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ABSTRACT

In wireline multicarrier systems a cyclic prefix is generally used to fa­

cilitate simple channel equalization at the receiver. The choice of the 

length of the cyclic prefix is a trade-off between maximizing the length 

of the channel for which inter-symbol interference is eliminated and 

optimizing the transmission efficiency. When the length of the chan­

nel is greater than the cyclic prefix, adaptive channel shorteners can 

be used to force the effective channel length of the combined channel 

and channel shortener to be within the cyclic prefix constraint. The 

focus of this thesis is the design of new blind adaptive time-domain 

channel shortening algorithms with good convergence properties and 

low computational complexity.

An overview of the previous work in the field of supervised partial 

update adaptive filtering is given. The concept of property-restoral 

based blind channel shortening algorithms is then introduced together 

with the main techniques within this class of adaptive filters. Two 

new partial update blind (unsupervised) adaptive channel shortening 

algorithms are therefore introduced with robustness to impulsive noise 

commonly present in wireline multicarrier systems.

Two further blind channel shortening algorithms are proposed in 

which the set of coefficients which is updated at each iteration of the 

algorithm is chosen deterministically. One of which, the partial up­
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date single lag autocorrelation maximization (PUSLAM) algorithm is 

particularly attractive due to its low computational complexity.

The interaction between the receiver matched filter and the channel 

shortener is considered in the context of a multi-input single-output 

environment. To mitigate the possibility of ill-convergence with the 

PUSLAM algorithm an entirely new random PUSLAM (RPUSLAM) 

algorithm is proposed in which randomness is introduced both into the 

lag selection of the cost function underlying SLAM and the selection 

of the particular set of coefficients updated at each algorithm. This 

algorithm benefits from robust convergence properties whilst retain­

ing relatively low computational complexity. All algorithms developed 

within the thesis are supported by evaluation on a set of eight carrier 

serving area test loop channels.
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Chapter 1

INTRODUCTION

In multicarrier modulation (MCM) systems, such as asymmetrical digi­

tal subscriber line (ADSL) transceivers, each symbol consists of samples 

to be transm itted to the receiver plus a cyclic prefix (CP) of length v [3]. 

The CP is the last v samples of the original N  samples to be trans­

mitted. The CP is inserted between blocks to combat inter-symbol 

interference (ISI) and inter-channel interference (ICI). The length of 

the CP should at least be equal to the order of the channel impulse 

response. At the receiver the CP is removed, and the remaining N  

samples are then processed by the receiver. Since the efficiency of the 

transceiver is reduced by the introduction of the CP it is therefore de­

sirable either to make v as small as possible or to choose a large N.  

Selecting large N  will increase the computational complexity, system 

delay, and memory requirements of the transceiver. The insertion of 

CP is shown in Figure (1 .1 ) for the length of the channel 4 and the 

actual data symbol duration of 1 2 .

To overcome these problems a short time-domain equalizer (TEQ), 

usually an FIR filter, can be placed in the front end of the multicar­

rier receiver, as shown in Figure 1.2 to shorten the impulse response 

of the effective channel. The length of the shortened impulse response 

filter and CP are usually fixed a priori and not changed from chan-

1
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Data

-4 -3 -2-1 0

Data

Hr-r-ii

1 2 3 4 5 6 7 8 9 1011121314

CP Data

161718 1920

F ig u re  1.1. Insertion of a cyclic prefix in multicarrier transmission.

nel to channel. A low complexity blind adaptive algorithm to design a 

time-domain equalizer (TEQ), called sum-squared autocorrelation min­

imization (SAM) was proposed in [4] which achieves channel shortening 

by minimizing the sum-squared autocorrelation terms of the effective 

channel impulse response outside a window of a desired length. The 

drawback with SAM is th a t it has a significant computational com­

plexity. SLAM [5], on the other hand, achieves channel shortening by 

minimizing the squared value of only a single autocorrelation at a lag 

greater than the CP. The drawback with SLAM is th a t even guaran­

teeing convergence of the SLAM cost to low values does not necessarily 

guarantee convergence to high SIRs [6 ]. New algorithms are there­

fore required with robust convergence properties and low computational 

complexity, and this will be the focus of this thesis.

1.1 Application of Channel Shortening

Channel shortening was first applied to maximum likelihood estimation 

(MLSE). MLSE [7] is the optimal estimation method in terms of mini­

mizing the error probability of a sequence. Since its complexity grows
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noise n(k)

FFTIFFT
Discard
CP&& add

c = h*w

F ig u re  1.2. Multicarrier baseband system model. (I)FFT: (inverse) 
fast Fourier transform, P /S : parallel to serial, S/P: serial to parallel, 
CP: cyclic prefix, h: (FIR) channel of length (Lh +  1), w: TEQ (Time 
domain Equalizer) of length (Lw +  1), FEQ: Frequency domain Equal­
izer

exponentially with the channel length, a prefilter can be used to shorten 

the transmission channel and reduce the complexity and then applying 

the MLSE to the output of the shortened effective channel [8 ], [9]. To 

minimize the MSE between the target and the convolution of the chan­

nel and prefilter, one approach is to design both the prefilter and the 

shortened target impulse response [10], [11]. Use a decision feedback 

equalizer (DFE) to shorten the channel, and then apply the MLSE is 

another approach [1 2 ], [13]. Channel shortening has also been proposed 

for use in multiuser detection [14] in direct sequence code division mul­

tiple access (DS-CDMA) systems. The complexity of the MLSE grows 

exponentially with the number of users. “Channel shortening” can be 

implemented to suppress L-K of the scalar channels (channels as in 

SISO case) and retain the other K channels, effectively reducing the 

number of users from L to K. Then the MLSE can be implemented to 

recover the signals of the remaining K users. In this context, “channel 

shortening” means reducing the number of scalar channels rather than
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reducing the number of channel taps, and the mathematical structure 

is similar to channel shortening for MLSE applications [15]. Channel 

shortening can be used to reduce the complexity of ultra wideband 

systems [16]. Yet another application is in acoustics. Psychoacous­

tics defines the D50-measure for intelligibility of speech as the ratio of 

energy in a 50 ms window of the room impulse response to the total 

energy of the impulse response, and optimization of this measure can 

be performed by a channel shortener [17].

Channel shortening has found its revival and its main use is in mul­

ticarrier communication systems [18]. Examples of multicarrier com­

munication systems include wireless local area networks (IEEE 802.11 

a/g, HIPERLAN/2) [19], wireless metropolitan area networks (IEEE 

802.16) [20], Digital Audio Broadcast (DAB) [21] and Digital Video 

Broadcast (DVB) [22] in Europe, satellite radio (Sirius and XM Ra­

dio) [23], and the proposed standard for multiband ultra wideband 

(IEEE 802.15.3a). Examples of wireline multicarrier systems include 

power line communications (HomePlug) [24] and digital subscriber lines 

(DSL) [25].

1.2 The Structure of the thesis

The remainder of the thesis is organized as follows. Chapter 2 presents 

a literature survey of previous work in partial update adaptive filtering 

techniques.

Chapter 3 studies the algorithms which attem pt to restore each of 

the properties of the transm itted sequence that ought to be present in 

the equalized received sequence.

Chapter 4 proposes novel blind adaptive channel shortening algo­
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rithms, the deterministic partial update sum-absolute autocorrelation 

minimization (DPUSAAM) algorithm and the random partial update 

sum-absolute autocorrelation minimization (RPUSAAM) algorithm for 

multicarrier modulation systems. These algorithms are based on up­

dating only a portion of the coefficients of the channel shortening filter 

at each time sample instead of the entire set of coefficients. This work 

is the first attem pt in the field of using partial update filtering in blind 

adaptive channel shortening. The algorithms are also designed to be 

robust to impulsive noise impairment found in ADSL channels. These 

algorithms have low computational complexity whilst retaining essen­

tially identical performance to the sum-absolute autocorrelation min­

imization (SAAM) algorithm [26]. The non-Gaussian impulsive noise 

has been modeled as Gaussian-mixture and as cn-stable distributions.

Chapter 5 addresses the complexity reduction and convergence is­

sues with the SAM algorithm [4] and the SLAM algorithm [5]. The 

partial update method is applied to the two channel shortening al­

gorithms which achieve the same performance whilst further reducing 

the computational complexity, the proposed algorithms are called the 

partial update SAM algorithm (PUSAM) and partial update SLAM 

algorithm (PUSLAM). These algorithms essentially achieve the same 

result in terms of reducing the effective channel length as SAM and 

SLAM with half the complexity. The performance advantage of the 

PUSAM and PUSLAM algorithms is shown on eight different carrier 

serving area test loops (CSA) channels and comparisons are made with 

the original SAM and the SLAM algorithms.

Chapter 6  addresses the complexity reduction in adaptive filter im­

plementations, and improving the convergence which has been the prob­
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lem associated with the deterministic partial update scheme in Chapter 

5. In this chapter, the new random partial update sum-squared auto­

correlation minimization (RPUSAM) algorithm is proposed. This algo­

rithm has low computational complexity whilst achieving improved con­

vergence performance, in terms of achievable bit rate, over the PUSAM 

algorithm with a deterministic coefficient update strategy as in Chapter 

5. The performance advantage of the RPUSAM algorithm is shown on 

eight different carrier serving area test loops (CSA) channels and com­

parisons are made with the original SAM and the PUSAM algorithms. 

Also in this chapter a new partial update blind channel shortening al­

gorithm is proposed. The proposed algorithm essentially achieves the 

same result in terms of reducing the effective channel length as SLAM. 

Importantly, however, the disadvantage of SLAM in terms of the SIR 

performance has been overcome by the proposed algorithm where the 

proposed algorithm has the advantage of low complexity of SLAM over 

SAM and also has the advantage of SAM where a low lag-hopping sum- 

squared autocorrelation minimization (LHSAM) cost will be identical 

to a low SAM cost which guarantees to give a high SIR at the output 

of the matched filter as on the average the proposed algorithm uses all 

the lags as in SAM.

Chapter 7 concludes the thesis and highlights possible areas for 

further research.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, previous work in partial update adaptive filtering tech­

niques will be reviewed. The first technique is to update one coefficient 

at each iteration which is called the maximum normalized least mean 

square (Max-NLMS) algorithm, this adaptive filter only adjusts the co­

efficient associated with the data element that has maximum absolute 

value in the filter memory at each iteration [27]. The second technique 

is to update a portion of the coefficients at each iteration, and those 

coefficients are the ones which have the largest magnitude gradient com­

ponents on the error surface. Coefficients which have a small magnitude 

gradient component do not need to be updated as they will have little 

effect on the overall algorithm performance [28]. The third technique 

is to update entire blocks of the coefficients instead of selecting single 

filter coefficients for updating, thereby reducing the costs in terms of 

memory without losing the convergence speed. Another technique will 

also be studied, based on dividing the adaptive filter coefficients into 

small blocks and then updating a number of those blocks rather than 

the entire filter at every iteration, this will be achieved by using a se­

lection criterion, which ranks the regressor vector blocks according to

7
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their squared Euclidean norms (their energy) and selects those blocks 

with the largest norms as the ones to be updated. Combining the 

data-selective updating from set-membership filtering with the reduced 

computational complexity from partial updating will also be studied. 

A new algorithm called the stochastic partial update LMS algorithm 

(SPU-LMS) will also be studied based on choosing which of the subset 

of the filter coefficients to update randomly, the motivation for which 

is to overcome possible convergence problems in previous schemes.

2.2 Overview

In [27], the author implements the maximum normalized least mean 

square (Max-NLMS) algorithm; it is based on updating one coefficient 

at every iteration. This adaptive filter only adjusts the coefficient asso­

ciated with the data element tha t has maximum absolute value in the 

filter memory at each iteration. The update equation for the algorithm 

is given by

where i =  1,...., L, and L is the length of the adaptive filter, and k 

denotes the discrete time index. =  max\<j<L |x{k — i +  1 )|

Wi(k),

w i (k) + V x ( k - i + 1)’ if M* “ * + x)l = llxMII
otherwise

(2 .2 .1)

This update is extremely simple, requiring only a single multiply, 

divide and add at each iteration if the maximum absolute value of the 

input data samples currently in the filter memory is known.
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The author also introduces a new algorithm called maxlist, this 

algorithm is a computationally simple method requiring only 0 (log L) 

memory elements for calculating the value and position of the running 

maximum across a sliding data window. The algorithm exploits the 

shifting nature of the window, so it calculates the maximum value of 

the stored elements and compares it with the new element which enters 

the input vector at the most recent time.

Within the paper the mean square analysis of Max-NLMS is pre­

sented, the steady-state excess mean-square error (MSE) of the filter 

is

€ m s e , s s  =  lim tr [/?J£7{v(A:)(A:)}] (2.2.2)fc—► oo

where R = £ l{x(A)xT(A:)}, £{x(/:)} — 0, v ( k ) =  w (k) — w ^  , and 

w i s  the optimal Wiener solution and (.)T denotes vector transpose. 

In [27], this expression is simplified to

£ m s e , s s  =  o-2x L ( g I  s s  +  (L -  1 )pxrv>33) (2.2.3)

where o\  is the adaptive filter input power, a l sg is the steady-state 

average coefficient error power E{v^(k)},  rVfSS is the steady-state aver­

age coefficient error cross-correlation, E{vi(k)vj(k)} i = 1,2,...., L  and 

j  ^  i , and px is the inter lag coefficient of the assumed correlated 

zero-mean Gaussian distributed input sequence, where the subscript ss 

denotes steady-state value.

The author also derives bounds on p  to ensure convergence of the
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algorithm in the mean square sense

2 +  2<7ioi{Z/ — 2 — (L — l)#ioi}
0 < /i <

1 + (L — 1)<7202 +  <7ioi {L — 2  — 2 (L — 1 )^ioi +  (L — 1)(L — 2 )(# 2 0 2  — £ 112)}
(2.2.4)

where gmnp = E  { }, for i ^  j  ±  max ^  i.

Note that gmnp does not depend on the particular values of i, j ,  and 

max  because of the chosen input signal distributions. Note, max is the 

index of the sample in the input vector x(&) which maximizes [|a:(A;)Hoo-

Furthermore, since <7101 is typically very small, the bounds are ap­

proximately given by

, 2 i s l

And, finally, since 0 < £202 < 1> the conservative bounds on the step 

size become

0 <  fi <  j  (2 .2 .6)

which is of an identical form to that of the conventional LMS algorithm. 

The author compares by simulation the performance of the Max-NLMS 

adaptive filter to that of the LMS, sequential LMS [28], and periodic 

LMS [28] adaptive filters. It is shown that in terms of convergence 

of the coefficient error powers frE  {v(fc)vT(fc)}, where tr(.) denotes 

matrix trace, for the four adaptive filters in a system identification task 

with a target filter with L— 30 unity-valued FIR filter coefficients, the 

convergence of the Max-NLMS adaptive filter is faster than th a t of the 

periodic and sequential LMS adaptive filters. But the LMS adaptive 

filter outperforms the other adaptive filters; however, its complexity is 

approximately twice tha t of the other adaptive filters [27].
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In [28], the author explores algorithms (the periodic LMS algorithm 

and the sequential LMS algorithm) for updating the coefficients of an 

adaptive filter by updating a portion of the coefficients at each time 

rather than a single coefficient as in Max-NLMS; the author compares 

these algorithms with the conventional LMS adaptive filter algorithm.

In the periodic LMS algorithm, one coefficient is updated at each 

iteration and the error is calculated once in every L iterations, so the 

complexity is reduced, but it converges slower than LMS as is confirmed 

in the paper by simulation study.

The author assumes a standard FIR configuration for the adaptive 

filter, in which the regressor signal is the input signal.

The update equations for the periodic algorithm are given by:

Wi(k) +  -  i + 1 ),

Wi(k +  1 ) =  < if (/:+  z) mod TV =  0 and l=N  [ k / N  J

Wi ( k ) ,  otherwise
(2.2.7)

e(k) = d(k) — w T(k)x(k)  (2 .2 .8 )

where i =  1, ....,£ , and L  is the length of the adaptive filter, w (k) =

[wi(k),W2 {k)..............WL{k)]T is the coefficient vector of the adaptive

filter at time k, x(k) = [x(k),x(k — l ) ...............x(k — L + l)]T is the input

signal vector, d(k) is the desired response signal, e(k) is the error signal 

and [.J denotes the truncation operation. For N  =  1 this algorithm 

reduces to the LMS algorithm and when N  = L it reduces to the partial 

update LMS adaptive algorithm.
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For N > 1 , the number of multiplies and coefficient memory accesses 

required for this algorithm are fewer than those required for the LMS 

algorithm [28].

Within the paper, [28], the evolution equation for the mean of the 

outer product of the coefficient error vector is given by:

E { v ( k + N ) v T(k+N)} = E { v ( k ) v T(k)} — f i (RE{v(k )vT(k)} + E{v(k )vT(k)}R)

+fi2a2R  +  fi2( 2RE{ v ( k ) vT(k)}R  +  ^r[/?J5{v(fc)vr (/c)}])
(2.2.9)

The author determines a simple expression for the steady-state value 

of the excess mean-square-error (MSE) by neglecting the last term, 

because it is much smaller than the other terms in the equation for 

small values of fj,. The resulting expression is

lim E { v T(k)x(k)2} = ^ r R  (2.2.10)
k—>oo 2

which shows the dependence on adaptation gain, noise variance and 

tap  input power.

The author also derives bounds on (i to ensure convergence of the 

algorithm in the mean square.

0 < MC ^ L  (2 .2 .1 1 )

And for independent identically distributed (i.i.d.) input signals, the 

evolution equation for the trace of the coefficient error correlation ma-
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trix is given by

irE{v(/c+A^)vT(/c+Ar)} =  {\-2(jba2x-\-fi2 {L—\)o4+T}))trE{\(k)\T (k)}+fi2a2a l L

( 2 .2 . 12 )

where E{x2(k)} =  a2 and E { x 4(k)} = tj.  The steady-state excess 

MSE for i.i.d. input signals is

^ £ {(vT(*M *))2} =  + ^

which also shows the dependence on the input variance, tap filter 

length and noise variance. Moreover, in [28], the sequential LMS algo­

rithm ’s performance was analysed. In the sequential LMS algorithm, 

one coefficient is updated at each time; the error is calculated for every 

iteration, and it is shown that its complexity is higher than tha t of the 

periodic LMS algorithm, but less than for LMS.

The update equations for the sequential LMS algorithm are given

by:

Wi(k-1- 1 ) =  <

Wi(k) +  fie(k)x(k -  i +  1 ),

if ( k — i + 1) mod N =  0 (2.2.14)

Wi(k), otherwise

where i = 1 ,...., L, and L is the length of the adaptive filter.

For N  = 1 , this algorithm reduces to the LMS algorithm.

Within the paper, the author uses two types of analyses:

1- Analysis using the independence assumption as in the periodic 

LMS algorithm, the author expresses the algorithm again using the 

definition of v(A;) =  w (k) — w ^ ,  the elements of which are given by
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V i ( k )  — f i x ( k  — i +  l ) x T(k) v(k)  +  fin(k)x(k — i +  1), 

Vi(k +  1) =  < if [k — i +  1 ) mod N  = 0

V i ( k ) ,  otherwise
(2.2.15)

where i = 1 ,...., L, and L is the length of the adaptive filter.

Considering N  iterations of this algorithm, the coefficient error vec­

tor update is

v(A; + I) = A(k)v(k)  -I- b(k)  (2.2.16)

where the elements of the N  x N  matrix A(k)  and vector b (k) depend 

only on the elements of the input and noise signals [28].

W ithin the paper, the vector update equation for the mean coeffi­

cient error vector is given by

E{v{k  +  N)} = E{A{k) }E{v(k ) }  +  £{b(/c)} (2.2.17)

as well as the coefficient error correlation matrix, given by

E { v ( k + N ) v T{k+N)} = E { A ( k ) E { v ( k ) vT{k)}AT{k)}+E{b{k)bT(k)}

(2.2.18)

for input signals which define the signal elements of b(fc), tha t are 

generated from a model of the form

x(k) = aTu (k) (2.2.19)
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where a  =  [ao>^ii >GAf-i]T defines the correlation statistics of the

input signal and u (k) = [u(/c),u(k  — 1 ) , ......... , u(k — M  + l)]r  , where

u(k ) is a zero-mean unity variance i.i.d. signal.

2 - Approximate analysis for small step sizes, in which the author 

rewrites the update equations for the sequential algorithm (2.2.14) as

w / k +l )  = <

Wi(k) +  fiem>ix(k -  i +  1 ) +  0 (/i2),

if {k -  i +  1 ) mod N = 0, / = N [k/N\  

m  — k mod N  

Wi(k), otherwise
( 2 .2 .20)

where i = 1 ,...., L, and

ej(k) = d{k + j )  — w  T{k)'x.{k +  j ) (2 .2 .21)

where 0{f i2) represents terms tha t axe of order fi2 and higher. For small 

step sizes these terms can be ignored. The author derives the update 

equation by collecting N  updates for the equation given by

w (k +  N)  =  w (k) +  fix(k) 0  e(k)  (2.2.22)

where e(A;) =  [e0 (A:),ei(A:),......... , e^L/N)-\{k)\T is an (L / N )- dimen­

sional vector of errors, where the author assumed throughout the paper

that L / N  is an integer, x(k)  = [x(k),x(k — N ) ,  , x ( k  — L  +  N)]T

is an A-dimensional decimated version of the regressor vector, and 0  

denotes the Kronecker product.



Section 2.2. Overview 16

Within the paper, the update for the coefficient error vector is given

by:

v{k + N)  = {IL -  fix{k) ® X T(k))v{k) +  fix{k) ® n(k) (2.2.23)

where X(k)  is assumed to be L x L / N  matrix and is defined as X(k)  =

[x(A;)x(A;+l)....x(A;-f (L /iV )-l)] , n (k) = [n(k ) , ........, n ( k + ( L / N ) - l )T,

and 11  is the L x L identity matrix.

The author takes expectations on both sides of the above equation 

to yield.

E{v ( k  +  N)}  = (IL — f iE{x(k)  ® x T(k)})E{v(k)}  (2.2.24)

and

E{x ( k )  (8 > X T(k)} = R  (2.2.25)

where R is again the input signal autocorrelation matrix. So (2.2.24) 

becomes:

E { v ( k  +  N ) }  = (IL -  f iR)E{v(k)}  (2.2.26)

This equation is identical to th a t for the periodic LMS algorithm.

Then the author examines the mean-square behaviour of the se­

quential LMS algorithm for small step sizes. He assumes th a t the in­

put signal is zero mean and either Gaussian-distributed or i.i.d. dis­

tributed with a known probability density. The update equation for
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E{ v ( k ) vT(k)} is given by

E { v ( k + N ) v T(k+N)}  = E { v ( k ) v T(k)} -  n(RE{v{k)vT{k)} +  E{v{k)vT{k)}R) 

+ f j ? a l R  <g> I ( l /n )  

+H2{2RE{v(k)vT{k)}R +  R  ® F( E{v {k ) \ T(k)})
(2.2.27)

where #  is an TV x TV-dimensional matrix whose z, j th  value is defined 

by

[«]iJ =  r ( ( i - j ) W ) .  (2.2.28)

where r(m ) =  E{x(k)x(k  — m)},  and F  (.) is an ( L / N ) x ( L / N )  matrix­

valued function whose i, j  th  element is

[F(£{v(/;)vT(fc)})]i,J =  <r[iti_^{v (fc)v r (*)}] (2.2.29)

with R(m) = E { x ( k ) x T(k +  m)}.

Then the author derives the steady-state excess MSE which is ap­

proximately given by

lim E { ( v T(k)x(k) )2} =  t r [RE{v(k)vT(k)}] (2.2.30)
k—>oo

Ha^LtrR 
2 N

pcrltrR

(2.2.31)

(2.2.32)
2

The excess MSE in steady-state is approximately the same as tha t for 

the LMS adaptive filter with corresponding step size.

The author derives bounds on fi to ensure convergence of the algo­
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rithm in the mean-square sense from the update equation (2.2.27)

° < ^ < (2'2'33)

From [28], the author shows tha t the overall behavior of the sequential 

LMS algorithm is approximately the same as that of the periodic LMS 

algorithm for stationary inputs. It is also shown that the convergence 

rates of both algorithms are approximately l / r f h that of the LMS 

algorithm.

In [29], the authors explore the algorithm M -Max NLMS that up­

dates a portion of the coefficients a t each time. These coefficients are 

the ones with “larger magnitude gradient components on the error sur­

f a c e [29]

In the paper, the authors show th a t for LMS-type algorithms, when 

updating all coefficients of the adaptive filter, some coefficients have a 

small contribution to the error, whereas other coefficients have larger 

error contributions. So even if the less im portant coefficients are not 

updated at a given iteration, the algorithm performance will be hardly 

affected.

In the proposed algorithm, L denotes the total number of coefficients 

at each iteration, M  out of L which are updated. Those M  coefficients 

axe the ones associated with the M  largest magnitude gradient compo­

nents on the error surface.

The M -Max NLMS algorithm update equation can be written as
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follows:

Wi(k-(-1 ) =  <

Wi(k ) +  xT(k)x(k)e(k )Xik ~ 1 +  l )

if i corresponds to one of the first

M  maxima of |x(k  — i + 1 ) |, i =  1, • • • , L 

Wi(k) otherwise

(2.2.34)

In practice, a small constant may be added to the denominator 

in the above equation to avoid gradient amplification which the input 

approaches zero [30].

The authors compare the proposed algorithm with the full-update 

NLMS algorithm for the same /i, and show that when M  = L, the con­

vergence speed of the proposed algorithm approaches that of the full 

update NLMS algorithm. In this paper, the authors also compare the 

proposed algorithm with the sequential NLMS algorithm [28] in terms 

of complexity and convergence speed, the proposed algorithm has the 

same complexity overhead as the sequential NLMS, but it converges 

closest to the performance of NLMS. W ithin the paper, the algorithm 

is analyzed in terms of its mean square performance; to perform the 

analysis, the authors consider the case for M =  1 to show tha t the al­

gorithm is guaranteed to converge to the same steady-state error as the 

full update NLMS for the extreme case given i.i.d. stationary zero-mean 

input. In [29], the authors showed th a t the algorithm is guaranteed to 

converge for the worse case of M =  1 for i.i.d. stationary zero-mean, 

where \i is chosen in the stability region and that it will converge to the 

same steady-state error as the full update NLMS. The authors assumed
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that x(k)  is a stationary zero-mean i.i.d. sequence and they defined the 

coefficients error vector v(/c) =  w (k) — w ^ ,  for M =  1 and L > 2, the 

algorithm update equation (2.2.34) becomes:

if i corresponds to the maximum of \x(k — i +  1 ) |, i = 1, • • • , L

(2.2.35)

where d(k) =  x T(k)wopt +  e*(k)} Wopt is the optimal weight vector,

and e*(k) is a zero mean independent disturbance signal.

The authors assume th a t for high order adaptive filters x T(k)x(k)  «  

La\  and from the mean error weight vector, the autocorrelation matrix

where I  is the L x L identity matrix. Convergence of the proposed 

algorithm (M =  1) in the mean is therefore verified with a proper 

choice of the step size [29].

To derive bounds on fi to  ensure full convergence of the algorithm, 

the authors consider the mean square error analysis of the proposed 

algorithm with the assumption they previously made on the input sig­

nal. Let max be the index of the coefficient to be updated at time k, 

(the term max  ia again being used as the index of the element of the 

input vector x(k)  which maximizes H x ^ ) ^ )  and wmax(k) be the co­

efficient to be updated. The difference equation of the mean square of 

the maj?h coefficient for a zero mean i.i.d. input signal, can be shown

- «»■(*)«(*) -  * +  1 M k - j  +  l)vj(k)

Vi(k-hl) =  < ~f~xr (k)x(k)X( :̂ i+ l ) e * (k )

Vi(k) otherwise

2
governing the evolution of the mean error weight vector is R  = ^ 7 ,
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from (2.2.35) to be

L

£ { * ^ (* + 1)} = ( \ - 2 ^ l+ -p n)E{vimax(k)}+'pai Y ,  £ {^(fc)}+^
i= \,j^ m a x

(2.2.36)

where r\ =  E{ x 4(k)} , £min = E{e*2(k)} , and Ji = and for a zero 

mean independent Gaussian input signal, 77 =  3a4. The authors assume 

that the sequence of updates of the coefficients is a Markov process 

with a uniform probability of selecting any coefficient for updating. 

Therefore, they have E{v^nax(k)} = E{v2(k)} — c(k), \/j = 1 , 2 , • • • , L. 

The probability of updating any coefficient at each sample time is 

therefore

c(fc +  1 ) =  j ( ( L  -  l )E{v](k  +  1)} +  E{v2max(k +  1 )}) j  f  max (2.2.37)

For V7 7^ max , E{v2(k +  1)} =  E{v2(k)} = c(k) , by substituting

(2.2.36) in (2.2.37) results in

c(k + \ ) = U - 2 ^ a l  + ^ -[ n + ( L - \ ) a t ] Sj c ( k )  + ^ -a le mi„ (2.2.38)

To ensure the convergence of the algorithm in the mean square, the 

step size fj, should be bounded by

0 < * S  + (l -* IK  (2-2 '39)

By using (2.2.38), the authors also derive the steady-state excess MSE 

£ e x (o o )  of the algorithm which is given by:
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' “ -401

W ithin the paper, the authors show that the case of M  =  1 and full 

update NLMS provide similar misadjustment when applied under the 

same condition and an equivalent step size is used. For related work 

on this topic see also [31], [32] and [33].

In [34], the authors explore algorithm selB-NLMS (selective block 

NLMS), which tries to combine the advantages of the selC-NLMS al­

gorithm and seqB-NLMS. The idea is to update entire blocks of coeffi­

cients instead of selecting single filter coefficients for updating, thereby 

reducing the costs in terms of memory without losing the convergence 

speed.

In the proposed algorithm, L corresponds to the total length of the 

filter vector and M  the number of filter taps to be updated at each 

iteration. The author assumes for simplicity tha t L /  M  is an integer.

The author partitions the coefficient vector w (k) and the excitation 

vector x(k)  of the adaptive filter into B c subdivisions each of length Bi \

w (k) = [w0(k) ,wi(k) ,  • • • , wL..i(k)]T (2.2.41)

x(fc) =  [x(k) ,x(k  — 1), • • • , x (k  — L + 1)]T (2.2.42)

=  [xjf(fc),xf(fc),--- ,XBe- l ( k )]T

with

w i(k) = [wiBl(k),--- , w{i+l)Bl_1{k)]T
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and

x t{k) = [x{k — i B [), • • • , x(k  — (i +  1)5/ 1)]^

The algorithm divides the excitation vector and the coefficient vector 

into B c blocks of length Bi = L / B c (as is shown in equations (2.2.41) 

and (2.2.42)). Instead of looking for the M  largest magnitude values, 

it selects Mf, = M / Bi blocks with the largest excitation power (energy) 

xj (k)x i (k)  and adapts these blocks. The algorithm update equation is 

given by:

if i belongs to the first Mb maxima of 

x[ (k )x i {k ) , i  e (0,BC -  1), i = 1,....,L
w i(k +  1 ) =

w i(k) otherwise

(2.2.43)

where e{k) =  y(k ) — w T(k)x(k).

The author shows tha t by combining the two algorithms, the seqB- 

NLMS algorithm and the selC-NLMS algorithm, the new algorithm 

retains the convergence speed advantage of the selC-NLMS algorithm 

whilst exploiting the computational advantages of the seqB-NLMS.

In [2], the authors develop adaptive filtering algorithms with re­

duced computational complexity, the algorithms are based on dividing 

the adaptive coefficients of the filter into small blocks and updating a 

number of these blocks rather than the entire filter at every iteration 

which is similar to the previous paper [29], and is achieved by using a 

selection criterion, which ranks the regressor vector blocks according to
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their squared Euclidean norms (their energy) and selects those blocks 

to be updated with the largest norms.

The authors give an overview of the NLMS algorithm, and then in­

troduce the selective partial update NLMS algorithm for a single block.

In selective partial update NLMS for a single block, the authors 

partition the regressor vector x(fc) and the coefficient vector w (k) into 

B c blocks of length Bi = L / B c where Bi is an integer

x(k)  = [xf(fc),xJ(A;),--- , x l c(k)]T

w (k) = [w f(/c),w ^(/c),--- ,w l c(k)]T

and the coefficient vector blocks wi(fc),w 2 (fc), • • • , wbc(/c) are the 

candidate subsets of w (k) th a t can be updated at discrete time instant 

k.

In the paper, the authors also write the constrained minimization 

problem for a single block update as:

min min | | w +  1) -  (2.2.44)

subject to w T(k -f l)x(A;) =  d(k), i.e. the a posterior error is con­

strained to be zero. The solution is to find the block for which the 

coefficient update is minimal in the squared Euclidean norm ||.|| sense 

while satisfying the constraint w T(k +  l)x(fc) should be equal to the 

desired response d(k).

The authors consider the minimization problem for a given block
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when i is fixed, therefore (2.2.44) reduces to

min ||wi(fc +  1) -  Wi{k)\\l (2.2.45)
w,(fc+l)

subject to

w T(k 4 - 1 )x(/c) =  d(k) (2.2.46)

The authors solve this in a similar way to how NLMS can be derived

[2 ] by using the method of Lagrange multipliers. The cost function to

be minimized is:

Ji(k) = ||Wj(/c +  1) — Wi(fc) | |2  +  A(d{k) -  wT(k +  l)x(A;))

where A is a scalar Lagrange multiplier. By setting dJi (k) /dwi(k + 

1) =  0, i = 1,..., Bc and d J i ( k ) / dA =  0 , it can be shown tha t

Wi(k +  1) -  Wi{k) -  ^ (A :)  =  0 (2.2.47)

d(k) -  (wf (k + 1 )xi(k)  +  w / {k +  l)5Ci(fc)) =  0 (2.2.48)

where (w[(k+l)'x. i (k) + 'w'[(k + l)xi(k)) = w T(k+l ) x ( k )  and x.i(k) 

is obtained from x(k)  by deleting Xi(k), and likewise w i(k + 1). Then 

the authors derive the equation

\  (2.2.49)
2 ||xi(A; ) | |2

by substituting (2.2.47) into (2.2.48), where w {(k +  1) =  w t (k) is 

used, i.e., only w i(k) is updated.
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The authors then derive the selective partial update algorithm for 

a single block by substituting (2.2.49) into (2.2.47) and introducing a 

small positive stepsize n, and also by solving the fixed block update 

constrained minimization problem, which is given by:

The authors then consider updating multiple blocks; they suppose 

that they wish to update B  blocks out of Bc at every iteration. And 

let IB = {ii, *2 , • • • , i b ) denote a 5-subset, i.e., one having cardinality 

B  = |/j3 1, of the set S  =  {1 , 2 , • • • , B c}, and let S  be the collection of all 

such 5-subsets, i.e., IB € S.  Then the authors consider the following 

constrained minimization problem in order to carry out the selection of 

blocks:

For B = 1, (2.2.51) reduces to (2.2.45). In the paper, the authors 

solve (2.2.51) by minimizing the cost function when I B was given and 

fixed, i.e.

where A is a Lagrange multiplier. Then the authors derive the

w i(k +  1 ) =  w  i(k) l|Xi(fc)||2 n  ' v
i =  argm ax ||xj(A;)|| 

l<j<Bc

(2.2.50)

min min ||w /B(fc +  1 ) -  wlB(k)\\
Ib € S  w / B (fc+l)

subject to w T(k -f l)x(A;) =  d(k)

where w /b(A;) =  [w£(/c), w£(/c), • • • ,w fB(k)]T.

(2.2.51)

JiB(k) -  ^ ||w /b (A: +  1) -  w /b (A: ) | |2  +  A(d(k) -  w T{k +  l)x(A;))
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minimization of JiB(k ) with respect to w iB(k +  1 )  and A by:

w  ,B(k +  1 )  =  w  , „ ( * )  +  1 x , B(k)e(k)  (2.2.52)
l|x/fl(fc)||2

where x Ig(k) = [x£(fc),x£(fc), • • • ,xJB{k)]T.

The authors then obtain the NLMS algorithm for the update of B 

blocks specified by I q after the introduction of a small positive stepsize 

fi (relaxation parameter)

w  lB(k +  1) =  w  lB(k) +   ---------- 2 x lB(k)e(k) (2.2.53)

The block selection problem can be written to determine which 

blocks to update, B  coefficient blocks with the minimum squared- 

Euclidean-norm update need to be found.

Ib = arg min ||w Jb(A; +  1) -  w Jfl(A; ) | |2

2

=  arg min 
JBes

(fc)e(fc) ■I ' rr? (2.2.54)

= arg max Y* 
j Be S  ^ j£JB

Then the authors found th a t the optimum I b to satisfy (2.2.54) 

is obtained by ranking the regressor vector blocks according to their 

squared Euclidean norms and choosing the B  largest blocks and that 

is the identical strategy suggested in [34].

The authors derive the selective partial-update NLMS (SPU-NLMS)
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algorithm as:

w iB(k +  1 ) =  w lB(k) +  r--^  2x lB{k)e{k)
llx'e(*)|l2

I b = {i '■ ||x*(A:)|| g is one of the B largest among Hx^/c)^ ||xM(A; ) ||2  }
(2.2.55)

The paper shows tha t for the SPU-NLMS algorithm, only one third 

of the filter coefficients are updated per iteration as in periodic NLMS 

algorithm.

The authors compare the proposed algorithm with the NLMS and 

the Periodic-NLMS algorithms in term of convergence performance, 

they show that when the block has the smallest possible length Bi = 1 , 

SPU-NLMS appears to converge almost as fast as the NLMS algo­

rithm. Also the authors compare the proposed algorithm with NLMS 

in term of computational complexity. Table (2 .1) shows the computa­

tional complexity comparison of the NLMS and SPU-NLMS algorithms, 

they show that for Bc = L and B  = 1 , the SPU-NLMS algorithm in 

(2.2.55) reduces to

w*(A;+ 1 ) =  Wi(fc) (2.2.56)

i = arg max |x{k  — j)\
0 < j < L —l

which is the max-NLMS algorithm [27]. For B c =  L  and B  = L, the 

SPU-NLMS algorithm becomes identical to the NLMS algorithm [2 ].

In the paper, the authors analyse the stability of the algorithm, 

they start with the persistence of excitation condition [2 ], they assume 

B = 1 , for which (2.2.55) simplifies to (2.2.50). They rewrite equation

(2.2.50) as:
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NLMS SPU-NLMS
B c < L BC = L

Multiplications 2L+2 L + B B t +  2 L+B+2
Divisions 1 1 1

Comparisons 0 ( B C) + 
Bc log2 B

[2 log2 L\ +  2

Table 2 .1 . Computational complexity of NLMS and SPU-NLMS [2 ]

w  (k +  1) =  w  (k) +  }j,(k)AiX.(k)e(k),

i = arg max ||xj(A: ) | |2
1 < 3 < B c

(2.2.57)

where

M *) = t  7TT]j2 (2-2-58)

and Ai is an L  x L  diagonal matrix defined by

Ai =  diag(0 , • • • , 0 , 1 , • • • , 1 , 0 , • • • , 0 )
ith block

so, by using the diagonal matrix above only the i h block will be 

updated.

The desired filter response d(k ) is given by:

d{k) = w  £rfX(fc) +  n(k)

where wopt is the optimal coefficient vector and n(k ) accounts for noise, 

let v(k)  denote the coefficient error vector

v(fc) =  w(/c) -  w^

and the recursion for the coefficient error vector is
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v(A; -f 1 ) =  v(/c) — f i (k)Aix(k)(vT(k)x(k) + n(k))

(2.2.59)

i — argm ax ||xj(/i;) ||2
i < j < B c

By taking the statistical expectation of both sides of (2.2.59) and 

using the independence assumptions, and assuming that /r is a constant, 

the authors obtain

E { v ( k  +  1 )} =  ( /  -  f iR)E{v(k)}  (2.2.60)

For a wide-sense stationary x(k),  the autocorrelation matrix R is 

defined by

=  W  j =  argmaxHx^AOUj} (2.2.61)
I  | |X i(fc) | |  1 < j < B c J

The authors conclude th a t the necessary condition for the proposed 

algorithm to converge is th a t the eigenvalues of R should be positive 

(when the eigenvalues are not positive convergence to a global minimum 

can not be guaranteed) and this is referred to as the persistence of 

excitation condition.

In the second analysis, the authors use the mean-squared error 

(MSE) analysis. In this analysis the authors write the coefficient error 

update equation as:
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'i(k +  1) =  ( l B, -  Xi(fc)xf(A)) Vj(fc) -  ||X|(t)||axi(fc)vTW (J “  A)x(fc)

i = arg max ||xj(fc) ||2  
i <j<Bc

where Vi(k) is the ?h block of v(k) .  Under the independence assump­

tions, the authors derive the MSE recursion for the update coefficient 

block as:

1 ) — R v M  — - j ^ j ( R Vi(k)RXi +  R ^ R y ^ k ) )

+ ^ R , tR . t ( k )R , t +  ^ R , M ^ Rv,W)
U  X  L J \  u x

+ £ * R x itr (Rx(I -  ^ ) f iv (* ) ( /  -  A ) )

where

J l U  X  

,2

+ B k i anR xt

i = argm ax ||x j (/>;)||2
i <j<Bc

(2.2.62)

Ryt{k) = E { v i ( k ) v f ( k ) i = arg max ||xj(A; ) ||2  }
i <3<Bc

R Xi = E{* i (k )x[ (k ) i = argm ax ||xj(/i: ) ||2  } 
i <j<Bc

a* =  E{x*(k)}  

c i  = E{  n2(fc)}

In (2.2.62), the authors have approximated ||xi(A:)H2 as Bi&l-
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Then the authors consider the trace of (2.2.62) since the input signal 

is zero-mean i.i.d. Gaussian, which is given by:

t rRVt(k +  1 ) =  -  ^  +  trRVi(k) +  p2jfy:,

i = argmax ||xj(A:) ||2
i < j < B c

(2.2.63)

where rj =  E { x A{k)}. Then the authors remove the conditioning on z,

which is implicit in (2.2.63), by using the block selection probabilities

Pi = Pr{z =  arg max J J x ^ ( A : ) Û }- So for a given coefficient block z, 
i < j < B c

(2.2.63) will apply with probability p{. The probability of block z not 

being updated is I — Pi and the MSE recursion for block z will be 

t rRVi(k+  1 ) =  t rR Vi(k) with probability 1 — pi. The authors write the 

MSE recursion as:

trRVi(k +  1 ) =  Pi ^ 1  — ^  +  5 ^ 4 (2 p +  La*^J t r R Vi(k) +  p 27^ 7 )  +  (1  - Pi)trRVi{k)

1 < i < B c

For zero-mean i.i.d., Gaussian input signals, the authors obtain Pi — 

\ / B c for all z, thereby yielding

t rRWi{k +  1) =  ( l  -  ^  +  1 ^ (2 7 7  +  La*)') trRy^k)  +  p 2^

1 < i <  B c
(2.2.64)

To ensure the stability of the recursion (2.2.64), the step size p  should 

be bounded by
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(2.2.65)

where 77 = 3a* for Gaussian signals. Then the authors derive the

nonconservative bound for large L — BiBc, where (2.2.65) can be ap­

proximated by:

Then the authors extend (2.2.66) to the case of multiple blocks (B 

> 1) as:

When Bc = B,  the stepsize is bounded by /z < 2 , this is consistent 

with the NLMS algorithm.

malized least-mean square (SM-PU-NLMS) algorithm; they combine 

the data-selective updating from set-membership filtering with the re­

duced computational complexity from partial updating.

The authors start with reviewing the partial update-NLMS (PU- 

NLMS) algorithm and also they provide an analysis in the mean-squared 

sense for the convergence of the PU-NLMS algorithm as in [2 ].

In the paper, in set-membership filtering; the filter w is designed to 

achieve a specified bound on the magnitude of the output error. Let 

H(fc) denote the set containing all vectors w for which the associated 

output error at time instant k is upper bounded in magnitude by 7 ,

i.e.,

( 2 .2 .66)

In [35], the authors explore the set-membership partial-update nor-

H(/c) =  {w G R n  : |d(k) — w Tx(A;)| < 7 }
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where H(/c) is referred to as the constraint set, and its boundaries are 

hyperplanes. W ithin the paper, the authors define the exact feasibility 

set ip(k) to be the intersection of the constraint sets over the time 

instants i = 1 , . . . ,  k, i.e.,

k

1 = 1

The authors describe the idea of set-membership adaptive recursion 

techniques (SMART) as a method to adapt the coefficient vector such 

that it will always remain within the feasible set.

Then the authors merge the ideas of partial updating and set- 

membership filtering to obtain the new algorithm (set-membership par­

tial update NLMS) algorithm. The goal is to combine the advantages of 

set-membership filtering (SMF) and partial updating in order to obtain 

an algorithm with sparse updating and low computational complexity 

per update. The fundamental difference between SMF and partial up­

date adaptive filtering is th a t for SMF if the current adaptive filter 

coefficients lie within a prescribed set no update will be undertaken, 

whereas with partial update adaptive filtering an update is made at 

every iteration but only a subset of coefficients is updated.

In the paper, the authors present the algorithm derivation; their 

approach is to find a coefficient vector tha t minimizes the Euclidean 

distance ||w(fc +  1 ) — w(/c) | | 2 subject to the constraint w(A:+1 ) € H(k) 

with the additional constraint of updating only L coefficients. This 

means if w (k) 6  H(A;), the minimum distance is zero and no update is 

required. However, when w (k) ^  H(A;), the new update is obtained as 

the solution to the optimization problem given by:
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w (k +  1 ) =  arg min | |w  — w ( / c ) | |2 .
W

subject to:

d{k) — x T(k) w  = g(k)

A/L(fc)( w -  w(fc)) =  0

where g(k ) is a param eter tha t determines a point within the con­

straint set H(fc) , or it satisfies, g(k) < 7 , and

^(k) ~   ̂—

where AiL{k) is a complementary matrix which contains ones and 

zeros, the number of ones is dependent on L th a t gives:

A/L(fc)w (fc + l)  =  A/L(fc)w(A;)

which means only L coefficients are updated.

The authors suggest th a t g(k) is chosen such tha t the update vector 

belongs to the closest bounding hyperplane in H(fc), i.e.

g(k) = je {k ) / \e {k ) \

The authors derive the update equation in a similar way as in [2]:

e(k)AlL(k)x{k)
w (k +  1 ) =  w (k) +  fi(k)

The role of the matrix A/ is identical to the role of the diagonal 

matrix which was introduced in the previous paper [2 ], the update
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occurs where only the ones in the matrix AjL{k) exist. 

The stepsize fi(k) is data  dependent and given by:

1 — 7 /  |e(/c)|, when w (k) ^ H(/c),i.e.,if |e(fc)| > 7

fi(k) = <
0 , otherwise

(2.2.67)

The authors noted th a t fi(k) starts with high values and reduces 

as the error reduces, reaching zero as the maximum allowable error is 

approached. The authors highlight th a t the index set IL(k) specifying 

the coefficients to be updated is chosen as in [2], i.e., the L coefficients 

in the input vector x(k)  having the largest norm.

Within the paper, the authors studied the convergence issues; they 

assume that the coefficient error vector at instant k is defined as:

v(fc) =  w (k) -  w opt 

and the desired signal is modelled as:

d(k) -  x T(k)wopt

and the error signal is expressed as:

e(k ) =  —x T(k)v(k)  

so that the following expression gives the update equation of the
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norm of the coefficient error vector:

||v(k  +  1 )||2 = ||v(/c) | | 2 -  —---- 5—— ?vT(k) x (fi(k)A[L{k)x{k)xT{k)
II IL (fc)X( > ||

+(i(k)x(k)x.T(k)AiL(k) -  fi2(k)x(k)xT(k))v(k)

=  “  lu ---- S lV iP ^ M  x (2 M*0 A/i.(*) “  »2{k)I)x(k)xT{k)v(k)llA/i,(fc)x(fc)||

A reduction in the coefficient error norm will occur whenever the term

vT(fc)(2 /i(A:)AI lW  -  fj,2(k)l)x (k)xT(k)v(k)

is positive. The authors suggest th a t although the matrix

(:2fi(k)AlL(k) -  fi2(k ) l)x (k )xT(k)

has non-negative eigenvalues, there exist time instants when the coeffi­

cient error norm may increase as a result of the partial update strategy, 

as shown in the paper, whenever a reduction in the coefficient error 

norm occurs, the fi(k) th a t causes the largest reduction is given by:

=  ||a /l(*)x M | |2 /||x(A ; ) | |2

and achieves the largest reduction in coefficient error norm whenever 

a reduction occurs.

In the paper, the authors guarantee convergence with the heuristic 

argument that the update, even if only for a fraction of the coefficients, 

will point towards the optimal solution most of the time. Also the au­

thors guarantee convergence in the mean-square sense for the case of 

additive measurement noise, they state tha t the SM-PU-NLMS algo-
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rithm converges in the mean-squared sense for zero-mean i.i.d. input 

signals in the presence of zero-mean additive uncorrelated noise when

(llA /Ii(*)x(fc)||2)  /  (||x(fc)||2) > /i(k)

and continue to assign a probability of update Pe{k) = P(\e(k)\ > 

7 ), to calculate the coefficient error norm for the SM-PU-NLMS algo­

rithm:

x ( k + 1 ) = i - P e( k M k )
A iL( k M k ) x T(k)

HA/L(*)x ( fc) | | 2 ,

v ( k ) +P e(k)fj,{k)
n(k)AlL{k)x{k) 

<k) | | 2L/L(k)'

Then the authors derive the excess MSE under the independence as­

sumption and assuming the additive measurement noise to be zero mean 

and not correlated with the white input signals by:

Cl  , -n _ m   ̂ p f V{k)Pe{k)vT {k){x (k)xT(k ) AlLik) + A lL(k)x(k ) x (k ) ) v ( k )  
$yK+i) ~ <{K) - axx ^  S ------------------------- [77 7777[2

/j2(k)P2(k)vT{k)x(k)xT(k)x(k)  \  [ ^  ( fi2(k)P2{k)n2(k) )

I I W W I I 2 J I  I I W W I I 2 j
=  Pi ~  P2  +  P3  (2.2.68)

Then the authors rewrite P2  by invoking the independence assump­

tion and assuming N  large such tha t ||x(/c) | |2 can be considered a rea­

sonable estimate of (N  -I- l)E '[x2 (A:)] as:
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v T (k)Pe ( k ) ( x(k ) xT (k )Al [ ( k ) + A Il {k)x {k )xT (k))v{k)  

l|x(*)||2

Pe ( ^ ) | |A / L(fc)X(fe)||2v^(A:)x(fc)x(fc)v(A:)

f  v T (k)Pe ( k )E[x ( k)xT (k )AJl (fc)+A,7 {k)x ( k )x T (k)\v(k)
I (N+l)4( N + \ ) o l

p e ( k ) E [ | |A j L{k)x ( k ) | | 2] v T (k)v(k)  
( N +  l)2og

(2.2.69)

Then the authors try to evaluate p2  by computing the elements of 

matrix B  = E{x(k)xT(k)A[L +  A[L(k)*-(k)xT{k)], they assume the 

input samples to be i.i.d., then the off diagonals will average to zero. 

Since AjL^) will select only the L values in the input vector with the 

largest norm, the diagonal will be an average over only the L strongest 

components. Then the authors choose pi to denote the probability that 

one of the L largest components contribute to the z*h element in the 

diagonal. Also they choose {z/i} ^ 1 to be the elements of the input 

vector x(k)  sorted in magnitude such tha t y\ < y2  <  ... <  2/yv+i• Then 

the authors calculate the diagonal elements of B  for a given L as follows:

L —l

E  {x (k )x T(k)AlL(k} + A lL(k)x ( k ) x T( k ) } . . = 2 ^  E  {piy2N- i+i}

where for i.i.d. signals, Pi = l / ( N  +  1). Then the authors derive 

the evaluation of P2 , by substituting Pi into (2.2.69) resulting in:

i=o
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E  {\ \AlLik)x(k)\\2} 
p2 »  Pe(k)(2 -  Pe(k)) ■ • (jv + 1 )2̂ 2-— ^ (fc) <

then the authors conclude th a t since p3 is independent of £{k), (2 .2 .6 8 ) 

is always stable.

Table (2 .2 ) shows the computational complexities per update in 

terms of the number of additions, multiplications, and divisions for the 

NLMS, SM-NLMS, PU-NLMS, and SM-PU-NLMS algorithms. The

Algorithm Multiplications Additions Divisions
NLMS 2N+4 2N+4 1

SM-NLMS 2N+4 27V+5 2

PU-NLMS N+L+ 3 N+L+ 3 1

SM-PU-
NLMS

N+L+ 3 N+L+4 2

T able 2.2. Computational complexity of NLMS, SM-NLMS, PU- 
NLMS, and SM-PU-NLMS algorithms

authors suggest that although the PU-NLMS and SM-PU-NLMS al­

gorithms have a similar complexity per update, the gain of applying 

the SM-PU-NLMS algorithm comes through the reduced number of re­

quired updates. For time instants where no updates are required, the 

complexity of the SM-PU-NLMS algorithm is due to filtering.

The authors also include in the paper simulations for a system iden­

tification application, they show that not only can the set-membership 

filtering adaptation algorithms, with partial updating further reduce 

the computational complexity when compared with the partial update 

NLMS algorithm, but they can also present a faster convergence for the 

same level of MSE [35].

In [36], the authors implement a new algorithm called the stochastic 

partial update LMS algorithm (SPU-LMS), it is based on choosing



Section 2.2. Overview 41

which of the subset of the filter coefficients to update randomly; by 

doing that, the authors show that divergence in nonstationary signals 

can be prevented by scheduling coefficient updates at random. The 

algorithm involves selection of a subset of size N /  P coefficients out 

of P possible subsets from a fixed partition of the L coefficients in the 

weight vector, the authors assume that the filter length L is a multiple 

of P.

The authors describe the new algorithm as similar to sequential PU- 

LMS, the only difference is th a t at a given iteration, k,  for sequential 

LMS (S-LMS) one of the sets S*, i  = 1, • • • , P  is chosen in a predeter­

mined fashion, whereas for SPU-LMS, one of the sets S* is sampled at 

random from {Si, 5 2 , • * • , Sp} with probability 1 /  P.

The authors derive the update equation as:

w j ( k  +  1)

W j ( k )  -f f i e ( k ) x j ( k )  i f  j  6  Si  

W j ( k ), otherwise
(2.2.70)

where e(k) =  d(k) — w T(/c)x(A;).

Then the authors write the above equation in a compact form as:

w (k +  1) =  w (k) +  fie(k)I(k)x.(k) (2.2.71)

where I ( k ) is a random matrix chosen with equal probability from 1(f), 

i = 1 , ■ • • , P  (where 1(f) is obtained by zeroing out the j th row of the 

identity matrix I  if j  ^ Si).

The authors analyse the proposed algorithm in terms of uncorre-



Section  2.2. Overview 42

lated input and coefficient vectors, deterministic signals and correlated 

input and coefficient vectors.

First, for the uncorrelated input and coefficient vectors, the authors 

assume that the desired signal d(k) satisfies the condition where d{k) =  

w p̂tx(k)  +  n(k)  for the stationary signal analysis of SPU-LMS. They 

also assume tha t x(k)  is a Gaussian random vector and that x(k)  and 

v(k) = wity-v/opt  are independent, and I(fc) and x(k)  are independent 

of each other. They also assume that R  =  E  [x(k)xT(k)} is block 

diagonal such that — R-

Then the authors obtain the following update equation conditioned 

on a choice of Si for convergence in the mean analysis.

E  {v(k  +  l)\Si} = (J -  t i I(k)R)E {v(k)\Si}

= ( I - f i l ( i ) R ) E { v ( k ) \S i }

then the authors average over all choices of Si, they obtain the 

following equation by making use of the fact that the choice of Si is 

independent of v(k)  and x(k) .

£{v(fc +  l ) } =  (2.2.72)

The authors derive bounds on fi to ensure convergence of the algorithm 

in the mean

2P
0  < fJL <

^max

For the convergence in the mean square analysis of SPU-LMS, the



Section 2.2. Overview 43

authors obtain the error variance E  {e(/c)eT(/c)} under the indepen­

dence assumptions as:

E  {e2 (fc)} =  U  + tr \RE  {v(/c)vT(fc)}]

where £mjn is the minimum attainable mean square error, and is 

given by:

fmin =  E  {d2 (fc)} -  rTR~lr 

where R = E  {x.(k)xT(k)} and r = E  {d(k)x(k)}.

Then the authors derive the evolution equation for tr[RE {v(fc)vT(A;)}] 

conditioned on choice of Si as:

R E  {v{k  + 1 )vT{k +  1 ) |Si} = R E  {v(k )vT{k)\Si} -  2fiRl{i)RE {v (k )vT(k)\Si} 

+H2l(i)Rl( i)E {x (k )xT (k)A(k)x(k)xT (k)\Si} +  /i2f min.RI(i).RI(z)
(2.2.73)

where A{k) = E  {v(A;)vT(A;)}.

Then the authors define u (k) = Qv(k ), where Q satisfies QRQT =

A. By applying the definition of u(k) to (2.2.73), the authors obtain 

the equation:

g(fc+l) = ( l - j r A +  ^ A 2 +  ^ A 2 1  1 T)  g ( f c ) + ^ minA2l  (2.2.74)

where g(A;) is a vector of diagonal elements of AE  {u(/c)uT(A:)} , and 

1 is an L  x 1 vector of ones.

The authors derive bounds on /z to ensure convergence of the algo­
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rithm in the mean square as:

2
0 <  n < - —

=  <2-2-75) 
i=i 2 -

which are independent of P  and identical to that of LMS (36]. 

Then the authors introduce the summed MSE difference as

=  (2.2.76)
k= 0

which is used as a measure of the convergence rate and M(fi) = —

£min)/£min as a measure of misadjustment. Then the authors establish 

the misadjustment as:

= t^ k )  (2-2-77)

and they suggest tha t is the same as that of the standard LMS. Thus, 

they conclude that the random update of the subset has no effect on 

the final excess mean square error.

Then authors show tha t the summed MSE difference is

J  = Ptr{[2^iA -  /i2A2 -  /i2A2 1 l 7’] - 1(g(0) -  g(oo)} (2.2.78)

which is P  times the quantity obtained for the standard LMS algo­

rithm [36]. They conclude tha t for block diagonal 7?, random updating 

slows down convergence by a factor of P without affecting the mis­

adjustment. Furthermore, they verify that a much simpler condition 

0 < fi < ( i r { R } )  ’ Provldes a sufficient region for convergence of SPU-
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LMS and the standard LMS algorithm.

Second, for deterministic signals, the authors assume that the input 

signal x(k)  is bounded, that is supk(xT(k)x(k)) < B < oo, and that 

the desired signal d(k) follows the model

d { k )  =  w£*x(fc)

they define v(k)  = v/(k) — Wopt and e(k) =  d(k) — w T(k)x(k), and 

they compose a lemma.

Lemma: if /i < 2/ B ,  then e2(k) —» 0 as k —► oo. Where, {.} 

indicates statistical expectation over all possible choices of Si, where 

each Si is chosen randomly with equal probability from {Si, • • • , Sp}.

For a positive definite matrix A(k), it is stated that A(k)  converges 

exponentially fast to zero if there exits a 7 , 0  < 7  < 1 and a positive 

integer K  such tha t tr {A(k  +  K )} < (1 — 7 ) tr{A(k)} for all k.

And if fj, < 2 /B  and the signal satisfies the following persistence of 

excitation condition, for all k, there exist K  < 0 0  , Qi > 0 and c*2 > 0 

such that
k + K

a \ I  < < a2I  (2.2.79)
i = k

then vT(k)v(k) —> 0  , and v T(k)v(k) —» 0  exponentially fast.

The authors conclude th a t the conditions (2.2.79) are identical to 

the persistence of excitation conditions for standard LMS. Therefore, 

the sufficient condition for exponential stability of LMS is enough to 

guarantee exponential stability of SPU-LMS.

Third, for correlated input and coefficient vectors, in this section 

the authors compare the performance of LMS and SPU-LMS in terms 

of stability and misconvergence when the uncorrelated input and coef­
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ficient signal vectors assumption is invalid. Here the authors analyse 

the stability and the performance separately. In this section the au­

thors make the dependence of the value of p explicit and conclude that 

stability and performance of SPU-LMS are similar to that of LMS.

Result 1 (stationary Gaussian process), let x(k) be a stationary 

Gaussian random process such that E  {x(k)x(k — /)} =  r* —* 0 as 

I —► oo and x(k) = [x(k)x(k — 1 ) • • • x(k  — n +  1 )] , then for any p > 1 , 

there exist constants p* > 0 , M  > 0 , and a  (E (0,1) such that for all 

p  € (0 , p*) and for all £ > k > 0

E n ( i  -  f i i ( j ) x ( j ) x ( j ) T )
j=k+ 1 }] < M( 1 — pa) t—k

if and only if the input correlation matrix £[x(A;)xr (/i;)] =  RxX, is 

positive definite.

They continue to conclude tha t a necessary and sufficient condition 

for convergence is that the covariance matrix be positive definite. Al­

though first analysis gives some bounds on the step size p, the authors 

say that they are not very reliable as the analysis is valid only for very 

small fi.

In the mean squared analysis, the authors assume that

d(k) = x T(k)wopt +  n(k)

The effectiveness of the method is explained in Results 2  and 3 be­

low, where the authors compare the steady-state performance of the 

two algorithms for two simple scenarios where the independence as­

sumption is violated.
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Result 2 (i.i.d. Gaussian process): let x(k)  = [x(k)x(k—1 ) x (k—

of zero mean i.i.d. Gaussian random variables. And a2 denotes the 

variance of x(k)  and cr2 denotes the variance of n(k). Then the authors 

assume that n(k ) is a white i.i.d. Gaussian noise. For LMS, they have

and for SPU-LMS, they assume L to be a multiple of P and sets Si to 

be mutually exclusive, they have

then the authors note th a t the constant C in the final mean square 

expression for SPU-LMS is the same as th a t for LMS. Therefore, for 

large L, the authors see th a t SPU-LMS is marginally worse than LMS 

in terms of misadjustment.

Then from (2.2.74), the authors obtain the vector of diagonal ele­

ments of lim ^oo E  {v(fc)vT(A;)} to  be

L 4 - 1 )]T, where L is the length of the vector x(k).  {x(A:)} is a sequence

" 2
lim E  { v ( k ) v T(k) \  = p 2 +

k—*oo 2 ll
^ I  + C f i i l  (2.2.80)

lim E { v ( k ) v T( k ) } = M2 | L  +
Ac—►oo Zll

(L+DP-l 2 2
p  u x u n

Vd = tl2 | | l + (L + 4 - -g"l + 0 ( ^ ) 1

where 1 is an L  x 1 vector of ones. The authors analyse it and they 

obtain
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v d =  /i2

2 ( L + 1 ) P - 1  2 2
71 1 | P  WI 0 7»1

2m --------4 1

for SPU-LMS.

There is a third result in [36] related to spatial filtering, however 

this lies outside of the scope of this thesis.

The authors also include in the paper simulations which show the 

comparison between LMS, SPU-LMS, P-LMS, and S-LMS in terms 

of convergence. Therefore these comparisons are not repeated in this 

thesis.

W ithin the paper, the authors show tha t if the LMS algorithm con­

verges in the mean, then so does the sequential LMS algorithm for the 

general case of arbitrary but fixed ordering of the sequence of partial 

coefficient updates. Also they conclude tha t S-LMS has similar conver­

gence and steady state behaviour as LMS.

For SPU-LMS the conditions on step size for convergence in mean 

and mean square were shown to be equivalent to those of LMS.

The authors also verified by theory and by simulation tha t LMS 

and SPU-LMS have similar convergence criterion, and also the SPU- 

LMS has the same performance as P-LMS and S-LMS for stationary 

signals. The authors also demonstrate tha t choosing the coefficient to 

be updated randomly does not increase the final steady-state error as 

compared to the regular LMS algorithm.
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2.3 Chapter Summary

In this chapter, previous work in partial update adaptive filtering tech­

niques was reviewed. The first technique is to update one coefficient at 

each iteration this is called the maximum normalized least mean square 

(Max-NLMS) algorithm, this adaptive filter only adjusts the coefficient 

associated with the data  element that has maximum absolute value in 

the filter memory a t each iteration [27]. The second technique was to 

update a portion of the coefficients at each iteration, and those coeffi­

cients were the ones which have the largest magnitude gradient compo­

nents on the error surface. Coefficients which have a small magnitude 

gradient component do not need to be updated as they will have little ef­

fect on the overall algorithm performance [28]. The third technique was 

to update entire blocks of the coefficients instead of selecting single fil­

ter coefficients for updating. Another technique was also studied, based 

on dividing the adaptive filter coefficients into small blocks and then 

updating a number of those blocks rather than the entire filter at every 

iteration, this was achieved by using a selection criterion, which ranked 

the regressor vector blocks according to their squared Euclidean norms 

(their energy) and selecting those blocks with the largest norms as the 

ones to be updated. Combining the data-selective updating from set- 

membership filtering with the reduced computational complexity from 

partial updating was also studied, the work in [35] showed that the 

set-membership filtering adaptation algorithms with partial updating 

can not only further reduce the computational complexity when com­

pared with the partial update NLMS algorithm, but can also present a 

faster convergence for the same level of MSE. A new algorithm called 

the stochastic partial update LMS algorithm (SPU-LMS) was studied,
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based on choosing which of the subsets of the filter coefficients to update 

randomly. It was shown th a t for SPU-LMS the conditions on step size 

for convergence in the mean and mean square were shown to be equiv­

alent to those of LMS. And also it was shown that LMS and SPU-LMS 

converge to similar regions within weight parameter space. Most im­

portantly, the SPU-LMS algorithm overcomes the erratic convergence 

behaviour tha t can be observed in PU-LMS algorithm for which the 

update blocks are chosen deterministically [36]. Different techniques 

for partial update were shown in this chapter, starting from choosing 

one coefficient per update to selecting a block of coefficients to be up­

dated, those blocks were chosen either in a deterministic or random 

manner. The purpose of including these different techniques and all 

the analysis was to verify th a t although it is well known th a t partial 

update techniques can reduce convergence speed, given sufficient time 

they can obtain the same accuracy measured by steady-state mean 

square error as the ordinary LMS algorithm. Some of those techniques 

will be extended and exploited in the context of channel shortening in 

the following chapters.



Chapter 3

PROPERTY-RESTORAL 

BASED SEQUENTIAL BLIND 

CHANNEL-SHORTENING 

ALGORITHMS

In multicarrier or single-carrier cyclic prefix (SCCP) modulation, the 

transm itted sequence has redundancy because of the cyclic prefix. This 

redundancy has often been used for carrier frequency offset (CFO) esti­

mation, where it is assumed th a t the channel is shorter than the cyclic 

prefix or tha t the channel is not time-dispersive. This redundancy can 

also be used in the property restoral sense in order to create a blind, 

adaptive channel shortener. In this chapter, the algorithms which at­

tempt to restore each of the properties of the transmitted sequence that 

ought to be present in the equalized received sequence will be studied. 

Also in this chapter, the focus will be on how to develop adaptive 

channel shortener algorithms by using a philosophy called “property 

restoral” . The idea is to look for and restore properties of the trans­

mitted sequence tha t ought to  be present in the equalized received se­

quence. Algorithms have been designed to restore those properties. In

51
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the multicarrier case several properties are available for creating blind, 

adaptive channel shorteners:

1. Cyclic prefix restoration [37].

2 . Autocorrelation shortening [4,5].

3. Null-tone restoration [38,39].

4. The frequency-domain finite-alphabet methods [3].

3.1 Cyclic-Prefix Restoration

In paper [37], the author explores an algorithm called multicarrier 

equalization by restoration of redundancy (MERRY) which attempts 

to adapt the channel shortener with the aim of restoring the redun­

dancy which is due to the cyclic prefix of the transmitted sequence in 

multicarrier or single-carrier cyclic prefix (SCCP) modulation.

In multicarrier transmission, modulation is achieved via an inverse 

fast Fourier transform (IFFT), and demodulation is successfully com­

pleted via an FFT. When the CP is added, the last v samples are the 

same as the first v samples in the transm itted symbol, but because of 

ICI and ISI in the channel, the modification to the received CP at the 

beginning and end of the symbol is likely to be different.

For an example, system with a data size of 8  samples and a cyclic 

prefix length of 2  samples. The CP is represented by x(l), x(2), and 

the symbol by x(3),...., x(10). Note that x(2) =  x(10) and a:(l) =  x(9), 

but at the receiver, samples y(2 ) and y(1 0 ) would still be equal without 

a channel. However these samples are affected by the convolution of 

the channel and the input sequence. If the channel is no longer than



Section  3.1. Cyclic-Prefix R estoration 53

the cyclic prefix, then the convolution for y{ 1 0 ) only uses the x  data 

of the end of the symbol and the convolution for y{2 ) only uses the 

redundant data  in the prefix, making the two y values equal. However, 

if the channel is longer than the cyclic prefix then the excess channel 

taps create terms tha t will be different in the two convolution sums. 

The algorithm th a t exploits this observation is next developed.

3.1.1 MERRY Algorithm

This section explains the basic MERRY algorithm. The SISO multi­

carrier system will be presented. Once the cyclic prefix (CP) has been 

added, the transm itted da ta  complies with the relation

x ( M k  + i) = x ( M k  -M +  N),  i £ {1,2,...., v} (3.1.1)

where x  is the source sequence to be transm itted through a linear finite 

impulse response (FIR) channel h, k is the symbol (block) index, N  is 

the FFT size, v is the cyclic prefix (CP) length, and M  = N  + v is the 

total time-domain symbol size. The received data r are obtained from 

x  by

Lh
r ( M k  +  i) =  ^ 2  h(j)  ■ x ( M k  +  i -  j )  +  n (M k  +  i) (3.1.2)

j = o

and the equalized data y are likewise obtained from r by

Lw
y (M k  +  i) = ^ 2  w (j) ’ r (Mk + i — j )  (3.1.3)

j = o

The channel h has L h +  1 taps, the TEQ has Lw +  1 taps, and the 

effective channel c =  h *  w has Lc +  1 taps, where L c = Lh + Lw.
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The channel destroys the relationship in (3.1.1), because the ICI and 

ISI tha t affect the CP can be different from the ICI and ISI that affect 

the last v samples in the symbol. Consider the example in the top of 

Figure (3.1), the transm itted samples x(2) and x(10) are exactly equal. 

However, at the output of the TEQ in the receiver, the interfering sam­

ples before the second sample are not all equal to their counterparts 

before the 1 0 th  sample. Notice that if c(2 ), c(3), and c(4) were zero, 

then y(2) =  2/(10)- Thus, if y(2) =  y{ 10) in the mean squared error 

sense, then in an average sense, the channel and the CP will be equally 

short. Note th a t the last example shortens the channel to a window of 

v taps: the first v taps in the effective channel. The location of the win­

dow, and the transmission delay, can be changed by forming a different 

comparison. For example, as shown in the bottom of Figure (3.1), if 

2/(3 ) =  2/(H ) rather than y{2) =  2/(1 0 ), then the non-zero window of 

the effective channel becomes [cl,c2] rather than [cO, cl].

It can be noted th a t the channel has been shortened to v taps, nev­

ertheless a multicarrier system only requires shortening to v +  1 taps. 

However, when v is large (e.g. 32 in ADSL), shortening the channel by 

an extra tap should have little effect on the performance.

Overall, if the effective channel has been shortened, then the last 

sample in the A-delayed CP should be identical to the last sample in 

the symbol. The cost function tha t exploits this is given by

Jmerry(A) =  E{{y(Mk + v + A) -  y (M k  + V + N  + A ))2], (3.1.4)

A e  {0 ,1 ,2 ,...... , M  — 1 } where A is the
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Data

t +
CP

- 1  0

Data

3 4 5 6 7 8 9  10

CP

11 12

Data

13 14

y{2) = c q x(2) +  cix(l) +  Qjx(O) +  cgx(-l) +  cax{-2)
= Q)x(10) +  cix(9) +  [c*r(0) +  flgx(-l) +  ctx (-2 )\ 

y(10) =  q,x(10) +  Cjz(9) +  [c*x(8) -f c*r(7) +  c*®(6)] —

t *
CPData-----► •«------------- Data--------- j----

1 1
■+—  Data

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

y(3) =  <b®(3) -f- e,x(2) +  Ojt(1) +  Cgx(O) +  c*x(-l)
= [A)x(3)] +  Cjx(lO) +c,x(9) +  [cax(O) +  C4x(-1)] 

y(ll) = [coi(ll)] +  Cjx(lO) +  Cjx(9) +  [cgx(8) +  c * ^ )]

F igure  3.1. Illustration of the difference in the ISI at the received 
CP and at the end of the received symbol, delay of A =  0 . x(i), Ci, 
and y{i) axe the transm itted data, effective channel, and TEQ output, 
respectively, and the bracketed terms are intended to be suppressed.

symbol synchronization parameter, which represents the desired delay 

of the effective channel. The choice of A affects the cost function, and 

is an important param eter in equalization [37].

A stochastic gradient descent of (3.1.4) leads to a blind, adaptive 

TEQ, since the transm itted data is not necessary to be known. The 

resulting algorithm MERRY performs a stochastic gradient descent of

(3.1.4), with a constraint to avoid the trivial solution w =  0 [40], [41]. 

For a SISO system, the basic MERRY algorithm becomes
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Given A, for symbol A: =  0 , 1 , 2 , ..... ,

r(k) = r (M k  +  v +  A) -  r (M k + v + N  + A) (3.1.5)

e(k ) =  w T(k)r(k) (3.1.6)

w(A: +  1) =  w (k) — fie(k)r(k) (3.1.7)

(3.1.8)

where r(z) =  [r(z), r(i -  1 ) , ....., r(i -  LW)]T

The norm ||.|| can be the common L2 norm, the Lp norm for p an 

integer, the norm with respect to a matrix, or any other conceivable 

norm. Note tha t MERRY is a simple vector update rule, with the added 

complexity of a renormalization. Because MERRY compares the CP to 

the end of the symbol, only one update is possible per symbol. Other 

implementations of the constraint include fixing one tap to unity, main­

taining a channel estimate and renormalizing to enforce ||c|| =  1 instead 

of ||w|| =  1 , or including a penalty term in the cost function to enforce 

the norm constraint [37]. In [42], the authors show that MERRY can 

also be implemented in transmitter-zero OFDM (TZ-OFDM) systems, 

which is opposed to cyclic prefix OFDM (CP-OFDM) systems. TZ- 

OFDM systems transm it zeros during the guard period tha t is used for 

the cyclic prefix in CP-OFDM. This is equivalent to assuming tha t the 

samples in the CP x ( l )  and x(2) in Figure (3.1) are zero, rather than
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copies of the data. The MERRY cost function then becomes

Jm erry ,  TZ (A) =  2E[\y(Mk  +  v +  A )|2], (3.1.9)

A € { 0 , 1 , 2 ,  ,M — 1}

The update equation is a stochastic gradient descent of (3.1.9) with 

a periodic renormalization. The advantage of MERRY is the low com­

putational complexity but slow convergence is the main drawback with 

MERRY as it only updates once per symbol. The length of the short- 

ener, Lw, is typically chosen as a function of the length of the channel, 

Lh in this work a channel shortener of length 16 is used to match the 

work of [5]

3.2 Autocorrelation Shortening

In this section adaptive TEQs th a t rely on correlation estimates will 

be studied. An algorithm called sum-squared autocorrelation mini­

mization (SAM) [4], which minimizes the sum-squared autocorrelation 

terms of the effective channel impulse response outside a window of a 

CP-length has been developed. SAM converges much faster than the 

MERRY algorithm but at the expense of higher complexity. SAM be­

haves much like the constant modulus algorithm (CMA) equalization 

algorithm in tha t it does not require the user to specify the desired 

delay and can adapt before carrier frequency offset (CFO) recovery is 

performed. Several variants of SAM have been proposed. The sum- 

absolute autocorrelation minimization (SAAM) algorithm [26] replaces 

the squares of the autocorrelation with their absolute values. Also the 

single lag autocorrelation minimization (SLAM) [5] aims to minimize
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the square of only a single autocorrelation and thereby reduce compu­

tational complexity in its realization.

3.2.1 SAM Algorithm

In [4], the authors explore an algorithm called blind, adaptive channel 

shortening by sum-squared autocorrelation minimization (SAM) for up­

dating the coefficients of a time-domain equalizer in multicarrier modu­

lation system. The idea is to minimize the sum-squared autocorrelation 

terms of the channel impulse response outside a window of a CP length.

System Model

The system model which is shown in Figure (3.2) is assumed. The input 

signal x{k) is the source sequence to be transmitted through a linear 

finite-impulse-response (FIR) channel h  of length (Lh + 1) taps, r(k ) is 

the received signal, which will be filtered through an (Lw +  l)-tap  TEQ 

with an impulse response vector w to obtain the output sequence y(k). 

In this work, real signals are assumed but generalization to the complex 

case is straight-forward, c =  h  * w is denoted as the shortened or 

effective channel assuming w is in steady-state where * denotes discrete 

time convolution. It is also assumed tha t 2 Lc < N f f t holds, where Lc is 

the order of effective channel and N f f t is the FFT size [4]. The signal 

n(k) is a zero-mean, i.i.d., noise sequence, uncorrelated with the source 

sequence with variance cr̂ . The received sequence r(k) is

(3.2.1)
3=0
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noise

Adaptive
Algorithm

Channel h TEQ W

F ig u re  3.2. System model for blind adaptive channel shortening, 

and y(k) is the output of the TEQ and is given by

L w

y(k ) = w (j)r(k  -  j ) =  w Tr fc (3 .2 .2 )
j = o

where r* =  [r(/c) r(k — 1) • • • r{k — LW)]T and w is the impulse response 

vector of the TEQ w =  [w0 w\ w2 - - • Wlw]t .

SAM Cost Function

In this section the SAM cost function and its use will be studied, and 

how to blindly estimate it from the measured data will be shown.

The underlying idea th a t allows the development of SAM is that 

for the effective channel c  to have taps equal to zero outside a window 

which have the size (v +  1 ), its autocorrelation values should be equal 

to zero outside a window of size (2u + 1 ). The autocorrelation sequence 

of the combined channel-equalizer impulse response in SAM is shown 

below
Lc

R Cc(l) =  -  0  (3.2.3)
j = 0
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and for a shortened channel, it must satisfy

R c c ( l )  =  o,  V|/| > V (3.2.4)

Hence, one possible way of performing channel shortening is by en­

suring tha t (3.2.4) is satisfied by the autocorrelation function of the 

combined response. However, this has a trivial solution when c =  0 or 

equivalently w =  0. Avoiding this trivial solution can be achieved by 

imposing a norm constraint on the equalizer, for instance ||w ||| =  1 , or 

equivalently -Rcc(0 ) =  1 .

It should be noted th a t it is not possible to achieve perfect nulling 

of the autocorrelation values outside the window of interest, because 

when a finite length baud-spaced TEQ is used, perfect channel short­

ening is not possible. This is because if the channel has Lh zeros, then 

the effective response will always have Lh +  Lw zeros. If the length 

of the channel had decreased to, for example, La < Lh taps, then the 

combined response would only have La zeros, which contradicts the 

previous statem ent. Hence, a cost function Jaam is an attem pt to mini­

mize (rather than nulling) the sum-square of the autocorrelation terms, 

is defined,
Lc

J,am =  J 2  ( ^ W ) 2 (3-2-5)
l= v + 1

The trivial solution can be avoided by imposing a norm constraint on 

the TEQ i.e., ||w ||| =  1. The TEQ optimization problem can then be 

stated as

w °p* =  arg min j aam (3.2.6)
l |w ||i= l

The relation between the autocorrelation sequence of the output y(k)
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of the TEQ and the autocorrelation sequence of the effective channel 

is given by [4]

Ryy(l) =  R„(l) + (3.2.7)

Under the noiseless scenario, Ryy(l) =  R CC{1), therefore equation (3.2.5) 

can be rewritten as

j,*m = E (RcAvf = E ('W') ) 2 (3.2.8)
l = v + 1 l= v+ 1

In the presence of noise, (3.2.8) is only approximately true. An ap­

proximation to the cost function in (3.2.5), denoted by J aam is given 

by

l c

J s a m  =  ^   ̂ { R y y i 0 )  >
l = v + l  

Lc

1

+ ct4v(Rww(1))2 (3.2.9)

In most situations, the TEQ length (Lw +  1 ) is shorter than the cyclic 

prefix length, v. In this case, RyjW(l) does not exist for the stated lag 

in (3.2.9). Therefore, both the noise terms in (3.2.9) can be neglected. 

Even if the TEQ is longer than  the cyclic prefix, the second and third 

terms which have been added are very small because of their multi­

plication with o\  and a4. The noise variance is usually small for 

ADSL channels [4]. A typical value of SNR in ADSL environments is

40 dB [26]. Therefore, practically it is assumed that J 3am =  J 3am as in

Equation (3.2.5).



Section 3.2. A utocorrelation  Shortening 62

Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the SAM cost Jv+1

is

w  =  w°M -  A»Vw ( E[y(k)y (k -  I)]2 ] (3.2.10)
\ l = V + 1 /

where fi denotes the step size, and V w is the gradient evaluated at w =  

w °id rptie instantaneous cost function is defined, where the expectation 

operation is replaced by a moving average over a user-defined window 

of length Navg

2
( k + l ) N avg — 1 / \  f  1\

« « = E  E
n = kN a vg  aV9l=v+ 1

> (3.2.11)

where Navg is a design param eter and it should be large enough to 

give a good estimate of the expectation, but no larger, as the algorithm 

complexity is proportional to  N aVg • (One possible choice for block-based 

systems is Navg = M ,  where M  is the total block size. This allows for 

one update per block, as for the MERRY algorithm). The stochastic 

gradient-descent SAM algorithm is then given by [4]

r(*+ipVa„ 9  l y t n \ y ( n _ l )

w(fc +  1) =  w(fc) -  2/z < J 2   AT--------
[  n = k N avg " av9

x < v w f (t+IE ' I ^ °
\  n = k N avg aV9

(3.2.12)
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which can be simplified to

{ ( k + l)N avg —  1 /  \  /  J \

E
n = k N avg 1Sav<>

x 1 / y(n)rn_i +  y(n  -  f)r(n)

[  n —k N avg V  N a v p

(3.2.13)

The TEQ update algorithm described in (3.2.13) will be referred to as 

the sum-squared autocorrelation minimization (SAM) algorithm, as it 

attem pts to minimize the cost function described in (3.2.5).

3.3 Null-Tone Restoration

The presence of null tones in the transm itted data is another common 

property of multicarrier signals. For example, in IEEE 802.11a, 12 

of the 64 tones are null tones, with 6  null tones located at the each 

edge of the frequency band. This provides a buffer to limit adjacent 

channel interference. It has also been suggested in [39] tha t this can be 

viewed as over-sampling the transm itted signal (before transmission, 

rather than at the receiver), since of the 64 inputs, 52 are data and 

1 2  are zeros. A blind, adaptive channel shortening algorithm can be 

obtained with the aim of restoring the values of these tones to zero at 

the output of the FFT at the receiver [39], [43]. This results in a carrier 

nulling algorithm (CNA). The CNA cost function is the average power 

of the outputs on the generally complex tones, denoted z* that should
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theoretically be null.

Jena ~  E[\Z i\\  (3.3.1)
i£Null tones

The CNA algorithm is a constrained gradient descent of this cost func­

tion. This leads to a very simple LMS-like structure, although due to 

several m atrix vector products, the computational complexity is slightly 

higher, the full details of which can be found in [44]

The CNA algorithm has much in common with the MERRY algo­

rithm. As for MERRY, CNA can only update once per symbol. This is 

because the cost function is measured at the output of the FFT, once 

per block. Also, as with the MERRY and SAM algorithms, a constraint 

is needed for CNA to avoid the all-zero solution. De Courville, et al. [39] 

chose to implement a unit norm constraint on the channel shortener via 

periodic re-normalization. Assuming that the unit norm constraint is 

used, the CNA algorithm solves for the eigenvector corresponding to 

the minimum eigenvalue of the autocorrelation matrix of the outputs 

on the null tones [39], whereas MERRY seeks the eigenvector corre­

sponding to the minimum eigenvalue of the autocorrelation matrix of a 

difference of two vectors of received samples [40]. Analysis of the CNA 

algorithm is difficult due to the nature of the update. The work in [39] 

shows tha t the zeroforcing equalizer (not a more generic channel short­

ener) minimizes the CNA cost function, hence CNA should be used in 

multicarrier systems tha t do not employ a cyclic prefix.
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3.4 The Frequency-Domain Finite-Alphabet Methods

The time-domain data in a multicarrier system is not-finite alphabet, 

where as this is the case for the frequency domain data at the output 

of the demodulating FFT. This means that a decision-directed or con­

stant modulus cost function can be proposed in the frequency-domain. 

However, now there are N  tones, so the cost must be summed over the 

N  outputs. For example, the frequency-domain decision-directed and 

constant modulus cost functions [38]

Jm =  £  P i E K Q W  -  Zi)2} (3.4.1)
tones

and

Jcm= J 2  A £ [ (W 2 -7< )2] (3-4.2)
i£  tones

where Pi is a designer chosen positive weight, Q{.} 1S a z e r 0  mem­

ory non linearity which finds the nearest constellation point in a finite 

alphabet, and 7 * is the dispersion constant, which can be selected in­

dividually for each tone. The choice of non-uniform Pis can be used 

to provide unequal error protection across the tones. The CNA al­

gorithm can be thought of as using a special case of (3.4.1): it is a 

decision-directed algorithm in which the null tones will be compared to 

a finite alphabet tha t is simply the value 0, so Q{zi} = 0 always. If 

the channel is shortened, the output will be QAM data on each non­

null tone, but the modulus of the points will not be correct until after 

the bank of one-tap frequency-domain equalizers (the FEQ). Thus, the 

frequency-domain cost must be measured at the output of the FEQ. 

This means tha t the TEQ and FEQ, which are connected in series, 

will both be adapting based on the N  outputs of the FEQ. Typically,
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adaptive devices are analyzed under the assumption that each device 

operates independently, and this sort of adaptation of a series of ele­

ments is not well understood [45]. In [46], the authors have proposed 

a trained, non-adaptive design, that operates in the frequency domain. 

Their method maximizes the energy at the output of the pilot tones 

divided by the energy of the null tones. In principle, this idea could 

be used to create a trained, adaptive algorithm, that restores both the 

pilots and the null tones, as in a combination of CNA and frequency- 

domain LMS.
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3.5 Chapter Summary

In this chapter, the algorithms which attempt to restore each of the 

properties of the transm itted sequence that ought to be present in the 

equalized received sequence were studied. This chapter shows that in 

order to create a blind, adaptive channel shortener, the redundancy 

which the transm itted sequence has due to the cyclic prefix in multi- 

carrier or single-carrier cyclic prefix (SCCP) modulation, can be used 

in the property restoral sense. Algorithms using a philosophy called 

“property restoral” were studied such as the MERRY algorithm which 

attempts to adapt the channel shortener with the aim of restoring the 

redundancy which is due to  the cyclic prefix of the transm itted se­

quence. On the other hand, the SAM algorithm minimizes the sum- 

squared autocorrelation term s of the effective channel impulse response 

outside a window of a CP-length. This chapter also shows th a t the pres­

ence of null tones in the transm itted data is another common property 

of multicarrier signals. A carrier nulling algorithm (CNA) can therefore 

be derived with the goal of restoring the values of those tones to zero 

at the output of the receiver FFT. Algorithms based on correlation es­

timates such as SAM algorithm will be the focus of this thesis as these 

algorithms converge faster than  MERRY algorithm but with a higher 

complexity. In this thesis, the focus will be on how the complexity of 

SAM and SLAM algorithms can be reduced.



Chapter 4

ROBUST BLIND ADAPTIVE 

CHANNEL SHORTENING 

FOR IMPULSIVE NOISE 

ENVIRONMENTS

In this chapter novel blind adaptive channel shortening algorithms, 

the deterministic partial update sum-absolute autocorrelation mini­

mization (DPUSAAM) algorithm and the random partial update sum- 

absolute autocorrelation minimization (RPUSAAM) algorithm are pro­

posed for multicarrier modulation systems. These algorithms axe based 

on updating only a portion of the coefficients of the channel shorten­

ing filter at each time sample instead of the entire set of coefficients. 

This work is the first a ttem pt in the field of using partial update fil­

tering in blind adaptive channel shortening. The algorithms are also 

designed to be robust to  impulsive noise impairment found in ADSL 

channels. These algorithms have low computational complexity whilst 

retaining essentially identical performance to the sum-absolute auto­

correlation minimization (SAAM) algorithm [26]. Simulation studies 

show the ability of the DPUSAAM algorithm and the RPUSAAM al-

68
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gorithm to achieve channel shortening and hence an acceptable level of

bitrate within a multicarrier system.

4.1 Gaussian Noise Model

In the design and analysis of signal processing systems, the Gaussian 

noise model [26,47] is extensively used. The probability density function 

of a zero mean Gaussian model is given by

where o2 is the variance of the distribution. The additive white Gaus­

sian noise assumption in digital communication theory very much sim­

plifies the design and analysis of receiver structures. The following 

theorem justifies the Gaussian noise assumption [48].

T heorem  4.1.1. (Central L im it Theorem, CLT)

Given £ 1, 0:2 , . . .  ,Xn  a sequence of independent identically distributed 

(i.i.d.) random variables with non Gaussian distribution and mean p 

and variance o 2. Then, as N  —> oo, the distribution of the normalized 

sum

converges almost surely to a Gaussian process with the same mean and 

variance as Xj [49].

Therefore, the Gaussian noise assumption plays a basic role in formu­

lating many of the theorems of digital communication, estimation and 

detection theory [49]. This is suitable in Gaussian noise environments 

but even mild deviations from the Gaussian assumption can have harm­
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ful effects [50-52]. Noise sources encountered in physical environments 

for example, urban and man-made RF noise, underwater acoustic noise, 

atmospheric noise, radar clutter noise and telephone circuit noise axe 

generally non-Gaussian. They are impulsive, i.e., having higher prob­

ability of producing outliers than predicted by an additive Gaussian 

noise model [53-56].

4.2 Impulse noise in ADSL

Impulse noise is a non-stationary stochastic electromagnetic interfer­

ence which consists of random occurrences of energy spikes with ran­

dom amplitude and spectral content. The causes of impulse noise on 

the telephone line are diverse and vary from opening of the refrigerator 

door, when phones ring on lines sharing the same binder, and industrial 

electrical appliances, and transport vehicles, to atmospheric noise from 

electrical discharges. A number of studies by various research groups 

of impulses have resulted in analytical models based on the statisti­

cal analysis of over 100,000 impulses [25]. The Cook pulse model, for 

example, is the most widely used analytical model [57]. Cook found 

that the amplitude of the impulse increases with the bandwidth of the 

DSL system under test. This follows from the wider bandwidth of the 

DSL receiver filter, which means less impulse attenuation. In [58] an 

introduction is given to a method to simulate the amplitude, length, 

inter-arrival times and the spectral characteristics of the impulses. The 

statistics derived from observations of impulse noise on the telephone 

networks of British Telecom (BT) and Deutsche Telekom (DT) were 

used as the parameters of their model. It has also been argued that 

impulses defy analysis and people sometimes use representative worst
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case waveforms e.g., the ADSL standard [59] itself uses two measured 

impulses. However, in common with other researchers, Gaussian mix­

ture and a-stable distributions are used in this thesis for modelling 

the impulsive noise due to  their suitability for representing practical 

impulsive noise [60].

4.2.1 Gaussian-mixture noise model

The Gaussian mixture model is an analytically simple impulse noise 

model [51,61,62]. It is popular due to its mathematical tractability. 

The probability density function is given by

f n(x ) =  (1  - p ) f v( x )+ p f i (x )

where f v is the Gaussian pdf with variance &% > 0 and /* is the Gaussian 

pdf with higher variance d V 2. The parameter p e[0,1] is the probability 

of contribution of the components from this high variance distribution. 

The param eter d > 1 is the ratio of the standard deviations of the 

two variances. The effect of different shapes of Gaussian mixture noise 

density can be simulated to evaluate the algorithm performance simply 

by varying p and d.

4.2.2 Properties of Stable processes

The a-stable distribution, which can model phenomena of an impulsive 

nature [63], is a generalization of the Gaussian distribution and is ap­

pealing because it shares several desirable properties with the Gaussian 

model, such as the stability property and generalized form of the Central 

Limit Theorem [49]. In fact, a-stable distributions can be described by
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their characteristic function as follows:

A random variable x  is said to have a stable distribution, denoted by 

x  ~  (3, a), if and only if its characteristic function has the form [60]

<p(t) = exp { j  at -  j \ t  |a [l +  j/3sign(t)w{t, a)]} (4.2.1)

where
/

f a n ^ ,  i f  a ^  1
w(t, a) = <

% log\t\, i f a =  1

sign{t) — <

1 , i f  t > 0

0, i f  t = 0 (4.2.2)

— 1 , i f  t < 0

The four parameters th a t describe the stable distribution are therefore 

—oo < a < oo, 7  >  0, 0 <  a  < 2, — 1 < /3 < 1 [60]. In more detail,

• a  is termed the characteristic exponent and determines the thick­

ness of the tails of the distribution. Smaller values of a  yield 

heavier tailed distributions and vice versa. An a = 2  gives the 

Gaussian distribution. Another special case is the Cauchy distri­

bution which corresponds to a = 1 and (3 =  0.

• 7  is a dispersion param eter. It is similar to variance of a Gaussian 

distribution and equals half the variance in the Gaussian case.

• (3 is the index of symmetry. When (3 = 0, it corresponds to a sym­

metric distribution around the location parameter. The resulting 

distribution is called a Symmetric a-Stable (SaS) distribution.

• a which is the location parameter. It is the mean if 1 <  a  < 2 

and the median if 0  <  a  < 1 .
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By taking the inverse Fourier transform of the characteristic function in

(4.2.1) the pdf of a stable distribution can be obtained. No closed form 

expression exists for the stable density, except for the Gaussian (a: =  2), 

Cauchy (a = 1 ,/? = 0), and Pearson (a =  1 / 2 , P = — 1) cases [49].

If it is assumed tha t SaS distributions have a zero location parameter 

i.e., a = 0 , the resulting characteristic function only depends on a  and 

7 , i.e.

<p(t) = e x p ( - y \ t \a)

whose pdf is given by

Sa (7,0,0) =  <

b s  E £ i  ^ r (afc +  1 )sin ( i f )  ( ^ )
—afc—1

7T7

0  <  a  <  1

7t (x 2 + 7 2) ’ a  = 1

ssjirr X X o  $ j r r  ( ‘S 1 ) ( ^ r )  1 < «  < 2

2j j * eXP ( _ f ^ )  “  =  2

where T(-) is the usual Gam m a function defined by

roo
r (x )  =  /  tx~le~ldt 

Jo
(4.2.3)

Figure (4 .1 ) shows the pdfs of zero-mean SaS distributions with differ­

ent values of a  [1 ]. The value of the dispersion parameter 7  is equal 

to unity. It can be seen th a t the non-Gaussian stable density functions 

differ from the corresponding Gaussian density in the following ways. 

For small values of x , the SaS densities are more peaked than the nor­

mal densities. For intermediate ranges of |a:|, the SaS distributions 

have lower values than the normal density. But unlike the Gaussian
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F ig u re  4.1. Effect of a  on the pdf of an alpha-stable distribution with 
P — 0 , a = 0  and 7  =  1 [1].
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F ig u re  4.2 . Effect of 7  of an alpha-stable distribution with P =  0, 
a =  0  and a  =  1 [1].

density which has exponential tails, SaS distributions have algebraic 

tails. Figure (4.2) shows the effect of 7  on the pdf of a zero-mean SaS 

distribution [1]. The value of the characteristic exponent a  is equal to 

unity. It shows th a t the effect of 7  is analogous to variance in the Gaus­

sian density case and it determines the spread of the samples around 

the location parameter at the respective impulsiveness as determined
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by the value of a.

4.2.3 Fractional Lower Order Moments

The stable distributions do not possess finite second order moments 

except in the Gaussian limiting case. It is known that, for a non- 

Gaussian stable distribution with characteristic a , only moments of 

order less than a  are finite. More formally, this is stated as

T h eo re m  4.2 .1 . Let x be a stable random variable. I f  0 < a  < 2 , 

then

E\x\p = oo i f  p > a

and

E\x\p < o o  i f  0  <  p < a

i f  a  = 2, then

E\x\p < oo fo r  all p > 0

In [60] the proof of this theorem is presented. For 0 < a  < 1, stable 

processes have infinite first and higher moments; for 1 <  a  < 2 , they 

have finite first moment and all moments of order p < or, and all mo­

ments exist for a  =  2 . All the moments of an SaS random variable 

with 0 < a  < 2 of order less than a  are termed Fractional Lower Order 

Moments (FLOMs). The following preposition explains the relation­

ships between the FLOMs of an SaS random variable, its dispersion 

and its characteristic exponent [60].

P ro p o s itio n  4.2. 1. Let x  ~  S a(7 , 0 , 0 ). Then

E(\x\p) =  C(p, a )yp/a i f  0 < p < a
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where

c ( P, a) = 2P+1̂ ^ - p/al
a v /7 rr(-p /2 ) 

is a function of a  and p and is independent of x.

Most of the research in the area of modeling noise by a-stable distribu­

tions has focused on the design of near-optimum receivers operating in 

impulsive noise environments, parameter estimation of linear processes, 

direction of arrival estimation, blind channel estimation, bearing esti­

mation and other problems related to radar and signal modeling. Bib­

liographies in [1,49] show a comprehensive list.

In [64] it was found th a t an a-stable distribution is the best to describe 

the outliers in the noise over telephone lines which can be observed 

to be non-Gaussian. The value of a  was found to be in the range 

1.9 < a  < 2. The concept of a minimum dispersion (MD) criterion for 

non-Gaussian stable models is introduced in [65] as a direct general­

ization of the MMSE criterion which is optimal for Gaussian models. 

The im portant observation from the proposition (4.2.1) is tha t FLOMs 

are related to  the dispersion 7 , through only a constant. Therefore 

the MD criterion dictates th a t the p-th lower order moment should be 

minimized, where 0 < p < a. The range of a  found in [64] and mathe­

matical convenience dictates the use of the Ji-norm for the case of noise 

on telephone lines. For ADSL channel noise, without loss of generality, 

a zero-mean symmetric a-stable (SaS) distribution is assumed, where 

0  < a  < 2  which controls the impulsiveness of the distribution.
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4.2.4 Geometric Power of Stable Noise

The standard SNR definition based on noise variance cannot be used 

due to the infinite variance of stable distributions. Instead, a Geometric- 

SNR (G-SNR) definition has been used [6 6 ]. If A  is the amplitude of a 

signal in additive SaS noise of geometric power S%, then the G-SNR in 

dB, has the form

where Cg =  1.98 is the exponential of the Euler constant and

Here a  is the characteristic exponent and 7  is the dispersion of the 

S a S  noise. The normalized constant 2 Cg in (4.2.4) ensures tha t for the 

Gaussian case (a = 2), the definition of G-SNR coincides with that of 

the standard SNR. SaS noise is generated in this work by modifying the 

Matlab code available at [6 6 ] which is based on the Chambers-Mallows- 

Stuck method [67]. Samples of SaS noise at G-SNR of 40dB and at 

different values of a  are shown in Figure (4.3). The signal amplitude 

is kept at unity. Plot (b) shows the impulse noise for an a  =  1.99 

value close to  2, the noise samples characterized by a G-SNR possess 

almost the same strength as the Gaussian noise samples of plot (a) 

where the value of a  is 2. Nonetheless, the concept of variance can 

lead to the misleading conclusion tha t the stable noise with a  =  1.99 

has infinite strength, although this is clearly not the case in plot (b). 

As the value of a  is decreased to 1.5, the noise becomes impulsive in

G  -  S N R  = 1 0  log (4.2.4)

(4.2.5)
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nature having samples of larger amplitude as shown in plot (c). The 

number of outliers and their amplitude/strength is more visible in plot 

(d) where plot (c) is magnified on the y-axis.

(a) alpha=2

£  0.025

(b) alpha=1.99

£ 0.025

I  -0.025

-0.05

0.2

- 0.2

(c) alpha=1.5

(d) alpha=1.5 (magnified)

£ 0.025

w -0.025

samples

F ig u re  4.3. Gaussian and impulsive noise at GSNR=40dB. The signal 
amplitude is unity, (a) Gaussian noise a = 2, (b) impulse noise a = 
1.95, (c) more impulsive noise a  = 1.5, and (d) magnified view of (c).

4.3 System Model

The system model shown in Figure (3.2) is used for blind adaptive chan­

nel shortening. The input signal x (k ) typically drawn from a finite con­

stellation to represent the source sequence to be transm itted through a 

linear finite-impulse-response (FIR) channel h  of length (Lh +  l)taps; 

r (k ) is the received signal, which will be filtered through an (L^ +  l^ ta p  

TEQ with an impulse response vector w to obtain the output sequence 

y(k). The vector c =  h*w  is the effective channel of order Lc = L h+Lw.
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The symbol * represents discrete time convolution and Lh and Lw are 

the orders of the channel and TEQ respectively. It is assumed that 

2Lc < N  holds, where N  is the FFT size [4]. The signal n(k) is a 

zero-mean, i.i.d., noise sequence uncorrelated with the source sequence 

which has variance o\. The received sequence r(k) is

Lh
r (k) = ^ 2 h { j ) x { k  -  j ) +  n(k) (4.3.1)

j = o

and y(k), the output of the TEQ is given by

where w =  [u;(0)it/(l),. . .  ,w {L w)Y  is the impulse response vector of 

the TEQ and =  [r(/c) r{k  — 1) . . .  r(k — LW)]T.

4.4 SAAM

The idea of SAAM is based on minimizing the sum of the absolute 

values of the autocorrelation of a channel over a specific interval. This 

interval is outside of the region the effective channel is allowed to be 

non zero and is chosen to be integer values from lag v +  1 until lag Lc. 

The cost function of SAAM is denoted Jv+1. The reasons for taking 

absolute values have been explained in [26] namely to mitigate large 

errors in the sample autocorrelation estimates. This is in contrast to 

the cost function of [4] based on the sum of squared autocorrelation 

values for the same lags. The autocorrelation sequence of the effective

(4.3.2)
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channel, c has the form

L c

R c c ( i )  =  ^ 2  ~  o
j = 0

when the effective channel c has zero taps outside a window of size 

(v + 1 ), and for a shortened channel, it must satisfy,

R c c ( l )  =  0, V |/| >  v

Then the cost function Jv+1 in SAAM is defined based upon minimizing 

the sum-absolute autocorrelation terms, i.e.,

Lc
Jv+l = |f ice(/)| (4.4.1)

i = u + l

The trivial (anti) solution of w  =  0 can be avoided by imposing a norm 

constraint on the equalizer i.e., ||w ||| =  1. The optimization problem 

can then be stated as

w 0** =  argw min Jv+i 
l |w | | i = l

The autocorrelation sequence of the output y(k) is given by

R w ( l) =  E[y{k)y{k -  /)]

-  E[(cTx k +  w Tn k) (x^_fc + n£_,w)] (4.4.2)
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where x*. =  [x(k),x(k — 1 x(k  — LC)]T and =  [n(k),n(k 

1 ) , . . . ,  n(k — LW)\T . The noise correlation matrix becomes

£ [n fcn *-/l =

R n n { l )

RnniJ1 L'w)

Rnni]' T Lw)

R n n { l )

(4.4.3)

where RnniO — E[n(k)n(k — /)]. The noise sequence n(k ) is assumed 

independent identically distributed (i.i.d.) as commonly assumed by 

researchers in this field [4], therefore, the matrix in (4.4.3) is a Toeplitz 

matrix with only one diagonal of nonzero entries depending upon the 

value of /, and hence becomes a shifting matrix. The matrices i?[xfcii£_f] ; 

0 and E[n^x^Lj] =  0 since the signal x(k)  and the noise n(k) are un­

correlated. If 2Lc < N  holds, then the Toeplitz matrix E[xk^k-i] ^as 

a shifting effect too. Now simplify (4.4.2) to  yield [4]

Ryy(l) = Ĉ ) CU ~  l) +  £  WU)WU ~  0
j =o j =o

=  R cc{l) 4" &vRww(l) (4.4.4)

So th a t the cost function in (4.4.1) can be approximated and denoted 

as Jv+i

Jv+1 =  IflroWI
l  =  V +  1

Lc
(4.4.5)

In most situations, the TEQ length (Lw T 1) is shorter than the cyclic 

prefix length, v. In such situations, RwW(l) does not exist for the stated
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lags in (4.4.5). Even if the TEQ is larger than the cyclic prefix, the 

second term being added is very small due to its multiplication with 

The noise variance is usually small for ADSL channels [4]. Therefore, 

it is assumed th a t under practical scenarios, the hat on Jv+\ can be

length of the channel h  is needed to determine Lc = +  Lw, which

is known because the CSA test loops have nearly all of their energy in 

200 consecutive taps [68]. The SAAM algorithm reaches the maximum 

shortening SNR (SSNR) solution of [3] under additive white Gaussian 

Noise (AWGN) condition, and is also robust to non-Gaussian impulsive 

noise environments [26].

4.5 Blind Adaptive Algorithm

The steepest gradient-descent algorithm to minimize Jv+i is [26]

where /z is the step size and Vw is the gradient evaluated at w =  

woW. A moving average (MA) implementation is used to realize the 

instantaneous cost function

wherein Navg is a design param eter which determines a tradeoff between 

the algorithm complexity and a good estimate of the expectation. The 

steepest gradient-descent algorithm of Equation (4.5.1), therefore, can

dropped so tha t Jv+i =  Jv+\. For this cost function an estimate of the

w  =  w°ld -  (Jv+1)

(4.5.1)

(4.5.2)
l= v+ 1 n= kN avg
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be written as a stochastic approximation as (4.5.3) which, using Equa­

tion (4.5.2), takes the form of Equation (4.5.4).

w (* +  1) =  w (*) -»  \ sign 52 ~
Z=v+1 I \  n=kN aVg

N,avg

X

f  (k+l)NaVg 1 ( \ (
Vw E  y J n M n - l l n i 5 3 )

V 71—kNavg avg

( (k+ l)ZV avg — 1 t  \ ( i \  

w(fc +  1) =  w(fc)-II 52 { Sign 52 V(n)y{n ~ l)
l = v + 1 I \  n=kN(\  n=h N,

x
(  ( k + l ) N a v g  — l  ,  ^ / ...
I y ( n ) r n - Z  +  y ( n  -  l ) r n

\  n=kN avg N a v <>

w  (k +  1)
l|w (*+ 1)111w (k + 1) =  ,mi2 (4-5-5)

The function sign(-) is defined in Equation (4.2.2). To ensure that 

IIw||2 =  1, the equalizer vector w  has to be normalized at every itera­

tion.

4.6 PUSAAM

As in any partial update algorithm, the aim of partial updating is to 

update a portion of the coefficients instead of the entire set of coeffi­

cients. The proposal here is to apply the partial update method to the 

SAAM algorithm and achieve the same performance whilst reducing 

the computational complexity, the proposed algorithms are called the 

DPUSAAM algorithm and the RPUSAAM algorithm.

(4.5.4)
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4.6.1 DPUSAAM

In this algorithm the coefficients in the middle (in this simulation case, 

without loss of generality, there are eight) are updated N b — 1 times, 

that is achieved by introducing a vector which contains ones in the 

middle and otherwise zeros, then at the time the outside ones are 

updated. The new vectors called “mask i” and “raas/^” are created as 

Maski  =  [0000111111110000] M ask2 = [1111000000001111]. Matrices 

Mj =  diag(Mashi),  where i — 1,2, are used in the update. The weight 

update of the DPUSAAM algorithm can therefore be written as

In this work N b =  5, so th a t for N b — 1 times M j =  M i otherwise 

Mi =  M 2. Note, in this work the value of Lw is fixed at 16 to be consis­

tent with the work of [26]. The proposed algorithm achieves essentially 

the same performance as the SAAM algorithm in terms of higher bit 

rates and shortening the channel as will be shown in the simulation 

results. The advantage of the proposed algorithm is tha t it essentially 

achieves the same performance whilst updating only half of the coef­

ficients at each iteration which implies less computational complexity 

at each iteration whilst retaining the advantage of the full length chan­

nel shortener. The overall complexity advantage is dependant however 

on the relative convergence time for the partial update algorithm as 

compared to the conventional adaptive algorithm. The sign function in

4.6.1 reduces the computational complexity of the implementation as

L c

w (k +  1) =  w (k) — fj, x  M i ^
l=v

( k + l ) N a v g - l

( k + l ) N avg- l
y(n)y(n -  I) 

N1 v avg

X
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compared to the SAM algorithm of [4].

4.6.2 RPUSAAM

The proposal here is to  improve the deterministic partial update scheme 

to exploit improved convergence of random selection [36], and achieve 

performance close to  SAAM. The set of indices of the coefficients of 

the adaptive filter is given by { 1 , 2 , Lw +  1}. This set is split into 

P  different disjoint bu t equal size subsets denoted Sj, j  = I,..., P. 

Then, at each iteration one of these subsets is selected at random with 

probability 1 /P , and only those coefficients within the adaptive filter 

having indices from th a t subset are updated. The update equation 

can be written as in (4.6.2), where Ri  is a diagonal matrix with unity 

elements on the principle diagonal corresponding to the chosen subset 

Sj  and zeros elsewhere; and w(0) is initialized as for SAAM.

Lc (  / ( k + l ) N aVg — 1 ( \  f  l \

w (k +  1) =  W  (k) -  fj, x Ri  ^  I sign | V n V n—
l —v + l  ^  y  n = k N avg av9

( k + l ) N avg — 1 / •. , js
x < [ ^  2/(n )r n-< +  Vi71 ~  l)Tn

n = k N avg N a v 9

Convergence analysis of these algorithms is extremely difficult due to 

the nonlinear dependence of the update equation on the weight vector, 

therefore performance assessment is made by simulation study. The 

complexities of the SAAM and PUSAAM algorithms have been calcu­

lated in Tables (4.1) and (4.2) respectively.

It is evident tha t by updating only eight coefficients i.e. P  = 2 out 

of sixteen at every iteration as in DPUSAAM and RPUSAAM instead 

of the entire set as in SAAM, the computational complexity has reduced
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Steps #  multiplications #  addi­
tions /subtractions

(a)A0vg times y(n -
l)rn

Navg-{LW +  1} “

(b )Navg times 
y{n)rn-i

N avg-{LW +  1}

(c)(a+b) - Navg-{LW 4~ 1}
(d )Navg times 
y(n)y(n -  I)

N1 v avg -

(e)sum (d) outputs - Navg 1
(f)Sub-total for (L c — 
v ) lags

(Lc — v){Navg(2Lw 4-
3)}

(LC f){A aÛ (Z/ly 4~ 
2 ) - l }

(g)px  output of (f) L w 4- 1 -
(h)w (k) - (g) - Lw 4-1
(i)Total (Lc — v){Navg(2Lw 4- 

3)} 4- Lw 4- 1
(Le v'){NaVg(LVj 4* 
2) — 1} +  Lw +  1

T able 4.1. Number of multiplications and additions/subtractions re­
quired in the SAAM algorithm.

Steps #  multiplications #  addi­
tion /  subtractions

(a) iVat>g times y(n — 
l)rn

N av g { L  w +  1 } * “

(b )Navg times 
y{n)rn-i

N aVg-{Lw +  1 } * “

(c)(a+b) - Navg\Lw  4“ l}*
(d )Navg times 
y(n)y(n - 1)

N1 v avg -

(e)sum (d) outputs - LI avg 1
(f)Sub-total for (L c — 
v)  lags

( L c — v ) { N avg(2Lw +  

3)}*
(Lc v ) { N aVg(Lw 4~ 
2) -  1}*

(g)/i x R kx  output of 
(0

(Lw 4- l ) /2 -

(h)w(fc) - (g) - (Lw 4 -1)/2
(i)Total ( L c —  v ) { N avg(2Lw 4- 

3)} +  ((Lw + l)/2 )
(Lc v){Navg(Lw 4- 
2) — l}  + ((Lw + l ) / 2 )

T able 4.2. Number of multiplications and additions/subtractions re­
quired in the PUSAAM algorithm, with P  = 2.
*/n a practical realization of this algorithm these terms would have 
reduced complexity since the final multiplication by the vector in 
DPUSAAM or matrix in R P U SA A M  by zero elements implies that cal­
culation of certain quantities is redundant.
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to a half of the complexity as compared to the SAAM algorithm. Other 

levels of complexity reduction could be achieved with different settings 

for P.

4.7 Simulation Results

The Matlab code available at [69] was extended to simulate the DPUSAAM, 

and RPUSAAM algorithms in impulsive noise environments. The cyclic 

prefix had length 32, the FFT  size N fft  = 512, the TEQ had 16 taps 

and the channel was the test ADSL channel CSA loopl available at [68].

For simulations in a-stable noise, the geometric-SNR (G-SNR) defini­

tion is used instead of the standard SNR definition, due to infinite 

variance of the SaS distribution [66], a total of 75 OFDM symbols was 

used. The step size used was 0.0007, carefully chosen empirically to 

give best shortening performance. Importantly, the step-size for the 

partial update algorithm can be chosen to ensure that there is an over­

all complexity advantage for the partial update scheme, i.e. a larger 

step-size can ensure fast convergence of the algorithm. In this work, 

however, this issue was not considered. The dispersion of the noise for a 

given value of a  is changed and the achievable bit rate is calculated. In 

Figures (4.4) and (4.5) the impulsive response of the original and the 

shortened channel with different values of a  (a=1.95, and 1.9, these 

values are between the less impulsive case of the Gaussian noise when 

a= 2  and the more impulsive Cauchy case when a = l  [70], these values 

were chosen to show the robustness of the proposed algorithms) show 

that all of the algorithms are confirmed to be effective. The shortened 

channel has a length at least reduced by a factor of 4 as the original 

channel. In Figures (4.6) and (4.7) the impulse response of the original
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and the shortened channel for the average of eight different channels 

show tha t all the algorithms perform similarly with different channels. 

Such averaging is feasible as all of the channels have similar positive 

decay profiles and therefore the overall shortening performance is not 

lost in this process.

Quasi, since rigorously SNR does not exist, achievable bits per sec­

ond as a function of the averaging block number are plotted at a=1.95 

and 1.9 and are shown in Figures (4.8) and (4.9), from which it can be 

seen that the proposed algorithms are as robust to the impulsive noise 

as the SAAM algorithm with half of the coefficients being updated. 

Careful inspection of Figures (4.8) and (4.9) reveals the improved fi­

nal performance of the random update selection scheme. Note, tha t as 

shown by [15], the error performance surface for SAM-type algorithms 

is multimodel and the minimum of the SAM-type costs is not generally 

coincident with the minimum of the achievable bit rate. This obser­

vation explains the asymptotic behaviour in the figures. For the case 

of Gaussian-mixture modelling, the signal to Gaussian noise power was 

such tha t <j2||h ||2/c72 =  40 dB. This is a typical value of SNR in ADSL 

environments [26]. For a point-to-point system with bit loading, the 

achievable bit rate for a fixed probability of error (typically 10~7 in 

DSL) is the performance metric. The SNR gap T is a function of a 

chosen probability of symbol error and the line code and is given by

r  =  T gap +  l m - l c  (4.7.1)

and is assumed for the system to be constant over all subchannels. This 

gap measures efficiency of the transmission method with respect to best
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Results of DPUSAAM on CSA loop 1
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Results of RPUSAAM on CSA loop 1
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F ig u re  4.4. Original and the shortened channel in a-stable noise en­
vironment with alpha=1.95.
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Results of DPUSAAM on CSA loop 1
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Results of RPUSAAM on CSA loop 1
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F ig u re  4.5. Original and the shortened channel in a-stable noise en­
vironment with alpha=1.9.
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Results of DPUSAAM for the average of 8 different channels
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F igure  4.6. Original and the shortened channel in ct-stable noise en­
vironment with alpha=1.95 for the average of eight CSA channels.
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Results of DPUSAAM for the average of 8 different channels
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F igure  4.7. Original and the shortened channel in a-stable noise en­
vironment with alpha=1.9 for the average of eight CSA channels.
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x 106 quasi bit rate vs. iteration number
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F ig u re  4.8. Quasi achievable bit rate versus averaging block number 
in a-stable noise environment with alpha=1.95.
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x 106 quasi bit rate vs. iteration number
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F ig u re  4.9. Quasi achievable bit rate versus averaging block number 
in a-stable noise environment with alpha=1.9.
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possible performance on an additive white Gaussian noise channel. The 

bit rate on each subcarrier is determined using the noise margin 7 m =  

6dB and the coding gain 7 C =  4.2dB. The value of r ffap =  9.8dB is used 

which corresponds to a probability of error 10“7 and QAM modulation 

is used across the subcarriers. The bit rate on each subcarrier i is 

calculated based on

The subchannel SNR, S N R i  in (4.7.2) is found by using the subchannel 

SNR model described in (4.7.3) and includes the channel noise as well 

as the distortion due to ICI and ISI caused by the energy of the channel 

outside the v +  1 length. This definition can be used to assess the per­

formance of the TEQ algorithms although it is only an approximation 

in an impulsive noise environment. To use this model, the maximal 

energy point of the shortened channel is used as the starting index of 

the v +  1 length window of the desired channel.

where Fa = 2.208 MHz is the sampling frequency. SAAM, DPUSAAM, 

RPUSAAM, and the maximum SSNR algorithm (MSSNR) of [3] are 

simulated. The step size used for the adaptive algorithms is 0.0007, 

empirically chosen to give the best performance.

(4.7.2)

(4.7.3)

The bit rate is then computed with the formula
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The impulse response of the original and the shortened channel for 

SAAM, DPUSAAM, and RPUSAAM with Gaussian-mixture noise are 

shown in Figure (4.10), it shows tha t all the algorithms are confirmed 

to be effective. In Figure (4.11) the impulse response of the original 

and the shortened channel for SAAM, DPUSAAM, and RPUSAAM 

for the average of eight different channels shows that all the algorithms 

perform similarly with different channels. The effect of impulsive noise 

on the quasi-achievable bit rate as a function of the averaging block 

number is shown in Figure (4.12), it can be seen tha t the proposed 

algorithms axe as robust to the impulsive noise as the SAAM algorithm 

with only half of the coefficients being updated. Importantly, robust­

ness is shown both to  alpha-stable and Gaussian-mixture noise as the 

results in Figures (4.10) and (4.11) are very similar to those in Figures 

(4.4) and (4.5).
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Results of SAAM on CSA loop 1
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F ig u re  4.10. Original and the shortened channel for Gaussian mixture 
for p=0.001 and d=100
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Results of SAAM for the average of 8 different channels
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F ig u re  4.11. Original and the shortened channel for the average of 
eight CSA different channels for Gaussian mixture for p=0.001 and 
d=100
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x 106 quasi achievable bit rate vs. iteration number
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F ig u re  4.12. Quasi achievable bit rate versus averaging block number
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4.8 Conclusions

The newly proposed algorithms DPUSAAM and RPUSAAM have been 

shown to be robust for operations in environments with a range of de­

grees of impulsiveness. The computational complexities of DPUSAAM 

and RPUSAAM are also considerably lower than SAAM. Simulation 

results show th a t DPUSAAM and RPUSAAM algorithms approach 

the maximum shortening signal-to-noise ratio (MSSNR) solution [3] in 

Gaussian noise. The DPUSAAM and RPUSAAM algorithms are also 

robust to additive white non-Gaussian noise.



Chapter 5

DETERMINISTIC 

COEFFICIENT SELECTION 

IN PARTIAL UPDATE BLIND 

CHANNEL SHORTENING

ALGORITHMS

The SAM algorithm [4] achieves channel shortening by minimizing the 

sum-squared autocorrelation terms of the effective channel impulse re­

sponse outside a window of a desired length. The drawback with SAM 

is tha t it has a significant computational complexity. The SLAM algo­

rithm  [5], on the other hand, achieves channel shortening by minimiz­

ing the squared value of only a single autocorrelation at a lag greater 

than the guard interval. In this chapter, the partial update method 

is applied to the two channel shortening algorithms which achieve the 

same performance whilst further reducing the computational complex­

ity, the proposed algorithms are called the partial update SAM al­

gorithm (PUSAM) and partial update SLAM algorithm (PUSLAM). 

These algorithms essentially achieve the same result in terms of re-

101
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ducing the effective channel length as SAM and SLAM with half the 

complexity. The performance advantage of the PUSAM and PUSLAM 

algorithms is shown on eight different carrier serving area test loops 

(CSA) channels and comparisons are made with the original SAM and 

the SLAM algorithms.

5.1 System Model

The system model is shown in Figure (3.2). The input signal x(k) is 

the source sequence to be transm itted through a linear finite-impulse- 

response (FIR) channel h of length (Lh +  1) taps, r(k) is the received 

signal, which will be filtered through an (L w +  l)-tap  TEQ with an 

impulse response vector w  to  obtain the output sequence y(k). For 

convenience in this work real signals are assumed but generalization 

to the complex case is straight-forward. Denote c =  h * w  as the 

shortened or effective channel assuming w is in steady-state where * 

denotes discrete time convolution. It is also assumed th a t 2Lc <  Nfft 

holds, where L c is the order of the effective channel and N f f t is the 

FFT  size [4]. The signal n (k ) is a real zero-mean, independent identi­

cally distributed (i.i.d.), noise sequence, uncorrelated with the source 

sequence with variance a2n. The received sequence r(k)  is

Lh
r (k ) = ^ 2 h U)x (k ~ j )  +  rc(fc) (5.1.1)

j = o

and the output of the TEQ y{k) is given by

(5.1.2)
j = o
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where r* =  [r(fc) r(k — 1) • • • r(k — Lw)]T and w is the impulse response 

vector of the TEQ w =  [tu0 w\ w2 - "  wLu,]T.

5.2 Partial Update SAM Algorithm

For the effective channel c  to  have zero taps outside a contiguous win­

dow of size (v +  1), its autocorrelation values should be zero outside 

a window of size 2v +  1. The autocorrelation sequence of the effective 

channel is given by

L c 

j = 0

and for a shortened channel, it must satisfy

Rcc(l) =  0 ,  V | Z |  >  v

Therefore, a cost function, Jpusam, which is the same as J aam> based 

upon minimizing the sum of the square values of the auto-correlation 

of the effective channel is suggested, i.e.,

Lc

Jputam =  £  (Roc(l))2 (5-2.1)
Z=v+1

The trivial solution can be avoided by imposing a norm constraint on 

the TEQ i.e., ||w ||2 =  1. The optimization problem can then be stated 

as in [4]

W0** =  argw min Jpusam 
I M i ! = i

The autocorrelation sequence of the output y(k ) of the TEQ is related
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to the autocorrelation sequence of the effective channel as

Ryyi0  =  R c S )  &nRww{l) (5.2.2)

An approximation to the cost function in (5.2.1), denoted by Jpusam is 

given by

L c

Jpusam — )   ̂ {Ryy{l))2■>
l= v + 1 

L c

= ] T  (Rcc(l))2 +  2a2nR cc{l)Rww(l)
l=v+1
+ a i„(Rww( l ) f  (5.2.3)

In most situations, the TEQ length (Lw +  1) is shorter than the cyclic 

prefix length, v. In this case, Ru,w(l) does not exist for the stated lag 

in (5.2.3). Therefore, both  the noise terms in (5.2.3) can be neglected. 

Even if the TEQ is longer than  the cyclic prefix, the second and third 

terms being added are very small due to their multiplication with cr2 

and cr£. The noise variance a 2 is usually small for ADSL channels [4]. 

Therefore, practically it is assumed tha t Jpusam — Jpusam as in (5.2.1).

5.2.1 Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the PUSAM cost

Jpusam Is

w =  w old — /iV w ^

where fi is the step size and Vw is the gradient evaluated a t w =  

w°*d. The instantaneous cost function is defined, where the expectation 

operation is replaced by a moving average over a user-defined window

£  E \ y ( k ) y ( k - l ) \ A  (5.2.4)
=tH-l
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of length 7V<avg

Lc [ (k + l )N avg — l / \ / . \  1

/£?(*) = E i E - \  ~ 1 <5-2'5)
f = u + l  [  n= k N avg av9

where Navg is a design param eter and it should be large enough to give 

a reliable estimate of the expectation, but no larger, as the algorithm 

complexity is proportional to N avg. The gradient-descent algorithm is 

given by

Lc f  (k+l)Navg — l / \  f

w ( t + l )  =  w ( l ) - 2 , x M b ' ) x £  £  a & M n
l—v+1  I n= kN avg avg

( ( k + l ) N avg — 1 /  \  /  i \

v w ( y ; yJn)yN(n- ~ l)
y  n= k N avg av®

(5.2.6)

where M (j) is a matrix which is equal to diag{maskj), (5.2.6) can be 

simplified to

w (k +  1) =  w(A;) — 2(i x M(z) x <
l= v + 1

(k + l ) N avg—l f \ f 1\

E y(n)y(n  - I)
N

n= k N avg ^ av3

X

(  (k + l ) N avg l / / \  . /
J S T '  I y i n ) r n - l  +  y(n -  0 r (n )Ê v[  n= kN av9 '  iVa^

(5.2.7)

which takes the same form as (4.6.1) except for the sign{.) function. In 

the PUSAM algorithm the coefficients in the middle (in the simulation 

case studied eight will be in the middle), tha t is achieved by introduc­

ing a vector which contains ones in the middle and zeros outside the 

middle, are updated 4 times then at the fifth time the outside ones



Section  5.3. Partial U pdate  Slam A lgorithm 106

are updated. The new vectors called Maskl and Mask2 are created as 

M askl =  [0000111111110000] and Mask2 =  [1111000000001111]. The 

matrices M(z) =  diag(Maski)  are defined, where i = 1,2, which is 

follows the same approach as used in the DPUSAAM algorithm, as 

in section (4.6.1). The partial-update SAM (PUSAM) algorithm can 

therefore be written as shown in (5.2.7).

In this work if k mod  5 ^ 0  then M (i) =  M ( l )  else M (i) = M(2). 

Other choices of mask and update cycle period 5 are possible but in 

this chapter the focus is to demonstrate the basic concept.

5.3 Partial Update Slam Algorithm

For the effective channel c to have zero taps outside a contiguous win­

dow of size (v +  1), its autocorrelation values should be zero outside 

a window of size 2u +  1. The autocorrelation sequence of the effective 

channel is given by

Then the cost function Jpusiam is defined based upon minimizing the 

squared auto-correlation of the effective channel at lag I = v +  1, i.e.,

(5.3.1)
j =o

and for a shortened channel, it must satisfy

R cc(l) =  0, I =  v +  1

J p u s ia m .  — R c c ( l )  >  ̂ V  T  1 (5.3.2)
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5.3.1 Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the PUSLAM cost

*A+1 1®

w =  w°u  -  t iVw{E[y(k)y(k -  Z)])2 (5.3.3)

where / is  a single lag, // is the step size and V w is the gradient evaluated 

at w =  w oW. The instantaneous cost function is defined, where the 

expectation operation is replaced by a moving average over a user- 

defined window of length N avg

(  (k + l ) N avg — l  ( \ ( ] \  1
j ^ {k) = \  E  y ( n M n - D \  (5.3.4)

I n = IcM 'avgfti'CLvg

where Navg is a design parameter and it should be large enough to give 

a reliable estimate of the expectation, but no larger, as the algorithm 

complexity is proportional to Navg. The gradient-descent algorithm is 

given by

( k + l ) N avg — 1 /  \ / l\

w {k +  1) =  w (k) -  x M ( i )  { ^  V  U  V  -------
n = k N avg

X

/ ( k + l ) N avg — 1 / \ /  i \  \

V w f  E  '
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which can be simplified to

( ( k + l ) N avg — l  ,  w

w ( / c  +  1 )  =  w (A :)  — 2fi x  M ( z )  < ^  ^(n )s/(n----- ) I
{ n = k N avg Nav<> J

x f (k+1̂ V3 1 / y(n)rn-i +  y(n -  l)r(n)

(  n=fcNavg '  Nav9
(5.3.6)

In the PUSLAM algorithm the coefficients in the middle (in the simu­

lation case studied eight will be the middle), tha t is achieved by intro­

ducing a vector which contains ones in the middle and zeros outside the 

middle, are updated 4 times then a t the fifth time the outside ones are 

updated. The new vectors called M askl and Mask2 are also created as 

Maskl =  [0000111111110000] and Mask2 =  [1111000000001111]. The 

matrices M ( f )  =  diag(Maski)  are defined, where i =  1,2. The partial- 

update SLAM (PUSLAM) algorithm can therefore be written as shown 

in (5.3.6). the same strategy for selection of M j  is used as in PUSAM. 

The calculations shown in Table (5.1) clearly shows the implementa­

tion advantage of the PUSAM and PUSLAM algorithms, it is clear that 

the partial update algorithms PUSAM and PUSLAM have reduced the 

computational complexity for SAM and SLAM by half and th a t what 

was aimed to  achieve. Due to  the difficulty to formally analyse these

A lg o rith m s #  m u ltip lica tio n s #  a d d itio n #  su b trac tio n s
SAM 3N L ( L C -  v) 3 N L (L C -  v) 1
SLAM 3 N L 3NL 1
PUSAM 3N L ( L C -  v) /2 3N L ( L C -  v) /2 1
PUSLAM 3 N L /2 3 N L /2 1

T able 5.1. The total number of multiplications, additions and sub­
tractions, comparison between SAM, SLAM, PUSAM and PUSLAM.

algorithms their performance is assessed by simulations.
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5.4 Simulations

The Matlab code a t [69] was extended to simulate PUSAM and PUS­

LAM. The cyclic prefix was of length 32, the FFT size N f f t = 512, 

the TEQ had 16 taps and the channel was the test ADSL channel CSA 

loop 1 available at [6 8 ]. The noise was set such that (j2 ||c||2 /cr2 =  40 dB  

where ||.|| denotes the Euclidean norm; and 75 OFDM symbols were 

used. The step size used for PUSAM was 5 and for PUSLAM was 

600. To make fair comparison between PUSAM and SAM, and be­

tween PUSLAM and SLAM, all the parameters are kept the same as 

in [5]. All algorithms are compared with the maximum shortening SNR 

solution [3], which was obtained using the code at [69], and the matched 

filter bound (MFB) on capacity, which assumes no ICI. The bit rate 

on each subcarrier is determined using noise margin 7 m =  6 dB and 

the coding gain 7 C =  4.2dB. The value of r ffap =  9.8dB is used which 

corresponds to a probability of error 10- 7  and the QAM modulation 

used across the subcarriers. The SNR gap T is given by

r  = r gap + 7m -  7c (5.4.1)

The bit rate on each subcarrier i is calculated based on

bi = log2 (1  +  lo^NRi-ryio)^  ( 5  4  2)

The bit rate was determined based on

N f j t

f l =  ^ l o g a U  +  SW flf/r)
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The remainder of the explanation relates to the figures mentioned in­

dividually. In Figures (5.1), (5.2), (5.3) and (5.4), the shortened chan­

nels are compared with the original channels and all algorithms axe 

confirmed to be effective. The support of the shortened channel is re­

stricted to lie within the first 50 taps. Figures (5.5) and (5.6) show the 

16-tap TEQ designed after the PUSAM and the PUSLAM algorithms 

converge. In Figures (5.7), (5.8), (5.9) and (5.10), the achievable bits 

per second [15] as a function of the averaging block number, k, are plot­

ted which show the convergence property of PUSAM and PUSLAM, 

best performance is achieved a t approximately 900 blocks. Decrease in 

the bit rates after achieving the peak bit rates is clear for the SAM, 

SLAM, PUSAM and PUSLAM (with more blocks used to see converged 

behaviour) algorithms and as mentioned previously is due to the mul- 

timodular nature of the cost function and the non consistency between 

SAM-type costs and the achievable bit error rate. Figures (5.11) and 

(5.12) show the PUSAM and the PUSLAM cost versus the iteration 

number. The PUSAM and the PUSLAM cost function and the bit rate 

axe a smooth function of each other i.e., the PUSAM and the PUSLAM 

minima and the bit rate maxima appear to be located in close proxim­

ity. All the results in these plots were for an SNR=40 dB. Figures (5.13) 

and (5.14) show the average performance of PUSAM and PUSLAM in 

term of shortening the channel for eight different CSA channels to  make 

sure tha t the algorithms perform similarly with different channels.
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Results of SAM on CSA loop 1
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F ig u re  5.1. Channel (dashed) and shortened channel (solid) impulse 
response of SAM algorithm.

Results of SLAM on CSA loop 1
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F ig u re  5.2. Channel (dashed) and shortened channel (solid) impulse
response of SLAM algorithm.
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Results of PUSAM on CSA loop 1
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F ig u re  5.3. Channel (dashed) and shortened channel (solid) impulse 
response of PUSAM algorithm.

Results of PUSLAM on CSA loop 1
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F ig u re  5.4. Channel (dashed) and shortened channel (solid) impulse
response of PUSLAM algorithm.
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bit rate vs. iteration numberx 10
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of SAM algorithm.
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x 10* bit rate vs. iteration number
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F ig u re  5.9. Achievable bit rate versus iteration number at 40 dB SNR 
of PUSAM algorithm.
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F ig u re  5.10. Achievable b it rate versus iteration number a t 40 dB 
SNR of PUSLAM algorithm.
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PUSAM cost vs. iteration number
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F ig u re  5.11. PUSAM cost versus iteration number.

PUSLAM cost vs. iteration number
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F ig u re  5.12. PUSLAM cost versus iteration number.
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Results of PUSAM on the average of 8 CSA loop
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F ig u re  5.13. Channel (dashed) and shortened channel (solid) impulse 
response of PUSAM algorithm.
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- - channel
— shortened channel0.3

0.2
a)a>
GJ>
CL
GJ4-̂

200150100500
tap number

F ig u re  5.14. Channel (dashed) and shortened channel (solid) impulse
response of PUSLAM algorithm.
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5.5 Conclusions

The proposed algorithms can achieve the same performance as SAM 

and SLAM algorithms in terms of higher bit rates if the algorithms 

are stopped once the best performance is achieved as in [5] and short­

ening the channel as shown in the simulations results, the advantage 

of the proposed algorithms is th a t they essentially achieve the same 

performance whilst updating only half of the coefficients at each itera­

tion which implies less computational complexity provided convergence 

time is not too long. The disadvantage of (PUSAM) and (PUSLAM) 

is tha t they can converge slower than the SAM and SLAM algorithms.



Chapter 6

RANDOM COEFFICIENT 

SELECTION IN PARTIAL 

UPDATE BLIND CHANNEL 

SHORTENING ALGORITHMS

6.1 Random Partial Update Adaptive Filtering

Random partial updating is an effective method for reducing computa­

tional complexity in adaptive filter implementations provided the con­

vergence time is not increased too much relative to conventional adap­

tive filter algorithms also it is an effective method for improve the con­

vergence which has been the problem associated with the deterministic 

partial update scheme [36]. In this chapter, the new random partial up­

date sum-squared auto-correlation minimization (RPUSAM) algorithm 

is proposed. This algorithm has low computational complexity whilst 

achieving improved convergence performance, in term s of achievable 

bit rate, over the PUSAM algorithm with a deterministic coefficient 

update strategy as in Section (5.2). The performance advantage of the 

RPUSAM algorithm is shown on eight different carrier serving area test

119
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loops (CSA) channels and comparisons are made with the original SAM 

and the PUSAM algorithms.

6.1.1 System model

The same system model shown in Figure (3.2) is used. The assumptions 

for the signal and noise in Section (5.1) are used. For convenience 

in this work real signals are also assumed but generalization to the 

complex case is straight-forward. It is assumed tha t 2L c < N fft

holds, where L c is the order of effective channel and N f f t is the FFT

size [4], which means th a t the length of the effective channel is less 

than half the FFT  size. The signal n(k ) is a zero-mean, independent 

identically distributed (i.i.d.), noise sequence, uncorrelated with the 

source sequence with variance a\.  The received sequence r ( k ) is

Lh
r (k ) ~  ^ 2  h U)x (k ~  j)  +  n W  (6.1.1)

j=o

and the output of the TEQ  y(k)  is given by

L/\u

y ( k ) =  5 Z  w t i ) r (k -  j ) = wT** (6.1.2)
j=o

where rk =  [r (k ) r ( k - l )  • • • r ( k - L w)]T and w is the impulse response 

vector of the TEQ w  — [w0 wx w2 --- w l w]t -

6.1.2 RPUSAM

For the effective channel c to  have zero taps outside a contiguous win­

dow of size (v +  1), its autocorrelation values should be zero outside 

a window of size 2v -I- 1. The autocorrelation sequence of the effective
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channel is given by

L c

R cc(l) = ^ 2  CU)°U -  0  (6.1.3)
j = o

and for a shortened channel, it must satisfy

flcc(0 =  0,V|Z| > V (6.1.4)

The cost function J rpusam which is the same form as Jsam is defined 

based upon minimizing the sum squared auto-correlation terms, i.e.,

Lc

Jv+l = Y  Rcc(l f  (6.1.5)
l= v+ 1

6.1.3 Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the RPUSAM cost 

J v + l  I s
Lc

w =  w oW -  /iV w( E[y(k)y(k -  /)]2) (6.1.6)
l= v+ 1

where /x is the step size and V w is the gradient evaluated a t w  =

w old. The instantaneous cost function is defined, where the expectation

operation is replaced by a moving average over a user-defined window 

of length Navg

L c (  ( k + l ) N avg — 1 /  \  /  l \  1

■Cf(*) = E E y("v0 (6-L7)
I n=Al =v + 1 I n —kN, avg

where Navg is a design param eter and it should be large enough to give 

a reliable estimate of the expectation, but no larger, as the algorithm 

complexity is proportional to  N avg.
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The proposal here is to improve the deterministic partial update 

scheme to exploit improved convergence of random selection [36] as 

discussed in Chapter 2, which is particularly important when mini­

mizing non quadratic and multimodal cost functions as used in this 

thesis, and thereby achieve performance close to SAM for any channel. 

The set of indices of the coefficients of the adaptive filter is given by 

{ 1 ,2 ,.. . ,  Lw 4- 1}. This set is split into P  different disjoint but equal 

size subsets denoted Si , i = 1 , . . .  , P . Then, at each iteration one of 

these P  subsets is selected at random with probability 1 /P ,  and only 

those coefficients within the adaptive filter having indices from that 

subset are updated.

The resulting update equation can be written as in (6.1.8) where 

M (i) is a diagonal matrix with unity elements on the principle diag­

onal corresponding to the chosen subset Si and zeros elsewhere; and 

w(0) is initialized as for SAM. The computational complexity of this 

algorithm at each iteration is effectively 3 N L w(Lc — v ) / P  and therefore 

the computational complexity reduction is 1 /P  of the SAM algorithm.

^  1 y(n)y (n -  I)
w(fc +  1) =  w(fc) -  2*4 x M (i)x  ^ 2   ~N ĝ-----

I— \ ft—kNavg

n= kN
i

Ck+l)Navg-l y{p)vn-i +  y(n -  l)rn
Ni y avg

The performance of this algorithm is again assessed by simulation due 

to the difficulty to perform mathematical analysis.

)j (6.1-8)
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6.1.4 Simulations

The standard parameters of an ADSL downstream transmission were 

simulated as in [4]. The step size used was 5. Four subsets (P  = 4) were 

used in the RPUSAM algorithm, the FFT  size Nf f t = 512, the TEQ 

had 16 taps and the channel was the test ADSL channel CSA loop 1 

available at [68]. The noise was set such th a t <T2||c||2/cr2 =  40 dB  where 

||.|| denotes the Euclidean norm; and 75 OFDM symbols were used. All 

algorithms are compared with the maximum shortening SNR (MSSNR) 

solution, which attem pts to  minimize the energy outside the window 

of interest while holding the energy inside fixed [3], which is obtained 

using the code at [68], and the matched filter bound (MFB) on capacity, 

which assumes no ICI. The bit rate on each subcarrier is determined 

using noise margin 7 m =  6dB and the coding gain 7 C =  4.2dB. The 

value of Tgap = 9.8dB is used which corresponds to a probability of 

error 10~7 and the QAM modulation used across the subcarriers. How 

the bit rate is calculated has been given in Section (5.4).

In Figures (6.2), (6.4), and (6.8), the achievable bits per second [15] 

as a function of the averaging block number, k , are plotted which show 

the improved convergence property of RPUSAM over PUSAM, best 

performance is achieved a t approximately 350 rather than 900 blocks, 

which also approaches the full SAM algorithm of approximately 250 

blocks. Decrease in the bit rates after achieving the peak bit rates is 

clear for the RPUSAM algorithm. In Figures (6.1), (6.3), and (6.5) 

the shortened channels are compared with the original channels and all 

algorithms are confirmed to be effective. The support of the shortened 

channel is restricted to lie within the first 50 taps. Figure (6.9) shows 

the average performance of RPUSAM in term of shortening the chan-
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nel for eight different CSA channels to make sure that the proposed 

algorithm performs similarly with different channels.

Results of RPUSAM on CSA loop 1
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F ig u re  6.1. Channel (dashed) and shortened channel (solid) impulse 
response of RPUSAM

6.2 A Blind Lag-Hopping Adaptive Channel Shortening Algorithm 

(LHSAM)

Analytical results [6] showed th a t optimizing the single lag autocorre­

lation minimization (SLAM) cost does not guarantee convergence to 

high signal to interference ratio (SIR), an im portant metric in chan­

nel shortening applications. This potential limitation of the SLAM 

algorithm is overcome in this work whilst retaining its com putational 

complexity advantage by minimizing the square of a single autocor­

relation value with randomly selected lag. The proposed lag-hopping 

adaptive channel shortening algorithm based upon squared autocorre-
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bit rate vs. iteration numberx 10
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F ig u re  6.2. Achievable bit rate versus averaging block number at 40 
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Results of PUSAM on CSA loop 1
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F ig u re  6.3. Channel (dashed) and shortened channel (solid) impulse 
response of PUSAM



126Section 6.2. A Blind L ag-H opping A daptive  Channel Shortening Algorithm (LHSAM)
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F igure  6.4. Achievable bit rate versus averaging block number at 40 
dB SNR of PUSAM

Results of SAM on CSA loop 1
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F ig u re  6.5. Channel (dashed) and shortened channel (solid) impulse
response of SAM
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Figure 6.6. TEQ taps.

lation minimization (LHSAM) has, therefore, low complexity as in the 

SLAM algorithm and, more importantly, a low average LHSAM cost 

can guarantee to give a high SIR as for the SAM algorithm.

6.2.1 System Model

In this work, a channel shortening filter a t the output of a channel 

is used, as shown in Figure (6.10). The case in Figure (6.10) where 

a single input multiple ou tput channel (SIMO) is referred to  where 

L > 1, a SISO channel is a special case when L — 1. This SIMO 

channel can be either from the use of multiple receive antennas or by 

over-sampling at the receiver, and r(fc) is the received signal vector 

at the input to the receiver r{k) := [rj^, r^ \ ...., r[L̂ ], which is the 

sum of some additive noise n(k) := ..., n ^ ]  and the output

signal from the transm itter s (k ) filtered by a channel filter h (z) :=
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RPUSAM cost vs. iteration number
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F ig u re  6.7. RPUSAM cost versus iteration number. 
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F ig u re  6.8. Achievable bit rate versus averaging block number at 40 
dB SNR of SAM

[h(1)(z), h (2)( z ) , h (L)(z)]r  (where T  denotes the transpose operation).

Each sub-channel h ^ (z )  is modelled as a finite impulse response filter
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Results of RPUSAM for the average of eight different channels
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F igu re  6.9. Channel (dashed) and shortened channel (solid) impulse 
response for the average of eight CSA channels of RPUSAM

of order M

h (i)(z) = J 2 kk)z~k f6'2'1)
k=0

At the receiver, a channel shortening filter w (z) =  [w^1̂ ) ,  w^2l ( z ) , w ^ ( z ) ]  

processes the vector valued input r* by summing the output of the 

channel shortening filters w ^ (z )  operating on each of the sub-channel 

outputs r j^ . Channel shortening filters with impulse responses of order 

T  are considered, so tha t

(6 .2 .2)
k=0
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F ig u re  6.10. System model for blind adaptive channel shortening with 
the matched filter.

The overall effective filter c(z) between the transm itted symbols s{k) 

and the output of the channel shortener y (k ) can be written as

L

c (z) = w T(z)h(z) =  w ^ (z )h ^ (z )  (6.2.3)
1= 1

Then the output y(k ) is processed by the receiver with a matched filter

N

c*(z ) =  °zk = c(z~l ) (6.2.4)
k=o

The final output x(k)  is created which is passed on to the rest of the re­

ceiver. The importance of the channel shortening filter is to  ensure that 

final transfer function c t,(z)c(z) between the output of the transm itter 

and the output of the matched filter has an impulse response which is 

zero outside of a window of length 2v + 1. The use of an optimal Viterbi
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or forward-backward sequence detector at the output of the matched fil­

ter can cause this in single carrier systems [6]. These optimal sequence 

detection algorithms have a high complexity in the effective impulse 

response length, it is often computationally infeasible to use them for 

long (>  10) effective impulse responses. In these instances, by shorten­

ing the length of the effective channel, the channel shortener allows one 

to reap the performance benefits of such sequence detection algorithms 

at a reasonable com putational complexity. In multicarrier systems such 

as discrete multi tone (DMT) or coded orthogonal frequency division 

multiplexing (C-OFDM), on the other hand, one employs the channel 

shortener to ensure tha t only simple scalar equalization is required one 

at each bin the output of the FFT. It is not assumed either of these 

instances in particular. Instead, it is assumed th a t the signal s (k ) has 

zero mean, unit-variance, and is uncorrelated, so th a t £ ,[s(k)s(fc)] =  0 

for k ^  k. It is further assumed tha t the sub-channels h ^ ( 2 ) have no 

common zeros (i.e. are co-prime), and the length of the shortening fil­

ters has been selected in a manner so tha t any effective transfer function 

c (z) can be created by choosing an appropriate channel shortener.

6.2.2 Blind Adaptive Channel Shortening Metrics

The blind channel shortening metrics of interest will be reviewed. By 

metric, it means a function which assigns to every combined response 

c (z) a cost. A channel shortening design according to a particular 

metric is similar to the combined response c (z) with the minimum 

metric th a t is achievable for some shortener w(z). The study will be 

focussed on channel shortening designs which operate using the auto­

correlation of y (k ), and thus on the autocorrelation of the combined
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response c(z), whose transform may be written as

N

R (z) =  c(z)ci (z) =  ^  QkZ~k (6.2.5)
k —- N

The metrics which are considered all require an extra constraint, which 

is choosing to be a unit energy constraint on c(z), so tha t

The sum squared autocorrelation metric (SAM) [4] is the sum of the 

autocorrelation squared outside of the window of length 2v +  1.

The sum absolute autocorrelation metric (SAAM) [26] is similar to 

SAM, which is the sum of the absolute autocorrelation values outside 

of a window of length 2v +  1

The single lag autocorrelation metric (SLAM) [5] claims th a t it reduces 

the complexity of SAM designs by minimizing the absolute value of only 

the correlation a t the lag v +  1.

N

(6 .2 .6)

N

(6.2.7)
Kl>«+i l = v + l

J S A A M  = ^  \ R m \
\ l \>v+l

(6 .2.8)

J S L A M  =  +  1 ) |2 > (6.2.9)

[4], [26] and [5] show tha t J s a m ,  J s a a m ,  and J s l a m  are all zero if the

combined response c(z) has taps which are all zero except for possibly
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some within a window of length v. The non-negative definiteness of 

these metrics then shows tha t they all have global minima for shortened 

c (z).  Furthermore, Js a m  and Js aam  are equal to zero only if c(z) 

has taps which are all zero except possibly within a window of size 

v + 1. Thus, for SAM and SAAM the global minima axe all at perfectly 

shortened channels. As it will be seen later, however, this is not the 

case for the SLAM cost. These global minima (partially) establish the 

utility of the SAM, SAAM, and SLAM costs. Note tha t these designs 

suffer from inherent ambiguities in terms of the combined response 

c ( z )  because they depend on c ( z )  only through the auto-correlation 

R (z). In particular the auto-correlation of a combined response c (z) 

remains unchanged if one replaces a zero by its conjugate inverse and 

re-normalizes to  enforce the unit energy constraint. To see the reason 

of this, let the zeros of c (z )  be {d*}, so that

N

c ( z )  =  a0 J J ( 1  -  dkz ~ l ) (6 .2 .1 0 )
k = 1

This gives an autocorrelation with transform

N

c(z)cHz) =  k i 2 n a  -  ^ ' X 1 -  M  t6-2-11)
k=  1

Now consider c2(z), which is created by flipping one of the zeros over 

the unit circle and conjugating it, i.e. by replacing d\  by £  , and then 

normalizing the taps so th a t they are unit norm, so that
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Then c2(z) has an autocorrelation with transform

c2{z)c\{z)  =  |6o|2 ^1 -  (1 -  d[ l z)

N

J J (1  -  dkz~l ){ 1 -  dkz )
k=2

= jxjs I F 1 -
1 11 Jfc=l

=  c(z)cB(z) (6.2.13)

where the last equality followed from j^ p  =  |a0|2 due to the unit energy 

constraint. This leads to  the next section, which shows the importance 

of the inclusion of the m atched filter c^z) in the system, as in Figure 

(6 .10).

6.2.3 Importance o f the Matched Filter

It is assumed th a t the m atched filter c**(z) was not included in Figure 

(6.10), so th a t the signal output to the rest of the (not shown) receiver 

chain was y{k).  W ithout the matched filter, the goal becomes to  shorten 

the channel to v non-zero taps. The performance of this system was 

quantified with the m atched filter removed by the best delay signal to 

inference ratio

SIR({y(fc)}) =  m a x — ^ -------------  . (6.2.14)
Km n> A E t'o1 |cWI2 + Er=A+„+.|cWP

It shows th a t the SAM, SAAM, and SLAM costs are unsuited for this 

system, because there are combined responses c (z) with costs very near 

to  the global optimal value (0) of these costs with very high SIR. This 

is all due to the autocorrelation based nature of the SAAM, SAM, and
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SLAM designs. In particular, unlike the auto-correlation, the quality 

of a combined response as a channel shortener (e.g. its SIR) changes 

dramatically when you flip one of its zeros over the unit circle and 

conjugate it. This point is perhaps best illustrated with an example. 

Consider a combined response c(z) whose zeros dk,k  6 1,..., iV are

U = \ f - i )
{  2i7rk \

dk = a e x p ( j - j y - J  , k 6 1,..., N  (6.2.15)

This gives a combined response, after unit energy normalization, of

c(z) — —---- a . z N (6.2.16)
V '  y / l  +  a 2N V I  +  a 2N V

which, for a  <  1 will have a best-delay SIR of —20 A^log10 (a) dB, 

which can be made arbitrarily large via choice of a . As one would 

expect, the SAM, SAAM, and SLAM costs for this response are very 

low as well. In particular, the SAM cost is 101og10 ( (i+a™)2)  an<̂  

the SAAM cost is 101og10 dB for any v. The SLAM cost is

—oo dB for any v < N,  and is 101og10 dB for v = N.  Because

they depend only on the autocorrelation, the SAM, SAAM, and SLAM 

costs do not change if the following changes are made

d\ •—> — idw-i  i—>  ----- , djy •—> —  (6.2.17)
d \  «N-1 a N

However, the best delay SIR changes under this transformation. The 

particular instance when a  = \  , v -  1, and N  = 9 is shown in Fig­

ure (6.11). Here the best delay SIR was 54 dB before the translation 

(6.2.17), bu t after the translation (6.2.17) the best delay SIR becomes 

1 dB. The SAM and SAAM costs remain at -54 dB and -27 dB respec-
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F ig u re  6.11. Two combined responses c(z) with the same autocorre­
lation, and thus the same SAM, SAAM, and SLAM costs (-54 dB, -27 
dB, and -1 dB, respectively), but with very different best delay SIRs 
when no matched filter is used (54 dB versus ldB).

tively during this translation. The SLAM cost remains at -1 dB. If, 

however, a matched filter is added to the receiver, then the effective 

impulse response between s (n ) and x(k)  is the autocorrelation of c(z),  

i.e. c(z)c$(z).  This means th a t the SAM and SAAM costs are mini­

mizing the sum squared magnitude and the sum magnitude, of the taps 

outside of the window of length 2v + 1 in the effective response R(z) 

between s ( k ) and x(k),  which is related to the signal to interference 

ratio  of x(A;), as it will be shown in the next section.

Although it is clear from the argument and example th a t a matched 

filter is im portant for blind designs based on the autocorrelation of 

the combined response, it is not clear how to choose the appropriate 

m atched filter at the receiver. In particular, as pointed out in [4], [15],

[26] and [5], adaptive channel shortening filters which adaptively mini­
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mize these costs directly via choice of the channel shortener w(z) can be 

made. Because these algorithms operate directly on the received data 

without estim ating the channel h(z) or the combined response c(z), 

after they have converged, although the channel may be shortened, the 

combined impulse response is still unknown. Thus, the requirement of 

a matched filter also implicitly includes the requirement tha t the com­

bined impulse response c (z) be estimated. Alternatively, the example 

shown above suggests th a t a minimum phase requirement on c (z) may 

be sufficient, although this might require estimation of c (z) in order to 

determine if it is minimum phase. Either way, it seems tha t c (z) will 

have to be estimated, or designs based on auto-correlation will suffer 

from the ambiguities indicated above.

6.2.4 SIR Performance

Going back to  the system depicted in Figure (6.10) with the matched 

filter present, a relation between the blind channel shortening metrics 

SAM, SAAM, and SLAM and the signal to inference power ratio in 

x(k)  is provided, which is defined to be

C|R E ^ _  Ifrnl2
Er=-W|fim|2 + EL,+l|flm|2

It can be noted th a t the denominator in this expression is the SAM

cost, and considering only those c(z)  which satisfy the unit energy
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constraint, the following relation can be obtained [6]

SIR (dB) =  1 — 101og10(J3)

=  i O l o g i o  1 0 1 o g 10 ( J 5 )

>  — J s a m  (dB) (6 .2 .18)

So th a t a low SAM cost can be guaranteed to give a high SIR at the 

output of the matched filter. Furthermore, since

then the SAAM design affords lower bound on the performance SIR

So th a t a low SAAM cost also guarantees a high SIR at the output of 

the matched filter. Unfortunately, the SLAM design affords no such 

lower bound on the performance SIR as it can be seen in the next 

section.

Moving now to upper bounds, note tha t for c (z) satisfying the unit 

energy constraint, I > 0,

J s a a m  —  £ k . i 2 +  £  £  i ^ u o i i ^ iS A A M  —

= ^sam  + 53 5Z l-̂ ml 1-̂ *1
| t |>u  \k\>v,k^i

>  J s a m

SIR (dB) >  — 2 J s a a m  (dB) (6.2.19)
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I Rm | <  max -
|eigenvalue | Z

Q ( N + l—m) X- Tfl Im

0  m x m  O m x ( N + l —m)

1
+  2

O m x ( jY + l—m) O m xm

I m  0 (A f+ l—m) X 771

(6 .2 .20)

Denoting this maximum eigenvalue magnitude by |Amax,/,7v|, the SIR 

at the matched filter output among those c{z)s may be upper bound 

obeying the unit energy constraint by

SIR (dB) < 101og10 ( 1 +  2 \^MAx,m,N\2 J — ^SAA/(dB) (6.2.21)
\  0 < m < v  J

Furthermore, since via the relation between the 2 and 1 norms,

J s a m  >
Js aa m

( N - v )
(6 .2 .22)

also it follows th a t

SIR (dB) <  10log10 ( 1 +  2 ^ 2  Î m a x , m , t v |2 j + 1 0 log10( N —v ) —2J s a a m { ^ )
\  0 < m < v  )

(6.2.23)

Finally, since J s a a m  >  Js l a m > the bound

SIR (dB) < 101og10 (1  +  2 ^ 2  \ ^ A X , m,N? +W\ ogw ( N - v ) - 2 J SLA M m
\  0 < m < v  J

(6.2.24)

shows th a t a high SLAM cost implies poor SIR performance.
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6.2.5 LHSAM algorithm

The update equation of LHSAM algorithm can be written as:

(  ( ( k + l ) N a v g  — 1 (  \  I  ; \

w ( H l )  =  w W - J  £  I M e M

X

\  n= k N a

/ (k+l)Navg 1 y^n jr n̂ _  _  /)r(n)

1 J *  - K
E
k N a

avg

The key defining feature of the LHSAM algorithm is th a t at each iter­

ation k, the lag “1” is chosen with equal probability to take on one of 

the values in the range of v +  1 ,....... , L c.

The LHSAM cost will be identical to tha t of the SAM cost as on 

the average all the lags of the SAM cost will be visited, whilst a t each 

iteration the complexity is the same as SLAM

6.2.6 Simulations

The cyclic prefix used to simulate LHSAM was of length 32, the FFT 

size Nff t  =  512, the TEQ had 16 taps and the channel was the test 

ADSL channel CSA loop 1 available at [68]. The noise was set such 

tha t cr^||c||2/cr2 =  40 dB where ||.|| denotes the Euclidean norm; and 75 

OFDM symbols were used. To make fair comparison between LHSAM 

and SLAM, all the param eters are kept the same as in [5]. The step size 

used for SLAM and LHSAM was 600, in order to achieve convergence 

in approximately 1000 blocks. All algorithms are compared with the 

maximum shortening SNR solution [3], which was obtained using the 

code a t [69], and the matched filter bound (MFB) on capacity, which 

assumes no ICI.

In the Figures (6.12), (6.13), and (6.14), the shortened channels are
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compared with the original channels and all algorithms are confirmed 

to be effective. The support of the shortened channel is restricted to 

lie within the first 50 taps. In the Figures (6.17), (6.18), and (6.19) the 

achievable bits per second as a function of the averaging block number 

are plotted which show the improved convergence property of LHSAM 

over SLAM, best performance is achieved at approximately 900 rather 

than 1010 blocks, due to the nature of the underlying cost function 

as a function of the param eters of the shortener. The bit rate was 

determined based on

N/ft
B R = ^ 2  1o62(1 + SNRi/r)

i =  1

The bit rate was computed using a 6-dB margin and a 4.2-dB coding 

gain. For more details, see [68], and for more details on how the achiev­

able bit rate relates to  SAM cost and ICI, see [4].
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Results of LHSAM on CSA loop 1
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F ig u re  6 .12. Channel (dashed) and shortened channel(solid) impulse 
response of LHSAM algorithm.

Results of SAM on CSA loop 1
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F ig u re  6 .13 . Channel (dashed) and shortened channel (solid) impulse
response of SAM algorithm.
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Results of SLAM on CSA loop 1
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F ig u re  6.14. Channel (dashed) and shortened channel (solid) impulse 
response of SLAM algorithm.
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LHSAM cost vs. iteration number
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F ig u re  6.16. LHSAM cost versus iteration number.
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F ig u re  6 .17 . Achievable bit rate versus iteration number at 40 dB 
SNR of LHSAM algorithm
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x 10 bit rate vs. iteration number
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6.3 Conclusion

The newly proposed RPUSAM algorithm essentially achieves the same 

result in term s of reducing the effective channel length as SAM and 

PUS AM with less complexity. The complexity reduction is achieved by 

only updating N / P  of the coefficients of the TEQ at each iteration in 

a random pattern; on the other hand, PUSAM updates the subsets of 

coefficients in a systematic fashion which degrades convergence greatly 

over conventional SAM. The proposed algorithm is confirmed to achieve 

channel shortening on a set of eight CSA channels.

Uniquely in this chapter random lag selection is introduced to mit­

igate the ill-convergence properties of the SLAM algorithm. The pro­

posed algorithm achieves essentially the same result in terms of reducing 

the effective channel length as SLAM. Importantly, however, the disad­

vantage of SLAM in terms of the SIR performance has been overcome. 

The proposed algorithm has the same the low complexity advantage 

as SLAM. It also has the advantage tha t a low LHSAM cost will be 

identical to  a low SAM cost which guarantees to yield a high SIR at 

the output of the matched filter. This is achieved as on the average all 

the lags of the SAM cost will be visited during convergence, whilst at 

each iteration the complexity being the same as SLAM.



Chapter 7

CONCLUSIONS AND 

FURTHER RESEARCH

7.1 Conclusions

The implementation complexity of a multicarrier communication sys­

tem is generally less than th a t of a single carrier system for the same 

amount of delay spread. This reduction in complexity is to  a large ex­

tent due to  the use of the CP which eliminates the need for an equalizer 

except for a single FEQ a t each subchannel. However, to reduce the 

bandwidth efficiency loss due to insertion of CP, channel shortening or 

partial equalization in the form of a TEQ is introduced. The complex­

ity of this partial equalization should, therefore, be kept low in order 

to keep the superiority of the multicarrier systems over single carrier 

systems. The throughput loss due to the insertion of the CP can fur­

ther be reduced indirectly by applying channel shortening algorithms 

which are blind and do not need training. Furthermore, channel short­

ening should be made robust to the impulsive noise impairment found

in ADSL channels.

Algorithms which attem pt to restore each of the properties of the 

transm itted  sequence th a t ought to be present in the equalized received

147
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sequence were studied. Chapter 3 shows that in order to create a blind, 

adaptive channel shortener, the redundancy which the transm itted se­

quence has due to  the cyclic prefix in multicarrier or single-carrier cyclic 

prefix (SCCP) modulation, can be used in the property restoral sense. 

Algorithms using a philosophy called “property restoral” were studied 

such as the MERRY algorithm [37] which attem pts to adapt the chan­

nel shortener with the aim of restoring the redundancy which is due to 

the cyclic prefix of the transm itted sequence. On the other hand, the 

SAM algorithm [4] minimizes the sum-squared auto-correlation terms 

of the effective channel impulse response outside a window of a CP- 

length. Chapter 3 also shows tha t the presence of null tones in the 

transm itted da ta  is another common property of multicarrier signals, 

however its complexity is high. A blind, adaptive channel shortening 

algorithm can be derived with the goal of restoring the values of these 

tones to zero a t the output of the receivers FFT , this results in a carrier 

nulling algorithm (CNA).

Chapter 4 proposes a robust blind adaptive channel shortening algo­

rithms called DPUSAAM and RPUSAAM. These algorithms are based 

on updating only a portion of the coefficients of the channel shortening 

filter at each tim e sample instead of the entire set of coefficients. These 

algorithms are the first attem pt in the field of using partial update fil­

tering in blind adaptive channel shortening. The algorithms are also 

designed to  be robust to  impulsive noise impairment found in ADSL 

channels. These algorithms have low computational complexity whilst 

retaining essentially identical performance to the SAAM algorithm [26]. 

To assess the robustness of the DPUSAAM and RPUSAAM algorithms, 

the impulsive noise has been modelled as Gaussian-mixture and as a-
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stable distributions.

SAM [4] has relatively less complexity as compared to other channel 

shortening algorithms requiring matrix inversions. It converges faster 

than another blind adaptive channel shortening algorithm MERRY and 

can track channel variations within a symbol because it can update 

once per sample while MERRY updates once every symbol. SAM has 

higher complexity than MERRY. SLAM [5], on the other hand, achieves 

channel shortening by minimizing the squared value of only a single 

autocorrelation a t a lag greater than the guard interval.

Chapter 5 addresses the complexity reduction and convergence is­

sues with SAM and SLAM algorithms. The main argument of this 

chapter is th a t effectively identical channel shortening can be achieved 

as SAM and SLAM whilst updating only half of the coefficients at each 

iteration which implies less computational complexity. The disadvan­

tage of (PUSAM) and (PUSLAM) is tha t they can converge slower 

than the SAM and SLAM algorithms.

Chapter 6 proposed RPUSAM algorithm, which essentially achieves 

the same result in term s of reducing the effective channel length as 

SAM and PUSAM with less complexity. The complexity reduction 

is achieved by only updating N / P  of the coefficients of the TEQ at 

each iteration in a random  pattern; on the other hand, PUSAM up­

dates the subsets of coefficients in a systematic fashion which degrades 

convergence greatly over conventional SAM. The proposed algorithm is 

confirmed to achieve channel shortening on a set of eight CSA channels.

Also in this chapter a new partial update blind channel shortening 

algorithm was proposed. The proposed algorithm essentially achieves 

the same result in term s of reducing the effective channel length as
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SLAM. Importantly, however, the disadvantage of SLAM in terms of 

the SIR performance has been overcome by the proposed algorithm 

where the proposed algorithm has the advantage of low complexity of 

SLAM over SAM and also has the advantage of SAM where a low 

lag-hopping sum-squared autocorrelation minimization (LHSAM) cost 

will be identical to  a low SAM cost which guarantees to give a high 

SIR at the output of the matched filter as on the average the proposed 

algorithm uses all the lags as in SAM.

7.2 Future Research

Following the work which has been done in this thesis, a number of 

suggestions could be taken up as a possible future work in this area,

• Extend the application of the channel shortening algorithms pre­

sented in Chapters (4, 5 and 6) to  upstream ADSL channels.

• Provide detailed convergence analysis of the proposed algorithms 

possibly based on an extention of the energy conservation princi­

ple [30].

• Develop faster converging versions of the proposed partial update 

algorithms using recursive least squares type formulations.

•  Extend to case of complex data for application in multi-input 

m ulti-output systems.

•  Consider application in distributed communication systems.
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