lly  fu n ction al tetram eric protein. T his u n exp ected  and profound cy to to x ic ity  presents 

lim itations for ch ron ica lly  ex p ressin g  I-dom ain  constructs. T he ram ification s o f  these findings  

on the potential therapeutic u se  o f  I-dom ain  in m od u latin g  intracellu lar Ca2+ signalling  are 

substantial.

8.3. IP3R agonist-induced responses are profoundly diminished by I-
domain constructs

M ost I-dom ain Constructs reduced  en d o g en o u s IP3R  resp o n ses to carbachol com pared to  

mRFP. The data p resented  in  th is th esis  su g g ests that the inh ib itory e ffec t o f  I-dom ain  

constructs on  IP sR -d ep en d en t a g o n ist resp on ses m ay be due to  subtle ch an ges in E R  Ca2+ 

store loading that m a n ifested  as increased  basal cy to p la sm ic  C a2+ flu x es  (i.e . e levated  S V m) 

(Figure 8.1, Chapters 5 and 6 ). It is  p o ss ib le  that I-dom ain  ex p ressio n  lo ck s the IP3R  in a 

subconductance state thus in d u cin g  a steady leak  o f  C a2+ from  the E R  leav in g  less  free Ca2+ 

available for a g o n ist-in d u ced  C a2+ release. T his m ay su b seq u en tly  result in  low er E R  Ca2+
^  1

stores by reducing the C a a va ilab le  for resequestration  into the E R  v ia  S E R C A  (Figure 8.1). 

It could be specu lated  that e lev a ted  S V m in  ce lls  exp ressin g  I-d om ain  m ay be a consequence  

o f  an increased rate o f  C a2+ c y c lin g  b etw een  cy to so lic  and S R  com partm ents, w hich  

maintained a tem porary state o f  equilibrium , and m ay exp la in  w h y  th ese  changes did not
1

m anifest as an in crease  in  [C a ]j (F igure 8 .1 ). C e lls  w ere o n ly  able to tem porarily  

com pensate for the d isrup tion  in  ce llu lar  C a2+ hand ling  ind u ced  b y  I-dom ain  expression , 

which subsequently  w a s  resp o n sib le  for their d em ise  (S ec tio n  8 .2 ).

It is feasib le that the in teraction  o f  I-dom ain  sectio n s w ith  th e IP3R  m odulated channel 

activity as a co n seq u en ce  o f  the strik ing structural h o m o lo g y  b etw een  R yR  and IP3R  

(A ppendix I). T he data supports the regulation  o f  IP3R  and R y R 2  channel activity by  

interdomain interaction , w h ich  appears to  be a co m m o n  feature o f  both  C a2+ channel fam ilies. 

This phenom enon  is  co n s is ten t w ith  the stud ies o f  V a m a i and co llea g u es  w h o found that 

recombinant d om ains o f  IP3R  w ere ab le to  interact w ith  and m o d ify  en d ogen ous IP3R  

channels by  m eans o f  their  p rec ise  spatial loca lisa tion  (V am ai et ah, 2 0 0 5 ). N evertheless, 

despite sim ilar seq u en ce  and structural h o m o lo g y  b etw een  all I-dom ain  section s w ith  both  

IP3RI and 2 (A p p en d ix  I), lo w er  co -lo ca lisa tio n  o f  I-dom ain  constructs w as observed  w ith  

IP3R2 than IP3R I , w h ic h  su g g ests  that other factors probably contributed  to  the findings  

presented here. H o w ev e r , so m e  e ffec ts  cou ld  arise as a result o f  the lo w er  expression  levels

238



HEK/mRFP I-domain

Extracellular
Plasma membrane

Intracellular

sv AA/WVWWV\AaM sv

o oo o o
X*no ooo

I-domain

SERCASERCA

ER

o o o 0 o o 0 o o 
o0 o o o o 0 o o o0 o 0

Figure 8.1. Schematical representation of I-domain-induced intracellular Ca2+ dysregulation

Left and right panels depict Ca2+ signalling in HEK/mRFP cells and in cells expressing I-domain constructs respectively. ER Ca2+ is lower in 
I-domain cells, as is Ca"+ release via IP3 R. The absence of an increase in [Ca2+]j in I-domain expressing cells suggests that cells compensate 
by increasing Ca2+ cycling through the cell, this is shown in the figure as n in HEK and mRFP cells, which is increased to X*n in I-domain 
cells, where X is the coefficient by which Ca2+ cycling is increased. Increased Ca2+ cycling could lead to an increase in signal variability (SV). 239



and greater cytoplasmic localisation of IP3R1 than IP3R2 (Chapter 5). Furthermore, IP3R1 

rather than IP3R2 is more centrally involved in apoptosis cascades (Assefa et a l, 2004; Oakes 

et al, 2005). Although I-domain expression induced cell death, this data provides proof-of- 

principle that I-domain fragments can be used to modulate local Ca2+ signals (such as those in 

expressing cells) and remote Ca2+ signals (such as those in NUCs). Analytical tools such as 

single channel experiments may provide a greater insight into whether I-domain sections 

physically interact with the IP3R to modulate channel function.

8.4. Decoding of intracellular Ca2+ handling

This thesis described the use of SVm, a new parameter for the analysis of basal Ca2+ signal 

variability. Notably, the robust application of SVm in measuring small changes in Ca2+ signals 

was made possible due to the powerful imaging system used (512x512 resolution, imaging at 

200ms intervals) in combination with the optimised Ca2+ indicator fluo-4. Ca2+ imaging 

techniques have become more refined over the past decade, on account of developments in 

imaging hardware and the evolution of new Ca2+ indicator dyes. Fluo-4 is a superior Ca2+ dye
9-f-for use in Ca imaging experiments due to its ‘brighter’ fluorescence (compared to fluo-3) 

when excited with an argon laser. The use of SVm has permitted a compelling insight into the
^  I

biological (downstream) consequences of small changes in Ca handling. Previous research
2_j_ ,  ,  ,

has demonstrated how large Ca oscillations shape various cellular processes (Dolmetsch et 

al., 1997; Dolmetsch et al., 1998), and the current project has now extended these findings by
• 2 "Prevealing that small, dynamic fluctuations in cellular Ca can dictate cell fate and phenotype.

8.5. I-domain expression and the bystander effect

Remarkably, the profoundly altered phenotype and cell death induced by I-domain constructs 

was also a prominent feature o f neighbouring non-expressing cells (see Chapters 5 and 6 ). A 

possible explanation for this striking and consistent finding is that Ca store depletion or 

increased basal Ca2+ fluxes in I-domain-expressing cells initiated a cascade of signals that 

were transduced to neighbouring cells. This transduction may be considered to occur via 

points of cell-to-cell contact (e.g. gap junctions), but as indicated in Chapters 4 and 5, such a 

bystander effect was determined where the cells were not physically coupled. In view of this, 

experiments were designed to determine if a trans-cellular exchange of diffusible mediators
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contributed to the bystander effect. The numbers of potential mediators are extensive and 

include ROS, ATP, lipids, amino acids and many other molecules. As discussed in Chapter 7, 

the bystander effect, in which targeted changes in cellular phenotype are conveyed to 

surrounding cells, has been well documented in other areas of research (e.g. cancer). However 

there are few mechanistic insights as to the transductory mechanisms involved. The data 

presented in this thesis provides important clues that altered cellular Ca2+ handling via 

manipulation of IP3R may underlie the bystander effect.

The toxic nature of transient I-domain expression indicated that chronic expression would not 

be a viable therapeutic strategy in normalising aberrant RyR2 Ca2+ release. Therapeutically 

these findings could provide a route for targeted cell eradication, but this concept requires far 

more substantial investigation.

8.6. Pathways underlying IDB induced cytotoxicity

This project aimed to elucidate the pathways and signalling molecules underpinning I-domain 

cytotoxicity in neighbouring untransfected cells (NUCs). As discussed above, the data 

suggests a link between cytotoxicity and the altered Ca cycling induced by I-domain 

fragments. Given the well documented relationship between altered Ca2+ handling and efflux 

of ATP and ROS from cells, the study was extended to explore whether ATP and/or ROS 

release from I-domain expressing cells underlined the observed cytotoxicity and altered 

agonist responses. The results presented in this thesis suggest that ATP released from ID8 

expressing cells did not mediate bystander cell death (Figure 7.7). Further studies using a 

ROS scavenger (edaravone) also failed to alleviate perturbations in Ca signalling induced by 

I-domain expression (Figure 7.9), and actually increased basal Ca2+ signal variability. 

However, the inability of edaravone to reduce dysfunctional Ca2+ cycling in the present 

experiments does not rule out ROS as mediators of death signals to bystander cells. 

Additional experiments would need to assess extracellular concentrations of ROS in order to 

fully determine its involvement. Time limitations precluded these further investigations. The 

increased perturbed Ca2+ signalling following edaravone exposure may actually question the 

therapeutic qualities o f edaravone, which is consistent with recent reports of its cytotoxic 

effects (Arai et a l , 2008).
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8.7. Further work and future direction

The work described in this thesis has revealed that fragments of the I-domain can modulate
2+

intracellular Ca handling. However, further work is required in order to determine the 

ramifications of expressing recombinant fragments of the cardiac RyR in diseased 

myocardium.

The findings of this project suggest that I-domain expression resulted in IP3R down- 

regulation, however this was not confirmed. Further experiments such as increasing n number 

of both IP3R type 1 and type 2 immunoblots are required to establish whether this was in fact 

the case. Similarly, in order to determine whether high I-domain expression correlates with 

reduced IP3R expression, it would be useful to quantify total IP3R and I-domain protein in 

individual cells.

In addition, further experiments are necessary to fully assess the functional effect of 

expressing I-domain constructs on both IP3R and RyR activity, particularly via the use of lipid 

bi-layers. In view of the cytotoxicity of I-domain expression, it would also be interesting to 

construct smaller sub-fragments of the I-domain (especially ID8) and assess the functional 

implications of these on IP3R and RyR activity in whole cells and lipid bi-layers, specifically 

to determine whether they are less toxic and if they would pose a greater therapeutic strategy. 

Finally, in order to fully determine the implications of this work on the regulation of 

intracellular Ca2+ release channels in normal and diseased myocardium, it is essential that 

these studies be carried out in cells of a cardiomyocyte lineage.

8.8 Practical limitations

HEK cells were used throughout this project for a number of reasons. Firstly, they represent 

an RyR2-null background that permits the study of I-domain fragments on IP3R-dependent 

Ca2+ signalling. Secondly, HEK cells are widely employed as the cell line of choice for 

heterologous expression of recombinant RyR2 (Thomas et al., 2005; Jiang et al., 2007; Jones

et al., 2007) and thus could be used as an experimental model for investigating the effects of
2+I-domain on RyR2. To this end, HEK cells have been used in diagnosing perturbations in Ca 

handling mediated by recombinant mutant RyR2 channels (Jiang et al., 2002a; Thomas et al., 

2004; Paavola et al., 2007). However, it is acknowledged that the effects of I-domain
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fragments on RyR2 in an IPaR-null cell context were not investigated. Although cells do exist 

that lack all IP3R subtypes (DT40 chicken lymphocytes (Miyakawa et al., 1999)) these are 

non-mammalian cells that compensate for lack of homeostatic IPsR-mediated signalling by
94-abnormal changes in other facets of the Ca signalling machinery.

Similarly, HL-1 cells were used as a model for endogenous RyR2 expression, and these cells 

are equipped with a full complement of accessory proteins (including CSQ and FKBP12.6). 

However, HL-ls, although characterised by adult cardiomyocyte phenotype and contractility 

(Claycomb et al., 1998) are an immortalised cell line that do not possess T-tubules. Thus, 

again it is recognised that these cells may not be the ideal choice for studying the effects of I- 

domain expression on RyR2. An RyR2-deficient cardiac cell line that expresses a full 

complement of accessory proteins similar to the 1B5 skeletal myotubes used for RyRl and 

RyR3 studies (Moore et al., 1998) would be valuable, but no such model has so far been 

developed. Given the central role of RyR2 in cardiac cell function, it is also presumed that an 

RyR2-null cardiac cell would lack cardiac cell phenotype.

Other limitations of this thesis include the use of thapsigargin to deplete ER stores. 

Thapsigargin only provides an estimation of ER load and cannot be used to assess dynamic 

changes in the ER store. However, since thapsigargin has been routinely implemented in 

similar studies (Jiang et al., 1994; Tong et al., 1999; Gerasimenko et al., 2003; Thomas et al.,
94-2005), it is considered a useful tool for studying ER Ca status.

Cells were monitored on a daily basis in accordance with initial phenotypic observations. 

However, in view of the findings of this project, a more detailed analysis of I-domain 

expressing cells between 1 and 2  days post-transfection is now warranted.

Finally, the use of mRFP, although a robust fluorescent fusion tag that enabled the 

unequivocal identification of I-domain expressing cells (which led to the observation of the 

bystander effect) may have some effect on the functionality of I-domain constructs. However, 

the data presented in this thesis has shown that different mRFP-tagged I-domain fragments 

exhibited distinct functionality, consistent with previous reports that mRFP in most 

circumstances does not compromise the function of the protein to which it is fused (Campbell 

et al., 2 0 0 2 ).
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Appendix I

Bioinformatic analysis of RyR2 and IP3R I-domains
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RyR2 ID fragment characteristics Structural motifs A Sequence homology B Predicted - 
structural 
homology c

Locus
(aa.)

Residues MW
(kD)

Pi Hydropathy 
index (HI) D

HI
per
residue

a-
helix
(%)

P-
tum
(%)

Extende 
d strand 

(%)

Coile
d

(%)

vs.
RyR1
(%)

vs.
RyR3
(%)

vs. 
IP-R-1 
(%)E

vs.
IP,R-2
(%)E

vs.
IP,R-1
(%)

vs.
IP,R-2

(%)

ID 3722-
4610

889 101.65 5.1 122.51 0.14 59.96 5.62 9.45 24.97 59 66 12
(832-

2385)F

13
(844-2934)

NDG ND

IDA 3722-
4353

630 71.93 5.0 43.76 0.07 63.33 5.08 7.62 23.97 69 75 15
(1736-
2650)

17
(1741-2656)

67 65

IDB 4353-
4499

147 16.97 4.6 105.74 0.76 57.14 3.40 6.12 33.33 15 35 17
(1972-
2219)

10
(1979-2227)

64 64

IDC 4353-
4610

261 29.74 5.2 69.56 0.27 57.53 3.09 10.81 28.57 33 45 14
(1972-
2385)

10
(1979-2394)

67 69

Table i. Bioinformatic analysis of 1-Domain sequences
A Structural predictions based on primary amino acid sequences were obtained via the SOPMA algorithm (Combet C., Blanchet C., Geourjon C. and Del6age G.

(2000) TIBS 25:147-150) operated through a web-based server (http://npsa-pbil.ibcp.fr/cai-bin/nosa automat.pl?paqe=/NPSA/npsa sopma.html). See also Table ii 
BThe extent of sequence homology (where 100% represents identical sequence match) was determined by sequence alignment using the ClustalW program available at 

http://www.ebi.ac.uk/Tools/clustalw2/index.html 
c SOPMA output files corresponding to structural predictions for l-Domain fragments (RyR2) and ID-like regions (IP3R) respectively were aligned using the ClustalW program. 

See Figure iii-v for detailed analysis.
D Hydropathic indices were calculated using the Hopp-Wood algorithm (Hopp TR., and Woods KR. (1981) PNAS 78:3824-3828) operated through the ExPaSy molecular 

biology server (http://www.expasv.org/tools/protscale.html). See Figures i and ii.
EThe GenBank accession numbers for the human IP3R sequences are NP_002213 (I P 3 R - 1 ,; 2695aa, 306.8kDa) and NP_002214 (I P 3 R - 2 ; 2701 aa, 308.06kDa).
F Residues in parentheses represent IP3R regions that exhibited the greatest degree of sequence homology with RyR2 l-Domain fragments.
0 ND= not determined. There was insufficient homology between RyR2 ID and IP3R-1 and IP3R-2 to perform reliable structural homology modelling.

http://npsa-pbil.ibcp.fr/cai-bin/nosa
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.expasv.org/tools/protscale.html


Ix-helix (3-tum Extended Coil
(%) (%) strand

RyR2
ID 59.96 5.62 9.45 24.97

IDa 63.33 5.08 7.62 23.97
IDb 57.14 3.4 6.12 33.33
IDC 57.53 3.09 10.81 28.57

IP3R1
IDA-like
IDB-like
IDc-like

54.54
51.82
56.90

4.25
3.64
5.08

11.15
10.93
11.14

30.05
33.60
26.88

IP3R2
IDA-like
IDB-like
IDc-like

54.21
48.39
56.14

3.95
4.44
5.06

11.45
12.90
12.29

30.39
34.27
26.51

Table Y. Predicted structural motifs in RyR2 I-domains and the I-domain- 
like regions in IP3R.

Motifs were predicted using the SOPMA algorithm as described in Table X. The 
detailed organisation of these motifs within the RyR2 and IP3R is shown in Figure AA 
to AC.
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Figure Y. Hydropathy analysis of the human RyR2 l-Domain
Hydropathy analysis of the human RyR2 I-domain (residues 3722-4610) was performed using the Hopp-Woods 
algorithm as described in Table X. The hydrophobic scale is given in Figure Z. Positive and negative ranges 
correspond to hydrophilic and hydrophobic residues, respectively. The two TM regions (arrowed) correspond to TM1 and
2 according to the model of Tunwell et al.
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Using the scale Hphob. / Hopp & Woods, the individual values for the 20 
amino acids are:

A l a - 0 . 5 0 0

A r g 3 . 0 0 0

A s n 0 . 2 0 0

A s p 3 . 0 0 0

C y s - 1 . 0 0 0

G i n 0 . 2 0 0

G l u 3 . 0 0 0

G l y 0 . 0 0 0

H i s - 0 . 5 0 0

H e - 1 . 8 0 0

L e u - 1 . 8 0 0

L y s 3 . 0 0 0

M e t - 1 . 3 0 0

P h e - 2 . 5 0 0

P r o 0 . 0 0 0

S e r 0 . 3 0 0

T h r - 0 . 4 0 0

T r p - 3 . 4 0 0

T y r - 2 . 3 0 0

V a l - 1 . 5 0 0

Figure Z. Hydrophobic scale



H= alpha helix / T= beta turn / E= extended  strand / C=coil

□
□
□

Hom ology betw een RyR2 and IP3R-1 / IP3R-2 

H om ology betw een  RyR2 and IP3R-1 

H om ology betw een RyR2 and IP3R-2

Figure iii-IDA-like region hom ology
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Figure iv - IDB-like region homology
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Figure v - IDC-like region homology
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* 1 * 2  c m c . f l h  - M c t a x t s c c M M c r c r J E f r ' - f l B H H ^ H M M M B H *  — - H B hhmhwkktthmw *<■*>>•< h

 r r flM k ccccK M — Xt■-IP3EJ
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Appendix II and III

Vector Maps
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Appendix II

pm RFP-Cl map

C T A G C G C C A C C A T G G C C T C C T C C G A G G A C G T C A T C A A G G A G T T C A T G C G C T T C A A G G T G C G C  

A T G G A G G G C T C C G T G A A C G G C C A C G A G T T C G A G A T C G A G G G C G A G G G C G A G G G C C G C C C C T A  

C G A G G G C A C C C A G A C C G C C A A G C T G A A G G T G A C C A A G G G C G G C C C C C T G C C C T T C G C C T G G G  

A C A T C C T G T C C C C T C A G T T C C A G T A C G G C T C C A A G G C C T A C G T G A A G C A C C C C G C C G A C A T C  

C C C G A C T A C T T G A A G C T G T C C T T C C C C G A G G G C T T C A A G T G G G A G C G C G T G A T G A A C T T C G A  

G G A C G G C G G C G T G G T G A C C G T G A C C C A G G A C T C C T C C C T G C A G G A C G G C G A G T T C A T C T A C A  

A G G T G A A G C T G C G C G G C A C C A A C T T C C C C T C C G A C G G C C C C G T A A T G C A G A A G A A G A C C A T G  

G G C T G G G A G G C C T C C A C C G A G C G G A T G T A C C C C G A G G A C G G C G C C C T G A A G G G C G A G A T C A A  
G A T  G A G G C  T G A A G C  T G A A G G A C  G G C  G G C  C A C  T A C  G A C  G C  C G A G G T  C A A G A C  C A C  C T A C  A T  GG 
C C A A G A A G C C C G T G C A G C T G C C C G G C G C C T A C A A G A C C G A C A T C A A G C T G G A C A T C A C C T C C  

C A C A A C G A G G A C T A C A C C A T C G T G G A A C A G T A C G A G C G C G C C G A G G G C C G C C A C T C C A C C G G  

C G C C C A A G C T T C G A A T T C T G C A G T C G A C G G T A C C G C G G G C C C G G G A T C C A C C G G A T C T A G A T  

A A C T G A T C A T A A T C A G C C A T A C C A C A T T T G T A G A G G T T T T A C T T G C T T T A A A A A A C C T C C C A  

C A C C T C C C C C T G A A C C T G A A A C A T A A A A T G A A T G C A A T T G T T G T T G T T A A C T T G T T T A T T G C  

A G C T T A T A A T G G T T A C A A A T A A A G C A A T A G C A T C A C A A A T T T C A C A A A T A A A G C A T T T T T T T  

C A C T G C A T T C T A G T T G T G G T T T G T C C A A A C T C A T C A A T G T A T C T T A A G G C G T A A A T T G T A A G  

C G T T A A T A T T T T G T T A A A A T T C G C G T T A A A T T T T T G T T A A A T C A G C T C A T T T T T T A A C C A A T  

A G G C C G A A A T C G G C A A A A T C C C T T A T A A A T C A A A A G A A T A G A C C G A G A T A G G G T T G A G T G T T  

G T T C C A G T T T G G A A C A A G A G T C C A C T A T T A A A G A A C G T G G A C T C C A A C G T C A A A G G G C G A A A  

A A C C G T C T A T C A G G G C G A T G G C C C A C T A C G T G A A C C A T C A C C C T A A T C A A G T T T T T T G G G G T  

C G A G G T G C C G T A A A G C A C T A A A T C G G A A C C C T A A A G G G A G C C C C C G A T T T A G A G C T T G A C G G  

G G A A A G C C G G C G A A C G T G G C G A G A A A G G A A G G G A A G A A A G C G A A A G G A G C G G G C G C T A G G G C  

G C T G G C A A G T G T A G C G G T C A C G C T G C G C G T A A C C A C C A C A C C C G C C G C G C T T A A T G C G C C G C  

T A C A G G G C G C G T C A G G T G G C A C T T T T C G G G G A A A T G T G C G C G G A A C C C C T A T T T G T T T A T T T  

T T C T A A A T A C A T T C A A A T A T G T A T C C G C T C A T G A G A C A A T A A C C C T G A T A A A T G C T T C A A T A  

A T A T T G A A A A A G G A A G A G T C C T G A G G C G G A A A G A A C C A G C T G T G G A A T G T G T G T C A G T T A G G  

G T G T G G A A A G T C C C C A G G C T C C C C A G C A G G C A G A A G T A T G C A A A G C A T G C A T C T C A A T T A G T  

C A G C A A C C A G G T G T G G A A A G T C C C C A G G C T C C C C A G C A G G C A G A A G T A T G C A A A G C A T G C A T  

C T C A A T T A G T C A G C A A C C A T A G T C C C G C C C C T A A C T C C G C C C A T C C C G C C C C T A A C T C C G C C  

C A G T T C C G C C C A T T C T C C G C C C C A T G G C T G A C T A A T T T T T T T T A T T T A T G C A G A G G C C G A G G  

C C G C C T C G G C C T C T G A G C T A T T C C A G A A G T A G T G A G G A G G C T T T T T T G G A G G C C T A G G C T T T  

T G C A A A G A T C G A T C A A G A G A C A G G A T G A G G A T C G T T T C G C A T G A T T G A A C A A G A T G G A T T G C  

A C G C A G G T T C T C C G G C C G C T T G G G T G G A G A G G C T A T T C G G C T A T G A C T G G G C A C A A C A G A C A  

A T C G G C T G C T C T G A T G C C G C C G T G T T C C G G C T G T C A G C G C A G G G G C G C C C G G T T C T T T T T G T  

C A A G A C C G A C C T G T C C G G T G C C C T G A A T G A A C T G C A A G A C G A G G C A G C G C G G C T A T C G T G G C  

T G G C C A C G A C G G G C G T T C C T T G C G C A G C T G T G C T C G A C G T T G T C A C T G A A G C G G G A A G G G A C  

T G G C T G C T A T T G G G C G A A G T G C C G G G G C A G G A T C T C C T G T C A T C T C A C C T T G C T C C T G C C G A  

G A A A G T A T C C A T C A T G G C T G A T G C A A T G C G G C G G C T G C A T A C G C T T G A T C C G G C T A C C T G C C  

C A T T C G A C  C A C  C A A G C  G A A A C  A T  C G C  A T  C G A G C  G A G C  A C  G T  A C  T  C G G A T  G G A A G C  C G G T  C T  T  
G T C G A T C A G G A T G A T C T G G A C G A A G A G C A T C A G G G G C T C G C G C C A G C C G A A C T G T T C G C C A G  

G C T C A A G G C G A G C A T G C C C G A C G G C G A G G A T C T C G T C G T G A C C C A T G G C G A T G C C T G C T T G C  

C G A A T A T C A T G G T G G A A A A T G G C C G C T T T T C T G G A T T C A T C G A C T G T G G C C G G C T G G G T G T G  
G C G G A C C G C T A T C A G G A C A T A G C G T T G G C T A C C C G T G A T A T T G C T G A A G A G C T T G G C G G C G A  

A T G G G C T G A C C G C T T C C T C G T G C T T T A C G G T A T C G C C G C T C C C G A T T C G C A G C G C A T C G C C T  

T C T A T C G C C T T C T T G A C G A G T T C T T C T G A G C G G G A C T C T G G G G T T C G A A A T G A C C G A C C A A G  

C G A C G C C C A A C C T G C C A T C A C G A G A T T T C G A T T C C A C C G C C G C C T T C T A T G A A A G G T T G G G C  

T T C G G A A T C G T T T T C C G G G A C G C C G G C T G G A T G A T C C T C C A G C G C G G G G A T C T C A T G C T G G A
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G T T C T T C G C C C A C C C T A G G G G G A G G C T A A C T G A A A C A C G G A A G G A G A C A A T A C C G G A A G G A A  

C C C G C G C T A T G A C G G C A A T A A A A A G A C A G A A T A A A A C G C A C G G T G T T G G G T C G T T T G T T C A T  

A A A C G C G G G G T T C G G T C C C A G G G C T G G C A C T C T G T C G A T A C C C C A C C G A G A C C C C A T T G G G G  

C C A A T A C G C C C G C G T T T C T T C C T T T T C C C C A C C C C A C C C C C C A A G T T C G G G T G A A G G C C C A G  

G G C T C G C A G C C A A C G T C G G G G C G G C A G G C C C T G C C A T A G C C T C A G G T T A C T C A T A T A T A C T T  

T A G A T T G A T T T A A A A C T T C A T T T T T A A T T T A A A A G G A T C T A G G T G A A G A T C C T T T T T G A T A A  

T C T C A T G A C C A A A A T C C C T T A A C G T G A G T T T T C G T T C C A C T G A G C G T C A G A C C C C G T A G A A A  

A G A T C A A A G G A T C T T C T T G A G A T C C T T T T T T T C T G C G C G T A A T C T G C T G C T T G C A A A C A A A A  

A A A C C A C C G C T A C C A G C G G T G G T T T G T T T G C C G G A T C A A G A G C T A C C A A C T C T T T T T C C G A A  

G G T A A C T G G C T T C A G C A G A G C G C A G A T A C C A A A T A C T G T C C T T C T A G T G T A G C C G T A G T T A G  

G C C A C C A C T T C A A G A A C T C T G T A G C A C C G C C T A C A T A C C T C G C T C T G C T A A T C C T G T T A C C A  

G T G G C T G C T G C C A G T G G C G A T A A G T C G T G T C T T A C C G G G T T G G A C T C A A G A C G A T A G T T A C C  

G G A T A A G G C G C A G C G G T C G G G C T G A A C G G G G G G T T C G T G C A C A C A G C C C A G C T T G G A G C G A A  

C G A C C T A C A C C G A A C T G A G A T A C C T A C A G C G T G A G C T A T G A G A A A G C G C C A C G C T T C C C G A A  

G G G A G A A A G G C G G A C A G G T A T C C G G T A A G C G G C A G G G T C G G A A C A G G A G A G C G C A C G A G G G A  

G C T T C C A G G G G G A A A C G C C T G G T A T C T T T A T A G T C C T G T C G G G T T T C G C C A C C T C T G A C T T G  

A G C G T C G A T T T T T G T G A T G C T C G T C A G G G G G G C G G A G C C T A T G G A A A A A C G C C A G C A A C G C G  

G C C T T T T T A C G G T T C C T G G C C T T T T G C T G G C C T T T T G C T C A C A T G T T C T T T C C T G C G T T A T C  
C C C T G A T T C T G T G G A T A A C C G T A T T A C C G C C A T G C A T T A G T T A T T A A T A G T A A T C A A T T A C G  

G G G T C A T T A G T T C A T A G C C C A T A T A T G G A G T T C C G C G T T A C A T A A C T T A C G G T A A A T G G C C C  

G C C T G G C T G A C C G C C C A A C G A C C C C C G C C C A T T G A C G T C A A T A A T G A C G T A T G T T C C C A T A G  

T A A C G C C A A T A G G G A C T T T C C A T T G A C G T C A A T G G G T G G A G T A T T T A C G G T A A A C T G C C C A C  

T T G G C A G T A C A T C A A G T G T A T C A T A T G C C A A G T A C G C C C C C T A T T G A C G T C A A T G A C G G T A A  

A T G G C C C G C C T G G C A T T A T G C C C A G T A C A T G A C C T T A T G G G A C T T T C C T A C T T G G C A G T A C A  

T C T A C G T A T T A G T C A T C G C T A T T A C C A T G G T G A T G C G G T T T T G G C A G T A C A T C A A T G G G C G T  

G G A T A G C G G T T T G A C T C A C G G G G A T T T C C A A G T C T C C A C C C C A T T G A C G T C A A T G G G A G T T T  

G T T T T G G C A C C A A A A T C A A C G G G A C T T T C C A A A A T G T C G T A A C A A C T C C G C C C C A T T G A C G C  

A A A T  GGGC G G T  A G G C  G T  G T  A C  G G T  G G G A G G T  C T A T  A T  A A G C  A G A G C  T G G T  T T A G T  G A A C  C G T  

C A G A T C C G

Red open reading fram e encoding mRFP
O r a n g e  c a s s e t t e  e n c o d i n g  k a n a m y c i n  r e s i s t a n c e

Green cassette containing the immediate early prom oter region of CMV

254



Appendix III

pcD N A 3.1 hygrom ycin  m ap

G A C G G A T C G G G A G A T C T C C C G A T C C C C T A T G G T G C A C T C T C A G T A C A A T C T G C T C T G A T G C C

G C A T A G T T A A G C C A G T A T C T G C T C C C T G C T T G T G T G T T G G A G G T C G C T G A G T A G T G C G C G A G

C A A A A T T T A A G C T A C A A C A A G G C A A G G C T T G A C C G A C A A T T G C A T G A A G A A T C T G C T T A G G G

T T A G G C G T T T T G C G C T G C T T C G C G A T G T A C G G G C C A G A T A T A C G C G T T G A C A T T G A T T A T T G
ACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCG
CGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGA
CGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGG
GTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTAC
GCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT
TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATG
CGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCT
CCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAAT
GTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTAT
A T A A G C A G A G C T C T C T G G C T A A C T A G A G A A C C C A C T G C T T A C T G G C T T A T C G A A A T T A A T A C
GACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGG
ATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTC
T A G A G G G C C C G T T T A A A C C C G C T G A T C A G C C T C G A C T G T G C C T T C T A G T T G C C A G C C A T C T G

T T G T T T G C C C C T C C C C C G T G C C T T C C T T G A C C C T G G A A G G T G C C A C T C C C A C T G T C C T T T C C

T A A T A A A A T G A G G A A A T T G C A T C G C A T T G T C T G A G T A G G T G T C A T T C T A T T C T G G G G G G T G G

G G T G G G G C A G G A C A G C A A G G G G G A G G A T T G G G A A G A C A A T A G C A G G C A T G C T G G G G A T G C G G

T G G G C T C T A T G G C T T C T G A G G C G G A A A G A A C C A G C T G G G G C T C T A G G G G G T A T C C C C A C G C G

C C C T G T A G C G G C G C A T T A A G C G C G G C G G G T G T G G T G G T T A C G C G C A G C G T G A C C G C T A C A C T

T G C C A G C G C C C T A G C G C C C G C T C C T T T C G C T T T C T T C C C T T C C T T T C T C G C C A C G T T C G C C G

G C T T T C C C C G T C A A G C T C T A A A T C G G G G G C T C C C T T T A G G G T T C C G A T T T A G T G C T T T A C G G

C A C C T C G A C C C C A A A A A A C T T G A T T A G G G T G A T G G T T C A C G T A G T G G G C C A T C G C C C T G A T A

G A C G G T T T T T C G C C C T T T G A C G T T G G A G T C C A C G T T C T T T A A T A G T G G A C T C T T G T T C C A A A

C T G G A A C A A C A C T C A A C C C T A T C T C G G T C T A T T C T T T T G A T T T A T A A G G G A T T T T G C C G A T T

T C G G C C T A T T G G T T A A A A A A T G A G C T G A T T T A A C A A A A A T T T A A C G C G A A T T A A T T C T G T G G

A A T G T G T G T C A G T T A G G G T G T G G A A A G T C C C C A G G C T C C C C A G C A G G C A G A A G T A T G C A A A G

C A T G C A T C T C A A T T A G T C A G C A A C C A G G T G T G G A A A G T C C C C A G G C T C C C C A G C A G G C A G A A

G T A T G C A A A G C A T G C A T C T C A A T T A G T C A G C A A C C A T A G T C C C G C C C C T A A C T C C G C C C A T C

C C G C C C C T A A C T C C G C C C A G T T C C G C C C A T T C T C C G C C C C A T G G C T G A C T A A T T T T T T T T A T

T T A T G C A G A G G C C G A G G C C G C C T C T G C C T C T G A G C T A T T C C A G A A G T A G T G A G G A G G C T T T T

T T G G A G G C C T A G G C T T T T G C A A A A A G C T C C C G G G A G C T T G T A T A T C C A T T T T C G G A T C T G A T

C A G C A C G T G A T G A A A A A G C C T G A A C T C A C C G C G A C G T C T G T C G A G A A G T T T C T G A T C G A A A A

G T T C G A C A G C G T C T C C G A C C T G A T G C .A G C T C T C G G A G G G C G A A G A A T C T C G T G C T T T C A G C T

T C G A T G T A G G A G G G C G T G G A T A T G T C C T G C G G G T A A A T A G C T G C G C C G A T G G T T T C T A C A A A

G A T C G T T A T G T T T A T C G G C A C T T T G C A T C G G C C G C G C T C C C G A T T C C G G A A G T G C T T G A C A T

T G G G G A A T T C A G C G A G A G C C T G A C C T A T T G C A T C T C C C G C C G T G C A C A G G G T G T C A C G T T G C

A A G A C C T G C C T G A A A C C G A A C T G C C C G C T G T T C T G C A G C C G G T C G C G G A G G C C A T G G A T G C G

A T C G C T G C G G C C G A T C T T A G C C A G A C G A G C G G G T T C G G C C C A T T C G G A C C G C A A G G A A T C G G

T C A A T A C A C T A C A T G G C G T G A T T T C A T A T G C G C G A T T G C T G A T C C C C A T G T G T A T C A C T G G C

A A A C T G T G A T G G A C G A C A C C G T C A G T G C G T C C G T C G C G C A G G C T C T C G A T G A G C T G A T G C T T

T G G G C C G A G G A C T G C C C C G A A G T C C G G C A C C T C G T G C A C G C G G A T T T C G G C T C C A A C A A T G T

C C T G A C G G A C A A T G G C C G C A T A A C A G C G G T C A T T G A C T G G A G C G A G G C G A T G T T C G G G G A T T

C C C A A T A C G A G G T C G C C A A C A T C T T C T T C T G G A G G C C G T G G T T G G C T T G T A T G G A G C A G C A G
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G C T C C G C A T T G G T C T T G A C C A A C T C T A T C A G A G C T T G G T T G A C G G C A A T T T C G A T G A T G C A G

C T T G G G C G C A G G G T C G A T G C G A C G C A A T C G T C C G A T C C G G A G C C G G G A C T G T C G G G C G T A C A

C A A A T C G C C C G C A G A A G C G C G G C C G T C T G G A C C G A T G G C T G T G T A G A A G T A C T C G C C G A T A G

T G G A A A C C G A C G C C C C A G C A C T C G T C C G A G G G C A A A G G A A T A G C A C G T G C T A C G A G A T T T C G

A T T C C A C C G C C G C C T T C T A T G A A A G G T T G G G C T T C G G A A T C G T T T T C C G G G A C G C C G G C T G G

A T G A T C C T C C A G C G C G G G G A T C T C A T G C T G G A G T T C T T C G C C C A C C C C A A C T T G T T T A T T G C

A G C T T A T A A T G G T T A C A A A T A A A G C A A T A G C A T C A C A A A T T T C A C A A A T A A A G C A T T T T T T T

C A C T G C A T T C T A G T T G T G G T T T G T C C A A A C T C A T C A A T G T A T C T T A T C A T G T C T G T A T A C C G

T C G A C C T C T A G C T A G A G C T T G G C G T A A T C A T G G T C A T A G C T G T T T C C T G T G T G A A A T T G T T A

T C C G C T C A C A A T T C C A C A C A A C A T A C G A G C C G G A A G C A T A A A G T G T A A A G C C T G G G G T G C C T

A A T G A G T G A G C T A A C T C A C A T T A A T T G C G T T G C G C T C A C T G C C C G C T T T C C A G T C G G G A A A C

C T G T C G T G C C A G C T G C A T T A A T G A A T C G G C C A A C G C G C G G G G A G A G G C G G T T T G C G T A T T G G

G C G C T C T T C C G C T T C C T C G C T C A C T G A C T C G C T G C G C T C G G T C G T T C G G C T G C G G C G A G C G G

T A T C A G C T C A C T C A A A G G C G G T A A T A C G G T T A T C C A C A G A A T C A G G G G A T A A C G C A G G A A A G

A A C A T G T G A G C A A A A G G C C A G C A A A A G G C C A G G A A C C G T A A A A A G G C C G C G T T G C T G G C G T T

T T T C C A T A G G C T C C G C C C C C C T G A C G A G C A T C A C A A A A A T C G A C G C T C A A G T C A G A G G T G G C

G A A A C C C G A C A G G A C T A T A A A G A T A C C A G G C G T T T C C C C C T G G A A G C T C C C T C G T G C G C T C T

C C T G T T C C G A C C C T G C C G C T T A C C G G A T A C C T G T C C G C C T T T C T C C C T T C G G G A A G C G T G G C

G C T T T C T C A T A G C T C A C G C T G T A G G T A T C T C A G T T C G G T G T A G G T C G T T C G C T C C A A G C T G G

G C T G T G T G C A C G A A C C C C C C G T T C A G C C C G A C C G C T G C G C C T T A T C C G G T A A C T A T C G T C T T

G A G T C C A A C C C G G T A A G A C A C G A C T T A T C G C C A C T G G C A G C A G C C A C T G G T A A C A G G A T T A G

C A G A G C G A G G T A T G T A G G C G G T G C T A C A G A G T T C T T G A A G T G G T G G C C T A A C T A C G G C T A C A

C T A G A A G A A C A G T A T T T G G T A T C T G C G C T C T G C T G A A G C C A G T T A C C T T C G G A A A A A G A G T T

G G T A G C T C T T G A T C C G G C A A A C A A A C C A C C G C T G G T A G C G G T T T T T T T G T T T G C A A G C A G C A

G A T T A C G C G C A G A A A A A A A G G A T C T C A A G A A G A T C C T T T G A T C T T T T C T A C G G G G T C T G A C G

C T C A G T G G A A C G A A A A C T C A C G T T A A G G G A T T T T G G T C A T G A G A T T A T C A A A A A G G A T C T T C

A C C T A G A T C C T T T T A A A T T A A A A A T G A A G T T T T A A A T C A A T C T A A A G T A T A T A T G A G T A A A C
TTG G TCTG ACAG TTACCAATG CTTAATCAG TG AG G CACCTATCTCAG CG ATCTG TCTATTTC
GTTCATCCATAGTTGCCTGACTCCCCGTCGTG TAGATAACTACGATACGGGAGGGCTTACCA
TCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGC
AATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCA
TCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGC
AACG TTG TTG CCATTG CTACAG G CATCG TG G TG TCACG CTCG TCG TTTG G TATG G CTTCATT
CAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGG
TTAG CTCCTTCG G TCCTCCG ATCG TTG TCAG AAG TAAG TTG G CCG CAG TG TTATCACTCATG
GTTATG G CAG CACTG CATAATTCTCTTACTG TCATG CCATCCG TAAG ATG CTTTTCTG TG AC
TGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG TATGCGGCGACCGAGTTGCTCTTGCC
CGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGA
AAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTA
ACCCACTCGTG CACCCAACTG ATCTTCAG CATCTTTTACTTTCACCAG CG TTTCTG G G TG AG
C A A A A A C A G G A A G G C A A A A T G C C G C A A A A A A G G G A A T A A G G G C G A C A C G G A A A T G T T G A A T A

C T C A T A C T C T T C C T T T T T C A A T A T T A T T G A A G C A T T T A T C A G G G T T A T T G T C T C A T G A G C G G

A T A C A T A T T T G A A T G T A T T T A G A A A A A T A A A C A A A T A G G G G T T C C G C G C A C A T T T C C C C G A A

A A G T G C C A C C T G A C G T C

Green cassette containing the immediate early prom oter region of C M V
Purple multiple cloning site
Cyan cassette  en c o d in g  the resistance gene to am picill in

256



Bibliography



Bibliography

Adkins, C.E., Morris, S.A., De Smedt, H., Sienaert, I., Torok, K., and Taylor, C.W. 2000. 
Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol 
trisphosphate receptors. Biochem J. 345 Pt 2:357-363.

Adler, V., Yin, Z., Tew, K.D., and Ronai, Z. 1999. Role of redox potential and reactive 
oxygen species in stress signaling. Oncogene. 18:6104-6111.

Ahmad, S., Ahmad, A., Ghosh, M., Leslie, C.C., and White, C.W. 2004. Extracellular ATP- 
mediated signaling for survival in hyperoxia-induced oxidative stress. J  Biol Chem. 
279:16317-16325.

Ai, X., Curran, J.W., Shannon, T.R., Bers, D.M., and Pogwizd, S.M. 2005. Ca2+/calmodulin- 
dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and 
sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 97:1314-1322.

Anderson, A.A., Brown, R.L., Polster, B., Pollock, N., and Stowell, K.M. 2008. Identification 
and biochemical characterization of a novel ryanodine receptor gene mutation 
associated with malignant hyperthermia. Anesthesiology. 108:208-215.

Ando, H., Mizutani, A., Kiefer, H., Tsuzurugi, D., Michikawa, T., and Mikoshiba, K. 2006. 
IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding 
site on the IP3 receptor. Mol Cell. 22:795-806.

Ando, H., Mizutani, A., Matsu-ura, T., and Mikoshiba, K. 2003. IRBIT, a novel inositol 
1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor 
upon IP3 binding to the receptor. JBiol Chem. 278:10602-10612.

Anzai, K., Ogawa, K., Ozawa, T., and Yamamoto, H. 2000. Oxidative modification of ion 
channel activity of ryanodine receptor. Antioxid Redox Signal. 2:35-40.

Aracena-Parks, P., Goonasekera, S.A., Gilman, C.P., Dirksen, R.T., Hidalgo, C., and 
Hamilton, S.L. 2006. Identification of cysteines involved in S-nitrosylation, S- 
glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J  Biol 
Chem. 281:40354-40368.

Arai, T., Nonogawa, M., Makino, K., Endo, N., Mori, H., Miyoshi, T., Yamashita, K., Sasada, 
M., Kakuyama, M., and Fukuda, K. 2008. The radical scavenger edaravone (3-methyl- 
l-phenyl-2-pyrazolin-5-one) reacts with a pterin derivative and produces a cytotoxic 
substance that induces intracellular reactive oxygen species generation and cell death. 
J  Pharmacol Exp Ther. 324:529-538.

Arguin, G., Regimbald-Dumas, Y., Fregeau, M.O., Caron, A.Z., and Guillemette, G. 2007. 
Protein kinase C phosphorylates the inositol 1,4,5-trisphosphate receptor type 2 and 
decreases the mobilization of Ca2+ in pancreatoma AR4-2J cells. J  Endocrinol. 
192:659-668.

Amaudeau, S., Kelley, W.L., Walsh, J.V., Jr., and Demaurex, N. 2001. Mitochondria recycle 
Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring 
endoplasmic reticulum regions. J  Biol Chem. 276:29430-29439.

Asai, T., Ohno, Y., Minatoguchi, S., Funaguchi, N., Yuhgetsu, H., Sawada, M., Takemura,
G., Komada, A., Fujiwara, T., and Fujiwara, H. 2007. The specific free radical 
scavenger edaravone suppresses bleomycin-induced acute pulmonary injury in rabbits. 
Clin Exp Pharmacol Physiol. 34:22-26.

Assefa, Z., Bultynck, G., Szlufcik, K., Nadif Kasri, N., Vermassen, E., Goris, J., Missiaen, L., 
Callewaert, G., Parys, J.B., and De Smedt, H. 2004. Caspase-3-induced truncation of 
type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces 
inositol trisphosphate-independent calcium release during apoptosis. J  Biol Chem. 
279:43227-43236.

259



Ayettey, A.S., and Navaratnam, V. 1978. The T-tubule system in the specialized and general 
myocardium of the rat. JAnat. 127:125-140.

Baird, G.S., Zacharias, D.A., and Tsien, R.Y. 2000. Biochemistry, mutagenesis, and 
oligomerization o f DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U 
SA. 97:11984-11989.

Balshaw, D., Gao, L., and Meissner, G. 1999. Luminal loop o f the ryanodine receptor: a pore- 
forming segment? Proc Natl Acad Sci USA.  96:3345-3347.

Balshaw, D.M., Xu, L., Yamaguchi, N., Pasek, D.A., and Meissner, G. 2001. Calmodulin 
binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). 
J  Biol Chem. 276:20144-20153.

Bannister, M.L., Hamada, T., Murayama, T., Harvey, P.J., Casarotto, M.G., Dulhunty, A.F., 
and Ikemoto, N. 2007. Malignant hyperthermia mutation sites in the Leu2442- 
Pro2477 (DP4) region o f RyRl (ryanodine receptor 1) are clustered in a structurally 
and functionally definable area. Biochem J. 401:333-339.

Bano, D., Munarriz, E., Chen, H.L., Ziviani, E., Lippi, G., Young, K.W., and Nicotera, P. 
2007. The plasma membrane Na+/Ca2+ exchanger is cleaved by distinct protease 
families in neuronal cell death. Ann N  YAcad Sci. 1099:451-455.

Bare, D.J., Kettlun, C.S., Liang, M., Bers, D.M., and Mignery, G.A. 2005. Cardiac type 2 
inositol 1,4,5-trisphosphate receptor: interaction and modulation by
calcium/calmodulin-dependent protein kinase II. J  Biol Chem. 280:15912-15920.

Basu, A., and Miura, A. 2002. Differential regulation of extrinsic and intrinsic cell death 
pathways by protein kinase C. In tJM ol Med. 10:541-545.

Beard, N.A., Casarotto, M.G., Wei, L., Varsanyi, M., Laver, D.R., and Dulhunty, A.F. 2005. 
Regulation o f ryanodine receptors by calsequestrin: effect o f high luminal Ca2+ and 
phosphorylation. Biophys J. 88:3444-3454.

Beard, N.A., Laver, D.R., and Dulhunty, A.F. 2004. Calsequestrin and the calcium release 
channel of skeletal and cardiac muscle. Prog Biophys Mol Biol. 85:33-69.

Benkusky, N.A., Weber, C.S., Scherman, J.A., Farrell, E.F., Hacker, T.A., John, M.C., 
Powers, P.A., and Valdivia, H.H. 2007. Intact beta-adrenergic response and 
unmodified progression toward heart failure in mice with genetic ablation of a major 
protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res. 
101:819-829.

Berrebi-Bertrand, I., Souchet, M., Camelin, J.C., Laville, M.P., Calmels, T., and Bril, A. 
1998. Biophysical interaction between phospholamban and protein phosphatase 1 
regulatory subunit GM. FEBS Lett. 439:224-230.

Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature. 361:315-325.
Berridge, M.J., Bootman, M.D., and Lipp, P. 1998. Calcium—a life and death signal. Nature. 

395:645-648.
Berridge, M.J., Bootman, M.D., and Roderick, H.L. 2003. Calcium signalling: dynamics, 

homeostasis and remodelling. Nat. Rev. Mol Cell Biol. 4:517-529.
Bers, D.M. 2002. Cardiac excitation-contraction coupling. Nature. 415:198 - 205.
Bers, D.M. 2004. Macromolecular complexes regulating cardiac ryanodine receptor function. 

J  Mol Cell Cardiol. 37:417-429.
Bers, D.M. 2008. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 

70:23-49. .
Bers, D.M., and Despa, S. 2006. Cardiac myocytes Ca2+ and Na+ regulation in normal and 

failing hearts. J  Pharmacol Sci. 100:315-322.
Bers, D.M., and Perez-Reyes, E. 1999. Ca2+ channels in cardiac myocytes: structure and 

function in Ca2+ influx and intracellular Ca2+ release. Cardiovasc Res. 42:339-360.
Bers, D.M., and Weber, C.R. 2002. Na+/Ca2+ exchange function in intact ventricular 

myocytes. Ann N  Y Acad Sci. 976:500-512.

260



Bhat, M.B., Hayek, S.M., Zhao, J., Zang, W., Takeshima, H., Wier, W.G., and Ma, J. 1999. 
Expression and functional characterization of the cardiac muscle ryanodine receptor 
Ca + release channel in Chinese hamster ovary cells. Biophys J. 77:808-816.

Bhat, M.B., and Ma, J. 2002a. The transmembrane segment o f ryanodine receptor contains an 
intracellular membrane retention signal for Ca2+ release channel. J. Biol. Chem. 
277:8597-8601.

Bhat, M.B., and Ma, J. 2002b. The transmembrane segment o f ryanodine receptor contains an 
intracellular membrane retention signal for Ca2+ release channel. J  Biol Chem. 
277:8597-8601.

Bhat, M.B., Zhao, J., Takeshima, H., and Ma, J. 1997. Functional calcium release channel 
formed by the carboxyl-terminal portion of ryanodine receptor. Biophys J. 73:1329- 
1336.

Bhuiyan, Z.A., Hamdan, M.A., Shamsi, E.T., Postma, A.V., Mannens, M.M., Wilde, A.A., 
and Al-Gazali, L. 2007a. A novel early onset lethal form o f catecholaminergic 
polymorphic ventricular tachycardia maps to chromosome 7pl4-p22. J  Cardiovasc 
Electrophysiol. 18:1060-1066.

Bhuiyan, Z.A., van den Berg, M.P., van Tintelen, J.P., Bink-Boelkens, M.T., Wiesfeld, A.C., 
Alders, M., Postma, A.V., van Langen, I., Mannens, M.M., and Wilde, A.A. 2007b. 
Expanding spectrum o f human RYR2-related disease: new electrocardiographic, 
structural, and genetic features. Circulation. 116:1569-1576.

Block, B.A., Imagawa, T., Campbell, K.P., and Franzini-Armstrong, C. 1988. Structural 
evidence for direct interaction between the molecular components of the transverse 
tubule/sarcoplasmic reticulum junction in skeletal muscle. J  Cell Biol. 107:2587-2600.

Bobe, R., Bredoux, R., Corvazier, E., Andersen, J.P., Clausen, J.D., Dode, L., Kovacs, T., and 
Enouf, J. 2004. Identification, expression, function, and localization of a novel (sixth) 
isoform o f the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene. J  Biol Chem. 
279:24297-24306.

Bodalina, U.M., Hammond, K.D., and Gilbert, D.A. 2005. Temporal changes in the 
expression o f protein phosphatase 1 and protein phosphatase 2A in proliferating and 
differentiating murine erythroleukaemia cells. Cell Biol Int. 29:287-299.

Boehning, D., and Joseph, S.K. 2000. Direct association of ligand-binding and pore domains 
in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. Embo J. 
19:5450-5459.

Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O., Kurosaki, T., and Snyder, S.H.
2003. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying 
calcium-dependent apoptosis. Nat Cell Biol. 5:1051-1061.

Boehning, D., van Rossum, D.B., Patterson, R.L., and Snyder, S.H. 2005. A peptide inhibitor 
of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and 
extrinsic cell death pathways. Proc Natl Acad Sci USA.  102:1466-1471.

Bosanac, I., Alattia, J.R., Mai, T.K., Chan, J., Talarico, S., Tong, F.K., Tong, K.I., 
Yoshikawa, F., Furuichi, T., Iwai, M., Michikawa, T., Mikoshiba, K., and Ikura, M. 
2002. Structure o f the inositol 1,4,5-trisphosphate receptor binding core in complex 
with its ligand. Nature. 420:696-700.

Bosanac, I., Yamazaki, H., Matsu-Ura, T., Michikawa, T., Mikoshiba, K., and Ikura, M. 2005. 
Crystal structure o f the ligand binding suppressor domain o f type 1 inositol 1,4,5- 
trisphosphate receptor. Mol Cell. 17:193-203.

Braet, K., Mabilde, C., Cabooter, L., Rapp, G., and Leybaert, L. 2004. Electroporation 
loading and photoactivation of caged IP3 : tools to investigate the relation between 
cellular ATP release in response to intracellular IP3 elevation. J  Neurosci Methods. 
132:81-89.

Bray, M.A., Geisse, N.A., and Parker, K.K. 2007. Multidimensional detection and analysis of 
Ca2+ sparks in cardiac myocytes. Biophys J. 92:4433-4443.

261



Brillantes, A.M., Allen, P., Takahashi, T., Izumo, S., and Marks, A.R. 1992. Differences in 
cardiac calcium release channel (ryanodine receptor) expression in myocardium from 
patients with end-stage heart failure caused by ischemic versus dilated 
cardiomyopathy. CircRes. 71:18-26.

Brini, M. 2004. Ryanodine receptor defects in muscle genetic diseases. Biochem. Biophys. 
Res. Commun. 322:1245-1255.

Brouckaert, G., Kalai, M., Krysko, D.V., Saelens, X., Vercammen, D., Ndlovu, M., 
Haegeman, G., D'Herde, K., and Vandenabeele, P. 2004. Phagocytosis of necrotic 
cells by macrophages is phosphatidylserine dependent and does not induce 
inflammatory cytokine production. Mol Biol Cell. 15:1089-1100.

Bulanova, E., Budagian, V., Orinska, Z., Hein, M., Petersen, F., Thon, L., Adam, D., and 
Bulfone-Paus, S. 2005. Extracellular ATP induces cytokine expression and apoptosis 
through P2X7 receptor in murine mast cells. J  Immunol. 174:3880-3890.

Bull, R., Finkelstein, J.P., Humeres, A., Behrens, M.I., and Hidalgo, C. 2007. Effects of ATP, 
Mg2+, and redox agents on the Ca2+ dependence o f RyR channels from rat brain 
cortex. Am J  Physiol Cell Physiol. 293 :C162-171.

Bultynck, G., De Smet, P., Rossi, D., Callewaert, G., Missiaen, L., Sorrentino, V., De Smedt,
H., and Parys, J.B. 2001. Characterization and mapping of the 12 kDa FK506-binding 
protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of 
the inositol 1,4,5-trisphosphate receptor. Biochem J. 354:413-422.

Burnette, W.N. 1981. "Western blotting": electrophoretic transfer of proteins from sodium 
dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic 
detection with antibody and radioiodinated protein A. Anal Biochem. 112:195-203.

Butanda-Ochoa, A., Hojer, G., Morales-Tlalpan, V., and Diaz-Munoz, M. 2006. Recognition 
and activation o f ryanodine receptors by purines. Curr Med Chem. 13:647-657.

Butcher, R.W., and Sutherland, E.W. 1962. Adenosine 3',5'-phosphate in biological materials.
I. Purification and properties of cyclic 3',5-nucleotide phosphodiesterase and use of 
this enzyme to characterize adenosine 3',5'-phosphate in human urine. J  Biol Chem. 
237:1244-1250.

Cakir, Y., and Ballinger, S.W. 2005. Reactive species-mediated regulation of cell signaling 
and the cell cycle: the role o f MAPK. Antioxid Redox Signal. 7:726-740.

Cameron, A.M., Nucifora, F.C., Jr., Fung, E.T., Livingston, D.J., Aldape, R.A., Ross, C.A., 
and Snyder, S.H. 1997. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at 
leucine-proline (1400-1401) and anchors calcineurin to this FK506-like domain. J  Biol 
Chem. 272:27582-27588.

Campbell, K.P., Franzini-Armstrong, C., and Shamoo, A.E. 1980. Further characterization of 
light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic 
reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim 
Biophys Acta. 602:97-116.

Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and 
Tsien, R.Y. 2002. A monomeric red fluorescent protein. PNAS. 99:7877-7882.

Carafoli, E. 2002. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A .  
99:1115-1122.

Cardenas, C., Liberona, J.L., Molgo, J., Colasante, C., Mignery, G.A., and Jaimovich, E. 
2005. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and 
modulate cAMP response element binding protein phosphorylation. J  Cell Sci. 
118:3131-3140.

Cardozo, A.K., Ortis, F., Storling, J., Feng, Y.M., Rasschaert, J., Tonnesen, M., Van Eylen,
F., Mandrup-Poulsen, T., Herchuelz, A., and Eizirik, D.L. 2005. Cytokines 
downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete 
endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in 
pancreatic beta-cells. Diabetes. 54:452-461.

262

1



Caron, A.Z., Chaloux, B., Arguin, G., and Guillemette, G. 2007. Protein kinase C decreases 
the apparent affinity o f the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F 
cells. Cell Calcium. 42:323-331.

Carr, A.N., Schmidt, A.G., Suzuki, Y., del Monte, F., Sato, Y., Lanner, C., Breeden, K., Jing, 
S.L., Allen, P.B., Greengard, P., Yatani, A., Hoit, B.D., Grupp, I.L., Hajjar, R.J., 
DePaoli-Roach, A.A., and Kranias, E.G. 2002. Type 1 phosphatase, a negative 
regulator of cardiac function. Mol Cell Biol. 22:4124-4135.

Carter, S., Colyer, J., and Sitsapesan, R. 2006. Maximum phosphorylation of the cardiac 
ryanodine receptor at serine-2809 by protein kinase a produces unique modifications 
to channel gating and conductance not observed at lower levels of phosphorylation. 
CircRes. 98:1506-1513.

Cerrone, M., Colombi, B., Santoro, M., di Barletta, M.R., Scelsi, M., Villani, L., Napolitano, 
C., and Priori, S.G. 2005. Bidirectional ventricular tachycardia and fibrillation elicited 
in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. 
Circ Res. 96:e77-82.

Chaabane, C., Corvazier, E., Bredoux, R., Dally, S., Raies, A., Villemain, A., Dupuy, E., 
Enouf, J., and Bobe, R. 2006. Sarco/endoplasmic reticulum Ca2+ATPase type 3 
isoforms (SERCA3b and SERCA3f): distinct roles in cell adhesion and ER stress. 
Biochem Biophys Res Commun. 345:1377-1385.

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. 1994. Green fluorescent 
protein as a marker for gene expression. Science. 263:802-805.

Chalmers, M., Schell, M.J., and Thom, P. 2006. Agonist-evoked inositol trisphosphate 
receptor (IP3R) clustering is not dependent on changes in the structure of the 
endoplasmic reticulum. Biochem J. 394:57-66.

Chaloux, B., Caron, A.Z., and Guillemette, G. 2007. Protein kinase A increases the binding 
affinity and the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor type 3 
in RINm5F cells. Biol Cell. 99:379-388.

Chan, W.M., Welch, W., and Sitsapesan, R. 2003. Structural characteristics that govern 
binding to, and modulation through, the cardiac ryanodine receptor nucleotide binding 
site. Mol Pharmacol. 63:174-182.

Chapman, H., Ramstrom, C., Korhonen, L., Laine, M., Wann, K.T., Lindholm, D., 
Pasternack, M., and Tomquist, K. 2005. Downregulation o f the HERG (KCNH2) K+ 
channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation. J  Cell 
Sci. 118:5325-5334.

Charles, A.C., Naus, C.C., Zhu, D., Kidder, G.M., Dirksen, E.R., and Sanderson, M.J. 1992. 
Intercellular calcium signaling via gap junctions in glioma cells. J  Cell Biol. 118:195- 
201.

Chautan, M., Chazal, G., Cecconi, F., Gruss, P., and Golstein, P. 1999. Interdigital cell death 
can occur through a necrotic and caspase-independent pathway. Curr Biol. 9:967-970.

Chelu, M.G., Goonasekera, S.A., Durham, W.J., Tang, W., Lueck, J.D., Riehl, J., Pessah,
I.N., Zhang, P., Bhattacharjee, M.B., Dirksen, R.T., and Hamilton, S.L. 2006. Heat- 
and anesthesia-induced malignant hyperthermia in an RyRl knock-in mouse. Faseb J. 
20:329-330.

Chen, C., and Okayama, H. 1987. High-efficiency transformation of mammalian cells by 
plasmid DNA. Mol. Biol Cell. 7:2745-2752.

Chen, C.C., Chang, J., and Lin, W.W. 1995a. Differential expression of protein kinase C 
isoforms in glial and neuronal cells. Translocation and down-regulation of PKC 
isoforms in C6  glioma and NG 108-15 hybrid cells: effects of extracellular Ca2+- 
depletion. Neurochem Int. 26:455-464.

Chen, S.R., Airey, J.A., and MacLennan, D.H. 1993. Positioning of major tryptic fragments in 
the Ca2+ release channel (ryanodine receptor) resulting from partial digestion of rabbit 
skeletal muscle sarcoplasmic reticulum. J  Biol Chem. 268:22642-22649.

263



Chen, S.R., Leong, P., Imredy, J.P., Bartlett, C., Zhang, L., and MacLennan, D.H. 1997. 
Single-channel properties of the recombinant skeletal muscle Ca2+ release channel 
(ryanodine receptor). Biophys J. 73:1904-1912.

Chen, Z.P., Levy, A., and Lightman, S.L. 1995b. Nucleotides as extracellular signalling 
molecules. JNeuroendocrinol. 7:83-96.

Cheng, W., Altafaj, X., Ronjat, M., and Coronado, R. 2005. Interaction between the 
dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 
strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A . 102:19225- 
19230.

Chiarugi, P., and Cirri, P. 2003. Redox regulation of protein tyrosine phosphatases during 
receptor tyrosine kinase signal transduction. Trends Biochem Sci. 28:509-514.

Ching, L.L., Williams, A.J., and Sitsapesan, R. 2000. Evidence for Ca2+ activation and 
inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ 
Res. 87:201-206.

Choe, C.U., and Ehrlich, B.E. 2006. The inositol 1,4,5-trisphosphate receptor (IP3R) and its 
regulators: sometimes good and sometimes bad teamwork. Sci STKE. 2006:rel5.

Chu, G., Ferguson, D.G., Edes, I., Kiss, E., Sato, Y., and Kranias, E.G. 1998. Phospholamban 
ablation and compensatory responses in the mammalian heart. Ann N  Y Acad Sci. 
853:49-62.

Claycomb, W.C., Lanson, N.A., Jr., Stallworth, B.S., Egeland, D.B., Delcarpio, J.B., 
Bahinski, A., and Izzo, N.J., Jr. 1998. HL-1 cells: a cardiac muscle cell line that 
contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl 
Acad Sci USA.  95:2979-2984.

Cohen, J.J., Duke, R.C., Fadok, V.A., and Sellins, K.S. 1992. Apoptosis and programmed cell 
death in immunity. Annu Rev Immunol. 10:267-293.

Colbran, R.J., Schworer, C.M., Hashimoto, Y., Fong, Y.L., Rich, D.P., Smith, M.K., and 
Soderling, T.R. 1989. Calcium/calmodulin-dependent protein kinase II. Biochem J. 
258:313-325.

Colella, M., Grisan, F., Robert, V., Turner, J.D., Thomas, A.P., and Pozzan, T. 2008. Ca2+ 
oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT 
as Ca2+ signal integrators. Proc Natl Acad Sci USA.  105:2859-2864.

Collier, M.L., Ji, G., Wang, Y., and Kotlikoff, M.I. 2000. Calcium-induced calcium release in 
smooth muscle: loose coupling between the action potential and calcium release. J  
Gen Physiol. 115:653-662.

Colyer, J. 1998. Phosphorylation states o f phospholamban. Ann N Y  Acad Sci. 853:79-91.
Conklin, B.R., Chabre, O., Wong, Y.H., Federman, A.D., and Bourne, H.R. 1992. 

Recombinant Gq alpha. Mutational activation and coupling to receptors and 
phospholipase C. J  Biol Chem. 267:31-34.

Contreras, J.E., Sanchez, H.A., Eugenin, E.A., Speidel, D., Theis, M., Willecke, K., 
Bukauskas, F.F., Bennett, M.V., and Saez, J.C. 2002. Metabolic inhibition induces 
opening of unapposed connexin 43 gap junction hemichannels and reduces gap 
junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA.  
99:495-500.

Contreras, J.E., Sanchez, H.A., Veliz, L.P., Bukauskas, F.F., Bennett, M.V., and Saez, J.C. 
2004. Role o f connexin-based gap junction channels and hemichannels in ischemia- 
induced cell death in nervous tissue. Brain Res Brain Res Rev. 47:290-303.

Copello, J.A., Barg, S., Sonnleitner, A., Porta, M., Diaz-Sylvester, P., Fill, M., Schindler, H., 
and Fleischer, S. 2002. Differential activation by Ca2+, ATP and caffeine of cardiac

74-
and skeletal muscle ryanodine receptors after block by Mg . J  Membr Biol. 187:51- 
64.

264



Copello, J.A., Qi, Y., Jeyakumar, L.H., Ogunbunmi, E., and Fleischer, S. 2001. Lack of effect 
of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine 
receptors. Cell Calcium. 30:269-284.

Coronado, R., Morrissette, J., Sukhareva, M., and Vaughan, D.M. 1994. Structure and 
function of ryanodine receptors. Am J  Physiol. 266:C1485-1504.

Cotrina, M.L., Lin, J.H., and Nedergaard, M. 1998. Cytoskeletal assembly and ATP release 
regulate astrocytic calcium signaling. JNeurosci. 18:8794-8804.

Cronier, L., Herve, J.C., Deleze, J., and Malassine, A. 1997. Regulation of gap junctional 
communication during human trophoblast differentiation. Microsc Res Tech. 38:21- 
28.

Csordas, G., Renken, C., Vamai, P., Walter, L., Weaver, D., Buttle, K.F., Balia, T., Mannella, 
C.A., and Hajnoczky, G. 2006. Structural and functional features and significance of 
the physical linkage between ER and mitochondria. J  Cell Biol. 174:915-921.

Curran, J., Hinton, M.J., Rios, E., Bers, D.M., and Shannon, T.R. 2007. Beta-adrenergic 
enhancement o f sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated 
by calcium/calmodulin-dependent protein kinase. Circ Res. 100:391-398.

Currie, S., Loughrey, C.M., Craig, M.A., and Smith, G.L. 2004. Calcium/calmodulin- 
dependent protein kinase Ildelta associates with the ryanodine receptor complex and 
regulates channel function in rabbit heart. Biochem J. 377:357-366.

Cusato, K., Ripps, H., Zakevicius, J., and Spray, D.C. 2006. Gap junctions remain open 
during cytochrome c-induced cell death: relationship of conductance to 'bystander* cell 
killing. Cell Death Differ. 13:1707-1714.

Cusato, K., Zakevicius, J., and Ripps, H. 2003. An experimental approach to the study of gap- 
junction-mediated cell death. Biol Bull. 205:197-199.

Dai, D.-z., and Yu, F. 2005. Ion channelopathy and hyperphosphorylation contributing to 
cardiac arrhythmias. Acta Pharmacologica Sinica. 26:918-925.

Das, S., Nwachukwu, J.C., Li, D., Vulin, A.I., Martinez-Caballero, S., Kinnally, K.W., and 
Samuels, H.H. 2007. The nuclear receptor interacting factor-3 transcriptional 
coregulator mediates rapid apoptosis in breast cancer cells through direct and 
bystander-mediated events. Cancer Res. 67:1775-1782.

Dassanayake, R.P., Maheswaran, S.K., and Srikumaran, S. 2007. Monomeric expression of 
bovine beta2-integrin subunits reveals their role in Mannheimia haemolytica 
leukotoxin-induced biological effects. Infect Immun. 75:5004-5010.

Davia, K., Bemobich, E., Ranu, H.K., del Monte, F., Terracciano, C.M., MacLeod, K.T., 
Adamson, D.L., Chaudhri, B., Hajjar, R.J., and Harding, S.E. 2001. SERCA2A 
overexpression decreases the incidence of aftercontractions in adult rabbit ventricular 
myocytes. J  Mol Cell Cardiol. 33:1005-1015.

Davia, K., Hajjar, R.J., Terracciano, C.M., Kent, N.S., Ranu, H.K., O'Gara, P., Rosenzweig, 
A., and Harding, S.E. 1999. Functional alterations in adult rat myocytes after 
overexpression o f phospholamban with use of adenovirus. Physiol Genomics. 1:41-50.

Davidson, S.M., and Duchen, M.R. 2006. Effects of NO on mitochondrial function in 
cardiomyocytes: Pathophysiological relevance. Cardiovasc Res. 71:10-21.

Davis, J.P., Norman, C., Kobayashi, T., Solaro, R.J., Swartz, D.R., and Tikunova, S.B. 2007. 
Effects o f thin and thick filament proteins on calcium binding and exchange with 
cardiac troponin C. Biophys J. 92:3195-3206.

De Vuyst, E., Decrock, E., Cabooter, L., Dubyak, G.R., Naus, C.C., Evans, W.H., and 
Leybaert, L. 2006. Intracellular calcium changes trigger connexin 32 hemichannel 
opening. Embo J. 25:34-44.

Deitmer, J.W., Brockhaus, J., and Casel, D. 2006. Modulation of synaptic activity in Purkinje 
neurons by ATP. Cerebellum. 5:49-54.

del Monte, F., Harding, S.E., Schmidt, U., Matsui, T., Kang, Z.B., Dec, G.W., Gwathmey, 
J.K., Rosenzweig, A., and Hajjar, R.J. 1999. Restoration o f contractile function in

265



isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. 
Circulation. 100:2308-2311.

Demaurex, N., and Distelhorst, C. 2003. Cell biology. Apoptosis--the calcium connection. 
Science. 300:65-67.

Dettling, M., Sander, T., Weber, M., and Steinlein, O.K. 2004. Mutation analysis of the 
ryanodine receptor gene isoform 3 (RYR3) in recurrent neuroleptic malignant 
syndrome. J  Clin Psychopharmacol. 24:471-473.

Devogelaere, B., Beullens, M., Sammels, E., Derua, R., Waelkens, E., van Lint, J., Parys, 
J.B., Missiaen, L., Bollen, M., and De Smedt, H. 2007. Protein phosphatase-1 is a 
novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate 
receptor. Biochem J. 407:303-311.

Didenko, V.V., Ngo, H., Minchew, C.L., Boudreaux, D.J., Widmayer, M.A., and Baskin, D.S. 
2002. Caspase-3-dependent and -independent apoptosis in focal brain ischemia. Mol 
Med. 8:347-352.

Dillmann, W.H. 1998. Influences of increased expression of the Ca2+ ATPase of the 
sarcoplasmic reticulum by a transgenic approach on cardiac contractility. Ann N  Y 
AcadSci. 853:43-48.

Ding, W.X., Ni, H.M., DiFrancesca, D., Stolz, D.B., and Yin, X.M. 2004. Bid-dependent 
generation of oxygen radicals promotes death receptor activation-induced apoptosis in 
murine hepatocytes. Hepatology. 40:403-413.

Dirksen, W.P., Lacombe, V.A., Chi, M., Kalyanasundaram, A., Viatchenko-Karpinski, S., 
Terentyev, D., Zhou, Z., Vedamoorthyrao, S., Li, N., Chiamvimonvat, N., Carnes,
C.A., Franzini-Armstrong, C., Gyorke, S., and Periasamy, M. 2007. A mutation in 
calsequestrin, CASQ2 D307H, impairs Sarcoplasmic Reticulum Ca2+ handling and 
causes complex ventricular arrhythmias in mice. Cardiovasc Res. 75:69-78.

Doi, M., Yano, M., Kobayashi, S., Kohno, M., Tokuhisa, T., Okuda, S., Suetsugu, M., 
Hisamatsu, Y., Ohkusa, T., Kohno, M., and Matsuzaki, M. 2002. Propranolol prevents 
the development o f heart failure by restoring FKBP12.6-mediated stabilization of 
ryanodine receptor. Circulation. 105:1374-1379.

Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., and Healy, J.I. 1997. Differential activation of 
transcription factors induced by Ca2+ response amplitude and duration. Nature. 
386:855-858.

Dolmetsch, R.E., Xu, K., and Lewis, R.S. 1998. Calcium oscillations increase the efficiency 
and specificity of gene expression. Nature. 392:933-936.

Domeier, T.L., Zima, A.V., Maxwell, J.T., Huke, S., Mignery, G.A., and Blatter, L.A. 2008. 
IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in 
rabbit ventricular myocytes. Am J  Physiol Heart Circ Physiol. 294:H596-604.

Droge, W. 2002. Free radicals in the physiological control of cell function. Physiol Rev. 
82:47-95.

Du, G.G., Avila, G., Sharma, P., Khanna, V.K., Dirksen, R.T., and MacLennan, D.H. 2004. 
Role of the sequence surrounding predicted transmembrane helix M4 in membrane 
association and function of the Ca2+ release channel of skeletal muscle sarcoplasmic 
reticulum (ryanodine receptor isoform 1). J  Biol Chem. 279:37566-37574.

Du, G.G., Guo, X., Khanna, V.K., and MacLennan, D.H. 2001. Ryanodine sensitizes the 
cardiac Ca2+ release channel (ryanodine receptor isoform 2) to Ca2+ activation and 
dissociates as the channel is closed by Ca2+ depletion. Proc Natl Acad Sci U S A .  
98:13625-13630.

Du, G.G., and MacLennan, D.H. 1998. Functional consequences o f mutations of conserved, 
polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine 
receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J  Biol Chem. 273:31867- 
31872.

266



Du, G.G., Sandhu, B., Khanna, V.K., Guo, X.H., and MacLennan, D.H. 2002a. Topology of 
the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyRl). PNAS. 
99:16725-16730.

Du, G.G., Sandhu, B., Khanna, V.K., Guo, X.H., and MacLennan, D.H. 2002b. Topology of 
the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyRl). Proc Natl 
AcadSci USA.  99:16725-16730.

Durham, W.J., Aracena-Parks, P., Long, C., Rossi, A.E., Goonasekera, S.A., Boncompagni, 
S., Galvan, D.L., Gilman, C.P., Baker, M.R., Shirokova, N., Protasi, F., Dirksen, R., 
and Hamilton, S.L. 2008. RyRl S-nitrosylation underlies environmental heat stroke 
and sudden death in Y522S RyRl knockin mice. Cell. 133:53-65.

Eamshaw, W.C., Martins, L.M., and Kaufmann, S.H. 1999. Mammalian caspases: structure, 
activation, substrates, and functions during apoptosis. Annu Rev Biochem. 68:383-424.

Echt, D.S., Liebson, P.R., Mitchell, L.B., Peters, R.W., Obias-Manno, D., Barker, A.H., 
Arensberg, D., Baker, A., Friedman, L., Greene, H.L., and et al. 1991. Mortality and 
morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac 
Arrhythmia Suppression Trial. N  Engl J  Med. 324:781-788.

Eguchi, Y., Shimizu, S., and Tsujimoto, Y. 1997. Intracellular ATP levels determine cell 
death fate by apoptosis or necrosis. Cancer Res. 57:1835-1840.

Eisner, D.A., Venetucci, L.A., and Trafford, A.W. 2006. Life, sudden death, and intracellular 
calcium. Circ Res. 99:223-224.

El-Hayek, R., Saiki, Y., Yamamoto, T., and Ikemoto, N. 1999. A postulated role of the near 
amino-terminal domain o f the ryanodine receptor in the regulation of the sarcoplasmic 
reticulum Ca2+ channel. J  Biol Chem. 274:33341-33347.

Eldar, M., Pras, E., and Lahat, H. 2002. A missense mutation in a highly conserved region of 
CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic 
ventricular tachycardia in Bedouin families from Israel. Cold Spring Harb Symp 
Quant Biol. 67:333-337.

Eltzschig, H.K., Eckle, T., Mager, A., Kuper, N., Karcher, C., Weissmuller, T., Boengler, K., 
Schulz, R., Robson, S.C., and Colgan, S.P. 2006. ATP release from activated 
neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial 
cell function. Circ Res. 99:1100-1108.

Fabiato, A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic 
reticulum. Am J  Physiol. 245 :C 1-14.

Fedorov, V.I., and Cherkasova, O.P. 1997. The effect o f a stable acetylcholine analog on 
angiotensin-converting enzyme activity in the lung, kidney and arterial blood plasma 
of rats with increased sympathetic activity. Ross Fiziol Zh Im I M  Sechenova. 83:76- 
83.

Feigner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., 
Ringold, G.M., and Danielsen, M. 1987. Lipofection: a highly efficient, lipid-mediated 
DNA-transfection procedure. Proc Natl Acad Sci USA.  84:7413-7417.

Ferreiro, E., Oliveira, C.R., and Pereira, C.M. 2008. The release of calcium from the 
endoplasmic reticulum induced by amyloid-beta and prion peptides activates the 
mitochondrial apoptotic pathway. Neurobiol Dis. 30:331-342.

Ferrero, P., Said, M., Sanchez, G., Vittone, L., Valverde, C., Donoso, P., Mattiazzi, A., and 
Mundina-Weilenmann, C. 2007. Ca2+/calmodulin kinase II increases ryanodine 
binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during beta- 
adrenergic stimulation. J  Mol Cell Cardiol. 43:281-291.

Ferris, C.D., Huganir, R.L., Bredt, D.S., Cameron, A.M., and Snyder, S.H. 1991. Inositol 
trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin- 
dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A .  
88:2232-2235.

267



Fessenden, J.D., Chen, L., Wang, Y., Paolini, C., Franzini-Armstrong, C., Allen, P.D., and 
Pessah, I.N. 2001. Ryanodine receptor point mutant E4032A reveals an allosteric 
interaction with ryanodine. Proc Natl Acad Sci USA.  98:2865-2870.

Fill, M., and Copello, J.A. 2002. Ryanodine receptor calcium release channels. Physiol. Rev. 
82:893-922.

Fleischer, S., and Inui, M. 1989. Biochemistry and biophysics of excitation-contraction 
coupling. Annu Rev Biophys Biophys Chem. 18:333-364.

Flucher, B.E., and Franzini-Armstrong, C. 1996. Formation of junctions involved in 
excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci US  
A. 93:8101-8106.

Foss, K.B., Landmark, B., Skalhegg, B.S., Tasken, K., Jellum, E., Hansson, V., and Jahnsen, 
T. 1994. Characterization o f in-vitro-translated human regulatory and catalytic 
subunits of cAMP-dependent protein kinases. Eur JBiochem. 220:217-223.

Fradkov, A.F., Chen, Y., Ding, L., Barsova, E.V., Matz, M.V., and Lukyanov, S.A. 2000. 
Novel fluorescent protein from Discosoma coral and its mutants possesses a unique 
far-red fluorescence. FEBS Lett. 479:127-130.

Francis, J., Sankar, V., Nair, V.K., and Priori, S.G. 2005. Catecholaminergic polymorphic 
ventricular tachycardia. Heart Rhythm. 2:550-554.

Franzini-Armstrong, C. 1980. Structure o f sarcoplasmic reticulum. Fed Proc. 39:2403-2409.
Fujino, I., Yamada, N., Miyawaki, A., Hasegawa, M., Furuichi, T., and Mikoshiba, K. 1995. 

Differential expression o f type 2 and type 3 inositol 1,4,5-trisphosphate receptor 
mRNAs in various mouse tissues: in situ hybridization study. Cell Tissue Res. 
280:201-210.

Furuichi, T., Simon-Chazottes, D., Fujino, I., Yamada, N., Hasegawa, M., Miyawaki, A., 
Yoshikawa, S., Guenet, J.L., and Mikoshiba, K. 1993. Widespread expression of 
inositol 1,4,5-trisphosphate receptor type 1 gene (IP3R I) in the mouse central nervous 
system. Receptors Channels. 1:11-24.

Futatsugi, A., Nakamura, T., Yamada, M.K., Ebisui, E., Nakamura, K., Uchida, K., Kitaguchi, 
T., Takahashi-Iwanaga, H., Noda, T., Aruga, J., and Mikoshiba, K. 2005. IP3 receptor 
types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science. 
309:2232-2234.

Gaburjakova, J., and Gabuijakova, M. 2008. Effect of luminal Ca2+ on the stability of coupled 
gating between ryanodine receptors from the rat heart. Acta Physiol (OxJ).

Gabuijakova, M., Gaburjakova, J., Reiken, S., Huang, F., Marx, S.O., Rosemblit, N., and 
Marks, A.R. 2001. FKBP12 binding modulates ryanodine receptor channel gating. J  
Biol Chem. 276:16931-16935.

Gallagher, C.J., and Salter, M.W. 2003. Differential properties of astrocyte calcium waves 
mediated by P2Y1 and P2Y2 receptors. JNeurosci. 23:6728-6739.

Galvan, D.L., Borrego-Diaz, E., Perez, P.J., and Mignery, G.A. 1999. Subunit 
oligomerization, and topology of the inositol 1,4, 5-trisphosphate receptor. J  Biol 
Chem. 274:29483-29492.

Gangopadhyay, J.P., and Ikemoto, N. 2008. Interaction of the Lys3614-Asn3643 calmodulin- 
binding domain with the Cys4114-Asn4142 region of the type 1 ryanodine receptor is 
involved in the mechanism of Ca2+/agonist-induced channel activation. Biochem J. 
411:415-423.

Gao, L., Tripathy, A., Lu, X., and Meissner, G. 1997. Evidence for a role of C-terminal amino 
acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. 
FEBS Lett. 412:223-226.

Garcia-Dorado, D., Rodriguez-Sinovas, A., and Ruiz-Meana, M. 2004. Gap junction- 
mediated spread o f cell injury and death during myocardial ischemia-reperfusion. 
Cardiovasc Res. 61:386-401.

268



Garcia, M.L., Usachev, Y.M., Thayer, S.A., Strehler, E.E., and Windebank, A.J. 2001. Plasma 
membrane calcium ATPase plays a role in reducing Ca2+-mediated cytotoxicity in 
PC12 cells. JNeurosci Res. 64:661-669.

Gee, K.R., Brown, K.A., Chen, W.N., Bishop-Stewart, J., Gray, D., and Johnson, I. 2000. 
Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell 
Calcium. 27:97-106.

George, C.H. 2008. Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or 
functional relevance? Cardiovasc Res. 77:302-314.

George, C.H., Higgs, G.V., and Lai, F.A. 2003a. Ryanodine receptor mutations associated 
with stress-induced ventricular tachycardia mediate increased calcium release in 
stimulated cardiomyocytes. Circ Res. 93:531-540.

George, C.H., Higgs, G.V., Mackrill, J.J., and Lai, F.A. 2003b. Dysregulated ryanodine 
receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6. J  
Biol Chem. 278:28856-28864.

George, C.H., Jundi, H., Thomas, N.L., Scoote, M., Walters, N., Williams, A.J., and Lai, F.A.
2004. Ryanodine receptor regulation by intramolecular interaction between 
cytoplasmic and transmembrane domains. Mol Biol Cell. 15:2627-2638.

George, C.H., Jundi, H., Walters, N., Thomas, N.L., West, R.R., and Lai, F.A. 2006. 
Arrhythmogenic mutation-linked defects in ryanodine receptor autoregulation reveal a 
novel mechanism o f Ca2+ release channel dysfunction. Circ Res. 98:88-97.

George, C.H., Rogers, S.A., Bertrand, B.M., Tunwell, R.E., Thomas, N.L., Steele, D.S., Cox, 
E.V., Pepper, C., Hazeel, C.J., Claycomb, W.C., and Lai, F.A. 2007. Alternative 
splicing of ryanodine receptors modulates cardiomyocyte Ca2+ signaling and 
susceptibility to apoptosis. Circ Res. 100:874-883.

George, C.H., Sorathia, R., Bertrand, B.M., and Lai, F.A. 2003c. In situ modulation of the 
human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochem J. 370:579-589.

George, C.H., Thomas, N.L., and Lai, F.A. 2005. Ryanodine receptor dysfunction in 
arrhythmia and sudden cardiac death. Future Cardiology. 1:531-541.

Gerasimenko, J.V., Maruyama, Y., Yano, K., Dolman, N.J., Tepikin, A.V., Petersen, O.H., 
and Gerasimenko, O.V. 2003. NAADP mobilizes Ca2+ from a thapsigargin-sensitive 
store in the nuclear envelope by activating ryanodine receptors. J  Cell Biol. 163:271- 
282.

Gergs, U., Bemdt, T., Buskase, J., Jones, L.R., Kirchhefer, U., Muller, F.U., Schluter, K.D., 
Schmitz, W., and Neumann, J. 2007. On the role of junctin in cardiac Ca2+ handling, 
contractility, and heart failure. Am J  Physiol Heart Circ Physiol. 293:H728-734.

Gergs, U., Boknik, P., Buchwalow, I., Fabritz, L., Matus, M., Justus, I., Hanske, G., Schmitz, 
W., and Neumann, J. 2004. Overexpression of the catalytic subunit of protein 
phosphatase 2A impairs cardiac function. J  Biol Chem. 279:40827-40834.

Giannini, G., Conti, A., Mammarella, S., Scrobogna, M., and Sorrentino, V. 1995. The 
ryanodine receptor/calcium channel genes are widely and differentially expressed in 
murine brain and peripheral tissues. J  Cell Biol. 128:893-904.

Goddard, C.A., Ghais, N.S., Zhang, Y., Williams, A.J., Colledge, W.H., Grace, A.A., and 
Huang, C.L. 2008. Physiological consequences of the P2328S mutation in the 
ryanodine receptor (RyR2) gene in genetically modified murine hearts. Acta Physiol 
(Oxf).

Gomez-Hemandez, J.M., de Miguel, M., Larrosa, B., Gonzalez, D., and Barrio, L.C. 2003. 
Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad 
Sci USA.  100:16030-16035.

Gong, X.Q., and Nicholson, B.J. 2001. Size selectivity between gap junction channels 
composed of different connexins. Cell Commun Adhes. 8:187-192.

269



Gonzalez, D.R., Beigi, F., Treuer, A.V., and Hare, J.M. 2007. Deficient ryanodine receptor S- 
nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in 
cardiomyocytes. Proc Natl Acad Sci U S A. 104:20612-20617.

Gordon, J.L. 1986. Extracellular ATP: effects, sources and fate. Biochem J. 233:309-319.
Gorza, L., Schiaffino, S., and Volpe, P. 1993. Inositol 1,4,5-trisphosphate receptor in heart: 

evidence for its concentration in Purkinje myocytes of the conduction system. J  Cell 
Biol 121:345-353.

Govindaraju, V., Martin, J.G., Maghni, K., Ferraro, P., and Michoud, M.C. 2005. The effects 
of extracellular purines and pyrimidines on human airway smooth muscle cells. J  
Pharmacol Exp Ther. 315:941-948.

Graham, F.L., Smiley, J., Russell, W.C., and Naim, R. 1977. Characteristics of a human cell 
line transformed by DNA from human adenovirus type 5. J  Gen Virol. 36:59-74.

Gramolini, A.O., Kislinger, T., Alikhani-Koopaei, R., Fong, V., Thompson, N.J., Isserlin, R., 
Sharma, P., Oudit, G.Y., Trivieri, M.G., Fagan, A., Kannan, A., Higgins, D., Huedig,
H., Hess, G., Arab, S., Seidman, J.G., Seidman, C.E., Frey, B., Perry, M., Backx, P.H., 
Liu, P.P., Maclennan, D.H., and Emili, A. 2007. Comparative proteomic profiling of a 
phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive 
intracellular stress responses. Mol Cell Proteomics.

Gramsch, B., Gabriel, H.D., Wiemann, M., Grummer, R., Winterhager, E., Bingmann, D., and 
Schirrmacher, K. 2001. Enhancement of connexin 43 expression increases 
proliferation and differentiation of an osteoblast-like cell line. Exp Cell Res. 264:397- 
407.

Griendling, K.K., Sorescu, D., Lassegue, B., and Ushio-Fukai, M. 2000. Modulation of 
protein kinase activity and gene expression by reactive oxygen species and their role 
in vascular physiology and pathophysiology. Arterioscler Thromb Vase Biol. 20:2175- 
2183.

Grifalconi, M., Celotti, L., and Mognato, M. 2007. Bystander response in human 
lymphoblastoid TK6  cells. Mutat Res. 625:102-111.

Griffiths, E.J. 1999. Species dependence of mitochondrial calcium transients during 
excitation-contraction coupling in isolated cardiomyocytes. Biochem Biophys Res 
Commun. 263:554-559.

Groner, F., Rubio, M., Schulte-Euler, P., Matthes, J., Khan, I.F., Bodi, I., Koch, S.E., 
Schwartz, A., and Herzig, S. 2004. Single-channel gating and regulation of human L- 
type calcium channels in cardiomyocytes of transgenic mice. Biochem Biophys Res 
Commun. 314:878-884.

Groschner, K., Schuhmann, K., Mieskes, G., Baumgartner, W., and Romanin, C. 1996. A type 
2A phosphatase-sensitive phosphorylation site controls modal gating of L-type Ca + 
channels in human vascular smooth-muscle cells. Biochem J. 318 ( Pt 2):513-517.

Grueter, C.E., Abiria, S.A., Dzhura, I., Wu, Y., Ham, A.J., Mohler, P.J., Anderson, M.E., and 
Colbran, R.J. 2006. L-type Ca2+ channel facilitation mediated by phosphorylation of 
the beta subunit by CaMKII. Mol Cell. 23:641-650.

Grynkiewicz, G., Poenie, M., and Tsien, R.Y. 1985. A new generation of Ca2+ indicators with 
greatly improved fluorescence properties. J  Biol Chem. 260:3440-3450.

Guatimosim, S., Amaya, M.J., Guerra, M.T., Aguiar, C.J., Goes, A.M., Gomez-Viquez, N.L., 
Rodrigues, M.A., Gomes, D.A., Martins-Cruz, J., Lederer, W.J., and Leite, M.F. 2008. 
Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium. 44:230-242.

Guo, J.H., Liu, Y.S., Zhang, H.C., Li, X.B., Xu, Y., Zhang, Y.Y., and Yuan, L. 2004. 
[Expression and function changes of ryanodine receptors and inositol 1,4,5- 
triphosphate receptors of atrial myocytes during atrial fibrillation]. Zhonghua Yi Xue 
ZaZhi. 84:1196-1199.

270



Guo, T., Zhang, T., Mestril, R., and Bers, D.M. 2006. Ca2+/Calmodulin-dependent protein 
kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse 
ventricular myocytes. Circ Res. 99:398-406.

Gutcher, I., Webb, P.R., and Anderson, N.G. 2003. The isoform-specific regulation of 
apoptosis by protein kinase C. Cell Mol Life Sci. 60:1061-1070.

Gutstein, D.E., and Marks, A.R. 1997. Role of inositol 1,4,5-trisphosphate receptors in 
regulating apoptotic signaling and heart failure. Heart Vessels. Suppl 12:53-57.

Gyorke, I., and Gyorke, S. 1998. Regulation of the cardiac ryanodine receptor channel by 
luminal Ca + involves luminal Ca2+ sensing sites. Biophys. J. 75:2801-2810.

Haase, H., Karczewski, P., Beckert, R., and Krause, E.G. 1993. Phosphorylation of the L-type 
calcium channel beta subunit is involved in beta-adrenergic signal transduction in 
canine myocardium. FEBS Lett. 335:217-222.

Haghighi, K., Kolokathis, F., Gramolini, A.O., Waggoner, J.R., Pater, L., Lynch, R.A., Fan,
G.C., Tsiapras, D., Parekh, R.R., Dorn, G.W., 2nd, MacLennan, D.H., Kremastinos,
D.T., and Kranias, E.G. 2006. A mutation in the human phospholamban gene, deleting 
arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci US A .  
103:1388-1393.

Haghighi, K., Kolokathis, F., Pater, L., Lynch, R.A., Asahi, M., Gramolini, A.O., Fan, G.C., 
Tsiapras, D., Hahn, H.S., Adamopoulos, S., Liggett, S.B., Dorn, G.W., 2nd, 
MacLennan, D.H., Kremastinos, D.T., and Kranias, E.G. 2003. Human 
phospholamban null results in lethal dilated cardiomyopathy revealing a critical 
difference between mouse and human. J  Clin Invest. I l l  :869-876.

Haghighi, K., Schmidt, A.G., Hoit, B.D., Brittsan, A.G., Yatani, A., Lester, J.W., Zhai, J., 
Kimura, Y., Dorn, G.W., 2nd, MacLennan, D.H., and Kranias, E.G. 2001. 
Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac 
contractile failure. J  Biol Chem. 276:24145-24152.

Hain, J., Onoue, H., Mayrleitner, M., Fleischer, S., and Schindler, H. 1995. Phosphorylation 
modulates the function o f the calcium release channel of sarcoplasmic reticulum from 
cardiac muscle. J  Biol Chem. 270:2074-2081.

Hajjar, R.J., Schmidt, U., Kang, J.X., Matsui, T., and Rosenzweig, A. 1997. Adenoviral gene 
transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by 
concomitant gene transfer of sarcoplasmic reticulum Ca +-ATPase. Circ Res. 81:145- 
153.

Hajnoczky, G., Csordas, G., Das, S., Garcia-Perez, C., Saotome, M., Sinha Roy, S., and Yi, 
M. 2006. Mitochondrial calcium signalling and cell death: approaches for assessing 
the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 40:553-560.

Hajnoczky, G., Csordas, G., Madesh, M., and Pacher, P. 2000. Control of apoptosis by IP3 

and ryanodine receptor driven calcium signals. Cell Calcium. 28:349-363.
Hajnoczky, G., Robb-Gaspers, L.D., Seitz, M.B., and Thomas, A.P. 1995. Decoding of 

cytosolic calcium oscillations in the mitochondria. Cell. 82:415-424.
Hakamata, Y., Nakai, J., Takeshima, H., and Imoto, K. 1992. Primary structure and 

distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. 
FEBS Lett. 312:229-235.

Hamada, N., Matsumoto, H., Hara, T., and Kobayashi, Y. 2007a. Intercellular and 
intracellular signaling pathways mediating ionizing radiation-induced bystander 
effects. JRadiat Res (Tokyo). 48:87-95.

Hamada, T., Bannister, M.L., and Ikemoto, N. 2007b. Peptide probe study of the role of 
interaction between the cytoplasmic and transmembrane domains of the ryanodine 
receptor in the channel regulation mechanism. Biochemistry. 46:4272-4279.

Hanson, C.J., Bootman, M.D., Distelhorst, C.W., Maraldi, T., and Roderick, H.L. 2008a. The 
cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect. Cell 
Calcium.

271



Hanson, C.J., Bootman, M.D., Distelhorst, C.W., Wojcikiewicz, R.J., and Roderick, H.L. 
2008b. Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors 
and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. 
Cell Calcium.

Hasko, G., Kuhel, D.G., Salzman, A.L., and Szabo, C. 2000. ATP suppression of interleukin- 
12 and tumour necrosis factor-alpha release from macrophages. Br J  Pharmacol. 
129:909-914.

Henderson, S.A., Goldhaber, J.I., So, J.M., Han, T., Motter, C., Ngo, A., Chantawansri, C., 
Ritter, M.R., Friedlander, M., Nicoll, D.A., Frank, J.S., Jordan, M.C., Roos, K.P., 
Ross, R.S., and Philipson, K.D. 2004. Functional adult myocardium in the absence of 
Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ Res. 95:604-611.

Henriquez, M., Armisen, R., Stutzin, A., and Quest, A.F. 2008. Cell death by necrosis, a 
regulated way to go. Curr Mol Med. 8:187-206.

Hentati, M., Ben Ameur, I., Kechida, Z., Charfeddine, H., Hached, L., Grati, Z., and 
Kammoun, S. 2003. Use of an implantable defibrillator for the prevention of sudden 
death in hypertrophic cardiomyopathy. Tunis Med. 81 Suppl 8:675-679.

Herrmann-Frank, A., and Lehmann-Horn, F. 1996. Regulation of the purified Ca2+ release 
channel/ryanodine receptor complex of skeletal muscle sarcoplasmic reticulum by 
luminal calcium. Pflugers Arch. 432:155-157.

Hess, S.T., Sheets, E.D., Wagenknecht-Wiesner, A., and Heikal, A.A. 2003. Quantitative 
analysis of the fluorescence properties of intrinsically fluorescent proteins in living 
cells. Biophys J. 85:2566-2580.

Higo, T., Hattori, M., Nakamura, T., Natsume, T., Michikawa, T., and Mikoshiba, K. 2005. 
Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5- 
trisphosphate receptor type 1 by ERp44. Cell. 120:85-98.

Hintz, K.K., Norby, F.L., Duan, J., Cinnamon, M.A., Doze, V.A., and Ren, J. 2002. 
Comparison o f cardiac excitation-contraction coupling in isolated ventricular 
myocytes between rat and mouse. Comp Biochem Physiol A Mol Integr Physiol. 
133:191-198.

Hirota, J., Ando, H., Hamada, K., and Mikoshiba, K. 2003. Carbonic anhydrase-related 
protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. 
Biochem J. 372:435-441.

Hisatsune, C., Yasumatsu, K., Takahashi-Iwanaga, H., Ogawa, N., Kuroda, Y., Yoshida, R., 
Ninomiya, Y., and Mikoshiba, K. 2007. Abnormal taste perception in mice lacking the 
type 3 inositol 1, 4, 5-trisphosphate receptor. J  Biol Chem.

Hohenegger, M., and Suko, J. 1993. Phosphorylation of the purified cardiac ryanodine 
receptor by exogenous and endogenous protein kinases. Biochem J. 296 ( Pt 2):303- 
308.

Honda, K., Takano, Y., and Kamiya, H. 1994. The mechanism of muscarinic agonist- 
stimulated inositol phosphate formation in permeabilized ileal smooth muscle. Jpn J  
Pharmacol. 65:275-280.

Hong, C.S., Cho, M.C., Kwak, Y.G., Song, C.H., Lee, Y.H., Lim, J.S., Kwon, Y.K., Chae, 
S.W., and Kim, D.H. 2002. Cardiac remodeling and atrial fibrillation in transgenic 
mice overexpressing junctin. Faseb J. 16:1310-1312.

Hool, L.C. 2006. Reactive oxygen species in cardiac signalling: from mitochondria to plasma 
membrane ion channels. Clin Exp Pharmacol Physiol. 33:146-151.

Hool, L.C. 2008. Evidence for the regulation of L-type Ca2+ channels in the heart by reactive 
oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol. 
35:229-234.

Hoshijima, M. 2005. Gene therapy targeted at calcium handling as an approach to the 
treatment of heart failure. Pharmacol Ther. 105:211-228.

272



Hu, X.F., Liang, X., Chen, K.Y., Xie, H., Xu, Y., Zhu, P.H., and Hu, J. 2005a. Modulation of 
the oligomerization o f isolated ryanodine receptors by their functional states. Biophys 
J. 89:1692-1699.

Hu, X.F., Liang, X., Chen, K.Y., Zhu, P.H., and Hu, J. 2005b. Depletion of FKBP does not 
affect the interaction between isolated ryanodine receptors. Biochem Biophys Res 
Commun. 336:128-133.

Hymel, L., Schindler, H., Inui, M., and Fleischer, S. 1988. Reconstitution of purified cardiac 
muscle calcium release channel (ryanodine receptor) in planar bilayers. Biochem 
Biophys Res Commun. 152:308-314.

Ikemoto, N., and Yamamoto, T. 2002. Regulation of calcium release by interdomain 
interaction within ryanodine receptors. Front Biosci. 7:d671-683.

Imahashi, K., Pott, C., Goldhaber, J.I., Steenbergen, C., Philipson, K.D., and Murphy, E.
2005. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against 
ischemia/reperfusion injury. Circ Res. 97:916-921.

Inoue, T., Kato, K., Kohda, K., and Mikoshiba, K. 1998. Type 1 inositol 1,4,5-trisphosphate 
receptor is required for induction of long-term depression in cerebellar Purkinje 
neurons. J  Neurosci. 18:5366-5373.

Ito, K., Ozasa, H., and Horikawa, S. 2005. Edaravone protects against lung injury induced by 
intestinal ischemia/reperfusion in rat. Free Radic Biol Med. 38:369-374.

Ito, K., Ozasa, H., Noda, Y., Arii, S., and Horikawa, S. 2008. Effects of free radical scavenger 
on acute liver injury induced by d-galactosamine and lipopolysaccharide in rats. 
Hepatol Res. 38:194-201.

Iwata, A., Stys, P.K., Wolf, J.A., Chen, X.H., Taylor, A.G., Meaney, D.F., and Smith, D.H.
2004. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated 
sodium channels modulated by tetrodotoxin and protease inhibitors. J  Neurosci. 
24:4605-4613.

James, A.F. 2007. Inhibition o f SR Ca2+ uptake: A novel action of the RyR2-FKBP12.6 
antagonist K201. Cardiovasc Res.

Jeyakumar, L.H., Copello, J.A., O'Malley, A.M., Wu, G.M., Grassucci, R., Wagenknecht, T., 
and Fleischer, S. 1998. Purification and characterization of ryanodine receptor 3 from 
mammalian tissue. J  Biol Chem. 273:16011-16020.

Jiang, D., Chen, W., Wang, R., Zhang, L., and Chen, S.R. 2007. Loss of luminal Ca2+ 
activation in the cardiac ryanodine receptor is associated with ventricular fibrillation 
and sudden death. Proc Natl Acad Sci USA.  104:18309-18314.

Jiang, D., Wang, R., Xiao, B., Kong, H., Hunt, D.J., Choi, P., Zhang, L., and Chen, S.R. 2005. 
Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ 
activation are common defects of RyR2 mutations linked to ventricular tachycardia 
and sudden death. Circ Res. 97:1173-1181.

Jiang, D., Xiao, B., Yang, D., Wang, R., Choi, P., Zhang, L., Cheng, H., and Chen, S.R. 
2004a. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the 
threshold for store-overload-induced Ca2+ release (SOICR). Proc Natl Acad Sci USA.  
101:13062-13067.

Jiang, D., Xiao, B., Yang, D., Wang, R., Choi, P., Zhang, L., Cheng, H., and Chen, S.R.W. 
2004b. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the 
threshold for store-overload-induced Ca2+ release (SOICR). PNAS. 101:13062-13067.

Jiang, D., Xiao, B., Zhang, L., and Chen, S.R.W. 2002a. Enhanced basal activity of a cardiac 
Ca2+ release channel (ryanodine receptor) mutant associated with ventricular 
tachycardia and sudden death. Circ Res. 91:218-225.

Jiang, J.X., and Gu, S. 2005. Gap junction- and hemichannel-independent actions of 
connexins. Biochim Biophys Acta. 1711:208-214.

273



Jiang, M.T., Lokuta, A.J., Farrell, E.F., Wolff, M.R., Haworth, R.A., and Valdivia, H.H. 
2002b. Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human 
heart failure. Circ Res. 91:1015-1022.

Jiang, S., Chow, S.C., Nicotera, P., and Orrenius, S. 1994. Intracellular Ca2+ signals activate 
apoptosis in thymocytes: studies using the Ca2+-ATPase inhibitor thapsigargin. Exp 
Cell Res. 212:84-92.

Jones, L.R., Suzuki, Y.J., Wang, W., Kobayashi, Y.M., Ramesh, V., Franzini-Armstrong, C., 
Cleemann, L., and Morad, M. 1998. Regulation of Ca2+ signaling in transgenic mouse 
cardiac myocytes overexpressing calsequestrin. J  Clin Invest. 101:1385-1393.

Jones, P.P., Meng, X., Xiao, B., Cai, S., Bolstad, J., Wagenknecht, T., Liu, Z., and Chen, S.R. 
2007. Localization of PKA phosphorylation site, serine-2030, in the three-dimensional 
structure of cardiac ryanodine receptor. Biochem J.

Joseph, S.K., Nakao, S.K., and Sukumvanich, S. 2006. Reactivity of free thiol groups in type- 
I inositol trisphosphate receptors. Biochem J. 393:575-582.

Kaneko, N., Matsuda, R., Toda, M., and Shimamoto, K. 1997. Inhibition of annexin V- 
dependent Ca movement in large unilamellar vesicles by K201, a new 1,4- 
benzothiazepine derivative. Biochim Biophys Acta. 1330:1-7.

Kang, J., Kang, S., Yoo, S.H., and Park, S. 2007. Identification of residues participating in the 
interaction between an intraluminal loop of inositol 1,4,5-trisphosphate receptor and a 
conserved N-terminal region of chromogranin B. Biochim Biophys Acta. 1774:502- 
509.

Kannankeril, P.J., Mitchell, B.M., Goonasekera, S.A., Chelu, M.G., Zhang, W., Sood, S., 
Kearney, D.L., Danila, C.I., De Biasi, M., Wehrens, X.H., Pautler, R.G., Roden, D.M., 
Taffet, G.E., Dirksen, R.T., Anderson, M.E., and Hamilton, S.L. 2006. Mice with the 
R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular 
tachycardia and cardiomyopathy. Proc Natl Acad Sci USA.  103:12179-12184.

Kasri, N.N., Holmes, A.M., Bultynck, G., Parys, J.B., Bootman, M.D., Rietdorf, K., Missiaen, 
L., McDonald, F., De Smedt, H., Conway, S.J., Holmes, A.B., Berridge, M.J., and 
Roderick, H.L. 2004. Regulation of IP3 receptor activity by neuronal Ca2+-binding 
proteins. Embo J. 23:312-321.

Katsuragi, T., Sato, C., Usune, S., Ueno, S., Segawa, M., and Migita, K. 2008. Caffeine- 
inducible ATP release is mediated by Ca2+-signal transducing system from the 
endoplasmic reticulum to mitochondria. Naunyn Schmiedebergs Arch Pharmacol.

Kawano, S. 1998. Dual mechanisms of Mg2+ block of ryanodine receptor Ca2+ release channel 
from cardiac sarcoplasmic reticulum. Receptors Channels. 5:405-416.

Kaznacheyeva, E., Lupu, V.D., and Bezprozvanny, I. 1998. Single-channel properties of 
inositol (l,4,5)-trisphosphate receptor heterologously expressed in HEK-293 cells. J  
Gen Physiol. 111:847-856.

Keating, M.T., and Sanguinetti, M.C. 2001. Molecular and cellular mechanisms of cardiac 
arrhythmias. Cell. 104:569-580.

Keizer, J., and Smith, G.D. 1998. Spark-to-wave transition: saltatory transmission of calcium 
waves in cardiac myocytes. Biophys Chem. 72:87-100.

Kelliher, M., Fastbom, J., Cowbum, R.F., Bonkale, W., Ohm, T.G., Ravid, R., Sorrentino, V., 
and O'Neill, C. 1999. Alterations in the ryanodine receptor calcium release channel 
correlate with Alzheimer's disease neurofibrillary and beta-amyloid pathologies. 
Neuroscience. 92:499-513.

Kettman, J., and Skarvall, H. 1974. The allogeneic effect: bystander effect in the primary 
immune response in vitro. Eur J  Immunol. 4:641-645.

Khan, M.T., Wagner, L., 2nd, Yule, D.I., Bhanumathy, C., and Joseph, S.K. 2006. Akt kinase 
phosphorylation o f inositol 1,4,5-trisphosphate receptors. J  Biol Chem. 281:3731- 
3737.

274



Kim, S., Ahn, T., and Park, C. 2005. The Pro335 —> Leu polymorphism of type 3 inositol
1,4,5-trisphosphate receptor found in mouse inbred lines results in functional change. 
JBiol Chem. 280:26024-26031.

Kim, Y.S., Ko, J., Kim, I.S., Jang, S.W., Sung, H.J., Lee, H.J., Lee, S.Y., Kim, Y., and Na,
D.S. 2003. PKCdelta-dependent cleavage and nuclear translocation of annexin A1 by 
phorbol 12-myristate 13-acetate. Eur J  Biochem. 270:4089-4094.

Kirchhefer, U., Hanske, G., Jones, L.R., Justus, I., Kaestner, L., Lipp, P., Schmitz, W., and 
Neumann, J. 2006. Overexpression of junctin causes adaptive changes in cardiac 
myocyte Ca2+ signaling. Cell Calcium. 39:131-142.

Kirchhefer, U., Jones, L.R., Begrow, F., Boknik, P., Hein, L., Lohse, M.J., Riemann, B., 
Schmitz, W., Stypmann, J., and Neumann, J. 2004. Transgenic triadin 1 
overexpression alters SR Ca2+ handling and leads to a blunted contractile response to 
[beta]-adrenergic agonists. Cardiovasc Res. 62:122-134.

Kirchhefer, U., Neumann, J., Baba, H.A., Begrow, F., Kobayashi, Y.M., Reinke, U., Schmitz, 
W., and Jones, L.R. 2001. Cardiac hypertrophy and impaired relaxation in transgenic 
mice overexpressing triadin 1 . J  Biol Chem. 276:4142-4149.

Kirchhof, P., Klimas, J., Fabritz, L., Zwiener, M., Jones, L.R., Schafers, M., Hermann, S., 
Boknik, P., Schmitz, W., Breithardt, G., Kirchhefer, U., and Neumann, J. 2007. Stress 
and high heart rate provoke ventricular tachycardia in mice expressing triadin. J  Mol 
Cell Cardiol. 42:962-971.

Kiselyov, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G., Zhu, X., Bimbaumer, 
L., and Muallem, S. 1998. Functional interaction between IP3 receptors and store- 
operated Htrp3 channels. Nature. 396:478-482.

Knollmann, B.C., Chopra, N., Hlaing, T., Akin, B., Yang, T., Ettensohn, K., Knollmann, B.E., 
Horton, K.D., Weissman, N.J., Holinstat, I., Zhang, W., Roden, D.M., Jones, L.R., 
Franzini-Armstrong, C., and Pfeifer, K. 2006. Casq2 deletion causes sarcoplasmic 
reticulum volume increase, premature Ca2+ release, and catecholaminergic 
polymorphic ventricular tachycardia. J  Clin Invest. 116:2510-2520.

Knollmann, B.C., Knollmann-Ritschel, B.E., Weissman, N.J., Jones, L.R., and Morad, M.
2000. Remodelling o f ionic currents in hypertrophied and failing hearts of transgenic 
mice overexpressing calsequestrin. J  Physiol. 525 Pt 2:483-498.

Kobayashi, S., Yamamoto, T., Pamess, J., and Ikemoto, N. 2004. Antibody probe study of 
Ca2+ channel regulation by interdomain interaction within the ryanodine receptor. 
Biochem J. 380:561-569.

Kohlhaas, M., Zhang, T., Seidler, T., Zibrova, D., Dybkova, N., Steen, A., Wagner, S., Chen, 
L., Brown, J.H., Bers, D.M., and Maier, L.S. 2006. Increased sarcoplasmic reticulum 
calcium leak but unaltered contractility by acute CaMKII overexpression in isolated 
rabbit cardiac myocytes. Circ Res. 98:235-244.

Kohno, M., Yano, M., Kobayashi, S., Doi, M., Oda, T., Tokuhisa, T., Okuda, S., Ohkusa, T., 
and Matsuzaki, M. 2003. A new cardioprotective agent, JTV519, improves defective 
channel gating o f ryanodine receptor in heart failure. Am J  Physiol Heart Circ Physiol. 
284:H1035-1042.

Kojima, T., Fort, A., Tao, M., Yamamoto, M., and Spray, D.C. 2001. Gap junction expression 
and cell proliferation in differentiating cultures of Cx43 KO mouse hepatocytes. Am J  
Physiol Gastrointest Liver Physiol. 281 :G1004-1013.

Kondo, R.P., Wang, S.Y., John, S.A., Weiss, J.N., and Goldhaber, J.I. 2000. Metabolic 
inhibition activates a non-selective current through connexin hemichannels in isolated 
ventricular myocytes. J  Mol Cell Cardiol. 32:1859-1872.

Kong, H., Wang, R., Chen, W., Zhang, L., Chen, K., Shimoni, Y., Duff, H.J., and Chen, S.R.
2007. Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ 
overload and luminal Ca2+. Biophys J. 92:2757-2770.

275



Kranias, E.G., and Bers, D.M. 2007. Calcium and cardiomyopathies. Subcell Biochem. 
45:523-537.

Kruman, II, and Mattson, M.P. 1999. Pivotal role of mitochondrial calcium uptake in neural 
cell apoptosis and necrosis. JNeurochem. 72:529-540.

Kubalova, Z., Gyorke, I., Terentyeva, R., Viatchenko-Karpinski, S., Terentyev, D., Williams, 
S.C., and Gyorke, S. 2004. Modulation of cytosolic and intra-sarcoplasmic reticulum 
calcium waves by calsequestrin in rat cardiac myocytes. J  Physiol. 561:515-524.

Kubalova, Z., Terentyev, D., Viatchenko-Karpinski, S., Nishijima, Y., Gyorke, I., Terentyeva, 
R., da Cunha, D.N., Sridhar, A., Feldman, D.S., Hamlin, R.L., Carnes, C.A., and 
Gyorke, S. 2005. Abnormal intrastore calcium signaling in chronic heart failure. Proc 
Natl Acad Sci US A.  102:14104-14109.

Kumasaka, S., Shoji, H., and Okabe, E. 1999. Novel mechanisms involved in superoxide 
anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to 
cyclic ADP-ribose stimulation. Antioxid Redox Signal. 1:55-69.

Kunapuli, P., Lawson, J.A., Rokach, J., and FitzGerald, G.A. 1997. Functional 
characterization o f the ocular prostaglandin f2alpha (PGF2alpha) receptor. Activation 
by the isoprostane, 12-iso-PGF2alpha. J  Biol Chem. 272:27147-27154.

Laemmli, U.K. 1970. Cleavage o f structural proteins during the assembly of the head of 
bacteriophage T4. Nature. 227:680-685.

Laemmli, U.K., and Quittner, S.F. 1974. Maturation of the head of bacteriophage T4. IV. The 
proteins of the core o f the tubular polyheads and in vitro cleavage of the head proteins. 
Virology. 62:483-499.

Lahat, H., and Eldar, M. 2002. Autosomal recessive catecholamine-induced polymorphic 
ventricular tachycardia. Isr Med Assoc J. 4:1095-1096.

Lahat, H., Pras, E., and Eldar, M. 2004. A missense mutation in CASQ2 is associated with 
autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in 
Bedouin families from Israel. Ann Med. 36 Suppl 1:87-91.

Lahat, H., Pras, E., Olender, T., Avidan, N., Ben-Asher, E., Man, O., Levy-Nissenbaum, E., 
Khoury, A., Lorber, A., Goldman, B., Lancet, D., and Eldar, M. 2001. A missense 
mutation in a highly conserved region of CASQ2 is associated with autosomal 
recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin 
families from Israel. Am J  Hum Genet. 69:1378-1384.

Lai, F.A., Anderson, K., Rousseau, E., Liu, Q.Y., and Meissner, G. 1988. Evidence for a Ca2+ 
channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. 
Biochem Biophys Res Commun. 151:441-449.

Lai, F.A., Dent, M., Wickenden, C., Xu, L., Kumari, G., Misra, M., Lee, H.B., Sar, M., and 
Meissner, G. 1992. Expression of a cardiac Ca2+-release channel isoform in 
mammalian brain. Biochem J. 288 ( Pt 2):553-564.

Lai, F.A., Erickson, H., Block, B.A., and Meissner, G. 1987. Evidence for a junctional feet- 
ryanodine receptor complex from sarcoplasmic reticulum. Biochem Biophys Res 
Commun. 143:704-709.

Laird, D.W. 2006. Life cycle o f connexins in health and disease. Biochem J. 394:527-543.
Laitinen, P.J., Brown, K.M., Piippo, K., Swan, H., Devaney, J.M., Brahmbhatt, B., Donarum,

E.A., Marino, M., Tiso, N., Viitasalo, M., Toivonen, L., Stephan, D.A., and Kontula, 
K. 2001. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial 
polymorphic ventricular tachycardia. Circulation. 103:485-490.

Laitinen, P.J., Swan, H., and Kontula, K. 2003. Molecular genetics of exercise-induced 
polymorphic ventricular tachycardia: identification of three novel cardiac ryanodine 
receptor mutations and two common calsequestrin 2 amino-acid polymorphisms. Eur 
J  Hum Genet. 11:888-891.

Laver, D.R. 2007. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal 
and cytosolic Ca2+ sites. Clin Exp Pharmacol Physiol. 34:889-896.

276



Laver, D.R., Baynes, T.M., and Dulhunty, A.F. 1997. Magnesium inhibition of ryanodine- 
receptor calcium channels: evidence for two independent mechanisms. J  Membr Biol. 
156:213-229.

Laver, D.R., Hamada, T., Fessenden, J.D., and Ikemoto, N. 2007a. The ryanodine receptor 
pore blocker neomycin also inhibits channel activity via a previously undescribed 
high-affmity Ca2+ binding site. J  Membr Biol. 220:11-20.

Laver, D.R., Honen, B.N., Lamb, G.D., and Ikemoto, N. 2007b. A domain peptide of the 
cardiac ryanodine receptor regulates channel sensitivity to luminal Ca2+ via 
cytoplasmic Ca2+ sites. Eur Biophys J.

Laver, D.R., O'Neill, E.R., and Lamb, G.D. 2004. Luminal Ca2+-regulated Mg2+ inhibition of 
skeletal RyRs reconstituted as isolated channels or coupled clusters. J  Gen Physiol. 
124:741-758.

Lebkowski, J.S., Clancy, S., and Calos, M.P. 1985. Simian virus 40 replication in adenovirus- 
transformed human cells antagonizes gene expression. Nature. 317:169-171.

Lee, T.S., Karl, R., Moosmang, S., Lenhardt, P., Klugbauer, N., Hofmann, F., Kleppisch, T., 
and Welling, A. 2006. Calmodulin kinase II is involved in voltage-dependent 
facilitation of the L-type Cavl.2 calcium channel: Identification of the
phosphorylation sites. J  Biol Chem. 281:25560-25567.

Leeb, T., and Brenig, B. 1998. cDNA cloning and sequencing of the human ryanodine 
receptor type 3 (RYR3) reveals a novel alternative splice site in the RYR3 gene. FEBS 
Lett. 423:367-370.

Lehnart, S.E. 2007. Novel targets for treating heart and muscle disease: stabilizing ryanodine 
receptors and preventing intracellular calcium leak. Curr Opin Pharmacol. 7:225-232.

Lehnart, S.E., Mongillo, M., Bellinger, A., Lindegger, N., Chen, B.X., Hsueh, W., Reiken, S., 
Wronska, A., Drew, L.J., Ward, C.W., Lederer, W.J., Kass, R.S., Morley, G., and 
Marks, A.R. 2008. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures 
and sudden cardiac death in mice. J  Clin Invest.

Lehnart, S.E., Wehrens, X.H., and Marks, A.R. 2005. Defective ryanodine receptor 
interdomain interactions may contribute to intracellular Ca2+ leak: a novel therapeutic 
target in heart failure. Circulation. I l l  :3342-3346.

Lehnart, S.E., Wehrens, X.H.T., Laitinen, P.J., Reiken, S.R., Deng, S.-X., Cheng, Z., Landry,
D.W., Kontula, K., Swan, H., and Marks, A.R. 2004. Sudden death in familial 
polymorphic ventricular tachycardia associated with calcium release channel 
(ryanodine receptor) leak. Circulation. 109:3208-3214.

Leist, M., and Jaattela, M. 2001. Four deaths and a funeral: from caspases to alternative 
mechanisms. Nat Rev Mol Cell Biol. 2:589-598.

Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. 1997. Intracellular 
adenosine triphosphate (ATP) concentration: a switch in the decision between 
apoptosis and necrosis. J  Exp Med. 185:1481-1486.

Leist, M., Single, B., Naumann, H., Fava, E., Simon, B., Kuhnle, S., and Nicotera, P. 1999. 
Inhibition o f mitochondrial ATP generation by nitric oxide switches apoptosis to 
necrosis. Exp Cell Res. 249:396-403.

Leybaert, L., Braet, K., Vandamme, W., Cabooter, L., Martin, P.E., and Evans, W.H. 2003. 
Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes. 
10:251-257.

Li, H., Liu, T.F., Lazrak, A., Peracchia, C., Goldberg, G.S., Lampe, P.D., and Johnson, R.G.
1996. Properties and regulation of gap junctional hemichannels in the plasma 
membranes o f cultured cells. J  Cell Biol. 134:1019-1030.

Li, J., Marionneau, C., Zhang, R., Shah, V., Hell, J.W., Nerbonne, J.M., and Anderson, M.E.
2006. Calmodulin kinase II inhibition shortens action potential duration by 
upregulation o f K+ currents. Circ Res. 99:1092-1099.

277



Li, L., Chu, G., Kranias, E.G., and Bers, D.M. 1998. Cardiac myocyte calcium transport in 
phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J  
Physiol 274:H1335-1347.

Li, X., Zima, A.V., Sheikh, F., Blatter, L.A., and Chen, J. 2005. Endothelin-1-induced 
arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5- 
trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res. 96:1274-1281.

Liang, X., Hu, X., and Hu, J. 2006. Dynamic inter-receptor coupling: a novel working 
mechanism of 2-D ryanodine receptor array. Biophys J.

Lim, S., Chang, W., Lee, B.K., Song, H., Hong, J.H., Lee, S., Song, B.W., Kim, H.J., Cha, 
M.J., Jang, Y., Chung, N.S., Choi, S.Y., and Hwang, K.C. 2008. Enhanced calreticulin 
expression promotes calcium-dependent apoptosis in postnatal cardiomyocytes. Mol 
Cells. 25:390-396.

Lin, J.H., Weigel, H., Cotrina, M.L., Liu, S., Bueno, E., Hansen, A.J., Hansen, T.W., 
Goldman, S., and Nedergaard, M. 1998. Gap-junction-mediated propagation and 
amplification o f cell injury. Nat Neurosci. 1:494-500.

Lin, W.W., and Chen, B.C. 1998. Distinct PKC isoforms mediate the activation of cPLA2 and 
adenylyl cyclase by phorbol ester in RAW264.7 macrophages. Br J  Pharmacol. 
125:1601-1609.

Lipp, P., Laine, M., Tovey, S.C., Burrell, K.M., Berridge, M.J., Li, W., and Bootman, M.D.
2000. Functional IP3 receptors that may modulate excitation-contraction coupling in 
the heart. Curr Biol. 10:939-942.

Lipp, P., and Niggli, E. 1996. Submicroscopic calcium signals as fundamental events of 
excitation-contraction coupling in guinea-pig cardiac myocytes. J  Physiol. 492 ( Pt 
1):31 -38.

Liu, N., Colombi, B., Memmi, M., Zissimopoulos, S., Rizzi, N., Negri, S., Imbriani, M., 
Napolitano, C., Lai, F.A., and Priori, S.G. 2006. Arrhythmogenesis in 
catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 
R4496C knock-in mouse model. Circ Res. 99:292-298.

Liu, Z., Zhang, J., Li, P., Chen, S.R., and Wagenknecht, T. 2002. Three-dimensional 
reconstruction o f the recombinant type 2  ryanodine receptor and localization of its 
divergent region 1. J  Biol Chem. 277:46712-46719.

Liu, Z., Zhang, J., Wang, R., Wayne Chen, S.R., and Wagenknecht, T. 2004. Location of 
divergent region 2  on the three-dimensional structure of cardiac muscle ryanodine 
receptor/calcium release channel. J  Mol Biol. 338:533-545.

Lokuta, A.J., Meyers, M.B., Sander, P.R., Fishman, G.I., and Valdivia, H.H. 1997. 
Modulation o f cardiac ryanodine receptors by sorcin. J  Biol Chem. 272:25333-25338.

Lokuta, A.J., Rogers, T.B., Lederer, W.J., and Valdivia, H.H. 1995. Modulation of cardiac 
ryanodine receptors o f swine and rabbit by a phosphorylation-dephosphorylation 
mechanism. J  Physiol. 487 ( Pt 3):609-622.

Louis, N., Evelegh, C., and Graham, F.L. 1997. Cloning and sequencing of the cellular-viral 
junctions from the human adenovirus type 5 transformed 293 cell line. Virology. 
233:423-429.

Lu, X., Xu, L., and Meissner, G. 1994. Activation of the skeletal muscle calcium release 
channel by a cytoplasmic loop of the dihydropyridine receptor. J  Biol Chem. 
269:6511-6516.

Ludtke, S.J., Serysheva, II, Hamilton, S.L., and Chiu, W. 2005. The pore structure of the 
closed RyRl channel. Structure. 13:1203-1211.

Luo, D., Broad, L.M., Bird, G.S., and Putney, J.W., Jr. 2001. Signaling pathways underlying 
muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J  Biol Chem. 
276:5613-5621.

278



Luo, D., Sun, H., Xiao, R.P., and Han, Q. 2005. Caffeine induced Ca2+ release and 
capacitative Ca2+ entry in human embryonic kidney (HEK293) cells. Eur J  
Pharmacol. 509:109-115.

Luo, W., Grupp, I.L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J.J., Doetschman, T., and 
Kranias, E.G. 1994. Targeted ablation of the phospholamban gene is associated with 
markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ 
Res. 75:401-409.

Lyng, F.M., Maguire, P., McClean, B., Seymour, C., and Mothersill, C. 2006. The 
involvement of calcium and MAP kinase signaling pathways in the production of 
radiation-induced bystander effects. Radiat Res. 165:400-409.

Lyng, F.M., Seymour, C.B., and Mothersill, C. 2000. Production of a signal by irradiated cells 
which leads to a response in unirradiated cells characteristic of initiation of apoptosis. 
BrJCancer. 83:1223-1230.

Lyng, F.M., Seymour, C.B., and Mothersill, C. 2002a. Early events in the apoptotic cascade 
initiated in cells treated with medium from the progeny o f irradiated cells. Radiat Prot 
Dosimetry. 99:169-172.

Lyng, F.M., Seymour, C.B., and Mothersill, C. 2002b. Initiation of apoptosis in cells exposed 
to medium from the progeny of irradiated cells: a possible mechanism for bystander- 
induced genomic instability? Radiat Res. 157:365-370.

MacDougall, L.K., Jones, L.R., and Cohen, P. 1991. Identification of the major protein 
phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. 
Eur J  Biochem. 196:725-734.

MacKenzie, A.E., Korneluk, R.G., Zorzato, F., Fujii, J., Phillips, M., lies, D., Wieringa, B., 
Leblond, S., Bailly, J., Willard, H.F., and et al. 1990. The human ryanodine receptor 
gene: its mapping to 19ql3.1, placement in a chromosome 19 linkage group, and 
exclusion as the gene causing myotonic dystrophy. Am J  Hum Genet. 46:1082-1089.

Mackenzie, L., Bootman, M.D., Laine, M., Berridge, M.J., Thuring, J., Holmes, A., Li, W.H., 
and Lipp, P. 2002. The role o f inositol 1,4,5-trisphosphate receptors in Ca2+ signalling 
and the generation of arrhythmias in rat atrial myocytes. J  Physiol. 541:395-409.

MacKrill, J.J. 1999. Protein-protein interactions in intracellular Ca2+-release channel function. 
Biochem J. 337 ( Pt 3):345-361.

Mackrill, J.J., Challiss, R.A., O’Connell D, A., Lai, F.A., and Nahorski, S.R. 1997. 
Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5- 
trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. 
Biochem J. 327 ( Pt l):251-258.

MacLennan, D.H., Duff, C., Zorzato, F., Fujii, J., Phillips, M., Korneluk, R.G., Frodis, W., 
Britt, B.A., and Worton, R.G. 1990. Ryanodine receptor gene is a candidate for 
predisposition to malignant hyperthermia. Nature. 343:559-561.

MacLennan, D.H., Toyofuku, T., and Kimura, Y. 1997. Sites of regulatory interaction 
between calcium ATPases and phospholamban. Basic Res Cardiol. 92 Suppl 1:11-15.

MacMillan, D., Chalmers, S., Muir, T.C., and McCarron, J.G. 2005. IP3-mediated Ca2+ 
increases do not involve the ryanodine receptor, but ryanodine receptor antagonists 
reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells. J  
Physiol. 569:533-544.

Maes, K., Missiaen, L., De Smet, P., Vanlingen, S., Callewaert, G., Parys, J.B., and De 
Smedt, H. 2000. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 
and type 3 by ATP. Cell Calcium. 27:257-267.

Magnino, F., Schmidt, K., Mery, L., and Dufour, J.F. 2001. Rat inositol 1,4,5-trisphosphate 
receptor isoform 2 interacts with itself in its C-terminal portion and upstream of the 
first transmembrane domain. Eur J  Biochem. 268:5981-5988.

Maier, L.S., Wahl-Schott, C., Horn, W., Weichert, S., Pagel, C., Wagner, S., Dybkova, N., 
Muller, O.J., Nabauer, M., Franz, W.M., and Pieske, B. 2005. Increased SR Ca2+

279



cycling contributes to improved contractile performance in SERCA2a-overexpressing 
transgenic rats. Cardiovasc Res. 67:636-646.

Mandi, M., and Bak, J. 2008. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and 
Ca2+ Mobilization. JRecept Signal Transduct Res. 28:163-184.

Mandil, R., Ashkenazi, E., Blass, M., Kronfeld, I., Kazimirsky, G., Rosenthal, G., Umansky,
F., Lorenzo, P.S., Blumberg, P.M., and Brodie, C. 2001. Protein kinase Calpha and 
protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma 
cells. Cancer Res. 61:4612-4619.

Marban, E. 2002. Cardiac channelopathies. Nature. 415:213-218.
Marx, S.O., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., and Marks, A.R. 

2001a. Coupled gating between cardiac calcium release channels (ryanodine 
receptors). Circ Res. 88:1151-1158.

Marx, S.O., Reiken, S., Hisamatsu, Y., Gaburjakova, M., Gaburjakova, J., Yang, Y.M., 
Rosemblit, N., and Marks, A.R. 2001b. Phosphorylation-dependent regulation of 
ryanodine receptors: a novel role for leucine/isoleucine zippers. J  Cell Biol. 153:699- 
708.

Marx, S.O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., and 
Marks, A.R. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium 
release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 
101:365-376.

Marziali, G., Rossi, D., Giannini, G., Charlesworth, A., and Sorrentino, V. 1996. cDNA 
cloning reveals a tissue specific expression of alternatively spliced transcripts of the 
ryanodine receptor type 3 (RyR3) calcium release channel. FEBS Lett. 394:76-82.

Masumiya, H., Li, P., Zhang, L., and Chen, S.R. 2001. Ryanodine sensitizes the Ca2+ release 
channel (ryanodine receptor) to Ca2+ activation. J  Biol Chem. 276:39727-39735.

Matsumoto, M., and Nagata, E. 1999. Type 1 inositol 1,4,5-trisphosphate receptor knock-out 
mice: their phenotypes and their meaning in neuroscience and clinical practice. J  Mol 
Med. 77:406-411.

Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., Minowa, O., 
Kuno, J., Sakakibara, S., Yamada, M., Yoneshima, H., Miyawaki, A., Fukuuchi, Y., 
Furuichi, T., Okano, H., Mikoshiba, K., and Noda, T. 1996. Ataxia and epileptic 
seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 379:168- 
171.

Mattei, M.G., Giannini, G., Moscatelli, F., and Sorrentino, V. 1994. Chromosomal 
localization o f murine ryanodine receptor genes RYR1, RYR2, and RYR3 by in situ 
hybridization. Genomics. 22:202-204.

Mattson, M.P., and Chan, S.L. 2003. Calcium orchestrates apoptosis. Nat Cell Biol. 5:1041- 
1043.

McCarron, J.G., Bradley, K.N., MacMillan, D., and Muir, T.C. 2003. Sarcolemma agonist- 
induced interactions between IP3 and ryanodine receptors in Ca2+ oscillations and 
waves in smooth muscle. Biochem Soc Trans. 31:920-924.

Meissner, G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by 
endogenous effectors. Annu Rev Physiol. 56:485-508.

Meissner, G. 2004. Molecular regulation of cardiac ryanodine receptor ion channel. Cell 
Calcium. 35:621-628.

Melino, G., Bemassola, F., Knight, R.A., Corasaniti, M.T., Nistico, G., and Finazzi-Agro, A.
1997. S-nitrosylation regulates apoptosis. Nature. 388:432-433.

Mendes, C.C., Gomes, D.A., Thompson, M., Souto, N.C., Goes, T.S., Goes, A.M., Rodrigues, 
M.A., Gomez, M.V., Nathanson, M.H., and Leite, M.F. 2005. The type III inositol
1,4 ,5 -trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into 
mitochondria. J  Biol Chem. 280:40892-40900.

280



Mercan, D., and Malaisse, W.J. 1996. Pancreatic islet B-cell individual variability rather than 
subpopulation heterogeneity. Mol Cell Endocrinol 118:163 -171.

Meur, G., Parker, A.K., Gergely, F.V., and Taylor, C.W. 2007. Targeting and retention of 
type 1 ryanodine receptors to the endoplasmic reticulum. J  Biol Chem. 282:23096- 
23103.

Meyers, M.B., Fischer, A., Sun, Y.J., Lopes, C.M., Rohacs, T., Nakamura, T.Y., Zhou, Y.Y., 
Lee, P.C., Altschuld, R.A., McCune, S.A., Coetzee, W.A., and Fishman, G.I. 2003. 
Sorcin regulates excitation-contraction coupling in the heart. J  Biol Chem. 278:28865- 
28871.

Michalak, M., Dupraz, P., and Shoshan-Barmatz, V. 1988. Ryanodine binding to 
sarcoplasmic reticulum membrane; comparison between cardiac and skeletal muscle. 
Biochim Biophys Acta. 939:587-594.

Mignery, G.A., Newton, C.L., Archer, B.T., 3rd, and Sudhof, T.C. 1990. Structure and 
expression of the rat inositol 1,4,5-trisphosphate receptor. J  Biol Chem. 265:12679- 
12685.

Mignery, G.A., Sudhof, T.C., Takei, K., and De Camilli, P. 1989. Putative receptor for 
inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 342:192-195.

Mikoshiba, K. 2007. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J  
Neurochem. 102:1426-1446.

Mikoshiba, K., Furuichi, T., and Miyawaki, A. 1994. Structure and function of IP3 receptors. 
Semin Cell Biol. 5:273-281.

Miller, S.L., Currie, S., Loughrey, C.M., Kettlewell, S., Seidler, T., Reynolds, D.F., 
Hasenfuss, G., and Smith, G.L. 2005. Effects of calsequestrin over-expression on 
excitation-contraction coupling in isolated rabbit cardiomyocytes. Cardiovasc Res. 
67:667-677.

Milner, R.E., Famulski, K.S., and Michalak, M. 1992. Calcium binding proteins in the 
sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell 
Biochem. 112:1-13.

Milting, H., Janssen, P.M., Wangemann, T., Kogler, H., Domeier, E., Seidler, T., Hakim, K., 
Grapow, M., Zeitz, O., Prestle, J., and Zerkowski, H.R. 2001. FK506 does not affect 
cardiac contractility and adrenergic response in vitro. Eur J  Pharmacol. 430:299-304.

Missiaen, L., Parys, J.B., De Smedt, H., Sienaert, I., Sipma, H., Vanlingen, S., Maes, K., 
Kunzelmann, K., and Casteels, R. 1998. Inhibition of inositol trisphosphate-induced 
calcium release by cyclic ADP-ribose in A7r5 smooth-muscle cells and in 16HBE Mo- 
bronchial mucosal cells. Biochem J. 329 ( Pt 3):489-495.

Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T., and lino, M. 1999. 
Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. Embo J. 
18:1303-1308.

Miyamoto, S., Howes, A.L., Adams, J.W., Dorn, G.W., 2nd, and Brown, J.H. 2005. Ca2+ 
dysregulation induces mitochondrial depolarization and apoptosis: role of Na+/Ca2+ 
exchanger and AKT. J  Biol Chem. 280:38505-38512.

Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., and 
Mikoshiba, K. 1992. Block of Ca2+ wave and Ca2+ oscillation by antibody to the 
inositol 1 ,4 ,5 -trisphosphate receptor in fertilized hamster eggs. Science. 257:251-255.

Mochizuki, M., Yano, M., Oda, T., Tateishi, H., Kobayashi, S., Yamamoto, T., Ikeda, Y., 
Ohkusa, T., Ikemoto, N., and Matsuzaki, M. 2007. Scavenging free radicals by low- 
dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine 
receptor in heart failure. J  Am Coll Cardiol. 49:1722-1732.

Moore, R.A., Nguyen, H., Galceran, J., Pessah, I.N., and Allen, P.D. 1998. A transgenic 
myogenic cell line lacking ryanodine receptor protein for homologous expression 
studies: reconstitution of R ylR  protein and function. J  Cell Biol. 140:843-851.

281



Mori, F., Fukaya, M., Abe, H., Wakabayashi, K., and Watanabe, M. 2000. Developmental 
changes in expression of the three ryanodine receptor mRNAs in the mouse brain. 
Neurosci Lett. 285:57-60.

Moschella, M.C., and Marks, A.R. 1993. Inositol 1,4,5-trisphosphate receptor expression in 
cardiac myocytes. J  Cell Biol. 120:1137-1146.

Mothersill, C., Lyng, F., Seymour, C., Maguire, P., Lorimore, S., and Wright, E. 2005. 
Genetic factors influencing bystander signaling in murine bladder epithelium after 
low-dose irradiation in vivo. Radiat Res. 163:391-399.

Muller-Taubenberger, A., Vos, M.J., Bottger, A., Lasi, M., Lai, F.P., Fischer, M., and Rottner, 
K. 2006. Monomeric red fluorescent protein variants used for imaging studies in 
different species. Eur J  Cell Biol. 85:1119-1129.

Mundell, S.J., and Benovic, J.L. 2000. Selective regulation of endogenous G protein-coupled 
receptors by arrestins in HEK293 cells. J  Biol Chem. 275:12900-12908.

Murayama, T., Oba, T., Hara, H., Wakebe, K., Ikemoto, N., and Ogawa, Y. 2006. Postulated 
role of interdomain interaction between regions 1 and 2  within type 1 ryanodine 
receptor in the pathogenesis of porcine malignant hyperthermia. Biochem J.

Murthy, K.S., and Zhou, H. 2003. Selective phosphorylation of the IP3RI in vivo by cGMP- 
dependent protein kinase in smooth muscle. Am J  Physiol Gastrointest Liver Physiol. 
284:G221-230.

Nakamura, K., Robertson, M., Liu, G., Dickie, P., Nakamura, K., Guo, J.Q., Duff, H.J., Opas, 
M., Kavanagh, K., and Michalak, M. 2001. Complete heart block and sudden death in 
mice overexpressing calreticulin. J  Clin Invest. 107:1245-1253.

Nakaya, H., Furusawa, Y., Ogura, T., Tamagawa, M., and Uemura, H. 2000. Inhibitory 
effects of JTV-519, a novel cardioprotective drug, on potassium currents and 
experimental atrial fibrillation in guinea-pig hearts. Br J  Pharmacol. 131:1363-1372.

Nakayama, T., Hattori, M., Uchida, K., Nakamura, T., Tateishi, Y., Bannai, H., Iwai, M., 
Michikawa, T., Inoue, T., and Mikoshiba, K. 2004. The regulatory domain of the 
inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: 
possible physiological significance of specific cleavage by caspase 3. Biochem J. 
377:299-307.

Nanavaty, U.B., Pawliczak, R., Doniger, J., Gladwin, M.T., Cowan, M.J., Logun, C., and 
Shelhamer, J.H. 2002. Oxidant-induced cell death in respiratory epithelial cells is due 
to DNA damage and loss of ATP. Exp Lung Res. 28:591-607.

Napolitano, C., and Priori, S.G. 2006. Brugada syndrome. Orphanet J  Rare Dis. 1:35.
Nathanson, N.M., Klein, W.L., and Nirenberg, M. 1978. Regulation of adenylate cyclase 

activity mediated by muscarinic acetylcholine receptors. Proc Natl Acad Sci US A .  
75:1788-1791.

Neveu, M.J., Hully, J.R., Babcock, K.L., Vaughan, J., Hertzberg, E.L., Nicholson, B.J., Paul,
D.L., and Pitot, H.C. 1995. Proliferation-associated differences in the spatial and 
temporal expression of gap junction genes in rat liver. Hepatology. 22:202-212.

Newton, C.L., Mignery, G.A., and Sudhof, T.C. 1994. Co-expression in vertebrate tissues and 
cell lines o f multiple inositol 1,4,5-trisphosphate (IP3) receptors with distinct affinities 
for IP3 . J  Biol Chem. 269:28613-28619.

Nicotera, P., Leist, M., and Ferrando-May, E. 1998. Intracellular ATP, a switch in the 
decision between apoptosis and necrosis. Toxicol Lett. 102-103:139-142.

Nicotera, P., and Melino, G. 2004. Regulation of the apoptosis-necrosis switch. Oncogene. 
23:2757-2765.

Niggli, E., Piston, D.W., Kirby, M.S., Cheng, H., Sandison, D.R., Webb, W.W., and Lederer, 
W.J. 1994. A confocal laser scanning microscope designed for indicators with 
ultraviolet excitation wavelengths. Am J  Physiol. 266:C303-310.

Nishio, H., Iwata, M., Tamura, A., Miyazaki, T., Tsuboi, K., and Suzuki, K. 2008. 
Identification of a novel mutation V2321M of the cardiac ryanodine receptor gene of

282



sudden unexplained death and a phenotypic study of the gene mutations. Leg Med 
(Tokyo).

Niyaz, M., Numakawa, T., Matsuki, Y., Kumamaru, E., Adachi, N., Kitazawa, H., Kunugi,
H., and Kudo, M. 2007. MCI-186 prevents brain tissue from neuronal damage in 
cerebral infarction through the activation of intracellular signaling. J  Neurosci Res 
85:2933-2942.

Noguchi, T., Ishii, K., Fukutomi, H., Naguro, I., Matsuzawa, A., Takeda, K., and Ichijo, H.
2008. Requirement of reactive oxygen species-dependent activation of ASKl-p38 
MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J  Biol Chem. 
283:7657-7665.

Noor, J.I., Ueda, Y., Ikeda, T., and Ikenoue, T. 2007. Edaravone inhibits lipid peroxidation in 
neonatal hypoxic-ischemic rats: an in vivo microdialysis study. Neurosci Lett. 414:5- 
9.

North, R.A., and Verkhratsky, A. 2006. Purinergic transmission in the central nervous system. 
Pflugers Arch. 452:479-485.

Novak, E.J., and Rabinovitch, P.S. 1994. Improved sensitivity in flow cytometric intracellular 
ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. Cytometry. 
17:135-141.

O'Neill, C., Cowbum, R.F., Bonkale, W.L., Ohm, T.G., Fastbom, J., Carmody, M., and 
Kelliher, M. 2001. Dysfunctional intracellular calcium homoeostasis: a central cause 
of neurodegeneration in Alzheimer's disease. Biochem Soc Symp. 177-194.

Oakes, S.A., Scorrano, L., Opferman, J.T., Bassik, M.C., Nishino, M., Pozzan, T., and 
Korsmeyer, S.J. 2005. Proapoptotic BAX and BAK regulate the type 1 inositol 
trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl 
Acad Sci USA.  102:105-110.

Oda, T., Yano, M., Yamamoto, T., Tokuhisa, T., Okuda, S., Doi, M., Ohkusa, T., Ikeda, Y., 
Kobayashi, S., Ikemoto, N., and Matsuzaki, M. 2005. Defective regulation of 
interdomain interactions within the ryanodine receptor plays a key role in the 
pathogenesis of heart failure. Circulation. 111:3400-3410.

Ondrias, K., Marx, S.O., Gaburjakova, M., and Marks, A.R. 1998. FKBP12 modulates gating 
of the ryanodine receptor/calcium release channel. Ann N Y  Acad Sci. 853:149-156.

Onogi, H., Minatoguchi, S., Chen, X.H., Bao, N., Kobayashi, H., Misao, Y., Yasuda, S., 
Yamaki, T., Maruyama, R., Uno, Y., Arai, M., Takemura, G., and Fujiwara, H. 2006. 
Edaravone reduces myocardial infarct size and improves cardiac function and 
remodelling in rabbits. Clin Exp Pharmacol Physiol. 33:1035-1041.

Orrenius, S., Zhivotovsky, B., and Nicotera, P. 2003. Regulation of cell death: the calcium- 
apoptosis link. Nat Rev Mol Cell Biol. 4:552-565.

Ostrom, R.S., Gregorian, C., and Insel, P.A. 2000. Cellular release of and response to ATP as 
key determinants o f the set-point of signal transduction pathways. J  Biol Chem. 
275:11735-11739.

Otsu, K., Fujii, J., Periasamy, M., Difilippantonio, M., Uppender, M., Ward, D.C., and 
MacLennan, D.H. 1993. Chromosome mapping of five human cardiac and skeletal 
muscle sarcoplasmic reticulum protein genes. Genomics. 17:507-509.

Otsu, K., Willard, H.F., Khanna, V.K., Zorzato, F., Green, N.M., and MacLennan, D.H. 1990. 
Molecular cloning o f cDNA encoding the Ca2+ release channel (ryanodine receptor) of 
rabbit cardiac muscle sarcoplasmic reticulum. J  Biol Chem. 265:13472-13483.

Paavola, J., Viitasalo, M., Laitinen-Forsblom, P.J., Pasternack, M., Swan, H., Tikkanen, I., 
Toivonen, L., Kontula, K., and Laine, M. 2007. Mutant ryanodine receptors in 
catecholaminergic polymorphic ventricular tachycardia generate delayed 
afterdepolarizations due to increased propensity to Ca2+ waves. Eur Heart J. 28:1135- 
1142.

283



Pan, Z., Damron, D., Nieminen, A.L., Bhat, M.B., and Ma, J. 2000. Depletion of intracellular 
Ca + by caffeine and ryanodine induces apoptosis of Chinese hamster ovary cells 
transfected with ryanodine receptor. J  Biol Chem. 275:19978-19984.

Paolini, C., Fessenden, J.D., Pessah, I.N., and Franzini-Armstrong, C. 2004. Evidence for 
conformational coupling between two calcium channels. Proc Natl Acad Sci U S A  
101:12748-12752.

Park, I.C., Park, M.J., Rhee, C.H., Lee, J.I., Choe, T.B., Jang, J.J., Lee, S.H., and Hong, S.I.
2001. Protein kinase C activation by PMA rapidly induces apoptosis through caspase- 
3/CPP32 and serine protease(s) in a gastric cancer cell line. Int J  Oncol. 18:1077- 
1083.

Parker, A.K., Gergely, F.V., and Taylor, C.W. 2004. Targeting o f inositol 1,4,5-trisphosphate 
receptors to the endoplasmic reticulum by multiple signals within their transmembrane 
domains. J  Biol Chem. 279:23797-23805.

Paszty, K., Antalffy, G., Hegedus, L., Padanyi, R., Penheiter, A.R., Filoteo, A.G., Penniston, 
J.T., and Enyedi, A. 2007. Cleavage of the plasma membrane Ca2+ATPase during 
apoptosis. Ann N  Y Acad Sci. 1099:440-450.

Paszty, K., Verma, A.K., Padanyi, R., Filoteo, A.G., Penniston, J.T., and Enyedi, A. 2002. 
Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 
during the early phase o f apoptosis. J  Biol Chem. 277:6822-6829.

Patel, S., Joseph, S.K., and Thomas, A.P. 1999. Molecular properties of inositol 1,4,5- 
trisphosphate receptors. Cell Calcium. 25:247-264.

Peluso, J.J., Pappalardo, A., and Fernandez, G. 2001. Basic fibroblast growth factor maintains 
calcium homeostasis and granulosa cell viability by stimulating calcium efflux via a 
PKC delta-dependent pathway. Endocrinology. 142:4203-4211.

Pepper, C., Hoy, T., and Bentley, P. 1998. Elevated Bcl-2/Bax are a consistent feature of 
apoptosis resistance in B-cell chronic lymphocytic leukaemia and are correlated with 
in vivo chemoresistance. Leuk Lymphoma. 28:355-361.

Pessah, I.N., Waterhouse, A.L., and Casida, J.E. 1985. The calcium-ryanodine receptor 
complex of skeletal and cardiac muscle. Biochem Biophys Res Commun. 128:449-456.

Petersen, O.H., and Burdakova, N. 2002. The specificity of Ca2+ signalling. Acta Physiol 
Hung. 89:439-450.

Pettit, R.K., Weber, C.A., Kean, M.J., Hoffmann, H., Pettit, G.R., Tan, R., Franks, K.S., and 
Horton, M.L. 2005. Microplate Alamar blue assay for Staphylococcus epidermidis 
biofilm susceptibility testing. Antimicrob Agents Chemother. 49:2612-2617.

Picht, E., DeSantiago, J., Huke, S., Kaetzel, M.A., Dedman, J.R., and Bers, D.M. 2007. 
CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency- 
dependent acceleration of relaxation and Ca2+ current facilitation. J  Mol Cell Cardiol. 
42:196-205.

Pitt, G.S. 2007. Calmodulin and CaMKII as molecular switches for cardiac ion channels. 
Cardiovasc Res. 73:641-647.

Pitts, J.D., Finbow, M.E., and Kam, E. 1988. Junctional communication and cellular 
differentiation. Br J  Cancer Suppl. 9:52-57.

Pizzuto, M.F., Valverde, A.M., Heavey, B.M., Banas, M.D., Michelakis, N., Suzuki, G., 
Fallavollita, J.A., and Canty, J.M., Jr. 2006. Brief sympathetic activation precedes the 
development of ventricular tachycardia and ventricular fibrillation in hibernating 
myocardium. J  Electrocardiol. 39: S140-145.

Postma, A.V., Denjoy, I., Hoomtje, T.M., Lupoglazoff, J.-M., Da Costa, A., Sebillon, P., 
Mannens, M.M.A.M., Wilde, A.A.M., and Guicheney, P. 2002. Absence of 
calsequestrin 2  causes severe forms of catecholaminergic polymorphic ventricular 
tachycardia. Circ Res. 91:21e-26.

Postma, A.V., Denjoy, I., Kamblock, J., Alders, M., Lupoglazoff, J.M., Vaksmann, G., 
Dubosq-Bidot, L., Sebillon, P., Mannens, M.M., Guicheney, P., and Wilde, A.A.

284



2005. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, 
bradycardia, and follow up of the patients. J  Med Genet. 42:863-870.

Pott, C., Goldhaber, J.I., and Philipson, K.D. 2007a. Homozygous overexpression of the 
Na+/Ca2+ exchanger in mice: evidence for increased transsarcolemmal Ca2+ fluxes. 
Ann N Y  Acad Sci. 1099:310-314.

Pott, C., Henderson, S.A., Goldhaber, J.I., and Philipson, K.D. 2007b. Na+/Ca2+ exchanger 
knockout mice: plasticity of cardiac excitation-contraction coupling. Ann N Y Acad 
Sci. 1099:270-275.

Pott, C., Philipson, K.D., and Goldhaber, J.I. 2005. Excitation-contraction coupling in 
Na+/Ca + exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res. 
97:1288-1295.

Pott, C., Ren, X., Tran, D.X., Yang, M.J., Henderson, S., Jordan, M.C., Roos, K.P., Garfinkel, 
A., Philipson, K.D., and Goldhaber, J.I. 2007c. Mechanism of shortened action 
potential duration in Na+/Ca2+ exchanger knockout mice. Am J  Physiol Cell Physiol. 
292:C968-973.

Pott, C., Yip, M., Goldhaber, J.I., and Philipson, K.D. 2007d. Regulation of cardiac L-type 
Ca2+ current in Na+/Ca2+ exchanger knockout mice: functional coupling of the Ca2+ 
channel and the Na+/Ca2+ exchanger. Biophys J. 92:1431-1437.

Powell, J.A., Carrasco, M.A., Adams, D.S., Drouet, B., Rios, J., Muller, M., Estrada, M., and 
Jaimovich, E. 2001. IP3 receptor function and localization in myotubes: an unexplored 
Ca2+ signaling pathway in skeletal muscle. J  Cell Sci. 114:3673-3683.

Princen, F., Robe, P., Gros, D., Jarry-Guichard, T., Gielen, J., Merville, M.P., and Bours, V.
2001. Rat gap junction connexin-30 inhibits proliferation of glioma cell lines. 
Carcinogenesis. 22:507-513.

Priori, S.G., and Corr, P.B. 1990. Mechanisms underlying early and delayed 
afterdepolarizations induced by catecholamines. Am J  Physiol. 258:H1796-1805.

Priori, S.G., Napolitano, C., Memmi, M., Colombi, B., Drago, F., Gasparini, M., DeSimone, 
L., Coltorti, F., Bloise, R., Keegan, R., Cruz Filho, F.E., Vignati, G., Benatar, A., and 
DeLogu, A. 2002. Clinical and molecular characterization of patients with 
catecholaminergic polymorphic ventricular tachycardia. Circulation. 106:69-74.

Priori, S.G., Napolitano, C., Tiso, N., Memmi, M., Vignati, G., Bloise, R., Sorrentino, V., and 
Danieli, G.A. 2001. Mutations in the cardiac ryanodine receptor gene (hRyR2) 
underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 
103:196-200.

Proven, A., Roderick, H.L., Conway, S.J., Berridge, M.J., Horton, J.K., Capper, S.J., and 
Bootman, M.D. 2006. Inositol 1,4,5-trisphosphate supports the arrhythmogenic action 
of endothelin-1 on ventricular cardiac myocytes. J  Cell Sci. 119:3363-3375.

Quane, K.A., Healy, J.M., Keating, K.E., Manning, B.M., Couch, F.J., Palmucci, L.M., 
Doriguzzi, C., Fagerlund, T.H., Berg, K., Ording, H., and et al. 1993. Mutations in the 
ryanodine receptor gene in central core disease and malignant hyperthermia. Nat 
Genet. 5:51-55.

Querfurth, H.W., Haughey, N.J., Greenway, S.C., Yacono, P.W., Golan, D.E., and Geiger, 
J.D. 1998. Expression o f ryanodine receptors in human embryonic kidney (HEK293) 
cells. Biochem J. 334 ( Pt l):79-86.

Radermacher, M., Rao, V., Grassucci, R., Frank, J., Timerman, A.P., Fleischer, S., and 
Wagenknecht, T. 1994. Cryo-electron microscopy and three-dimensional 
reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. 
J  Cell Biol. 127:411-423.

Ramos-Franco, J., Fill, M., and Mignery, G.A. 1998. Isoform-specific function of single 
inositol 1,4,5-trisphosphate receptor channels. Biophys J. 75:834-839.

Ranu, H.K., Terracciano, C.M., Davia, K., Bemobich, E., Chaudhri, B., Robinson, S.E., Bin 
Kang, Z., Hajjar, R.J., MacLeod, K.T., and Harding, S.E. 2002. Effects of Na+/Ca2+-

285



exchanger overexpression on excitation-contraction coupling in adult rabbit 
ventricular myocytes. J  Mol Cell Cardiol. 34:389-400.

Regimbald-Dumas, Y., Arguin, G., Fregeau, M.O., and Guillemette, G. 2007. cAMP- 
dependent protein kinase enhances inositol 1,4,5-trisphosphate-induced Ca2+ release in 
AR4-2J cells. J  Cell Biochem. 101:609-618.

Reiken, S., Gaburjakova, M., Guatimosim, S., Gomez, A.M., D'Armiento, J., Burkhoff, D., 
Wang, J., Vassort, G., Lederer, W.J., and Marks, A.R. 2003a. Protein kinase A 
phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal 
and failing hearts. Role of phosphatases and response to isoproterenol. J  Biol Chem. 
278:444-453.

Reiken, S., Lacampagne, A., Zhou, H., Kherani, A., Lehnart, S.E., Ward, C., Huang, F., 
Gaburjakova, M., Gaburjakova, J., Rosemblit, N., Warren, M.S., He, K.L., Yi, G.H., 
Wang, J., Burkhoff, D., Vassort, G., and Marks, A.R. 2003b. PKA phosphorylation 
activates the calcium release channel (ryanodine receptor) in skeletal muscle: 
defective regulation in heart failure. J  Cell Biol. 160:919-928.

Reiken, S., Wehrens, X.H., Vest, J.A., Barbone, A., Klotz, S., Mancini, D., Burkhoff, D., and 
Marks, A.R. 2003c. Beta-blockers restore calcium release channel function and 
improve cardiac muscle performance in human heart failure. Circulation. 107:2459- 
2466.

Reilly, A.M., Petrou, S., Panchal, R.G., and Williams, D.A. 2001. Restoration of calcium 
handling properties o f adult cardiac myocytes from hypertrophied hearts. Cell 
Calcium. 30:59-66.

Reuter, H., Han, T., Motter, C., Philipson, K.D., and Goldhaber, J.I. 2004. Mice 
overexpressing the cardiac sodium-calcium exchanger: defects in excitation- 
contraction coupling. J  Physiol. 554:779-789.

Reuter, H., Henderson, S.A., Han, T., Mottino, G.A., Frank, J.S., Ross, R.S., Goldhaber, J.I., 
and Philipson, K.D. 2003. Cardiac excitation-contraction coupling in the absence of 
Na+/Ca2+ exchange. Cell Calcium. 34:19-26.

Rintoul, G.L., Raymond, L.A., and Baimbridge, K.G. 2001. Calcium buffering and protection 
from excitotoxic cell death by exogenous calbindin-D28k in HEK293 cells. Cell 
Calcium. 29:277-287.

Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. 1993. Microdomains with high Ca2+ close 
to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 
262:744-747.

Rodriguez-Sinovas, A., Cabestrero, A., Lopez, D., Torre, I., Morente, M., Abelian, A., Miro,
E., Ruiz-Meana, M., and Garcia-Dorado, D. 2007. The modulatory effects of connexin 
43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol. 94:219-232.

Rodriguez, P., Bhogal, M.S., and Colyer, J. 2003. Stoichiometric phosphorylation of cardiac 
ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein 
kinase A. J.Biol. Chem. 278:38593-38600.

Rossi, D., Simeoni, I., Micheli, M., Bootman, M., Lipp, P., Allen, P.D., and Sorrentino, V.
2002. RyRl and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 
cells. J  Cell Sci. 115:2497-2504.

Rosso, R., Kalman, J.M., Rogowski, O., Diamant, S., Birger, A., Biner, S., Belhassen, B., and 
Viskin, S. 2007. Calcium channel blockers and beta-blockers versus beta-blockers 
alone for preventing exercise-induced arrhythmias in catecholaminergic polymorphic 
ventricular tachycardia. Heart Rhythm. 4:1149-1154.

Ruegg, J.C. 1990. Towards a molecular understanding of contractility. Cardioscience. 1:163- 
168.

Sako, Y., Sekihata, A., Yanagisawa, Y., Yamamoto, M., Shimada, Y., Ozaki, K., and Kusumi, 
A. 1997. Comparison of two-photon excitation laser scanning microscopy with UV-

2 8 6



confocal laser scanning microscopy in three-dimensional calcium imaging using the 
fluorescence indicator Indo-1. JMicrosc. 185:9-20.

Samso, M., Wagenknecht, T., and Allen, P.D. 2005. Internal structure and visualization of 
transmembrane domains of the RyRl calcium release channel by cryo-EM. Nat Struct 
Mol Biol 12:539-544.

Sanchez, G., Escobar, M., Pedrozo, Z., Macho, P., Domenech, R., Hartel, S., Hidalgo, C., and 
Donoso, P. 2008. Exercise and tachycardia increase NADPH oxidase and ryanodine 
receptor-2 activity: possible role in cardioprotection. Cardiovasc Res. 77:380-386.

Sande, J.B., Sjaastad, I., Hoen, I.B., Bokenes, J., Tonnessen, T., Holt, E., Lunde, P.K., and 
Christensen, G. 2002. Reduced level of serine(16) phosphorylated phospholamban in 
the failing rat myocardium: a major contributor to reduced SERCA2 activity. 
Cardiovasc Res. 53:382-391.

Sandstrom, K., Hakansson, L., Lukinius, A., and Venge, P. 2000. A method to study 
apoptosis in eosinophils by flow cytometry. J  Immunol Methods. 240:55-68.

Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain-terminating 
inhibitors. Proc Natl Acad Sci USA.  74:5463-5467.

Santana, L.F., Kranias, E.G., and Lederer, W.J. 1997. Calcium sparks and excitation- 
contraction coupling in phospholamban-deficient mouse ventricular myocytes. J  
Physiol. 503 ( Pt l):21-29.

Sato, Y., Ferguson, D.G., Sako, H., Dorn, G.W., 2nd, Kadambi, V.J., Yatani, A., Hoit, B.D., 
Walsh, R.A., and Kranias, E.G. 1998. Cardiac-specific overexpression of mouse 
cardiac calsequestrin is associated with depressed cardiovascular function and 
hypertrophy in transgenic mice. J  Biol Chem. 273:28470-28477.

Schachter, J.B., Sromek, S.M., Nicholas, R.A., and Harden, T.K. 1997. HEK293 human 
embryonic kidney cells endogenously express the P2Y1 and P2Y2 receptors. 
Neuropharmacology. 36:1181-1187.

Scheinman, M.M., and Lam, J. 2006. Exercise-induced ventricular arrhythmias in patients 
with no structural cardiac disease. Annu Rev Med. 57:473-484.

Schillinger, W., Janssen, P.M., Emami, S., Henderson, S.A., Ross, R.S., Teucher, N., Zeitz, 
O., Philipson, K.D., Prestle, J., and Hasenfuss, G. 2000. Impaired contractile 
performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of 
Na+/Ca2+exchanger. Circ Res. 87:581-587.

Schug, Z.T., da Fonseca, P.C., Bhanumathy, C.D., Wagner, L., 2nd, Zhang, X., Bailey, B., 
Morris, E.P., Yule, D.I., and Joseph, S.K. 2008. Molecular Characterization of the 
Inositol 1,4,5-Trisphosphate Receptor Pore-forming Segment. J  Biol Chem. 283:2939- 
2948.

Schug, Z.T., and Joseph, S.K. 2006. The role of the S4-S5 linker and C-terminal tail in 
inositol 1,4,5-trisphosphate receptor function. J  Biol Chem. 281:24431-24440.

Schulteis, C.T., Nagaya, N., and Papazian, D.M. 1996. Intersubunit interaction between 
amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels. 
Biochemistry. 35:12133-12140.

Schumacher, C., Konigs, B., Sigmund, M., Kohne, B., Schondube, F., Vob, M., Stein, B., 
Weil, J., and Hanrath, P. 1995. The ryanodine binding sarcoplasmic reticulum calcium 
release channel in nonfailing and in failing human myocardium. Naunyn 
Schmiedebergs Arch Pharmacol. 353:80-85.

Schuster, S., Knoke, B., and Marhl, M. 2005. Differential regulation of proteins by bursting 
calcium oscillations—a theoretical study. Biosystems. 81:49-63.

Schuster, S., Marhl, M., and Hofer, T. 2002. Modelling of simple and complex calcium 
oscillations. From single-cell responses to intercellular signalling. Eur J  Biochem. 
269:1333-1355.

Schwab, B.L., Guerini, D., Didszun, C., Bano, D., Ferrando-May, E., Fava, E., Tam, J., Xu,
D., Xanthoudakis, S., Nicholson, D.W., Carafoli, E., and Nicotera, P. 2002. Cleavage

287



of plasma membrane calcium pumps by caspases: a link between apoptosis and 
necrosis. Cell Death Differ. 9:818-831.

Sedlak, T.W., and Snyder, S.H. 2006. Messenger molecules and cell death: therapeutic 
implications. Jama. 295:81-89.

Seisenberger, C., Specht, V., Welling, A., Platzer, J., Pfeifer, A., Kuhbandner, S., Striessnig, 
J., Klugbauer, N., Feil, R., and Hofmann, F. 2000. Functional embryonic 
cardiomyocytes after disruption of the L-type alphalC (Cavl.2) calcium channel gene 
in the mouse. J  Biol Chem. 275:39193-39199.

Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., and Tsien, 
R.Y. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived 
from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567-1572.

Shaner, N.C., Patterson, G.H., and Davidson, M.W. 2007. Advances in fluorescent protein 
technology. J  Cell Sci. 120:4247-4260.

Shannon, T.R., Pogwizd, S.M., and Bers, D.M. 2003. Elevated sarcoplasmic reticulum Ca2+ 
leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. 93:592-594.

Sharma, M.R., Jeyakumar, L.H., Fleischer, S., and Wagenknecht, T. 2006. Three-dimensional 
visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine 
receptor. Biophys J. 90:164-172.

Shen, X., Franzini-Armstrong, C., Lopez, J.R., Jones, L.R., Kobayashi, Y.M., Wang, Y., 
Kerrick, W.G., Caswell, A.H., Potter, J.D., Miller, T., Allen, P.D., and Perez, C.F.
2007. Triadins modulate intracellular Ca2+ homeostasis but are not essential for 
excitation-contraction coupling in skeletal muscle. J  Biol Chem.

Shimomura, O., Johnson, F.H., and Saiga, Y. 1962. Extraction, purification and properties of 
aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J  
Cell Comp Physiol. 59:223-239.

Shimomura, O., Johnson, F.H., and Saiga, Y. 1963. Further Data on the Bioluminescent 
Protein, Aequorin. J  Cell Physiol. 62:1-8.

Shtifman, A., Ward, C.W., Yamamoto, T., Wang, J., Olbinski, B., Valdivia, H.H., Ikemoto, 
N., and Schneider, M.F. 2002. Interdomain interactions within ryanodine receptors 
regulate Ca2+ spark frequency in skeletal muscle. J  Gen Physiol. 119:15-32.

Shuba la, M. 2007. [Calcium signaling in carcinogenesis]. Fiziol Zh. 53:110-128.
Sitsapesan, R., McGarry, S.J., and Williams, A.J. 1994. Cyclic ADP-ribose competes with 

ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca2+- 
release channel. Circ Res. 75:596-600.

Sitsapesan, R., and Williams, A.J. 1994. Regulation of the gating of the sheep cardiac 
sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J  Membr Biol. 137:215- 
226.

Smith, G.D., Keizer, J.E., Stem, M.D., Lederer, W.J., and Cheng, H. 1998. A simple 
numerical model o f calcium spark formation and detection in cardiac myocytes. 
Biophys J. 75:15-32.

Sobie, E.A., Guatimosim, S., Gomez-Viquez, L., Song, L.S., Hartmann, H., Saleet Jafri, M., 
and Lederer, W.J. 2006. The Ca leak paradox and rogue ryanodine receptors: SR 
Ca2+ efflux theory and practice. Prog Biophys Mol Biol. 90:172-185.

Song, L., Alcalai, R., Arad, M., Wolf, C.M., Toka, O., Conner, D.A., Beml, C.I., Eldar, M., 
Seidman, C.E., and Seidman, J.G. 2007. Calsequestrin 2 (CASQ2) mutations increase 
expression o f calreticulin and ryanodine receptors, causing catecholaminergic 
polymorphic ventricular tachycardia. J  Clin Invest. 117:1814-1823.

Song, L.S., Guia, A., Muth, J.N., Rubio, M., Wang, S.Q., Xiao, R.P., Josephson, I.R., Lakatta,
E.G., Schwartz, A., and Cheng, H. 2002. Ca2+ signaling in cardiac myocytes 
overexpressing the alpha(l) subunit of L-type Ca2+ channel. Circ Res. 90:174-181.

288



Song, L.S., Sobie, E.A., McCulle, S., Lederer, W.J., Balke, C.W., and Cheng, H. 2006. 
Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci U S A  
103:4305-4310.

Sorrentino, V., Giannini, G., Malzac, P., and Mattei, M.G. 1993. Localization of a novel 
ryanodine receptor gene (RYR3) to human chromosome 15ql4-ql5 by in situ 
hybridization. Genomics. 18:163-165.

Sorrentino, V., and Volpe, P. 1993. Ryanodine receptors: how many, where and why? Trends 
Pharmacol Sci. 14:98-103.

Sosinsky, G.E., and Nicholson, B.J. 2005. Structural organization of gap junction channels. 
Biochim Biophys Acta. 1711:99-125.

Splawski, I., Timothy, K.W., Decher, N., Kumar, P., Sachse, F.B., Beggs, A.H., Sanguinetti, 
M.C., and Keating, M.T. 2005. Severe arrhythmia disorder caused by cardiac L-type 
calcium channel mutations. Proc Natl Acad Sci U S A .  102:8089-8096; discussion 
8086-8088.

Splawski, I., Timothy, K.W., Sharpe, L.M., Decher, N., Kumar, P., Bloise, R., Napolitano, C., 
Schwartz, P.J., Joseph, R.M., Condouris, K., Tager-Flusberg, H., Priori, S.G., 
Sanguinetti, M.C., and Keating, M.T. 2004. Cav 1.2 calcium channel dysfunction 
causes a multisystem disorder including arrhythmia and autism. Cell. 119:19-31.

Stamatakis, M., and Mantzaris, N.V. 2006. Modeling o f ATP-mediated signal transduction 
and wave propagation in astrocytic cellular networks. J  Theor Biol. 241:649-668.

Stange, M., Xu, L., Balshaw, D., Yamaguchi, N., and Meissner, G. 2003. Characterization of 
recombinant skeletal muscle (ser-2843) and cardiac muscle (ser-2809) ryanodine 
receptor phosphorylation mutants. J. Biol. Chem. 278:51693-51702.

Starmer, C.F., Lastra, A.A., Nesterenko, V.V., and Grant, A.O. 1991. Proarrhythmic response 
to sodium channel blockade. Theoretical model and numerical experiments. 
Circulation. 84:1364-1377.

Stauffer, K.A., and Unwin, N. 1992. Structure of gap junction channels. Semin Cell Biol. 
3:17-20.

Steele, D.S., and Duke, A.M. 2007. Defective Mg regulation of RyRl as a causal factor in 
malignant hyperthermia. Arch Biochem Biophys. 458:57-64.

Stetzer, E., Ebbinghaus, U., Storch, A., Poteur, L., Schrattenholz, A., Kramer, G., Methfessel, 
C., and Maelicke, A. 1996. Stable expression in HEK-293 cells of the rat alpha3/beta4 
subtype of neuronal nicotinic acetylcholine receptor. FEBS Lett. 397:39-44.

Stewart, N., and Bacchetti, S. 1991. Expression of SV40 large T antigen, but not small t 
antigen, is required for the induction of chromosomal aberrations in transformed 
human cells. Virology. 180:49-57.

Stewart, R., Song, L., Carter, S.M., Sigalas, C., Zaccai, N.R., Kanamarlapudi, V., Bhat, M.B., 
Takeshima, H., and Sitsapesan, R. 2008. Single-Channel Characterization of the 
Rabbit Recombinant RyR2 Reveals a Novel Inactivation Property of Physiological 
Concentrations of ATP. J  Membr Biol.

Stoyanovsky, D., Murphy, T., Anno, P.R., Kim, Y.M., and Salama, G. 1997. Nitric oxide 
activates skeletal and cardiac ryanodine receptors. Cell Calcium. 21:19-29.

Sudhof, T.C., Newton, C.L., Archer, B.T., 3rd, Ushkaryov, Y.A., and Mignery, G.A. 1991. 
Structure o f a novel IP3 receptor. Embo J. 10:3199-3206.

Sugawara, H., Kurosaki, M., Takata, M., and Kurosaki, T. 1997. Genetic evidence for 
involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in 
signal transduction through the B-cell antigen receptor. Embo J. 16:3078-3088.

Sumitomo, N., Harada, K., Nagashima, M., Yasuda, T., Nakamura, Y., Aragaki, Y., Saito, A., 
Kurosaki, K., Jouo, K., Koujiro, M., Konishi, S., Matsuoka, S., Oono, T., Hayakawa,
S., Miura, M., Ushinohama, H., Shibata, T., and Niimura, I. 2003. Catecholaminergic 
polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal 
therapeutic strategies to prevent sudden death. Heart. 89:66-70.

289



Sun, J., Xin, C., Eu, J.P., Stamler, J.S., and Meissner, G. 2001. Cysteine-3635 is responsible 
for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA.  
98:11158-11162.

Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. 2001. A 
serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, 
inducing cell death. Mol Cell. 8:613-621.

Swan, H., Laitinen, P., Kontula, K., and Toivonen, L. 2005. Calcium channel antagonism 
reduces exercise-induced ventricular arrhythmias in catecholaminergic polymorphic 
ventricular tachycardia patients with RyR2 mutations. J  Cardiovasc Electrophysiol. 
16:162-166.

Swan, H., Piippo, K., Viitasalo, M., Heikkila, P., Paavonen, T., Kainulainen, K., Kere, J., 
Keto, P., Kontula, K., and Toivonen, L. 1999. Arrhythmic disorder mapped to 
chromosome Iq42-q43 causes malignant polymorphic ventricular tachycardia in 
structurally normal hearts. J  Am Coll Cardiol. 34:2035-2042.

Szado, T., Vanderheyden, V., Parys, J.B., De Smedt, H., Rietdorf, K., Kotelevets, L., Chastre,
E., Khan, F., Landegren, U., Soderberg, O., Bootman, M.D., and Roderick, H.L. 2008. 
Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt 
inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA.  105:2427-2432.

Szalai, G., Krishnamurthy, R., and Hajnoczky, G. 1999. Apoptosis driven by IP3-linked 
mitochondrial calcium signals. Embo J. 18:6349-6361.

Takagishi, Y., Yasui, K., Severs, N.J., and Murata, Y. 2000. Species-specific difference in 
distribution of voltage-gated L-type Ca2+ channels of cardiac myocytes. Am J  Physiol 
Cell Physiol. 279:C1963-1969.

Takasago, T., Imagawa, T., Furukawa, K., Ogurusu, T., and Shigekawa, M. 1991. Regulation 
of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J  
Biochem (Tokyo). 109:163-170.

Takekura, H., Paolini, C., Franzini-Armstrong, C., Kugler, G., Grabner, M., and Flucher, B.E. 
2004. Differential contribution of skeletal and cardiac II-III loop sequences to the 
assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell. 
15:5408-5419.

Takeshima, H., lino, M., Takekura, H., Nishi, M., Kuno, J., Minowa, O., Takano, H., and 
Noda, T. 1994a. Excitation-contraction uncoupling and muscular degeneration in mice 
lacking functional skeletal muscle ryanodine-receptor gene. Nature. 369:556-559.

Takeshima, H., Ikemoto, T., Nishi, M., Nishiyama, N., Shimuta, M., Sugitani, Y., Kuno, J., 
Saito, I., Saito, H., Endo, M., lino, M., and Noda, T. 1996. Generation and 
characterization of mutant mice lacking ryanodine receptor type 3. J  Biol Chem. 
271:19649-19652.

Takeshima, H., Komazaki, S., Hirose, K., Nishi, M., Noda, T., and lino, M. 1998. Embryonic 
lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2 . 
EmboJ. 17:3309-3316.

Takeshima, H., Nishi, M., Iwabe, N., Miyata, T., Hosoya, T., Masai, I., and Hotta, Y. 1994b. 
Isolation and characterization of a gene for a ryanodine receptor/calcium release 
channel in Drosophila melanogaster. FEBS Lett. 337:81-87.

Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., 
Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T., and et al. 1989. Primary structure and 
expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 
339:439-445.

Talukder, M.A., Kalyanasundaram, A., Zuo, L., Velayutham, M., Nishijima, Y., Periasamy, 
M., and Zweier, J.L. 2008. Is Reduced SERCA2a Expression Detrimental or 
Beneficial to Postischemic Cardiac Function and Injury? Evidence from Heterozygous 
SERCA2a Knockout Mice. Am J  Physiol Heart Circ Physiol.

290



Tanabe, T., Fukusaki, M., Terao, Y., Yamashita, K., Sumikawa, K., Mukaida, K., Ibarra,
C.A., and Nishino, I. 2008. Malignant hyperthermia susceptibility diagnosed with a 
family-specific ryanodine receptor gene type 1 mutation. JAnesth. 22:70-73.

Tang, T.S., Tu, H., Wang, Z., and Bezprozvanny, I. 2003. Modulation of type 1 inositol 
(l,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 
1 alpha. J  Neurosci. 23:403-415.

Tantral, L., Malathi, K., Kohyama, S., Silane, M., Berenstein, A., and Jayaraman, T. 2004. 
Intracellular calcium release is required for caspase-3 and -9 activation. Cell Biochem 
Fund. 22:35-40.

Tateishi, Y., Hattori, M., Nakayama, T., Iwai, M., Bannai, H., Nakamura, T., Michikawa, T., 
Inoue, T., and Mikoshiba, K. 2005. Cluster formation of inositol 1,4,5-trisphosphate 
receptor requires its transition to open state. J  Biol Chem. 280:6816-6822.

Taylor, C.W., and Richardson, A. 1991. Structure and function of inositol trisphosphate 
receptors. Pharmacol Ther. 51:97-137.

Terentyev, D., Cala, S.E., Houle, T.D., Viatchenko-Karpinski, S., Gyorke, I., Terentyeva, R., 
Williams, S.C., and Gyorke, S. 2005. Triadin overexpression stimulates excitation- 
contraction coupling and increases predisposition to cellular arrhythmia in cardiac 
myocytes. Circ Res. 96:651-658.

Terentyev, D., Nori, A., Santoro, M., Viatchenko-Karpinski, S., Kubalova, Z., Gyorke, I., 
Terentyeva, R., Vedamoorthyrao, S., Blom, N.A., Valle, G., Napolitano, C., Williams, 
S.C., Volpe, P., Priori, S.G., and Gyorke, S. 2006. Abnormal interactions of 
calsequestrin with the ryanodine receptor calcium release channel complex linked to 
exercise-induced sudden cardiac death. Circ Res. 98:1151-1158.

Terentyev, D., Viatchenko-Karpinski, S., Gyorke, I., Terentyeva, R., and Gyorke, S. 2003. 
Protein phosphatases decrease sarcoplasmic reticulum calcium content by stimulating 
calcium release in cardiac myocytes. J  Physiol. 552:109-118.

Terracciano, C.M., Hajjar, R.J., and Harding, S.E. 2002. Overexpression of SERCA2a 
accelerates repolarisation in rabbit ventricular myocytes. Cell Calcium. 31:299-305.

Terracciano, C.M., Souza, A.I., Philipson, K.D., and MacLeod, K.T. 1998. Na+/Ca2+ 
exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from 
transgenic mice overexpressing the Na+/Ca2+ exchanger. J  Physiol. 512 ( Pt 3):651- 
667.

Tester, D.J., Dura, M., Carturan, E., Reiken, S., Wronska, A., Marks, A.R., and Ackerman, 
M.J. 2007. A mechanism for sudden infant death syndrome (SIDS): stress-induced 
leak via ryanodine receptors. Heart Rhythm. 4:733-739.

Tester, D.J., Spoon, D.B., Valdivia, H.H., Makielski, J.C., and Ackerman, M.J. 2004. 
Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in 
sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner's 
cases. Mayo Clin Proc. 79:1380-1384.

Thannickal, V.J., and Fanburg, B.L. 2000. Reactive oxygen species in cell signaling. Am J  
Physiol Lung Cell Mol Physiol. 279:L1005-1028.

Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R., and Dawson, A.P. 1990. 
Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific 
inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A .  
87:2466-2470.

Thimm, J., Mechler, A., Lin, H., Rhee, S., and Lai, R. 2005. Calcium-dependent open/closed 
conformations and interfacial energy maps of reconstituted hemichannels. J  Biol 
Chem. 280:10646-10654.

Thomas, D., Tovey, S.C., Collins, T.J., Bootman, M.D., Berridge, M.J., and Lipp, P. 2000. A 
comparison o f fluorescent Ca2+ indicator properties and their use in measuring 
elementary and global Ca2+ signals. Cell Calcium. 28:213-223.

291



Thomas, N.L., George, C.H., and Lai, F.A. 2004. Functional heterogeneity of ryanodine 
receptor mutations associated with sudden cardiac death. Cardiovasc. Res. 64:52-60.

Thomas, N.L., George, C.H., Williams, A.J., and Lai, F.A. 2007. Ryanodine receptor 
mutations in arrhythmias: advances in understanding the mechanisms of channel 
dysfunction. Biochem Soc Trans. 35:946-951.

Thomas, N.L., Lai, F.A., and George, C.H. 2005. Differential Ca2+ sensitivity of RyR2 
mutations reveals distinct mechanisms of channel dysfunction in sudden cardiac death. 
Biochem Biophys Res Commun. 331:231-238.

Thrower, E.C., Choe, C.U., So, S.H., Jeon, S.H., Ehrlich, B.E., and Yoo, S.H. 2003. A 
functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate 
receptor/Ca2+ channel. J  Biol Chem. 278:49699-49706.

Timerman, A.P., Onoue, H., Xin, H.B., Barg, S., Copello, J., Wiederrecht, G., and Fleischer, 
S. 1996. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J  Biol 
Chem. 271:20385-20391.

Tinker, A., and Williams, A.J. 1995. Measuring the length of the pore of the sheep cardiac 
sarcoplasmic reticulum calcium-release channel using related trimethylammonium 
ions as molecular calipers. Biophys J. 68:111-120.

Tiso, N., Stephan, D.A., Nava, A., Bagattin, A., Devaney, J.M., Stanchi, F., Larderet, G., 
Brahmbhatt, B., Brown, K., Bauce, B., Muriago, M., Basso, C., Thiene, G., Danieli,
G.A., and Rampazzo, A. 2001. Identification of mutations in the cardiac ryanodine 
receptor gene in families affected with arrhythmogenic right ventricular 
cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 10:189-194.

Tojyo, Y., Tanimura, A., and Matsumoto, Y. 1997. Imaging of intracellular Ca2+ waves 
induced by muscarinic receptor stimulation in rat parotid acinar cells. Cell Calcium. 
22:455-462.

Tokuhisa, T., Yano, M., Obayashi, M., Noma, T., Mochizuki, M., Oda, T., Okuda, S., Doi, 
M., Liu, J., Ikeda, Y., Yamamoto, T., Ohkusa, T., and Matsuzaki, M. 2006. ATI 
receptor antagonist restores cardiac ryanodine receptor function, rendering 
isoproterenol-induced failing heart less susceptible to Ca2+ -leak induced by oxidative 
stress. CircJ. 70:777-786.

Tong, J., Du, G.G., Chen, S.R., and MacLennan, D.H. 1999. HEK-293 cells possess a 
carbachol- and thapsigargin-sensitive intracellular Ca2+ store that is responsive to stop- 
flow medium changes and insensitive to caffeine and ryanodine. Biochem J. 343 Pt 
1:39-44.

Toyofuku, T., Kurzydlowski, K., Tada, M., and MacLennan, D.H. 1994. Amino acids Glu2 to 
lie 18 in the cytoplasmic domain of phospholamban are essential for functional 
association with the Ca2+-ATPase of sarcoplasmic reticulum. J  Biol Chem. 269:3088- 
3094.

Treves, S., De Mattei, M., Landfredi, M., Villa, A., Green, N.M., MacLennan, D.H., 
Meldolesi, J., and Pozzan, T. 1990. Calreticulin is a candidate for a calsequestrin-like 
function in Ca2(+)-storage compartments (calciosomes) of liver and brain. Biochem J. 
271:473-480.

Treves, S., Pouliquin, R., Moccagatta, L., and Zorzato, F. 2002. Functional properties of 
EGFP-tagged skeletal muscle calcium-release channel (ryanodine receptor) expressed 
in COS-7 cells: sensitivity to caffeine and 4-chloro-m-cresol. Cell Calcium. 31:1-12.

Triantafilou, M., and Triantafilou, K. 2004. Heat-shock protein 70 and heat-shock protein 90 
associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. 
Biochem Soc Trans. 32:636-639.

Tripathy, A., and Meissner, G. 1996. Sarcoplasmic reticulum lumenal Ca2+ has access to 
cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. 
Biophys J. 70:2600-2615.

292



Trump, B.F., and Berezesky, I.K. 1992. The role of cytosolic Ca2+ in cell injury, necrosis and 
apoptosis. Curr Opin Cell Biol. 4:227-232.

Trump, B.F., and Berezesky, I.K. 1996. The role of altered [Ca2+]i regulation in apoptosis, 
oncosis, and necrosis. Biochim Biophys Acta. 1313:173-178.

Trump, B.F., Berezesky, I.K., Chang, S.H., and Phelps, P.C. 1997. The pathways of cell 
death: oncosis, apoptosis, and necrosis. Toxicol Pathol. 25:82-88.

Tsien, R.Y. 1980. New calcium indicators and buffers with high selectivity against 
magnesium and protons: design, synthesis, and properties of prototype structures. 
Biochemistry. 19:2396-2404.

Tsien, R.Y. 1992. Intracellular signal transduction in four dimensions: from molecular design 
to physiology. Am J  Physiol. 263:C723-728.

Tsukamoto, A., and Kaneko, Y. 1993. Thapsigargin, a Ca2+-ATPase inhibitor, depletes the 
intracellular Ca2+ pool and induces apoptosis in human hepatoma cells. Cell Biol Int. 
17:969-970.

Tu, J.C., Xiao, B., Yuan, J.P., Lanahan, A.A., Leoffert, K., Li, M., Linden, D.J., and Worley, 
P.F. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic 
glutamate receptors with IP3 receptors. Neuron. 21:717-726.

Tu, Q., Velez, P., Brodwick, M., and Fill, M. 1994. Streaming potentials reveal a short 
ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel. Biophys J. 
67:2280-2285.

Tunwell, R.E.A., Wickenden, C., Bertrand, B.M.A., Shevchenko, V.I., Walsh, M.B., Allen, 
P.D., and Lai, F.A. 1996. The human cardiac muscle ryanodine receptor-calcium 
release channel: identification, primary structure and topological analysis. J. Biochem. 
318:477-487.

Uchida, K., Miyauchi, H., Furuichi, T., Michikawa, T., and Mikoshiba, K. 2003. Critical 
regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J  Biol Chem. 
278:16551-16560.

Udawatte, C., and Ripps, H. 2005. The spread of apoptosis through gap-junctional channels in 
BHK cells transfected with Cx32. Apoptosis. 10:1019-1029.

Uehara, A., Yasukochi, M., Mejia-Alvarez, R., Fill, M., and Imanaga, I. 2002. Gating kinetics 
and ligand sensitivity modified by phosphorylation of cardiac ryanodine receptors. 
Pflugers Arch. 444:202-212.

Uhlen, P. 2004. Spectral analysis of calcium oscillations. Sci STKE. 2004:pll5.
Valdivia, H.H., Kaplan, J.H., Ellis-Davies, G.C., and Lederer, W.J. 1995. Rapid adaptation of 

cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 
267:1997-2000.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., and Telser, J. 2007. Free 
radicals and antioxidants in normal physiological functions and human disease. Int J  
Biochem Cell Biol. 39:44-84.

Van Delden, C., Foti, M., Lew, D.P., and Krause, K.H. 1993. Ca2+ and Mg2+ regulation of 
inositol 1,4,5 -triphosphate binding in myeloid cells. J  Biol Chem. 268:12443-12448.

Vangheluwe, P., Tjwa, M., Van Den Bergh, A., Louch, W.E., Beullens, M., Dode, L., 
Carmeliet, P., Kranias, E., Herijgers, P., Sipido, K.R., Raeymaekers, L., and Wuytack,
F. 2006. A SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac 
hypertrophy, stress intolerance and reduced life span. J  Mol Cell Cardiol. 41:308-317.

Vamai, P., Balia, A., Hunyady, L., and Balia, T. 2005. Targeted expression of the inositol
1,4 ,5 -triphosphate receptor (IP3 R) ligand-binding domain releases Ca2+ via 
endogenous IP3 R channels. Proc Natl Acad Sci USA.  102:7859-7864.

Veenstra, R.D. 1996. Size and selectivity of gap junction channels formed from different 
connexins. JBioenerg Biomembr. 28:327-337.

Veenstra, R.D. 2001. Determining ionic permeabilities of gap junction channels. Methods Mol 
Biol. 154:293-311.

293



Verhoven, B., Schlegel, R.A., and Williamson, P. 1995. Mechanisms of phosphatidylserine 
exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J  Exp Med. 
182:1597-1601.

Vermassen, E., Parys, J.B., and Mauger, J.P. 2004. Subcellular distribution of the inositol
1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol 
Cell. 96:3-17.

Verselis, V.K., Trexler, E.B., and Bukauskas, F.F. 2000. Connexin hemichannels and cell-cell 
channels: comparison o f properties. Braz J  Med Biol Res. 33:379-389.

Vest, J.A., Wehrens, X.H.T., Reiken, S.R., Lehnart, S.E., Dobrev, D., Chandra, P., Danilo, P., 
Ravens, U., Rosen, M.R., and Marks, A.R. 2005. Defective cardiac ryanodine receptor 
regulation during atrial fibrillation. Circulation. 111:2025-2032.

Viatchenko-Karpinski, S., Terentyev, D., Gyorke, I., Terentyeva, R., Volpe, P., Priori, S.G., 
Napolitano, C., Nori, A., Williams, S.C., and Gyorke, S. 2004. Abnormal calcium 
signaling and sudden cardiac death associated with mutation of calsequestrin. Circ 
Res. 94:471-477.

Vila-Petroff, M., Salas, M.A., Said, M., Valverde, C.A., Sapia, L., Portiansky, E., Hajjar, R.J., 
Kranias, E.G., Mundina-Weilenmann, C., and Mattiazzi, A. 2007. CaMKII inhibition 
protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury. 
Cardiovasc Res. 73:689-698.

Vines, A.M., Lyng, F.M., McClean, B., Seymour, C., and Mothersill, C.E. 2008. Bystander 
signal production and response are independent processes which are cell line 
dependent. Int JRadiat Biol. 84:83-90.

Volpe, P., and Vezu, L. 1993. Intracellular magnesium and inositol 1,4,5-trisphosphate 
receptor: molecular mechanisms of interaction, physiology and pharmacology. 
Magnes Res. 6:267-274.

Wagenknecht, T., Grassucci, R., Berkowitz, J., Wiederrecht, G.J., Xin, H.B., and Fleischer, S. 
1996. Cryoelectron microscopy resolves FK506-binding protein sites on the skeletal 
muscle ryanodine receptor. Biophys J. 70:1709-1715.

Wakimoto, K., Kobayashi, K., Kuro, O.M., Yao, A., Iwamoto, T., Yanaka, N., Kita, S., 
Nishida, A., Azuma, S., Toyoda, Y., Omori, K., Imahie, H., Oka, T., Kudoh, S., 
Kohmoto, O., Yazaki, Y., Shigekawa, M., Imai, Y., Nabeshima, Y., and Komuro, I. 
2000. Targeted disruption o f Na+/Ca2+ exchanger gene leads to cardiomyocyte 
apoptosis and defects in heartbeat. J  Biol Chem. 275:36991-36998.

Walsh, K.B., Zhang, J., Fuseler, J.W., Hilliard, N., and Hockerman, G.H. 2007. Adenoviral- 
mediated expression of dihydropyridine-insensitive L-type calcium channels in 
cardiac ventricular myocytes and fibroblasts. Eur J  Pharmacol. 565:7-16.

Wang, J.P., Needleman, D.H., Seryshev, A.B., Aghdasi, B., Slavik, K.J., Liu, S.Q., Pedersen, 
S.E., and Hamilton, S.L. 1996. Interaction between ryanodine and neomycin binding 
sites on Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J  Biol 
Chem. 271:8387-8393.

Wang, R., Bolstad, J., Kong, H., Zhang, L., Brown, C., and Chen, S.R. 2004. The predicted 
TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine 
receptor) is crucial for channel activation and gating. J  Biol Chem. 279:3635-3642.

Wang, R., Zhang, L., Bolstad, J., Diao, N., Brown, C., Ruest, L., Welch, W., Williams, A.J., 
and Chen, S.R. 2003. Residue Gln4863 within a predicted transmembrane sequence of 
the Ca2+ release channel (ryanodine receptor) is critical for ryanodine interaction. J  
Biol Chem. 278:51557-51565.

Wang, S., and El-Deiry, W.S. 2004. Cytochrome C: a crosslink between the mitochondria and 
the endoplasmic reticulum in calcium-dependent apoptosis. Cancer Biol Ther. 3:44- 
46.

Wang, X.J. 1998. Calcium coding and adaptive temporal computation in cortical pyramidal 
neurons. J  Neurophysiol. 79:1549-1566.

294



Waring, P. 2005. Redox active calcium ion channels and cell death. Arch Biochem Biophys 
434:33-42.

Weber, P.A., Chang, H.C., Spaeth, K.E., Nitsche, J.M., and Nicholson, B.J. 2004. The 
permeability o f gap junction channels to probes of different size is dependent on 
connexin composition and permeant-pore affinities. Biophys J. 87:958-973.

Wehrens, X.H., Lehnart, S.E., Huang, F., Vest, J.A., Reiken, S.R., Mohler, P.J., Sun, J., 
Guatimosim, S., Song, L.S., Rosemblit, N., D'Armiento, J.M., Napolitano, C., 
Memmi, M., Priori, S.G., Lederer, W.J., and Marks, A.R. 2003. FKBP12.6 deficiency 
and defective calcium release channel (ryanodine receptor) function linked to 
exercise-induced sudden cardiac death. Cell. 113:829-840.

Wehrens, X.H., Lehnart, S.E., and Marks, A.R. 2005a. Ryanodine receptor-targeted anti- 
arrhythmic therapy. Ann N  YAcad Sci. 1047:366-375.

Wehrens, X.H., Lehnart, S.E., Reiken, S., Vest, J.A., Wronska, A., and Marks, A.R. 2006. 
Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator 
of heart failure progression. Proc Natl Acad Sci U S A. 103:511-518.

Wehrens, X.H., Lehnart, S.E., Reiken, S.R., Deng, S.X., Vest, J.A., Cervantes, D., Coromilas, 
J., Landry, D.W., and Marks, A.R. 2004a. Protection from cardiac arrhythmia through 
ryanodine receptor-stabilizing protein calstabin2. Science. 304:292-296.

Wehrens, X.H., Lehnart, S.E., Reiken, S.R., and Marks, A.R. 2004b. Ca2+/calmodulin- 
dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. 
Circ Res. 94:e61-70.

Wehrens, X.H., and Marks, A.R. 2002. Myocardial disease in failing hearts: defective 
excitation-contraction coupling. Cold Spring Harb Symp Quant Biol. 67:533-541.

Wehrens, X.H.T., Lehnart, S.E., Reiken, S., van der Nagel, R., Morales, R., Sun, J., Cheng, 
Z., Deng, S.-X., de Windt, L.J., Landry, D.W., and Marks, A.R. 2005b. Enhancing 
calstabin binding to ryanodine receptors improves cardiac and skeletal muscle 
function in heart failure. PNAS. 102:9607-9612.

Wehrens, X.H.T., and Marks, A.R. 2004. Novel therapeutic approaches for heart failure by 
normalizing calcium cycling. Nat. Rev. Drug. Discov. 3:1-8.

Wei, S.K., Colecraft, H.M., DeMaria, C.D., Peterson, B.Z., Zhang, R., Kohout, T.A., Rogers, 
T.B., and Yue, D.T. 2000. Ca2+ channel modulation by recombinant auxiliary beta 
subunits expressed in young adult heart cells. Circ Res. 86:175-184.

Weisleder, N., and Ma, J.J. 2006. Ca2+ sparks as a plastic signal for skeletal muscle health, 
aging, and dystrophy. Acta Pharmacol Sin. 27:791-798.

Wemer, B., Przybylski, A., Kucinska, B., Lewandowski, M., Szwed, H., and Wroblewska- 
Kaluzewska, M. 2004. Implantable cardioverter-defibrillators in children. Kardiol Pol. 
60:239-246.

White, A.M., Varney, M.A., Maeda, N., Mikoshiba, K., and Watson, S.P. 1993. Comparison 
of Ins(l,4 ,5 )P3 receptors from rat cerebellum and bovine adrenal cortex. Biochim 
Biophys Acta. 1175:307-311.

White, C., and McGeown, J.G. 2002. Carbachol triggers RyR-dependent Ca2+ release via 
activation of IP3 receptors in isolated rat gastric myocytes. J  Physiol. 542:725-733.

Wier, W.G., and Balke, C.W. 1999. Ca2+ release mechanisms, Ca2+ sparks, and local control 
of excitation-contraction coupling in normal heart muscle. Circ Res. 85:770-776.

Williams, A.J. 1992. Ion conduction and discrimination in the sarcoplasmic reticulum 
ryanodine receptor/calcium-release channel. J  Muscle Res Cell Motil. 13:7-26.

Williams, A.J., West, D.J., and Sitsapesan, R. 2001. Light at the end of the Ca2+-release 
channel tunnel: structures and mechanisms involved in ion translocation in ryanodine 
receptor channels. Q Rev Biophys. 34:61-104.

Wilson, M.R., Close, T.W., and Trosko, J.E. 2000. Cell population dynamics (apoptosis, 
mitosis, and cell-cell communication) during disruption of homeostasis. Exp Cell Res. 
254:257-268.

295



Witcher, D.R., Kovacs, R.J., Schulman, H., Cefali, D.C., and Jones, L.R. 1991. Unique 
phosphorylation site on the cardiac ryanodine receptor regulates calcium channel 
activity. J  Biol Chem. 266:11144-11152.

Wojcikiewicz, R.J. 1995. Type I, II, and III inositol 1,4,5-trisphosphate receptors are 
unequally susceptible to down-regulation and are expressed in markedly different 
proportions in different cell types. J  Biol Chem. 270:11678-11683.

Wood, A.W., and Cadusch, P.J. 2005. Cell calcium oscillations: the origin of their variability. 
Med Biol Eng Comput. 43:200-205.

Wu, G., Long, X., and Marin-Garcia, J. 2004. Adenoviral SERCA1 overexpression triggers 
an apoptotic response in cultured neonatal but not in adult rat cardiomyocytes. Mol 
Cell Biochem. 267:123-132.

Wu, Y., Aghdasi, B., Dou, S.J., Zhang, J.Z., Liu, S.Q., and Hamilton, S.L. 1997. Functional 
interactions between cytoplasmic domains of the skeletal muscle Ca2+ release channel. 
J  Biol Chem. 272:25051-25061.

Xiao, B., Jiang, M.T., Zhao, M., Yang, D., Sutherland, C., Lai, F.A., Walsh, M.P., Warltier,
D.C., Cheng, H., and Chen, S.R. 2005. Characterization of a novel PKA 
phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the 
cardiac ryanodine receptor in canine heart failure. Circ Res. 96:847-855.

Xiao, B., Masumiya, H., Jiang, D., Wang, R., Sei, Y., Zhang, L., Murayama, T., Ogawa, Y., 
Lai, F.A., Wagenknecht, T., and Chen, S.R. 2002. Isoform-dependent formation of 
heteromeric Ca2+ release channels (ryanodine receptors). J  Biol Chem. 277:41778- 
41785.

Xiao, B., Sutherland, C., Walsh, M.P., and Chen, S.R. 2004. Protein kinase A 
phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine 
receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res. 
94:487-495.

Xiao, B., Zhong, G., Obayashi, M., Yang, D., Chen, K., Walsh, M.P., Shimoni, Y., Cheng, H., 
Ter Keurs, H., and Chen, S.R. 2006. Ser-2030, but not Ser-2808, is the major 
phosphorylation site in cardiac ryanodine receptors responding to protein kinase A 
activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem J. 
396:7-16.

Xiao, J., Tian, X., Jones, P.P., Bolstad, J., Kong, H., Wang, R., Zhang, L., Duff, H.J., Gillis, 
A.M., Fleischer, S., Kotlikoff, M., Copello, J.A., and Chen, S.R. 2007. Removal of 
FKBP12.6 does not alter the conductance and activation of the cardiac ryanodine 
receptor or the susceptibility to stress-induced ventricular arrhythmias. J  Biol Chem. 
282:34828-34838.

Xiong, L., Zhang, J.Z., He, R., and Hamilton, S.L. 2006. A Ca2+-binding domain in RyRl that 
interacts with the calmodulin binding site and modulates channel activity. Biophys J. 
90:173-182.

Xu, L., Eu, J.P., Meissner, G., and Stamler, J.S. 1998. Activation of the cardiac calcium 
release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 279:234-237.

Xu, L., and Meissner, G. 1998. Regulation of cardiac muscle Ca2+ release channel by 
sarcoplasmic reticulum lumenal Ca2+. Biophys J. 75:2302-2312.

Xu, L., and Meissner, G. 2004. Mechanism of calmodulin inhibition of cardiac sarcoplasmic 
reticulum Ca2+ release channel (ryanodine receptor). Biophys J. 86:797-804.

Yagi, H., Horinaka, S., and Matsuoka, H. 2005. Edaravone prevented deteriorated cardiac 
function after myocardial ischemia-reperfusion via inhibiting lipid peroxidation in rat. 
J  Cardiovasc Pharmacol. 46:46-51.

Yamada, N., Makino, Y., Clark, R.A., Pearson, D.W., Mattei, M.G., Guenet, J.L., Ohama, E., 
Fujino, I., Miyawaki, A., Furuichi, T., and et al. 1994. Human inositol 1,4,5- 
trisphosphate type-1 receptor, IP3RI: structure, function, regulation of expression and 
chromosomal localization. Biochem J. 302 ( Pt 3):781-790.

2 9 6



Yamaguchi, N., Takahashi, N., Xu, L., Smithies, O., and Meissner, G. 2007. Early cardiac 
hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca2+ 
release channel. J  Clin Invest. 117:1344-1353.

Yamamoto-Hino, M., Miyawaki, A., Kawano, H., Sugiyama, T., Furuichi, T., Hasegawa, M., 
and Mikoshiba, K. 1995. Immunohistochemical study of inositol 1,4,5-trisphosphate 
receptor type 3 in rat central nervous system. Neuroreport. 6:273-276.

Yamamoto-Hino, M., Sugiyama, T., Hikichi, K., Mattei, M.G., Hasegawa, K., Sekine, S., 
Sakurada, K., Miyawaki, A., Furuichi, T., Hasegawa, M., and et al. 1994. Cloning and 
characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. 
Receptors Channels. 2:9-22.

Yamamoto, T., El-Hayek, R., and Ikemoto, N. 2000. Postulated role of interdomain 
interaction within the ryanodine receptor in Ca2+ channel regulation. J  Biol Chem. 
275:11618-11625.

Yamawaki, M., Sasaki, N., Shimoyama, M., Miake, J., Ogino, K., Igawa, O., Tajima, F., 
Shigemasa, C., and Hisatome, I. 2004. Protective effect of edaravone against hypoxia- 
reoxygenation injury in rabbit cardiomyocytes. Br J  Pharmacol. 142:618-626.

Yamori, Y. 1998. The correlation between gap junction-mediated communication and cell 
proliferation among retinal pigment epithelial cells. Nippon Ganka Gakkai Zasshi. 
102:481-486.

Yan, Y., Liu, J., Wei, C., Li, K., Xie, W., Wang, Y., and Cheng, H. 2008. Bidirectional 
regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac 
myocytes. Cardiovasc Res. 77:432-441.

Yang, J., McBride, S., Mak, D.O., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J.K.
2002. Identification of a family of calcium sensors as protein ligands of inositol 
trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci U S A. 99:7711- 
7716.

Yang, T., Riehl, J., Esteve, E., Matthaei, K.I., Goth, S., Allen, P.D., Pessah, I.N., and Lopez, 
J.R. 2006a. Pharmacologic and functional characterization of malignant hyperthermia 
in the R163C RyRl knock-in mouse. Anesthesiology. 105:1164-1175.

Yang, Z., Ikemoto, N., Lamb, G.D., and Steele, D.S. 2006b. The RyR2 central domain
9 4 -peptide DPclO lowers the threshold for spontaneous Ca release in permeabilized 

cardiomyocytes. Cardiovasc Res. 70:475-485.
Yano, M., Okuda, S., Oda, T., Tokuhisa, T., Tateishi, H., Mochizuki, M., Noma, T., Doi, M., 

Kobayashi, S., Yamamoto, T., Ikeda, Y., Ohkusa, T., Ikemoto, N., and Matsuzaki, M. 
2005a. Correction o f defective interdomain interaction within ryanodine receptor by 
antioxidant is a new therapeutic strategy against heart failure. Circulation. 112:3633- 
3643.

Yano, M., Yamamoto, T., Ikeda, Y., and Matsuzaki, M. 2006. Mechanisms of Disease: 
ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract 
Cardiovasc Med. 3:43-52.

Yano, M., Yamamoto, T., Ikemoto, N., and Matsuzaki, M. 2005b. Abnormal ryanodine 
receptor function in heart failure. Pharmacol Ther. 107:377-391.

Yao, X., Liu, W., Tian, S., Rafi, H., Segal, A.S., and Desir, G.V. 2000. Close association of 
the N terminus of Kv1.3 with the pore region. J  Biol Chem. 275:10859-10863.

Ye, Z.C., Wyeth, M.S., Baltan-Tekkok, S., and Ransom, B.R. 2003. Functional hemichannels 
in astrocytes: a novel mechanism of glutamate release. JNeurosci. 23:3588-3596.

Yeung, H.M., Kravtsov, G.M., Ng, K.M., Wong, T.M., and Fung, M.L. 2007. Chronic 
intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented 
Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J  
Physiol Cell Physiol. 292:C2046-2056.

Yin, C.C., Blayney, L.M., and Lai, F.A. 2005a. Physical coupling between ryanodine 
receptor-calcium release channels. J  Mol Biol. 349:538-546.

297



Yin, C.C., Han, H., Wei, R., and Lai, F.A. 2005b. Two-dimensional crystallization of the 
ryanodine receptor Ca2+ release channel on lipid membranes. J  Struct Biol 149:219- 
224.

Yoshida, Y., and Imai, S. 1997. Structure and function of inositol 1,4,5-trisphosphate 
receptor. Jpn J  Pharmacol. 74:125-137.

Yoshikawa, F., Iwasaki, H., Michikawa, T., Furuichi, T., and Mikoshiba, K. 1999. 
Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate 
receptor by two separable domains. J  Biol Chem. 274:328-334.

Yoshikawa, F., Morita, M., Monkawa, T., Michikawa, T., Furuichi, T., and Mikoshiba, K. 
1996. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate 
receptor. J  Biol Chem. 271:18277-18284.

Yuan, Q., Fan, G.C., Dong, M., Altschafl, B., Diwan, A., Ren, X., Hahn, H.H., Zhao, W., 
Waggoner, J.R., Jones, L.R., Jones, W.K., Bers, D.M., Dorn, G.W., 2nd, Wang, H.S., 
Valdivia, H.H., Chu, G., and Kranias, E.G. 2007. Sarcoplasmic reticulum calcium 
overloading in junctin deficiency enhances cardiac contractility but increases 
ventricular automaticity. Circulation. 115:300-309.

Zaffaroni, N., Pennati, M., and Daidone, M.G. 2005. Survivin as a target for new anticancer 
interventions. J  Cell Mol Med. 9:360-372.

Zent, R., Ailenberg, M., Downey, G.P., and Silverman, M. 1999. ROS stimulate 
reorganization of mesangial cell-collagen gels by tyrosine kinase signaling. Am J  
Physiol. 276:F278-287.

Zhang, G., Gurtu, V., and Kain, S.R. 1996. An enhanced green fluorescent protein allows 
sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res 
Commun. 227:707-711.

Zhang, J., Liu, Z., Masumiya, H., Wang, R., Jiang, D., Li, F., Wagenknecht, T., and Chen, 
S.R. 2003. Three-dimensional localization of divergent region 3 of the ryanodine 
receptor to the clamp-shaped structures adjacent to the FKBP binding sites. J  Biol 
Chem. 278:14211-14218.

Zhang, L., Franzini-Armstrong, C., Ramesh, V., and Jones, L.R. 2001. Structural alterations 
in cardiac calcium release units resulting from overexpression of junctin. J  Mol Cell 
Cardiol. 33:233-247.

Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M., and Jones, L.R. 1997. Complex 
formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins 
of the cardiac junctional sarcoplasmic reticulum membrane. J  Biol Chem. 272:23389- 
23397.

Zhang, S., Liu, W., He, P., Gong, F., and Yang, D. 2006. Establishment of stable high 
expression cell line with green fluorescent protein and resistance genes. J  Huazhong 
Univ Sci Technolog Med Sci. 26:298-300.

Zhang, Y., Chen, H.S., Khanna, V.K., De Leon, S., Phillips, M.S., Schappert, K., Britt, B.A., 
Browell, A.K., and MacLennan, D.H. 1993. A mutation in the human ryanodine 
receptor gene associated with central core disease. Nat Genet. 5:46-50.

Zhao, W., Meiri, N., Xu, H., Cavallaro, S., Quattrone, A., Zhang, L., and Alkon, D.L. 2000. 
Spatial learning induced changes in expression of the ryanodine type II receptor in the 
rat hippocampus. Faseb J. 14:290-300.

Zhou, H., Jungbluth, H., Sewry, C.A., Feng, L., Bertini, E., Bushby, K., Straub, V., Roper, H., 
Rose, M.R., Brockington, M., Kinali, M., Manzur, A., Robb, S., Appleton, R., 
Messina, S., D’Amico, A., Quinlivan, R., Swash, M., Muller, C.R., Brown, S., Treves,
S., and Muntoni, F. 2007. Molecular mechanisms and phenotypic variation in RYR1- 
related congenital myopathies. Brain. 130:2024-2036.

Zhou, H., Yamaguchi, N., Xu, L., Wang, Y., Sewry, C., Jungbluth, H., Zorzato, F., Bertini,
E., Muntoni, F., Meissner, G., and Treves, S. 2006. Characterization of recessive 
RYR1 mutations in core myopathies. Hum Mol Genet. 15:2791-2803.

298



Zhu, D.M., Tekle, E., Chock, P.B., and Huang, C.Y. 1996. Reversible phosphorylation as a 
controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of 
calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. 
Biochemistry. 35:7214-7223.

Zima, A.V., Bare, D.J., Mignery, G.A., and Blatter, L.A. 2007. IP3-dependent nuclear Ca2+ 
signaling in the heart. J  Physiol.

Zima, A.V., and Blatter, L.A. 2004. Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in 
cat atrial excitation-contraction coupling and arrhythmias. J  Physiol. 555:607-615.

Zima, A.V., and Blatter, L.A. 2006. Redox regulation of cardiac calcium channels and 
transporters. Cardiovasc Res. 71:310-321.

Zima, A.V., Copello, J.A., and Blatter, L.A. 2004. Effects of cytosolic NADH/NAD+ levels 
on sarcoplasmic reticulum Ca2+ release in permeabilized rat ventricular myocytes. J  
Physiol. 555:727-741.

Zimanyi, I., Buck, E., Abramson, J.J., Mack, M.M., and Pessah, I.N. 1992. Ryanodine 
induces persistent inactivation of the Ca2+ release channel from skeletal muscle 
sarcoplasmic reticulum. Mol Pharmacol. 42:1049-1057.

Zimanyi, I., and Pessah, I.N. 1991. Comparison of [3H]ryanodine receptors and Ca2+ release 
from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. J  Pharmacol Exp 
Ther. 256:938-946.

Ziolo, M.T., Martin, J.L., Bossuyt, J., Bers, D.M., and Pogwizd, S.M. 2005. Adenoviral gene 
transfer of mutant phospholamban rescues contractile dysfunction in failing rabbit 
myocytes with relatively preserved SERCA function. Circ Res. 96:815-817.

Zong, Z.P., Matsui, S., Katsuda, S., Han, J.F., and Fujikawa-Yamamoto, K. 2004. Phorbol 
myristate induces apoptosis of taxol-resistant sarcoma cells in vitro. Eur J  Pharmacol. 
489:3-11.

Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N.M., Lai, F.A., Meissner, G., and 
MacLennan, D.H. 1990. Molecular cloning of cDNA encoding human and rabbit 
forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic 
reticulum. J  Biol Chem. 265:2244-2256.

Zorzato, F., Menegazzi, P., Treves, S., and Ronjat, M. 1996. Role of malignant hyperthermia 
domain in the regulation of Ca2+ release channel (ryanodine receptor) of skeletal 
muscle sarcoplasmic reticulum. J  Biol Chem. 271:22759-22763.

299


