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ABSTRACT

In wireline multicarrier systems a cyclic prefix is generally used to fa-
cilitate simple channel equalization at the receiver. The choice of the
length of the cyclic prefix is a trade-off between maximizing the length
of the channel for which inter-symbol interference is eliminated and
optimizing the transmission efficiency. When the length of the chan-
nel is greater than the cyclic prefix, adaptive channel shorteners can
be used to force the effective channel length of the combined channel
and channel shortener to be within the cyclic prefix constraint. The
focus of this thesis is the design of new blind adaptive time-domain
channel shortening algorithms with good convergence properties and
low computational complexity.

An overview of the previous work in the field of supervised partial
update adaptive filtering is given. The concept of property-restoral
based blind channel shortening algorithms is then introduced together
with the main techniques within this class of adaptive filters. Two
new partial update blind (unsupervised) adaptive channel shortening
algorithms are therefore introduced with robustness to impulsive noise
commonly present in wireline multicarrier systems.

Two further blind channel shortening algorithms are proposed in
which the set of coefficients which is updated at each iteration of the

algorithm is chosen deterministically. One of which, the partial up-
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Abstract iV

date single lag autocorrelation maximization (PUSLAM) algorithm is
particularly attractive due to its low computational complexity.

The interaction between the receiver matched filter and the channel
shortener is considered in the context of a multi-input single-output
environment. To mitigate the possibility of ill-convergence with the
PUSLAM algorithm an entirely new random PUSLAM (RPUSLAM)
algorithm is proposed in which randomness is introduced both into the
lag selection of the cost function underlying SLAM and the selection
of the particular set of coefficients updated at each algorithm. This
algorithm benefits from robust convergence properties whilst retain-
ing relatively low computational complexity. All algorithms developed
within the thesis are supported by evaluation on a set of eight carrier

serving area test loop channels.
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Chapter 1

INTRODUCTION

In multicarrier modulation (MCM) systems, such as asymmetrical digi-
tal subscriber line (ADSL) transceivers, each symbol consists of samples
to be transmitted to the receiver plus a cyclic prefix (CP) of length v [3].
The CP is the last v samples of the original N samples to be trans-
mitted. The CP is inserted between blocks to combat inter-symbol
interference (ISI) and inter-channel interference (ICI). The length of
the CP should at least be equal to the order of the channel impulse
response. At the receiver the CP is removed, and the remaining N
samples are then processed by the receiver. Since the efficiency of the
transceiver is reduced by the introduction of the CP it is therefore de-
sirable either to make v as small as possible or to choose a large V.
Selecting large N will increase the computational complexity, system
delay, and memory requirements of the transceiver. The insertion of
CP is shown in Figure (1.1) for the length of the channel 4 and the
actual data symbol duration of 12.

To overcome these problems a short time-domain equalizer (TEQ),
usually an FIR filter, can be placed in the front end of the multicar-
rier receiver, as shown in Figure 1.2 to shorten the impulse response
of the effective channel. The length of the shortened impulse response

filter and CP are usually fixed a priori and not changed from chan-

1
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Figure 1.1. Insertion of a cyclic prefix in multicarrier transmission.

nel to channel. A low complexity blind adaptive algorithm to design a
time-domain equalizer (TEQ), called sum-squared autocorrelation min-
imization (SAM) was proposed in [4] which achieves channel shortening
by minimizing the sum-squared autocorrelation terms of the effective
channel impulse response outside a window of a desired length. The
drawback with SAM is that it has a significant computational com-
plexity. SLAM [5], on the other hand, achieves channel shortening by
minimizing the squared value of only a single autocorrelation at a lag
greater than the CP. The drawback with SLAM is that even guaran-
teeing convergence of the SLAM cost to low values does not necessarily
guarantee convergence to high SIRs [6]. New algorithms are there-
fore required with robust convergence properties and low computational

complexity, and this will be the focus of this thesis.

1.1 Application of Channel Shortening

Channel shortening was first applied to maximum likelihood estimation
(MLSE). MLSE [7] is the optimal estimation method in terms of mini-

mizing the error probability of a sequence. Since its complexity grows
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Figure 1.2. Multicarrier baseband system model. (I)FFT: (inverse)
fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel,
CP: cyclic prefix, h: (FIR) channel of length (L + 1), w: TEQ (Time
domain Equalizer) of length (L,, + 1), FEQ: Frequency domain Equal-
izer

exponentially with the channel length, a prefilter can be used to shorten
the transmission channel and reduce the complexity and then applying
the MLSE to the output of the shortened effective channel [8], [9]. To
minimize the MSE between the target and the convolution of the chan-
nel and prefilter, one approach is to design both the prefilter and the
shortened target impulse response [10], [11]. Use a decision feedback
equalizer (DFE) to shorten the channel, and then apply the MLSE is
another approach [12], [13]. Channel shortening has also been proposed
for use in multiuser detection [14] in direct sequence code division mul-
tiple access (DS-CDMA) systems. The complexity of the MLSE grows
exponentially with the number of users. “Channel shortening” can be
implemented to suppress L-K of the scalar channels (channels as in
SISO case) and retain the other K channels, effectively reducing the
number of users from L to K. Then the MLSE can be implemented to
recover the signals of the remaining K users. In this context, “channel

shortening” means reducing the number of scalar channels rather than
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reducing the number of channel taps, and the mathematical structure
is similar to channel shortening for MLSE applications {15]. Channel
shortening can be used to reduce the complexity of ultra wideband
systems [16]. Yet another application is in acoustics. Psychoacous-
tics defines the D50-measure for intelligibility of speech as the ratio of
energy in a 50 ms window of the room impulse response to the total
energy of the impulse response, and optimization of this measure can
be performed by a channel shortener [17].

Channel shortening has found its revival and its main use is in mul-
ticarrier communication systems [18]. Examples of multicarrier com-
munication systems include wireless local area networks (IEEE 802.11
a/g, HIPERLAN/2) [19], wireless metropolitan area networks (IEEE
802.16) [20], Digital Audio Broadcast (DAB) [21] and Digital Video
Broadcast (DVB) [22] in Europe, satellite radio (Sirius and XM Ra-
dio) [23], and the proposed standard for multiband ultra wideband
(IEEE 802.15.3a). Examples of wireline multicarrier systems include
power line communications (HomePlug) [24] and digital subscriber lines

(DSL) [25).

1.2 The Structure of the thesis

The remainder of the thesis is organized as follows. Chapter 2 presents
a literature survey of previous work in partial update adaptive filtering
techniques.

Chapter 3 studies the algorithms which attempt to restore each of
the properties of the transmitted sequence that ought to be present in
the equalized received sequence.

Chapter 4 proposes novel blind adaptive channel shortening algo-
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rithms, the deterministic partial update sum-absolute autocorrelation
minimization (DPUSAAM) algorithm and the random partial update
sum-absolute autocorrelation minimization (RPUSAAM) algorithm for
multicarrier modulation systems. These algorithms are based on up-
dating only a portion of the coefficients of the channel shortening filter
at each time sample instead of the entire set of coefficients. This work
is the first attempt in the field of using partial update filtering in blind
adaptive channel shortening. The algorithms are also designed to be
robust to impulsive noise impairment found in ADSL channels. These
algorithms have low computational complexity whilst retaining essen-
tially identical performance to the sum-absolute autocorrelation min-
imization (SAAM) algorithm [26]. The non-Gaussian impulsive noise
has been modeled as Gaussian-mixture and as a-stable distributions.

Chapter 5 addresses the complexity reduction and convergence is-
sues with the SAM algorithm [4] and the SLAM algorithm [5]. The
partial update method is applied to the two channel shortening al-
gorithms which achieve the same performance whilst further reducing
the computational complexity, the proposed algorithms are called the
partial update SAM algorithm (PUSAM) and partial update SLAM
algorithm (PUSLAM). These algorithms essentially achieve the same
result in terms of reducing the effective channel length as SAM and
SLAM with half the complexity. The performance advantage of the
PUSAM and PUSLAM algorithms is shown on eight different carrier
serving area test loops (CSA) channels and comparisons are made with
the original SAM and the SLAM algorithms.

Chapter 6 addresses the complexity reduction in adaptive filter im-

plementations, and improving the convergence which has been the prob-
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lem associated with the deterministic partial update scheme in Chapter
5. In this chapter, the new random partial update sum-squared auto-
correlation minimization (RPUSAM) algorithm is proposed. This algo-
rithm has low computational complexity whilst achieving improved con-
vergence performance, in terms of achievable bit rate, over the PUSAM
algorithm with a deterministic coefficient update strategy as in Chapter
5. The performance advantage of the RPUSAM algorithm is shown on
eight different carrier serving area test loops (CSA) channels and com-
parisons are made with the original SAM and the PUSAM algorithms.
Also in this chapter a new partial update blind channel shortening al-
gorithm is proposed. The proposed algorithm essentially achieves the
same result in terms of reducing the effective channel length as SLAM.
Importantly, however, the disadvantage of SLAM in terms of the SIR
performance has been overcome by the proposed algorithm where the
proposed algorithm has the advantage of low complexity of SLAM over
SAM and also has the advantage of SAM where a low lag-hopping sum-
squared autocorrelation minimization (LHSAM) cost will be identical
to a low SAM cost which guarantees to give a high SIR at the output
of the matched filter as on the average the proposed algorithm uses all
the lags as in SAM.

Chapter 7 concludes the thesis and highlights possible areas for

further research.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, previous work in partial update adaptive filtering tech-
niques will be reviewed. The first technique is to update one coefficient
at each iteration which is called the maximum normalized least mean
square (Max-NLMS) algorithm, this adaptive filter only adjusts the co-
efficient associated with the data element that has maximum absolute
value in the filter memory at each iteration [27]. The second technique
is to update a portion of the coefficients at each iteration, and those
coefficients are the ones which have the largest magnitude gradient com-
ponents on the error surface. Coefficients which have a small magnitude
gradient component do not need to be updated as they will have little
effect on the overall algorithm performance [28]. The third technique
is to update entire blocks of the coefficients instead of selecting single
filter coefficients for updating, thereby reducing the costs in terms of
memory without losing the convergence speed. Another technique will
also be studied, based on dividing the adaptive filter coefficients into
small blocks and then updating a number of those blocks rather than
the entire filter at every iteration, this will be achieved by using a se-

lection criterion, which ranks the regressor vector blocks according to
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their squared Euclidean norms (their energy) and selects those blocks
with the largest norms as the ones to be updated. Combining the
data-selective updating from set-membership filtering with the reduced
computational complexity from partial updating will also be studied.
A new algorithm called the stochastic partial update LMS algorithm
(SPU-LMS) will also be studied based on choosing which of the subset
of the filter coefficients to update randomly, the motivation for which

is to overcome possible convergence problems in previous schemes.

2.2 Overview

In [27], the author implements the maximum normalized least mean
square (Max-NLMS) algorithm; it is based on updating one coefficient
at every iteration. This adaptive filter only adjusts the coefficient asso-
ciated with the data element that has maximum absolute value in the

filter memory at each iteration. The update equation for the algorithm

is given by
wi(k) + p=E i ok — i+ 1)] = ||x (k)|
wilk+1) = (k) + b= | ( )= lx®)l
w;(k), otherwise
(2.2.1)

where i = 1,...., L, and L is the length of the adaptive filter, and &k

denotes the discrete time index. ||x(k)||,, = mazi<j<r |z(k — i+ 1)

This update is extremely simple, requiring only a single multiply,
divide and add at each iteration if the maximum absolute value of the

input data samples currently in the filter memory is known.
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The author also introduces a new algorithm called maxlist, this
algorithm is a computationally simple method requiring only O(log L)
memory elements for calculating the value and position of the running
maximum across a sliding data window. The algorithm exploits the
shifting nature of the window, so it calculates the maximum value of
the stored elements and compares it with the new element which enters
the input vector at the most recent time.

Within the paper the mean square analysis of Max-NLMS is pre-
sented, the steady-state excess mean-square error (MSE) of the filter
is

EMsE,ss = lim tr [RE{v(k)v"(k)}] (2.2.2)

where R = E{x(k)xT(k)}, E{x(k)} = 0, v(k) = w(k) — Wom , and
Wopt is the optimal Wiener solution and (.)T denotes vector transpose.

In [27], this expression is simplified to

€MSE,33 = UzL(O’g,as + (L - 1)pzrv,38) (2'2'3)

is the adaptive filter input power, o2, is the steady-state

where o2 2,83

z
average coefficient error power E{v2(k)}, ry 4, is the steady-state aver-
age coefficient error cross-correlation, E{v;(k)v;(k)} ¢ =1,2,...., L and
Jj # i, and p, is the inter lag coefficient of the assumed correlated
zero-mean Gaussian distributed input sequence, where the subscript ss

denotes steady-state value.

The author also derives bounds on u to ensure convergence of the
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algorithm in the mean square sense

24 2910{L —2— (L - 1)gin1}
1+ (L = 1)g202 + g1 {L = 2 — 2(L — 1)g1o1 + (L — 1)(L — 2)(g202 — 9112)}
(2.2.4)

O<u<

where gmnp = E{%}, for i # j # max # 1.

Note that gmnp does not depend on the particular values of ¢, j, and
mazx because of the chosen input signal distributions. Note, maz is the
index of the sample in the input vector x(k) which maximizes ||z(k)||oo-

Furthermore, since g,g; is typically very small, the bounds are ap-

proximately given by

0<p<< (2.2.5)

1+ (L - 1)g202

And, finally, since 0 < ga02 < 1, the conservative bounds on the step

size become

2
0 — 2.2.6
<p<g (2.2.6)

which is of an identical form to that of the conventional LMS algorithm.
The author compares by simulation the performance of the Max-NLMS
adaptive filter to that of the LMS, sequential LMS (28], and periodic
LMS (28] adaptive filters. It is shown that in terms of convergence
of the coefficient error powers trE {v(k)vT(k)}, where tr(.) denotes
matrix trace, for the four adaptive filters in a system identification task
with a target filter with L= 30 unity-valued FIR filter coefficients, the
convergence of the Max-NLMS adaptive filter is faster than that of the
periodic and sequential LMS adaptive filters. But the LMS adaptive
filter outperforms the other adaptive filters; however, its complexity is

approximately twice that of the other adaptive filters [27].
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In (28], the author explores algorithms (the periodic LMS algorithm
and the sequential LMS algorithm) for updating the coefficients of an
adaptive filter by updating a portion of the coefficients at each time
rather than a single coeflicient as in Max-NLMS; the author compares
these algorithms with the conventional LMS adaptive filter algorithm.

In the periodic LMS algorithm, one coefficient is updated at each
iteration and the error is calculated once in every L iterations, so the
complexity is reduced, but it converges slower than LMS as is confirmed
in the paper by simulation study.

The author assumes a standard FIR configuration for the adaptive
filter, in which the regressor signal is the input signal.

The update equations for the periodic algorithm are given by:

wi(k) + pe(Dz(l—i+1),

wi(k+1) = if (k+ 9)modN = 0 and [=N | k/N |
w;(k), otherwise
(2.2.7)
e(k) = d(k) — w7 (k)x(k) (2.2.8)

where i = 1,....,L, and L is the length of the adaptive filter, w(k) =
[wy (k), wo(k)..ooonenn... wy (k)] is the coefficient vector of the adaptive
filter at time k, x(k) = [z(k), T(k=1).ccc0covne.n. r(k—L+1)]7 is the input
signal vector, d(k) is the desired response signal, e(k) is the error signal
and |.] denotes the truncation operation. For N = 1 this algorithm
reduces to the LMS algorithm and when N = L it reduces to the partial

update LMS adaptive algorithm.
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For N > 1, the number of multiplies and coefficient memory accesses
required for this algorithm are fewer than those required for the LMS
algorithm [28].

Within the paper, 28], the evolution equation for the mean of the

outer product of the coefficient error vector is given by:

E{v(k+NV'(k+N)} = E{v(k)vT(k)} — u(RE{v(k)v"(k)} + E{v(k)v" (k)}R)

+4%02R + p?(2RE{v(k)vT(k)}R + Rtr[RE{v(k)vT(k)}])
(2.2.9)

The author determines a simple expression for the steady-state value
of the excess mean-square-error (MSE) by neglecting the last term,
because it is much smaller than the other terms in the equation for
small values of u. The resulting expression is

lim E{vT(k)x(k)?} = “nlT R

lim : (2.2.10)

which shows the dependence on adaptation gain, noise variance and
tap input power.

The author also derives bounds on u to ensure convergence of the
algorithm in the mean square.

9
2 2.2.11
0<n<3iR (2.2.11)

And for independent identically distributed (i.i.d.) input signals, the

evolution equation for the trace of the coefficient error correlation ma-
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trix is given by

trE{v(k+N)VT (k+N)} = (1=2pc+p*(L-1)ai4n)trE{v(k)vT (k)}+p’c202L
(2.2.12)
where E{z?(k)} = 02 and E{z%(k)} = n. The steady-state excess
MSE for i.i.d. input signals is

lim E{(v7 (k)x(k))?} = 1on0: L

= 2.2.1
o T a(l-Da2sy 23

which also shows the dependence on the input variance, tap filter
length and noise variance. Moreover, in [28], the sequential LMS algo-
rithm’s performance was analysed. In the sequential LMS algorithm,
one coefficient is updated at each time; the error is calculated for every
iteration, and it is shown that its complexity is higher than that of the
periodic LMS algorithm, but less than for LMS.

The update equations for the sequential LMS algorithm are given
by:

wi(k) + pe(k)z(k - i+ 1),
wi(k+1) = if (k—i+1) mod N=0 (2.2.14)

w;(k), otherwise

where i = 1,...., L, and L is the length of the adaptive filter.

For N =1, this algorithm reduces to the LMS algorithm.

Within the paper, the author uses two types of analyses:

1- Analysis using the independence assumption as in the periodic
LMS algorithm, the author expresses the algorithm again using the

definition of v(k) = w(k) — Wy, the elements of which are given by
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vi(k) — px(k — i + 1)xT (k) v(k) + pn(k)z(k —i + 1),
uk+1)= if (k—i+1)mod N=0

vi(k), otherwise
(2.2.15)

where i = 1,...., L, and L is the length of the adaptive filter.
Considering N iterations of this algorithm, the coefficient error vec-

tor update is

v(k +1) = A(k)v(k) + b(k) (2.2.16)

where the elements of the N x N matrix A(k) and vector b(k) depend
only on the elements of the input and noise signals [28].
Within the paper, the vector update equation for the mean coeffi-

cient error vector is given by

E{v(k+ N)} = E{A(k)}E{v(k)} + E{b(k)} (2.2.17)

as well as the coeficient error correlation matrix, given by

E{v(k+N)VT(k+N)} = E{A(k)E{v(k)vT(k)}AT(k)}+E{b(k)bT(k)}
(2.2.18)
for input signals which define the signal elements of b(k), that are

generated from a model of the form

z(k) = aTu(k) (2.2.19)
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where a = [ao, ay, ........ ,a M_I]T defines the correlation statistics of the
input signal and u(k) = [u(k),u(k = 1),......... yu(k — M + 1)]T | where
u(k) is a zero-mean unity variance i.i.d. signal.

2- Approximate analysis for small step sizes, in which the author

rewrites the update equations for the sequential algorithm (2.2.14) as

( wi(k) + pemix(k — i+ 1) + O(u?),
if(k—i+1)mod N=0,l =N |k/N
wi(k+1) = { ( ) Lk/N]
m =k mod N
\ w;(k), otherwise
(2.2.20)
where i =1,...., L, and
ej(k) = d(k + j) — wT(k)x(k + 7) (2.2.21)

where O(u?) represents terms that are of order u? and higher. For small
step sizes these terms can be ignored. The author derives the update

equation by collecting N updates for the equation given by
w(k + N) = w(k) + ux(k) @ e(k) (2.2.22)

where e(k) = [eg(k),e1(k), e yew/ny-1(k)]T is an (L/N)- dimen-
sional vector of errors, where the author assumed throughout the paper
that L/N is an integer, X(k) = [z(k),z(k — N), ccon.... ,z(k — L+ N)]T
is an N-dimensional decimated version of the regressor vector, and ®

denotes the Kronecker product.
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Within the paper, the update for the coefficient error vector is given

by:

v(k+ N) = (I — ux(k) ® XT(k))v(k) + ux(k) ® n(k)  (2.2.23)

where X (k) is assumed to be L x L/N matrix and is defined as X (k) =
[(x(k)x(k+1)...x(k+(L/N)-1)], n(k) = [n(k), ........ ,n(k+(L/N)-1]T,
and I, is the L x L identity matrix.

The author takes expectations on both sides of the above equation

to yield.

E{v(k+ N)} = (I, — pE{x(k) ® zT(k)})E{v(k)} (2.2.24)

and

E{x(k)® XT(k)} =R (2.2.25)

where R is again the input signal autocorrelation matrix. So (2.2.24)

becomes:

E{v(k+ N)} = (I — pR)E{v(k)} (2.2.26)

This equation is identical to that for the periodic LMS algorithm.
Then the author examines the mean-square behaviour of the se-

quential LMS algorithm for small step sizes. He assumes that the in-

put signal is zero mean and either Gaussian-distributed or i.i.d. dis-

tributed with a known probability density. The update equation for
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E{v(k)vT(k)} is given by

E{v(k+ NV (k+N)} = E{v(k)vT(k)} — p(RE{v(k)VT (k)} + E{v(k)vT (k)}R)
+/£ O'nR® I(L/N)

+12(2RE{v(k)VT(k)}R + R® F(E{v(k)VT(k)})
(2.2.27)

where R is an N x N-dimensional matrix whose i, jth value is defined
by
[Rlej = (i = 5)N), (2:2.28)

where r(m) = E{z(k)z(k—m)}, and F (.) is an (L/N)x(L/N) matrix-
valued function whose i, jth element is

[FE{v(k)V" (k)]s = tr{Rij E{v(k)v" (k)}] (2.2.29)

with R(m) = E{x(k)xT(k + m)}.
Then the author derives the steady-state excess MSE which is ap-

proximately given by

leI&E{(vT( )x(k))?} = tr[RE{v(k)vT (k)}] (2.2.30)
_ polLtrR

= #ar (2.2.31)

= ““*Z”R (2.2.32)

The excess MSE in steady-state is approximately the same as that for
the LMS adaptive filter with corresponding step size.

The author derives bounds on p to ensure convergence of the algo-
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rithm in the mean-square sense from the update equation (2.2.27)

O<u< (2.2.33)

2
3tr(R]
From (28], the author shows that the overall behavior of the sequential
LMS algorithm is approximately the same as that of the periodic LMS
algorithm for stationary inputs. It is also shown that the convergence
rates of both algorithms are approximately I/Nth that of the LMS
algorithm.

In [29], the authors explore the algorithm M-Max NLMS that up-
dates a portion of the coefficients at each time. These coefficients are
the ones with “larger magnitude gradient components on the error sur-
face” (29

In the paper, the authors show that for LMS-type algorithms, when
updating all coefficients of the adaptive filter, some coefficients have a
small contribution to the error, whereas other coeflicients have larger
error contributions. So even if the less important coefficients are not
updated at a given iteration, the algorithm performance will be hardly
affected.

In the proposed algorithm, L denotes the total number of coefficients
at each iteration, M out of L which are updated. Those M coefficients
are the ones associated with the M largest magnitude gradient compo-
nents on the error surface.

The M-Max NLMS algorithm update equation can be written as
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follows:
.
w;(k) + ;Tr,sme(k)x(k —i+1)
if i corresponds to one of the first
M maxima of |[z(k—-i+1)|,i=1,---,L
wi(k+1) = ¢ i )

w;(k) otherwise

(2.2.34)

In practice, a small constant may be added to the denominator
in the above equation to avoid gradient amplification which the input
approaches zero [30].

The authors compare the proposed algorithm with the full-update
NLMS algorithm for the same pu, and show that when M = L, the con-
vergence speed of the proposed algorithm approaches that of the full
update NLMS algorithm. In this paper, the authors also compare the
proposed algorithm with the sequential NLMS algorithm [28] in terms
of complexity and convergence speed, the proposed algorithm has the
same complexity overhead as the sequential NLMS, but it converges
closest to the performance of NLMS. Within the paper, the algorithm
is analyzed in terms of its mean square performance; to perform the
analysis, the authors consider the case for M = 1 to show that the al-
gorithm is guaranteed to converge to the same steady-state error as the
full update NLMS for the extreme case given i.i.d. stationary zero-mean
input. In [29], the authors showed that the algorithm is guaranteed to
converge for the worse case of M =1 for i.i.d. stationary zero-mean,
where p is chosen in the stability region and that it will converge to the

same steady-state error as the full update NLMS. The authors assumed
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that x(k) is a stationary zero-mean i.i.d. sequence and they defined the
coefficients error vector v(k) = w(k) — Wop, for M =1 and L > 2, the

algorithm update equation (2.2.34) becomes:

r -
(1 —x (k)x(k)‘rz(k —i+ 1)) vi(k)
— st Lorer g £k = i+ Dk = 5+ D), (k)

+ z(k—i+1)e*(k
vik+1) = {  TORXE) (k —i+1)e*(k)
if ¢ corresponds to the maximum of |z(k —i+1)|,i=1,---,L
vi(k) otherwise
\
(2.2.35)

where d(k) = xT (k)Wopt + €*(k), Wopt is the optimal weight vector,
and e*(k) is a zero mean independent disturbance signal.

The authors assume that for high order adaptive filters x7(k)x(k) ~
Lo? and from the mean error weight vector, the autocorrelation matrix
governing the evolution of the mean error weight vector is R = EL-?LI ,
where I is the L x L identity matrix. Convergence of the proposed
algorithm (M = 1) in the mean is therefore verified with a proper
choice of the step size [29)].

To derive bounds on u to ensure full convergence of the algorithm,
the authors consider the mean square error analysis of the proposed
algorithm with the assumption they previously made on the input sig-
nal. Let maz be the index of the coefficient to be updated at time k,
(the term maz ia again being used as the index of the element of the
input vector x(k) which maximizes || x(k)||co) and wyqz(k) be the co-
efficient to be updated. The difference equation of the mean square of

the maz*" coefficient for a zero mean i.i.d. input signal, can be shown
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from (2.2.35) to be

L
E{vos (k+1)} = (1-2002+7n) E{vl,, (k)} 47208 Y E{u}(k)}H+7E°02emin

j=1j#maz

(2.2.36)

where n = E{z*(k)} , €min = E{e*?(k)} ,and i = Z%Z’ and for a zero
mean independent Gaussian input signal, n = 3¢2. The authors assume
that the sequence of updates of the coefficients is a Markov process
with a uniform probability of selecting any coefficient for updating.
Therefore, they have E{v2,,(k)} = E{vl(k)} = c(k), ¥j = 1,2,---, L.
The probability of updating any coefficient at each sample time is %,

therefore
c(k+1) = %((L — DE@3(k + 1)} + E{uRu(k+1)})j # max (2.2.37)

For Vj # max , E{v}(k + 1)} = E{v}(k)} = c(k) , by substituting
(2.2.36) in (2.2.37) results in

_ iy B 4 B o,
ck+1)={1- 2—L-0'I + —L—[T} + (L = 1)og] } c(k) + 7 OzEmin (2.2.38)

To ensure the convergence of the algorithm in the mean square, the

step size u should be bounded by

2Lo?
O<yu<< ——— 2.2.39
S ¥ T -1t ( )

By using (2.2.38), the authors also derive the steady-state excess MSE

€ez(00) of the algorithm which is given by:
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P’{min

(n+ (L — 1)ad) (2.2.40)

§ex,m=1(00) = Py

Within the paper, the authors show that the case of M = 1 and full
update NLMS provide similar misadjustment when applied under the
same condition and an equivalent step size is used. For related work
on this topic see also [31], [32] and [33].

In [34], the authors explore algorithm selB-NLMS (selective block
NLMS), which tries to combine the advantages of the selC-NLMS al-
gorithm and seqB-NLMS. The idea is to update entire blocks of coeffi-
cients instead of selecting single filter coefficients for updating, thereby
reducing the costs in terms of memory without losing the convergence
speed.

In the proposed algorithm, L corresponds to the total length of the
filter vector and M the number of filter taps to be updated at each
iteration. The author assumes for simplicity that L / M is an integer.

The author partitions the coefficient vector w(k) and the excitation

vector x(k) of the adaptive filter into B, subdivisions each of length B;:

w(k) = [wo(k), wi(k), - ,wr—r (k)] (2.2.41)
= [wg'(k),wf(k), T ,WEC_I(]C)]T
x(k) = [z(k),z(k = 1), - ,z(k— L+ 1)T (2.2.42)

[
= [xg(k),xf(k), T vxgc—l(k)]T
with

wi(k) = [wig, (), -+ s wirnys-1 (k)]
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and

x;(k) = [z(k —iB), - ,z(k— (i+1)B + 1)]T

The algorithm divides the excitation vector and the coefficient vector
into B. blocks of length B, = L/B, (as is shown in equations (2.2.41)
and (2.2.42)). Instead of looking for the M largest magnitude values,
it selects M, = M /B, blocks with the largest excitation power (energy)

xT(k)x;(k) and adapts these blocks. The algorithm update equation is

given by:
(
wilk) + uTR
if 7 belongs to the first M, maxima of
xF(k)x;(k),i € (0,B,=1), i=1,...,L
1) — (b)x(k),i € (0,B. ~ 1)

w;(k) otherwise

(2.2.43)
where e(k) = y(k) — wT(k)x(k).

The author shows that by combining the two algorithms, the seqB-
NLMS algorithm and the selC-NLMS algorithm, the new algorithm
retains the convergence speed advantage of the selC-NLMS algorithm
whilst exploiting the computational advantages of the seqB-NLMS.

In [2], the authors develop adaptive filtering algorithms with re-
duced computational complexity, the algorithms are based on dividing
the adaptive coefficients of the filter into small blocks and updating a
number of these blocks rather than the entire filter at every iteration
which is similar to the previous paper [29], and is achieved by using a

selection criterion, which ranks the regressor vector blocks according to
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their squared Euclidean norms (their energy) and selects those blocks
to be updated with the largest norms.
The authors give an overview of the NLMS algorithm, and then in-
troduce the selective partial update NLMS algorithm for a single block.
In selective partial update NLMS for a single block, the authors
partition the regressor vector x(k) and the coefficient vector w(k) into

B¢ blocks of length B; = L/B,. where B, is an integer

X(k) = [xf(k)vxg(k% e axgc(k)]T

W(k) = [Wf(k), Wg(k), Ty Wgc(k)]T

and the coeflicient vector blocks wy(k), wa(k),--- ,wg, (k) are the
candidate subsets of w(k) that can be updated at discrete time instant
k.

In the paper, the authors also write the constrained minimization
problem for a single block update as:

. . 2
m m w; - W; 2.2.44
min, min ik + 1) = wi(k) [} (2.2.44)

subject to w7 (k 4+ 1)x(k) = d(k), i.e. the a posterior error is con-
strained to be zero. The solution is to find the block for which the
coefficient update is minimal in the squared Euclidean norm ||.|| sense
while satisfying the constraint w7 (k + 1)x(k) should be equal to the
desired response d(k).

The authors consider the minimization problem for a given block
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when i is fixed, therefore (2.2.44) reduces to

. 2
Join |wi(k + 1) — wy(k)l|5 (2.2.45)

subject to
wTl(k + 1)x(k) = d(k) (2.2.46)

The authors solve this in a similar way to how NLMS can be derived
[2] by using the method of Lagrange multipliers. The cost function to

be minimized is:

Ji(k) = lwi(k + 1) = wi(k)|5 + Md(k) = W (k + 1)x(k))

where A is a scalar Lagrange multiplier. By setting 8J;(k)/0w,(k +
1)=0,i=1,.., B. and 8J;(k)/0X =0, it can be shown that

wi(k+ 1) —wi(k) — %&(k) =0 (2.2.47)
d(k) — (Wl (k + 1)x;(k) + W] (k + 1)%;(k)) =0 (2.2.48)

where (W7 (k4 1)x;(k) + Wl (k+1)%;(k)) = wT (k+1)x(k) and %;(k)
is obtained from x(k) by deleting x;(k), and likewise W;(k + 1). Then
the authors derive the equation
A e(k)

S S 2.2.49
2 skl (2249)

by substituting (2.2.47) into (2.2.48), where W;(k + 1) = w;(k) is

used, i.e., only w;(k) is updated.
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The authors then derive the selective partial update algorithm for
a single block by substituting (2.2.49) into (2.2.47) and introducing a
small positive stepsize u, and also by solving the fixed block update

constrained minimization problem, which is given by:

Wl(k + 1) = W,(k) + ”xi(k)ngx,-(k)e(k), (2250)

i = arg max ||x;(k)|l;
1<j<Be

The authors then consider updating multiple blocks; they suppose
that they wish to update B blocks out of B, at every iteration. And
let Ig = {41,142, - ,ip} denote a B-subset, i.e., one having cardinality
B £ |Ip|, of theset S = {1,2,---, B.}, and let S be the collection of all
such B-subsets, i.e., Ig € S. Then the authors consider the following

constrained minimization problem in order to carry out the selection of

bloc i i k+1) = kI
Irgé%w,gl(lkril) lwis(k+1) —wrz (k)3

subject to w7 (k + 1)x(k) = d(k) (2.2.51)
where wy, (k) = [wz(k),wz;(k), e ,WZ;(k)]T~

subject to w7 (k + 1)x(k) = d(k)

where wy, (k) = [wl (k), wL(k),--- ,W;FB(k)]T-

For B = 1, (2.2.51) reduces to (2.2.45). In the paper, the authors

solve (2.2.51) by minimizing the cost function when Ip was given and

fixed, i.e.
Tig(k) = 5 1wy (k1) = wrg (R + Md(K) = w7 (k + Dx(k)

where ) is a Lagrange multiplier. Then the authors derive the



Section 2.2.  Overview 27

minimization of J;, (k) with respect to wy,(k + 1) and A by:

W[B(k + 1) = W]B(k) + ” ( )”2)([3( ) (k) (2252)

where Xip (k) = [X;I;(k)v xlqg(k)Y T 1x1‘7;;(k)]T'
The authors then obtain the NLMS algorithm for the update of B
blocks specified by /g after the introduction of a small positive stepsize

u (relaxation parameter)

Wik 1) = wiy () + (k)nzxza( Je(k) (2.2.53)

The block selection problem can be written to determine which
blocks to update, B coefficient blocks with the minimum squared-

Euclidean-norm update need to be found.

I = arg min [w, (k +1) = wo, (k)3

2
x g (k)e(k)
= arg min
%25 ®;

min (2.2.54)

2
2
= arg max Ixs5 (KI5

2
= arg fg%}é ZjeJB ”xj(k)llz

Then the authors found that the optimum Ip to satisfy (2.2.54)
is obtained by ranking the regressor vector blocks according to their
squared Euclidean norms and choosing the B largest blocks and that
is the identical strategy suggested in [34].

The authors derive the selective partial-update NLMS (SPU-NLMS)
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algorithm as:

Wig (k + 1) = Wiy (k) + xla(k)e(k)

”x’B(k)llz
Ip={i: llxi(k)llg is one of the B largest among ||x1(k)||§ s oo 1Xar (R)|I3 }
(2.2.55)

The paper shows that for the SPU-NLMS algorithm, only one third
of the filter coefficients are updated per iteration as in periodic NLMS
algorithm.

The authors compare the proposed algorithm with the NLMS and
the Periodic-NLMS algorithms in term of convergence performance,
they show that when the block has the smallest possible length B; = 1,
SPU-NLMS appears to converge almost as fast as the NLMS algo-
rithm. Also the authors compare the proposed algorithm with NLMS
in term of computational complexity. Table (2.1) shows the computa-
tional complexity comparison of the NLMS and SPU-NLMS algorithms,
they show that for B, = L and B = 1, the SPU-NLMS algorithm in
(2.2.55) reduces to

wilk + 1) = wi(k) + pzids (2.2.56)

i = arg max |z(k — j)|
0<j<L-1

which is the max-NLMS algorithm [27]. For B, = L and B = L, the
SPU-NLMS algorithm becomes identical to the NLMS algorithm [2].

In the paper, the authors analyse the stability of the algorithm,
they start with the persistence of excitation condition [2], they assume
B=1, for which (2.2.55) simplifies to (2.2.50). They rewrite equation
(2.2.50) as:
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NLMS SPU-NLMS
B. <L B.=L
Multiplications 2L+2 L+ BB +2 | L+B+2
Divisions 1 1 1
Comparisons - O(B.) + | [2logy L) +2
B.log, B

Table 2.1. Computational complexity of NLMS and SPU-NLMS (2]

w(k + 1) = w(k) + p(k) Ax(k)e(k),

(2.2.57)
i = arg max ||x;(k)||3
1<j<B.
where
uk) = —E (2.2.58)
”xi(k)nz

and A; is an L x L diagonal matrix defined by

A,=dzag(0, ,0,1,"‘ ,1,0,"' 70)
A

ithblock
so, by using the diagonal matrix above only the #* block will be
updated.
The desired filter response d(k) is given by:

d(k) = wlx(k) + n(k)

where w,, is the optimal coefficient vector and n(k) accounts for noise,

let v(k) denote the coefficient error vector
v(k) = w(k) — Wopt

and the recursion for the coefficient error vector is
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v(k + 1) = v(k) — p(k)Ax(k)(vT (k)x(k) + n(k))
(2.2.59)

. 2
i = arg max [|x; (k)|
1<5< Be

By taking the statistical expectation of both sides of (2.2.59) and
using the independence assumptions, and assuming that u is a constant,

the authors obtain
E{v(k+1)} = (I — pR)E{v(k)} (2.2.60)

For a wide-sense stationary z(k), the autocorrelation matrix R is

defined by

Ax(k)xT (k) l \
R= 3 = max lIx.; 9.
E{ T T le](k)llg} (2.2.61)

The authors conclude that the necessary condition for the proposed
algorithm to converge is that the eigenvalues of R should be positive
(when the eigenvalues are not positive convergence to a global minimum
can not be guaranteed) and this is referred to as the persistence of
excitation condition.

In the second analysis, the authors use the mean-squared error
(MSE) analysis. In this analysis the authors write the coefficient error

update equation as:
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vilk+1) = (IB, - mx,-(k)xf(k)) vi(k) — H;;f;—)"gx,-(k)vT(k)(I — A)x(k)

~ et Xi(k)n(k)

. 2
i = argmax ||x;(k)||;
1<j<B.

where v;(k) is the 2" block of v(k). Under the independence assump-
tions, the authors derive the MSE recursion for the update coefficient

block as:

Ry (k+1) = Ry, (k) = g7 (Ru, (k) R, + R Ruy(K))
+ 245 R, R, (k) R, + gl R t7( R R, (K))
i Ry tr(Ro(1 — ARy (K)(I — Ay))
+§;g‘z—go,21Rx,

(2.2.62)

i = arg max ||x, (k) |3
1<<Be

where

Ry, (k) = E{vi(k)v{ (k)

i = arg max ||x; (k)|I3 }
1< B

Ry, = BE{xi(k)x; (k)

§ = axg masx o, (R)12)
1<j<B¢

In (2.2.62), the authors have approximated ||x;(k)||> as Bio2.
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Then the authors consider the trace of (2.2.62) since the input signal

is zero-mean i.i.d. Gaussian, which is given by:

trRy (k+1) = (1= % + g (20 + Lot) ) trRu, (k) + 1 53y,

i = arg max g, (k)1

(2.2.63)
where n = E{z*(k)}. Then the authors remove the conditioning on i
which is implicit in (2.2.63), by using the block selection probabilities
pi = Pr{i = argmax ”xJ(k)Ilg} So for a given coefficient block 3,
(2.2.63) will ap;ils;svf;th probability p;. The probability of block i not
being updated is 1 — p; and the MSE recursion for block i will be
trRy,(k+1) = trR,, (k) with probability 1 — p;. The authors write the

MSE recursion as:

trRy (k+1)=p; ((1 - %;- + 73411‘2—3(277 + La:) trR,, (k) + /‘2T3§Z) + (1 = p;)trRy, (k)

1<i< B,

For zero-mean i.i.d., Gaussian input signals, the authors obtain p; =

1/B, for all 4, thereby yielding

trRy,(k+ 1) = (1 — By (2 + La;‘)) trRy,(K) + 1 2

1<i< B,
(2.2.64)

To ensure the stability of the recursion (2.2.64), the step size u should
be bounded by
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2310: _ 23[

= 2.2.
M+ Lot 6+L (22.69)

O<pu<

where 1 = 30! for Gaussian signals. Then the authors derive the
nonconservative bound for large L = B;B,., where (2.2.65) can be ap-
proximated by:

< g (2.2.66)

Then the authors extend (2.2.66) to the case of multiple blocks (B
> 1) as:
2B

< —
"" Bc

When B, = B, the stepsize is bounded by p < 2, this is consistent
with the NLMS algorithm.

In [35], the authors explore the set-membership partial-update nor-
malized least-mean square (SM-PU-NLMS) algorithm; they combine
the data-selective updating from set-membership filtering with the re-
duced computational complexity from partial updating.

The authors start with reviewing the partial update-NLMS (PU-
NLMS) algorithm and also they provide an analysis in the mean-squared
sense for the convergence of the PU-NLMS algorithm as in [2].

In the paper, in set-membership filtering; the filter w is designed to
achieve a specified bound on the magnitude of the output error. Let
H(k) denote the set containing all vectors w for which the associated
output error at time instant k£ is upper bounded in magnitude by 7,
ie.,

H(k) = {w € R : |d(k) - wTx(k)| < 7}
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where H(k) is referred to as the constraint set, and its boundaries are
hyperplanes. Within the paper, the authors define the exact feasibility
set (k) to be the intersection of the constraint sets over the time

instants : = 1, ..., k ie.,

The authors describe the idea of set-membership adaptive recursion
techniques (SMART) as a method to adapt the coefficient vector such
that it will always remain within the feasible set.

Then the authors merge the ideas of partial updating and set-
membership filtering to obtain the new algorithm (set-membership par-
tial update NLMS) algorithm. The goal is to combine the advantages of
set-membership filtering (SMF) and partial updating in order to obtain
an algorithm with sparse updating and low computational complexity
per update. The fundamental difference between SMF and partial up-
date adaptive filtering is that for SMF if the current adaptive filter
coefficients lie within a prescribed set no update will be undertaken,
whereas with partial update adaptive filtering an update is made at
every iteration but only a subset of coefficients is updated.

In the paper, the authors present the algorithm derivation; their
approach is to find a coefficient vector that minimizes the Euclidean
distance ||w(k + 1) — w(k)||* subject to the constraint w(k+1) € H(k)
with the additional constraint of updating only L coefficients. This
means if w(k) € H(k), the minimum distance is zero and no update is
required. However, when w(k) ¢ H(k), the new update is obtained as

the solution to the optimization problem given by:
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w(k + 1) = argmin |w — w(k)||*.

subject to:
d(k) — x"(k)w = g(k)
AlL(k) (W - W(k)) =0

where g(k) is a parameter that determines a point within the con-

straint set H(k) , or it satisfies, g(k) < ~, and
AIL(I:) =1- AIL(k)

where Ay, ., is a complementary matrix which contains ones and

zeros, the number of ones is dependent on L that gives:

Ao w(k+1) = Ay, w(k)

which means only L coefficients are updated.
The authors suggest that g(k) is chosen such that the update vector

belongs to the closest bounding hyperplane in H(k), i.e.

g(k) = ve(k)/ le(k)]

The authors derive the update equation in a similar way as in [2]:

e(k)A 1, x(k)
[nx

The role of the matrix Ay, ,, is identical to the role of the diagonal

w(k + 1) = w(k) + p(k)

matrix which was introduced in the previous paper [2], the update
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occurs where only the ones in the matrix Apy, exist.

The stepsize p(k) is data dependent and given by:

4

1 —~v/le(k)|,when w(k)¢ H(k),ie.,ifle(k)| >~

0, otherwise

(2.2.67)

The authors noted that u(k) starts with high values and reduces

as the error reduces, reaching zero as the maximum allowable error is

approached. The authors highlight that the index set I ) specifying

the coefficients to be updated is chosen as in [2], i.e., the L coefficients
in the input vector x(k) having the largest norm.

Within the paper, the authors studied the convergence issues; they

assume that the coefficient error vector at instant k is defined as:

v(k) = w(k) — Wopt

and the desired signal is modelled as:

d(k) = xT (k) Wop

and the error signal is expressed as:

e(k) = =xT(k)v(k)

so that the following expression gives the update equation of the
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norm of the coeflicient error vector:

G+ DI = IV ~ b (8) (k) Ary xR ()
+(kYx(R)XT (k) Ay ey — 2 (R)x(k)xT (k) v(K)

= [Iv(k)|* - mvr(k) x (2u(k) Az, — w2 (k)D)x(k)xT (k)v(k)

A reduction in the coefficient error norm will occur whenever the term
vI(k)2p(k)Ar ) — w2 (k)D)x(k)xT (k)v (k)
is positive. The authors suggest that although the matrix
(2u(k) AL k) — B2 (K)D)x(k)x" (k)

has non-negative eigenvalues, there exist time instants when the coeffi-
cient error norm may increase as a result of the partial update strategy,
as shown in the paper, whenever a reduction in the coefficient error

norm occurs, the u(k) that causes the largest reduction is given by:

(k) = || Ar,wx®)]| / lIx(k)|?

and achieves the largest reduction in coefficient error norm whenever
a reduction occurs.

In the paper, the authors guarantee convergence with the heuristic
argument that the update, even if only for a fraction of the coefficients,
will point towards the optimal solution most of the time. Also the au-
thors guarantee convergence in the mean-square sense for the case of

additive measurement noise, they state that the SM-PU-NLMS algo-
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rithm converges in the mean-squared sense for zero-mean i.i.d. input

signals in the presence of zero-mean additive uncorrelated noise when

(IArax®I®) /7 (Ix(R)I?) > p(k)

and continue to assign a probability of update P.(k) = P(le(k)| >
7), to calculate the coefficient error norm for the SM-PU-NLMS algo-

rithm:

A x(k)xT (k)

v n(k)Ar, kx(k)
[| Az, o x (k)|

V(k+1) = (I- Pe(k)”(k) ||A (k)||2
I (k)X

(k)+Pe(k)u(k)

Then the authors derive the excess MSE under the independence as-
sumption and assuming the additive measurement noise to be zero mean

and not correlated with the white input signals by:

F‘(k)Pe(k)vT(k)(x(k)xT(k)AIL(k) + AIL(k)x(k)x(k))v(k)
|Arx(k)|’

E(k+1) = e(k)—asz{

u?(k)Pz(k)vT(k)x(k)xT(k)v(k)} {/ﬂ(k)Pf(k)n?(k)}
2 + E 2
| Az wx (k)| | A eyx(K)||

— pl _ p2 + pa (2.2-68)

Then the authors rewrite p, by invoking the independence assump-
tion and assuming N large such that ||x(k)||* can be considered a rea-

sonable estimate of (N + 1)E[x?(k)] as:
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~ o2E { VI (k) Pe(k)(x(k)XT (k)A 1, (k) +A1, (k)X (K)XT (k))v(k)
K€ (k)7

_ P2 Ar, g x| VT (k)x(k)x(k)v(k)
lIx(R)I?

~ o2E vT(k)Pe(k)E[x(k)xT(k)A,L(k)+A,L(k)x(k)xT(k)]v(k)
~ 0z (N+1)o2

PER)E[|| A1, oy x(®)]| ]V (e)v(k)
- (V+1)%02

(2.2.69)

Then the authors try to evaluate p, by computing the elements of
matrix B = E[x(k)xT(k)Ar ) + Ar,x(k)xT(k)], they assume the
input samples to be i.i.d., then the off diagonals will average to zero.
Since Ay, (x) will select only the L values in the input vector with the
largest norm, the diagonal will be an average over only the L strongest

components. Then the authors choose p; to denote the probability that

h

one of the L largest components contribute to the #" element in the

diagonal. Also they choose {yi}i!i’;‘ to be the elements of the input
vector x(k) sorted in magnitude such that y; < y2 < ... < yn41. Then

the authors calculate the diagonal elements of B for a given L as follows:
L-1

E {x(k)x"(k)Ar, &) + AJL(k)X(k)XT(k)}i,i =2 Z E{piyk—is1}

i=0

= B {lAnwl}

where for i.i.d. signals, p; = 1/(N + 1). Then the authors derive

the evaluation of p,, by substituting p; into (2.2.69) resulting in:
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E {||Anwx®)|'}
(N +1)%02

p2 = Pe(k)(2 - Pe(k)) E(k) < 2£(k)

then the authors conclude that since ps3 is independent of £(k), (2.2.68)
is always stable.
Table (2.2) shows the computational complexities per update in

terms of the number of additions, multiplications, and divisions for the

NLMS, SM-NLMS, PU-NLMS, and SM-PU-NLMS algorithms. The

Algorithm Multiplications| Additions Divisions
NLMS 2N+4 2N+4 1
SM-NLMS 2N+4 2N+5 2
PU-NLMS N+L+3 N+L+3 1
SM-PU- N+L+3 N+L+4 2

NLMS

Table 2.2. Computational complexity of NLMS, SM-NLMS, PU-
NLMS, and SM-PU-NLMS algorithms

authors suggest that although the PU-NLMS and SM-PU-NLMS al-
gorithms have a similar complexity per update, the gain of applying
the SM-PU-NLMS algorithm comes through the reduced number of re-
quired updates. For time instants where no updates are required, the
complexity of the SM-PU-NLMS algorithm is due to filtering.

The authors also include in the paper simulations for a system iden-
tification application, they show that not only can the set-membership
filtering adaptation algorithms, with partial updating further reduce
the computational complexity when compared with the partial update
NLMS algorithm, but they can also present a faster convergence for the
same level of MSE [35].

In [36], the authors implement a new algorithm called the stochastic

partial update LMS algorithm (SPU-LMS), it is based on choosing
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which of the subset of the filter coefficients to update randomly; by
doing that, the authors show that divergence in nonstationary signals
can be prevented by scheduling coefficient updates at random. The
algorithm involves selection of a subset of size N / P coefficients out
of P possible subsets from a fixed partition of the L coefficients in the
weight vector, the authors assume that the filter length L is a multiple
of P.

The authors describe the new algorithm as similar to sequential PU-
LMS, the only difference is that at a given iteration, k, for sequential
LMS (S-LMS) one of the sets S;,i¢ =1, , P is chosen in a predeter-
mined fashion, whereas for SPU-LMS, one of the sets .S; is sampled at
random from {S;,S,, -+ ,Sp} with probability 1 / P.

The authors derive the update equation as:

(w,(k) + pelk)z;(k) if je€S:

w;(k+1) = < (2.2.70)
wj(k), otherwise

where e(k) = d(k) — wT (k)x(k).

Then the authors write the above equation in a compact form as:

w(k + 1) = w(k) + pe(k)I(k)x(k) (2.2.71)

where I(k) is a random matrix chosen with equal probability from I(7),
i=1,---, P (where I(¢) is obtained by zeroing out the jth row of the
identity matrix I if j ¢ .S;).

The authors analyse the proposed algorithm in terms of uncorre-
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lated input and coefficient vectors, deterministic signals and correlated
input and coefficient vectors.

First, for the uncorrelated input and coefficient vectors, the authors
assume that the desired signal d(k) satisfies the condition where d(k) =
wZ.x(k) + n(k) for the stationary signal analysis of SPU-LMS. They
also assume that x(k) is a Gaussian random vector and that x(k) and
v(k) = w(k)—w,p: are independent, and I(k) and x(k) are independent
of each other. They also assume that R = E {x(k)x”(k)} is block
diagonal such that S°7  1(i)RI(i) = R.

Then the authors obtain the following update equation conditioned

on a choice of S; for convergence in the mean analysis.

E{v(k+1)|S:} = (I — pI(k)R)E {v(k)|S:}

= (I = () R)E {v(K)|S:}

then the authors average over all choices of S;, they obtain the
following equation by making use of the fact that the choice of S; is
independent of v(k) and x(k).

E{v(k+1)} = (1 - %R) E {v(k)} (2.2.72)

The authors derive bounds on 4 to ensure convergence of the algorithm
in the mean
2P

O<pu< —

Amax

For the convergence in the mean square analysis of SPU-LMS, the
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authors obtain the error variance E {e(k)e”(k)} under the indepen-

dence assumptions as:

E{e*(k)} = &min + tr[RE {v(k)VT (k)}]

where &, is the minimum attainable mean square error, and is
given by:
€min = E {d*(k)} —r"R™'r

where R = E {x(k)xT(k)} and r = E {d(k)x(k)}.
Then the authors derive the evolution equation for tr[RE {v(k)v” (k)}]

conditioned on choice of S; as:

RE {v(k+1)vT(k + 1)|S;} = RE{v(k)vT(k)|S;} — 2uRI({)RE {v(k)vT(k)|S;}

+121(1) RI() E {x(k)xT (k) A(k)x(k)xT (k)|S: } + p*Emin RI(1) RI(3)
(2.2.73)

where A(k) = E {v(k)vT(k)}.

Then the authors define u(k) = Qv(k), where @ satisfies QRQT =
A. By applying the definition of u(k) to (2.2.73), the authors obtain
the equation:

2 2 2 2
g(k+1) = (1 - }#A + %A? + %A21 1T) g(k)+%§minA21 (2.2.74)

where g(k) is a vector of diagonal elements of AE {u(k)u”(k)} , and
1is an L x 1 vector of ones.

The authors derive bounds on p to ensure convergence of the algo-
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rithm in the mean square as:

: B
nw)=Y_ <1 (2.2.75)

which are independent of P and identical to that of LMS [36].

Then the authors introduce the summed MSE difference as
T = [ — & (2.2.76)
k=0

which is used as a measure of the convergence rate and M(p) = (€o —
&min)/Emin @s a measure of misadjustment. Then the authors establish

the misadjustment as:

M(p) = 5 f(:()u) (2.2.77)

and they suggest that is the same as that of the standard LMS. Thus,
they conclude that the random update of the subset has no effect on
the final excess mean square error.

Then authors show that the summed MSE difference is
J = Ptr{[2ul — p®A? — 4®A%1 17)7Y(g(0) — g(o0)} (2.2.78)

which is P times the quantity obtained for the standard LMS algo-
rithm [36]. They conclude that for block diagonal R, random updating
slows down convergence by a factor of P without affecting the mis-
adjustment. Furthermore, they verify that a much simpler condition

O<u< (ﬁ), provides a sufficient region for convergence of SPU-
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LMS and the standard LMS algorithm.
Second, for deterministic signals, the authors assume that the input
signal x(k) is bounded, that is sup,(x7(k)x(k)) £ B < oo, and that

the desired signal d(k) follows the model

d(k) = wfptx(k)

they define v(k) = w(k) — wo and e(k) = d(k) — wT(k)x(k), and
they compose a lemma.

Lemma: if u < 2/B, then e?(k) — 0 as k — oo. Where, {.}
indicates statistical expectation over all possible choices of S;, where
each S; is chosen randomly with equal probability from {S;,---,Sp}.

For a positive definite matrix A(k), it is stated that A(k) converges
exponentially fast to zero if there exits a 7,0 < v < 1 and a positive
integer K such that tr{A(k + K)} < (1 — )tr{A(k)} for all k.

And if 4 < 2/B and the signal satisfies the following persistence of
excitation condition, for all k, there exist K < 0o, a; > 0and ay; >0
such that

k+K

al <) xx! < ool (2.2.79)
i=k

then V7 (k)V(k) — 0, and vT(k)v(k) — 0 exponentially fast.

The authors conclude that the conditions (2.2.79) are identical to
the persistence of excitation conditions for standard LMS. Therefore,
the sufficient condition for exponential stability of LMS is enough to
guarantee exponential stability of SPU-LMS.

Third, for correlated input and coefficient vectors, in this section
the authors compare the performance of LMS and SPU-LMS in terms

of stability and misconvergence when the uncorrelated input and coef-
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ficient signal vectors assumption is invalid. Here the authors analyse
the stability and the performance separately. In this section the au-
thors make the dependence of the value of x4 explicit and conclude that
stability and performance of SPU-LMS are similar to that of LMS.
Result 1 (stationary Gaussian process), let z(k) be a stationary
Gaussian random process such that E {z(k)z(k—-1)} = r — 0 as
l — oo and x(k) = [z(k)z(k—1)---z(k—n+1)], then forany p > 1,
there exist constants u* >0, M >0, and a € (0,1) such that for all

pn€(0,u*) and forallt > k>0

L (= sl (G)x()x(G)")

p}r < M(1 - pa)t*

i

if and only if the input correlation matrix E[x(k)xT(k)] = R, is

positive definite.

They continue to conclude that a necessary and sufficient condition
for convergence is that the covariance matrix be positive definite. Al-
though first analysis gives some bounds on the step size u, the authors
say that they are not very reliable as the analysis is valid only for very
small pu.

In the mean squared analysis, the authors assume that

d(k) = xT (k)Wop + n(k)

The effectiveness of the method is explained in Results 2 and 3 be-
low, where the authors compare the steady-state performance of the
two algorithms for two simple scenarios where the independence as-

sumption is violated.



Section 2.2.  Overview 47

Result 2 (i.i.d. Gaussian process): let x(k) = [z(k)x(k—1)........ z(k—
L+1)]7, where L is the length of the vector x(k). {z(k)} is a sequence
of zero mean i.i.d. Gaussian random variables. And o2 denotes the
variance of z(k) and o2 denotes the variance of n(k). Then the authors

assume that n(k) is a white i.i.d. Gaussian noise. For LMS, they have

2 2 2
: T .2 ﬁ Laxan 1

kll{g;E {v(k)VI(k)} =pn [2;11 + — I+Cu2I] (2.2.80)

and for SPU-LMS, they assume L to be a multiple of P and sets S; to

be mutually exclusive, they have

02 (L+1)P—1 202 .
Jlim E {v(k)VT(k)} = 1? il + ——”—4—3—"1 +Cul

then the authors note that the constant C in the final mean square
expression for SPU-LMS is the same as that for LMS. Therefore, for

large L, the authors see that SPU-LMS is marginally worse than LMS

in terms of misadjustment.
Then from (2.2.74), the authors obtain the vector of diagonal ele-
ments of limy_co E {v(k)vT(k)} vq to be
2 2
(L + 1)az0n 1:| 4+ O(/J'4)1

2
On
Vd=[1,2 [5]]1“' 4

where 1 is an L x 1 vector of ones. The authors analyse it and they

obtain

2 Lo2o?
vy = p? [—20—;1 + —%1] +O(u%)1

for LMS and
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o2 L+VP-1 52,2 3
vy = p? é—/’il + ——"—4——21 +O(p?2)1

for SPU-LMS.

There is a third result in [36] related to spatial filtering, however
this lies outside of the scope of this thesis.

The authors also include in the paper simulations which show the
comparison between LMS, SPU-LMS, P-LMS, and S-LMS in terms
of convergence. Therefore these comparisons are not repeated in this
thesis.

Within the paper, the authors show that if the LMS algorithm con-
verges in the mean, then so does the sequential LMS algorithm for the
general case of arbitrary but fixed ordering of the sequence of partial
coeflicient updates. Also they conclude that S-LMS has similar conver-
gence and steady state behaviour as LMS.

For SPU-LMS the conditions on step size for convergence in mean
and mean square were shown to be equivalent to those of LMS.

The authors also verified by theory and by simulation that LMS
and SPU-LMS have similar convergence criterion, and also the SPU-
LMS has the same performance as P-LMS and S-LMS for stationary
signals. The authors also demonstrate that choosing the coefficient to

be updated randomly does not increase the final steady-state error as

compared to the regular LMS algorithm.
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2.3 Chapter Summary

In this chapter, previous work in partial update adaptive filtering tech-
niques was reviewed. The first technique is to update one coefficient at
each iteration this is called the maximum normalized least mean square
(Max-NLMS) algorithm, this adaptive filter only adjusts the coefficient
associated with the data element that has maximum absolute value in
the filter memory at each iteration [27]. The second technique was to
update a portion of the coefficients at each iteration, and those coeffi-
cients were the ones which have the largest magnitude gradient compo-
nents on the error surface. Coefficients which have a small magnitude
gradient component do not need to be updated as they will have little ef-
fect on the overall algorithm performance [28]. The third technique was
to update entire blocks of the coeflicients instead of selecting single fil-
ter coefficients for updating. Another technique was also studied, based
on dividing the adaptive filter coefficients into small blocks and then
updating a number of those blocks rather than the entire filter at every
iteration, this was achieved by using a selection criterion, which ranked
the regressor vector blocks according to their squared Euclidean norms
(their energy) and selecting those blocks with the largest norms as the
ones to be updated. Combining the data-selective updating from set-
membership filtering with the reduced computational complexity from
partial updating was also studied, the work in [35] showed that the
set-membership filtering adaptation algorithms with partial updating
can not only further reduce the computational complexity when com-
pared with the partial update NLMS algorithm, but can also present a
faster convergence for the same level of MSE. A new algorithm called

the stochastic partial update LMS algorithm (SPU-LMS) was studied,
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based on choosing which of the subsets of the filter coefficients to update
randomly. It was shown that for SPU-LMS the conditions on step size
for convergence in the mean and mean square were shown to be equiv-
alent to those of LMS. And also it was shown that LMS and SPU-LMS
converge to similar regions within weight parameter space. Most im-
portantly, the SPU-LMS algorithm overcomes the erratic convergence
behaviour that can be observed in PU-LMS algorithm for which the
update blocks are chosen deterministically [36]. Different techniques
for partial update were shown in this chapter, starting from choosing
one coeflicient per update to selecting a block of coefficients to be up-
dated, those blocks were chosen either in a deterministic or random
manner. The purpose of including these different techniques and all
the analysis was to verify that although it is well known that partial
update techniques can reduce convergence speed, given sufficient time
they can obtain the same accuracy measured by steady-state mean
square error as the ordinary LMS algorithm. Some of those techniques
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