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S U M M A R Y

We use extreme value theory to make statistical inference about the endpoint of 

distributions. First we compare estimators of the endpoint of several distributions, 

including a distribution tha t appears in problems of global optimization. These esti­

mators use a fixed number of order statistics (k ) from a sample of fixed size (n). Two 

of the estimators investigated are the optimal linear estimator and the maximum 

likelihood estimator. We find tha t the optimal linear estimator often outperforms 

the maximum likelihood estimator.

We next investigate how the order statistics change as sample size increases. 

In order to do this, we define record times: the sample size a t which the set of 

k  smallest order statistics changes. We give the distributions of several statistics 

related to order statistics and record times, in particular we show that records occur 

according to a nonhomogeneous Poisson process. We show that order statistics 

can be modeled using a Markov chain, and use this Markov chain to investigate 

estimators of the endpoint of a distribution. Two additional estimators axe derived 

and investigated using the Markov chain model.

Finally, we consider a meteorological application of extreme value theory. In 

particular, we estimate the maximum and minimum sea level at several ports in the 

Netherlands. This is done using a combination of record theory, singular spectrum 

decomposition and known estimators of the endpoint of a distribution.
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C hapter 1

Introduction

1.1 Sum m ary o f Thesis

1.1.1 U sin g  O rder S ta tistics  to  E stim ate E ndpoint

One of the main topics of the thesis is the estimation of the endpoint of a cumulative 

distribution function (c.d.f.), F (x), using the k smallest order statistics of a sample 

drawn from F(x).  Here k is some positive integer, much smaller than the sample 

size. The lower endpoint, denoted m, is defined as m  = inf {a : F(a) > 0}. We 

consider estimators of m  (denoted m) that have been derived using extreme value 

theory. Throughout the majority of this thesis we consider the problem of estimating 

the lower endpoint of a distribution, however the problem of estimation of the upper 

endpoint (A/) is an almost identical problem.

A full literature review will not be conducted here as [37] reviews extensively the 

subject of global random search, and in particular the estimation of the endpoint of 

a distribution using order statistics.

The problem of the estimation of the minimum or maximum of a function can be 

reduced (by pure random search) to the problem of the estimation of the endpoint 

of a c.d.f.. Being able to estim ate the minimum or maximum of a function is of great
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importance in many fields. For example, engineers building a structure may need to 

estimate the strongest wind that the structure will have to endure; manufacturers 

of the steel bars tha t make such a structure may need to estimate, from a sample of 

tested bars, the minimum force tha t can break these bars. Another major application 

is in meteorology, in particular the estimation of the maximum sea level that could 

occur at a particular location. This application is of vital importance when designing 

sea defences. A wealth of other applications can be found in most books on the 

subject; for example, [28], [13] and [2].

In applications very little may be known about the distribution whose endpoint is 

to be estimated, even in these cases the theory discussed in this thesis can be applied. 

We make assumptions on F(x)  that are easily met by most common distributions. 

In particular the assumptions are met when F(x)  is the distribution arising from 

pure random search (under some nonrestrictive conditions). We define pure random 

search (PRS) and show how the distribution F(x)  arises in PRS, shortly.

The assumptions on F(x)  are, that F (x) can be approximated close to its end­

point by

F(x) = co(x — m)°  + o((t — m )a), x [ m .  (I l l)

Here Co is a function of v = \ / ( x  — m)  that varies slowly at infinity as v —> oo. 

In particular Co can be any positive constant. The value of m  is the endpoint that 

we wish to estimate, we must have m  > —oo. Another important parameter is 

the tail index a . We must have 0 < a  < oo. In the majority of estimators that 

we consider throughout this thesis the tail index, a , will be assumed to be known. 

These estimates are defined in Sections 1.3 and 2 .1 .

All of the estimators of m  in this thesis are based on taking a random sample 

of size n from the distribution F(x).  This sample is denoted Yn = {y\ , . . . ,  yn}. If 

we sort this sample into ascending order and relabel, we obtain the order statistics 

Vi,n, ■ ■ • > Vn,n, where y \ < 2/2,n < ? • • • <  2/n,n- Clearly we could estimate m  using 

the minimum order statistic, y\<n. This statistic converges monotonically to m  as
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a = 0.5

a= 1

a = 2

a=3

o o.s

Figure 1.1: This figure shows F(x)  = cq( x  — m)Q where Cq = 1, m  = 0 and a  =  0.5, 

1, 2 and 3 (as labeled).

n —* oo. However, it is a poor estimate, it has large bias and the convergence is 

extremely slow. Indeed, consider the following situation: Draw one random variable 

from F(x)  and labeled it 1/1,1 - Then draw random variables, yiy i = 2 ,3, . . . ,  one at 

a time from F(x).  The expected value of n at which yn < 1/1,1 occurs is infinite.

In order to reduce bias (and mean square error) and improve convergence, we 

derive estimators tha t use the k  smallest order statistics from the sample of size 

n. We do not use the entire sample for two main reasons. Firstly, the higher order 

statistics contain very little information about m. Secondly, we can only use the limit 

theorem for extreme order statistics if k  is such that k / n  —> 0 as n —> 0 0 . Discussions 

on the limiting behavior of the smallest k order statistics (extreme order statistics) 

can be found in Section 1.2. Theoretically the optimal choice of k is k —> 0 0 . In 

practice however, n will never be large enough to allow for very large k. [37] shows 

that small values of k  (say k = 5) are almost as efficient as values of k twice or three 

times as large. We now describe a very important application of the estimates that 

we consider in Chapter 2: pure random search.
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Applications to PR S

Pure random search is part of the wider class of optimization techniques, global 

random search (GRS). [35] and [37] are excellent reviews of GRS, they give an 

overview of a variety of algorithms and are a rich source of references for this subject. 

They point out that global random search is very popular with both practitioners 

and theoreticians, saying tha t this popularity is due to the following advantages. 

Global random search algorithms are often simple for practitioners to implement, as 

they are easily written as subroutines. Convergence can be guaranteed. Algorithms 

are successful under a wide variety of situations: when the objective function or 

feasible region is irregular, in the situation of a ‘black box’ objective function (where 

deterministic approaches almost certainly fail), when the dimension of the objective 

function is moderately high, or if the objective function cannot be evaluated without 

noise. For theoreticians global random search can be an appealing topic. Indeed, 

existing techniques often have simple structures that have provided researchers with 

interesting work. These existing techniques can be easily and intuitively extended, 

giving an abundance of theory to be investigated. The advantages listed above are 

in particular (and on some points, especially) true of PRS. We now formulate the 

PRS problem.

Let A be a feasible region over which an objective function /  : A —> R is defined 

and let m  = minl€/i f ( x )  be its global minimum. We define the global minimizer to 

be the point x* G A such tha t f(x*) = m.  We assume that; A is a compact subset 

of for some d >  1 ; vol(A) > 0 (where vol(-) stands for ‘volume’); m  > —oo; there 

is at least one global minimizer; and the objective function /  is continuous in the 

neighborhood of this minimizer x*. For simplicity we also assume that the objective 

function /  is bounded from above. This last condition is made for technical reasons 

and can be relaxed. In order to apply the estimators found in this thesis we must 

assume that / (x) can be evaluated without noise. [38] discusses methods, based on 

random search, tha t deal with estimating the maximum of a function in the case
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where the function cannot be evaluated without noise.

The PRS algorithm can be described as follows. Let i = 1 , . . . ,  n, be random 

variables drawn from probability measure P , where P  is defined on A. P  must be 

such tha t there is a positive probability tha t a random point x* will be in the vicinity 

of x *.

Under these assumptions the set of n points X n = {x i , . . . ,  xn} will be an inde­

pendent and identically distributed random vector (i.i.d.r.v.). Let Yn = { f ( x i ) , . . . ,  /(x„)}  = 

{1/1, ,  yn} be the i.i.d.r.v. obtained by computing /(•) at the elements of the sam­

ple X n. The values y* will have common cumulative distribution function (c.d.f.)

F(t) = P ( x e A :  f ( x ) < t ) =  f  P ( d x ) . (1.1.2)

This c.d.f. is very im portant when studying the PRS algorithm. The minimum 

value of /(•)  is the essential infimum of the r.v. 77 with the c.d.f. (1 .1 .2 ):

m  = min /(x )  =  ess inf rj =  inf {a : F(a) > 0} .

Note tha t in PRS the choice of k  has another important implication, this is 

discussed in [37]. Here it is pointed out tha t k  must not be chosen to be too large.

Indeed if there exist one or more sample points X* such that /(x*) <  yk,n and falls 

outside the vicinity of the global minimizer, it could lead to the over estimation of 

m  (as inference may be made about a local minimum).

Comparison of Estim ators

In Chapter 2 we compare two well known estimators of m and some simple estimators 

of m.  The well known estimators are the maximum likelihood estimator [19], and 

the optimal linear estim ator [8 ]. These are defined in Section 1.3. The density and 

efficiency of the estimators are the main points compared. We first do this under 

the assumption tha t the value of a  is known. In this study we take F(x)  to be 

Weibull, beta and the c.d.f. derived from PRS, (1.1.2). A second comparison of
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the estimators is undertaken where the value of a  is unknown. We do not consider 

estimators of a  here. We draw samples from a Weibull distribution (where the value 

of a  is known) and then derive the estimators using the wrong value of tail index 

(tf). We study the efficiency of these estimators with respect to the optimal linear 

estimator using the correct value of tail index (see Sections 2.5.1 and 2 .5 .2 ).

Choice of n

In the investigations in Chapter 2 sample size is fixed. In real-life situations the 

choice of n will usually depend on a balance between the level of accuracy de­

manded in the estimate of m  and the resources available, n could be determined 

beforehand and set to some fixed number. This fixed number could be limited by 

time, computing power, cost, or the available data (for example in meteorological 

applications only a limited number of observations will be available). The other way 

to select n is by some stopping rule. The stopping rule may depend on an estimate 

of how close the smallest observation, (t/i,n), is to the minimum (for example [11]), 

or the expected number of random variables needed to improve an estimate of the 

minimum (as discussed in [37]). [34] discuss a variety of methods used to create 

stopping rules for global random search algorithms. In this thesis we investigate the 

frequency with which improvements to the estimator are expected. The estimators 

of m are based on the k  smallest order statistics, as time increases the order statis­

tics get closer to m, indeed, t/i>n — m  < yj>n — m  where i < j .  When one or more 

of the k  smallest order statistics moves closer to m, the estimates also usually, but 

not always, move closer to m  (improve). It is therefore very important to be able 

to understand how the order statistics change with time.

1.1.2 R ecords, P o isson  P rocesses and M arkov chains

Figure 1.2 shows the three smallest order statistics related to a sample of size n, 

as n goes from 3 to 50000. (a) shows the order statistics plotted against n. It can
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be seen from this figure tha t order statistics change very infrequently, even at only 

moderately large sample sizes. This makes studying the behavior of the estimators 

through simulation very difficult. Figure (b) shows the same order statistics as 

(a) plotted against log(n). This change in time scale makes it much easier to see 

when each of the order statistics changes (updates). In fact it will be shown that 

the number of times tha t the k th order statistic changes during the time that the 

sample size is increased from k  to n , is approximately equal to A;log(n) as n —* oo. 

In both plots (a) and (b) a lot of repeated observations occur. We can discard these 

repeated observations and consider the order statistics just at the times where at 

least one of the order statistics changes. The order statistics tha t have changed are 

called record values. The new value of the ith order statistic is called the (type 2) 

ith record value. The sample size at which a record occurs is called a record time, 

and the number of records tha t have occurred at a particular sample size is called 

the record number. Together these statistics are called record statistics, they will be 

defined precisely in Sections 3.1.1, 3.1.2 and 3.1.3. Figure 1.2 (c) shows the record 

values plotted against record number. The k smallest order statistics at sample size 

n form a fc-dimensional Markov chain whose members become closer to vn as time 

increases. The record values also form a Markov chain, it is an embedded Markov 

chain of points visited by the Markov chain of order statistics. These two Markov 

chains have very different properties.
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2/l,n V2,n ' * ’ 2/3,n

1 I

T ' -
11__ _

•  3*000 40000 1 10  : : i i ; iMk* 0 10 JO 10
(a) (b) (c)

Figure 1.2: (a) shows the first three order statistics y\>n, y2,n and y^n from a sample 
whose size is increasing, (b) shows the same first three order statistics, y2)„ and 
2/3,n, plotted against logn. (c) shows the order statistics 2/i,n? 2/2,n and t/3(„ at record 
times plotted against the record number.

There are many excellent and very readable articles and books dedicated to 

properties of order statistics and records, for example [1, 5, 10, 16, 26, 27, 31]. In 

Section 3.1 we extract definitions and properties from these sources that are useful 

in understanding the behavior of the estimators defined in Sections 1.3 and 2.1 as 

n increases. Many of the properties of records do not depend on the distribution 

F(x), requiring only that F(x)  is continuous. One of the important properties of 

records is that asymptotically the occurrence of records follows a nonhomogeneous 

Poisson process with intensity rlog(n), where r  is a constant that depends on the 

precise definition of records. A homogeneous Poisson process with intensity r  can 

be created by transforming the time scale. This can be seen in Figure 1.2 (b) and 

the figures in Section 3.1.5.

Another important property of order statistics that we make use of, is that the 

order statistics from a sample drawn from any continuous distribution F(x) can 

be modeled using the order statistics from a uniform sample of the same size. It 

is easy to simulate uniform order statistics at record times (record values) and so
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order statistics at record times can be simulated from any continuous distribution 

F(x).  In Chapter 3 we use this technique to study order statistics, records and the 

estimators m. We define a A;-dimensional Markov chain that models uniform order 

statistics a t record times. We show that this Markov chain can be normalized (and 

one element discarded) to create a (k — l)-dimensional Markov chain (denoted X t, 

where t is the record number). Functionals on the Markov chain X t can be used 

to model normalized estimators at record times as they are equal in distribution to 

(m — rn)/(yk,n — m)- The functionals are denoted In Chapter 3 we analytically 

investigate the properties of the Markov chain X t and the functionals Q,t- Due to the 

simple structure of the functional Qk,t we are able to obtain some analytical results 

more easily than would have been possible by considering the estimator m. Next we 

use the functionals to carry out simulation studies similar to the ones carried out in 

Chapter 2. Throughout Chapter 3 we verify that the distribution of the functionals 

£k,t is indeed equal to that of the normalized estimators (771 — m)/(yk,n — Tn).

In Chapter 4 we continue to consider the sample Yn as a time series. Here we 

define two more estimators of m. We define and study the first one, called the 

weighted estimator (WE), in Section 4.1. It is based on the entire trajectory of an 

estimator as sample size increases. Indeed, as the sample Yn increases from n  =  k 

to n =  N,  the order statistics are recorded. At the record times the estimator 

m  is calculated, the WE is a weighted average of these estimates. The weight 

depends on the difference between the previous record time and the current one 

(known as waiting time, see Section 3.1). In Section 4.1.1 we give some interesting 

properties of the conditional distributions and conditional expectations of waiting 

times of records. In Section 4.1.2 we define the WE and in Section 4.1.3 we define 

a functional on X t tha t has the same distribution as the WE. This has been made 

possible by using a result from Section 4.1.1 that allows us to model the record times 

using record values. The simulation study in Section 4.1.4 (which relies heavily on 

the functional model) shows tha t the WE is not as efficient as the standard estimator
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m. We give reasons for the inefficiency of the WE and suggest similar estimators 

that may be more efficient.

The second estimator introduced in this chapter is an estimate based on the 

expected value of the A;th order statistic at sample size n. This estimator assumes 

tha t the value of parameter cq is known (the value of a  is also assumed to be known). 

It is shown theoretically and through simulation that this extra knowledge produces 

dramatic improvements in efficiency for some distributions F(x).

1.1.3 M eteorological A pplications

In Chapter 5 we consider meteorological applications of the estimators of m  and the 

record theory discussed in Section 3.1. First, in Section 5.1 we discuss the reporting 

of records in the media and show that extreme care must be taken when using 

record numbers to draw conclusions about whether, or by how much, the climate 

is changing. [14] proposes a test statistic based on the frequency of maximal and 

minimal records tha t is designed to test the alternative hypothesis that a time series 

contains a trend (a second test statistic is designed to test whether a time series has 

increasing/decreasing variance against the null hypothesis that variance is constant). 

We show how the number of records can be affected by a variety of transformations 

of a stationary time series.

In Section 5.2 we consider mean monthly sea level data from six locations in The 

Netherlands - Delfzijl, Harlingen, Den Helder, Ijmuiden, Maassluis and Hellevoet- 

sluis. We calculate the expected number of records and estimate probability mass 

functions for the number of records tha t we would expect to see in such a time series 

if it were stationary. [3] considers the number of record highs and the number of 

record lows in 17 independent time series of mean monthly temperature worldwide. 

He found that the frequency of record highs was unexpectedly high compared with 

17 stationary time series, and the number of record lows was unexpectedly low.

In Section 5.3 we attem pt to forecast the maximum and minimum (mean monthly)

10



sea level in Harlingen. This kind of estimation is of vital importance for many coastal 

towns when considering flood risks. In reality it is the estimation of the maximum 

sea level tha t is required in order to determine say, seawall height. However, flood 

defenses are usually built with large safety factors [12] allowing for the under esti­

mates tha t using a monthly average (rather than daily or hourly) data creates.

A major problem with estimating extreme maximal sea level is that sea level 

data does not form a stationary time series. It is generally thought that sea level is 

composed of three components; a mean sea level trend, tidal variation and variation 

associated with surges. The mean sea level reflects long term changes in global 

water levels and land height. The main tidal cycle has a period of approximately 

12 hours and 26 minutes. This cycle has a modulating amplitude of 14 days: the 

spring/neap tide cycle. As we are considering monthly average data we would expect 

these variations to be almost entirely smoothed out. [12] suggest tha t for practical 

purposes a long-term cycle of 18.61 years can be expected, we may expect to see 

this cycle in our data. Variability due to surges is mainly a seasonal effect, thus has 

a 12 month period. This can be clearly seen in the data (see Section 5.4 especially). 

The amount tha t the three components affect the overall sea level is governed by 

location. For further reading on factors affecting sea level see [29]. Many methods 

can been applied to estimate extreme sea levels, such as annual maxima method [18], 

joint probability method [30, 33] and non-statistical methods that aim to model the 

physical processes.

In Section 5.3.1 we introduce the Singular Spectrum Analysis (SSA) algorithm 

and the program CaterpillarSSA. SSA is an algorithm that can be used to decom­

pose a time series into the sum of a small number of independent and interpretable 

components such as a slowly varying trend, oscillatory components and a structure­

less noise [21]. The program CaterpillarSSA can be used to forecast the trend and 

oscillatory components and it hypothesized that the distribution of the noise can be 

made to meet the conditions of Theorem 1, and so allows the use of the estimators
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defined in this thesis. The aim of Sections 5.3 and 5.4 is to use SSA to split the 

Harlingen time series into the two components; one, a forecastable time series con­

sisting of trend and regular oscillation (the reconstruction); the other, a stationary 

time series of the remaining noise (the residual). We then cam use the standard 

techniques already discussed in this thesis to make estimates of the upper and lower 

endpoints of this residual. Finally we add these estimates to the forecast (made 

from the reconstruction using CaterpillarSSA) to obtain forecasts of the endpoints 

of the distribution of monthly sea level.

In Section 5.3 we use different methods within the CaterpillarSSA framework to 

create reconstructions and residuals from the time series of mean monthly sea level in 

Harlingen. We aim to capture the trend and periodicities of the original time series 

in the reconstruction, and create a residual of structureless noise. We calculate the 

number of records in each of the residuals and asses whether it is likely that the 

residual is a stationary time series. In Section 5.4 we use separation methods from 

Section 5.3 and forecast the upper and lower endpoints of the mean monthly sea 

level for each month of three different years.

1.2 R esu lts Concerning the D istributions of Ex­
trem es

The estimators tha t we will be considering in this thesis are semiparametric estima­

tors derived by considering the distribution of the smallest members of the sample 

Yn. Before we can define these estimators, we must give results concerning the 

distribution of these extreme statistics.

1.2.1 A sy m p to tic  D istrib u tion  o f th e  M inim um  Order S tatis­
tic

Let the sample size n be fixed and y\<n < . . .  <  yn<n be the order statistics corre­

sponding to the independent random sample Yn. Here yiyTl represents the fth smallest

12



member within the sample Yn = {yl f . . .  ,y„}.

Consider the asymptotic distribution of the sequence of (normalized) minimum 

order statistics yiiTl, as n —» oo. Generally, in the case m  = ess inf 77 > —00 

(where the random variable 77 has c.d.f. F(x))  there are two limiting distributions 

possible. However, (as discussed earlier) [11] and [35] show us that in global random 

search applications we can assume (1 .1 .1), this means that the following theorem, 

Theorem 1, can be applied. Theorem 1 shows us only one asymptotic distribution 

can arise; specifically, the Weibull distribution with the c.d.f.

This c.d.f. has only one parameter, a , which is called the ‘tail index’. The mean of 

the Weibull distribution with tail index a  is T(1 +  1/a ) ;  the density corresponding 

to the c.d.f. (1 2 .1) is

We now formulate this classical result from the theory of extreme order statistics. 

For proofs, discussions and generalizations see [10, 13, 15, 25, 27].

Theorem 1. Assume ess inf 77 =  m > —0 0 , where 77 has c.d.f. F(t),  and the function

regularly varies at infinity with some exponent (—a),  0 < a  < 0 0 ; that is,

where Fi,n is the c.d.f. of the minimum order statistics 7/i,„, the c.d.f. ^ Q{z) is 

defined in (1.2.1) and /cn is the (^)-quantile of F(-); that is, /c„ =  inf{u|F(tt) > 1/ti}.

13

for 2 < 0 

for 2 >  0 .
( 1 .2 . 1)

4>a(t) =  ('J'a(t))' = <xta 1 e x p (- t° )  , t > 0 . (1.2 .2)

for each t > 0 . (1.2.3)

Then

lim Fhn(m  + (k„ -  771)2 ) =  ^ Q(z), (1.2.4)



The asymptotic relation (1.2.4) means that the distribution of the sequence of 

random variables (y1)n — m)/( tcn — m) converges ( a s n - >  oo) to the random variable 

with c.d.f. ^q(z).

The c.d.f. \Pa M» along with its limiting case 4/00(2 ) =  limQ_>004'Q(l + z /a )

=  1 — exp (— exp(z)), —00  < 2 < 0 0 , are the only nondegenerate limits of the c.d.f.’s 

of the sequences (y\,n-<in)/bn, where {an} and {&„} are arbitrary sequences of positive 

numbers.

If there exist numerical sequences {on} and {6„} such that the c.d.f.’s of (yi,n — dn)/bn 

converge to 'Pq, then we say tha t F(-) belongs to the domain of attraction of 4>Q( ) 

and express this as F  G £>(^a ). The conditions stated in Theorem 1 are necessary 

and sufficient for F  G D ^ q ) .  There are two conditions: m  = ess sup 77 < 00  and

the condition (1.2.3). The first one is easily met, in particular it is always valid in

global random search applications. The condition (1.2.3) demands more attention. 

For example, it is never valid in discrete optimization problems as in these problems 

the c.d.f. F(-) is not continuous (whereas, (1.2.3) implies that F(-) has to be contin­

uous in the vicinity of m). In fact, for a c.d.f. with a jump at its lower end-point no 

non-degenerate asymptotic distribution for j/i>n exists, whatever the normalization 

(that is, sequences {an} and {6n})-

The condition (1.2.3) can be written as

F(t) = Co ( t  — m)a -I- o((t — m)Q) as t  [ m , (1.2.5)

where Co is a function of v =  l/(£ — m), slowly varying at infinity as v —► 0 0 . In

particular Co may be any positive constant, but the actual range of eligible functions 

is much wider.

Notice tha t the condition (1.2.5) can be met by many distributions, for example, 

by using a Taylor expansion. Therefore, Theorem 1 can be applied to the minimum 

order statistic from a wide class of distributions that are not derived as a result of 

global random search. Indeed many papers, including [8] and [9], use an equivalent 

assumption to justify their estimators of the endpoint of a distribution. The follow-
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ing condition is stronger than the condition (1.2.5) and is often used for justifying 

properties of the maximum likelihood estimators (MLE):

for some positive constants Co, a  and 7 . This condition is sometimes called Hall’s 

condition as it has appeared in Hall’s paper [19] which was devoted to the MLE 

estimators of m.

1.2.2 A sym p to tic  D istrib u tion  o f E xtrem e Order S tatistics

Consider the distribution of order statistics yk(n),n as n —► 0 0 . Here yk(n),n is the 

k th order statistics from a sample of size n where A: is a function of n. If k(n) is 

constant as n —► 00  the order statistic yk(n),n is called the A:th extreme order statistic. 

Notice tha t the minimum order statistic is an example of an extreme order statistic. 

The asymptotic distribution of extreme order statistics when suitably centered and 

normalized is well known, for example see [27]. Indeed, under the same conditions 

as Theorem 1, the asymptotic distribution function of yk,n is given by:

Here Fk,n is the c.d.f. of the k th order statistic from a sample of size n. The 

normalizing constants an and bn are unchanged from those in Theorem 1.

Consider the distribution of t/i,„6n +  an = t/i,„(/c„ — m) + m  where y\,n is the 

minimum order statistic from a sample of size n drawn from the Weibull distribu­

tion, m  is the lower endpoint of the Weibull distribution (m =  0) and Kn is the 

( £ ) th quantile of the Weibull distribution. This random variable has the following 

distribution:

F ( t )  =  c o ( t  — m )a (1 +  0 ( ( t  — m)7)) as t  |  m ( 1 .2 .6 )

k- 1
(1.2.7)

»=o

( 1 .2 .8 )

As log (j j t i)  =  £ +  o ( l / n 2) we can see that (1.2.8) can be written as 

1 — exp(—x Q) exp(—x Q/2n)  exp(—x a/3n2) . . .

15



and hence converges very quickly to (1-2 .7 ) as n —» oo.

) 0 IJ

(a) k = 1, a = 3, n = 10 (b) A: = 5, a  = 3, n = 20 (c) A: = 5, q = 5, n = 20

Figure 1.3: Figure show the distribution of j/fc,„(/cn — m) +  m where is the A;th 
order statistic from the Weibull distribution (dashed line) and the beta distribution 
(dotted lines). The asymptotic distribution (1.2.7) is plotted with a solid line. The 
distribution of the minimum order statistic from the beta distribution is plotted with 
three different values for the parameter 0 : 0 = 0.5,1 and 2. The highest dashed 
line on the graph corresponds to 0  = 0.5, the next is 0 = 1 and finally 0  = 2. The 
tail index of all of the distributions in (a) and (b) is a = 3 and the sample size in 
(a) is n = 10 and in (b) is n = 20. In (c) the tail index is a  =  5 and n = 20.

Figure 1.3 shows the cumulative distribution function (c.d.f.) of y^ni^n — ̂ + m  

where yjt,„ is the A;th order statistic from a sample of n  Weibull random variables 

and Kn is the ( £ ) th quantile of the Weibull distribution. It also shows the c.d.f.s 

of yk,n(Kn — m) + m where yk,n is the A;th order statistic from a sample of n beta 

random variables (with various parameters) and Kn is the £ th quantile of the same 

beta distributions. Also plotted is the asymptotic distribution (1.2.7). The beta 

c.d.f. is given by

F0 (t]a,0) = B t(a ,0)
B ( a ,0 )

where B t(a ,0 )  is the incomplete beta function JjJ xQ-1(l — x)^~ldx and B ( a y0) is 

the beta function. We can approximate this c.d.f. by (1.2.5) where Co =  B^p)a  anc* 

the tail index is equal to a  and m  = 0. By setting 0  =  1 we have that Co =  1. Then 

the beta distribution is exactly equal to F(x) = co(t — m)Q (see (1.2.5)). We can 

see from this figure tha t the minimal order statistics from all of the distributions
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converge very quickly to the asymptotic distribution (1.2.7). The 5th order statistics 

from the distributions F(x\  a , 0.5) and F(x; a , 2) are not very close to the asymptotic 

distribution when the sample size is 20. The distributions of the Weibull extreme 

order statistics and the beta extreme order statistics when 0 = 1  are almost exactly 

equal to the asymptotic one.

1.2.3 A sym p to tic  B ehavior o f K n — m

The quantity m, where m  = ess inf rj and nn is the (£ ) th-quantile of F(-), enters 

many formulae below and therefore its asymptotic behaviour is very important. 

Fortunately, the asymptotic behaviour of Kn- m  is clear. Note that since the objective 

function /(•) is continuous in a neighborhood of x*, the c.d.f. F(-) is continuous in 

the vicinity of m  and for n large enough we have F(/c„) = l /n .  Indeed, as long as 

(1.2.5) holds with some Co, we have

— = F(/cn) ~  Co («„ — m)a as n —> oo 
n

implying

(/cn — m) ~  (con)-1/Q as n —» o o . (1.2.9)

We say a„ ~  bn for bn ±  0, an and bn random variables if we have fjj- —► 

1 in distribution.

1.3 D efining the Estim ators

Let yi.n <  • • • <  Vn,n be the order statistics corresponding to the sample Yn, drawn 

from a c.d.f. tha t meets the conditions of Theorem 1. Here we will assume that the 

value of the tail index, a, is known. The consequences of using the wrong value of 

the tail index is dealt within Section 2.5, although estimators of a  will not be. Most 

estimates of m where a  is unknown estimate a  and then substitute this estimate 

into 77i in place of the exact value of a , see [19, 22, 36, 11].
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In the current section, following the exposition of [35], we review existing esti­

mators of m. Two of these estimators will be thoroughly defined and used in the 

remainder of this thesis (along with three more, simple estimators that will be de­

fined in Chapter 2). Note that there are some other estimators available; we only 

consider the estimators which we believe are the most important ones.

1.3.1 Linear E stim ators

A general linear estimator of m  can be written as
k

7hfc,n(a) =  ,

»=i

where a =  (a i , . . . , a* ) '  6  R* is a  vector of coefficients. Linear estimators first 

appeared in this general form in [7]. It can be shown (see [35], Section 7.3) that as 

n —* oo we have
k k

Erhkyn{o) — m 'y~ 'a i — (K,n — m)a'b + o(/cn —m) =  +  o( l ) .  (1.3.1)
i=l t=l

Here b = (6j , . . .  bk)' E where 6* =  r ( i  -I- 1/a )  /  r( i) .

From (1.3.1) it is clear that (as the objective function /  is bounded and there­

fore the variances of all j/i n are finite), a necessary and sufficient condition for an 

estimator with vector of coefficients a to be consistent is:
k

£ >  = 1. (1.3.2)
i=l

This consistency condition can be found in [37]. The main property that we wish 

to impose on estimators is a small mean square error (MSE). The MSE of a linear 

estimator is given by

M S E ( m k,n) = E(mktn(a) ~  m ) 2 ~  a'Aa, n —► oo , (1.3.3)

where A =  || ||f J=1 is a symmetric fcxfc-matrix with elements A  ̂ defined for i > j  

by the formula
r ( i  + 2 /a )  r ( j  + l / a )  , l o „x

r ( i + i / a ) r ( j )  ' (L3'4)
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The (non-asymptotic) mean square error of a linear estimator of m  from the 

distribution F{x) = Cq ( x  — m )°, m  < x  < M, is given by

Here M  = + m  is the upper endpoint of F(x).  (1.3.5) can be calculated

using the following well known expression for the joint density of two order statistics, 

yitTl and y^n, from a sample of size n drawn from some general distribution F(x)  

(see for example [27]);

The above density is valid for 0 < i < j  < n  and m  < x < y < M  where m and M  

are the lower and upper endpoints of the distribution F(x).  Here f ( x)  is the density 

related to the c.d.f. F(x).

We can impose an unbiasedness condition on linear estimators. Indeed, using 

(1.3.1) we have that,

It follows from this tha t an unbiasedness criteria is a'b =  0.

For the following estimator we choose the r.h.s. of (1.3.3) as our optimality 

criterion for selecting a. To ensure tha t the estimator is consistent, we also impose 

the condition (1.3.2).

k k

i=i j= i

(1.3.5)

The expression (1.3.6) allows us to calculate E {yi,nyj,n) as

E (yi,n2/j,n)
T(n +  l )r (z +  2 / a ) r ( j  +  1/ a )  . ^ .
r(n + 1 + 2 /a )T (i  + l /a )T{ j )  ’ %<3'

m  — Errijt>n(a) ~  (Kn — m)a'b, n —► oo.
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Optimal Linear Estim ator

The optimal consistent linear estimator m° =  rhk,n(a°), we shall call it the optimal 

linear estimator, is determined by the vector of coefficients

The estimator m° has been suggested in [8], where the form (1.3.7) for the vector of 

coefficients was obtained. Solving the quadratic programming problem in (1.3.7) is 

straightforward. In the process of doing that, we obtain

Lemma 7.3.4 in [35] gives the following expression for the r.h.s. of (1.3.8):

this expression is valid for all a  > 0 and A: =  1,2, . . .

The components a° (i = 1 , . . . ,  k) of the vector a° can be evaluated explicitly:

uk = - ( a k -o c + \ )Y { k )  lT { k  + 2/ot).

Deriving this expression for the coefficients of the vector a° is far from trivial, see 

[35], Section 7.3.3.

If the conditions (1.2.6), a  > 2, k —► oo, k / n  —> 0 (as n —» oo) are satisfied then 

the optimal linear estimators of m  are asymptotically normal and asymptotically 

efficient in the class of asymptotically normal estimators and their mean square 

error E (m  — m ) 2 is asymptotically (as n —► oo)

a° = arg min a'Aa
a.a' 1=1

(1.3.7)

min a'Aa =  (a°)'Aa° =  1/ l'A  1 1.
a:a' 1 = 1

(1.3.8)

ar(fc+l) 2
r(*+2/a) T(l+2/a) for a ^ 2 ,  

for a = 2;

a° =  Ui/ l 'A 1 1 for i = 1 , . . . ,  k (1.3.9)

with

U\ — (a  +  1) / r ( l  +  2 /a ) , 
m = (a  — 1) r ( i ) / r ( i  +  2 /a ) for i = 2 , . . . ,  k — 1,

m )2 Ar1+2/° for a  > 2, 
for a  =  2. (1.3.10)
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1.3.2 O ther Linear E stim ators

Hall [19] uses (1.3.3) along with the consistency and unbiasedness criteria, to define 

the linear estimator m + =  ra£n(a) =  m*)n(a+), with vector of coefficients

Here 1 is the fc-dimensional vector 1 =  (1 , . . . ,  1). The estimator m+ was investi­

gated by [36] and [20]. [36] shows that asymptotically MSE(m+) ~  MSE(m°) as 

k —► oo. [20] showed that for finite samples m + has larger bias than m°.

as Hall’s maximum likelihood estimator (defined in Section 1.3.3 below). Unlike 

Hall’s maximum likelihood estimator tha t has no closed form (except when k = 2),

shown that asymptotically, MSE(mCM) ~  MSE(m°) as k —> oo, where m CM is the 

linear estimator defined in [9]. [20] found that for finite samples and small a , m CM 

has large MSE.

1.3.3 M axim um  Likelihood E stim ator

In defining the maximum likelihood estimator (MLE) we have to assume the condi­

tion (1.2.6) which is stronger than (1.2.5). Additionally, we have to assume a  >  2.

Taking the asymptotic form of the likelihood function as exact (for details see 

[19] and [35], Chapter 7), we obtain that the maximum likelihood estimator of the 

minimum, m*, is the smallest solution z to the following likelihood equation:

conditionally z < y i,n; if there axe no solutions to this equation for z < y \>n, then 

we set m* =  yi>n; if there is more than one solution in the region z € (—oo, 2/i,n), 

then we take the smallest of these solutions.

a+ =  arg min a'Aa.
a: a 'l= l ,a 'b = 0

[9] investigated a linear estimator that was designed to have the same properties

Csorgo and Mason’s linear estimator, mCM, can be written in explicit form. This 

estimator can be found in [9]. Here it is shown to be strongly consistent and it is

(1.3.11)
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The asymptotic properties of the maximum likelihood estimators coincide with 

the properties of the optimal linear estimators and hold under the same regularity 

conditions (we again refer to [35], Section 7.3.3). The maximum likelihood esti­

mators m* =  m*kn of m  are asymptotically normal and their MSE E(m* — m ) 2 

asymptotically behaves like the r.h.s. of (1.3.10). Unlike the optimal linear estima­

tor, this estimator is not defined for a < 2 (m° is defined for all a  > 0). From [20] 

it can be seen tha t the MLE behaves poorly for small a  (close to, but larger than 

2), whereas the optimal linear estimator behaves well for small a.

It should be noted tha t for many distributions, F(x),  the likelihood function 

for the estimation of m  has a discontinuity at the point m. This irregularity is 

discussed by [6]. In particular the case where F(x)  is the Weibull distribution is 

considered. In cases where a discontinuity of the likelihood function occurs, the 

maximum likelihood estimator () is a local maximum of the likelihood function. 

This is discussed in [32], who show that when a  > 2 the MLE is consistent.
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Chapter 2 

Com parison o f Estimators: Static  
Sam ple

2.1 Defining M ore Estim ators

In this section we define a further three linear estimators. These estimators use 

the same optimality criterion as the optimal linear estimator, but have additional 

constraints imposed upon them. Each of them minimize the MSE given by the r.h.s. 

of (1.3.3), subject to the condition tha t a satisfies (1.3.2). Additionally we impose 

constraints on the number (and for the latter two estimators, position) of elements 

in the vector of coefficients, a, free to be non-zero.

2.1.1 One N on-Zero C oefficient

The first estimator that we define in this section is the optimal consistent linear 

estimator with one coefficient free to be nonzero. The remaining (k — I) elements 

must be equal to zero. This estimator denoted, m* =  rh(a#), is simply the minimum 

order statistic, and hence is determined by the following vector of coefficients:

a*' =  ( l , 0 , . . . , 0 ) .

This estimator is optimal as it has a lower MSE than any other estimator with one 

nonzero coefficient; m =  a ^ n ,  where i ^  1. The estimator m * does not depend on 

a  or k and so is useful for comparison.
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2 . 1 . 2  T w o N on-Z ero Coefficients

We now define an estimator with two coefficients in a free to be non-zero, m ( a ^ )  = 

mS2\  The MSE of this estimator is given by:

(Kn -  m ) 2 ((a\2))2Xu +  2a{2)a f )Xij +  ( a f ^ X j j )

where 1 < i < j  < k  and i and j  are integers denoting the positions of the two 

non-zero coefficients within a. Although it is not optimal, for simplicity it has been 

decided tha t i = 1 and j  = k. It can be seen below that this estimator is not the 

most efficient estimator in the wider class of all estimators with two coefficients free 

to be nonzero, i.e. the class with no restrictions on position of the nonzero elements. 

Due to the consistency constraint (1.3.2), aj2* +  a ^  =  1, so letting Ck =  — a*2) we 

can rewrite the MSE above as

(Kn -  m)2((l + Ck)2An -  2C*(1 +  Cfc)Afcl +  C 2Xkk) (2.1.1)

We can minimize this MSE to obtain tha t the MSE of the estimator m^  is given

by:
(nn -  m ) 2 

*(2)^(2) * (2)
where 1 (2) =  (1,1)' and

» » - ( £ :  £ ) ■  <2i2>
In the process we find that the value of C* that achieves this minimum is

C *  —  A l l  / n  1 o \

* An — 2Afci -1- Xkk' ( ‘ }

It can be seen tha t a° = a^  when k = 2 or when a = 1.

A W ider Class o f Estimators - The Choice of i

Figure 2.1 shows tha t m ^  is not the most efficient estimator in the class of consistent 

linear estimators with two non-zero coefficients. We define an estimator with two
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non-zero coefficients, m A‘ =  (1 — af^‘)2/t,n +  a£'yk,n- Here i is free to be any positive 

integer less than or equal to k and aAi is chosen to minimize the MSE. Notice that 

m Al =  mS2\

It can easily be shown that the MSE of this estimator is given by

MSE(mAl) =

Here

-  (  £  £ )  •

In finding this MSE we obtain that the coefficient aAi is given by:

Aj,t ~  Ak,i 

K , i  +  ^k,k ~  2 Ak,i

Figure 2.1 shows («;„ — m )2/M SE(m A<) plotted against a  for different values of 

i. The figure shows tha t when either a  or fc (or both) are large, m A2 has a smaller 

MSE than mAl =  mS2\

A W ider Class of Estimators - The Choice of k

From Figure 2.1 it also appear that for any particular i or a , as k increases, 

M SE/(«n — m ) 2 decreases. This means that there is no need to consider an es­

tim ator made with any two order statistics less than or equal to ykyn'. the estimator 

with smallest MSE will always be made with This does not mean that taking k 

to equal n would actually result in an estimator with very small MSE, as an assump­

tion made in the derivation of this theoretical MSE is tha t k / n  —> 0. Notice also 

that the estimator based on k order statistics, m =  a ^ n  + ajyj>n where i < j  < k , 

is the same as the estimator m Ai based on j  order statistics.

2.1.3 T hree N on-Z ero C oefficients

The vector of coefficients of our final estimator, m ^  = m*iTl(a^3̂ ), has at most three 

non-zero elements. For simplicity we set the three coefficients free to be non-zero
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(a ) k  =  1 0 (b ) k  =  2 0 , 2 1 ,2 2

Figure 2.1: The plots above show (nn — m )2/M SE =  l ' A ^ l  against a . In (a), 
k = 10 and in (b), k  =  20, 21, 22 for both i takes values i = 1, 2, 3.

as ai, a.i and a* where 1 < i < k. The position, 2, of the middle coefficient is free 

and therefore is chosen to minimize MSE. Due to the constraint (1.3.2) we can write 

=  1 — aj3̂  — a £ \  This means mS® is defined to be equal to

(3) , (3) (3K . (3)
a \  2/i ,n +  (1  -  f l i  ~  a k M , n  +  a k Vk,n

where a ^ \  a*3) and i are chosen to minimize the MSE of m (3) which is given by:

( k „  -  m ) 2 ( a (13 ) , 1 -  a (!3) -  aj.3 ), a^) [ An  Ati \ ki
Afci A ki X kk

(3) _(3) (3),
( a(3)

1 - a < 3>-«<3>
.(3)

(2.1.4)

Table 2.1 and Figure 2.2, below, demonstrate the value of i that minimizes (2.1.4) 

for any particular choice of k  and a. The graphs in Figure 2.2 show the efficiency 

with respect to m°  of the estimator

m°‘ =  a\ 'yhn +  (1 -  a?  -  a£ )2/i,n +  a£‘2/*,„,

26



where the values of aj* and are chosen to minimize the MSE for the particular 

choice of a , k and i. Here efficiency is defined to be

E(m° -  m ) 2 

E(m0< — m )2

The estimator m°’, i £ 2 , . . . ,  k — 1 that exhibits the highest efficiency for given value 

of k  and a  coincides with the estimator therefore the position of the middle 

non-zero coefficient in m ^  can easily be seen in the graphs.

lr
Q =  2 a  =  3 a  =  5

A
i al3) a (3)ak

MSE
(K„-m)4 i a ? ' 4 3)

MSE
(/cn-m )2 i ai3> MSE

(Kn- m )2
3 2 1.64 -0.91 0.55 2 1.95 -1.54 0.44 2 2.60 -2.84 0.38
4 2 1.44 -0.75 0.48 2 1.66 -0.30 0.38 2 2.14 -2.45 0.32

5 2 1.32 -0.65 0.44 2 1.48 -1.15 0.33 2 1.85 -2.20 0.27

6 3 1.31 -0.65 0.41 3 1.48 -1.24 0.31 3 1.86 -2.48 0.24

7 3 1.24 -0.59 0.39 3 1.37 -1.14 0.28 3 1.68 -2.30 0.22

8 3 1.19 -0.55 0.37 3 1.29 -1.06 0.27 3 1.55 -2.15 0.20

9 3 1.14 -0.51 0.36 3 1.22 -1.00 0.25 3 1.45 -2.04 0.19

10 3 1.10 -0.48 0.35 3 1.16 -0.94 0.24 4 1.48 -2.26 0.18

Table 2.1: A table showing the value of i used in m {3), the values of a ^  and a*3) 
(a |3* =  1 — a[3̂  — a ^ ) .  Also shown is the normalised theoretical MSE of the estimator 

for various k  and a.

Let i* be the value of i that minimizes the MSE of m0i for any particular choice 

of a  and k. For a = 2, 3, 5, 10 and k < 5, i* = 2. Generally as k increases i* 

also increases. When k = 3, the estimator coincides with the estimator ra° 

and so clearly i* = 2 and efficiency is equal to one. When a = 1, a ^  has just 

two non-zero coefficients and coincides with both a° and a^2\  When a = 1, a° =  0 

(1 < i < k),  this is why at a = 1 in Figures 2.2(a) and 2.2(b) the efficiency is equal 

to 1 for all values of k  and i. It can be seen from both the graphs and the table 

that as k increases the efficiency of m ^  decreases. This is because the number of
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(a) k = 5 (b) k = 6

i=3

”i
» 20]

(c) a  =  2 (d) a = 10

Figure 2.2: Efficiency with respect to m° of estimator m 0i. In (a) and (b) this is 
plotted as a function of a  and in (c) and (d) this is plotted as a function of k.

order statistics being used in the optimal linear estimator is increasing, whereas the
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number of order statistics in m ^  does not increase. For a > 1 the efficiency of 

decreases as a  increases.

2.2 D ensity  o f Norm alized Estim ators

In this chapter we derive the densities of the estimators defined above, under par­

ticular conditions.

First, in Section 2.2.2, we find joint densities of normalized linear estimators and 

the order statistics tha t they are made up of. We explain how this joint density may 

be used to find the univariate density of the normalized estimator. Throughout this 

section we consider four different normalizations of our estimators (see below). The 

densities found at this stage can be applied to any consistent linear estimator based 

on k  order statistics, where k  is any integer greater than 1. Here the c.d.f. of the 

random variables yi is any valid c.d.f..

In Section 2.2.3 we consider the joint densities found in Section 2.2.2, however 

now we look at the specific case of F(-) being Weibull and the linear estimator being 

m^2\  again considering all four normalizations.

In Section 2.2.4, under the same conditions as in Section 2.2.3, we concentrate on 

just two different normalizations. These two normalized estimators have univariate 

densities that can be written in a simple form. The asymptotic form (as n —> oo) 

of these densities has also been found.

Section 2.2.5 considers the density of m* (normalized) when k — 2 and F ( ) is 

Weibull. All four normalizations are considered in this section.

Considering the same two normalizations from Section 2.2.4 and again letting 

F(')  be the c.d.f. of the Weibull distribution and k = 2, in section 2.2.6, we find 

both the exact and the asymptotic form of the density of the normalized estimator 

m*.

Finally, in Section 2.3 we study the densities found in Sections 2.2.4 and 2.2.6. 

We compaxe the densities of m° and m* (normalized) and investigate the effect that
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sample size has on the distributions.

In Section 2.4 we investigate the estimators described above for finite samples of 

size n by plotting these densities on histograms of the corresponding estimators.

2 .2 . 1  M eth od  for D eriv ing  th e D ensities  
Four Normalizations

Throughout this section and Sections 2.3 and 2.4, we consider four ways of normal­

izing the estimators defined above.

The normalizations are of the form (m — m)/uj :

(1) (771 — m)/<jJ\ =  (nCo)1/Q(77l — 771)

(2) (771 -  m)/u >2 =  77(771 -  m ) / ( y hn -  m)

(3) (m  -  m ) / u 3 =  (771 -  m ) / ( y hn -  m)

(4) ( t t i  -  m ) / u 4 =  (771 -  m ) / ( y ktTl -  m)

Here 77 is an independent Weibull random variable.

In order to find the densities of the normalized estimators (1), (3) and (4), we 

can make a transformation on the (fc-dimensional) joint density of the smallest k 

order statistics (a well known result) to obtain the (fc-dimensional) joint density 

of the 2nd, . . . ,  kih order statistics with the normalized estimator. This joint den­

sity can be integrated with respect to the 2nd, . . . ,  k th order statistics to obtain the 

univariate density of the normalized linear estimator. The density of the normal­

ized estimator (2) is very similar except the joint densities described above must 

be (k  -I- l)-dimensional in order to include the independent (of the order statistics) 

Weibull random variable, 77.

Let : R k —► R k be a one-to-one differentiable function mapping (7 /1  • • •, Vk,n)
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onto £ =  (£1}. . .  ,£*). For normalizations (1), (3) and (4) define $  as:

4> :
rh — m

6  =

£ 2  =  2/2, n

£fc =  Vk,n

For normalization (2) we must define a slightly different function, <£>' : R k+1 —► R k+l. 

This function is a one-to-one differentiable function, mapping (2/1,n, • • •, 2/*,n> v) onto 

£ ' =  {Ci,. . .  ffc+i}, where £1, . . .  ,£* 3X6 defined as above and £*+1 =  77, indeed;

771 — m
CJ 

2/2,n

£fc ~  Vk,n

£*+1 =  V (2.2.1)

We can invert <E>(t/i, . . . ,  j/*) and $ '(2/1 , . . . ,  7/*, 77) to get $ -1 and $>/_1 respectively. 

$ _1 is of the form:

2/1, n =  2 ( £ l ,  • • • , £ * )

2/2 ,n =  £2

2fk,n = £*:•

:

£1  =  

£ 2  =
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Here 2 (^1, . . . ,  £*) : R k —► ]R is some function of £. $ ' 1 is similar:

2/l,n = 2(£i, • • • >£fc)£fc ”1" 1)

2/2,n =  £2

2fk,n —

V = &+1

Here 2 (^1, . . .  , £*+i) : R k+l —* R  is some function of £'.

Now we can say that, for normalizations (1), (3) and (4), the joint density of 

vector £ is given by:

D Q -1
P ^ l (*̂ 1 » *̂ 2) • • • j <̂k) f  1,2,...k:n(,^ (*̂ 1> ^2? • • • >

and for normalization (2), the joint density of vector is given by:

D & - 1
- (*̂ 1 » • • • j 3 ' k +1) f  1,2,...k:n,Tj(.^ i % l , X 2» • • ■ j ))

(2 .2 .2)

(2.2.3)

Here f i t2, . , k : n ( y i , 2/2, • • • , 2/*) denotes the joint density of the first k  order statistics, 

2/1,n, 2/2,n 1 • • • ,2/*,n> where I < k < n. Letting /(j/) =  be the density of yu then

j  T ^ . ( i - n y k ) r - kn l i M )
fl,2,...,k:n{yi > 2 /2»  • • • 5 2Jk) = * if m  <  ^  ^  <  . . . <  y k < M

0 otherwise.
We also define the joint density of the first k order statistics and an independent 

Weibull random variable.

^Zky Ocxa - 1 exp(—xa)(l -  F(yk))n~k n t i  /(& ) 

if m < y\ < y2 < • • • < yk < M,  0 < x  < 00fl ,2,...,k:n,r){yi > 2/2) • • • ) 2/fc) V)
0 otherwise.

Here in both cases, M  is the upper support of F(x). dq- is the Jacobian of 4>-l

and is the Jacobian of 4>/_1. The densities (2.2.2) and (2.2.3) have supports 

m  < z (x2, . . .  , x k) < x 2 < ••• < x k < M  and m < z(x2 , . . . , x k+\) <  x 2 < . . .  < 

x k < M,  0 < x k+\ < oo respectively.
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The density of the normalized estimators can now be found by integrating over 

€2* • - • > & or &> • • • > £fc+1> depending on the normalization.

2.2 .2  D en sity  o f a N orm alized G eneral Linear E stim ator

Table 2.2 shows y\tTl from the functions $ _1 or $ /_1 (see above) and the Jacobians,

order to obtain joint densities of £ and respectively.

d<t> . We can substitute these expressions into (2.2.2) and (2.2.3) in

Normalization 2/l ,n Jacobian

=  (nc0)_1/Q (nco)~1/a{i-E*=2 1
01 (nco)1/Qoi

v 2 =  (yi.n -  m)/r) £*+l E?=2 °»(£» —m) 1 ^ 6t+i Ef=2a»U«-m)
ix-axik+l 1 m (€l-Ol f̂c+l)2

<±>3 = (2/1 ,n -  m) Ei=2a*( î-m) I m Ef=2°*(€i m)
(x-ax 1 771 (€l-ai)a

U4 = (yk,n -  m) î( f̂c-»n)-Ef=2 <*»{*+"» tk-m
01 ax

Table 2.2: Summary table for derivation of the joint density of the vector of random 
variables £ and that can be used to find the density of a normalized general linear 

estimator m.

Densities

For u  = u\  =  (nco)1/Q the joint density of f i , . . .  p i ( z , x 2, . . . ,£*)> is 

Pi(z ,x2, . . . x k) =

(nco)1/c 01
0 ^ ( 1  -  F (x t ) r - kf

(2.2.4)

For u  = lj2 = (j/i,n -  m )/?7 the joint density of f i , . . . ,  f fc+i is given by 

p2(z ,x  2, . . . X ktTf) =

f  (**))-*/ (,,% £ r m) +m) nUiM
(2.2.5)
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For lj =  cj3 =  — m)  the joint density of f i , . . . ,  £k is given by

Pz(z ,x2, . . . x k) =

^ ( i  -  F ( x * ) r * /  ( £ t * a t e = i + m )  n f . 2 /(* ,)

(2 .2 .6)

Finally, for u  = u>4 = (ykt„ — m ) the joint density of £1, . . .  £k is given by 

p4(z,x2, .. . x k) =

xk~m
ai

(2.2.7)

The above densities (2.2.4), (2.2.6) and (2.2.7) axe defined as above when m  < yi>n < 

x 2 < . . .  < x k < M,  and are equal to zero elsewhere. The density (2.2.5) is defined 

on the support m < t/i n < x 2 < . . .  < x k < M,  0 < 77 < oo and is equal to zero 

elsewhere. Here m  and M  are upper and lower support of distribution F(-). yi>n is 

defined as in Table 2.2.

We can integrate the multivariate densities (2.2.4), (2.2.6) and (2.2.7) with re­

spect to 2 2 , ,  x k (and 77 for (2.2.5)) to find the univariate density of the normalized 

linear estimator fi =  (771 — 7n)/u ,  where u  = u>i, u 2, u>3 and u;4. These expressions 

can get very complicated as k  increases.

2.2 .3  D en sity  o f E stim ator (m ^  — m ) / w  

w ith  F(*) W eibull

Let us now consider finding the density of normalized estimators for the particular 

case when the distribution of the random variables, p,, is Weibull, and the estimator 

is the linear estimator, m^2\

We follow the method of derivation described in Section 2.2.1. Table 2.3 shows 

yi>n from 4>-1  (or 4>/_1) for each of the normalizaions.

We could now substitute z/i>ri, . . .  , y kyTl (and 77) and the Jacobian into (2.2.2) or

(2.2.3). As the estimator mS2̂  only depends on the first and A;th order statistics,
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Normalization 2/l,n Jacobian
(neo)-l'°{i+Cfc€a iU/| — \ '^o) (1+Cfc) (nooJ^^n+Cfc)

fcl&Ofc
w 2 — vyl,n 771) / ' I (&(l+Ck)-€i)a

=  (2/i,n -  m) 1+Cfc-fi
toCk

U+Ck-il)2
U4 =  (yk,n -  m) 6(<1+A)

l+cfc fa1+Ct

Table 2.3: Summary table for derivation of the joint density of the vector of ran­
dom variables £ and £ ' tha t can be used to find the density of a normalized linear 
estimator ra*2).

some simplifications can be made to (2.2.2) and (2.2.3): By integrating these two 

expressions with respect to & » • • • » i over their support, we obtain the joint density 

of just the normalized estimator and the fcth order statistic. Indeed, we can say that, 

for normalizations (1), (3) and (4), the joint density of vector (fi ,£*) is given by:

D $ _1
( 2 .2 .8 )

d i

For normalization (2), the joint density of vector (fi,f*,Cfc+i) is given by:

D<J>/_1
=  a x j+11e x p (-x j+1)/w(l,fc:n,»7)(^>(2) 1 (Xl > Xk,Xk+l)) (2.2.9)

4>ri and 1 are two and three dimensional functions respectively made up of
(2) (2)

just the elements yi,n»2/fc,r» and r) from 3>-1 and $ /_1 respectively.

The function f w{ \ ,k - . n)  is the joint density of the 1st and fcth order statistics where 

random variables come from a Weibull distribution with parameter a. For k =  2 

this is given by the following expression:

fw{i,k:n)(xi,xk) =  n ( n -  l ) a 2x? ‘i f  ‘e( 1' (n 1)l?), 0 <  x, <  x 2 < oo.

(2 .2 . 10)
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For k > 2 it is given by:

/w(l,fc:n)(^l» %k) =

=  U-<*2 x \ ~ l x T l (  ( ^ ( ( f c - i ) x “+(n-fc+l)x?)) _ p( ^ ( x ? + ( n - l ) x ? ) ) \ * ~ 2
( k - 2 ) \ ( n - k ) \ \  e J ’

0 <  X\ < x 2 < oo. (2.2.11)

The function fw(i,k:n,r)) is the joint density of the 1st and kth order statistics and an 

independent Weibull random variable. Here the order statistics are obtained from a 

random sample of size n from a Weibull distribution with parameter a. For k  =  2, 

fw(\,k:n,T)) is given by the following expression

fw(i,k:n,r,)(x\,Xk,T)) = n(n -  V -1e(_I?~(n_1)x2 _T,Q),

0 < X\ < x 2 < oo.

For k > 2, fw(i,k:n,T}) is given by

fw(l,k:n,r}) (•J'l > Vi)

_  n ! o f t r r ’g g - Y - 1 cjrnf
~  (fc -  2 )!(« -  fc)! V H  )  '

0 < X \  < X 2 < oo.

D ensities

The densities of the normalized estimators (m ^  — ra)/cj when the distribution of

the random variables y, is Weibull are as shown below.

For uj = uj\ = (nco)l/Q the joint density of f i  and p \( z , x k) is

1 x ( (nco)~l/az +  Ckx 2 „ \  / 0 0 1 0 ^
p^ z ' Xk] (nco)'/“ (l +  C*) 2n) \  (1 +  Ck) ’ V  ( ' )

For lj = lj2 = (yi,n -  wO/77 the joint density of £1, £* and £k+i is given by

P2 (:,Xk,rj) =  v ( 1 + c t ) _ z /v*,<I-2;B'’>> (( r ,( l  + C t ) - z ) 2’X2,,?)  (2'213)

For u> = 0J3 = (2/1 — m) the joint density of £1 and £* is given by



Finally, for u  = 0J4 = (yk,n — m)  the joint density of £1 and £* is given by

P4 {z,Xk) = 1 ^ c J W{\2 :n) ^ » X^ j  (2.2.15)

The above densities (2.2.12), (2.2.14) and (2.2.15) are defined as above when 

0 < 2/i,n <  < oo, and are equal to zero elsewhere. The density (2.2.13) is defined

on the support 0 < 7/i>n< X f c < o o , 0 < 77< o o  and is equal to zero elsewhere. t /in 

is defined as in Table 2.3.

We can find the univariate density of the normalized linear estimator £i =  (m — 

m)/uj , in a similar way as for the general linear estimator (m — m ) / u  (in both cases 

lj = uj\ , cj2, and u^). Indeed, integrating the multivariate densities (2.2.12), 

(2.2.14) and (2.2.15) with respect to x2, •••,£* (and 77 for (2.2.13)), results in the 

univariate densities of the normalized linear estimator £1 = (m — m ) /w , where 

u) == LJ\ , cj2, u 3̂ and UJ4 .

2.2 .4  D en sity  o f  (m ^  — m ) / u j  where a; =  W3  or u/ 4  and F(*) 
is W eibull

Normalizations 3 and 4 have convenient forms that allow the explicit forms of den­

sities of (m(2) — m)/ujz and (m^2) — m)/uj4 to be found for any k.

L em m a 2.2.1. The density of the normalized estimators, (m ^  — m ) / ( y i tTl — m) and 

(mW  — m)/(yk,n ~  m)y for all integer k > 2 ,  is given by

.j, =  n\h'{z)  ( - l ) r________________
(n — k)\ “  (k — 2 — r)!r![n — (k — r — 1)(1  — h(z))]2

- l < z <  1 . (2.2.16)

Here we define; for normalization 3;

h(z) =

h'(z) =

I =
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and for normalization 4 ;

* >  -  & % ) ' ■
, a(z  + Ck)a 1 jh {z) = — ----- — —  and

(1 +  Ck)a
I =  C fc.

Proof By substituting (2.2.10) into (2.2.14) or (2.2.15) we obtain that when k = 2 

the general form of the density of the normalized estimator (m ^  — m)/u,  where 

(j = UJ3 or u>4 and F ( ) is Weibull is as follows:
r oo

pm (z) = n ( n - l ) a h ' { z )  i 2‘>- Ie<- I°(<n- 1)+',(2))dx, - I  < z < 1.
J 1 = 0

Similarly, by substituting (2.2.11) into (2.2.14) or (2.2.15), for k > 2 we have

tha t the density of the normalized estimators is of the form:

P<2>W = (n -  IS fc -  2)! L / ° ~ '  ( 6XP { 0 2 (n -  + 1 + (fc -  W * ) ) )

- e x p  ^ - ^ ( n - 1 + / i ( * ) ) ^  dz,

- /  <  2 <  1.

When k = 2 the density, p ^ ( z ) ,  can be simplified easily by noting that

r°° l
I x 2a~l exp(—x aB)dx = ——r, (2.2.17)

J i=o
where B  is a positive constant. So we get for k = 2

p^2\ z )  — n(n — l)h'(z) [(n — 1 +  h(z ) ) ] ~ 2 , —l < z <  1. (2.2.18)

and

lim p ^ ( z )  =  h'(z), —l < z <  1. (2.2.19)
n—*oo

The case when k > 2 needs slightly more work to get it into a simple form. Using 

a binomial expansion and simplifying

( GXP ( l ~ 2 (n - k+1 + (k~ W * ) ) )  ~  e x P  { j ~ 2 n̂ ~ 1 +  hW ) ) )

38

k —2



= S  ( f c _ ^ - r)!r! CXp -  (* -  r -  1)(1 -  h(z))))

Substituting this into p ^ ( z )  and simplifying we obtain

p(2)(̂  =  g  ^ _(~ ^ r)jr! j f  x2“- '  exp(—x“[„ -  (fc -  r  -  1)(1 -  h(z))])dx

- l < z <  1

Now, noting tha t for both normalizations h'(z) < 1 which implies (n — (fc — r  — 

1)(1 — h(z)) > 0, we can again make use of (2.2.17) and so obtain

fc—2
_________________ [ z l L ________________

I2
- l < z <  1

□

(2) =  n \h \ z )  y ? ________________ ( - l ) r___________
(n — fc)! “  (fc — 2 — r)!r![n — (fc — r — 1)(1 — h(z))]‘

L em m a 2.2.2. The asymptotic density of  (m ^  — m )/u ,  u  = or lj4 as n —► oo 

is given by:

lim p^2\ z )  = (k — \ )h ’(z){\ — h{z))k~2, —l < z <  1. (2.2.20)
n —»oo

Here h and h' are defined as above.

Proof As p^2\ z )  is a density, integrating over the support gives 1. Make a change of 

variable; u = h(z). For normalization 3 and 4 this results in the following equation:

f 1 y ^ - 2 _______  (-i)r  du =  1
(n —fc)! J u = 0 2-^ r= 0 (fc—2—r)!r![n—(fc—>— 1)(1—u)]2

. nl s ^ k - 2 __________ ( ~ l ) r_______________  _  -I
(n —k)\ 0 (fc—2—r)!r!n (n —(k—r —1))

=*. ^ ______  (nj-fc)! ( 2 2  2 i)
2 _ /r= 0  (fc—2—r)!r!n (n —(fc—r —1)) n j

Now consider the c.d.f. associated with p^2\ z ) ,  P ^ ( z )  = P (Z < z), obtained by 

integrating the density p ^ { Z )  from the lower support to z:

p(z<2)=r   t v __________
-  Z) yz=_z (n -  fc)! ^  (fc -  2 -  r)\r\[n -  (fc -  r  -  1)(1 -  h ( Z ) ) } ^
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For simplicity we can make the change of variable U = h{Z) to obtain;

d t v  ^  \  n- ( - l ) r
P (Z  _  z) ^  ^  r )!r![n -  (fc -  r  -  1)(1 -  U)]2<lU

n\u ( - l ) r
(n — fc)! (fc — 2 — r)!r![n — (fc — r  — l)][n — (fc — r  — 1)(1 — u)}

where u = h(z).

As

 1___________________
(n — (fc — r  — l))(n — (fc — r  — 1)(1 — u ))

1 1 — u
+tm (n — (fc — r  — 1)) un(n  — (fc — r  — 1)(1 — u))

we have that

p ( Z < z )  =  n! ( y " ___________ ________________
(n — fc)! (fc — 2 — r)!r!rc(n — (fc — r — 1))

( - l ) r (l - u )
(fc — 2 — r)\r\n(n — (fc — r  — 1)(1 — u))

by (2.2.21) we have

P ( z < z )  =  ! ____________________ L I T __________________
( -  ’ ( i _ u )(fc _  2 - ^ ! *  ( ( * ) - ( f c - r - l ) )

using (2.2.21) again

n z < z )  1 (n _  fc),( l _  u )r

We can now take the limit of the above expression to obtain

lim P(Z < z) =  1 -  (1 -  u)k~'
n—*oo

Substituting u = h (z ) and differentiating with respect to z:

lim p^2\ z )  = (k — l)h!(z)(l — h(z))k~2.
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The density of (m ^  — m)(nco)^^Q̂ where t/* come from a Weibull distribution 

can be found but a simple form cannot. The density of this normalized random 

variable can be found by integrating (2.2.12) with respect to x k from I to oo. Here 

1 =  n~7°ck w^en z < 0 and / =  n~l^az  when z >  0. Notice that for the Weibull 

distribution Cq =  1. Although it has not been possible to evaluate this integral 

to obtain the density explicitly even for particular values of k and a , it has been 

possible to obtain numerical solutions of integrals of the density over small ranges 

of z for particular values of k and a. By doing this it has been possible to plot the 

density of (mW — m ) /u \  on the histograms below.

Notice that for any linear estimator defined by m (A) =  (1 +  C^A))t/l n — Cjf^yktn, 

£7(a ) > o, the density of (m*A) — m)/uj where uj = u>\, UJ2 , u>3 and U4 can be found by 

substituting in place of Ck in any of the densities in Sections 2.2.3 and 2.2.4.

2.2.5 D en sity  o f (m* — m )/u ; w ith  F (-) W eibull and k  =  2
A m en d m en t to  M L E

Above, the definition of the MLE depends on the solution to the likelihood equation,

(1.3.3), being less than the minimum order statistic. It is easy to show that there is 

always a solution to the likelihood equation less than the minimum order statistic.

L em m a 2.2.3. There is exactly one solution to the likelihood equation in the region 

(—oo,yi>n] for any integer k and a  > 1.

Proof. In the region (—oo,yl n) the left hand side of the likelihood equation is con­

tinuous in z. We have

Also,
fc-i
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The function ( a —1) Yli=i is strictly increasing for z G (—0 0 , 2/1,n)- Therefore

as k G (0 ,0 0 ) there is exactly one solution to the likelihood equation in the region 

( - o o ,2/i,„]. □

We can also find explicit expressions for the density of the normalized MLE 

when k = 2 and F(x)  is Weibull. In this case the MLE is the solution to the linear 

equation

a ~ l (  \  m  =  y i ,„ ------— {y2ln ~  2/i,n)
a  +  1 a — 1 

=  2 Â>n 2 ^2>n’

This is simply a linear estimator on two order statistics with C ^  . Its density

can therefore easily be found from Sections 2.2.3 and 2.2.4.

Notice the similarity between the densities of (m ^  — m ) / u  and (m* — m )/u .  

For the estimator mS2\  C2 = c*/2 for all a. Let us define an estimator to be 

m A =  (1 + C ^ ) y i>n — C^yk,n, where C2 = (a — l ) /2,  then we see the density of 

(mA — m)/uj  is equal to that of (m* — m)/u>, where either oj = 0J3 or u  = U4 .

Let us derive expressions for the densities of the normalized estimators (m* —

m ) / u  when k = 2 and the distribution of the random variables yi is Weibull. For

uj = cj\ = (nco)1/Q the joint density of £1 and £2, P\(z,Xk) is

_ /  2 r ( 2 (nco)-l/Qz + {a + l ) x 2 _ ^
Pi( z ,x 2) -  Q +  1 (2.2.22)

For u> = u 2 = (2/1,n -  rn)/rj the joint density of £1, £fc and £fc+i is given by

_ t _ x 2r j ( a - l )  f (  2 x 2rj(a — 1) ^ /0 0 ooA
p2 (z,Xk,vi) -  n(a + _  2 z f w { ^  (??(q +  _  2 z)2 ’Xl ’V)  (2-2.23)

For =  u>3 =  (2/1 — m) the joint density of £1 and £& is given by

Finally for u  =  u* =  (2/jt,n — m) the joint density of £1 and £* is given by



The above densities (2.2.22), (2.2.24) and (2.2.25) are defined as above when 

0 < yi,n < x 2 <oo,  and are equal to zero elsewhere. The density (2.2.23) is defined 

on the support 0 <  y\tTl < X2 < oo, 0 <  rj < oo and is equal to zero elsewhere. y\^n 

is defined as in Table 2.3 with (a  — l ) /2 substituted in place of C*.

2.2 .6  D en sity  o f (m* — m ) / u >  w here u  =  or u* w ith  F(*) 
W eibull and k  =  2

As with the linear estimator m^2\  the joint densities (2.2.24) and (2.2.25) are in 

convenient form so tha t an explicit form of the density can easily be found.

L em m a 2.2.4. The densities of (m* — m ) / (y i>k — rn) and (m* — m)/(yk,n — m ) are 

given by:

The associated asymptotic densities as n  —* oo are given by

lim p'(z)  = h”(z), - l < z <  1. (2.2.27)
n—»oc

Here for normalization 3 we define

h'(z)  =  ' " _ 1
a  +  1 — 2z

 ̂ 2oc(a — 1)
h (z) =  t ^ . and

v '  (a  +  1 -  2z)Q+1
I = oo

and for normalization 4,

, (a  -  1)
2 •

Proof The results follow by substituting Ck — {ot -  l ) /2 into (2.2.16) and (2.2.20)

□
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2.3 A nalysis U sing D ensities

2.3.1 C om paring m °  and m*

Let us now compare the densities and asymptotic densities of (m° — m) / u  and 

(m* — m ) / u  for k =  2, where u  =  or u  = U4 .

z P(z) limn_oop(.z) Support

m°—m n(n-l)oC? /  . /  c2 \ ° \ " 2 ac2“ —00  < z <  10J3 (l+C2-z )“l» V71 1 1 ^ l+ C a -z /  ) (1+C2—z)Q+1

m°—m n(n-\)a{z+C2)a- 1 (  , , fz+C2\ a \ ” 2 a(z+C2)a - 1 —C2 < 2 <  1U>4 (1+C2)“ 1 1 \,i+c2/  ) (1+C2)“

m*—m 2n(n—l)a(a—1)“ / i . /  a-1 \ Q\ ~ 2 2q(q—1)Q —00  < 2  < 1U>3 (a+1—2z)a+1 \ n  1 1 Va+l-2z; ) (a+1—2z)Q+1

m*— m 2n(n—l)a(2z+ar—l)a_1 / , / 2 z + a - l \ ° \ - 2 2a(2z+a—l)a~l
- V < * <  1U>4 (o+l)« 1 1 V 0+1 ) ) (a+l)°

Table 2.4: The density and asymptotic density of normalized estimators m° and m* 
when k = 2.

Notice the similarity between the densities of (m ^  — m)/uj  and (m* — m)/uj. 

From (2.1.3) we can see that C2 =  a /2 . If we define an estimator to be m ^  = 

(1 +  ~  C ^ y ^ n i  where = (a — l ) /2.  Then we see the density of

(mA — m)/uj is equal to that of (m * — m)/u>, where either u  = or uj = u/4. This 

similarity is explored again in Section 2.5.

2.3.2 Investigation  into the Effect o f Increasing Sample Size

Here we investigate the effect of increasing sample size on the normalized k th or­

der statistic from a Weibull distribution and on the normalized estimators (m ^  —
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m)(nco)1/Q, (m ^  — m ) / ( y i tTl — m)  and (m ^  — m)/(yk,n — m)  where ?/* come from a 

Weibull distribution. We also briefly discuss the convergence of the order statistics 

from the beta distribution to the asymptotic distribution.

Figure 2.3 shows the densities of normalized estimators m° and m*. The nor­

malization used are as labeled. Here F(-) is the Weibull distribution with a  =  2 and 

k = 2. It can be seen tha t the density of the normalized estimator (m ^  — m)/uj 

reaches its asymptotic density very quickly. The densities of the normalized es­

timators when n =  10 are quite close to that of the normalized estimators when 

n = 1 000. The densities of the normalized estimators when n = 100 and n — 1000 

are almost indistinguishable.

Figure 2.4 (a) and (b) show (with a dashed line) the distribution of yk,n{^n~m) + 

m  where yk,n is the k th order statistic from the Weibull distribution. This has been 

denoted Pw(k:n){x)- For the Weibull distribution m  =  0 and /cn —m =  (log (t^zy))1>/Q- 

P w (k - .n )(x )  is given by the following expression:

In Figure 2.4, (a) and (b) show (using a solid line) the asymptotic distribution 

of the normalized A;th order statistic from a general distribution satisfying the con­

ditions of Theorem 1. The equation for this is given by (1.2.7). In (a), a  =  3 and 

k = 5 and in (b), k = 10 and a = 3. The sizes of the samples of Weibull random 

variables are n = 10, 15, 20, 50 and 100. As n increases the samples plotted converge 

monotonically to the asymptotic one. From these two plots it can be seen that when 

q  =  3, the normalized 5th order statistic converges more quickly to the asymptotic 

distribution than the normalized 10th order statistic. For both k =  5 and A: =  10 the 

density of the normalized k ih order statistic when n = 100 is close to the asymptotic 

one.

Figure 2.4 (c)-(h) show the density (2.2.16) of (m ^  — m)/(yktn — fn) for n = 10 

and n = 100. Also shown is the asymptotic density (2.2.20). It can be seen that
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(a) (nco)1̂ Q(m° — m) (b) (nco)^a(m* — m)

(d) (m* -  m )/(y i>n -  m)(c) (m° -  m )/(y i,n -  m)

(f) (m* -  m)/(ykin -  m)(e) (m° -  m)/(yk,n ~ m)

Figure 2.3: The plots on the left show the densities of normalized m° = m ^  es­
timators, the plot on the right show the densities of normalized m* estimators. 
Normalizations are as labeled. In all plots the paramters a = 2, k = 2 and n =2, 
10, 100 and 1 000 have been used.
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for all a  and k shown, the density of (m ^  — m )/(yk>n — m) is very close to the 

asymptotic density. This is because the normalized order statistics from a Weibull 

distribution converge quickly to the asymptotic distribution (as shown in (a) and

(b)).

This convergence to the asymptotic distribution of the normalized linear es­

timators can be explained by considering the distributions of the extreme order 

statistics from the Weibull distribution. It was shown in Section 1.2.2 that correctly 

normalized extreme order statistics from the Weibull distribution (and the beta dis­

tribution, Fp(x\ot,\))  converge quickly to the asymptotic distribution (especially 

for small k). This has the direct implication that the linear estimators (normalized 

using normalization (1)) must also converge to an asymptotic distribution. This 

means tha t for any further simulation studies involving the Weibull distribution, a 

small sample.size (of say n = 100) may be used to reduce simulation time without 

affecting results. The quick convergence is not true of every distribution, for exam­

ple, extreme order statistics from the beta distribution, Fp(x; 3,2), do not converge 

very quickly to the asymptotic distribution (especially for large fc), and thus the 

normalized estimator based on extreme order statistics from the beta distribution, 

Fp(x\ 3,2), distribution will not converge quickly to the asymptotic distribution.
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0 .3 - 0.3-

I 2.3 1 4

(a) k = 5 , a =  3 (b) k = 10, q = 3

o o0 I - 2 22 1

(c) k = 3, a  = 3 (d) k = 4, a  = 3 (e) k = 5, a  = 3

o oo I - 2 22

(f) k = 3, a  =  5 (g) k = 4 , a  =  5 (h) k = 5, a  = 5

Figure 2.4: Figures (a) shows Pw(k-.n){x) for k = 5, a = 3 and n =  10, 15, 20, 50 and
100. Also shown is (1.2.7) for k = 5 and a = 3. Figures (b) shows Pw(k-.n)(x) for
k = 10, a = 3 and n = 10, 15, 20, 50 and 100. Also shown is (1.2.7) for k = 10 and
q =  3 . Figures (c)-(h) shows the density (2.2.16) and asymptotic density (2.2.20)
of the normalized estimator =  (m(2̂  — m)/(yktn — m). The density (2.2.16) has
parameters n = 50 (dashed line) and n = 100 (solid line). The asymptotic density
is marked with +. AO48



2.4 Sim ulation Study: Known a

Below we use a finite sample simulation study to compare the estimators defined 

above. First, we compare the distributions of the estimators using histograms. We 

then consider the efficiency, bias and MSE of the estimators.

2.4.1 H istogram s o f N orm alized  Estim ators

The histograms plotted below are of normalized estimates of m, the lower endpoint 

of a Weibull distribution. Plotted on the relevant histograms are the densities cal­

culated in Section 2.2. Densities (2.2.18), (2.2.16) have been plotted. It was also 

possible to obtain numerical solutions to integrals of the density of the normalized 

estimator ( m ^  — m)(nco)^^Q̂ for particular values of k and a  over finite ranges. 

This has been plotted on the relevant histogram.

Note that the c.d.f. of the Weibull distribution can be represented in the form 

(1.2.6) with m  = 0 and cq = 1, since 1 — exp(—ta) = £a (l +  0(£Q)) as t —*• 0. 

This means that the normalized minimum order statistic of a sample taken from 

F(x)  will also be distributed Weibull with parameter a. Sections 1.2.2 and 2.3.2 

show us that with F(x)  as Weibull, the densities of the extreme order statistics 

and the distribution of the normalized estimators converge to their corresponding 

asymptotic densities at small sample sizes.

Normalization

The estimators shown in the histograms in Figure 2.5 have been normalized in the 

four different ways discussed in Section 2.2; (nc0)1/Q(m — m), (m — m)7]/(y\<n — m ), 

(m — m )/{y\,n — m) and (m — m ) / (yk,n — m ) , where 77 is an independent random vari­

able drawn from the Weibull distribution with parameter a. We will now study the 

different effects that these normalizations have on the distribution of the correspond­

ing normalized estimators. It can easily be seen from Figure 2.5 that none of the 

normalizations produce a normalized estimator with the same density as another.
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As E (y itn -  m) =  («n -  m) ~  (nco)-1/a, you might expect (nco)1/a(m -  m) and 

(m — m )/(y1)Tl — m) to be equal in distribution, this is not the case.

For large n we can say that if rj' is a variable chosen such that the following 

statement holds

t ~~— = (nco)l/Q{m -  m),
( 2 / 1 , n  -  m)

then rf will have a Weibull distribution with parameter a. This can be seen by 

noting that (t/iiTI — m) = (/cn — 771)77 using (1.2.9). This fact does not mean that 

(tico)1/o(771 — m) and (771 — rn)rj/(yitTl — m) will be equal in distribution, as there is 

dependence between m  and 7/1 >n whereas 771 and 77 are independent.

It can be seen from the histograms in Figure 2.5 (as well as Figure 2.3) that 

the four normalizations used have very different effects on the distribution of the 

normalized estimators. Using normalization (1) makes the density of the normalized 

estimators similar to the normal distribution. Normalizations (1) and (2) do not 

impose any bounds on the size of the normalized estimators. Normalization (3) 

imposes an upper bound of 1 on the normalized estimator, but no lower bound. 

Normalization (4) ensures that the resulting normalized estimator is between a* 

and 1. In future all discussions about normalized estimators will be considering 

normalization (4).

Estimators

The different estimators do not appear to vary greatly in distribution. They do 

however have different means and variances. In general the MLE has a lower variance 

than the optimal linear estimator (and estimators m^2) and m ^ ) ,  however the mean 

of the MLE is greater in general than the linear estimators.

Parameters a  and k

From Table 2.5 it can be seen that as a  increases, the standard deviation of the 

estimators increases. The mean of the linear estimators also increases with a . For 

all estimators both the mean and the standard deviation decrease as A; is increased.
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(e) ( n c o ) ± ( m « - m )  (0  (g) » g E “  0 0

Figure 2.5: Histograms of 10 000 estimates of m  from the Weibull distribution with 
parameter a  =  3. The estimator in (a), (b), (c) and (d) is the optimal linear 
estimator and in (e), (f), (g) and (h) it is mS2\  All estimators are using k  =  5 order 
statistics from random samples of size 100. The different histograms show these 
estimates normalized different ways. The mean of the estimator has been plotted 
using a vertical dotted line.
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k Estimator
a = 2 a  =  3 a = 5

Mean Std Dev Mean Std Dev Mean Std Dev

2
( m ° —m )
V k . n - m 0.32 0.47 0.37 0.48 0.42 0.50
(m* —m )
V k . n - m 0.49 0.36 0.50 0.39 0.50 0.43

5

( m ° —m )
V k . n - m 0.071 0.28 0.11 0.32 0.13 0.35
(m * — m )
V k . n - m 0.20 0.24 0.20 0.29 0.19 0.33

( m W —m )
V k . n - m 0.08 0.28 0.12 0.33 0.15 0.37

( m ( J) —m )
V k . n - m 0.08 0.28 0.11 0.32 0.14 0.36

10

( m ° —m )
V k . n - m 0.02 0.18 0.03 0.22 0.05 0.25
(m* —m )
V k . n - m 0.10 0.16 0.09 0.20 0.08 0.24

( m ^  —m )
V k . n - m 0.03 0.18 0.05 0.23 0.07 0.28

( m (J) —m )  
V k . n - m 0.02 0.18 0.04 0.22 0.05 0.26

Table 2.5: The mean and standard deviation of estimators. The statistics were 
calculated from 10 000 runs. In each run each estimator was used to estimate m 
from a sample of size n  =  100 taken from the Weibull distribution (with parameter 
a  as indicated), k  order statistics were used to calculate each estimator. The 
estimators considered are the three linear estimators m°, mS2̂  and m^3\  and the 

MLE, m*.
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( a )  j n ^ r . m  
v ' Vk,n-m (b) m ’ - m

Vk,n-m (c) l ( 2 ) - m
Vk,n-m (d) m ^ —m

Vk,n-m

Figure 2.6: Histograms of 10 000 estimates of m  from the Weibull distribution with 
parameter a  =  3. The estimates were made using k  =  5 order statistics from samples 
of size 100 and normalized using normalization (4). The different histogram show 
estimates made using different estimators. The mean of the estimator has been 
plotted using a vertical dotted line. A normal distribution curve has been fitted to 
each distribution and plotted.

For all a  and k  the standard deviation of the MLE is smaller than that of the linear 

estimators, but the mean of the MLE is larger than that of the linear estimators.

From Figure 2.7 it can be seen that the distribution of the estimator when k  =  2 

is very different from the distribution when k  > 2. First, considering the case when 

k  =  2; from Section 2.2 we can see that the density of the normalized estimators 

(m° — m ) / ( y k , n — fn) and (m* — m ) / ( y i t,n — m) is a function of z°_1. This means 

that when a  =  2, the density is a linear function, when a  =  3 the density is a 

quadratic and so on. This is verified by the histograms. When k  >  2 then densities 

become more symmetric. As a  increases the distributions of the estimators become 

negatively skewed.
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2.125 - 1.475 -  0.825 -  0.175 0.475

(a) k = 2, Q =  2
2.125 - 1.475 -  0.825  -  0.175 0.475

(b ) A; =  5, q  =  2
2.125 - 1.475 -  0.825 -  0.175 0.475

(c) k = 10, Q = 2

k -
2.125 - 1.475 -  0.825 -  0.175 0.475

(d) k =  2, q = 3
2.125 - 1.475 -  0.825 -  0.175 0.475

(e) k =  5, q = 3
2.125 - 1.475 -  0.825 -  0.175 0.475

(f) k =  10, Q =  3

2.125 - 1.475 -  0.825 -  0.175 0.475 2.125 - 1.475 -  0.825 -  0.175 0.475
j L

(g) k =  2, a =  5 (h) k =  5, a = 5
2.125 - 1.475 -  0.825 -  0.175 0.475

(i) k =  10, a = 5

Figure 2.7: Histograms of 10 000 normalized estimates of m  from the Weibull dis­
tribution with parameter a  =  2, 3 or 5. The estimates were made using the optimal 
linear estimator using k  =  2, 5 or 10 order statistics from random samples of size 
100 and normalized using normalization (4). From the same 10 000 samples of 100 
random variables the normalized estimator (m* — m )/(£/*,„ — m )  was calculated. The 
percentage frequencies of normalized estimators (m* — m ) / ( y k , n — m )  (crosses) were 
plotted at each of the midpoints of the original histogram. The sample means for 
(m° — m )/(yk,n — m )  and (m* — m ) / ( y k , n — m )  are plotted using vertical dashed lines. 
The sample mean of the MLE is greater than that of the optimal linear estimator in 
all of the above plots. The density of (m° — m ) / ( y k tn — m) (derived in section 2.2.4) 
has been plotted on the histograms relating to k =  2 with a solid line.
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2.4.2 Efficiency, M ean Square Error and B ias o f Estim ators

of the estimators m *, m°, m ^  and mPh  The main criteria is efficiency. Bias and 

MSE are also considered. We study the behavior of the estimators when ŷ  are 

drawn from a Weibull distribution, a beta distribution and when yi are the results 

of evaluating a uniform random sample over a four dimensional function. In each 

case R  =  10000 samples are made, each producing a set of n random variables 

y i , . . .  ,yn and estimates m j, m°, m f  * and mj2\

Efficiency

By definition, the optimal linear estimator m° = ran)fc(a0), with a° given in (1.3.9), 

provides the lowest MSE in the class of all consistent linear estimators as n —* oo. 

Using (1.3.3) and (1.3.8), we have for the asymptotic MSE of m°:

lim , 1A  , , MSE(m°) =  1, (2.4.1)
n—oo (/Cn — m y

for any k. Therefore, for fixed n and k it is natural to define the efficiency of an 

estimator m as

Since we consider finite samples, it is possible for the efficiency to be slightly greater 

than 1.

The MSE of an estimator rh is estimated from rhj, j  = 1 , . . . ,  10 000. The index j  

indicates that each rhj is estimated from a different sample of size n. The estimated 

mean square error is given by the following expression:

For fixed k , n and R, we use the following definition for efficiency of an estimator

m:

In this section we use the data from Monte Carlo simulations to assess the quality

/M SE (m) (2.4.2)

MSE(m) % i  'Sy ' y(rhj — m )2

(2.4.3)

55



where in our ease R  = 10000 and k varies. As R  —* oo, the finite-sample efficiency

(2.4.3) tends to (2.4.2).

Simulation Study: Weibull Distribution

Figures 2.8-2.10 show the results from carrying out the above simulation study with 

yi drawn from the Weibull distribution with parameter a. Using this distribution 

means that the tail index used in the estimators is a, m  = 0 and c0 =  1. In 

this simulation study the sample size was n = 100. The results that can be seen 

from these figures are as follows. The MLE does not perform well for small a. In 

particular, the efficiency of the MLE is lower than the optimal linear estimator for 

all values of k when a = 2. The same is true of the bias except for large k. In general 

for small k and for small a  the MLE is outperformed by the optimal linear estimator. 

For simultaneously small a  and k the simple estimator m ^  also outperforms the 

MLE. The simple estimator m ^  also outperforms MLE when a = 2 and k is not 

too large.
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Figure 2.8: Estimated efficiency (2.4.3) of each estimator with respect to the optimal 
linear estimator (asymptotic). In figures (a) and (b) the estimators are based on 
k =  2 . . .  20 order statistics. In figures (c) and (d) estimators are based on k = 5 and 
10 order statistics respectively. The sample size used is n = 100. F(x) is Weibull in 
all figures. The parameter of this distribution in figures (a) and (b) is a  =  2 and 3 
respectively. In figures (c) and (d) a  takes integer values in the range [2,10].
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Figure 2.9: Normalized estimated mean square error (nco)1/0^  — m)2 °f
estimators. In figures (a) and (b) the estimators are based on k =  2 . . .  20 order 
statistics. In figures (c) and (d) estimators are based on k = 5 and 10 order statistics 
respectively. The sample size used is n =  100. F(x)  is Weibull in all figures. The 
parameter of this distribution in figures (a) and (b) is a = 2 and 3 respectively. In 
figures (c) and (d) a  takes integer values in the range [2,10).
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Figure 2.10: Normalized bias, (nco)1/a^  Ylf=\ I™j ~  m \ estimators. In figures 
(a) and (b) the estimators are based on k = 2 . . .  20 order statistics. In figures (c) 
and (d) estimators are based on k = 5 and 10 order statistics respectively. The 
sample size used is n = 100. F(x)  is Weibull in all figures. The parameter of this 
distribution in figures (a) and (b) is a = 2 and 3 respectively. In figures (c) and (d) 
a  takes integer values in the range [2,10].
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Simulation Study: Beta Distribution

In this simulation study the distribution F(x)  was taken to be the beta distribution 

with c.d.f.

= 4 e  t°'

where B t(a,(3) is the incomplete beta function JJJ xQ_1(l — x)0~ldx and B (a,(3) is 

the beta function. We can approximate this c.d.f. by (1.2.5) where Co =  g(a0 )a» 

tail index is equal to a  and m =  0. By setting (3 = 1 we have that Cq = 1. Then the 

beta distribution is exactly equal to F{x) = Co(t — m )a (see (1.2.5)). It has been 

shown that for certain selections of the parameter (3, extreme order statistics from a 

beta distribution do not converge quickly to their asymptotic distribution. For this 

reason sample sizes of both n = 100 and n =  1000 have been considered.

The results from this simulation study are as follows. When f3 = 1 the efficiency 

of the optimal linear estimator is approximately one for all k , a  and n shown, 

implying that the asymptotic MSE has been reached in all these cases. Indeed, it is 

the case that the optimal linear estimator has reached asymptotic efficiency when 

(3 =  1, the same is also true of any other linear estimator: From (1.3.5) we can see 

that the analytic efficiency of m when F(x)  is the beta c.d.f. with 13 = 1 is given by

a0,Aa° r ( n  +  1 +  a/2)  
a'ha T(n +  l)n 2/Q)

which is a good approximation to the asymptotic efficiency even for small n. The 

efficiency of the MLE when (3 = 1 is approximately constant for all k with fixed a. 

In all {(3 = 1) cases shown, the MLE has slightly worse efficiency than the optimal 

linear estimator, as a  increases the MLE improves. When n is increased from 100 to 

1 000 the efficiencies of m° and m*, when ( 3 ^ 1  appear to converge to the efficiencies 

when (3 = 1 of m° and m* respectively. When n is small, (3 ^  I and a > 2, as k 

increases estimators m* and m° become poor. This is because the kth order statistic 

no longer within the region where (1.2.5) can be assumed true. It was also seen 

in Figure 2.4 that higher order statistic do not converge as quickly as lower order
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statistics to their asymptotic distribution. For larger n this is still the case but not 

to such a degree. When (3 = 3 or 5 and a = 2 the efficiency of m* increases with k. 

For n = 1000 and (3 = 0.5, (3 = 1 or a  =  2 m° outperforms m*.
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(c) m * a  =  2 (d ) m * a  =  4

Figure 2.11: The estimated efficiency (2.4.3) with respect to the optimal linear 
estimator (asymptotic) of the estimators m° and m*. 10 000 estimates were made 
from samples of size n = 100 that were drawn from the beta distribution with 
parameters (3 = 0.5, 1, 3 and 5 (as marked on different lines on plot) and a — 2, 
and 4 (as marked below each plot).
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Figure 2.12: The estimated efficiency (2.4.3) with respect to the optimal linear 
estimator (asymptotic) of the estimators m° and m*. 10 000 estimates were made 
from samples of size n =  1000 that were drawn from the beta distribution with 
parameters (3 = 0.5, 1, 3 and 5 (as marked on different lines on plot) and a = 2, 
and 4 (as marked below each plot).
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Simulation Study: Optimizing an Objective Function

A simulation study similar to the ones described for F(x)  Weibull and beta was 

conducted. The objective function

/  (it;, x , y , z) =  10 cos(2u/ 4- 2.3) +  cos(12u;) 4- 10 sin(2x — 2.5) 4-

4- sin(14x) 4- sin(4y 4- 3.1) 4- cos(8z — 0.4) (2.4.4)

was considered over the feasible region (w ,x ,y ,z )  € [0, l]4. This function has four 

local minima. /(0 .7 0 ,0.73,0.40,0.44) =  -20.3, /(0 .70 ,0.36,0.40,0.44) =  -21.73, 

/(0 .3 0 ,0.73,0.40,0.44) =  -21.95 and /(0 .30 ,0.36,0.40,0.44) =  -23.34. The latter, 

m* = —23.34 aX w = w* = 0.30, x = x* = 0.36, y — y* — 0.40, 2 =  2* =  0.44 

is the global minimum. A random sample of n uniform random vectors on [0, l]4 

space was made. The objective function was evaluated at each of these, creating 

independent identically distributed random variables (i.i.d.r.v.) yi with c.d.f. F(x), 

where F(x)  is approximately given by the following expression:

^ S ? ( *  +  23.34)2. (2.4.5)307360 v '

This approximate c.d.f. is in the form F(x) = Cq(x — m )a , where cq = ^q^q-  ~  

0.001, m  = —23.34 and a  =  2. The approximation has been found by approximating 

the original function f ( w ,x ,y , z )  by f a(w,x, y, z) by performing a 4 dimensional 

Taylor expansion. The quadratic form f a(w ,x }y, z) is given by

_ 170(u; — w*)2 4- 226(x — x*)2 +  16(y — y*)2 +  64(z — z*)2
f a(w , x, y, z) = -------------------------------------   + m.

This approximation is valid close to the global minimum (see Figure 2.13).

Using Theorem 2.2 from [37] we can conclude that the c.d.f. F(x) meets the 

assumptions of Theorem 1, and that the value of the tail index, a, is a = d/2 = 

4/2 =  2.
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Figure 2.13: Projection of function (2.4.4). Three of the parameters are set to their 
optimal values; w = w*, x  =  x *, y = y*, z = z*, and the remaining value is allowed 
to range between 0 and 1. The free variable is labeled beneath each plot. Also 
plotted on the above graphs (dotted line) are the projections of the approximation 
f a(w ,x ,y ,z ) .
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Figure 2.14: Estimated efficiency (2.4.3) of each estimator with respect to the op­
timal linear estimator as defined above. The estimators are based on k = 2 . . .  20 
order statistics. Estimators assume approximation (2.4.5); a = 2 and Co «  0.001. 
In plot (a) the sample size used is 1000, and 10000 in plot (b).

It can be seen from Figure 2.14 tha t the MLE performs much worse than the 

optimal linear estimator when the c.d.f. F(x)  is the result of evaluating a sample 

of objective function values. This is particularly noticeable when n is small. This 

suggests that the MLE does not work well when the minimum order statistic is not 

Weibull. When the c.d.f. was set to be Weibull or beta with tail index a = 2 the 

MLE was often outperformed by the optimal linear estimator, but this effect is seen 

to a much greater degree when the c.d.f. is the result of evaluating a function.
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Figure 2.15: The estimated efficiency with respect to the asymptotic optimal linear 
estimator (2.4.3) of the optimal linear estimator (broken lines) and the MLE (solid 
lines). 10 000 estimates were made from samples of size n =  10000. The distri­
butions used to make the estimators are either Weibull, beta or the distribution 
approximated by (2.4.5) (obtained by evaluating (2.4.4) at the points of a uniform 
random sample). Beta distribution has parameters 0 = 0.5, 1, 3, and 5 (as marked 
below plots). All distributions have tail index a = 2.
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From Figure 2.15 we can see that the optimal linear estimator performs much 

better than the MLE in estimating m  from the Weibull distribution, the beta dis­

tributions and the four-dimensional function. When k is large compared to n the 

estimates of m  from the four-dimensional function become very poor. This is be­

cause the k th order statistic is likely to fall in the neighborhood of a local minima 

rather than the global minimum. It can be seen from Figure 2.15 that when n is 

large, m° and ra* have larger efficiency when estimating m from the four-dimensional 

function than from the Weibull distribution or the beta distribution. This is not 

because it is easier to estimate the minimum of a function than the endpoint of a 

distribution. The reason is likely to be that the tail index and Co that are used in 

the estimators m* and m° (and the calculation of efficiency) are estimates from the 

approximation (2.4.5). We can obtain different estimates of these parameters by 

considering that the un-normalized minimum order statistic comes from a Weibull 

distribution with scale parameter a =  «„ — m and shape parameter a. Indeed y\yn 

has density ip(x\ a, a) given by

ip(x; (j, a) = ^  0 )  exp , z > 0

Using the sample of t/i.ioooo (of size 10000 obtained by the Monte Carlo simulation 

described above), we made maximum likelihood estimates of a and a , a =  0.179 

and a  =  2.105 respectively. Compare these to the estimates from the approximation

(2.4.5) of ( - g lOQOo) / =  0.178 and 2. The two estimates of Kn—m  Eire similar, 

whereas the two values of a  are not so similar.

How Close is the Distribution to the Approximation?

In deriving the estimators and their efficiencies we have made the assumption that 

for t close to m, the c.d.f. F(t) is approximately equal to Co{t — m)Q. It is of 

interest to investigate how close the distributions that we have investigated are to 

this assumption.
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For the beta distribution we have that the ratio of the beta density to the assumed 

one, coa(£ — m )Q~l , is given by:

3) U l> '

The ratio of the Weibull density to coa(t — m)Q_1 is given by

a ta~l exp(—x°)
a ta- l =  exp(—£Q).

For the beta and Weibull distributions, m  = 0 and for the beta distribution Cq = 

b\'q (3)q • The suPPorts °f the beta distribution, the Weibull distribution and the 

assumed distribution are [0,1], [l,oo) and [m, (co)1/" +  ra] respectively. The ratios 

axe only valid within these supports.

The ratios show that (as previously discussed) when F(x)  is the beta distribution 

with parameter (3 = 1, beta density is exactly equal to the assumed density. When 

0  > I and t is close to m, the beta density is smaller than the assumed density. 

When 0 < 1 and t is close to m, the beta density is larger than the assumed density. 

The ratio of the beta distribution to the assumed distribution does not depend on a. 

When F(x)  is Weibull the density is always smaller than the assumed distribution, 

however, as a  increases the Weibull density converges to the assumed density. The 

ratios are plotted in Figure 2.16 for various 0  an a.
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Figure 2.16: The ratio of the beta distribution to the distribution coata~l and 
the ratio of the Weibull distribution to the distribution coct£Q-1. Here the beta 
distribution has parameter (3 = 0.5, 1 or 3 (higher, middle and lower solid lines) 
and the Weibull distribution has parameter a = 5, 3 or 2 (higher, middle and lower 
dash lines respectively).

2.5 Comparison of estimators: Unknown a

In reality it is not always possible to know the correct value of the tail index. Even 

in the above case (in Section 2.4.2) of optimizing a known objective function, it 

was not possible to obtain the exact value of the tail index. In this section we give 

analytical and experimental results concerning how estimators react to using the 

wrong value of the tail index.

2.5.1 Efficiency: W rong Tail Index

Let us first introduce some notation. Let m($) be the estimator that is derived 

assuming that the tail index is d. For example, when m($) =  m°{d) this is given 

by mk,n(o>0($)) where a($) is the vector of coefficients given by

A-11
«•(*) =
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Here A,j, is the matrix A =  ||A jj|| as defined in (1.3.4) with d in place of a. The 

MLE with the wrong value of the tail index is denoted m *($) and is the solution 

z G (oo, ?/!,„] to the following equation.

k- 1
o? - 1 )  V  Vk'n = k.

»=1 V i ' n  z

We wish to find the asymptotic efficiency eff(m(tf)). For a general consistent 

linear estimator with vector of coefficients a(tf) this is given by

6ff(7?iW) =  I ' A - ^ - a W s W  (251)

The efficiency of m°($) and m*($) can easily be found analytically for all k > 2. 

The minimum order statistic is not affected by the choice of d, so is useful to asses 

how robust the other estimators are under changes to d. The efficiency of m*(d) 

has only been found analytically for k = 2.

Let us first consider the efficiency of the estimator This can easily be

derived by substituting a°(tf) into (2.5.1), it can also be found in [37]. For general 

k we have that
( I ’Atf *1)2eff (m°(#)) =

1A_11 • TA ^A A ^1!

Therefore for k = 2 the efficiency of m°(d) is given by:

a  +  2 
q  +  2  +  a ( l  —  j ) ’

Notice that this efficiency is maximized when i9 = a.

The asymptotic efficiency of the minimum order statistic for k = 2 is given by:

( a + 2)
2(q +  1)

These efficiencies have been plotted on Figure 2.17 of simulated efficiencies.

The asymptotic efficiency of the MLE can be calculated when k = 2. It has an 

interesting property.
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L em m a 2.5.1. For k = 2, the efficiency, eff(m*{d)) ofm*(d) with respect to m°(a) 

is given by

+ 4 . - 1 £ - »  +  «■ +  ! ■ <2'5 '2>

this is maximized when'd = a  +  1. The asymptotic efficiency at this maximum is 

max*? eff(m*{d)) =  1.

Proof. For k =  2, there is exactly one solution, z, to the likelihood equation (1.3.3), 

it is given by:
*( \ (Q _  \ m  (a) =  yh n   — {y2,n ~  yi,n)-

The asymptotic MSE of the estimator m°(a) is given by substituting (1.3.8) into

(1.3.3):

E ( m ° ( a ) - m ) 2 ~ ^ p p ^ Y - ,  n -> oo 

Now consider E (m*(d) — m )2:

E (m'{d) -  m)2 = E  ( Vl,n -  ^ - ^ ( y 2,„ -  Vi.„) -  m )  (2.5.3)

From Lemma 7.1.3 in [35], we have that under conditions already assumed

E(yi<n -  m)(yjtn -  m) ~  («n -  m )2Xitj, n -> oo. (2.5.4)

Therefore we can find eff(m*(tf)) when the random variables yi are drawn from 

a Weibull distribution by expanding (2.5.3) and using (2.5.4);

E (m '(tf) -  m f  =  ^ ± H ! E (s,2n) -  ( f ^ i l E (yi,ny2,n) +  ^ ^ E ( y 2„)

. 2 (2a2 +  4a — 2atf — 2d + d2 T l ) r ( l  4- 2 /a )
=  (K" - m) ---------------------- 2 ^ T 2 j ----------------------

The efficiency is then found by calculating • Maximization by differenti­

ating with respect to d confirms that maximum efficiency is achieved at =  a  + 1.

Substitution of d = a  +  1 into eff(m*(tf)) gives eff(ra*(a + 1)) =  1. □
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Notice that it was shown in Table 2.4 and the discussion that followed (Sec­

tion 2.3.1), that under the conditions that k = 2 and F(x)  is Weibull with parame­

ter a , the normalized estimator m*(a -f 1) has the same density as the normalized 

estimator r a ^ (a )  =  m°(a).

2.5.2 Sim ulations S tu dy

In this section we find the estimated efficiency of each estimator when the value 

of the tail index is incorrectly assumed to be d (instead of the correct tail index, 

a). R  = 10000 samples of size n =  100 were drawn from a Weibull distribution 

with parameter a  =  2, 3, 4 and 5. Estimates of m  were made using each of the 

five estimators defined in Sections 1.3 and 2.1. When making these estimates the 

value of the tail index of the distribution was assumed to be d = 2, 2.5, . . . ,  10. The 

estimates made using the wrong value of the tail index have been denoted m*(^), 

ra°(tf), mSz\ d )  and The simplest estimator, the minimum order statistic,

make no assumption about the tail index, it has been used for comparison.

The efficiency of each of these estimators has been calculated with respect to the 

optimal linear estimator using correct value of the tail index; m°(a).

R

(2.5.5)
j =l
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Figure 2.17: eff(m)($) plotted against d. Efficiency is estimated from 10 000 samples 
of size 100 from a Weibull distribution with parameter a. The number of order 
statistics used in each estimator is k.
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The simulation results above back up the analytical results of Section 2.5.1. The 

analytic asymptotic efficiencies plotted with the plain solid line fit the simulated 

efficiencies closely. It can also be seen that for k =  2 the MLE estimator has 

maximum efficiency (of approximately 1) when =  a  +  1. The plots show that 

when k > 2 the maximum efficiency of MLE is reached at , where a  < d* < a  +1. 

As k  increases, it appears that d* [ a . As a  increases the range of for which 

eff(m(tf)) > eff(m*) increases. As k increases, although eff(m#) decreases, the range 

of for which eff(m(tf)) > eff(m#) decreases. This shows that if a larger number of 

order statistics are used to calculate the estimators, it is more important to estimate 

the tail index correctly. Figure 2.18 shows the value of A =  d* — a  for the MLE for 

a variety of a  and k. Linear regression lines have been plotted for each value of k. 

The equations of these lines axe given by:

k =  2 : A =  0.97

k = 3 : A =  0.70-0 .0 1 a  

k = 4 : A =  0.57-0 .0 1 a  

k = 5 : A =  0.48 -  0.02a 

k = 6 : A =  0.42-0 .0 3 a

Further investigation into the MLE when a  is unknown can be found in [32].

k a effs(a) effa(a) eff.(0 *) effa(tf*) Simulated Analytic d*

2 2 0.89 0.89 1.11 1 2.97 3

2 3 0.94 0.94 1.01 1 3.97 4

2 5 0.98 0.97 1.01 1 5.98 6

Table 2.6: Table shows the estimated (from simulation) and analytic efficiency of 
m*(a) (effs(a) and effQ(a) respectively), estimated and analytic efficiency of m*(d*) 
(effa(i?*) and effa(i?*) respectively). Also shown is d* found through simulation and 
analytically, d* is the value of d that maximizes the efficiency.
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Figure 2.18: tf* — a  plotted against a  for MLE when k — 2 , . . . ,  6 . — a  decreases
as k increases, v* is estimated by taking 10 000 sample of size 100 from a Weibull 
distribution with parameter a  and making estimates of ra assuming that the tail 
index of the distribution is In the simulation values of d were tested in increments 
of 0 .0 1 .
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Chapter 3 

Comparison of Estimators: 
Increasing Sample Size

In this Chapter we consider the sample Yn = { i/i,. . . ,  yn} as a time series. In 

Chapter 2 we analyzed estimators of m  at a fixed sample size, here we analyze the 

estimators as n  increases.

As n increases, the k smallest order statistics related to the sample change. 

When there is a change in the order statistics we say that a record has occurred. In 

Sections 3.1.1, 3.1.2 and 3.1.3 we formally define records and some related statistics. 

In Section 3.1.4 we give some well known results about the frequency with which we 

expect to see records. We show that records occur very infrequently. We show links 

between record occurrence and Poisson processes. In Section 3.2 we show that we 

can model order statistics from a uniform distribution at record times. We create a 

stationary Markov chain that can be used to model normalized estimators of m  at 

record times. This is very useful due to the fact that records occur infrequently, so 

this model enables us to use simulation to observe estimators at sample sizes that 

would not be possible through direct simulation. We analyze the Markov chain and 

the random variables that model estimators. We then conduct a simulation study 

using this model.
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3.1 Introduction to Records and Poisson Process

3.1.1 N otation  and D efin itions

An important consideration in the estimation of the endpoint of a distribution is 

how large to make the sample size n. In general as n  increases the estimates improve. 

However, as n increases the order statistics on which they are based update very 

infrequently. This means that the sample size can be increased dramatically without 

seeing any improvement in the estimate. In order to describe the process of the 

updating of order statistics (and hence changes of the estimate) we must consider the 

random sample y i, . .  .yn as a stochastic process, rather than as n  random variables 

observed simultaneously. So observation yn is the random variable that occurs at 

time n (when the sample size is n).

The definitions below give a systematic means of recording when and how often 

records occur. For consistency, notation is mainly taken from [26]. We define a 

type 1 record and a type 2 record, both of these definitions are used in literature.

In Chapter 5 we will consider a discrete time series. In this situation new ob­

servations can occur that are equal to the current record value. This is known as 

a weak record. Weak records are defined in Section 3.1.2. When dealing with dis­

crete data, records as defined in Section 3.1.1 are often called strong records. In 

Section 3.1.3 we consider maximal records. Table 3.1 shows notation relevant to 

these three sections.

Definitions

First we define the type 1 and type 2 A;th indicator functions. A type 1 k ih indicator 

function is equal to 1 if a type 1 kth record has occurred. Similarly, a type 2 k th 

indicator function is equal to 1 if a type 2 k th record has occurred.
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Name
(Strong) records Weak records

Maximal records
Type 1 Type 2 Type 1 Type 2

k th indicator function 
k ih record count 
k th record Time 
k th record value 
k th record Value vector 
A;th waiting time

n , n
W , n
T k,t

R*k,t
R k,n

W l t

■f/e.n

N k,n
Tk,t

R k,t

Sk,n

Wktt

N w k,n

T w k,n

R w k,n

S w k,n

W K n

I w k,n

N w ktn
T w kin

Rwk>n
R ^ k ,n  

Wwib,n

Add + superscript

Random variable 
k th order statistic

Vn
Uk,n

Table 3.1: Table of notation. Notation and definitions for records in continuous data 
are the same as those for strong records in discrete data.

Type 1 fcth indicator function:

T*Jk,k

l'k.n

1) Vk > Vk—lyk—l j
0 , otherwise

lj Vk—l,n—l ^  Vn ^  Vk,n—1 

0> Vn ^  Vk,n—1 Or yn ^  Vk—l , n —1

Type 2 fcth indicator function:

I ktk =  1

r j  1) 3/n ^  Vk,n—1
*k,n = \  ~

Vn ^  yk,n—1

The requirements for a type 1 fcth indicator function to equal 1 are stricter than 

those for a type 2 fcth indicator function. The type 2 kth indicator function, Iktn, is 

equal to 1 if the new random variable yn is less than or equal to the existing k th 

order statistics from the sample at size n — 1. However, the type 1 k th indicator 

function, 7*n, is only equal to 1 if yn is between the k th and ( k — l ) th order statistics 

from the sample at size n — 1 .
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The number of times that the set of k smallest order statistics changes when 

increasing the sample size from k to n  is given by the type 2 fcth record count, N k>n 

(defined below). Notice that an equivalent way to describe type 2 kth record count 

is as the number of times that the kth order statistic changes. Also defined below 

is the type 1 A:th record count, N k n] this is the number of times that a new random 

variable j/j causes the A:th order statistic to change without affecting order statistics 

2/ijj  • • • 2/fc-ij* Equivalently, this is the number of type 1 kth records observed between 

times k and n.

Type 1 kth and type 2 fcth record counts are given by the following expressions. 

Type 1 fcth record count:
n

JVfc. =  £  I h  n > k
j = k

Type 2 fcth records count:
n

Nk,n = ^   ̂Ik,j Tl ^  k 
j —k

Notice that in the record count summations, the index variable j  starts at j  = k 

not j  = 1 , this is because the indicator functions Ik,n and /J  are not defined for 

n < k.

A  type 1 A;th record time, Tk t , is the sample size at which a type 1 kth record

occurs for the t th time. A type 2 kth record time, Tk,t, is the sample size at which a

type 2 fcth record occurs for the t th time. See definitions below.

Type 1 fcth record time:

Tk l =  min(s > k -  1 : =  1)s
T i t  = min(s > : /£ =  1), t > 1s

Type 2 fcth record time:

Tk, i =  k

Tk,t = min(s > Tk,t- i  : 4 . n  =  1 ) ,  t >  1s
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The £th type 1 fcth record value is the value of the kth order statistic at time T£t.

Similarly, the t th type 2 A:th record value is the value of the kih order statistic at

time Tktt.

Type 1 fcth record value:

R*k,t — Vk,T; t , t >  1

Type 2 fcth record value:

Rk,t = yk,Tk't , t > 1

The record values can be concatenated to form a record values vector these are 

defined as follows.

Type 1 fcth record value vector:

$k,t = • • ' Rk,t}

Type 2 fcth record value vector:

Sk,t = » Rk,2> • • • Rk,t}

We also define the limiting cases;5Jt00 =  limt_ 00 Sk t and S k,oo = limf-^oo Sk,f

The time between type 1 or type 2 records is called the waiting time and is 

defined as follows.

Type 1 fcth waiting time:

Wfc.t =  Tk t ~  Tk t_i — 1, t > 1

Type 2 k th waiting time:

= Tktt — i — 1, t > 1

The definitions of waiting time are such that if (type 1 or type 2) k th records 

occur at both time n and time n +  1 , the waiting time between them defined to be 

zero.

In the remainder of this text if the type of record is not specified it may be 

assumed that a type 2 record is being referred to.
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3.1.2 W eak R ecords

Weak records are defined for discrete time series. They occur when a new observation

is strictly less than a current record value, we say that a strong record has occurred.

strong record time, strong record value and strong record value vector are defined 

as in Section 3.1.1. The type 1 and type 2 k th weak record indicator function are 

defined as follows.

Type 1 fcth weak indicator function:

Other definitions relating to weak records are intuitive: Type 1 and type 2 

kth weak record counts and record times (denoted Nw*kn, N w ktn, Tw*k t and T w k t 

respectively) are defined as for strong record counts and times but with Iw kn in 

place of Ik n, and Iw kyn in place of Type 1 and type 2 fcth record values and 

waiting times (denoted Rwk ti Rwk,t» W w kt and W w kyt respectively) are defined as 

for strong record values and waiting times but with Tk t replaced with Twk t, and Tkyt 

replaced with Twk ,n• Finally type 1 and type 2 fcth record value vectors (denoted 

S w l t and Sw kyt respectively) are defined as strong record value vectors but with 

R*k t replaced with Rw k t and R k,t replaced with Rwk,t-

In Chapter 5 a discrete time series is created by rounding a continuous time series 

to the nearest integer. In order to estimate the number of records in the underlying

is equal to an existing order statistic. In a discrete time series, if a new observation

The type 1 and type 2 A;th; strong record indicator function, strong record count,

1) Vk Vk—l,k—1>
0 , otherwise

lj 2/Jfc-l,n-l ^  Vn ^  Vk,n—1>̂ 1 > k
0 > Vn ^  yk,n—i or yn ^  yk—\yn—\iTi > k

Type 2 fcth weak indicator function:

I w k,k =  1

1) Vn ^  Vk,n—1 > > k
Vn ^  yk,n— &



time series, a small noise (a uniform [-0 .1 ,0 .1] random variable) was added to each 

of the members of the time series. The number of records in this time series is 

an unbiased estimator of the number of records in the underlying continuous time 

series.

3.1.3 M axim al Records

Instead of considering, as we have done, the record smallest elements in a sample, 

we can consider the record largest elements in a sample. All of the definitions in 

Sections 3.1.1 and 3.1.2 can be repeated for maximal records. A maximal record 

from a time series t/j is equal to a minimal record from the time series — 7/j. These 

are denoted with a superscript +. For example, the type 1 maximal fcth record count 

is denoted and the ith type 1 maximal weak record N w *+.

3.1.4 M om ents and D istributions

This section collects well-known results that are useful for understanding the prop­

erties of records. These can be found in literature, for example [5], [27] and [31], 

[1]. [16] provides an excellent, and very readable introductory review combining 

examples, results, applications and citations related to 1st records.

The following theorem is useful for discussing properties of record values as it 

shows that results about the distribution of S f  n can equally well be applied to 5 ^ ,  

Ss n,  It first appeared in [23], but can be found in many sources including [24].

T h eo rem  3.1.1. (Ignatov’s Theorem) Sz n, . . .  are independent and

identically distributed random sets.

A set is a finite or infinite collection of objects in which order has no signifi­

cance. Elements in a set are distinct. A random set is a set made up of random 

variables. Notice that although the sets Sf  n, 5 ^ , . . .  are independent of each other, 

the elements within each set are a strictly increasing sequence of random variables.
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[5] examines Ignatov’s theorem, giving excellent figures and further explanations of 

its implications.

The expected value and the variance of the number of type 1 kth records to occur 

between time k  and time n are given below.

E N k,n =  E (/;,* + . . .  +  =  T . U  j

=  logn -  E £ J  } + 7  +  O (i) , n -> oo

VariV;,„ = E ( j  -  f )

where 7  =  0.5772... is the Euler constant. This derivation uses the fact that 

E ( Ikn) = £ for all n >  k. This fact is shown to be true in [27], and is a consequence 

of the fact tha t when adding a new random variable (yn) to a sample of size n — 1 it 

is equally likely to fall in any of the n sections, [m, 2/i,n- i) , [2/2,n-i)> • • •»[yn-i,n-i> M]. 

Here M  is the upper end of the support of F(x).

Similarly we can find the expectation and variance of the A;th type 2 record count. 

This is given below.

EA1*,„ =  E (/*,* +  . . .  +  /*,„) =  EJ=* 7 

=  k [log 71 -  E * ;J  7 +  7  +  0 (£ )

Var7V*,n =  E "= t  ( f  -  ( j ) * )

[31] shows that if F(-) is continuous then

1 a.s. as n

0 0

N*l,n
logn

0 0

where a.s. stands for almost surely. We can show similar results for kth type 1 

records and fcth type 2 records. Indeed, for n > k we have that Jj n =  Using 

this and the definitions in Section 3.1.1 we can say that

K n = K n -  N l k_v

Therefore, for finite k we can say that

logn
1 a.s. as n 
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Again by their definitions we can say that

= iv*n + . . . + jV£„ -  -  ... -

= +  . . .  +  Nl„  -  (k -  1). (3.1.3)

Using this, and the fact that for finite k  all N£n converge almost surely to logn we 

can say that
N kn

——'■ ► 1 a.s. as n —► oo. (3.1.4)
fclogn

These results have been verified by the simulations whose results are shown in Fig­

ures 3.2 and 3.3.

Records and Poisson Processes

Records have many links to Poisson processes, these are given below. [31] shows that 

asymptotically as n  —► oo, is a nonhomogeneous Poisson process with intensity 

A(n) =  logn. Here a nonhomogeneous Poisson process is defined to be a continuous 

time stochastic process, {N ( t ) , t  =  01 ...} , with the following properties:

•  N(t)  >  0, Vt and N ( 0) =  0

•  N(s) < N(t)  V s , t  such that s < t

•  P (N(t  + h ) -  N(t)  =  1) =  X(t)h +  o(h), V*

•  P (N{t + h ) ~  N(t)  > 1) =  o(h), Vt

where =  0 as h —* oo. Here A(t) is the time dependent intensity. Notice that this 

definition implies that for non-overlapping time intervals, (u, v] and (s,£], P (N(t) — 

N(s) = y) is independent of P(N(v) — N(u) = x). It also has the implication that 

the probability that the number of events between time a and b (0 < a < b) is equal 

to some integer k is given by

P (N(b) -  N(a) = k) = exp(~ ^ t)A°.>| * =  0 ,1 ,. . .
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where Xa,b =  f * X(t)dt.

Using (3.1.1) we can say that N£n is also asymptotically a nonhomogeneous 

Poisson process with intensity log n. It is commonly known that the superposition 

of k Poisson processes with intensities , . . . ,  /x2 is also a Poisson process with 

intensity / q + . .  .+Hk- Therefore we can say, using (3.1.3), that Nk,n is asymptotically 

a nonhomogeneous Poisson process with intensity A;logn.

A Markov process is defined to be a stochastic process, x(t ), with the property 

that for every n and t\ < ti < . . .  < tn the following equality holds:

If the possible values of x(t) form a countable set S  (called the state space), the 

Markov process is called a Markov chain. {yk,n,n > A;} is a Markov process its 

transition distribution is given by:

As the right hand side of (3.1.5) does not depend on n, yk,n is said to be a 

Markov process with stationary transition probabilities. The Markov chain yk,n has 

a constant path, except at type 2 A:th record times (or type 1; 1st, 2nd, . . . ,  A:th record 

times), here the path jumps to a value closer to m, i.e. (2/tm+1 — m) < (yTktt ~  m)- 

The record values {Rk,t,t > 1} are therefore an embedded Markov process of states 

visited by the Markov chain {yk,n,n  k}. The Markov chain Rk,t, t = 1,2, . . .  has 

stationary transition probabilities given by:

[31] shows us that if F(-) is continuous with m  = inf (y : F(y) > 0} and M  = sup{y : 

F(y) < 1}, then by letting H(t) =  log(F(z)) so that H  : (m, M)  —► (-oo ,0 ), we 

can say that {Fi,t} is a Poisson process on (m, M)  with intensity

P (x(tn) < zn|x(t„_i), . . . ,  x(ti)) = P (x(tn) < x„|x(tn_ i ) ) .

(3.1.5)

(3.1.6)

H[a,b) = H(b)  — H(a). (3.1.7)
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Finally from [31] we know that if F(-) is again continuous with support (m, M), 

then we can say that the points W\j+i,t  > 1} are the points of a two dimen­

sional Poisson process on (m, M)  x {1,2,3, . . .} with intensity:

„<M )  * ( j , ,  ,  O - W j O - W  (3 , 8)

Here we use the definition of a two dimensional Poisson process as found in [31].

We know that R \ tt =  R\ tt and W\tt =  because of this we can extend the 

two previous results concerning R \ t to say that if F(-) is continuous with support 

(m ,M )  then is a Poisson process on (m, M)  with intensity given by (3.1.7)

and {/£[ Wi t+1,t  > 1 }  are the points in a two dimensional Poisson process on 

(m, M)  x {1,2,3, . . .} with intensity given by (3.1.8).

3.1.5 A ltering T im e Scale

It is stated above that asymptotically N*n is a Poisson process with intensity log(n) 

and NiiTl is a Poisson process with intensity i log(n). Therefore by letting t = log(n) 

we have, EN*n = EN*et = t, so N*et is a Poisson process with intensity 1, and N ^ t  

is a Poisson process with intensity i. Figures 3.2 and 3.3 below show results from a 

simulation of 100 samples of size 22 000 from a Weibull distribution. Figure 3.1 shows 

the order statistics from one of these samples. These figures verify that by altering 

the time scale the number of records becomes a homogeneous Poisson process.
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1/1 ,n 

J!±n_
1/2, n

l/4.n
1/3, n 

J^n_ 2/4,n

i

o

(a) (b)

Figure 3.1: (a) shows the first three order statistics, yi>n, 2/2,„ and 2/3 ,n, from a single 
sample, plotted against logn. (b) shows the normalized order statistics, — 
m ) / ( y 4,n ~  m), (2/2,n -  m ) / ( y 4,n ~  m )  and (y3)n -  m ) / { y 4,n ~  m ) ,  from a single sample, 
plotted against log(n). Also plotted on (b) is 2/4 ,n against logn.

— Afi>n — N2,n ' ’ ' N3,n

2 a24

100 10 0

(a) (b)

Figure 3.2: (a): Count, iV1)Tl, N 2,n and iV3)n (from a single sample) plotted against
j 100

log(n). (b): The mean count over 100 runs, ^  Nk,n,r, plotted against log(n),
r=l

where each /Vi)Tlir is N i}Tl from a separate run.

87



  Nl.n — iV2,n • • • jV3,n

10

100

log S am p le  s ize

(a) JVT.n

10

10

log S am p le  size

(b) N ln

10

o

0 10
log  S am p le  s iz e

(c) N l n

J  100

Figure 3.3: Count, N*n (from a single sample) and ^  TV*n r plotted against
r= l

log(n), where each N*nr is N*n from a separate run.
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3.2 M odeling Order Statistics and Estim ators at 
Records

A problem with studying the behavior of the first k order statistics is that, as 

shown above, they update very infrequently. This causes problems when simulating 

data; in order to simulate, say, 500 changes in the first 5 order statistics, one would 

expect to have to simulate order statistics for all sample sizes up to approximately 

n =  exp(100) ~  3 x 1043. This problem can be overcome by using a new model that 

simulates random variables equal in distribution to order statistics at record times 

of a time series j/i, i = 1 , . . . ,  n. In the model described below yi are independent, 

identically distributed random variables from the distribution F{x)  (as defined in

(1.2.6)). The random variables from the new model can be normalized to form a 

(k — 1)-dimensional Markov chain, X i , X 2, . . . ,  the transition from X t to X t+\ is 

described below. We create functionals on this Markov chain that can be used to 

model estimators at record times.

In Section 3.4 we check that the functional described in Section 3.2.3 are equal in 

distribution to the normalized estimators. First we do this by deriving the densities 

of some of the functionals. We compare these densities to the relevant densities 

calculated in Section 2.2. The means and variances are compared. Next we plot his­

tograms of the functionals that can be compared to the histograms in Section 2.4.1. 

Finally we study whether the efficiency of the functional is the same as the efficiency 

of normalized estimators.

3.2.1 M odeling Order S tatistics at R ecord Values

In order to derive random variables that model order statistics, we require the fol­

lowing representation which can be found in [27]. It shows that order statistics from 

a general continuous distribution F  can be modeled using uniform order statistics.

Representation 3.2.1. Let yitTi < . . .  <  t/ni„, n =  1,2, . . .  be order statistics from 

sample y i , . . . y n of i.i.d.r.v. with any continuous c.d.f. F. Also let U\>n < . . .  <
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Un,n, n  =  1 ,2 , . . . ,  be ‘Uniform order statistics’, i.e. the order statistics from a 

sample, U \ , . . .  Un, of i.i.d.r.v.s from a uniform distribution on [0,1]. Then for any 

n =  1 , 2 , . . .

(F(yi,n), ■ ■ ■ F(y„,„)) =  

where =  means that the two vectors have the same distribution.

If we define the inverse of F(x) (denoted F _1(s)) to be

F - 1(s) =  inf(x : F(x) > s), 

then Representation 3.2.1 can be rewritten as

(yi.n • • • Vn,n) = (F _1(£/i(„ ) , . . .  F -1  (£/„,„)). In fact, the continuity condition can be 

dropped for this second form of the representation.

Representation 3.2.1 shows that if we simulate uniform order statistics at record 

time, Tk,t, then by applying F -1  to the order statistics we obtain random variables 

with the same distribution as order statistics 2/1,7* t , . • ., 2//t,rfc,r  Here 2/z,rfc>t is the ith 

order statistic from a sample of size 7*,*, drawn from a distribution with c.d.f. F(x). 

In this section we denote the random variables that have the same distribution as 

uniform order statistics at record number t as . . . ,  Uk,t- The bold font on the 

second subscript distinguishes these random variables from actual uniform order 

statistics.

Prom Representation 3.2.1 we can see tha t the first step in modeling order statis­

tics at records from a general distribution, is to model order statistics at records from 

the uniform distribution. The k uniform order statistics at time T^i =  k are k uni­

form random variables arranged into ascending order. So U\t\ = U\yk, • • •, £4,1 =  £/*,* 

To model the k smallest uniform order statistic after the next update (when t = 2 

and n = 7*i2) we can use the fact that, for uniform random variables, the next type 1 

zth record (i < k) is distributed uniformly on [0, - Let such a random variable

be denoted F 2. Let U2 be such that Uj-itk < U2 < Ujtk, for some j  e  [1, . . . ,  k] and 

let Uoyk = 0. Therefore the j th order statistic at time 7^,2 is modeled by Ujt2 = U2 .
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The order statistics lower than this; U\,2, • • •, Uj-1,2 , do not change and so are given 

by U\,2 =  £/i,i> •. •, Uj-1,2 =  C/,-1,1 . The higher order statistics; C/j+1,2 , . . . ,  Uk,2 are 

given by £ /,+ 1)2 =  C/,,1, . . . ,  Uk,2 = C/fc—1,1 • To model the order statistics at time Tk,t, 

t =  3 ,4 , . . .  this process is repeated; a random variable Ut is drawn from a uniform 

[0 , C/fc.t-i] distribution. This is added to the set of (modeled) order statistics at record 

number t — 1. This set of k  +  1 random variables is reordered and the k smallest 

order statistics are selected to create the random variables that model the k smallest 

order statistics a t record time t. In doing this we create a A>dimensional Markov 

chain where each fc-dimensional vector is made up of the modeled order statistics. 

By applying F~l to each element of each fc-dimensional vector, we achieve a k- 

dimensional Markov chain of random variables with the same distribution as order 

statistics from a sample of increasing size with c.d.f. F(x)  at times 7*,*, t = 1,2, —

3.2.2 M odeling N orm alized Order S tatistics at Records

In the analysis and simulations that follow, it was useful to obtain random variables 

equal in distribution to normalized order statistics; (?/*,„ — m)/(yk,n — m)  at records. 

These order statistics form a stationary (k — l)-dimensional Markov chain (the k th 

element is always equal to 1, so is dropped). In order to achieve this normalization, 

at time Tk,\ = k  (record time t =  1) modeled order statistics U\,i, . . . ,  Uk,i are 

divided by Uk,i- We define a (k — l)-dimensional vector X\  

to be; =  U\ti/Uk,ii • • • =  Uk-\,\/Uk,i- These make the first vector of a

(k — 1)-dimensional stationary Markov chain. We now simulate the next vector 

(equal in distribution to k — 1 normalized order statistics at time n = 7*,2, record 

time t = 2): A uniform [0,1] random variable is added to the vector X\,  denote 

this random variable as U2. The resulting fc-dimensional vector { x ^ , . . .  , x ^ 1} U2} 

is normalized by dividing by the largest element (denote this largest element £4 ,2)- 

Re-ordering these random variables and selecting the k — 1 smallest gives us X 2 =  

j}. From here the next vector of the (k — l)-dimensional Markov chain
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can be found similarly, by adding a uniform [0 ,1] random variable, re-ordering, re­

normalizing by dividing by the largest element (denote his largest element Uk,t) and 

finally discarding the element equal to 1 (the largest). The notation that we have 

adopted for the Markov chain vector is: X \ ,  X 2 , • • •• The elements that make up 

each vector, X t , of the Markov chain are given by x ^ \  j  = I , . . .  , k  — 1:

Xi

Ui,„/Uk,k \ X 0 ) X
(2)

 ̂ U k - l , k / U k , k  J  \  X  

with xj1̂ <  x ^  < . . .  <  x ^  =  1 .

( i )
k- 1 X (2)

Jb-1

The transition from X t to X t+i is described by the following equations. Case 1 

describes how the elements of the vector update if the new random variable (Ut+1) 

is smaller than the largest element of the (k — l)-dimensional vector Oz^!). Case 

2 describes how elements of the vector update if the new random variable Ut+\ is 

larger than the largest element of the vector at time t.

Case 1: Ut+1 <

x;(t+i) _  x(0

x (*+i)i (3.2.1)

'■k- 1

where I is such that x\l\  < Ut+1 < x\l) Case 2 : x ^  < Ut

r i < k

S t )

I < i  < k

St)

x; ut 1 (3.2.2)

These transition equations will be used to derive transition densities in Section 3.3.1.

By applying F ~ l to each element of the vectors of the Markov chain Xt, we 

obtain random vectors equal in distribution to the order statistics at records from 

a general distribution.
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3.2.3 M odeling N orm alized  E stim ators at Records

The next section shows how the above Markov chain has been used to model estima­

tors of m  from a general distribution of the form (1.2.5). First we consider modeling 

consistent linear estimators.

M odeling a Consistent Linear Estimators

A general linear estimator of m  based on a sample of size n  is given by:

k
'W'k,n =  ^  Qi2/i,rn

i= l

where yi>n are defined as above, i.e. as the ith order statistic from a sample of size

n.

Using Representation 3.2.1 we have that

k k
d

TTlk,n — ^   ̂ Hi,n ^   ̂0>iF {Ui^n)  
i= l i=  1

From (1.2.5) we can say that as n —► oo

l /a

^ O i F - 'W .n )  ~
*=1 t=l

+ m

l /a

■  ~ ( ^ f  £ « ( £

=  m +  ( ^ 2 ) 1/0 E « i ( ^ 1>)1/“ (3-2.3)

Above we used that for a consistent linear estimator °* =  1-
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Let Ok,* =  J X z f V A *  for t = 1 , 2 . . .  and be defined as in Section 3.2.2.
i=l

Ok.t is a functional of a stationary Markov chain so Cfc.t, t = 1,2, . . .  is stationary. We 

will therefore often drop the t index and just use the notation In order to identify 

the vector of coefficients (a) used in functional Cfc we will use the similar notation 

to that used for estimators defined in Chapters 1 and 2 : C°, Q,  or Q  t represent 

based on vector of coefficients a°; \  or represent based on a ^  and

so on. From above, for large n we have that

(
\  i/Q

j j j -  J  (rhk,n -  m). (3.2.4)

By comparing the histograms in Figure 2.7, to those of C* in Figure 3.9, it appears

th a t Ot = (riik,n — m)/(yk,n — m).  In fact as n —> oo this is true, indeed; as

Uk,n = F ( y k,n) ~  co(yk,n -  m ) a (3.2.5)

by substituting into (3.2.4) we can say that

l/a
a  ~  (m*,„ -  m)

(mktn -  m)
(Vk,n -  m)

As EkUiyTl = E Uk>n you might also expect tha t the distribution of C* and (rhk,n — 

m ) / ( k 1/a(yi,n — m))  to be asymptotically equal. However the distributions of the 

random variables kU\in and are not equal. Also although EUk,n =  ^ the distri­

bution of ( ^ ) 1/Q {fft'k,n ~  ™) is not equal to the distribution of Ck-

M odeling the Maximum Likelihood Estimator

We now consider using the Markov Chain (X t , t =  1,2, . . . )  to simulate maximum
/  \likelihood estimator. First let C = ( ^  ) (m * - m ). Now consider the maximum

likelihood equation (1.3.3); substitute z for Q' +  m. We can say that Q t
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is the solution z' to the following equation:

k—1
k = (“ - D E ---------- % ---- (3.2.6)

i=1 Vi,n -  Z' -  m

=  (a  -  i) ^  (yk'n ~ m ) ~  ~  m )
*=* (Vi,n - m ) - z '  ( ^ 2.) 1 

Using Representation 3.2.1:

fc i  (a 1) T  (F~‘(C/*'n) -  m) -  -  rn)

Using (1.2.5) and rearranging:

l /a

fc' 1 1 -  (£ * - )
k  ~  ( ° - i ) Z - 7 7 r W

l/a

As ^ 22. =  for i =  1 , . . . ,  k we can write
t/fc.n V k , k  ’

*-i i  _  ( EllV^q 

i=1 ( & )  - *

So finally we have

£zl i _
* =  (3-2-7)

1 = 1  z

We defined C to be such tha t / C +  m  =  m*> and substituted this into

the maximum likelihood equation (see (3.2.6)). If we set Q t equal to the solution 

z' from (3.2.7) we have that

/  \  l /a

l im  C u  =  C ' =  ( 7T2-  ) ( m ‘ — m ) .
n—oo ^ t/fc,n /

When referring to Q t we will also use the notation Q  and C*. If the notation

or Cfc.t is used, we are referring to any of the functionals defined in this section.
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3.3 A nalysis o f M arkov Chain

In this section we examine some of the properties of the Markov chain, X t , and the 

functional, £*. We find the transition density of the 1-dimensional Markov chain 

when A: =  2, so X t = We also find the transition density of £* when k = 2 . 

Notice that for k  =  2, Xj^ is a Markov chain. As £2 = CL\Xl/a +  a* is a one-to-one 

function, £2 =  a \ X ^ l/a +  a* is also a Markov chain.

Using these transition densities we were able to calculate the autocorrelation 

functions of x ^  (when k = 2) and £2. We have also used simulation to estimate 

the autocorrelation functions of x ^ \  i = 1 , . . . ,  k — 1 and Q  (a = 3). In both these 

cases k = 2, 3, 4 and 5.

Throughout this section, for ease of notation we denote x ^  as x, x f +1  ̂ as x', £2,t 

as C and £2,1+1 as

3.3.1 T ransition  d en sities o f M arkov Chain  
Transition density for Markov Chain, x ^ \  when k =  2

Here we calculate the transition density of the 1-dimensional Markov chain X\ = x ^ \  

k = 2. In order to simplify notation let x ^  =  x and x f +1  ̂ =  x'. As shown by the 

transition equations (3.2.1) and (3.2.2), the value of x ' depends on the relative size 

of x and the uniform order statistic Ut+1- Below we consider the two cases; that the 

new uniform random variable is less than x; and that the uniform random variable 

is greater than x.

Case 1 : Ut+ 1 < x

(  x[l) )  =  ( x ) =» <

Case 2 : Ut+ 1 > x

By the law of total probability the transition c.d.f. of Xi‘+1) is equal to

P(Case l)P (x ' <  i/|Case 1) +  P(Case 2)P(x' <  2/|Case 2).
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These probabilities are not difficult to derive. Consider first Case 1 . Obviously 

P(Case 1) =  P (Ut < x) = x. In Case 1 x'  is given by

^ ^ =  ( x ' ) ,  with 0 <  x' <  1 . (3.3.1)

So the conditional c.d.f. of x ' given Case 1 occurs is 

P(x ' <  y|Case 1) =  y, (0 <  y < 1).

For Case 2 we have; P(Case 2 ) =  P(Ut+\ > x) = 1 — x. x' is given by

^JJ^j  = ( x ' )» where x  < x' <  1. (3.3.2)

So the conditional c.d.f. of x' given Case 2 occurs is 

P(* ' <  2/1Case 2 ) =  (x < y <  1).

So using the law of total probability, the transition c.d.f of for A: =  2 is

P (s ; <  y) = xP(x ' <  y|Case 1) +  (1 — x)P(x ' <  t/|Case 2)

I %y, 0 <  y < x=  < y y ~  (3.3.3)
| l  +x t /  -  x  < y  < 1

We can differentiate (3.3.3) to obtain the following expression for the transition 

density of x ^ \

, v / * ,  0 < y < x
p(y\x) = \  , x /[x  +  p ,  X < y <  1 

TVansition density for when k  =  2

The method for finding the transition density of C2 is similar to the method for 

finding the transition density of x ^  when k — 2 .

As we have tha t £2 =  a\Xl/a +  a2 we can say that

Therefore, given that the transition between x  and x' is split into two cases (Ut+ 1 < x  

and x < Ut+1) the transition between £ and £' must be split into the same two cases.
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We can write these cases in terms of £ and Ut+\. If we do so, the condition for Case 

1 becomes Ut+\ < ( ^ f 2) and the condition for Case 2 becomes ( ^ f 2) < Ut+i- 

The probability of Case 1 occurring is still P(Case 1) =  x, writing this in terms 

of £ we obtain P(Case 1) =  • By substituting (3.3.4) into (3.3.1) we find

that the transition from (  to ( '  can be described as

a2jJl /Q
C  =  ~r—  - - - - - - H a 2 > a 2 < C , < l .

C  “  a 2

The conditional density of ( '  given Case 1 , is found by taking p i , making the trans­

formation x' = ~Q2)  then substituting (3.3.4). It is therefore given by

, a(z  -  a2)ot~1 ^  ^  „
PCl^'.O  =  -------- «------- » fl2 <  * <  !•

a l

Similarly, the probability of Case 2 occurring in terms of £ is given by P(Case 2) =  

1 — x  = 1 — ( ^ f 2)  • The transition is described by

< '  =  7 ^ r  +  a * ,  C < C ' < i -
u t

Finally, the conditional density of given Case 2, is given by

_  ( r . =  a ( C  -  a 2 ) ° Q ?  f  <  .
P < 2 ( C , C )  ( a f _ ( c _ a 2 ) a ) ( c , _ a 2 ) Q + i >  -  •

Therefore, by the law of total probability, we have that the transition density of £ 

for k = 2 is given by:

{ q(^-Q2)q HC-aa)0

Q(z-q2)Q- 1(C-Q2)Q , q(C-Q2)° 
a\a l" (•s-a2)“+i ’

0>2 < * <  C  

C  <  Z <  1

3.3.2 A utocorrelation  F unctions o f M arkov Chain

In this section we derive the autocorrelation function of X \  =  x ^  when k =  2 and 

the autocorrelation function £2- A trajectory of x ^  where t = 1 , . . . ,  1000000 and 

k =  2, 3, 4 and 5 is simulated. The autocorrelation function of this trajectory is
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estimated and plotted. The autocorrelation function of a time series X \ , . . .  ,x„ is 

estimated by

_  E ? = l  (x i -  x )  ( Xj+l -  x )

(*< -  ®)5
^ ( 0  =  — -^ ~ r  , *2 > (3-3.5)

— is the sample mean. Another estimate of the autocorrelation ni=i
function is

it u\ -  * ) ( x j + i - i )  , ,
2 (n -  fc) £ " =1 (x t ~  s )2

The sample autocorrelation function (3.3.6) is a better estimate of the autocorrela­

tion function than (3.3.5) in cases where the time series is a long memory process. 

Indeed the estimate (3.3.5) has large bias in these cases. However, x ^  is a short 

memory process. The sample autocorrelation function (3.3.5) usually has a smaller 

mean square error than (3.3.6) in this case. For more details see [4].

The simulation for k = 2 verifies the analytic results. The autocorrelation func­

tion of C* (k =  2) is also derived. It can be seen that for k =  2 the autocorrelation 

function does not depend on the vector of coefficients a. Using the simulated Markov 

chain, the autocorrelation function of £* is estimated and plotted for a = 3. The 

simulation results when k =  2 are compared to the analytic results.

Autocorrelation function of x [ 1̂  when k =  2

Denote the autocorrelation function of (k = 2) as Rx(l), where I is the lag. So

_  Covjx1,11, ^ 0 ) =  E(x<1)x (1‘+,)) -
V a rx f  VarCxf1)

x[1̂ is a one-dimensional, first order Markov chain so it has an autocorrelation 

function of the form

R(l) = exp (IX), (3.3.7)

where A is a constant and I is the lag.
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Using p(y\x)  from above we can derive the autocorrelation function of x ^  at lag 

one, and hence deduce the parameter A from (3.3.7). Let

R  r n  =  Cov(J i<>' I i1+l)) 
l(  ) Var(x<‘>)

Again we use the simplified notation x ^  = x  and x5t+1* =  x ' . Using the transition 

density p (x ';x) and the density of x, p(x) =  1 , we can say that:

E(xx') =  f  f  x 2x'dx'dx + [  f  x 2x' + ^—dx'dx =
J o J o  J o  J x  x

E(x) = f  f  x 2dx'dx +  f  f  x 2 + ^ d x ' d x  = \-
J o J o  J o  J x  x  2

E(x') =  [  [  xx'dx'dx + f  f  x 'x  +  —dx'dx =  i
J o  J o  J o  J x  x  2

E(x2) = [  f  x 3dx'dx +  f  [  x 3 + ^ d x ' d x  = i
J o  J o  J o  J x  x  d

_  E(xx') -  E(x)E(x')
x{ } E(x2) -  (Ex )2

1 

3

As R x(l) =  exp (/A); A =  log Q)  and so R x(l) =  exp (/log ( | ) )  =  3_i. This can be 

verified by comparing to the plot of estimated autocorrelation for k = 2 in Figure 3.4.
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.(*) X (t)
-  X (0 X (0

IjO

0 5

00- 0 1
150150

(c) k  =  4

(a) k  =  2

0 5

00 ^ OjOi 
15 0

(b) k  =  3

(d ) k  =  5

Figure 3.4: Estimated autocorrelation function of x ^  . . .  where k =2, 3, 4 
and 5 and t = 1000000. In Figure (a) the exact autocorrelation function Rx(l) is 
marked with a +.

Figure 3.4 shows that as k increases, the autocorrelation function (for any I) of

x ^  increases. The autocorrelation of the largest element of the Markov chain X t\
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x\ when k = 2, x l2 when k =  3, x$ when k = 4 and x \  when k =  5; are similar 

according to the simulation results.

Autocorrelation function of Markov Chain when k  =  2

It is possible to calculate the autocorrelation function analytically for (2- As with 

, C2 is a one-dimensional first order Markov chain therefore it has autocorrelation 

function of the form (3.3.7). Now the constant A will depend on a. We denote 

this parameter as AQ and the autocorrelation function as R^2(l). As above we can 

calculate the autocorrelation function for I > 0 by finding R{2(1), substituting into

(3.3.7) and solving for AQ. We have tha t i ^ 2(l) is given by

Cov([ai(xJl>)1/“ +  a2], [ai(x(1t+1>)1/o +  a2])
*& (1) =

Var(a1(xjt*)1/̂“ + a2)
E(x1/'“x '1/Q) -  ECx'^JECx'1/")

E(x2/“ ) -  (ECx’/o) ) 2

The expectations above can be found using the transition density p(x,x'). Indeed;

E ( ( x x ' ) 1/Ql) =  [  [  x ^ x n ^Qd x ' d x  +  f  (  x ^ ~ x n ^a +  X x_ 2a d x ' d x
J o  J o  J o  J x  x '  a

E(x1//q) =  f  [  x 9̂ 1 dx'dx +  [  [  x~^~ H — dx'dx
Jo Jo Jo J x  x  2

Efx'1/0) — f  (  xx'l/Qdx'dx +  f  f  xn/ax  H dx'dx
J o  J o  J o  J x  x' a

E(x2/,°) =  [  f  x ^ dx'dx +  [  f  x~£~ H — dx'dx
Jo Jo Jo J x  x '2

Substituting these expectations into the expression for i?^2(l) above, we get R<;2(1) = 

exp(AQ) =  So the autocorrelation function of C2 is given by

* ■ > ' > - ( t T 2 ; ) ‘ ■ 13 3 81

Notice that this autocorrelation function is not affected by the coefficient ai.
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0 .5-1

1=1

1=2

1=

1 = 4

10

Figure 3.5: Autocorrelation function of (&, (3.3.8) as a function of a. Lags / =  1,2, 
3, 4 and 5 are displayed as separate lines.

Figure 3.5 shows (3.3.8) plotted against a. Different values of I are plotted 

as separate lines. As a  increases, the autocorrelation function increases for any I. 

Figure 3.6 shows the estimated autocorrelation functions for k = 2, 3, 4 and 5 with 

a  =  3, from simulated data. When a  = 3 and k = 2 the autocorrelation function of 

Ot is given by R q2{1) = (3/7)/. This is also plotted on Figure 3.6 with a +.
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14)

- 0.1-ai
200200

(a) k = 2 (b) k = 3
14)

- 0.1-ai
200200

(c) k = 4 (d) A; = 5

Figure 3.6: Estimated autocorrelation function of Ck from simulated data. Here k 
takes values 2, 3, 4 and 5, a = 3 and t = 1 . . .  10000. In Figure (a) the exact 
autocorrelation function R^2 is marked with a +.
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3.4 Comparison of th e Estim ators and Their Re­
lated Functionals on the Markov Chain

In this section we verify that the model described in Section 3.2 produces functionals 

with a distribution equal to the asymptotic distribution of their corresponding nor­

malized estimator. Indeed, we must verify tha t for large n Q  = (ra° — m )/(yktn — m), 

Q  = (m * - m ) / ( y ktn- m ), ( (k2) = ( m ™ - m ) / ( y k>n- m )  and C*3) =  (m(3) - m ) / ( y kyn-  

m). This has been done in the following ways: First we derive the densities of ^  

and Cl3) for fc =  2,3 , . . .  and general a  > 1. We then carry out a simulation study 

and compare the histograms of the normalized estimators and the functional.

3.4.1 D ensity  Function of

Throughout this section we will continue to use the notation =  x. In order 

to derive the density of we use the definition from above tha t is given by 

(W  = (1 +  Ck)x1/a — Ck, where Ck is as defined in (2.1.3). However, the derivation 

is valid when any coefficient > — 1 is substituted in place of Ck. The c.d.f. of 

C)[2) is given by

P ( C f < * )  =  P ((1 +  CW*1/ o - C a < * )

= P \ x  <

(2)
By differentiating this expression we find that the density of is given by

'<?<•>-<*(t~(‘ta).*1*'‘ (‘- (ttS)T’ -'c*s 151 (l411

The density (3.4.1) can be seen to be exactly equal to the asymptotic density 

(2.2.19) with u  = lj4. Notice for the case k = 2 we have that Ck = a / 2, by replacing
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Ck = cx/2 by =  (a  — l ) /2  we obtain exactly the asymptotic density (2.2.27) of 

(m* -  m)/(yk,n -  m).

3.4.2 D ensity  Function o f

Before we derive the density of c£3) =  a ^ x j^  +  a i x ^  + aj^ we will simplify the 

notation and let x ^  =  x and xj^ =  y. As we have the relation a\ +  02 +  <23 =  1, we 

can write one coefficient in term of the others. Indeed, we will write ai =  1 — a* — a*.

We find the density using the same technique as in Section 2.2. The one-to-one 

differentiable function <I> : R2 —* R2 that maps (x , y ) onto £ =  (£1, 62) is written 

below. During the derivation we will consider the coefficients a* and a* in place 

of and This is partly to simplify notation, but also to highlight that the 

density can be applied to any £* =  (1 — a* — ak)x +  aiy +  a* with coefficients a* and 

ak that satisfy 1 — a* — a* > 0 .

<I> :

£1 =  (1 -  a{ -  ak)x l/a +  aiy1/a +  ak 

£ 2  =  </•

Its inverse is then given by,

( £1 ~  ai£2/Q ~
^  1 -  ai - a k )

£2

where 1 — a* — ak ^  0. The elements, x and y , of the Markov chain have the same 

distribution as the first and ith uniform order statistics from a sample of size k — 1 . 

Their joint density is therefore given by,

- XY~2’

$ -1  :

X =

y =

106



The Jacobian of the transformation is given by

D<&'
drj

l/a a—1

1 0>i fljfc I 1 fli dfi

So using (2.2.2) the density of is

P<<3,«  =  b j \ z  -  a,**/" -  a*)Q_1 ( x  -  )  (1 -  x )‘ - dy

    ■ v 7  ̂ 1 tor di +  ajfc < z <  1 .
The density Pa3)(z) is valid where a* < 2 < 1

*»k
When k = 3 we have that =  £° a simpler form of the density can be 

found. Indeed, if we make the change of variable u =  °* ° , we find that

PA3){z) = c[B(14(z) , q -  l , a  -  1) -  B(/3,q  -  l , a  -  1)], a3 <  z <  1 (3.4.2)’3

where
2 (2  -  a3)

c =
2q—1

(02(1 — d2 — 03))° ’ 
02—

l - a 3’

» / \ _  /  1 for a3 <  z < a2 +  a3
4 ~  I for a2 +  a3 <  z <  1z-a.3

and 2?(z, a, 6) is the incomplete beta function:

B (z ,d ,b )=  f  ua l (l — u)b ldu. 
J o

3.4.3 D ensity  Function o f w hen k  =  2 , a  >  2

Using the definition (3.2.7) we can see that when k = 2,

2 +  a  -  1 1/a a  -  1

“  2 1 ~ 2 ~

As is uniformly distributed on [0,1] when k = 2, we have that its density is given

by f i (x)  = 1, 0 <  x  <  1. Therefore using the transformation g(x) = 2+°~lx lta —
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we find that the density of C£ is given by

r  / \ 2a { 2 z  +  ( a  — 1 ) \ Q 1 a  —1
/ « W = 2 T ^ l (  2 + a — 1 )  * * -  —  < $ < 1 (3.4.3)

Compare this to (3.4.1) with C^A) =

Using the above densities it was possible to calculate the moments displayed in 

Table 3.2. Prom here it can be seen tha t when k = 2 the expectation of C* is 0.5 for 

a  =  2,5 and 5. The variance of C* increases with a. The variance of C* is smaller 

than the variance of C ^ for equivalent a . The mean of C* is greater than that of 
£ ( 2)

The densities of C ^ and ( ra ^  —m ) /  (yk,n — m)  have been plotted for a variety of 

k and a  in Figure 3.7. They verify that for n as small as 100 C ^  is approximately 

equal in distribution to (m ^  — rn)/(yk,n — m )-

Random variable a EC EC2 VarC

<2 2 0.333 0.333 0 .222

G 2 0.500 0.375 0.125

Cl 3 0.375 0.375 0.234

Cl 3 0.500 0.400 0.150

Cl 5 0.417 0.417 0.243

C2 5 0.500 0.429 0.179

Cl 2 0.182 0.182 0.149

Cl 3 0 .220 0.219 0.171

Cl 5 0.258 0.268 0.191

Table 3.2: Moments calculated from densities (3.4.1), (6.1.1) and (3.4.3) for k = 2 

or 3 and a = 2, 3 and 5.
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(a) a  =  3, (m (2) -  m ) / { y k,n ~  m) (b) a  =  3, C(2)

(d) k =  2 , C(2)(c) k =  2, (m {2) -  m ) / ( y k<n -  m )

(f) fc =  3, C(2)(e) /c =  3, (m (2) -  m)/ (yk, n ~  m)

Figure 3.7: Graphs on the left hand side show the asymptotic densities of the nor­
malized estimator (m ^  — m)/(yjt,n — m )- Graphs on the right show densities of 
Plots (a) and (b) each show three densities with a  =  3, In each plot the different 
densities relate to k = 2, 3, 4, and 5. Plots (c) and (d) show densities with k = 2, 
plots (e) and (f) show densities with k = 3. There are three densities shown on each 
of these four plots, the three densities have parameters a  =  2, 3 and 5 respectively.
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3.4.4 H is to g ram s

This section shows the results of simulations that verily that for large n  we approx­

imately have Ot =  (m — m ) / ( y kn — rn).  100 000 samples of size k — 1 were drawn 

from a uniform distribution. The elements of each sample were sorted into ascend­

ing order and the resulting order statistics were labeled x [l\ . . .  , x k\ .  For each of 

these samples C°, and C* were calculated using a  =  2, 3 and 5 and A: =  2, 3, 5 and 

10. Figure 3.8 show histograms of £° with the density (6.1.1) plotted. It has been 

included to show that the derived density (6.1.1) fits the histograms of C(3) (which 

is equal to C° when k =  3). Histograms of C° for a  =  2, 3 and 5 and k =  2, 5 and 

10 can be found in Figure 3.9. The outline of the histogram of (* is also marked, 

with x . By comparing Figure 3.9 to Figure 2.7 we can see that ( ° appears to have a 

similar density to the density of (m° — m ) / { y kyn — m )  when n =  100 and £* appears 

to have a similar density to (m * — m ) / ( y k}Tl — m) when n =  100. We have seen from 

earlier simulations that the density of ( rh — m ) / ( y k }n — m )  when n  =  100 is very 

close to its asymptotic density. The density 3.4.1 has been plotted on the histograms 

related to k =  2 and appears to fit the histogram well.

*

M

0.925 -  0.525 -  0.125 0.275 0.675 1.525 -1 .0 2 5  -  0.525 -  0.025 0.475 0.97 2.825 -  2.075 -1 .325  -  0.575 0.175 0.92J

(a) a = 2, C° (b) a = 3, C° (c) a = 5, C°

Figure 3.8: Histograms of £° =  Here a  = 2 ,  3 and 5. t =  1 . . .  100 000. k =  3. 

Histograms have been plotted with density (6.1.1).
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J (fin̂
2.125 -1 .475  -  0.825 -  0.175 0.475 2.125 -1 .475  -  0.825 -  0.175 0.475 2.125 -1 .475  -  0.825 -  0.175 0.475

(a) k =  2, q = 2 (b) k =  5, a =  2 (c) k =  10, a =  2

J ]k.
2.125 -1 .475  -  0.825 -  0.175 0.475 2.125 -1 .475  -  0.825 -  0.175 0.475 2.125 -1 .475  -  0.825 -  0.175 0.475

(d) k  =  2, a  =  3 (e) k  =  5, a =  3 (f) it =  10, a = 3

Hi

A

i
2.125 -1 .475  -  0.825 -  0.175 0.4752.125 -1 .475  -  0.825 -  0.175 0.475

(g) k  =  2, a =  5 (h) k =  5, a =  5 (i) fc =  10, a = 5

Figure 3.9: Histograms of 10 000 Q  with parameter a  =  2, 3 or 5 and k =  2, 5 

and 10 (as marked below each histogram). From the same 10 000 Markov chains Q  

was calculated. The percentage frequencies of Q  (crosses) were plotted at each of 

the midpoints of the original histogram. The sample means of Q  and Q  are plotted 

using vertical dashed lines. The sample mean of the Q  is less than that of Q  in all of 

the above plots. The density of =  C2 (3-4.1) has been plotted on the histograms 

relating to k =  2 with a solid line.
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3.4.5 Efficiency

In this section we find the efficiency of with respect to the Q.  In order to calculate 

efficiency, the MSE of £* is estimated and the MSE of ££ is found analytically (see

(3.4.5)). In this study we consider equal to C£, C*> C*2) and c£3). First we calculate 

the MSE of ‘linear £*’• By linear Cfc we mean the functionals Cfc that can be written
jfc-i

in the form +  ak. This MSE is given by
»=i

o \'E K . - 0F  -

k k 

i=l j= 1

Using the well known expression for the distribution of any two order statistics from 

a sample of size k — 1 drawn from the uniform distribution (see (1.3.6)) we find that

p m  j ,  „/» r(fc)r(» + i/a)rq + 2 /a )  r(fc) t 
(Ullk-iUJ,k- i )  T(k +  2 / a ) r ( i ) T ( j  + l / a )  F{k + 2/a) h"

and hence we find that the mean square error of a general linear functional is given 

by
,2 _ r(fc)

and so

( 3 4 5 )

Therefore in a similar way to in Section 2.4.2 we can estimate efficiency of Cfc with 

respect to by

'»<« -  r(fr + 2/a)l'A-'l / s  -  01' ' «

Here each Q, is calculated from a separate set of A: — 1 uniform order statistics.
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From (3.4.4) and (3.4.5) we can see tha t the efficiency of linear Ob is equal to 

the asymptotic efficiency of m for F(x)  =  cq{x — m )Q +  (o(x — m)a). When F(x) = 

c q( x  — m)a , e.g. the beta distribution with 0  =  1, the (non-asymptotic) efficiency 

of rh is very close to the asymptotic efficiency of m. Therefore the finite sample 

efficiency of rh is very close to the efficiency of linear Ob when F(x)  is Beta (with 

0  = 1) or Weibull. This is verified by comparing Figure 3.10 to Figure 2.8.

The efficiency of £° and in Figure 3.10 are approximately constant in k. When 

a = 2 they are approximately 1 and 0.86 respectively. The efficiency of m° and m * 

when F(x)  is the beta c.d.f. with a  = 2, 0  = 1 and n = 100 are also 1 and 0.86 

respectively (see Figure 2.11).
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(a) a  =  2 (b) a  =  3
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(c) k =  5 (d) A: =  10

Figure 3.10: Estimated efficiency of Q,  C*» C£3) and c f } with respect to (analytic) 
££ as defined above. In figures (a) and (b) k = 2 . . .  20. In figure (c) A: =  5 and in 
(d) k = 10. In figures (a) and (b) a  =  2 and 3 respectively. In figures (c) and (d) a 
takes integer values in the range [2 , 10].
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3.5 Functional M odel: Unknown Value of the tail 
index S tudy

In a similar way to Section 2.5, we now investigate how the functionals £°> 2\

and C* react to using the wrong value of the tail index. That is to say we study the 

efficiency of linear functionals

Ck W  = y ia i ( '0 ) x \ t)1/Q
1=1

where are coefficients as considered in Section 2.5 and x ^  = 1 . We also study 

the efficiency of the functional C(i?). The functional £*(i?) is equal to the solution 

z to the following equation:

(t f - i ) y v* i 5 J _  = k .
(x< >)Vo -  2

When k  =  2 the solution z is linear in xj1' and x£ .

First we derive the efficiencies analytically. We then undertake a simulation 

study that confirms and extends the analytic results.

3.5.1 A nalytical C om parison  o f E stim ators

It is easy to show analytical results similar to those in Section 2.5. From (3.4.5) we 

have the MSE of This will be the benchmark by which the other functionals

will be judged. From (3.4.4) we have th a t the MSE of linear Ck($) is given by

~  ° ) 2 =  T x ^ M (a W ) 'A aW '

Therefore by considering eff(C/t) =  E{Q  ~  0 )2/ — 0) 2 we can say that 

«* (« (* )) =

and

eff(c;(tf)) = eff(C) = eff(m-) =
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Also, as when k — 2, Q  and m* are linear functions of their respective order statistics 

we can say that, for k = 2

«»<® -  " i ” - ™  -

The efficiency eff(C£($)) is maximized at d = a  +  1. These three efficiencies have 

been plotted on the graphs of efficiencies from simulation.

3.5 .2  S im ulation  resu lts

In this section we make a similar simulation study to the one in Section 2.5.2. Here 

10 000 samples of size k — 1 are drawn from a uniform distribution. The sample is 

sorted into ascending order, then the resulting order statistics labeled x^ \  . . .  , 

These are used to create functionals C° C* C** An estimate

of the efficiency with respect to (analytic) C°(a ) °f these functionals is made, and 

has been plotted against d for a range of k  and a  in Figure 3.11. The efficiency has 

been estimated by / 10000

5  E  w )r -  °)2 •
r =  1

The analytical efficiencies eff(C£), eff(Q) and (for k =  2 only) Q  are also plotted on 

Figure 3.11.

Figure 3.11 verifies the derived efficiencies; the derived efficiencies plotted match 

the simulation data well. It also shows th a t the value of d that maximizes eff(C£($)) 

is greater than a  (but less than a  + 1). The efficiencies of Q  (for all k and a  plotted) 

appear to be the same as the efficiency of m * shown in Figure 2.17.

116



- c  oC° • <;*

(g) k = 2, a  =  5 (h) k = 3, q =  5 (i) k = 5, a  =  5

Figure 3.11: Estimated efficiency, eff(C*(#)), of Q ,  Q  and CJ 35 a function of •&. d  
varies from 1.5 to 10, a  = 2, 3 and 5 and k  =  2, 3 and 5. The estimated efficiency 
is calculated from a sample of 10000. Also shown are the analytic efficiencies of (  

and and where k  =  2, Q .

(e) k =  3, q =  3 (f) k =  5, a =  3(d) k =  2, a =  3

(a) k =  2, q =  2 (b) /c =  3, o =  2 (c) k =  5, a  =  2
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C hapter 4 

Two M ore E stim ators o f m

In this chapter we define two new estimators of m.  The first makes use of the 

trajectory of the order statistics, not just the order statistics at a particular sample 

size. Indeed, the new estim ator is a weighted average of m° or m* estimators at 

smaller record times and at the current record time. The weights depend on the 

waiting times, Wk,t • In these estimators it is assumed that the parameter a  is known. 

The second is an estim ator of m  th a t assumes that both parameters a  and Co are 

known. We show th a t if we know the value of parameter Co, significant improvements 

can be made in the estimation of m  in most circumstances.

It has already been shown th a t functionals on the Markov chain X t can be used 

to simulate estimators. In this Chapter we rely heavily on functional models to 

study the new estimators.

4.1 W eighted E stim ator

4.1.1 E x p ected  W ait for N e x t  U p d a te

Here we use well known techniques to derive probability mass functions (p.m.f.s) 

and expectations relating to waiting times. Throughout this section we will be 

considering the t th type 2 k th records. In order to simplify the explanations, we will 

refer to these simply as t ih records, where t is equal to the record count, A^ n. This 

means, for example, tha t if we refer to the t th waiting time we mean the t th type 2
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f

fcth waiting time, Wk,t, and if we refer to the t th record time we mean the fth type 2 

fcth record time, 7*,*.

Below we derive the expectation and variance of the waiting time for the t +  1th 

record given th a t the t th record time is known. In order to do this we first find the 

conditional probability mass function of the t +  1th record time given the £th record 

time is known. This can be derived as follows. If the t th record occurs at time /, 

then in order for the t +  1th record to occur at time r  (where r  > /), no records may 

occur a t times / +  1 , . . . ,  r  — 1, and a record must occur at time r. The probability 

tha t a record occurs a t some time n  is given by P ( I kjTl =  1) =  k / n , this means that 

P(-ffc ,n  =  0 )  =  (n — k) /n .  This gives us

P ( T k , t + \  =  r | T k tt =  I)  =  P ( I k , l + l  =  0 , . . .  I k , r - \  =  0 ,  h , r  =  1 )

k ( r  — k  — 1 )!Z! , ^  ,

=  r u i r w  ■ k ^ l < r

By definition Wk,t+i =  Tkyt+i — Tfc.t+i — this means that conditional p.m.f. of the 

waiting time Wk,t+i given 7*tt is

P ( ^ , I+1 =  w\Tk,> =  o  =  w > 0 , k < l .  (4.1.1)

Using this we can calculate the expectation of Wk,t+i, the expectation of W%t+1 and

the variance of W k , t + \ -  These are given by

I — k  +  1
E ( W k , t + i \ T k , t  =  l )  =  fc r T - -

f ( W 2 \t  — I) — ( 2 1 - f c  +  2 ) ( l - f c  +  l )
E(VPt ,.+i I Tt,t - I )  (k _  _  j )

l k ( l - k + l )
Vax(W k,t+x\Tk,t -  I) -  (fc_ 2) ( f c _ i )2

This shows that, given the t th record time, the waiting time of t + 1th record is

independent of record number, it depends only on k  and the record time, T k,t , of

the previous record. The expected wait for the next update when k  — 1 is infinite 

for all I > 1 .
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We now wish to investigate whether, if we wait for a new record but none come, 

have we reduced the amount of time tha t we expect to wait? That is to say, we wish 

to find out if the expectation of 7*,*+1 — n — 1 is longer if n =  7fctf or if n = Tk,t + j ,  

where j  € Z+ and n is the current time. We assume n < Tk,t+ 1 •

Letting T*,* =  Z, the p.m.f. of T^t+i — n — 1 when n = Tk,t =  Z is equal to (4.1.1). 

This means that the expectation of T^t+i — n — 1 is f~ ^ '1.

The probability mass function of Tk,t+i — n — 1 where n = 7*,* + j  =  Z +  j ,  

(assuming n < Tktt+i) is given by the following expression

Pffib.t+i ~  n -  1 =  w\n = Z +  j, n < Tktt+i)
=  P(-ffc,/+j+l == 0, . . . , I k tl + j + w  — I k , l + j + w + 1 =  1)
_  k(l + j  + w — k)\(l — hj)!

(Z +  j  +  w +  1)!(Z +  j  -  &)! ’
The expectation of the wait for record t + 1 at time n = I +  j  (assuming < 

I + j  < Tk,t+i) is given by *+1 • This is larger than Prom this it can be

seen that the longer you wait for a record, the longer you expect to wait for it. The 

relationship is linear: for every observation that you wait, you expect to wait an 

extra 1 / (k  — 1) observations on top of your original expected wait. Indeed,

E(Tfcit+i -  n -  l\n = I +  j )  -  E(7/k,t+i -  n -  l |n  =  Z) =  ^ rry -

This phenomenon is demonstrated through the following example. If k = 4 and 

the Zth type 2 4th record occurs at time n = 50 (i.e., T4)t =  50 for some t € Z+), 

the expected wait for the next record, T^t+i, is 50^ 41+1 =  15|. If we make one 

more observation (so now n = 51) and it isn’t a record, our expected wait for the 

next record is 51~_4̂ 1 =  15| +  |  =  16. If we then make a further 19 observations 

without encountering a new type 2 4th record, the expected waiting time becomes 

I9.zA± 1 =  2 3 I. So the expected wait for the next record has increased because of 

having waited longer. Figure 4.1 shows the expected wait for record t + 1 against 

n, the current time.

From the discussion above we can see that the p.m.f. can be found conditionally 

on the current time n. We will see below that it can also be found conditionally on
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SO 60 65 7055

Figure 4.1: The y-axis of this figure shows T4)f+i — n +  1, this is the expected wait 
until T4)(+i from time n. The x-axis shows the time n. We have made the assumption 
that T4i* < n <  T^t+i. Also marked on the plot with •  are the points related to the 
above example: at n = I = 50 the expected wait i s l 5 | ,  a t n  =  51 the expected wait 
is 16, at n = 70 the expected wait is 23 |.

the value of the kth order statistic at time n , provided that we know the distribution 

F(x). At time n (T^t < n <  Tktt+i), the conditional p.m.f. of the wait for the next 

record (given yk<n) is given by

PpV t+1 -  n -  1 =  w\yktn =  x] = (1 -  F{x))wF(x), w e  N.

In particular, if n = Tfcit, we have Tktt+i — n — 1 = Wk,t+i and so

P[Wfc,t+i =  w\ykyTl = x] = (1 -  F{x))wF(x), w e  N.

Notice that for n such that Tk,t < n < Tkyt+\, we have that ykyU is constant for all n 

and yk>n = yk,Tk,t-

The conditional c.d.f. of Wkyt+1 given yk<n (Tk>t < n <  Tkyt+\) is

P[IV*,«+1 <H v*.» =  *] =  = l - ( l - F ( x ) r +\  » £ N .  (4.1.2)
»=0

Notice that this is independent of t.
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4.1.2 A  N ew  E stim ator: W eighted  A verage Estim ator

We now consider a new estimator:

where rhk,n is an estimator based on the k  smallest order statistics from a sample 

of n. rhk,Tk<j is therefore the estimator at record time n = T k j . We will refer to 

the estimator rhk,n as the original estimator associated with the weighted estimator

the optimal linear estimator, then its associated weighted estimator (WE) is denoted

The estimator given by (4.1.3) is a weighted average of the elements of the 

trajectory of estimators ihk,n, n = Tk,\,Tk,2 , __  The weight given to each original

for the record. This means that, if Tk,t+ 1 =  then the numerator for the weight

for estimator rhk,Tkt+l is Tk,t+ 1 — Tk,t = j • The denominator is the total number of 

random variables added since sample size n = k. This means that a larger weight 

is given to those estimator that we had to wait longer for.

The WE has been designed to create a greater correlation between consecutive 

members of a trajectory of estimators (as n  —► oo) than the original estimator. In 

a trajectory of original estimators as n —> oo, sometimes ifik,n overestimates and 

sometimes it underestimates. By taking an average of these estimates we hope to 

reduce bias and produce a more predictable estimator. Larger weights are given to 

the estimates that we had to wait longer for, we hypothesize that if we have had to 

wait a long time for an estimator it may be a particularly good one. This weighting 

will tend to favor estimates made at larger sample sizes, which in general are better.

We wish to compare mJJJf to m k,n through a simulation study. Even for very 

large sample sizes the estimator rrt^E will not have updated very often, we therefore 

carry out a simulation study using functionals of the Markov chain Xt  (as defined

(4.1.3)

™%n- ^ e  notation that will be used below is as follows: if the original estimator is

m oWE and if the original estimator is m*, then the associated WE is denoted m*WE.

estimator rhk,Tkt is )• The numerator is one greater than the waiting time
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in Section 3.2). In Section 4.1.3 we define a functional on X t that has the same 

distribution as Tnj^Tk t - Table 4.1 and the scatter plots in Figures 4 .2  and 4.3 we 

verify that the distributions of the functional and estimator are equal. We then study 

trajectories of this new functional and its efficiency with respect to the asymptotic 

functional £°.

4.1.3 W eighted  F unctional

Here we derive a functional, £™tE, th a t is equal in distribution to (m ^ f  — m )/{yk,n —

(U k T  \  Q
— J +  m  ~  mk,Tktt > therefore

Nk,n stt v 1/a

E ( ^  + d ( ^ )  a .

If we normalize by subtracting m  and multiplying by , then after simpli

fication we obtain

- w e
m k,n ~

■k,Nk,, - k
+ 771.

1/q

{Uk,n ,) l/o 7 i.Wt,  -  k

Nk,n
E ( ^ kJ + 1) (uk,Tj 1/a Ckj
3=1

(4.1.-

Before we define the functional Cĵ tE, we wish to be able to model Uk,rk,t i Wk,t 

and Tk,t without having to simulate order statistics between records. We must not 

model Uk,Tkt independently from the functional Ckj,  or the weighted functional will 

not be equal in distribution to its related WE. If Uk,t are the random variables that 

normalize the Markov chain Xt  (see Section 3.2.2), we can model Uk,rk,i w^h  U\ = 

Uk,i- Subsequent uniform order statistics Uk,rk,t can ho modeled by Ut =  Ut-\Uk,t-

M odeling  Wk,t an d  Tk,t 

Letting

Wk,t +  1 =
log(l -  y)
log(l -  U t )

, t = 2 ,3 , . . .

we have that Wkyt = Wk>t. This expression for Wk,t was obtained by inverting (4.1.2). 

Letting Tk,\ =  k and f ktt =  +  W k,t +  1, t > 1 , we have Tk,t = Tk<t.
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Now let us define (,™tE as follows.

<ZE =  E ( ^ . i  +  W O w -  (4.1.5)
— t=l

As the R.H.S. of (4.1.5) is equal in distribution to the R.H. S. of (4.1.4), and yk,n = 

F ' 1 {Uk,n)j we have that ( ^ E =  (mJJJf -  m)/{ykyTl -  m).

We say that the functional is the original functional associated with the 

weighted functional C,k[tE. We denote by Q™E the weighted functional associated 

with the original functional Q t. We denote by CiuE weighted functional associ­

ated with the original functional Q t. We say that Q is the functional related to 

the estimator m kj-k t and E is the functional related to the estimator m*k Tk t . As 

with earlier functionals we will drop the t and k subscripts where convenient. We 

will also drop &, n subscripts or n subscripts where convenient on estimators.

4.1.4 Sim ulation Study

In Chapter 3 it was demonstrated that if F(x)  ~  co(x — m )a as n —» oo, then for 

large n we have (rh — m)/(yk>n — m) = Ofc- The scatter plots in Figures 4.2 and 

4.3, and moments shown in Table 4.1, verify that (ra° — m)/(yk,n) =  C£> {rnoWE — 

m)/(ykyn - m )  = Q WE, (m* -  m) / (yk<n) = Q  and (m*WE -  m ) / (yktTl -  m) = Q WE. 

The subscripts have been dropped on the functionals as the equality in distribution 

is true for any t.

In this simulation study we simulate 10 000 trajectories of random variables from 

the distribution F(x) = cq( x  — m)Q, with Co =  1, m = 0 and a  =  3. Each trajectory 

is of length TktC+ Here c is the record number such that TkyC+1 < 1000 and 

r *)C+2 >  1000. At each record number in each trajectory the order statistics are 

calculated, and estimates m°, m*, m oWE and m*WE are made. Similarly, 10000 

trajectories of Markov Chain X t and Ut, 1 < t < C  are made. Here C  is such that 

Tkfc +i < 1013 and Tktc +i > 1013. For each t the functionals £°, C*, £oWE and £*WE 

are calculated. These functionals use the parameter a = 3. We also define the
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Estimator Mean Std Dev

k 2 3 4 5 2 3 4 5

m °— m
Vk.n-m 0 .2 6 1 0 .1 6 7 0 .1 2 2 0 .1 0 1 0 .5 1 1 0 .4 2 3 0 .3 6 4 0 .3 2 1

m * —m
Vk. n-m 0 .4 0 9 0 .2 9 1 0 .2 2 8 0 . 1 9 3 0 . 4 0 9 0 .3 6 0 0 .3 2 0 0 .2 8 8
„ o tV £  „m  —m

Vk. n-m 0 .4 9 9 0 .2 8 8 0 .1 9 5 0 . 1 4 9 0 . 4 4 7 0 .3 9 1 0 .3 4 2 0 .3 0 2
— •WE — m —m

Vk. n-m 0 .6 9 2 0 .4 6 6 0 .3 5 0 0 .2 8 5 0 .3 7 1 0 .3 3 0 0 .2 9 6 0 .2 6 8

c 0 .2 6 8 0 .1 7 1 0 .1 2 2 0 . 0 9 7 0 . 5 1 0 0 .4 2 3 0 .3 6 1 0 .3 2 4

c 0 .4 1 4 0 .2 9 4 0 .2 2 7 0 .1 8 9 0 .4 0 8 0 .3 6 1 0 .3 1 8 0 .2 9 1

£0 WE 0 .4 9 3 0 .2 8 6 0 .2 0 0 0 .1 5 4 0 .4 5 7 0 .3 8 4 0 .3 3 5 0 .3 0 3

*WE 0 .6 8 6 0 .4 6 4 0 .3 5 5 0 .2 8 9 0 .3 7 3 0 . 3 2 5 0 .2 9 1 0 .2 6 8

Table 4.1: Sample mean and standard deviation of normalized estimators m°, m *, 
m oWE and m*WE and their related functionals. Mean and standard deviation are 
calculated over 1 0 0 0 0  samples of estimators at n = TkyC and functionals at T*,c, 
where c and c are as defined above.

record number c such that T^c+i < 1 0 0 0  and T^c+2 > 1 0 0 0 .

Table 4.1 shows the means and standard deviations for various k of the normal­

ized estimators and their related functionals. The means and standard deviations 

of estimators are based on 10 000  runs of the estimators rhktTk c and and

the functionals Cfc.c and ( £ E. The means of the weighted estimators and weighted 

functionals are larger than the means of their associated original estimators and 

functionals. The variances of the weighted estimators and weighted functionals are 

less than the variance of their associated original estimators and functionals. The 

sample means and variances of the estimators and functionals whose distribution 

we have shown to be equal are similar, for example the mean of m oWE is similar to 

that of (ioWE for all k.

The scatter plots in Figures 4.2 and 4.3 show the estimators and functionals at 

record time c (or c), plotted against the same estimator or functional at time c +  1 

or (c + 1). The scatter plots demonstrate that the weighted functionals defined in
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(4.1.5) can be used to model a trajectory of weighted estimators at record times. By 

considering the shape made by the points of the scatter plots and their Pearson’s 

correlation coefficient, it can be seen tha t the WE has greater correlation between 

consecutive elements of its trajectory than the original estimator.

The plots in Figure 4.4 show a single trajectory (of length C) of Q t and Q t 

where k =  4 and 5. Also plotted are the associated weighted functionals Q and 

Q j ' 5 (f°r the same values of k ) and the random variable U ^ a simulated at the same 

time as Ck™E Ck%E• In °f these plots a  = 3. From these plots it can be seen

that the weighted functionals have a less erratic trajectory than their associated 

original functionals; in each trajectory, the most extreme data points of the original 

functionals are more extreme than the most extreme data points of their associated 

weighted functionals; in the trajectory of the weighted functional, the occurrence 

of a very large observation next to a very small observation is rarer than in the 

trajectory of the original functional.

Figure 4.5 shows the efficiency (3.4.6) of £°, £oWEt and Q*WE plotted against 

t. The efficiency is calculated from 10 000 runs. At t = 1 the weighted functional is 

equal to its associated original functional and so their efficiencies are equal. For low 

t, as t increases the efficiency of the weighted functional decreases. The efficiency of 

the weighted functionals is fairly constant for larger t. The efficiency of the original 

functional varies about a constant value, (approximately 1 for £° and 0.93 for £*). 

The efficiency of the WEs is lower than tha t of their related original functional. 

This difference in efficiency reduces as k  increases. The trajectory of efficiency of 

the original estimator is much less smooth than the trajectory of efficiency of the 

WE. It can be seen from Figure 4.5 tha t (although it improves with k ) the WE is 

not as efficient as the original estimator.

We now attem pt to explain why the WE fails and make some suggestions as to 

what could be done to improve it. Figure 4.6 (a) shows U ^ aQ  t plotted against the 

record number (t ) for 100 trajectories from t = 1 , . . . ,  100. We refer to U ^ aQ t as
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an un-normalized functional We have tha t £/t1/QQ t = m° — m  at n =  (b) and

(c) show the un-normalized functionals from the same samples as (a), but this time 

plotted against log( f kit) and log(WM) respectively. In (a), (b) and (c) k = 5 and 

ot =  3. These three plots show that the quality of the un-normalized functional (and 

hence the estimator ra°) increases with record number, sample size, and waiting 

time. As (and Q t) axe stationary in t , the improvement of the un-normalized 

functional can be explained by considering the expectation of \Jt \ E(Ut) =

Clearly this decreases to zero as t —* oo, and so the un-normalized functional will 

also decrease to zero as t —> oo. Record number, sample size and waiting time are 

highly dependent variables. Indeed, as T^t = T^ t, from (3.1.4) we have that for large 

t the expectation of Tk,t is approximately exp(t /k)  for large t, and the expectation 

of Wk,t for large t is approximately exp {t/k) — exp((t — 1 )/k).  The quality of the 

functional (and hence the related estimator) improves very quickly as record number 

(or waiting time or sample size) increases. Our WE fails as it gives too large a weight 

to estimators at small sample sizes.
1 J(%

Figure 4.6 (d) shows the un-normalized functional Ut Ck,t plotted against log(Wfcit). 

Here t = c (where c is as defined above), k = 5 and a = 3. The data from 10 000 

separate runs has been plotted. This plot shows no correlation between wait and 

estimator quality. By considering (d) with (a), (b) and (c) we can conclude that 

estimators improve with waiting time only because of the increase in sample size. 

The initial hypothesis that there would be higher correlation between waiting time 

and estimator quality than between record number and estimator quality or record 

time and estimator quality appears to be false.

An improvement on the idea of a WE could perhaps be made by weighting later 

estimators more heavily (see (4.1.6)), or estimating using an average of the latest 

two original estimates (see (4.1.7)).
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-WEIm k,n
E f t ” exP(^fcj +  1)

Nk,n
^(exp(W )bj + l))m fcfTfctj
3 =  1

* W E 2  1 ™ k ,t
m k,Tk,t = --------2--------

(4.1.6)

(4.1.7)
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(a) m°, p  =  0.671 (b) C°, P  =  0.668

-1 .5

(c) rri*, p =  0.662

-1 .5

 —

-1 .5

(d) C , P  =  0.659

Figure 4.2: Scatter graphs of estimators or functionals (as indicated below plots) at 

record time c  (or c), plotted against the same estimator or functional at record time 

c  4- 1 (or c +  1). Here c and c are defined as above. Also shown below each plot is 

the Pearson’s correlation coefficient, p.
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(b) C * E , P =  0 .923(a) m oWE, p  =  0 .9 2 7
1

(c) m * W E y p  =  0 .9 1 7  (d) C W E > P =  0 .913

Figure 4.3: Scatter graphs of weighted estimators or weighted functionals (as indi­

cated below plots) at record time c (or c), plotted against the same estimator or 

functional at record time c +  1 (or c  +  1). Here c and c  are defined as above. Also 

shown below each plot is the Pearson’s correlation coefficient, p.
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(a) k =  4, C° and C WE (*>) k = 4, C* and C WE

- 0 5
150100500150100500

(c) k = 5, C° and C WE (d) k = 5> C* and C WE

Figure 4.4: Trajectories of Q tt1 and C£,t- Also marked is V] /a . In the
simulation of these trajectories we used ot = 3 and k =  4 or 5 as marked
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Figure 4.5: Efficiency as defined in (3.4.6) of (,k^E, Q it an(  ̂Q™5 plotted against
t. Efficiency is calculated from 10 000 trajectories. The value of k used is marked 
below each plot. In each plot a = 3.
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4.2 E stim ating m , c0 known

Consider the problem of estimating the endpoint of a distribution that satisfies 

(1.2.5), where a  and Co are known. This section shows that a very simple estimator 

of m, where Co and a  are known, is often far more efficient than the optimal linear 

estimator of m  (where only knowledge of a  is used). In Section 4.2.1 we define this 

simple estimator. We then give some analytic results concerning its quality. In Sec­

tion 4.2.2 we define a functional on the Markov chain X t tha t is equal in distribution 

to our simple estimator (defined in Section 4.2.1) normalized. In Section 4.2.3 we 

carry out a simulation study to asses its performance on finite samples using the 

functional defined in Section 4.2.2.

4.2.1 D efining estim ator and analysis

Let us define an estimator as,

x T (k + 1  /a )  . .
m k,n-V t ,n  r(fc)(ct>n)l/“ ' ( ' • )

If F(x)  can be approximated by (1.2.5), we have tha t for large n, E(7/*in) ~  

m (Proposition 2.2 of [37]). This means th a t asymptotically the estimator ra£n has 

zero bias. Its variance can also be easily calculated.

Lem m a 4.2.1. LetCk = Vk'n~m and assume that asymptotically £* has c.d.f. (1.2.7) ̂ Kn —771
and Kn—m  = (con)~l^a. Then m%n is a consistent estimator as k —> oo with variance 

Var(m*„) =  (*„ -  li±!Z-J2.
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(a) t : t <  c
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(b) log(i)t,t), t <  c
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0.0
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(c) logtlVfc,,) (d) log(IVt ,t), t =  c

»  1 /ot
Figure 4.6: (a) shows U t Q t plotted against the record number (t ) for 100 tra­
jectories from t =  1 , . . . , 100 .  (b) and (c) show the same un-normalized function­
als, U t c s ,. plotted against log(7fc,t) and log(VFjtit) respectively, (d) shows the

— 1 / a  —

un-normalized functional U t Cit.c plotted against log(Wfc,c)- Here c  is defined as 
above. The data from 100 separate runs has been plotted. In all of the plots k =  5 
and a  =  3.
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Proof. It is easy to show tha t E£k = r ^r̂ ( Q) and E Q  = ^ ± |M .  Therefore

Note that as long as yk,n is drawn from a distribution tha t satisfies the conditions 

of Theorem 1, the assumptions made in Lemma 4.2.1 are valid.

The asymptotic efficiency of m k n with respect to m k n is given by

Figure 4.7 shows the efficiency (6.1.4) plotted against a  for k = 5, 10 and 20. 

The figure shows tha t efficiency of m kn increases dramatically with a. It also shows 

that the efficiency of m kn when a  is small is larger for small k. For large a , the 

efficiency is larger for large k.

4.2 .2  U sing th e  M arkov C hain  to  M odel Trajectory

In Section 4.2.3 we carry out a simulation study to asses the performance of m kn 

against m°kn. First we define a functional on the Markov chain Xi  (as defined in 

Section 3.2.2) that is equal in distribution to (m £n — m)/{yk>n — m), where F(x)  can 

be any continuous distribution, denoted Fg(x).

The Markov chain Xi  can be used to model order statistics at records from any 

continuous distribution with inverse F ~ 1(x). Indeed, in Section 4.1 we showed that 

we can model the k smallest order statistics from a uniform sample at record times:

T(k)(cony/a

r  (k)(cony/°  
r ( k  + l / a ) '

(ku -  m )2Var0t
2r(fc)r()t +  2/a) -  (r(fc +  i / a ) ) 2

(r(*0)2
□

(r(fc))2
(4.2.2)

r(fc)r(fc +  2/a) -  (r(fc +  l / a ) ) 2! ^ - 1! '
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Figure 4.7: Asymptotic efficiency (6.1.4) of m kn with respect to m kn against a. 
Here k = 5 (dotted line), k = 10 (dashed line) and k = 20 (solid line), a  ranges 
from 1 to 10.

UitTkit = Utx\l\  i = 1 , . . . ,  k where x k  ̂ =  1. We also showed that Tk,t = Tk,t• From 

Representation 3.2.1 we have that for a continuous c.d.f. F(x)  with inverse F ~ l (x), 

we have F _1 ([/*,„) = yk,n• We can therefore easily simulate random variables equal 

in distribution to order statistics at record times from a general distribution F(x). 

These random variables are equal to F~l (Utx f^), i = 1 , . . . ,  k. We can model the 

record times using 7*^.

Let us define
( X  =  I _______ r(fc + 1/a)______

n k ) ( c 0f li, , y H F 9- ' ( U t ) - m y  

where F~l (x) is the inverse of some general continuous distribution Fg(x). We have 

that =  (Tnkj,kt — tti)/ {Vk,Tk,n ~  m ) where m kn estimates the endpoint of some 

continuous distribution Fg(x) and yk<n is the k th order statistic from a sample of size 

n drawn from the distribution Fg(x). Note that when m  = 0, ^k tF~l (Ut) = m x.
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4.2.3 Sim ulation S tu dy

Here we carry out a simulation study (using the functional t) into how m£n 

performs when calculating m  from finite samples drawn from various distributions. 

The distributions we consider are, the beta distribution (with c.d.f.s Fp(x\ 3,0.5), 

Fp(x; 3,1) and Fp{x\ 3,3)), the Weibull distribution (with a = 3), the Uniform [0,1] 

distribution and the Gamma distribution (with a  = 3). The Gamma distribution is 

given by F7 (x; a) = ^ a )  > x  — ® where with 7 (0;, x) = yk~l exp{—y)dy.

10 000 trajectories of Q t, t = 1, . . .  , C  were made, where Fg(x) was equal to 

each of the six distributions described above and C  is as defined in Section 4.1.4. 

Figure 4.8 (a) and (b) show the trajectories of F ~ l (Ut )Ck,t +  m  an<  ̂ F g l {Ut)Q, t  +  m 

from a single run of the simulations described above where F g(x )  is F@(x; 3,1). 

As F g(x )  is Fp(x ;  3,1), we have m  = 0. Trajectories are plotted for k =  4 and 

k = 5. Plots (c) and (d) show ££t and from the same trajectories as (a) and 

(b) respectively. It can be seen from this figure that outperforms Q t in the 

trajectories shown.

In order to calculate C£„, each of these distributions must be approximated by 

a function of the form F(x) = co(x — m )a , so that a  and Co can be calculated. For 

the beta distribution Co =  an<̂  tail index is equal to a. This means that

Fp(x\ 3,0.5) is approximated by F(x) = 0.3125a:3 and Fp(x; 3,3) is approximated 

by F(x) = 10a:3. When (3 = 1  Fg(x) is already in the form of the approximation, 

indeed, F@(x; 3,1) =  x3. The beta distributions and their approximations have been 

plotted in Figure 4.9 (b), (d) and (f). For the Weibull distribution, cq = 1 and 

the tail index is equal to a. This means that the Weibull distribution when a = 3 

is approximated by F(x) = x 3. For the uniform distribution, cq = 1 and the tail 

index is equal to 1 . The uniform distribution exactly equal to its approximation, 

F(x) = x. For the gamma distribution, Co =  Qr̂ y and the tail index is equal 

to a. This means that when a = 3 we approximate the gamma distribution by 

F(x) = 0.6xQ. The Weibull distribution, uniform distribution, gamma distribution
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and their approximations have been plotted in Figure 4.10 (b), (d) and (f). All of 

the above approximations are valid for m  <  x  <  c0 +  m, and in each case m = 0.

(a), (c) and (e) of Figures 4.9 and 4.10 show the estimated efficiency as defined 

in (3.4.6) of with respect to Q  (asymptotic) and the estimated efficiency of Q t 

from simulation with respect to Q  asymptotically. The analytic efficiency (6.1.4) is 

also plotted (grey line). These efficiencies are plotted against k. (b), (d) and (f) of 

Figures 4.9 and 4.10 show the distribution Fg(x) (solid line) and its approximation 

F(x) — c q ( x  — m)a (dashed line).

In Figure 4.9 (a) and (b), Fg(x) =  F^(x; 3,0.5). The approximation F(x)  is 

smaller than the distribution Fp{x\ 3,0.5) for all 0 <  x  < 1. For small k the esti­

mated efficiency of t is greater than the analytic efficiency, for large k it is smaller 

then the analytic efficiency. In Figure 4.9 (c) and (d), Fg{x) = Fp(x] 3,1), this means 

that the approximation is exactly equal to Fg(x). The estimated efficiency is there­

fore very close to the analytic efficiency. In Figure 4.9 (e) and (f), Fg(x) = Fp(:r; 3,3). 

(f) shows that the approximation is larger than Fg(x) for 0 < x  <  10“ 1//3. The esti­

mated efficiency is less than the analytic efficiency for all k plotted. As k increases 

both the estimated efficiency and the analytic efficiency decrease, the estimated effi­

ciency decreases faster. In Figure 4.10 (a) and (b) Fg(x) is Weibull with a  =  3. The 

approximation F{x) is larger than the Weibull distribution for all 0 < x  < 1. The 

Weibull distribution is close to the approximation for 0 <  x  < 0.5. The estimated 

efficiency of (£ t in this case is only slightly lower than the analytic efficiency. In 

Figure 4.10 (c) and (d) Fg(x) is uniform. This means that the approximation is ex­

actly equal to F(x)  for all x. The estimated efficiency of is less than one (and so 

less than the efficiency of Qt)-  ^  decreases with k. The estimated efficiency is very 

close to the analytic efficiency (6.1.4). In Figure 4.10 (e) and (f), Fg(x) = Fy(x). 

(f) shows that the approximation is greater than F1(x) for all 0 < x < 61/3. The 

estimated efficiency is lower than the analytic efficiency and decreases more quickly 

than the analytic efficiency as k increases. From both Figures 4.9 and 4.10 we can
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say that generally if the approximation F(x)  is close to the distribution Fg(x), the 

estimated efficiency is close to the analytic efficiency. From these figures we can also 

see that the estimated efficiency of Q  t is close to its analytic efficiency, 1.
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Figure 4.8: (a) and (b) show trajectories of Q tF~l {Ut) +  m  and C + fn 
where k = 4 and 5 respectively, (c) and (d) show trajectories of Q  t and where
k = 4 and 5 respectively. In all four plots we have Fg(x) =  Fp(x; 3,1).
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(a) Beta, a  =  3, /3 =  0.5

(c) Beta, a  =  3,/? =  1

a to ao

(b) a  =  3, Co ~  0.3, m =  0
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(e) Beta, a  =  3, 0  =  3 (f) a  =  3, co =  10, m =  0

Figure 4.9: Graphs (a), (c), and (e) show the efficiency with respect to C° (asymp­
totically) of and Q tt (from simulation) plotted against k. Also shown (grey line) 
is the asymptotic efficiency (6.1.4) of m kn with respect to m°k n. In all plots Fg{x) 
is beta. In (a) a  =  3 and f3 — 0.5, in (c) a = 3 and >0=1,  and in (e) a = 3 and 
ft = 3. These distributions (solid line) and their approximations (dashed line) are 
shown in (b), (d) and (f).
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(f) a  =  3, cq =  1 /6 , m  =  0

Figure 4.10: Graphs (a), (c), and (e) show the efficiency with respect to (asymp­
totically) of and Q t (from simulation) plotted against k. Also shown (grey line) 
is the asymptotic efficiency (6.1.4) of m£n with respect to m°kn. In (a) Fg(x) is 
Weibull, in (c) Fg(x) is uniform, and in (e) Fg(x) is gamma. These distributions 
(solid line) and their approximations (dashed line) are shown in (b), (d) and (f).
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Chapter 5 

M eteorological A pplications

In this chapter we consider applications of record theory to real world (meteorolog­

ical) situations.

First, in Section 5.1 we discuss the reporting of records in the media and show 

that the occurrences of records on their own cannot be used to draw conclusions 

about whether, or by how much, the climate is changing.

In Section 5.2 we consider mean monthly sea level data from six locations in the 

Netherlands - Delfzijl, Harlingen, Den Helder, Ijmuiden, Maassluis and Hellevoet- 

sluis. We calculate the expected number of records and estimate probability mass 

functions for the number of records tha t we would expect to see in such a time series 

if it were stationary.

In Section 5.3 we introduce the Singular Spectrum Analysis algorithm and the 

program CaterpillarSSA. The aim of this section and Section 5.4 is to use SSA 

to split the Harlingen time series into two components; one, a forecastable time 

series consisting of trend and regular oscillation (the reconstruction); the other, 

a stationary time series of the remaining noise (the residual). We then can use 

the standard techniques already discussed in this thesis to make estimates of the 

upper and lower endpoints of this residual. We use CaterpillarSSA to forecast the 

reconstruction. Finally we add the forecast to the estimates of m  and M  to obtain 

forecasts of the endpoints of the distribution of monthly sea level. In Section 5.3
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we investigate the effects on the number of records observed of different methods 

(within the CaterpillarSSA framework) of removing trend and noise. In Section 5.4 

we select some separation methods from Section 5.3 and forecast the upper and 

lower endpoints of the mean monthly sea level for each month of three different 

years.

5.1 Reported Records: How Likely Are They?

5.1.1 Expected Num ber o f R eported  R ecords

The media reports record temperatures and, due to worries about climate change, 

imply that the occurrence of records means that the climate is non-stationary. Below 

we discuss the probability of observing at least one record in one of the final elements 

of a collection of stationary time series.

The probability of a record occurring after a particular number of (i.i.d.) ob­

servations is straightforward to calculate. Consider a time series of length n. As 

defined in Section 3.1.1, a new random variable is a 1st record if it is the smallest 

member of the time series so far. If the time series is made of continuous indepen­

dent identically distributed random variables, the probability of a new observation 

being the smallest so far is the same as the probability of it being the second, third, 

fourth, or nth smallest. Therefore the probability of the n th member of a time series 

being a record is Notice that the first observation therefore is always a record.

Consider a time series 100 elements long. The probability of the final element of 

this time series being a record value is ^ . An example of a reported meteorological 

record with this probability is: if there exist 100 years of total monthly precipitation 

data, there is a 1/100 chance that, say, this August was the wettest on record. This 

of course assumes that the time series of total precipitation in August is made up of 

continuous independent identically distributed random variables. As 1/100 is small, 

‘Wettest August on Record’ could be considered a news-worthy event. However, if 

we consider all of the different ways a record could occur, it is no longer surprising

144



that every year we get at least one record event reported.

If we consider 365 time series (one for each day of the year), where each time 

series is 100 elements (years) long, stationary, and independent of the other time 

series, then the probability tha t any of the 365 times series has a record as its final 

entry is

1 — P(No records in the final element of any of the time series)

The above probability could be interpreted as the probability that in any given year, 

at least one day is the, say, hottest for 100 years. However, an unlikely assumption 

has been made: that the 365 time series are independent of each other. This would 

require that, for example, the temperature on 04/10/2000 is independent of the 

temperature on 05/10/2000. It has also been assumed that the distribution of the 

temperature for each day of the year is stationary and tha t each day is independent 

of the same day in all of the other 99 years considered (i.e. 04/10/1901 is indepen­

dent of 04/10/1902, 04/10/1903, . . . ,  04/10/2000), this is a reasonable assumption. 

Although in order to apply the above probability to meteorological records an un­

likely assumption must be made, the example illustrates that the likelihood of a 

record occurring greatly depends on the number of time series being considered.

Events that are more likely to come from independent time series and be more 

interesting to the public axe; record monthly averages, record monthly totals and 

records for a particular city. When you consider this includes particularly cold, 

wet, dry or windy months, or years, or Wimbledon tournaments..., the chance of 

a ’news-worthy’ record occurring in any particular year is again close to one. For 

example, the probability that in a year, at least one of the months, in at least 

one of five locations, is found to be the most extreme (hottest, coldest, wettest, 

driest, windiest) for 100 years is 1 — (y ^ )5*12*5 =  0.95. In order to calculate this 

probability we are considering 5 x  1 2 x 5  =  300 time series. Again we must make the
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assumptions that the time series are made up of i.i.d. elements and that each time 

series is independent of all of the others. This second assumption of independence 

between time series relies on independence between climatic elements (e.g. between 

high and low temperature - clearly false), between locations (likely if locations are 

not too close together) and between months (likely). This dependence need not be 

a problem, we can make assumptions as to the level of dependence between some 

climatic events, and assume independence between others. The events of a record 

high and a record low (temperature or precipitation) are mutually exclusive. We can 

say that the probability of a record (either high or low) mean monthly temperature 

occurring in at least one of 12 time series of temperature that are 100 entries (years) 

long is

1 — P(No record high or low tem perature occurs in any of the 12 time series)

Although this is a fairly small probability, if more independent events are considered, 

the probability increases dramatically (see Figure 5.1).

Although most meteorological data  sets go back much further, reports are often 

made when an event occurs tha t is the most extreme for some ‘round’ number of 

years, say 10 or 20 years.

We can now estimate the following probability:

P ( At least one of the following occurs in the current year:

Highest or lowest recorded monthly temperature for n years;

Highest or lowest total monthly precipitation for n years;

Strongest winds recorded for n years)
(n — 2)12x5x2(n — l ) 5 

^12x5x2+5

This probability is plotted as a function of n in Figure 5.1. It is likely to be 

an underestimate because of the many events that could not be included in the
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(a) Number of time series, N  (b) Length of time series, n

Figure 5.1: (a) shows a plot of 1 — ( y ^ )12̂  (solid line) and 1 — (yHj)12̂  (dashed 
line), N  = 1 , . . . ,  50. This demonstrates how increasing the number of independent 
time series increases the probability of observing a record event in the current year, 
(b) shows a plot of 1 — (n^ ) 12Xl5 (solid line), 1 — (s~ ’) 12Xl5 (dashed line), and
1 — (dotted line) n = 2 , . . . ,  200. This demonstrates how the
length of time series affects the probability of observing a record event in the current 
year. The dotted line represents an estimate of the actual probability that the 
current year will have at least one record (for time series of length n).

estimate due to dependence. These include; sea level, hours of sunlight, mean 

monthly temperature/precipitation, statistics for particular special day or period 

(e.g. coldest/warmest Christmas, most days of a sporting event rained off), highest 

annual/seasonal) mean tem perature/precipitation or most amount of rainfall ever 

recorded to fall in one hour.

147



always increase the number of observed records. For example a time series described 

by the equation p'n = (rn +  10sin(n7r/2) +  10)/11 is plotted in Figure 5.3. It has 

produced only 4 maximal record values when 6.79 were expected. The number of 

records observed depends on the amplitude of the periodicity compared to the noise, 

the period of the cycle, and the phase of the periodicity at n = 1. A periodicity 

with a large amplitude will tend to create records in the time series only at extreme 

values of the periodicity, this can reduce the total number of records. The plot of 

tn demonstrates that an increasing trend increases the number of maximal record 

values (17 observed) and decreases the number of minimal record values (3 observed). 

A decreasing trend would have the opposite effect. The plot showing a time series 

of noise with increasing variance demonstrates tha t this causes an increase in the 

number of maximal and minimal records (observed are 34 and 36 respectively).
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(a) Stationary (b) Periodicity

(c) Trend (d) Increasing variance

Figure 5.2: Plots show four time series with record high values marked with • and 
record low values marked with o. (a) shows sn, a stationary time series of pure noise, 
(b) shows pn, a time series with a periodicity and noise, (c) shows t n, a time series 
with an increasing trend and noise, (d) shows v n, a time series with noise whose 
variance is increasing with time.
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Figure 5.3: Plot of time series p'n . This is a time series with a large periodic component and a small random noise 
component. Record high values are marked with •  and record low values are marked with o.



5.2 Sea level data

5.2.1 Sea level in T he N etherlands

In this section we consider the mean monthly sea level at six measuring stations in 

the Netherlands. We assume that for every month there is some maximum (and 

minimum) possible sea level and we try  to estimate it. The data was obtained from 

http://www.gloss-sealevel.org/data/. We have used only data from the 122 years 

from January 1885 to December 2006. Before December 1885 measurements were 

rounded to the nearest 5, and so are not convenient for considering the occurrences 

of records. The locations considered are Delfzijl, Harlingen, Den Helder, Ijmuiden, 

Maassluis and Hellevoetsluis.

The six original time series of length 122 x 12 =  1464 were split into 6 x 12 =  72 

time series of length 122, giving a separate time series for each location and each 

month of the year. There are no missing data in any of these time series. The 

different months of the year can be considered to be independent (see Figure 5.5),

however, there is evidence that the locations are not. The Pearson’s correlation

coefficients between locations (see Figure 5.4) are all greater than 0.7 (most are 

greater than 0.9).
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Figure 5.4: Correlograms show Pearson’s correlation coefficient. Each plot shows 
the coefficient for a different month and all six location. The order of the variables 
in the plot are (from top left to bottom  right) Delfzijl, Den Helder, Harlingen, 
Hellevoetsluis, Ijmuiden and Maassluis.
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C orrelation b e tw een  m on ths C o rre la tio n  b e tw e e n  m o n th s

(a) Delfzijl (b) Den Helder (c) Harlingen

C orrelation  b e tw e e n  m on ths C o rre la tio n  b e tw e e n  m o n th s Correlation  b e tw een  m on ths

Ij1 Ij2 Ij3 Ij4 Ij5 Ij6 Ij7 Ij8 Ij9 Ijl0  Ij11 Ij12

(d) Hellevoetsluis (e) Ijmuiden (f) Maassluis

Figure 5.5: Correlograms show Pearson’s correlation coefficient. Each plot shows 
the coefficient for a different location and all 12 months of the year. January is 
shown as the top left through to December in the bottom right.
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5.2.2 Occurrences o f  R ecords

In this section we make Monte Carlo estimates of the expected number of records for 

a stationary continuous time series of 122 elements. We compare this to estimates 

(from the available discrete time series) of the number of records in the underlying 

continuous time series of mean monthly sea level. This is done for each of the 

locations listed above.

The probability that a particular member of a time series is a record was shown 

in Section 5.1 to be easy to calculate. The probability of there being x  records in a 

time series of length n is more difficult to calculate. This is due to the fact that the 

probability of any member of the time series being a record is related to its position 

in the time series.
n n—x + 3  n —x + 2  ■, x  .

p(Nt,n=x) = E  -  E  E
* x = * x - l + l  * 3 = * 2 + l  12=2 j —2 3

The above equation is well known. It can be derived by considering the probability 

of observations yi1}.- - ,y ix (1 =  i\ < ii  < ••• < ix <  n) being records and all 

other observations not being records. This probability is given by the expression

• • • =  • • • t—̂t “ • Summing over all possible indices, 1 =
1 * 1 + 1  * 1 + 2  * 2 - 1  * 2  * 2  +  1  * 2 - 1  t x - 1  Tl  °  r  l

*i < *2 < • • • < * * <  w, gives the desired result. For large n and x  this expression 

becomes very computationally intensive. Below is an approximate probability mass 

function of the number of kth type 1 records (k = l, . . . ,  10) and an approximate
k

probability mass function for ^  ^ 7V* 122- These were obtained through Monte Carlo
i=l

simulations: 10 000 time series of length 122 were simulated. For each time series 

(indexed i) the number of fcth (k = 1 , . . . ,  10) records were recorded. For simplicity 

in this section the number of kth type 1 records at n = 122 for time series i has
10000  J /

been denoted N lk. P(Nkti22 =  ^) can then be estimated by ^  fQ00Q~' ^ ere
i = l

is an indicator function such that Ix (a) — 1 if a = x  and I(a)x = 0 otherwise. The
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expected number of k th type 1 records in a time series 122 elements long is given by:
122

E ( N i ,  n) = E 7 -  (5.2.1)
i= k

0228-1-----------------------------------------------------------------------------------------
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0 125-
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QQfrff -

0 " ̂—■ '--- ■--- '--- ■--- ■--- '--- ---- ■--.-"TT-r-i-■----- r—
1 2 3  4  5  6  7  8 9  10 11 12 13 14

Figure 5.6: Estimated probability mass function of the number of 1st records occur­
ring in a time series of length 122.

The sea level data obtained for this study are discrete. They come from rounding 

(to the nearest integer) the true continuous sea level. It is the occurrence of records 

in this true, continuous data that we would like to estimate. We do this by adding 

a small amount of noise to each of the variables in the discrete time series. Denote 

this new time series by y'i = yi~I- <r, where yi, i =  1,2, . . .  , n is the original, discrete 

time series and c is an independent uniform [0,0.1] random variable. The expected

number of records in the time series y\ is the same as the expected number of

records in the underlying continuous time series. The new time series will not have 

any weak records. Denote the number of minimal type 1 kth records in the time 

series y', i =  1 , . . . ,  n as N£n and the number of maximal type 1 kth records in this 

time series as NJ**.

By considering Table 5.1 we can see that the expected number of type 1 1st 

records in a stationary time series of length 122 is 5.4. Let us classify observing
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122 — X.
x \  k 1 2 3 4 5 6 7 8 9 10

0 0 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.06 0.07
1 0.27 0.05 0.09 0.12 0.15 0.18 0.20 0.22 0.25 0.01
2 0.53 0.16 0.24 0.30 0.35 0.39 0.43 0.47 0.50 0.05
3 0.75 0.34 0.45 0.52 0.58 0.63 0.66 0.69 0.72 0.16
4 0.89 0.55 0.65 0.72 0.77 0.80 0.83 0.85 0.87 0.35
5 0.96 0.73 0.81 0.86 0.89 0.91 0.93 0.94 0.95 0.55
6 0.99 0.86 0.91 0.94 0.96 0.97 0.97 0.98 0.98 0.73
7 1.00 0.94 0.96 0.98 0.98 0.99 0.99 0.99 1.00 0.86
8 1.00 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.94
9 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
11 1.00 1.00 1.00 JL00 1.00 1.00 1.00 1.00 1.00 1.00

ENfc,i22 5.4 4.4 3.9 3.6 3.3 3.1 2.9 2.8 2.7 2.6

Table 5.1: Estimated cumulative probability function of the number of fcth type 1 
records in a time series of length 122 (Nj* 122). Also shown is the expectation of iVJ 122. 
This was calculated using (5.2.1) and verified using the Monte Carlo Simulation.

4 or fewer type 1 1st records in a time series of length 122 as observing a lower 

than expected number of records. Let us also classify observing 7 or greater type 1 

1st records in a time series of length 122 as observing too many records. We can 

now say that the number of type 1 1st record highs was found to be higher than 

expected in 69 of the 72 time series in Table 5.3. The number of record lows was 

lower than expected in 47 of the 72 time series in Table 5.3. This indicates that the 

time series are not stationary (see Section 5.1). We can assign a probability to each 

month and location of observing the calculated number of minimal and maximal 

records. However, we cannot calculate the probability of making the 12 x 6 =  72 

observations, as the locations (and to some extent months) are not independent.

In order to draw conclusions about whether more (or fewer) records are being ob­

served than would be expected of stationary time series we must consider a collection 

of independent time series. There is low correlation between months for the number 

of observed records. This is especially true of the location Harlingen, therefore for 

Harlingen, each month can be considered to be an independent time series. Another
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X P ( £ l= i  N i l *  = *) P(£fc=l Ŷfe,122 ^  X)
25 0.01 0.01
26 0.01 0.02
27 0.01 0.03
28 0.03 0.06
29 0.04 0.10
30 0.05 0.15
31 0.07 0.22
32 0.09 0.31
33 0.09 0.40
34 0.10 0.50
35 0.10 0.60
36 0.09 0.69
37 0.09 0.78
38 0.06 0.84
39 0.05 0.89
40 0.04 0.93
41 0.03 0.96
42 0.01 0.97
43 0.02 0.99
44 0.01 0.99
45 0.00 0.99
46 0.00 1.00

E£ i= i  N L m 34.56

Table 5.2: Estimated cumulative probability function of the sum of the number of
kth,k = 1 , . . . ,  10, type 1 records in a time series of length 122. Also shown is the 

10
expectation of ^ ^ A £ 122. This was calculated using (5.2.1) and verified using the

k= 1
Monte Carlo Simulation.

source of independent data can be found if we consider not just the 1st type 1 record 

values (of the minimum and the maximum) but also the 2nd, 3rd, . . . , fc th type 1 

record values. For a time series tha t is stationary with i.i.d.r.v.s, the number of 

type 1 zth records is independent of the number of type 1 j th records for i ^  j .  In 

order to draw conclusions about whether the monthly sea level data in Harlingen 

forms stationary time series we investigate whether the values of l iV£122 and 

£ * I i  ^ * 2 2  f°r each month of the Harlingen time series are close to the expected
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Minimal 1st records Maximal 1st records
Month Del Den Har Hel Ij Ma Del Den Har Hel Ij Ma
Jan 7 6 6 5 7 3 7 9 7 10 10 10
Feb 6 6 6 5 5 4 7 8 7 7 8 7
Mar 5 6 4 3 6 2 9 11 9 11 10 9
Apr 3 3 3 1 5 3 9 12 11 7 10 8
May 7 4 3 4 8 2 6 8 5 9 7 8
Jun 3 3 5 1 3 1 14 9 10 10 12 14
Jul 2 1 2 1 2 1 11 10 9 10 10 8
Aug 4 5 3 1 6 1 7 14 9 11 10 16
Sep 6 4 4 5 6 4 14 7 8 9 7 8
Oct 3 6 3 5 7 3 10 7 8 10 7 6
Nov 2 2 2 3 3 3 13 10 10 13 10 12
Dec 4 4 3 4 4 3 9 8 9 7 11 6

Table 5.3: N[*n and Record numbers written in bold font indicate where weak 
records occurred in the original discrete time series.

value of 34.56. We also show tha t we can use CaterpillarSSA to create time series 

from the Harlingen time series th a t have this property. For simplicity of notation 

we will denote £ £ 1  N ^n as £  7V10n, ^ i° =1 N£* as £  N ^ n, Y l l i  1 N k*n 88 E  N io,n  

and E l i i ^ a s E ^ i ' J n -

5.3 Using CaterpillarSSA on Sea level Data

5.3.1 Introduction to  C aterpillarSSA

In this section we use singular spectrum analysis (SSA) to decompose the original 

Harlingen time series into a slowly varying trend and oscillatory components. By 

taking these elements away from the raw time series we obtain a stationary time se­

ries. Extremes can be predicted for this stationary time series in the usual way, after 

which seasonal variation and trend can be forecasted and added to the prediction 

of the extreme.

SSA is a model-free method of time series analysis. Thorough descriptions of 

the theory behind SSA as well as examples can easily be found in texts such as [17]. 

The program ‘CaterpillarSSA’ (version 3.1) was used to perform this analysis (see
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http://www.gistatgroup.com /cat/ for more information). This program performs 

the SSA algorithm automatically allowing the user to simply select a number of 

parameters for the decomposition and reconstruction.

Decomposition

Decomposition requires the user to select just one parameter, the lag (L) with 

which to create a trajectory matrix. If the time series to be analyzed is denoted 

Y  =  (2/1, • • • ,2/n), the trajectory m atrix X  is the L  x K  matrix (where K  = n — 

L +  1) consisting of the L-dimensional vectors X{ = (2/*,... , 2/i+l-i)* Discussion on 

determining the correct value of L  can be found in literature. [21] advises that L 

should be large enough but no larger than n/2.

Reconstruction

When the selection of L has been made ‘CaterpillarSSA’ performs singular value 

decomposition. In doing this d elementary matrices, X i) are created where d = 

rankX  and X  = X \ + . . .  + Xj-  Each Xi is given by Xi = \Zr\iUiV- where A, is 

the ith eigenvalue of the trajectory matrix X  and t/* and Vi are the left and right 

2th eigenvectors of the trajectory m atrix respectively. The collection (\Ai> Ui,V{) is 

called the 2th eigentriple (marked as E T  on plots below) of the trajectory matrix. It 

is these eigentriples that must be selected to reconstruct X .  If eigentriples 21, . . . ,  im 

are selected, we create a matrix X j  = X ix +  . . .  +  X{m. If correctly separated, some 

of the eigentriples will reconstruct the trend present in the original time series and 

others (often pairs of eigentriples) will reconstruct periodicities. The final stage 

performed by ‘CaterpillarSSA’ is to average diagonally across each of X it 

to create X ^ , . . . , X im. These can be summed to create X . X  is the trajectory 

matrix of the reconstructed series. The trajectory matrix of the residual time series 

is given by X  — X .  Our aim is to discover if it is possible to reconstruct the time 

series so that the reconstruction can be used to forecast trend and periodicities into 

the future. We also require estimates of the extremes of the residual time series to
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be accurately made.

5.3.2 A nalysis

The periodogram feature of ‘CaterpillarSSA’ can help us to identify the periods 

that are present in the original time series. These can be identified by the location 

of sharp spikes on the periodogram. Table 5.4 shows the main periods present in 

the periodograms of the original time series. They are listed in descending order 

of height of peak. Therefore the number listed first is likely to correspond to the 

strongest period for each month.

Month Peaks of periodogram 
(descending order of height)

January 61, 8, 6, 9, 5, 3, 2, 24
February 30, 2, 8, 13, 3
March 6, 11, 3, 4, 8, 24
April 11, 17, 30, 2, 24, 4
May 10, 20, 40, 15
June 17, 2, 11
July 6, 4, 5, 15
August 12, 20, 40, 2, 6
September 2, 17, 4, 30
October 3, 14, 6, 24, 8
November 30, 2, 4, 15
December 6, 9, 5, 40, 3

Table 5.4: Main peaks found in periodograms of each month of the Harlingen time 
series. The highest peaks correspond to the most prominent periods (in years) in 
the time series.

Figure 5.8 shows time series for sea level at Harlingen for each month of the year. 

Figure 5.9 shows V ] N[0n and ^  A^J.n against the expected value Nio>n =
10 n

y  l/z, n = 1 , . . . ,  122, for each month of the year. Also shown on Figure 5.9 
j=1 i=j
is a > 90% confidence interval for the number of records. This confidence interval 

was calculated using Monte Carlo simulation. 10 000 stationary time series of length
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122 were simulated (by drawing random variables from a normal distribution). At 

each sample size the c.d.f. of Â i0)„ was estimated. The confidence interval was 

then taken to be the values s tha t satisfy x  <  s < y where x  and y are given by 

x  =  max ( p ( E  N io,n <  t'j < 0.05^ and y =  min ( p £  Â io.n > < 0.05^. For

the 1st type 1 record this confidence can be read off Table 5.2 as 28 < s < 40. The 

confidence interval cannot be exactly 90% as iVj0in and ^  are discrete. 

Note that there is no independence between P ^io,i^j >10 < i < n, this means 

that care must be taken when drawing conclusions from how often the observed 

number of records falls within the confidence interval. Also plotted on these graphs 

are the number of records observed in residual time series when just the trend has 

been removed (dashed line) and when the trend and the main cycle had been removed 

(dotted line). It can be seen tha t in most cases the removal of these elements from 

the original time series is not enough to bring all of the resulting residuals within 

the confidence intervals. However, it is clear tha t the removal of the trend goes some 

way to making the time series stationary and removal of the period is also important. 

By stationary, we mean in the sense tha t the distribution of record number is as 

expected for a series where the elements are i.i.d. random variables.
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Figure 5.7: Mean number of records over the 12 months plotted against expected 
number of records E(^2 ^ io ,n )  for a stationary time series. The solid lines relate to 

N[0 n and N[q n from the original time series, the dashed line to N[0 „ and 
N'io,n from the residuals of the time series with the trend removed and the dotted 

line to N}0,n ^'io,n from the residual left from removing the trend and the
main periodicity.
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Figure 5.8: Time series of sea level a t Harlingen for each month of the year from 
1885 to 2000.



(d) April (e) May (f) June
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Figure 5.9: an(l ^ \o ,n  plotted against expected number of records
E ( ^ 2  Mo,n) for the original time series, the residual time series left after remov­
ing the trend (dashed line) and the residual time series left after removing the trend 
and the main periodicity (dotted line). The > 90% confidence interval (as described 
above) for the number of records ^  -/Vio,n is shaded in grey.
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5.3.3 R em oving Trend and Periodicities From M ean Sea 
level in A pril in H arlingen

We now concentrate on just one month of the time series of sea level and investigate 

the most effective selections of L  and E T  to make the residual time series stationary. 

Figure 5.10 shows reconstructions of the time series of mean sea level in April (length 

122) and Figure 5.12 shows the related residuals. The selections of L  and eigentriples 

are indicated beneath each plot. Figure 5.11 shows part of the reconstructions from 

a time series of mean monthly sea level throughout the year (length 122 x 12 =  1464). 

The points plotted axe just those tha t relate to April (i.e. if the reconstructed time 

series is denoted yi,i = 1 , . . .  1464, the plotted points axe ym -s, i = 1, • • • 122). As 

well as using eigentriples to reconstruct the time series (plots labeled ‘E T = ..’) we 

have also used linear regression (labeled ‘Linear regression’) and a method known as 

double centering (plots labeled ‘Double’). CaterpillarSSA does not perform linear 

regression reconstruction, a least-squares regression routine was used to calculate 

the best-fit line. Double centering acts after the decomposition stage: After L  has 

been chosen and the trajectory m atrix of the original time series has been made, 

double centering subtracts the row and column averages of each element from each 

element of the trajectory matrix. It then adds the overall mean of the matrix to each 

element of the matrix. Double centering gives good results if the trend of the series 

is linear. Under this centering there is no access to approximating and forecasting 

stages. Figure 5.13 show the residuals related to Figure 5.11.

Figure 5.14 and Figure 5.15 show the number of observed records for each of 

the residual time series shown in Figures 5.12 and 5.13 respectively. Figures 5.16 

and 5.17 are histograms of the points in time series shown in Figures 5.12 and 5.13 

respectively.
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Figure 5.10: Raw tim e series of sea level at Harlingen in April (grey line) and the
reconstruction of the main periods and trend achieved as labeled (black line). Using
just April data.
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(j) Linear regression

Figure 5.11: Raw time series of sea level at Harlingen in April (grey line) and
the reconstruction achieved as labeled (black line). Using all Harlingen data then
considering just April.
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Figure 5.12: Original time series of sea level at Harlingen in April (grey line) and
residual created by the extraction of reconstructed series from the original time series
(black line). Using just April data.
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Figure 5.13: Original time series of sea level at Harlingen in April (grey line) and 
residual created by the extraction of reconstructed series from the original time series 
(black line). Using all Harlingen data then considering just April.
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Figure 5.14: ^ Z N [ 0n  and Njj.n (f°r original time series and residual) plotted 
against expected number of records E (Y 2  Nio.n)- Using just April data. The ‘> 90%’ 
confidence interval for the number of records Nio.n is shaded in grey.
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Figure 5.15: E ^i'o.n  and H N 'io,n (for original time series and residual) plotted 
against expected number of records Mo,n)- Using all data then considering
just April. The ‘>  90%’ confidence interval for the number of records J2 N \o,n is 
shaded in grey. 172
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Figure 5.16: Histograms of residual time series created by removing trend and/or 
cycles. Using just April data.

173



rfbinn u n
- 3 4 0 -2 4 0  -14 0  - 4 0  60 160 260  - 3 4 0 -2 4 0  -1 4 0  - 4 0  60  160 260

H_Q_
■

IK m

(a) L =  60, Double (b) L =  60, E V  =  3 (c) L =  60, E V  =  1 - 3

im m
-340  -  240  -1 4 0  -  40  60  160 260 -  340  -  240  -1 4 0  -  40 60 160 260

(d) L =  120, Double

i t m n

(f) L =  120, E V  =  1 - 3(e) L =  120, E V  =  1

a m i
- 3 4 0 -2 4 0  -14 0  —40  60 160 260  - 3 4 0 —240  —140 —40  60  160 260  - 3 4 0 -2 4 0  —140 —40 60 160 260

(g) L =  480, Double (h) L =  480, E V  =  3 (i) L =  480, E V  =  1 — 3

Ul
-340  -  2 4 0 -1 4 0  -  40  60  160 260  -  340  -  240  -1 4 0  -  40 60 160 260

(j) Linear regression (k) April Raw data

Figure 5.17: Histograms of residual time series created by removing trend and/or 
cycles. Using all Harlingen data then considering just April.
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It is clear from Figures 5.14 and 5.15 that it is possible to use SSA (and to 

some extent linear regression) to create a residual time series that is stationary in 

the sense that the number of records is within a confidence interval of the expected 

number of records for a stationary time series. It appears that the residuals created 

by using a greater number of eigentriples in the reconstruction stage, stay within 

the confidence intervals with greater frequency. Using just data from the month 

of interest (in this case April) seems more effective than creating a residuals using 

a time series with all months and selecting every 12th element (relating to April). 

From Figures 5.16 and 5.17 it can be seen that the residual has smaller variance 

when it is created by just using data  from April to construct the reconstruction 

than when all data is used and just the April data is selected. The better results 

could be attributed to using a larger proportion of the eigentriples.

There are two problems with using the above reconstructions and residuals to 

forecast extremes. Firstly, it can be seen from the plots of time series above that 

there is at least one significant change point in the time series. Secondly by looking 

at the periodograms of the residual time series it can be seen that there is still 

some structure that could be removed. For example see Figure 5.18. We will now 

investigate these two problems further.

Consider the first problem of the time series containing a change point. The time 

series has very different characteristics in the first and second sections (First section 

being approximately 1885 to 1960, second from 1960 to 2006). Although this does 

not necessarily prevent a stationary residual from being created, it does mean that 

forecasts will not be accurate. Indeed, any forecasts will be significantly based on 

the earlier section of the time series before the change point.

The second problem; presence of a structure in the residual, produces forecasts 

that axe not as good as they could be. It was also the cause of some of the observed 

number of records in the residual time series not being as close to the expected 

values as others. The problem is easily overcome by using more eigenvalues in the

175



900 -

O -
O ao 40 60 80 ICO 120

900

O

900

O

900

O
o  a o  4 0  e o  a o  i c o  120

(d) E T  = 1 - 5

900  -

O -
o  20  4 0  e o  a o  100 i a o

900

o

Figure 5.18: Figure (a) shows the periodogram of the raw time series of sea level 
at Harlingen in April. Plots (b)-(f) show the periodograms of the residuals created 
by the extraction of reconstructed series from the raw time series. The eigentriples 
used in the reconstruction are marked below the periodograms.
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reconstruction of the time series. Doing this will inevitably introduce more noise 

into the reconstruction, leading to a poor forecast. These factors must be weighed 

up against each other.

5.3.4 C hange P oin t

The plots in Figure 5.19 show reconstruction from either single, pairs or three eigen­

triples of the time series of mean monthly sea level from January 1885 to December 

2007. They show clearly tha t both the amplitude of periodicities and the gradient 

of trend are not regular. This indicates the presence of a change point.

We can only use CaterpillarSSA to forecast accurately if the time series has no 

change point. We must therefore discard any data from the years before the latest 

change point occurred. However, if we continue to only consider the data relating 

to April there is not much data  to work with. Below we consider the mean monthly 

sea level in Harlingen for all months of the year from three different sections.

5.4 Estim ating Tail Index and Endpoint

5.4.1 M ethodology

In this section we use SSA to remove the trend and periods from sections of the 

original time series of mean monthly sea level in Harlingen (of all months). The first 

section considered is the fairly stable period from 1885 to 1904. We then consider 

the period from 1973 to 1992. The reconstructions in Figure 5.19 would suggest 

that this section contains a change point. Finally we consider the period of most 

up-to-date data: 1987-2006. Note tha t the period say, 1973-1992, describes all dates 

from 1st January 1973 to 31st December 1992 inclusive, so each time series has a 

length of 240 observations.

The next step is to estimate the lower and upper tail indices, a  and a u re­

spectively and the lower and upper endpoints and m  and M  using the following
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Figure 5.19: Reconstruction time series that demonstrate irregular periodicities and 
trends. The original time series of mean monthly sea level at Harlingen was decom­
posed with lag L  =  660. Eigentriples or groups of eigentriples were then used to 
reconstruct the time series. The reconstructions that demonstrate irregular patterns 
are plotted above. The most recent apparent change point has been marked using 
a vertical dotted line.
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estimators:

a  = log (k)
(5.4.1)

(5.4.2)
1(>g( ( Vk ,n  ~  2 /3 ,n ) /(2 /3 ,n  ~  2/2,n ) )  

m  = m°(a).

The upper tail parameters M  and a u are estimated using the following estimators:

log(fc) (5.4.3)
lo g ( ( 2 /* ,n  ~  2 /3 ,n ) /(2 /3 ,n  ~  2/2,n ) )

M  =  M°(ocu) =  a i(a u)yn>n +  . . .  +  ak(au)yn- k+hn (5.4.4)

The estimator a  can be found in [11]. Other estimators of a  are available, 

for example [22] and [19]. Indeed, the estimation of a  is itself a very challenging 

problem, however, it was not the primary concern in this study. m°(d) and ai{d) 

are as defined earlier. Finally for sections 1885-1904 and 1973-1992 we compare our 

estimations of m and M  for each month of the year to the minimum (and maximum 

respectively) observed in the next 14 years. The observed value of m (and M )  for 

each month should not be viewed as the ‘true value’, but rather as an upper bound 

for m  (or lower bound for M ). This is because the true minimum (or maximum) 

would be unlikely to occur in 14 observations. There are two main reasons that 

more years were not used as a comparison; if more post-forecast observations were 

used then observed values would be unlikely to come from the same underlying 

distribution as the forecast (note th a t if there is a trend present any year other than 

the forecasted one will not be useful for comparison); also, it was desired to make the 

second forecast a relatively up-to-date one, this would not be possible if many years 

were required after the forecast for comparative purposes. In the analysis described 

above a value of k = 10 was used. Figure 5.24 shows the results of an investigation 

into the effect of changing k  on the estimates of tail index and endpoint.

5.4.2 R esu lts

(a), (d) and (g) in Figure 5.20 show the time series of sea level in Harlingen over the 

three 20 year periods; 1885-1904, 1973-1992 and 1987-2006. The remaining plots in
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these Figures are the periodogram of the time series in (a), (d) and (g). (b), (e) and

(h) in each of these Figures shows tha t the time series all include a strong signal 

with period 12. Plots (c), (f) and (i) show the periodograms with the y-axis cut off 

above the second largest spike of the periodogram, this is in order to see the other 

periods tha t axe present in the time series more clearly.

(a) and (b) from Figures 5.21, 5.22 and 5.23 show estimates of a  and m using 

(5.4.1) and (5.4.2) respectively with k  =  10. In the plot, each point represents an 

estimation from the residual of a time series where the associated reconstruction 

used eigentriples I —j  (where j  is the value on the x-axis of the plots). Estimates of 

a  and m  where a  < 0 or a > 6 have not been included. Shown in (c) of Figures 5.21, 

5.22 and 5.23 are forecasts of the minimum mean monthly sea level in Harlingen 

and (for Figures 5.21 or 5.22 only) the minimum observed mean monthly sea level 

for the next 14 years, (c) shows a selection of forecasts, relating to some or all of the 

following sets of eigentriples: 1, 1-3, 1-10, 1-30 and 1-60. Forecasts are not shown 

for sets of eigentriples th a t produce estimates a < 0 or d  > 6. In Figures 5.21, 5.22 

and 5.23, plots (d) (e) and (f) show similar estimates and forecasts, for the same 

periods, but for the upper tail.

From Figure 5.20 we can see the following. The section of the time series from 

January 1885 to December 1904 has a small trend and fairly regular periodicities, 

mainly period 12. The section of the time series from January 1973 to December 

1992 has a small trend and periodicities tha t are less regular than the section from 

1885 to 1904. This section of the time series has a greater variance and mean than 

the first section. This data  was chosen as it is relatively up-to-date whilst still 

having a reasonable post-forecast da ta  set for comparison. The section of the time 

series 1987 to 2006 was considered as it is the most up-to-date 20 year period with 

available data. The section of the time series from January 1987 to December 2006 

has a small trend and periodicities tha t are less regular than the section from 1885 

to 1904. Again the main period is 12. The mean and variance of this section are
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similar to that of the section from 1973 to 1992.
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Figure 5.20: (a), (d) and (g) show the time series of mean monthly sea level in 
Harlingen during the three 20 year time periods as labeled, (b), (e) and (h) show 
periodograms of each time series, (c) shows the same periodogram but with the 
y-axis cut off above the second largest spike, so that spikes from periods other than 
12 can be seen more clearly.
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Figure 5.21: Figure (a) shows a  against the number of eigentriples, j , used in the 
corresponding reconstruction. Figure (b) shows m against j .  The estimation of m  
uses the corresponding a  from (a). Figure (c) shows a forecast of the minimum 
mean monthly sea level for each month of the year 1905. The forecasts use the 
reconstruction of 1885-1904 as a base. Only the reconstructions related to 1, 3, 10, 
30 and 60 eigentriples are shown. Also shown in (c) is the minimum mean monthly 
sea level observed for the period 1905-1918 for each month. Graphs (d), (e) and (f) 
show similar information but for the upper tail.
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Figure 5.22: Figure (a) shows a  against the number of eigentriples, j ,  used in the 
corresponding reconstruction. Figure (b) shows m against j .  The estimation of m  
uses the corresponding a  from (a). Figure (c) shows a forecast of the mean monthly 
sea level for each month of the year 1993. The forecasts use the reconstruction of 
1973-1992 as a base. Also shown is the minimum mean monthly sea level observed for 
the period 1993-2006 for each month, (d), (e) and (f) show the similar information 
but for the upper tail.
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Figure 5.23: Figure (a) shows a  against the number of eigentriples, j ,  used in the 
corresponding reconstruction. Figure (b) shows m  against j .  The estimation of m  
uses the corresponding a  from (a). Figure (c) shows a forecast of the mean monthly 
sea level for each month of the year 2007. The forecasts use the reconstruction of 
1987-2006 as a base. No data  is available after 2006. (d), (e) and (f) show similar 
information but for the upper tail.
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Plots (c) and (f) of Figures 5.21, 5.22 and 5.23 show us that the final forecasts 

vary a great deal depending on the set of eigentriples chosen. In general, it ap­

pears that the more eigentriples used in a lower forecast, the larger the forecast 

becomes. That is, if few eigentriples are used, it is less likely that an observation 

will occur tha t is less than the forecast. Where more eigentriples have been used, 

the observed minimum (plotted with the plain solid line) is frequently lower than 

the lower forecast. Similarly for the upper forecast: when few eigentriples were used 

the observed maximum sea level was generally lower than the upper forecast. When 

lots of eigentriples were used the observed maximum sea level was often higher than 

the upper forecast. This is an obvious consequence of the method. Using too many 

eigentriples should be avoided.

The upper and lower forecasts (these are equal to the reconstruction forecast 

plus M  and reconstruction forecast plus m  respectively) for any particular set of 

eigentriples, are based on the same reconstruction forecast, and so the difference 

between them is constant and equal to M  — m. This can be seen by looking at plots 

(c) and (f) of Figures 5.21, 5.22 and 5.23.

In Figures 5.21 (c) and (f) it can be seen that the reconstruction made using 

E T  =  1 relates to the trend of the time series as the forecast is close to a straight 

line. Similarly in Figure 5.23 (c) and (f) it can be seen that the reconstruction using 

E T  = 1 relates to the trend of the time series. In Figure 5.22 (c) it appears that the 

reconstruction using E T  =  3 relates to the trend of the time series as the forecasts 

for eigentriples E T  = 1 and E T  = 1  — 3 are close to parallel.

Estimates, a  and a u vary with the eigentriples used seemingly randomly. Esti­

mates of a  greater than 6 or less than 0 were ignored as it is unlikely that the true 

value of a  would be outside these bounds (in fact m° cannot be applied if a  < 0). 

When m (or M ) was estimated using one of these unlikely estimates of a, m  and 

M  were also unlikely (much smaller or larger than any observed value). Each of the 

three sections produced similar numbers of poor estimates of a  and au. The poor
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Eigentriples a u M
1-13 8.9 587.8
1-14 14.2 847.3
1-15 8.9 642.1
1-28 10.7 686.6
1-29 14.3 833.7
1-30 64.3 2911.0
1-52 10.0 308.1
1-58 8.3 184.1

Table 5.5: Table shows discounted estimates of a u from the time series of 1885-1904. 
Also shown in the table are the eigenvalues related to the residual and the estimate 
of M.

estimates of a u and their corresponding eigentriples and M  are shown in Table 5.5 

for the time period 1885-1904.

The estimates of a  and m  in Figures 5.21, 5.22 and 5.23 are all made with 

k =  10. Figure 5.24 shows estimates of a  and m  from the residuals created after the 

extraction of various reconstructions from the time series of sea level in Harlingen 

from 1987-2006. It can be seen th a t altering k changes the estimates of both a  and 

m. In general it appears tha t as k  increases so does the tail index and the estimate 

of m. For any set of eigentriples shown, the difference between the largest estimate 

of ot and the smallest is of a similar order of magnitude (< 1). The difference 

between the largest estimate of m  and the smallest estimate of m  decreases as the 

number of eigentriples included in the reconstruction increases. This is likely to be 

because including more eigentriples in the reconstruction phase results in general in 

a residual with a lower amplitude.
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Figure 5.24: Figures (a)-(c) shows a  against k. Figures (d)-(f) shows m against 
k. The sample used for estimating a  and m  are the residuals created by extracting 
reconstructions from the time series of sea level in Harlingen in the period 1987-2006. 
The reconstructions use eigentriples as indicated below the graphs.
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Chapter 6 

Conclusion

6.1 Sum m ary

In Chapter 2 we compared two well known estimators of m  and some simple esti­

mators of m. The well known estimators were the maximum likelihood estimator, 

and the optimal linear estimator. The density and efficiency of the estimators were 

the main factors investigated. We first did this under the assumption that a  was 

known. A second comparison of the estimators was undertaken where the value of 

the tail index a  was unknown. Here the efficiency of the estimators was compared. 

In these comparisons the sample size, n  was fixed.

In Chapter 3 we introduced the idea of the sample y \ , . . . ,  yn as a time series. This 

is often a natural way to consider the sample, as can be seen in Chapter 5. Looking 

at the sample in this way allowed us to consider record observations. Section 3.1 

was dedicated to introducing terminology, notation and some basic results related 

to records. No new material was present here. In Section 3.2 we introduced a way 

of modeling order statistics and normalized estimators at record times. This model 

was verified, then used in the remainder of the chapter as part of similar simulation 

studies as Chapter 2.

In Chapter 4 we defined two estimators of m. In Section 4.1 we introduced the 

so called weighted estimator (WE). Before defining and investigating this estimator, 

in Section 4.1.1 we demonstrated some interesting properties of the conditional ex­
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pectation of waiting times (defined in Section 3.1). In Section 4.1.2 we defined the 

WE. The WE is a weighted average of the estimate from the current sample size and 

estimates at smaller sample sizes. This estimator was investigated through a simu­

lation study using an extension to the functional model developed in Chapter 3. It 

was found that this estimator had smaller efficiency than the optimal linear estima­

tor, some analysis was undertaken to explain this and suggestions for improvements 

were made. The second estimator introduced in this chapter assumed that the value 

of parameter Co was known (the value of a  was also assumed to be known). It 

was shown analytically and through simulation that this extra knowledge produces 

dramatic improvements in efficiency for some distributions, F(x).

In Chapter 5 we considered real-life applications of the theory from Chapters 2 

and 3. We began by applying the record theory discussed in Section 3.1 to the 

number of record events that are reported in the media. In Section 5.2 we considered 

data of average monthly sea level in six observation stations in the Netherlands. We 

showed how the number of observed records can help us to identify that the time 

series were non-stationary. We used the CaterpillarSSA algorithm to spilt sections 

of the time series of mean monthly sea level in Harlingen in April into a forcastable 

reconstruction and a stationary residual time series. The upper and lower tail indices 

were estimated and the optimal linear estimator was used to predict m  and M  of the 

residual. CaterpillarSSA was used to forecast the next 12 months of mean monthly 

sea level for each section of data. The forecast was added to the estimates of m  and 

M.
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6.1.1 T he E stim ators

•  The Maximum Likelihood Estimator, m*.

The maximum likelihood estimator m* is the smallest solution z to the follow­

ing equation:

(a  -  1) V  (^ ' n Vs’n}  =  k  
(Vj,n -  2)

where a > 2.

• The Optimal Linear Estimator, m°.

The optimal linear estimator is equal to m° = 2Zi=i u°2/i,n where a° is equal to

• / A A _ 1  1a = arg mm a Aa = „ .. .  ̂ . 
a:a' 1=1 1 A-1 1

Here A =  || ||f J==1 is a symmetric k x k matrix and A i s  defined for i > j

by (1.3.4).

•  Three Non-zero Coefficients Estimator, m ^ .

The linear estimator m ^  is defined to be equal to

a^yi , n  +  (1 -  a (i3) -  4 3))2/i,n +  ai3)2/fc,n 

where , aj^  and f are chosen to minimize the MSE of .

•  Two Non-zero Coefficients Estimator, mS2\

The linear estimator m ^  is defined to be

m fc2) =  (* +  Ck)yi,n -  Ckyk,n, =  T----- ----------------Ai,i — ZAk,\ +  Ak,k

where Ai j  are as defined in (1.3.4).

• Minimum Order Statistic, m*.

The minimum order statistic is the variable y\,n.
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•  Weighted Estimator, rhWE.

The weighted estimator (or WE), m WE = rh)^E is equal to

1
r h W E  -m k,n —

T k,Nk,n ~  k

Nk, „  

3=1

• Estimator with cq known, m x .

The estimator m x = m%n assumes that a  and Co are known. It is equal to

m x — y, — +  V a )
» r(fc)(con)>/°-

6 . 1 . 2  E stim ators w hen  k  =  2

•  Maximum Likelihood Estimator, m \.

When k = 2, the maximum likelihood estimator is equal to

0 L ~ 1 (  \  
m 2  =  2/1.n -------------------2---------------v2/2,n ~  2/l,n)-

As ?/2,n >  2/i ,n and a  >  2 we have that <  2/i,„.

• Optimal linear Estimator,

When A: =  2, the optimal linear estimator is defined to be
a

m 2 — (1 +  £ 2 ) 2/1,71 — C 22/2,n* C*2 =  -g-

6.1.3 Sum m ary o f D en sities

In calculating the densities below we assumed that the order statistics are from a 

sample drawn from the Weibull distribution with parameter a. Here = ?/i,n — m  

and uj4 = yktJl — m.

•  The density of the normalized estimators, (m ^  — m )/(yi,n — wi) for all integer 

k > 2, is given by

pi2)M  =
n!ctCg ( - l ) r

E(n k )\(l + Ck z )a+1 (fc — 2 — r)!r ! [n -  ( k - r -  1) ( l  -  ( j + § ^ ) ° ) ] 2

—oo < z < 1.
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•  Asymptotically as n  —> oo we have,

lim p f \ z )  = j-  , -o o  <  >2: < 1.
n —»oo W  ( 1  -f- C *  _  * ) « + l  ’ -  “

•  The density of the normalized estimators, (mS2) — m)/{yk,n — m) for all integer 

k > 2, is given by

p S°W  =
n!a(z +  C y ^  ^ 4  (-1 ) '

\a 2L^(n fc)!(l +  Ct )“ ^  (fc _  2 _  r )!r! n -  (fc -  r  -  1) ( l  -  ( f ^ ) ° ) ] 2

- C k < z  < 1.

• Asymptotically as n —> oo we have,

a ™  -  ( ■  -  *  *  *  ■

f2)This is equal to the density of the related functional Q  .

• The density of the functional C*3) (which is related to the estimator m(3)) is 

given by

Pe&)(z ) =  c[B(U(z)t a  — l , a  — 1) — B (l3,a  — l , a  — 1)], a3 < 2 < 1 (6.1.1)

2(^ -  a3)2Q_1

'C; 

where

c =
(a2( 1 -  a2 -  03) ) ° ’ 

a 2

1 — a3’
J  1 for a3 <  2 < a2 +  a3

4^ '  — 1 -52-  for a2 +  ^3 <  z  <  1
V. 2 — 0 3

and B(z, a, b) is the incomplete beta function:

B (z ,a ,b )=  [  ua 1( l - u ) b 1du. 
Jo

192



z p(z) limn_oo p(z) Support

(m^2) — m )/u >3 aC?
(1+C2-z )“+1 —00 < z <  1

(m° — m)/uj4 a(2+C2)Q" 1
(1+C2)a —C2 < z < 1

(m* — m) /  CJ3 2n(n—l)a(a—1)Q / . . / Q_i \ « \ “ 2
(o+l—2*)«+i 1  ̂ U + l-2z) )

2a(a—l)a 
(q+1- 22)“+1 —00  < z < 1

(m* — m )/cj4 2n(n-l)a(2z+a-l)°‘- 1 / . (2z+a-l\Q\~ 2 2a(2z+a—1)Q_1 < z < 1(a+l)« I72 1 1 I q+1 ) ) (a+l)°

c a(z+C2)Q- 1
1+C2 - - C 2 < z < 1

c
2a(22+ a-l)“" 1 

(2+a—l)a - - 2=1 < z < 1

Table 6.1: Densities of estimators and functionals when k =  2.

6.1.4 E fficiency

•  The asymptotic efficiency when k = 2 of estimator m0(i?) with respect to 

m° (a) is given by the following.

=  Q +  2 +  a(2l - * ) '

The analytic efficiency of m °(a) is eff(m°(o;)) =  1.

•  The asymptotic efficiency when k = 2 of estimator m*(d) with respect to 

m °(a) is given by the following.

eff(m (tf)) =  2 q 2 +  4q _  -  2tf +  tf2 -f 1' ^ ’1 ^

• The efficiency (6.1.2) is maximized at d = a  +  1, where it is equal to 1.

•  The asymptotic efficiency when k = 2 of m*{a) with respect to m°(a) is given

=  a (a  +  2)T P
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• The asymptotic efficiency of m* when k = 2 is given by

• The asymptotic efficiency of with respect to m°(a) for any integer k

such tha t k > 2 is given by

eff(m<2))W  =  ■

Here 1(2) =  (1,1)' and

a (2) =  ( ^  ) . (6.1.3)
k k

•  The asymptotic efficiency of ra j with respect to m°k n is given by

rrffcH2
=  r(fc)r(fc +  2 /a ) -  (T(k +  l / a J p i 'A - ' l '

6.1.5 T ransition D en sities

•  The transition density of when k = 2 is given by

, x f x ,  0 < y < x
p \y \x ) =  \  , x ^  ^yx  +  X  < y < 1

• The transition density of Ck for A: =  2 is given by

f a f c z a l ^ a l l ,  a2 <  z < C
P { \ Z >Q)  ̂ oc(z fl2 )a — i(C a2)a I a(C-“2 )a J- ^  ^  1

i +  ( z- a2)“+i  »

6.1.6 A u tocorrela tion  Function

•  The autocorrelation function of the 1-dimensional Markov chain X \  (where 

k = 2) is R X{1) = jr, where I is lag.

• The autocorrelation function of any linear functional when k = 2, C2, is given

by flc(0 =  ( r f c )  •
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6.2 C onclusions

In this final section we collect the main results of this thesis. We make concluding 

remarks regarding the strengths and weaknesses of the work carried out. We also 

reflect on the implications of the results and any further work that could be carried 

out.

6 .2 . 1  D en sities and H istogram s

Investigations into the distributions of the estimators, such as deriving densities 

analytically and plotting histograms, was useful as a first step. It enabled basic 

properties of the estimators to be found, such as their mean and variance for finite 

samples. Deriving the densities also acted as verification of results from simulation 

studies. Further work could involve the derivation of densities of estimators when 

F(x) is not the c.d.f. of the Weibull distribution.

R esu lts

• If Fa(x ; a) — Co(x — m )a then for a > 0 and x  in the neighborhood of m

-  when P = 1, Fp(x\ a, 1) =  Fa(x ’} a);

-  when p  > 1, Fp(x\ a, 1) < Fa(x\ a);

-  when p  < 1, Fp{x\ a , 1) >  Fa(x\ a);

-  ^ Q(x) < Fa{x\ a).

•  Normalized linear estimators, m^n, converge quickly to their asymptotic dis­

tribution when F (x)  is Weibull as n —► oo.

• The order statistics from a sample drawn from the Weibull distribution con­

verge quickly to their asymptotic distribution as n —► oo.

•  The order statistics from a sample drawn from Fp(x; a, 1) converge quickly to 

their asymptotic distribution as n —► oo for a > 0.
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•  The derived densities from Sections 2.2.4 and 2.2.6 were found to be a good 

fit to simulated data.

• Estimators normalized in different ways had very different distributions.

• The different estimators had similar distribution:

— When a  = 1, m£ „ =  =  mjg,.

— The skewness of the distribution of each estimator is similar.

— The mean and variance of the distribution of each estimator is different.

— The (m* — m ) / (y ^ n — m ) has a smaller variance than (m° — m)/{yk,n — m ) ■

— (ra° — m )/{ykin — m ) has a smaller variance than (m* — m)/{yk,n ~  m )-

• As k increases the mean and variance of (m° — m)/(yk,n — and (m* —

/ ( Vk,n — m) both decrease.

• As a  increases the mean of (m * — m ) / ( y k , n — m) remains fairly constant.

• As a  increases the mean of (m° — m ) / (yk,n — m) increases.

•  As a  increases the variance of estimators increases.

6.2.2 Efficiency, M ean Square Error and Bias

The results regarding the efficiency of the estimators showed that the MLE is not as 

efficient as the optimal linear estimator for estimating the endpoint of many of the 

distributions tested. The Weibull distribution is a famous case of where the MLE is 

poor due to the discontinuity of the likelihood function at m. See for example [6].

However, it is a standard distribution and therefore poor behavior is a significant

problem.

196



Results

• The MSE of the estimator mS2) =  y i^ a ^ V k ,n  is greater than the estimator 

m t,h = at xVi,n +  a£ 'yktn, where i — 1, 2 , . . . ,  k — 1 (see Figure 2.1) for some a 

and k.

• For F (x) Weibull:

— For small a  and for small k  the MLE has smaller efficiency and larger 

bias than ra°.

— The efficiency and bias of m ^  and m ^  are better than the MLE for 

some small a  and small k.

•  For F(x) = Fp(x\ a , 1):

— The efficiency of the optimal linear estimator is very close to 1.

— For small a  and for small k  the optimal linear estimator outperforms the 

MLE.

• When F(x) is equal to (1.1.2):

— When n is equal to 1 000 and k  is large, the efficiency of all estimators is 

poor.

— When n  is equal to 10 000 the efficiency of the optimal linear estimator 

is approximately constant (and larger than 1) for all k.

— The efficiency of m ^  and mS2>> decreases with k.

— The efficiency of m ^  and m ^  remain larger than the MLE even for large 

k.

•  The results from this section were verified using the functional model.
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6.2.3 W rong a

The investigation into using the wrong value of tail index was useful and interesting. 

It is important to know how the estimators react to using the wrong value of tail 

index. The main results from this section were that the MLE achieved maximum 

efficiency when the wrong value of ta il index, $*, was used and that a  < <  a  +1.

This result could be used to improve the maximum likelihood estimator. Further 

work could be to find the exact value of for different values of k. This may not be 

possible, in which case upper and lower bounds could perhaps be found. It would 

also be useful to find the reason behind this interesting behavior.

R esu lts

• For estimators m°, wS2\  m ^  and m *, eff(m(i?)) > eff(ra#(tf)) for a wide range 

of

• The range of d for which the estimators were more efficient than y\,n was larger 

if k was small.

• The range of for which the estim ators were more efficient than yitn was larger 

if q was large.

• For the MLE, the value of d th a t made the estimator most efficient w a s 'd*

where a < < a  +  1.

• When k = 2, =  a  +  1.

• These results were verified using the functional model.

6.2.4 W aiting tim es

In this thesis a literature review concerning waiting times was conducted. This has 

since been extended into a paper (submitted) on stopping rules for fc-adaptive search 

algorithms. Here the expected waiting time was combined with the expectation of

198



the ratio yfcfĉ | _ ^ ’̂ ’|+1 (related to the quality of linear estimators) to produce a 

stopping rule.

Results

• The expectation of W i>t, is infinite when t > 1.

• The expectation of W k,u is finite when k > 1.

• The expectation of Tktt+i — n  (where Tk,t < n < Tktt+1) increases linearly with 

n.

• The conditional distribution of Wk>t given y k,Tk t can be used to model waiting 

times.

6.2.5 S im ulating order sta tistics  at record tim es

Defining the Markov chain equal in distribution to (normalized) order statistics at 

records was extremely im portant to Chapters 3 and 4. It enabled record values to 

be modeled at sample sizes tha t otherwise would be been way beyond the capability 

of the available computing power.

Results

The simulation of order statistics a t record values featured in Chapters 3 and 4. It 

was used to verify many of the results listed in Sections 6.2.1, 6.2.2, and 6.2.3, and 

played an integral part in determining results listed in Sections 6.2.6 and 6.2.7

6.2.6 T he W eighted  E stim ator

The weighted estimator tha t we defined and investigated was unsuccessful as it 

failed to improve on the MSE of the existing linear estimators. However, it is likely 

that further work in this area could produce an estimator with smaller MSE than 

existing estimators. In the work presented here, suggestions of alternative weighted
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estimators were made based on heuristic arguments. Further work could involve 

deriving an estimator by considering the expected improvement in a linear estimator 

as sample size increases.

Results

• The WE has a smoother trajectory than m°.

•  The efficiency and bias of the WE are worse than m°.

•  Estimator quality and Wk,c are not correlated at record number c, where c is 

such that Tk,c+ 1 < 1 000 and TktC+2 >  1 000.

•  Estimators improve with sample size, record number and waiting time.

6.2.7 The estim ator m £ n

The work conducted concerning m kn showed that for a variety of c.d.f.s, when the 

parameter Co is known even a very simple estimator can be more efficient than the 

optimal linear estimator.

Results

• When a  >  2 the asymptotic analytic efficiency of the estimator m kn with 

respect to m°k n is much greater than 1.

• When a = 1 the asymptotic analytic efficiency of the estimator m kn with 

respect to m°kn is much less than 1.

• As k increases the asymptotic analytic efficiency of m k n with respect to m°k n 

decreases.

• A s a  increases the asymptotic analytic efficiency of m kn with respect to m°kn 

increases.
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• When F (x ) is either the Weibull or the beta distribution and a = 3, the 

estimated efficiency (from simulation) of m kn is much greater than m°kn.

• When F (x ) is the gamma distribution the estimated efficiency of rrikn is greater 

than m°k for small k.

•  When F(x) is the uniform distribution, the estimated efficiency (from simula­

tion) of m kn is much less than m°kn .

•  The estimated efficiency (from simulations) differed greatly from the ana­

lytic asymptotic efficiency when the distribution F(x)  was very different from 

Fa{x) = cq(x  -  m )a.

6.2.8 M eteorological A pp lications

Section 5.1 shows that, with care, the number of observed (maximal and minimal) 

records in a time series could be used to hypothesize tha t the time series is stationary. 

However, it also discussed tha t it is possible to observe the expected number of 

maximal and minimal records in a time series with periodicities.

Results

• If the elements of climate (e.g. average rainfall) are assumed to form a sta­

tionary time series, the expected number of ‘news-worthy’ records is high.

• Trend, periodicities, increased variation are factors that affect the number of 

records observed in a time series.

• In data of mean monthly sea level from six different observation stations in 

The Netherlands,

-  there is high correlation between locations;

-  correlation between months of the year at any particular location is fairly 

low.
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•  Consider the estimated number of records in the 6 x 12 =  72 continuous time 

series of mean monthly sea level at six measuring stations in The Netherlands.

— The expected number of type 1 1st records in each time series (if time 

series were stationary) is 5.4.

— The number of record highs was higher than expected in 69 of the 72 

time series.

— The number of record lows was lower than expected in 47 of the 72 time 

series.

6.2.9 U sing C aterpillarSSA

CaterpillarSSA is an excellent tool for time series analysis as it allows the expert 

user to consider the physical mechanisms behind the behavior of the time series. 

In this thesis greater consideration should have been given to the choice of eigen- 

triples in order to draw robust conclusions about the maximum and minimum sea 

level. The estimation of the tail index is a difficult problem that also needs greater 

consideration.

It is possible that change points in the time series of sea level could be better 

dealt with by using climate models to explain the changes in behavior. The time 

series could be split into two reconstructions and the residual noise. The first recon­

struction should be explainable and forcastable using climate models. The second 

reconstruction should be forecastable using SSA (i.e. not contain change points). 

The endpoints of the distribution of the residual could then be estimated using 

extreme value estimators.

R esu lts

• Removing the trend and periodicities from the time series of mean monthly 

sea level in Harlingen (using CaterpillarSSA), and then selecting just the data
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relating to April was not as effective as just using data from April at the 

reconstruction stage.

• Using more eigentriples in the reconstruction produced residuals with smaller 

variances and whose record counts were closer to those expected in a stationary 

time series.

•  The residual when just data  from April is used to create the reconstruction 

have smaller variance than the residuals when all data is used to create the 

reconstruction and then just the April data  is selected (see Figures 5.16-5.17).

• Some structure had been left in the residuals (shown in Figures 5.12-5.13) after 

removing the reconstructions.

• There is at least one change point in the time series of mean monthly sea level 

in Harlingen in April from 1885 to 2006.

• The final upper and lower forecasts (reconstructed forecast plus M  and recon­

structed forecast plus m  respectively) varied a great deal depending on the 

number of eigentriples used.

• The value of the parameter k affected the estimation of a , a u, m  and M  a 

great deal.
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