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Summary

SUMMARY
Locations in southern Iberia were sampled to assess patterns in the distributions 

and diversities of land molluscs and to determine the effects of habitat structure 

on diversity at differing scales.
In Part One of the study 91 sites, each 1km , were sampled. Species with 

higher abundances were present at more sites than those with lower abundances. 

Low levels of similarity were found between the land mollusc communities. The 

monthly mean of sunshine hours per day during the wet period and the annual 

mean absolute humidity provided the best explanation of the species data. The 
results suggest that the heterogeneous habitats from the region allow a large 
number of mollusc species to co-exist in varied communities possibly controlled 
by historical and regional factors including climate and geology.

In Part Two of the study 60 sites, each 1600m2, were sampled. Twenty 
sites were located in each of three habitat types (sand, steppe and garigue), and 

for each habitat type ten sites were sampled in both the wet period and dry
9 9 9period. Diversities and habitat structure were assessed at lm , 5m and 20m . 

There were differences in the number of species, abundances and diversities 
between habitats, and between the wet and dry periods at each habitat. 
Increasing heterogeneity and complexity increased the number of species, but 
not their abundances. Components of habitat structure affected the number of 

species and abundances independently of the total complexity.
Relationships between heterogeneity, complexity, number of species and 

species diversity were scale-dependent with most of the statistically significant 
relationships between these occurring at lm2. Increases in abundances and 

number of species with increasing area support the passive sampling model and 

the area per se hypothesis.
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Chapter I. General Introduction

1Who can explain why one species ranges widely and is very numerous, and 
why another allied species has a narrow range and is rare? ’

Charles Darwin, 1859

We need, ifpossible, to look at the worldfrom the molluscs ’point o f view, and 
it is unlikely that their categories correspond with our own. ’

Arthur Edwin Boycott, 1934
A key issue in ecology is how patterns o f species diversity differ as a function of

scale. ’
Scheiner et al., 2000

CHAPTER 1. GENERAL INTRODUCTION

I.I Introduction

The Mollusca is a monophyletic lineage that dates from the Lower Cambrian 

(Runnegar and Pojeta, 1985; Bruggen, 1995; Barker, 2001) and after the 

Arthropoda is the most diverse of all phyla (Morton, 1967; Rusell-Hunter,

1983). The general consensus is that there are seven extant classes: 

Aplacophora, Bivalvia, Cephalopoda, Gastropoda, Monoplacophora, 

Polyplacophora and Scaphopoda (Medina and Collins, 2003).

Estimates of the total number of mollusc species vary widely. Seed 

(1983) estimated about 100,000 species; Bruggen (1995) estimated between 

40,000 and 200,000 species. Solem (1978) estimated the total number of land 

mollusc species to be about 24,000 but later (Solem, 1984b) stated that 30,000 

to 35,000 should be thought of as a minimal estimate. Recent estimates by 

Lydeard et al. (2004) are similar to those of Solem (1978, 1984b) with 24,000 

species of land molluscs, and between 11,000 to 40,000 undescribed species, 

while Cameron et al. (2005b) stated that there are at least 35,000 species.

Molluscs live in many habitat types but only the Gastropoda are found 

on land (Cain, 1983; Solem, 1984b). Land snails are not a monophyletic group 

and at least seven gastropod groups made the transition from aquatic to
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terrestrial environments (Naggs and Raheem, 2005). Gastropods have a long 

and extensive fossil record, and their abundance and diversity in the Recent 

fauna has meant they have been used in many studies in various biological 

disciplines including evolution, ecology and biogeography (Riddle, 1983; 

Davison, 2002; McArthur and Harasewych, 2003).

1.2. Factors determining the distributions and diversities of land molluscs

The distribution of any species is limited by environmental factors (Hutchinson, 

1965; Russell and Clout, 2004), and large-scale patterns of species diversities 

are determined by factors such as origination and extinction (Pearson and 

Carroll, 1999). Factors that determine the distributions and diversities of land 

molluscs include climate, temperature, geology, altitude, palaeoecological 

history and soil type (Valovirta, 1968; Bruggen, 1969, 1995; Cameron and 

Redfem, 1976; Peake, 1978; Jungbluth, 1979; Tattersfield, 1990; Kemey, 1999; 

Welter-Schultes, 2000; Came-Cavagnaro et al., 2006), as well as colonization 

and habitat availability (Cameron et al., 2007).

Some of the factors determining distributions and diversities of land 

molluscs were considered by Solem (1984b; see also papers in Cameron et al. 

2005a) in his world model of land snail diversity and abundance, where he 

stated that there is exceptional high diversity in the mid-North Island of New 

Zealand and gave the following as important factors for this diversity:

• stable and moderate moisture supply,

• very deep litter composed of items that curl,

• topography sheltered from desiccating winds,

• lack of disturbance for millions of years,
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• small scale vegetation changes (Pleistocene and Holocene climatic 

fluctuations would have repeatedly separated then united forest patches; 

this may have allowed allopatric differentiation then subsequent co

existence after character displacement),

• minor predation pressure, and

• extended range

Chiba (2007) showed that moisture and productivity were important factors 

determining the number of species in the West Pacific Ogasawara Islands. 

Tattersfield (1996) reported that many of the species found in Kakamega Forest, 

Kenya, were from the leaf litter layers. Similarly, de Winter and Gittenberger 

(1998) stated that the great variety in size, shape and firmness of leaves in 

Cameroonian rainforest, in conjunction with different rates of their 

decomposition determined by small-scale factors such as moisture and soil 

conditions, provides a wide range of microhabitats supporting high land mollusc 

diversity. These and other studies (Cameron et al., 2005a) provide support for 

components of Solem’s (1984b) world model of land snail diversity and 

abundance.

13. Iberia: a malacologically rich area

The majority of Iberia, and all of southern Iberia, lies in the Mediterranean 

bioclimatological region (Rivas-Martinez, 1973; Andr6, 1984) (Figures 1.1, 1.2 

and 2.1). This region is characterized by mild, moist winters and sunny, 

cloudless summers, with one or more months without rain (Sue, 1984; Polunin 

and Walters, 1985; Atlas Nacional de Espafia, Anon, 1991-1995; Blondel and 

Aronson, 1999), although there are considerable local variations (Rivas- 

Martinez, 1981; Perry, 1997). Both Mediterranean and Eurosiberian
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vegetational regions occur and these are partly determined by climate (Rivas- 

Martinez, 1987; Shoshany, 2000). The Mediterranean region is well suited for 

analyzing patterns and processes o f diversity for two main reasons. First, the 

landmasses that encircle the Mediterranean Sea are parts o f three continents: 

Europe, Africa and Asia, and this leads to biogeographical diversification. 

Second, the geological and vegetational diversities o f habitats around or on the 

mountains, islands and peninsulas result in very diverse biotas (Blondel and 

Vigne, 1993; Richardson and Cowling, 1993; Lavorel and Richardson, 1999; 

Steinitz et al.y 2006).

F igu re  1.1. M ap o f  Iberia and surrounding regions (Im age reproduced with perm ission 
o f  w w w .sitesatlas.com ).
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Iberia is one of the regions in Europe with highest species diversity 

(Ramos et al., 2001), with high floral (Polunin and Smythies, 1988; Gim^nez et 

al, 2004) and faunal (Bellas, 1990; Thompson, 1999) diversity, and high rates 

of endemism (Polunin and Smythies, 1988; Bellas, 1990; Moreno Saiz et al., 

1998). This high diversity and endemism can be attributed in large part to the 

varied topography of the region that has provided suitable habitats through 

several glacial cycles (Alcaraz et al., 2006) and that has allowed the divergence 

and accumulation of genomes. Some species have maintained populations for 

many glacial cycles (Knowles, 2001; Branco et a l, 2002; Zangari et al., 2006). 

This is in contrast to northern Europe where glacially-induced changes in the 

distributional ranges of taxa have resulted in less genetic variety than southern 

Europe in terms of number of species, subspecific divisions and allelic diversity 

(Solem, 1985; Hewitt, 2000; Hampe et a l, 2003; Schmitt and Krauss, 2004).

The Pleistocene ice sheets did not cover the Mediterranean Basin (Panos 

et al., 1997; Valero-Garces et a l, 2004; Narciso et al., 2006), and Iberia, Italy 

and the Balkans were the main southern European refugia of the glacial periods 

(Hewitt, 2000; Sharbel et a l, 2000; Seddon et al, 2001; Carrion et al., 2003; 

Habel et a l, 2005). There is also evidence for postglacial recolonization from 

central Europe (Bilton et a l, 1998; Lagercrantz and Ryman, 1990).

Past climatic fluctuations have caused changes in the demography and 

distributions of many species (Durand et a l, 1999; Paulo et a l, 2001; Aransayl 

et al, 2003; Pfenninger et al, 2003; Robledo-Amuncio et al, 2005). The 

distributions of many European species changed as a result of populations 

moving northward from these refugia, and associated consequent population
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Figure 1.2. Satellite im ages o f  Iberia. The upper im age show s all Iberia, the low er im age shows 
m id-southern Iberia with a part o f  M orocco. Im ages reproduced with perm ission o f  G EO source 
W orld G uide (w w w .geosource.ac.uk).
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interactions, during warming at the end of the Pleistocene (Walker, 1995; 

Hewitt, 1996, 1999; Taberlet et al., 1998; Hellberg et al., 2001). Postglacial 

colonization from glacial refugia may explain the present-day distribution of 

many European land molluscs (Hausdorf and Henning, 2004; Pinceel et al., 

2005). Refugia may also have existed in parts of central Europe such as 

Hungary (Stewart & Lister, 2001; Deffontaine et al., 2005) and in western Asia 

(Bilton et al., 1998). Postglacial colonization from central Europe may have 

occurred through the Burgundian Gap, a corridor from north-eastern France to 

Germany (Hertelendy et al. 1992; Schmitt et al., 2002; Schmitt and Krauss, 

2004).

1.4. Current status of research

Malacologically, Iberia (especially southern Iberia) with its high number of 

species, diversity and endemism of land molluscs (Sacchi, 1965; Puente et al., 

1998), is not as well known as other parts of Europe (Bruggen, 1995; Wells and 

Chatfield, 1995). Most of the limited ecological work carried out in Iberia has 

been in the north (Outeiro and Hermida, 1995) and Iberia, as well as the 

Balkans, Greece and Turkey, are areas in Europe that Bruggen (1995) identified 

as sources of great diversity that are relatively un-worked, although recently 

there have been several detailed ecological studies from some of these areas 

(Cameron et al., 2000, 2003). In a review of non-marine mollusc conservation 

in Europe, Wells and Chatfield (1995) highlight the lack of data from southern 

European countries, which they argue have the highest diversities, endemism 

and greatest potential threats for diversity (see Stefanescu et al., 2004; Zavala 

and Zea, 2004; Butzer, 2005; Arndt et al., 2005; Lavergne et al., 2005; 

Rodrfguez-Prieto and Fem&ndez-Juricic, 2005; Zamora et al., 2007, for current
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status in Mediterranean). They also state that the areas with highest species 

diversities are often those with fewest resources for malacological research.

The works of Hidalgo (1875, 1875-1884, 1890-1913) were monumental 

in their coverage of Iberian land molluscs. They are also an entry point for much 

of the early literature for the region. In his treatment of the literature relating to 

Valencia (which applies generally to other areas as well) Martfnez-Orti (1999) 

describes four main periods of malacological activity: the initial period (1821- 

1856, with contributions mainly from non-Spanish workers such as Albers, 

Morelet and Schmidt); the Hidalgo period (during which Hidalgo published 

many of his most important works); the intermediate period (during which 

important contributions from Spanish workers, such as Ortiz de Z4rate, were 

made); and the modem period, beginning in the early 1960s.

Literature reviews related principally to taxonomy and systematics of 

parts of Iberia are in Manga Gonzalez (1983), Altonaga (1988), Bech (1990), 

Castillejo and Rodriguez (1991), Arrebola (1995) and Martinez-Orti (1999). 

Many of the works by Sacchi (references in Sacchi, 1965) consider the 

malacofauna in a biogeographical context. Some of the problems discussed by 

Sacchi (1965), such as shell morphology in relation to ecology in Iberus, are 

still not elucidated (see Lopez-Alcantara et al., 1985; Puente, 1994: Arrebola, 

1995; Elejalde et al., 2005; Gallego, 2006 for discussions on the generic status 

of Iberus).

Sacchi (1965) considered the study of Iberian land molluscs from 

ecological and historical bases. In this classic study he considered Iberia to be 

one of the most biogeographically interesting areas of Europe and saw the 

region as a bridge extending from France towards Morocco, isolated from
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surrounding landmasses, with coastlines unchanged since the Miocene. Sacchi 

argued that Iberia’s position between the Atlantic and the Mediterranean, and its 

complicated orography, contributed to climatic diversity. He considered the 

main zoogeographical regions of Iberia, and recognized the numerous European 

species and endemic species closely related to species from other European 

areas that do not cross the Ebro Valley, and so are limited to northern Iberia. 

Sacchi also indicated evidence for a Tertiary land bridge between the Spanish 

Betic Cordillera and the Moroccan Rif (the Betico-Rifian bridge) based on the 

malacofauna; evidence that has recently been elaborated and substantiated 

geologically (Medialdea et al 2004; Sanz de Galdeano and Alfaro, 2004; Platt 

et al., 2005; Reicherter and Peters, 2005). He also showed that the calcareous 

Mesozoic chains of hills in moist Andalucia, furthest from the Mediterranean 

and Atlantic coasts, shelter some Moroccan species, confirming the essential 

character of this biogeographical zone as a migration route. There is also 

evidence of the introduction into Europe of land mollusc by humans (Guiller et 

al., 1994,2006; Davies, 2008).

Other than habitat descriptions and rudimentary biogeographical 

analyses adjoined to taxonomic works (Altonaga, 1988; Puente, 1994; Arrebola, 

1995; Martinez-Orti, 1999) and a preliminary biogeographical study (Andre,

1984) there has been no research on the ecology of land molluscs in southern 

Iberia. Recently published papers have indicated the need for research from 

Mediterranean regions. Magnin et al. (1995) stated that studies of relationships 

between land snail communities and landscapes in the Mediterranean are scarce, 

and Labaune and Magnin (2002), who studied pastoral management and the 

dependence of land snails on plants and habitat structure, stated how little is
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known about these areas of study for the Mediterranean region. Cameron et al. 

(2000) stated that garigue and maquis habitats (two of the main habitat types of 

the Mediterranean region, consisting mostly of herbaceous plants and shrubs of 

low to medium height) are widespread in the region and that data from different 

areas from the region could provide evidence on the structure of molluscan 

faunas.

A large number of studies have demonstrated relationships between the 

distributions and diversities of land molluscs and large-scale factors such as 

climate, geology and habitat type (Section 1.2). Some of these factors determine 

distribution and abundance in the malacofaunas of many regions. In common 

with other taxa (Tews et al., 2004), very little is known, however, about how 

important factors are at small scales, for example 50x50m, and almost nothing 

at all about the effects of scale on these relationships.

There are now several studies that have been conducted at sites of 1km , 

often using smaller plots within these (generally 20x20m or 40x40m), to assess 

land mollusc species diversities. The first studies of this kind were from 

rainforests, which are among the most vegetationally species-rich habitats (Aiba 

et al., 2004), and tested the comment made by Solem (1984b) that in rainforests: 

‘Snails may be abundant on ecotonal fringes, but generally are neither diverse 

nor abundant’. There are recent studies from a few Mediterranean areas that all 

use the same scales and methods, and so allow comparison of data (Section 

4.5.3). This present study uses similar scales, and other data are beginning to 

accumulate from different regions, some quite distant from one another, using 

comparable sampling units. These data may provide the beginnings of a
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quantitative model to explain the distributions and diversities of land molluscs 

at different scales (Solem, 1984b; Gardner, 1998).

The effects of area and of habitat structure have been extensively studied 

for many taxa. Numerous models have been proposed to explain these effects 

(Sections 5.2 and 5.3). There are very few studies that have specifically looked 

at how area and habitat structure affect land molluscs, and almost no 

quantitative data exist. A difficulty with assessments of this kind has been that 

different elements of structure (e.g. vegetation, soil and rocks), and quantities of 

these, are often confounded making it difficult to compare results between 

studies.

A habitat structure model proposed by McCoy and Bell (1991) has three 

axes that take account of ecological relationships that are affected by habitat 

structure (Section 5.3). These three axes are heterogeneity (types of structure, 

such as rocks and vegetation), complexity (quantities of structure) and scale 

(size of area used to measure heterogeneity and complexity). This model allows 

the effects of habitat structure to be teased out and quantified across various 

scales at the same locality, the results of which can then be compared to other 

localities. This, in conjunction with data for assessing effects on distribution and 

diversity from a larger area (a region), may provide a solid basis for determining 

factors that affect land mollusc diversity. This is the approach in this study.

1.5. Aims of this study

This is the first ecological study of southern Iberian land molluscs and its main 

aims and objectives are:

1. To provide a preliminary biogeographical survey of the land

molluscs of southern Iberia.
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2. To determine the factors that affect the distribution and

diversities of land molluscs in the region and assess diversity 

in relation to other regions.

3. To assess the effects of habitat heterogeneity and complexity

on the number of species and species abundances at three 

scales (lm2, 5m2 and 20m2) in three habitat types, and to 

determine if these effects are scale-dependent and habitat- 

specific.

4. To assess the number of species, species abundances and

environmental variables at three scales (lm2, 5m2 and 20m2) in 

three habitat types, and to determine if there are variations in 

these in relation to the wet and dry periods of the year.

Southern Iberia is particularly suited for carrying out such a study because there 

is high species diversity, and the region is heterogeneous with a broad range of 

habitat types such as steppe and garigue that are highly suitable for testing 

hypotheses about habitat structure effects on diversity. In addition, carrying out 

the study in southern Iberia is particularly important because:

1. Very little is known about the malacofauna of the region and the study 

will provide the first detailed data for this region.

2. Parts of the region are under threat from development and there are no 

data available on the molluscs that are endangered or at risk from many 

of these areas.

3. The data will be available for comparison with data recently published 

from other Mediterranean countries (e.g. Cameron et al., 2000, 2003;
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Labaune and Magnin, 2001). This will enable a more detailed picture to 

emerge of the malacofauna from the Mediterranean region.

4. The data will allow comparisons of the southern Iberian malacofauna 

with the North African malacofauna. This will be used as part of the 

research being done by the author and others in the Interreg programme 

of collaboration with Morocco (GIBMANATUR) that will involve the 

comparative sampling of sites for land molluscs and environmental 

factors from both regions.

The aims of this study require that analysis of pattern and process of distribution 

and diversity in southern Iberian land molluscs be carried out at two very 

different scales. The thesis is divided into two Parts, reflecting this requirement. 

In Part One biogeographical patterns are assessed by sampling 1km sites from 

Guardamar del Segura in eastern Spain, to Lagoa de Santo Andre in Portugal, an 

extent of about 1500km. Molluscs are sampled by direct searching at the sites, 

and by sieving soil. Data are analysed using univariate and multivariate methods 

to determine species distributions and diversities, and to find factors that explain 

patterns in these.

In Part Two sites are sampled at a much smaller scale. A nested method

is used to assess the effects of habitat heterogeneity and complexity on species

2 2 2diversities in sand, steppe and garigue habitats at lm , 5m and 20m . The 

sampling allows relationships between species and environmental data to be 

studied in detail, assessment of possible changes across the three scales to be 

made, and specific hypotheses about habitat structure to be tested.

35



Chapter 1. General Introduction

Findings from each of these two approaches to studying land molluscs 

and their environments are discussed at the end of each part. A general 

discussion at the end of the thesis examines themes related to both approaches 

and attempts to synthesize the main findings in the context of current research in 

land mollusc ecology.
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CHAPTER 2. INTRODUCTION

2.1. Malacology and Biogeography

Over 20 years ago Solem (1984a) wrote that malacologists were not at the 

forefront of biogeographical studies. There has since been a clearer 

understanding of what biogeography should encompass as a discipline and most 

definitions state that it involves the study of the geographical distributions of 

organisms (Cox and Moore, 1985; Lincoln et al., 1998). A distinction is made 

between the study of ecological processes that occur over short periods of time, 

and which act on distributional patterns, and the study of processes that act over 

longer periods (millions of years) to influence patterns of distributions. The 

former is referred to as ecological biogeography, the latter as historical 

biogeography (Crisci et al., 2003; Lunt and Spooner, 2005; Bueno-Hemandez 

and Llorente-Bousquets, 2006).

Recent trends have moved from more narrative biogeographical methods 

towards more analytical approaches that have rigorous inferences. These show 

that the distributional patterns of organisms are not the result of a single cause, 

whether ecological or historical (Myers and Giller, 1988; Crisci, 2001), and that 

a combined approach is more appropriate (Crisci et al., 2003; Posadas et al., 

2006) supported by phylogeographical studies which attempt to identify the 

mechanisms influencing the geographical distributions of phylogenies in closely 

related species (Avise, 2000, Hugall et al., 2003). These concepts have been 

highlighted in a recent review of historical biogeography and ecology (Wiens 

and Donoghue, 2004) that identifies the divide between research into ecological 

and historical processes influencing species distributions, and how integrating
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these approaches can help to explain patterns in community assembly and 

species richness patterns.

Buffon (1761) postulated that different regions of the world were 

inhabited by different species of plants and animals. There have since been 

many attempts to characterize the major areas of the world based on their flora 

and fauna. This was the approach of Wallace (1860, 1876) who based his 

zoogeographical divisions mostly on birds and mammals, although these have 

also served as a framework for floral divisions (Bates, 1990). A detailed 

classification based on faunas was published by Schmidt (1954) and this has 

formed the basis for many other classifications.

Pielou (1979), pointing out that the methods used for these 

classifications were subjective, approximately representing the consensus of 

biogeographers from various specialities, described an objective method to 

classify biogeographical areas based on divisive information analysis as used by 

Kikkawa and Pearse (1969). Objective methods of analysis have been used for 

birds (Williams et al., 1999), plants (Qian, 2001; Kingston et al., 2003) and bats 

(Proche§, 2005). Vegetation types and climate have also been used to define 

biogeographical regions (Olson et al., 2001) (Table 2.1). The subjective 

approach is still widely used to divide the world into biogeographical regions 

and has been used to define major land mollusc regions (Abbott, 1989, Table 

2.2).
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Table 2.1. Biogeographical regions of the world according to Wallace (1876), 
Pielou (1979) and Proche§ (2005).

Wallace (1876) Pielou (1979) Proches (2005)
Australian Australasian South and Central America
Ethiopian Ethiopian Caribbean
Nearctic Nearctic Patagonia
Neotropical Neotropical North America
Oriental Oriental New Guinea
Palaearctic Palearctic (sic) Melanesia

Oceanian Australia
Antarctic Tropical Asia

Africa
Madagascar
Temperate Eurasia

Table 2.2. The main land mollusc regions according to Abbott (1989).

Region Description

Holarctic

Cold to temperate. From North America to northern Mexico, Europe and 
northern Africa. Asia north of the Himalayas. Divided into Palaearctic 
(Europe and Asia), Nearctic (North America). Exchange of genera and 
species in families Cochlicopidae, Valloniidae and Helicidae. In the 
eastern United States Polygyridae and Haplotrematidae are common; the 
subfamilies Oreohelicinae, Sonorellinae and Humboldtianinae are found 
in the western United States. In the warmer Mediterranean areas of the 
Palaearctic the Clausiliidae and Hygrominae are common.

Neotropical
New World tropical and subtropical parts of Mexico, Central America, 
West Indies and South America. Prosobranchs are common, as well as 
Strophocheilidae, Polymita and Liguus.

Oriental
India, Sri Lanka, southern China, and Japan, southeastern Asia and eastern 
Indonesia. Dominant groups include: Camaenidae, Acavidae, 
Helicostylinae and Bradybaeninae.

Ethiopian Africa south of the Sahara and the nearby Indian Ocean islands such as 
Seychelles and Madagascar.

Australian Australia, western Indonesia, New Guinea, Melanesia, New Zealand. 
Unique genera such as Papuina and Placostylus are present.

Malacologists are now much more engaged in biogeographical studies 

than 20 years ago and there are detailed biogeographical studies for regions 

including eastern North America (Nekola, 2005), northern Europe (Pokryszko 

and Cameron, 2005) and New Zealand (Barker and Mayhill, 1999; Barker,

2005). There are also biogeographical studies of some molluscan taxa (which 

sometimes include phylogeographical analyses) that have helped elucidate the 

processes that account for distributions. Hausdorf (1995) showed that dispersal
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across barriers, rather than vicariance events, explained the distribution of 

Stylommatophora in Sundaland, southeast Asia. In a study of present-day world 

distributions of Vitrinidae, Hausdorf (2001) concluded that ecological 

displacement or exclusion of vitrinids by slugs is probably due to competition 

for shelter. Other works have focused on the origins, and dispersal, of taxa with 

wide distributions. Scott (1997) investigated the biogeography of the Helicoidea 

and concluded that the vicariance patterns for the superfamily indicates that 

families originated with the splitting of eastern Gondwana and Laurasia between 

the late Mesozoic and mid-Tertiary.

Biogeographical studies from the Mediterranean, however, are scare. 

Sacchi (1977, 1984) defined a biogeographical limit to Cepaea nemoralis 

(Linnaeus, 1758) and C. vindobonensis (F&russac, 1821) along the Adriatic 

coasts of Italy based on their distributions and ecological factors; Welter- 

Schultes (2000) studied the patterns of geographical and altitudinal variation in 

Albinaria from Crete, and Uit de Weerd (2005) reported on the biogeography of 

Greek Clausiliidae. A recent study by Madec et al. (2003) reports that characters 

used to differentiate populations of Cantareus aspersus (Mtiller, 1774) in the 

western Mediterranean correlate with geography but that shell size between 

populations is often influenced by local conditions, illustrating the high degree 

of phenotypic plasticity of this species (Guiller et al., 1994; Amaudl et al.,

2003).

Biogeographical analyses of non-molluscan, Circum-Mediterranean taxa 

(including flies, crane flies, scorpions, frogs and newts) have shown that the 

oldest faunal elements in the western Mediterranean date from before the 

Miocene, with the origin of younger lineages linked with the Late Oligocene-
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Early Miocene formation of a landmass separating the Tethys from the 

Paratethys. Major divergence may have resulted by subsequent vicariant and 

distributional events throughout the Mediterranean during the Miocene 

(Oosterbroek and Amtzen, 1992).

Gantenbein (2004) assessed the genetic population structure of the 

scorpion Buthus occitanus (Amoreux, 1789) in the western Mediterranean 

(specifically in the region of the Strait of Gibraltar). Phylogenetic analysis based 

on estimated gene frequency data resulted in a cladistic tree that divided the 

populations into three clades: European, Atlas (Morocco) and Tell-Atlas 

(Tunisia). Cossan et al. (2005) have shown that an over water dispersal event 

explains the phylogeographical structure of greater white-toothed shrew 

populations on either side of the Strait of Gibraltar. Other similar studies have 

demonstrated that this Strait has separated the Iberian fauna from the 

Mahgrebian (North Africa) fauna and has been a geographical barrier to gene 

flow during the last 5 million years (Busack, 1986; Palmer et al., 1999; Palmer 

and Cambefort, 2000).

2.2. The malacofauna of southern Iberia

2.2.1. Biogeography

Attempts to define major biogeographical regions in Iberia have been based on 

various taxa including earthworms (Rodriguez et al., 1997), beetles (Gallego et 

a l , 2004) and plants (Rivas-Martinez, 1987). Hidalgo (1875), who divided 

Iberia into five regions qualitatively based on the distributional patterns of 

species, was the first to undertake a biogeographical study of Iberian land 

molluscs (Section 1.4). There have since been several more detailed and 

quantitatively-derived biogeographical assessments (Table 2.3).
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Table 2.3. The main biogeographical studies of land molluscs in Iberia. The original 
terminology, and spelling, of the regions by the authors have been retained.

Regions used to divide Iberia Source
Cantabrica, Pirenaica, Castellana, Betica, Valentiana Hidalgo, 1875
Galiciana, Cantabrica, Pirenaica, Aragonesa, Iberica, 

Castellana, Carpetana, Extremadura y la Mancha, 
Levantina, Betica, Sur-Oriental, Penibetica

Cereceda, 1957 in Hermida et al., 
1994

Spanish Levante, eastern Andalusia, Moist Andalusia, 
Guadalquivir plain, Portugal and Galicia, eastern 

Balearics
Sacchi, 1965

Catalufta, Aragon-Catalufia, Levante, Almeria, 
Andalucia, Este de Castilla, Oeste de Castilla, Palencia- 

Burgos, Badajoz, Alentego, Algarve
Andr6, 1984

Basque-Pyrenean-Catalonian, Castilla la Vieja, 
Mediterranean, Extremadura-LaMancha-Andalusia, 

Lusitanian
Puente, 1994; Puente et al., 1998

Despite some inconsistencies in the identification of biogeographical

regions resulting from these studies they do, in general, identify a major divide 

in Iberia between the Mediterranean and non-Mediterranean (Atlantic) regions 

(Figure 2.1). This divide, as detailed by Sacchi (1965), begins in the southern 

slopes of the Catalonian Pre-Pyrenean Mountains, continues to the central 

Pyrenees, then to the Cantabrian Mountains to Galicia, and onto northern and 

central Portugal.

Figure 2.1. Iberia. The dotted line shows the divide between the Mediterranean and non- 
Mediterranean (Atlantic) regions. Also shown is the position of 38° latitude (adapted from 
Sacchi, 1965; Polunin & Walters, 1985; Rivas-Martinez, 1987).

Non-Mediterranean
Region

Mediterranean
Region
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Arrebola et al. (2004a, b) used geographical districts and provinces (comarcas 

and provincias) to characterize human collection and consumption of land snails 

in Andalucia.

Table 2.5. The number of species, Andalucian and Iberian endemics, in the biogeographical 
regions of Andalucia, southern Iberia. The regions are those used by Arrebola (2002) and are 
based on Ibarra Benlloch (2003) who includes a further region, the Algarriense. Data adapted 
from Arrebola (2002). 'Andalucian endemics are species found only in Andalucia. 2Iberian 
endemics are found in other areas of Iberia but have their main distributions in Andalucia.

Biogeographical region Number of 
species

Andalucian
endemics1

Iberian
endemics2

Hispalense 36 1 1
Rondefto 31 6 2

Malacitano-Almijarense 54 6 2
Sub-B6tico 29 3 2

Alpujarrefio-Gadorense and Nevadense 16 1 1
Guadiciano-Bacense and Manchego 18 1 1

Aljfbico 46 8 1
Gaditano-Onubense 31 0 1

Mari&nico-Monchiquense 34 0 4
Almeriense 20 5 0

2.2.2. Diversity

Magurran (2004) has pointed out that following the review of Hurlbert (1971) 

many ecologists used the term diversity only when referring to quantitative 

measures that combine species richness and evenness (such as the Simpson’s 

and Shannon indices), but that in the last 10 years this practice has diminished 

as popular interest in biological diversity grows (Nobis and Wohlgemuth,

2004). Diversity, as well as biological diversity, are now considered by many to 

be synonymous with number of species (see also: Allaby, 2004; Lincoln et al., 

1982, 1998; Magurran, 1988). For clarity, in this study the term diversity is used 

when reference is made to measures that combine number of species and 

evenness, and number of species is used when referring to the number of species 

present (i.e. sensu Hurlbert, 1971).
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Recent estimates of the total number of species of land molluscs for 

Europe, which includes the Atlantic Islands and areas of the Mediterranean, 

range from about 3,000 (Wells and Chatfield, 1995) to 3,600 species (Cameron 

et al., 2005b). The numbers of species from regions and countries that have 

received the attention of malacologists for many years are known fairly 

accurately (Table 2.6); these include Britain and Ireland (Kemey, 1999), France 

(Falkner et al., 2002) and Malta (Giusti et al., 1995). Approximations of number 

of species are available for some countries (Wells and Chatfield, 1992, 1995), 

but not for Iberia as a whole, although Puente (1994) reports a total of 141 

species of Helicoidea (of which 87 are endemics). The definitive work for 

Iberian land molluscs will be the volume in the Fauna Iberica Monograph series 

to be published by the Museo Nacional de Ciencias Naturales, CSIC (Madrid), 

but this is still a number of years away (Ramos et al., 2001; Jose Arrebola, pers. 

com.).

Table 2.6. The numbers of species of land molluscs from different regions and countries. Note: 
* indicates that the totals include freshwater as well as land species (sources: Giusti et al., 1995; 
Wells and Chatfield, 1995; Barker and Mayhill, 1999; Cameron et al., 2000; Falkner et al, 
2002; Cameron, 2004; Aravind et al., 2005; Menez, 2005).

Country Number of species Country Number of species
Gibraltar 41 Netherlands 102

Malta 56 Norway 134*
New Zealand 1400 Finland 68

Tasmania 65 Ireland 93
Japan 740 Canary Islands 181*
Italy ^ 0 0 Belgium 117

Iceland 26 Slovakia 160
Scandinavia 116 Hungary 148

Denmark 87 Turkey 550
Greece -600 Israel 96

British Isles 126 Madeira 237*
Azores 98* Switzerland 196
Sweden -200* Germany 190
Poland 162 Austria 224

Romania 295 France 256
Albania 225 India 1488
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The few studies that have been undertaken in southern Iberia consist of 

species lists (Table 2.7). Values for diversity indices are very rarely reported 

and, in the absence of densities, cannot be calculated from these studies.

Table 2.7. Studies of diversities of land mollusc species from southern Iberia.

Location Number of 
sites/samples

Number of 
species Source

Sevilla 30 29 Arrebola (1990)
Andalucia 228 64 Arrebola (1995)
Comunidad Valenciana 910 106 Martinez-Ortf (1999)
Sierra de Alcaraz, Albacete 29 47 Martinez-Orti et al. (2004)
Southern Iberia 91 94 This study

The main aim in Part One is to determine the factors that affect the 

distribution and diversities of land molluscs in southern Iberia, and to assess 

diversity in relation to other regions (Section 1.5). Univariate and multivariate 

methods including diversity indices, species abundance models and cluster 

analysis are used for this.
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CHAPTER 3. METHODS

3.1. The study area

The study area is southern Iberia, defined in this study as the part of the Iberian 

Peninsula below the 38° line of latitude, and which includes Gibraltar, southeast 

Spain and southern Portugal (Figure 3.1).

Figure 3.1. Iberia (a) showing extent of the 38° line of latitude (box) and detail of boxed area 
used for this study along the coast of southern Iberia (b). Each marker indicates the position of a 
site, from Guardamar del Segura, Spain (top right) extending clockwise along the coast to Lagoa 
de Santo Andr6, Portugal. These sites extend approximately 1500km along the coast. (See 
Appendix 1 for details of sites and Appendix 2 for photographs of sites).

Twin

Vaqjn

100km
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3.2. Selection of sites

The aim was to have a site every 10-15km along the 1500km stretch of coast in 

southern Iberia (Figure 3.1, Appendices 1 and 2) encompassing as large a 

geographical area as possible. A linear-type system (using segments for site 

selection, see below) was determined to be the best way to achieve this. The 

following criteria were met by the sites:

(1) an area of approximately 1km2 with no man-made structures, or only a 

minimal number of these,

(2) a distance of not more than 5km from the coast (to keep sites within the 

segments used (see below) and to standardize, as far as possible any effects on 

the data because of proximity to the coast),

(3) an area with as little anthropogenic disturbance as possible (visual 

assessment of buildings, roads, other construction etc.), and

(4) an area with as much habitat variation as possible, e.g. garigue, steppe, etc. 

(visual assessment).

Segments were drawn on a map (Figure 3.2) and then a site nearest the 

centre of each segment that met the required criteria was sampled (Figure 3.3; 

Drinnan, 2005). The suitability of each site was determined in the field based on 

the criteria listed above. This sometimes resulted in the site for a particular 

segment being located away from the centre, and because of this it was not 

possible to have sites equally spaced along the 1500km of coast. This 

constitutes a one-stage stratified sampling method with the segment being the 

stratum (Bart et a l , 1998; Dytham, 1999). Ninety-one sites were sampled for 

Part One of this study (details in Appendix 1).
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F igu re  3.2. Detail o f  a part o f  the m ap used to select the B iogeographical Sites using the 
segm ent m ethod. Dashed lines delim it segm ents. See Figure 3.3 for a stylized 
representation o f  the segm ent m ethod.
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F ig u re  3.3. A stylized representation  o f  the segm ent m ethod used to select the 
B iogeographical Sites. Each segm ent (delim ited by vertical lines) includes a  site (stippled 
square) that is selected  based on pre-assigned criteria (see text for further details and 
F igure 3.2 for part o f  the m ap used).
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3.3. The sampling periods

A year in the Mediterranean region can be climatically divided into the dry and 

wet periods (Schimper, 1903; Cody and Mooney, 1978). The dry period is 

generally considered to be from the end of May to September, and the wet 

period from October to the end of May (Blondel and Aronson, 1991; Font 

Tullot, 2000; Aviad et al., 2004). Biological resources, such as water, soil 

nutrients and plant biomass, typically go through periods of high and low 

abundance (Schwinning and Sala, 2004; Sher et al., 2004), and many species of 

plants and animals show physiological and behavioural adaptations to these 

periods (Blondel and Vigne, 1993; Faulkner and Hill, 1997; Blondel and 

Aronson, 1999; Grove and Rackham, 2001; Schwinning et al., 2004).

Many land molluscs exhibit decreased activity during the dry period in 

the Mediterranean region (Bar and Mienis, 1979; Giokas et al., 2005). Heller 

and Ittiel (1990) reported decreased activity in Helix texta Mousson, 1861 from 

Israel during the dry period, and Parmakelis and Mylonas (2004) reported 

inactivity in Mastus butoti (Maassen, 1995) and M. cretensis (Pfeiffer, 1846) 

during the dry period in Crete. Other taxa, both vertebrate and invertebrate, have 

activity patterns related to seasonality (Rueda et al. in press). Stamou et al. 

(2004), for example, have shown that the survival of arthropods in 

Mediterranean conditions involves specific combinations of conservative and 

conformist traits, and that the population dynamics of arthropods follow the 

seasonality of the Mediterranean climate. Extensive fieldwork in southern Iberia 

by the author has shown that sampling for molluscs in the wet period generally 

maximizes the number of species that can be found at a site. To maximize the
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number of species found at all sites sampling was carried out during the wet 

period.

3.4. The environmental variables

In this study environmental variable is defined as any variable that is measured 

for its possible effects on the numbers, abundances and distributions of species 

at sites (Lep§ and Smilauer, 2003). The definition thus includes biotic and 

environmental (i.e. abiotic) factors (Clarice and Warwick, 1994; Lincoln et al., 

1998; Jones and Reynolds, 1996). The species data are the primary data set 

sensu Lep§ and Smilauer (2003) with individual species being response 

variables.

Large-scale environmental variables were measured because of the large 

extent of the geographical area considered in Part One of the study, as well as 

the size of the sites (1km2). These, being mostly climatic and geological 

variables, would not be expected to have high variance at the scale at which the 

sites were sampled. Variables such as pH and calcium content of soil were not 

measured as the high heterogeneity at the sites (that contained more than one 

habitat type, Section 3.2) would have required extensive replication of this type 

of variable to adequately provide an indication of their variance at the sites. The 

variables measured at the sites and the scoring criteria used for the classification 

of the rocks/deposits and geological periods are detailed in Tables 3.1, 3.2 and 

3.3.

Values for climatic variables were assigned to sites based on the data 

mapped in Daveau (1977, 1985), Albuquerque and Nunes (1978), Font Tullot 

(1984, 2000) and Anon. (1991-1995). Data for each site was derived from the 

mapped data by matching site positions to the climatic maps. Data from
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meterological stations adjacent to sites would have provided data more closely 

related to the sites. These data were largely unavailable because of the paucity 

of meterological stations in the study area.
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Table 3.1. The environmental variables measured at the Biogeographical Sites. 
Key:1 DV=diumal variation (the difference in means between maximum and minimum 
daily temperatures),2 00=mean number of days in year with recorded temperature less 
than or equal to 0°C, 3 20=mean number of days in year with recorded temperature 
more than or equal to 20°C. (Sources: Daveau, 1977, 1985; Albuquerque and Nunes, 
1978; FontTullot, 1984, 2000; Anon., 1991-1995, 1994).

Variable Classification/unit of measurement
Altitude Metres above sea level (using altimeter)
Geology (rock/deposit type) sensu Roberts, 1989; Anon., 1994 (see Table 3.2.)

Geological period sensu Black, 1998; Lincoln et al., 1998 (see Table 
3.3.)

Rainfall Annual mean (mm)
Sunshine Annual mean (hours/day)
Sunshine-January Monthly mean (hours/day)
Sunshine-February Monthly mean (hours/day)
Sunshine-March Monthly mean (hours/day)
Sunshine-April Monthly mean (hours/day)
Sunshine-May Monthly mean (hours/day)
Sunshine-June Monthly mean (hours/day)
Sunshine-July Monthly mean (hours/day)
Sunshine-August Monthly mean (hours/day)
Sunshine-September Monthly mean (hours/day)
Sunshine-October Monthly mean (hours/day)
Sunshine-November Monthly mean (hours/day)
Sunshine-December Monthly mean (hours/day)
Temperature Annual mean (°C)
Temperature-January Monthly mean (°C)
T emperature-J uly Monthly mean (°C)
Temperature (DV)'-January Monthly mean (°C)
Temperature (DVV-July Monthly mean (°C)
Temperature (00) Annual mean (number of days)
Temperature (20)J Annual mean (number of days)
Wind velocity Annual mean (km/hour)
Absolute humidity Annual mean (g/mJ)

Table 3.2. The scores used for the geological classification of the principal rocks/deposits 
at the sites according to data in Anon., 1994 (Mapa Geoldgico de la Peninsula Iberica, 
Balearesy Canarias). Terminology based on Roberts, 1989 and Anon., 1994.

Score Geological classification of rocks/deposits
1 Plutonic rocks
2 Metamorphic rocks
3 Conglomerates, Sandstones, Slates, Calcites
4 Conglomerates, Sandstones, Slates, Gypsum, Clays
5 Slates, Dolomite, Marl, Conglomerates, Sandstones
6 Slates, Dolomite, Marl, Sandstones
7 Conglomerates, Sandstones, Clays, Calcites, Evaporites
8 Calcareous turbidites
9 Conglomerates, Sandstones, Clays, Slates, Evaporites
10 Conglomerates, Gravels, Sands, Muds
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Table 33. The scores used for the geological Eon, Era, Period or Epoch of the principal 
rocks/deposits at the sites according to data in Anon., 1994 (Mapa Geologico de la 
Peninsula Ibirica, Balearesy Canarias). Terminology based on Anon., 1994 and Lincoln 
etal., 1998.

Score Geological Eon, Era, Period or Epoch Geological time (millions of 
years before present)

1 Proterozoic-Palaeozoic 2400-245
2 Palaeozoic-Triassic 570-210
4 Carboniferous 365-290
5 Triassic 245-210
3 Mesozoic 245-65
6 Jurassic 210-140
7 Cretaceous 140-65
8 Cretaceous-Palaeocene-Eocene 140-38
9 Palaeocene-Eocene 65-38
10 Oligocene-Miocene 38-5
11 Miocene 26-5
12 Pliocene 5-1.6
13 Pliocene-Pleistocene 5-0.01
14 Pleistocene 1.6-0.01
15 Holocene 0.01-present

3.5. Sampling the land molluscs

The standardization of sampling effort and sample size are important 

considerations in the design of ecological studies (Southwood, 1978; Schneider, 

1994; Bart et al., 1998; Magurran, 2004) but sampling effort is rarely 

documented in studies (Gaston, 1996a). Most land mollusc studies do not 

include an assessment of the time needed to find most species at a site, nor of 

the volume of substratum needed to find most of the species contained in the 

substratum (Menez, 2001). This situation may change as issues of sampling 

efficacy in land mollusc research become more topical (Cameron and 

Pokryszko, 2004,2005; Section 8.1).

Analyses of diversity and habitat relationships have sometimes been 

based on, or have included, qualitative methods (Barker and Mayhill, 1999; 

Craw, 2001). Bishop (1977), and more recently Menez (2001, 2002a), discussed 

the use of quantitative sampling techniques for land molluscs and for the
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recording of environmental variables in land mollusc studies. Various sampling 

methods have been used for land molluscs (Table 3.4).

Table 3.4. A selection of sampling techniques for land molluscs. The total number of species 
from each study is given (because number of sites and sampling methods differ among the 
studies, the total number of species between the studies are not directly comparable).

Region/a rea/locality Method(s) Total
species Source

South Downs, England 44 sites of 1000m'2. Direct search 
for lhr. About 1.51 soil and litter. 43 Cameron, 1973

Granada, Spain 176 sites direct search, 5 to 100mz, 
1-1.5kg soil. 21 Alonso, 1977

Hel Peninsula, Poland Litter and soil samples of0.0625m'2. 
Total 256 samples. 10 Umifiski and 

Focht, 1979
Vancouver Island, British 

Columbia
38 sites of900mz. Direct search lhr. 

51 litter per site. 26 Cameron, 1986

Madrid, Spain 68 samples, 0.5m topsoil only (no 
direct search). 15 Outeiro et al., 

1993

Northwestern Spain
60 sites of 100kmz. Direct search. 

0.5m2 quadrats for soil collection to 
5cm depth, 3 samples per site.

87 Hermida et al., 
1994

Hawaii

58 sites. 0.5m2 area sampled in lh 
(or more). 15min looking at 
trees/shrubs. Litter/soil from 

900cm2 at 5 sites.

16 Cowie et al., 
1995

Maubec, Luberon, France Plots of 156.25 m2. 33 Magnin et al., 
1995

Southeastern Madagascar

48 plots each 400mz at 16 stations. 
Direct search of 3 person hours per 
plot. 81 of litter and soil plus litter 

sample per plot.

87 Emberton et al., 
1996

Kakamega Forest, Kenya

31 plots 1600mz. Direct search for 
minimum of 30min per plot, some 

plots with 3 people. 41 litter per 
plot.

53 Tattersfield,
1996

Southeastern Madagascar

16 stations, 3 1600mz plots per 
station. Each plot sampled for 

30min by 6 people. 81 leaf litter and 
81 of soil plus leaf litter.

80 Emberton, 1997

Eastern Tanzania 12 stations. 2-4hr direct search in 
each. 159 Emberton et al., 

1997

Northern Madeira
51 samples (sites). Direct search for 
about 30 min by 2 people. About 51 

soil and litter.
84 Cameron and 

Cook, 1998

Cameroon

36 400mzplots searched for lhr 
each. About 41 of litter per plot. At 
many plots under storey vegetation 
(about 0.75-3m) was beaten. Tree 
trunks searched for about 30min.

97
de Winter and 
Gittenberger, 

1998

Pukeamaru, northeastern 
New Zealand

23 sites o f2500 mz. Direct search. 
Litter and humus (vol. unknown). 105 Barker and 

Mayhill, 1999

Great Lakes Region, USA 349 sites of 100 -1000mz. Direct 
collection, 41 soil. 120 Nekola, 1999
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Table 3.4 (continued).

Region/area/locality Method(s) Total
species Source

Southwestern Madeira 80 sites. 900m2, 2 people for 30min 
to lhr. 51 of litter and soil. 97 Cameron and 

Cook, 2001

Naxos, Crete and 
Peloponnese Islands

35 sites of 10 000m2. Direct search 
for about lhr by 3 people. About 51 

of litter and soil from at least 5 
locations at each site.

90 Cameron et al., 
2000

Tutuila, Ta’fl, Ofu, 
American Samoa

Separate samples from vegetation 
and ground. Area of about 50m dia. 
3 people searched veg for 20min. 1 
person searched veg for lOmin and 

ground for lOmin. Extra non- 
quantitative samples collected along 

transects.

60 Cowie, 2001

Luberon, France

80 sites at each 25m2 plot searched 
for 15min by 2 people. 5 samples of 
25cm2 each of veg, litter, soil down 

to 5cm in each plot of 25m2.

32 Labaune and 
Magnin, 2001

Sabah, Malaysian Borneo

36 plots 400m2each in a 1km2 area.
2 person hours per plot. Direct 

search. Beating of plants. 41 of litter 
per plot.

61 Schilthuizen and 
Rutjes, 2001

Mount Kenya, Kenya
64 plots of4900m2. Direct 

searching for 2.5 hours and 41 of 
soil and litter collected per plot.

68 Tattersfield et 
al., 2001

North Ronaldsay, Orkney
17 sites from 400 to 10000m direct 

search for at least lhr. Litter and 
soil (?vol).

23 Cameron, 2002b

Luberon, France

80 sites each 25m2. 15min per plot 
direct sampling. 5 samples of 

625cm2 in each plot for litter and 
soil down to 5cm.

32 Labaune and 
Magnin, 2002

Stroumboulas, Crete 14 plots of400m2 searched for lh 
by 2 people. 41 topsoil sifted. 27 Cameron et al., 

2003
Province, southeastern 

France
74 plots each 25m2. 30min direct 

sampling per plot. 21 Kiss and 
Magnin, 2003

Arabuko Sokoke Forest, 
Kenya

10 plots of 1600m2 at each of 3 
forest types, lhr direct searching by 
2 people. 41 per person (i.e. 2x41) 

from each plot.

25 Lange and 
Mwinzi, 2003

Biaiowie2a Forest, Poland
4 sites, 400m2 plot at each. Direct 
searching for 2 hours, collection of 

101 of litter.
51 Cameron and 

Pokryszko, 2004

Southwestern Germany

83 sites of 100m2. 4 plots 
representing 0.25m2 per site with 
removal of litter and soil to 3cm 

depth.

52 Martin and 
Sommer, 2004

Sabah, Malaysian Borneo
6 sites, 400m2 plot at each. Direct 
searching for 2 hours, collection of 

51 of litter and soil.
74 Schilthuizen et 

al., 2004

Southeastern France
209 sites of 25m2. Direct search and 
collection of soil and litter to 5cm 

depth.
87 Aubry et al., 

2005

Central Sweden 29 sites of 100m . 0.5m2 total area 
sampled from pooled samples. 20 Hylander et al., 

2005
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Table 3.4 (continued).

Region/area/locality Method(s) Total
species Source

Southern England
4 sites, 400mz plot at each. Direct 
searching for 2 hours, collection of 

101 of litter.
57 Cameron et al., 

2006

Israel
27 sites of lkm2, each sampled 

using nine plots of 100m2, each plot 
searched for 12 minutes.

50 Steinitz et al., 
2006

Two sampling methods were used: (1) direct search, and (2) collection 

of specimens from the soil. Sampling was carried out during the day. Most 

species, however, are nocturnal and are mainly active during the night up to 

early morning (Asami, 1993). Ward-Booth and Dussart (2001) showed that 

there were no significant differences in the number of species nor abundances of 

snails found in day and night sampling from an agricultural area of southeast 

England. In Mediterranean habitats, however, night-time searching remains the 

optimal strategy for land mollusc work (unpublished data), and it is recognized 

that values for number of species and abundances may have been different had 

the fieldwork been conducted at night. These differences would, however, be 

expected to be minimal because thorough searching under rocks, logs and other 

types of shelter will locate molluscs during the day. Fieldwork was not 

undertaken at night because of the difficulties this would have entailed, 

including adequate access and searching of sites, and safety issues related to the 

habitat types sampled.

3.5.1. Direct search

The direct search method is widely used for determining the abundances of 

species (Southwood, 1978; Sutherland, 1996; Table 3.4). The method involves 

the active search by eye for land molluscs on the soil surface, under rocks and 

logs, on vegetation etc., and the counting and/or collection of these. Ward-
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Booth and Dussart (2001) found that this method is suitable for land snails, 

especially where more destructive methods cannot be used. The method has 

been used in a large number o f land mollusc studies (e.g. Cook, 1984;

Figure 3.4. The species-tim e relationships for three sites representing  three M editerranean 
habitat types: M ed S teps=m aquis (dense, m ostly evergreen shrub com m unities I-3m  high, 
Polunin and W alters, 1985); A lam eda=m an-induced (gardens); Talus=coastal (sand). A t each 
site direct searching w as used to  collect all m olluscs (including slugs) for 30-m inute periods. 
Ten consecutive 30-m inute periods o f  direct search sam pling w ere carried  out at each site for a 
total o f  5 hours sam pling  at each site. The m ean tim e at w hich asym ptotes are attained is 2.5 
hours, which indicates that adequate sam pling has occurred (source: M enez, 2001).
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Tattersfield, 1990, 1998; Emberton et al., 1996; Wardhaugh, 1996; Chater, 

1998; Ramos, 1998; Cameron et a l., 2007; Cejka et al., 2008, and Table 3.4.) 

including those undertaken in Iberia (Altonaga, 1988; Puente, 1994; Arrebola, 

1995; Martinez-Orti, 1999). The method is also used for collecting slugs
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(Hunter, 1968), although numbers tend to be underestimated because aspects of 

behaviour, including burial into soil during parts of the year (Quick, 1960; 

Newell, 1968; Warebom, 1969; Runham and Hunter, 1970; Kemey and 

Cameron, 1979), result in slugs being more difficult to find than snails. In the 

Mediterranean region slugs are sometimes found only during the wet period 

(unpublished data; Cameron et al., 2003).

Each site in the present study was searched for 2.5 hours. This has been 

shown to be adequate for sampling Mediterranean habitat types (Menez, 2001 

and Figure 3.4.) and approximates to time periods used in other recent studies 

(Cameron et al., 2000, 2003). At all sites a thorough searching of plants, under 

rocks and logs and other types of habitat structure, was carried out. This is 

similar to other studies for land molluscs (see references above) and the 

method’s efficacy at finding land molluscs depends, to varying degrees, on the 

experience of the fieldworker to sample a site adequately (Ward-Booth and 

Dussart, 2001). In studies that use more than one worker this has sometimes 

proved problematic because of the differential capacity of workers to sample 

sites and, if these workers sample different sites that are then compared, 

collector bias may be a concern. This is not a problem in this study, however, 

because all sampling was carried out by only one worker (the author) and any 

collector bias is assumed to be standardized across all sites.

3.5.2. Collection of specimens from soil

At each site a total of five litres of soil were collected from five randomly 

selected points (1 litre at each point). One litre of soil was collected at each of 

the points corresponding to 30, 60, 90, 120 and 150 minutes of the 2.5 hours 

direct search period. It is accepted, however, that more species may have been
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recorded if soil had been collected at points identified a priori as being likely to 

contain more molluscs (such as at the base of rocks and under logs). This 

volume of soil has been shown to be adequate for sampling the molluscs in soil 

in Mediterranean habitat types (Menez, 2001 and Figure 3.5.). The soil was 

pooled and then dried in a hot air oven at 90°C for 18 hours and allowed to cool 

to 20°C. This process removes moisture and allows efficient sieving of the soil. 

The soil was sieved using 6mm and 1mm mesh sieves in a hand held frame that 

separates the soil into three fractions. The 6mm and 1mm fractions were 

examined for molluscs using a 6x magnifying lens, and the <lmm fraction was 

examined using 20x magnification with a stereo dissecting microscope. A 

limitation is that the method kills molluscs in the soil resulting in some species, 

especially slugs, being difficult or impossible to identify. An improvement 

would be to use soil washing and flooding techniques to extract live molluscs 

from the soil, prior to heating (Runham and Hunter, 1970; Pearce and Orstan,

2006).

61



Part One, Chapter 3. Methods

Figure 3.5. The species-volum e (o f  soil) relationships for three sites representing three 
M editerranean habitat types: M ed Steps=m aquis; A lam eda=m an-induced (gardens);
Talus=coastal (sand). A t each site ten litres o f  soil w ere collected from a random ly selected 
point and thoroughly m ixed and then divided into 20 0.5litre aliquots. Sam ples w ere sieved 
through 6m m  and I mm sieves and the fractions exam ined under m agnification for land m olluscs 
(see text for details). T he m ean volum e at which asym ptotes are attained is 4 .2 litres, indicating 
this to be an adequate vo lum e o f  soil to use for sam pling (source: M enez, 2001).
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3.6. Iden tifica tion  o f the  species

Most o f the specimens were identified to species level, and material from the 

author’s extensive collection o f southern Iberian land molluscs was used for 

comparison. Published, and unpublished, literature was used to verify the 

genital anatomy o f those specimens that required dissection for identification
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(e.g. Puente, 1994; Arr^bola, 1995; Martinez-Orti, 1999). Most of these were 

from the genera Xerosecta, Iberus and Theba, but also from other genera 

including Trochoidea and Candidula which contain smaller species. Many 

specimens were identified from conchological features. This sometimes 

required the use of magnification to examine micro-structural details and for 

these specimens a stereo dissecting microscope was used with magnification up 

to 20x. From an area such as southern Iberia, which is malacologically poorly 

known (Section 1.4), there are likely to be species that are unidentifiable and 

which may be presently undescribed. This was the case with some material from 

this study and several species remain unidentified (Appendix 3). Some 

specimens were identified by Professor Jos6 Arrebola of the University of 

Seville who also prepared dissection diagrams to assist in the identification of 

difficult species, including the rare Theba subdentata helicella (Wood, 1828) 

(Figure 3.6.). Mr. Adrian Norris (Leeds Museum) identified some of the slugs.

Where identification to species level was not possible the species were 

identified to generic level and labelled, for example, Trochoidea spl, 

Trochoidea sp2 and Trochoidea sp3. These species are considered to be 

morphospecies (Hammond, 1994; Oliver and Beattie, 1996) and were matched 

conchologically as being of the same species at both the same site (intra-site) 

and across sites (inter-site) where they occurred. All specimens are catalogued 

and kept in the author’s collection, which in the future will be lodged in the 

Gibraltar Museum.
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Figure 3.6. Theba subdentata helicella (W ood, 1828) from Retam ar, Spain, a. shells (scale in m m) b. 
dissection carried out by author (scale in m m ) c. diagram  o f  genitalia, internal structure o f  penis and dart 
from confirm atory dissection (d iagram  c. courtesy o f  Jos6 Arr^bola, U niversity o f  Seville).
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3.7. Data analysis

3.7.1. Diversity analysis

3.7.1.1. The number of species

Also known as species richness (McIntosh, 1967) this is a measure of the 

number of species at each of the sites. It is the oldest measure of biological 

diversity (MacArthur, 1965; Magurran, 2004) but as purely a measure of 

number of species, there is generally no implied standardization of sampling. 

Species density is the number of species in a standardized sample (e.g. per unit 

area) and is a rarely used measure (Whittaker et al., 2001).

3.7.1.2. Abundances of the species

The numbers of individuals of each of the species at each of the sites were 

recorded to provide the abundance of each species. The term abundance is 

synonymous with density when (as in this study) the unit of area or volume 

from which the species are counted, is known (Krebs, 1985; Bullock, 1996).

3.7.1.3. Diversity

There is considerable controversy and debate about how species diversity 

should be measured and some indices make assumptions that are sometimes not 

met by the species data that they are used for (see Magurran, 2004, for 

discussion). A large body of literature exists and the following provide details 

and discussion about these debates: McIntosh, 1967, 1985; Hurlbert, 1971; 

Connell, 1978; Green and Vascotto, 1978; Southwood, 1978; Huston, 1979; 

Yapp, 1979; Wolda, 1983; Gadagkar, 1989; Lande et al., 2000; Keylock, 2005, 

with Magurran (2004) providing a recent synthesis of the species diversity 

measurement debate as well as discussion about new measures including Clarke 

and Warwick’s taxonomic distinctness index (see also Warwick and Clarke,
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1995; 1998; Ellingsen et al., 2005; Salas et al., 2006). In this study two indices 

of species diversity were used: Simpson’s index (Ds), and the Shannon index 

(H’) (Magurran, 1988, 2004; Keylock, 2005). These two indices are commonly 

used in ecological studies, their efficacy and robustness are well known 

(Magurran, 2004), and they allow comparisons of the data from this study with 

other studies (Section 8.2).

Although diversity indices have limitations, related to sample size and 

species evenness, their advantage in assessing community composition and 

related ecological relationships is that a significant amount of data can be 

summarized by one value, or set of values (Hurlbert, 1971; Magurran, 2004).

McCoy (1999) used the Shannon index to measure the diversity of land 

molluscs indicating that this choice had been made because the index makes no 

assumptions about the shape of the underlying distribution of species abundance 

and is relatively insensitive to changes in the dominant species. Lande et al. 

(2000) demonstrated that Simpson’s index always produces a consistent 

expected ranking among communities across sample size, even at low sample 

sizes. They also showed that 81 individuals were sufficient to rank Simpson’s 

diversity within 95% confidence intervals, whereas 1801 individuals were 

required to rank species richness using species accumulation curves. They 

further pointed out that intersection of accumulation curves for two 

communities will occur if one community contains a greater number of species 

but has lower evenness, and thus a lower value for Simpson’s index. Curves 

tend to intersect when comparing communities that differ in habitat 

heterogeneity and/or disturbance regimes. Lande et al. (2000) also state that of 

the diversity indices, only Simpson’s has the statistical accuracy for reliable
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comparisons among communities using small samples, and that because the 

estimator of Simpson’s index is unbiased, it is statistically valid to compare 

Simpson’s index in communities with different sample sizes.

3.7.1.3.1. Simpson’s index

y > ,(w ,- l)
This is calculated using D = —----------- where n, is the number of individuals

N ( N - 1)

of the z'th species and N  is the total number of individuals. The reciprocal form 

(Ds) is used to ensure that the value of the index increases with increasing

1 N ( N - \ )diversity; this is given by Ds = — =  — (Magurran, 2004).

3.7.1.3.2. Shannon index

This is calculated using H ’ = -lpx Inpx where /?„ the proportional abundance of 

the fth species = (n/N). Base 2 logs were used for calculating the Shannon index 

(Magurran, 2004). The indices were derived from the species abundances matrix 

using the DIVERSE routine in PRIMER (Plymouth Routines in Multivariate 

Ecological Research; Carr, 1991, 1997; Clarke and Warwick, 1994).

To assess all of the measures described in Sections 3.7.1.1 to 3.7.1.3 the 

mean, 95% confidence intervals (Cl), minimum, maximum and range were 

used. Cl were used instead of standard error (SE) of the mean following Dytham 

(2003) who states that Cl is preferred over SE because the latter is useful only if 

the sample size is known. This criterion is almost never met with number of 

species and species abundances data.

The observed sample mean (x) and its standard error (s.e.=s/V«) are used 

to estimate a range within which the population mean is likely to lie. There is a 

95% probability that the sample mean lies with 1.96 s.e. below or above the 

population mean and therefore a 95% probability that the interval between x-1.9
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s.e. and *+1.96 s.e. contains the (unknown) population mean. The 95% 

confidence interval (Cl) is given by: 95% Cl = jc±(1.96xs/V«) (Kirkwood, 1988; 

Dytham, 2003).

3.7.2. Biogeographical analysis

3.7.2.1. Classification (Cluster)

This technique is widely used in ecological studies to classify sites, species or 

variables, giving information on which species are found together, establishing 

community types and determining relationships between communities and 

environmental variables by analyzing clusters (Tongeren, 1995). A group 

average hierarchical agglomerative method was carried out using the CLUSTER 

routine in PRIMER. This is the cluster method that is the most used in 

ecological studies. Samples from a similarity matrix (using the Bray-Curtis 

similarity coefficient) are agglomerated into groups, and the groups into larger 

clusters, beginning with the highest mutual similarities and then gradually 

lowering the similarities during group formation with each new node taking the 

average similarity of the individual nodes rather than the minimum (for 

complete linkage) or maximum (for single linkage) similarities.

Cluster analysis was carried out on (1) the samples (i.e. sites) using the 

log*+i transformed species abundances to identify site groupings and, (2) on the 

standardized species abundances to assess species similarities. The second 

approach defines the similarity between any pair of species (in an analogous 

way to that for the samples), but is done by comparing the /th and /th row 

(species) across all columns (i.e. samples; see Section 4.2.2 for details).
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3.7.2.2. Ordination (MDS)

Ordination techniques have been widely used in ecology since Principal 

Components Analysis was first used by Goodall in the early 1950s for 

classifying vegetation (Goodall, 1954; Zitko, 1994). Of the many techniques 

that are now available, Non-Metric Multidimensional Scaling (MDS) is one of 

the most used, and the one used in this study. The procedure uses the similarity 

matrix (using the Bray-Curtis similarity coefficient) to construct a configuration, 

or map, of the samples such that samples that are more similar are closer 

together. MDS uses an iterative algorithm to obtain the best configuration of 

points (samples), assessed using the stress function calculated for each 

configuration. The results of cluster and MDS often complement one another 

and both techniques are often used together in studies (Carr, 1991, 1997; Clarke 

and Warwick, 1994). MDS was carried out using the MDS routine in PRIMER.

3.7.2.3. Linking environmental variables to species data (BIOENV)

An overview of this method is given here because as far as the author is aware 

this study is the first that uses the BIOENV method with land molluscs. Many 

techniques have been used in ecology to find and explain species’ distribution 

patterns (Clifford and Stephenson, 1975; Field et al., 1982; Clarke and 

Ainsworth, 1993). These techniques can be classified into three main groups: 

(1) a search for patterns amongst the species data with an attempt to interpret 

these in terms of the environmental data, (2) a search for patterns of 

relationships between the species data and environmental data simultaneously, 

and (3) a search for patterns amongst the environmental data followed by a 

search for related patterns in the species data. The third approach is 

recommended by Green and Vascotto (1978) and Field et al (1982) because the
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influence of any previous assumptions about relationships between the species 

and environmental data are avoided.

These approaches only permit one environmental variable at a time to be 

related to the species data ordination (Clarke and Ainsworth, 1993; Freeman and 

Rogers, 2003). This has led to the development of a technique that uses the rank 

similarity matrices of ordination methods of environmental and species data to 

define an optimal subset of environmental variables that best explain the species 

data (Clarke, 1993; Clarke and Ainswoth, 1993). The among-sample similarity 

matrix for the species data was constructed once using MDS (Section 3.7.2.2), 

but the equivalent triangular matrix for the environmental data was computed 

for all possible combinations of environmental variables at each level of 

complexity of explanation (i.e. variables taken singly, two at a time, three at a 

time etc.) using Principal Components Analysis.

The rank correlations between the species and environmental matrices 

were calculated in every case. A down-weighting to Spearman’s rank 

correlation coefficient is applied that permits a better understanding of the 

coefficient’s behaviour (Clarke and Ainsworth, 1993). This down-weighting is 

achieved by adding a denominator term inside the summation that is an 

increasing (and symmetric) function of r, and s, where {r,; i= 1,...^V} are the 

number of all the sample similarities calculated using the species data and {s,; 

p=1,...JV} are the ranks of sample similarities defined from the environmental 

data. The weighting term is (r, + s,) giving the weighted coefficient pw. This has 

been termed the Harmonic rank correlation by Clarke and Ainsworth (1993) 

and:
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p w = l-cY  —---- 1— wherep w ranges from 0 to 1. A value of 0 denotes no
t i  (r , -s , )

correlation and a value of 1 denotes complete correlation. The highest value of 

p w from the analysis is chosen and represents the best explanation of the

species data by the environmental data. A limitation of the method is that there 

is no testing framework that can assess the statistical significance of the optimal 

combination of species and environmental variables, and the value of p w is

used alone (Clarke and Ainsworth, 1993; Clarke and Warwick, 1994).

Computations were carried out using the BIOENV routine in PRIMER.

3.7.2.4. Commonness and Rarity

In this study commonness and rarity are considered in relation to the total 

abundance of each species at all sites (Gaston, 1994; Kelly et al., 2001). The 

species were ranked according to their total abundances (most abundant to least 

abundant, starting at rank 1) and assessed in relation to distribution in the entire 

study area (Section 3.7.2.5).

3.7.2.5. Species distributions

Species were assigned to one of three distributional ranges: Mediterranean 

(present only in the range represented by Sites 1 to 48), Atlantic (present only in 

the range represented by Sites 49 to 91) and, Mediterranean-Atlantic (present in 

the range represented by all sites). In addition, species were assigned as having 

narrow distributions if they were present only at Mediterranean, or only at 

Atlantic, sites, and as having wide distributions if found at both Mediterranean 

and Atlantic sites. These classifications can only serve as a preliminary guide to 

the distributions of these species and more fieldwork is required to determine 

distributional ranges more accurately.
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3.7.2.6. Numbers of species per family

The number of species in each family was quantified using data from each of 

their distributional ranges (Section 3.7.2.5). This was then calculated as a 

percentage.

3.7.2.7. Species abundance models

Fisher et al. (1943) showed that a characteristic pattern of species abundance 

was present in data sets, which led to the development of species abundance 

models (Magurran, 1988). A species abundance distribution uses all the 

information from a sampled point and is the most complete mathematical 

description of the data (Magurran, 1988). Many workers (see for example May, 

1975, 1981; Southwood, 1978) suggest these provide the only sound basis for 

the analysis of species diversity.

Many models have been proposed (Pielou, 1979; McIntosh, 1985; 

Magurran, 1988) but data are usually examined with one or more of these main 

models: (1) geometric series, (2) log series, (3) log normal, (4) truncated log 

normal, and (5) broken stick. In some cases more than one model describes a 

data set (e.g.: Thomas and Shattock, 1986; Menez, 1996, and this study).

The geometric and log series are closely related (May, 1975) and 

generally indicate strong dominance in ‘harsh’ environments or in early stages 

of succession (He and Tang, 2008). The log normal indicates a sequential 

splitting of the community multidimensional niche space (Sugihara, 1980) and 

may fit data from large, diverse communities. The truncated log normal is 

related to the log normal. In finite samples the left hand part of the curve is 

obscured and the truncation point is further from the origin in smaller samples. 

The model predicts the total number of species in the community (S*). The
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broken stick indicates high equitability and is mostly found in narrowly defined 

communities of taxonomically-related organisms (Magurran, 1988).

The curves for these models are generally fitted visually, and have rarely 

been mathematically-fitted to data (Wilson, 1991). In this study the species 

abundances data from each site were tested for mathematical fit to these five 

models using a BASIC program based on formulae from Magurran (1988). The 

models that best fitted each data set were selected using the P values derived by 

the program. These models are used to describe the species abundances data 

from rank/abundance (also termed Whittaker or dominance/diversity) curves. 

Data analyses of this type have become popular in the ecological literature in 

recent years (Watkins and Wilson, 1993; Krebs, 1999; Magurran, 2004) and 

Magurran (2004) reports that standardization of plotting methods may soon be 

achieved.

3.7.2.8. Beta diversity {fi)

Beta diversity is a measure of the change in diversity between samples and was 

first used by Whittaker (1960) for samples across environmental gradients or 

along transects. The measure can also be used to assess change in diversity 

between different sites or locations, and to assess diversity over time (Magurran,

2004). Temporal and spatial changes in diversity are commonly called turnover 

(Huston, 1994; Magurran, 2004; Begon et al., 2006). In this study, Whittaker’s 

measure of Beta diversity (fiw) was used (Whittaker, 1960, 1970) to measure the 

between-sites diversity. This is calculated using fiw=S/a where S is the total 

number of species recorded at a site, and a is the mean sample diversity.
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3.7.2.9. Transformations

Transformations were carried out on data for two different reasons (Clarke and 

Warwick, 1994; Sokal and Rohlf, 1995):

1. to validate the assumptions for parametric tests;

2. to weight the contributions of common and rare species in multivariate 

analyses.

Data were analyzed using the Kolmogorov-Smimov test (K-S) for goodness of 

fit using the one sample K-S routine in SPSS (Statistical Package for the Social 

Sciences, Norusis, 1986) that compares the data with a theoretical normal 

distribution and computes K-S z. If the distribution of the data is significantly 

different from normal the significance (2-tailed P) is less than 0.05.

A variety of transformations can be used ranging from a square root 

transformation to converting the data to presence/absence. This range can be 

considered to be a sequence, which corresponds to a progressive down- 

weighting of the common species, and is (from Clarke and Warwick, 1994; 

Legendre and Gallagher, 2001):

None—Wx —► Wjc or log*+i —► presence/absence 

The choice is between a moderate (V) and fairly severe (Vv! or log) 

transformation and converting the data to presence/absence format. The VV or 

logx+i transformation is generally recommended because it retains quantitative 

information from the species abundances yet still downplays the species 

dominants. In this study the loĝ +i transformation is used for both species and 

environmental data.
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3.7.3. Local and regional scales

Community ecology has long been considered to be the result of local 

environmental and ecological processes such as competition and predation 

(Kikkawa and Anderson, 1986; Ricklefs, 1987). Local processes, however, may 

be insufficient to provide explanations for the local co-existence of species 

(Shimda and Wilson, 1985; Lawton, 1999), and the relative impact of local and 

regional processes on community structure partly depends on the intensity of 

interactions at the local scale (Cornell and Lawton, 1992; Niemela et al., 1996; 

Mouquet et al., 2001). More recently, the influence of local processes has been 

complemented by the recognition of other environmental factors that generate 

non-random patterns of community composition, and which are termed regional 

factors (Ricklefs and Schluter, 1993; Gaston, 2000; Whittaker et al., 2001).

Local richness is measured on a scale small enough that all species could 

encounter each other (and possibly interact) within ecological time. Regional 

richness is the species pool and contains all species that could eventually 

colonise a location if competitive exclusion was unimportant (Griffiths, 1999; 

Srivastava, 1999). The term landscape is often used to denote a scale between 

local and regional scales (Forman and Godron, 1986; Forman, 1995; McGarigal 

and McComb, 1995; Irmler and Hoemes, 2003).

In general, alpha diversity corresponds to the local scale, beta diversity 

to the landscape scale and gamma diversity to the regional scale, although these 

are related to the body sizes of taxa, and the scales at which alpha, beta and 

gamma diversities are applicable vary between taxa (Emberton, 1995a; 

Whittaker et at., 2001). Nekola and Smith (1999), for example, report that their 

results for Wisconsin carbonate cliff land mollusc communities suggest that
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alpha diversity at these sites is best measured at scales no larger than 0.04m2, 

beta diversity at scales no larger that 100m2, and gamma diversity is best 

measured between sites at least 10km distant from one another.

Many land mollusc studies differentiate between local and regional 

scales in assessment of diversity (e.g. Tattersfield, 1996; Nekola and Smith, 

1999; Cameron et al., 2000) and in this study local scale refers to sites, and 

regional scale to the entire study area (sensu Casado et al., 2004; Gray et al.,

2005).
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1. Diversity analysis: results

4.1.1. The numbers of species, abundances and diversity

A total of 94 species were recorded from the 91 sites (Table 4.1; see Appendix 3 

for systematic species list, Appendix 4 for species abundances at the sites).

Table 4.1. The number of species, total abundances, Shannon diversity and Simpson’s diversity 
at the 91 sites. Lower 95% Cl and upper 95% Cl are lower and upper 95% confidence intervals 
of the mean, respectively.

Variable Mean Minimum Maximum Range Lower 
95% Cl

Upper 
95% Cl

Number of 
species 12.1 4 22 18 11.2 13.0

Total
abundance 1068.8 6 5450 5444 843.8 1293.7

Shannon
diversity 2.380 0.452 3.717 3.266 2.253 2.507

Simpson’s
diversity 0.724 0.130 0.933 0.803 0.694 0.754

There were two areas with greater numbers of species and diversities 

than others (Figure 4.1.a,c,d): the Mediterranean coast from Benagalbon (Site 

B36) to Sotogrande (Site B46), and the Atlantic coast from Tavira (Site B70) to 

Sao Vicente (Site B81). The species Cochlicella acuta (Muller, 1774) is very 

abundant in southern Iberia and four sites had total abundances greater than 

3000 (Figure 4.1.b.) attributable to the high abundances of this species 

(Appendices 3 and 4).

Nonparametric species estimators, such as Chao 1 and Chao 2, are 

efficient at estimating the number of species in samples (Magurran, 2004). The 

estimators, however, assume homogeneity amongst the samples (Magurran, 

2004) and cannot be used with the data from Part One as sites were not all of the 

same habitat type.
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Figure 4.1. The num bers o f  species (a), total abundance (b), Shannon diversity  (c) and S im pson’s 
diversity  (d) for the 91 sites. In each graph the mean (bold line) and low er and upper 95%  confidence 
intervals o f  the mean (fine lines) for the data are shown. See A ppendix 1 for site details.
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4.2. Biogeographical analysis: results

4.2.1. The environmental variables

Values for the environmental variables for each site are listed in Appendix 5.

4.2.2. Classification (Cluster)

The data for the cluster analyses are from single sites. As there are no replicates 

at sites it has not been possible to undertake statistical analyses of cluster 

memberships; hence the permutation test ANOSIM (analysis of similarities) 

available in PRIMER has not been used. ANOSIM tests the null hypothesis that 

there are no differences in community composition at sites using permutation 

and randomization methods on the within- and between-sites species 

similarities. Non-replication at sites also prevents the use of SIMPER (similarity 

percentages), available in PRIMER, which computes the contribution of each 

species to the mean dissimilarity both within and between groups (Clarke and 

Warwick, 1994). A study such as this could be improved by sampling with 

replication at sites to allow statistical analyses of species similarities using 

methods such as ANOSIM and SIMPER. Although this has not yet been done 

using land molluscs at the biogeographical scale considered here (because of 

time constraints resulting from the number of replicates needed), it merits 

consideration for future studies (Section 8.5).

The groups in the cluster analyses were assessed at two different 

similarity thresholds. A threshold of 50% was used for the analysis to cluster all 

91 sites based on their species compositions (samples analysis), and a threshold 

of 20% for the analyses of species similarities from all sites. The assignment of 

threshold values to assess group membership is largely arbitrary and it is 

customary to use values of 50% or more (Clarke and Warwick, 1994; Tongeren,
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1995). In the present study similarity was low for the species similarity analyses 

and a cut-off value of 20% was required to differentiate main groups.

4.2.2.1. Samples analysis

Clustering of the logx+i species abundances from the sites formed 34 

groups (Figure 4.2 and Table 4.2). Group 34 contained 16 sites (17.6 % of the 

total) and the remaining sites were in groups containing between one and seven 

sites (Table 4.2); of these groups, 16 (48% of the total) contained only one site. 

Group 34 contains most of the sites located on the east coast from Malaga, 

Spain, to Portimzio, Portugal. Group 30 contains sites from the east coast from 

San Pedro de Alcantara, Spain, to Sotogrande, Spain. Some of these sites have 

the highest diversities recorded from the study area and this group includes the 

site with the highest diversity (Sotogrande, H —3.717, Appendix 1).

The low levels of similarity between most sites indicate that there is a 

low level of similarity between the land mollusc communities. These results are 

supported by the fact that 89 of 91 sites formed single-site groups at a level of 

similarity of 80% (89 sites =98% of the total, Figure 4.2, Section 4.2.2.2). Using 

species presence/absence for cluster analysis results in similar groupings of sites 

to the logx+i transformed species abundances.

Plotting the Bray-Curtis similarity coefficient for each of the sites, 

arranged in sequential order from Guardamar del Segura, Spain (Site Bl) to 

Lagoa de Santo Andrd, Portugal (Site B91), illustrates the decrease in similarity 

between sites moving across sites from Bl to B91. This represents an increase 

in distance away from Site Bl of about 10- 15km from one site to the next, over 

the approximately 1500km extent of the study area (Section 3.2). This decrease 

in similarity is highly significant (rs=-0.632, PO.OOl, Figure 4.3).
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Table 4.2. The results o f  group average hierarchical agglom erative clustering (using the Bray- 
Curtis sim ilarity coefficient) on log*+i species abundances from the sites. A 50%  sim ilarity cu t
o ff  is used for site inclusion into groups. The num ber o f  sites in each group, and the percentage 
o f  the total sites this represents, are also shown.

G roup Sites in G roup
No.
o f

sites

Percentage 
o f  total 

sites 
(n=91)

1 Torre del O ro (B 64) 1 1.09
2 C abo Serdao C avaleiro  (B87) 1 1.09
3 V ila do B ispo (B 82) 1 1.09
4 Zam bujeira do M ar (B86) 1 1.09

5
El Pozo de los Frailes (B19), Cabo de G ata (B20), Torrex 
(B 33)

3 3.30

6 Punta del C arnero  (B50), Punta del Cabrito (B51) 2 2.20

7
Punta de los M uertos (B17), Las Negras (B18), Torrecuevas 
(B 31)

3 3.30

8 A lm eria (B 22) 1 1.09

9
Puntas del C alnegre (BIO), V illaricos (B14), Playa de M acenas 
(B16)

3 3.30

10 Portm an (B 6), La A zohia (B8) 2 2.20
11 San Juan de los Terreros ( B 13), Retamar (B21) 2 2.20
12 Roquetas de M ar (B 23) 1 1.09
13 A dra (B 26) 1 1.09
14 T orrenueva (B 30) 1 1.09
15 La Rabita (B 27), La G uapa (B28) 2 2.20
16 Punta del Sabinar (B 24) 1 1.09
17 G uardias V iejas (B 25) 1 1.09
18 Cabo de T rafalgar (B 56) 1 1.09

19
Cabo S3o V icente (B 81), P raia da Carriagem  (B84), Sines 
(B90)

3 3.30

20 Torre de la H iguera (B 63), M azagon (B65), El Rom pido (B67) 3 3.30
21 T orrem olinos (B 38) 1 1.09
22 Los Jarales (B 40) 1 1.09

23
G uardam ar del Segura (B l) ,  Torrevieja (B2), El P ilar de la 
H oradada (B3), Los A lcdzares (B4), C abo de Palos (B5), 
C artagena (B7), M azarron (B9)

7 7.69

24 C alahonda (B29), Lagos (B 32), Benajarafe (B 35) 3 3.30

25
Cabo C ope ( B 11), A guilas ( B 12), G arrucha ( B 15), 
C arrapateira (B83)

4 4.40

26 Torre del M ar (B34), Punta U m bria (B 66) 2 2.20

27
Torre de Ares (B 71),V ale do Lobo (B 74), Luz (B 78), O deceixe 
(B85), M ilfontes (B 88), Porto Covo (B 89), Lagoa de Santo 
Andrd (B 91)

7 7.69

28
Conil de la Frontera (B 57), Olhdo (B 72), A lbufeira (B75), 
Arm acdo de Pera (B76), Salem a (B 80)

5 5.49

29 D eadm an’s Beach (B48) 1 1.09

30
San Pedro de A lcantara (B 42), Rio del Padron (B 43), Casares 
(B44), Sotogrande (B46), G etares (B 49), Burgau (B 79)

6 6.59

31 M onte G ordo (B69) 1 1.09
32 Benagalbon (B 36) 1 1.09
33 C ala Sardina (B 45), Tavira (B70) 2 2.20

34

M alaga (B 37), Fuengirola (B39), M arbella (B 41), La Linea 
(B47), Rio Jara (B52), Punta C am arinal (B 53), Z ahara de los 
A tunes (B 54), Barbate (B55), C hiclana de la Frontera (B58), 
C adiz (B 59), Rota (B60), C hipiona (B 61), Sanlucar de 
B arram eda (B 62), Isla C ristina (B 68), Faro (B73), Portimdo 
(B 77)

16 17.58

I 91 99.88
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Figure 4.3. The Bray-Curtis sim ilarity coefficient for each o f  the sites, arranged in sequential 
order from Site B l (G uardam ar del Segura, Spain) to B91 (Lagoa de Santo Andr6, Portugal). 
The decrease in sim ilarity from  Site B l to B91 is highly significant (rs=-0.632, P O .O O l).
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4.2.2.2. Species s im ilarities

Cluster analyses to identify species similarities (Section 3.7.2.1) were 

carried out on standardized, and not transformed, species abundances (Clarke 

and Warwick, 1994). Standardizing in this way provides the percentage o f total 

abundance (over all species) that is accounted for by each species. Each matrix 

entry is divided by its column total and multiplied by 100 to form the new array 

o f values. Clarke and Warwick (1994) recommend the removal o f the rarer 

species from the matrix before similarities are assessed. If this is not done 

cluster analysis may fail to provide an interpretable result. The methods used to 

reduce the matrix are arbitrary, but Field et al. (1982) suggest the removal o f all 

species that never constitute more than p%  o f the total abundance o f any 

sample, where p  is chosen to retain approximately 50 or 60 species in large 

matrices. In most cases p  is generally about 3%.
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This method is generally not used for hetween-sample similarity 

calculations (Section 4.2.2.1). In these cases the calculation o f the Bray-Curtis 

coefficient down-weights the contributions o f the rarer species, and all species 

are retained in the calculations. The effects o f reducing the original data matrix 

o f 94 species by different percentage values (p, above) are given in Table 4.3. 

The recommendation o f Field et al. (1982) to reduce the species at the 3% level 

results in 62 species in the analysis.

T ab le  4.3. The percent level used to reduce the species data m atrix before cluster analysis was 
carried out, show ing num ber o f  species at each percent level and the num ber o f  species used in 
cluster analysis as a percen t o f  total species at all sites. (*The species m atrix w as reduced by 
rem oving species that constitu ted  less than this percentage o f  any sam ple). Shading indicates 
levels assessed in the presen t study.

P e rc e n t level used to  re d u c e  
m a tr ix  *

T o ta l n u m b e r  o f  species in 
analysis

T o ta l n u m b e r  o f  species in 
an a ly sis  as %  o f to ta l 

species a t all sites
3 62 66.0
5 59 62.8
10 48 51.1
15 40 42.6
20 36 38.3
25 31 33.0

Clustering at the 3% level formed 30 groups (Figure 4.4, Table 4.4). O f these, 

14 groups (45.2%) were represented by only one species, and 13 groups 

(41.9%) by two to three species. These findings indicate that there is low 

similarity between species, even when the rarer species have been excluded 

from the analyses (Section 4.2.2.1). The three groups that contain five or six 

species provide the only clearly interpretable species associations.
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Part One, Chapter 4. Results and Discussion

T ab le  4.4. The results o f  group average hierarchical agglom erative clustering  (using the Bray- 
Curtis sim ilarity coefficient) on standardized species abundances from the sites. The species 
used are those rem aining after the matrix has been reduced by rem oving species that constitute 
less than 3%  o f  any sam ple. A 20%  sim ilarity cu t-o ff is used for species inclusion into groups. 
The num ber o f  species in each group, and the percentage o f  the total species this represents, are 
also shown.

G ro u p
Species in G ro u p

N u m b er 
o f species

P erce n tag e  
o f to ta l 
species 
(w=62)

1 Trochoidea sp3 1 1.61
2 Xerosecta sp 1 1.61
3 Helicella ? stiparum 1 1.61
4 Xerosecta (Xerosecta) adolfi, Theba gittenbergeri 3.23
5 Trochoidea sp2 1 1.61
6 Ponentina subvirescens 1 1.61
7 Xeroleuca vatonniana 1 1.61
8 Oestophora barbula 1 1.61
9 Candidula sp 1 1 1.61
10 Oestophora sp 1, Portugala inchoata 3.23
11 Hatumia pseudogasulli 1 1.61
12 Trochoidea (Trochoidea) pyradimata 1 1.61

13
Oxychilus (Oxychilus) draparnaudi, Vallonia costata, 
Deroceras (Deroceras) panormitanum 3 4.84

14
Hohenwartiana eucharista, Iberus gualtierianus 
gualtierianus 2 3.23

15 Helicella huidobroi, Pseudotachea litturata, 2 3.23

16
Iberus gualtierianus alonensis, Sphincterochila 
(Cariosula) baetica, Iberus gualtierianus marmoratus, 
Granopupa granum

6 9.68

17
Sphincterochila (Albea) candidissima, Trochoidea 
(Xerocrassa) murcica

2 3.23

18 Lehmania valentiana 1 1.61
19 Iberus gualtierianus globulosus, Otala (Otala) punctata 2 3.23

20
Gittenbergeria turriplana, Truncatellina callicratis, 
Punctum (Punctum) pygmaeum 3 4.84

21 Gasulliella simplicula 1 1.61

22
Cernuella (Cernuella) virgata, Milax nigricans, 
Xerosecta (Xerosecta) cespitum 3 4.84

23
Xerotrichia conspurcata, Trochoidea (Trochoidea) 
elegans, Xerosecta (Xerosecta) reboudiana 3 4.84

24 Truncatellina cylindrica 1 1.61

25
Cochlicella (Prietocella) barbara, Xerotrichia apicina, 
Theba pisana, Cochlicella (Cochlicella) acuta, 
Cochlicella (Cochlicella) conoidea

5 8.06

26
Cantareus aspersus, Caracollina (Caracollina) lenticula, 
Ferussacia (Ferussacia) folliculus, Otala (Otala) lactea, 
Cecilioides (Cecilioides) jani, Microxeromagna armillata

6 9.68

27
Xerosecta (Xerosecta) promissa, Rumina decollata, 
Eobania vermiculata 3 4.84

28 Pyramidula pusilla, Milax gagates 2 3.23
29 Cecilioides (Cecilioides) acicula 1 1.61

30
Lauria (Lauria) cylindracea, Vitrea (Crystallus) 
contracta

2 3.23

X 62 100
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Group 16 (Table 4.4) contains species that are present at many of the sites on 

the east coast (e.g. Granopupa granum (Drapamaud, 1801)), or that occur only 

at these sites (Sphincterochila (Cariosula) baetica (RossmSssler, 1854)). Group 

25 contains species that are frequently present together at sites with sandy soils 

(e.g. Theba pisana (Mtiller, 1774) and C. acuta), and Group 26 contains species 

that are wide-ranging across the study area (Appendix 3), present at a large 

number of sites, and very abundant (Table 4.9) (e.g. Caracollina (Caracollina) 

lenticula (Michaud, 1831) and Ferussacia (Ferussacia) folliculus (Gmelin, 

1790)). Species from Groups 25 and 26 are among the most abundant of all 

species from the study area (Table 4.9).

The reduction of the species matrix to the 25% level supports the 

findings of analysis at the 3% level. The number of groups formed changes from 

30 (with 3% reduction) to 14 (Figure 4.5 and Table 4.5). Even at this level of 

reduction there are still 11 (78.6%) groups with only one or two species. This is 

further evidence that there exists low similarity between species, and adds to the 

evidence showing this from the sample-similarity analysis (Figure 4.2, Table 

4.2). The three clearly interpretable groups provide results similar to those of the 

3% reduction analysis. Although there are some differences in memberships of 

these three groups using the two levels of reduction, they arguably indicate the 

same thing (Table 4.6).

Overall, the results indicate an extremely low level of species similarity 

in the southern Iberian malacofauna. There are endemics, rare species and 

species with reduced ranges (e.g. Hohenwartiana eucharista (Bourguignat, 

1864), Helicella ? stiparum (Rossmassler, 1854) and Xeroleuca vatonniana
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(Bourguignat, 1867)) but these mostly form groups with single-species 

membership.

T a b le  4.5. The results o f  group average hierarchical agglom erative clustering (using the Bray- 
C urtis sim ilarity coefficient) on standardized species abundances from the sites. The species 
used are those rem aining afte r the m atrix has been reduced by rem oving species that constitute 
less than 25%  o f  any sam ple. A 20%  sim ilarity cu t-o ff is used for species inclusion into groups. 
The num ber o f  species in each group, and the percentage o f  the total species this represents, are 
also show n.

G ro u p Species in G ro u p
N u m b er 

o f  species

P erce n tag e  
o f  to ta l 
species 
(« = 3 1)

1 Trochoidea sp2 1 3.23
2 Ponentina subvirescens 1 3.23
3 Portugala inchoata 1 3.23

4
Lauria (Lauria) cylindracea, Vitrea (Crystallus) 
contracta 2 6.45

5 Pyramidula pusilla, Cochlicella (Prietocella) barbara, 2 6.45
6 Truncatellina cylindrica 1 3.23

7
Xerotrichia conspurcata, Xerosecta (Xerosecta) 
reboudiana

2

8 Oxychilus (Oxychilus) draparnaudi 1 3.23

9
Cernuella (Cernuella) virgata, Xerosecta (Xerosecta) 
promissa

2 6.45

10
Xerotrichia apicina, Theba pisana, Cochlicella 
(Cochlicella) acuta, Cochlicella (Cochlicella) conoidea 4 12.90

11
Rumina decollata, Microxeromagna armillata, Cantareus 
aspersus, Caracollina (Caracollina) lenticula, Ferussacia 
(Ferussacia) folliculus, Otala (Otala) lactea

6 19.35

12
Iberus gualtierianus alonensis, Sphnincterochila 
(Cariosula) baetica, Granopupa granum, Leonia 
mamillaris, Trochoidea (Xerocrassa) derogata

5 16.13

13 Hohenwartiana eucharista 1 3.23
14 Iberus gualtierianus globulosus, Otala (Otala) punctata 2 6.45

X 31 100
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Part One, Chapter 4. Results and Discussion

T a b le  4.6. The three malacofaunal groups derived from interpretation o f  the cluster analyses o f  
the species abundances matrix from the Biogeographical Sites with 3%  and 25%  reduction o f  
species. The species for each m alacofaunal group are shown for each reduction level. An 
asterisk indicates species that are present at both levels o f  reduction for each m alacofaunal 
group (see text for details).

Malacofaunal group Eastem /X eric Sand Universal
Species Species Species

Reduction level

3%

*Granopupa granum 
*Sphincterochila 

baetica 
*Iberus gualtierianus 

m armor atus 
*Iberus gualtierianus 

alonensis

*Cochlicella acuta 
*Cochlicella 

conoidea 
Cochlicella barbara 
*Xerotrichia apicina 

*Theba pisana

Cecilioides jani 
*Ferussacia 
folliculus 

*Caracollina 
lenticula 

*Microxeromagna 
arm ill at a 

*Otala lactea 
*Cantareus aspersus

n 4 5 6

25%

*Granopupa granum 
* Sphincterochila 

baetica 
Trochoidea derogata 
* Iberus gualtierianus 

marmoratus 
*Iberus gualtierianus 

alonensis

*Cochlicella acuta 
*Cochlicella 

conoidea 
*Xerotrichia apicina 

*Theba pisana

*Ferussacia 
folliculus 

Rumina decollata 
*Caracollina 

lenticula 
*Microxeromagna 

armillata 
*Otala lactea 

*Cantareus aspersus
n 5 4 6

These analyses reduce the effects o f rare species that make cluster 

interpretation difficult, or impossible (Section 4.2.2.2), and so the interpretations 

of the main groups described here probably provide the most robust 

identification o f malacofaunal groups from the study area (Table 4.6). These 

groups are: (1) Eastem/Xeric, (2) Sand, and (3) Universal. Species membership 

in these groups is maintained at 3% and 25% reduction levels, with only three 

changes: (a) the inclusion of Trochoidea (Xerocrassa) derogata (Rossmassler, 

1854) with Group 1 at the 3% level, (b) exclusion o f Cochlicella (Prietocella) 

barbara (Linnaeus, 1758) with Group 2 at the 25% level, and (c) substitution o f 

Cecilioides (Cecilioides) jani (De Betta and Martinati, 1855) at the 25% level 

with Rumina decollata (Linnaeus, 1758).
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Further work is needed to establish if these malacofaunal groups 

constitute true species associations at short and long term temporal scales 

(Connell and Sousa, 1983; Townsend et a l , 1987; Luh and Pimm, 1993). This 

could be done by determining species interactions during dry and wet periods, 

over a number of years. At present the malacofaunal groups described here must 

be considered tentative and subject to revision as further data become available 

from this region (Section 8.5).

4.2.3. Ordination

The results of site ordination using Non-Metric Multidimensional Scaling 

(MDS) on the log*+i species abundances from all sites support the findings 

using cluster analysis (Section 4.2.2). The 2-dimensional ordination diagram 

(Figure 4.6.a) shows some of the sites that are present in single-site cluster 

groups, such as Torre del Oro, Spain (Site B64) and Cabo Serdao Cavaleiro, 

Portugal (Site B87) as outliers. In general, the outliers are sites with low 

abundance and species richness. Most of the sites, however, are in one large 

group. Running the ordination with the outliers removed (Sites B19, 20, 64, 82 

and 87; Figure 4.6.b), as well as running the ordination excluding the sites with 

total abundances of less than 200 (Sites B14, 18, 19, 20, 31, 33, 63, 64, 65, 67, 

81, 82, 86 and 87, see Appendix 1; Figure 4.6.c) provides a wider spread of 

points in the MDS diagrams but does not provide alternative interpretations of 

the data. With such results for cluster and MDS, where low similarity levels 

resulted from cluster and a stress levels of 0.21 and 0.22 were produced by 

MDS (Figure 4.6.a, b, c), the two methods are best used together to complement 

each other (Section 3.7.2.2). The stress levels for the MDS are at the limit that 

still gives a potentially useful 2-dimensional picture (Clarke and Warwick,
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1994), but it is clear that such a picture does not clearly express the factors 

involved in faunal differentiation.
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Part One, Chapter 4. Results and Discussion

4.2.4. Linking environmental variables to species data (BIOENV)

The present study is the first that uses the BIOENV method with land molluscs; 

an overview of the method is given in Section 3.7.2.3. The best explanation of 

the species data using the environmental data of the present study is provided by 

climatic variables. These variables are the monthly mean of sunshine hours per 

day during the wet period months of December, January and February, and the 

annual mean absolute humidity (in g/m3) (Table 4.7).

T able 4.7. Combinations o f  variables that provided the largest harmonic rank correlations 
between the environmental and species similarity matrices using the BIOENV routine in 
PRIMER. The best combination is shaded. Abbreviations (in order o f  appearance): SJAN=  
Sunshine-January: M onthly mean (hours/day), SFEB=Sunshine-February: M onthly mean 
(hours/day), SDEC= Sunshine-December: Monthly mean (hours/day), ABH U=A bsolute 
humidity: Annual mean (g/m 3), SMAR=Sunshine-March: Monthly mean (hours/day), 
SSEP=Sunshine-September: Monthly mean (hours/day), SJUN=Sunshine-June: Monthly mean 
(hours/day), SOCT=Sunshine-October: M onthly mean (hours/day), TDJA=Temperature 
(diurnal variation)-January: Monthly mean (°C), SJUL=Sunshine-July: Monthly mean 
(hours/day). See Appendix 5 for details o f  all environmental variables used in the BIOENV  
analysis.

N um ber o f  
variables

V ariab les in selection
H arm onic rank  

correlation
4 SJAN. SFEB, SDEC, A B H U 0.336
5 SJAN, SFEB, SM AR, SDEC, A BH U 0.336
5 SJAN, SFEB, SSEP, SDEC, ABH U 0.333
5 SJAN, SFEB, SJUN, SDEC, ABH U 0.328
5 SJAN, SFEB, SOCT, SDEC, A BH U 0.325
5 SJAN, SFEB, SDEC, TDJA, ABH U 0.324
4 SJAN, SFEB, SMAR, ABH U 0.322
5 SJAN, SFEB, SJUL, SDEC, A BH U 0.322
4 SJAN, SFEB, SMAR, SDEC, A BH U 0.320
5 SJAN, SFEB, SMAR, SSEP, ABH U 0.320

The Harmonic rank correlation is low in comparison to studies that have 

used BIOENV in marine systems (Clarke and Warwick, 1994; Fa, 1998). The 

low correlation implies that some caution is required in assessing the possible 

importance that these variables may have in explaining patterns in the species 

abundances data. This highlights the caveat, when interpreting any multivariate 

analysis, that results need to be considered in the light of knowledge that exists

94



Part One, Chapter 4. Results and Discussion

about the biology and ecology of the taxa under investigation (Eberhardt and 

Thomas, 1991; Whittaker et al., 2001; Leps and Smilauer, 2003).

The majority of the variables used in BIOENV did not have much 

variation across the sites. Values for the coefficient of variation were quite low 

for most of the variables (Appendix 5) and this reduces the power of BIOENV 

to explain species abundances based on environmental variables clearly. Using 

BIOENV on small-scale variables from sites (such as amount of litter cover, soil 

components etc.) would probably provide more conclusive results than from the 

use of large-scale (or regional) variables as in this study. This becomes an issue 

of assessing the explanatory potential of environmental variables at differing 

scales and one that has many research possibilities. In addition, the use of large- 

scale variables (such as those from this study) would be more successful if a 

much larger biogeographical area were used (because of greater variance in the 

data) (Whittaker et al., 2001).

4.2.5. Distributions of the species, and number of sites at which they occur

Of the 94 species found at the sites, 27 were found only at 

Mediterranean sites, 30 only at Atlantic sites and 37 at both Mediterranean and 

Atlantic sites (Appendix 3). Cluster analysis carried out using species 

presence/absence, but excluding uniques (species that occur only at one site) 

resolves 7 groups (at 50% similarity level). Four are single-site membership 

groups; 3 of these are Atlantic sites, one a Mediterranean site. One group 

contains 7 sites, all are Mediterranean. The two largest groups both contain 

Atlantic and Mediterranean sites. A group with 29 sites has 4 Atlantic and 25 

Mediterranean sites. The largest group (51 sites) has 35 Atlantic and 16 

Mediterranean sites. These results (in particular groups 1 to 6) show limited
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differentiation between the Mediterranean/Atlantic divide as used in this study 

(Section 3.12.5).

Figure 4.7. Total abundances o f  all species from the Biogeographical Sites with species 
categorized by distributional range. (Abbreviations: Med: Mediterranean, Atl: Atlantic). See 
text for details.
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Species found only at Mediterranean, or only at Atlantic, sites had lower total 

abundances than species found at both (Figure 4.7.). To test the null hypothesis 

that there was no difference between the means of total abundances for each of 

the distributional range types (Section 3.7.2.5), the data were first tested for 

normality using the Kolmogorov-Smimov test (Sokal and Rohlf, 1995). As this 

showed that the data were not normally distributed (Kolmogorov-Smimov 

z=3.561, P<0.001, n=94), the Kmskal-Wallis test was used to test the 

hypothesis about difference of means (Sokal and Rohlf, 1995). The result of this 

test shows that there were highly significant differences in the means of the
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abundances of species from these three types of species distribution ( j 2 =28.7; 

P<0.001).

The number of sites at which each of the species was found is shown in 

Appendix 3. There was a significant positive correlation between the total 

abundances of the species and the number of sites at which species were found 

(rs=0.826, P<0.001, Figure 4.8.a.). This shows that the species with higher 

abundances were present at more sites than those with lower abundances. This 

positive correlation was diminished, but still significant, when total abundances 

were weighted by the number of sites at which each species was found. This 

allowed for the possibility that species that occur at more sites may have higher 

abundances because they have been sampled at more sites, rather than having 

higher total abundances per se (rs=0.482, PcO.OOl, Figure 4.8.b.). The results 

show that species with higher abundances occur at more sites even when their 

abundances are weighted in this way.
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F igure 4.8. a. Correlation between species total abundance and the number o f  sites at which  
species were found (rs=0.826, /^O.OOl). b. Correlation between total abundances (after 
weighting by dividing total abundance by the number o f  sites at which each species was 
found) and the number o f  sites at which species were found (r s=0.482, PO .O O l).
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4.2.6. Species abundance models

More than one model fitted the species abundance data from 55 of the 91 sites 

(60.4%, Table 4.8, Figure 4.9, Section 3.7.2.7). For two sites (B40 and B85) 

none of the models fitted the data.

T ab le  4.8. The best fitting species abundance m odels (based on P values o f  m athem atical data 
fitting) for the sites. See A ppendix 1 for site details. A bbreviations: G S=geom etric series; 
LS=log series; LN =log norm al; TLN=truncated log norm al; BS=broken stick.

Site Model(s) Site Model(s) Site Model(s)
Bl LR, TLN B32 LN, TLN B63 LS
B2 LS B33 LN, TLN B64 LS, LN, TLN
B3 LS, LN B34 LS, TLN B65 LN, TLN
B4 LS, LN, TLN B35 TLN B66 LN
B5 LN, TLN B36 TLN B67 LS, LN
B6 LN, TLN B37 LS, TLN B68 LN, TLN
B7 LS, LN, TLN B38 TLN B69 LN,TLN
B8 LN, TLN B39 LN, TLN B70 LS, LN, TLN
B9 LS, LN, TLN B40 No model fit B71 LS, LN

BIO LN B41 LS B72 LN, TLN
Bl 1 LN, TLN, BS B42 LN,TLN B73 LS, LN
B12 BS B43 LN B74 GS, TLN
B13 LS, LN, TLN B44 LS, LN, TLN B75 BS
B14 LN, TLN B45 LN, TLN B76 LN
B15 LS, LN, TLN B46 GS B77 LS, LN
B16 LN B47 LN, TLN B78 LN, TLN
B17 LN, TLN B48 LN, TLN B79 LN, TLN
B18 LN,TLN B49 LS B80 LN, TLN
B19 GS B50 TLN, BS B81 BS
B20 GS B51 TLN B82 LS
B21 LN, TLN, BS B52 LN B83 LN
B22 LS, LN, TLN B53 LS B84 TLN
B23 LN, TLN B54 TLN B85 No model fit
B24 LN, TLN, BS B55 LN, TLN B86 LS
B25 LS, LN, TLN B56 LN, TLN B87 GS
B26 LN B57 LS, LN, TLN B88 LS, LN, TLN
B27 TLN B58 LN B89 LN, TLN
B28 LN,TLN B59 LN, TLN B90 LN, TLN
B29 LN B60 LN B91 LN, TLN
B30 LN, TLN B61 LS, LN, TLN
B31 GS B62 LN

The sites may be divided into two groups; those fitting the geometric or 

log series, only, and all others (Sites B40 and B85 are not considered because 

they did not fit any o f the models). Twelve sites (13.2% o f total) are in the first 

group: Sites B2, B19, B20, B31, B41, B46, B49, B53, B63, B82, B86 and B87.
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F igu re  4.9. Species abundance models. Exam ple plots o f  each o f  the models. M athem atical-fitting o f  the 

data: Site 19: ^ 2 =3.9, d f^3 , P=0.30; Site 2: j 2 =5.5, d fH O , P=0.90; Site 76: J 2 =16.4, df=10, />=0.10; 

Site 84: 2 =5.0, df=10, P=0.90\ Site 12: 2 =3.2, df=9, P=Q.95. See A ppendix 1 for site details.
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There are 77 sites (84.6% of total) in the second group. Analysis of the species 

abundance plots (Figure 4.9) indicates that the sites in the first group have 

several species with high abundances. This is particularly so when there are few 

species at a site and the geometric series best fits the data, as with Sites B19 and 

B20 (with four and five species, respectively).

Using standardized sampling (Section 3.5) provides robustness to the 

interpretations of the models. Sites described by the geometric series (e.g. B19 

and B20) reflect that few species occur there, rather than that sampling was 

inadequate (Gaston et al., 1997). Sites with high equitability indicate established 

mollusc assemblages. These interpretations are, however, subject to issues 

related to sampling, especially at low-abundance sites (Sections 4.4.2 and 8.1).

Prediction of the total number of species (S*) at the sites using the 

truncated log normal abundance model resulted in a highly significant 

correlation between S* and actual species numbers (rs=0.923, PO.OOl, Figure 

4.10.). Although this could be used as evidence of adequate sampling at the 

sites, there are problems and limitations to using S* including the calculation of 

its variance (Magurran, 1988, 2004 for review of discussion of these problems 

and limitations).
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F igure 4.10. The number o f  species recorded, and species predicted (S*) from the truncated log  
normal abundance model for sites. (rs=0.923, PO .O O l).
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4.2.7. Commonness and rarity

The majority of species have low total abundances (Figure 4.11.). This is a well- 

documented finding in species abundance data, first reported by Fisher et al. 

(1943) and by many others since (Williams, 1964; Krebs, 1985; Hughes, 1986, 

McGill, 2003; Magurran, 2004). The species with highest total abundances are 

defined here as the commonest species, and those with lowest total abundances, 

as the rarest (Sections 3.7.2.4; 4.2.5 and Appendix 3). The data display a log 

normal pattern of species abundance (Section 3.7.2.7). Taken at smaller scales 

(rather than the regional context used here with data from all sites) this would 

indicate a mature and varied community (Sugihara (1980), Section 4.5.1.1). In
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the present case, however, the pattern probably arises as a result o f the statistical 

properties o f large numbers (Magurran, 2004) and the Central Limit Theorem 

(Sokal and Rohlf, 1995). The commonest species from the study area are those 

with a Mediterranean-Atlantic distribution, and the rarest are those that have a 

Mediterranean only, or Atlantic only, distribution (Figure 4.12 and Table 4.9).

T ab le  4.9. The ten com m onest (shaded), and ten rarest species from the Biogeographical Sites 
(using sam pling m ethods from  this study). Distributional range: M =present at M editerranean 
sites only; A =present at A tlantic sites only; M A=present at both M editerranean and Atlantic 
sites. (See A ppendix 3 for species’ authors).

Species
T o ta l a b u n d a n c e  

(from  all sites)
R an k

D istrib u tio n al
ran g e

N u m b er o f  sites 
a t  w hich 
p resen t

Theba pisana 23810 1 MA 73
Cochlicella acuta 23383 2 MA 50
Ferussacia
folliculus 6230 3 MA 68

Caracollina
lenticula 6040 4 MA 73

Xerotrichia apicina 5056 5 MA 31
Truncatellina
cylindrica 5020 6 MA 35

Otala lactea 4273 7 MA 60
Xerotrichia
conspurcata 3813 8 MA 40

Microxeromagna
armillata 3038 9 MA 34

Granopupa granum 2489 10 MA 25
Oxychilus sp2 2 74 A 1
Oxychilus sp3 2 74 M 2
Oestophora tarnieri 2 74 A 1
Candidula
intersecta 2 74 A 1

Ganula gadirana 2 74 A 2
Acicula norrisi 1 75 M 1
Euconulus fulvus 1 75 A 1
Deroceras
reticulatum 1 75 M 1

Trochoidea
barceloi 1 75 M 1

Trochoidea sp3 1 75 A 1
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F ig u re  4.11. Total abundance o f  each species with species arranged along the x axis in sequence 
from highest abundance to lowest abundance.
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F igu re  4.12. Three-dim ensional plot show ing the relationship between total abundance, species 
rank and distributional range (M ed only=present at M editerranean sites only; A tl=present at 
A tlantic sites only; M ed+A tl=present at both M editerranean and Atlantic sites). Species are 
ranked from com m onest (rank 1) to rarest (rank 75). See text for details.
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4.2.8. Numbers of species per family

The species were classified into 25 families. There are significant differences in 

the numbers of species per family ( x 2 37.44, df=6, P<0.001 for all sites. 

X 2 21.20, df=6, P=0.002 for Mediterranean or Atlantic only sites, x 2 17.60, 

df=4, P=0.001 for Mediterranean and Atlantic sites, Table 4.10). The majority 

of species belong to the Hygromiidae (46.8%). The interpretations of these 

analyses would be altered if membership of species to families as advocated by 

Anderson (2005) is used.

Table 4.10. The number (and percentage o f  total) o f  species per family from all sites and from 
each o f  the distributional ranges (M ed only=present at Mediterranean sites only; Atl 
only=present at Atlantic sites only; Med and Atl=present at both Mediterranean and Atlantic 
sites). Systematics after Falkner et al. (2002).

All sites All sites Med only 
or Atl only

Med only 
or Atl only

Med and 
Atl

Med and 
Atl

Fam ily Number % o f  total Number % o f  total Number % o f  total
Aciculidae 1 1.06 1 1.75 0 0
Pomatiidae 1 1.06 1 1.75 0 0
Carychiidae 1 1.06 1 1.75 0 0
Cochlicopidae 1 1.06 1 1.75 0 0
Pupillidae 1 1.06 1 1.75 0 0
Vallonidae 3 3.19 2 3.51 1 2.70
Pyramidulidae 1 1.06 0 0 1 2.70
Chondrinidae 1 1.06 0 0 1 2.70
Vertiginidae 3 3.19 2 3.51 1 2.70
Ferrussaciidae 4 4.26 1 1.75 3 8.11
Subulinidae 1 1.06 0 0 1 2.70
Testacellidae 1 1.06 0 0 1 2.70
Punctidae 2 2.13 2 3.51 0 0
Pristilomatidae 1 1.06 0 0 1 2.70
Euconulidae 1 1.06 1 1.75 0 0
Buliminidae 1 1.06 1 1.75 0 0
Oxychilidae 6 6.38 4 7.02 2 5.41
Parmacellidae 1 1.06 0 0 1 2.70
M ilacidae 2 2.13 0 0 2 5.41
Limacidae 2 2.13 1 1.75 1 2.70
Agriolimacidae 4 4.26 3 5.26 1 2.70
Sphincterochilidae 2 2.13 2 3.51 0 0
Arionidae 1 1.06 0 0 1 2.70
Trissexodontidae 8 8.51 6 10.53 2 5.41
Hygromiidae 44 46.81 27 47.37 17 45.95

Totals 94 99.96 57 99.97 37 99.99
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4.2.9. Beta diversity (fl)

Over all sites >5=7.77. Results for p  are dependent on sampling effort, area and 

other factors (Harrison et al., 1992; Heegaard, 2004; Magurran, 2004). The 

measure can be used to assess variation in species compositions in transects, 

gradients or entire sites (Section 3.7.2.8) and values may be lower for multiple 

samplings at single sites or locations than for inter-site comparisons. The high 

value for /? from the 91 sites indicates a high degree of differentiation, or 

turnover (Section 3.7.2.8), in species composition at the sites (Magurran, 2004) 

and substantiates the results of cluster and MDS (Sections 4.2.2. and 4.2.3).

4.3. Summary of results

1. A total of 94 species were recorded from the 91 sites, with a mean 

number of 12.1 species (lower 95% Cl: 11.2; upper 95% Cl: 13.0), a 

mean total species abundance of 1068.8 (lower 95% Cl: 843.8; upper 

95% Cl: 1293.7), a mean Shannon diversity of 2.380 (lower 95% Cl: 

2.253; upper 95% Cl: 2.507), and a mean Simpson’s diversity of 0.724 

(lower 95% Cl: 0.694; upper 95% Cl: 0.754).

2. Clustering of the species abundances formed 34 groups. The largest 

group contained 16 sites. The remaining sites were in groups containing 

between one and seven sites; 16 of these groups contained only one site.

3. There are low levels of similarity between the land mollusc 

communities.

4. Three malacofaunal groups were identified: Eastem/Xeric, Sand and 

Universal.
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5. The monthly mean of sunshine hours per day during the wet period of 

December, January and February, and the annual mean absolute 

humidity, provide the best explanation of the species data.

6. Of the 94 species, 27 were found only at Mediterranean sites, 30 only at 

Atlantic sites, and 37 at both.

7. Species with higher abundances were present at more sites than those 

with lower abundances.

8. Data from 12 sites fitted the geometric or log series species abundance 

models; 77 sites fitted the log normal, truncated log normal or broken 

stick models; two sites did not fit any of the models.

9. The majority of species have low total abundances.

10. The species were classified into 25 families. 46.8% of species belong to 

the Hygromiidae.

11. Beta diversity for data from all sites was 7.77.

4.4. Diversity analysis: discussion

4.4.1. Number of species, species abundances and species diversity

There was a total of 94 species from all the sites. This value is similar to the 

numbers from two other recent studies from the area (Table 4.11): Andalucia, 

Spain with 93 species (Arrebola, 1995) and La Comunidad Valenciana, Spain 

with 109 species (Martinez-Orti, 1999). The high total abundances found at 

some of the sites are attributable to Theba pisana (Muller, 1774), C. acuta and

F. folliculus. The first two of these are among the most abundant and wide- 

ranging of Mediterranean species (Pfleger and Chatfield, 1988; Giusti et al.,

1995) and occur in large numbers on vegetation during the Mediterranean dry 

period during which they aestivate. Ferussacia folliculus occurs in large
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numbers under rocks and is generally active all year round but may become 

inactive during periods of particularly high temperatures and dryness when the 

interface between the soil surface and the underside of rocks, where it often 

occurs, dries (unpublished data).

In this study both the Simpson’s and the Shannon indices were used and 

because there were some sites with high total abundances comprised of a few 

species (see above) it may be more appropriate to compare the sites with the 

Shannon index that is not as weighted as is Simpson’s index towards the 

abundances of the commonest species (Magurran, 2004). The mean value of the 

Shannon index for the sites was 2.380, and the mean value for Simpson’s index 

was 0.724, and although direct comparison to other studies is not possible 

because the same sampling methods have not been used, the value for the 

Shannon index is similar to those from many other land mollusc studies (Table 

4.11; Section 8.2).
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Table 4.11. Biotic data from selected sources. Abbreviations: //-S h a n n o n  diversity index: 
(e)= loge (2)= log2; /)5=Sim pson’s diversity index; /?=Beta diversity. Data are not directly 
comparable because different sampling methods were used in these studies. See text for details.

Location Number of species occurring sympatrically Source

Eastern North America 10-15 Solem (1984b)
Southeastern Australia 3-6 Solem (1984b)
Northwestern Australia 2-11 Solem (1984b)

South Africa 3-9 Solem (1984b)
Hawaii 5-8 Solem (1984b)

Polynesian and 
Micronesian Islands 5-12 Solem (1984b)

Taiwan 6-25 Solem (1984b)
East Africa 10-25 Solem (1984b)

West Europe -20 Solem (1984b)
New Caledonia, New 

Hebrides 15-21 Solem (1984b)

North-island (New 
Zealand) 58 Emberton et al. (1997)

Southeast-coastal
Madagascar 52 Emberton et al. (1997)

Total
species

Mean 
sp/plot 
or site

/ / '( lo g
unknown)

ft

Kakamega (Kenya) 50 24.0 3.27 2.08 Tattersfield (1998)
Cherangani (Kenya) 31 16.5 2.88 1.88 Tattersfield (1998)

Mount Kenya (Kenya) 14 14.0 2.38 1.00 Tattersfield (1998)
East Usambara (Tanzania) 64 21.8 2.93 2.94 Tattersfield (1998)

Ambioni (Tanzania) 29 14.3 2.69 2.04 Tattersfield (1998)
Miono (Tanzania) 6 6.0 1.70 1.00 Tattersfield (1998)
Pugu (Tanzania) 22 16.0 2.57 1.38 Tattersfield (1998)

Ngarama (Tanzania) 21 12.3 2.47 1.70 Tattersfield (1998)
Pindiro (Tanzania) 22 11.3 2.13 1.96 Tattersfield (1998)

Nanganga (Tanzania) 11 11.0 2.17 1.00 Tattersfield (1998)
Masasi (Tanzania) 6 6.0 1.18 1.00 Tattersfield (1998)

Sabah (Malaysian Borneo) 61 6.1 8.58 Schilthuizen & Rutjes 
(2001)

Aegean Islands 90 12.7 6.90 Cameron et al. (2000)
Crete 21 15.0 1.40 Cameron et al. (2003)

Andalucia (Spain) 93 Arr6bola (1995)
Comunidad Valenciana 

(Spain) 109 Martinez-Orti (1999)

/ / ’(«) tru) Ds
Southern Iberia (this 

study) 94 12.1 2.81 4.05 b.llA 7.77

Mean species 
number from 

various habitat 
types

Mean/9

Sweden 24.5 1.83 Cameron (1995)
England 38.8 2.36 Cameron (1995)

North Germany 31.7 1.77 Cameron (1995)
Central Germany 31.0 2.53 Cameron (1995)

Poland 18.0 2.60 Cameron (1995)
North Italy 48.0 2.60 Cameron (1995)

Canada 17.0 1.78 Cameron (1995)
USA 51.0 3.30 Cameron (1995)

Madeira 13.6 Cameron & Cook (2001)

4.4.2. Sampling efficacy

The two main factors that determine the accuracy of species inventories are the 

scarcity of individuals (Gotelli and Colwell, 2001) and sampling efficacy
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(Swan, 1970; Hortal et al., 2006). Most species are scarce in any area that is 

sampled (McGill, 2003; Nijboer and Schmidt-Kloiber, 2004) resulting in 

strongly skewed patterns in species abundance distribution curves (Magurran, 

2004, Sections 3.7.2.7 and 4.2.6). Sampling error can result in inaccurate 

species inventories and subsequent data analyses (Cameron and Pokryszko, 

2004; 2005; Walther and Moore, 2005).

Efficacious sampling is especially important in structurally complex 

habitats, such as steppe and garigue, where species may be missed (Bishop, 

1977). The sampling methods used in this study have been tested for efficacy in 

these habitats (Menez, 2001), improving the robustness of the results. Recent 

studies from other Mediterranean regions have used similar sampling methods; 

these include garigue and maquis sites on Aegean Islands (Cameron et al., 

2000), and maquis sites in Crete (Cameron et a l, 2003).

Other factors affect the accuracy of species inventories: (1) sampling of 

a site may be adequate, but the full inventory might still not be found because 

some species may be missed if sampling has only been undertaken once 

(Walden, 1981; Pahl-Wostl, 1991), (2) some species are seasonal and 

abundances vary significantly over the year rendering them more difficult to 

find at some times of the year than at others (Kuznik, 1997; Cameron and 

Pokryszko, 2005). The number of broods or generations per year affects the 

demographic compositions of species, and young individuals may be difficult or 

impossible to identify (especially slugs), and (3) some species, including slugs, 

are closely dependent on seasonal climatic effects and may be very difficult to 

find during some periods of the year (Quick, 1960; Newell, 1968; Runham and 

Hunter, 1970; Kemey and Cameron, 1979).
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A limitation of many studies, including this one, is that they only 

provide a ‘snapshot’ of true diversity. Detailed studies that incorporate spatial 

and temporal replication at sites are labour-intensive and expensive, and there 

are no examples of this type of study from southern Iberia. Further fieldwork 

from this region may therefore alter the conclusions of the present study 

(Section 8.5).

4.5. Biogeographical analysis: discussion

4.5.1. Pattern and process at the local scale (site)

4.5.1.1. Species abundances

A few sites (13.2%) fitted the geometric or log series species abundance models, 

indicating the strong dominance of a few species (Section 3.7.2.7). The majority 

of sites (84.6%) fitted the log normal, truncated log normal or broken stick 

models, indicating diverse communities at these sites. These findings are similar 

to those of Barker (2005) from New Zealand where the data generally fitted the 

log normal model, and fitted the geometric series only in some less species-rich 

plots. Cameron and Pokryszko (2005) and Cameron et al. (2006) provide further 

examples of plots approaching the broken stick model from English woodland 

faunas.

4.5.1.2. Commonness and rarity

Seven of the ten commonest species from the present study belong to the 

Hygromiidae (Section 4.5.1.4), including T. pisana and C. acuta (Muller, 1774). 

The other three most common species belong to three distinct families. 

Ferussacia folliculus (Ferrussaciidae) is mostly found under rocks and logs, and

G. granum (Chondrinidae) and Truncatellina cylindrica (Ferussac, 1807) 

(Vertiginidae) on soil or among stones and rocks.
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Some of the rarest species from the present study are endemics and 

include Acicula norrisi Gittenberger and Boeters, 1977, Ganula gadirana 

Munoz, Almodovar and Arrebola, 1999 and Oestophora tarnieri (Morelet, 

1854). Although some of these are rare per se (for example, A. norrisi, 

unpublished data), others have very patchy distributions (for example G. 

gadirana, unpublished data) and chance may be important in whether or not 

they are found. This has been reported by Cameron and Pokryszko (2004) for 

Vertigo alpestris Alder, 1838, and Cepaea hortensis (Muller, 1774) in Melitto- 

Carpinetum habitat in Bialowieza Forest, Poland. An efficient and standardized 

collecting method, such as that used in the present study, is more likely to 

reduce sampling error (Section 4.4.2) than a less rigorous method, and so will 

increase the chance of finding these patchily-distributed species. Theba s. 

helicella is an example of a patchily-distributed species from southern Iberia. 

Based on material from El Alquian in Almeria, Spain, in the former Altimira 

collection, Gittenberger and Ripken (1987) concluded that the species may once 

have been introduced into southern Spain, but had since become extinct.

Sampling for the present study located the species at low abundance (13 

individuals) at Retamar, Almeria, Spain (Site B21). During recent fieldwork by 

Menez (2006) the species was recorded from a single location in El Alquian,

Spain (GPS: N36°50.992', W002°21.692'; date: 17-07-2002) (Figures 4.13,
2 m

4.14) where it attained densities of up to about 50/m . The re-discovery of this 

species at high density adds to the records of Puente et al. (1994), and Moreno 

and Ramos (2000; 2007) and highlights how commonness/rarity is dependent 

on factors such as permanence (Magurran and Henderson, 2003), dispersal
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abilities (Kunin and Gaston, 1993; Maurer, 1999), range (Brown et al., 1996), 

area searched and sampling methods used (Section 4.4.2).

Figure 4.13. Theba subdentata helicella F ig u re  4.14. Theba subdentata helicella
(W ood, 1828) on ILaunaea sp. El A lquian, (W ood, 1828) from El Alquian, Spain, in
Spain. captivity.

4.5.I.3. Species distributions

The present study has shown that species with higher abundances were present 

at more sites than those with lower abundances, and that the commonest species 

found at the sites are those with wide distributions (Mediterranean-Atlantic 

species, Section 4.2.5). These results support the fundamental assumption of 

many metapopulation models that a relationship exists between the number of 

sites that a species occupies and its mean abundance in a region (Hanski and 

Gilpin, 1991; Hanksi and Gyllenberg, 1993).

The abundance-range relationship (He and Gaston, 1999) has been 

widely documented for many taxa (Hanski, 1982; Gaston and Lawton, 1990; 

Lawton, 1993; Gaston, 1996b). Gaston et al. (1997) identified eight hypotheses 

to explain this relationship: sampling artefact, phylogenetic non-independence, 

range position, resource breadth, resource availability, habitat selection, 

metapopulation dynamics and vital rates (but see Hartley (1998) who argues
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that random species distributions alone may generate the relationship). Recent 

work has shown that insect data from Acacia tree canopies in Tanzania support 

the metapopulation dynamics and resource breadth hypotheses (Kruger and 

McGavin, 2000). Bock (1987) has shown that the relationship is not an artefact 

of species’ conspicuousness, and that range size and local abundance are 

positively correlated, regardless of scale.

The results of the present study, obtained using robust sampling methods 

(Sections 3.5.1 and 3.5.2), support Bock’s results for land birds, with possible 

criticisms that the relationship may have resulted solely from the ease of finding 

the commoner species over the rarer ones (Bock’s species’ conspicuousness) 

being largely refuted. This illustrates the importance of using adequate methods 

for sampling taxa such as land molluscs and other invertebrates that are difficult 

to find because of low numbers or cryptic behaviour, in order to demonstrate 

convincingly the abundance-distribution relationship (as well as other ecological 

relationships). Bock also suggests that the comparative study of the abundances 

of species instead of community structure might elucidate generalities in 

ecology and his results indicate that historical factors may play a major role in 

existing population dynamics.

Some of the species from the present study have limited distributions in 

Iberia (e.g. Sphincterochila spp. and Hypnophila malagana Gittenberger and 

Menkhorst, 1983). Others are restricted endemics (e.g. Gittenbergeria 

turriplana (Morelet, 1845) and G. gadirana), and at least one species, Leonia 

mamillaris (Lamarck, 1822), shows a possible relict distribution as a result of 

the previous continuity of the Betics-Rif mountain chain from southern Iberia 

and North Africa, and a subsequent vicariance event. Existing evidence for this
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continuity has been recently substantiated by plate reconstructions that indicate 

late Cretaceous-Palaeogene congruence between African and European plates 

(Carbonell et al, 1998; Martmez-Martmez et al., 2006). During the Tertiary the 

western Mediterranean was involved in a series of events caused by the 

interactions of the African and European Plates (Giusti and Manganelli, 1984; 

Hrbek and Meyer, 2003). The eastern movement of the African Plate during the 

Oligocene or Lower Miocene caused detachment of the western portion of the 

Alpidic Chain (Rosenbaum et al., 2002; Rosenbaum and Lister, 2005) and its 

fragmentation into a series of micro-plates which subsequently moved in 

various directions in the Mediterranean, some towards North Africa, the 

Kabylias (Algeria), Italy (Calabro-Peloritan), Corisca and Sardinia (Alvarez, 

1976; Giusti and Manganelli, 1984; Rosenbaum and Lister, 2004; Schettino and 

Turco, 2006).

Several disjunct land mollusc distributions have been reported from 

Mediterranean regions including Pomatias, Tudorella, Hypnophila, 

Tacheocampylaea, Marmorana and Deroceras (Giusti and Manganelli, 1984; 

Giusti et al., 1995; Douris et al., 1998; 2007) that have been attributed to micro

plate movement (as a result of faunas moving with these plates, Giusti and 

Manganelli, 1984), geographical isolation and habitat fluctuation, but further 

research is required to show whether there are disjunct species distributions in 

southern Iberia.

4.5.1.4. Familial composition

General trends in species compositions and diversity can be examined using 

taxon groups higher than species (Sale and Guy, 1992; Brown, 1995; Pik et al., 

2002; Caruso and Migliorini, 2006; Moreno et al., 2008). Species may be
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considered to be part of a hierarchically structured phylogeny (Felsenstein, 

1985) and this has led to the development of methods for the measurement of 

diversity that take into account species’ phylogenetic histories. These methods 

include Clarke and Warwick’s taxonomic distinctness index (Warwick and 

Clarke, 1995, 1998).

Almost 50% of all species from the present study belong to the 

Hygromiidae (see Steinke et al., 2004, Manganelli et al., 2005 and Wade et al., 

2007 for phylogeny and discussion) and similar findings have been made for the 

British and northwest, mid-European and Aegean malacofaunas (Kemey and 

Cameron, 1979; Kemey et al 1983; Mylonas, 1984). Seven of the commonest 

species from the present study belong to this family and if ecological and/or 

evolutionary success is measured by the number of extant representatives 

(Bradshaw, 1984; Futuyma, 1986; Gould, 2002), this is the most successful 

family.

Members of the Hygromiidae exploit a broad range of habitat resources, 

and although these resources may be considered as niches (Giller, 1984; Arthur, 

1987) there are insufficient data to identify these niches or their breadths in 

southern Iberia accurately. These resources include the soil component and the 

underside of rocks and logs (C. lenticula), the soil surface and lower vegetation 

layers (Xerotrichia conspurcata (Drapamaud, 1801), Xerotrichia apicina 

(Lamarck, 1822) and Otala (Otala) lactea (Muller, 1774)), and the middle and 

higher vegetation layers (T. pisana and C. acuta) (unpublished data). There is 

evidence that the sizes of some of these species at different sites are related to 

the presence/absence of other land mollusc species as well as population
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densities (unpublished data) supporting similar findings by Anderson et al. 

(2007) with the North American snail Oreohelix cooperi (Binney, 1838).

Evidence that land mollusc faunas are structured by competition is weak 

(Solem, 1984b; Cowie et al., 1995) and analysis of species data at family level 

provides a possible indication that competition may influence community 

structure (Cameron et al., 2003; Section 7.2.3.2). There are many examples in 

which very closely related and morphologically similar species co-exist. 

Cameron et al. (2003) suggested there may be interactive constraints on species 

richness in Cretan maquis based on the number of families and species (12 

families and 27 species; ratio: 0.44). The species from maquis are more distantly 

related and morphologically distinct than in those in rainforest, and are present 

at higher densities and more continuous populations, which creates more 

opportunities for competition. Data for Cameroon (de Winter and Gittenberger, 

1998) are 12 families and 97 species (ratio: 0.12), and for Sabah, Borneo 

(Schilthuizen and Rutjes, 2001) 14 families and 61 species (ratio: 0.23). In the 

present study, 25 families and 94 species were recorded (ratio: 0.26); a value 

midway between the Cretan and Cameroon estimates. These values are 

dependent on the methods used to collect the species data and are thus subject to 

the same caveats including area sampled and sampling efficacy (Section 4.4.2). 

Explanations other than competition for these ratios include adaptive and non- 

adaptive radiation (Cain, 1971; Mayo, 1983; Cameron et al., 2000; Bridle and 

Vines, 2006), dispersal ability (Jenkins and Buikema, 1998; Hubbell, 2001; 

Hardy and Sonke, 2004; Johansson and Ehrlen, 2003), as well as the time 

required for speciation to build up diversity in a region (the ‘time-for- 

speciation-effect’ of Stephens and Wiens, 2003; Section 4.5.2.4). Studies from
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other regions including Turkey, where almost 80% of the fauna belongs to four 

families (Cook, 1997), Cameroon (de Winter and Gittenberger, 1998) and 

Madeira (Cameron, 1992; Cameron and Cook, 2001), have also demonstrated 

that the majority of species belong to a few families.

There is evidence that other ecological systems in southern Iberia show a 

similar pattern of family dominance. Menez et al. (2003) assessed the 

abundances and distributions of molluscs from 20 locations in southern Iberia. 

At each location land, intertidal and benthic ecological systems (Steele, 1985) 

were sampled for molluscs. In all systems families that were present at more 

sites, had higher abundances than those present at fewer sites, even when data 

were corrected for the number of sites at which families occurred. The number 

of families in the systems ranged from 13 (intertidal) to 46 (benthic -20m 

depth) but there was no significant difference in the proportion of families 

representing more than 1% of the total abundance in any of the systems (Table 

4.12).

Table 4.12. Numbers o f  families representing >1% o f  total abundance in four system s from 
locations in southern Iberia. The differences in numbers o f  fam ilies representing >1% total 
abundance (as percentage) are not significant (K olm ogorov-Sm im ov z=0.500; P=0.964). 
Source: M enez et al., 2003.

Number of families
Number of families 

representing >1% total 
abundance

Number of families 
representing >1% total 

abundance (as 
percentage)

System

Terrestrial 16 4 25
Intertidal 13 3 23

Benthic -10m 38 9 24
Benthic -20m 46 12 26

The proportions of species belonging to different families may be related 

to colonization, speciation and radiation (Russell-Hunter, 1983; Cook, 1997). 

These results, in conjunction with those of the present study (eight from 25
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families: 32%), suggest that there may be an assembly rule for mollusc 

communities that applies in different ecological systems.

4.5.2. Pattern and process at the regional scale (study area)

4.5.2.I. Factors that influence distributions

The main factors that influenced the distributions of the land mollusc species 

were sunshine during part of the wet period (December, January and February) 

and annual humidity. In southern Iberia there is significant growth in vegetation, 

and significant mollusc activity (including egg laying) during these months. The 

results from the present study support those of many others that attempt to find 

determinant factors for land mollusc distributions (Section 1.2). Walden (1981) 

reported that climatic variables (including rainfall) were among the factors 

explaining high diversity in wooded boulder slope habitats in southwest 

Sweden; Tattersfield et al. (2001) reported that malacofaunal variation in 

afromontane forests in Mount Kenya appeared to be more closely related to 

annual rainfall than to altitude per se or other environmental variables. 

Humidity was one of the best predictors of Carpathian Clausiliidae abundance 

(Sulikowska-Drozd, 2005) and of species composition in a Danubian floodplain 

(Cejka et al., 2008). Aubry et al. (2005) reported that mean annual temperature 

explained most of the relationships between number of species and altitude in 

southeast France, and Barker (2005) found that mean minimum temperature of 

the coldest month, annual mean temperature and annual solar radiation, were 

important determinants of community structure in New Zealand land snail 

faunas.

Climatic factors, including rainfall, also influence butterflies (Stefanescu 

et al., 2004) and vertebrates (Nogues-Bravo and Martmez-Rica, 2004) in the
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Mediterranean, as well as other taxa in many other regions (Whittaker et al., 

2001; Rodriguez et al., 2005: Langlands et al., 2006; Richardson et al., 2006). 

The results of the present study, however, are tentative and only provide an 

indication of what must be a much more complex picture. The reasons for this 

include: (1) there are probably many more variables that influence distributions, 

but that have not been measured, and (2) variables may have been collinear with 

unmeasured variables (Clarke, 1993; Clarke and Ainsworth, 1993), or may have 

been functions of other variables with unknown covariation (Sokal and Rohlf, 

1995; Legendre and Legendre, 1998). An example is the effect of rainfall and 

temperature on soil properties (Benayas et al., 2004; Larcheveque et al., 2005). 

Extensive explorative data analysis using techniques such as Principal 

Components Analysis (ter Braak, 1995), multiple regression, or analysis of 

covariance (Sokal and Rohlf, 1995) may resolve variables that covary or that act 

as surrogates for a group of variables and this approach would be an 

improvement to a study such as the present study.

Humidity and the hours of sunshine during the months of the wet period 

are correlated to many biological processes and changes in the rates of these 

processes. It is possibly a subset of these processes, as well as humidity and 

hours of sunshine, that determine distributions. This means that the measured 

variables (humidity and hours of sunshine) also act as surrogate variables for 

those that are influencing distributions, and that remain unknown. The variables 

used in the present study probably act at the regional scale but also influence 

local-scale variables (Malanson et al., 1992; Loehle, 1998; Johnson et al., 

2004). Measurement of local-scale variables would improve the accuracy of the 

findings of the present study.
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4.5.2.2. The Mediterranean/Atlantic divide

The study area is in the Mediterranean Region (Section 2.2.1). The data from 

the present study show that there are some species that occur only in Atlantic 

coastal sites (30 species), or only in Mediterranean coastal sites (27 species) 

suggesting that the classic primary division of Iberia into Mediterranean and 

Atlantic regions (Section 2.2.1.) may not be adequate to differentiate between 

faunas from detailed biogeographical studies, such as this study. In these cases 

there may be a need to consider more defined, and restricted, biogeographical 

regions. Biogeographical analysis of the Helicoidea in Iberia (Puente at a l,

1998), for example, resulted in five major groupings. The sites from this study 

are located in three of these: the Mediterranean, the Extremadura-La Mancha- 

Andalusia, and the Lusitanian groups (Table 2.5). Using smaller 

biogeographical regions for assessment of faunal distributions is particularly 

relevant in marked heterogeneous regions such as southern Iberia.

4.5.2.3. Gamma diversity

Gamma diversity is a measure of regional diversity (Lincoln et al, 1998; 

Rosenzweig, 1995) and this, calculated as the Shannon index for the entire 

species data set from the present study, is 4.05. This value approaches the value 

of 4.5 that Magurran (2004) states is rarely surpassed, and indicates that 

southern Iberia is a region of high diversity for land molluscs.

4.5.2.4. Species compositions

Species compositions, which may constitute communities or assemblages, can 

vary from location to location, and similarities (or dissimilarities) between them 

may be dependent on many factors including habitat heterogeneity, competition, 

climatic and historical factors (Diamond, 1975; May, 1984; Seifert, 1984;
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Kikkawa, 1986). There were low levels of similarity in the land mollusc 

compositions from the sites in the present study. These results are similar to 

those of Cameron and Cook (2001) who reported that there were marked 

differences in the land mollusc faunas from coastal areas in southwest Madeira 

but much less differentiation from forested areas (Cameron and Cook, 1998).

There are no quantitative land mollusc data available for southern Iberia 

other than that from this study, so it is not possible to compare the data to other 

data from the region to assess levels of similarity from non-coastal sites. 

Dissimilarity at non-coastal sites, however, has been detected for other taxa in 

the region. Romero-Alcaraz and Avila (2000), for example, found dissimilarity 

in beetle communities from the Sierra de Baza in southern Iberia that they 

attributed to habitat heterogeneity at the landscape level.

Cameron and Cook (2001) suggest that the differences at coastal 

localities in southwest Madeira may be as a result of climatic and sea-level 

changes in the Pleistocene/Holocene subjecting the areas to isolation and 

reconnection. The low levels of similarity in the land mollusc compositions 

from this study suggest that the heterogeneous habitats of southern Iberia may 

allow a large number of land mollusc species to co-exist in varied communities 

possibly controlled by historical and regional factors, including climate and 

geology (Blondel and Vigne, 1993; Cameron, 1995; Nekola and Smith, 1999).

Speciation is the process that ultimately generates species richness, but 

the time required for speciation to build up diversity in a region is rarely 

considered as an explanation for patterns of richness. This, the ‘time-for- 

speciation-effect’ of Stephens and Wiens (2003), may help account for high 

diversity in regions such as the Mediterranean.

122



Part One, Chapter 4. Results and Discussion

There has been more time in southern Iberia, in relation to other regions 

such as mid- and northern Europe, for communities to develop, for the 

promotion of speciation and for species diversity to increase because the effects 

of glacial periods, that removed the faunas from large areas of Europe did not 

impact the area (Section 1.3). Taberlet et al. (1998) report small amounts of 

congruence in the distributions of ten taxa including mammals, amphibians and 

plants that they attributed to glacial periods. Species in southern Iberia, 

therefore, would not have been eliminated as a result of glacial events. Leading 

edge colonization during expansion after these events, however, may have led to 

homozygosity and spatial assortment of genomes in some species (Hewitt, 

1996, 2004). There is, however, a long-standing debate over the effects that the 

Pleistocene glaciations may have had in promoting speciation in Europe and in 

other areas (Knowles, 2001; Ribera and Vogler, 2004). If there is a positive 

association as suggested by many workers, and taking into account that southern 

Iberia has been a glacial refugium on several occasions (Jaarola and Searle,

2004), these facts may partly explain the high endemism rates and high numbers 

of species of molluscs, and other taxa, in the region.

There is a highly significant decline in species similarities from 

Guardamar del Segura, Spain (Site Bl) to Lagoa de Santo Andre Portugal (Site 

B91) (Figure 4.3) suggesting a climatic or environmental gradient acting across 

the region. This pattern is similar to that reported by Nekola and White (1999) 

for plants in North American forests. They developed the distance decay model, 

which describes how similarity in communities falls with decreasing 

environmental similarity with distance (topographic or climatic gradients), or by 

limits to dispersal and niche width differences among taxa (Oliva and Gonzalez,
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2005). Steinitz et al. (2006) showed that rainfall and geographical distance had 

negative effects on species similarity in land snails in Israel, and that large snails 

had a higher rate of decay in species similarity than small snails, which are 

better dispersers. Cameron and Pokryszko (2004) indicated that distance decay 

in similarity existed across faunas of northern, central and northwestern Europe, 

but that this decay is much less rapid than that in Mediterranean faunas.

Cameron and Pokryszko (2004) compared the faunas of Bialowieza 

Forest in Poland with those of Kakamega Forest in Kenya (Tattersfield, 1996). 

Similar topography and major habitat types (riverine forests etc.) exist in both 

areas and sampling methods were very similar. Cameron and Pokryszko (2004) 

report that, although the faunas are very different taxonomically, results 

(number of species, rank abundance distributions etc.) are very similar. Beta 

diversity was also very similar (2.1 in Kakamega and 1.9 in Bialowieza). Both 

of these areas have a Holocene origin and, as Cameron and Pokryszko (2004) 

identify, these faunas differ in diversity from older faunas, such as those from 

tropical forests that have more locally variable faunas.

4.5.2.5. Beta diversity

Among taxa, beta diversity is generally highest in those with the most restricted 

ranges and specialized habitats (Harrison et al., 1992), and the low similarities 

of land molluscs in the region results in remarkably high beta diversity: 7.77. 

This confirms Cameron’s (1995) prediction that beta diversity would be high in 

Mediterranean habitats where the fauna contains large or stenotypic species with 

poor powers of dispersal. (Cameron also highlighted the urgent need to collect 

diversity data from these areas, many of which are subject to long-standing 

degradation, and from which very little, or no data are available).
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Beta diversity in the region is higher than, for example, that from a range 

of habitats (covering an area of about 98000 hectares) in Raukumara Peninsula 

in northeastern New Zealand (Barker and Mayhill, 1999). The result for the 

Raukumara Peninsula was 3.54 using sampling methods similar to those of this 

study. A value of 6.90 was reported by Cameron et al. (2000) for some Aegean 

Islands with similar habitat types to those from the present study, and 

Schilthuizen and Rutjes (2001) reported a value of 8.6 for a Sabah rainforest 

(Malaysian Borneo) although they state that this may be influenced by small 

sample sizes.

The results from this study substantiate the findings of Cameron et al. 

(2000) from some Aegean Islands who reported that the faunas from their study 

regions, which were about 250km apart, differed far more than faunas from 

north European forests that are spread over far greater distances. Northern 

faunas may be rich at the local level but are generally poor regionally as a result 

of the short time available for immigration since the post-Pleistocene (Cameron, 

1995; Hausdorf, 2006).

Values for beta diversity are lower in northern temperate regions, and 

using data from Cameron (1995) a mean value of 2.3 (range 1.4-4.1) is derived 

from 34 surveys from seven countries (using between nine and 56 sites per 

survey). Although this value is only a guide, because of differences between 

surveys in habitat types, and distances between sites, it does illustrate the lower 

value from northern regions in comparison to those from southern Iberia.

4.5.2.6. The malacofaunal groups

The low levels of similarity in the land mollusc compositions from this study 

result in only a small number of groups of associated species, although there are
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as yet insufficient data to determine if these groups are true species associations 

(Section 4.2.22). Most of the species in these malacofaunal groups have 

Mediterranean-Atlantic distributions reflecting the presence of these species at 

numerous sites (Appendix 3). The Eastem/Xeric group is mostly composed of 

species that are found at sites in, and near, to Almeria, Spain, although a few 

species have Mediterranean-Atlantic distributions. This is the driest part of the 

study area (Font Tullot, 1984, 2000; Perry, 1997).

The Sand malacofaunal group is composed of high-abundance species 

and some of these (Cochlicella spp. and T. pisana) are commonly found 

together in very close proximity on vegetation. These species frequently 

aestivate together during the dry period on plant stems and leaves, forming 

dense concentrations (Section 7.2.2.1). In this condition Cochlicella spp. often 

occupies spaces between the shells of aestivating T. pisana. This malacofaunal 

group includes some the most abundant of all Mediterranean land molluscs (T. 

pisana and Cochlicella spp.). The Universal malacofaunal group includes 

common soil/under rock species, such as F. folliculus and C. lenticula, as well 

as the large helicids O. lactea and C. aspersus.

4.5.3. Comparisons with other regions

Land mollusc communities occur nearly worldwide with sympatric diversities 

ranging from single species (Subantarctic islands) to high diversity sites 

(Emberton, 1995b) such as Cameroon (97 species in 1km2: de Winter and 

Gittenberger, 1998), New Zealand (60 species in 4ha: Solem et al., 1981) and 

Borneo (61 species in 1km2: Schilthuizen and Rutjes, 2001). The highest values 

for diversity of native land molluscs, in relation to total land area, are found on 

the islands of the tropical and subtropical Pacific (Cowie, 1996, 2001, 2004).
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Mountainous regions and islands account for a significant portion of world land 

mollusc diversity (Solem, 1984b) and many large islands have diverse faunas 

including Japan, New Zealand, Cuba, Jamaica, New Guinea, and Madagascar 

(with endemism rates of over 90%, Solem, 1984b; Emberton, 1997).

Solem (1984b) stated that other than in New Zealand, sympatric 

diversity is usually only five to ten, and rarely exceeds 20 species. Solem and 

Climo (1985) suggested that land snail community richness rarely exceeds 12, 

although a number of studies have shown much higher values (Nekola, 1999 

and Table 4.11). The mean number of species for the sites from this study was

12.1, a value in the mid-range by world standards (Cameron et al., 2000) and 

similar to the values reported by Cameron and Cook (1998, 2001) for Madeira 

of 13.6 and 14.0, and 12.7 reported by Cameron et al. (2000) for the Aegean 

Islands using similar sampling strategies to this study.

Faunas of northern, central and northwestern Europe, and North 

America show little variation in species richness (Nekola, 1999) and although 

areas further south have much richer regional faunas, local communities are no 

richer than those of the north (Pokryszko and Cameron, 2005). The forest snail 

fauna of northern Europe is regionally poor (about 150 species, excluding 

slugs), but individual localities (clusters of sample sites within a few kilometres 

of each other) can be rich by global standards with up to 57 species (Pokryszko 

and Cameron, 2005).

Britain is a very uniform region for land molluscs (Cameron, 2002a) and 

individual, rich sites of less than 1km2 may contain over 30% of the total 

national fauna (Cameron, 1998). Site by site comparisons of faunal similarity 

confirm the homogeneity of fauna in English calcareous woodlands (Cameron et
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al., 2006), and Cameron and Pokryszko (2004) have shown that the faunas at 

sites in Bialowieza forest (Poland) also show considerable uniformity.

Cameron (1992) reported that the native fauna of the Madeiran 

archipelago shows pronounced geographical differentiation. A result of the 

differentiation is that faunas of individual sites (even the best sites) are not rich, 

being on average poorer than those from equivalent sites in Europe and North 

America.

The malacofauna of southern Iberia shares characteristics with other 

Iberian faunas, with Mediterranean faunas in general, and with some eastern 

European faunas (Wells and Chatfield, 1992, 1995), in being diverse with many 

endemics (Section 1.3). Mediterranean faunas are more diverse, and include 

many more endemic species than those of central and northern Europe. This 

difference is largely attributable to glacial effects (Sections 1.3 and 4.5.2.4) with 

most northern temperate faunas having been significantly affected by 

Pleistocene climatic changes. Many areas were devoid of molluscs as recently 

as 14,000 years ago (Cameron, 1995) and most of the British fauna, for 

example, resulted from immigration from the continental mainland as 

deglaciation proceeded (Kemey, 1999), the southern faunas having formed the 

stock faunas for the northern regions (Cameron, 1995). The diversity and 

endemism levels in Iberia and the Mediterranean in general roughly fall 

between the low levels for some northern latitudes and the much higher levels 

that exist in some mountainous regions, islands and in the tropics.

Lange and Mwinzi (2003) reported high regional diversity in Arabuko 

Sokoke forest in East Africa, but the majority of species had low abundance. 

They ascribed this to a possible decline in abundance because of forest

128



Part One, Chapter 4. Results and Discussion

disturbance. Emberton et al. (1997), however, reported that limited forest 

degradation showed no negative correlation with diversity in Tanzania, but was 

instead associated with greater diversity.

A notable feature of many of the high diversity forest studies, especially 

tropical rainforests, is the low abundances of many species. The data from 

Gabon (de Winter, 1995), Cameroon (de Winter and Gittenberger, 1998) and 

Sabah, Borneo (Schilthuizen and Rutjes, 2001) indicate high numbers of species 

with very low abundances. This contrasts with data from this study, as well as 

those from Crete (Cameron et al., 2003) where species abundances were much 

higher. The faunas from plots from the Cretan study are very uniform in 

comparison to the rainforest faunas, with Sabah, Borneo having about three 

times as many species. The faunas of the Cretan plots are richer (Cameron et al.,

2003) (Table 4.13).

Table 4.13. The number o f  species in 400m 2 plots from Sabah, Borneo and Crete.

N um ber o f  species in 400m  plots

Location Minimum Maximum Mean Standard
deviation

Source

Sabah, Borneo 2 28 6.1 6.3 Schilthuizen and Rutjes, 2001
Crete 9 20 15 3.2 Cameron et al., 2003

There are several factors that must be considered in the validity of making 

comparisons between studies, and therefore between faunas. First, sampling 

methods are often very different between studies, and often there may not be 

any indication that sampling has been assessed for efficacy. Second, many 

studies include dead shells in their species matrices, in some cases they 

considerably out-number living animals. This may not qualitatively alter 

presence/absence at localities, but does so quantitatively. Cowie et al. (1995) 

reported that the majority of specimens collected in a survey from Hawaii were
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dead, and only 10 of 16 taxa were collected live. An even higher proportion of 

dead shells was used in the analyses carried out by Schilthuizen et al. (2004) for 

limestone outcrops in Borneo; these were based on species data composed of 

greater than 99% dead shells. Very little is known about shell degradation rates 

and the factors that affect this (Cowie et al., 1995) although some of the factors 

that contribute to degradation are known (e.g. pH and humidity) (Evans, 1972; 

Claassen, 1998; Reitz and Wing, 1999). Seddon et al. (2005) report that large 

numbers of specimens at some African forest sites reflect the high abundance of 

large dead shells that degrade less rapidly in base-rich soils. Nekola and Smith 

(1999) recognized that the number of species in samples from Wisconsin 

carbonate cliff communities may be exaggerated if shells persist in the soil for 

long periods. Cameron et al. (2003) have remarked how shell preservation in 

dry calcareous environments allow shells to persist for years, making it difficult 

to separate fresh from long dead shells, and Menez (2002b) showed that larger 

species degraded less rapidly than smaller ones in Mediterranean conditions.

Shells would be expected to degrade more rapidly in the acidic soil 

conditions typical of rainforests than in the basic soil conditions more prevalent 

in Mediterranean regions (Benayas et al., 2004). Although abundances are low 

in many rainforest habitats, there is evidence that high abundances may be 

found where forest grows on limestone (Schilthuizen, 2004). These limestone 

habitat patches can support two to five times more species than non-limestone 

habitat ones with 100-1000 times as many shells. Although the increase in 

calcium carbonate per se may account for much of this increased abundance, 

decreased shell degradation may also be a factor. Third, comparisons are often 

made between studies that sample disparate habitat types, or between studies
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that sample different numbers of habitat types. These comparisons rarely take 

into account habitat complexity as a determinant factor of diversity.

At present very few quantitative data exist that have been collected from 

comparably-sized areas. Table 4.14 lists the only studies from which data are 

available from areas of 1km2, although these datasets are not entirely 

comparable because of different sampling methodologies. This type of data 

collection, extended to other regions, would, however, allow hypotheses about 

latitudinal and range effects to be constructed and tested.

Table 4.14. The number o f  species from studies conducted at sites o f  1km2.

Location N um ber o f  species N um ber o f  sites Source

Cameroon 97 1 de Winter and 
Gittenberger, 1998

Borneo 61 1 Schilthuizen and 
Rutjes, 2001

Crete 27 1 Cameron et al., 2003

French Guiana 34 1
Gargominy and 
Ripken, 1998*

Southern Iberia 12.1 (min:4; m ax:22) 91 This study
(♦This study was undertaken using soil samples only: 2 x lm  quadrats at 20 locations for a total

o f  280 litres o f  soil).

4.6. Summary of Part One

91 sites, each 1km2, were sampled from southern Iberia. A total of 94 species 

were recorded from the 91 sites. There was a mean number of 12.1 species 

(lower 95% Cl: 11.2; upper 95% Cl: 13.0) at the sites, a value in the mid-range 

by global standards and similar to values for Madeira and the Aegean Islands. 

There was a mean total species abundance of 1068.8 (lower 95% Cl: 843.8; 

upper 95% Cl: 1293.7), a mean Shannon diversity of 2.380 (lower 95% Cl: 

2.253; upper 95% Cl: 2.507), and a mean Simpson’s diversity of 0.724 (lower 

95% Cl: 0.694; upper 95% Cl: 0.754). Of the 94 species, 27 were found only at 

Mediterranean sites, 30 only at Atlantic sites, and 37 at both. The majority of
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species have low total abundances and species with higher abundances were 

present at more sites than those with lower abundances.

The species were classified into 25 families with 47% of species in the 

Hygromiidae. Species data from 12 sites fitted the geometric or log series 

species abundance models; 77 sites fitted the log normal, truncated log normal 

or broken stick models, but two sites did not fit any of the models. Clustering of 

the species abundances formed 34 groups. The largest of these contained 16 

sites. The remaining sites were in groups containing between one and seven 

sites, and 16 of these groups contained only one site.

Low levels of similarity were found between the land mollusc 

communities, and beta diversity for data from all sites was 7.77. These results 

suggest that the heterogeneous habitats from the region allow a large number of 

mollusc species to co-exist in varied communities possibly controlled by 

historical and regional factors, including climate and geology. Faunas from this 

region differ far more than those from northern European faunas that are spread 

over greater distances. These northern faunas may be rich locally but are 

generally poor regionally reflecting the short time available for immigration 

since the post-Pleistocene.

Three main malacofaunal groups were identified: Eastem/Xeric, Sand 

and Universal groups. The monthly mean of sunshine hours per day during the 

wet period of December, January and February, and the annual mean absolute 

humidity, provided the best explanation of the species data.
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CHAPTER 5. INTRODUCTION

5.1. Scale

Over 70 years ago Boycott (1934) made the point (albeit indirectly) that 

considering scale was important in understanding land mollusc ecology. Since 

then, and particularly in the last two decades, the issue of scale, at both spatial 

and temporal levels, has become a central theme in ecology (Morris, 1987; 

Thorhallsdottir, 1990; Holling, 1992; Levin, 1992; Ray and Hastings, 1996; 

Blackburn and Gaston, 2002; Mayer and Cameron, 2003; Kneitel and Chase,

2004).

Problems related to scaling are central to ecological theory and the 

portrayal of an ecological system relies on the spatial, temporal, and 

organizational perspectives selected (Levin and Pacala, 1997; Bowyer and Kie,

2006), with different mechanisms controlling patterns of diversity at different 

scales (Scheiner et al., 2000; Mancera et al., 2005). In addition, species patterns 

and co-occurrences are scale-dependent (Finlayson, 1999; Petffk and 

Bruelheide, 2006), and species respond to habitat characteristics at different 

scales (Holland et al., 2004). In these issues land mollusc ecology has, until 

recently, lagged behind. The need for studies at a wide range of scales to allow 

global comparisons to be made, and for understanding patterns in diversity, was 

recognized by Cameron (2004). Nekola and Smith (1999) suggested that very 

little is known about small-scale diversity and community patterns in land 

molluscs. Although some studies have shown differences at small scales (Berry, 

1973; Cameron, 1978; Nekola and Smith, 1999), the need for further research 

was highlighted by Cameron and Pokryszko (2005): ‘One o f the major 

challenges in the ecology and biogeography o f terrestrial molluscs is to
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determine the scales at which patterns o f distribution occur, and the extent to 

which they correlate with environmental variation at small scales'.

5.2. Species-area effects

The number of species found at a location increases with search time and area, 

as described by the species-area model (Arrhenius, 1921; Hopkins, 1955; 

Kikkawa, 1986; Usher, 1991; Hart and Horwitz, 1991; Rosenzweig and 

Abramsky, 1993; Palmer and White, 1994; Brown, 1995; Rosenzweig, 1995; 

Magurran, 2004). This increase is apparent at scales ranging from lm2 to 

continental landmasses (Bell et al., 1991; Watkins and Wilson, 1992; Ricklefs 

and Schluter, 1993) where the larger the area that is sampled the more species 

that are likely to be found (Schoener, 1974; Connor and McCoy, 1979; Hart and 

Horwitz, 1991; Brown, 1995; Rosenzweig, 1995; Lomolino, 2000).

Many hypotheses have been proposed to account for variations in the 

number of species collected from areas of differing size (Hart and Horwitz, 

1991; Ulrich and Buszko, 2007) and these can be classified into three main 

groups: (1) Passive sampling models which assume that the number of 

individuals, normally correlated with area, is the causal factor, and that the 

species-area relationship results from increasing species richness in samples 

containing greater numbers of individuals (McGuinness, 1984; McGuinness and 

Underwood, 1986; Bolger et al., 1991), even in uniform environments (Connor 

and McCoy, 1979; Scheiner, 2004), (2) Fragmentation models which assume 

that area affects the temporal dynamics and relationships with other areas 

through effects on colonization, extinction, speciation and catastrophic 

disturbance (MacArthur and Wilson, 1967; Hart and Horwitz, 1991), and (3) 

Habitat diversity models which assume relationships between number of species
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and heterogeneity, and between heterogeneity and area (Williams, 1964; Hart 

and Horwitz, 1991; Cramer and Willig, 2005).

Most explanations for the species-area relationship are based on the area 

per se hypothesis and the habitat diversity hypothesis (Ricklefs and Lovette, 

1999; Scheiner, 2003, 2004; Triantis et al., 2005a, b). The area per se 

hypothesis assumes that the number of species found at a locality increases with 

increasing area sampled because the majority of species are rare and will not 

occur in all sampled areas (Nilsson et al., 1988; Hart and Horwitz, 1991; Storch 

et al., 2003). These species will be sampled only in larger areas (even if their 

spatial distributions are random). The habitat diversity hypothesis (Williams, 

1964; MacArthur and Wilson, 1967; Hart and Horwitz, 1991) assumes that 

larger areas have more habitat diversity, and therefore more species, than 

smaller areas.

Extinction-colonization dynamics (Rosenzweig, 1995; Hanski, 1999), 

high rates of dispersal among less isolated habitats decreasing the probability of 

extinction, or the rapid recolonization of species following any local extinctions 

that occur (Brown, 1995; Gilpin and Hanski, 1991), impact metapopulation 

structure and may affect species-area relationships (Storch et al., 2003). Other 

factors include evolutionary history, extinction and migration (Coleman et al., 

1982; Wissel and Maier, 1992; Adler and Lauenroth, 2003; Heegaard, 2004; 

Roy et al., 2004; Lawson and Jensen, 2006). An extension of the species-area 

theory is the species-energy theory that is obtained by replacing ‘area’ with 

‘available energy’ in the model (Wright, 1983).

Triantis et al. (2003) have pointed out that many authors have implied 

that the area per se and the habitat diversity hypotheses may not be mutually

136



Part Two, Chapter 5. Introduction

exclusive, and that area and habitat diversity are strongly interconnected. 

Triantis et al. (2003, 2005a, b) proposed the Choros model that joins area and 

habitat diversity, expressing their combined effects, by multiplication of a 

region’s area with the number of different habitat types in the region. The 

authors assessed the model using 22 published datasets for different faunistic 

groups and found that it fitted the data better than the species-area model in 20 

cases. Those where the datasets did not fit were snails and beetles which the 

authors ascribed to the way the habitat was defined using vegetation sampling. 

Other datasets for snails and beetles, however, fitted the Choros model better 

than the species-area model. The Choros model, used by Panista et al. (2006), 

better explained species richness patterns than area alone for plants in the 

Aegean archipelago.

Although there are recently published studies on land mollusc diversity 

from delimited sampling areas (e.g. Walden, 1981; Emberton, 1995a, 1997; 

Tattersfield, 1996; de Winter and Gittenberger, 1998; Cameron, 1973, 2002b, 

Cameron and Cook, 2001; Cameron et al., 2000) these have not specifically 

considered the data from the same locations at multiple scales. This study is the 

first attempt to assess these relationships using a hierarchical nested sampling 

design.

5.3. Habitat structure and the habitat structure model

In both natural and disturbed environments there is substantial variance 

in habitat structure at spatial scales of lm 2 to 10,000m2 (Stowe and Wade, 1979; 

Bell et al., 1993). This includes vegetation architecture and quantities, and 

types, of rocks and logs (Grime and Blythe, 1969; Price et al., 1995; Heller, 

2001; Luchtel and Deyrup-Olsen, 2001; Olabarria and Chapman, 2001; Ondina
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and Mato, 2001). Walden (1981) showed that microhabitat differentiation 

(which he defined as variation in litter depth, moisture and shelter availability 

for molluscs) of woods and boulder slope habitats in southwestern Sweden 

affected diversity, and Cowie et al. (1995) showed that environmental 

variability at a scale of 0.09m significantly influenced distributions of land 

snails in a montane habitat in Hawaii.

The variability of type and quantity of habitat structure has been 

associated with increased number of species of other invertebrates; Benton et al 

(2003) reported increased diversity among farmland invertebrates at both 1km 

and 25km2 scales, than at smaller scales. Heterogeneous and complex habitats 

provide refuges from predation and competition effects for many taxa including 

frogs (Gunzburger and Travis, 2004), lizards (Petren and Case, 1998), subtidal 

limpets (Fletcher and Underwood, 1987), shrimps (Macia et al., 2003; Meager 

et al., 2005), crabs (Buck et al., 2003), copepods (Hicks, 1980), intertidal 

macroinvertebrates (Edgara et al., 1994) and damselflies (Elkin and Baker, 

2000). Many species exhibit positive selection for highly heterogeneous habitats 

(Hicks, 1985; Gee and Warwick, 1994; Jensen et al., 2003; Stoner and Titgen, 

2003; Almany, 2004; Hernandez et al., 2005; Sass et al., 2006).

The association of vegetation with some invertebrate taxa has been 

demonstrated (Dennis, 2004; Brose, 2003; Fleishman et al., 2005) but 

associations are not fully elucidated for land molluscs. Most land molluscs feed 

on a wide range of live and dead plants (Rollo, 1988; Sternberg, 2000; Ondina 

and Mato, 2001; Speiser, 2001; Horsak and Hajek, 2003). This suggests that 

vegetation may be a determinant factor of diversity and abundance, not only as a 

food resource but also by providing shelter and micro-habitats (Russell-Hunter,
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1964; Walden, 1981; Alpert, 1991; Price et a l, 1995; Cook, 2001; Speiser, 

2001; Peeters, 2002). The spatial structure of vegetation influences the 

behaviour of individual organisms as well as the population dynamics of 

resident populations (Haysom and Coulson, 1998; Frietas et al., 2002; 

Despland, 2003; Watson et al., 2004). Some land mollusc studies have 

demonstrated minimal influence of vegetation on diversity and distribution 

(Cowie et al., 1995) whilst others have shown that vegetation is highly 

significant in influencing diversity and distribution (Proschwitz, 1993). Barker 

and Mayhill (1999) showed that land mollusc abundance and diversity in 

northeastern New Zealand increased with vegetation diversity. They proposed 

that localities with higher vegetation diversity have higher complexity and more 

varied substrate than localities with lower vegetation diversity.

Labaune and Magnin (2002) reported that land snails did not appear to 

be dependent on plant species. Relationships between plants and land molluscs 

may be more as a result of the micro-habitats provided by vegetation structure 

rather than the plants themselves (Kiss and Magnin, 2003). In addition, Horsak 

et al. (2007) have suggested that the associations they reported from western 

Carpathian Spring Fens may have been governed more by historical 

development than ecological gradients. Beyer and Saari (1978) showed that the 

strong association between slugs and grass in wooded areas of New York was 

related to the shelter provided by the grass. These studies confirm earlier reports 

of associations between plant taxa and land molluscs (Shimek, 1930; Boycott, 

1934; South, 1965; Beyer and Saari, 1977) and that in some cases these 

associations are important in structuring assemblages (Grime and Blythe, 1969; 

Peters et al., 2007). Dillon (1980) predicted snail presence with 78% accuracy
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in an Arizona canyon using vegetational cover alone. Associations between 

plant taxa and mollusc species, in conjunction with high sensitivity to 

environmental variation, have enabled land molluscs to be used as indices of 

both vegetation types and climate in the reconstruction of Quaternary 

assemblages (Davies and Grimes, 1999; Moine et al., 2002). Similar levels of 

prediction have been made for other taxa that have low dispersal abilities, 

including spiders and small insects (Greenstone, 1984; Ward and Lubin, 1993; 

Dennis et al., 1998; Rypstra et al., 1999; McNett and Rypstra, 2000; Romero 

and Vasconcellos-Neto, 2005), and millipedes and woodlice (David et a l,

1999).

Habitat structure affects the abundance and the diversity of species of 

many taxa in many different systems (Mac Arthur and Mac Arthur, 1961; 

MacArthur et al., 1966; Abele, 1974; Menge and Lubchenco, 1981; Coul and 

Wells, 1983; Abramsky et al., 1990; Werner et al., 1983; Ward and Lubin, 

1993; Halaj et al., 1998; Lohrer et al., 2000; Taniguchi and Tokeshi, 2004) but 

as McCoy and Bell (1991), and more recently Beck (2000) and Kostylev et al. 

(2005), have indicated, different elements of habitat structure, such as the types 

(e.g. vegetation, soil and rocks) and quantities of these types, are often 

confounded making it difficult to compare results between studies. To solve this 

problem, McCoy and Bell (1991) developed a model of habitat structure that 

has three axes and that they considered to 4 encompass the breadth o f ecological 

relationships implied by ‘habitat structure ’ and related terms' (Figure 5.1). The 

axes are defined as: (1) the heterogeneity axis that encompasses variation 

attributable to the relative abundance (per unit area or per unit volume) of 

different structural components (i.e. types of structure such as rocks, logs and
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vegetation); (2) the complexity axis that encompasses variation attributable to 

the absolute abundance (per unit area or per unit volume) of individual 

structural components (for example, the percentage cover of each of the types of 

structure); and (3) the scale axis that encompasses variation attributable to the 

size of the area or volume used to measure heterogeneity and complexity (for 

example, lm and 5m ).

Scale: encom passes variation 
attributable to the size o f  the area 
or volume used to measure 
heterogeneity and com plexity (for 
example, lm 2 and 5m2).

Heterogeneity: encom passes 
variation attributable to the 
relative abundance (per unit area 
or per unit volum e) o f  different 
structural components (i.e. types 
o f  structure such as rocks, logs 
and vegetation).

Complexity: encompasses 
variation attributable to the 
absolute abundance (per unit area 
or per unit volume) o f  individual 
structural components (for 
example, the percentage cover o f  
each o f  the types o f  structure).

F igu re 5.1. A  graphical model o f  the components o f  habitat 
structure adapted from M cCoy and Bell (1991).
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This model of McCoy and Bell (1991) has been used by Downes et al. 

(1998) to study the effects of habitat structure and local species diversity in an 

upland stream in southeastern Australia, by distinguishing between the effects 

of increasing habitat structure by the addition of physical elements (to increase 

complexity) from those of adding different types of habitat structure (to increase 

heterogeneity), at scales ‘relevant to the biota’ (using combinations of blocks 

with surface areas of 1,012cm2). Downes et al. (1998) reported that: our

study strongly suggests that resources related to habitat structure have a 

regulatory influence on species richness, and that this regulation is both strong 

and precise’. They showed that using the model allowed the importance of 

different elements of habitat structure to number of species, such as gaps in the 

substrate of <lmm and the densities of algal fronds, to be identified.

Beck (2000) used the model to study the independent effects of habitat 

complexity and heterogeneity on rocky intertidal gastropods in Botany Bay, 

Australia and showed that the complexity of habitats positively affected the 

number of species and their abundances. The study also showed that the effects 

of heterogeneity on the number of species and their abundances were 

independent of their complexity. Kelaher (2003a) studied the effects of habitat 

structure on gastropod assemblages on a rocky shore in Sydney, Australia using 

the model and showed that the vertical scale component of structure had 

significant effects on the associated assemblages. In a similar study, also in 

Sydney, Kelaher (2003b) showed that there were significant negative 

correlations between the density of algal fronds (complexity) and the number of 

species and species abundances of gastropods. Kelaher interpreted this as 

indicating the existence of distinct upper thresholds in the relationship between
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complexity and the number of species. Schreider et al. (2003) used the model to 

study the effects of height on the shore and habitat complexity on amphipod 

abundance in rock pools in New South Wales, Australia, and determined that 

complexity did not influence abundance.

The main aim in Part Two is to assess the effects of habitat 

heterogeneity and complexity on the number of species and species abundances

9 9 9at three different scales (lm  , 5m and 20m ) in three habitat types, to determine 

if these effects are scale-dependent and habitat-specific, and to determine if 

there are variations in these in relation to the wet and dry periods of the year 

(Section 1.5). Hypotheses were constructed and tested using correlation and 

ANOVA analyses. These hypotheses and methods are detailed in the following 

chapter.
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CHAPTER 6. METHODS

6.1. The study area

The study area is southern Iberia; defined in this study as that part of the Iberian 

Peninsula below the 38° line of latitude, and which includes Gibraltar, southeast 

Spain and southern Portugal (Section 3.1).

6.2. Selection of sites

Most of the sampling sites were within 100km from Gibraltar; this 

allowed a site to be reached and sampled on the same day (Figure 6.1 and Table

6.1). Part Two investigations aim to study the effects of habitat structure on the 

number and abundances of species; it was therefore not necessary to use a site- 

selection system that systematically included as much area as possible in 

southern Iberia, as was the case for the previous biogeographical work (Section

3.2). As with the Biogeographical Sites, a distance of not more than 5km from 

the coast was used as the cut-off. This was to standardize, as far as possible, any 

effects of proximity to the coast on the data. Sites were selected by driving along 

the coast and stopping where the following criteria were met:
'y

(1) an area of approximately 1km with no man-made structures, or only a 

minimal number of these,

(2) as little anthropogenic disturbance as possible (visual assessment of 

buildings, roads, other construction etc.), and

(3) as much as possible of one of the habitat types under study: sand, steppe and 

garigue (visual assessment).
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F igu re  6.1. Iberia, showing extent o f  the 38° line o f  latitude (box) and detail o f  boxed area 
showing the positions o f  the sites (see Table 6.1 for details o f  sites, and A ppendix 6 for 
photographs o f  sites).

Iberia

20

46 951
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T able 6.1. The sites used in Part Two o f  the study, showing sampling date, latitude and longitude o f  
each site (measured in minutes and degrees), altitude (metres above sea level), habitat type and sampling 
period (wet or dry).

Site
No. Site Name Date

Sampled Latitude Longitude Altitude Habitat
Type Period

SI Playa de los Lances, Spain 20/10/2003 3602687 00538217 2 Sand Wet
S2 Pinar del Rey, Spain 25/10/2003 3614693 00523998 25 Sand Wet
S3 Sancti Petri, Spain 31/10/2003 3623133 00612395 2 Sand Wet
S4 Cadiz, Spain 01/02/2004 3629174 00615941 2 Sand Wet
S5 Punta Paloma, Spain 08/03/2004 3604643 00541172 5 Sand Wet
S6 La Linea, Spain 20/03/2004 3609308 00520349 3 Sand Wet
S7 Costalita, Spain 20/11/2004 3627471 00502594 2 Sand Wet
S8 Western Beach, Gibraltar 27/12/2004 3609164 00521073 2 Sand Wet
S9 Talus Slopes, Gibraltar 01/01/2005 3608202 00520469 40 Sand Wet

S10 Playa del Negro, Spain 15/01/2005 3619853 00514423 2 Sand Wet
S ll Sotogrande, Spain 29/05/2004 3616348 00517097 1 Sand Dry
S12 Bahia Dorada, Spain 14/08/2004 3624215 00511397 2 Sand Dry
S13 Zahara de los Atunes, Spain 21/08/2004 3609005 00551851 3 Sand Dry
S14 Carteia, Spain 04/09/2004 3611085 00524779 5 Sand Dry
S15 Conil de La Frontera, Spain 04/02/2005 3617909 00608079 15 Sand Dry
S16 Torre Real, Spain 12/06/2005 3620215 00450611 2 Sand Dry
S17 Malaga, Spain 19/06/2005 3638767 00430512 30 Sand Dry
S18 Sanlucar de Barrameda, Spain 25/06/2005 3646682 00622248 2 Sand Dry
S19 Alcaidesa, Spain 18/07/2005 3614387 00518553 2 Sand Dry
S20 El Ejido, Spain 29/07/2005 3642246 00249951 2 Sand Dry
S21 La Zagaleta, Spain 06/10/2003 3633168 00501748 85 Steppe Wet
S22 Algeciras, Spain 15/11/2003 3606158 00527691 40 Steppe Wet
S23 Benahavis, Spain 22/11/2003 3629942 00501090 200 Steppe Wet
S24 La Cafiada, Spain 20/12/2003 3632196 00452184 50 Steppe Wet
S25 Little Bay Slopes, Gibraltar 11/01/2004 3606905 00520983 15 Steppe Wet
S26 Mijas, Spain 12/04/2004 3634895 00436850 100 Steppe Wet
S27 Facinas, Spain 22/04/2004 3609062 00541787 30 Steppe Wet
S28 Campamento, Spain 27/11/2004 3611461 00521100 5 Steppe Wet
S29 Windmill Hill Flats, Gibraltar 18/12/2004 3607471 00520623 50 Steppe Wet
S30 Half Moon, Gibraltar 03/01/2005 3608566 00520419 5 Steppe Wet
S31 Torrox, Spain 09/07/2003 3646356 00356863 75 Steppe Dry
S32 La Janda, Spain 02/08/2003 3604927 00537339 3 Steppe Dry
S33 Upper Rock, Gibraltar 16/08/2003 3607329 00520561 325 Steppe Dry
S34 Cove Beach, Spain 05/06/2004 3624867 00509783 2 Steppe Dry
S35 Western Slopes, Gibraltar 03/07/2004 3608265 00520986 200 Steppe Dry
S36 S2o Bras, Portugal 19/07/2004 3707837 00753755 70 Steppe Dry
S37 Betis, Spain 30/08/2004 3605096 00541632 120 Steppe Dry
S38 Miraflores, Spain 05/09/2004 3612664 00524677 10 Steppe Dry
S39 Sabinillas, Spain 11/09/2004 3625593 00510951 70 Steppe Dry
S40 Delfimar, Spain 12/09/2004 3625926 00506812 2 Steppe Dry
S41 El Higueron, Spain 19/10/2004 3611799 00520804 4 Garigue Wet
S42 Casares, Spain 11/10/2003 3624085 00514134 75 Garigue Wet
S43 Castellar de la Frontera, Spain 29/11/2003 3618872 00527415 175 Garigue Wet
S44 Playa del Seghers, Spain 07/12/2003 3624984 00510210 15 Garigue Wet
S45 San Roque, Spain 03/01/2004 3614852 00520614 20 Garigue Wet
S46 El Bujeo, Spain 10/01/2004 3605585 00530824 320 Garigue Wet
S47 Serrania Bermeja, Spain 28/02/2004 3630991 00444857 210 Garigue Wet
S48 Torreguadiaro, Spain 11/12/2004 3618367 00515738 2 Garigue Wet
S49 Martagina, Spain 22/01/2005 3620598 00515430 50 Garigue Wet
S50 Santa Margarita, Spain 30/01/2005 3612819 00520609 25 Garigue Wet
SSI Bolonia, Spain 24/05/2003 3605969 00543935 4 Garigue Dry
S52 Mediterranean Steps, Gibraltar 29/05/2003 3607046 00520426 300 Garigue Dry
S53 Muela, Spain 28/06/2003 3615833 00600048 150 Garigue Dry
S54 Cala Sardina, Spain 15/07/2003 3618522 00515589 15 Garigue Dry
S55 Aldea Beach, Spain 24/08/2003 3020146 00514301 2 Garigue Dry
S56 Manilva, Spain 30/08/2003 3623543 00515634 40 Garigue Dry
S57 Monte, Portugal 21/07/2004 3707748 00753872 65 Garigue Dry
S58 Alfaroba, Portugal 28/07/2004 3707657 00753768 60 Garigue Dry
S59 Guadalmansa, Spain 25/09/2004 3627228 00503466 2 Garigue Dry
S60 Calaburras, Spain 26/09/2004 3631153 00438280 50 Garigue Dry
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The habitats were classified based on Rivas Goday (1968), Rivas- 

Martinez (1973, 1981, 1987), Polunin and Walters (1985), Polunin and 

Smythies (1988), Arroyo and Maranon (1990) and the Interpretation Manual of 

European Union Habitats (Anon., 1995). The difficulty of clearly 

differentiating these habitat types is apparent in this literature and often there 

may be a gradation of one habitat type into another. Additionally, there is some 

discrepancy in the literature as to definitions of the habitat types.

There are extensive areas of sand habitat in southern Iberia, including 

dunes, that form parts of coastal areas (Serra and Ros; 1989; Pascual, 1991). 

Steppe and garigue are typical coastal habitats in southern Iberia and are 

generally considered to be part of a continuum of Mediterranean habitat types 

that grade through steppe, garigue and maquis to forest. Many of the factors 

required to effect changes in this continuum are closely associated with humans 

and their animals (Serra et al., in press). Maintenance of particular habitats (i.e. 

stopping progression in the continuum) is also largely dependent on human 

activity, including fire, (Faulkner and Hill, 1997; Blondel and Aronson, 1999; 

Grove and Rackham, 2001), although no evidence of the use of fire was 

detected at any of the sites used in the present study.

The three habitat types were chosen to represent commonly occurring 

and typical habitat types in southern Iberia. They are also ones with which the 

author is familiar. The following characterizing points were used to identify the 

habitats:

Sand: Areas with annuals, grasses and some bulbous species, and with a 

substratum of sand. These may be sand dunes but also expanses of coastal areas
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with no dunes. Plants include: squill (Scilla), sea holly (Eryngium), plantain 

(Plantago), sedge (Cyperus) and vetch (Hedysarum).

Steppe: Areas with mostly annuals and perennials with deep root systems, some 

areas are predominantly grassy with many species of annual grasses. Plants 

include: asphodels (Asphodelus), clovers (Trifolium), anemonies (Anemone), 

daisies (Beilis) and bulbous plants (Iris, Allium, Narcissus).

Garigue: A widespread Mediterranean habitat type also known as tomillares 

(Spain), phrygana (Greece) and batha (Palestine). Some of the hottest and driest 

terrain in the Mediterranean is covered with garigue. There are low scattered 

shrubs, most about 0.5m high, often with patches of stone and rock in between. 

A large number of herbaceous plants are found including thyme (Thymus), 

rosemary (Rosmarinus), sage (Phlomis), micromeria (Micromeria) and lavender 

(Lavandula), as well as tuberous plants such as crocuses (Crocus) and hyacinths 

(Hyacinthus).

On determining a site location, an area of 40x40m (1600m2) was 

selected by walking for a period of 2 minutes (an arbitrarily chosen time which 

was used for all sites) into the area. A marker (wooden post) was then placed at 

that point (here called the origin point) which represented the top left comer of 

the 1600m2 site (Section 6.4.1). The method used to select sites was not 

completely random but, although a limitation, it is a reasonably robust approach 

because inherent bias is standardized across all sites.

6.3. Sampling periods

The wet period is defined to be from October to the end of May, and the dry 

period from the end of May to September (Section 3.3). Each of the habitat 

types (sand, steppe and garigue) was sampled at 20 different sites (Table 6.1).
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Ten sites were sampled in the wet period, and ten in the dry period for each 

habitat type. In this way it was possible to determine whether there were 

significant differences in the variables measured between the two periods 

(Section 3.3). Hereafter sites sampled in the wet period are referred to as ‘wet 

sites’ and sites sampled in the dry period are referred to as ‘dry sites’.

6.4. Sampling layout at the sites

The sampling layout is based on Scheiner et al. (2000) and is a hierarchical 

nested sample design (Phillips and Shure, 1990; Palmer and White, 1994; 

Scheiner et al., 2000 (Figure 6.2); Boyero, 2003 (Figure 6.3); Fleishman et al., 

2003)) that allows data to be considered at several levels (Table 6.2), thus 

allowing the effects of scale to be analyzed (Kluth and Bruelheide, 2004). (See 

Table 6.3 for comparison of various designs). The data using this method, 

however, are not strictly independent and this presents problems of 

pseudoreplication (Hurlbert, 1974; Oksanen, 2001; Hewitt et al., 2007). Using 

spatial analysis (Section 8.5) may indicate the level of autocorrelation inherent 

in the data and would be an improvement to this study.

T ab le  6.2. Possible levels o f  analysis o f  variables using focus and grain for the sam pling layout 
used in the present study (see G lossary for definitions o f  focus and grain).

F o c u s G r a in
site at 1 m 1 (m ean  num ber o f  sp e c ie s  per 2 0  quadrats)

at 5m 2 (m ean  num ber o f  sp ec ie s  per 4  p lots)
at 20m  (total num ber o f  sp ec ie s  in all 2 0  quadrats)

plot at lm 2 (m ean  num ber o f  sp ec ie s  per 5 quadrats)
at 5m^ (total num ber o f  sp ec ie s  in all 5 quadrats)

quadrats lm 2
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T ab le  6.3. Exam ples o f  nested sam pling designs that use several levels o f  scale for data analyses 
for com parison to the design from the present study that is conceptually based on Scheiner et al. 
(2000). See text for further details.

Level N u m b er o f each level T axa in study
T otal 

sam ples 
in study

S ource

Landscape
Com m unity
Field
Quadrat

3
3 per landscape 
5 per com m unity 
10 per field

Hypothetical 450
Scheiner et al. , 

2000

Basin
Segment
Riffle
Section
Sample

2
3 per basin 
3 per segment 
3 per riffle 
3 per section

M acroinvertebrates 162 Boyero, 2003

Landscape
M ountain
range
Canyon

Segment

1
3
5 in 2 ranges; 6 in 1 range 
25 in 1 segment, 31 in 1 
segment, 28 in 1 segment

Butterflies and 
birds

448
Fleishm an et al. , 

2003

Habitat type 
Site 
Plot 
Quadrat

3
10 per habitat type
4 per site
5 per plot

Land m olluscs 1200 This study
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Figure 6.2. The method o f  Scheiner et at. (2000). There are three landscapes (1-3) each with 
three com munities. Within each com m unity there are five fields, each field contains ten quadrats.

3 Landscapes
3 Communities per Landscape 
5 Fields per Community 
10 Quadrats per Field

Quadrat

Field 

Community

Landscape

Figure 6.3. The method o f  Boyero (2003) in which m acroinvertebrates were studied from two 
basins, each contains three segm ents with three riffles per segment. Each riffle contains three 
sections, w ith three sam ples per section.

segments
w ith in

basin

sam ples
w ith in

section

riffles
w ith in

segm ent

sections
w ith in
riffle

©

••
• **
;

• •
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6.4.1. Geometry of the sites and selection of the plots and quadrats at the 
sites

A stratified design (Southwood, 1978; Bart et al., 1998) was used at each of the 

1600m2 sites to select the positions of four plots, each of 5x5m (25m2). 

Stratification was used to ensure maximal spread of the plots at the sites by 

randomly assigning one plot in each of the four blocks, this being the stratum of 

the stratified design (Figure 6.4). In each plot five quadrats of lx lm  (lm 2) were 

randomly selected (Oekland, 1929; McIntosh, 1985; Perry et al., 1999). For each 

site a sequence was generated such that the positions o f the plots, and the 

quadrats in the plots were established before arriving at the site (Figure 6.5).

10 Sites per habitat type

4 Plots per site

F ig u re  6.4. The m ethod used in the present study. 
There are ten sites per habitat type (for each period, 
i.e. wet and dry) w ith four plots per site. Each plot 
contains five quadrats.

ii u
5 Quadrats per plot
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Figure 6.5. Layout o f  grids for sampling Habitat Structure Sites using a 
stratified design. The main grid represents the 1600m2 site divided into 64 
possible 25m2 plots (numbered 00 to 15 for each o f  the four blocks). Four 
smaller grids (a. to d.) represent the four selected plots from the main grid. 
Each plot is divided into 25 quadrats each lm 2 (numbered 00 to 24).

00 01 02 03 00 01 02 03

04 05 06 07 04 05 06 07

08 09 10 11 08 09 10 11

12 13 14 15 12 13 14 15

00 01 02 03 00 01 02 03

04 05 06 07 04 05 06 07

08 09 10 11 08 09 10 11

12 13 14 15 12 13 14 15

00 01 02 03 04
OS 06 07 08 09
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

00 01 02 03 04
OS 06 07 08 09
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

00 01 02 03 04
05 06 07 08 09
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

00 01 02 03 04
05 06 07 08 09
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

a b e d
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Randomness requires that each potential sample unit has an equal chance of 

being included in the sample, and assigning each potential unit a number and 

then choosing which units to sample using random numbers is a commonly used 

method to do this (Greenwood, 1996). Because random number-generating 

algorithms in computer programs are often not strictly random (Sokal and 

Rohlf, 1995), the numbers were obtained using a die and random number tables 

(Kirkwood, 1988; Greenwood, 1996; Bart et al., 1998); the tables used were 

those from Bliss (1967). The method has these steps:

1. A grid is constructed; one for each of the four blocks of the site plan, and 

one for each of the plots in each block.

2. The die is thrown to give the first number that will be the column to be 

used in the random number table.

3. The die is thrown again to give the second number that will be the row 

to be used in the random number table.

4. Steps 2. and 3. provide the section of the random number table to be 

used, this is also known as the entry point in the table of random 

numbers and should be different each time that the table is used 

(Greenwood, 1996).

5. The die is thrown again to give the third number that is the column in the 

section of the random number table.

6. The die is thrown again to give the fourth number that is the row in the 

section of the random number table.
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For the selection of positions for plots and quadrats to be used, any positions 

that were duplicated were rejected and another position found (Table 6.4) 

(Kirkwood, 1988; Greenwood, 1996).

Table 6.4. Random number sequences for the first ten Habitat Structure Sites showing the plot 
identities and the quadrat identities for each plot. See text for details o f  the method used to 
derive the plot and quadrat identities, and Appendix 7 for sequences for all 60 sites.

Q uadrats in;
Site/

Sequence
Plot ID Plot a Plot b Plot c Plot d

1 06,12,10,05 05,12,17,18,24 00,11,13,17,21 01,04,05,15,22 03,08,11,17,19
2 13,06,14,15 05,06,11,17,21 05,15,20,21,22 01,04,16,17,19 02,08,09,11,15
3 02,12,08,10 03,14,16,19,23 01,05,16,19,22 03,10,11,20,23 01,04,11,16,24
4 00,13,07,14 08,09,11,15,21 02,04,10,12,13 02,06,07,16,21 14,15,18,20,21
5 15,08,06,11 03,07,09,11,24 05,08,09,13,20 03,09,14,19,21 01,04,11,12,23
6 03,04,08,15 00,07,15,18,20 00,06,15,16,20 02,12,14,17,21 02,12,17,21,24
7 03,14,06,04 04,08,14,18,21 02,06,09,14,20 05,08,10,17,23 03,10,14,18,21
8 05,03,13,07 05,11,16,18,21 03,08,14,15,18 02,09,12,14,19 03,07,10,14,17
9 00,14,07,05 11,14,17,20,21 01,02,06,12,24 03,12,15,17,20 07,08,13,16,21
10 05,05,07,12 00,03,12,20,21 06,12,14,17,19 03,06,07,13,15 01,07,11,17,22

6.4.2. Layout of the plots and quadrats at the sites

A wooden post was placed at the top left comer of each site (the origin point, 

Section 6.2). The linear distance horizontally to the right, and the perpendicular 

distance below this point correspond to x and y  axes from which any coordinate 

in the grid may be found. The positions of plots were then located by measuring 

with a metre ruler along the axes (these positions being determined by the 

random assignment method, Section 6.4.1). The ruler was kept horizontal during 

measurements by using a spirit level; this removed the possibility of inaccurate 

distance measurement. The same technique, but now applied to the distances 

corresponding to the axes of each of the plots in turn, was used to locate the 

positions of the quadrats in each plot (these positions were also determined by 

the random assignment method; see above).

Instead of delineating the entire site with rope or string, a metre ruler 

was used to measure distances from the origin point. To do the former would
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have involved a prohibitive amount of time, and would also have presented 

problems because of surface topography and the presence of obstacles, such as 

woody shrubs and herbaceous plants. Furthermore, a metre ruler can be placed 

in between the stems of shrubs to measure distances whereas this is more 

difficult with a rope or string. The assumption was that any possible 

inaccuracies in the measurement technique would be consistent at all the sites 

and thus be standardized.

An aluminium lm quadrat was used. This quadrat was designed to be 

dismantled easily (by using a bolt and wingnut at each of the comers) allowing 

the quadrat to be placed at ground level even when components of the 

vegetation (e.g. shrubs) covered areas larger than the quadrat.

6.5. Sampling the quadrats

A pre-determined protocol was followed at each quadrat to provide 

standardization of data collection at all sites:

1. The assessment of vegetational cover for each of the pre-defined 

vegetation layers (Table 6.5) was carried out by placing a lm ruler 

vertically at the top left comer and bottom right comer of the quadrat, 

then holding a im  pole across the two rulers corresponding to the height 

levels of each layer. The vegetation cover was visually assessed at the 

pre-defined vegetation layers (Section 6.7). In cases where the 

vegetation was greater than lm high, an additional metre mler was 

placed on top of the first mler to provide a measureable distance of two 

metres.

2. A thorough search of all vegetation from, but not including, Vegetation 

Layer 2 (see Table 6.5 for vegetation layer classes) upwards for all land
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molluscs was carried out (molluscs were identified as described in 

Section 3.6). The locations of the molluscs in the vegetation (e.g. on 

annual stem, herbaceous leaf etc. see Appendix 8 for details), as well as 

the height of these locations (measured from ground level with a metre 

ruler, to the nearest 0.5cm), were recorded (these data are not used in 

this study but will be used in future studies). To allow complete 

vegetation assessment prior to any disturbance this was done before 

assessing cover of rocks and other variables on the ground, and before 

the search for species on the ground (and under rocks). Once completed, 

the ground level features, such as rock cover and soil cover (Section 6.7) 

were assessed.

3. Plant stem width, 5cm from ground level, was measured using calipers 

and recorded to the nearest 0.1mm. To minimize bias in the selection of 

plants for measuring, two stems of each plant type (Section 6.8) were 

chosen from the four comers and the centre of the quadrat (for a total of 

ten measures per plant type). In cases where these regions of the quadrat 

had no, or insufficient plant stems, the position nearest any of the points 

was used in each case.

4. The ground level and Vegetation Layer 2 were thoroughly searched for 

molluscs. The procedures described in 2. and 3. above, as well as the 

search for molluscs from the ground level, often resulted in the upper 

layers of vegetation being disturbed, and rocks and other ground level 

features being moved. In all cases, however, rocks, plants etc. were 

returned to their original positions as far as was possible to reduce any 

damage that the sampling may have done.
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The quadrat sampling protocol involved the systematic and thorough search for 

molluscs on the vegetation, and under rocks and other ground-level features, as 

well as the recording of the environmental variables (Section 6.6). This type of 

sampling is termed dissection sampling to describe the detailed examination and 

analysis of the quadrat components, and to highlight the differences between 

this method and less thorough search and data recording techniques sometimes 

used in studies. The thoroughness of the method is reflected in the time required 

to sample a quadrat (Figure 6.6). The protocol also allows quadrats to be 

sampled to the same level of detail, regardless of habitat heterogeneity and 

complexity.

F igure  6.6. The tim e in m inutes (m easured to  the nearest 0.5 m inute) required to sample 200 
quadrats from  20 sites (quadrats were random ly selected from 400 quadrats from sand, steppe 
and garigue habitat types). The Figure shows the position o f  the m ean (bold line) and 95%  
confidence intervals o f  the mean (fine lines). (The outlier value is from a quadrat with 
exceptionally dense vegetation).

^  tim e to  sam ple quadrat (m inutes)

5

0 ------------------------------------------------------------------------------------
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

quadrat

mean: 13.31; min: 6.5; max: 41.0; 95%  Confidence Interval for mean, lower: 12.70; upper: 13 91- 
sd: 4.31

45

40

35

30
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6.6. The environmental variables

It is not possible to know all the variables that are important in determining 

numbers of species, abundances, distribution and community structure; and an 

efficient policy for any detailed study is to include as many as practicable 

(Table 6.5) based on knowledge of the ecology of the taxa under investigation 

and the questions being asked (Barnard et al., 2001). The need to include 

environmental variables in ecological studies was highlighted by Elton and 

Miller (1954) in their influential paper that advocated a system for classifying 

habitats using structural characters. Dunson and Travis (1991) argued that 

environmental variables must be included as possible controlling variables in 

any complete study, and Bishop (1977), referring specifically to land mollusc 

ecology, stated that the systematic collecting of habitat factors is essential.

In this study environmental variable is defined as any variable that is 

measured for its possible effects on the numbers, abundances and distributions 

of species at sites (Leps and Smilauer, 2003). The definition thus includes biotic 

and environmental (i.e. abiotic) factors (Clarke and Warwick, 1994; Lincoln et 

al., 1998; Jones and Reynolds, 1996). The species’ data are the primary data set 

sensu Leps and Smilauer (2003), with individual species being response 

variables (Section 3.4). The environmental variables measured are given in 

Table 6.5, including notes on measurement and scoring.

The environmental variables constitute the Heterogeneity axis of the 

McCoy and bell (1991) model of habitat structure (Section 5.3). Vegetation 

layers (Table 6.5) are treated as individual variables although these are not 

strictly discrete (the existence of vegetation layer 5, for example, is dependent 

on the existence of layers below this).
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T able  6.5. The environm ental variables showing m easurem ent/scoring criteria, and notes, 
(GPS=Global Positioning System, % c=percentage cover).

Variable name M easurement/scoring Notes
Altitude Metres above Mean Sea Level Using altimeter
Latitude Degrees Using GPS
Longitude Degrees Using GPS

Nature o f soil Percentage cover
1: loam, 2: sand, 3: clay, 
4: gravel. Visual 
estimation1

Nature o f leaf litter Percentage cover

Size: 1: <10mm, 2: 10- 
25mm, 3: 25-50mm, 4: 
>50mm. Visual 
estimation1

Shingle (2 -10mm) Percentage cover

1: angular, 2: 
intermediate, 3: 
rounded. Visual 
estimation1

Stones (10-50mm) Percentage cover Visual estimation. 12
Rocks Percentage cover Visual estimation. 12

Rubble Percentage cover
Size: 1: <10mm, 2:10- 
50mm, 3: >50mm. 
Visual estimation1

Logs Percentage cover
Size: 1: <10mm, 2:10- 
50mm, 3: >50mm. 
Visual estimation1

Wood (excluding logs) Percentage cover Visual estimation
Refuse: card/paper Percentage cover Visual estimation
Refuse: plastic Percentage cover Visual estimation
Refuse: glass Percentage cover Visual estimation
Refuse: other Percentage cover Visual estimation

Bryophytes Percentage cover
Size: 1: <10mm, 2:10- 
50mm, 3: >50mm. 
Visual estimation1

Lichens Percentage cover Visual estimation

HC1 reaction o f  rock

1: positive reaction, 2: no reaction, 3: positive and 
no reaction: equal cases, 4: positive and no reaction- 
more positive cases, 5: positive and no reaction- 
more no reaction cases, 6: no rocks

Using 1 Molar HC1. 
Positive reaction is 
indicated by the 
liberation o f  gas from 
the rock on contact with 
HC13

Vegetation layer (cm from 
ground)

Green
grass

Dry
grass

Annual Herb
aceous

Shrub Tree

1 (0-10) (%c) (%c) (%c) (%c) (%C) (%c) Visual estimation
2(10-20) (%c) (%c) (%c) (%c) (%c) (%c) Visual estimation
3 (20-30) (%c) (%c) (%c) (%c) (%C) (%c) Visual estimation
4 (30-40) (%c) I V ) (%c) (%c) (%C) (%C) Visual estimation
5 (40-50) (%c) (%c) (%c) (%c) (%C) (%C) Visual estimation
6 (50-60) (%c) (%c) (%c) (%c) (%c) (%c) Visual estimation
7 (60-70) (%c) (%c) (%c) (%c) (%C) (%c) Visual estimation
8 (70-80) (%c) (%c) (%c) (%c) (%C) (%c) Visual estimation
9 (80-90) (%c) (%c) (%c) (%c) (%C) (%c) Visual estimation
10(90-100) (%c) (%C) (%c) (%c) (%C) (%C) Visual estimation
11 (100-110) (%c) (%C) (%c) (%c) (%C) (%C) Visual estimation
12(110-120) (%c) (%C) (%c) (%c) (%C) (%C) Visual estimation
13(120-130) (%c) (%C) (%C) (%C) (%C) (%c) Visual estimation
14(130-140) <"„c> (%C) (%C) (%C) (%C) (%c) Visual estimation
15 (140-150) (%C) (%C) (%C) (%C) (%c) (%C) Visual estimation
16(150-160) (%C) (%C) (%C) (%C) (%C) (%C) Visual estimation
17(160-170) (%c) (%C) (%C) (%C) (%C) (%C) Visual estimation
18(170-180) (%C) (%c) (%c) (%C) (%C) (%C) Visual estimation
19(180-190) (%C) (%C) (%C) (%C) (%C) (%c) Visual estimation
20(190-200) (%C) (%C) (%C) (%C) (%c) (%C) Visual estimation
21(>200) . ■VI (%C) (%C) (%C) (%C) (%C) Visual estimation
Stem width (mm) at 5cm 
from ground level (xlO) Measured using calipers

Data used only as % c in this study.
2See Appendix 9 for characterization o f  shingle, stones and rocks. 
3Data not used in this study.
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6.7. Visual estimates of percentage cover

A large number of the variables used in this study were measured using visual 

estimates of percentage cover, a technique widely used in ecology studies 

(Brower et al, 1989; Cox, 1990; Johansson and Ehrlen, 2003; Leps and 

Smilauer, 2003; Casado et al., 2004), although mostly to measure plant cover. 

In the early 1920s, L.G. Ramensky defined vegetation abundance as: ‘a specific 

area o f horizontal projection o f ground shoots', a definition that later came to 

be called cover and which Greig-Smith (1983) defined as: ‘the proportion o f 

ground occupied by a perpendicular projection onto it o f the aerial parts o f 

individuals o f the species' (see McIntosh (1985) for discussion).

Cover is usually considered as the area of a quadrat occupied by species 

when viewed from above (Kent and Coker, 1992). This can be extended to 

include cover in vegetation layers recorded separately (Bullock, 1996). Several 

measurement scales are used for recording cover (Goldsmith et al., 1986; Kent 

and Coker, 1992); two of the most popular are the Braun-Blanquet and Domin 

scales (Table 6.6). Cover as percentage (as in this study) is, however, sometimes 

used and is preferable for some statistical analyses (Dytham, 1999). Cover was 

assessed to the nearest 5%; above this resolution, visual assessments are 

probably inaccurate. When cover was very low a value of 1% cover was 

assigned and this generally applied to very scanty cover, or the presence of a 

few plant individuals or a few stones etc. This measurement is comparable to 

the + value used in the Braun-Blanquet and Domin scales (Table 6 .6).
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Table 6.6. The Braun-Blanquet and Domin scales: two widely used scales for the measurement 
o f  percentage cover o f  vegetation (from Kent and Coker, 1992).

value Braun-Blanquet Domin
+ Less than 1% cover A single individual. N o measureable cover.

1
1-5% cover 1-2 individuals. N o measureable cover. Individuals 

with normal vigour.
2 6-25% cover Several individuals but less than 1% cover.
3 26-50% cover 1-4% cover
4 51-75% cover 4-10% cover
5 76-100 % cover 11-25% cover
6 26-33% cover
7 34-50% cover
8 51-75% cover
9 76-90% cover

10 91-100%  cover

Casado et al. (2004) assessed herbaceous plant richness and vegetation 

cover in Spain and Portugal, and used visually calculated cover of vegetation. 

Smartt et al. (1974) found that measures of cover assessed subjectively were a 

good approximation to more accurate, and time intensive, methods. Inaccuracies 

that may result because of the subjectivity inherent in these methods (Greig- 

Smith, 1983; Bullock, 1996) are expected to be consistent with each recorder. 

Bias in estimation may therefore be expected to be similar across sites. Many 

land mollusc ecology studies have used estimation methods for assessing 

vegetation cover (Dillon 1980; Tattersfield 1996; Barker and Mayhill, 1999; 

Craze and Lace, 2000; Hylander et al., 2005).

6.8. Characterization of plant types

Plants were categorized into six types based on Polunin and Walters (1985), 

Polunin and Huxley (1987), Polunin and Smythies (1988) and Bello et al. 

(2005). In this way the vegetation could be sampled adequately without the need 

to identify each plant species (which would have been prohibitive), whilst 

providing information on the vegetation architecture. The six types are:

1. Green grass: For example species of Agropyron, Lagurus, Stipa,

Cynodon and Piptatherum.
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2. Dry grass: This type contains the same species as green grass but as dry 

plants. Green and dry grasses were measured separately because grasses 

often compose a large proportion of the total vegetation cover in some 

habitats and the proportions of each vary widely between the wet and 

dry seasons.

3. Annual: Many species including Plantago, Andryala, Chrysanthemum, 

Linum and Trifolium.

4. Herbaceous: These are generally non-woody plants with sappy stems 

that often die back at the end of the growing period. Examples are 

Malva, Lavatera, Erodium, Dianthus and Echium.

5. Shrub: These are generally woody plants that can attain heights of 

about 2m, but normally less than lm in garigue habitats; for example, 

Ulex, Genista, Phlomis, Cistus and Pistacia.

6 . Tree: Woody plants mostly over 2m in height, sometimes present as 

scattered individuals in sand, steppe and garigue habitats. Examples are 

Pinus, Ficus, Quercus, Osyris and Ceratonia.

6.9. Data analysis 

6.9.1. Diversity analysis

6.9.1.1. The number of species

This is a measure of the number of species at each of the sites; specimens were 

identified to species level (Section 3.6). This measure is also known as species 

richness (McIntosh, 1967) and is the oldest measure of biological diversity 

(Magurran, 2004).
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6.9.1.2. Abundances of the species

The numbers of individuals of each of the species at each of the sites were 

recorded to provide the abundance of each species. The term abundance is 

synonymous with density when (as in this study) the unit of area or volume 

from which the species are counted is known (Krebs, 1985; Bullock, 1996).

6.9.1.3. Diversity

There is considerable debate about how species diversity should be measured 

and some indices make assumptions that are sometimes not met by the species 

data that they are used for (Section 3.7.1.3). In this study two indices of species 

diversity were used: Simpson’s index (Ds) and the Shannon index ( / / ’) 

(Magurran, 1988, 2004). These two indices are commonly used in ecological 

studies and allow comparison of data from the present study with those from 

other studies.

6.9.1.3.1. Simpson’s index

y]ni(rti - 1)
This is calculated using D = — -----------  where nt is the number of individuals

N ( N - 1)

of the fth species and N  is the total number of individuals. The reciprocal form 

(Ds) is used to ensure that the value of the index increases with increasing

1 N ( N - 1)diversity; this is given by Ds -  — = ------------(Magurran, 2004).D 2^n,(n, - 1)

6.9.1.3.2. Shannon index

This is calculated using H ’ = In p x where p x, the proportional abundance of

the z'th species = (n/N). Base 2 logs were used for calculating the Shannon index 

(Magurran, 2004). Indices were derived from the species abundances matrix 

using the DIVERSE routine in PRIMER (Plymouth Routines in Multivariate 

Ecological Research; Carr, 1991, 1997; Clarke and Warwick, 1994). To assess
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all of the measures described (Sections 6.9.1.1. to 6.9.1.3) the mean, 95% 

confidence intervals (Cl), minimum, maximum and range were used. Cl were 

used instead of standard error (SE) of the mean following Dytham (2003) who 

states that Cl is preferred over SE because the latter is useful only if the sample 

size is known. This criterion is almost never met with number of species and 

species abundances data.

6.9.2. Tests of Hypotheses about habitat structure

Sixteen hypotheses were tested (Table 6.7). These are outlined below.

Hji The higher the heterogeneity, the more species are present

The greater the number of types of habitat structure (i.e. heterogeneity) present, 

the more variety of shelter and micro-habitats that are expected to be available 

to land molluscs, allowing the coexistence of more species than where 

heterogeneity is lower.

H21 The higher the heterogeneity, the higher the abundances of species

The greater the number of types of habitat structure (i.e. heterogeneity) present, 

the more variety of shelter and micro-habitats that are expected to be available 

to land molluscs, allowing higher abundances of land molluscs than where 

heterogeneity is lower. Species abundance data were log*+i transformed.

H31 The higher the complexity, the more species are present 

The greater the quantity of habitat structure (i.e. complexity) present, the more 

that is expected to be available to land molluscs, allowing the coexistence of 

more species than where complexity is lower.
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T ab le  6.7. Sum m ary o f  the hypotheses tested (see Table 7.19 for results o f  testing 
these hypotheses).

H ypothesis
n u m b e r

D escrip tion A nalyses

H,
The higher the heterogeneity, the 

m ore species present

Spearm an’s correlation o f  
heterogeneity with num ber o f 

species

h 2
The higher the heterogeneity, the 
higher the abundances o f  species

Spearm an’s correlation o f  
heterogeneity with abundances 

o f  species

h 3
The higher the com plexity, the 

more species present

Spearm an’s correlation o f  
com plexity with num ber o f 

species

h 4 The higher the com plexity, the 
higher the abundances o f  species

Spearm an’s correlation o f 
com plexity with abundances o f  

species

H j
Some types o f  heterogeneity affect 
num ber o f  species independently o f  

total com plexity

Partial correlations between 
variable pairs, w hilst holding 

total com plexity constant

h 6
Some types o f  heterogeneity affect 

abundances o f  species 
independently o f  total com plexity

Partial correlations between 
variable pairs, w hilst holding 

total com plexity constant

h 7 The num ber o f  species increases as 
spatial scale increases

ANOVA

h 8
The abundances o f  species 

increases as spatial scale increases
ANOVA

h 9
There is more variation in 

heterogeneity in som e habitat types 
than in others

Coefficient o f  Variation (CV) o f  ♦
heterogeneity

H I0
There is more variation in 

com plexity in some habitat types 
than in others

Coefficient o f  Variation (CV) o f  
com plexity*

H u
H eterogeneity differs between the 

habitat types
ANOVA

H I2
Com plexity differs between the 

habitat types
ANOVA

H i3
H eterogeneity differs between the 

wet and dry periods at each habitat 
t y p e

ANOVA

h I4
Com plexity differs between the wet 
and dry periods at each habitat type

ANOVA

H ts
Heterogeneity differs betw een the 
wet and dry periods between the 

habitat types
ANOVA

h I6
Com plexity differs between the wet 
and dry periods betw een the habitat 

types
ANOVA

♦
The CV  is used to assess variation o f  heterogeneity  and com plexity from sites. The 

analysis does not enable significance testing and so, strictly, this is not a formal 
statistical testing o f  the hypotheses. The decision to accept/reject the hypotheses is 
based on the values o f  CV  for the habitat types (see Tables 7.1 to 7.8, and 7.13 to 7.15, 
and, text for further details).
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H4 : The higher the complexity, the higher the abundances of species

The greater the quantity of habitat structure (i.e. complexity) present, the more 

that is expected to be available to land molluscs, allowing higher abundances of 

land molluscs than where complexity is lower. Species abundance data were 

logx+i transformed.

H5 : Some types of heterogeneity affect the number of species independently 
of total complexity

Some types of structure may be more important in affecting number of species 

than others. For example, rocks (that provide shelter from desiccation and 

predation) may be more important than soil. The presence of some types of 

structure may thus affect the number of species of land molluscs independently 

of the total quantity of structure (i.e. total complexity). Data were log*+i 

transformed (Krebs, 1985; Clarke and Warwick, 1994).

H6 i Some types of heterogeneity affect the abundances of species 
independently of total complexity

Some types of structure may be more important in affecting the abundances of

species than others. The presence of some types of structure may thus affect the

abundances of species of land molluscs independently of the total quantity of

structure (i.e. total complexity). Data were log*+i transformed.

H 7 and Hgi The number and abundances of species increases as spatial scale 
increases

It is expected that estimates of the number of species ( H 7) and abundances (Hg) 

of land molluscs will increase with increasing scale (for example, from lm2 to 

5m2 to 20m2). ANOVA was carried out to test these hypotheses.
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H g  and H jo '.  There is more variation in heterogeneity and complexity in 
some habitats than in others

Some habitats are more heterogeneous than others and variation in

heterogeneity (as types of habitat structure) (Hg), and complexity (as quantity of

habitat structure) (Hio) are expected to vary more in some habitats than others.

Hji and Hi 2 : Heterogeneity and complexity differ between the habitat types

H13 and Hu: Heterogeneity and complexity differ between the wet and dry 
periods at each habitat type

His and H Heterogeneity and complexity differ between the wet and dry 
periods between the habitat types

6.9.3. Habitat diversity

Spearman’s rank correlation of the number of species, abundances, species 

diversity and heterogeneity, complexity and habitat diversity were carried out at 

three levels of scale (lm2, 5m2 and 20m2). Habitat diversity was calculated from 

the environmental variables (Section 6.6) using Shannon (log2) and Simpson’s 

diversity (Magurran, 1988) using PRIMER. In these calculations heterogeneity 

(types of habitat structure) is analogous to number of species, and complexity 

(quantity of habitat structure) is analogous to species abundances (see 

Magurran, 1988 for discussion). The efficacy of habitat structure indices was 

judged on the criterion that these indices provide the same results as both 

heterogeneity and complexity for the sites.

6.9.4. Relationships across scale: correlations

Spearman’s rank correlation of the number of species, abundances, species 

diversity, and heterogeneity and complexity were carried out at three levels of 

scale (lm2, 5m2 and 20m2) (Section 6.9.3).
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6.9.5. Variance in vegetation: plant stem widths

Variance in the plant types (Section 6.8) was assessed using the means and 

standard deviations of the stem widths.

6.9.6. Presence/absence of molluscs in quadrats, plots and sites

The numbers of quadrats, plots and sites at which molluscs were present and 

absent were quantified.

6.9.7 Species estimators

In Part One sampling methods were designed to record as many species as 

possible at the sites (Section 3.5). Direct search and soil sampling were carried 

out using a specific time period and volume of soil previously shown to be 

adequate for Mediterranean habitat types (Sections 3.5.1 and 3.5.2). In Part 

Two the aim of sampling was to record every individual in each quadrat. This 

was carried out using dissection sampling (Section 6.5) that resulted in 

disruption and disturbance of the habitat components. This type of sampling, 

that can be viewed as a form of ‘habitat destruction’, is possibly the only way all 

species can be found at a location (Cameron and Pokryszko, 2005). Sampling 

species in this way allows the recording of absolute numbers of species 

(Magurran, 2004).

To assess the efficacy of this approach, nonparametric species estimators 

were used (Cameron and Pokryszko, 2005). These measures are not based on 

the parameter of a previously fitted species abundance model (Magurran, 2004; 

Hortal et al., 2006), and include the Chao 1, Chao 2, Bootstrap and Abundance- 

based Coverage Estimator (ACE) that are reviewed and assessed by Butler and 

Chazdon (1998), Chazdon et al. (1998), Melo and Froehlich (2001), Magurran 

(2004), O’Hara (2005), and Walther and Moore (2005).
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Nonparametric estimators are a significant advance in diversity 

measurement (Gotelli and Colwell, 2001; Magurran, 2004; Chao et al., 2005) 

and the Chao estimators (Chao, 1984; 1987; Chao and Lee, 1992; Chao et al., 

1992; 1993) have been used by Cameron and Pokryszko (2004) to assess land 

mollusc diversity in Polish forests. These two estimators perform well (Hortal et 

al., 2006), are recommended by Cameron and Pokryszko (2005) for checking 

sampling efficacy in land mollusc surveys, and are used in this study.

F 2Chao 1 is calculated using Srhml = Srihs + where Sois= the
2 F2

number of species in the sample, Fx= the number of observed species 

represented by a single individual (singletons), and F2 = the number of observed 

species represented by two individuals (doubletons) (Magurran, 2004). Chao 2

Q2is calculated using Schao2 = Sobs + ——, where Sobs = the number of species in
2Qi

the sample, Qx — the number of species that occur in one sample only (unique 

species), and Q2 = the number of species that occur in two samples (Magurran, 

2004). Chao 1 and Chao 2 calculations were carried out using the program 

Estimates (Statistical Estimator of Species Richness and Shared Species from 

Samples, Colwell, 2004) and 1000 different randomizations of sample order 

were used. This reduces the effect of sample order by averaging over 

randomizations (Colwell, 2004).

Chao 1 uses abundance data while Chao 2 uses presence/absence data. 

The estimate of the number of species produced by Chao 1 is a function of the 

ratio of singletons and doubletons, and this estimate exceeds the observed 

number of species by larger amounts as the number of singletons increases
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(Colwell, 2004; Magurran, 2004). In addition, the more unique species there are, 

the less well that Chao 2 performs (Colwell, 2004; Magurran, 2004).

6.9.8. Species accumulation curves

Species accumulation curves were derived for all sites using PRIMER and the 

quadrat at which an asymptote was attained for each site recorded (assessed 

visually). This approach is similar to that used in studies with the guppy 

Poecilia reticulata Peters, 1859 (Magurran, 2004; Magurran and Phillip, 2001). 

The first mathematical description of the relationship between the area sampled 

and the number of species found was given by Arrhenius (1921). This was 

based on the number of plant species, and Darlington (1957) described the 

relationship using reptiles and amphibians.

Species accumulation curves are one of two forms of species-area curves 

(Gray et al., 2004; Dove and Cribb, 2006; Lyman and Ames, 2007). The first 

type plots number of species versus area for different areas (such as islands); the 

second plots number of species versus larger parcels of the same region. Only 

the latter should be regarded as a species accumulation curve since this depicts 

the same ‘universe’ at different intensities (Magurran, 2004). Species 

rarefaction curves differ from species accumulation curves in that they are plots 

of the cumulative species richness as a function of the number of sampled 

individuals (Hurlbert, 1971; Crist and Veech, 2006).

The species accumulation curve is the oldest and best known technique 

to estimate the level of error in sampling inventories (Loehle et al., 2005; 

Cameron and Pokryszko, 2005). If an asymptote is attained the inventory may 

be complete and the sampling effort can be determined (Cameron and
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Pokryszko, 2005). Menez (2001) applied this technique to land molluscs and 

assessed sampling efficacy in Mediterranean habitats (Section 3.5.1).

6.9.9. Transformations

Transformations were carried out on data for two different reasons (Clarke and 

Warwick, 1994; Sokal and Rohlf, 1995):

1. to validate the assumptions for parametric tests (e.g. for ANOVA);

2 . to weight the contributions of common and rare species in analyses.

Data were analyzed using the Kolmogorov-Smimov test (K-S) for goodness of 

fit using the 1 sample K-S routine in SPSS that compares the data with a 

theoretical normal distribution and computes K-S z. If the distribution of the 

data is significantly different from normal the significance (2-tailed P) is less 

than 0.05.

A variety of transformations can be used ranging from a square root 

transformation to converting the data to presence/absence (Clarke and Warwick, 

1994; Legendre and Gallagher, 2001; Section 3.7.2.9). In this study the logx+i 

transformation is used for both species data and environmental data (Section 

3.7.2.9).
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CHAPTER 7. RESULTS AND DISCUSSION

7.1. Results

7.1.1. The numbers of species, abundances and diversity

A total of 55 species were recorded from the 60 sites (see Appendix 10 for data 

at individual sites, Appendix 3 for systematic species list and Appendix 6 for 

site photographs). There was a mean number of six species at each site (lower 

95% Cl: 5.26; upper 95% Cl: 6.74) with a mean total species abundance of 

358.67 (lower 95% Cl: 247.26; upper 95% Cl: 470.07), a mean Shannon 

diversity of 1.443 (lower 95% Cl: 1.282; upper 95% Cl: 1.603) and a mean 

Simpson’s diversity of 0.516 (lower 95% Cl: 0.464; upper 95% Cl: 0.568). 

(Table 7.1, Figure 7.1). There were more species in the wet period at sand and 

garigue habitats than in the dry period (at the three grain levels), but in the 

steppe habitat there were more species in the dry period. Combining all sites 

(wet and dry), the habitat types order from lowest to highest for number of 

species as: (1) sand, (2) steppe, and (3) garigue. Abundances were higher in the 

wet period at sand and steppe habitats than in the dry period (at the three grain 

levels), but abundances were higher in the dry period in garigue. Combining all 

sites (wet and dry), the habitat types order from lowest to highest for 

abundances as: (1) steppe, (2) garigue and (3) sand.

Shannon and Simpson’s diversity were higher in the wet period at sand 

and garigue habitats than in the dry period (at the three grain levels), but 

diversity was higher in the dry period in steppe. Combining all sites (wet and 

dry), the habitat types order from lowest to highest for diversity as: (1) sand, (2) 

steppe, (3) garigue.
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7.1.2. Tests of hypotheses about habitat structure

Hp The higher the heterogeneity the more species that are present

There was a significant positive correlation between heterogeneity and number 

of species for most habitat types and period combinations (Table 7.2). This 

suggests that increased heterogeneity is associated with a higher number o f 

species. The association was not significant for dry sand sites, but was 

significant for wet sand sites (Table 7.2).

H2: The higher the heterogeneity, the higher the abundances of species

Correlations between heterogeneity and the abundances o f species were not 

significant for garigue sites nor when data were pooled from all sites (Table 

7.3). Increased heterogeneity is therefore not associated with higher abundances 

of species. The correlations were positive for sand (all sites, wet sites) and 

steppe (all sites, wet sites, dry sites).

T able  7.1. M ean, standard deviation (sd), m inim um  (m in), maxim um  (m ax), range, lower and 
upper 95%  confidence intervals o f  the mean (C l) for the num ber o f  species, abundances, 
Shannon (log2) and S im pson’s diversity at all sites, w et sites com bined and dry sites com bined, 
and for each o f  the habitat types (sand, steppe, garigue) for each o f  the three levels o f  grain 
( lm 2, 5m 2 and 20m 2).

G ra in
(m 2)

L ow er U p p er
n M ean sd m in m ax R ange 95%

C l
95%

C l
Number o f species: All sites

1 1200 1.94 1.549 0 9 9 1.86 2.03
5 240 3.76 2.182 0 13 13 3.49 4.04

20 60 6.00 2.852 2 14 12 5.26 6.74
Number o f species: Wet sites

1 600 2.01 1.633 0 9 9 1.88 2.14
5 120 3.83 2.414 0 13 13 3.39 4.26

20 30 6.37 3.253 3 14 11 5.15 7.58
Number o f  species: Dry sites

1 600 1.88 1.458 0 8 8 1.76 1.99
5 120 3.70 1.930 0 10 10 3.35 4.05

20 30 5.63 2.385 2 11 9 4.74 6.52
Number o f species: SA ND A ll sites

1 400 1.95 1.352 0 9 9 1.82 2.08
5 80 3.31 1.776 0 13 13 2.92 3.71

20 20 4.85 2.498 2 14 12 3.68 6.02
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Table 7.1 (continued).

Lower Upper

(m 2)
n Mean sd min max Range 95%

C l
95%

C l
Number of species: SAND Wet sites

1 200 2.08 1.453 0 9 9 1.87 2.28
5 40 3.43 2.147 0 13 13 2.74 4.11

20 10 5.40 3.098 4 14 10 3.18 7.62
Number of species: SAND Dry sites

1 200 1.83 1.234 0 5 5 1.65 2.00
5 40 3.20 1.324 1 6 5 2.78 3.62

20 10 4.30 1.703 2 7 5 3.08 5.52
Number of species: STEPPE All sites

1 400 1.79 1.496 0 7 7 1.64 1.93
5 80 3.66 2.267 0 9 9 3.16 4.17

20 20 6.10 2.447 2 10 8 4.95 7.25
Number o f species: STEPPE Wet sites

1 200 1.75 1.432 0 7 7 1.55 1.94
5 40 3.58 2.297 0 8 8 2.84 4.31

20 10 6.30 2.452 3 9 6 4.55 8.05
Number o f species: STEPPE Dry sites

1 200 1.83 1.560 0 7 7 1.61 2.05
5 40 3.75 2.263 0 9 9 3.03 4.47

20 10 5.90 2.558 2 10 8 4.07 7.73
Number of species: GARIGUE All sites

1 400 2.09 1.760 0 8 8 1.92 2.27
5 80 4.31 2.363 1 10 9 3.79 4.84

20 20 7.05 3.236 3 14 11 5.54 8.56
Number o f species: GARIGUE Wet sites

1 200 2.21 1.938 0 8 8 1.94 2.48
5 40 4.47 2.689 1 10 9 3.62 5.33

20 10 7.40 4.033 3 14 11 4.51 10.29
Number o f species: GARIGUE Dry sites

1 200 1.98 1.558 0 8 8 1.76 2.19
5 40 4.15 2.007 1 10 9 3.51 4.79

20 10 6.70 2.359 3 11 8 5.01 8.39
Species abundances: All sites

1 1200 17.73 30.041 0 373 373 16.03 19.44
5 240 90.20 130.025 0 711 711 73.66 106.73

20 60 358.67 431.257 7 2035 2028 247.26 470.07
Species abundances: Wet sites

1 600 20.76 33.091 00 271 271 18.10 23.41
5 120 104.37 147.091 0 705 705 77.78 130.95

20 30 414.40 514.890 7 2035 2028 222.14 606.66
Species abundances: Dry sites

1 600 14.71 26.328 0 373 373 12.60 16.82
5 120 76.03 109.152 0 711 711 56.29 95.76

20 30 302.93 326.864 13 1287 1274 180.88 424.99
Species abundances: SAND All sites

1 400 26.45 34.149 0 170 170 23.09 29.80
5 80 133.76 148.608 0 674 674 100.69 166.83

20 20 528.65 529.245 20 2035 2015 280.96 776.34
Species abundances: SAND Wet sites

1 200 33.98 40.792 0 170 170 28.89 39.66
5 40 171.35 180.995 0 674 674 113.47 229.23

20 10 678.90 666.761 34 2035 2001 201.93 1155.87
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Table 7.1 (continued).

Lower Upper
VI 1 Cl 111

(m 2)
n Mean sd min max Range 95%

C l
95%

C l
Species abundances: SAND Dry sites

1 200 18.92 23.670 0 134 134 15.62 22.22
5 40 96.18 95.278 1 388 387 65.70 126.65

20 10 378.40 310.785 20 923 903 156.08 600.72
Species abundances: STEPPE All sites

1 400 12.98 24.273 0 271 271 10.59 15.36
5 80 64.79 105.386 0 705 705 41.34 88.24

20 20 259.15 348.280 7 1269 1262 96.15 422.15
Species abundances: STEPPE Wet sites

1 200 18.40 31.926 0 271 271 13.94 22.85
5 40 91.93 139.36 0 705 705 47.35 136.50

20 10 367.70 464.579 7 1269 1262 35.36 700.04
Species abundances: STEPPE Dry sites

1 200 7.56 10.154 0 82 82 6.14 8.98
5 40 37.65 39.535 0 183 183 25.01 50.29

20 10 150.60 118.566 0 319 306 65.78 235.42
Species abundances: GARIGUE All sites

1 400 13.78 29.019 0 373 373 10.93 16.63
5 80 72.04 122.667 1 711 710 44.74 99.34

20 20 288.20 360.636 10 1287 1277 119.42 456.98
Species abundances: GARIGUE Wet sites

1 200 9.90 17.692 0 159 159 7.43 12.36
5 40 49.83 77.608 1 411 410 25.0 74.65

20 10 196.60 246.943 10 751 741 19.95 373.25
Species abundances: GARIGUE Dry sites

1 200 17.66 36.676 0 373 373 12.55 22.77
5 40 94.25 153.117 2 711 709 45.28 143.22

20 10 379.80 441.521 21 1287 1266 63.96 695.64
Shannon diversity: All sites

1 1200 0.6368 0.6565 0 2.9477 2.9477 0.5996 0.6740
5 240 1.0847 0.6808 0 2.8758 2.8758 0.9982 1.1713

20 60 1.4427 0.6220 0.4690 2.7305 2.2615 1.2820 1.6034
Shannon diversity: Wet sites

1 600 0.6847 0.6630 0 2.9477 2.9477 0.6316 0.7379
5 120 1.1144 0.7034 0 2.8758 2.8758 0.9873 1.2415

20 30 1.5230 0.6026 0.6185 2.7305 2.1120 1.2980 1.7480
Shannon diversity: Dry sites

1 600 0.5889 0.6470 0 2.6258 2.6258 0.5370 0.6408
5 120 1.0551 0.6590 0 2.4278 2.4278 0.9360 1.1742

20 30 1.3625 0.6408 0.4690 2.4403 1.9713 1.1232 1.6017
Shannon diversity: SAND All sites

1 400 0.6169 0.5671 0 2.8285 2.8285 0.5612 0.6727
5 80 0.8931 0.5435 0 2.4165 2.4165 0.7722 1.0141

20 20 1.3499 0.4918 0.4690 2.5274 2.0584 0.9096 1.3670
Shannon diversity: SAND Wet sites

1 200 0.6874 0.5952 0 2.8285 2.8285 0.6044 0.7705
5 40 0.9251 0.6077 0 2.4165 2.4165 0.7304 1.1194

20 10 1.3178 0.5446 0.6185 2.5274 1.9089 0.9282 1.7073

1 200 0.5464 0.5299 0 1.9621 1.9621 0.4725 0.6203
5 40 0.8613 0.4764 0 1.9219 1.9219 0.7089 1.0137

20 10 0.9618 0.3791 0.4690 1.5903 1.1214 0.6906 1.2330
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Table 7.1 (continued).

Crain Lower Upper
V J  1 <1111

(m 2)
n Mean sd min max Range 95%

C l
95%

Cl
Shannon diversity: STEPPE All sites

1 400 0.6067 0.6487 0 2.6258 2.6258 0.5429 0.6704
5 80 1.0806 0.6697 0 2.4278 2.4278 0.9316 1.2296

20 20 1.5216 0.5272 0.6194 2.4403 1.8209 1.2749 1.7684
Shannon diversity: STEPPE Wet sites

1 200 0.5900 0.5731 0 2.3098 2.3098 0.5101 0.6700
5 40 1.0438 0.5923 0 2.2480 2.2480 0.8543 1.2332

20 10 1.4380 0.3842 0.9858 2.1385 1.1526 1.1631 1.7128
Shannon diversity: STEPPE Dry sites

1 200 0.6233 0.7174 0 2.6258 2.6258 0.5232 0.7233
5 40 1.1174 0.7449 0 2.4278 2.4278 0.8792 1.3557

20 10 1.4999 0.7752 0.6194 2.7305 2.1111 0.9453 2.0544
Shannon diversity: GARIGUE All sites

1 400 0.6868 0.7410 0 2.9477 2.9477 0.6140 0.7560
5 80 1.2804 0.7630 0 2.8758 2.8758 1.1106 1.4502

20 20 1.6668 0.7250 0.4907 2.7305 2.2398 1.3275 2.0061
Shannon diversity: GARIGUE Wet sites

1 200 0.7767 0.7891 0 2.9477 2.9477 0.6666 0.8867
5 40 1.3743 0.8235 0 2.8758 2.8758 1.1109 1.6377

20 10 1.8188 0.7600 0.6651 2.7305 2.0654 1.2697 2.3569
Shannon diversity: GARIGUE Dry sites

1 200 0.5970 0.6796 0 2.2464 2.2464 0.5022 0.6917
5 40 1.1866 1.6950 0 2.2780 2.2780 0.9643 1.4089

20 10 1.5202 0.6959 0.4907 2.3060 1.8153 1.0224 2.0180
Simpson's diversity: All sites

1 1200 0.3069 0.3180 0 1.0000 1.0000 0.2889 0.3249
5 240 0.4446 0.2717 0 1.0000 1.0000 0.4100 0.4791

20 60 0.5161 0.2011 0.1141 0.8221 0.7080 0.4642 0.5680
Simpson’s diversity: Wet sites

1 600 0.3260 0.3121 0 1.0000 1.0000 0.3008 0.3508
5 120 0.4516 0.2686 0 1.0000 1.0000 0.4026 0.4997

20 30 0.5508 0.1801 0.1914 0.8138 0.6223 0.4835 0.6180
Simpson's diversity: Dry sites

1 600 0.2880 0.3230 0 1.0000 1.0000 0.2621 0.3139
5 120 0.4380 0.2757 0 1.0000 1.0000 0.3882 0.4879

20 30 0.4815 0.2175 0.1141 0.8221 0.7080 0.4002 0.5627
Simpson’s diversity: SAND All sites

1 400 0.2859 0.2750 0 1.0000 1.0000 0.2585 0.3125
5 80 0.3768 0.2565 0 1.0000 1.0000 0.3197 0.4338

20 20 0.4248 0.1779 0.1895 0.7700 0.5805 0.3415 0.5080
Simpson’s diversity: SAND Wet sites

1 200 0.3084 0.2753 0 1.0000 1.0000 0.2700 0.3468
5 40 0.3784 0.2685 0 1.0000 1.0000 0.2926 0.4643

20 10 0.4860 0.1833 0.1969 0.7700 0.5732 0.3548 0.6171
Simpson's diversity: SAND Dry sites

1 200 0.2629 0.2735 0 1.0000 1.0000 0.2245 0.3007
5 40 0.3751 0.2473 0 1.0000 1.0000 0.2960 0.4541

20 10 0.3636 0.1576 0.1895 0.6523 0.4628 0.2510 0.4763
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Table 7.1 (continued).

rirain Lower Upper
VJ 1 Mill

(m 2)
n Mean sd min m ax Range 95%

C l
95%

C l
Number o f  species: STEPPE All sites

1 400 0.2987 0.3189 0 1.0000 1.0000 0.2673 0.3300
5 80 0.4451 0.2636 0 1.0000 1.0000 0.3864 0.5037

20 20 0.5655 0.1605 0.2257 0.8221 0.5964 0.4905 0.6406
Simpson’s diversity: STEPPE Wet sites

1 200 0.2958 0.2962 0 1.0000 1.0000 0.2544 0.3371
5 40 0.4458 0.2495 0 1.0000 1.0000 0.3660 0.5256

20 10 0.5569 0.1237 0.3740 0.7821 0.4081 0.4685 0.6454
Simpson’s diversity: STEPPE Dry sites

1 200 0.3016 0.3407 0 1.0000 1.0000 0.2541 0.3491
5 40 0.4443 0.2802 0 1.0000 1.0000 0.3547 0.5339

20 10 0.5740 0.1973 0.2257 0.8221 0.5964 0.4328 0.7151
Simpson’s diversity: GARIGUE All sites

1 400 0.3366 0.3539 0 1.0000 1.0000 0.3018 0.3714
5 80 0.5120 0.2805 0 1.0000 1.0000 0.4495 0.5744

20 20 0.5581 0.2344 0.1141 0.8138 0.6996 0.4484 0.6678
Simpson’s diversity: GARIGUE Wet sites

1 200 0.3733 0.3553 0 1.0000 1.0000 0.3237 0.4228
5 40 0.5292 0.2721 0 0.8676 0.8676 0.4422 0.6162

20 10 0.6093 0.2171 0.1914 0.8158 0.6223 0.4540 0.7646
Simpson’s diversity: GARIGUE Dry sites

1 200 0.2999 0.3494 0 1.0000 1.0000 0.2512 0.3487
5 40 0.4947 0.2912 0 1.0000 1.0000 0.4016 0.5879

20 10 0.5069 0.2510 0.1141 0.7978 0.6837 0.3273 0.6865
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Part Two, Chapter 7. Results and Discussion

F igure  7.1. N um ber o f  species, species abundances, Shannon (log2) and S im pson’s diversity at the 
sites (see Table 6.1 for details o f  sites). M ean (bold line), and lower and upper 95%  confidence intervals 
o f  the mean (fine lines) for the data are shown.
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T able  7.2. Spearm an’s rank correlations o f  the number o f  species and heterogeneity 
used for testing hypothesis H,: The higher the heterogeneity the m ore species that are 
present. Results are for (1) com bined data from sand, steppe and garigue habitats, from 
wet and dry periods com bined, and wet and dry periods separately, and (2) for each 
habitat using com bined data from  wet and dry periods, and wet and dry periods 
separately. Significance is 2 -tailed  for all cases, and significance levels are indicated as: 
ns (not significant), * (0.05), ** (0.01), *** (<0.001). See Table 6.5 for full list o f  
environm ental variables and T able 6.1 for list o f  sites with habitat types and periods.

Sites: H ab ita t 
type /P eriod

N u m b e r  o f  
q u a d ra ts

S p e a rm a n ’s
ra n k

co rre la tio n

P Significance
level

All sites 1200 0.133 <0.001 ***

All wet sites 600 0.123 0.002 **

All dry sites 600 0.141 0.001 **

SAND: all sites 400 0.087 0.083 ns
SAND: all wet sites 200 0.317 <0.001 ***

SAND: all dry sites 200 -0.072 0.313 ns
STEPPE: all sites 400 0.230 <0.001 ***

STEPPE: all wet sites 200 0.206 0.003 **

STEPPE: all dry sites 200 0.257 <0.001 ***

GARIGUE: all sites 400 0.206 <0.001 ***

GARIGUE: all wet sites 200 0.186 0.008 **

GARIGUE: all dry sites 200 0.219 0.002 **

T ab le  7.3. Spearm an’s rank correlations o f  the abundances o f  species (logx+1 
transform ed) and heterogeneity used for testing hypothesis H2: The higher the 
heterogeneity, the higher the abundances o f  species. Results are for (1) com bined data 
from sand, steppe and garigue habitats, from w et and dry periods com bined, and wet 
and dry periods separately, and (2) for each habitat using com bined data from wet and 
dry periods, and wet and dry periods separately. S ignificance is 2-tailed for all cases, 
and significance levels are indicated as: ns (not significant), * (0.05), ** (0.01), *** 
(<0.001). See Table 6.5 for full list o f  environm ental variables and Table 6.1 for list o f  
sites with habitat types and periods.

Sites: H ab ita t 
type /P eriod

N u m b er o f 
q u a d ra ts

S p e a rm a n ’s
ra n k

co rre la tio n

P Significance
level

All sites 1200 -0.006 0.849 ns
All wet sites 600 -0.030 0.459 ns
All dry sites 600 0.030 0.459 ns
SAND: all sites 400 0.112 0.026 *

SAND: all wet sites 200 0.347 <0.001 ***

SAND: all dry sites 200 -0.046 0.515 ns
STEPPE: all sites 400 0.250 <0.001 ***

STEPPE: all wet sites 200 0.258 <0.001 ***

STEPPE: all dry sites 200 0.299 <0.001 ***

GARIGUE: all sites 400 0.083 0.096 ns
GARIGUE: all wet sites 200 0.122 0.085 ns
GARIGUE: all dry sites 200 0.078 0.273 ns

H3: The higher the complexity the more species that are present

There was a significant positive correlation between complexity and number of 

species for most habitat types and period combinations (Table 7.4) indicating
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that increased complexity is associated with a higher number of species. The 

association was not significant for neither dry sand sites nor dry steppe sites.

Table 7.4. Spearm an’s rank correlations o f  the num ber o f  species and com plexity used 
for testing hypothesis H3: The higher the com plexity the more species that are present.
Results are for (1) com bined data from  sand, steppe and garigue habitats, from wet and 
dry periods com bined, and w et and dry periods separately, and (2) for each habitat 
using com bined data from w et and dry periods, and wet and dry periods separately. 
Significance is 2-tailed for all cases, and significance levels are indicated as: ns (not 
significant), * (0.05), ** (0.01), *** (<0.001). See Table 6.5 for full list o f 
environm ental variables and Table 6.1 for list o f  sites with habitat types and periods.

Sites: H abitat 
type/Period

N um ber o f  
quadrats

S pearm an’s
rank

correlation

P Significance
level

All sites 1200 0.141 <0.001 ***

All wet sites 600 0.180 <0.001 ***

All dry sites 600 0.086 0.035 **

SAND: all sites 400 0.177 <0.001 ***

SAND: all wet sites 200 0.199 0.005 **

SAND: all dry sites 200 0.090 0.204 ns
STEPPE: all sites 400 0.143 0.004 **

STEPPE: all wet sites 200 0.354 <0.001 ***

STEPPE: all dry sites 200 -0.074 0.299 ns
GARIGUE: all sites 400 0.223 <0.001 ***

GARIGUE: all wet sites 200 0.184 0.009 **

GARIGUE: all dry sites 200 0.268 <0.001 ***

H4: The higher the complexity the higher the abundances o f species 

Correlations between complexity and the abundances of species were not 

significant for steppe (dry sites), garigue (wet sites), nor when data were pooled 

from all sites (Table 7.5). This indicates that increased complexity is not 

associated with higher abundances of species. The correlations were positive for 

sand (all sites, wet sites, dry sites), steppe (all sites, wet sites) and garigue (all 

sites, dry sites).
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Table 7.5. Spearm an’s rank correlations o f  the abundances o f  species (logx+] 
transform ed) and com plexity used for testing hypothesis H/. The higher the complexity 
the higher the abundances o f  species. Results are for (1) com bined data from sand, 
steppe and garigue habitats, from wet and dry periods com bined, and wet and dry 
periods separately, and (2) for each habitat using com bined data from wet and dry 
periods, and wet and dry periods separately. Significance is 2-tailed for all cases, and 
significance levels are indicated as: ns (not significant), * (0.05), ** (0.01), *** 
(<0.001). See Table 6.5 for full list o f  environmental variables and Table 6.1 for list o f  
sites with habitat types and periods.

Sites: Habitat 
type/Period

N um ber of 
quadrats

Spearm an’s
rank

correlation

P Significance
level

All sites 1200 0.044 0.126 ns
All wet sites 600 0.064 0.119 ns
All dry sites 600 0.035 0.394 ns
SAND: all sites 400 0.235 <0.001 ***

SAND: all wet sites 200 0.258 <0.001 ***

SAND: all dry sites 200 0.142 0.045 *

STEPPE: all sites 400 0.261 <0.001 ***
STEPPE: all wet sites 200 0.446 <0.001 ***

STEPPE: all dry sites 200 0.003 0.964 ns
GARIGUE: all sites 400 0.152 0.002 **

GARIGUE: all wet sites 200 0.122 0.086 ns
GARIGUE: all dry sites 200 0.205 0.004 **

The results of correlations for Hypotheses Hj  to H4 for some of the 

habitat type/period combinations were not significant when data were pooled 

(e.g. all wet and all dry sites for sand), yet positive correlations were achieved 

when these were correlated by period separately (e.g. all wet sand sites, see 

Tables 7.2 to 7.5). Combining the data from the two periods can result in 

associations from the individual periods being lost. This is because Spearman’s 

rank correlation ranks the data, for each o f the variables (i.e. heterogeneity or 

complexity, and number o f species or abundances of species) before 

correlations are carried out (Kirkwood, 1998; Dytham, 2003). To obtain general 

trends from the data it is useful to consider pooled data; but to determine 

specific associations from the habitat types at the two periods, using data from 

these is more informative (Table 7.6).
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Table 7.6. Summary o f  results for H ypotheses Hi to H4 for wet and dry 
periods at the habitat types (see Table 6.7 for descriptions o f 
hypotheses, and results o f  Spearm an’s rank correlations for all habitat 
type/period com binations). V=accept hypothesis; X =reject hypothesis.

Sites: Habitat type/Period / / / .  11 -  " h 4
SAND: all wet sites 7 7 V
SAND: all dry sites X X X V
STEPPE: all wet sites V V V V
STEPPE: all dry sites V V X X
GARIGUE: all wet sites V X V X
GARIGUE: all dry sites V X V V

Hs: Some types of heterogeneity affect number of species independently of 
total complexity
Hf,\ Some types of heterogeneity affect abundances of species independently 
of total complexity

Results for the environmental variables are in Appendix 11 and results of partial 

correlations for testing Hypotheses H5 and //^ are in Appendix 12. There are 

significant correlations (positive and negative) between number of species and 

components o f habitat structure (i.e. principal structures, see Section 7.2.3.2), 

and between species abundances and principal structures. Showing these 

correlations in a grid (Table 7.7) simplifies interpretation; listing significant 

principal structures for each habitat type reduces the data further and provides 

the easiest interpretation o f these data (Table 7.8). Some types of habitat 

structure (heterogeneity) affect number o f species and abundances 

independently of total complexity.
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Table 7.7. Summary o f  the partial correlation results between number o f  species and components o f  habitat 
structure, and species abundances and components o f  habitat structure. (See Appendix 12 for more details). 
Only significant correlations are shown; negative (-) or positive (+). Empty boxes in grid denote no 
significance.
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Table 7.7 (continued).
________  Species abundances and components of habitat structure
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Table 7.8. Reduced data (see Section 7.1.2) for partial correlations showing principal structures 
that have significant negative and positive correlations for num ber o f  species and abundances at 
the three habitat types (data used in each case are for all sites com bined for each habitat type). 
See Appendix 12 for further details.

Positive Positive Positive
Number o f species 
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Rock 

Green grass 
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Herbaceous

Number o f  species 
Leaf litter 
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Rubble 
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Abundances 
Green grass 
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Herbaceous
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Rock 
Rubble 

Bryophyte 
Green grass 
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Abundances 
Rubble 
Refuse 
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Annual

Positive Positive Positive
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m
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Negative Negative Negative
Number o f species 

Soil 
Shingle 
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Number o f  species 
Soil 
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Shrub

Number o f species 
Rock 

Lichen 
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Shingle
Stone
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Abundances 
Soil 

Dry grass 
Herbaceous 

Shrub 
Tree

Abundances
Rock

Bryophyte
Annual
Shrub

Negative Negative Negative
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Some principal structures are positively associated with number of 

species and abundances in some habitats, and negatively so in others (e.g. rock, 

dry grass). In some cases a principal structure may be positively associated in a 

habitat in the wet period, and negatively so in the dry period (e.g. green grass at 

steppe sites).

H 71 The number of species increases as spatial scale increases 
Hgi The abundances of species increases as spatial scale increases

There is an increase in all habitat types in the number of species, abundance and

diversity as the spatial scale increases (Table 7.1 and Figure 7.2). This increase

also exists when sites are considered together (all sites), or separately as wet or

dry period sites (Figure 7.3).
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Figure 7.2. Number o f  species, species abundances, Shannon (log2) diversity and Simpson’s 
diversity at the three levels o f  grain. These are indicated on the x axis in each case ( l= lm 2, 5=5 m2, 
20=20 m2). For each level o f  grain there are three sets o f  plotted data: in each case the left hand bar 
are data for sand, the central bar for steppe, and the right hand bar for garigue. In each figure the 
mean (marker) and lower and upper 95% confidence intervals o f  the mean (crosslines) for the data 
are shown.
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Figure 7.2 (continued).
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Figure 7.3. Number o f  species (a), species abundances (b), Shannon (log2) diversity (c) and Simpson’s 
diversity (d) for the site/period combinations at the three levels o f  grain ( l= lm 2, 5=5 m2, 20=20 m2). 
The site/period combinations for each grain level are: left-hand bar=all sites, central bar=wet sites only, 
right-hand bar=dry sites only. Mean (marker) and lower and upper 95% confidence intervals o f  the 
mean (crosslines) for the data are shown.
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Plotting the data for number of species, abundances and diversity for 

each quadrat, plot and site (rather than mean and 95% Cl as is the case in Figure 

7.2 for site/periods) shows that number of species and abundances are scale 

dependent; both increasing as scale increases (this being more marked for 

abundances, Figure 7.4). The data for both Shannon and Simpson’s diversity 

indicate that values for these indices are similar across scales (Figure 7.4). Thus, 

although mean and 95% Cl data clearly show scale dependence in diversity 

(Figure 7.3 and Table 7.1), individual quadrats and plots may have values for 

these that are greater than those for sites (Table 7.1).

191



Part Two, Chapter 7. Results and Discussion

Figure 7.4. Number o f  species (a), species abundances (b), Shannon (log2) (c), and Simpson’s 
diversity (d) for the three grain levels. Data show individual values for quadrats ( lm 2, w=1200), 
plots (5m2, «=240), and sites (20m 2, «=60).
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The results of ANOVA (with post hoc tests, Table 7.9) support the 

results o f the descriptive statistics, indicating significant differences between all 

three levels o f grain for number of species and abundances of species (as well as 

Shannon and Simpson’s diversity).

T ab le  7.9. Results o f  A N OVA to assess i f  the num ber o f  species, abundances, Shannon (log2) 
and Sim pson’s diversities from the three levels o f  grain ( lm 2, 5m2 and 20m 2) differ 
significantly. By convention lines are drawn under com binations that do not differ significantly 
(here all com binations differ significantly and there are no  underlined com binations).

Number o f Species
Analysis o f  V ariance (A N O V A )

Source d f Sum o f sqs M ean sqs F ratio Significance
Between gps 2 3.71 1.85 35.69 <0.001
W ithin gps 1497 77.77 0.05
Total 1499 81.48

Post hoc test using F isher’s least significant difference test (LSD)

Grain level
(I)

Grain level
(J)

Mean
difference

(I-J)

L ow er 95%  
Confidence 

Interval

U pper 95 
Confidence 

Interval
Significance

lm 2 5m 2 -0.11 -0.14 -0.08 <0.001
20m 2 -0.17 -0.23 -0.11 <0.001

5m2 lm 2 0.11 0.08 0.14 <0.001
20m 2 -0.06 -0.12 0.01 0.05

20m 2 lm 2 0.17 0.11 0.23 <0.001
5m 2 0.06 -0.01 0.12 0.05

Results
lm 2 5m 2 lm 2 20m 2 5m 2 20m 2

Abundance
A nalysis o f  V ariance (A N O V A )

Source d f Sum o f sqs M ean sqs F ratio Significance
Between gps 2 949.28 474.64 211.82 <0.001
W ithin gps 1497 3354.41 2.24
Total 1499 4303.68

Post hoc test using F isher’s least significant difference test (LSD)

Grain level 
(I)

Grain level
(J)

Mean
difference

(I-J)

L ow er 95%  
C onfidence 

Interval

U pper 95 
Confidence 

Interval
Significance

lm 2 5m 2 -1.53 -1.73 -1.32 <0.001
20m 2 -3.15 -3.54 -2.76 <0.001

5m2 lm 2 1.53 1.32 1.73 <0.001
20m 2 -1.63 -2.05 -1.20 <0.001

20m 2 lm 2 3.15 2.76 3.54 <0.001
5m 2 1.63 1.20 2.04 <0.001

Results
lm 2 5m 2 lm 2 20m 2 5m 2 20m 2
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Table 7.9 (continued).

Shannon diversity
Analysis o f  V ariance (A N O V A )

Source d f Sum o f  sqs M ean sqs F ratio Significance
Between gps 2 22.99 11.50 77.89 <0.001
W ithin gps 1497 220.98 0.15
Total 1499 243.97

Post hoc test using F isher’s least significant d ifference test (LSD)

Grain level
(I)

Grain level
(J)

Mean
difference

(I-J)

Low er 95%  
Confidence 

Interval

U pper 95 
Confidence 

Interval
Significance

lm 2 5 m 2 -0.26 -0.31 -0.21 <0.001
20m 2 -0.45 -0.55 -0.35 <0.001

5m2 lm 2 0.26 0.21 0.31 <0.001
20m 2 -0.19 -0.29 -0.08 <0.001

20m 2 lm 2 0.45 0.35 0.55 <0.001
5m2 0.19 0.08 0.29 0.001

Results
lm 2 5m 2 lm 2 20m 2 5m 2 20m 2

Simpson’s diversity
Analysis o f  V ariance (AN O V A)

Source d f Sum o f  sqs M ean sqs F ratio Significance
Between gps 2 3.71 1.85 35.69 <0.001
Within gps 1497 77.77 0.05
Total 1499 81.48

Post hoc test using F isher’s least significant difference test (LSD)

Grain level
(I)

Grain level
(J)

M ean
difference

(I-J)

Low er 95%  
Confidence 

Interval

U pper 95 
Confidence 

Interval
Significance

lm 2 5m 2 -0.11 -0.14 -0.08 <0.001
20m i -0.17 -0.23 -0.11 <0.001

5m2 lm 2 0.11 0.08 0.14 <0.001
20m 2 -0.06 -0.12 0.01 0.05

20m2 lm 2 0.17 0.11 0.23 <0.001
5m 2 0.06 -0.01 0.12 0.05

Results
l m 2 5 m 2 lm 2 20m 2 5m 2 20m 2

Results for Spearman’s rank correlations (using pooled data from the sites) 

between heterogeneity and number and abundances of species, and diversity 

(Table 7.10) show a positive correlation at the lm 2 level of grain between 

heterogeneity and number of species, Shannon and Simpson’s diversity, but not
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T ab le  7.10. Spearm an’s rank correlations to assess relationships between number o f  species 
and species abundances with total heterogeneity and total com plexity at the three levels o f  grain 
( lm 2, 5m2 and 20m 2). All P are 2-tailed.

G ra in
<m; )

1 1 1

» -----------V

5 5 5 20 20 20

sites n Ts P n rs P n rs P
all 1200 0.133 <0.001 240 -0.014 0.824 60 -0.050 0.703

wet 600 0.123 0.002 120 0.022 0.808 30 0.106 0.576
dry 600 0.141 0.001 120 -0.124 0.055 30 -0.050 0.703

Total heterogeneity with Species abundances
G ra in

(m 2)
1 1 1 5 5 5 20 20 20

sites n ft P n ft P n rs P
all 1200 -0.006 0.849 240 0.045 0.488 60 0.055 0.674

wet 600 -0.030 0.459 120 0.002 0.979 30 0.002 0.990
dry 600 0.030 0.459 120 -0.079 0.221 30 0.055 0.674

Total heterogeneity with Shannon diversity
G ra in

(m 2)
1 1 1 5 5 5 20 20 20

sites n rs P /i rs P n rs P
all 1200 0.154 <0.001 240 -0.058 0.368 60 -0.108 0.410

wet 600 0.159 <0.001 120 0.077 0.403 30 0.107 0.575
dry 600 0.147 <0.001 120 -0.104 0.107 30 -0.108 0.410

Total heterogeneity with Simpson’s diversity
G ra in

(n r )
1 1 1 5 5 5 20 20 20

sites n f» P n rs P n rs P
all 1200 0.175 <0.001 240 -0.099 0.127 60 -0.176 0.177

wet 600 0.203 <0.001 120 0.030 0.742 30 -0.071 0.711
dry 600 0.145 <0.001 120 -0.079 0.224 30 -0.176 0.177

Total complexity with Number o f species
G ra in

(m 2) 1 1 1 5 5 5 20 20 20

sites n fs P n rs P n rs P
all 1200 0.141 <0.001 240 -0.014 0.827 60 -0.062 0.636

wet 600 0.180 <0.001 120 0.055 0.549 30 0.146 0.442
diy 600 0.086 0.035 120 -0.155 0.016 30 -0.062 0.636

Total complexity with Species abundances
G ra in

(m 2)
1 1 1 5 5 5 20 20 20

sites n Ts P n Ts P n Ts P
all 1200 0.044 0.126 240 0.032 0.624 60 0.058 0.658

wet 600 0.064 0.119 120 -0.004 0.969 30 -0.005 0.980
dry 600 0.035 0.394 120 -0.119 0.065 30 0.058 0.658
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Table 7.10 (continued).

Total complexity with Shannon diversity
G ra in

(m 2)
1 1 1 5 5 5 20 20 20

sites n rs P n rs P n rs P
all 1200 0.146 <0.001 240 -0.084 0.192 60 -0.156 0.234

wet 600 0.200 <0.001 120 0.068 0.461 30 0.090 0.636
dry 600 0.077 0.059 120 -0.140 0.030 30 -0.156 0.234

Total complexity with Simpson’s diversity
G ra in

(m 2) 1 1 1 5 5 5 20 20 20

sites n rs P n rs P n rs P
all 1200 0.166 <0.001 240 -0.107 0.098 60 -0.227 0.081

wet 600 0.231 <0.001 120 0.053 0.562 30 -0.088 0.644
dry 600 0.080 0.051 120 -0.091 0.159 30 -0.227 0.081

with abundances. Thus, number o f species and diversity, but not abundances, 

are significantly positively correlated at the lm 2 level of grain. There are no 

significant correlations at the 5m2 nor 20m2 levels o f grain. The results are 

similar for complexity (Table 7.10), with positive correlations at the lm 2 level 

o f grain between complexity and number o f species, Simpson’s and Shannon 

diversity, but not with abundances. In general, positive correlations are present 

only at the lm 2 level o f grain (Table 7.10). At spatial scales higher than this, 

heterogeneity and complexity were not correlated with number of species nor 

diversity.

H 9: T h e r e  is  m o r e  v a r i a t i o n  in  h e t e r o g e n e i t y  in  s o m e  h a b i t a t  t y p e s  t h a n  in  
o t h e r s
H jo’. T h e r e  is  m o r e  v a r i a t i o n  in  c o m p l e x i t y  in  s o m e  h a b i t a t  t y p e s  t h a n  in  
o t h e r s

Combining all sites (wet and dry), the habitat types order from lowest to highest 

for heterogeneity and complexity as: (1) sand, (2) steppe, (3) garigue (Table 

7.11, Figure 7.5). Heterogeneity and complexity are greater in the wet period 

than the dry period at all habitat types (Figure 7.6).
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Table 7.11. Mean, standard deviation (sd), minimum (min), maximum (max), range, lower and 
upper 95% confidence intervals o f  the mean (C l) for total heterogeneity and total complexity at 
all sites, wet sites com bined and dry sites combined, and for each o f  the habitat types (all sites, 
wet sites and dry sites).

T o ta l H etero g en eity
Sites:

Habitat
type/Period

n Mean sd Min Max Range
Lower
95%

Cl

Upper
95%
Cl

All sites 60 36.80 18.619 10 87 77 31.99 41.61

All wet sites 30 37.70 21.446 12 87 77 29.69 45.71

All dry sites 30 35.90 15.610 10 68 58 30.07 41.73

SAND: all 
sites

20 21.25 11.097 10 53 43 16.06 26.44

SAND: all 
wet sites

10 21.10 11.808 12 53 41 12.65 29.55

SAND: all 
dry sites

10 21.40 10.997 10 43 33 13.55 29.25

STEPPE: all 
sites 20 34.90 13.494 21 72 51 28.58 41.22

STEPPE: all 
wet sites 10 32.70 15.428 21 72 51 21.66 43.74

STEPPE: all 
dry sites 10 37.10 11.647 22 57 35 28.77 45.43

GARIGUE: 
all sites 20 54.25 13.871 33 87 54 47.76 60.74

GARIGUE: 
all wet sites 10 59.30 15.882 41 87 46 47.94 70.66

GARIGUE: 
all dry sites 10 49.20 9.864 33 68 35 42.14 56.26

T o ta l ComplexityV
Sites:

Habitat
type/Period

n Mean sd Min Max Range
Lower
95%
Cl

Upper
95%
Cl

All sites 60 3799.50 1887.034 1203 8883 7680 3312.03 4286.97

All wet sites 30 4035.60 2200.852 1203 8883 7680 3213.79 4857.41

All dry sites 30 3563.40 1511.788 2073 7679 5606 2998.89 4129.91

SAND: all 
sites 20 2281.70 396.056 1203 3056 1853 2096.34 2467.06

SAND: all 
wet sites 10 2223.50 498.886 1203 3056 1853 1866.62 2580.38

SAND: all 
dry sites 10 2339.90 273.379 2073 2800 727 2144.34 2535.20

STEPPE: all 
sites 20 3074.65 788.113 2133 4606 2473 2705.80 3443.50

STEPPE: all 
wet sites 10 3107.70 905.156 2133 4606 2473 2460.19 3755.21

STEPPE: all 
dry sites 10 3041.60 699.659 2382 4416 2034 2541.09 3542.11

GARIGUE: 
all sites 20 6042.15 1416.802 3121 8883 5762 5379.07 6705.23

GARIGUE: 
all wet sites 10 6775.60 1261.919 5427 8883 3456 5872.88 7678.32

GARIGUE: 
all dry sites 10 5308.70 1204.081 3121 7679 4558 4447.35 6170.05
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Figure 7.5. Heterogeneity and com plexity in the quadrats from all sites for the three habitat 
types («=400 for each habitat type).
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F ig u re  7.6. H eterogeneity  and  com plexity  for the habitat types and periods, (a) heterogeneity and (b) 
com plexity for the three hab ita t types com bined for all sites (n=60), w et sites («=30) and dry sites 
(«=30). (c) heterogeneity  and (d) com plexity  at sand (squares), steppe (circles) and garigue (triangles) 
habitat types for all sites («=20 p er type), w et sites («=10 per type) and dry sites («=10 per type). In 
each graph the m ean (m arkers) and low er and upper 95%  confidence intervals o f  the m ean (crossbars) 
are shown.
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Heterogeneity and complexity data for the sites (Table 7.1, Figures 7.5 

and 7.6, Appendices 13 and 14) indicate that there is more variance in 

heterogeneity and complexity in some habitats than in others (Table 7.12). The 

means for the coefficient o f variation for heterogeneity and complexity differ 

significantly (t=3.036, P=0.01) but there in no significant correlation between 

the variation for heterogeneity and complexity (Spearman’s 0.070, /M1.829).

T ab le  7.12. Variation in heterogeneity  and com plexity at the habitat types and periods. There is 
no significant correlation betw een the variation for heterogeneity and com plexity (Spearm an’s 
rank correlation=0.070, P=0.829). The m eans for the coefficient o f  variation for heterogeneity 
and com plexity d iffer significantly  (t=3.036, degrees o f  freedom 22, P=0.01; Levene’s test for 
equality o f  variances: F=1.147, P=0.296).

Coefficient o f Variation (%)
H a b ita t ty p e /p erio d H eterogeneity C om plexity

All sites 50.6 27.8
All w et sites 56.9 54.5
All dry sites 43.5 42.4
Sand: all sites 52.2 17.4
Sand: wet sites 56.0 22.4
Sand: dry sites 51.4 11.7
Steppe: all sites 38.7 25.6
Steppe: wet sites 47.2 29.1
Steppe: dry sites 31.4 23.0
Garigue: all sites 25.6 23.4
Garigue: w et sites 26.8 18.6
Garigue: dry sites 20.0 22.7

Mean 41.69 26.55
Standard deviation 12.862 11.534

Lower 95%  Confidence Interval 35.52 19.22
U pper 95%  C onfidence Interval 49.86 33.88

In general there is more variance in both heterogeneity and complexity 

in the wet period than in the dry period at all habitat types (Tables 7.13 and

7.14). Combining all sites (wet and dry), the habitat types order from lowest to 

highest for variance in heterogeneity as: (1) garigue, (2) steppe, (3) sand, and for 

variance in complexity as: (1) sand, (2) garigue, (3) steppe.
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Table 7.13. The amount o f  variation in heterogeneity and complexity at the habitat types and 
periods. Variation is shown in descending order (where 1 indicates greatest variation).

1. Variation in heterogeneity and complexity: descending order of variation at the
habitat types by period

Habitat type Period Heterogeneity Habitat type Period Complexity
Wet 1 Wet 1

All Wet and Dry 2 All Dry 2
Dry 3 Wet and Dry 3
Wet 1 Wet 1

Sand Wet and Dry 2 Sand Wet and Dry 2
Dry 3 Dry 3
Wet 1 Wet 1

Steppe Wet and Dry 2 Steppe Wet and Dry 2
Dry 3 Dry 3
Wet 1 Wet and Dry 1

Garigue Wet and Dry 2 Garigue Dry 2
Dry 3 Wet 3

2, Variation in heterogeneIty and complexity: descending order of variation for the
periods by habitat type

Period Habitat type Heterogeneity Period Habitat type Complexity
Sand 1 Steppe 1

Wet and Dry Steppe 2 Wet and Dry Garigue 2
Garigue 3 Sand 3
Sand 1 Steppe 1

Wet Steppe 2 Wet Sand 2
Garigue 3 Garigue 3
Sand 1 Steppe 1

Dry Steppe 2 Dry Garigue 2
Garigue 3 Sand 3

Hni Heterogeneity differs between the habitat types 
Hn\ Complexity differs between the habitat types
H13: Heterogeneity differs between the wet and dry periods at each habitat 
type
Hu\ Complexity differs between the wet and dry periods at each habitat 
type
His• Heterogeneity differs between the wet and dry periods between the 
habitat types
Hi6: Complexity differs between the wet and dry periods between the 
habitat types

For habitats: There are significant differences in heterogeneity and complexity 

for all habitat types. Using all site combinations (Table 7.14) the habitat types 

order from lowest to highest for heterogeneity and complexity as: (1) sand, (2) 

steppe, (3) garigue.

For periods’. There are significant differences in heterogeneity and complexity 

for many habitat type/period combinations. There were, however, no differences
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for wet and dry periods at steppe (heterogeneity), and wet and dry periods at 

sand, and wet and dry periods at steppe (complexity) (Figure 7.6).

T ab le  7.14. ANOVA to assess if  heterogeneity  and com plexity from the habitat types (sand, 
steppe, garigue) differ sign ificantly  for w et and dry sites, and to assess if  heterogeneity and 
com plexity from the habitat types com bined (all sand, all steppe, all garigue) differ significantly. 
By convention lines are draw n under com binations that do not differ significantly. Quadrat data 
are used in all cases.

Heterogeneity- for sand, steppe, garigue: wet, dry
A nalysis o f  V ariance (AN O V A )

Source d f Sum o f  sqs M ean sq F ratio Significance
Between gps 5 174.498 34.900 241.893 <0.001
W ithin gps 1194 172.267 0.144
Total 1199 346.765

Post hoc test using F isher’s least significant difference test (LSD)

Habitat type
(I)

H abitat type
(J)

M ean
difference

(I-J)

Low er 95%  
Confidence 

Interval

U pper 95% 
Confidence 

Interval
Significance

sand wet sand dry -0.19033 -0.2649 -0.1158 <0.001
sand wet steppe wet -0.55213 -0.6267 -0.4776 <0.001
sand wet steppe dry -0.58183 -0.6564 -0.5073 <0.001
sand wet garigue w et -0.12231 -1.1968 -1.0478 <0.001
sand wet garigue dry -0.88503 0.9595 -0.8105 <0.001
sand dry steppe w et -0.36180 -0.4363 -0.2873 <0.001
sand dry steppe dry -0.39150 -0.4660 -0.3170 <0.001
sand dry garigue w et -0.93197 -1.0065 -0.8575 <0.001
sand dry garigue dry -0.69469 -0.7692 -0.6202 <0.001

steppe wet steppe dry -0.02970 -0.1042 0.0448 0.434
steppe wet garigue w et -0.57018 -0.6447 -0.4957 <0.001
steppe wet garigue dry -0.33290 -0.4074 0.2584 <0.001
steppe dry garigue w et -0.54048 -0.6150 -0.4660 <0.001
steppe dry garigue dry -0.30320 -0.3777 0.2287 <0.001

garigue wet garigue dry 0.23728 0.1628 0.3118 <0.001
Results

sand wet sand dry sand wet steppe wet sand wet steppe dry sand wet garigue wet
sand wet garigue dry sand dry steppe wet sand dry steppe dry sand dry garigue wet

sand drv garigue drv steppe wet steppe dry steppe wet garigue wet
steppe wet garigue dry steppe dry garigue wet steppe dry garigue dry

garigue wet garigue dry

Complexity- for sand, steppe, garigue: wet, dry
A nalysis o f  V ariance (A N O V A )

Source d f Sum o f  sqs M ean sq F ratio Significance
Between gps 5 149.813 29.963 205.651 <0.001
W ithin gps 1194 173.961 0.146
Total 1199 323.773

Post hoc test using F isher’s least significant difference test (LSD)

H abitat type
(I)

H abitat type
(J)

M ean
difference

(I-J)

Low er 95%  
Confidence 

Interval

Upper 95% 
Confidence 

Interval
Significance

sand wet sand dry -0.00258 -0.0775 0.0723 0.946
sand wet steppe wet -0.20410 -0.2790 -0.1292 <0.001
sand wet steppe dry -0.18040 -0.2553 -0.1055 <0.001
sand wet garigue wet -0.92399 -0.9989 -0.8491 <0.001
sand wet garigue dry -0.70702 -0.7819 -0.6321 <0.001
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Table 7.14 (continued).

sand dry steppe wet -0.20152 -0.2764 -0.1266 <0.001
sand dry steppe dry -0.17782 -0.2527 -0.1029 <0.001
sand dry garigue w et -0.92141 -0.9963 -0.8465 <0.001
sand dry garigue dry -0.70444 -0.7793 -0.6296 <0.001

steppe wet steppe dry 0.02370 -0.0512 0.0986 0.535
steppe wet garigue wet -0.71989 -0.7948 -0.6450 <0.001
steppe wet garigue dry -0.50293 -0.5778 -0.4280 <0.001
steppe dry garigue w et -0.74359 -0.8185 -0.6687 <0.001
steppe dry garigue dry -0.52663 -0.6015 -0.4517 <0.001

garigue wet garigue dry 0.21696 0.1421 0.2919 <0.001
Results

sand wet sand drv sand wet steppe wet sand wet steppe drv sand wet garisue wet 
sand wet garigue dry sand dry steppe wet sand dry steppe dry sand dry garigue wet 

sand drv garigue drv steppe wet steppe drv steppe wet garigue wet 
steppe wet garigue dry steppe dry garigue wet steppe dry garigue dry

garigue wet garigue dry

Heterogeneity- fo r all sand, alt steppe, all garigue
A nalysis o f  Variance (AN O V A)

Source d f Sum o f  sqs M ean sq F ratio Significance
Between gps 2 165.157 82.578 544.284 <0.001
W ithin gps 1197 181.608 0.152
Total 1199 346.765

Post hoc test using F isher’s least significant difference test (LSD)

Habitat type
(I)

Habitat type
(J)

M ean
difference

(I-J)

Low er 95%  
Confidence 

Interval

U pper 95% 
Confidence 

Interval
Significance

1 2 -0.47181 -0.5259 -0.4178 <0.001
3 -0.90850 -0.9625 -0.8545 <0.001

2 3 -0.43669 -0.4907 -0.3826 <0.001
Results

sand steppe sand garigue steppe garigue

Complexity- for all sand, all steppe, all garigue
A nalysis o f  Variance (A N O V A)

Source d f Sum o f  sqs M ean sq F ratio Significance
Between gps 2 145.048 72.524 485.727 <0.001
W ithin gps 1197 178.725 0.149
Total 1199 323.773

Post hoc test using F isher’s least significant difference test (LSD)

H abitat type
(I)

H abitat type
(J)

Mean
difference

(I-J)

Low er 95%  
C onfidence 

Interval

Upper 95% 
Confidence 

Interval
Significance

1 2 -0.19096 -0.2446 -0.1374 <0.001
3 -0.81422 -0.8678 -0.7606 <0.001

2 3 -0.62326 -0.6769 -0.5697 <0.001
Results

sand steppe sand garigue steppe garigue
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7.1.3. Habitat diversity

Heterogeneity and complexity are positively correlated at all grain levels (Table

7.15). Heterogeneity and complexity constitute two of the three axes of the 

McCoy and Bell (1991) 3-dimensional habitat structure model (the other is 

scale, Section 5.3) and their positive correlation suggests that habitat diversity 

indices (calculated using heterogeneity and complexity, Section 6.9.3) may be 

used to assess the effects of habitat structure on the number of species and 

species diversity. Further, the two habitat structure indices (Shannon and 

Simpson’s) are positively correlated suggesting that either of them could be 

used for this purpose.

Table 7.15. Spearman’s rank correlations (r5) o f  number o f  species, abundances, species diversity and 
heterogeneity, com plexity and habitat diversity (hd). For quadrats ( lm 2) «=1200, plots (5m2) n=240, sites 
(20m 2) n=60. Significance is 2-tailed for all cases, and significance levels (si) are indicated as: ns (not 
significant), * (0.05), * *  (0.01), * * *  (<0.001).

Q uadrats  Plots  Sites
V ariables rs si h si rs si

abundance with number o f  species 0.826 ♦** 0.632 *** 0.390 **

heterogeneity with number o f  species 0.133 *** -0.014 ns -0.050 ns
heterogeneity with abundance -0.006 ns 0.045 ns 0.055 ns
heterogeneity with Shannon (log2) diversity 0.154 *** -0.058 ns -0.108 ns
heterogeneity with Sim pson’s diversity 0.175 *** -0.099 ns -0.176 ns
complexity with heterogeneity 0.837 ♦** 0.852 *** 0.815 ***

complexity with number o f  species 0.141 *** -0.014 ns -0.062 ns
complexity with abundance 0.044 ns 0.032 ns 0.058 ns
com plexity with Shannon (log2) diversity 0.146 *** -0.084 ns -0.156 ns
com plexity with Sim pson’s diversity 0.166 -0.107 ns -0.227 ns
Shannon (log2) hd with number o f  species 0.113 0.221 ** 0.312 *

Shannon (log2) hd with abundance -0.022 ns -0.082 ns -0.172 ns
Shannon (log2) hd with Shannon (log2) diversity 0.134 0.308 *** 0.311 *
Shannon (log2) hd with Simpson’s diversity 0.162 ♦** 0.328 *** 0.266 *
Shannon (log2) hd with heterogeneity 0.923 *** 0.934 *** 0.920 ***
Shannon (log2) hd with com plexity 0.850 *** 0.881 *** 0.918 ***
Simpson’s hd with number o f  species 0.101 *** 0.212 ** 0.327 **
Simpson’s hd with abundance -0.027 ns -0.096 ns -0.192 ns
Simpson’s hd with Shannon (log2) diversity 0.123 *♦* 0.307 *** 0.339 **
Simpson’s hd with Simpson’s diversity 0.151 **♦ 0.332 *** 0.297 **
Simpson’s hd with heterogeneity 0.857 *** 0.877 *** 0.888 ***
Simpson’s hd with complexity 0.833 *** 0.864 *** 0.903 ***

Shannon (log2) diversity with Sim pson’s diversity 0.960 *** 0.922 *** 0.950 ***

Shannon (log2) hd with Sim pson’s hd 0.983 *** 0.985 *** 0.984 ***
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The data, however, show that the indices do not provide the same 

outcomes as do heterogeneity and complexity when these latter are considered 

separately (Table 7.16). When the habitat structure indices are assessed for 

efficacy using the criterion that they provide the same outcomes (for 

Spearman’s rank correlations) as both heterogeneity and complexity (Table

7.16), the results show that the indices only do this for the lm grain level 

(quadrat). The habitat diversity indices provide positive correlations for all grain 

levels (quadrat, plot, and site). (Results for abundance are not significant for 

heterogeneity, complexity and both habitat diversity indices, for any of the grain 

levels, Table 7.16).

Table 7.16. An assessm ent o f  the efficacy o f  habitat diversity indices (Shannon (log2) and 
Simpson’s) using the results o f  Spearman’s rank correlations (rs) o f  number o f  species, 
abundances, species diversity, heterogeneity, com plexity and habitat diversity indices (Shannon 
(log2) and Sim pson’s). For quadrats ( lm 2) «=1200, plots (5m2) n=240, sites (20m2) n= 60 (see 
Table 6.2 for focus/grain classifications). Significance is indicated with V, and non-significance 
with X. All significant correlations are positive. See Table 7.15 for r* values and significance 
levels. Efficacy is judged on the criterion that habitat diversity indices provide the same results 
as both heterogeneity and com plexity for r? (indicated as Y es and N o).

Heterogeneity C om plexity
Shannon
habitat

d iversity

S im pson’s
habitat

diversity
Efficacy?

G rain

N um ber 
o f  species

quadrat V V V V Yes
plot X X V V N o
site X X V V No

A bundance
quadrat X X X X Yes

plot X X X X Yes
site X X X X Yes

Shannon
species

diversity

quadrat V V V V Yes
plot X X V V No
site X X V V No

Sim pson’s
species

diversity

quadrat V V V V Yes
plot X X V V No
site X X V V No

These results indicate that the habitat diversity indices may be used to

assess relationships between number of species and species diversity at a grain 

level of lm2, but not at grain levels of 5m2 or 20m2.
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7.1.4. Relationships across scale: correlations

Abundance and number of species are positively correlated at all grain levels

(Table 7.15). Heterogeneity and complexity are not correlated with abundance

at any of the grain levels; heterogeneity is scale invariant and values are similar

across grain levels, whereas complexity increases with increasing scale (Figure

7.7a). Heterogeneity and complexity are positively correlated with number of
2 #

species and species diversity only at the lm grain level. There are no 

significant correlations between heterogeneity and number of species or species 

diversity, nor between complexity and number of species or species diversity, at 

the 5m2 nor 20m2 grain levels (Figure 7.7b).
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Figure 7.7. The effects o f  scale on (a) heterogeneity and complexity, and (b) on correlations 
between heterogeneity and com plexity with number o f  species, abundances and species 
diversity (Shannon (log2) and Sim pson’s). For (a) data show individual values for quadrats 
( lm 2, >7=1200), plots (5m2, «=240), and sites (20m 2, >7=60). For (b) asterisks indicate significant 
correlations based on Spearman’s rank correlations o f  number o f  species, abundances, species 
diversity and heterogeneity and com plexity. For quadrats ( lm 2) >7=1200, plots (5m2) >7=240, 
sites (20m 2) >7=60 (see Table 6.2 for focus/grain classifications and Table 7.15 for correlation 
results).

a

100-

Heterogeneity

Quadrat

10000-
Complexity

Quadrat

b
V ariables Q uadrat Plot Site

Heterogeneity with no. o f  species *
Heterogeneity with abundance 
Heterogeneity with Shannon *
Heterogeneity with Sim pson’s *
Complexity with no. o f  species *
Complexity with abundance
Complexity with Shannon *
Complexity with Sim pson’s *
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7.1.5. Variation in vegetation: plant stem widths

In general, plant stem widths are less than 20mm. Green grass and dry grass 

have the narrowest stem widths, and less variation in stem width, than other 

plant types (Figure 7.8).

Figure 7.8. Plant stem widths from the sites: (a) the mean stem widths, and (b) the standard 
deviation o f  stem widths o f  the six plant types using pooled data from all habitat types and all 
sites. Each plant type represents data from 1200 quadrats.
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Plant type (l:G reen grass 2:Dry grass 3:Annual 

4:Herbaceous 5:Shrub 6: Tree)

7.1.6. Presence/absence of molluscs in quadrats, plots and sites

There is an increase in the presence of molluscs with increasing scale (i.e. lm2, 

5m2 to 20m2), when all sites from all habitat types are considered together, as 

well as for all habitat type/period combinations (Table 7.17). The number of 

quadrats and plots at which molluscs were present is not related to total site 

heterogeneity and complexity at any of the habitat types (Figure 7.9).
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T ab le  7.17. The num ber o f  quadrats (grain: lm 2), plots (grain: 5m2) and sites 
(grain: 20 m 2) at which m olluscs w ere present (with species), and those where 
m olluscs were absent (w ithout species), for all sites, wet sites combined and 
dry sites com bined, and for each o f  the habitat types (all sites, wet sites and 
dry sites).

G ra in
(m 2)

n
w ith

species
n

w ith  
species 
n as  %

w ith o u t
species

n

w ithou t 
species 
n as %

All sites
1 1200 953 79.4 247 20.6
5 240 230 95.8 10 4.2

20 60 60 100 0 0
Wet sites

1 600 469 78.2 131 21.8
5 120 111 92.5 9 7.5

20 30 30 100 0 0
Dry sites

1 600 484 80.7 116 19.3
5 120 119 99.2 1 0.8

20 30 30 100 0 0
SAND All sites

1 400 323 80.7 77 19.3
5 80 77 96.2 3 3.8

20 20 20 100 0 0
SAND Wet sites

1 200 159 79.5 41 20.5
5 40 97 93.5 3 7.5

20 10 10 100 0 0
SAND Dry sites

1 200 164 82.0 36 18.0
5 40 36 90.0 4 10.0

20 10 10 100 0 0
STEPPE All sites

1 400 304 76.0 96 24.0
5 80 73 91.2 7 oo 00

20 20 20 100 0 0
STEPPE Wet sites

1 200 149 74.5 51 25.5
5 40 34 85.0 6 15.0

20 10 10 100 0 0
STEPPE Dry sites

1 200 155 77.5 45 22.5
5 40 39 97.5 1 2.5

20 10 10 100 0 0
GARIGUE Alt sites

1 400 326 81.5 74 18.5
5 80 80 100 0 0

20 20 20 100 0 0
GARIGUE Wet sites

1 200 161 80.5 39 19.5
5 40 40 100 0 0

20 10 10 100 0 0
GARIGUE Dry sites

1 200 165 82.5 35 17.5
5 40 40 100 0 0

20 10 10 100 0 0
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Figure 7.9. The percentage o f  quadrats (a. and b.) and plots (c. and d.) at which mollusc species were 
present in relation to mean site heterogeneity and mean site complexity for each o f  the habitat types 
(pooled data for each habitat type: 77=400 for quadrats, 77=80 for plots).
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7.1.7. Species estimators

Chao 1 and Chao 2 estimates o f numbers o f species are similar to the observed 

numbers of species (Table 7.18, Figure 7.10). In addition, results for Chao 1 and 

Chao 2 are positively correlated (r5=0.982, PO .O O l, Figure 7.11) indicating that 

both estimates are producing similar results for the estimates of numbers of 

species at the sites (Figure 7.12).

Figure 7.10. The num ber o f  species from  the sites (O bserved) w ith Chao 1 and Chao2. Site 43 
had a large num ber o f  both singletons and uniques, inflating estim ates o f  num ber o f  species by 
the Chao estim ators (see text).

N u m b er o f  sp ec ie s

20

1 4 7 10 13 16 19 22  25 28 31 34  37  40  43 46  49 52 55 58

S ite

-1-O b se rv ed  -s-C h ao  1 -♦-C hao  2
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T able  7.18. Estim ates o f  the num bers o f  species at the sites using the Chao 1 and Chao 
2 nonparam etric species estim ators, show ing the observed num bers o f  species found at 
each site, the num ber o f  species represented by a single individual (singletons: No. 
sing.), the num ber o f  species that occur in only one quadrat (unique species: No. uniq.), 
and the quadrat at which the species accum ulation curves show s an asym ptote (Asym.). 
See Table 6.1 for site details.

Site
no.

Habitat
type

Period
Observed  
num ber 

o f species

Chao 1 
estim ate

No.
sing.

C hao 2 
estim ate

No.
uniq.

Asym.

S i Sand Wet 4 4 0 4 0 3
S2 Sand Wet 14 15.13 3 15.6 4 17
S3 Sand Wet 5 5.5 1 5.5 1 12
S4 Sand Wet 4 4 0 4.5 1 19
S5 Sand Wet 4 4 0 4 0 1
S6 Sand Wet 4 4 0 4 0 2
S7 Sand Wet 4 4.5 1 4.5 1 2
S8 Sand Wet 4 4 0 4.5 0 5
S9 Sand Wet 6 6 0 6 0 5

S10 Sand Wet 5 5.25 1 5.25 1 6
SU Sand Dry 6 6 0 6 0 11
S12 Sand Dry 4 4.5 1 4.5 1 4
S13 Sand Dry 3 3 0 3 0 2
S14 Sand Dry 7 9 2 9 2 12
S15 Sand Dry 2 2 0 2 0 3
S16 Sand Dry 6 6.5 1 6.5 1 5
S17 Sand Dry 5 5 1 5 1 11
S18 Sand Dry 4 4 0 4 0 2
S19 Sand Dry 2 2 0 2 0 4
S20 Sand Dry 4 4 1 4 1 6
S21 Steppe Wet 6 6.5 1 6.25 1 12
S22 Steppe Wet 9 11 2 13.5 3 17
S23 Steppe Wet 3 6 2 8.5 3 19
S24 Steppe Wet 7 7.5 1 7.5 1 17
S25 Steppe Wet 9 17 4 17 4 19
S26 Steppe Wet 5 7 2 13 4 10
S27 Steppe Wet 4 4.5 1 4.5 1 6
S28 Steppe Wet 8 10 2 12 4 15
S29 Steppe Wet 3 3 0 3 0 4
S30 Steppe Wet 8 10 2 10 2 5
S31 Steppe Dry 7 9 2 9 2 9
S32 Steppe Dry 7 11.5 3 11.5 3 15
S33 Steppe Dry 10 12 2 12 2 6
S34 Steppe Dry 7 11.5 3 11.5 3 7
S35 Steppe Dry 7 7 0 7 0 3
S36 Steppe Dry 8 8 0 8 0 10
S37 Steppe Dry 5 5.5 1 7 2 16
S38 Steppe Dry 3 3 0 3 0 1
S39 Steppe Dry 3 3 0 3 0 6
S40 Steppe Dry 2 2 0 2 0 3
S41 Garigue Wet 13 13.1 1 14 2 12
S42 Garigue Wet 6 10.5 3 10.5 3 20
S43 Garigue Wet 14 32 6 32 6 20
S44 Garigue Wet 10 10.5 1 10.5 1 17
S45 Garigue Wet 7 7.5 1 7.5 1 19
S46 Garigue Wet 3 3.5 1 3.5 1 7
S47 Garigue Wet 3 3 0 3 0 17
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Table 7.18. (continued).

Site
no.

Habitat
type

Period
Absolute 
num ber 

o f species

C hao 1 
estim ate

No.
sing. Chao 2 

estim ate

No.
uniq.

Asym.

S48 Garigue Wet 6 6 0 6.5 1 3
S49 Garigue Wet 9 9.5 1 9.17 1 16
S50 Garigue Wet 3 3.5 1 3.5 1 11
S51 Garigue Dry 5 5 0 5 0 10
S52 Garigue Dry 8 8.25 1 10 2 9
S53 Garigue Dry 11 13 2 12 2 19
S54 Garigue Dry 3 5 2 5 2 10
S55 Garigue Dry 9 14 5 13.75 5 20
S56 Garigue Dry 8 8 0 8.5 1 15
S57 Garigue Dry 5 5 0 5 0 10
S58 Garigue Dry 7 7 0 7.25 1 16
S59 Garigue Dry 6 6.5 1 6.17 1 3
S60 Garigue Dry 5 5 0 5 0 3

F ig u re  7.11. Chao 1 estim ated num ber o f  species versus 
Chao 2 estim ated num ber o f  species. 
(Spearm an’s=0.982. /M hO O l).

i n

E 20

• •
•  / •

30200 10
C hao  1 estim ated nu m b er o f  species
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Figure 7.12. The number o f  species estimated by Chao 1 
and Chao 2, and the observed number o f  species. Markers 
indicate the mean, and upper and lower crossbars the 95% 
confidence levels o f  the mean.

Number

species 7

ObservedC h a o l Chao 2

7.1.8. Species accumulation curves

The quadrat at which an asymptote is attained for the accumulation curves is 

related to the number of species at the sites (Table 7.18), with asymptotes being 

attained at higher numbers of quadrats, the more species are present at a site (r5

0.530, P<0.001). Asymptotes were not attained at three sites, and five sites 

attained asymptotes by Quadrat 19 (Table 7.18). These results indicate that 

sampling further quadrats may have increased the species inventories at these 

sites.
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7.1.9. Summary of results

The results are summarized below (and see Table 7.19):

1. There was a mean number of six species at the sites, with a mean total 

species abundance of 358.7, a mean Shannon diversity of 1.443, and a 

mean Simpson’s diversity of 0.516.

2. There were more species in the wet than dry period at sand and garigue 

habitats (at the three grain levels), but in the steppe habitat there were 

more species in the dry, than the wet, period. Combining all sites (wet 

and dry), the habitat types order from lowest to highest for number of 

species as: (1) sand, (2) steppe, (3) garigue.

3. Abundances were higher in the wet than in the dry period at sand and 

steppe habitats (at the three grain levels), but abundances were higher in 

the dry, than the wet, period in garigue. Combining all sites (wet and 

dry), the habitat types order from lowest to highest for abundances as: 

(1) steppe, (2) garigue, (3) sand.

4. Shannon and Simpson’s diversities were higher in the wet than in the 

dry period at sand and garigue habitats (at the three grain levels), but 

diversity was higher in the dry than the wet period in steppe. Combining 

all sites (wet and dry), the habitat types order from lowest to highest for 

diversity as: (1) sand, (2) steppe, (3) garigue.

5. Increased heterogeneity is associated with a higher number of species 

but is not associated with higher species abundances.

6. Increased complexity is associated with a higher number of species but 

is not associated with higher species abundances.
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7. Some components of habitat structure (principal structures) positively 

affect the number of species and species abundances independently of 

total complexity whilst others negatively affect both parameters.

8. The number of species, species abundances and species diversity 

increase significantly as spatial scale increases.

9. At the lm2 level of grain, heterogeneity and complexity are positively 

associated with increased number of species and species diversity, but 

not with species abundances.

10. Combining all sites (wet and dry), the habitat types order from lowest to 

highest for heterogeneity and complexity as: (1) sand, (2) steppe, (3) 

garigue.

11. Heterogeneity and complexity are greater in the wet period than the dry 

period.

12. Combining all sites (wet and dry), the habitat types order from lowest to 

highest for variation in heterogeneity as: (1) garigue, (2) steppe, (3) 

sand, and for variation in complexity as: (1) sand, (2) garigue, (3) steppe. 

There is generally more variation in both heterogeneity and complexity 

in the wet period than in the dry period at all habitat types.

13. There are significant differences in heterogeneity and complexity for all 

habitat types.

14. There are significant differences in heterogeneity and complexity for 

many habitat/period combinations, but there were no differences for wet 

and dry periods at steppe (heterogeneity), and wet and dry periods at 

sand, and wet and dry periods at steppe (complexity).
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15. Heterogeneity and complexity are positively correlated at all grain 

levels.

16. Habitat diversity indices may be used to assess relationships between 

number of species and species diversity at a grain level of lm2, but not at 

grain levels of 5m2 or 20m2.

17. Relationships between heterogeneity, complexity, number of species and 

species diversity are scale-dependent.

18. In general, plant stem widths are less than 20mm with grass having the 

narrowest widths, and less variation in width.

19. There is an increase in presence of molluscs with increasing scale (i.e. 

lm2to 20m2), from 79.4% to 100%, respectively.

20. There is an increase in the presence of molluscs with increasing scale 

(i.e. lm  to 5m to 20m ), when all sites from all habitat types are 

considered together, as well as for all habitat type/period combinations.

21. The number of quadrats and plots at which molluscs were present is not 

related to total site heterogeneity and complexity.

22. There is a positive correlation between Chao 1 and Chao 2 estimated 

number of species and the observed number of species.

23. Results for Chao 1 and Chao 2 are positively correlated.

24. Asymptotes in species accumulation curves are attained at a higher 

number of quadrats the more species are present at a site.
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Table 7.19. Summary o f  the hypotheses tested indicating acceptance or rejection.

Hypothesis
number

Description Analyses
Accept/
Reject
(A/R)

H,
The higher the heterogeneity, the 

more species present

Spearm an’s correlation o f 
heterogeneity with number of 

species
A 1

h 2
The higher the heterogeneity, the 
higher the abundances o f  species

Spearm an’s correlation o f 
heterogeneity  with abundances 

o f  species
R2

h 3
The higher the com plexity, the 

more species present

S pearm an’s correlation o f 
com plexity  with num ber o f 

species
A 3

h 4
The higher the com plexity, the 

higher the abundances o f  species

S pearm an’s correlation o f  
com plexity  with abundances o f 

species
R4

Hs
Some types o f  heterogeneity affect 
num ber o f  species independently o f  

total com plexity

Partial correlations between 
variable pairs, whilst holding 

total com plexity constant
A

h 6
Some types o f  heterogeneity affect 

abundances o f  species 
independently o f  total com plexity

Partial correlations between 
variable pairs, w hilst holding 

total com plexity constant
A

h 7 The num ber o f  species increases as 
spatial scale increases

ANOVA A

H8
The abundances o f  species 

increases as spatial scale increases
ANOVA A

h 9
There is m ore variation in 

heterogeneity in som e habitat types 
than in others

Coefficient o f  Variation (CV) o f  
heterogeneity5

A

Hj0
There is m ore variation in 

com plexity in som e habitat types 
than in others

Coefficient o f  V ariation (CV) o f  
com plexity5

A

Hn
H eterogeneity differs between the 

habitat types
ANOVA A

H12
Com plexity differs between the 

habitat types
ANOVA A

His
H eterogeneity differs between the 

wet and dry periods at each habitat 
type

ANOVA A

Hu Com plexity differs between the wet 
and dry periods at each habitat type

A NOVA A

Hu
Heterogeneity differs between the 
wet and dry periods between the 

habitat types
ANOVA A

Hu
Com plexity differs between the wet 
and dry periods between the habitat 

types
ANOVA A

‘Rejected for sand (all sites), sand (dry sites).
2Accepted for sand (all sites), sand (w et sites), steppe (all sites, wet sites, dry sites).
3Rejected for sand (dry sites), steppe (dry sites).
4Accepted for sand (all sites, w et sites, dry sites), steppe (all sites, wet sites), garigue (all sites, 
dry sites).
See Section 7.1.2 for discussion o f  reasons for 1 to 4.
5The CV is used to assess variation o f  heterogeneity and com plexity from sites. The analysis 
does not enable significance testing  and so, strictly, this is not a formal statistical testing o f  the 
hypotheses. The decision to accept/reject the hypotheses is based on the values o f  CV for the 
habitat types (see Tables 7.1 to  7.8, and 7.13 to 7.15, and text for further details).
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7.2. Discussion

7.2.1. The number of species, abundances and diversity

The data from Part Two of this study were collected to determine the effects of 

habitat structure and scale on the diversities of land molluscs (Section 1.5) using 

sampling methods and scales that differed from those used in Part One (Sections 

3.5.1 and 3.5.2) where the sampling aim was to maximize species inventories at 

sites. As a result comparisons cannot be made between the species data from 

Parts One and Two, nor to those from other studies that have sampled plots of 

similar size to those of Part Two (e.g. Tattersfield, 1996; Cameron et al., 2003; 

Lange and Mwinzi, 2003). These other studies have mostly sampled molluscs 

over the entire area of the plots, generally of 1600m2. In this study an area of 

20m2 was sampled for each 40x40m site, representing 1.25% of the total area of 

the site (Chiarucci et al., 2003), and 1.25% of the total area sampled in other 

studies. Furthermore, soil (generally 4-5 litres) was collected from sites in 

studies that aim to maximize species inventories (Section 3.5.2, Table 3.4), 

whereas soil was not collected from sites in Part Two of this study.

7.2.2. Heterogeneity and complexity

Increased heterogeneity and complexity are associated with a higher number of 

species, but not with higher species abundances. Recent work with algal fronds 

and gastropod assemblages (Kelaher, 2003b), and amphipods in Australian 

rocky shores (Schreider et al., 2003) have shown no, or negative, associations 

between complexity and the number of species and abundances.

By determining the number of species, heterogeneity and complexity are 

also determinants of community composition (Walla et al., 2004). The increase 

in number of species with higher heterogeneity and complexity support other
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studies that have demonstrated this relationship for other taxa including birds 

(Hurlbert, 2004), marine macroinvertebrates (Edgara et al., 1994), copepods 

(Hicks, 1980), marine gastropods (Jones and Boulding, 1999), freshwater 

macroinvertebrates (Buss et al., 2004) and marine benthic communities (Jacobi 

and Langevin, 1996). Recent studies of Mediterranean isopods have shown that 

the number of species is proportional to habitat heterogeneity, and may also 

affect community structure (Gentile and Argano, 2005).

There is greater variation in heterogeneity than complexity at the 

habitats indicating that sites of the same habitat types vary in how many 

different types of structure they include, but that there is less variation between 

sites in the quantity of overall structure these represent. Variation in 

heterogeneity is not correlated to variation in complexity, indicating that some 

types of structure may contribute to variation in complexity to a lesser or greater 

degree at some habitats than others. Vegetation, for example, may contribute 

more to variation in complexity than quantity of rocks. Biotic variables, such as 

vegetation and leaf litter, may therefore increase the inherent variability in 

habitats more than abiotic variables such as rocks and stones.

7.2.2.1. The habitats

Thirty-nine species were recorded from steppe habitat sites, 39 from garigue 

habitat sites and 17 species from sand habitat sites (Appendix 10). Sand habitats, 

therefore, have less than 50% of the number of species that steppe and garigue 

habitats have, and lower species diversity. The species present at sand sites 

include those that constitute the Sand malacofaunal group identified in Part One 

(Section 4.2.2.2).
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Both heterogeneity and complexity increase from sand through to steppe 

to garigue. Sand is the least heterogeneous and least complex habitat, and has 

greatest variation in heterogeneity, but least variation in complexity. 

Complexity is related to resource availability (e.g. food and shelter resources) 

and this habitat may be more predictable in terms of providing resources for 

land molluscs. In addition, the decrease in available resource types in this 

habitat, in comparison to steppe and garigue, may result in species that are 

better adapted to using them out-competing those that are less well adapted 

This may partly explain the high abundances of some of the species that occur 

(see below).

In steppe and garigue there is less variation in heterogeneity, but more 

variation in complexity. This is the opposite of the finding for sand and 

indicates that steppe and garigue habitats have less variation in the number of 

resources they provide to land molluscs, but that the quantity of these resources 

is more variable and thus less predictable. Such habitats may support more 

species (May, 1984; Schopf and Ivany, 1998), and this may explain why there 

are more species and higher diversities in steppe and garigue than in sand.

Sand habitats provide less habitat structure than either steppe or garigue 

habitats. This probably limits the number of species found. Some species, such 

as C. acuta, X. apicina and T. pisana, whilst present in steppe and garigue, are 

principally associated with sand habitats. Although sand habitats have less 

species and lower diversity than steppe and garigue habitats, species abundances 

are generally higher than in the other habitats. Three possible explanations are:

(1) that species such as T. pisana and C. acuta may have adaptations that 

allow them to use this habitat type efficiently (Arad and Arivi, 1998; Arad et al.,
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1993; Kempster and Charwat, 2003). These two species aestivate on vegetation 

and other habitat structures during the dry period where aggregations, or ‘herds’ 

of snails may include both species, with C. acuta occupying spaces between the 

shells of T. pisana.

Snails in aestivation are in a period of temporal refuge from external 

conditions that buffers them against disturbance (Giokas et al., 2007, and see 

Widenfalk and Solbreck (2005) for a similar situation with gall midge larvae in 

soil). Aggregations may provide benefits to individuals at high population 

densities by diminishing risk of attack from enemies, or by providing a density- 

dependent spatial refuge against predators (Hunter, 2000; Rohlfs and 

Hoffmeister, 2004). There is evidence from this study that some individuals do 

not remain attached to the aggregates throughout the dry period. Observational 

data (unpublished) show that some individuals become active during late 

evening to early morning, and move both on vegetation and on the sand 

substrate. Furthermore, these individuals are generally those situated at the 

peripheries of aggregations. This strategy, that has not been reported before in 

southern Iberia, probably has cost-benefit implications (Calow, 1984; Krebs, 

1985) and may increase fitness (Christiansen, 1984; Sibly and Calow, 1985).

A different strategy for living in sand habitat is used by X. apicina. This 

species does not use the upper strata of vegetation. Instead it remains at ground 

level and in the 10cm stratum (unpublished data). It also forms aggregations, 

generally at the bases of plants, but remains active through most of the year, 

moving on vegetation and on the sand substrate during late evening to early 

morning.
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(2) the low number of species in this habitat type may decrease 

interspecific competition which, via competitive release, may account for the 

higher abundances of species present (Faeth, 1984; Grant and Schluter, 1984; 

Jutila and Grace, 2002). Evidence for competitive release in land mollusc 

communities is, however, limited (Barker, 2005). Hatziioannou et al. (1994) 

reported that Monacha cartusiana (Muller, 1774) in Greece showed competitive 

release in using a larger area of the habitat during winter when other species 

were hibernating. Barker and Mayhill (1999), on the other hand, did not find 

evidence for competitive release in communities from Pukeamaru scrublands 

and forests in New Zealand.

(3) Theba pisana and C. acuta may not depend on cover for predator 

avoidance, and so may avoid habitats with high structural complexity (Lima, 

1993; Elkin and Baker, 2000; Hill et al., 2004). Most studies in this area centre 

on vertebrates and insects, and Hill et al. (2004) showed that praying mantids 

selected habitat of less complexity which facilitated predator avoidance and 

foraging ability. There are many predators of land molluscs including insects, 

birds, reptiles and mammals (reviews in Barker, 2004) but no published data 

from southern Iberia exist. The author’s unpublished data show that insects, 

principally Lampyridae, predate on Sphincterochila spp., Xerosecta spp., Iberus 

spp., Theba spp., Otala spp., E. vermiculata, and C. aspersus. There is also 

evidence for predation from rodents and reptiles (unpublished data).

Steppe and garigue habitats include widespread species identified in Part 

One (and which constitute the Universal malacofaunal group, Section 4.2.2.2). 

The organization of species assemblages in communities result from two main 

processes: niche-assemblage (species adapted to niches determines organization,
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following deterministic processes) and dispersal-assembly (localized dispersal 

events and demographic stochasticity, following stochastic processes) rules 

(Jenkins and Buikema, 1998; Hubbell, 2001; Hardy and Sonke, 2004) and 

differences in numbers of species and their abundances in the different habitats 

may be partly related to these processes.

Data from this study do not support the More Individuals Hypothesis 

(Srivastava and Lawton, 1998) which states that areas with greater food 

resources support more individuals, and communities with more individuals 

include more species. Instead, the data largely support the Resource 

Specialization Hypothesis (Pianka, 2000) which suggests that as productivity 

increases (in the more complex steppe and garigue habitats), the number of 

resource types that can support specialist species (from this study examples 

include Oestophora spp., Ponentina subvirescens (Bellamy, 1839) and 

Psuedotachea litturata (Pfeiffer, 1851)) increases, and niche apportionment 

models that assume that the distribution and availability of niches in a habitat 

determine the relative abundance of species filling the niches (Tokeshi, 1999; 

Hutton and Giller, 2004; Stubbs and Wilson, 2004). Barker and Mayhill (1999), 

for example, have reported that mollusc diversity and abundance may be 

regulated by niche availability where sites of high vegetation diversity have 

higher fractal complexity and more microhabitat differentiation than sites of low 

vegetation diversity.

The presence of some species at all habitat types (e.g. C. lenticula, O. 

lactea, and C. aspersus) suggests that these have wide tolerances to habitat 

structural characteristics, microclimatic effects, predation risks and the food 

resources these habitats present. Very little is known of the food preferences of
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the majority of land snails (Speiser, 2001; Lydeard et al., 2004), although there 

is evidence that good quality food may be a limiting factor at certain times of 

the year for some species (Carter et al., 1979). Food availability may not be a 

determinant factor for species diversity between habitats because most land 

molluscs are microphagous, feed on live and decaying vegetation (Speiser, 

2001; Martin and Sommer, 2004), and occur in a range of different habitats 

where completely different food types are available. In addition, some species 

may eat a completely different diet at different places (Speiser, 2001).

7.2.2.2. The sampling periods

Variation in heterogeneity and complexity is greater in the wet than in the dry 

period, subjecting land molluscs to greater overall habitat structure variability 

during the most active parts of their life cycles, including periods of egg-laying 

and hatching. This may be an important determinant of the number of eggs 

produced and survival of individuals, and so of land mollusc abundances in 

these habitats.

Heterogeneity and complexity are generally higher in the wet period 

than in the dry period and increased plant growth in the wet season may partly 

explain this. More species were recorded in the wet period than in the dry period 

at all habitat types. During the wet period there is an increase in land mollusc 

activity, and therefore movement of individuals within the habitat space. This 

increases dispersion and so the probability of finding species in any given area. 

Inactivity during the dry period, on the other hand, results in aggregation of 

individuals in the habitat space, decreasing the probability that they will be 

detected by a sampling method that relies on random, or semi-random, quadrat 

sampling (Section 8.1). Spatial aggregation may occur even in homogeneous
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habitat patches (Bohan et al., 1997, 2000). This effect could be measured using 

a greater number of quadrats at the sites and analyzing spatial distribution 

(Section 8.5) during the wet and dry periods.

Abundances were higher in the wet period in sand and steppe habitats 

reflecting the increase in juvenile and sub-adult individuals (data not presented) 

from previous egg hatching events during the wet period. In the heterogeneous 

and complex garigue habitat there is a reverse in this trend, with abundances 

being higher in the dry, than the wet period. The ratio of abundance in wet:dry 

periods is markedly different for the three habitats (see Table 7.1 for data). The 

ratio for sand and steppe is 1.8 and 2.4, respectively, but 0.5 for garigue. 

Observational data from this study (not presented), as well as unpublished data, 

indicate that there are no differential activity patterns among species in garigue, 

in comparison to sand and steppe, during the wet and dry periods.

Possible explanations for the reverse trend in abundances between the 

garigue, and the sand and steppe habitats include: (1) the differential use of 

habitat components by species in the different habitats. Some species, for 

example, may be present in the soil/leaf litter during different parts of the year 

and, (2) predation on land molluscs in the habitats may follow different 

processes and dynamics, de Winter (1995), however, was not able to 

differentiate between wet and dry sites using species data from a rain forest in 

Gabon, western Africa. The differences found in species data from this study 

suggest that seasonality may be an important determinant factor of land mollusc 

diversity in southern Iberia.
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7.2.3. Habitat structure

7.2.3.1. Vegetation and plant stem widths

Plant communities in the Mediterranean region are highly diverse with high 

total and local species richness, and high spatial heterogeneity (Lavorel, 1999; 

Sternberg and Shoshany, 2001; Alados et al., 2004; Fernandez et al., 2004) and 

isolated patches of vegetation are a key element for community structure and 

dynamics in semi-arid ecosystems (Maestre and Cortina, 2005). The results 

from this study show that there is considerable variability in vegetation at sites, 

both in the height and coverage attained by plants, as well as in the variability in 

stem widths. Vegetation varies considerably in species composition, diversity, 

in the plant types represented (grass, herbaceous, shrub etc.) and in their 

components (stem, leaf etc. see Appendix 8), both within and between sites. 

Many studies have shown that plant communities determine the physical 

structure of the environment, providing the habitat template for the assembly of 

animal species in multi-trophic communities (Tews et al., 2004; Tschamtke and 

Hawkins, 2004). In this study vegetation comprises a significant proportion of 

the habitat structure at many sites (Section 7.1.2) and impacts significantly on 

number of species and their abundances (Section 7.2.3.2). Variation in plant 

structural components may influence movement and dispersion in habitats. 

Grasses, for example, have less variance than annuals and herbaceous species 

(assessed using stem widths, Section 7.1.5). Further research, however, is 

required to test this hypothesis.
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7.2.3.2. Habitat structure and principal structures

The data from this study show that the presence of some types, or components, 

of structure affects the number of species and abundances of land molluscs, 

independently of the total quantity of structure (i.e. of total complexity). These 

results support those of Beck (2000) who reported that the effects of 

heterogeneity on the number of species and abundances of rocky intertidal 

gastropods in Botany Bay, Australia, were independent of complexity.

Some components of habitat structure were positively associated with 

number of species and species abundances, whilst others were negatively 

associated with these. These associations were generally neither habitat nor 

sampling period specific, and components may have different effects (positive 

or negative) at different periods and in different habitats types. The results show 

that, although generalizations regarding the importance of habitat components 

for land molluscs (e.g. leaf litter, vegetation types) may hold across a range of 

habitats, there are nonetheless some differences among habitats. The results 

further suggest that the effects of habitat components on the number of species 

and abundances of land molluscs may be determined by both the habitat type 

and season.

Ground level components, such as leaf litter, shingle, stones and rocks 

are of particular importance to land molluscs (Walden, 1981; Luchtel and 

Deyrup-Olsen, 2001), and species such as F. folliculus and C. lenticula are 

mostly found in this part of the habitat, and often in high abundance in relation 

to other species. Rocks provide cover for many land molluscs and are associated 

with species not commonly found in other parts of the habitat (e.g. Cecilioides 

spp.).
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Large rocks may provide shelter for some species during the dry period 

when temperatures under small rocks, stones and on the ground surface can 

exceed 50°C (unpublished data); temperatures under embedded and large non

embedded rocks are lower than those on the ground surface, and moisture levels 

are higher. Species that are active on the vegetation during the wet period (e.g. 

Iberus spp., O. lactea and C. aspersus) are often only found under large rocks 

during the dry period (unpublished data), and F. folliculus and C. lenticula that 

are found under shingle and stones (see above) may shelter preferentially under 

large rocks when these are available. Recent work by Moreno-Rueda (2002, 

2006, 2007) in southern Iberia has shown that Iberus gualtieranus gualtieranus 

(Linnaeus, 1758) uses rock fissures for refuges and that its shell morphology 

may be adapted for easier access to these fissures. Rocks have also been 

reported to be a shelter requirement for snails in desert habitats (Dillon, 1980).

Land molluscs have poor dispersal abilities (Cook, 2001; Russell- 

Hunter, 1983; Section 8.4) that are affected by habitat factors such as type and 

height of vegetation, population densities and time of year (Greenwood, 1974; 

Cameron and Carter, 1979; Boag and Wishart, 1982; Cain, 1983; Cowie, 1984; 

Baker and Hawke, 1990) as well as types of rocky habitat (Baur and Baur, 

1994). Similar factors affect dispersal abilities in spiders and insects (Crist et 

al., 1992; Cartar and Real, 1997; McNett and Rypstra, 2000).

Land molluscs are dependent on features of habitat structure and these 

may be a limiting factor for many of these species in some habitats (see below). 

Shelter may only be limiting in the dry months, but this would still be expected 

to have effects on populations, and abundances, throughout the year (Stewart- 

Oaten and Murdoch, 1990). If some species are limited in this way then those
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species are expected to have lower abundances than species that are not limited. 

This may partly explain the higher abundances of species such as T. pisana in 

relation to C. aspersus where they occur together, and the finding that, in 

general, there is a positive association with habitat heterogeneity and 

complexity with number of species, but not with their abundances.

Other Mediterranean land molluscs, especially slugs, are limited by 

conditions during the dry period and may only be found during the wet period 

(Cameron et a l, 2003; Section 3.5.1), remaining buried in soil, or under large 

rocks, during the dry period. Temporal scale has been shown to affect the types 

of factors that influence collembolan communities (which have similarly low 

dispersal abilities) in tree stumps, and as the temporal scale is reduced from an 

annual to a seasonal one, micro-habitat, rather than macro-habitat factors 

become determinant (Setala et al, 1995). In addition, Ritchie and Tilman (1992, 

1993) showed that grasshoppers exhibited interspecific competition only if plant 

biomass was reduced significantly. These facts suggest that intra- and 

interspecific competition in land molluscs in these habitats is not for food 

resources (which are in abundance) but for one, or very few, physical structures 

(heterogeneity types) of the habitat (Baur and Baur, 1990). Experimental work 

involving the provision of refugia (artificial or natural) in delimited areas of 

habitat space would provide data on the dependence of land molluscs on key 

components of habitat structure (such as rocks and logs). These experiments 

would require temporal and spatial aspects of the habitat systems to be 

controlled and would represent a novel approach in determining land mollusc 

diversity-habitat structural effects to be assessed.
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Intra- and interspecific competition are, however, very difficult to 

demonstrate (Connell, 1980; Chesson and Warner, 1981; Strong, 1984; Wise, 

1984; Atkinson and Shorrocks, 1991; Palmer, 1992; Crowley et al., 2005), and 

there is controversy on their relative importance in structuring communities 

(McIntosh, 1985; Kitching, 1986; Underwood, 1986; Arthur, 1987). The 

evidence for competition as a factor regulating land mollusc communities is 

weak and generally inconclusive (Mordan, 1977; Solem, 1984b; Cowie and 

Jones, 1987; Nekola and Smith, 1999). Cameron et al. (2000), for example, 

indicate that evidence for competition in limiting local diversity in Aegean land 

snails is sparse. Evidence for competition has also been found to be 

inconclusive for other invertebrate taxa (Horton and Wise, 1983; Wise, 1984). 

Ward and Lubbin (1993), for example, considered competition not to be an 

important factor in habitat selection by desert spiders.

No competition was detected between endemic and non-endemic 

mollusc faunas in Madeira (Cook, 1984), the author suggesting that non

endemics add to the number of species already present. Simberloff (1981) 

showed that introduced species generally did not produce recorded change in 

community persistence, although there is evidence that Cernuella (Cernuella) 

virgata (Da Costa, 1778) may be excluded by T. pisana in coastal sites in South 

Australia (Smallridge and Kirby, 1988).

Gittenberger (1984) suggested that lack of competition in the ancestral 

taxa of Chondrina has allowed species migration. Barker and Mayhill (1999), 

however, suggest that the relationship between vegetation diversity and species 

diversity in northeastern New Zealand forests may indicate that assemblages are 

structured around niche partitioning among competing species (Diamond, 1975;
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Stubbs and Wilson, 2004), but their evidence is circumstantial. Millar and Waite 

(1999) found a negative correlation between diversity and abundance in an 

English wood, and suggested that as abundance increases the community 

becomes dominated by a limited number of species, and that the decrease in 

diversity might result from competition. There is some evidence for intra- and 

interspecific competition for Cepaea (Tilling 1985a, 1985b).

There are very few reported cases of competition in Mediterranean land 

molluscs. Magnin (1993) and Labaune and Magnin (2001) demonstrated 

competition between Trochoidea geyeri (Soos, 1926) and Candidula unifasciata 

(Poiret, 1801) along altitudinal gradients in southeastern France, and Hausdorf

(2001) showed competition effects between vitrinids and limacoid slugs.

The lack of, or reduced effects of, competition have raised the possibility 

that there may be vacant niches (Lawton, 1984) in land mollusc faunas. 

Cameron (1988) suggested that incomplete convergence of forest snail faunas 

from northwest Europe and British Columbia may indicate the existence of 

empty niches. He also reported that all niches seemed not to be filled in the 

fauna of the Madeiran archipelago (Cameron, 1992). More recently, Barker 

(2005) reported that lack of constancy in richness in most bioregions in New 

Zealand suggests either that not all species have yet reached all suitable sites, or 

that there is marked spatial heterogeneity in environmental quality and thus 

availability of niches. He concluded that New Zealand land snails are not at 

equilibrium with the contemporary environment and that spatial heterogeneity 

in the landscape, coupled with as yet incomplete saturation of suitable niches, 

contributes to the patterns of highly varied site occupancy and turnover in 

species richness.
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A vacant niche signifies that all points on the resource axis of the 

resource utilization function (MacArthur, 1968) are available for use, but that 

not all are used (Arthur, 1987). To identify a niche as vacant, it is necessary to 

know that the niche could potentially sustain a population, and evidence for 

vacant niches can mostly be provided by comparisons with analogous 

communities (Srivastava et al., 1997). Local communities and patches may be 

unsaturated, saturated or super-saturated with species; however, species range 

boundaries settle to a pattern of geographical overlap and many species are 

constrained well within their fundamental niche (Brown et al., 1996; Whittaker 

et al., 2001). There may be significant underestimation in the number of vacant 

niches in many ecological communities (Srivastava et al., 1997) but much more 

data are required to determine if there are vacant niches in land mollusc faunas 

in southern Iberia.

The presence of rocks was positively associated with number of species 

at sand and steppe, but not garigue habitats. Lack of association in garigue is 

attributed to the rocks being mostly embedded, or forming a part of rocky 

outcrops (data not presented) in many of the quadrats in this habitat (in contrast 

to rocks at sand and steppe that were mostly not embedded). This results in 

molluscs probably not being able to use the areas under rocks, and also prevents 

sampling under these rocks. The lack of association may also be because 

structural components are not limiting to diversity in garigue to the same extent 

as in sand and steppe. Further evidence for this is that leaf litter is not associated 

with number of species at garigue, but is at sand and steppe.

Other studies have reported positive associations with diversity and 

quantity of litter for land molluscs (Locasciulli and Boag, 1987; Barker and
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Mayhill, 1999; Millar and Waite, 1999, 2002; Kappes, 2005; Kappes et al., 

2006) and other taxa (Mazia et al., 2006). The distributional patterns of 

molluscs in litter are complex (Locasciulli and Boag, 1987; Barker and Mayhill, 

1999; Barker, 2005) and detailed sampling of litter would be required to 

elucidate more fully relationships between land molluscs and litter (Kuznik 

1997) (Section 8.5).

Virtually all terrestrial systems are founded on soil (Fitter, 2005) and 

fauna is an important part of soil environments (Cortet et al., 1999; Salmon et 

al., in press). Many studies have demonstrated the importance of soil in 

determining diversity and structuring the communities of many taxa (Xiong and 

Nilsson, 1999; Fioretto et al., 2003; Larcheveque et al., 2005; Johnson et al., 

2006; Kappes et al., 2006; Decaens et al., 2006) including land molluscs 

(Cameron, 1986; Solymos, 1996; Solymos and Nagy, 1997; Kiss and Magnin, 

2003). Studies from Iberia have also demonstrated the importance of soil in 

determining diversity and structuring land mollusc communities (Hermida et al., 

1995; Ondina et al., 1995, 2004). In this study, soil was negatively associated 

with number of species at sand and steppe, and no positive associations were 

found at any of the habitats.

Soil was considered to be a component of habitat structure, and quadrats 

with large quantities of soil (mostly from sand and steppe sites) had lower 

heterogeneity and complexity (Appendix 13). Other than surface searching, soil 

was not sieved for land molluscs. Based on findings for soil sampling from Part 

One, soil from sites in Part Two would have contained individuals that were not 

recorded in this study, especially in steppe and garigue where some of the 

smaller species that were recorded on the ground and lower vegetation layers
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(e.g. F. folliculus, C. lenticula and X  conspurcata) are also present in soil 

(unpublished data). Soil sampling would allow relationships between soil and 

land molluscs to be assessed, and this type of sampling would therefore be an 

improvement to this study (Section 8.5).

Grasses and annuals in the garigue habitat are associated with number of 

species and abundances, indicating that these may be important resources to 

land molluscs in habitat that is vegetationally complex but that has many plant 

species that may not be edible. Heller (1988) showed that in semi-arid 

environments snails prefer annual plant debris over perennial plants which are 

difficult to eat or digest. The data from this study, and in particular those from 

garigue habitat, support this and show that, in general, grasses and annuals are 

of particular importance to land molluscs but that the other plant types are less 

so. This suggests that some of the plant types, such as the annuals and grasses, 

may be preferred food items over shrubs and some herbaceous plants that 

contain high levels of ethereal oils, released to reduce water loss and minimize 

herbivory (Polunin and Walters, 1985). Compounds in plant tissues including 

terpenoids, phenolics and caffeic acid esters have been shown to be herbivory 

deterrents for many molluscs (Rice et a l , 1978; Harbome, 1982).

The present study also indicates that vegetation may provide resources to 

land molluscs that are used in different ways in the three habitats. In all habitats, 

shrubs and/or trees are negatively associated with number of species and 

abundances, supporting the suggestion that these may be non-edible by land 

molluscs (see above). Herbaceous plants, most of which are also probably 

inedible, are negatively associated with number of species only in garigue. In 

sand and steppe, however, they are positively associated with both number of
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species and abundances. This plant type provides the principal sites for 

aestivation for species including T. pisana and C. acuta in these habitats, and 

these species occur at much higher densities in sand and steppe than in garigue. 

The results suggest that this plant type is important in providing shelter (during 

aestivation) rather than as a food resource, and support findings by Kiss and 

Magnin (2003) that non-edible plants provide litter and shelter for 

Mediterranean snails.

According to Boycott (1929, 1934), in general neither quantity nor 

quality of a plant food source influences snail distribution. Similarly, Russell- 

Hunter (1964) suggested that vegetation affects the distribution of land molluscs 

through its modification of microclimate (Section 5.3), but that land molluscs 

are not associated with particular plant species as food plants. Peake (1978) has 

also stated there is no evidence that palatable vegetation is a limiting factor for 

land molluscs. Although it is not clear if land mollusc populations are food 

limited, results from this and other studies (Carter et a l , 1979; Baur and Baur, 

1990; Speiser, 2001) suggest they may be in some circumstances.

Structures, such as rock, that may be more important in affecting number 

of species and abundances than others are termed 4principal structures'. Tews et 

al. (2004) have recently introduced the concept of ‘keystone structures’ that is 

almost analogous to the ‘principal structures’ proposed here. They define a 

keystone structure as: ‘...a distinct spatial structure providing resources, 

shelter or ‘goods and services’ crucial for other species.... For example, dead 

wood in mixed beech-spruce forests may be a keystone structure.’ They report 

strong correlations of beetle diversity with the within-habitat heterogeneity of 

vegetation structure. Discontinuities in species-accumulation curves are used to
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indicate the presence of keystone structures, which requires a continuous 

gradient (measured along a transect). In the method used in this study partial 

correlations are used with other variables to identify principal structures, 

removing the need to use transects (as in Tews et a l , 2004) and so allowing the 

identification of these structures from quadrat data.

There are currently insufficient data to ascribe conclusively the causes of 

observed spatial heterogeneity in land mollusc communities in southern Iberia. 

Both environmental and biotic factors are, however, probably important as 

proposed by the two main models that describe the spatial heterogeneity 

observed in plant and animal communities. These are the environmental control 

model, where environmental variables cause variation in presence or abundance 

of organisms, and the biotic control model, where links among organisms such 

as competition and predation structure communities (Borcard et al., 1992).

7.2.3.3. Measures of habitat diversity

The positive correlation between heterogeneity and complexity at all levels of 

grain suggests that habitat diversity indices may be used to assess the effects of 

habitat structure on number of species and species diversity. This is because 

heterogeneity and complexity comprise the two components of habitat diversity 

indices (in the same way that number of species and abundances comprise the 

two components of species diversity indices). Heterogeneity and complexity are 

two of the axes of McCoy and Bell’s (1991) 3-dimensional habitat structure 

model (the other is scale, Section 5.3), and using habitat diversity indices 

reduces the model to two dimensions (habitat diversity and scale). The data 

from this study support this use only for lm (quadrat). The results indicate that
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there may be a scale-dependent relationship that may determine the use of 

habitat diversity indices.

7.2.4. Scale effects

A major consideration in assessing the relationship between habitat 

structure and the number of species and abundances is the scale at which this 

relationship is measured (McCoy and Bell, 1991; Dutilleul, 1993; Miguel et al., 

2005). Although there are recently published studies on land mollusc diversity 

from delimited sampling areas (Section 5.2) these have not specifically 

considered the data from the same locations at varying scales.

In a detailed assessment of the number of species in Cretan maquis 

undertaken at the scales of lxlkm  and 20x20m (the site and plots within it) 

Cameron et al. (2003) highlighted the need for this work: ‘... our results from 

Cretan maquis show a very high level o f homogeneity between plots; the grain 

o f the environment is such that most, i f  not all, significant elements o f the 

habitat can be found in a single plot and, when they are present, they are 

occupied. We have no doubt, though it requires verification, that at much 

smaller scales this would cease to apply, and there would be much greater 

variation in richness and composition between plots. ’

Animal species respond to their environment at different spatial scales 

(Ray and Hastings, 1996; Gehring and Swilhart, 2003) and to study the response 

of animals to their habitat, variables need to be measured at a scale appropriate 

for the animal and phenomena under study (Waide et al., 1999; Ludwig et al., 

2000; Holland et al., 2004). Species characteristics, such as body size and 

dispersal in the habitat, have been used to explain the scale at which species 

respond to their environments and if the habitat is not adequately defined from
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the organism’s viewpoint any detected relationships between the organism and 

the habitat are weakened (With and Crist, 1996; Holland et al., 2005).

Using inappropriate scales can cause the researcher to arrive at the 

wrong conclusions about the relationships between species and habitat (Hanski, 

1987). Pearce (2002), for example, reported a positive correlation between land 

snail diversity and patch size from eastern USA. This correlation was lost on 

adding further sites (Pearce, 2003) indicating that land snails were not 

conforming to island biogeography and species-area theories (MacArthur and 

Wilson, 1967; MacArthur, 1972; Cox and Moore, 1985; Section 5.2). Pearce

(2002) reports that other studies have similarly not found positive correlations 

and also provides the most probable reason for his lack of positive correlations, 

and by extrapolation, those of others, (Pearce, 2003). These reasons centre on 

scale, with Pearce’s patches of 300 hectares probably being too large to assess 

the response of land snails to patch size and fragmentation (Bevers and Flather, 

1999; Krawchuck and Taylor, 2003; Chust et al., 2004).

This study’s results indicate that relationships between heterogeneity, 

complexity, number of species and species diversity are scale-dependent. Most

of the statistically significant relationships between these occur at the smallest

0  0grain level (lm  ). Increasing the grain to 5m and then 20m results in these 

relationships being lost. Relationships between land molluscs and habitat 

structure are therefore only detectable at this small scale and this relates to the 

way molluscs perceive and operate in the habitat (Section 8.4). There is 

evidence that ecological processes among other invertebrate taxa may only be 

detectable at very small scales and relationships may be lost if scale is increased 

(Mazia et al., 2006). Heads and Lawton (1983), for example, found that a leaf-
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miner parasitoid aggregated strongly in areas of high host density and that the 

effects of spatially density-dependent mortality of the host were present at 

scales of 0.03m , but was not detectable at lm  .

Most ecosystems exhibit extreme heterogeneity in environmental 

conditions and biotic communities at multiple spatial scales (Heino et al., 2004) 

and recent studies have shown that extreme environmental heterogeneity exists 

across gradients, such as intertidal gradients, previously assumed to be relatively 

monotonic (Sagarin et al., 2006). The findings from this study suggest that 

assessing land mollusc diversity/habitat structure relationships needs to be 

carried out at scales that are far smaller than those usually employed (Cameron 

et al., 2003).

7.2.4.1. Presence/absence of molluscs in quadrats, plots and sites

Molluscs were present at all sites and at most of the plots at all sites. Presence at 

quadrats ranged from 74.5 to 82.5% (Table 7.17) indicating that molluscs are 

dispersed throughout most of the habitat. Sampling for molluscs was efficacious 

(Section 6.5) and the assumption is that the non-detection of molluscs in some 

quadrats indicates absence. Because leaf litter and soil were not sieved for 

specimens it is possible that there may have been specimens in this part of the 

habitat that were not detected. This would be expected to increase the number of 

quadrats with the presence of molluscs, and represents a limitation of the 

sampling method.

There were more quadrats and plots at which molluscs were present in 

sand than in steppe, and this may be because species such as T. pisana and C. 

acuta, may be more widely dispersed, and have higher abundances, in sand than 

in steppe. In garigue there were more species than in sand or steppe, and the
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presence of molluscs at a greater number of quadrats may reflect this higher 

richness as well as wider dispersion of molluscs in the habitat.

The results are similar for wet and dry periods at each habitat indicating 

that the habitats are being used in a similar way (as regards occupation) in both 

periods. This interpretation may be too simplistic, however, because abundances 

during the two periods at the habitats suggest that there is differential use of 

habitat components during the year (Sections 1.2.22 and 7.2.3.2), at least in 

garigue (where abundances were higher in the dry period). Dispersion in the 

habitats, related to random and non-random use of habitat components and 

aestivation sites, cannot be detected by assessing the presence of individuals in 

quadrats and plots. This is because finding even one individual would classify 

the quadrat or plot as having the presence of molluscs.

The utilisation of habitat structure and dispersion of molluscs in the 

habitat space can be assessed by mapping the positions of individuals in the 

quadrats, calculating dispersion indices in a similar way to dispersion in larger 

areas and determining temporal change in these (Brower et al., 1989; Cox, 

1990; Menez, 2001). This is a research priority in Mediterranean habitats where 

different conditions in wet and dry periods of the year may determine the use of 

habitat structure by molluscs.

7.2.5. Estimation of the number of species and sampling issues

Chao 1 and 2 both gave estimates that were close to the observed number of 

species at the sites, indicating that the sampling method used was efficacious. 

The positive correlation between the two measures shows that either could be 

used for the type of data from this study.
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The species estimators could not be used for sites from Part One 

(Section 4.1.1) because the estimators assume homogeneity amongst the 

samples (i.e. site similarities) (Section 4.1.1). An improvement to the approach 

used in this study would be to sample a number of sites (of the size used in Part 

One) of different habitat types across southern Iberia, and to use the species 

estimators. Comparing the findings with those using the site sizes and layouts 

from Part Two would allow the assessment of both sampling efficacy and 

estimator efficacy at two very different scales of measurement.

The accumulation curves suggest that full species inventories may not 

have been achieved at some sites. This finding mostly applies to sites that have 

more species (in general these were garigue sites). This, in conjunction with the 

results for the species estimators, suggests that a higher number of quadrats are 

needed to sample some of these sites adequately (Anne Chao, per s. com.). 

Although each individual quadrat may be sampled adequately (Section 6.5), this 

study’s findings suggest that the number of quadrats required to sample an area 

effectively is dependent on how structurally complex the habitat is, and how 

dispersed the individuals are in the habitat.

7.2.6. Species-area effects

The increase in the number of species with increase in area sampled (i.e. grain 

level) supports the species-area model (MacArthur and Wilson, 1967; 

Rosenzweig, 1995; Section 5.2) and is an example of the species-area 

relationship with nested sampling areas of increasing size (Rosenzweig, 1995; 

Scheiner 2003; Crist and Veech, 2006). The number of species, abundances and 

species diversity increased with increasing area, while heterogeneity and 

complexity were uncorrelated with these, except at the lm2 grain level.
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Furthermore, complexity increased with increasing area, while heterogeneity did 

not. These findings indicate that heterogeneity and complexity cannot explain 

the increase in number of species with increasing area and thus the habitat 

diversity hypothesis is rejected as an explanation for the species-area relations 

from this study. These results support those of Nilsson et al. (1988) who found 

that in Swedish islands the number of land mollusc species increased with area, 

but that habitat diversity was uncorrelated with area.

The increase in abundances with increasing area sampled supports the 

passive sampling model (Section 5.2), the increase in number of species with 

increasing area in this study may result from samples that contain greater 

numbers of individuals. The species-area relations from this study, therefore, are 

explained by the area per se hypothesis (Section 5.2), and not the habitat 

diversity hypothesis (see above). This result reflects a fundamental pattern in 

nature where larger samples, whether of molecules, regions of the universe or 

ecological communities, contain a greater diversity of their fundamental 

elements (Lomolino and Weiser, 2001).

7.3. Summary of Part Two

Sixty sites, each 1600m2, were sampled in southern Iberia. 20 sites were located 

in each of three habitat types (sand, steppe and garigue), and for each habitat 

type ten sites were sampled in the wet period, and ten sites in the dry period. A 

stratified, nested design was used at each site to select four plots each of 25m2, 

at which five quadrats of lm2 were sampled; diversities and habitat structure 

were assessed at lm2, 5m2 and 20m2. There was a mean number of six species 

at the sites (lower 95% Cl: 5.26; upper 95% Cl: 6.74) with a mean total species 

abundance of 358.67 (lower 95% Cl: 247.26; upper 95% Cl: 470.07), a mean

243



Part Two, Chapter 7. Results and Discussion

Shannon diversity of 1.443 (lower 95% Cl: 1.282; upper 95% Cl: 1.603) and a 

mean Simpson’s diversity of 0.516 (lower 95% Cl: 0.464; upper 95% Cl:

0.568). (Table 7.1, Figure 7.1).

There were differences in the number of species, abundances and 

diversities between habitats and between the wet and dry periods at each habitat. 

The number of species was lowest in sand and highest in garigue; abundances 

were lowest in steppe and highest in sand, whilst diversity was lowest in sand 

and highest in garigue. Increasing heterogeneity and complexity increased the 

number of species, but not their abundances. Components of habitat structure 

affected the number of species and abundances independently of the total 

complexity.

The number of species, abundances, and diversity increased with 

increasing scale, while heterogeneity and complexity were uncorrelated with 

these, except at the lm2 grain level. Relationships between heterogeneity, 

complexity, number of species and species diversity were scale-dependent with 

most of the statistically significant relationships between these occurring at lm2. 

Heterogeneity and complexity were greater in the wet period than the dry 

period, and there were significant differences in heterogeneity and complexity 

for all habitat types; the habitat types order from lowest to highest for these as: 

(1) sand, (2) steppe, (3) garigue.

The increase in abundances with increasing area sampled supports the 

passive sampling model with the increase in number of species with increasing 

area resulting from samples that contain greater numbers of individuals. These 

species-area relations support the area per se hypothesis.
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CHAPTER 8. GENERAL DISCUSSION

Iberia is one of the regions in Europe with highest species diversity and 

endemism (Belles, 1990; Ramos et al., 2001). Its varied topography has 

provided suitable habitats through several glacial cycles allowing the divergence 

and accumulation of genomes (Knowles, 2001; Branco et a l, 2002). Southern 

Iberia was not covered by the Pleistocene ice sheets (Narciso et al., 2006) and 

was a main refugium during this epoch (Carrion et al., 2003; Habel et al., 2005). 

There has, therefore, been a longer time period in southern Iberia, in relation to 

other regions such as mid- and northern Europe, for biotic communities to 

develop, for the promotion of speciation and for species diversity to increase 

(Knowles, 2001; Ribera and Vogler, 2004).

This study’s findings support this interpretation of Iberia and show high 

regional diversity for land molluscs (Gamma diversity of 4.05), a high degree of 

differentiation, or turnover in species composition (Beta diversity: 7.77), and a 

mean number of species at sites (12.1; lower 95% Cl: 11.2; upper 95% Cl: 13.0) 

in the mid-range by global standards (Cameron et al., 2000). The malacofauna 

of southern Iberia, in being diverse with many endemics, shares characteristics 

with other Iberian faunas, with Mediterranean faunas in general, and with some 

eastern European faunas (Wells and Chatfield, 1992, 1995).

Relationships between heterogeneity, complexity, number of species and 

species diversity are scale-dependent. Most of the statistically significant 

relationships recorded in this study occur at the smallest grain level (lm2). 

Increasing the grain to 5m2 and 20m2 results in these relationships being lost. 

Relationships between land molluscs and habitat structure are only detectable at 

this smallest scale and this relates to how molluscs perceive and operate in the
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habitat. There is evidence that ecological processes among other invertebrate 

taxa may also only be detectable at very small scales and relationships may be 

lost if scale is increased (Mazia et al., 2006).

There may be two principal levels at which explanatory factors for the 

distribution and diversity of land molluscs in southern Iberia may be sought: 

large-scale factors that include climate, habitat types as well as colonization 

histories of habitats, and small-scale factors such as habitat heterogeneity and 

complexity. These may broadly be considered as regional and local factors 

(Griffiths, 1999; Gaston, 2000; Whittaker et al., 2001; Herzog and Kessler,

2006), respectively. Any model explaining distribution and diversity would 

need to account for both these factors. The effects of these two factors have 

received considerable attention (Ricklefs, 1987; Borcard et al., 1992; Cornell 

and Lawton, 1992; Hugueny and Cornell, 2000; Arita and Rodriguez, 2002) and 

two main, and related, conclusions have been that the availability of suitable 

habitats at the regional scale determines local species abundances (Irmler and 

Hoemes, 2003), and that focusing only on local processes might not reflect 

patterns and processes underlying diversity relationships in communities 

(Cardinale et al., 2004).

8.1. Sampling issues

Different studies have different aims, and sampling methods differ depending 

on these aims (Magurran, 2004; Cameron and Pokryszko, 2005). In Part One the 

main aims of this study were to provide a preliminary biogeographical survey of 

the land molluscs of southern Iberia, and to determine the factors that affect 

their distribution and diversities in the region (Sections 1.5, 3.4 and 3.5). In Part 

Two the aims were to assess the effects of habitat heterogeneity and complexity
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on the number of species and species abundances at three scales, in three habitat 

types, and to determine whether these effects are scale-dependent and habitat- 

specific (Sections 1.5, 6.4 and 6.5).

The strength and nature of species-environment relationships, for 

communities as well as for individual species, can differ significantly between 

analyses using presence/absence versus abundance data (Cushman and McGrail, 

2004). In this study abundance data have generally been used for assessing the 

relationships between species and environmental data, both for the 

biogeographical and habitat structure analyses.

In Part One sites were selected to encompass as much habitat variation 

as possible (Section 3.2), and sampled using direct search and soil/litter 

collection techniques (Sections 3.5.1, 3.5.2). Cameron and Pokryszko (2005) 

advocate the use of both direct search and litter sampling, and Emberton et al. 

(1996) reported that direct searching yielded about 75% of total species in a 

plot. Cameron and Pokryszko (2005) concluded that for greatest efficiency in 

assessing the number of species, direct sampling should be carried out in 

conjunction with litter and soil sample collection. In 1km sites up to 20% of 

species may be missed if soil and litter sampling are not included (Menez,

2007). Part Two aims required random assignment of quadrats at sites (Section 

6.4) with associated detailed sampling of the quadrats for land molluscs and the 

recording of environmental variables (Sections 6.5 and 6.6).

This study used both main approaches for sampling land molluscs: that 

for maximizing species inventories, and that for assessing effects of 

environmental variables on diversity. For either approach to provide reliable 

ecological information, sampling must be as rigorous as possible (Bishop, 1977;
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Menez 2001, 2002a). Inefficient sampling will result in underestimates of local 

richness, even in favourable habitats (Cameron et al., 2006). It is, however, 

almost impossible to census a community completely. Instead samples are taken 

and some form of extrapolation is carried out to estimate the number of 

unobserved species (O’Hara, 2005). Absence of species in samples does not 

imply they are not present in the locality (Walden, 1981), and in some cases a 

definitive answer as to whether or not an abnormally low diversity is real can 

only be given after extended sampling, in some cases over several years. Single

visit surveys cannot give complete species inventories (Cameron and 

Pokryszko, 2005) and this limitation is recognized in this study (Section 8.5).

Rarity of species needs to be considered in relation to sampling methods. 

Sampling macroinvertebrates reveals only a part of the community at a site 

because species present in low abundance have a lower chance of being sampled 

than species with high abundance (Nijboer and Schmidt-Kloiber, 2004). The 

number of individuals, and relation between this and number of species, are 

important in determining the accuracy of species’ estimates (Cameron and 

Pokryszko, 2005). Hayek and Buzas (1997) recommend a minimum of 200-500 

individuals, and Cameron and Pokryszko (2005) a ratio of individuals to species 

of about 10:1. These recommendations cannot always be met, especially at low- 

density sites. Caution is therefore necessary in the interpretation of diversity in 

these situations, with the probability of failing to detect a species increasing as 

densities fall (Cameron, 1986). This is illustrated by data from tropical 

rainforests where the number of species tends to be high but difficult to assess 

because of low densities (Emberton et al., 1996).
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Collecting effort and sampling error (de Winter and Gittenberger, 1998; 

Walther and Moore, 2005) are two other main factors that impact on the 

accuracy of inventories and information about variation in samples. Emberton et 

al. (1997), for example, reported that much of the variation in samples from 

Tanzania seemed to be the effect of collecting effort. Sampling error, defined by 

Cameron and Pokryszko (2005) as the failure to find a species in a quadrat, site 

or area when it is actually present, may obscure patterns among species (Swan, 

1970).

The advantages of quadrat (as used in Part Two) over qualitative 

sampling for land molluscs far outweigh the extra time involved (Bishop, 1977), 

with quadrat sampling providing information about spatial dispersion and 

allowing precision levels to be set on population estimates in the measurement 

of inter-site differences. Quadrat sampling gives unbiased estimates of density 

and occurrence, and data from different sites can be compared. It is, however, 

inadequate for assessments of species inventories (Emberton, 1995b), for two 

main reasons (see Cameron and Pokryszko, 2005): (1) species abundances and 

distributions make quantitative sampling inefficient (in particular for large 

species, and for slugs) and, (2) seasonal variation in densities and 

microdistribution of species (in particular of small to medium-sized species). 

Including fresh dead shells can reduce the problems of using quadrat and 

volume methods, by increasing sample size and overcoming some of the 

seasonal variation (Cameron and Pokryszko, 2005). Very little is known about 

shell degradation rates and the factors that affect these (Section 4.5.3). The 

findings of this study, as well as those of Menez (2001), support the use of 

methods from Part One for inventory work.
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Sampling error (see above) may be small when quadrats are searched 

exhaustively (Cameron and Pokryszko, 2005), as in this study. When an 

unbiased sample is taken from a community where individuals are randomly 

distributed the chances of finding or missing a species are determined by the 

absolute size of the sample, and the relative frequency of that species 

(Magurran, 2004; Cameron and Pokryszko, 2005). Most plants and animals are 

not randomly distributed in habitats (Southwood, 1978; Inouye, 1999) and this 

is true for land molluscs that may be present in aggregations (Cameron and 

Pokryszko, 2005).

The two main approaches for sampling land molluscs (maximizing 

species inventories and assessing effects of environmental variables on 

diversity) raise issues of collector objectivity and subjectivity. Objective 

statistical treatment of sampling data generally demands that random methods 

are used in selecting sample areas. These areas include quadrats, plots and sites, 

and every area for sampling must have an equal probability of being selected 

(Section 6.4.1). This requirement for randomness completely removes input 

from the researcher in selecting which specific area is to be sampled, although 

including criteria for the initial selection of sites (Section 6.2) and using a 

stratified design (Section 6.4.1) allows the selection of appropriate habitats to be 

used.

An alternative approach is often used for the collection of inventory 

data, where the aim is to maximize the number of species recorded from a 

locality. This approach considers that use should be made of information, 

obtained from previous or pilot surveys, about the nature of the underlying 

spatial structure of the variables (Legendre et al., 2002), and that familiarity of
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the study area and taxa under investigation increase the chance of finding 

individuals (Greenwood, 1996). The experience and knowledge of the 

researcher in selecting appropriate microhabitats and areas of the habitat to 

sample preferentially therefore becomes an important factor in the collection of 

species data. The use of random sampling and researcher familiarity in assessing 

species and environmental data was highlighted by Kikkawa (1986):

4Comparison o f complex communities cannot easily he based on replicate 

samples, with known statistical properties. The more familiar one becomes with 

complex communities, the more sceptical one grows about the validity o f 

random sampling in estimating habitat features or abundance o f organisms'.

An overlooked effect of sampling, whether or not it considers spatial 

and/or temporal replication, is that the very act of sampling itself affects the 

results. This is akin to the Heisenberg Principle in physics, and the observer 

effect (or observer bias) in science generally, which describe changes that the 

act of observing have on the phenomena being observed (Robertson, 1929; 

Hawking, 1988; Davies, 1992). Examples in land mollusc sampling are: (1) the 

collection of environmental data, as in this study, will dismpt the sampling area, 

and so may alter the probability of finding individuals (which for rare species 

represented by one or two specimens, means the species may not be recorded at 

all) and, (2) the handling or removal of individuals may impact a population, 

especially of rare species. Crushing individuals underfoot whilst sampling, the 

extent of which may not even be known by the researcher, could change 

community dynamics. Chappell et al. (1971), for example, reported that 

trampling reduced the population densities of some land molluscs in a chalk 

grassland. This study has shown that some species, especially large ones such as
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Iberus spp., may be present at low density: destroying one or two may represent 

the entire plot’s population. These events may be considered to be stochastic 

events, in the way that animals may remove individuals, by predation or 

trampling, or in the way a rock may fall from a hillside and destroy a whole 

colony of Theba. Complete randomness in sampling is almost impossible to 

achieve.

8.2. Diversity indices

Two indices of species diversity were used: Simpson’s index (Ds), and 

the Shannon index ( / / ’) (Sections 3.7.1.3 and 6.9.1.3). These two indices are 

commonly used in ecological studies and they allow comparisons of data. The 

Shannon index is more sensitive to sample size, whereas Simpson’s index 

provides a good estimate of diversity at relatively small sample sizes (Magurran, 

2004). Results for both indices were comparable when used with species data 

from both the 1km2 sites from Part One (Figure 4.1), as well as the much 

smaller areas sampled in Part Two (Figure 7.1). This indicates that, in this study 

at least, either of the indices may be used to describe species diversity.

8.3. The habitat structure model

Heterogeneity and complexity are positively correlated at all grain levels, but 

combining the two into habitat diversity indices results in correlations at only 

the lm2 grain level. These findings suggest that habitat structure, and the effects 

of this on land molluscs, are best considered using the three components of the 

McCoy and Bell (1991) model (Figure 8.1).
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8.4. The land molluscs’ perspective

One of the main findings of this study is that habitat structure correlates with 

species data at a very small scale. Many positive correlations were found at lm2, 

but these were lost at 5m2 upwards. This highlights how land molluscs may be 

operating at scales very different to the ones they are usually studied at 

(Boycott, 1934; Cameron and Pokryszko, 2005), and how the definition of 

habitat for different species depends on the spatial scale of perception of each 

species (Nilsson et al., 1988; Mech and Zollner, 2002; Miguel et al., 2005).

Nekola and Smith (1999) sampled land molluscs from Wisconsin cliff

• • 9 9communities at lm and 0.04m , and suggested that resource levels at these 

scales may be high. They did not, however, assess environmental factors at 

these scales so it is not possible to compare the results of this study to their data. 

These workers reported that the high richness of land snails in carbonate cliff 

habitats is present to very limited spatial scales. Up to 62% of site richness (and 

up to 22% of state richness) were found within single 0.04m areas along cliff 

bases. Data from this present study seem to support both their findings and the 

prediction of Cameron et al. (2003) that relationships between land mollusc 

diversity and environmental factors may be different at these small scales in 

comparison to the scales at which these relationships are usually assessed. In 

addition, Barker and Mayhill (1999) reported that most New Zealand molluscs 

are confined to the litter on the forest floor, which is probably the primal habitat 

of land molluscs. Litter is a highly complex, three-dimensional, horizontally 

stratified habitat that, from the snail’s perspective, is divided into many 

subunits: newly fallen leaves at the top, fragmented leaves, twigs, and
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decomposed litter at intermediate levels, and wet litter and then particulate 

humus at ground level.

Figure 8.1. Three-dim ensional plots o f  scale, heterogeneity  and complexity, (a) normal view 
and (b) b ird ’s eye view. For each plot the data are shown for the three grain levels and are 
individual values for each level (quadrats, lm 2, «=1200; plots, 5m2, n=240; sites, 20m2, w=60). 
Habitat types: sand=circular m arkers, steppe=square m arkers, garigue=triangular markers.
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Aubry et al. (2005) reported that the patterns observed for species 

richness in land snails in southeast France depended on the scale of resolution, 

with richness controlled by many factors, operating at different scales on 

individual species. Similar results have been reported for other taxa: work with 

littoral zone communities has shown that species that are uncommon and highly 

aggregated at coarse spatial scales can be abundant and approach random 

distributions at finer spatial scales (Stoffels et al., 2003), and work with beetles 

has shown that they respond to habitat at scales ranging from 20 to 2000m 

(Holland et al., 2004). Similarly, Langellotto and Denno (2004) showed that, for 

arthropods, habitat structure varies from simple to complex at several relevant 

spatial scales.

The landscape forms a hierarchy that contains thresholds in object sizes 

and proximities, and textures at particular scales, with the smaller scales 

dominated by vegetative processes (Archibald, 1949; Holling, 1992; Grossi et 

al., 2004; Hall et al., 2004). An animal’s perceptual range is the fraction of the 

landscape that is both detectable and accessible via movement, and so defines 

the spatial scale at which an individual interacts with the landscape (Olden et 

al., 2004; Patterson et al., 2007). Perceptual range may be limited by factors 

such as vision, olfaction, body size and resource requirements (Mech and 

Zollner, 2002; Fleishman et al., 2003; Schooley and Wiens, 2003; Zollner and 

Lima, 2005).

Species may perceive environments as being either heterogeneous or 

homogeneous based on the relationship between body size and habitat 

heterogeneity, with resultant effects on diversity and abundance (MacArthur and 

MacArthur, 1961; Morris, 1987; Holling, 1992; Rosenzweig, 1995; Wiens et
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al., 1995). Perception of, and reaction to, environment is also related to life- 

history characteristics including resource requirements, and taxonomic groups 

vary in their responses to environmental patterning, including the spatial and 

temporal distribution of biotic and abiotic resources (Levin, 1992; Straw and 

Ludlow, 1994; Davidowitz and Rosenzweig, 1998; Fleishman et al., 2003). The 

seed beetle Callosobruchus maculatus (Fabrricius, 1775) (Coleoptera, 

Bruchidae), for example, responds to the sizes of seeds available and oviposit on 

larger seeds when the heterogeneity of seeds is increased (Yang et al., 2006). 

Faiji-Brener et al. (2004) reported that the interaction between the spatial 

distribution of food resource and environmental grain influenced the match 

between resources and tropical litter ants, and that the efficiency in food 

resource exploitation by ant species with different body sizes was directly 

related with the scale of environmental heterogeneity.

Kawata et al. (2001) reported considerable variations in filamentous 

algal abundance between and within stones in streams, and Kawata and Agawa 

(1999) showed that freshwater snails recognize algal patches as heterogeneous 

when patch size is 25 to 50mm long. They also found that spatial scales smaller 

than 25mm determine the behaviour of grazers as well as the spatial 

heterogeneity of the algae. There is evidence for bacterial patchiness at scales 

below 1mm, further demonstrating the relationship between organism size and 

operational scale (Dechesne et al., 2003; Nunan et al., 2003).

The relationship between scale and diversity is likely to differ among 

taxa in relation to mobility (Hamer and Hill, 2000). The decisions that animals 

make when selecting a habitat affect the ecological interactions they are 

involved in, their morphology, and the selective pressures that shape their
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genotypes and those of their descendants (Davis and Stamps, 2004; Milner and 

Vonesh, 2004). Many arthropods, including spiders and wasps, use structural 

features of the habitat as cues for settling in an area of the habitat (Ward and 

Lubin, 1993; Collett and Zeil, 1998). Additionally, theoretical models suggest 

that habitat selection by any mobile animal should reflect a balance between 

costs and benefits to organism fitness accruing from the use of alternate habitat 

types (Langkilde and Shine, 2004).

How individuals move in the habitat influences the probability they will 

experience physiological stress, encounter potential mates, prey or predators 

(Wiens et al., 1995; Michel et al., 2007). The ability of animals to move on a 

wide array of substrates may be critically important for various ecological tasks 

including predator escape, thermoregulation and finding mates (Vanhooydonck 

et al., 2005). As movement pathways are influenced by habitat structure, they 

may reflect differences in how organisms perceive habitat heterogeneity over 

different scales (Kotliar and Wiens, 1990; Johnson et al., 1992; Nams, 2005). 

Movements should follow the structure of the environment, exhibiting, for 

example, an increase in turning rate and decreased speed where resources are 

plentiful (Benhamou, 2004; Pinaud and Weimerskirch, 2005). Coarser 

typologies and scale are suitable when analysing highly mobile species. Species 

with small movement ability, such as land molluscs, perceive more detail, and a 

finer typology and smaller scale is appropriate (Suarez-Seoane and Baudry, 

2002).

Land molluscs generally remain in a small area of habitat and can 

actively disperse only up to a few metres per year within it (Schilthuizen and 

Lombaerts, 1994; Hausdorf and Henning, 2003). Baur and Baur (1993) found
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that Arianta arbustorum (Linnaeus, 1758) covered a median distance of 0.58m 

in 24 hours, and Parmakelis and Mylonas (2004) reported a maximal monthly 

dispersion distance for released Mastus of less than 4m. Theba pisana released 

into pasture fields have been shown to have mean dispersal distances of less 

than 7m (Baker and Hawke, 1990), and Giokas and Mylonas (2004) reported a 

mean dispersal distance of 1.62m for Albinaria coerulea (Rossmassler, 1835). 

Mobility even for larger species is not great, and Tomiyama and Nakane (1993) 

found that adult Achatina fulica (Bowdich, 1822) moved an average of 1.5m per 

day.

This, and other studies, have shown that there are differences in the 

spatial distribution of land molluscs in habitats (Section 8.1). At the small scales 

at which many land molluscs operate, these differences may result from some 

species not being able to colonize all suitable habitat because they cannot reach 

isolated fragments (Johansson and Ehrlen, 2003; Matlack and Monde, 2004). 

Any species that lacks the ability to disperse is greatly exposed to extinction 

risks (Paradis, 1998). Whitehouse et al. (2002) found that large-scale 

environmental factors influenced coarse-grained community structure in spiders, 

whilst small-scale differences between patch types resulted in the specialisation 

of species to the different patch sizes.

Habitat Selection Theory emphasizes the ability of species to disperse 

and colonize patches with the highest expected fitness, with resulting 

distribution patterns being a function of the spatial redistribution of individuals 

among patches (Morris, 2003; Binckley and Resetarits, 2005). This may partly 

explain the non-random distributions of land molluscs at various scales.
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8.5. Improvements to this study: future research

The following are identified as potential improvements to this study:

1. Increasing the number o f sites sampled: For Part One it would have been 

better to have sampled a greater number of habitat types per site. This would 

have allowed the analysis of habitat type effects (as was done in Part Two) at 

the biogeographical scale.

2. Replication: Although replication can be difficult in large-scale ecological 

studies (Hurlbert, 1984; Carpenter, 1990), Part One of this study could be 

improved by carrying out replication of sampling and environmental data 

collection at the sites. Pseudoreplication is frequently a problem with many 

ecological studies and adequate replication design would be required to avoid 

this (Hurlbert 1984, Heffner et al., 1996; Oksanen, 2001).

3. Correlations: The sequential Bonferroni adjustment, introduced by Holm 

(1979), could have been used in the analyses of correlations because of the large 

number of calculations carried out (Neuhauser, 2004), although there are 

numerous arguments against using this adjustment in ecological and other 

studies (Rothman, 1990; Pemeger, 1998; Moran, 2003; Garcia, 2004). With 100 

comparisons, five correlations with a P of <0.05 are expected even in the 

absence of real effects (Chandler, 1995; Rae, 2004). Where many correlations 

with a P of <0.05 are obtained, as in this study however, it is reasonable to 

conclude that the majority of these correlations are of real significance 

(Townsend et al., 1987).

4. Spatial analysis: Spatially based sampling typically shows spatial 

dependence as a result of nearby quadrats being, on average, more similar to 

each other than distant ones (Eberhardt and Thomas, 1991; Lechowicz and Bell,
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1991; Palmer and White, 1994; Fortin and Dale, 2005). Autocorrelation is an 

observed feature in much spatially sampled biological data (Augustin et al., 

1996; Sokal et al., 1998; Xu et al., 2005) that can lead to problems identifying 

possible relations between biotic and abiotic factors (Legendre and Fortin, 1989; 

Dale et al., 1991). Environmental patterns that are very complex over small 

areas are probably very common in nature and spatial data analysis can be used 

to assess these (Phillips, 1985; Legendre, 1993; Heikkinen et al., 2004; Jetz et 

al., 2005). Species richness depends greatly on the spatial distribution of 

species. Hoyle (2005) found that micro-arthropods in fragmented communities, 

which suffer reduced species richness, are more aggregated both within and 

among habitat patches. The influences of habitat complexity, climate and 

topography vary spatially and species distribution patterns change with spatial 

resolution in response to these variables (Buckly and Roughgarden, 2005). 

Further data could be collected to assess spatial effects using spatial and 

autocorrelation techniques (Dungan et al., 2002; Perry et al., 2002; Fortin and 

Dale, 2005; Rangel et al., 2006).

5. Analysis o f  nestedness: Nestedness is one of the most commonly observed 

properties of a regional collection of local biotas (Cook, 1995; Cook and Quinn, 

1995; Gaston and Blackburn, 2000) and perfect nesting occurs when species- 

poor sites contain subsets of the assemblages found in species-rich sites 

(Hausdorf and Henning, 2003; Fischer and Lindenmayer, 2005; Wethered and 

Lawes, 2005). Nestedness is a multi-scale phenomenon (Cook et al., 2004) and 

the amount of nestedness quantifies the degree of overlap in species 

composition between low and high diversity sites (Wright et al., 1998; 

McAbendroth et al., 2005). Hausdorf and Henning (2003) have reported that the
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ranges of northwest European land snail species are significantly nested, and 

that differences in the degree of nestedness are mainly due to differences in the 

variance of range sizes and not dispersal abilities. Hylander et al. (2005) have 

reported significant nestedness in land molluscs in Swedish forests and that 

variation in environmental variables among sites can result in nested 

communities. There are no data for southern Iberia in relation to nestedness and 

this study could be improved by collecting data from additional sites and 

assessing nestedness.

6. Temporal analysis: Extending the sampling from this study over several 

years would allow analysis of inter-year patterns in species diversities (Pahl- 

Wostl, 1991; Virkkala, 1991; Basset et al., 2001).

7. Collection o f molluscs from soil at the habitat structure sites: Although soil 

and litter were sampled for land molluscs at the Biogeographical Sites (Part 

One), this was not carried out for the Habitat Structure Sites (Part Two) where 

the aim was to assess the effects of habitat heterogeneity and complexity on the 

number of species and species abundances at small scales. In some cases soil 

sampling may be the only way to detect some species (Lee, 1993; Oggier et al., 

1998). It is possible, therefore, that soil may have contained individuals that 

were not recorded in this study, and including soil sampling would allow 

relationships between soil and land molluscs to be assessed at these small 

scales.

Cameron and Pokryszko (2005) state that: ‘One o f the major challenges 

in the ecology and biogeography o f  terrestrial molluscs is to determine the 

scales at which patterns o f distribution occur, and the extent to which they 

correlate with environmental variation at small scales'. Many unanswered
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questions remain in land mollusc ecology and there is potential for much 

original research, examples are:

1. How do relationships between diversity and environmental factors 

operate over differing scales?

2. How do species interact with environmental structures (such as rocks, 

logs and soil) in different habitat types? Are these interactions universal, 

or do they differ biogeographically? (Section 1.232).

3. How do temporality and seasonality impact on relationships between 

diversity and environmental variables?

4. What are the food preferences (in particular, of plant types) of land 

molluscs in southern Iberia? Do some plant species affect diversity as a 

result of use by land molluscs as food resources, or as refugial 

components of habitat structure?

In addition there is scope for investigating experimentally the responses of 

different land molluscs to habitat heterogeneity and complexity. Perea et al. 

(2007), for example, assessed the effects of light and substratum complexity on 

microhabitat selection by C. aspersus, using similar methods to those used by 

Menez (1996) with the marine gastropod Stramonita heamastoma (Linnaeus, 

1766).

Part Two of this study has assessed the effects of habitat heterogeneity 

and complexity on the number of species and species abundances at three 

discrete scales: lm2, 5m2 and 20m2, but there are no data available about effects 

when scale is considered as a continuum. It is probable that these effects may 

not always be linear (Fleishman et al., 2003; Kelaher, 2003b) and there may be 

thresholds in habitat heterogeneity and complexity that affect species diversity.
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In addition, these effects may change in direction and magnitude (Gotceitas and 

Colgan, 1989; Kelaher, 2003b). This may define the minimum quantities of 

heterogeneity and complexity that are associated with varying levels of number 

of species and abundances in the habitats. Upper thresholds may exist, and 

increasing heterogeneity and complexity beyond these may have no effect on 

number of species and abundances, or may negatively impact on them. The 

present data show that thresholds should occur between lm and 5m , and this 

defines the scale at which associations between land molluscs and habitat 

structure are occurring (Section 8.4) (although correlations were low to modest 

(Chapter 7) and further work is required to better define associations). The 

habitat structure model (Section 8.3) would allow the data to be analyzed in this 

way if data were collected along a scale continuum, and analyzing these data in 

this way would be a novel approach in land mollusc ecology.

8.6. Concluding remark

The publication Pattern and process in land mollusc diversity (Cameron et al., 

2005a), and other papers presented at the Third World Congress of Malacology 

in Perth, Western Australia (July 11-16, 2004), update the analyses made by 

Solem (1984b) about global patterns of land mollusc diversity. These are 

summarized by Cameron et al. (2005b) as: (1) the number of species from good 

sites varies little between regions, except at extreme high latitudes, at 

metacommunity or regional level, the number of species is greater at low 

latitudes; (2) metacommunity richness and morphological range vary 

idiosyncratically between regions, and are often related to historical and 

phylogenetic factors, topography and nature of the habitat. Regions affected by 

Pleistocene extinction are poor at regional, but not local level; and, (3)
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biogeographical patterns in land molluscs are unusual because of the large 

number of restricted endemics present in many regions.

Cameron et al. (2005a) is the first collection of papers on land molluscs 

where issues of scale take prominence in attempts to understand land mollusc 

diversity. This, and other recently published papers, highlight that this is a 

topical area of research. Cameron and Pokryszko (2005) stated that determining 

the scales at which distributional patterns occur and the extent to which they 

correlate at small scales with environmental variation is a major challenge in 

land mollusc ecology. In addition, Brown (1999), Lawton (1999) and Scheiner 

et al. (2000) have identified that moving from pattern to process is one of the 

great challenges facing ecology today. This study is centred in these areas of 

research and will be built on over future years in an attempt to better understand 

pattern and process in southern Iberian land mollusc diversity.
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Appendix 1. The Biogeographical Sites

A pp en dix  1. The numbers o f  species (N o. Spe), total abundances (Total Abund), Shannon diversity 
(base 2 logs) and Sim pson’s diversity at the Biogeographical Sites, showing sam pling dates and the 
latitude and longitude o f  each site (measured in minutes and degrees).

Site
No. Site Name Date Sampled Latitude Longitude No.

Spe
Total

Abund
Shannon
Diversity

Simpson’s
Diversity

B1 Guardamar del Segura, Spain 30/10/2000 3804698 00039537 15 1473 2.925 0.816
B2 Torrevieja, Spain 30/10/2000 3800642 00040219 16 2181 2.733 0.804
B3 El Pilar de la Horadada, Spain 31/10/2000 3752200 00047617 15 2189 1.893 0.579
B4 Los Alcdzares, Spain 31/10/2000 3743812 00051720 8 1276 1.741 0.549
B5 Cabo de Palos, Spain 01/11/2000 3737858 00041607 10 792 2.180 0.691
B6 Portman, Spain 01/11/2000 3735515 00049969 14 967 2.874 0.825
B7 Cartagena, Spain 01/11/2000 3735688 00057748 14 251 2.615 0.750
B8 La Azohia, Spain 02/11/2000 3733420 00109700 14 1643 2.885 0.826
B9 Mazarrdn, Spain 02/11/2000 3733533 00115521 13 671 2.802 0.823
BIO Puntas del Calnegre, Spain 02/11/2000 3730667 00124518 7 238 2.305 0.772
BU Cabo Cope, Spain 05/04/2001 3726366 00129107 11 1183 2.723 0.796
B12 Aguilas, Spain 05/04/2001 3723693 00136694 11 611 2.659 0.782
B13 San Juan de los Terreros, Spain 06/04/2001 3721767 00139730 13 1536 2.566 0.774
B14 Villaricos, Spain 06/04/2001 3715251 00146214 8 177 2.530 0.806
B15 Garrucha, Spain 06/04/2001 3712053 00149611 7 434 1.784 0.609
B16 Playa de Macenas, Spain 06/04/2001 3704998 00151070 10 235 2.897 0.853
B17 Punta de los Muertos, Spain 08/12/2001 3657026 00154291 6 236 2.085 0.726
B18 Las Negras, Spain 08/12/2001 3652677 00200350 6 82 2.004 0.695
B19 El Pozo de los Frailes, Spain 22/04/2001 3647009 00203938 4 61 1.536 0.613
B20 Cabo de Gata, Spain 22/04/2001 3643755 00211410 5 42 1.750 0.654
B21 Retamar, Spain 29/10/2000 3651535 00218998 13 950 3.120 0.866
B22 Almeria, Spain 29/10/2000 3652422 00225276 12 480 2.219 0.734
B23 1 Roquetas de Mar, Spain 02/02/2002 3648866 00237258 9 984 2.493 0.788
B24 Punta del Sabinar, Spain 02/02/2002 3641532 00242711 11 1253 2.852 0.837
B25 Guardias Viejas, Spain 23/02/2002 3642105 00250991 7 1609 1.104 0.430
B26 Adra, Spain 23/02/2002 3645896 00300657 13 389 2.647 0.764
B27 La Rabita, Spain 12/01/2002 3645008 00310820 8 385 2.132 0.733
B28 La Guapa, Spain 12/01/2002 3644587 00217628 9 315 2.138 0.678
B29 Calahonda, Spain 22/01/2000 3642523 00323886 12 936 2.733 0.814
B30 Torrenueva, Spain 22/12/2001 3642217 00329275 15 864 2.671 0.789
B31 Torrecuevas, Spain 21/04/2001 3646855 00341377 10 122 2.411 0.766
B32 Lagos, Spain 31/10/1999 3644608 00400418 12 973 2.263 0.702
B33 Torrex, Spain 31/10/1999 3644665 00355145 6 95 1.814 0.606
B34 Torre del Mar, Spain 05/05/2001 3644929 00407636 11 711 1.318 0.401
B35 Benajarafe, Spain 05/05/2001 3643399 00410774 9 376 2.222 0.702
B36 Benagalbon, Spain 20/05/2000 3643099 00414780 16 2255 2.662 0.787
B37 Malaga, Spain 20/05/2000 3640961 00427297 13 484 3.079 0.861
B38 Torremolinos, Spain 26/04/2000 3637862 00429801 18 583 2.837 0.810
B39 Fuengirola, Spain 26/04/2000 3631536 00437829^ 19 940 2.881 0.801
B40 Los Jarales, Spain 16/12/2001 3629369 00443120 17 1096 1.805 0.562
B41 Marbella, Spain 21/04/2000 3630552 00451725 17 1661 2.799 0.809
B42 San Pedro de Alcantara, Spain 15/04/2000 3628588 00459776 15 381 2.680 0.781
B43 Rio del Padrdn, Spain 20/11/1999 3626340 00506727 16 366 2.808 0.799
B44 Casares, Spain 20/11/1999 3622956 00513125 22 1105 3.026 0.814
B45 Cala Sardina, Spain 21/10/1999 3618517 00515564 13 660 2.564 0.790
B46 Sotogrande, Spain 29/01/2000 3617051 00517008 21 274 3.717 0.911
B47 La Linea, Spain 29/01/2000 3609200 00520402 8 1556 1.600 0.580
B48 Dead man’s Beach, Gibraltar 17/10/1999 3606527 00520871 15 2067 1.484 0.536
B49 Getares, Spain 12/04/2000 3606426 00525972 15 721 2.486 0.778
B50 Punta del Camero, Spain 24/10/1999 3604077 00526307 11 268 2.824 0.843
B51 Punta del Cabrito, Spain 26/11/2000 3603553 00532400 11 318 1.880 0.597
B52 Rio Jara, Spain 27/11/1999 3602461 00537925 13 1295 1.700 0.520
B53 Punta Camarinal, Spain 27/11/1999 3605233 00547119 12 2786 2.357 0.779
B54 Zahara de los Atunes, Spain 04/12/1999 3608498 00551264 12 1131 2.168 0.644
B55 Barbate, Spain 12/04/2000 3611134 00554280 8 5332 2.051 0.703
B56 Cabo de Trafalgar, Spain 11/12/1999 3610941 00601888 8 3918 0.995 0.362
B57 Conil de la Frontera, Spain 12/02/2000 3617659 00606763 14 2059 1.985 0.609
B58 Chiciana de la Frontera, Spain 28/12/1999 3620101 00609679 11 557 2.671 0.790
B59 Cadiz, Spain 14/04/2001 3629060 00615886 10 1919 1.515 0.476
B60 Rota, Spain 14/04/2001 3637642 00622767 13 2092 2.574 0.784
B61 Chipiona, Spain 13/05/2000 3642831 00625427 9 5241 1.348 0.504
B62 Sanlucar de Barrameda, Spain 13/05/2000 3646585 00622228 11 5450 1.495 0.525
B63 Torre de la Higuera, Spain 25/11/2000 3700585 00633881 10 134 2.652 0.805
B64 Torre del Oro, Spain 25/11/2000 3705991 00643536 5 6 2.252 0.933
B65 Mazagon, Spain 26/01/2002 3707532 00647529 11 70 2.682 0.786
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Appendix 1. The Biogeographical Sites

Appendix 1 (continued).

Site
No. Site Name Date Sampled Latitude Longitude No.

Spe
Total

Abund
Shannon
Diversity

Simpson’s
Diversity

B66 Punta Umbria, Spain 26/01/2002 3711305 00658834 7 730 2.252 0.767
B67 El Rompido, Spain 26/05/2001 3713526 00708505 9 130 2.000 0.640
B68 Isla Cristina, Spain 26/05/2001 3711845 00718255 6 831 2.069 0.726
B69 Monte Gordo, Portugal 08/04/2000 3710698 00726633 5 800 1.826 0.672
B70 Tavira, Portugal 08/04/2000 3708297 00735683 15 1220 2.797 0.812
B71 Torre de Ares, Portugal 17/12/2000 3704475 00747749 19 1979 2.916 0.798
B72 OlhHo, Portugal 17/12/2000 3704652 00751132 21 710 3.562 0.890
B73 ,  Faro, Portugal 16/12/2000 3701559 00756804 13 2452 2.495 0.761
B74 Vale do Lobo, Portugal 26/10/2000 3703695 00803584 16 383 2.869 0.818
B75 Albufeira, Portugal 26/10/2000 3705562 00815361 19 763 3.566 0.895
B76 Armacflo de Per a, Portugal 26/10/2000 3706486 00822933 17 1367 2.810 0.815
B77 PortimSo, Portugal 25/10/2000 3709372 00835517 16 1203 2.239 0.688
B78 Luz, Portugal 25/10/2000 3705889 00843141 21 1284 3.495 0.875
B79 Burgau, Portugal 09/04/2000 3704632 00846742 16 609 2.827 0.790
B80 Salema, Portugal 25/10/2000 3704233 00849208 15 1624 3.062 0.829
B81 Cabo SSo Vicente, Portugal 09/04/2000 3701423 00859665 8 177 2.657 0.835
B82 Vila do Bispo, Portugal 24/10/2000 3705130 00857102 4 147 0.452 0.130
B83 Carrapateira, Portugal 24/10/2000 3710404 00854441 13 1282 0.836 0.219
B84 Praia da Carriagem, Portugal 24/10/2000 3721946 00850116 11 389 2.586 0.782
B85 Odeceixe, Portugal 23/10/2000 3726198 00848165 13 683 3.1661 0.875
B86 Zambujeira do Mar, Portugal 23/10/2000 3731113 00847191 12 177 2.126 0.680
B87 Cabo Serdflo Cavaleiro, Portugal 23/10/2000 3735014 00848734 4 11 1.981 0.818
B88 Milfontes, Portugal 22/10/2000 3743151 00846525 17 909 2.740 0.796
B89 Porto Covo, Portugal 22/10/2000 3750256 00847339 17 2204 2.553 0.718
B90 Sines, Portugal 21/10/2000 3758183 00852025 13 614 2.620 0.768
B91 Lagoa de Santo Andrd, Portugal 21/10/2000 3806556 00847502 16 1135 2.879 0.818
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Appendix 2. Photographs o f the Biogeographical Sites

B 1: Guardamar del Segura, Spain B2: Torrevieja, Spain

B3: El Pilar de la Horadada, Spain B4: Los Alcazares, Spain

B7: Cartagena, Spain B8: La Azohia, Spain

Appendix 2. Photographs o f  the Biogeographical Sites: B1 to B8. See Appendix 1 for site details.

B5: Cabo de Palos, Spain B6: Portman, Spain
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Appendix 2. Photographs o f  the Biogeographical Sites

B9: Mazarron, Spain BIO: Puntas del Calnegre, Spain

B 11: Cabo Cope, Spain B12: Aguilas, Spain

B13: San Juan de los Terreros, Spain B14: Villaricos, Spain

B15: Garrucha, Spain

Appendix 2 (continued).

B 16: Playa de Macenas, Spain 

Photographs o f  the Biogeographical Sites: B9 to B16. See Appendix 1 for site details.

331



Appendix 2. Photographs o f  the Biogeographical Sites

B17: Punta de los Muertos, Spain B18: Las Negras, Spain

B19: El Pozo de los Frailes, Spain

B22: Almeria, SpainB 2 1: Retamar, Spain

B23: Roquetas de Mar, Spain B24: Punta del Sabinar, Spain

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B17 to B24. See Appendix 1 for site details.

B20: Cabo de Gata, Spain
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Appendix 2. Photographs o f  the Biogeographical Sites

B25: Guardias Viejas, Spain

B27: La Rabita, Spain

B29: Calahonda, Spain

B28: La Guapa, Spain

B30: Torrenueva, Spain

B31: Torrecuevas, Spain B32: Lagos, Spain

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B25 to B32. See Appendix 1 for site details.
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Appendix 2. Photographs o f  the Biogeographical Sites

B33: Torrex, Spain B34: Torre del Mar, Spain

B35: Benajarafe, Spain B36: Benagalbon, Spain

B37: Malaga, Spain B38: Torremolinos, Spain

B39: Fuengirola, Spain B40: Los Jarales, Spain

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B33 to B40. See Appendix 1 for site details.
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Appendix 2. Photographs o f  the Biogeographical Sites

B41: Marbella, Spain B42: San Pedro de Alcantara, Spain

B43: Rio del Padron, Spain B44: Casares, Spain

B45: Cala Sardina, Spain B46: Sotogrande, Spain

•  •

B47: La Li'nea, Spain B48: Deadman’s Beach, Gibraltar

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B41 to B48. See Appendix I for site details.
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Appendix 2. Photographs o f  the Biogeographical Sites

B49: Getares, Spain B50: Punta del Camero, Spain

B 5 1: Punta del Cabrito, Spain

B53: Punta Camarinal, Spain

B52: Rio Jara, Spain

B54: Zahara de los Atunes, Spain

B55: Barbate, Spain B56: Cabo de Trafalgar, Spain

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B49 to B56. See Appendix 1 for site details.
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Appendix 2. Photographs o f the Biogeographical Sites

B57: Conil de la Frontera, Spain B58: Chiclana de la Frontera, Spain

B59: Cadiz, Spain B60: Rota, Spain

B61: Chipiona, Spain B62: Sanlucar de Barrameda, Spain

B63: Torre de la Higuera, Spain B64: Torre del Oro, Spain

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B57 to B64. See Appendix 1 for site details.



Appendix 2. Photographs o f  the Biogeographical Sites

B65: Mazagon, Spain B66: Punta Umbria, Spain

B67: El Rompido, Spain

B69. Monte Gordo, Portugal

B68: Isla Cristina, Spain

B70: Tavira, Portugal

B71: Torre de Ares, Portugal B72: 01h3o, Portugal

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B65 to B72. See Appendix 1 for site details.

338



Appendix 2. Photographs o f  the Biogeographical Sites

B73: Faro, Portugal

B75: Albufeira, Portugal

B74. Vale do Lobo, Portugal

B76: Armacao de Pera, Portugal

B78: Luz, PortugalB77: Portimao, Portugal

B79: Burgau, Portugal B80: Salema, Portugal

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B73 to B80. See Appendix 1 for site details.
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Appendix 2. Photographs o f  the Biogeographical Sites

B 81: Cabo S3o Vicente, Portugal

B83: Carrapateira, Portugal

B82: Vila do Bispo, Portugal

B84: Praia da Carriagem, Portugal

B85: Odeceixe, Portugal B86: Zambujeira do Mar, Portugal

B87: Cabo Serdao Cavaleiro, Portugal B88: Milfontes, Portugal

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: 1381 to B88. See Appendix 1 for site details.
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Appendix 2. Photographs o f the Biogeographical Sites

B89: Porto Covo, Portugal B90: Sines, Portugal

B 9 1: Lagoa de Santo Andrd, Portugal

Appendix 2 (continued). Photographs o f  the Biogeographical Sites: B89 toB 91. See Appendix 1 for site details.
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Appendix 3. Systematic species list

A ppend ix  3. System atic list o f  species including  the sites at w hich each species was present. 
B iogeographical Sites (Part O ne) are prefixed with ‘B ’ and H abitat S tructure Sites (Part Two) 
are prefixed with ‘S ’. D ata for num ber o f  sites, range, and rank are for Biogeographical Sites 
only. System atic listing follow s F alkner et al. (2002); the genus Iberus is treated here as 
polytypic (see L opez-A lcantara et al., 1985; Puente, 1994; A rrebola, 1995; E lejalde et al., 2005, 
and G allego, 2006 for d iscussions on the generic status o f  Iberus). See A ppendix 1 and Table 
6.1 for site nam es.

Family and species Sites at which present
No.
of

sites
Range Rank

ACICULIDAE
Acicula norrisi Gittenberger & Boeters, 1977 B48 1 M 75

POMATIIDAE
Leonia mamitlaris (Lamarck, 1822) B l , B2, B5-11, B13 10 M 19

CARYCHIIDAE
Carychium minimum Muller, 1774 B78 1 A 61

COCHLICOPIDAE
Hypnophila malagana Gittenberger & 

Menkhorst, 1983
B2, B28, B31 3 M 71

PUPILLIDAE

Lauria (Lauria) cylindracea (Da Costa, 1778)
B62, B71, B72, B77, B78, B83, B85, 

B88, B89, B91 10 A 16

VALLONIIDAE
Vallonia costata (Muller. 1774) B38, B60, B62 3 MA 42
Vallonia excentrica Sterki, 1892 B71 1 A 66
Vallonia pulchella (Muller, 1774) B78 1 A 58

PYRAMIDl LIDAE

Pyramidula pusilla (Vallot, 1801)
B34, B38, B40, B41, B46, B63, B65, 
B68, B70, B71, B74, B78, B83, B85, 

B86, B88, B89, B90, B91
19 MA 15

CHONDRINIDAE

Granopupa granum (Drapamaud, 1801)
B l-3 , B5, B6, B8-14, B I6, B21-23, 

B26, B29, B30, B32, B44, B53, B72, 
B75, B76, S2, S33, S36, S49

25 MA 10

Chondrina calpica calpica (Westerlund, 1872) S33

VERTIGINIDAE
Truncatellina callicratis (Scacchi, 1833) B72 1 A 57
Truncatellina claustralis (Gredler, 1856) B78 1 A 68

Truncatellina cylindrica (Fdrussac, 1807)

B l . B2, B6, B8, B13, B14, B16. B20, 
B24, B29, B34, B39-41, B43, B44, 

B46, B54, B56, B57, B60, B61, B71, 
B72, B75, B76, B79, B80, B83-85, 

B87-91

35 MA 6

FERUSSACIIDAE

Cecilioides (Cecilioides) jan i (De Betta & 
Martinati, 1855)

B6, B8, B22, B29, B30, B32, B34, 
B38, B39, B43, B44, B46. B48, B49, 

B53, B54, B57, B58, B70-77, B79, 
B83

28 MA 35

Cecilioides (Cecilioides) acicula (Muller, 
1774)

B2, B6, B8, B14, B20, B21. B27, 
B30, B36, B61, B62, B70, B72, B75, 

B78, B80, S31
16 MA 37

Ferussacia (Ferussacia) folliculus (Gmelin, 
1790)

B l-1 7 , B19, B21, B22, B27-50, B52, 
B53, B54. B55, B57, B58, B64-67, 
B70-80, B83, B90, B91, S2, S21, 
S23-26, S30, S31, S33, S36, S41, 

S43, S44, S49, S52, S53, S56, S57, 
S60

68 MA 3

Hohenwartiana eucharista (Bourguignat, 1864) B23, B26, B28 3 M 29
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Appendix 3. Systematic species list

Appendix 3 (continued).

Family and species Sites at which present
No.
of

sites
Range Rank

SI Bl LINIDAE

Rumina decollata (Linnaeus, 1758)

B l-14 , B16-18, B21-23, B26-33, 
B35, B37, B38, B40-44, B46, B48, 

B49, B56, B57, B59, B60. B63, B67, 
B71, B73-76, B78, B80. B81. B84. 
B87-90, S2, S21, S31, S34-36, S58, 

S59

59 MA 14

TESTACELLIDAE
Testacella maugei Ferussac, 1819 B38, B39, B42, B46, B49, B50, B57, 

B79, S44 8 MA 67

PUNCTIDAE
Punctum (Punctum) pygmaeum (Drapamaud, 

1801)
B51, B72, B76, B86 4 A 53

Paralaoma caputspinulae (Reeve, 1852) B75, B77, B79, B88 4 A 63

PRISTILOMATIDAE
Vitrea (Vitrea) contracta (Westerlund, 1871)

B6, B40, B44, B72, B74-80, B83-86, 
B88, B89 17 MA 28

EUCONULIDAE
Euconulus (Euconulus) fulvus (Muller, 1774) B89 1 A 75

BULIMINIDAE
Mastuspupa (Linnaeus, 1758) B57, S53 1 A 74

OXYCHILIDAE
Oxychilus (Oxychilus) cellarius (Muller, 1774) B40 1 M 73

Oxychilus (Oxychilus) draparnaudi (Beck, 
1837)

B37-42, B44, B46, B48, B49, B53, 
B75, B78, B90, B91. S22, S25, S33, 

S35, S41, S44, S48
15 MA 36

Oxychilus (Oxychilus) hydatinus (Rossmflssler. 
1854)

B3, B39, B53, S33 3 MA 70

Oxychilus sp\ B6 1 M 70
Oxychilus sp l B77 1 A 74
Oxychilus sp3 B6, B31 2 M 74

PARMACELLIDAE
Parmacella (Parmacella) valencieni Webb & 

van Beneden, 1836
B30, B36, B39, B42, B43, B48-50, 

B65, B74-76, B80, B88, S29
14 MA 54

MILACIDAE

Milax gagates (Drapamaud, 1801)
B3, B28. B30, B32, B39, B40, B42, 
B44, B45, B71, B72, S2, S25, S26, 

S42-44, S47
11 MA 51

Milax nigricans (Schluz, 1836)
B4, B40, B44, B46, B50, B51, B54, 

B72, B91, S22, S23, S28
9 MA 49

LIMACIDAE
Umax (Limacus) flavus Linnaeus, 1758 B70, B88 2 A 72

Lehmania valentiana (F6russac, 1821)
B3, B26, B30, B35, B38-42, B62, 

B73, B91
12 MA 46

ACRIOLIMACIDAE
Deroceras (Deroceras) panormitanum 

(Lessona & Polonera, 1882)
B38 I M 59

Deroceras (Agriolimax) reticulatum (Muller, 
1774)

B38 1 M 75

Deroceras (Agriolimax) nitidum (Morelet, 
1845)

B86 1 A 72

Deroceras (Agriolimax) ponsonbyi (Hesse, 
1884)

B46, B51 2 MA 69

Deroceras sp S43
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Appendix 3 (continued).

Family and species Sites at which present
No.
of

sites
Range Rank

SPHINCTEROCHILIDAE
Sphincterochila (Albea) candidissima 

(Drapamaud, 1801) B13, B17, B21 3 M 38

Spnincterochila (Cariosula) baetica 
(Rossmassler, 1854) B l, B7-9, B12, B22-24 8 M 25

ARIONIDAE
Geomalacus malagensis Wiktor & Norris, 1991 B40. B43, B46, B48, B49, B51, S2, 

S22, S25, S26, S30, S42 6 MA 61

TRISSEXODONTIDAE

Caracollina (Caracollina) lenticula (Michaud, 
1831)

B 1 -18. B 2I-32, B34-37, B39-48, 
B52-55, B58-61, B63, B65-67. B70, 
B71, B73-80, B83, B85, B86, B88- 
91, S2, S9, S30-35, S41, S42, S44, 

S49, S52, S53, S55, S56, S59

73 MA 4

Gasulliella simplicula (Morelet, 1845) B43-45, B49, B52, B54, S32, S44 6 MA 44
Gittenbergeria turriplana (Morelet, 1845) B 71 .B 72 , B75, B76, S58 4 A 20
Oestophora barbula (Rossmassler, 1838) B84, B86, B88, B89, S46 4 A 52

Oestophora calpeana (Morelet, 1854) B48, S25, S33, S35, S52 1 M 73
Oestophora tarnieri (Morelet, 1854) B 51 .S43 1 A 74

Oestophora ortizi de Winter and Ripken, 1991 S21
Oestophora sp 1 B82 1 A 71
Oestophora sp2 S43

Hatumia pseudogasulli Arrebola. Prieto, 
Puente and Ruiz, 2006

B19, B20, B27, B 31,B 33 5 M 60

HYGROMIIDAE

Cochlicella (Cochlicella) acuta (Mtlller, 1774)

B2-5, B7, B l 1-13, B15, B24-26, 
B30, B34-39, B41, B46-48. B52-63, 

B68, B70-73, B75-78, B80, B83, 
B85, B88, B89, B91, S l-6 , S8, S10, 

SI 1, S I4-18, S30, S34, S36, S38, 
S40, S41 .S49 , S53, S55

50 MA 2

Cochlicella (Cochlicella) conoidea 
(Drapamaud, 1801)

B24, B34, B41, B47, B52-56, B58. 
B59, B62, B68, B70, B81, B83, SI, 
S3-7, SI 1, S13, S I6, S18, S41, S51, 

S55

16 MA 12

Cochlicella (Prietocella) barbara (Linnaeus, 
1758)

B3, B7, B21, B29, B36-38, B41-47, 
B60-62, B65, B67, B69-74, B77, 

B78, B84, B85, B88, B89, B91, S28, 
S43, S53

32 MA 13

Trochoidea (Trochoidea) elegans (Gmelin, 
1791)

B5, B32, B36 3 M 32

Trochoidea (Trochoidea) pyradimata 
(Drapamaud. 1805)

B2, B12, S17 2 M 22

Trochoidea (Xerocrassa) barceloi (Hidalgo, 
1878)

B2 1 M 75

Trochoidea (Xerocrassa) derogata 
(Rossmassler, 1854)

B l, B8, B10, B13, B14, B16, B23, 
B26, S20

8 M 21

Trochoidea (Xerocrassa) murcica (Guirao in 
Rossmassler, 1854)

B l 1, B13, B16, B21, B24-26, B28 8 M 27

Trochoidea (Xerocrassa) jimenensis Puente & 
Arrebola, 1996

B44, B45, B60 3 MA 67

Trochoidea sp 1 B56, S33 1 A 48
Trochoidea sp2 B67, B74, B87, S35, S52 3 A 72
Trochoidea sp3 B64, S53 1 A 75
Trochoidea sp4 S55, S56
Trochoidea sp5 S43
Trochoidea sp6 S24
Trochoidea sp l S36, S57, S58

Ponentina subvirescens (Bellamy, 1839)
B63-67, B74. B82, B86, B90, B91. 

S2, S31, S 4 1, S42-47, S49, S50, S54. 
S55, S57, S60

10 A 47
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Appendix 3 (continued).

Family and species Sites at w hich present
No.
o f

sites
Range Rank

Trichia martigena (Ferussac, 1821) B45 1 M 64

Xerotrichia conspurcata (Drapamaud, 1801)

B16, B18, B19. B20. B27. B28, B31, 
B33, B34. B36-47, B52, B54, B55, 

B57, B59, B60, B61, B63, B65, B66, 
B71, B73-75. B77-79. B81. B86, S2, 

S9. S I4, S21, S24, S25, S30, S37, 
S41, S43. S44, S53, S54, S55, S59, 

S60

40 MA 8

Xerotrichia apicina (Lamarck, 1822)

B 36-41. B45-49, B52-55, B57-62, 
B68-71, B73, B74, B76. B77, B79, 

B89, S I -14, S16, S I 7, S18, S22, S27, 
S28, S30, S37, S 4 1 ,S 4 3 ,S 5 1

31 MA 5

Xeroleuca vatonniana (Bourguignat. 1867) B78. B84, B85 3 A 50
Helicella hutdobrot (Azpeitia, 1925) B l, B2, B7 3 M 47

Helicella ? stiparum (Rossmassler, 1854) B 2 L B 2 2 , B24, B25, S20 4 M 23
Candidula gigaxtt (Pfeiffer. 1848) B39, B44, B79 3 MA 60

Candidula m terse eta (Poiret. 1801) B82. S 2 L S 2 5 , S28, S29 1 A 74
f andtdula sp 1 B 8 L B 8 6 , B90, S45 3 A 55
Candidula sp2 B72, B89, S36 2 A 62
Candidula sp3 S20

Cernuella (Cemuella) virgata (Da Costa, 1778)
B9, B37, B41, B44-46, B49-52, B58, 
B80, S22, S27, S28, S32, S3 7, S41, 

S45, S46
12 MA 26

Xerosecta (Xerosecta) adolfi (Pfeiffer, 1854) B24 1 M 50

Xerosecta (Xerosecta) cespitum (Drapamaud, 
1801)

B32, B35, B36, B43. B44. B49-51, 
B57, B72, B77-80, S24, S41, S44, 

S49, S55, S56
14 MA 34

Xerosecta (Xerosecta) promissa (Westerlund, 
1893)

B l, B3-5, B7. B9, B15, B22, B26, 
B32, B36-39, B41-46, B49, B50, 

B52, B56, B58, B64, B70-73, B75- 
80, S I0-12, S I4, S22, S27, S32, S34, 

S3 8-40, S49

36 MA 11

Xerosecta (Xerosecta) reboudiana 
(Bourguignat, 1863)

B29, B31-36, B39, S I7, S26, S31, 
S53, S57

8 M 24

Xerosecta sp B79 1 A 56
Portugala inchoata (Morelet, 1845) B67, B81-91 12 A 31

Microxeromagna armillata (Lowe, 1852)

B3, B6, B l 1, B12, B15, B17, B24. 
B26, B29, B30, B41, B53, B57, B63, 

B65-72, B74-76, B78, B80, B83, 
B84, B85, B88-91

34 MA 9

Ganula gadirana Mufioz, Almodovar & 
Arrebola, 1999

B 5 1 ,B 52 , S22 2 A 74

Iberus gualtierianus marmoratus (Ferussac, 
1821)

B6-9, B31, B48, S2, S9, S24, S30, 
S33. S43, S46, S48, S52

6 M 39

Iberus gualtierianus alonensis (Ferussac, 1821)
B l-3 , B8, B9, B l 1-14, B16, B19-23, 

B26, B27, B29, B33, B63, S31
20 MA 33

Iberus gualtierianus gua/tieranus (Linnaeus, 
1758)

B22, B23 2 M 43

Iberus gualtierianus globulosus Boettger, 1913 B17. B18. B25, B26, B30, B31 6 M 41

Thebapisana (MUller, 1774)

B l-5 , B7-9. B l 1-13, B15, B18. B21, 
B22, B25, B29, B30, B32, B34-63, 

B65-81, B83-85, B88-91, S l-18 .
S22, S28, S30, S32, S34, S36-39, 
S41, S45, S48, S49, S51-53, S55, 

S56, S58-60

73 MA 1

Theba gittenbergeri Puente, 1994 B24, S58 1 M 40
Theba subdentata helicella (Wood, 1828) B21 1 M 65

Pseudotachea litturata (Pfeiffer, 1851)
B l, B6, B43. B44, B46, B50, S42, 

S43j S45
6 MA 45

Otala (Otala) lactea (Muller, 1774)

B8-13, B15, B16, B18. B22, B29, 
B32, B34-36, B38, B39, B42-46, 

B48-60, B62, B64, B65, B66, B69- 
81, B83-86, B88-91, S2,S3, S10, 

S12, S14, S21, S24, S25, S28, S29, 
S32, S33, S35, S36, S41-43, S45, 

S48, S49, S52-58

60 MA 7

Otala (Otala) punctata (Muller, 1774) ---------------------------------------------------
B l-3 , B7, B21, B23-28, B30. B36, 

B37,
14 M 18
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Appendix 3. Systematic species list

Appendix 3 (continued).

Family and species Sites at which present
No.
of

sites
Range Rank

Eobania vermiculata (Mailer, 1774) B l-5 , B7, B9. B40, B42, B59, B60, 
S7, S I 6, S34

11 MA 30

Cantareus aspersus (MUller, 1774)

B7. B30, B36-44, B46. B48-52, B57- 
63, B65, B70-81. B84-86. B88-91,

S2, S8, S9, S14, S16, S22, S23, S25, 
S28-30, S32, S34, S35, S37, S39, 
S41, S43-45, S47, S48, S50, S52, 

S53, S56, S58-60

44 MA 17
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Appendix 4. Species abundances at the Biogeographical Sites

A ppend ix  4. The species and their abundances at the B iogeographical Sites. See Appendix 1 for 
site num bering and details, and A ppendix 3 for sp ec ies’ authors.

Species B l B2 B3 B4 B5 B6 B7
Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 315 1 0 0 5 17 3
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 2 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 0 0
Granopupa granum 481 134 1 0 1 298 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 3 1 0 0 0 35 0
Cecilioides (Cecilioides) jani 0 0 0 0 0 14 0
Cecilioides (Cecilioides) acicula 0 2 0 0 0 11 0
Ferussacia (Ferussacia) folliculus 68 80 46 89 73 105 10
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 5 113 84 3 7 50 11
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contract a 0 0 0 0 0 10 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 2 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 7 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 1 0
Parmacella (Parmacella) valencieni 0 0 0 0 0 0 0
Milax gagales 0 0 1 0 0 0 0
Milax nigricans 0 0 0 3 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 1 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 6 0 0 0 0 0 1
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 34 278 72 130 22 155 40
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 0 719 399 65 | 142 0 20
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B l B2 B3 B4 B5 B6 B7

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 0 0
Cochlicella (Prietocella) barbara 0 0 39 0 0 0 3
Trochoidea (Trochoidea) elegans 0 0 0 0 6 0 0
Trochoidea (Trochoidea) pyradimata 0 485 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 1 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 207 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 0 0 0 0 0 0
Xerotrichia apicina 0 0 0 0 0 0 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 76 6 0 0 0 0 1
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 2 0 132 107 91 0 113
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 0 0 1 0 0 159 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 103 5
Iberus gualtierianus alonensis 56 13 4 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 65 250 1350 832 397 0 16
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 44 0 0 0 0 2 0
Otala (Otala) lactea 0 0 0 0 0 0 0
Otala (Otala) punctata 41 58 20 0 0 0 2
Eobania vermiculata 70 38 37 47 48 0 25
Cantareus aspersus 0 o 1 0 0 0 0 1
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B8 B9 BIO B l l B12 B13 B14

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 441 6 53 29 0 1 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 0 0
Granopupa granum 425 23 71 57 80 619 8
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 15 0 0 0 0 21 2
Cecilioides (Cecilioides) jani 13 0 0 0 0 0 0
Cecilioides (Cecilioides) acicula 8 0 0 0 0 0 4
Ferussacia (Ferussacia) folliculus 44 35 16 7 18 191 40
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 133 175 10 122 5 67 24
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contract a 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mast us pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 173 0
Sphnincterochila (Cariosula) baetica 173 2 0 0 23 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 78 47 20 129 30 81 40
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 0 0 0 439 9 1 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B8 B9 BIO B U B12 B13 B14

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 0 0
Cochlicella (Prietocella) barbara 0 0 0 0 0 0 0
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 70 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 162 0 67 0 0 3 47
Trochoidea (Xerocrassa) murcica 0 0 0 46 0 240 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp l 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 0 0 0 0 0 0
Xerotrichia apicina 0 0 0 0 0 0 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp l 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 5 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 0 131 0 0 0 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 o 0
Microxeromagna armillata 0 0 0 15 73 0 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 120 2 0 0 0 0 0
Iberus gualtierianus alonensis 8 1 0 17 1 6 12
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 1 157 0 202 57 4 0
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 22 48 1 120 245 129 0
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 39 0 0 0 0 0
Cantareus aspersus 0 0 0 0 0 | 0 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B15 B16 B17 B18 B19 B20 B21

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pus it la 0 0 0 0 0 0 0
Granopupa granum 0 3 0 0 0 0 150
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 0 24 0 0 0 1 0
Cecilioides (Cecilioides) jani 0 0 0 0 0 0 0
Cecilioides (Cecilioides) acicula 0 0 0 0 0 7 40
Ferussacia (Ferussacia) folliculus 4 45 53 0 2 0 123
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 0 5 15 13 0 0 97
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Umax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 1 0 0 0 77
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 26 55 29 16 0 0 181
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 7 2 0
Cochlicella (Cochlicella) acuta 29 0 0 0 0 0 0
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Appendix 4 (continued).
Species B15 B16 B17 B18 B19 B20 B21

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 0 0
Cochlicella (Prietocella) barbara 0 0 0 0 0 0 1
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 31 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 28 0 0 0 0 45
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 20 0 8 20 22 0
Xerotrichia apicina 0 0 0 0 0 0 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 26
Candidula gigaxii 0 0 0 0 0 0 0
Candidula inter sect a 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 4 0 0 0 0 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 19 0 101 0 0 0 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 23 0 0 32 10 9
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 37 40 0 0 0
Theba pisana 247 0 0 4 0 0 12
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 13
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 105 1 0 1 0 0 0
Otala (Otala) punctata 0 0 0 0 0 0 176
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 0 0 0 0 0 0 0
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Appendix 4 (continued).
Species B22 B23 B24 B25 B26 B27 B28

Acicula norrisi 0 0 0 0 0 0 0
Leortia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 2
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 0 0
Granopupa granum 2 1 0 0 13 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 0 0 333 0 0 0 0
Cecilioides (Cecilioides) jani 1 0 0 0 0 0 0
Cecilioides (Cecilioides) acicula 0 0 0 0 0 3 0
Ferussacia (Ferussacia) folliculus 1 0 0 0 0 152 32
Hohenwartiana eucharista 0 343 0 0 4 0 6
Rumina decollata 19 14 0 0 45 48 6
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Cryst alius) contract a 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 21
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 64 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 200 94 1 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 95 197 127 19 31 90 165
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 6 0
Cochlicella (Cochlicella) acuta 0 0 238 46 5 0 0
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Appendix 4 (continued).
Species B22 B23 B24 B25 B26 B27 B28

Cochlicella (Cochlicella) conoidea 0 0 38 0 0 0 0
Cochlicella (Prietocella) barbara 0 0 0 0 0 0 0
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 49 0 0 19 0 0
Trochoidea (Xerocrassa) murcica 0 0 4 1 24 0 46
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 0 0 0 0 5 1
Xerotrichia apicina 0 0 0 0 0 0 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 93 0 50 384 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 78 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 2 0 0 0 2 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 0 0 164 0 1 0 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 1 10 0 0 3 2 0
Iberus gualtierianus gualtierianus 2 131 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 1 12 0 0
Theba pisana 4 0 0 1152 0 0 0
Theba gittenbergeri 0 0 187 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 60 0 0 0 0 0 0
Otala (Otala) punctata 0 145 33 6 166 79 36
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 0 0 0 0 0 0 0
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Appendix 4 (continued).
Species B29 B30 B31 B32 B33 B34 B35

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 2 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 1 0
Granopupa granum 30 7 0 45 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 70 0 0 0 0 5 0
Cecilioides (Cecilioides) jani 4 8 0 42 0 2 0
Cecilioides (Cecilioides) acicula 0 9 0 0 0 0 0
Ferussacia (Ferussacia) folliculus 232 99 16 461 57 41 183
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 2 12 3 2 7 0 1
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 1 0 0 0 0
Parmacella (Parmacella) valencieni 0 8 0 0 0 0 0
Milax gagates 0 5 0 2 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 2 0 0 0 0 14
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 279 289 15 237 0 2 33
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 3 0 5 0 0
Cochlicella (Cochlicella) acuta 0 22 0 0 0 3 12
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
S pecies B29 B30 B31 B32 B33 B34 B35

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 5 0
Cochlicella (Prietocella) barbara 1 0 0 0 0 0 0
Trochoidea (Trochoidea) elegans 0 0 0 10 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 0 1 0 12 42 0
Xerotrichia apicina 0 0 0 0 0 0 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 56 0 0 4
Xerosecta (Xerosecta) pro miss a 0 0 0 3 0 0 0
Xerosecta (Xerosecta) reboudiana 79 0 42 77 2 62 75
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna arm ill at a 54 25 0 0 0 0 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 3 0 0 0 0
Iberus gualtierianus alonensis 83 0 0 0 12 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 18 36 0 0 0 0
Theba pisana 2 182 0 3 0 544 13
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 100 0 0 35 0 4 41
Otala (Otala) punctata 0 172 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 0 6 0 0 0 0 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B36 B37 B38 B39 B40 B41 B42

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 134 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 32 0 673 5 0
Granopupa granum 0 0 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cvlindrica 0 0 0 105 6 8 0
Cecilioides (Cecilioides) jani 0 0 2 1 0 0 0
Cecilioides (Cecilioides) acicula 4 0 0 0 0 0 0
Ferussacia (Ferussacia) folliculus 22 45 1 6 9 3 6
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 0 2 3 0 14 24 11
Testacella maugei 0 0 1 2 0 0 1
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 10 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 3 0 0
Oxychilus (Oxychilus) draparnaudi 0 1 154 12 5 15 1
Oxychilus (Oxychilus) hydatinus 0 0 0 4 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 1 0 0 4 0 0 1
Milax gagates 0 0 0 4 12 0 1
Milax nigricans 0 0 0 0 7 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 2 3 3 3 6
Deroceras (Deroceras) panormitanum 0 0 24 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 1 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 2 0 0
Caracollina (Caracollina) lenticula 94 24 0 143 265 62 137
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbu/a 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 602 102 5 30 0 393 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
S pecies B36 B37 B38 B39 B40 B41 B42

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 51 0
Cochlicella (Prietocella) barbara 2 13 20 0 0 4 6
Trochoidea (Trochoidea) elegans 292 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 751 26 142 352 13 130 25
Xerotrichia apicina 6 93 1 17 11 476 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 4 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 2 0 0 0 3 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 14 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 143 12 12 1 0 25 39
Xerosecta (Xerosecta) reboudiana 195 0 0 19 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 0 0 0 0 0 102 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 63 43 20 51 3 334 26
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) I act e a 26 0 9 86 0 0 18
Otala (Otala) punctata 35 84 0 0 0 0 0
Eobania vermiculata 0 0 0 0 6 0 3
Cantareus aspersus 5 37 20 96 54 23 100
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
S pecies B43 B44 B45 B46 B47 B48 B49

Acicula norrisi 0 0 0 0 0 1 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pus ilia 0 0 0 13 0 0 0
Granopupa granum 0 13 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 1 1 0 6 0 0 0
Cecilioides (Cecilioides) jani 4 30 0 1 0 14 1
Cecilioides (Cecilioides) acicula 0 0 0 0 0 0 0
Ferussacia (Ferussacia) folliculus 84 20 107 35 207 1241 255
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 5 21 0 1 0 23 5
Testacella maugei 0 0 0 1 0 0 2
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 1 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 8 0 1 0 11 1
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 5 0 0 0 0 2 6
Milax gagates 0 2 2 0 0 0 0
Milax nigricans 0 2 0 4 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 5 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 4 0 0 1 0 10 4
Caracollina (Caracollina) lenticula 122 127 205 27 33 28 0
Gasulliella simplicula 1 48 12 0 0 0 1
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbu/a 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 3 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hat urn ia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 0 0 0 30 15 3 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
S pecies B43 B44 B45 B46 B47 B48 B49

Cochlicella (Cochlicella) conoidea 0 0 0 0 5 0 0
Cochlicella (Prietocella) barbara 6 1 11 2 5 0 0
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 6 1 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 15 0 0 0 0
Xerotrichia conspurcata 13 17 1 43 7 0 0
Xerotrichia apicina 0 0 28 6 368 8 4
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 1 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 139 12 9 0 0 13
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 11 9 0 0 0 0 1
Xerosecta (Xerosecta) promissa 25 190 2 15 0 0 95
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 0 0 0 0 0 0 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 2 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 7 386 166 23 916 2 139
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 1 12 0 25 0 0 0
Otala (Otala) lactea 14 44 98 5 0 663 55
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 63 27 o 21 0 56 139
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B50 B51 B52 B53 B54 B55 B56

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 0 0
Granopupa granum 0 0 0 15 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 0 0 0 0 1 0 3050
Cecilioides (Cecilioides) jani 0 0 0 6 2 0 0
Cecilioides (Cecilioides) acicula 0 0 0 0 0 0 0
Ferussacia (Ferussacia) folliculus 1 0 5 288 131 97 0
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 0 0 0 0 0 0 2
Testacella maugei 2 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 4 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 7 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 1 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 3 0 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 33 19 0 0 10 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 0 0

Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 3 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0

Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 1 0 0 0 0 0
Caracollina (Caracollina) lenticula 0 0 57 320 17 51 0
Gasulliella simplicula 0 0 1 0 69 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 2 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0

\ Cochlicella (Cochlicella) acuta 0 0 84 | 558 24 2155 7
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B50 B51 B52 B53 B54 B55 B56

Cochlicella (Cochlicella) conoidea 0 0 131 2 55 402 6
Cochlicella (Prietocella) barbara 0 0 0 0 0 0 0
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0

Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 82
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 0 19 0 3 54 0
Xerotrichia apicina 0 0 106 733 96 777 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula inter sect a 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 42 191 1 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 54 57 0 0 0 0 0
Xerosecta (Xerosecta) promissa 62 0 7 0 0 0 1
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugal a inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 0 0 0 3 0 0 0
Ganula gadirana 0 1 1 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 2 13 875 826 644 1736 687
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 28 0 0 0 0 0 0
Otala (Otala) lactea 32 26 1 27 79 60 83
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 9 1 7 0 0 0 0
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B57 B58 B59 B60 B61 B62 B63

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 1 0
Vallonia costata 0 0 0 1 0 1 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 0 0 0 0 0 20
Granopupa granum 0 0 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 5 0 0 644 122 0 0
Cecilioides (Cecilioides) jani 49 1 0 0 0 0 0
Cecilioides (Cecilioides) acicula 0 0 0 0 1 1 0
Ferussacia (Ferussacia) folliculus 145 8 0 0 0 0 0
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 14 0 34 22 0 0 2
Testacella maugei 1 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 2 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 2 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 0 59 2 124 15 0 6
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 90 71 50 161 3419 3548 1
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B57 B58 B59 B60 B61 B62 B63

Cochlicella (Cochlicella) conoidea 0 13 123 0 0 338 0
Cochlicella (Prietocella) barbara 0 0 0 12 1 267 0
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 4 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 0 0 2
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 19 0 9 612 293 0 47
Xerotrichia apicina 44 47 289 301 23 140 0
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 14 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 2 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 0 92 0 0 0 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 417 0 0 0 0 0 18
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 3
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 1203 212 1351 149 1356 1147 16
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 27 8 29 21 0 1 0
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 19 20 0 0 0
Cantareus aspersus 41 32 13 21 11 4 19
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Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B64 B65 B66 B67 B68 B69 B70

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 0 0 0 0 0 0 0
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 0 3 0 0 42 0 2
Granopupa granum 0 0 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 0 0 0 0 0 0 0
Cecilioides (Cecilioides) jani 0 0 0 0 0 0 25
Cecilioides (Cecilioides) acicula 0 0 0 0 0 0 3
Ferussacia (Ferussacia) folliculus 1 1 244 1 0 0 219
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina de col I at a 0 0 0 16 0 0 0
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 0 0 0 0
Vitrea (Crystallus) contracta 0 0 0 0 0 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 1 0 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 3
Lehmania valentiana 0 0 0 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 0 6 173 10 0 0 108
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 0 0 0 0 18 0 1
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Appendix 4 (continued).
Species B64 B65 B66 B67 B68 B69 B70

Cochlicella (Cochlicella) conoidea 0 0 0 0 287 0 415
Cochlicella (Prietocella) barbara 0 2 0 1 0 375 4
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 1 0 0 0
Trochoidea sp3 1 0 0 0 0 0 0
Ponentina subvirescens 1 28 3 13 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 3 51 0 0 0 0
Xerotrichia apicina 0 0 0 0 266 133 88
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp l 0 0 0 0 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 2 0 0 0 0 0 2
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0

Portugala inchoata 0 0 0 1 0 0 0
Microxeromagna armillata 0 14 140 13 36 12 103

Ganula gadirana 0 0 0 0 0 0 0

Iberus gualtierianus marmoratus 0 0 0 0 0 0 0

Iberus gualtierianus alonensis 0 0 0 0 0 0 0

Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0

Iberus gualtierianus globulosus 0 0 0 0 0 0 0

Theba pisana 0 3 113 74 182 220 62

Theba gittenbergeri 0 0 0 0 0 0 0

Theba subdentata helicella 0 0 0 0 0 0 0

Pseudotachea litturata 0 0 0 0 0 0 0

Otala (Otala) lactea 1 7 6 0 0 60 161

Otala (Otala) punctata 0 0 0 0 0 0 0

Eobania vermiculata 0 0 0 0 0 0 0

Cantareus aspersus 0 2 0 0 0 0 24

366



Appendix 4. Species abundances at the Biogeographical Sites

Appendix 4 (continued).
Species B71 B72 B73 B74 B75 B76 B77

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 28 40 0 0 0 0 5
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 12 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 108 0 0 32 0 0 0
Granopupa granum 0 3 0 0 1 8 0
Truncatellina callicratis 0 30 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 1 10 0 0 12 7 0
Cecilioides (Cecilioides) jani 1 5 1 1 17 5 1
Cecilioides (Cecilioides) acicula 0 3 0 0 73 0 0
Ferussacia (Ferussacia) folliculus 110 114 3 12 14 64 7
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 2 0 31 2 13 2 0
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 36 0 0 0 2 0
Paralaoma caputspinulae 0 0 0 0 11 0 1
Vitrea (Crystallus) contracta 0 38 0 7 25 8 3
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mast us pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 18 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 2
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 1 2 1 0
Milax gagates 3 2 0 0 0 0 0
Milax nigricans 0 1 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 2 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 26 0 11 15 8 172 12
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 381 151 0 0 141 6 0
Oestophora barbula 0 0 0 0 0 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 1 10 159 0 83 137 63
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Appendix 4 (continued).
Species B71 B72 B73 B74 B75 B76 B77

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 0 0
Cochlicella (Prietocella) barbara 180 5 287 117 0 0 152
Trochoidea (Trochoidea) elegam 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 1 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescem 0 0 0 1 0 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 747 0 132 11 9 0 48
Xerotrichia apicina 68 0 644 2 0 15 229
Xeroleuca vatonniana 0 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp 1 0 0 0 0 0 0 0
Candidula sp2 0 14 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 30 0 0 0 0 1
Xerosecta (Xerosecta) promissa 11 69 86 0 41 423 9
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 0 0 0 0 0 0 0
Microxeromagna armillata 37 76 0 65 104 174 0
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 46 18 934 83 76 286 605
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 130 53 133 25 94 44 62
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 87 2 29 8 21 13 3
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Appendix 4 (continued).
Species B78 B79 B80 B81 B82 B83 B84

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 22 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 49 0 0 0 0 1 0
Vallonia cost at a 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 26 0 0 0 0 0 0
Pyramidula pusilla 68 0 0 0 0 1 0
Granopupa granum 0 0 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 9 0 0 0 0 0 0
Truncatellina cylindrica 0 2 44 0 0 9 22
Cecilioides (Cecilioides) jani 0 43 0 0 0 2 0
Cecilioides (Cecilioides) acicula 32 0 86 0 0 0 0
Ferussacia (Ferussacia) folliculus 110 11 222 0 0 23 0
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 1 0 26 24 0 0 147
Testacella maugei 0 1 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 0 0 0 0 0 0
Paralaoma caputspinulae 0 4 0 0 0 0 0
Vitrea (Crystallus) contracta 120 17 35 0 0 2 1
Euconulus (Euconulus) fulvus 0 0 0 0 0 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 2 0 0 0 0 0 0
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 1 0 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 0
Limax (Limacus) flavus 0 0 0 0 0 0 0
Lehmania valentiana 0 0 0 0 0 0 0
Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 0 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0
Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 87 15 37 0 0 5 0
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 0 0 0 0 0 2
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 6 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 11 0 33 0 0 12 0
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Appendix 4 (continued).
Species B78 B79 B80 B81 B82 B83 B84

Cochlicella (Cochlicella) conoidea 0 0 0 2 0 1 0
Cochlicella (Prietocella) barbara 168 0 0 0 0 0 1
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0
Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 0 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 0 0 0 2 0 0
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 96 6 0 2 0 0 0
Xerotrichia apicina 0 1 0 0 0 0 0
Xeroleuca vatonniana 2 0 0 0 0 0 10
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 18 0 0 0 0 0
Candidula intersecta 0 0 0 0 2 0 0
Candidula sp l 0 0 0 17 0 0 0
Candidula sp2 0 0 0 0 0 0 0
Cernuella (Cernuella) virgata 0 0 57 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 6 33 24 0 0 0 0
Xerosecta (Xerosecta) prom issa 13 27 91 0 0 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 31 0 0 0 0 0
Portugal a inch oat a 0 0 0 38 137 9 79
Microxeromagna armillata 27 0 296 0 0 30 51
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 345 187 523 37 0 1131 23
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 73 193 123 31 0 56 38
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 17 20 26 26 0 0 15
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Appendix 4 (continued).
Species B85 B86 B87 B88 B89 B90 B91

Acicula norrisi 0 0 0 0 0 0 0
Leonia mamillaris 0 0 0 0 0 0 0
Carychium minimum 0 0 0 0 0 0 0
Hypnophila malagana 0 0 0 0 0 0 0
Lauria (Lauria) cylindracea 32 0 0 9 1074 0 1
Vallonia costata 0 0 0 0 0 0 0
Vallonia excentrica 0 0 0 0 0 0 0
Vallonia pulchella 0 0 0 0 0 0 0
Pyramidula pusilla 99 82 0 10 124 3 56
Granopupa granum 0 0 0 0 0 0 0
Truncatellina callicratis 0 0 0 0 0 0 0
Truncatellina claustralis 0 0 0 0 0 0 0
Truncatellina cylindrica 103 0 2 1 172 2 174
Cecilioides (Cecilioides) jani 0 0 0 0 0 0 0
Cecilioides (Cecilioides) acicula 0 0 0 0 0 0 0
Ferussacia (Ferussacia) folliculus 0 0 0 0 0 23 12
Hohenwartiana eucharista 0 0 0 0 0 0 0
Rumina decollata 0 0 3 14 4 83 0
Testacella maugei 0 0 0 0 0 0 0
Punctum (Punctum) pygmaeum 0 1 0 0 0 0 0
Paralaoma caputspinulae 0 0 0 1 0 0 0
Vitrea (Crystallus) contracta 3 56 0 2 86 0 0
Euconulus (Euconulus) fulvus 0 0 0 0 1 0 0
Mastus pupa 0 0 0 0 0 0 0
Oxychilus (Oxychilus) cellarius 0 0 0 0 0 0 0
Oxychilus (Oxychilus) draparnaudi 0 0 0 0 0 51 5
Oxychilus (Oxychilus) hydatinus 0 0 0 0 0 0 0
Oxychilus sp 1 0 0 0 0 0 0 0
Oxychilus sp2 0 0 0 0 0 0 0
Oxychilus sp3 0 0 0 0 0 0 0
Parmacella (Parmacella) valencieni 0 0 0 3 0 0 0
Milax gagates 0 0 0 0 0 0 0
Milax nigricans 0 0 0 0 0 0 1
Limax (Limacus) flavus 0 0 0 2 0 0 0
Lehmania valentiana 0 0 0 0 0 0 4

Deroceras (Deroceras) panormitanum 0 0 0 0 0 0 0
Deroceras (Agriolimax) reticulatum 0 0 0 0 0 0 0
Deroceras (Agriolimax) nitidum 0 5 0 0 0 0 0
Deroceras (Agriolimax) ponsonbyi 0 0 0 0 0 0 0

Sphincterochila (Albea) candidissima 0 0 0 0 0 0 0
Sphnincterochila (Cariosula) baetica 0 0 0 0 0 0 0
Geomalacus malagensis 0 0 0 0 0 0 0
Caracollina (Caracollina) lenticula 1 9 0 287 39 29 30
Gasulliella simplicula 0 0 0 0 0 0 0
Gittenbergeria turriplana 0 0 0 0 0 0 0
Oestophora barbula 0 2 0 49 1 0 0
Oestophora calpeana 0 0 0 0 0 0 0
Oestophora tarnieri 0 0 0 0 0 0 0
Oestophora sp 1 0 0 0 0 0 0 0
Hatumia pseudogasulli 0 0 0 0 0 0 0
Cochlicella (Cochlicella) acuta 66 0 0 3 5 0 25
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Appendix 4 (continued).
Species B85 B86 B87 B88 B89 B90 B91

Cochlicella (Cochlicella) conoidea 0 0 0 0 0 0 0
Cochlicella (Prietocella) barbara 29 0 0 17 100 0 28
Trochoidea (Trochoidea) elegans 0 0 0 0 0 0 0

Trochoidea (Trochoidea) pyradimata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) barceloi 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) derogata 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) murcica 0 0 0 0 0 0 0
Trochoidea (Xerocrassa) jimenensis 0 0 0 0 0 0 0
Trochoidea sp 1 0 0 0 0 0 0 0
Trochoidea sp2 0 0 3 0 0 0 0
Trochoidea sp3 0 0 0 0 0 0 0
Ponentina subvirescens 0 2 0 0 0 2 29
Trichia martigena 0 0 0 0 0 0 0
Xerotrichia conspurcata 0 1 0 0 0 0 0
Xerotrichia apicina 0 0 0 0 36 0 0
Xeroleuca vatonniana 66 0 0 0 0 0 0
Helicella huidobroi 0 0 0 0 0 0 0
Helicella ? stiparum 0 0 0 0 0 0 0
Candidula gigaxii 0 0 0 0 0 0 0
Candidula intersecta 0 0 0 0 0 0 0
Candidula sp l 0 3 0 0 0 12 0
Candidula sp2 0 0 0 0 5 0 0
Cernuella (Cernuella) virgata 0 0 0 0 0 0 0
Xerosecta (Xerosecta) adolfi 0 0 0 0 0 0 0
Xerosecta (Xerosecta) cespitum 0 0 0 0 0 0 0
Xerosecta (Xerosecta) promissa 0 0 0 0 0 0 0
Xerosecta (Xerosecta) reboudiana 0 0 0 0 0 0 0
Xerosecta sp 0 0 0 0 0 0 0
Portugala inchoata 9 13 3 19 21 3 17
Microxeromagna armillata 99 0 0 240 38 19 312
Ganula gadirana 0 0 0 0 0 0 0
Iberus gualtierianus marmoratus 0 0 0 0 0 0 0
Iberus gualtierianus alonensis 0 0 0 0 0 0 0
Iberus gualtierianus gualtierianus 0 0 0 0 0 0 0
Iberus gualtierianus globulosus 0 0 0 0 0 0 0
Theba pisana 128 0 0 67 375 114 288
Theba gittenbergeri 0 0 0 0 0 0 0
Theba subdentata helicella 0 0 0 0 0 0 0
Pseudotachea litturata 0 0 0 0 0 0 0
Otala (Otala) lactea 41 2 0 138 95 251 132
Otala (Otala) punctata 0 0 0 0 0 0 0
Eobania vermiculata 0 0 0 0 0 0 0
Cantareus aspersus 7 1 0 47 28 22 21
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Appendix 5. The environm ental variables at the B iogeographical Sites. See Appendix 1 for site 
num bering and details.
_______________  Abbreviations used in Appendix 5:_____________________________
Abbreviation Environm ental variable name, classification and unit o f  mesaurement
ALTI Altitude: M etres above sea level (U sing altim eter)
DEPO G eology (rock /deposit type): Sensu Roberts, 1989; Anon., 1994
GEOL G eological period: Sensu Black, 1998; Lincoln et al., 1998
RAIN Rainfall: A nnual m ean (m m )
SANN Sunshine: A nnual m ean (hours/day)
SJAN S unshine-January: M onthly m ean (hours/day)
SFEB Sunshine-February: M onthly m ean (hours/day)
SM AR Sunshine-M arch: M onthly m ean (hours/day)
SAPR Sunshine-A pril: M onthly m ean (hours/day)
SM AY Sunshine-M ay: M onthly m ean (hours/day)
SJUN Sunshine-June: M onthly m ean (hours/day)
SJUL Sunshine-July: M onthly  m ean (hours/day)
SAUG Sunshine-A ugust: M onthly m ean (hours/day)
SSEP Sunshine-Septem ber: M onthly mean (hours/day)
SOCT Sunshine-O ctober: M onthly m ean (hours/day)
SNOV Sunshine-N ovem ber: M onthly m ean (hours/day)
SDEC Sunshine-D ecem ber: M onthly mean (hours/day)
TANN Tem perature: A nnual m ean (°C )
TJAN T em perature-January: M onthly m ean (°C)
TJUL T em perature-July: M onthly m ean (°C )
TDJA Tem perature (diurnal variation)-January: M onthly m ean (°C)
TDJU Tem perature (diurnal variation)-July: M onthly m ean (°C)

TDOO
T em perature (m ean num ber o f  days in year w hen tem perature is less than or 
equal to  0°C): A nnual m ean (num ber o f  days)

TD20
T em perature (m ean num ber o f  days in year when tem perature is m ore than or 
equal to  20°C ): Annual m ean (num ber o f  days)

W IND W ind: A nnual m ean (km /hr)
ABHU A bsolute hum idity: A nnual m ean (g/m*)

Site
No. Site Name ALTI DEPO G EO L RAIN SANN SJAN SFEB SMAR SAPR

B1 Guardamar del Segura. Spain 40 9 12 300 7.9 5.5 6.4 6.7 8.2
B2 Torrevieja, Spain 50 10 15 300 7.6 5.5 6.4 6.7 7.9
B3 El Pilar de la Horadada, Spain 80 10 15 300 7.6 5.5 6.4 6.4 7.9
B4 Los Alc&zares, Spain 20 10 15 300 7.6 5.5 6.4 6.4 7.9
B5 Cabo de Palos, Spain 35 9 II 300 8.2 5.5 6.4 6.4 7.9
B6 Portman, Spain 75 2 1 300 8.2 5.8 6.4 7.0 8.2
B7 Cartagena, Spain 25 2 2 300 8.2 5.8 6.4 7.0 8.2
BS La Azohia, Spain 50 2 2 300 8.2 5.8 6.4 7.0 8.2
B9 Mazarrbn, Spain 80 10 15 300 8.2 5.8 6.4 7.0 8.2

BIO Puntas del Calnegre, Spain 45 2 1 300 8.2 5.8 6.4 7.0 8.2
B11 Cabo Cope, Spain 3 2 1 300 8.2 5.8 6.4 7.0 8.2
B12 Aguilas, Spain 25 2 2 300 8.2 5.8 6.4 7.0 8.2
B13 San Juan de los Terreros, Spain 50 10 14 300 8.2 5.8 6.4 7.0 8.2
B14 Villaricos, Spain 15 2 1 300 8.2 5.8 6.4 7.0 8.2
B15 Garrucha, Spain 10 10 15 300 8.2 5.8 6.4 7.0 8.2
BI6 Playa de Macenas, Spain 40 9 11 300 8.2 5.8 6.4 7.0 8.2
B17 Punta de los Muertos, Spain 100 9 11 300 8.2 5.8 6.4 7.0 8.2
BIS Las Negras, Spain 35 9 11 300 8.2 5.8 6.4 7.0 8.2
B19 El Pozo de los Frailes, Spain 80 9 11 300 8.2 5.8 6.4 7.0 8.2
B20 Cabo de Gata, Spain 20 9 11 300 8.2 5.8 6.4 7.0 8.2
B21 Retamar, Spain 50 10 15 300 8.2 5.8 6.4 7.0 8.2
B22 Almeria, Spain 30 10 15 400 7.9 5.8 6.4 7.0 7.9
B23 Roquetas de Mar, Spain 125 10 15 400 7.9 5.8 6.4 6.7 7.9
B24 Punta del Sabinar, Spain 20 10 15 400 7.9 5.8 6.4 6.7 7.9
B25 Guardias Viejas, Spain 10 10 14 400 7.9 5.8 6.4 6.7 7.9
B26 Adra, Spain 95 2 2 500 7.9 5.8 6.4 6.7 7.9
B27 La Rabita, Spain 25 2 2 500 7.9 5.8 6.4 6.7 7.9
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A ppend ix  5 (co n tin u ed ).

Site
No. Site Name ALTI DEPO GEOL RAIN SANN SJAN SFEB SMAR SAPR

B28 La Guapa, Spain 110 2 2 500 7.9 5.8 6.4 6.7 7.9
B29 Calahonda, Spain 65 2 2 500 7.9 5.8 6.4 6.7 7.9
B30 Torrenueva, Spain 15 10 14 500 7.9 5.8 6.4 6.7 7.9
B31 Torrecuevas, Spain 275 2 2 600 7.9 5.8 6.4 6.7 7.9
B32 Lagos, Spain 35 2 2 600 7.9 5.8 6.4 6.7 7.9
B33 Torrex, Spain 110 2 2 600 7.9 5.8 6.4 6.7 7.9
B34 Torre del Mar, Spain 25 9 12 600 7.9 5.8 6.4 6.7 7.9
B35 Benajarafe, Spain 25 2 1 600 7.9 5.8 6.4 6.7 7.9
B36 Benagalbon, Spain 95 2 1 600 7.9 5.8 6.4 6.7 7.9
B37 Malaga. Spain 10 2 1 600 7.9 5.8 6.1 6.7 7.9
B38 Torremolinos, Spain 50 9 12 600 7.9 5.5 6.1 6.7 7.9
B39 Fuengirola. Spain 45 2 2 600 7.9 5.5 6.1 6.7 7.9
B40 Los Jarales, Spain 10 2 1 700 7.9 5.5 6.1 6.7 7.9
B41 Marbella, Spain 15 6 7 700 7 5.5 6.1 6.7 7.6
B42 San Pedro de Alcantara, Spain 20 6 7 700 7.9 5.2 5.8 6.7 7.6
B43 Rio del Padron, Spain 1 9 10 700 7.9 5.2 5.8 6.7 7.6
B44 Casares, Spain 40 6 1 700 7.9 5.2 5.8 6.7 7.6
B45 Cala Sardina, Spain 20 9 10 700 7.9 5.2 5.8 6.7 7.6
B46 Sotogrande, Spain 3 9 12 1000 7.6 5.2 5.8 6.4 7.6
B47 La Linea, Spain 10 9 10 1000 7.6 5.2 5.8 6.4 7.6
B48 Deadman's Beach, Gibraltar 25 5 6 1000 7.6 5.2 5.8 6.4 7.6
B49 Getares, Spain 20 10 15 1000 7.6 5.2 5.8 6.4 7.3
B50 Punta del Camero, Spain 30 8 9 1200 7.6 5.2 5.8 6.1 7.3
B5I Punta del Cabrito, Spain 340 6 7 1200 7.6 5.2 5.8 6.1 7.3
B52 Rio Jara. Spain 1 7 8 1200 7.6 5.2 5.8 6.4 7.3
B53 Punta Camarinal, Spain 10 9 11 1200 8.2 5.2 5.8 6.7 7.9
B54 Zahara de los Atunes. Spain 10 9 11 1000 8.2 5.5 6.1 6.7 7.9
B55 Barbate, Spain 2 10 15 1000 8.5 5.5 6.1 7.0 7.9
B56 Cabo de Trafalgar, Spain 30 10 15 600 8.5 5.5 6.1 7.0 8.2
B57 Conil de la Frontera, Spain 40 9 11 600 8.5 5.5 6.1 7.0 8.2
B58 Chiclana de la Frontera, Spain 10 4 4 600 8.5 5.5 6.1 7.0 8.2
B59 Cadiz, Spain 2 9 12 600 8.5 5.5 6.1 7.0 8.8
B60 Rota, Spain 10 9 12 600 8.2 4.9 6.1 6.7 8.8
B61 Chipiona, Spain 3 10 15 600 8.2 4.9 6.1 6.7 8.8
B62 Sanlucar de Barrameda, Spain 2 9 13 600 8.2 4.9 6.1 6.7 8.8
B63 Torre de la Higuera. Spain 10 10 15 600 8.2 4.9 6.1 6.7 8.8
B64 Torre del Oro, Spain 10 10 15 600 8.2 4.9 6.1 6.7 8.8
B65 Mazagon, Spain 15 10 15 600 8.2 4.9 6.1 6.7 8.8
B66 Punta Umbria, Spain 10 10 15 600 8.2 4.9 5.8 6.7 8.8
B67 El Rompido, Spain 10 9 13 600 8.5 4.9 5.8 7.0 9.1
B68 Isla Cristina, Spain 10 10 15 600 8.5 4.9 5.8 6.7 9.1
B69 Monte Gordo, Portugal 2 9 11 650 8.5 4.9 5.8 6.7 9.1
B70 Tavira, Portugal 2 10 15 650 8.5 4.9 5.8 6.7 9.1
B71 Torre de Ares, Portugal 2 10 15 650 8.5 4.9 5.8 6.7 9.1
B72 Olhao, Portugal 50 10 15 650 8.5 4.9 5.8 6.7 9.1
B73 Faro, Portugal 5 10 15 650 8.5 4.9 5.8 6.7 9.1
B74 Vale do Lobo, Portugal 25 10 14 650 8.5 4.9 5.8 6.7 9.1
B75 Albufeira. Portugal 20 5 6 700 8.5 4.9 5.8 6.7 9.1

B76 ArmacSo de Pera, Portugal 40 9 11 650 8.5 4.9 5.8 6.7 9.1
B77 Portimao, Portugal 2 9 11 650 8.5 4.9 5.8 6.7 8.5
B78 Luz, Portugal 20 9 12 750 8.5 4.9 5.8 6.7 8.5
B79 Burgau, Portugal 135 6 7 750 8.5 4.9 5.8 6.7 8.5
B80 Salema, Portugal 55 4 4 750 8.5 4.6 5.8 6.7 8.5

B8I Cabo Sao Vicente, Portugal 130 5 6 850 7.9 4.6 5.5 6.4 8.2

B82 Vila do Bispo, Portugal 90 3 3 850 7.9 4.6 5.5 6.4 8.2

B83 Carrapateira, Portugal 75 10 15 700 7.9 4.6 5.5 6 4 8.2

B84 Praia da Carriagem, Portugal 55 10 15 750 7.9 4.6 5.5 6.4 8.2

B85 Odeceixe, Portugal 80 3 3 750 7.9 4.6 5.5 6.4 8.2

B86 Zambujeira do Mar, Portugal 70 3 3 750 7.9 4.6 5.5 6.4 8.2

B87 Cabo Serdao Cavaleiro, Portugal 75 3 3 750 7.9 4.6 5.5 6.4 8.2

B88 Milfontes, Portugal 55 9 13 700 7.9 4.6 5.5 6.4 8.2

B89 Porto Covo, Portugal 15 10 15 750 7.9 4.6 5.5 6.4 8.2

B90 Sines, Portugal 20 1 5 750 7.9 4.6 5.5 6.4 8.2

B9I Lagoa de Santo Andr6, Portugal 3 1 5 700 7.9 4.6 5.5 6.4 8.2

Coefficient o f  Variation (%) 123.7 38.7 3.7 7.5 4.9 3.0 6.1 1
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Appendix 5: The environmental variables at the Biogeographical Sites

Appendix 5 (continued).

Site
No. Site Name SMAY SJUN S J U L SAIIG SSEP SOCT SNOV SDEC TANN

B1 Guardamar del Segura, Spain 9.7 10.6 10.9 10.0 7.9 6.7 6.1 5.5 16
B2 Torrevieja, Spain 9.7 10.6 10.6 10.0 7.6 6.4 5.8 5.2 16
B3 El Pilar de la Horadada, Spain 9.7 10.3 10.6 9.7 7.6 6.4 5.8 5.2 16
B4 Los Alcazares, Spain 9.7 10.3 10.6 9.7 7.6 6.4 5.8 5.2 16
B5 Cabo de Palos, Spain 9.7 10.3 10.6 9.7 7.6 6.4 5.8 5.2 16
B6 Portman, Spain 9.7 10.9 10.9 9.7 7.6 6.7 6.1 5.5 16
B7 Cartagena. Spain 9.7 10.9 11.5 10.3 7.6 6.7 6.1 5.5 16
B8 La Azohia, Spain 9.7 10.9 11.5 10.3 7.9 6.7 6.1 5.5 16
B9 Mazarrdn. Spain 9.7 10.9 1 1.5 10.3 8.2 6.7 6.1 5.5 16

BIO Puntas del Calnegre, Spain 9.7 10.9 11.5 10.6 8.2 6.7 6.1 5.5 16
B ll Cabo Cope, Spain 9.7 10.9 11.5 10.6 8.2 6.7 6.1 5.5 16
BI2 Aguilas, Spain 9.7 10.9 115 10.6 8.2 6.7 6.1 5.5 16
It 13 San Juan de los Terreros, Spain 9.7 10.9 115 10.6 8.2 6.7 6.1 5.5 16
BI4 Villaricos, Spain 9.7 10.9 11.5 10.6 8.2 6.7 6.1 5.5 16
B15 Garrucha. Spain 9.7 10.9 11.5 10.6 8.2 6.7 6.1 5.5 18
BI6 Playa de Macenas. Spain 9.7 10.9 115 10.6 8.2 6.7 6.1 5.5 18
BI7 Punta de los Muertos, Spain 9.7 10.9 11.5 10.6 8.2 6.7 6.1 5.5 18
BIS Las Negras, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
BI9 El Pozo de los Frailes, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
B20 Cabo de Gata, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
B2I Retamar. Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
B22 Almeria, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
B23 Roquetas de Mar, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
B24 Punta del Sabinar, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B25 Guardias Viejas, Spain 9.7 10.9 
i n o

11.5 
1 1 s

10.6
10.6
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B27
Adra, Spain 
La Rabita, Spain 9.7 10.9

1 l . J

11.5 10.6 8.5 6.7 6.1 5.5 18

B2S La Guapa, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B29 Calahonda, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B30 Torrenueva, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B31 Torrecuevas, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B32 Lagos, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B33 Torrex, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B34 Torre del Mar, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18

B35 Benajarafe, Spain 9.7 10.9 11.5 10.6 8.5 6.7 6.1 5.5 18
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i> m
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B39 Fuengirola, Spain 9.7 10.6 11.5 10.6 8.5 6.7 6.1 5.2 18

B40 Los Jarales, Spain 9.7 10.6 11.5 10.6 8.5 6.7 6.1 5.2 18

B4I Marbella, Spain 9.4 10.6 11.5 10.6 8.5 6.7 6.1 5.2 18

B42 San Pedro de Alcantara, Spain 9.4 10.3 11.5 10.6 8.5 6.7 6.1 5.2 18

B43 Rio del Padrdn, Spain 9.4 10.3 11.5 10.6 8.5 6.7 6.1 5.2 18

B44 Casares, Spain 9.4 10.3 11.2 
1 1 1

10.6
1A £

8.5 6.7 
6 7

6.1
6.1

5.2 
5 7

18

B45
B46

Cala Sardina, Spain 
Sotogrande, Spain

9.4
9.4 
n  a

10.3
10.3 
i n

11.2 
11.2 
11 1

1 u.o
10.3
10.3

O . J

8.5
8.5

U. /
7.0
7.0

5.8
5.5

4.9
4.9

1 O 
18 
18B47

B48
La Linea, Spain 
Deadman's Beach, Gibraltar

y .4
9.4

i U. J
10.3

1  l . X r  

11.2 10.3 8.5 7.0 5.8 4.9 18

B49 Getares, Spain 8.8 10.3 11.8 10.3 8.2 7.0 5.8 4.9 18

B50 Punta del Camero, Spain 8.8 10.3 11.8 10.3 8.2 7.0 5.8 4.9 18

B51 Punta del Cabrito, Spain 9.1 10.3 11.8 10.6 8.2 7.0 6.1 4.9 18

B52 Rio Jara, Spain 9.4 10.6 11.8 10.9 8.2 7.0 6.1 5.2 18

B53 Punta Camarinal, Spain 9.7 11.2 11 8 11.2 8.8 7.0 6.1 5.2 18

B54 Zahara de los Atunes, Spain 9.7 11.2 12.1 11.2 8.8 7.3 6.1 5.2 18

B55 Barbate, Spain 9.7 11.2 12.1 11.2 9.1 7.3 6.1 5.2 18

B56 Cabo de Trafalgar, Spain 9.7 11.2 12.1 11.2 9.1 7.3 6.1 5.2 18

B57 Conil de la Frontera, Spain 9.7 11.2 12.1 11.2 9.1 7.3 6.1 5.2 18

B58 Chiclana de la Frontera, Spain 9.7 11.2 12.1 11.2 9.1 7.3 6.1 5.2 18

B59 Cadiz, Spain 9.7 11.2 12.1 11.2 9.1 7.3 6.1 5.2 18

B60 Rota, Spain 9.7 11.2 12.1 11.5 9.1 7.3 61 5.2 18

B6I Chipiona, Spain 10.0 11.2 12.1 11.5 9.1 7.3 6.1 5.2 18

B62 Sanlucar de Barrameda, Spain 10.0 11.2 12.1 11.5 9.1 7.3 6.1 5.2 18

B63 Torre de la Higuera, Spain 10.0 11.2 12.1 11.5 9.1 7.3 6.1 5.2 18

B64 Torre del Oro, Spain 10.0 11.2 12.1 11.5 9.1 7.3 6.1 5.2 18
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Appendix 5: The environmental variables at the Biogeographical Sites

Appendix 5 (continued).

Site
No. Site Name SMAY SJUN S J U L SAUG SSEP SOCT SNOV SDEC TANN

B65 Mazagon, Spain 10.0 11.2 12.1 11.5 9.1 7.3 5.5 5.2 18
B66 Punta Umbria, Spain 10.0 11.2 12.1 11.5 9.1 7.3 5.5 5.2 18
B67 El Rompido, Spain 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 18
B68 Isla Cristina, Spain 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 18
B69 Monte Gordo, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 18
B70 Tavira, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 16
B71 Torre de Ares, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 16
B72 Olhao, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 16
B73 Faro, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 16
B74 Vale do Lobo, Portugal 10.6 11.2 12.4 11.8 9.1 7.3 5.5 5.2 16
B75 Albufeira, Portugal 10.6 10.9 12.4 11.8 8.8 7.3 5.5 5.2 16
B76 Armac3o de Pera, Portugal 10.6 10.9 12.4 11.8 8.8 7.3 5.5 5.5 16
B77 Port i mao, Portugal 10.6 10.9 12.4 11.8 8.8 7.3 5.5 5.5 16
B78 Luz, Portugal 10.6 10.9 12.4 11.5 8.8 7.3 5.2 5.5 16
B79 Burgau, Portugal 10.6 10.9 12.4 11.5 8.8 7.0 5.2 5.5 16
B80 Salema, Portugal 10.6 10.9 12.4 11.5 8.8 7.0 5.2 5.5 16
B8I Cabo Sao Vicente, Portugal 10.3 10.9 12.1 11.5 8.2 6.7 4.9 5.5 16
B82 Vila do Bispo, Portugal 10.0 10.9 12.1 11.5 8.5 6.7 4.9 5.2 16
B83 Carrapateira, Portugal 10.0 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B84 Praia da Carriagem, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B85 Odeceixe, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B86 Zambujeira do Mar, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B87 Cabo Serdao Cavaleiro, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B88 Milfontes, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B89 Porto Covo, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B90 Sines, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16
B91 Lagoa de Santo Andre, Portugal 10.3 10.9 12.1 11.5 8.8 6.7 4.9 5.2 16

Coefficient o f Variation (%) 8.5 2.8 4.3 5.5 4.7 4.3 6.9 3.8 5.8
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Appendix 5: The environmental variables at the Biogeographical Sites

Appendix 5 (continued).

Site
No. Site Name TJAN TJUL T D J A TDJU m o o TD20 WIND ABH li

B1 Guardamar del Segura. Spain 10 24 10 10 10 30 15 11
B2 Torrevieja, Spain 10 24 10 10 10 30 15 11
B3 El Pilar de la Horadada, Spain 10 24 10 10 10 30 15 11
B4 Los Alcazares, Spain 10 24 10 10 10 30 15 11
B5 Cabo de Palos, Spain 10 24 10 10 10 30 15 11
B6 Portman, Spain 10 24 10 10 10 30 15 11
B7 Cartagena, Spain 10 24 10 10 10 30 15 11
B8 La Azohia, Spain 10 24 10 12 10 30 15 11
B9 Mazarron. Spain 10 24 10 12 10 30 15 11

BIO Puntas del Calnegre, Spain 10 24 10 12 10 30 15 11
B ll Cabo Cope, Spain 10 24 10 12 10 30 15 11
B12 Aguilas, Spain 10 24 10 12 10 30 15 11
B13 San Juan de los Terreros, Spain 10 24 10 10 10 30 15 11
BI4 Villaricos. Spain 10 24 10 10 10 30 15 11
B15 Garrucha, Spain 10 24 10 10 10 30 15 11
B16 Playa de Macenas. Spain 10 24 10 10 10 30 15 11
BI7 Punta de los Muertos, Spain 10 24 10 10 10 30 15 11
BIS Las Negras, Spain 12 24 8 10 10 30 15 11
B19 El Pozo de los Frailes. Spain 12 24 8 10 10 30 15 11
B20 Cabo de Gata, Spain 12 24 8 10 1 50 15 12
B2I Retamar. Spain 12 24 8 10 1 50 15 12

B22 Almeria, Spain 12 24 8 10 1 50 15 12

B23 Roquetas de Mar. Spain 12 24 8 10 1 50 15 12
B24 Punta del Sabinar. Spain 12 24 8 10 1 50 15 12

B25 Guardias Viejas, Spain 12 24 8 10 1 50 15 12

B26 Adra, Spain 10 24 8 10 1 50 15 11
B27 La Rabita, Spain 10 24 8 10 1 50 15 11

B28 La Guapa. Spain 10 24 8 10 1 50 15 11

B29 Calahonda, Spain 10 24 8 10 1 50 15 11

B30 Torrenueva, Spain 10 24 8 10 1 50 15 11

B3I Torrecuevas, Spain 10 24 8 10 1 50 15 11

B32 Lagos, Spain 10 24 8 10 1 50 15 11

B33 Torrex, Spain 10 24 8 10 1 50 15 11

B34 Torre del Mar, Spain 10 24 8 10 1 50 15 11

B35 Benajarafe. Spain 10 24 8 10 1 50 15 11

B36 Benagalbon, Spain 10 24 8 10 1 50 15 11

B37 Malaga. Spain 12 24 8 10 1 50 15 11

B38 Torremolinos, Spain 12 24 8 10 1 50 15 11

B39 Fuengirola, Spain 12 24 8 10 1 50 15 11

B40 Los Jarales. Spain 12 24 8 10 1 50 15 11

B41 Marbella, Spain 12 24 8 10 1 50 15 11

B42 San Pedro de Alcantara, Spain 12 24 8 10 1 50 15 11

B43 Rio del Padron, Spain 12 24 8 10 1 50 15 11

B44 Casares, Spain 12 24 8 10 1 50 15 11

B45 Cala Sardina, Spain 12 24 8 10 1 50 15 11

B46 Sotogrande, Spain 12 24 8 10 1 50 15 11

B47 La Linea, Spain 12 24 8 10 1 50 30 11

B48 Deadman’s Beach, Gibraltar 12 24 8 8 1 50 30 12

B49 Getares, Spain 12 24 8 8 1 30 30 12

B50 Punta del Camero, Spain 12 24 8 8 1 30 30 12

B51 Punta del Cabrito. Spain 12 24 8 8 1 30 30 12

B52 Rio Jara, Spain 12 24 8 8 1 30 30 12

B53 Punta Camarinal, Spain 12 24 8 8 1 30 30 12

B54 Zahara de los Atunes, Spain 12 24 8 8 1 30 30 12

B55 Barbate, Spain 12 24 8 8 1 30 15 12

B56 Cabo de Trafalgar, Spain 12 24 8 8 1 30 15 12

B57 Conil de la Frontera, Spain 10 24 8 8 1 30 15 12

B58 Chiclana de la Frontera, Spain 10 24 8 10 1 50 15 11

B59 Cadiz. Spain 10 24 8 10 1 50 15 11

B60 Rota, Spain 10 24 8 10 1 50 15 11

B6I Chipiona, Spain 10 24 8 10 1 50 15 11

B62 Sanlucar de Barrameda, Spain 10 24 8 10 1 50 15 11

B63 Torre de la Higuera, Spain 10 24 8 10 1 50 15 11

B64 Torre del Oro, Spain 10 24 8 10 1 50 15 11

B65 Mazagon, Spain 10 24 8 10 1 50 15 11

B66 Punta Umbria, Spain 10 24 8 10 1 50 15 11

B67 El Rompido, Spain 12 24 8 10 1 50 15 11
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Appendix 5: The environmental variables at the Biogeographical Sites

Appendix 5 (continued).

Site
No. Site Name TJAN TJUL T D J  A TDJH TD00 TD20 WIND ABHU
B68 Isla Cristina, Spain 12 24 8 10 1 50 15 11
B69 Monte Gordo, Portugal 12 24 8 10 1 50 15 11
B70 Tavira, Portugal 12 24 8 10 1 50 15 11
B71 Torre de Ares, Portugal 12 24 8 10 1 50 15 11
B72 Olh§o, Portugal 12 24 8 10 I 50 15 11
B73 Faro, Portugal 12 24 8 10 1 50 15 11
B74 Vale do Lobo. Portugal 12 24 8 10 1 50 15 11
B75 Albufeira, Portugal 12 24 8 10 1 50 15 11
B76 Armacao de Pera, Portugal 12 24 8 10 1 50 15 11
B77 Portimao, Portugal 12 24 8 10 1 50 30 11
B78 Luz, Portugal 12 24 8 8 1 50 30 12
B79 Burgau, Portugal 12 24 8 8 1 30 30 12
B80 Salema, Portugal 12 24 8 8 1 30 30 12
B8I Cabo S3o Vicente, Portugal 12 24 8 8 1 30 30 12
B82 Vila do Bispo, Portugal 12 24 8 8 1 30 30 12
B83 Carrapateira. Portugal 12 24 8 8 1 30 30 12
B84 Praia da Carriagem, Portugal 12 24 8 8 1 30 30 12
B85 Odeceixe, Portugal 12 24 8 8 1 30 15 12
B86 Zambujeira do Mar. Portugal 12 24 8 8 1 30 15 12
B87 Cabo Serdao Cavaleiro, Portugal 10 24 8 8 1 30 15 12
B88 Milfontes, Portugal 10 24 8 10 1 50 15 11
B89 Porto Covo, Portugal 10 24 8 10 1 50 15 11
B90 Sines, Portugal 10 24 8 10 1 50 15 11
B9I Lagoa de Santo Andre, Portugal 10 24 8 10 1 50 15 11

Coefficient o f  Variation (%) 9.1 0 9.5 10.3 127.6 23.6 32.4 4.4
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Appendix 6. Photographs o f the Habitat Structure Sites

S I : Playa de los Lances, Spain S2: Pinar del Rey, Spain

S3: Sancti Petri, Spain S4: Cadiz, Spain

S5: Punta Paloma, Spain S6: La Linea, Spain

S7: Costalita, Spain S8: Western Beach, Gibraltar

Appendix 6. Photographs o f  the Habitat Structure Sites: SI to S8. See Table 6.1 for site details
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Appendix 6. Photographs o f  the Habitat Structure Sites

S9: Talus Slopes, Gibraltar S10: Playa del Negro, Spain

SI 1: Sotogrande, Spain S I2: Bahia Dorada, Spain

S13: Zahara de los Atunes, Spain S I 4: Carteia, Spain

S I5: Conil de La Frontera, Spain S I 6: Torre Real, Spain

A ppendix 6 (continued). Photographs o f  the Habitat Structure Sites: S9 to S16. See Table 6.1 for site details.
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Appendix 6. Photographs o f  the Habitat Structure Sites

S I 7: Malaga, Spain S I 8: Sanlucar de Barrameda, Spain

S19: Alcaidesa, Spain S20: El Ejido, Spain

S 21: La Zagaleta, Spain S22: Algeciras, Spain

S23: Benahavis, Spain S24: La Caflada, Spain

Appendix 6 (continued). Photographs o f  the Habitat Structure Sites: S17 to S24. See Table 6.1 for site details.
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Appendix 6. Photographs o f the Habitat Structure Sites

S25: Little Bay Slopes, Gibraltar

S27: Facinas, Spain S28: Campamento, Spain

S29: Windmill Hill Flats, Gibraltar S30: H alf Moon, Gibraltar

S31:Torrox, Spain S32: La Janda, Spain

Appendix 6 (conlinned). Photographs o f  the Habitat Structure Sites: S25 to S32. See Table 6.1 for site details
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Appendix 6. Photographs o f the Habitat Structure Sites

S33: Upper Rock, Gibraltar

S35: Western Slopes, Gibraltar

S34: Cove Beach, Spain

S36: S3o Bras, Portugal

S38: Miraflores, Spain

S39: Sabinillas, Spain S40: Delfimar, Spain

Appendix 6 (continued). Photographs o f  the Habitat Structure Sites: S33 to S40. See Table 6.1 for site details.
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Appendix 6. Photographs o f the Habitat Structure Sites

S41: El Higueron, Spain S42: Casares, Spain

S44. Playa del Seghers, SpainS43: Castellar de la Frontera, Spain

S45: San Roque, Spain S46: El Bujeo, Spain

S47: Serrania Bemeja, Spain S48: Torreguadiaro, Spain

Appendix 6 (continued). Photographs o f  the Habitat Structure Sites: S41 to S48. See Table 6.1 for site details.
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Appendix 6. Photographs o f  the Habitat Structure Sites

S49: Martagina, Spain S50: Santa Margarita, Spain

S51: Bolonia, Spain

S53: Muela, Spain

S52: Mediterranean Steps, Gibraltar

' t r - .

S54: Cala Sardina, Spain

S55: Aldea Beach, Spain S56: Manilva, Spain

Appendix 6 (continued). Photographs o f  the Habitat Structure Sites: S49 to S56. See Table 6.1 for site details.
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Appendix 6. Photographs o f the Habitat Structure Sites

S58: Alfaroba, PortugalS57: Monte, Portugal

S59: Guadalmansa, Spain S60: Calaburras, Spain

Appendix 6 (continued). Photographs o f  the Habitat Structure Sites: S57 to S60. See Table 6.1 for site details.
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Appendix 7. Random number sequences for the Habitat Structure Sites

Appendix 7. Random number sequences for the Habitat Structure Sites showing the plot 
identities and the quadrat identities for each plot. See Section 6.4.1 for details of the method 
used to derive the plot and quadrat identities, and Table 6.1 for site details.

Quadrats in:
Site/

Sequence Plot ID Plot a Plot b Plotc Plotd

1 06,12,10,05 05,12,17,18,24 00,11,13,17,21 01,04,05,15,22 03,08,11,17,19
2 13,06,14,15 05,06,11,17,21 05,15,20,21,22 01,04,16,17,19 02,08,09,11,15
3 02,12,08,10 03,14,16,19,23 01,05,16,19,22 03,10,11,20,23 01,04,11,16,24
4 00,13,07,14 08,09,11,15,21 02,04,10,12,13 02,06,07,16,21 14,15,18,20,21
5 15,08,06,11 03,07,09,11,24 05.08,09,13,20 03,09,14,19,21 01,04,11,12,23
6 03,04,08,15 00,07,15,18,20 00.06,15,16,20 02.12,14,17,21 02,12,17,21,24
7 03,14,06,04 04,08,14,18,21 02,06,09,14,20 05,08,10,17,23 03,10,14,18,21
8 05,03,13,07 05,11,16,18,21 03,08,14,15,18 02,09,12,14,19 03,07,10,14,17
9 00,14,07,05 11,14,17,20,21 01.02,06,12,24 03,12,15,17,20 07,08,13,16,21
10 05,05,07,12 00,03,12,20,21 06,12,14,17,19 03,06,07,13,15 01,07,11,17,22
11 00,06,04,00 01,08,12,14,19 01,04,06,10,16 02,07,16,19,22 10,11,13,18,20
12 05,01,09,15 05.07,16.19,24 06.08,10,14,20 00.05,12,15,19 03,09,16,18,22
13 04,04,12,11 04,07,15,16,21 06,09,11,18,19 00,10,19,23,24 02,05,07,16,19
14 09,07,14,12 01,05,07,15,19 00.03,10,16,18 03,05,09,15,17 04,10,13,21,24
15 12,09,12,07 01,03,09,15,21 02,09,15,20,23 03,07,08,16,18 00,03,07,16,21
16 13,04,04,07 02,06,11,16,20 01,02,09,12,16 01,04,14,15,21 04,09,11,16,18
17 04,05,13,12 08.11,14,15,21 06.07.18,19,22 02.12,19,20,23 00,05,11,13,17
18 13,13,08,02 01.11,16,21,24 05.09,16,18,21 00.05,07,15,18 11,13,15,18,22
19 09,05,12,05 09,10,15,17,21 01.02,06,16,19 03,09,10,16,18 02,05,12,16,23
20 00,02,10,05 01.06,10,16,20 02.07,09,12,16 07.11,16,20,23 04,09,13,16,21
21 01,05,13,11 03,04,17,18,23 09,11,13,14,17 00,15,17,20,21 01,07,08,13,18
22 05,12,12,00 03,09,12,15,20 01,04,07,16,21 02,05,08,16,22 02,08,11,13,16
23 03,04,14,14 01.04,07,13,20 00.02,10,17,21 07.11,13,22,23 01,10,16,18,21
24 07,02,08,01 03,06,09,15,18 04.10,15,16,22 03,06,11,13,17 06,10,11,13,17
25 00,02,10,02 03,09,14,19,22 00,08,09,18,21 02,05,07,12,16 07,10,16,18,21
26 12,11,00,12 00,11,19,21,24 11.12,16,19,21 02,11,15,19,22 04,08,16,17,20
27 15,01,14,10 09,11,14,20,24 02,04,08,13,18 04,08,11,14,18 04,07,10,15,20
28 06,05,12,10 00,03,05,11,13 01.03,12,18,22 05.10,13,21,22 03,08,14,28,20
29 03,10,03,10 00.12.16,19,23 02.05,08.14,19 04.07.11.14,17 03,09,12,17,22
30 11,07,10,12 02,04,09,15,18 03,11,14,21,23 04,08,15,16,21 04,06,19,20,23
31 05,09,06,10 06.13,19,21,23 1 06,13,19,20,24 00,08,11,18,20 06,13,19,20,23
32 01,00,04,15 02,08,12,20,23 08.10,11,14,22 00,03,10,13,24 03,11,14,19,21
33 09,02,11,14 01.10,12,15,20 05.10,12,16,18 00,12,20,23,24 00,04,09,17,19
34 04,10,00,12 02.09.18,21,24 06.07,09,11,22 01.10.12,15,17 05,13,15,21,22
35 03,12,13,08 03.06,13,17,19 03.04.12.16,20 07.12,15,18,22 04,08,10,15,18
36 13,08,14,15 01,12,14,18,21 08,10,18,22,24 01.05,08,14,15 03,07,13,16,18
37 10,00,13,08 05.09,16,19,24 01.07.11,14,20 03,04,09,12,16 02,08,12,17,19
38 04,00,15,05 03,05,15,20,22 05.12,15,18,20 02,13,15,18,22 01,05,06,15,20
39 07,11,10,05 06,09,14,18,19 00.05,11,16,18 12.15,20,22,24 02,04,08,16,21
40 11,10,05,01 06.09,15,20,22 01.11.13,15,19 02,04,07,14,20 03,09,10,18,21
41 04,09,05,03 07,10,12,16,17 02.07.13,19,21 13.16,21,22,24 00,01,06,11,13
42 03,04,00,03 03,08,12,17,22 06.11,14,16,20 01,03,07,12,18 00,13,14,17,22
43 09,15,12,11 11.13,16,19,21 03.10.16,17,22 08.10,13,17,19 02,12,18,19,20
44 09,15,12,11 11,13,16,19,21 03.10,16,17,22 08.10,13,17,19 02,12,18,19,20
45 15,15,09,10 08,09,15,17,24 02.11.14,19,21 11.15,17,18,20 00,01,07,10,24
46 15,03,13,13 05.11,15,19,22 03.10.13.16,18 04.06.11,17,24 04,06,17,18,21
47 13,10,14,11 00.07.14.16,17 03.10.13,22,23 00.05.11.14,23 01,02,08,15,21
48 06,09,09,07 12.14,17,20,21 02.09.13,16,19 07.09,15,18,21 05,08,15,20,22
49 06,15,12,14 04.12,14,16,22 01.02.09,14,22 01,04,13,16,19 03,14,17,19,23
50 06,07,11,10 06.07,15,19,21 07.08.14,16,19 01.04,09,17,20 02,03,09,14,17
51 10,09,02,11 00.13.18,19,23 00.01.04.10,19 07.12.16.18,21 00,08,10,18,22

52 08,11,13,06 06.10.13.21,24 00.07.09,14,17 03.09.10,15,24 01,02,07,11,18

53 02,06,14,13 04.09.10.15,18 04.05.09,11,13 00.04,07,13,14 02,05,11,14,16

54 07,01,11,14 04.05.07,12,17 03.11,12,15,23 04,14,18,20,23 09,14,15,19,23

55 14,05,14,13 02.07.14,17,24 00.08,09,14,19 02,03,08,11,15 03,09,11,13,23

56 07,04,10,09 00.03.06,14,17 01.05.13,19,22 00.02,08,14,16 05,09,19,21,24

57 09,12,05,02 03.09.12.13,19 01.04.13.17,21 04,06,13,19,22 07,09,13,16,20

58 13,07,14,15 05.07.10.15,20 02.09.10.17,19 06,11,19,21,24 10,15,16,20,24

59 06,09,06,02 04.07.14.15,20 06.10,13,17,21 01,04,06,14,18 00,13,15,21,23

60 07,03,10,10 05.06.13,18,22 05.14.18,21,32 03,09,10,14,17 00,05,08,14,19
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Appendix 8. Characterization o f  the components o f the plants

A ppend ix  8. C haracterization o f  the com ponents o f  the plants.

Most plants are composed o f a hierarchy o f components (also called modules or 

subunits) that can be used to analyze plant growth or compare different species 

(Waller, 1986; Klein and Klein, 1988) as well as for determining utilization of 

plants by herbivores (Lawton, 1983; Harper, 1985; Price et al., 1995). The 

positions o f the molluscs on the vegetation, using a simple classification of plant 

components to record positions (Table), were recorded as described in Section 

6.5.

The classification  system  used for the characterization o f  the 
com ponents o f  the plants.

plant type components
green grass entire plant
dry grass entire plant
annual m ain stem , side stem , leaf
herbaceous m ain stem , side stem, leaf
shrub m ain stem , side stem , leaf
tree m ain stem , side stem , lea f
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Appendix 9. Characterization o f shingle, stone and rocks

A ppend ix  9. C haracterization  o f  shingle, stones and rocks. See Table 6.5 for all environm ental 
variables including m easurem ent/sco ring  criteria and notes.

The types o f shingle, and the morphology and surface texture of stones 

and rocks were characterized using criteria based on Trudgill’s (1988) system 

(Figure). To remove as much as possible any bias in the selection of these for 

analysis, two pieces o f shingle, and two stones and rocks were chosen from the 

four comers and the centre (for a total o f ten measures each). In cases where 

these regions o f the quadrat had no, or insufficient samples, the position nearest 

any o f the points was used in each case.

The surface hardness o f stones and rocks was assessed using a 

pocketknife where surfaces easily scored were soft, those scored only with 

considerable effort were intermediate and those resistant to scoring were hard. 

Rocks were tested for the presence o f calcium carbonate (CaCC^) using 0.1 

Molar hydrochloric acid; 0.1ml o f the acid was added to the sample in situ and 

effervescence, indicating the liberation o f carbon dioxide gas (CO2), was 

accepted as evidence o f calcium carbonate in the sample (Bandtock and Hanson, 

1974).

An assessment was made o f the percentage o f rocks that were embedded 

in the substratum. Rocks were recorded as embedded if  (a) they were not 

possible to overturn, even with considerable manual force, or (b) if  they formed 

part o f a rock outcrop, or large boulder (generally greater than 0.5m in 

diameter). This assessment is dependent on the strength o f the fieldworker but is 

standardized in this study across sites because all assessments were done by one 

worker (the author).

389



Appendix 9. Characterization o f  shingle, stone and rocks

The m orphology and surface texture types used to characterize stones and 
rocks; the shingle types are also shown (based on Trudgill, 1988).

i A A
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rounded

blocky

lcm
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tabular

angular

smooth
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rough
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SURFACE TEXTURE
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f \
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angular

intermediate

rounded
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Appendix 10. Species at the Habitat Structure Sites

A ppend ix  10. Species at the H abitat S tructure Sites: the num ber o f  sites o f  each habitat type at 
w hich each species was present.

Species Sand Steppe Garigue Total sites
Granopupa granum (Drapamaud. 1801) 1 2 4 7

Chondrina calpica calpica (Westerlund. 1872) 1 1
Cecilioides (Cecilioides) acicula (Mllller, 1774) 1 1

Ferussacia (Ferussacia) folliculus (Gmelin, 
1790) 1 8 9 18

Rumina decollata (Linnaeus, 1758) 2 2 4
Testacella maugei Ferussac, 1819 1 1

Mastuspupa (Linnaeus, 1758) 1 1
Oxychilus (Oxychilus) draparnaudi (Beck, 

1837) 4 3 7
Oxychilus (Oxychilus) hydatinus (Rossmassler, 

1854) 1 1

Parmacella (Parmacella) valencieni Webb & 
van Beneden, 1836 1 1

Mi lax gagales (Draparnaud, 1801) 2 4 6
Milax nigricans (Schluz, 1836) 3 3

Deroceras sp 1 1
Geomalacus malagensis Wiktor & Norris, 1991 1 4 1 6
Caracollina (Caracollina) lenticula (Michaud, 

1831) 2 6 9 17

Gasulliella simplicula (Morelet, 1845) 1 1 2
Gittenbergeria turriplana (Morelet, 1845) 1 1
Oesiophora barbula (Rossmassler, 1838) 1 1

Oestophora calpeana {Morelet, 1854) 3 2 5
Oesiophora tarnieri (Morelet, 1854) 1 1

Oestophora ortizi de Winter and Ripken, 1991 1 1
Oestophora sp2 1 1

Cochlicella (Cochlicella) acuta (MUller, 1774) 14 5 4 23
Cochlicella (Cochlicella) conoidea 

(Drapamaud. 1801) 10 3 13

Cochlicella (Prietocella) barbara (Linnaeus, 
1758)

1 2 3

Trochoidea (Trochoidea) pyradimata 
(Draparnaud, 1805)

1 1

Trochoidea (Xerocrassa) derogata 
(Rossmassler, 1854)

1 1

Trochoidea (Xerocrassa) jimenensis Puente & 
Arrebola. 1996

1 1

Trochoidea sp \ 1 1
Trochoidea sp2 1 1 2

Trochoidea sp3 1 1
Trochoidea sp4 2 2

Trochoidea sp5 1 1
Trochoidea sp6 1 1
Trochoidea sp l 1 2 3

Ponentina subvirescens (Bellamy, 1839) 1 2 13 16
Xerotrichia conspurcata (Draparnaud, 1801) 3 5 8 16

Xerotrichia apicina (Lamarck, 1822) 16 5 3 24
Candidula intersecta (Poiret, 1801) 4 4

Candidula sp  1 1 1
Candidula sp l 1 1
Candidula sp3 1 1

Cernuella (Cernuella) virgata (Da Costa, 1778) 5 3 8
Xerosecta (Xerosecta) cespitum (Draparnaud, 

1801)
1 5 6

Xerosecta (Xerosecta) promissa (Westerlund, 
1893)

4 7 1 12

Xerosecta (Xerosecta) reboudiana 
(Bourguignat, 1863)

1 2 2 5
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Appendix 10. Species at the Habitat Structure Sites

Appendix 10 (continued).

Species Sand Steppe G arigue Total sites
Ganula gadirana Mufloz, Almodovar & 

Arrebola, 1999 1 1
Iberus gualtierianus marmoratus (Ferussac, 

1821) 2 3 4 9

Iberus gualtierianus alonensis (Ferussac, 1821) 1 1
Theba pisana (Muller, 1774) 18 9 12 39

Theba gittenbergeri Puente, 1994 1 1
Pseudotachea litturata (Pfeiffer, 1851) 3 3

Otala (Otala) lactea (Muller, 1774) 5 9 13 27
Eobania vermiculata (Muller, 1774) 2 1 3
Cantareus aspersus (Muller, 1774) 5 11 13 29

Num ber o f species at each habitat type 17 39 39
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Appendix 11: The environmental variables at the Habitat Structure Sites

A ppend ix  11. The environm ental variables (V ) for H abitat Structure Sites. Data are totals for 
each o f  the plots individually  (pa, pb, pc, pd) and total for each o f  the sites (all). Sites labelled 
SOI to  S60. The variables are num bered 1 to  140 as shown below. See Table 6.5. for details.

No. V ariable
1 Soil
2 L eaf litter
3 Shingle
4 Stones
5 Rocks
6 Rubble
7 Logs
8 O ther wood
9 Refuse: card/paper
10 Refuse: plastic
11 Refuse: glass
12 Refuse: other
13 Bryophytes
14 Lichen
15 G reen grass 0-10cm
16 G reen grass 10-20cm
17 G reen grass 20-30cm
18 Green grass 30-40cm
19 G reen grass 40-50cm
20 G reen grass 50-60cm
21 G reen grass 60-70cm
22 Green grass 70-80cm
23 G reen grass 80-90cm
24 G reen grass 90-100cm
25 G reen grass 100-110cm
26 G reen grass 110-120cm
27 Green grass 120-130cm
28 G reen grass 130-140cm
29 Green grass 140-150cm
30 G reen grass 150-160cm
31 G reen grass 160-170cm
32 G reen grass 170-180cm
33 G reen grass 180-190cm
34 Green grass 190-200cm
35 Green grass >200cm
36 Dry grass 0-10cm
37 Dry grass 10-20cm
38 Dry grass 20-3 0cm
39 Dry grass 30-40cm
40 Dry grass 40-50cm
41 Dry grass 50-60cm
42 Dry grass 60-70cm
43 Dry grass 70-80cm
44 Dry grass 80-90cm
45 Dry grass 90-100cm
46 Dry grass 100-110cm
47 Dry grass 110-120cm
48 Dry grass 120-130cm
49 Dry grass 130-140cm
50 Dry grass 140-150cm
51 Dry grass 150-160cm
52 Dry grass 160-170cm
53 Dry grass 170-180cm
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No. Variable
54 Dry grass 180-190cm
55 Dry grass 190-200cm
56 Dry grass >200cm
57 Annual 0-1 Ocm
58 Annual 10-20cm
59 Annual 20-30cm
60 Annual 30-40cm
61 Annual 40-50cm
62 Annual 50-60cm
63 Annual 60-70cm
64 A nnual 70-80cm
65 Annual 80-90cm
66 Annual 9 0 -100cm
67 Annual 100-110cm
68 Annual 110-120cm
69 Annual 120-130cm
70 A nnual 130-140cm
71 A nnual 140-150cm
72 A nnual 150-160cm
73 A nnual 160-170cm
74 A nnual 170-180cm
75 A nnual 180-190cm
76 A nnual 190-200cm
77 Annual >200cm
78 Herb 0-1 Ocm
79 Herb 10-20cm
80 Herb 20-30cm
81 H erb 30-40cm
82 Herb 40-50cm
83 Herb 50-60cm
84 Herb 60-70cm
85 Herb 70-80cm
86 H erb 80-90cm
87 Herb 9 0 -100cm
88 Herb 100-110cm
89 Herb 110-120cm
90 Herb 120-130cm
91 Herb 130-140cm
92 Herb 140-150cm
93 Herb 150-160cm
94 Herb 160-170cm
95 Herb 170-180cm
96 Herb 180-190cm
97 Herb 190-200cm
98 H erb >200cm
99 Shrub 0-1 Ocm
100 Shrub 10-20cm
101 Shrub 20-30cm
102 Shrub 30-40cm
103 Shrub 40-50cm
104 Shrub 50-60cm
105 Shrub 60-70cm
106 Shrub 70-80cm
107 Shrub 80-90cm
108 Shrub 9 0 -100cm
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No. V ariable
109 Shrub 100-110cm
110 Shrub 110-120cm
111 Shrub 120-130cm
112 Shrub 130-140cm
113 Shrub 140-150cm
114 Shrub 150-160cm
115 Shrub 160-170cm
116 Shrub 170-180cm
117 Shrub 180-190cm
118 Shrub 190-200cm
119 Shrub >200cm
120 Tree 0-1 Ocm
121 Tree 10-20cm
122 Tree 20-30cm
123 Tree 30-40cm
124 Tree 40-50cm
125 Tree 50-60cm
126 Tree 60-70cm
127 Tree 70-80cm
128 Tree 80-90cm
129 Tree 9 0 -100cm
130 Tree 100-110cm
131 Tree 110-120cm
132 Tree 120-130cm
133 Tree 130-140cm
134 Tree 140-150cm
135 Tree 150-160cm
136 Tree 160-170cm
137 Tree 170-180cm
138 Tree 180-190cm
139 Tree 190-200cm
140 Tree >200cm
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
SOI
pa

SOI

Pb

SOI
pc

SOI
pd

SOI
all

S02
pa

S02

Pb

S02
pc

S02
pd

S02
all

S03
pa

S03

Pb

S03
pc

S03
pd

S03
all

1 205 415 280 285 1185 185 115 250 125 675 440 360 400 117 1317
2 95 41 70 60 266 185 185 240 345 955 5 17 9 13 44
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 1 1 0 175 0 0 180 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
13 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 15 0 0 15 0 0 0 0 0
15 13 5 2 13 33 5 2 0 0 7 5 9 14 27 55
16 9 5 1 9 24 0 0 0 0 0 5 4 4 5 18
17 3 0 0 2 5 0 0 0 0 0 1 2 1 3 7
18 1 0 0 2 3 0 0 0 0 0 0 1 0 1 2
19 1 0 0 2 3 0 0 0 0 0 0 0 0 1 1
20 1 0 0 2 3 0 0 0 0 0 0 0 0 1 1
21 1 0 0 1 2 0 0 0 0 0 0 0 0 1 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 80 17 40 125 262 4 2 4 4 14 0 1 0 11 12

37 22 5 19 112 158 3 2 4 4 13 0 1 0 2 3

38 4 1 3 58 66 1 1 2 2 6 0 1 0 0 1

39 3 0 0 41 44 1 0 0 2 3 0 0 0 0 0

40 1 0 0 31 32 1 0 0 2 3 0 0 0 0 0

41 0 0 0 11 11 1 0 0 2 3 0 0 0 0 0

42 0 0 0 2 2 0 0 0 1 1 0 0 0 0 0

43 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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\7 SOI SOI SOI SOI SOI S02 S02 S02 S02 S02 S03 S03 S03 S03 S03
V

pa pb pc pd all pa pb pc pd all pa pb pc pd all
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 66 13 105 27 211 130 27 9 17 183 30 21 31 21 103
58 3 1 18 13 35 2 2 6 1 11 0 1 0 0 0
59 2 1 1 1 5 0 0 1 1 2 0 0 0 0 0
60 2 0 0 0 2 0 0 0 1 1 0 0 0 0 0
61 2 0 0 0 2 0 0 0 1 1 0 0 0 0 0
62 2 0 0 0 2 0 0 0 1 1 0 0 0 0 0
63 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
64 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
65 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 25 11 5 5 46 0 1 5 0 6 25 100 50 110 285

79 32 2 1 5 40 0 1 10 0 11 40 101 23 4 168

80 19 2 0 1 22 0 0 20 0 20 1 32 0 0 33

81 18 2 0 0 18 0 0 25 0 25 0 1 0 0 1

82 3 0 0 0 3 0 0 1 0 1 0 0 0 0 0

83 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0

84 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0

85 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0

86 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 1 0 0 0 1 0 0 0 10 10 0 0 0 0 0
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V
SOI
pa

SOI
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SOI

Pc
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pd
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all

S02
pa

S02
pb

S02
pc

S02
pd

S02
all

S03
pa

S03
pb

S03
pc

S03
pd

S03
all

101 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
102 25 0 0 0 25 0 0 0 0 0 0 0 0 0 0
103 25 0 0 0 25 0 0 0 0 0 0 0 0 0 0
104 30 0 0 0 30 0 0 0 0 0 0 0 0 0 0
105 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
106 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
107 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
108 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
109 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
110 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0
111 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0
112 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0
113 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

398



Appendix 11: The environmental variables at the Habitat Structure Sites

V
S04
pa

S04
pb

S04
pc

S04

Pd

S04
all

S05
pa

S05
pb

S05
pc

S05
pd

S05
all

S06
pa

S06
pb

S06
pc

S06
pd

S06
all

1 450 415 150 155 1170 80 90 150 85 405 380 385 141 205 1111
2 0 0 0 17 17 8 5 5 5 23 5 9 17 26 57
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 18 0 0 0 18 0 0 0 0 0 0 0 0 0 0
5 10 0 0 0 10 1 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 7 9 156 100 272 30 22 40 80 172 8 2 26 4 40
16 1 9 1 37 48 2 2 2 0 6 2 1 12 4 19
17 1 3 0 0 4 1 0 1 0 2 1 0 2 0 3
18 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0
19 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 2 4 0 2 8 4 2 26 79 94

37 0 0 0 0 0 0 3 0 0 3 3 2 12 3 12

38 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2

39 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S04
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S05
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all

S06
pa

S06
pb

S06
pc

S06
pd

S06
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 17 75 120 220 432 395 390 315 335 1435 165 115 155 265 700
58 2 51 25 410 920 2 3 0 4 9 95 65 80 56 296
59 0 13 0 5 18 0 1 0 0 1 5 5 4 4 18
60 0 5 0 4 9 0 0 0 0 0 1 0 0 0 1
61 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 5 67 17 89 0 0 0 0 0 0 0 0 0 0
79 0 0 45 0 45 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
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all

S06
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S06
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101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 ] 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S07
pa

S07
pb

S07
pc

S07
pd

S07
all

S08
pa

S08
pb

00 S08
pd

S08
all

S09
pa

S09
pb

S09
pc

S09
pd

S09
all

1 230 345 90 250 915 155 470 430 55 1110 310 140 210 200 860
2 75 90 315 110 590 46 5 18 140 209 55 50 95 65 265
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 5 0 0 5 0 2 0 0 2 16 115 55 90 276
5 1 0 1 1 3 1 0 0 0 1 2 80 16 15 113
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 1 21 0 0 5 26
8 0 0 0 0 0 0 0 0 0 0 0 5 2 0 7
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0
11 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 58 15 35 31 139 16 9 11 8 44 9 21 17 4 51
16 2 2 3 7 14 2 1 0 2 5 4 3 3 0 10
17 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 50 21 40 60 171 13 5 0 0 18 40 30 45 35 150
37 7 3 9 48 67 5 1 0 0 6 25 17 25 17 84
38 0 1 5 5 11 2 0 0 0 2 9 5 5 2 21
39 0 1 2 3 6 1 0 0 0 1 0 0 0 0 0
40 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 I 0 0 1 0 0 0 0 0 0 0 0
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V
S07
pa

S07
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S07
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pd
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S08
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pb

S08
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S08
all

S09
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S09
pb

S09
pc

S09

Pd

S09
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 85 28 31 55 199 22 9 13 17 51 36 35 13 13 97
58 6 1 2 40 49 23 11 7 21 62 3 1 1 0 5
59 0 0 0 10 10 1 0 1 0 2 1 0 0 0 9
60 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
61 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 5 0 0 0 5 250 5 36 285 576 0 25 25 80 130
79 5 0 0 0 5 40 0 16 17 73 0 60 75 150 85

80 1 0 0 0 1 7 0 0 5 12 0 65 70 160 295

81 1 0 0 0 1 0 0 0 0 0 0 16 42 56 114

82 0 0 0 0 0 0 0 0 0 0 0 2 25 16 43

83 0 0 0 0 0 0 0 0 0 0 0 0 15 5 20

84 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0
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V
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pb

S09
pc

S09
pd

S09
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V S10

Pa

S10
pb

S10
pc

S10
pd

S10
all

S l l
pa

S l l
pb

S l l
pc

S l l
pd

S l l
all

S12
pa

S12
pb

S12
pc

S12
pd

S12
all

1 120 145 280 190 735 420 460 445 460 1785 255 190 120 155 720
2 25 30 5 21 81 13 9 9 9 40 85 85 225 125 520
3 65 65 115 80 325 0 0 0 0 0 17 25 5 17 64
4 0 0 0 0 0 0 0 0 0 0 16 26 2 15 59
5 0 0 0 0 0 0 0 0 0 0 8 1 0 6 15
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 3 5 5 6 19 0 0 0 0 0 1 0 8 5 14
16 1 1 1 0 3 0 0 0 0 0 0 0 4 5 9
17 0 0 0 0 0 0 0 0 0 0 0 0 4 3 7
18 0 0 0 0 0 0 0 0 0 0 0 0 3 3 6
19 0 0 0 0 0 0 0 0 0 0 0 0 2 3 5
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0 0 75 85 95 115 370

37 0 0 0 0 0 1 0 5 1 7 21 22 70 141 254

38 0 0 0 0 0 0 0 1 1 2 5 5 26 93 129

39 0 0 0 0 0 0 0 1 1 2 5 3 17 17 42

40 0 0 0 0 0 0 0 0 1 1 2 2 7 4 15

41 0 0 0 0 0 0 0 0 0 1 1 1 3 3 8

42 0 0 0 0 0 0 0 0 0 0 1 0 2 1 4

43 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

44 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

45 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

46 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

47 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
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S12
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S12
pb

S12
pc

S12
pd

S12
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 275 230 100 190 795 70 35 45 35 185 50 90 60 70 270
58 45 28 2 1 76 72 4 1 4 81 17 38 25 55 135
59 5 3 2 0 10 1 0 0 0 1 5 8 21 22 56
60 2 1 0 0 3 0 0 0 0 0 4 4 5 17 31
61 1 1 0 0 2 0 0 0 0 0 3 2 5 9 19
62 1 1 0 0 2 0 0 0 0 0 1 1 3 3 8
63 0 1 0 0 1 0 0 0 0 0 0 1 2 2 5
64 0 1 0 0 1 0 0 0 0 0 0 0 0 2 2
65 0 1 0 0 1 0 0 0 0 0 0 0 0 2 2
66 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
67 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
68 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
69 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
70 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
71 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
72 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 5 27 0 15 47 0 0 0 0 0 0 0 0 0 0

79 0 7 0 5 12 0 0 0 0 0 0 0 0 0 0

80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S10
pa

S10
pb

S10
pc

S10
pd

S10
all

S l l
pa

S l l
pb

S l l
pc

S l l
pd

S l l
all

S12
pa

S12
pb

S12
pc

S12
pd

S12
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S13
pa

S13

Pb

S13
pc

S13
pd

S13
all

S14
pa

S14
pb

S14
pc

S14
pd

S14
all

S15
pa

S15
pb

S15
pc

S15
pd

S15
all

1 270 170 125 230 795 115 165 275 340 895 295 305 360 345 1305
2 40 45 25 40 150 100 65 66 13 244 19 18 5 5 47
3 0 0 0 0 0 95 70 55 75 295 115 60 70 60 305
4 0 0 0 0 0 25 6 16 47 94 17 35 26 21 99
5 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 55 105 105 110 375 3 2 1 1 7 0 0 0 0 0
16 5 4 4 2 15 7 2 1 1 11 0 0 0 0 0
17 0 1 1 1 3 3 2 1 1 7 0 0 0 0 0
18 0 0 0 0 0 3 1 1 1 6 0 0 0 0 0
19 0 0 0 0 0 3 1 1 0 5 0 0 0 0 0
20 0 0 0 0 0 3 1 1 0 5 0 0 0 0 0
21 0 0 0 0 0 3 0 1 0 4 0 0 0 0 0
22 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 135 175 245 120 675 85 130 23 8 246 25 55 26 46 152

37 5 5 5 5 20 21 42 5 8 76 36 35 12 17 100

38 1 1 3 4 9 13 5 4 4 26 4 5 4 2 15

39 0 0 0 0 0 5 5 4 2 16 0 1 2 0 3

40 0 0 0 0 0 5 5 4 2 16 0 0 0 0 0

41 0 0 0 0 0 4 4 4 1 13 0 0 0 0 0

42 0 0 0 0 0 2 3 2 1 8 0 0 0 0 0

43 0 0 0 0 0 2 3 1 1 7 0 0 0 0 0

44 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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\ / S13 S13 S13 S13 S13 S14 S14 S14 S14 S14 S15 S15 S15 S15 S15
V

pa Pb Pc pd all pa pb pc pd all pa pb pc pd all
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 4 9 5 5 23 81 70 85 26 262 35 26 21 25 107
58 1 1 4 1 7 50 30 26 13 119 25 17 16 4 62
59 0 0 1 0 1 62 19 14 28 123 4 5 4 2 15
60 0 0 0 0 0 62 14 18 24 118 0 3 1 1 5
61 0 0 0 0 0 37 7 17 23 84 0 1 1 0 2
62 0 0 0 0 0 23 7 6 23 59 0 1 1 0 2
63 0 0 0 0 0 2 7 5 8 22 0 0 1 0 1
64 0 0 0 0 0 0 1 5 3 9 0 0 0 0 0
65 0 0 0 0 0 0 1 5 3 9 0 0 0 0 0
66 0 0 0 0 0 0 0 1 3 4 0 0 0 0 0
67 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0
68 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0
69 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
70 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
71 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
72 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

79 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5

80 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5

81 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5
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V
S13

Pa

S13

Pb

S13

Pc

S13
pd

S13
all

S14
pa

S14
pb

S14
pc

S14
pd

S14
all

S15
pa

S15

Pb

S15
pc

S15
pd

S15
all

101 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
102 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V S16
pa

S16

Pb

S16
pc

S16
pd

S16
all

S17
pa

S17
pb

S17
pc

S17
pd

S17
all

S18
pa

S18
pb

S18
pc

S18
pd

S18
all

1 240 161 275 415 1091 m 215 205 110 705 395 420 380 405 1600
2 100 66 96 50 312 80 115 75 125 395 30 22 40 35 127
3 25 10 1 1 37 0 30 30 20 80 0 0 0 0 0
4 15 5 3 0 23 0 11 20 2 33 0 0 0 0 0
5 1 0 0 2 3 6 1 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 5 4 1 0 10 46 21 16 35 118 0 0 0 0 0
16 5 4 1 0 10 9 3 1 9 22 0 0 0 0 0
17 4 1 0 0 5 1 0 0 2 3 0 0 0 0 0
18 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 110 55 9 9 183 165 80 100 175 520 60 16 50 25 151

37 135 25 9 2 171 105 28 62 105 300 9 6 13 5 33

38 36 4 1 0 41 5 3 4 13 25 1 1 4 1 7

39 8 2 1 0 11 0 0 2 5 7 0 0 2 0 2

40 1 0 0 0 1 0 0 1 4 5 0 0 0 0 0

41 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0

42 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S16

Pa

S16

Pb

S16

Pc

S16
pd

S16
all

S17
pa

S17
pb

S17
pc

S17
pd

S17
all

S18
pa

S18
pb

S18
pc

S18
pd

S18
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 7 41 105 31 184 30 45 70 35 180 18 35 27 31 m
58 12 16 31 9 68 13 32 13 26 84 13 18 7 7 45
59 3 4 5 3 15 0 0 3 9 12 1 11 1 1 14
60 1 1 3 2 7 0 0 3 4 7 0 2 0 1 3
61 0 1 1 0 2 0 0 3 2 5 0 1 0 1 2
62 0 0 0 0 0 0 0 2 2 4 0 1 0 0 1
63 0 0 0 0 0 0 0 1 1 2 0 1 0 0 1
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V S16
pa

S16
pb

S16
pc

S16

Pd

S16
all

S17
pa

S17
pb

S17
pc

S17
pd

S17
all

S18
pa

S18
pb

S18
pc

S18
pd

S18
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S19 S19 S19 S19 S19 S20 S20 S20 S20 S20 S21 S21 S21 S21 S21
pa pb pc pd all pa pb pc pd all pa Pb pc pd all

1 400 350 355 355 1460 285 325 390 320 1320 120 71 55 70 316
2 27 60 36 45 168 65 65 36 56 222 120 9 40 18 187
3 10 17 6 45 78 0 6 0 0 6 1 50 22 17 90
4 0 0 0 0 0 0 0 0 0 0 10 80 60 110 260
5 0 0 0 0 0 1 0 0 0 1 110 220 195 250 775
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
15 0 0 0 0 0 9 3 0 0 12 0 0 0 0 0
16 0 0 0 0 0 5 3 0 0 8 0 0 0 0 0
17 0 0 0 0 0 5 3 0 0 8 0 0 0 0 0
18 0 0 0 0 0 5 3 0 0 8 0 0 0 0 0
19 0 0 0 0 0 4 2 0 0 6 0 0 0 0 0
20 0 0 0 0 0 2 1 0 0 3 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 36 25 45 21 127 140 100 55 91 486 85 65 80 31 261

37 16 16 31 11 74 90 50 27 32 199 76 46 125 13 260

38 3 2 9 2 16 46 13 9 8 76 76 24 52 5 157

39 1 1 5 2 9 21 3 1 3 28 62 9 22 5 98

40 0 0 1 1 2 12 2 0 0 14 57 9 9 5 80

41 0 0 0 0 0 2 0 0 0 2 17 5 5 3 30

42 0 0 0 0 0 0 0 0 0 0 17 3 5 0 25

43 0 0 0 0 0 0 0 0 0 0 16 3 5 0 24

44 0 0 0 0 0 0 0 0 0 0 3 2 2 0 7

45 0 0 0 0 0 0 0 0 0 0 2 0 2 0 4

46 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

47 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

48 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S19
pa

S19
pb

S19
pc

S19
pd

S19
all

S20
pa

S20
p b

S20
pc

S20
pd

S20
all ■n

 » 
£ S21

pb
S21
pc

S21
pd

S21
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 31 51 60 35 177 7 8 22 36 73 25 3 4 5 37
58 40 31 35 18 124 12 3 12 25 53 23 3 3 5 34
59 30 18 17 12 77 7 2 7 4 20 22 1 2 4 29
60 7 8 4 2 21 7 2 2 1 12 22 0 2 2 26
61 1 1 1 1 4 1 0 0 0 1 7 0 2 0 9
62 0 0 0 0 0 0 0 0 0 0 6 0 1 0 7
63 0 0 0 0 0 0 0 0 0 0 5 0 1 0 6
64 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
65 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
66 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
67 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
68 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
69 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 25 5 6 7 43
79 0 0 0 0 0 0 0 0 0 0 50 5 10 25 90
80 0 0 0 0 0 0 0 0 0 0 65 5 10 12 92
81 0 0 0 0 0 0 0 0 0 0 65 5 6 3 88
82 0 0 0 0 0 0 0 0 0 0 65 5 2 2 75
83 0 0 0 0 0 0 0 0 0 0 50 5 2 0 57
84 0 0 0 0 0 0 0 0 0 0 45 0 1 0 46
85 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
86 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7
87 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6
88 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6
89 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
90 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
91 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 10 5 15 0 30

415



Appendix 11: The environmental variables at the Habitat Structure Sites

V
S19
pa

S19
pb

S19
pc

S19
pd

S19
all

S20
pa

S20
pb

S20
pc

S20
pd

S20
all

S21
pa

S21
pb

S21
pc

S21
pd

S21
all

101 0 0 0 0 0 0 0 0 0 0 20 5 40 0 65
102 0 0 0 0 0 0 0 0 0 0 30 5 40 0 75
103 0 0 0 0 0 0 0 0 0 0 35 5 45 0 85
104 0 0 0 0 0 0 0 0 0 0 35 5 40 0 80
105 0 0 0 0 0 0 0 0 0 0 40 5 10 0 55
106 0 0 0 0 0 0 0 0 0 0 50 1 10 0 61
107 0 0 0 0 0 0 0 0 0 0 55 0 10 0 65
108 0 0 0 0 0 0 0 0 0 0 55 0 5 0 60
109 0 0 0 0 0 0 0 0 0 0 55 0 1 0 56
110 0 0 0 0 0 0 0 0 0 0 55 0 1 0 56
111 0 0 0 0 0 0 0 0 0 0 55 0 0 0 55
112 0 0 0 0 0 0 0 0 0 0 55 0 0 0 55
113 0 0 0 0 0 0 0 0 0 0 55 0 0 0 55
114 0 0 0 0 0 0 0 0 0 0 55 0 0 0 55
115 0 0 0 0 0 0 0 0 0 0 55 0 0 0 55
116 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10
117 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5
118 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10
130 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10
131 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5
132 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

416



Appendix 11: The environmental variables at the Habitat Structure Sites

V
S22
pa

S22
pb

S22
pc

S22
pd

S22
all

S23
pa

S23
pb

S23
pc

S23
pd

S23
all

S24
pa

S24
pb

S24
pc

S24
pd

S24
all

1 195 95 80 130 500 195 160 275 225 855 31 36 17 6 90
2 130 17 46 55 248 9 13 5 18 45 13 13 8 5 39
3 0 5 0 5 10 85 80 75 50 290 90 95 115 215 515
4 15 11 3 0 29 100 80 50 41 271 85 60 125 145 415
5 42 46 30 6 124 90 130 35 60 315 76 85 185 100 446
6 0 1 12 1 14 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 1 1 0 1 0 2 0 1 0 10 11
8 0 0 25 0 25 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 2 0 3 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0
13 51 15 1 0 67 5 1 2 7 15 55 40 7 0 106
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 8 50 80 35 173 5 18 21 4 45 106 70 21 13 210
16 3 76 3 3 85 0 2 3 0 5 0 9 12 4 25
17 1 2 2 3 8 0 1 0 0 1 0 0 5 4 9
18 1 0 0 0 1 0 1 0 0 1 0 0 4 3 7
19 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 4 10 35 15 64 5 9 13 5 32 9 32 5 5 51

37 4 1 5 2 12 0 0 0 3 52 3 32 5 5 45

38 0 0 1 1 2 0 0 0 2 9 3 14 5 4 26

39 0 0 0 0 0 0 0 0 1 2 2 7 5 3 17

40 0 0 0 0 0 0 0 0 0 0 2 1 2 2 7

41 0 0 0 0 0 0 0 0 0 0 2 0 0 1 3

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S22
pa

S22

Pb

S22
pc

S22
p d

S22
all

S23
pa

S23
pb

S23
pc

S23
pd

S23
all

S24
pa

S24
pb

S24
pc

S24
pd

S24
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 70 235 200 260 765 5 18 21 101 154 41 70 21 25 157
58 45 211 2 1 259 4 2 3 3 20 1 1 5 27 34
59 40 0 0 0 40 4 1 0 1 27 0 0 4 9 13
60 40 0 0 0 40 2 1 0 1 8 0 0 3 4 7
61 40 0 0 0 40 2 0 0 0 6 0 0 1 4 5
62 35 0 0 0 35 0 0 0 0 0 0 0 0 2 2
63 31 0 0 0 31 0 0 0 0 0 0 0 0 2 2
64 20 0 0 0 20 0 0 0 0 0 0 0 0 0 0
65 20 0 0 0 20 0 0 0 0 0 0 0 0 0 0
66 7 0 0 0 7 0 0 0 0 0 0 0 0 0 0
67 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 0 0 0 0 0 0 0 0 1 1 2 2 0 0 4

79 0 0 0 0 0 0 0 0 5 5 10 10 0 0 20

80 0 0 0 0 0 0 0 0 10 10 10 6 0 0 16

81 0 0 0 0 0 0 0 0 10 10 5 1 0 0 6

82 0 0 0 0 0 0 0 0 10 10 1 0 0 0 1

83 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0

84 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S22
pa

S22
pb

S22
pc

S22
pd

S22
all

S23
pa

S23
pb

S23
pc

S23
pd

S23
all

S24
pa

S24
pb

S24
pc

S24
pd

S24
all

101 0 0 0 0 0 0 0 0 12 12 0 0 0 0 0
102 0 0 0 0 0 0 0 0 11 11 0 0 0 0 0
103 0 0 0 0 0 0 0 0 6 6 0 0 0 0 0
104 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0
105 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
S25
pa

S25
pb

S25
pc

S25
pd

S25
all

S26
pa

S26
pb

S26
pc

S26
pd

S26
all

S27
pa

S27

Pb

S27
pc

S27
pd

S27
all

1 27 23 17 5 72 17 9 26 85 137 105 85 120 115 425
2 5 5 13 5 28 17 21 26 22 86 5 13 9 5 32
3 35 80 200 140 455 55 26 41 80 202 0 0 5 0 5
4 75 190 85 60 410 100 36 95 80 311 0 0 2 1 3
5 290 155 61 75 581 22 55 21 55 153 20 11 1 56 88
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 2 3 0 0 0 0 0
8 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 17 9 14 5 45 160 95 150 120 525 75 130 50 80 335
16 35 13 14 9 71 8 5 3 9 25 26 24 9 13 72
17 14 2 7 3 26 2 3 2 4 11 9 3 3 5 20
18 7 1 5 3 16 1 1 1 3 6 5 1 1 3 10
19 6 0 1 1 8 0 0 0 2 2 5 1 1 1 8
20 1 0 1 0 1 0 0 0 2 2 3 1 0 0 4
21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
22 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 18 1 1 0 20 5 12 31 26 74 12 12 5 9 38

37 28 1 1 0 30 0 0 0 3 3 0 0 0 0 0

38 2 0 1 0 3 0 0 0 1 1 0 0 0 0 0

39 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

40 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

41 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

42 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S25
pa

S25

Pb

S25
pc

S25
pd

S25
all

S26
pa

S26
Pb

S26
pc

S26
pd

S26
all

S27
pa

S27

Pb

S27
pc

S27
pd

S27
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 45 50 120 205 420 131 205 115 40 491 300 240 315 245 1101
58 195 1 105 281 582 8 17 9 6 40 190 28 42 27 287
59 170 0 17 28 215 1 4 1 0 6 75 38 20 11 144
60 6 0 6 5 17 0 1 0 0 1 48 20 7 2 77
61 2 0 5 1 8 0 0 0 0 0 21 5 6 1 33
62 0 0 1 0 1 0 0 0 0 0 1 1 6 0 8
63 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
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V
S25
pa

S25
pb

S25
pc

S25
pd

S25
all

S26
pa

S26
pb

S26
pc

S26
pd

S26
all

S27
pa

S27
pb

S27
pc

S27
pd

S27
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

422
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V
S28
pa

S28
pb

S28
pc

S28
pd

S28
all

S29
pa

S29
pb

S29
pc

S29
pd

S29
all

S30
pa

S30
pb

S30
pc

S30
pd

S30
all

1 50 120 95 290 555 65 75 40 35 215 40 35 45 35 155
2 35 40 30 36 141 25 30 40 25 120 45 50 40 95 230
3 0 0 21 13 34 55 55 75 55 240 13 26 30 14 83
4 0 0 35 16 51 55 130 105 65 355 86 55 65 8 214
5 0 0 80 1 81 60 10 11 46 127 131 165 81 4 381
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2
8 0 0 0 0 0 0 1 0 2 3 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 5 0 0 0 5 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 70 70 140 25 245 150 60 85 36 331 100 60 50 9 219
16 70 85 165 26 242 225 85 110 37 455 131 57 25 9 222
17 36 75 106 14 151 50 57 25 8 140 17 5 2 1 25
18 31 26 32 7 49 7 13 5 5 30 2 1 0 0 3
19 26 8 12 1 36 1 4 2 1 8 0 0 0 0 0
20 11 3 6 0 16 0 0 0 1 1 0 0 0 0 0
21 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0
22 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 320 250 140 105 815 55 30 40 9 134 26 18 9 3 56

37 270 45 165 86 766 70 17 30 14 131 14 12 5 2 33

38 236 215 106 18 569 17 5 9 8 39 4 4 1 2 11

39 207 135 32 7 379 4 4 5 1 18 2 0 0 1 3

40 86 47 12 1 89 4 4 5 1 14 1 0 0 0 1

41 40 9 6 1 204 2 4 4 1 11 0 0 0 0 0

42 3 3 2 0 0 0 2 3 1 6 0 0 0 0 0

43 1 0 1 0 0 0 1 1 1 3 0 0 0 0 0

44 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

423
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\7 S28 S28 S28 S28 S28 S29 S29 S29 S29 S29 S30 S30 S30 S30 S30
V

pa ph pc pd all pa Pb pc pd all pa Pb pc pd all
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 26 22 21 25 94 32 10 110 235 487 35 50 140 12 237
58 8 17 13 5 43 52 220 155 335 762 41 66 145 16 268
59 4 8 9 4 25 15 130 55 35 235 13 11 9 1 34
60 4 2 3 1 10 3 26 12 5 46 1 1 2 1 5
61 3 2 1 0 6 0 8 9 1 18 0 1 1 1 3
62 1 1 1 0 3 0 4 3 0 18 0 1 0 1 2
63 1 0 0 0 1 0 4 3 0 7 0 0 0 0 0
64 1 0 0 0 0 0 4 3 0 7 0 0 0 0 0
65 0 0 0 0 0 0 4 3 0 7 0 0 0 0 0
66 0 0 0 0 0 0 4 3 0 7 0 0 0 0 0
67 0 0 0 0 0 0 4 3 0 7 0 0 0 0 0
68 0 0 0 0 0 0 4 3 0 7 0 0 0 0 0
69 0 0 0 0 0 0 4 3 0 7 0 0 0 0 0
70 0 0 0 0 0 0 3 3 0 6 0 0 0 0 0
71 0 0 0 0 0 0 2 2 0 4 0 0 0 0 0
72 0 0 0 0 0 0 2 2 0 4 0 0 0 0 0
73 0 0 0 0 0 0 2 2 0 4 0 0 0 0 0
74 0 0 0 0 0 0 2 1 0 3 0 0 0 0 0
75 0 0 0 0 0 0 2 1 0 3 0 0 0 0 0
76 0 0 0 0 0 0 2 1 0 3 0 0 0 0 0

77 0 0 0 0 0 0 2 1 0 3 0 0 0 0 0

78 0 0 0 0 0 0 0 0 0 0 30 40 51 300 421

79 0 0 0 0 0 0 0 0 0 0 35 50 60 385 530

80 0 0 0 0 0 0 0 0 0 0 7 1 4 9 21

81 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
S28
pa

S28
pb

S28 S28
pd

S28
all

S29
pa

S29
pb

S29
pc

S29
pd

S29
all

S30
pa

S30

Pb

S30
pc

S30
pd

S30
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S31 S31 S31 S31 S31 S32 S32 S32 S32 S32 S33 S33 S33 S3 3 S33
pa pb Pc pd all pa pb pc pd all pa pb pc pd all

1 140 146 96 37 419 25 45 50 50 170 95 5 8 2 110
2 50 36 80 95 261 80 40 40 40 220 60 105 95 240 500
3 60 50 150 130 390 0 0 0 0 0 170 60 28 12 565
4 40 75 85 75 275 1 0 1 1 3 125 140 50 45 360
5 85 86 40 140 351 60 36 41 80 217 32 125 305 180 642
6 0 0 0 0 0 0 0 0 0 0 0 2 8 3 13
7 7 3 2 1 13 0 0 0 1 1 3 2 0 1 6
8 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 4 1 0 0 5
12 0 0 0 0 0 0 0 0 0 0 1 1 2 2 6
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 2 5 5 16 28 0 0 0 0 0
15 0 0 0 0 0 5 4 2 4 15 0 0 0 0 0
16 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 30 0 22 11 63 315 305 360 300 1280 25 36 10 15 86

37 25 0 12 1 38 23 8 9 9 49 20 41 10 10 81

38 2 0 3 1 6 5 4 3 5 17 20 41 11 5 77

39 0 0 0 0 0 2 3 3 5 13 20 31 6 5 62

40 0 0 0 0 0 2 3 1 3 9 20 21 6 1 48

41 0 0 0 0 0 1 1 1 1 4 16 6 2 1 25

42 0 0 0 0 0 0 0 0 1 1 11 2 1 1 15

43 0 0 0 0 0 0 0 0 0 0 6 2 1 1 10

44 0 0 0 0 0 0 0 0 0 0 6 2 0 0 8

45 0 0 0 0 0 0 0 0 0 0 1 2 0 0 3

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S31
pa

S31
pb

S31
pc

S31
pd

S31
all

S32
pa

S32
pb

S32
pc

S32

Pd

S32
all

S33
pa

S33
pb

S33
pc

S33
pd

S3 3 
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 57 102 18 22 199 8 5 1 2 16 5 13 4 2 24
58 58 73 9 18 158 2 1 0 0 3 4 9 4 2 19
59 4 24 2 4 34 0 0 0 0 0 2 9 4 2 17
60 3 5 0 3 11 0 0 0 0 0 2 4 4 2 12
61 3 4 0 3 10 0 0 0 0 0 1 4 4 2 11
62 2 3 0 3 8 0 0 0 0 0 1 4 4 2 11
63 2 3 0 3 8 0 0 0 0 0 1 4 4 2 11
64 2 2 0 2 6 0 0 0 0 0 1 4 3 2 10
65 2 1 0 2 5 0 0 0 0 0 1 3 3 2 10
66 0 1 0 0 1 0 0 0 0 0 1 2 2 2 7
67 0 1 0 0 1 0 0 0 0 0 1 2 1 2 6
68 0 0 0 0 0 0 0 0 0 0 0 0 1 6 6
69 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 0 0 0 0 0 17 26 17 21 81 0 0 1 1 2

79 0 0 0 0 0 45 61 50 61 217 0 0 1 1 2

80 0 0 0 0 0 32 25 18 15 90 0 0 1 1 2

81 0 0 0 0 0 3 1 2 1 7 0 0 1 1 2

82 0 0 0 0 0 1 1 0 0 2 0 0 1 1 2

83 0 0 0 0 0 0 1 0 0 1 0 0 1 1 2

84 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

85 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 2 2 1 30 0 1 32 0 0 0 0 0
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V
S31
pa

S31
pb

S31
pc

S31
pd

S31
all

S32
pa

S32
pb

S32
pc

S32
pd

S32
all

S3 3 
pa

S33
pb

S3 3 
pc

S33
pd

S33
all

101 0 0 0 15 15 1 55 0 1 57 0 0 0 0 0
102 0 0 0 15 15 0 60 0 0 60 0 0 0 0 0
103 0 0 0 15 15 0 1 0 0 1 0 0 0 0 0
104 0 0 0 20 20 0 0 0 0 0 0 0 0 1 1
105 0 0 0 20 20 0 0 0 0 0 0 0 0 5 5
106 0 0 0 15 15 0 0 0 0 0 0 0 0 5 5
107 0 0 0 15 15 0 0 0 0 0 0 0 0 5 5
108 0 0 0 15 15 0 0 0 0 0 0 0 0 5 5
109 0 0 0 10 10 0 0 0 0 0 0 0 0 5 5
110 0 0 0 10 10 0 0 0 0 0 0 0 0 5 5
111 0 0 0 5 5 0 0 0 0 0 0 0 0 5 5
112 0 0 0 5 5 0 0 0 0 0 0 0 0 5 5
113 0 0 0 5 5 0 0 0 0 0 0 0 0 5 5
114 0 0 0 5 5 0 0 0 0 0 0 0 0 5 5
115 0 0 0 1 1 0 0 0 0 0 0 0 0 5 5
116 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
117 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
118 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
119 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
128 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0
129 0 15 0 1 16 0 0 0 0 0 0 0 0 0 0
130 0 45 0 5 50 0 0 0 0 0 0 0 0 0 0
131 0 45 0 5 50 0 0 0 0 0 0 0 0 0 0
132 0 45 5 10 60 0 0 0 0 0 0 0 0 0 0
133 0 45 6 20 71 0 0 0 0 0 0 0 0 0 0
134 0 45 11 30 86 0 0 0 0 0 0 0 0 0 0
135 0 45 11 40 96 0 0 0 0 0 0 0 0 0 0

136 0 45 10 80 135 0 0 0 0 0 0 0 0 0 0

137 0 45 10 85 140 0 0 0 0 0 0 0 0 0 0

138 0 45 20 85 150 0 0 0 0 0 0 0 0 0 0

139 0 50 90 90 230 0 0 0 0 0 0 0 0 0 0

140 0 50 90 90 230 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
S34 S34 S34 S34 S34 S3 5 S35 S35 S35 S35 S36 S36 S36 S36 S36
pa Pb pc pd all pa pb pc pd all pa pb pc pd all

1 205 60 50 320 635 45 205 106 65 421 25 30 100 30 180
2 60 21 55 13 149 40 30 36 13 119 13 25 9 25 72
3 11 0 1 6 18 50 30 120 115 315 55 45 110 35 145
4 3 9 1 17 30 80 55 85 140 360 65 80 170 60 375
5 1 0 6 1 9 145 120 120 207 592 4 26 31 13 74
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 2 1 3 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 2 0 1 3 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 10 10 0 1 32 8 41
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 150 350 260 140 900 31 16 17 32 96 335 285 46 315 981

37 13 190 31 9 243 9 22 18 27 76 25 25 13 40 103

38 3 13 13 4 33 4 4 3 4 15 5 21 4 17 47

39 2 5 4 1 12 2 3 1 4 10 5 5 3 5 18

40 2 4 4 0 10 2 2 1 4 9 5 5 3 5 18

41 2 3 3 0 8 1 1 1 2 5 5 5 2 5 17

42 0 0 1 0 1 1 1 1 1 4 4 5 2 5 16

43 0 0 1 0 1 1 0 0 0 1 4 5 2 5 16

44 0 0 1 0 1 1 0 0 0 1 2 3 2 5 12

45 0 0 0 0 0 1 0 0 0 1 1 3 0 2 6

46 0 0 0 0 0 0 0 0 0 0 0 1 0 2 3

47 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S34
pa

S34
pb

S34
pc

S34
pd

S34
all

S35
pa

S35
pb

S3 5 
pc

S3 5 
pd

S3 5 
all

S36
pa

S36
pb

S36
pc

S36
pd

S36
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 70 70 120 8 268 115 46 21 9 191 9 5 5 5 24
58 13 17 33 3 66 90 56 41 18 205 2 1 1 3 7
59 7 5 4 0 16 2 17 4 8 31 2 0 0 2 4
60 2 3 2 0 7 1 4 3 1 9 0 0 0 1 1
61 0 2 2 0 3 1 2 2 1 6 0 0 0 0 0
62 0 0 1 0 1 1 2 0 1 4 0 0 0 0 0
63 0 0 0 0 0 1 2 0 1 4 0 0 0 0 0
64 0 0 0 0 0 1 2 0 0 3 0 0 0 0 0
65 0 0 0 0 0 0 2 0 5 7 0 0 0 0 0
66 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
67 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
68 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
69 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
70 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
71 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
72 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
73 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
74 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
75 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
76 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
77 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
78 0 0 0 0 0 0 1 0 0 1 0 13 13 25 51

79 0 0 0 0 0 0 5 0 0 5 0 21 17 45 83

80 0 0 0 0 0 0 1 0 0 1 0 17 4 32 53

81 0 0 0 0 0 0 1 0 0 1 0 5 3 13 21

82 0 0 0 0 0 0 0 0 0 0 0 3 1 7 11

83 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S34
pa

S34

Pb

S34
pc

S34
pd

S34
all

S3 5 
pa

S35
pb

S3 5 
pc

S3 5 
pd

S3 5 
all

S36
pa

S36
pb

S36
pc

S3 6 

Pd
S36
all

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
S37
pa

S37
pb

S3 7 
pc

S37
pci

S37
all

S3 8 
pa

S3 8 
pb

S38
pc

S3 8 

Pd

S3 8 
all

S39
pa

S39
pb

S39
pc

S39
pd

S39
all

1 55 180 55 45 335 280 105 356 285 1035 80 60 225 50 400
2 85 55 75 130 345 140 60 43 100 343 50 40 26 35 151
3 0 10 0 0 10 13 9 25 25 72 0 0 0 0 0
4 0 16 0 1 17 0 1 5 8 14 1 11 0 0 12
5 2 20 2 5 29 0 0 0 0 0 1 31 26 0 58
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 0 0 0 1 0 0 0 0 0 2 0 5 25 32
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 15 15 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 5 210 13 3 33 1 2 13 11 27 17 30 5 17 69
16 7 12 8 1 22 1 2 8 6 17 17 17 5 5 44
17 1 4 0 1 3 0 2 2 1 5 4 5 3 1 13
18 0 1 0 0 0 0 0 2 0 2 3 1 0 0 4
19 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1
20 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 335 210 355 285 1185 17 280 32 27 356 325 310 195 365 1195

37 67 12 27 131 237 8 85 36 18 147 315 165 95 300 875

38 7 4 3 9 23 5 8 3 5 21 30 33 38 165 266

39 2 1 2 3 8 1 32 3 4 40 13 5 9 30 57

40 2 1 0 1 4 1 4 3 2 10 13 2 3 5 23

41 1 1 0 1 3 1 4 2 1 8 4 0 3 5 12

42 0 0 0 0 0 1 3 2 0 6 4 0 3 5 12

43 0 0 0 0 0 1 2 2 0 5 4 0 1 3 8

44 0 0 0 0 0 1 2 2 0 5 3 0 1 3 7

45 0 0 0 0 0 1 2 0 0 3 3 0 1 2 6

46 0 0 0 0 0 1 0 0 0 1 3 0 0 1 4

47 0 0 0 0 0 0 0 0 0 0 2 0 0 1 3

48 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

49 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

\7 S37 S37 S37 S37 S37 S3 8 S38 S3 8 S38 S3 8 S39 S39 S3 9 S39 S3 9
V pa pb pc pd all pa pb pc pd all pa pb pc pd all
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 26 5 9 16 56 55 40 26 55 176 30 21 26 13 90
58 41 12 13 16 82 100 70 26 51 247 35 27 30 13 105
59 22 1 4 3 30 200 75 17 37 329 40 5 17 5 67
60 1 0 1 2 4 210 75 16 31 332 35 8 9 5 57
61 0 0 0 0 0 220 70 15 16 321 26 11 4 4 45
62 0 0 0 0 0 205 60 10 15 290 26 11 4 2 43
63 0 0 0 0 0 171 46 10 11 238 17 11 1 2 31
64 0 0 0 0 0 81 45 10 11 147 15 11 0 2 28
65 0 0 0 0 0 66 26 10 5 107 15 10 0 0 25
66 0 0 0 0 0 56 11 10 1 78 15 10 0 0 25
67 0 0 0 0 0 8 3 1 1 13 15 2 0 0 17
68 0 0 0 0 0 2 0 0 1 3 5 2 0 0 7
69 0 0 0 0 0 2 0 0 1 3 5 2 0 0 7
70 0 0 0 0 0 2 0 0 1 3 6 1 0 0 7
71 0 0 0 0 0 2 0 0 1 3 0 0 0 0 0
72 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
73 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
74 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
75 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
76 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

77 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0
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V
S37
pa

S37
pb

S37
pc

S37
pd

S37
all

S3 8 
pa

S38
pb

S3 8 
pc

S38
pd

S3 8 
all

S39
pa

S39
pb

S39
pc

S39
pd

S39
all

101 0 0 0 40 40 0 0 0 0 0 0 0 0 0 0
102 0 0 0 50 50 0 0 0 0 0 0 0 0 0 0
103 0 0 0 50 50 0 0 0 0 0 0 0 0 0 0
104 0 0 0 50 50 0 0 0 0 0 0 0 0 0 0
105 0 0 0 30 30 0 0 0 0 0 0 0 0 0 0
106 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0
107 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0
108 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0
109 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0
110 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V
S40
pa

S40
pb

S40
pc

S40
pd

S40
all

S41
pa

S41
pb

S41

Pc

S41
pd

S41
all

S42
pa

S42

Pb

S42
pc

S42
pd

S42
all

1 85 100 145 105 435 65 85 230 71 451 115 66 90 40 311
2 50 40 35 45 170 60 120 115 81 376 50 81 240 175 546
3 17 25 45 30 117 2 0 17 16 35 0 0 0 0 0
4 12 45 50 9 116 5 0 10 0 15 0 0 0 0 0
5 2 6 1 1 10 66 5 20 0 91 40 225 27 195 487
6 0 0 0 0 0 0 25 1 186 212 0 0 0 0 0
7 0 0 0 0 0 0 1 1 0 2 1 0 0 0 1
8 0 0 0 0 0 0 5 0 0 5 0 0 1 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 6 7 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 25 25 15 15 80 2 1 1 6 10
14 0 0 0 0 0 25 0 0 0 25 1 12 0 0 13
15 3 0 8 1 12 4 5 1 2 12 17 7 1 2 27
16 3 0 1 0 4 4 5 1 2 12 13 7 1 2 23
17 0 0 0 0 0 3 4 1 1 9 5 3 0 1 9
18 0 0 0 0 0 1 3 1 1 6 3 2 0 0 5
19 0 0 0 0 0 1 1 1 0 3 2 2 0 0 4
20 0 0 0 0 0 0 1 1 0 2 2 1 0 0 3
21 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 330 160 195 245 930 210 220 55 75 560 26 21 11 16 74

37 195 46 71 87 399 240 195 60 105 600 33 7 7 8 55

38 120 13 32 28 193 115 55 45 87 302 18 3 0 1 22

39 70 8 8 17 103 46 31 23 33 133 8 2 0 1 11

40 17 4 4 12 37 13 9 14 13 49 6 2 0 1 9

41 13 2 3 7 25 5 8 9 7 29 2 1 0 0 3

42 13 0 2 7 22 5 3 9 3 20 1 0 0 0 1

43 5 0 0 7 12 3 1 4 2 10 1 0 0 0 1

44 5 0 0 2 7 2 0 3 2 7 0 0 0 0 0

45 5 0 0 1 6 1 0 3 1 5 0 0 0 0 0

46 2 0 0 0 2 0 0 1 0 1 0 0 0 0 0

47 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

435



Appendix 11: The environmental variables at the Habitat Structure Sites

V
S40
pa

S40
pb

S40
pc

S40
pd

S40
all

S41
pa

S41
pb

S41
pc

S41
pd

S41
all

S42
pa

S42
pb

S42
pc

S42
pd

S42
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 13 43 37 40 133 0 17 8 3 28 5 5 12 8 30
58 18 9 13 5 45 0 9 7 3 19 5 4 8 23 40
59 17 3 8 2 30 0 4 12 3 19 4 2 3 6 15
60 15 1 2 0 18 0 4 7 3 14 2 1 1 6 10
61 5 0 0 0 5 0 4 3 1 8 2 1 1 6 10
62 5 0 0 0 5 0 3 2 0 5 2 0 1 6 9
63 1 0 0 0 1 0 3 2 0 5 1 0 1 1 3
64 0 0 0 0 0 0 2 1 0 3 1 0 1 0 2
65 0 0 0 0 0 0 1 1 0 2 1 0 1 0 2
66 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
67 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
68 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 60 10 27 35 132 205 61 120 50 436
79 0 0 0 0 0 125 15 22 60 222 275 100 195 105 675

80 0 0 0 0 0 150 25 81 60 316 245 96 215 100 656

81 0 0 0 0 0 170 30 80 70 350 240 71 200 101 612

82 0 0 0 0 0 175 30 85 65 355 225 75 175 100 575

83 0 0 0 0 0 165 30 72 61 328 235 36 146 71 488

84 0 0 0 0 0 155 30 72 42 299 101 1 102 35 238

85 0 0 0 0 0 80 30 57 21 188 60 0 95 5 160

86 0 0 0 0 0 41 10 41 11 103 51 0 1 0 52

87 0 0 0 0 0 12 5 10 5 32 50 0 0 0 50

88 0 0 0 0 0 6 0 2 1 9 1 0 0 0 1

89 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 56 46 0 16 118
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V S40
pa

S40
pb

S40
pc

S40
pd

S40
all

S41
pa

S41
pb

S41
pc

S41
pd

S41
all

S42
pa

S42
pb

S42
pc

S42
pd

S42
all

101 0 0 0 0 0 0 0 0 0 0 135 76 0 26 237
102 0 0 0 0 0 0 0 0 0 0 95 41 0 25 161
103 0 0 0 0 0 0 0 0 0 0 90 35 0 16 141
104 0 0 0 0 0 0 0 0 0 0 67 25 0 5 97
105 0 0 0 0 0 0 0 0 0 0 35 6 0 0 41
106 0 0 0 0 0 0 0 0 0 0 30 1 0 0 31
107 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10
108 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

\r S43 S43 S43 S43 S43 S44 S44 S44 S44 S44 S45 S45 S45 S45 S45
V

Pa pb Pc pd all pa pb pc Pd all pa pb pc pd all
1 180 180 165 160 685 180 90 75 120 465 75 50 65 80 270
2 80 115 115 95 405 85 85 50 95 315 140 70 135 130 475
3 5 0 0 0 5 15 50 30 10 105 0 0 0 0 0
4 5 0 0 0 5 30 85 50 6 161 0 0 0 0 0
5 15 0 80 22 117 0 21 0 25 46 22 8 3 0 33
6 0 0 0 0 0 36 0 0 2 38 0 0 0 0 0
7 0 0 2 10 0 1 0 5 0 6 0 0 0 0 0
8 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 2 3 0 0 0 0 0
11 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 35 16 17 21 89 30 40 150 75 295 40 30 55 65 190
14 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5
15 31 55 40 70 196 55 65 80 95 295 25 60 45 45 175
16 27 70 56 60 213 280 140 140 125 685 27 37 22 28 114
17 3 3 9 3 18 290 165 150 145 750 5 28 8 9 50
18 2 1 2 1 6 290 170 125 145 730 3 18 4 4 29
19 0 0 2 0 2 220 120 75 115 530 0 2 2 2 6
20 0 0 1 0 1 140 72 37 75 324 0 0 0 0 0
21 0 0 1 0 1 51 60 21 70 202 0 0 0 0 0
22 0 0 0 0 0 21 26 11 32 90 0 0 0 0 0
23 0 0 0 0 0 16 6 1 6 29 0 0 0 0 0
24 0 0 0 0 0 2 5 0 2 9 0 0 0 0 0
25 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 31 40 30 65 166 45 45 55 55 200 25 22 25 35 107

37 32 105 32 55 224 115 70 70 70 325 13 5 5 14 37

38 8 3 5 3 19 100 80 70 65 315 5 5 5 9 24

39 3 2 5 1 11 90 75 60 65 290 3 2 3 3 11

40 0 1 4 0 5 90 40 40 60 230 1 2 0 1 4

41 0 1 3 0 4 32 32 26 45 135 0 0 0 0 0

42 0 0 3 0 3 17 22 13 40 92 0 0 0 0 0

43 0 0 0 0 0 12 7 7 36 62 0 0 0 0 0

44 0 0 0 0 0 7 2 1 13 23 0 0 0 0 0

45 0 0 0 0 0 2 0 0 12 14 0 0 0 0 0

46 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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\ / S43 S43 S43 S43 S43 S44 S44 S44 S44 S44 S45 S45 S45 S45 S45
V

Pa Pb Pc pd all pa pb pc pd all pa pb pc pd all
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 55 31 21 46 153 13 12 5 5 25 50 85 45 65 245
58 26 18 26 42 55 26 22 8 3 59 8 2 2 4 16
59 13 1 8 3 25 8 2 2 1 13 2 2 2 4 10
60 6 1 5 0 12 1 0 1 0 2 1 1 2 3 7
61 5 0 1 0 6 0 0 0 0 0 1 1 2 3 7
62 1 0 0 0 1 0 0 0 0 0 0 1 1 3 5
63 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 5 0 9 0 13 20 12 5 15 54 35 21 25 3 84

79 5 0 13 0 18 30 27 17 25 99 51 26 41 11 129

80 5 0 13 0 18 40 32 22 35 129 9 23 26 7 65

81 5 0 9 0 14 40 27 22 35 124 3 3 9 2 17

82 5 0 9 0 14 40 21 17 35 113 1 2 7 2 12

83 5 0 7 0 12 35 21 12 35 105 0 0 2 1 3

84 5 0 2 0 7 27 15 11 25 78 0 0 1 0 1

85 5 0 2 0 7 25 15 7 11 58 0 0 0 0 0

86 5 0 1 0 6 20 15 5 10 50 0 0 0 0 0

87 1 0 1 0 2 6 10 1 10 27 0 0 0 0 0

88 0 0 0 0 0 0 5 0 1 6 0 0 0 0 0

89 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 45 56 30 18 93 1 2 6 6 15 85 135 105 80 405
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V
S43

Pa

S43

Pb

S43

Pc

S43

Pd

S43
all

S44
pa

S44

Pb

S44
pc

S44
pd

S44
all

S45
pa

S45

Pb

S45
pc

S45
pd

S45
all

101 135 180 165 131 431 5 15 30 25 75 255 300 275 265 1095
102 130 180 190 136 456 5 15 30 30 80 290 235 295 305 1125
103 115 150 190 135 440 5 20 40 25 90 170 68 126 315 739
104 30 140 140 125 295 5 10 30 25 70 21 6 57 230 314
105 17 101 120 121 258 5 10 20 25 70 4 5 6 151 166
106 5 1 76 120 201 5 15 15 25 60 0 1 1 132 134
107 1 21 27 111 139 5 15 5 25 50 0 0 0 51 51
108 0 1 6 101 107 5 6 0 21 32 0 0 0 25 25
109 0 0 5 95 100 1 16 0 5 22 0 0 0 6 6
110 0 0 1 5 6 0 15 0 0 15 0 0 0 1 1
111 0 0 1 1 2 0 10 0 0 10 0 0 0 0 0
112 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0
113 0 0 0 0 0 0 6 0 0 6 0 0 0 0 0
114 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0
115 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0
116 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S46

Pa

S46
pb

S46
pc

S46
pd

S46
all

S47
pa

S47
pb

S47
pc

S47
Pd

S47
all

S48
pa

S48
pb

S48
pc

S48
pd

S48
all

1 125 110 55 35 325 65 110 86 145 406 95 175 135 105 510
2 170 125 220 105 620 140 105 85 120 450 145 175 205 97 622
3 0 0 0 2 2 6 7 1 0 14 1 5 0 71 77
4 0 0 0 2 2 2 4 3 0 9 15 15 5 120 155
5 15 47 25 190 277 0 6 1 10 17 12 6 5 70 88
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 5 5 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 40 55 0 17 137 0 75 0 0 75 20 0 0 0 20
14 1 0 0 0 1 0 6 0 0 6 0 0 0 0 0
15 26 27 35 26 114 105 65 190 40 400 75 21 21 9 126
16 4 5 5 7 21 41 4 167 36 248 85 36 21 12 154
17 3 2 4 3 12 22 0 18 14 54 95 37 5 11 148
18 1 0 2 2 5 13 0 13 8 34 90 27 1 6 124
19 1 0 2 1 4 10 0 13 3 26 90 16 0 6 112
20 0 0 0 0 0 10 0 7 2 19 62 7 0 2 71
21 0 0 0 0 0 6 0 6 0 12 47 2 0 2 51
22 0 0 0 0 0 1 0 5 0 6 36 1 0 0 37
23 0 0 0 0 0 1 0 1 0 2 36 1 0 0 37
24 0 0 0 0 0 1 0 0 0 1 21 1 0 0 22
25 0 0 0 0 0 1 0 0 0 1 16 0 0 0 16
26 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
27 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6
28 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
30 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 17 21 25 26 89 86 23 60 17 186 100 55 50 17 222

37 4 4 5 7 20 28 6 27 13 74 150 80 70 17 317
38 2 2 4 3 11 10 1 17 5 32 200 85 65 12 362
39 0 1 2 2 5 5 0 9 5 19 195 81 46 8 330
40 0 0 1 1 2 5 0 8 3 16 185 41 36 4 266
41 0 0 0 0 0 5 0 3 2 10 116 22 5 3 146

42 0 0 0 0 0 1 0 3 1 5 91 18 0 3 112

43 0 0 0 0 0 1 0 3 0 4 83 14 0 2 99
44 0 0 0 0 0 1 0 2 0 3 67 5 0 0 72

45 0 0 0 0 0 1 0 0 0 1 57 2 0 0 59
46 0 0 0 0 0 1 0 0 0 1 42 1 0 0 43
47 0 0 0 0 0 1 0 0 0 1 42 0 0 0 42
48 0 0 0 0 0 0 0 0 0 0 41 0 0 0 41
49 0 0 0 0 0 0 0 0 0 0 15 0 0 0 15
50 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S46 S46 S46 S46 S46 S47 S47 S47 S47 S47 S48 S48 S48 S48 S48
pa pb pc pd all pa pb pc pd all pa pb pc pd all

51 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
52 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 45 26 12 17 100 30 75 21 41 167 18 14 0 5 37
58 4 6 2 2 14 26 1 5 4 36 18 23 0 2 43
59 1 2 0 0 3 10 0 1 0 11 13 9 0 0 22
60 0 1 0 0 1 1 0 0 0 1 12 5 0 0 17
61 0 1 0 0 1 0 0 0 0 0 12 3 0 0 15
62 0 0 0 0 0 0 0 0 0 0 7 2 0 0 9
63 0 0 0 0 0 0 0 0 0 0 7 1 0 0 8
64 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3
65 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
66 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
67 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10
68 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10
69 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6
70 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 13 25 30 7 75 50 31 60 30 171 4 21 10 1 36
79 28 6 45 2 81 110 95 140 55 400 12 31 20 5 68
80 27 6 27 2 62 130 130 140 60 460 21 31 5 10 67
81 6 2 16 0 24 115 115 140 60 430 21 31 0 10 62
82 2 0 15 0 17 101 75 101 75 352 20 21 0 5 46
83 0 0 5 0 5 66 60 100 70 296 20 21 0 1 42
84 0 0 1 0 1 51 46 81 50 228 16 25 0 0 41
85 0 0 0 0 0 40 31 80 45 196 21 16 0 0 37
86 0 0 0 0 0 40 1 80 16 137 17 16 0 0 33
87 0 0 0 0 0 5 0 10 6 21 11 16 0 0 27

88 0 0 0 0 0 1 0 5 2 8 11 11 0 0 22
89 0 0 0 0 0 0 0 5 1 6 7 11 0 0 18

90 0 0 0 0 0 0 0 0 0 0 2 1 0 0 3

91 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

92 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 55 80 85 41 261 0 0 0 30 30 21 15 65 16 117
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S46
pa

S46
pb

S46
pc

S46
pd

S46
all

S47
pa

S47
pb

S47
pc

S47
pd

S47
all

S48
pa

S48
pb

S48
pc

S48
pd

S48
all

101 175 220 240 65 700 0 0 0 80 80 61 35 230 95 421
102 210 220 115 65 610 0 0 0 80 80 66 50 230 90 436
103 235 210 75 70 590 0 0 0 75 75 72 50 150 75 347
104 220 166 41 65 492 0 0 0 55 55 95 75 137 65 372
105 210 170 26 35 441 0 0 0 41 41 110 80 62 56 308
106 176 156 21 25 378 0 0 0 30 30 120 90 40 51 301
107 146 155 20 21 342 0 0 0 20 20 130 90 1 2 223
108 97 155 5 16 273 0 0 0 10 10 160 80 0 0 240
109 81 155 1 2 239 0 0 0 2 2 105 30 0 0 135
110 66 90 0 2 158 0 0 0 0 0 130 20 0 0 150
111 55 86 0 0 141 0 0 0 0 0 125 20 0 0 145
112 51 85 0 0 136 0 0 0 0 0 45 15 0 0 60
113 40 85 0 0 125 0 0 0 0 0 30 11 0 0 41
114 40 85 0 0 125 0 0 0 0 0 10 10 0 0 20
115 1 5 0 0 6 0 0 0 0 0 10 5 0 0 15
116 0 1 0 0 1 0 0 0 0 0 5 5 0 0 10
117 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S49
pa

S49

Pb

S49
pc

S49
pd

S49
all

S50
pa

S50

Pb
S50
pc

S50
pd

S50
all

S51
pa

S51

Pb
S51
pc

S51
pd

S51
all

1 90 35 125 50 300 90 85 45 80 300 66 60 60 80 266
2 130 105 35 35 305 85 75 25 125 310 32 18 26 27 103
3 0 0 0 0 0 0 0 0 0 0 0 5 11 1 17
4 41 50 95 50 236 65 65 40 50 220 0 6 12 6 24
5 26 46 30 126 228 2 50 165 55 272 21 71 90 45 227
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 2 6 8 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 5 35 10 0 50 30 6 0 1 37 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 10 18 18 20 66
15 31 41 40 60 172 50 55 85 55 1015 85 30 27 75 217
16 21 26 7 26 80 65 22 14 25 126 5 18 9 32 64
17 2 4 2 8 16 42 9 7 4 62 5 14 5 3 27
18 0 3 0 3 6 8 2 1 1 12 5 14 4 3 26
19 0 2 0 1 3 2 0 0 0 2 5 9 4 3 21
20 0 1 0 1 2 0 0 0 0 0 5 7 4 3 19
21 0 1 0 1 2 0 0 0 0 0 5 2 3 1 11
22 0 1 0 0 1 0 0 0 0 0 1 2 0 1 4
23 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
25 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 15 60 65 80 220 65 45 50 31 191 155 55 41 60 311
37 15 31 46 40 132 75 46 26 13 160 13 17 21 1 52
38 0 8 9 19 36 35 18 5 5 63 0 10 0 0 10
39 0 7 2 9 18 9 9 5 4 27 0 5 0 0 5
40 0 3 2 5 10 5 5 2 2 14 0 5 0 0 5
41 0 3 2 3 8 3 5 0 1 9 0 0 0 0 0
42 0 2 2 3 7 3 2 0 1 6 0 0 0 0 0
43 0 2 2 1 5 2 2 0 1 5 0 0 0 0 0
44 0 1 1 1 3 2 1 0 1 4 0 0 0 0 0
45 0 1 1 0 2 2 0 0 0 2 0 0 0 0 0
46 0 1 0 0 1 2 0 0 0 2 0 0 0 0 0
47 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

v S49 S49 S49 S49 S49 S50 S50 S50 S50 S50 S51 S51 S51 S51 S51
pa pb pc p d all pa pb pc pd all pa pb pc pd all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 21 22 26 22 91 55 70 40 85 250 0 0 0 65 65
58 4 9 8 9 30 75 45 17 40 177 0 0 0 55 55
59 3 1 3 4 11 70 13 8 5 96 0 0 0 25 25
60 3 1 3 3 11 40 5 4 5 54 0 0 0 30 30
61 3 1 2 3 9 9 5 4 5 23 0 0 0 10 10
62 0 1 2 2 5 4 4 4 5 17 0 0 0 5 5
63 0 0 2 2 4 4 4 3 5 16 0 0 0 5 5
64 0 0 0 2 2 3 3 2 4 12 0 0 0 0 0
65 0 0 0 2 3 3 3 1 1 8 0 0 0 0 0
66 0 0 0 2 2 3 3 0 1 7 0 0 0 0 0
67 0 0 0 1 1 3 2 0 0 5 0 0 0 0 0
68 0 0 0 1 1 1 2 0 0 3 0 0 0 0 0
69 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0
70 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0
71 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
72 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
73 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 75 80 51 65 271 16 20 5 0 41 50 140 36 35 261
79 155 165 100 115 535 16 40 5 0 61 51 145 56 20 272
80 180 210 100 120 610 4 51 5 0 60 36 91 55 0 182
81 190 185 80 65 520 4 56 1 0 61 22 26 45 0 93
82 75 135 66 47 323 2 22 1 0 25 5 20 45 0 80
83 31 55 25 30 141 2 20 1 0 0 1 16 20 0 37
84 2 6 5 6 19 2 15 1 0 23 0 0 5 0 5
85 0 2 5 1 8 2 5 0 0 18 0 0 5 0 5
86 0 1 0 1 2 1 5 0 0 7 0 0 5 0 5
87 0 0 0 0 0 0 1 0 0 6 0 0 0 0 0
88 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 75 25 25 5 130 41 31 21 12 105 70 135 195 90 400
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Appendix 11: The environmental variables at the Habitat Structure Sites

v S49 S49 S49 S49 S49 S50 S50 S50 S50 S50 S51 S51 S51 S51 S51
pa pb pc pd all pa pb pc pd all pa pb pc pd all

101 140 115 60 10 225 125 71 37 37 260 120 170 280 120 570
102 120 125 55 10 310 130 80 22 27 259 120 170 250 140 540
103 90 125 10 5 230 135 110 12 27 284 120 120 161 140 401
104 40 130 5 5 180 106 76 12 36 230 20 61 155 145 236
105 6 100 1 1 108 91 62 8 31 192 0 0 150 90 150
106 1 100 0 1 102 46 41 1 21 116 0 0 85 5 85
107 0 91 0 0 91 31 26 0 6 63 0 0 80 0 80
108 0 90 0 0 90 22 7 0 5 34 0 0 10 0 10
109 0 65 0 0 65 22 3 0 1 26 0 0 5 0 5
110 0 45 0 0 45 7 1 0 1 9 0 0 0 0 0
111 0 45 0 0 45 2 0 0 0 2 0 0 0 0 0
112 0 11 0 0 11 0 0 0 0 0 0 0 0 0 0
113 0 11 0 0 11 0 0 0 0 0 0 0 0 0 0
114 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0
115 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

v S52 S52 S52 S52 S52 S53 S53 S53 S53 S53 S54 S54 S54 S54 S54
pa ph pc pd all pa pb pc pd all pa pb pc pd all

1 41 9 13 37 100 170 130 270 215 785 191 305 160 135 791
2 45 45 30 36 156 115 95 75 110 395 56 90 56 91 293
3 16 2 12 8 38 0 0 2 0 2 2 0 12 1 15
4 35 36 75 46 192 0 0 1 0 1 2 2 16 1 21
5 120 195 150 240 705 0 0 3 2 5 145 10 195 322 672
6 1 0 0 1 2 0 0 0 1 1 0 0 0 0 0
7 0 0 0 0 0 0 0 1 8 9 0 0 0 0 0
8 0 6 0 0 6 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
12 0 0 0 0 ' o l 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
14 2 21 15 17 55 0 0 0 0 0 2 0 0 0 2
15 91 110 170 56 427 6 12 20 1 39 0 0 0 0 0
16 91 110 170 66 437 0 0 0 1 1 0 0 0 0 0
17 72 107 175 66 420 0 0 0 0 0 0 0 0 0 0
18 52 102 120 53 327 0 0 0 0 0 0 0 0 0 0
19 42 101 105 33 281 0 0 0 0 0 0 0 0 0 0
20 1 91 6 33 131 0 0 0 0 0 0 0 0 0 0
21 1 30 0 38 69 0 0 0 0 0 0 0 0 0 0
22 1 0 0 8 9 0 0 0 0 0 0 0 0 0 0
23 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0
24 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
25 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 30 55 30 66 181 50 65 71 41 227 8 41 12 3 64

37 21 55 35 71 182 17 9 5 9 40 8 32 12 11 63

38 11 27 30 86 154 4 1 1 1 7 1 26 3 6 36

39 11 27 20 73 131 1 1 1 0 3 0 2 1 1 4

40 10 18 16 63 107 1 1 0 0 2 0 0 0 0 0

41 1 13 6 53 73 0 0 0 0 0 0 0 0 0 0

42 1 13 2 18 34 0 0 0 0 0 0 0 0 0 0

43 1 7 1 5 14 0 0 0 0 0 0 0 0 0 0

44 1 2 1 4 8 0 0 0 0 0 0 0 0 0 0

45 1 1 1 4 7 0 0 0 0 0 0 0 0 0 0

46 0 1 1 2 4 0 0 0 0 0 0 0 0 0 0

47 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0

48 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

49 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

50 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S52
pa

S52
pb

S52
pc

S52
pd

S52
all

S53
pa

S53
pb

S53
pc

S53
pd

S53
all

S54
pa

S54
pb

S54
pc

S54
pd

S54
all

51 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 7 11 21 18 57 8 3 4 3 18 9 17 5 2 33
58 12 7 21 23 63 8 7 2 2 19 19 21 5 1 46
59 8 7 21 23 59 12 6 1 0 19 5 22 2 1 30
60 7 2 20 12 41 0 0 1 0 1 1 11 0 0 0
61 5 0 5 7 17 0 0 0 0 0 1 2 0 0 0
62 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
63 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 47 18 12 2 79 2 1 0 0 3 6 8 26 6 46
79 52 22 12 2 88 2 5 0 0 7 20 21 31 6 83
80 23 22 7 2 54 1 5 0 0 6 30 31 30 11 102
81 24 17 7 2 50 0 5 0 0 5 20 22 1 10 53
82 29 8 1 2 40 0 0 0 0 0 5 3 0 10 18
83 13 9 1 2 25 0 0 0 0 0 0 0 0 10 10

84 13 2 1 1 17 0 0 0 0 0 0 0 0 10 10

85 8 2 0 1 11 0 0 0 0 0 0 0 0 0 0

86 7 6 0 1 14 0 0 0 0 0 0 0 0 0 0

87 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 75 36 25 16 152 130 175 55 110 470 75 10 20 22 127
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S52
pa

S52
pb

S52
pc

S52
pd

S52
all

S53
pa

S53
pb

S53
pc

S53
pd

S53
all

S54
pa

S54
pb

S54
pc

S54
pd

S54
all

101 130 65 20 70 285 120 165 65 125 475 130 25 46 50 251
102 160 90 20 80 350 140 151 40 80 411 65 26 12 150 253
103 190 80 30 90 390 90 155 30 61 336 50 5 15 170 240
104 210 60 40 85 395 6 70 20 51 147 10 0 10 215 235
105 215 0 40 70 325 0 65 5 5 75 0 0 1 216 217
106 90 0 40 70 200 0 65 0 0 65 0 0 0 95 95
107 10 0 40 35 85 0 65 0 0 65 0 0 0 85 85
108 1 0 40 15 56 0 0 0 0 0 0 0 0 85 85
109 0 0 60 0 60 0 0 0 0 0 0 0 0 10 10
110 0 0 60 0 60 0 0 0 0 0 0 0 0 5 5
111 0 0 60 0 60 0 0 0 0 0 0 0 0 0 0
112 0 0 60 0 60 0 0 0 0 0 0 0 0 0 0
113 0 0 60 0 60 0 0 0 0 0 0 0 0 0 0
114 0 0 60 0 60 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0
124 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
125 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
126 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
134 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
135 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
136 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0
137 0 0 0 0 0 0 0 0 80 80 0 0 0 0 0
138 0 0 0 0 0 0 0 0 80 80 0 0 0 0 0
139 0 0 0 0 0 0 0 0 80 80 0 0 0 0 0
140 0 0 0 0 0 0 0 0 80 80 0 0 0 0 0
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Appendix 11: The environmental variables at the Habitat Structure Sites

V S55 S55 S55 S55 S55 S56 S56 S56 S56 S56 S57 S57 S57 S57 S57
pa pb pc pd all pa pb pc pd all pa pb pc pd all

1 140 145 200 115 600 275 255 215 255 1000 95 105 90 45 335
2 30 55 65 40 190 65 85 145 140 435 105 47 125 80 357
3 9 5 0 1 15 31 26 5 5 67 31 45 35 35 146
4 4 1 0 1 6 17 I 22 3 4 49 60 130 55 90 335
5 0 5 0 36 41 0 36 0 1 37 21 50 30 70 171
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 2 1 4 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 5 1 0 0 6 12 7 0 0 19 70 25 50 70 215
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 4 5 1 0 0 0 1 0 0 0 0 0
16 0 0 1 4 5 1 0 0 0 1 0 0 0 0 0
17 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0
18 0 0 l ; 2 3 0 0 0 0 0 0 0 0 0 0
19 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 120 155 190 300 765 26 22 65 36 149 0 10 5 0 15

37 65 100 106 53 324 18 63 23 28 132 0 2 1 0 3

38 18 27 9 4 81 9 5 9 23 46 0 2 1 0 3

39 5 5 5 4 19 4 4 4 14 26 0 2 0 0 2

40 2 4 5 3 14 3 4 4 5 16 0 2 0 0 2

41 2 4 4 2 12 3 4 4 5 16 0 2 0 0 2

42 0 2 3 1 6 3 4 3 3 13 0 2 0 0 2

43 0 0 3 1 4 3 2 2 2 9 0 2 0 0 2

44 0 0 2 0 2 2 1 2 2 7 0 2 0 0 2

45 0 0 1 0 1 1 0 0 1 2 0 1 0 0 1

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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S55 S55 S55 S55 S55 S56 S56 S56 S56 S56 S57 S57 S57 S57 S57V
pa pb pc pd all pa ph Pc pd all pa pb pc pd all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 160 115 18 18 311 2 3 5 5 15 30 12 0 2 44
58 101 60 23 17 201 2 1 9 3 15 40 4 0 2 46
59 9 34 17 7 67 1 1 9 2 13 22 3 0 2 27
60 5 5 42 7 59 0 1 5 1 7 8 1 0 2 11
61 2 5 3 3 13 0 1 3 1 5 7 1 0 2 2
62 2 5 3 3 13 0 1 2 0 3 1 1 0 0 3
63 1 3 2 2 8 0 1 1 0 2 0 0 0 0 0
64 1 2 1 0 4 0 0 0 0 0 0 0 0 0 0
65 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0
66 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0
67 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0

68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 41 0 0 0 0 40 35 55 70 200 25 30 55 45 155

79 30 0 0 0 0 70 75 120 165 430 45 26 105 75 251

80 8 0 0 0 0 126 145 136 220 627 22 13 105 65 205

81 1 0 0 0 0 85 115 100 220 520 5 4 36 35 80

82 0 0 0 0 0 20 66 91 170 347 2 1 22 13 38

83 0 0 0 0 0 6 6 41 65 93 1 1 8 10 20

84 0 0 0 0 0 1 1 6 40 48 1 1 2 1 5

85 0 0 0 0 0 0 0 2 21 23 1 0 1 0 2

86 0 0 0 0 0 0 0 0 5 5 1 0 0 0 1

87 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

88 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 5 25 0 25 41 15 0 0 77 65 60 65 75 265
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S55 S55 S55 S55 S55 S56 S56 S56 S56 S56 S57 S57 S57 S57 S57V
Pa Pb pc pd all pa pb pc pd all pa pb pc pd all

101 0 1 45 0 45 135 55 0 0 310 130 136 175 1 7 1 612
102 0 0 60 0 60 110 46 0 5 217 85 91 100 186 462
103 0 0 80 0 80 95 60 0 5 202 81 36 70 61 248
104 0 0 80 0 80 66 30 0 0 121 81 52 41 22 196
105 0 0 5 0 5 60 20 0 0 87 66 12 21 17 116
106 0 0 5 0 5 51 10 0 0 62 50 5 16 8 79
107 0 0 1 0 1 60 1 0 0 61 36 1 10 7 54
108 0 0 1 0 1 65 0 0 0 65 13 0 0 5 18
109 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

124 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5

125 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10

126 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10

127 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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V
S58

Pa

S58

Pb

S58
pc

S58
pd

S58
all

S59
pa

S59
pb

S59
pc

S59
pd

S59
all

S60
pa

S60
pb

S60
pc

S60
pd

S60
all

1 55 35 71 65 226 90 200 95 145 530 160 125 115 110 510
2 50 155 61 85 351 185 120 95 70 470 50 60 40 130 280
3 45 30 85 25 185 0 6 0 0 6 20 21 26 30 97
4 70 60 135 55 320 1 10 0 0 11 21 21 13 21 76
5 50 17 35 170 272 20 0 0 6 26 30 95 95 36 256
6 0 5 1 0 6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 70 31 5 15 121 0 0 0 0 0 35 45 50 0 130

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 2 15 16 0 33 0 0 0 0 0

16 0 0 0 0 0 2 20 12 0 34 0 0 0 0 0

17 0 0 0 0 0 1 5 7 0 13 0 0 0 0 0

18 0 0 0 0 0 0 1 5 0 6 0 0 0 0 0

19 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0

20 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

21 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 25 60 40 11 136 135 85 230 205 655 36 46 65 30 177

37 75 70 40 17 152 45 21 170 75 311 13 13 8 9 43

38 1 50 15 8 84 17 12 31 17 77 4 4 1 4 13

39 3 16 11 3 33 9 3 8 4 24 3 2 0 2 2

40 3 3 11 5 20 5 1 8 4 18 2 2 0 2 6

41 3 3 11 3 20 0 1 3 3 7 1 1 0 2 4

4? 3 1 6 3 13 0 1 2 2 5 1 1 0 2 4

43 2 0 2 3 7 0 1 2 1 4 0 0 0 2 2

44 2 0 1 2 5 0 1 0 0 1 0 0 0 2 2

45 2 0 1 1 4 0 0 0 0 0 0 0 0 2 2

46 2 0 1 1 4 0 0 0 0 0 0 0 0 2 2

47 1 0 0 0 1 0 0 0 0 0 0 0 0 2 2

48 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

49 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

50 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
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V
S58

Pa

S58

Pb

S58

Pc

S58
pd

S58
all

S59
pa

S59
pb

S59
pc

S59
pel

S59
all

S60
pa

S60
pb

S60
pc

S60
pd

S60
all

51 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
52 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 10 0 7 3 20 25 5 5 15 50 30 40 45 27 142
58 6 0 2 3 11 15 5 1 7 28 13 21 14 9 57
59 1 0 2 3 6 2 1 0 6 9 7 4 1 2 14
60 0 0 1 3 4 2 0 0 2 4 9 2 0 2 13
61 0 0 1 3 4 1 0 0 1 2 1 0 0 0 1
62 0 0 0 2 2 1 0 0 0 1 0 0 0 0 0
63 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0
64 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0

65 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0

66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

78 55 65 41 35 196 25 30 46 50 151 21 35 25 35 116

79 115 115 56 70 356 30 40 65 65 200 21 35 21 36 113

80 140 15 30 57 332 31 37 66 66 200 13 26 13 41 93

81 72 36 11 11 130 22 42 32 71 167 4 17 3 31 55

82 20 36 1 1 56 22 40 31 51 144 1 7 1 27 36

83 6 5 0 0 11 17 45 20 30 112 1 0 1 27 29

84 1 1 0 0 2 12 50 15 26 103 1 0 1 11 13

85 0 1 0 0 1 12 31 15 5 63 1 0 1 6 8

86 0 1 0 0 1 12 21 5 1 39 0 0 1 5 6

87 0 1 0 0 1 2 20 0 0 22 0 0 1 5 6

88 0 0 0 0 0 2 20 0 0 21 0 0 1 5 6

89 0 0 0 0 0 1 20 0 0 20 0 0 0 5 5

90 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 70 45 35 40 190 20 30 20 10 80 90 26 30 85 231
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V
S58

Pa

S58

Pb

S58
pc

S58
pd

S58
all

S59
pa

S59
pb

S59
pc

S59
pd

S59
all

S60
pa

S60
pb

S60
pc

S60
pd

S60
all

101 185 115 105 61 466 50 61 46 10 167 215 66 60 235 576
102 175 135 75 115 500 65 70 46 26 207 235 61 55 225 576
103 105 101 61 141 408 50 80 45 31 206 230 46 60 180 516
104 75 51 56 55 237 35 70 50 36 191 235 46 55 196 532
105 57 26 31 75 189 35 80 45 20 180 115 40 30 131 316
106 38 6 5 30 79 35 65 50 20 170 10 30 20 120 180
107 2 5 1 46 58 30 71 35 20 156 1 20 20 120 161
108 0 1 0 5 7 30 91 11 10 142 0 20 20 110 150
109 0 0 0 1 1 20 50 10 10 90 0 5 1 0 6
110 0 0 0 0 0 15 30 10 10 65 0 0 0 0 0
111 0 0 0 0 0 10 35 10 10 65 0 0 0 0 0
112 0 0 0 0 0 10 20 10 5 45 0 0 0 0 0
113 0 0 0 0 0 10 6 10 5 31 0 0 0 0 0
114 0 0 0 0 0 6 2 6 1 15 0 0 0 0 0
115 0 0 0 0 0 1 2 1 1 10 0 0 0 0 0
116 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

117 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 12: Results o f  partial correlations

Appendix 12. P artial correla tions (pcc) on logx+, transform ed data used for testing the 
hypotheses tha t som e types o f  heterogeneity  affect the num ber o f  species, and species 
abundances, independen tly  o f  total com plexity  (Section 6.9.2). Correlations are measured 
betw een pairs o f  variab les w hilst hold ing  total com plexity  (i.e. the sum com plexity o f  all 
variables) constant. R esu lts are for (1) com bined data from sand, steppe and garigue habitats, 
from  w et and d iy  periods com bined , and w et and dry periods separately, and (2) for each habitat 
using com bined  data  from  w et and dry periods, and w et and dry periods separately. Only 
significant co rre la tions are show n; these are 2-tailed for all cases, and significance levels are 
indicated as: * (0 .05), ** (0 .01), *** (0.001 or <0.001). See Table 6.5 for frill list o f 
environm ental variab les and T ab le 6.1 for list o f  sites w ith habitat types and periods.

Number o f  Species. Sand, Ste 
1200; de

DDe and Garigue combined: W E T  and DRY sites (n rpinH rats= 
2jrees of freedom = 1197 for each variable)

Environmental Variable pcc si^ Environmental Variable pcc sig
leaf litter 0.062 * annual 60 to 70cm layer 0.070 **

rubble 0.154 *** annual 70 to 80cm layer 0.057 *
other wood 0.061 * herbaceous 140 to 150cm layer -0.057 *

refuse 0.077 *♦ shrub 0 to 10cm layer -0.072 **
green grass 10 to 20cm layer 0.100 *** shrub 10 to 20cm layer -0.072 **
green grass 20 to 30cm layer 0.094 *** shrub 20 to 30cm layer -0.071 **
green grass 30 to 40cm layer 0.098 *** shrub 30 to 40cm layer -0.078 **
green grass 40 to 50cm layer 0.097 *** shrub 40 to 50cm layer -0.093 ***
green grass 50 to 60cm layer 0.091 ** shrub 50 to 60cm layer -0.111 ***
green grass 60 to 70cm layer 0.080 ** shrub 60 to 70cm layer -0.128 ***
dry grass 20 to 30cm layer 0.063 * shrub 70 to 80cm layer -0.111 ***
dry grass 30 to 40cm layer 0.076 ** shrub 80 to 90cm layer -0.106 ***
dry grass 40 to 50cm layer 0.084 ** shrub 90 to 100cm layer -0.111 ***
dry grass 50 to 60cm layer 0.073 ** shrub 100 to 110cm layer -0.103 ***
dry grass 60 to 70cm layer 0.069 ** shrub 110 to 120cm layer -0.092 ***
dry grass 70 to 80cm layer 0.077 ** shrub 120 to 130cm layer -0.078 **
dry grass 80 to 90cm layer 0.070 ** shrub 130 to 140cm layer -0.073 **

dry grass 90 to 100cm layer 0.069 ** shrub 140 to 150cm layer -0.065 **
annual 50 to 60cm layer 0.059 * shrub 150 to 160cm layer -0.066 **

N u m b e r  o f  Species. Sand. SteDDe and Garigue combined: W E T  sites (n  auadrats= 600: 
degrees o f freedom = 597 for each variable)

Environmental Variable pcc sig Environmental Variable pcc sig
leaf litter 0.089 ** herbaceous 0 to 10cm layer 0.088 *

shingle -0.126 ** herbaceous 10 to 20cm layer 0.091 *

rubble 0.192 *** shrub 0 to 10cm layer -0.203 ***

other wood 0.087 * shrub 10 to 20cm layer -0.192 ***

lichen -0.132 *** shrub 20 to 30cm layer -0.185 ***

green grass 10 to 20cm layer 0.143 *** shrub 30 to 40cm layer -0.172 ***

green grass 20 to 30cm layer 0.102 ** shrub 40 to 50cm layer -0.175 * "kie

green grass 30 to 40cm layer 0.101 ** shrub 50 to 60cm layer -0.180 ***

green grass 40 to 50cm layer 0.105 ** shrub 60 to 70cm layer -0.171 ***

green grass 50 to 60cm layer 0.098 !k * shrub 70 to 80cm layer -0.136 ***

green grass 60 to 70cm layer 0.085 * shrub 80 to 90cm layer -0.140 ***

dry grass 0 to 10cm layer 0.166 *** shrub 90 to 100cm layer -0.140 ***

dry grass 10 to 20cm layer 0.247 *** shrub 100 to 110cm layer -0.117 **

dry grass 20 to 30cm layer 0.182 *** shrub 110 to 120cm layer -0.091 *

drv grass 30 to 40cm layer 0.136 *** shrub 190 to 200cm layer -0.085 *

dry grass 40 to 50cm layer 0.091 ** tree >200cm layer -0.103 **

annual 0 to 10cm layer 0.106 *
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Number o f  Species. S a n d , SteDDe a n d  G a rig u e  com bined : DRY sites (n qiinrirat«= 60ft; 
d egrees o f  freed o m  =  597 fo r each  v a ria b le )

Environmental Variable pcc *'8 Environmental Variable pcc sig
soil -0.094 * annual 70 to 80cm layer 0.080 *
rock 0.125 ** herbaceous 80 to 90cm layer -0.085 *

rubble 0.094 * herbaceous 90 to 100cm layer -0.099 **
refuse 0.152 *** herbaceous 100 to 110cm layer -0.105 **

green grass 20 to 30cm layer 0.097 ** herbaceous 110 to 120cm layer -0.088 *
green grass 30 to 40cm layer 0.096 ** herbaceous 120 to 130cm layer -0.082 *
green grass 40 to 50cm layer 0.086 * shrub 60 to 70cm layer -0.080 *
green grass 50 to 60cm layer 0.085 * shrub 70 to 80cm layer -0.081 *

dry grass 0 to 10cm layer -0.143 *** shrub 100 to 110cm layer -0.090 *
dry grass 10 to 20cm layer -0.132 *** shrub 110 to 120cm layer -0.100 *
dry grass 70 to 80cm layer 0.105 ** shrub 120 to 130cm layer -0.104 *
dry grass 80 to 90cm layer 0.112 ** shrub 130 to 140cm layer -0.103 *

annual 60 to 70cm layer 0.090 * shrub 140 to 150cm layer -0.090 *

Number o f  Species. S a n d : W E T  a n d  D R Y  sites Of q u a d ra ts =  400; degrees o f  freedom  = 397
fo r  each  v a r ia b le )

Environmental Variable pcc Environmental Variable pcc sig
soil -0.124 ** green grass 10 to 20cm layer 0.277 ***

leaf litter 0.128 ** green grass 20 to 30cm layer 0.099 i t

shingle -0.276 *** dry grass 0 to 10cm layer 0.104 *
stone -0.120 ** herbaceous 10 to 20cm layer 0.107 *
rock 0.124 ** tree >200cm layer -0.177 ***

green grass 0 to 10cm layer 0.156 **

Number o f  Species. S a n d : W E T  sites  (n q u a d ra ts =  200; d eg rees o f  freedom  = 197 fo r each
v a r ia b le )

Environmental Variable pcc si^ - - Environmental Variable pcc sig
soil -0.146 * dry grass 0 to 10cm layer 0.363 ***

leaf litter 0.148 * dry grass 10 to 20cm layer 0.272 ***

shingle -0.284 *** dry grass 20 to 30cm layer 0.203 **

rock 0.190 ** annual 0 to 10cm layer 0.168 **

green grass 0 to 10cm layer 0.140 * tree >200cm layer -0.264 ***

green grass 10 to 20cm layer 0.242 ***

Number o f  Species. S a n d : D RY  sites (/i q u a d ra ts =  200; d eg rees o f  freedom  = 197 for each
v a r ia b le )

Environmental Variable pcc Environmental Variable pcc sig
shingle -0.292

-1#** dry grass 10 to 20cm layer -0.182 it *

green grass 0 to 10cm layer 0.153 ** annual 10 to 20cm layer -0.142 it

green grass 10 to 20cm layer 0.195 ** annual 60 to 70cm layer 0.144 it

green grass 20 to 30cm layer 0.163 **
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Number o f  Species. S te p p e :  W E T  a n d  D R Y  sites  in q u a d r a ts =  4ftft: d eg rees  o f  freedom  =
397  fo r  each  v a r ia b le )

Environmental Variable pcc Environmental Variable pcc sig
soil -0.248 * * * herbaceous 0 to 10cm layer 0.184 ***

leaf litter 0.126 ** herbaceous 10 to 20cm layer 0.174 ***
shingle 0.103 * herbaceous 20 to 30cm layer 0.111 *
stone 0.203 * * * shrub 40 to 50cm layer -0.115 *
rock 0.309 * * * shrub 50 to 60cm layer -0.105 *

rubble 0.201 * * * shrub 110 to 120cm layer -0.105 *
refuse 0.100 * shrub 120 to 130cm layer -0.107 *

bryophytes 0.140 ** shrub 130 to 140cm layer -0.107 *
green grass 0 to 10cm layer -0.107 * shrub 150 to 160cm layer -0.107 *

dry grass 0 to 10cm layer -0.164 * * * shrub 160 to 170cm layer -0.105 *

Number o f  Species. S te p p e :  W E T  (n q u a d r a ts =  200; d eg re es  o f  freed o m  =  197 fo r  each
v a r ia b le )

Environmental Variable pcc sig Environmental Variable pcc sig
soil -0.169 * shrub 30 to 40cm layer -0.281 ***

leaf litter 0.242 *** shrub 40 to 50cm layer -0.280 ***
rock 0.142 * shrub 50 to 60cm layer -0.271 * * *

rubble 0.178 ** shrub 60 to 70cm layer -0.279 ***

bryophytes 0.218 ** shrub 70 to 80cm layer -0.267 ***
lichen -0.233 *** shrub 80 to 90cm layer -0.250 ***

green grass 10 to 20cm layer 0.237 *** shrub 90 to 100cm layer -0.254 ***

green grass 20 to 30cm layer 0.142 * shrub 100 to 110cm layer -0.248 ***

dry grass 40 to 50cm layer -0.142 * shrub 110 to 120cm layer -0.248 ***
dry grass 50 to 60cm layer -0.162 * shrub 120 to 130cm layer -0.233 ***
dry grass 60 to 70cm layer -0.221 ** shrub 130 to 140cm layer -0.233 ***

dry grass 70 to 80cm layer -0.189 * * shrub 140 to 150cm layer -0.233 ***

dry grass 80 to 90cm layer -0.181 ** shrub 150 to 160cm layer -0.233 ***

dry grass 90 to 100cm layer -0.141 * shrub 160 to 170cm layer -0.233 ***

annual 10 to 20cm layer 0.161 * shrub 170 to 180cm layer -0.233 ***

shrub 0 to 10cm layer -0.272 * * * shrub 180 to 190cm layer -0.233 ***

shrub 10 to 20cm layer -0.250 *** shrub 190 to 200cm layer -0.233 ***

shrub 20 to 30cm layer -0.272 ***

Number o f  Species. S te p p e : D R Y  (7i q u a d r a ts =  200 ; d e g re e s  o f  f reed o m  =  197 fo r each
v a r ia b le )

Environmental Variable | )CC sig Environmental Variable pcc sig
soil -0.339 *** dry grass 10 to 20cm layer -0.260 ***

shingle 0.293 * * * dry grass 20 to 30cm layer -0.170 **

stone 0.411 * * * annual 0 to 10cm layer -0.159 *

rock 0.494 *** herbaceous 0 to 10cm layer 0.240 ***

rubble 0.228 *** herbaceous 10 to 20cm layer 0.216 **

green grass 0 to 10cm layer -0.258 *** herbaceous 20 to 30cm layer 0.194 **

green grass 10 to 20cm layer -0.178 ** herbaceous 30 to 40cm layer 0.238 ***

dry grass 0 to 10cm layer -0.332 ** * herbaceous 40 to 50cm layer 0.200 **
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Number o f  Species. G a r ig u e :  W E T  a n d  DRY sites (n q u a d ra ts =  40ft: d eg rees  n f  f reedom  =
397  fo r  each  v a r ia b le )

E nvironm ental V ariab le pcc Environm ental Variable pcc sig
rock -0.106 * annual 20 to 30cm layer 0.106 *

rubble 0.223 *** annual 140 to 150cm layer 0.105 *
refuse 0.135 ** annual 150 to 160cm layer 0.105 *

green grass 20 to 30cm layer 0.122 * * annual 160 to 170cm layer 0.105 *
green grass 30 to 40cm layer 0.177 *** herbaceous 120 to 130cm layer -0.106 *
green grass 40 to 50cm layer 0.168 *** herbaceous 130 to 140cm layer -0.099 *
green grass 50 to 60cm layer 0.158 * * herbaceous 140 to 150cm layer -0.099 *
green grass 60 to 70cm layer 0.130 ** shrub 40 to 50cm layer -0.128 **

dry grass 0 to 10cm layer 0.122 * shrub 50 to 60cm layer -0.175 ***
dry grass 10 to 20cm layer 0.195 *** shrub 60 to 70cm layer -0.217 ***
dry grass 20 to 30cm layer 0.177 *** shrub 70 to 80cm layer -0.192 ***
dry grass 30 to 40cm layer 0.207 *** shrub 80 to 90cm layer -0.186 ***
dry grass 40 to 50cm layer 0.183 *** shrub 90 to 100cm layer -0.200 ***
dry grass 50 to 60cm layer 0.182 *** shrub 100 to 110cm layer -0.183 ** *

dry grass 60 to 70cm layer 0.172 *** shrub 110 to 120cm layer -0.155 * *
dry grass 70 to 80cm layer 0.144 ** shrub 120 to 130cm layer -0.122 **
dry grass 80 to 90cm layer 0.126 * shrub 130 to 140cm layer -0.110 *

dry grass 90 to 100cm layer 0.118 *

N u m b e r  o f  S p ec ie s . G arigue: W E T  sites (n  quadrats= 200; degrees o f freedom = 197 for
each variable)

Environm ental V ariab le pcc Environm ental V ariable pcc sig
leaf litter -0.146 * annual 140 to 150cm layer 0.141 *

rock -0.168 * annual 150 to 160cm layer 0.141 *
rubble 0.319 *** annual 160 to 170cm layer 0.141 *

refuse 0.170 * herbaceous 20 to 30cm layer 0.139 *
lichen -0.185 ** herbaceous 30 to 40cm layer 0.161 *

dry grass 30 to 40cm layer 0.215 ** herbaceous 40 to 50cm layer 0.157 *

dry grass 40 to 50cm layer 0.205 ** shrub 0 to 10cm layer -0.264 ***

dry grass 50 to 60cm layer 0.191 * * shrub 10 to 20cm layer -0.256 ***

dry grass 60 to 70cm layer 0.157 ** shrub 20 to 30cm layer -0.241 ***

dry grass 0 to 10cm layer 0.290 * * * shrub 30 to 40cm layer -0.212 **

dry grass 10 to 20cm layer 0.374 *** shrub 40 to 50cm layer -0.221 **

dry grass 20 to 30cm layer 0.308 *** shrub 50 to 60cm layer -0.240 ***

dry grass 30 to 40cm layer 0.292 ** * shrub 60 to 70cm layer -0.232 ***

dry grass 40 to 50cm layer 0.229 ** shrub 70 to 80cm layer -0.184 **

dry grass 50 to 60cm layer 0.211 ** shrub 80 to 90cm layer -0.199 **

dry grass 60 to 70cm layer 0.212 ** shrub 90 to 100cm layer -0.206 **

dry grass 70 to 80cm layer 0.170 * shrub 100 to 110cm layer -0.171 **

Number o f  Species. G a r ie u e :  D R Y  (// q u a d r a ts =  200 ; d e g re e s  o f  freed o m  = 197 fo r  each
v a r ia b le )

Environmental Variable pcc M g Environmental Variable pcc sig
logs 0.179 * * shrub 10 to 20cm layer 0.141 *

dry grass 50 to 60cm layer 0.157 * shrub 60 to 70cm layer -0.210 **

dry grass 80 to 90cm layer 0.172 * shrub 70 to 80cm layer -0.205 * *

annual 50 to 60cm layer 0.188 ** shrub 80 to 90cm layer -0.169 *

annual 60 to 70cm layer 0.151 * shrub 90 to 100cm layer -0.191 * *

annual 70 to 80cm layer 0.150 * shrub 100 to 110cm layer -0.200 * *

herbaceous 60 to 70cm layer -0.142 * shrub 110 to 120cm layer -0.205 **

herbaceous 70 to 80cm layer -0.140 * shrub 120 to 130cm layer -0.202 **

herbaceous 80 to 90cm layer -0.158 * shrub 130 to 140cm layer -0.204 * *

herbaceous 90 to 100cm layer -0.181 ** shrub 140 to 150cm layer -0.185 **

herbaceous 100 to 110cm layer -0.194 ** shrub 150 to 160cm layer -0.167 **

herbaceous 110 to 120cm layer -0.165 * shrub 160 to 170cm layer -0.226 ***

herbaceous 120 to 130cm layer -0.155 *
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Species Abundances. S a n d . SteDDe a n d  G a rig u e  co m b in ed : W E T  an d  DRY sites tn 
q u a d r a ts =  1200; d eg re es  o f  freedom  = 1197 fo r each v ariab le)

Environm ental V ariable pcc . si& Environmental Variable pcc sig
soil 0.062 * annual 90 to 100cm layer 0.058 *

shingle -0.174 *** shrub 0 to 10cm layer -0.083 **
stone -0.108 *** shrub 10 to 20cm layer -0.098 ***
rock -0.092 *** shrub 20 to 30cm layer -0.097 ***

rubble 0.129 *** shrub 30 to 40cm layer -0.105 ***
bryophytes -0.112 *** shrub 40 to 50cm layer -0.112 ***

green grass 10 to 20cm layer 0.108 *** shrub 50 to 60cm layer -0.111 * * *
green grass 20 to 30cm layer 0.079 ** shrub 60 to 70cm layer -0.137 ***
green grass 30 to 40cm layer 0.065 * shrub 70 to 80cm layer -0.118 ***
green grass 40 to 50cm layer 0.062 * shrub 80 to 90cm layer -0.105 ***
green grass 50 to 60cm layer 0.069 * shrub 90 to 100cm layer -0.104 ***

annual 10 to 20cm layer 0.062 * shrub 100 to 110cm layer -0.086 **

annual 20 to 30cm layer 0.074 ** shrub 110 to 120cm layer -0.075 **

annual 30 to 40cm layer 0.066 * shrub 120 to 130cm layer -0.066 *
annual 40 to 50cm layer 0.078 ** shrub 130 to 140cm layer -0.065 *
annual 50 to 60cm layer 0.100 *** shrub 140 to 150cm  layer -0.057 *
annual 60 to 70cm layer 0.110 *** shrub 150 to 160cm layer -0.063 *
annual 70 to 80cm layer 0.089 ** tree >200cm layer -0.060 *
annual 80 to 90cm layer 0.070 *

Snecies Abundances. S a n d , S teD ne a n d  G a r ig u e  co m b in ed : W E T  sites (n a u a d ra ts=  60ft: 
d e g re e s  o f  freed o m  =  597 fo r  each  v a ria b le )

Environmental Variable pcc sig Environmental Variable pcc sig
soil 0.115 ** annual 50 to 60cm layer 0.104 **

leaf litter 0.091 * annual 60 to 70cm layer 0.087 *

shingle -0.242 *** herbaceous 0 to 10cm layer 0.149 ***

stone -0.099 * herbaceous 10 to 20cm layer 0.142 ***

rock -0.130 *** shrub 0 to 10cm layer -0.234 ***

rubble 0.164 *** shrub 10 to 20cm layer -0.231 ***

bryophytes -0.107 ** shrub 20 to 30cm layer -0.227 ***

lichen -0.126 ** shrub 30 to 40cm layer -0.213 ***

green grass 0 to 10cm layer -0.092 * shrub 40 to 50cm layer -0.208 ***

green grass 10 to 20cm layer 0.110 ** shrub 50 to 60cm layer -0.190 ***

dry grass 0 to 10cm layer 0.153 *** shrub 60 to 70cm layer -0.176 ***

dry grass 10 to 20cm layer 0.204 *** shrub 70 to 80cm layer -0.128 **

dry grass 20 to 30cm layer 0.134 *** shrub 80 to 90cm layer -0.107 **

dry grass 30 to 40cm layer 0.087 * shrub 90 to 100cm layer -0.086 *

annual 10 to 20cm layer 0.126 ** tree >200cm layer -0.100 *
annual 20 to 30cm layer 0.082 *
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Species Abundances. S a n d , SteDDe an d  G a rig u e  co m b in ed : DRY sites (n q u a d r a t e  60ft- 
d e g re e s  o f  freed o m  = 597 fo r  each  v aria b le )

Environmental Variable pcc sig Environmental Variable pcc sig
shingle -0.098 * annual 70 to 80cm layer 0.109 **
stone -0.129 ** herbaceous 0 to 10cm layer -0.113 **
refuse 0.115 ** herbaceous 10 to 20cm layer -0.102 **

bryophytes -0.131 ** herbaceous 20 to 30cm layer -0.097 **
green grass 0 to 1 Ocm layer 0.144 *** herbaceous 100 to 11 Ocm layer -0.089 *

green grass 10 to 20cm layer 0.099 ** shrub 60 to 70cm layer -0.097 *
green grass 20 to 30cm layer 0.133 *** shrub 70 to 80cm layer -0.105 **
green grass 30 to 40cm layer 0.127 ** shrub 80 to 90cm layer -0.099 *
green grass 40 to 50cm layer 0.108 ** shrub 90 to 100cm layer -0.119 **
green grass 50 to 60cm layer 0.129 ** shrub 100 to 110cm layer -0.118 **
green grass 60 to 70cm layer 0.107 ** shrub 110 to 120cm layer -0.119 **
dry grass 10 to 20cm layer -0.126 ** shrub 120 to 130cm layer -0.118 **

annual 30 to 40cm layer 0.109 ** shrub 130 to 140cm layer -0.117 **
annual 40 to 50cm layer 0.113 ** shrub 140 to 150cm layer -0.103 **
annual 50 to 60cm layer 0.116 ** shrub 150 to 160cm layer -0.093 *
annual 60 to 70cm layer 0.141 ***

Species Abundances. S a n d : W E T  a n d  D RY  sites (n q u a d ra ts =  400; degrees o f freedom  =
397 fo r  each  v a ria b le )

Environmental Variable pcc Environmental Variable pcc sig
shingle -0.309 *** annual 60 to 70cm layer 0.102 *
stone -0.140 ** herbaceous 0 to 10cm layer 0.116 *

green grass 0 to 10cm layer 0.157 ** herbaceous 10 to 20cm layer 0.152 **
green grass 10 to 20cm layer 0.223 *** herbaceous 20 to 30cm layer 0.105 *
green grass 20 to 30cm layer 0.118 * herbaceous 70 to 80cm layer 0.100 *
green grass 50 to 60cm layer 0.127 ** tree >200cm layer -0.205 ***
green grass 60 to 70cm layer 0.137 **

Species Abundances. S a n d : W E T  sites (## q u a d ra ts =  200; d eg rees o f  freedom  = 197 fo r each
v a r ia b le )

Environmental Variable pcc sig Environmental Variable pcc sig
shingle -0.316 *** dry grass 20 to 30cm layer 0.236 ***

green grass 10 to 20cm layer 0.252 *** annual 0 to 10cm layer 0.141 *

dry grass 0 to 1 Ocm layer 0.366 *** herbaceous 10 to 20cm layer 0.153 *

dry grass 10 to 20cm layer 0.286 *** tree >200cm layer -0.327 ***

Species Abundances. S a n d : D RY  sites (w q u a d ra ts =  200; d eg re es  o f freedom  = 197 for each
v a r ia b le )

Environmental Variable pcc sig _ Environmental Variable pcc sig
shingle -0.236 *** green grass 20 to 30cm layer 0.165 *

stone -0.289 *** dry grass 10 to 20cm layer -0.289 ***

rock -0.163 * annual 10 to 20cm layer -0.157 *

green grass 0 to 1 Ocm layer 0.215 ** annual 60 to 70cm layer 0.241 ***

green grass 10 to 20cm layer 0.151 * annual 70 to 80cm layer 0.182 **

461



Appendix 12: Results o f partial correlations

Species Abundances. S tep p e : W E T  a n d  DRY sites (n a u a d ra ts =  400: decrees o f frppdnm =
397 fo r  each  v aria b le )

Environmental Variable pcc sig Environmental Variable pcc sig
soil -0.141 ** shrub 10 to 20cm layer -0.108 k

leaf litter 0.177 *** shrub 20 to 30cm layer -0.127 k k

rock 0.186 *** shrub 30 to 40cm layer -0.137 **
rubble 0.207 *** shrub 40 to 50cm layer -0.163 **

bryophytes 0.145 ** shrub 50 to 60cm layer -0.156 **
green grass 10 to 20cm layer 0.254 *** shrub 60 to 70cm layer -0.147 * *

green grass 20 to 30cm layer 0.208 *** shrub 70 to 80cm layer -0.143 * *

green grass 30 to 40cm layer 0.111 * shrub 80 to 90cm layer -0.136 **
dry grass 0 to 10cm layer -0.148 * * shrub 90 to 100cm layer -0.132 **

dry grass 60 to 70cm layer -0.138 * * shrub 100 to 11 Ocm layer -0.136 k k

dry grass 70 to 80cm layer -0.118 * shrub 110 to 120cm layer -0.145 * *

dry grass 80 to 90cm layer -0.102 * shrub 120 to 130cm layer -0.136 ik k

dry grass 90 to 100cm layer -0.099 ♦ shrub 130 to 140cm layer -0.136 k k

herbaceous 0 to 1 Ocm layer 0.260 * * * shrub 140 to 150cm layer -0.136 k k

herbaceous 10 to 20cm layer 0.222 * * * shrub 150 to 160cm layer -0.136 k k

herbaceous 50 to 60cm layer -0.110 * shrub 160 to 170cm layer -0.128 k k

herbaceous 60 to 70cm layer -0.102 * shrub 170 to 180cm layer -0.098 *
herbaceous 110 to 120cm layer -0.103 * tree 120 to 130 layer -0.098 *

shrub 0 to 1 Ocm layer -0.130 **

Species Abundances. S tep p e : W E T  sites Of q u a d ra ts =  200; d eg rees o f  freedom  = 197 for
each  v a r ia b le )

Environmental Variable pcc sig Environmental Variable pcc sig
leaf litter 0.401 *** herbaceous 70 to 80cm layer -0.196 **
shingle -0.204 ** herbaceous 80 to 90cm layer -0.158 *
rubble 0.201 ** herbaceous 90 to 100cm layer -0.149 *

bryophytes 0.154 * herbaceous 100 to 110cm layer -0.149 *

lichen -0.249 *** herbaceous 110 to 120cm layer -0.188 **
green grass 10 to 20cm layer 0.312 *** shrub 0 to 1 Ocm layer -0.313 ***

green grass 20 to 30cm layer 0.170 * shrub 10 to 20cm layer -0.287 ***

dry grass 40 to 50cm layer -0.192 ** shrub 20 to 30cm layer -0.313 ***

dry grass 50 to 60cm layer -0.166 * shrub 30 to 40cm layer -0.320 ***

dry grass 60 to 70cm layer -0.282 *** shrub 40 to 50cm layer -0.323 ***

dry grass 70 to 80cm layer -0.305 *** shrub 50 to 60cm layer -0.319 ***

dry grass 80 to 90cm layer -0.264 *** shrub 60 to 70cm layer -0.321 ***

dry grass 90 to 100cm layer -0.219 ** shrub 70 to 80cm layer -0.309 ***

dry grass 100 to 11 Ocm layer -0.188 ** shrub 80 to 90cm layer -0.295 ***

annual 50 to 60cm layer 0.203 ** shrub 90 to 100cm layer -0.293 ***

annual 60 to 70cm layer 0.180 ** shrub 100 to 110cm layer -0.273 ***

annual 70 to 80cm layer 0.174 * shrub 110 to 120cm layer -0.273 ***

annual 80 to 90cm layer 0.216 ** shrub 120 to 130cm layer -0.249 ***

annual 90 to 100cm layer 0.154 * shrub 130 to 140cm layer -0.249 ***

herbaceous 0 to 10cm layer 0.199 ** shrub 140 to 150cm layer -0.249 ***

herbaceous 10 to 20cm layer 0.153 * shrub 150 to 160cm layer -0.249 ***

herbaceous 30 to 40cm layer -0.231 *** shrub 160 to 170cm layer -0.249 ***

herbaceous 40 to 50cm layer -0.236 *** shrub 170 to 180cm layer -0.249 ***

herbaceous 50 to 60cm layer -0.228 *** shrub 180 to 190cm layer -0.249 ***

herbaceous 60 to 70cm layer -0.211 ** shrub 190 to 200cm layer -0.249 ***
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Species Abundances. SteDDe: DRY sites (n auadrats= 200: decrees nf  freedom = 1Q7 fnr
each variable)

Environmental Variable pcc sig Environmental Variable pcc sig
soil -0.297 *** annual 50 to 60cm layer 0.182 **

shingle 0.218 ** annual 60 to 70cm layer 0.211 **
stone 0.291 *** annual 70 to 80cm layer 0.243 ***
rock 0.387 *** annual 80 to 90cm layer 0.195 **

rubble 0.246 *** annual 90 to 100cm layer 0.209 **
refuse 0.235 *** annual 100 to 11 Ocm layer 0.156 ♦

dry grass 0 to 10cm layer -0.248 *** herbaceous 0 to 1 Ocm layer 0.316 ***
dry grass 10 to 20cm layer -0.268 *** herbaceous 10 to 20cm layer 0.283 ***
dry grass 20 to 30cm layer -0.178 ** herbaceous 20 to 30cm layer 0.239 ***

annual 0 to 10cm layer -0.164 * herbaceous 30 to 40cm layer 0.270 ***
annual 10 to 20cm layer -0.157 * herbaceous 40 to 50cm layer 0.215 **
annual 40 to 50cm layer 0.173 *

Species Abundances. G a r ig u e : W E T  a n d  DRY sites (n q u a d ra ts =  400; degrees o f freedom  =
397 fo r  each  v a ria b le )

Environmental Variable pcc sig Environmental Variable pcc sig
rock -0.137 * * annual 20 to 30cm layer 0.129 * *

rubble 0.235 *** annual 30 to 40cm layer 0.121 *

refuse 0.146 * * annual 40 to 50cm layer 0.111 *
bryophytes -0.176 * * * annual 50 to 60cm layer 0.101 *

green grass 30 to 40cm layer 0.099 * shrub 40 to 50cm layer - 0 . 111 ie *

green grass 40 to 50cm layer 0.101 * shrub 50 to 60cm layer -0.138 *  tfr

green grass 50 to 60cm layer 0.113 * shrub 60 to 70cm layer -0.219 * * *

dry grass 0 to 1 Ocm layer 0.179 *** shrub 70 to 80cm layer -0.200 ***
dry grass 10 to 20cm layer 0.158 ** shrub 80 to 90cm layer -0.185 ***
dry grass 30 to 40cm layer 0.123 * shrub 90 to 100cm layer -0.196 * * *

dry grass 40 to 50cm layer 0.116 * shrub 100 to 110cm layer -0.170 Jc Jc "k

dry grass 50 to 60cm layer 0.132 ** shrub 110 to 120cm layer -0.145 * *

dry grass 60 to 70cm layer 0.131 ** shrub 120 to 130cm layer -0.123 **

dry grass 70 to 80cm layer 0.103 * shrub 130 to 140cm layer -0.120 * *

dry grass 80 to 90cm layer 0.104 * shrub 140 to 150cm layer -0.106 *

annual 0 to 10cm layer -0.116 *

Species Abundances. G a r ig u e : W E T  sites (n q u a d ra ts =  200; d eg rees o f  freedom  = 197 for
each  v a ria b le )

Environmental Variable pcc *'g . Environmental Variable pcc sig
rubble 0.410 *** herbaceous 10 to 20cm layer 0.240 ***

refuse 0.169 * herbaceous 20 to 30cm layer 0.291 ***

lichen -0.180 ** herbaceous 30 to 40cm layer 0.292 ***

green grass 0 to 1 Ocm layer -0.207 ** herbaceous 40 to 50cm layer 0.270 ***

dry grass 0 to 10cm layer 0.246 *** herbaceous 50 to 60cm layer 0.190 **

drv grass 10 to 20cm layer 0.308 *** shrub 0 to 1 Ocm layer -0.275 ***

dry grass 20 to 30cm layer 0.228 *** shrub 10 to 20cm layer -0.277 ***

dry grass 30 to 40cm layer 0.217 ** shrub 20 to 30cm layer -0.262 ***

drv grass 40 to 50cm layer 0.154 * shrub 30 to 40cm layer -0.241 ***

drv grass 50 to 60cm layer 0.162 * shrub 40 to 50cm layer -0.249 ***

drv grass 60 to 70cm layer 0.182 ** shrub 50 to 60cm layer -0.252 ***

annual 0 to 10cm layer -0.186 ** shrub 60 to 70cm layer -0.252 ***

annual 140 to 150cm layer 0.147 * shrub 70 to 80cm layer -0.183 **

annual 150 to 160cm layer 0.147 * shrub 80 to 90cm layer -0.166 *

annual 160 to 170cm layer 0.147 * shrub 90 to 100cm layer -0.148 *

herbaceous 0 to 10cm layer 0.179 **
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Species Abundances. G arigue: D R Y  sites (n q u a d ra ts =  200: degrees o f  freedom  = 197 for
each variable)

Environmental Variable pcc Environmental Variable pcc sig
shingle -0.228 *** annual 60 to 70cm layer 0.202 **
stone -0.251 *** herbaceous 0 to 10cm layer -0.287 ***
rock -0.186 ** herbaceous 10 to 20cm layer -0.278 ***
logs 0.146 * herbaceous 20 to 30cm layer -0.218 **

refuse 0.181 ** herbaceous 30 to 40cm layer -0.157 *
bryophytes -0.229 *** herbaceous 100 to 110cm layer -0.161 *

green grass 0 to 1 Ocm layer 0.168 * shrub 0 to 10cm layer 0.141 *
green grass 10 to 20cm layer 0.156 * shrub 60 to 70cm layer -0.228 ***
green grass 20 to 30cm layer 0.155 * shrub 70 to 80cm layer -0.235 ***
green grass 30 to 40cm layer 0.155 * shrub 80 to 90cm layer -0.212 **
green grass 50 to 60cm layer 0.148 * shrub 90 to 100cm layer -0.245 ***
green grass 80 to 90cm layer 0.159 * shrub 100 to 110cm layer -0.229 ***

dry grass 0 to 1 Ocm layer 0.167 * shrub 110 to 120cm layer -0.217 **
dry grass 40 to 50cm layer 0.151 * shrub 120 to 130cm layer -0.208 **
dry grass 50 to 60cm layer 0.161 * shrub 130 to 140cm layer -0.209 **
dry grass 80 to 90cm layer 0.159 * shrub 140 to 150cm layer -0.187 * *

annual 20 to 30cm layer 0.178 * shrub 150 to 160cm layer -0.171 **

annual 40 to 50cm layer 0.148 * shrub 160 to 170cm layer -0.198 * *

annual 50 to 60cm layer 0.209 **
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

A ppendix 13. H eterogeneity  (H et) and com plexity  (C om p) for all quadrats from all sites. The 
quadrats are num bered  1 to  400. Q uadrat 1 is the first sam pled for each o f  the habitat types, and 
Q uadrat 400  the last. Q uad ra ts 1-200 are from  sites sam pled in the w et period, Quadrats 201- 
400 are from  sites sam pled  in the dry period. The arrangem ent o f  sites follows Table 6.1.

Q uadrat
Het:
Sand

C om p:
Sand

Het:
Steppe

Com p:
Steppe

Het:
G arigue

Comp:
Garigue

1 16 132 42 916 26 405
2 18 112 44 400 24 333
3 20 110 31 375 27 445
4 36 315 13 112 22 444

5 22 145 23 228 27 414

6 7 104 14 109 29 382
7 9 106 16 167 14 126

8 12 103 27 173 26 192

9 11 108 14 128 22 178

10 8 105 14 108 22 193

11 6 111 15 132 29 151

12 9 105 20 135 40 335

13 8 104 20 170 25 145

14 6 102 33 389 25 135

15 11 124 20 167 25 513

16 10 115 14 105 30 416

17 19 310 19 132 20 198

18 9 105 19 119 21 128

19 9 123 18 125 24 186

20 11 111 13 111 20 236

21 11 108 21 147 22 234

22 6 103 19 156 41 533

23 7 183 17 136 29 564

24 5 191 18 220 46 878

25 6 103 11 146 24 458

26 9 105 7 200 31 374

27 5 101 10 172 34 401

28 5 101 11 173 11 121

29 7 104 10 119 20 225

30 8 199 9 112 7 105

31 7 105 10 113 18 276

32 11 243 12 106 18 212

33 5 103 7 98 12 277

34 5 103 9 108 20 765

35 7 188 7 103 12 109

36 5 103 11 115 30 285

37 16 177 4 100 14 131

38 7 162 10 105 15 130

39 11 111 5 101 21 301

40 4 181 8 97 20 351

41 9 110 12 109 26 269

42 7 133 11 101 18 256

43 5 103 12 108 29 281

44 5 103 12 103 12 118

45 6 103 14 110 25 278

46 7 104 12 110 20 514

47 9 158 15 122 17 324

48 11 111 15 108 15 131

49 10 150 12 103 22 326

50 8 129 12 107 19 363

51 7 102 15 109 30 278
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Q uadrat
Het:
Sand

C om p:
Sand

Het:
Steppe

Com p:
Steppe

Het:
G arigue

Comp:
G arigue

52 7 119 11 100 32 357
53 6 103 7 102 40 468
54 7 104 13 107 32 342
55 7 104 16 105 37 322
56 8 106 22 152 21 1049
57 9 105 26 150 17 140
58 12 102 14 108 19 181
59 8 104 11 106 18 147
60 8 103 7 112 25 351
61 4 102 15 107 31 544
62 4 102 9 105 28 441
63 4 101 17 122 50 712
64 4 98 9 102 38 610
65 7 103 16 121 26 334
66 9 114 13 106 38 351
67 8 138 16 111 33 594
68 8 109 15 142 38 428
69 8 125 13 114 28 213
70 5 103 17 113 43 420
71 6 115 20 117 25 264
72 4 100 17 107 27 316
73 4 101 16 108 45 335
74 4 101 16 113 40 482
75 11 163 17 112 30 285
76 9 164 18 127 28 334
77 8 127 24 122 35 411
78 8 158 22 118 34 387
79 9 154 15 120 41 550
80 9 143 13 104 38 396
81 5 106 19 236 24 275
82 4 100 16 203 26 341
83 5 102 15 152 26 295
84 8 105 13 169 25 343
85 7 104 12 193 23 356
86 6 103 7 102 22 293
87 7 104 9 104 21 212
88 8 105 8 104 20 263
89 5 103 10 106 34 470
90 7 105 11 115 25 294
91 4 106 17 160 21 327
92 4 101 11 112 31 358

93 4 101 12 150 22 271

94 6 103 10 124 32 422

95 5 102 12 128 23 295

96 5 102 13 151 26 506

97 5 102 9 100 27 452

98 5 102 12 188 29 507

99 5 102 13 197 29 431

100 6 103 12 192 29 418

101 12 113 10 108 32 1060

102 9 121 11 109 24 344

103 8 130 8 104 21 168

104 5 122 9 102 29 553

105 7 134 7 102 29 408

106 10 141 11 110 26 923

107 9 126 14 110 28 1266
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Q uadrat
H et:
Sand

C om p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
G arigue

Comp:
Garigue

108 5 107 11 104 21 275
109 5 107 13 108 18 140
110 5 107 11 109 20 165
111 8 108 8 103 21 272
112 9 111 10 103 32 416
113 10 139 12 105 19 272
114 10 145 11 109 24 259
115 7 107 9 101 14 283
116 5 116 11 103 12 103
117 7 104 10 107 25 161
118 9 120 12 106 20 204
119 11 116 19 112 28 297
120 9 125 16 116 31 248
121 9 109 15 182 15 148
122 5 101 15 142 15 194
123 5 101 14 186 13 157
124 10 109 14 242 19 237
125 9 112 11 120 43 619

126 6 101 15 187 18 211

127 4 101 9 109 19 182

128 10 105 8 105 18 300

129 6 102 8 97 13 127

130 6 103 10 125 18 256

131 10 109 11 125 24 263

132 9 104 12 136 20 198

133 10 115 9 104 27 237

134 7 103 6 103 24 768

135 7 102 14 136 20 231

136 11 130 12 121 24 314

137 13 132 11 112 28 197

138 7 107 9 105 26 336

139 10 148 8 105 26 199

140 9 105 13 131 33 387

141 7 103 16 442 34 763

142 13 111 23 494 74 1308

143 11 115 22 283 81 1207

144 11 121 16 182 56 455

145 8 118 13 141 42 270

146 5 103 20 341 38 466

147 5 99 17 280 52 569

148 7 105 18 277 46 365

149 4 98 15 240 36 259

150 9 109 19 245 37 288

151 8 122 20 215 20 512

152 6 104 14 110 18 406

153 4 101 22 236 18 343

154 6 104 16 135 19 289

155 4 102 16 238 19 265

156 5 102 19 187 20 146

157 5 102 13 130 32 491

158 7 120 14 137 14 110

159 10 115 14 107 7 103

160 8 108 14 121 37 331

161 10 106 14 174 11 262

162 10 100 15 198 21 469

163 11 109 16 207 24 331
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

Q uadrat Het:
Sand

C om p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
G arigue

Comp:
Garigue

164 10 108 20 196 30 298
165 11 109 19 176 25 350
166 11 104 29 244 41 398
167 15 164 31 213 36 964
168 14 143 19 211 23 367
169 15 133 33 231 41 407
170 14 127 38 231 48 891
171 15 126 32 178 21 182
172 18 215 22 165 21 227
173 14 140 35 200 35 322
174 16 178 20 217 22 187
175 9 108 36 233 18 237
176 9 108 13 173 23 185
177 15 229 14 188 19 188
178 12 163 14 171 35 172
179 11 157 25 244 44 272
180 14 257 13 184 27 260
181 7 106 13 140 43 494
182 7 107 16 155 41 418
183 8 108 19 164 33 327
184 6 106 16 112 43 319
185 11 121 20 204 40 255
186 10 124 18 171 33 210

187 5 101 13 137 29 135

188 14 109 12 109 46 206

189 7 106 13 144 38 263

190 7 107 11 148 39 588

191 4 101 15 120 25 130

192 6 103 18 176 23 119

193 4 101 16 165 30 184

194 6 103 17 176 16 109

195 6 102 15 130 31 201

196 8 106 13 156 40 325

197 4 101 9 195 33 157

198 5 101 11 190 27 133

199 4 100 15 198 32 138

200 4 100 18 197 17 123

201 6 172 7 101 14 127

202 3 101 15 148 17 123

203 4 102 17 109 17 114

204 3 100 9 97 23 429

205 4 102 14 117 24 356

206 4 101 20 168 23 344

207 4 102 28 648 19 239

208 4 102 10 104 17 258

209 4 102 19 117 21 334

210 3 101 13 104 29 492

211 3 100 14 98 25 382

212 4 102 18 348 24 300

213 3 101 10 112 28 558

214 6 103 10 104 24 318

215 3 101 11 111 29 816

216 4 101 7 108 11 123

217 4 102 15 108 20 575

218 4 102 32 287 24 436

219 3 101 20 658 18 170
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

Q uadrat Het:
Sand

Com p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
Garigue

Comp:
Garigue

220 9 107 18 116 13 142
221 13 117 13 146 23 188
222 12 114 14 122 26 281
223 17 118 16 124 34 447
224 14 110 16 137 34 636
225 13 111 13 108 38 578
226 13 111 10 123 41 330
227 11 109 17 140 28 514
228 17 154 13 116 33 231
229 14 112 10 114 31 486
230 10 104 14 261 24 141
231 10 110 16 138 54 452
232 18 126 11 120 24 683
233 22 153 10 106 24 231
234 17 172 9 127 20 281
235 21 153 9 113 21 498
236 15 113 15 119 40 335
237 30 284 11 114 35 650
238 36 243 14 131 36 261
239 19 128 15 131 36 445

240 16 142 14 128 40 165
241 6 102 9 103 15 263

242 7 103 8 105 17 286

243 9 105 18 114 14 195

244 7 103 17 142 6 98

245 7 103 22 202 12 161

246 7 103 17 113 8 167

247 7 102 16 112 20 558

248 8 104 23 247 15 140

249 7 103 8 103 12 157

250 8 104 28 132 10 425

251 7 103 19 109 13 121

252 7 103 29 128 12 262

253 9 105 16 112 11 115

254 11 107 22 139 8 109

255 9 105 5 102 11 131

256 7 103 34 154 13 338

257 7 103 30 182 19 503

258 8 104 4 101 12 184

259 7 103 20 111 12 216

260 9 105 6 103 14 136

261 18 125 8 116 8 107

262 27 159 7 102 14 264

263 26 253 9 105 12 139

264 24 126 14 99 15 215

265 14 174 14 117 17 250

266 19 147 13 191 18 167

267 22 120 13 152 18 199

268 19 127 13 142 13 131

269 21 160 12 151 16 206

270 12 115 10 115 13 121

271 20 177 13 137 15 123

272 17 115 8 103 17 212

273 22 121 15 115 16 145

274 12 109 11 115 13 118

275 12 126 15 133 13 144
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

Q uadrat
Het:
Sand

C om p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
G arigue

Comp:
Garigue

276 32 142 10 104 18 733
277 17 191 9 106 22 371
278 15 111 8 104 2 101
279 16 112 7 105 16 158
280 13 113 5 103 15 327
281 10 118 9 107 22 148
282 10 118 10 107 17 148
283 12 119 10 112 20 150
284 10 118 13 130 17 124
285 10 114 23 169 17 189
286 13 118 13 129 22 168
287 10 117 14 121 17 155
288 11 110 18 139 18 121
289 10 112 30 141 15 114
290 16 118 26 135 18 205
291 11 114 12 115 28 417
292 8 103 13 115 16 117
293 10 109 12 125 18 169
294 11 114 11 117 14 157
295 11 109 14 109 14 150
296 11 110 9 122 15 146
297 8 107 18 135 23 95

298 7 98 15 113 9 106

299 8 104 14 110 16 116

300 10 109 13 109 13 109

301 11 134 17 115 18 187

302 12 140 14 109 29 407

303 16 178 17 117 26 519

304 13 131 14 118 25 230

305 14 128 12 111 25 258

306 12 116 22 132 13 273

307 13 117 21 117 36 458

308 5 107 22 128 19 187

309 10 114 13 119 22 196

310 12 110 20 125 20 150

311 13 112 20 123 29 408

312 7 99 15 118 33 274

313 7 103 14 107 15 188

314 9 120 17 116 27 328

315 11 108 14 110 25 203

316 8 105 19 120 28 276

317 8 105 25 155 20 261

318 5 102 27 170 19 328

319 5 102 21 127 18 264

320 8 109 23 141 23 393

321 10 154 16 178 23 290

322 10 137 11 139 26 263

323 10 128 12 126 28 247

324 9 108 9 105 28 304

325 9 108 8 113 25 193

326 10 108 10 118 29 243

327 10 127 13 117 12 124

328 10 108 8 105 19 173

329 13 140 9 103 17 128

330 7 102 11 106 35 386

331 18 120 11 116 16 236
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

Q uadrat Het:
Sand

C om p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
G arigue

Comp:
Garigue

332 12 116 9 106 25 240
333 9 138 9 105 22 241
334 12 110 12 126 21 431
335 12 119 11 115 19 246
336 18 160 20 425 17 206
337 13 120 10 115 24 352
338 15 117 11 160 23 320
339 14 126 15 188 21 321
340 19 164 8 107 26 158
341 7 111 25 620 18 207
342 6 103 21 609 35 478
343 6 103 14 278 28 310
344 6 103 24 146 25 281
345 7 107 19 281 21 427
346 6 107 25 267 26 433
347 5 102 14 130 20 195
348 5 97 20 187 23 207
349 13 126 21 257 19 205
350 6 103 24 265 21 321
351 6 102 29 244 13 106
352 8 112 18 120 7 103
353 7 104 11 110 25 409
354 8 108 10 111 19 151
355 6 98 11 112 29 369
356 9 109 18 152 32 167
357 5 101 15 174 18 249
358 6 102 25 171 20 148
359 5 101 15 121 37 398
360 7 99 13 113 27 289
361 10 127 14 222 37 349
362 4 102 31 286 21 251
363 9 115 36 260 14 182
364 7 146 27 249 46 306
365 6 112 28 187 13 127
366 10 124 26 176 21 184
367 6 104 19 215 32 561
368 10 109 24 160 18 264
369 7 112 13 151 28 256
370 8 131 12 140 22 502
371 10 127 18 166 35 346
372 11 124 19 151 28 234

373 10 111 19 155 27 326

374 12 125 19 146 21 315

375 10 118 15 120 10 202

376 13 120 26 228 14 128

377 9 108 23 266 17 154

378 9 118 19 202 25 320

379 6 102 15 191 20 256

380 6 102 16 177 18 315

381 14 162 16 237 25 418

382 16 145 21 270 24 437

383 19 173 17 170 28 415

384 9 120 21 154 14 113

385 17 126 20 186 25 355

386 12 122 9 102 25 159

387 17 137 14 136 18 136
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Appendix 13: Heterogeneity and complexity for all quadrats from all sites.

Q uadrat
Het:
Sand

Com p:
Sand

Het:
Steppe

Comp:
Steppe

Het:
G arigue

Comp:
Garigue

388 14 119 12 126 28 431
389 8 109 15 113 20 126
390 7 107 14 117 23 162
391 9 110 15 123 30 426
392 10 132 15 162 20 175
393 8 108 14 125 13 104
394 5 106 12 105 14 119
395 7 105 14 135 15 114
396 9 113 17 194 47 659
397 9 123 15 142 37 621
398 9 110 14 133 24 176
399 6 121 11 106 24 336
400 7 109 11 106 25 437
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Appendix 14: Heterogeneity and complexity for all plots and sites.

A ppendix 14. T otal heterogeneity  (H et) and com plexity (Com p) for plots and sites. See Table 6.1 for site 
details.

Site
Het: 

plot a
Het: 

plot b
H et: 

plot c
Het: 

plot d
Het:
site

Comp: 
plot a

Comp: 
plot b

Comp: 
plot c

Comp: 
plot d

Comp:
site

s i 47 14 13 25 53 781 521 546 815 2663
S2 11 12 13 17 22 518 528 577 529 2152
S3 9 15 8 14 17 552 652 532 317 2053
S4 8 12 7 9 15 506 589 564 965 2624
S5 10 9 6 6 12 522 520 513 511 2066
S6 12 11 11 9 13 670 588 477 646 2381
S7 13 11 11 16 21 526 512 533 626 2197
S8 15 11 9 10 19 584 519 533 555 2191
S9 13 18 21 17 23 531 671 742 914 2380

S10 12 16 8 8 16 548 547 510 508 2113
S l l 6 4 7 8 10 577 508 507 512 2104
S12 19 19 24 42 43 572 590 715 910 2787
S13 9 10 11 10 11 516 516 523 518 2073
S14 28 28 29 32 37 816 669 648 668 2801
S15 14 18 15 11 23 587 579 550 528 2244
S16 18 16 15 10 19 710 400 542 524 2176
S17 11 12 20 22 23 635 584 613 688 2520
S18 8 13 9 10 14 527 535 524 512 2098
S19 12 12 13 13 13 602 580 605 550 2337
S20 20 18 10 10 21 726 594 561 576 2457
S21 67 32 45 20 72 2034 670 1003 592 4299
S22 23 15 17 14 29 804 776 528 518 2626

S23 14 15 12 29 34 512 517 504 616 2149
S24 20 20 21 25 31 547 585 556 600 2288

S25 19 13 20 16 21 978 531 675 827 3011

S26 13 15 13 22 25 527 491 521 545 2084

S27 18 16 18 15 21 902 613 603 574 2692

S28 26 21 27 20 25 1542 1183 1237 682 4644

S29 22 40 39 26 44 953 1030 973 964 3920

S30 22 21 21 21 25 775 709 767 909 3160

S31 18 31 21 48 52 572 1141 772 1277 3762

S32 23 24 17 22 27 638 761 604 623 2626

S33 29 30 36 53 57 655 683 590 642 2570

S34 16 14 21 12 22 549 752 595 523 2419

S35 23 38 18 22 43 625 656 581 669 2531

S36 18 25 22 28 29 566 636 573 712 2487

S37 17 20 13 31 33 660 757 567 995 2979

S3 8 37 28 30 28 42 1860 1124 692 731 4407

S39 40 27 24 26 40 1185 842 735 1064 3826

S40 26 15 18 19 26 1022 505 660 651 2838

S41 34 41 50 37 53 2041 1070 1238 1154 5503

S42 52 37 27 33 53 2697 1226 1657 1189 6769

S43 39 27 47 29 43 1207 1633 1770 1877 6487

S44 53 60 47 56 67 2631 2006 1678 2088 8403

S45 31 34 35 38 41 1610 1542 1673 2310 7135

S46 38 38 33 34 47 2533 2778 1507 988 7806

S47 42 23 38 42 58 1345 1072 1697 1422 5536

S48 85 66 27 37 87 4001 1941 1815 1146 8903

S49 30 60 40 54 84 1710 2482 1175 1077 6444

S50 56 54 38 41 60 1815 1462 728 848 4853

S51 26 32 35 33 47 1098 1611 2213 1441 6363

S52 49 45 56 56 68 2125 1694 1993 1867 7679

S53 20 24 22 32 44 1018 1447 738 1362 4565
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Appendix 14: Heterogeneity and complexity for all plots and sites.

Appendix 14 (continued).

Site
Het: 

plot a
H et: 

plot b
Het: 

plot c
Het: 

plot d
Het:
site

Com p: 
plot a

Comp: 
plot b

Comp: 
plot c

Comp: 
plot d

Comp:
site

S54 25 23 24 31 33 976 747 727 1781 4221
S55 24 27 35 26 43 762 765 1040 632 3121
S56 38 38 28 31 45 1601 1264 1069 1522 5791
S57 39 38 26 28 49 1354 1050 1374 1361 5132
S58 37 34 37 42 49 1695 1382 1138 1301 5619
S59 50 52 45 42 62 1206 1717 1428 1173 5527
S60 35 33 34 49 52 1790 1044 938 2239 6006
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Alpha diversity (a) (also called local diversity). The diversity of sp 

defined units such as a plot, sample or site (Lincoln et al., 1998; Maj 

2004).

Beta diversity (fi) (also called differentiation diversity). The spatial turnc 

change in the identities o f species. A measure o f the difference in s 

composition either between two or more local assemblages or between loc 

regional assemblages (K oleff et a l., 2003; Magurran, 2004).

Complexity The absolute amount o f individual habitat structure comp< 

(i.e. types o f structure such as rocks, logs and vegetation) (McCoy and 

1991).

Dissection sampling (Introduced in this study). The systematic and tho 

search for molluscs on vegetation and under rocks and other ground 

features, as well as the recording o f the environmental variables, in quadrat 

Distribution The geographical range o f a taxon or group (Krebs, 1985; Li 

et al., 1998).

Diversity A measure o f the number o f species (species richness) and 

relative abundance in a defined unit o f study (Hurlbert, 1971; Lincoln < 

1998; Magurran, 2004).

Dry period From the end o f May to September (Blondel and Aronson, 1 

Font Tullot, 2000; Aviad et a l., 2004).



Glossary

Endemism Native to, and restricted to, a particular geographical region 

(Futuyma, 1986; Lincoln et al., 1998).

Environmental variable Any variable that is measured for its possible effects 

on the numbers, abundances and distributions of species at sites (Leps and 

Smilauer, 2003).

Extent The total length, area or volume that exists or is observed or analyzed 

(Scheiner et al., 2000; Dungan et al., 2002; Fleishman et al., 2003).

Focus the scale at which the grains are aggregated. Equal to or larger than the 

grain size (Scheiner et al. 2000).

Gamma (y) diversity (also called regional diversity). The diversity across a 

range of habitats within a geographical area or in widely separated areas, 

landscape or region (Rosenzweig, 1995; Magurran, 2004).

Grain The size o f the elementary sampling unit (Legendre and Legendre, 1998; 

Fleishman et al., 2003) and the standardized unit to which all data are adjusted 

via interpolation or extrapolation techniques, if necessary, before analysis 

(Scheiner et al., 2000).

Habitat The locality, site and particular type of local environment occupied by 

an organism (Safriel and Ben-Eliahu, 1991; Lincoln et al., 1998). In this study 

these were classified into habitat types (sand, steppe and garigue).

Habitat diversity Variations in habitat characteristics within and among 

habitats based on the number and amount (per unit area or per unit volume) of 

different structural components (i.e. types of structure such as rocks, logs and 

vegetation) (McCoy and Bell, 1991; Hart and Horwitz, 1991).

Habitat structure The physical structures in space which support plant and 

animal communities (McCoy and Bell, 1991).
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Glossary

Heterogeneity The number (or quantity) of habitat structure components (i.e. 

types of structure such as rocks, logs and vegetation) (McCoy and Bell, 1991). 

Niche The organism’s or species’ place in the community, incorporating 

tolerances to physical factors, and interactions with other organisms. The 

fundamental niche is the entire multidimensional space that represents the total 

range of conditions within which an organism or species can function and which 

it could occupy in the absence of competitors or other interacting species; the 

realized niche is that part of the fundamental niche actually occupied by an 

organism or species (Hutchinson, 1965; Giller, 1984; Athur, 1987; Lincoln et 

al., 1998).

Phylogeography The spatial analysis of gene lineages within and among 

closely related species (Lydeard and Lindberg, 2003).

Principal structure (Introduced in this study). Habitat components, or 

structures, such as rock, litter, and logs, that may be important in affecting 

number o f species and abundances.

Quadrat A delimited area for sampling flora, fauna or environmental variables. 

In this study the area is lm 2. Also used to describe the sampling frame itself 

(Oekland, 1929; Brower et al., 1989; L incoln^ al., 1998).

Site Place or position where sampling is carried out, used interchangeably with 

location (Sutherland, 1996; Lincoln et al., 1998).

Vicariance The existence of closely related taxa or biota in different 

geographical areas, which have been separated by natural barriers (Futuyma, 

1986; Lincoln et al., 1998).

Wet period From October to the end of May (Blondel and Aronson, 1999; Font 

Tullot, 2000; Aviad et al., 2004).


