Desymmetrisation Reactions of Cyclohexa-1,4-dienes

James S. Paine

A Thesis Submitted for the Degree of

Doctor of Philosophy

at

Cardiff University

March 2009

UMI Number: U585218

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U585218 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

Declaration

This work has not previously been accepted in substance for any degree and is not being concurrently submitted for candidature for any degree.

Date 6/3/09

STATEMENT 1.

This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed	J. Paire	(James Stephen Paine)
Date	6/3/09	

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed	Paine	. (James Stephen Paine)
Date	3/09	

Abstract

This thesis describes the development of diastereotopic group selective processes allowing the desymmetrisation of 1,4-cyclohexadiene derivatives and their application to target synthesis.

Chapter 1 discusses some of the benefits that may be derived by the use of desymmetrisation, and demonstrates some of the ways in which it has recently been applied in compounds based on 1,4-cyclohexadiene.

Chapter 2 describes a novel use of the Prins reaction to desymmetrise cyclohexadiene derivatives with high diastereoselectivity, and the optimisation of this resulting in an effective, practical and straightforward procedure.

Chapter 3 details the investigation into desymmetrisation through diastereoselective iodocyclisation reactions, much higher stereoselectivity is observed than found previously in cyclohexadiene based substrates and an explanation is suggested by examination of structural differences.

Chapter 4 reviews some of the previous synthetic approaches to members of the fawcettimine group of Lycopodium alkaloids. This is followed by the results of our first approach to the core tetracyclic ring system of lycoposerramine A, based on the discovery of a novel base induced diastereotoselective cyclisation reaction.

Chapter 5 describes our revised approach, leading to the construction of a closely related tetracycle, although not permitting the construction of the target.

Chapter 6 discusses the synthesis of the core tricyclic system of lycoposerramine S by a different strategy. NMR spectra obtained from the final product are found to closely match those obtained from the natural product.

Acknowledgements

I would like to thank my parents, firstly, for their consistent love and support, which is very much appreciated. And thank you to all the family, especially Jennifer for all of the delicious cake, and for continuing to give me pocket money!

Thank you Mark for providing an excellent project and much helpful advice and discussion, and being a great boss. It's been a pleasure working for you!

Thanks to all the past and present members of the group, lab, and others for the good company and for providing many stimulating conversations and sometimes hilarious, though occasionally terrifying antics, probably best not mentioned!

Thanks to Professor Knight for lots of, mostly relevant, although always interesting, discussion! And for organising the group meetings.

Thank you to all the staff, in particular Rob and Robin for their help with MS and NMR, Gaz, Jamie and Dave for bringing lots of solvents and mirth, and Mal for keeping the Dewar full, even when the vacuum was broken!

Thanks also to Stephen Baldwin and Mike Butters at Astra Zeneca for generously obtaining many of the MS data used.

Dedication

I dedicate this work to my parents.

Title Page	i
Declaration	ii
Abstract	iii
Acknowledgements	v
Dedication	vi
Table of Contents	vii
Detailed Table of Contents	viii
Abbreviations	xi
Chapter 1 - Introduction	1
Chapter 2 - Prins Cyclisation Reactions of Cyclohexa-1,4-dienes	14
Chapter 3 - Iodocyclisation Reactions of Cyclohexa-1,4-dienes	33
Chapter 4 - Synthesis of Lycoposerramine Alkaloids	51
Chapter 5 - Revised Approach to the Synthesis of Lycoposerramine A	66
Chapter 6 - Studies Towards the Synthesis of Lycoposerramine S	75
Chapter 7 - Experimental Details	83
Appendix A - Compound Lists	176
Appendix B - References	182

Detailed Table of Contents

Title Page	i
Declaration	ii
Abstract	iii
Acknowledgements	v
Dedication	vi
Table of Contents	vii
Detailed Table of Contents	viii
Abbreviations	xi
Chapter 1 - Introduction	1
1.1 Symmetry in Synthetic Chemistry	2
1.2 Desymmetrisation of Achiral Cyclohexadienes	4
1.2.1 Non-Group Selective Desymmetrisation	4
1.2.2 Enantioselective Desymmetrisation of Cyclohexadienes	8
1.3 Diastereoselective Desymmetrisation of Cyclohexadienes	11
1.4 Objectives	13
Chapter 2 - Prins Cyclisation Reactions of 1,4-Cyclohexadienes	14
2.1 Introduction	15
2.2 Results and Discussion	17
2.2.1 TiCl₄ Mediated Prins Reactions	18
2.2.2 Triflic Acid Mediated Prins Reactions	26
2.3 Conclusion	30
Chapter 3 - Iodocyclisation Reactions of 1,4-Cyclohexadienes	33
3.1 Introduction	34
3.2 Results and Discussion	38

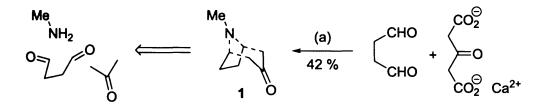
3.2.1 5-exo / 6-endo Cyclisation Reactions	39
3.2.2 5-endo Cyclisation Reactions	47
3.2.3 6-endo / 7-exo Cyclisation Reactions	49
3.3 Conclusion	50
Chapter 4 - Synthesis of Lycoposerramine Alkaloids	51
4.1 Introduction	52
4.2 Synthesis of Fawcettimine Class Compounds	52
4.2.1 Fawcettimine	53
4.2.2 Magellanine	59
4.2.3 Lycoposerramine A	60
4.3 Initial Approach to Key Fragment 172	61
4.4 Conclusion	65
Chapter 5 - Revised Approach to the Synthesis of Lycoposerramine A	66
5.1 Radical Cyclisation Approach	67
5.2 Functionalisation of the Cyclohexene Ring	67
5.3 Attempted Construction of the Oxadiazolidinone Ring	70
5.4 Conclusion	74
Chapter 6 - Studies Towards the Synthesis of Lycoposerramine S	75
6.1 Introduction	76
6.2 Results and Discussion	76
6.3 The Azonane Ring	80
6.4 Conclusion	82
Chapter 7 - Experimental Details	83
7.1 General Experimental Points	84
7.2 Experimental Data for Chapter 2	85

7.2.1 Prins Reactions with TiCl ₄	99
7.2.2 Prins Reactions with Triflic Acid	110
7.3 Experimental Data for Chapter 3	119
7.4 Experimental Data for Chapter 4	142
7.5 Experimental Data for Chapter 5	148
7.6 Experimental Data for Chapter 6	160
Appendix A - Compound Lists	176
Appendix A-1. Compound List for Chapter 2	177
Appendix A-2. Compound List for Chapter 3	178
Appendix A-3. Compound List for Chapter 4	179
Appendix A-4. Compound List for Chapter 5	180
Appendix A-5. Compound List for Chapter 6	181
Appendix B - References	182

Abbreviations

Ac	Acetyl
AIBN	2,2`-Azobisisobutyronitrile
ΑΡΟΙ	Atmospheric Pressure Chemical Ionisation
Bn	Benzyl
Вос	t-Butyloxycarbonyl
<i>n-</i> Bu	<i>n</i> -Butyl
<i>i</i> -Bu	<i>i</i> -Butyl
t-Bu	<i>t</i> -Butyl
CI	Chemical ionisation
<i>m</i> -CPBA	<i>m</i> -Chloroperoxybenzoic acid
DBU	Diaza-1,3-bicyclo[5.4.0]undecane
d.e.	Diastereomeric excess
DIPEA	N,N-Diisopropylethylamine
DMAP	4-Dimethylaminopyridine
DME	1,2-Dimethyoxyethane
DMF	N,N-Dimethylformamide
DMSO	Dimethylsulfoxide
DPA	N, N-Diisopropylamine
e.e.	Enantiomeric excess

EI	Electron impact
Equiv.	Equivalents
ES+	Positive Ionisation Electrospray
Fmoc	9-Fluorenylmethyloxycarbonyl
НМРА	Hexamethylphosphoramide
IR	Infra-red
LDA	Lithium diisopropylamide
Me	Methyl
мом	Methoxymethyl
NBS	N-Bromosuccinimide
NMNO	4-Methylmorpholine-N-oxide
NMR	Nuclear Magnetic Resonance
nOe	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Enhancement Spectroscopy
Ns	4-Nitrobenzenesulfonyl
Nu	Nucleophile
Ph	Phenyl
РМР	<i>p</i> -Methoxyphenyl
PPTS	Pyridinium <i>p</i> -toluenesulfonate
<i>i</i> -Pr	Isopropyl

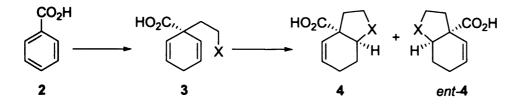

TBAF	Tetrabutylammonium fluoride
TBDMS	<i>tert</i> -Butyldimethylsilyl
TBDPS	<i>tert</i> -Butyldiphenylsilyl
TES	Triethylsilyl
Tf	Trifluoromethanesulfonyl
THF	Tetrahydrofuran
tic	Thin layer chromatography
Ts	4-Toluenesulfonyl

Chapter 1

Introduction

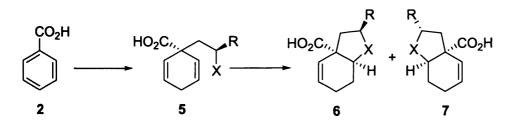
1.1 Symmetry in Synthetic Chemistry

The potential for many organic compounds to be assembled simply and efficiently by consideration of their symmetry was recognised, and applied to remarkable effect, by Robinson over 90 years ago. Disconnecting tropinone **1** at the bonds indicated, and appropriately functionalising both termini of the four carbon fragment, he suggested its synthesis by simply combining the three symmetrical synthons shown in Scheme **1**.¹


Scheme 1. Reagents and Conditions: (a) i) MeNH₂, H₂O, 72 h; ii) H⁺.

This was, indeed, found to be the case, and by use of a more readily enolised acetone surrogate the cascade of reactions was found to be so effective under such mild conditions that he proposed that it may also be the mechanism of its biosynthesis.²

This example illustrates some of the benefits that may be derived by maintaining an element of symmetry through a sequence; firstly, the starting materials are relatively simple, and also, therefore, generally cheap and easy to obtain. Also, there are fewer selectivity issues, due to the equivalence of the two pairs of functional groups. This allows the simultaneous homologation of both in a single step, and can be an extremely effective means of constructing long, acyclic, chains.³

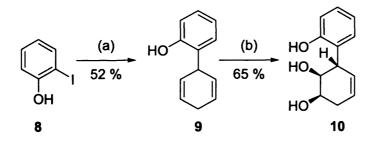

Although there are a great number of symmetrical target molecules there are, by necessity, many more that are asymmetrical.⁴ These generally have at least some symmetry, however, and their synthesis can be facilitated by the same benefits described above if selected symmetry elements can be broken at a later stage. The various methods through which this can be achieved have received extensive reviews.³⁻⁷ This process of desymmetrisation alone can offer certain advantages, illustrated by the example in Scheme **2**. The Birch reduction / alkylation sequence readily affords 1,1-disubstituted 2,5-cyclohexadienes such as **3**, containing a

prochiral quaternary centre. Transformation of one of the enantiotopic double bonds, often in a cyclisation reaction, results in a loss of symmetry, thus determining the configuration of the quaternary centre in a process separate from its bond formation. This may, in many cases, provide higher selectivity than the more conventional direct approach, and can be even more effective when applied to a substrate containing several prochiral centres.

Scheme 2. Desymmetrisation of a 1,1-disubstituted-2,5-cyclohexadiene.

Such an enantioselective transformation, of course requires the use of a chiral catalyst or reagent. It is also relatively difficult to determine the success, or otherwise, of the reaction. By incorporating a stereogenic centre prior to desymmetrisation, as in compound **5**, Scheme **3**, for instance, the substrate is able to control which of the, now diastereotopic, groups is involved in the reaction. Since the products of the reaction are diastereoisomers, they are easily differentiated, and often separable simply by flash column chromatography. The success of the transformation is, therefore, straightforward to determine with a racemic substrate, while still allowing for asymmetric synthesis by use of a chiral alkylating reagent following the Birch reduction.

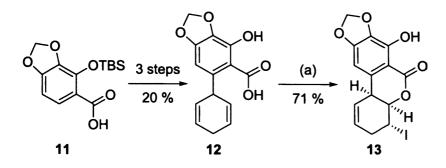
Scheme 3. Desymmetrisation by diastereotopic group selectivity.

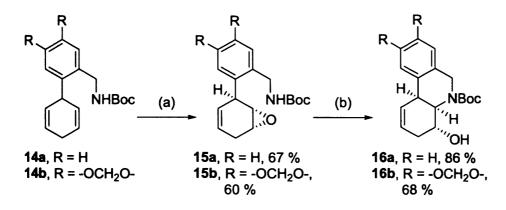

1.2 Desymmetrisation of Achiral Cyclohexadienes

While enantiotopic group selectivity requires the use of a chiral reagent or catalyst, desymmetrisation can still be achieved by the same processes used on chiral substrates, although resulting in racemic products.

1.2.1 Non-Group Selective Desymmetrisation

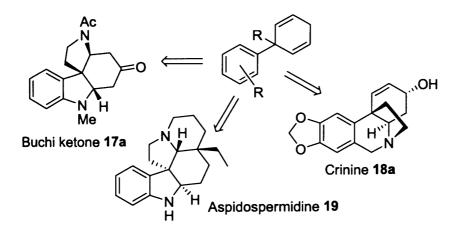
A novel alternative to the more common entry into these substrates, the Birch reduction, was reported recently by Crich to allow the preparation of 1-aryl-2,5-cyclohexadienes. The addition of aryl radicals to benzene was shown to occur when benzeneselenol or diphenyl diselenide was added as a catalyst. Over a series of publications, a wide range of aryl iodides were shown to undergo this addition, and the products were then desymmetrised by a variety of reactions.⁸


Dihydroxylation of **9**, for example, with strictly 1 equiv. of NMNO in aqueous acetone, gave diol **10**. This could be further oxidised, allowing access to various cyclitols.⁹ The preference observed for dihydroxylation *anti* to the substituent was also found by Landais in similar cases.¹⁰

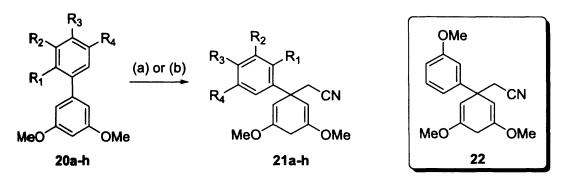

Scheme 4. Reagents and Conditions: (a) Bu₃SnH, AIBN, (PhSe)₂, PhH, reflux;
(b) OsO₄, NMNO (1 equiv.), acetone, water, 2:1.

The preparation of benzoic acid derivative **12** in this manner allowed the preparation of Danishefsky's pancratistatin precursor **13**, shown in Scheme **5**. This route required **3** fewer steps than the original procedure and provided a slight increase in overall yield.¹¹

An interesting epoxycyclisation was also reported, effected by treatment of epoxides **15a** and **15b**, shown in Scheme **6**, with BF₃.OEt₂.

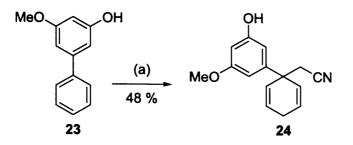


Scheme 5. Reagents and Conditions: (a) I2, NaHCO3, THF.

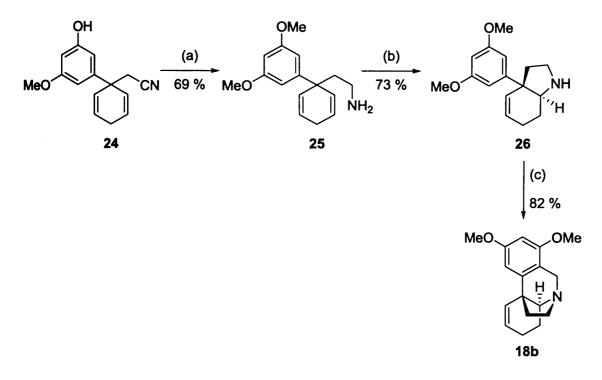

Scheme 6. Reagents and Conditions: (a) *m*CPBA, CH₂Cl₂, 0 °C; (b) BF₃.Et₂O, 0 °C.

A major disadvantage of this approach is that it cannot easily be applied to the preparation of 1,1-disubstituted cyclohexadienes. Landais realised that many targets, those shown in Scheme 7 for example, may be accessible by the desymmetrisation of such substrates, and initiated a study into their synthesis by the Birch reduction / alkylation of biaryl compounds.¹²

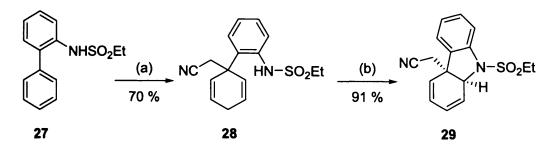
Scheme 7. Targets potentially accessible through Birch reduction of biaryls.


The rate of reduction of each ring was found to be influenced by the substituents in the same order found in simple mono-aryl systems, where ArOMe > ArH > ArOH. In many cases, this allowed the highly regioselective reduction of a series of substrates **20a-h**, shown in Table **1**, affording the corresponding 2-aryl-2-(3,5-dimethoxy-2,5-cyclohexadienyl)acetonitriles **21a-h** in high yield.

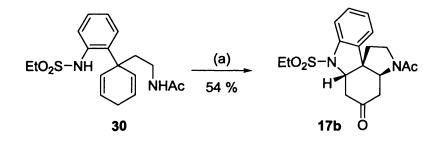
Entry	Substrate	<i>R</i> ₁	R ₂	R ₃	R₄	Conditions	Yield 21 (%)
1	20a	н	н	н	н	(a)	88 %
2	20b	ОН	Н	Н	н	(b)	82 %
3	20c	н	ОН	н	н	(b)	75 %
4	20d	ОН	OMe	Н	н	(b)	82 %
5	20e	н	OMe	ОН	н	(b)	86 %
6	20f	н	OMe	OMe	н	(a)	0 %ª
7	20g	н	OMe	н	OMe	(a)	91 %
8	20h	NHBoc	н	н	н	(b)	50 %


Table 1. *Reagents and Conditions:* (a) i) Li, NH₃, THF, -78 °C; ii) ClCH₂CN; (b) i) n-BuLi; ii) Li, NH₃, THF, -78 °C; iii) ClCH₂CN. ^a A mixture of **22** and **20f** (approx. 1:1) was obtained in 78 % yield.

The unsubstituted aryl group of compound **23**, shown in Scheme **8**, was found to be **reduced** preferentially, allowing the preparation of simple 1,1-disubstituted **cyclohexa-2,5-dienes** by this method.


Scheme 8. Reagents and Conditions: (a) i) *n*-BuLi; ii) Li, NH₃, THF; iii) ClCH₂CN, -33 °C.

The product 24 was used in an very concise synthesis of crinine analog 18b, shown in Scheme 9. Alkylation of phenol 24, followed by reduction of the nitrile, gave compound 25. This was desymmetrised in an LDA catalysed hydroamination reaction, allowing formation of the remaining ring by a Pictet-Spengler reaction.

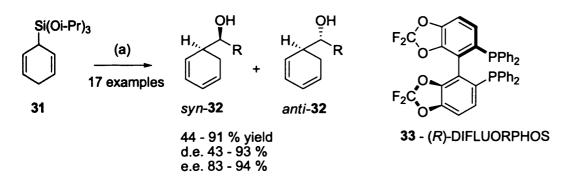

Scheme 9. *Reagents and Conditions:* (a) i) Me₂SO₄, K₂CO₃, acetone, reflux, 20 h; ii) LiAlH₄, AlCl₃, Et₂O, room temp., 4 h.; (b) LDA (0.4 equiv.), THF, 20 °C, 4 h; (c) CH₂=NH₂I⁺I⁻, THF, 40 °C, 60 h.

Prior deprotonation of the sulfonamide group by treatment with *n*-BuLi also allowed the selective reduction of the unsubstituted aryl group of compound **27**. The alkylated product **28** was then desymmetrised in an oxidative amination reaction, catalysed by Pd(II), as shown in Scheme **10**. The optimum conditions were found to use NaOAc as the base and activated carbon as a support to facilitate the reoxidation of precipitated Pd(0).¹³

Scheme 10. Reagents and Conditions: (a) i) *n*-BuLi ii) Li, NH₃, THF, -78 °C; ii) CICH₂CN; (b) Pd(OAc)₂ (10 mol %), Carbon, NaOAc (2 equiv.), O₂, DMSO, 55 °C, 24 h.

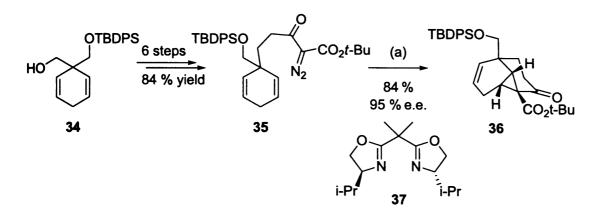
Reduction of the nitrile group of **28**, followed by protection of the resulting amine, allowed the synthesis of the protected Büchi ketone **17b** in a cascade-type sequence, as shown in Scheme **11**. This was proposed to occur by oxidation of **30** at the allylic position, followed by conjugate addition of both the amide and sulfonamide.

Scheme 11. *Reagents and Conditions:* (a) i) Pd(0), t-BuOOH, CH₂Cl₂; ii) DBU, CH₂Cl₂, reflux.

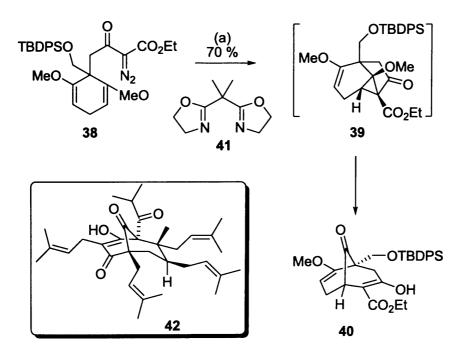

1.2.2 Enantioselective Desymmetrisation of Cyclohexadienes

There are also several examples of the enantiotopic group selective desymmetrisation of cyclohexadienes. Landais has conducted extensive investigation into the dihydroxylation and aminohydroxylation of silylated cyclohexadienes, for example,¹⁰ and also recently reviewed the area.⁷

Studer recently reported the development of a catalytic system capable of mediating the selective addition of a cyclohexadienyl species, generated *in situ* from treatment of silane **31** with TBAF, to a range of aldehydes.¹⁴ Out of the range of metal sources

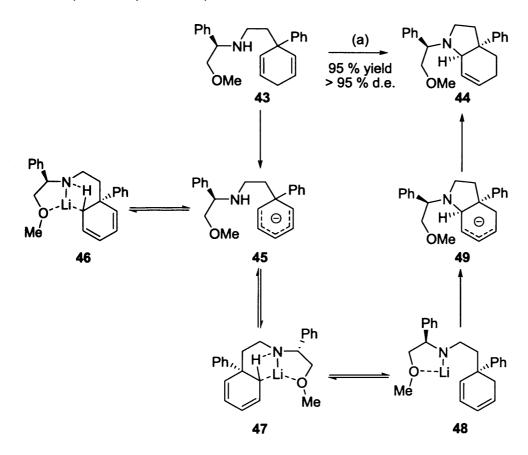

and ligands screened, a combination of copper(I) or (II) triflate and the DIFLUORPHOS ligand **33** provided the highest diastereo- and enantioselectivity, although in less than 40 % yield.

The conditions shown in Scheme **12** were found to be optimal, the addition of 3 equivalents of CF₃CH₂OH resulted in a substantial increase in yield without any loss of selectivity. Application of these conditions to a range of aromatic and heteroaromatic aldehydes provided compounds **32** in good yield and with comparable enantioselectivity to that previously reported to be obtained from the use of a stoichiometric amount of a chiral titanium complex.¹⁵ Diastereoselectivity, favouring the formation of *syn*-**32**, was also good, although lower, in many cases, than that found in the corresponding reactions with the titanium complex.

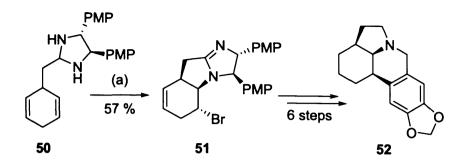

Scheme 12. *Reagents and Conditions:* 31 (3 equiv.), Cu(OTf)₂ (10 mol %), 33 (10 mol %), CF₃CH₂OH (3 equiv.), TBAF (1 equiv.), ArCHO (1 equiv.), THF, - 25 °C, 20 h.

Nakada recently reported a catalytic asymmetric intramolecular cyclopropanation of a cyclohexadiene derived α -diazo- β -ketosulfone,¹⁶ later also applying the procedure to the analagous β -ketoesters. Diazo compound **35**, prepared by a rather lengthy, although straightforward and efficient sequence, was cyclised in excellent yield and enantioselectivity with a catalyst based on chiral bisoxazoline **37**, as shown in Scheme **13**.¹⁷

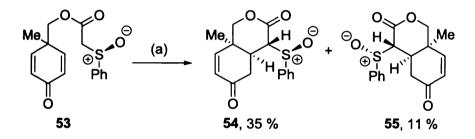
Scheme 13. Reagents and Conditions: (a) $Cu(OTf)_2$ (10 mol %), 37 (15 mol %), toluene, room temp., 4 h.


The potential application of this approach to the natural product hyperforin **42**, shown in Scheme **14**, was then demonstrated, although with an achiral bisoxazoline ligand. Diazo compound **38**, derived *via* the Birch reduction of 2,6-dimethoxybenzoic acid, was cyclised to intermediate **39**.¹⁸ Treatment with ZnCl₂ then allowed fragmentation to the bicyclo[3.3.1]nonane ring system found in **42**.

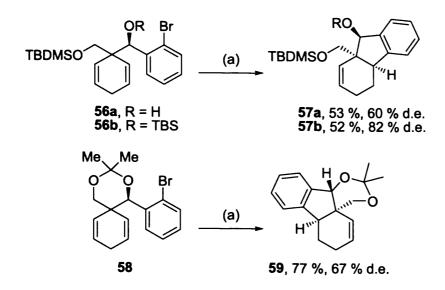
Scheme 14. *Reagents and Conditions:* (a) i) Cu(OTf)₂.C₆H₆ (5 mol %), **41** (15 mol %), toluene, 80 °C, 1.5 h; ii) ZnCl₂ (1.5 equiv.), room temp., 3.5 h.


1.3 Diastereoselective Desymmetrisation of Cyclohexadienes

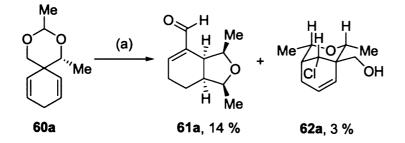
A novel diastereoselective desymmetrisation was reported recently by Landais.¹⁹ Attempted base catalysed hydroamination of amine **43**, shown in Scheme **15**, generated a cyclised product in high yield and diastereoselectivity. On closer inspection of the data, however, the product was determined to be the allylic amine **44**, which is unlikely to result from the expected process. The mechanism proposed to explain this finding involves an initial diastereoselective protonation of cyclohexadienyl anion **45**, favouring the formation of intermediate **48**. Addition of the amide anion to this diene, followed by protonation of the allylic anion **49** at the less hindered position, yields the product **44**.


Scheme 15. Reagents and Conditions: (a) BuLi (20 mol %), THF, 20 °C, 4 h.

Fujioka and Kita reported the diastereoselective desymmetrisation of aminal **50** in a bromocyclisation reaction. Further oxidation of the initial product resulted in the isolation of dihydroimidazole **51** in good yield, as shown in Scheme **16**.²⁰ This allowed an efficient synthesis of (-)- γ -lycorane **52**.


Scheme 16. Reagents and Conditions: (a) NBS (2.1 equiv.), CH_2Cl_2 . PMP = 4-MeO-C₆H₄.

Recent examples from our group include the conjugate addition reaction shown in Scheme 17, the chiral sulfoxide exerting moderate diastereocontrol over the cyclisation of compound 53.²¹


Scheme 17. Reagents and Conditions: (a) t-BuOK, THF, room temp.

The radical cyclisation reactions shown in Scheme **18** were more successful. The chiral secondary alcohol of compound **56a** directing addition of the generated aryl radical with good diastereocontrol. This was further improved by the addition of the bulky silyl ether of **56b**, while protection as an acetonide in **58** resulted in formation of the other diastereoisomer, also with fairly good stereocontrol.²²

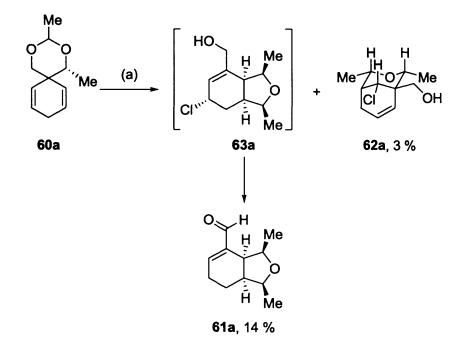
Scheme 18. Reagents and Conditions: (a) Bu₃SnH, AIBN, PhH, reflux.

Also, the first reported group selective Prins reaction, as shown in Scheme **19**, finally **demonstrated** excellent diastereoselectivity, with no minor diastereoisomers of **either aldehyde 61a** or tetrahydropyran **62a** apparent by NMR analysis.²³ The yields **were poor**, however, and the optimisation of this reaction is discussed in the following chapter.

Scheme 19. Reagents and Conditions: (a) TiCl₄, CH₂Cl₂, -78 °C, 2 h.

1.4 Objectives

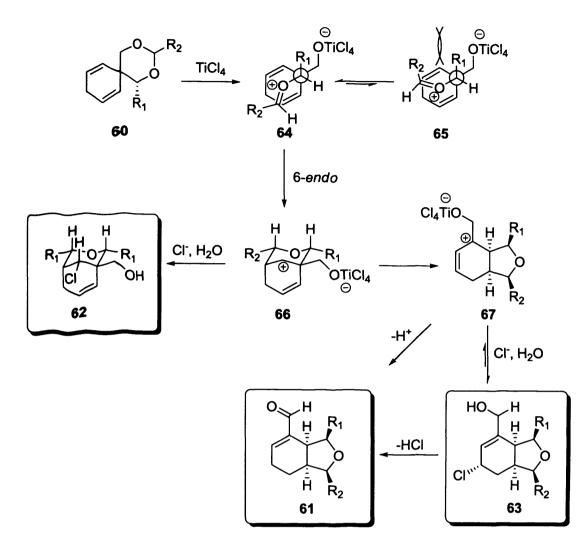
The aim of the project was to investigate possible alternative and / or improved methods of desymmetrising cyclohexadiene based compounds, and also to demonstrate the value of such methods by their application to synthesis of appropriate targets.


Chapter 2

Prins Cyclisation Reactions of 1,4-

Cyclohexadienes

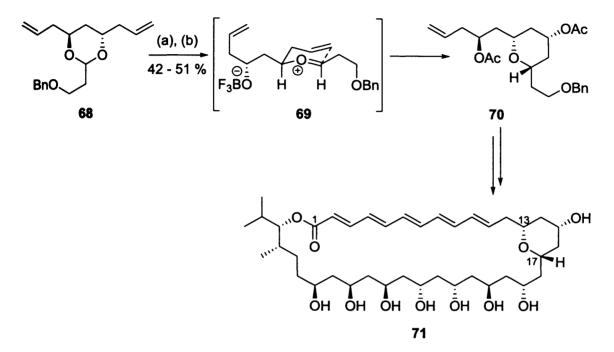
2.1 Introduction


The Prins reaction of cyclic acetal derivatives permits an extremely versatile entry into highly functionalised tetrahydropyrans,²⁴ and has been widely used in total synthesis.²⁵ Previous work within the Elliott group had established that the Prins reaction could be used to effect a novel and highly diastereoselective desymmetrisation of chiral cyclohexa-1,4-diene derived acetals.²⁶ For example, treatment of acetal **60a** with TiCl₄ resulted in the formation of three compounds, **61a**, **62a** and **63a**, shown in Scheme **20**.

Scheme 20. Reagents and Conditions: (a) TiCl₄, CH₂Cl₂, -78 °C, 2 h.

The ¹H NMR spectrum obtained from the crude reaction mixture showed it to consist predominantly of alcohol **63a.** This product was found to be relatively unstable, however, and only pyran **62a** and aldehyde **61a** were isolated by chromatography.

The mechanism shown in Scheme **21** was proposed by El Sayed to explain this result. The stereochemistry of the products is determined by the Prins cyclisation of the oxocarbenium ion generated from acetal **60**. Of the two chair conformers, **64** and **65**, from which a transition state is accessible, **64** is the least destabilised by $A^{1,3}$ strain generated between the R₁ and R₂ groups. Cyclisation therefore favours the formation of carbocation **66** with the stereochemistry indicated.

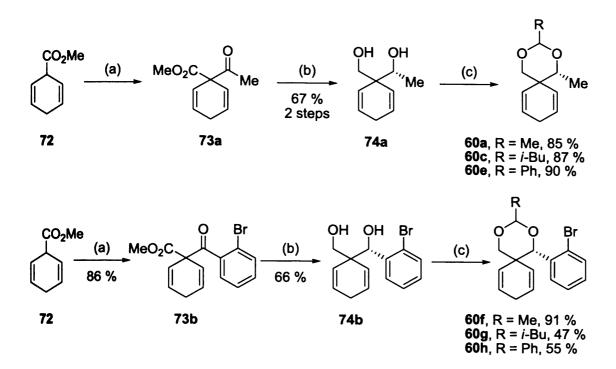


Scheme 21. Mechanism of the Prins cyclisation and subsequent reactions.

The final products suggest that two pathways of similar importance are available to this intermediate. Addition of a chloride ion affords the stable tetrahydropyran 62. This depends, however, on the availability of a chloride ion, if there are none in the vicinity a lesser degree of stabilisation can be attained by an intramolecular carbocation rearrangement, for which the Prins reaction is well known. A Wagner-Meerwein shift results in the formation of tetrahydrofuran 67, where the cation now occupies a position where it is both tertiary and allylic. This is far less unstable, and, although it will still readily trap a chloride ion, it will also release it again more easily, thereby allowing equilibration to the thermodynamically favoured enal 61.

Suprisingly, there was only one report that could be found in the literature at the time where the Prins reaction had been employed in a desymmetrisation. Rychnovsky, during his synthesis of 17-deoxyroflamycoin **71**, reported the

preparation of tetrahydropyran intermediate **70** by a diastereoselective Prins cyclisation of diene **68**, shown in Scheme **22**.²⁷ While this is a desymmetrisation, it is simply a result of monofunctionalisation, the possibility of group selectivity between the enantiotopic double bonds was not investigated.

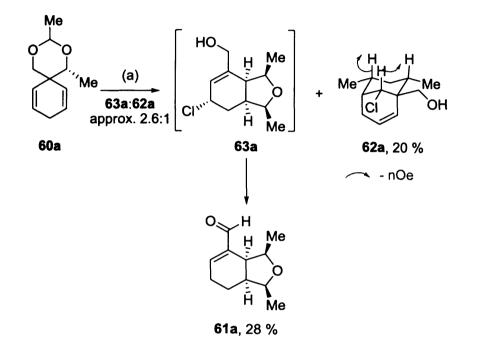


Scheme 22. Reagents and Conditions: (a) BF₃.OEt₂, HOAc, cyclohexane; (b) Ac₂O, Et₃N, DMAP.

The novel results found by El Sayed were thus felt to potentially be very useful, however, significant optimisation would be required. As this work was begun towards the end of her project there was insufficient time for this to be investigated. I took over the project with this aim, beginning by attempting to optimise the reaction conditions and purification procedure.

2.2 Results and Discussion

A range of substrates were prepared by the procedure reported by El Sayed,²⁶ as shown in Scheme **23**. These were obtained as single diastereoisomers, presumably the *syn* isomers which allow both substituents to occupy equatorial positions. As the acetal stereocentre is lost on oxocarbenium ion formation, this aspect was not investigated further. The 2-bromophenyl substituent of diol **74b** was maintained for consistency with the results and data obtained by El Sayed.²¹


Scheme 23. Reagents and Conditions: (a) i) LDA, THF, -78 °C; ii) CH₃COCl or 2-BrC₆H₄COCl, -78 °C to r.t.; (b) LiAlH₄, THF; (c) RCHO, PPTS, CH₂Cl₂ or RCHO, H₂SO₄, DMF.

2.2.1 TiCl₄ Mediated Prins Reactions

Before looking into the use of other catalysts the reactions were first repeated by the originally reported procedure. As the ¹H NMR spectra of the crude product mixtures previously obtained appeared to be relatively clean it was suspected that reasonable yields could be achieved simply by careful repetition of the reactions and chromatography. Frequent monitoring by tlc, for example, showed that much less time was sometimes required for complete consumption of the substrate.

The simplest of the substrates, acetal **60a**, was chosen for the first attempt. Analysis by tlc showed the complete consumption of the starting acetal after only one hour and the reaction was promptly quenched. Only two compounds were observed in the ¹H NMR spectrum of the crude product, allylic alcohol **63a**, and pyran **62a**, in an approximate ratio of 2.6:1, as shown in Scheme **24**. The formation of aldehyde **61a**, noted to be present in the crude material obtained by El Sayed, would appear avoidable by allowing the reaction to proceed only for the minimum time required.

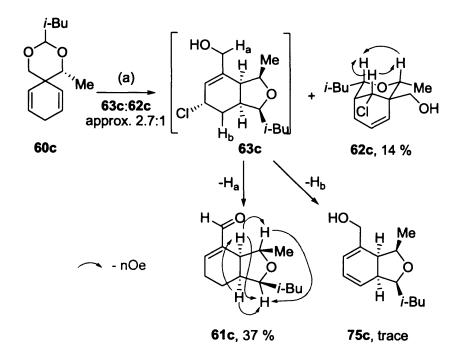
The crude product was chromatographed immediately and the time spent in contact with the silica gel stationary phase kept as brief as possible in an attempt to minimise the decomposition of aldehyde **63a**. The two fractions that were eleuted were, nonetheless, found to contain the same products isolated by El Sayed, although the yield was greatly improved, approaching 50 % in total.

Scheme 24. Reagents and Conditions: (a) TiCl₄ (2 equiv.), CH₂Cl₂, -78 °C, 1 h.

The stereochemistry of these products was unable to be assigned by El Sayed, only pyran 62a showing a useful nOe between one, or both, of the protons indicated, lending tentative support to the structure as shown.

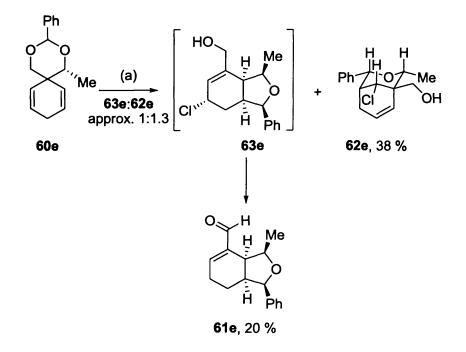
Although the combined isolated yield was reasonable, the isolated yields of individual compounds were still poor, limiting the utility of the reaction. The estimated yield of alcohol 63a that could be expected, were it stable enough to be isolated, was a much more acceptable 52 %. This value is unlikely to be particularly accurate, though the discrepancy between this and the yield of aldehyde 61a isolated is large enough to suggest that a significant improvement may be realised by prevention of this transformation.

The silica gel used for chromatography was thought to be the most likely culprit, and the reaction repeated and chromatographed on silica neutralised by washing with triethylamine in petroleum ether. This was unsuccessful, as were attempts with alumina, in both neutral and basic forms; the same two products being found in each case.

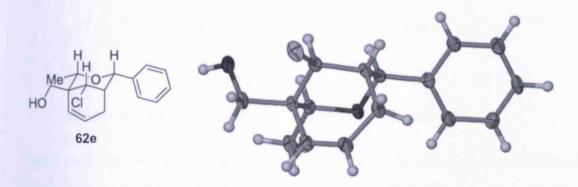

We next considered the possibility that derivatisation of alcohol **63a** may increase its stability. Treatment of the crude reaction mixture with AcCl, Et₃N and DMAP, however, resulted only in decomposition to aldehyde **61a**, as did attempted silyl ether formation with TBDMSCl and imidazole. Although derivatisation may be possible under acidic conditions, we did not invesitgate this matter any further.

Isobutyl acetal **60c** was then cyclised, as shown in Scheme **25**. This required a slightly longer reaction time, possibly due to the more crowded acetal ring. The ¹H NMR **spectrum** of the crude material showed it to consist of alcohol **63c** and pyran **62c**, in **approximately** the same ratio found in the previous example. In this case, however, **aldehyde 61c** was isolated in a yield more in line with that expected from this ratio.

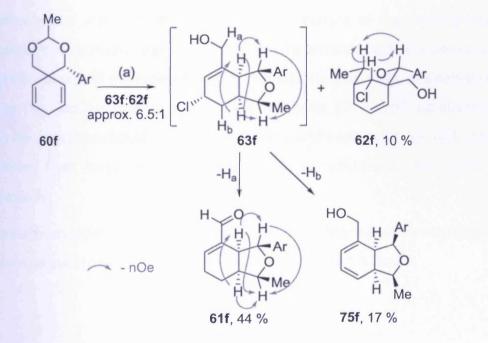
A small amount of a third compound, proposed as being diene **75c**, was also isolated. Although this could not be fully characterised, the ¹H NMR spectrum obtained from this material corresponded closely to the spectra given by related compounds of this structure. This is presumably formed by the elimination of H_b from alcohol **63c**.


The stereochemistry of aldehyde **61c** and pyran **62c** was assigned by El Sayed based on the results of nOe experiments. Aldehyde **61c** showed nOe's between all four protons of the tetrahydrofuran ring, these must, therefore, all lie on the same side of this ring. In compound **62c**, it was determined that the three protons shown were in close proximity, and therefore all axial on the tetrahydropyran ring.

20


Scheme 25. Reagents and Conditions: (a) TiCl₄ (2 equiv.), CH₂Cl₂, -78 °C, 2 h.

Cyclisation of acetal **60e** also required 2 hours for completion, yielding a crude material composed of alcohol **63e** and pyran **62e**, as shown in Scheme **26**. In this case, however, the pyran **62e** was found to be the major product, suggesting that rearrangement following the Prins cyclisation is less favourable. A similar preference was also observed on cyclisation of benzaldehyde derived acetal **60h**, shown in Scheme **30**, Page 24, although the reason for this is not clear.


Scheme 26. Reagents and Conditions: (a) TiCl₄ (2 equiv.), CH₂Cl₂, -78 °C, 2 h.

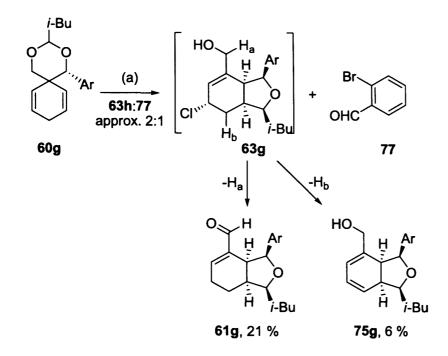
Although no diagnostic nOe's were observed by El Sayed in the spectra obtained from these products, the tetrahydropyran **62e** was crystalline and its structure determined by X-ray crystallography to be as shown in Fig. **1**, consistent with previous results and predictions.

Fig. 1. ORTEP plot of the crystal structure of compound **62e**. Thermal ellipsoids drawn at the 50 % probability level.²⁶

The first of the 2-bromophenyl substituted series, acetal **60f**, required even longer to reach completion. The ratio of the two products was determined from the ¹H NMR spectrum of the crude material to lie significantly in favour of the tetrahydrofuran **63f**, as shown in Scheme **27**.

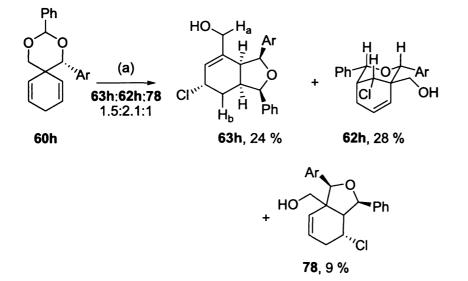
Scheme 27. Reagents and Conditions: (a) $TiCl_4$ (2 equiv.), CH_2Cl_2 , -78 °C, 4 h. Ar = 2-Br-C₆H₄.

This may be due to stabilisation of transition state **76f**, shown in Scheme **28**, by **delocalisation** of the positive charge around the aromatic ring, thereby increasing the **contribution** from the rearrangement pathway.


Scheme 28. Possible stabilisation of cation during rearrangement.

Three products were isolated by chromatography in 71 % total yield, and individual yields were in close agreement with the ratio observed in the crude material. The formation of diene **75f** was again observed, this time in a significant amount. A possible explanation is the increased steric hindrance of proton H_a caused by the bulky aryl substituent, increasing the proportion of elimination by loss of H_b.

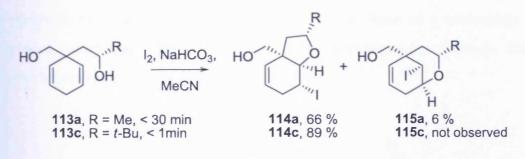
With the exception of diene **75f**, the stereochemistry of the products was determined by El Sayed based on the observation of the indicated nOe's.


Cyclisation of acetal **60g** appeared to be complete after 2 hours, although significant decomposition was evident in the ¹H NMR spectrum of the crude product. The presence of a relatively large amount of 2-bromobenzaldehyde was also apparent, as was the absence of the expected pyran. The total isolated yield, of aldehyde **61g** and diene **75g**, was less than 30 %, as shown in Scheme **29**. There is no obvious reason why this substrate should give such a low yield, while comparatively high yields were obtained from acetals **60c** and **60f** where these substituents were each present separately.

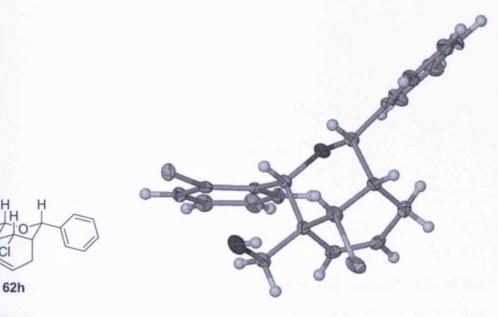
The stereochemistry of the products could not be determined by nOe experiments, but is expected to be as indicated by analogy with previous results.

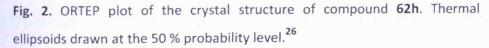
Scheme 29. Reagents and Conditions: (a) $TiCl_4$ (2 equiv.), CH_2Cl_2 , -78 °C, 2 h. Ar = 2-Br-C₆H₄.

Cyclisation of the final substrate, acetal **60h**, as shown in Scheme **30**, gave several unique results. Firstly, the reaction was complete within only 15 minutes, in contrast to the relatively slow cyclisation of the mono-aryl substituted acetals **60e** and **60f**.



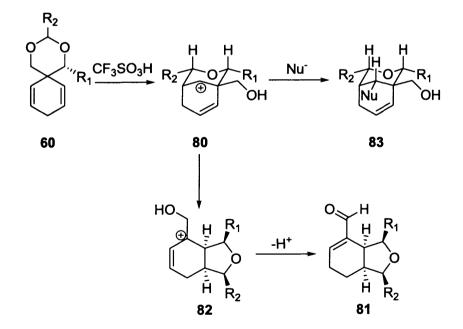
Scheme 30. Reagents and Conditions: (a) $TiCl_4$ (2 equiv.), CH_2Cl_2 , -78 °C, 15 min. Ar = 2-Br-C₆H₄.


Secondly, the allylic alcohol **63h** was, in this case, sufficiently stable for isolation by chromatography. The reason for this is not clear, although access to both positions required for elimination does appear to be somewhat hindered.


Finally, compound **78**, the product of Prins cyclisation *via* a 5-*endo* pathway, was also isolated. A similar trend where increasing substituent bulk leads to preferential formation of the smaller ring size was later observed in iodocyclisation reactions, as shown in Scheme **31**. Although the reason for this is not clear, it may be partly due to a gem-dimethyl type effect on bond angles.

The stereochemistry of allylic alcohol **63h** and the 5-endo cyclisation product **78** could not be determined by nOe experiments, the tetrahydropyran **62h**, however, was a crystalline solid and the X-ray crystal structure shown in Fig. **2** was obtained by El Sayed.

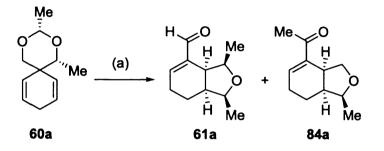
Scheme 31. Effect of steric bulk on regioisomer ratios.



In summary, the Prins reaction was applied as a means of desymmetrising cyclohexadienes with high diastereoselectivity. The stereochemistry of the products appears to correspond to cyclisation through the more stable of the two possible transition states. Total yields were improved significantly over those found initially, mostly by the minimisation of reaction times and prompt purification following work-up. Low selectivity between several possible reaction pathways remained a problem, however, and no single compound could be obtained in greater than 50 % yield.²⁸

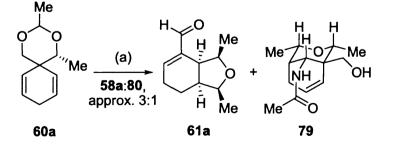
2.2.2 Triflic Acid Mediated Prins Reactions

A possible solution to the selectivity problem may be to employ an acid catalyst with a less nucleophilic counter-ion. The cationic Prins cyclisation product **80**, shown in Scheme **32**, would then be forced to undergo rearrangement, ultimately leading to the tetrahydrofuran derivative **81**. Alternatively, the addition of a nucleophile to serve as a cation trap may, by suppressing the rearrangement pathway, allow selective access to tetrahydropyran derivatives **83**.


Scheme 32. Possible Prins Reactions with Triflic Acid.

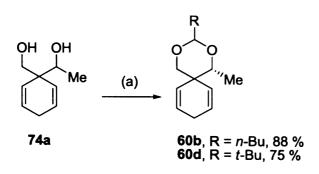
Triflic acid seemed ideally suited to this task, given the low nucleophilicity of the triflate anion. An ice-cold solution of acetal **60a** in CH_2Cl_2 was, therefore, treated with **1.5** equivalents of triflic acid, as shown in Scheme **33**. Examination of the ¹H

26

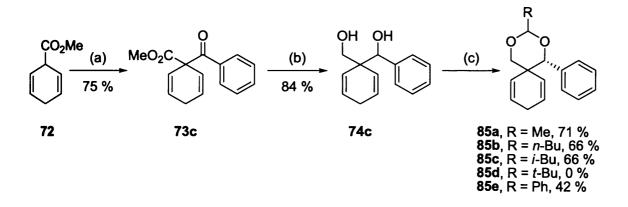

NMR spectrum of the crude product confirmed this hypothesis, showing aldehyde **61a** to be the dominant product and no evidence of the presence of pyran **62a**.

Aldehyde **61a** was obtained in good yield following chromatography, as well as a small amount of ketone **84a**, presumably due to the reduced regioselectivity of acetal opening. As this constituted less than 10 % of the total product, the selectivity was deemed more than adequate, and the yield of **61a** was more than double that obtained from the use of TiCl₄.

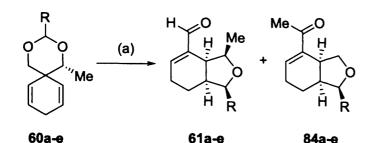
Scheme 33. Reagents and Conditions: (a) TfOH (1.6 equiv.), CH_2Cl_2 , 0 °C, 15 min.


The possibility of favouring tetrahydropyran formation was tested by performing the reaction in a solution of acetonitrile, as shown in Scheme **34**. This proved ineffective at suppressing rearrangement, as the major product evident in the ¹H NMR spectrum obtained from the crude material was still aldehyde **61a**. A minor product was apparent, however, in a ratio of 1:3 to aldehyde **61a**, that appeared to fit the structure of pyran **79**, although this was not isolated and characterised further due to the poor selectivity.

Scheme 34. Reagents and Conditions: (a) TfOH (2 equiv.), MeCN, 0 °C.

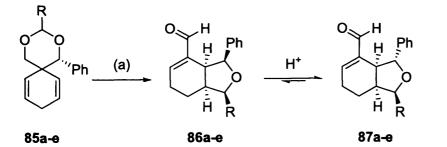

Pleased with the outcome of the first example, we synthesised two series of substrates in order to investigate further. Two additional acetals were added to the

series derived from methyl substituted diol **74a**, shown in Scheme **35**, in order to obtain a more complete picture of the scope and limitations of the reaction.


Scheme 35. Reagents and Conditions: (a) RCHO, PPTS, CH₂Cl₂.

Rather than prepare a series of aryl substituted acetals from diol **74b**, we chose to use diol **74c** instead for simplicity. Acetal formation with the same five aldehydes provided all but the *t*-Bu substituted member of series **85a-e**, shown in Scheme **36**.

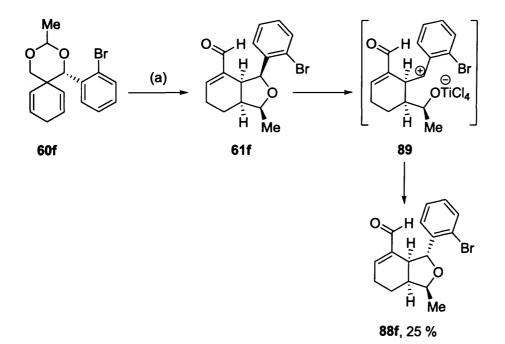
Scheme 36. *Reagents and Conditions:* (a) i) LDA, THF, PhCOCl, -78 °C to r.t.; (b) LiAlH₄, THF; (c) RCHO, PTSA, CH₂Cl₂/DMF (approx 10:1).


The remaining methyl substituted acetals, **60b**-e, cyclised similarly to **60a**, giving the results summarised in Table **2**. Yields were reasonably good in most cases, with the exception of Entries **4** and **5**. Acetal **60d** was simply very slow to cyclise, this could likely be overcome by the use of a larger excess of triflic acid, which can be seen in Entries **1-3** to result in a large increase in rate. The aryl substituted acetal, **60e**, on the other hand, cyclised extremely rapidly, the comparatively low yield apparently a result of product decomposition.

Entry	Acetal	R =	TfOH (equiv.)	Time (min)	Yield 61 (%)	Yield 84 (%)	
1 60a Me		Me	1.6	15	66	6	
2	60b	<i>n-</i> Bu	1.2	90	60	8	
3	60c	<i>i-</i> Bu	1.1	90	53	7	
4	60d	t-Bu	1.1	240	11ª	5	
5 60e		Ph	1.5	5	42	trace	

Table 2. Reagents and Conditions: (a) TfOH, CH_2Cl_2 , 0 °C to r.t. ^a25 % of starting material was recovered.

Cyclisation of the phenyl substituted acetals was also quite successful, the results are summarised in Table 3. Although the formation of minor by-products was observed in this series also, these were found to be the epimeric aldehydes 87. Regioselectivity of the initial acetal opening appears to be higher in this series, as none of the ketones found in the previous series were detected. This is perhaps due to increased steric hindrance from the larger phenyl substituent.



Entry	Acetal	R =	TfOH (equiv.)	Time (min)	Yield 86 (%)	Yield 87 (%)	
1	85a Me		5	15	64	0	
2	85a	Me	1.1	60	50	8	
3	85a	Me	1.5	90	0	61	
4	85b	<i>n-</i> Bu	1.1	60	51	4	
5	85c	<i>i</i> -Bu	5	15	58	0	
6	85e	Ph	5	15	61	0	

Table 3. Reagents and Conditions: TfOH, CH_2Cl_2 , 0 °C to r.t.

Epimerisation was also noted to occur by El Sayed when Prins cyclisations of aryl substituted substrates with TiCl₄ were allowed to warm to room temperature for extended periods of time. Isomerisation of aldehyde **61f** to **88f**, shown in Scheme **37**, for example, presumably occurs *via* ring opening of the heterocycle to give the stabilised benzylic carbocation **89**.²⁶ This was easily avoided in cyclisations catalysed by triflic acid by employing a fairly large excess of acid. Cyclisation then proceeded extremely rapidly allowing isolation of the kinetic products in good yield, as in Entries **1**, **5** and **6**, for example.

Alternatively, the extended reaction time of Entry **3** allowed complete epimerisation of aldehyde **86a**, affording aldehyde **87a** in good yield. This would presumably also be successful with the other alkyl substituted substrates, though this was not investigated. Acetal **85e** was best cyclised under the conditions of Entry **6**, longer reaction times allowing decomposition of the product to occur.

Scheme 37. Reagents and Conditions: (a) TiCl₄, CH₂Cl₂, -78 °C to r.t., 24 h.

2.3 Conclusion

The Prins desymmetrisation of chiral 2,5-cyclohexadiene based acetals with TiCl₄ was shown to allow access to several complex products with essentially complete diastereocontrol. Though such compounds may be valuable synthetic intermediates,

the lack of control over reactivity resulted to low yields, limiting the utility of the method.

The cause of the low selectivity was determined to be due to competing rearrangement and quenching of the carbenium ion produced by the Prins cyclisation. By employing triflic acid instead, the carbenium ion is forced to undergo rearrangement resulting in the selective formation of tetrahydrofuran derivatives. The procedure developed was shown to be applicable to a range of substrates and is likely to be of use in the synthesis of complex molecules. Investigations into the synthesis of the cladiellin diterpene 7-deacetoxyalcyonin acetate **90**, for example, have since been undertaken by our group.²⁹

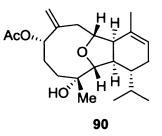
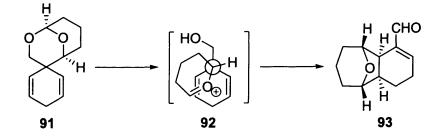
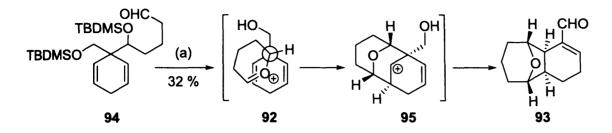



Fig. 3. 7-deacetoxyalcyonin acetate.

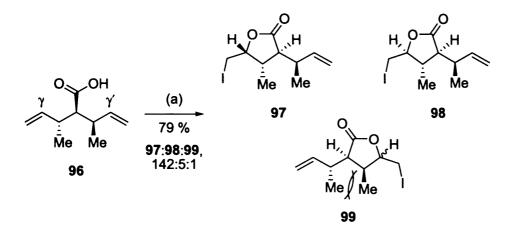

Although this requires that the two pairs of ring junction protons be *anti*, in contrast to the *syn* relationship obtained thus far, it was thought that this be achieved by incorportation of a tethering chain, such as in acetal **91**, shown in Scheme **38**. The resulting oxocarbenium ion would favour the near-attack conformation **92** over the alternative eclipsed conformation, thus generating the desired stereochemistry.

Scheme 38.

This was recently shown by a colleague to be the case, simply treating *bis*-silyl protected aldehyde **94** with triflic acid effected concomitant deprotection,

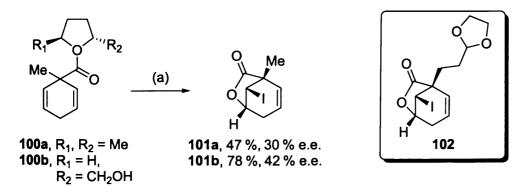
oxocarbenium ion formation and Prins cyclisation, followed by rearrangement to aldehyde 93, as shown in Scheme 39.

Scheme 39. Reagents and Conditions: (a) TfOH (1 equiv.), CH₂Cl₂, 0 °C to room temp.

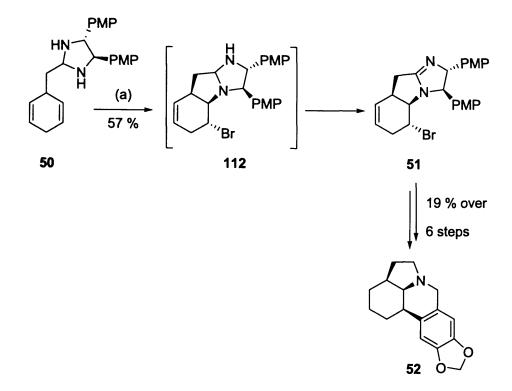

Chapter 3

Iodocyclisation Reactions of 1,4-

Cyclohexadienes


3.1 Introduction

The selective desymmetrisation of a diene in an iodocyclisation reaction was first reported by Kurth over 20 years ago. Cyclisation onto the γ -position of substrate **96** was found to be favoured by a factor of almost 150:1 over cyclisation onto the γ' -position, as shown in Scheme **40**. This group selectivity presumably results from repulsion between the methyl and *iso*-butene substituents in the transition state leading to compound **99**.³⁰



Scheme 40. Reagents and Conditions: (a) I₂, CH₂Cl₂, sat. aq. NaHCO₃, 20 min.

Hart attempted a similar desymmetrisation of a cyclohexa-2,5-diene, as shown in Scheme 41, in an effort to prepare intermediate 102 enantioselectively, thereby achieving an asymmetric synthesis of pleurotin.³¹ The model substrates, 100a and 100b, were found to cyclise with insufficient selectivity, however, and this aspect of the work was abandoned.

Scheme 41. Reagents and Conditions: (a) I₂, THF, H₂O.

Scheme 46. Reagents and Conditions: (a) NBS (2.1 equiv.), CH_2CI_2 . PMP = 4-MeO-C₆H₄.

The acyclic diene **96** is the only substrate reported where the stereodirecting element is actually within the ring formed by cyclisation, as shown in Fig. **4**. This clearly exerts far greater stereocontrol and suggests that iodocyclisation of cyclohexadienes such as **74**, **116**, and **121**, shown in Scheme **47**, may also occur with very high group selectivity.

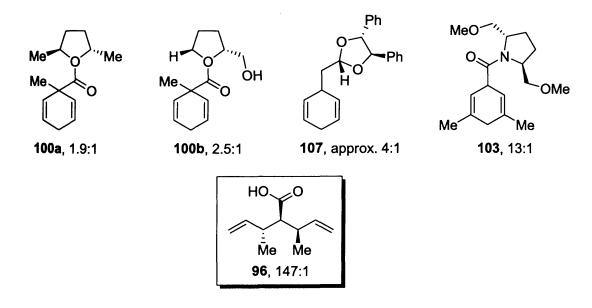
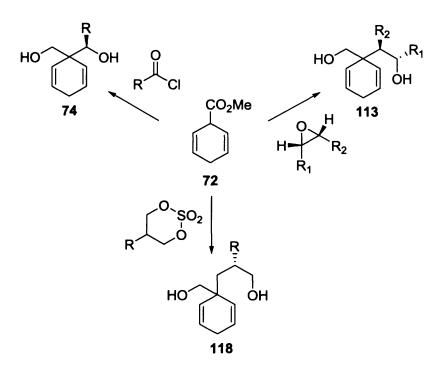
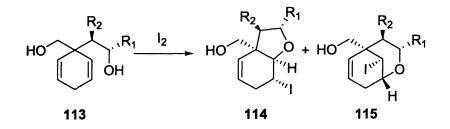
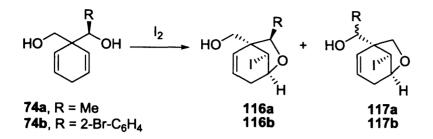



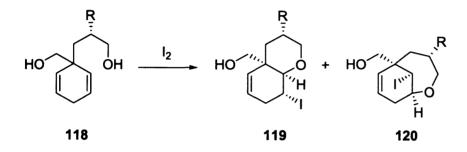
Fig. 4. Features of iodocyclisation substrates.


Such substrates would be readily accessible by alkylation of ester **72** with acyl chlorides, epoxides or epoxide equivalents, allowing a detailed investigation into several modes of cyclisation.

Scheme 47. Examples of substrates accessible from ester 72.

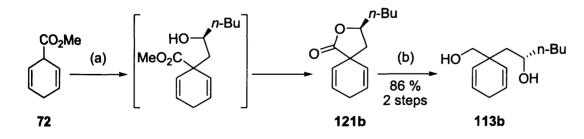

3.2 Results and Discussion

Substrates 113 were studied in most detail, the products expected by competing 5exo and 6-endo processes are shown in Scheme 48.


Scheme 48. 5-exo / 6-endo iodocyclisations.

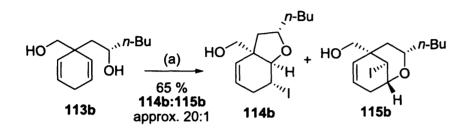
Diols 74 were available from the work on the Prins reactions discussed in Chapter 2, and would allow investigation into 5-*endo* cyclisations, as shown in Scheme 49.

Scheme 49. 5-endo iodocyclisations.

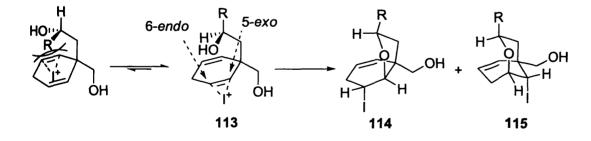

Another possibility is the alkylation of ester **72** with a cyclic sulfate, allowing cyclisation by 6-*exo* and 7-*endo* pathways to be investigated, as shown in Scheme **50**.

Scheme 50. 6-exo / 7-endo cyclisations

3.2.1 5-exo / 6-endo Cyclisation Reactions

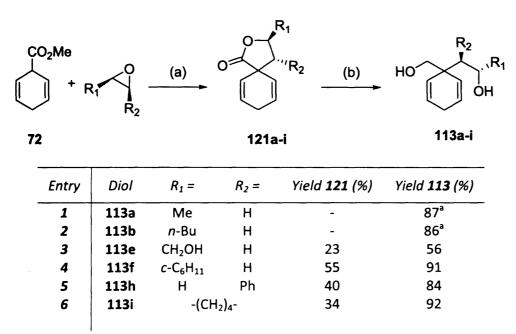

In order to test our hypothesis a suitable substrate was required, the *n*-Bu substituted diol **113b** was chosen as a starting point. Alkylation of methyl 2,5-cyclohexadiene carboxylate with hexene oxide gave lactone **121b**, as was reported to result from a similar alkylation by Kraus.³⁸ This was easily reduced to the required substrate with LiAlH₄, as shown in Scheme **51**.

Scheme 51. Reagents and Conditions: (a) i) LDA, THF, -78 °C; ii) hexene oxide,
-78 °C to room temp.; (b) LiAlH₄, THF.


Reaction of **113b** with iodine and NaHCO₃ in acetonitrile for 1 h gave a crude material composed primarily of one compound. The purity of this was sufficient to

allow the structure to be determined as that of **114b**, shown in Scheme **52**, by ${}^{1}H - {}^{1}H$ and ${}^{1}H - {}^{13}C$ correlation NMR spectroscopy. The stereochemistry of this product could not be determined from the NMR data generated, however, it was expected to be as shown based on examination of models of diol **113b**. The minor product was not isolated due to the small quantity present, the structure and stereochemistry were assigned as that of **115b** by analogy with later results.

Scheme 52. Reagents and Conditions: (a) I₂, NaHCO₃, MeCN, 1 h.


This regioselectivity can be explained by the model shown in Scheme **53**; as suggested by Baldwin, the angle of attack required of the alcohol nucleophile for a 5-*exo* ring closure would appear to require a much less strained geometry than the competing 6-*endo* ring closure.³⁹ The basis for the predicted stereochemistry can also be seen, as cyclisation onto one of the double bonds results in a destabilising interaction between the substituent and the cyclohexadiene ring. This is avoided by cyclisation onto the other double bond, which allows the substituent to occupy a *pseudo*-equatorial position in the new ring.

Scheme 53. Origin of stereo- and regioselectivity.

As high diastereoselectivity is obviously possible by this method, with no minor diastereoisomers being observed, a series of related substrates were prepared in order to determine the scope and limitations of the reaction. Most of these additional substrates were prepared in the same manner, simply by varying the epoxide used in the alkylation step, as shown in Table **4**.

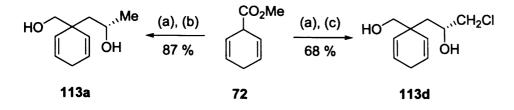
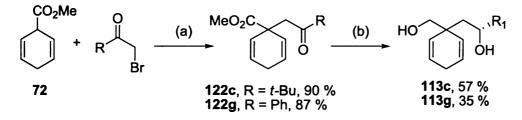
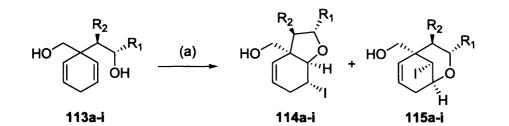

Alkylation of ester 72 with just 0.5 equivalents of unprotected glycidol gave a reasonable yield of lactone 121e (Entry 3), which was then reduced to triol 113e. Alkylation with vinylcyclohexane oxide and cyclohexene oxide (Entries 4 and 6) provided acceptable yields of diols 113f and 113i, respectively. The lactone isolated following alkylation with styrene oxide (Entry 5) was 121h, the product of epoxide opening at the benzylic position. Reduction to diol 113h therefore allowed the possibility of stereocontrol by a more distant stereogenic centre to be studied.

Table 4. Reagents and Conditions: (a) LDA, THF, -78 °C to room temp.; (b) LiAlH₄, THF. ^a Yield over 2 steps.

Diol 113a (Entry 1) was the unexpected product of reduction of lactone 121d with LiAlH₄, as shown in Scheme 54. Prevention of dehalogenation by the use of the minimum required amount of hydride and ice cooling was only moderately successful, and chromatographic separation of the products was fairly tedious. A method based on that reported by Chaveriat, with NaBH₄ as the reductant, was eventually found to be much simpler.⁴⁰


41

Scheme 54. Reagents and Conditions: (a) LDA, epichlorohydrin, THF, -78 °C to room temp.; (b) LiAlH₄, THF; (c) NaBH₄, EtOH.


Substrates 113c and 113g, shown in Scheme 55, were felt likely to be useful additions to the series, but were found to be difficult to obtain in the same manner. Alkylation with styrene oxide formed mostly lactone 121h rather than 121g, while the epoxide required to prepare lactone 121c was not commercially available and its synthesis was difficult due to its volatility.

Both diols were found to be very conveniently prepared by alkylation of ester 72 with α -bromoketones, followed by reduction of keto-esters **122c** and **122g** as shown in Scheme 55. The apparent low yield obtained by reduction of keto-ester **122g** was at least partly due to a spillage during its isolation.

Scheme 55. *Reagents and Conditions:* (a) LDA, THF, -78 °C to room temp.; (b) LiAlH₄, THF.

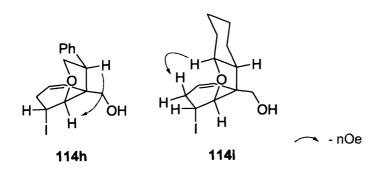
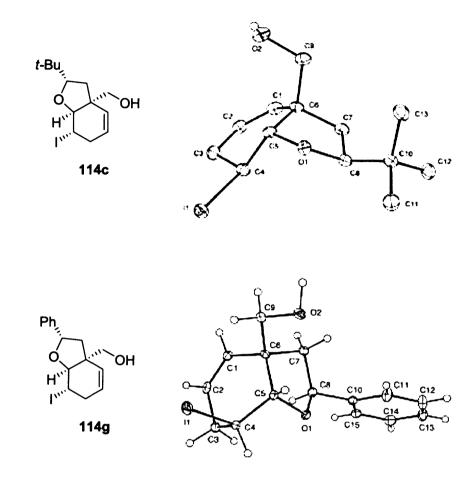
With a selection of substrates now in hand, we were pleased to find that all cyclised readily, with results similar to that obtained with diol **113b**, as shown in Table **5**. Isolated yields of the 5-*exo* cyclisation products were good to excellent; except in the case of Entry **3**, the only significant byproducts observed in the ¹H NMR spectra of the crude material were the corresponding 6-*endo* cyclisation products. Diastereoselectivity is, therefore, at least greater than the regioselectivity shown.

Entry	Diol	R ₁ =	R ₂ =	Base	Time	Ratio	Yield 114	Yield 115
					(min)	114:115	(%)	(%)
1	113a	Me	Н	NaHCO ₃	30	11:1	66	6
2	113b	<i>n-</i> Bu	н	Na ₂ CO ₃	60	20:1	65	-
3	113c	t-Bu	н	NaHCO₃	1	>99:1	89	-
4	113d	CH₂CI	н	Na ₂ CO ₃	30	17:1	87	-
5	113e	CH₂OH	н	NaHCO₃	1	19:1	91	-
6	113f	<i>c</i> -C ₆ H ₁₁	н	Na ₂ CO ₃	30	30:1	44	-
7	113g	Ph	н	Na ₂ CO ₃	30	10:1	59	4
8	113h	Н	Ph	Na ₂ CO ₃	30	19:1	79	3
9	113i	-(CH2)4-	Na ₂ CO ₃	30	10:1	62	-

Table 5. Reagents and Conditions: (a) I2, Base (see table), MeCN.

It should be noted that while the base used was mostly Na₂CO₃, NaHCO₃ was used in some cases to similar effect. Also, the reaction times given are not necessarily the minimum required, two cases (Entries **3** and **5**) were analysed by tlc after just one minute and found to already be complete.

As was found initially in the cyclisation of diol **113b** (Entry **2**), the stereochemistry of these additional 5-*exo* products was often also difficult to determine by NMR spectroscopy. Diagnostic cross-peaks were observed in the NOESY spectra of only two compounds, **114i** and **114h**, shown in Fig. **5**, and a further two compounds, **114c** and **114g**, were crystalline solids suitable for stereochemical determination by X-ray diffraction, the results of which are shown in Fig. **6**.

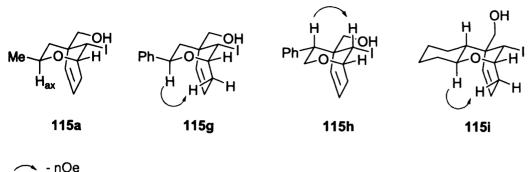

Fig. 5. Stereochemical determination of 5-exo products.

Fig. 6. ORTEP plots of the crystal structures of compounds **114c** and **114g**. Thermal ellipsoids are drawn at the 50 % probability level.

All four compounds have the stereochemistry predicted by the model shown previously in Scheme 53; cyclisation occurs onto the alkene which allows the least hindered approach and results in the substituents occupying the *pseudo*-equatorial positions on the tetrahydrofuran ring. Since these four compounds cover the range of substitution patterns found in the remaining examples it is likely that these will also be of this stereochemistry.

It was a great relief to find that the stereochemistry of the minor products was comparatively straightforward to ascertain by NMR. Compound **115a**, shown in Fig. **7**, showed a large *trans*-diaxial coupling from the proton indicated, therefore the methyl substituent must be equatorial. Compounds **115g**, **115h** and **115i** gave diagnostic nOe's as indicated, all in support of the stereochemistry predicted.

< -110e

Fig. 7. Stereochemical determination of 6-endo products.

The regioselectivity of the cyclisations shown in Table **5** appears to correlate with the steric bulk of the substituents. Entries **1**-**3**, for example, where R_1 ranges from Me, through *n*-Bu to *t*-Bu, show the selectivity for 5-*exo* cyclisation to increase from 10:1 to 20:1 to greater than 99:1. A possible explanation for this may be that by increasing the R-CHOH-C bond angle, strain between the substituent and the adjacent CH₂ group can be reduced, as shown in Fig. **8**. This would simultaneously place the alcohol in closer proximity to the nearer end of the double bond, increasing both the relative probability and rate of the 5-*exo* cyclisation. Semi-empirical geometry optimisation at the MNDO level of theory gave the bond angles shown, supporting this theory, however, more definitive proof was not obtained.

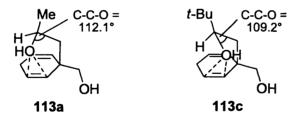
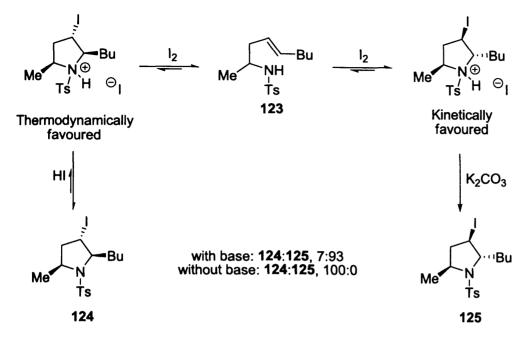
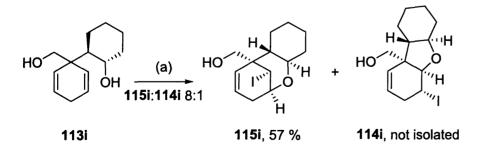
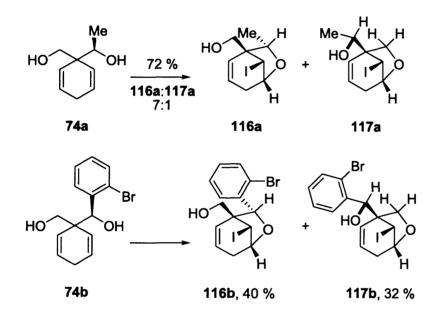



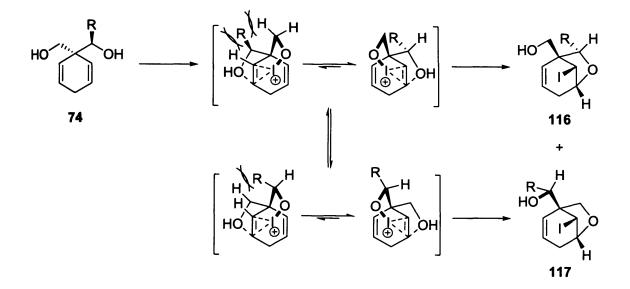
Fig. 8. Effect of substituent size on computed bond angles.


The addition of a weak base prevents equilibration to the thermodynamic product, shown by Knight to occur *via* protonation of the ring heteroatom, as shown in Scheme 56.⁴¹

We thought that, in our case, omission of the base and extension of the reaction time may affect the regiochemical outcome of the reaction. With most substrates a small shift in the product distribution was, indeed, observed, although this was often not to a useful extent. Cyclisation of diol **113a** ($R_1 = Me$, $R_2 = H$) in this manner, for example, gave the two products **114a** and **115a** in a ratio of approximately 5:1 after 20 hours.


Diol 113i, however, did show selectivity for formation of the 6-*endo* product under these conditions, the ratio after 24 hours being approximately 8:1 in favour of 115i, as shown in Scheme 57. In this case, presumably, significant stabilisation can result from isomerisation to the *trans*-decalin system.

Scheme 57. Reagents and Conditions: (a) I2, MeCN, room temp., 24 h.


3.2.2 5-endo Cyclisation Reactions

Cyclisation of alcohols **74a** and **74b** also yielded mixtures of two compounds, these were identified as the products of 5-*endo* cyclisation of both the primary and secondary alcohols, as shown in Scheme **58**. While this was not unexpected, we were suprised to find that both products were formed as essentially single diastereoisomers.

Scheme 58. Reagents and Conditions: I₂, NaHCO₃, MeCN, room temp, 1 h.

The mechanism responsible for stereocontrol in the cyclisation of the primary alcohol is not clear, it seems highly unlikely to be due to direct interaction with the distant stereogenic centre. An indirect mechanism of transmission may be possible, for example, by group selective intramolecular iodonium ion formation followed by cyclisation of the primary alcohol, as shown in Scheme **59**. A similar mechanism involving the intramolecular delivery of '1⁺' from an acyl hypoiodite was proposed by Bartlett⁴² to explain the unusual selectivity for formation of the 3,4-*cis* isomer on iodocyclisation of some 3-substituted 4-pentenoic acids under kinetic conditions, a phenomena also noted by Kurth in the opening example of the chapter.³⁰

Scheme 59. Plausible mechanism of stereocontrol in 5-endo cyclisations.

The stereochemistry of compounds **116a** and **116b** was confirmed to be as predicted in Scheme **59** by the observation of the nOe's shown in Fig. **9**. The ¹H NMR spectrum obtained from compound **116b** also showed a relatively low chemical shift (δ 4.63 ppm) for one of the alkene protons, suggesting its close proximity to the aromatic ring. Assignment of the predicted stereochemistry of compounds **117a** and **117b** was not possible by NMR experiments due to the free rotation of the chiral side-chain.

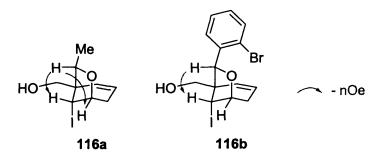
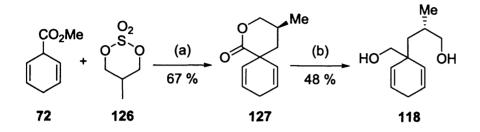
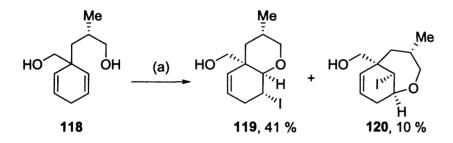



Fig. 9. Determination of stereochemistry of 116a and 116b.

Regioselectivity in these examples appears to support the hypothesis proposed in the previous section, as the bulky aryl substituents reduced the extent of cyclisation through the secondary alcohol. Rather than cyclise in a 4-*exo* manner, however, 5-*endo* cyclisation of the primary alcohol appears to be preferable.


3.2.3 6-endo / 7-exo Cyclisation Reactions

Ester 72 was also alkylated with the cyclic sulfate ester 126, as shown in Scheme 60, allowing 6-exo / 7-endo cyclisations to be investigated.

Scheme 60. *Reagents and Conditions:* (a) LDA, THF, -78 °C to room temp.; (b) LiAlH₄, THF.

Cyclisation of diol **118** under the same conditions gave the 6-*exo* and 7-*endo* **products**, **119** and **120**, both as single diastereoisomers as shown in Scheme **61**. The selectivity between the two pathways was lower than in the 5-*exo* / 6-*endo* **examples**, as might be expected.

Scheme 61. Reagents and Conditions: I₂, NaHCO₃, MeCN, room temp.

The stereochemistry of the tetrahydropyran **119** can be understood as arising from cyclisation onto the double bond that allows the methyl substituent to lie equatorial in the transition state. This was confirmed by observation of an n.O.e. between the CH next to iodine and one of the CH's next to oxygen on the tetrahydropyran ring. As this gave a large axial coupling to the CH with the attached methyl group, the methyl group must be equatorial. The stereochemistry of the 7-endo isomer **120** could not be proven but is presumably the same as the 6-*exo* isomer.

3.3 Conclusion

lodocyclisation reactions of cyclohexadienes containing one or more stereogenic centres in the tethering chain have been found to proceed with excellent diastereotopic group selectivity in all cyclisation modes investigated. The synthesis of these substrates is highly versatile and this reaction should, therefore, be useful in synthesis.⁴³

Chapter 4

Synthesis of Lycoposerramine Alkaloids

4.1 Introduction

The Lycopodium genus has revealed an abundance of alkaloids of wide functional variety yet based principally on one of the 16 carbon scaffolds shown in Fig. **10**.⁴⁴

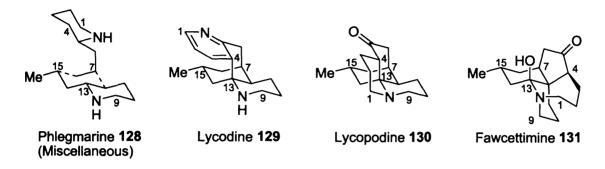


Fig. 10. Sub-groups of the Lycopodium alkaloids.

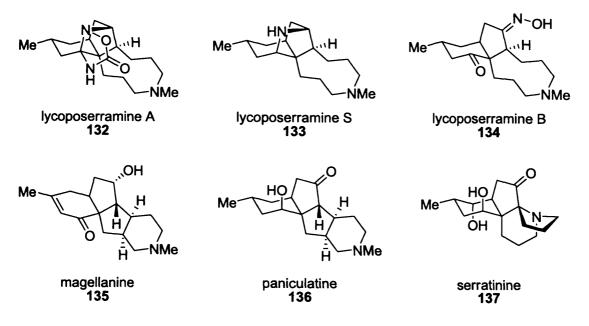
Lycopodine **130** was the first of the Lycopodium alkaloids to be isolated and identified. The class which takes its name is the most populous, containing just over a third of the currently known alkaloids.

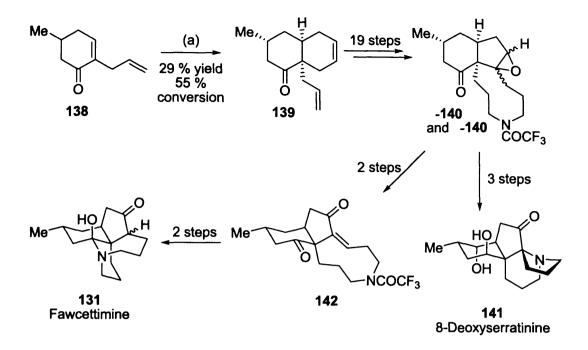
The Lycodine class contains just over ten percent of Lycopodium alkaloids, some of which are active as acetylcholinesterase inhibitors. This is the only class currently known to contain such inhibitors.⁴⁵

Fawcettimine **131** is the prototype of the second most abundant class, possibly derived from the Lycopodine class by migration of C_4 from C_{13} to C_{12} . It has been proposed that all of these alkaloids could be derived from phlegmarine **128**, which could in turn be the product of coupling two 2-propylpiperidine moieties, indicated by the dashed lines in Fig. **10**.

4.2 Synthesis of Fawcettimine Class Compounds

We were most interested in synthesis of fawcettimine derivatives such as those shown in Fig. **11**, as these compounds should be accessible through a Birch reduction, alkylation, desymmetrisation (BRAD) strategy.



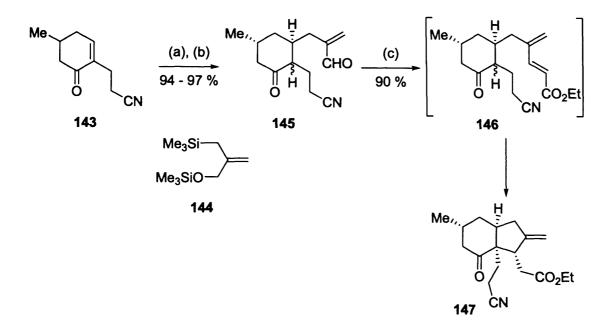

Fig. 11. Examples of fawcettimine type alkaloids.

4.2.1 Fawcettimine

Fawcettimine and 8-deoxyserratinine were the first of the class to be synthesised, by Inubushi and coworkers, in 1980.⁴⁶ The key step was a Diels-Alder reaction between the racemic cyclohexenone **138** and 1,3-butadiene, giving the [6,6]-bicyclic intermediate **139** with the correct stereochemistry, as shown in Scheme **62**. A further 19 steps were required in order to transform this into a mixture of epoxide diastereoisomers α -**140** and β -**140**.

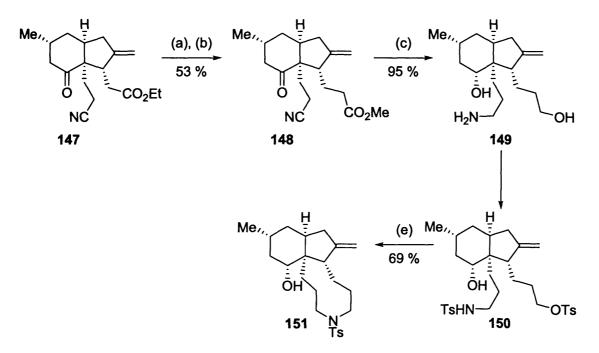
Epoxide α -140 was rearranged to the allylic alcohol and oxidised to enone 142. Hydrogenation and hydrolysis of the trifluoroacetamide group gave racemic fawcettimine in a total of 24 steps with 0.26 % overall yield. This was found to be identical to a authentic sample, proving the structure, although the stereochemistry at C₄ remained uncertain since it is not clear which face of the enone would be preferred for hydrogenation.

Amide hydrolysis of β -140 allowed cyclisation of the free amine onto the epoxide. Oxidation to the diketone and selective reduction of the six membered ring ketone gave 8-deoxyserratinine 141 in a total of 23 steps with 0.28 % overall yield.

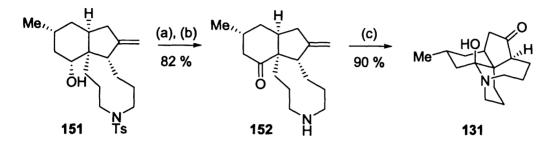


Scheme 62. Reagents and Conditions: (a) 140, butadiene, BF₃.OEt₂.

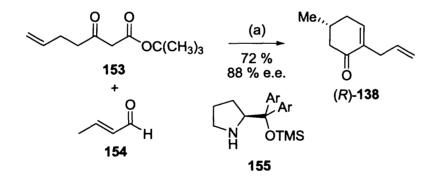
In 1986 Heathcock and coworkers reported a much more practical and elegant synthesis from a similar 2-alkyl-5-methylcyclohexeneone precursor, again allowing the methyl substituent to control the stereochemistry of the subsequent transformations.⁴⁷ Fawcettimine was obtained in 10 steps and 9 % overall yield from enone **143**. This was later optimised further, the sequence described below giving 17 % overall yield though also in 10 steps.


The methyl substituent of enone **143** allowed a stereoselective Sakurai reaction with allylsilane **144**, as shown in Scheme **63**, oxidation of the product providing aldehyde **145** in near-quantitative yield. A Horner-Wadsworth-Emmons reaction then allowed formation of the bicyclic hydrindanone core by an intramolecular Michael reaction. The 1,4-addition product **147** is favoured under Baldwin's rules, being a 5-*exo-trig* cyclisation. The alternative 1,6-addition would be a 5-*endo-trig* cyclisation.

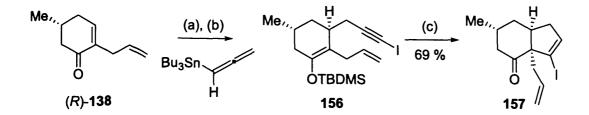
Saponification of ester **147** followed by Arndt-Eistert homologation of the resulting acid provided the remaining carbon atom of the nine-membered ring. Reduction with LiAlH₄ in ether at -110 °C gave amino-diol **149** as the major diastereoisomer of a 9:1 mixture of alcohol isomers. Selective tosylation of both the amine and primary alcohol then allowed cyclisation of *bis*-tosylate **150**, forming the nine-membered ring in good yield, as shown in Scheme **64**.


Scheme 63. *Reagents and Conditions*: (a) **144**, TiCl₄, CH₂Cl₂; (b) CrO₃, pyridine; (c) ethyl trimethylphosphonoacetate, NaOEt, EtOH, DMF.

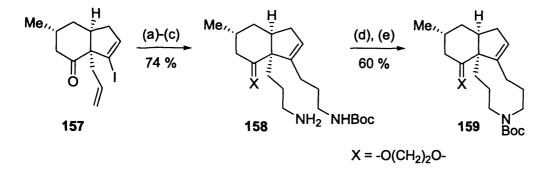
Sodium naphthalenide effected deprotection of sulfonamide **151** without reduction of the double bond, as shown in Scheme **65**. Oxidation of the secondary alcohol with chromium trioxide in 80 % aqueous acetic acid gave compound **152**, which was found to exist almost entirely in the keto-amine form.


Scheme 64. Reagents and Conditions: (a) NaOH, EtOH, H_2O ; (b) i) (COCl)₂, benzene; ii) CH_2N_2 ; iii) PhCO₂Ag, Et₃N, MeOH; (c) LiAlH₄, ether; (d) Ts₂O, DMAP, CH_2Cl_2 ; (e) Bu₄NOH, benzene.

Fawcettimine exists mostly in the hemi-aminal form, suggesting this intermediate to be the C_4 epimer of fawcettimine. Ozonolysis of the perchlorate salt of **152** allowed spontaneous isomerisation at the C_4 position, and the synthetic fawcettimine thus obtained was found to be identical to the natural material. Further confiramtion of the C_4 -stereochemistry was provided by x-ray crystallography.

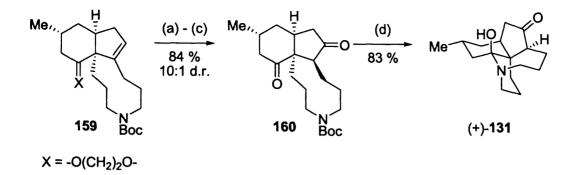

Scheme 65. Reagents and Conditions: (a) Na, naphthalene, DME; (b) CrO_3 , HOAc; (c) i) HClO₄; ii) O_3 ; iii) NaHCO₃.

The first asymmetric synthesis was recently published by Toste, starting from the same enone precursor **138** used by Inubushi. This was prepared as a single enantiomer by a Robinson annulation catalysed by the chiral proline derived base **155**, as shown in Scheme **66**.⁴⁸

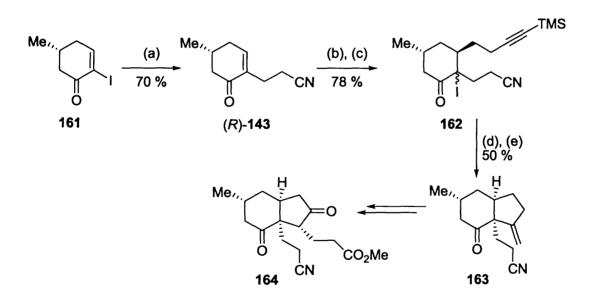

Scheme 66. Reagents and Conditions: (a) i) 10 mol % 155, neat, 60 h, 0 °C; ii) TsOH, toluene, reflux. Ar = $3,5-(CF_3)_2C_6H_3$.

Conjugate addition of allenyltributylstannane gave the *trans*-silyl enol ether **156** with high selectivity (> 95:5 d.r.). Iodination of the alkyne then set the stage for the key gold(I) catalysed 5-*endo-dig* cyclisation of the silyl enol ether onto the alkyne, completing the [6,5]-bicyclic core, as shown in Scheme **67**.

Scheme 67. *Reagents and Conditions*: (a) allenyltributylstannane, TBDMSOTf, CH₂Cl₂; (b) NIS, AgNO₃, DMF; (c) 10 mol % (PPh₃)AuCl, AgBF₄, CH₂Cl₂ / MeOH.


Following protection of the ketone, the remaining three carbon atoms and nitrogen atom of the nine-membered ring were introduced by a palladium catalysed crosscoupling of **157** with the product of hydroboration of N-Boc allylamine. Hydroboration / oxidation of the terminal alkene then gave alcohol **158**, which was converted to the iodide allowing closure of the nine-membered ring with potassium *tert*-butoxide, shown in Scheme **68**.

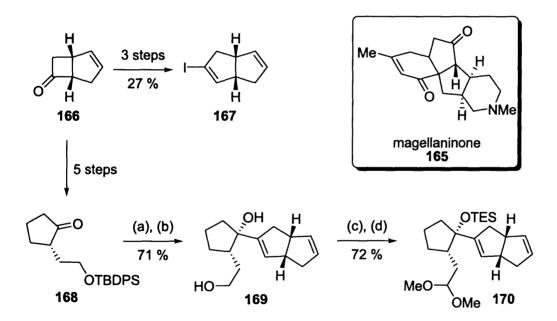
Scheme 68. *Reagents and Conditions*: (a) (CH₂OH)₂, TsOH, benzene, reflux; (b) i) CH₂=CHCH₂NHBoc, 9-BBN; ii) [PdCl₂(dppf)], AsPh₃, Cs₂CO₃, DMF; (c) BH₃; (d) PPh₃, I₂, imidazole, CH₂Cl₂; (e) *t*-BuOK, THF.


To complete the synthesis, the ketal protecting group of **159** was removed and the remaining ketone introduced by hydroboration and a two step oxidation. Removal of the Boc protecting group then gave (+)-fawcettimine ((+)-**131**).

A formal asymmetric synthesis was published shortly after by Liu and Chau.⁴⁹ They synthesised (R)-2-iodo-5-methylcyclohexenone **161** as a single enantiomer from (R)-pulegone, as shown in Scheme **70**. This was converted into Heathcock's cyano-enone **143** by an intermolecular radical conjugate addition to acrylonitrile.

Scheme 69. *Reagents and Conditions*: (a) PPTS, acetone / water; (b) i) BH₃.THF, THF; ii) NaOH, H₂O₂; (c) Dess-Martin periodinane, DCM; (d) TFA, CH₂Cl₂.

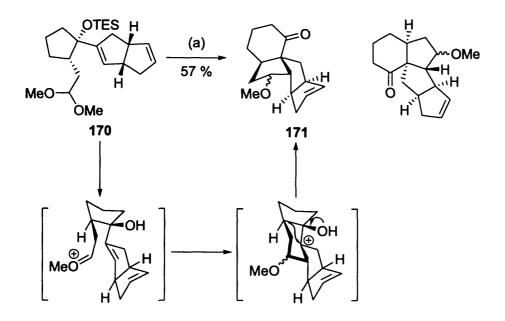
Conjugate addition of a protected acetylenic Grignard reagent to **143** followed by enolate iodination gave compound **162**, allowing formation of the five-membered ring by an intramolecular 5-*exo-dig* radical cyclisation onto the alkyne. Removal of the silyl group and a two step allylic oxidation of **163** enabled the conjugate addition of the silyl enol ether of methyl acetate to give **164**. Presumably this could be converted into (+)-fawcettimine in a similar manner to Heathcock's intermediate.



Scheme 70. *Reagents and Conditions*: (a) acrylonitrile, Bu₃SnH, AlBN, PhH; (b) 4-trimethylsilylbut-3-ynyl chloride, Mg, Cul, TMSCl, HMPA, THF; (c) Nal, *m*CPBA, THF; (d) Bu₃SnH, AlBN, PhH, slow addition; (e) TFA, CH₂Cl₂.

4.2.2 Magellanine

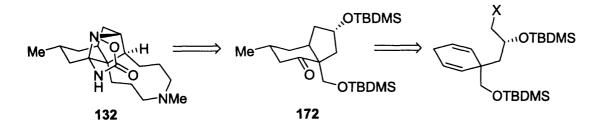
Magellanine **135** is probably the only other alkaloid in this class to have received so much synthetic attention. The first total synthesis by Overman yielded magellanine and magellaninone **165** in 25 and 26 steps, respectively, from the single enantiomer cyclobutanone **166** shown in Scheme **71**.⁵⁰


Protected keto-alcohol **168** was prepared from **166** by a five step sequence involving a Baeyer-Villiger reaction to open the four membered ring. Iodide **167** was prepared from the same precursor in 27 % yield over three rather lengthy steps. Addition of the vinyllithium generated from **167** to ketone **168**, followed by deprotection gave diol **169**. This was protected as the *bis*-silyl ether, the primary protected alcohol oxidised by a Swern reaction and the resulting aldehyde converted into the dimethyl acetal **170** in preparation for the key Prins-Pinacol sequence.

Scheme 71. Reagents and Conditions: (a) i) 167, t-BuLi, Et₂O, -110 °C; ii) 168; (b) TBAF, THF; (c) Et₃SiCl, DMAP, imidazole, CH_2Cl_2 ; (d) i) Swern oxidation; ii) (MeO)₃CH, PPTS, CH_2Cl_2 .

Prins cyclisation of acetal **170** by treatment with $TiCl_4$ in CH_2Cl_2 gave compound **171**, with the stereochemistry predicted to result from attack on the oxonium ion by the outer face of the bicyclic alkene, as shown in Scheme **72**. The product was, however,

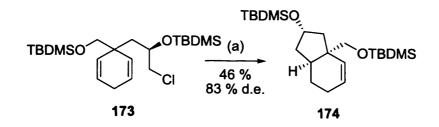
found to consist of a 2:1 mixture of epimers of the adjacent ether. This mixture was taken through a further 12 steps to give magellanine **135** at which point the minor epimer was separated and oxidised to magellaninone **165**.



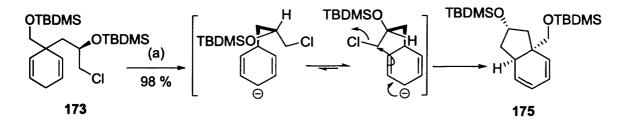
Scheme 72. Reagents and Conditions: (a) TiCl₄, CH₂Cl₂, -78 °C to -20 °C.

There have since been a number of other synthetic approaches to magellanine and the structurally-related natural product paniculatine.⁵¹

4.2.3 Lycoposerramine A

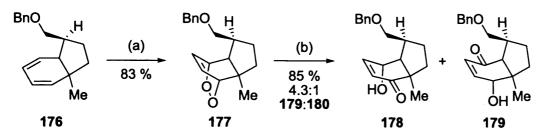

Synthetic studies on Lycoposerramine A **132** have so far not been reported. This compound contains a novel oxadiazolidinone ring system and is so far the only natural product found to contain this motif. We decided to first concentrate on this ring system, choosing compound **172**, shown in Scheme **73**, as an initial target. The quaternary stereocenter and 6,5-bicyclic system make a desymmetrisation an ideal strategy for its synthesis.

Scheme 73. Retrosynthesis of Lycoposerramine A.


4.3 Initial Approach to Key Fragment 172

We had planned to construct the the hydrindanone core of **172** by a radical cyclisation of chloride **173**, reported by El Sayed to afford compound **174** in moderate yield and with good diastereocontrol.²⁶

Scheme 74. Reagents and Conditions: (a) Bu₃SnH, AIBN, PhH, reflux, 30 h.

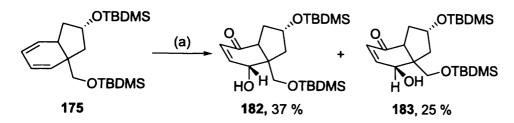

While attempting to optimise this reaction, however, we discovered that **173** could also be cyclised under strongly basic conditions. Treatment with *n*-BuLi, as shown in Scheme **75**, afforded 1,3-diene **175** as a single diastereoisomer in almost quantitative yield. This was proposed to occur by cyclisation of an intermediate cyclohexadienyl anion onto the alkyl chloride, comparable to the initial diastereoselective protonation step of Landais' protonation-hydroamination sequence described in Chapter 1, Page **11**. We were unable to determine the configuration of the secondary silyl ether, although it was expected to be as indicated, based on modelling of the transition state.

Scheme 75. *Reagents and Conditions*: (a) n-BuLi (1.1 equiv.), THF, -78 °C to room temp., 1 h.

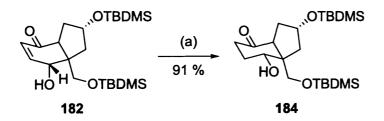
Given the many advantages of this method over the radical cyclisation, we began to consider possible routes to target **172** through this intermediate instead. While the additional double-bond was expected to complicate matters, a sequence involving cycloaddition onto a similar 1,3-diene, reported by Shibasaki, suggested it may, in fact, prove beneficial.

Reaction of diene **176**, shown in Scheme **76**, with photochemically-generated singlet oxygen, provided endoperoxide **177** as a single diastereoisomer. Treatment with base initiated rearrangement to two regioisomeric γ -hydroxyenones, **178** and **179**, the former being favoured by a factor of 4.3:1.⁵²

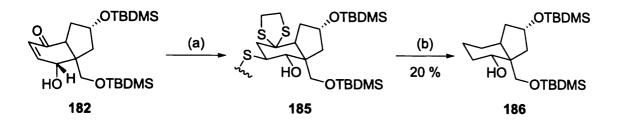
Scheme 76. *Reagents and Conditions*: (a) O₂, hv, Rose Bengal, *i*-PrOH; (b) Et₃N, CH₂Cl₂.


A similar outcome from application of this sequence to diene **175** would also, therefore, allow rapid access to the cores of the serratinine type alkaloids, while alcohol deoxygenation and conjugate addition would furnish our initial target, ketone **172**.

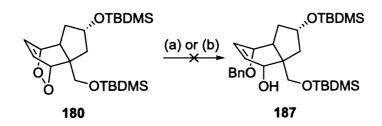
Irradiation of a solution of **175** and a catalytic amount of Rose Bengal in isopropanol, bubbled with a stream of dry oxygen, afforded a 2:1 mixture of endoperoxide diastereoisomers in high yield. The major isomer **180** was presumed to result from cycloaddition to the outer face of the bicyclic system, although the stereochemistry was not proven.


Scheme 77. Reagents and Conditions: (a) O₂, Rose Bengal, hv, i-PrOH.

While the selectivity of cycloaddition with **175** was lower than in Shibasaki's example, Kornblum-DeLaMare rearrangement of the crude endoperoxide mixture showed no evidence of minor regioisomers. Unfortunately, however, the products were found to be the undesired isomers **182** and **183**, shown in Scheme **78**. It seems that the large, though more distant, CH_2OBn group of endoperoxide **177** is more effective in obstructing the approach of the base than the quaternary center.

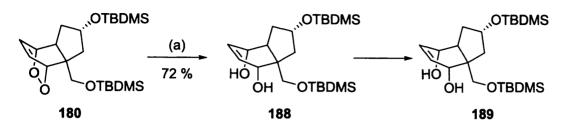

Scheme 78. Reagents and Conditions: (a) i) O₂, Rose Bengal, hv, *i*-PrOH; ii) Et₃N, *i*-PrOH, room temp., 48 h.

As we now required the complete reduction of the ketone, we began investigating the various methods known to achieve this. The Huang-Minlon modification of the Wolff-Kishner reaction failed to yield any product, as did the milder tosylhydrazone reduction with both NaBH₄ and LiAlH₄.⁵³ Many attempted thioketal formations with various acid catalysts and dithiol derivatives, such as *bis*-trimethylsilylethanedithiol,⁵⁴ also failed, presumably due to the acid sensitivity of the silyl protecting groups. Many of these attempts were also performed with the saturated ketone **184**, obtained by the hydrogenation of enone **182** as shown in Scheme **79**, although also without success.


Scheme 79. Reagents and Conditions: (a) NH₄CO₂H, Pd/C, EtOH, reflux, 1 h.

It was finally found that reaction of enone **182** and ethanedithiol with Me₂AlCl, at 0 °C, with frequent monitoring by tlc, gave a material that appeared to be a thioacetal of some form. The complicated NMR spectrum obtained may be due to the formation of a mixture of monomeric and dimeric conjugate addition products, although this was not investigated and the material simply treated with freshly prepared Raney nickel in EtOH and heated to reflux overnight. Chromatography of the crude product resulted in the isolation of a substance tentatively assigned as **186**, shown in Scheme **80**, based the limited data obtained. As this result could not be reproduced, however, we chose to abandon this approach.

Scheme 80. *Reagents and Conditions*: (a) HS(CH₂)₂SH, Me₂AlCl, CH₂Cl₂, 0 °C, 1 h; (b) Raney Ni, EtOH, reflux, 18 h.


Another option would be to oxidise to the dienone and then attempt the selective reduction of the less hindered carbonyl group, although this was not investigated. We turned our attention instead to alternative reactions of the endoperoxides. Reaction with a good nucleophile, for instance, is reported to occur by attack on the weak O-O bond, and should, therefore, result in alkylation of the less hindered oxygen atom, leaving the other free for oxidation to the enone.⁵⁵ Reaction of peroxide **180** with BnLi or simply *n*-BuLi, as shown in Scheme **81**, however, was extremely slow and no identifiable products could be observed.

Scheme 81. *Reagents and Conditions*: (a) i) BnBr, BuLi, THF, -78 °C, 30 min; ii) **180**, THF, -78 °C to r.t., 24 h; (b) BuLi, THF, -78 °C to room temp., 24 h.

Attack on the peroxide by LiAlH₄, on the other hand, was extremely rapid, as shown in Scheme **82**, and the prospects for selective formation of a tosylate or xanthate from the expected product, diol **188**, seemed reasonable. This plan was scuppered when the product was found to be the triol **189** resulting from deprotection of the primary silyl ether. This was not considered a useful intermediate due to the number of additional steps expected to be required.

Attempts to circumvent this side-reaction by the use of milder reducing agents were unsuccessful; sodium borohydride was unreactive towards endoperoxide **180**, while the use of lithium triethylborohydride resulted in its complete destruction. The use of a bulkier/more robust protecting group for the primary alcohol would provide a likely solution, and may also aid in discrimination between the two alcohols.

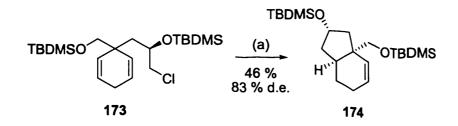
Scheme 82. Reagents and Conditions: (a) LiAlH₄, THF, room temp., 1 h 30.

4.4 Conclusion

The *Lycopodium* group of alkaloids is comprised of many widely varied, complex structures, with high potential medicinal value yet limited natural availability. As such, they present important and challenging targets for total synthesis.

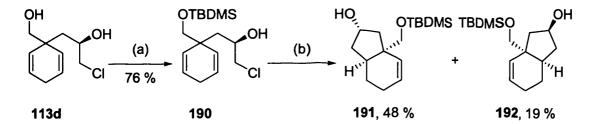
Following a review of the synthesis of the fawcettimine group of alkaloids, we outline our strategy for accessing a key bicyclic intermediate to the tetracyclic core of lycoposerramine A by a desymmetrising radical cyclisation.

A novel alternative cyclisation was discovered, however, allowing access to a similar intermediate, though with far greater efficiency and simplicity. Many unsuccessful attempts were made to employ this intermediate, and we eventually chose to abandon this approach and return to the original plan, the results of which are discussed in the following chapter.


Chapter 5

Revised Approach to the Synthesis of

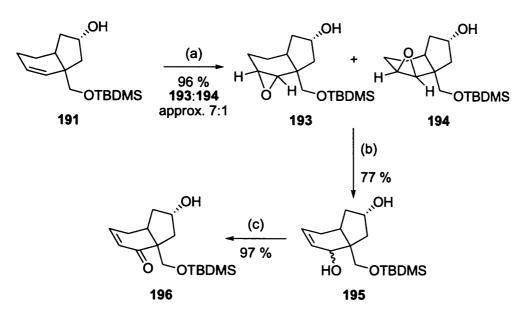
Lycoposerramine A


5.1 Radical Cyclisation Approach

Finding ourselves unable to derive any of the benefits from the anionic cyclisation we chose to return to the radical cyclisation, expecting the product to be more amenable to appropriate functionalisation. Compound **174**, shown in Scheme **83**, was obtained by El Sayed in reasonable yield and with good d.e., presumably favouring the diastereoisomer indicated, although this was not proven.²⁶

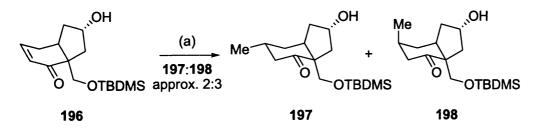
Scheme 83. Reagents and Conditions: (a) Bu₃SnH, AIBN, PhH, reflux, 30 h.

After establishing conditions for completion of the sequence from **174** to the key intermediate **172**, we determined that protection of the secondary alcohol should be unnecessary, as this removes the need for differential protection and a deprotection step, mono-silyl ether **190** was prepared and cyclised as shown in Scheme **84**. While the diastereoselectivity was slightly reduced in the absence of the bulky protecting group, the two isomers were now separable by chromatography, and the major isomer **191** was obtained in good yield.



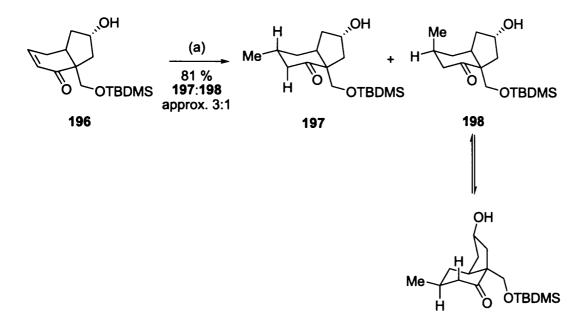
Scheme 84. Reagents and Conditions: (a) TBDMSCl, imidazole, DCM; (b) Bu₃SnH, AIBN, PhH, 16 h.

5.2 Functionalisation of the Cyclohexene Ring

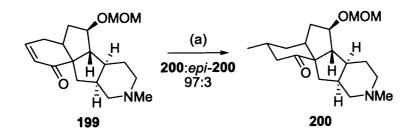

Conversion of **191** into the required enone was now straightforward by the three step sequence shown in Scheme **85**. Reaction with mCPBA provided a mixture of epoxide diastereoisomers **193** and **194**, in an approximate ratio of 7:1. As these stereocentres

are lost in the following steps, separation of these isomers was not attempted.⁵⁶ Epoxide opening with the phenylselenyl anion, followed by selenoxide elimination gave allylic alcohol **195** in good yield.⁵⁷ Finally, selective oxidation of the allylic alcohol with MnO₂ afforded enone **196**.⁵⁸

Scheme 85. Reagents and Conditions: (a) mCPBA, NaHCO₃, CH₂Cl₂, (b) i) PhSeNa EtOH, ii) H₂O₂, THF, (c) MnO₂, CH₂Cl₂.


Introduction of the methyl substituent by conjugate addition to enone **196** was attempted firstly with MeLi/CuCN at -78 °C, as shown in Scheme **86**. As no reaction was observed even on warming to room temperature, the mixture was re-cooled to 0 °C and treated with BF₃.OEt₂.⁵⁹ The ¹H NMR spectrum of the resulting crude material showed it to consist of a mixture of diastereoisomeric addition products, later proven to be **197** and **198**, in an approximate ratio of 2:3.

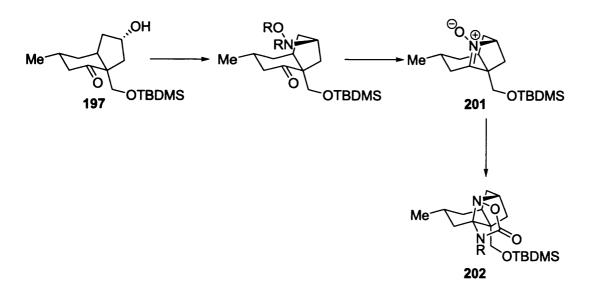
Scheme 86. *Reagents and Conditions:* (a) i) MeLi (2.4 equiv.), CuCN (1.2 equiv.), THF, -78 °C, 5 min; ii) **196**, -78 °C to room temp., 1 h; iii) BF₃.OEt₂, 0 °C, 30 min.


Use of $Me_3Al/Cu(OTf)_2$ in toluene, however, favoured the formation of compound **197** over **198** by a factor of approximately 3:1, as shown in Scheme **87**. While the major

product of this reaction was thought to be the desired diastereoisomer, due to the large axial coupling observed between the CHMe and one of the $CH_2C=O$ protons indicated, this was later realised to be inconclusive as the minor isomer could also adopt a conformation that would show a similar coupling. Only by proceeding with this mixture of isomers could the stereochemical assignments of **197** and **198** be confirmed to be as indicated.

Scheme 87. *Reagents and Conditions:* (a) Me₃Al (3 equiv.), Cu(OTf)₂ (0.1 equiv.), toluene, 0 °C to room temp., 8 h.

Although we did not attempt further optimisation of this result, a similar system has recently been reported by Mukai to undergo a highly diastereoselective conjugate addition reaction, as shown in Scheme **88**.⁶⁰

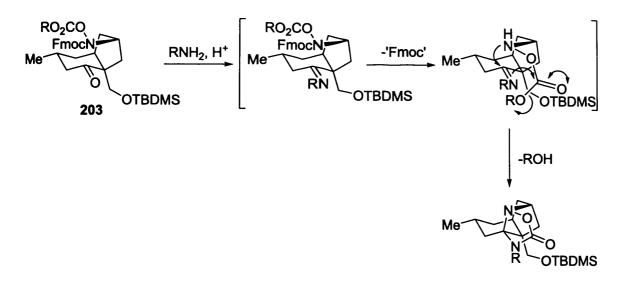

Scheme 88. *Reagents and Conditions:* (a) i) MeLi, CuCN, Et₂O, 0 °C, 15 min; ii) **199**, TMEDA, -40 °C, 12 h.

The formation of compound **200**, an intermediate in the synthesis of magellanine and paniculatine, was found to be favoured by a factor of 97:3 over its C_{15} -epimer under

these conditions. The addition of TMEDA presumably serves to activate the mixed cuprate, a strategy which may also prove more successful in our case, as the use of BF₃.OEt₂ or Me₃SiCl can affect the stereoselectivity of the reaction.

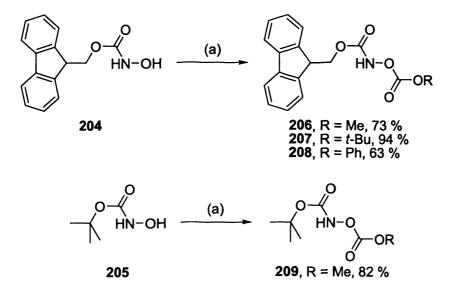
5.3 Attempted Construction of the Oxadiazolidinone Ring

With key intermediate **197** now in hand we turned our attention to construction of the oxadiazolidinone ring system. It was initially envisaged that a Mitsunobu reaction with a suitably protected hydroxylamine derivative, followed by deprotection, would allow cyclisation onto the ketone to give nitrone **201**, as shown in Scheme **89**. 1,3-Dipolar cycloaddition of a suitable isocyanate would then allow access to a derivative of the target compound **202**.

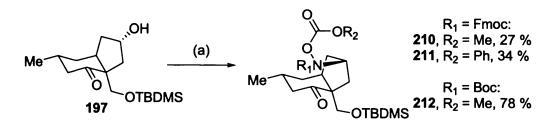


Scheme 89. Proposed route to oxadiazolidinone ring.

Construction of a model, however, suggested that nitrone **201** would experience significant strain as a result of the bridgehead alkene, and that it was, therefore, unlikely to be a suitable intermediate. As the cycloaddition of an isocyanate to a nitrone is the only reported means of accessing this heterocyclic system, we faced quite a challenge in devising an alternative.

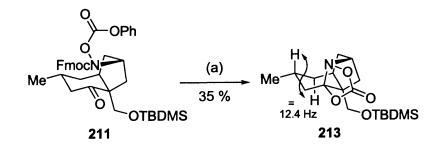

Nevertheless, we conceived of a plausible solution involving a hydroxylamine with orthogonal carbamate and carbonate protecting groups. Following formation of an imine from ketone **203** for instance, deprotection of the base-labile carbamate would allow cyclisation of the free hydroxylamine nitrogen onto the imine, which could, in

turn, cyclise onto the carbonate protecting group with loss of an alcohol, as shown in Scheme **90**.

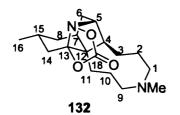

Scheme 90. Proposed alternative cyclisation mechanism.

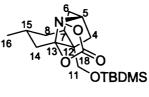
A range of suitably protected hydroxylamines were prepared in order to test this hypothesis.⁶¹ Schotten-Baumen reaction of *N*-Fmoc hydroxylamine **204**⁶² with methyl chloroformate, Boc anhydride and phenylchloroformate, as shown in Scheme **91**, furnished hydroxylamines **206**, **207** and **208** in good yields. Also prepared was the Boc carbamate **209**, by reaction of *N*-Boc hydroxylamine **205** with Boc anhydride.

Scheme 91. Reagents and Conditions: (a) ROCOCI (1.0 equiv.), 1:1 THF / EtOAc : saturated aqueous NaHCO₃, 0 °C to room temp., 16 h.


Mitsunobu reaction of **197** with just 1.1 equivalents each of hydroxylamine **206**, DIAD and PPh₃ gave the deired product **210**, although in only low yield and with 26 % recovered starting material. By use of 1.7 equivalents each of **208**, DIAD and PPh₃ the yield of **211** was marginally improved, while the Boc carbamate **212** was obtained in high yield by reaction with 2.0 equivalents of **209** and 1.5 equivalents each of DIAD and PPh₃. The low yields of Fmoc carbamates may be due to the slightly basic nature of the reaction mixture.

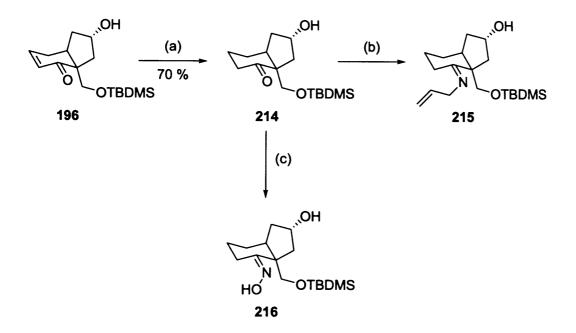
Scheme 92. *Reagents and Conditions:* (a) **206**, **208** or **209**, DIAD, PPh₃, DCM, 30 - 60 min.


The NMR spectra obtained from these compounds showed very broad signals, presumably due to restricted carbamate bond rotation, and could not be assigned; as such, the spectra are included with the experimental details.


We were delighted to find the product obtained by treatment of **211** with DBU, as shown in Scheme **93**, to be the tetracyclic dioxazolidinone **213**. Since the conformation of the cyclohexane ring is locked in this compound, we were also now able to confirm the methyl group stereochemistry by observation of a large *trans*-diaxial coupling between the methine proton indicated and an adjcaent methylene proton.

Scheme 93. Reagents and Conditions: (a) DBU (2.8 equiv.), THF, room temp., 1 h.

The spectral data obtained from compound **213** were in close agreement with those obtained from the natural product, and are summarised in Table **6**.



2	1	3	

Position	Lycoposerramine A 132		Compound 213		
	δ _Η	δ _c	$\delta_{\scriptscriptstyle H}$	δ _c	
4	1.61 (br. s)	52.1	1.64 (d, 11.8)	37.8 or 37.1	
			2.04-1.96 (m)		
5	3.66 (d, 4.3)	69.4	3.73-3.70 (m)	65.4	
6	1.84 (m)	30.4	1.94 (ddd, 13.6, 11.8, 4.1)	30.8	
	1.28 (dd, 13.1, 4.6)		1.40 (dt, 13.6, 3.8)		
7	2.06 (m)	35.1	2.37 (dq, 11.5, 3.8)	34.3	
8	1.02 (ddd, 13.1, 3.4)	31.8	1.24 (ddd, 14.1, 12.4, 3.8)	32.3	
	1.42 (m)		1.48 (br. d, 14.1)		
12		53.1		54.1	
13		88.6		106.6	
14	1.20 (dd, 12.7, 12.7)	40.5	1.54 (t, 13.5)	37.8 or 37.1	
	1.84 (m)		2.04-1.96 (m)		
15	1.93 (m)	22.6	2.04-1.96 (m)	23.6	
16	0.91 (d, 6.4)	21.4	0.98 (d, 6.4)	21.3	
18		157.0		154.1	

Table 6. ¹H and ¹³C NMR data of lycoposerramine A **132** and compound **213** in CDCl₃.

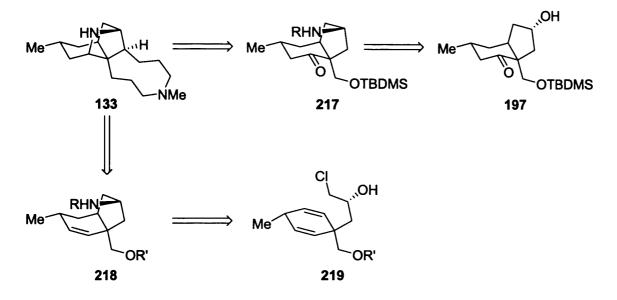
Given this result, we were optimistic that the target oxadiazolidinone ring system would be accessible by imine formation from the ketone of **211**. Unfortunately, however, we were unable to achieve this, despite many attempts under various conditions. The reason for this is not clear, as the formation of imine **215** from the simplified model compound **214**, shown in Scheme **94**, appeared to be successful, as was the formation of oxime **215** under the conditions reported by Takayama.⁶³

Scheme 94. Reagents and Conditions: (a) H_2 , Pd/C, EtOH / EtOAc (1:2), 4 h; (b) allylamine (3 equiv.), Me₃Al, CH₂Cl₂, 16 h; (c) NH₂OH.HCl (1.2 equiv.), NaOAc (2 equiv.), EtOH, reflux, 16 h.

5.4 Conclusion

The desymmetrising free radical cyclisation of **190** enabled access to an analog of our initial target **172**. Mitsunobu reactions of **197** with protected hydroxylamine derivates then allowed the formation of the dioxazolidinone analog **213** of the core of lycoposerramine A in a novel cascade cyclisation.

Although imine formation would potentially allow oxadiazolidinone derivatives **202** to be prepared by this method, we were unable to achieve this with hydroxylamines **210-212**. It may be possible to introduce the protected hydroxylamine subsequent to imine formation, however this was not investigated.

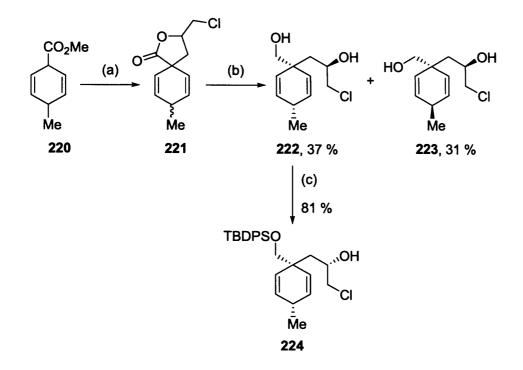

Chapter 6

Studies Towards the Synthesis of

Lycoposerramine S

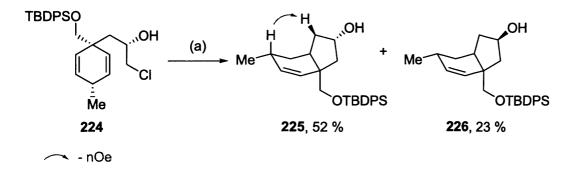
6.1 Introduction

We began to consider the possibility of accessing the tricyclic pyrrolidine core of lycoposerramine S **133**⁶⁴ by a similar strategy, shown in Scheme **95**. Although amine **217** should be easily prepared from alcohol **197**, cyclisation by an intramolecular reductive amination was not expected to be successful due to the requirement for the formation of a bridgehead imine.

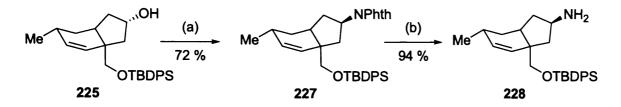


Scheme 95. Retrosynthesis of lycoposerramine S.

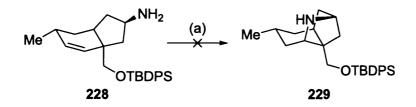
Cyclisation onto an alkene such as **218** would more likely be effective, but provides no simple opportunity to introduce the methyl group. We chose, therefore, to begin with the Birch reduction of *p*-toluic acid and accept the poor selectivity expected to result from alkylation of ester **220**.³⁸


6.2 Results and Discussion

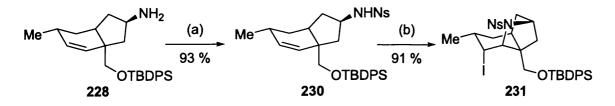
Lactone **221** was, indeed, obtained as nearly a 1:1 mixture of diastereoisomers by alkylation of **220** with epichlorohydrin, as shown in Scheme **96**. As these were inseparable by tlc, the crude mixture was reduced with NaBH₄, allowing diols **222** and **223** to be separated by careful chromatography. As we were unable to determine which was which, the first, slightly larger, fraction was chosen and protected as the TBDPS ether **224**. Radical cyclisation, as shown in Scheme **97**, resulted in a mixture of diastereoisomers **225** and **226**, readily separable by chromatography.


Scheme 96. *Reagents and Conditions:* (a) i) LDA, THF, -78 °C; ii) epichlorohydrin, -78 °C to room temp.; (b) i) NaBH₄, EtOH, ii) chromatography; (c) TBDPSCI, imidazole, DCM.

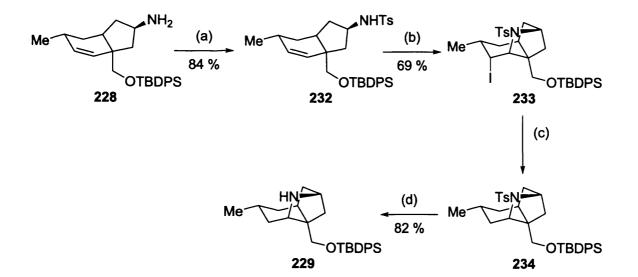
The major isomer **225** showed an nOe between the protons indicated, confirming the methyl group stereochemistry to be as required. The stereochemistry of the secondary alcohol was assumed to be as indicated and was, again, not possible to determine by nOe experiments.


Scheme 97. Reagents and Conditions: (a) Bu₃SnH, AIBN, PhH, reflux, 16 h.

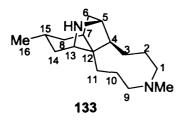
Introduction of the secondary amine was achieved by a Mitsunobu reaction of alcohol **225** with phthalimide, followed by deprotection with hydrazine giving the free amine **228**, as shown in Scheme **98**.

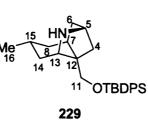

Scheme 98. Reagents and Conditions: (a) Phthalimide, PPh_3 , DIAD, DCM, (b) $N_2H_2.H_2O$, EtOH, reflux.

Although direct cyclisation of **228** in a hydroamination reaction would complete the tricyclic core in a single step, the silyl protecting group would be incompatible with the strong acids generally required. The use of a strong base or a transition metal catalyst is a possibility, but this was not investigated. An attempt was made at cyclisation by an aminomercuration reaction, as shown in Scheme **99**, without success.


Scheme 99. Reagents and Conditions: (a) i) Hg(OAc)₂, NaHCO₃, THF/H₂O, 16 h; ii) NaBH₄.

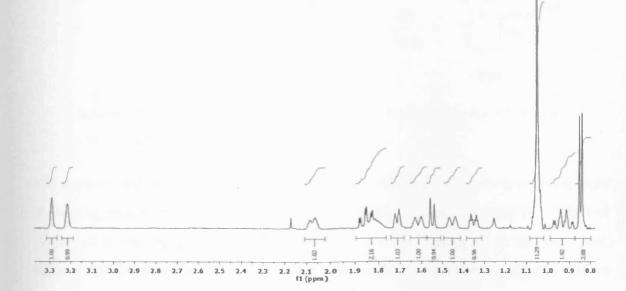
Amine **228** was, therefore, protected as the 4-nitrobenzenesulfonamide **230**, shown in Scheme **100**, which underwent successful iodocyclisation to afford compound **231** in excellent yield. We were unable to remove dehalogenate this compound, however, and attempted deprotection of the nosyl group also failed.




Scheme 100. Reagents and Conditions: (a) $4-NO_2C_6H_4SO_2CI$, Et₃N, CH₂Cl₂; (b) I_2 , NaHCO₃, MeCN.

Protection of amine **228** as the tosylate, followed by iodocyclisation, as shown in Scheme **101**, finally allowed both dehalogenation and deprotection of **233**, furnishing the target compound **229**.

Scheme 101. *Reagents and Conditions:* (a) TsCl, Et₃N, CH₂Cl₂; (b) I₂, NaHCO₃, MeCN; (c) Bu₃SnH, AIBN, PhH, reflux; (d) Na, naphthalene, THF, -78 °C.



Position	Lycoposerramine S 133		Compound 229	
	δ _H	δ _c	δ _Η	δ _c
4	1.57 (m)	50.5	1.55 (d, 9.3) 1.71 (dt, 9.3, 2.2)	44.9
5	3.00 (br. s)	60.2	3.29 (br. s)	56.0
6	1.34 (m)	35.6	1.35 (dt, 12.3, 3.4)	38.2
	1.75 (m)		1.85 (td, 12.3, 2.8)	
7	1.94 (m)	35.0	2.11-2.05 (m)	34.1
8	1.05 (td, 13.0, 3.2)	33.0	0.98-0.88 (m)	33.3
	1.43 (m)		1.45 (br. d, 13.7)	
12		49.5		49.8
13	2.97 (br. s)	59.0	3.22 (br. s)	55.2
14	1.69 (m)	33.7	1.62 (br. d, 14.3)	34.6
	1.00 (td, 12.2, 2.7)		0.98-0.88 (m)	
15	1.87 (m)	20.7	1.86-1.75 (m)	19.7
16	0.88 (d, 6.4)	22.1	0.85 (dd, 6.5)	21.9

Table 7. ¹H and ¹³C NMR data of lycoposerramine S (133) and compound 229 inCDCl₃.

The NMR data obtained from compound **229** show many similarities with those of the natural product, as shown in Table **7** and Figures **12** and **13**.⁶⁵

Fig. 12. ¹H NMR Spectrum of Compound 229 in CDCl₃.

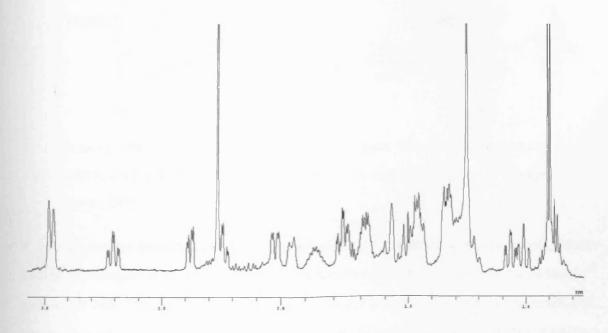
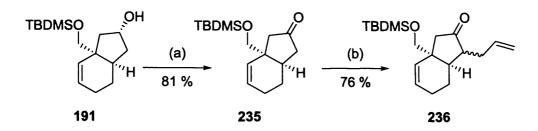
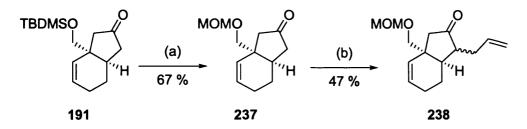
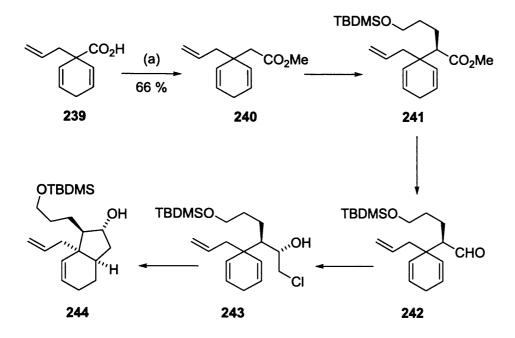



Fig. 13. ¹H NMR Spectrum of lycoposerramine S (133) in CDCl₃.


6.3 The Azonane Ring

Completing the synthesis of these alkaloids *via* this strategy requires a means by which to form the remaining 9-membered ring. We decided to investigate the possibility of achieving this by alkylation of ketone **235**, obtained by oxidation of alcohol **191**, as shown in Scheme **102**.


Scheme 102. Reagents and Conditions: (a) PDC, CH_2Cl_2 , 16 h; (b) i) LDA, THF, -78 °C; ii) allyl iodide, -78 °C to room temp., 16 h.

We were not surprised to find that alkylation of this compound with allyl iodide gave the wrong regioisomer **236**, and thought this problem may be overcome by a different choice of protecting group, hopefully allowing enolate formation to be controlled. Ketone **237** was prepared, as shown in Scheme **103**, however this did not change the regioselectivity of alkylation, which gave compound **238**.

Scheme 103. Reagents and Conditions: (a) i) TBAF, THF, 30 min; ii) MOM-Cl, DIPEA, CH_2Cl_2 , 16 h; (b) i) LDA, THF, -78 °C; ii) allyl bromide, -78 °C to room temp., 16 h.

It may be simpler to introduce this fragment at an earlier point in the synthesis, Arndt-Eistert homologation of acid **239**, prepared by the procedure reported by El-Sayed,²⁶ gave ester **240**. This could presumably be alkylated and transformed into chloride **243**, where the additional 3-carbon chain would be expected to reinforce the directing effect of the alcohol, allowing radical cyclisation to proceed with higher selectivity. There was insufficient time for this to be investigated, however.

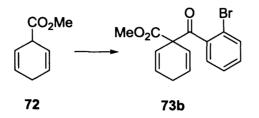
Scheme 104. Reagents and Conditions: (a) i) MeO_2CCI , Et_3N , THF, 30 min; ii) CH_2N_2 ; iii) $AgO_2CC_6H_5$, MeOH, reflux.

6.4 Conclusion

The tricyclic core of lycoposerramine S was synthesized *via* a route involving a desymmetrising free radical cyclisation. Completion of the synthesis requires a means for forming the 9-membered azonane ring. An enolate alkylation strategy was investigated briefly, without success, and an alternative strategy proposed which we were unable to investigate.

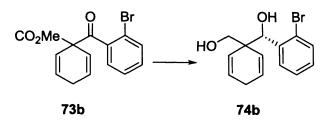
Chapter 7

Experimental Details

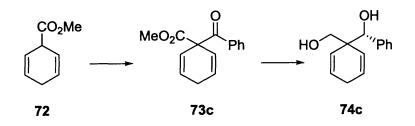

7.1 General Experimental Points

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer 1600 FTIR spectrophotometer. Mass spectra were recorded on a Fisons VG Platform II spectrometer and on a Micromass Q-TOF Micro spectrometer. NMR spectra were recorded on a Bruker DPX 400 spectrometer operating at 400 MHz for ¹H and at 100 MHz for ¹³C at 25 °C, or on a Bruker Avance 500 spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C at 25 °C. All chemical shifts are reported in ppm downfield from TMS, or relative to residual CHCl₃. Coupling constants (*J*) are reported in Hz. Multiplicity in ¹H-NMR is reported as singlet (s), doublet (d), double doublet (dd), double triplet (dt), double quartet (dq), triplet (t), and multiplet (m). Multiplicity in ¹³C-NMR was obtained using the DEPT pulse sequence. All NMR spectra were obtained in CDCl₃, unless otherwise noted. Flash chromatography was performed using Matrex silica 60 35-70 micron.

Solvents for moisture sensitive reactions were dried by distillation; THF, benzene and toluene from sodium benzophenone ketal and CH₂Cl₂ from CaH₂. Such reactions were conducted under an atmosphere of dry nitrogen.


7.2 Experimental Data for Chapter 2

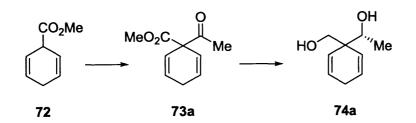
Methyl 1-(2-Bromobenzoyl)cyclohexa-2,5-dienecarboxylate (73b)


2.5 M n-BuLi (4.4 mL, 11 mmol, 1.1 equiv.) was added to DPA (1.5 mL, 10.7 mmol, 1.0 equiv.) at 0 °C. After stirring for 30 min, the resulting gel was dissolved in THF (10 mL) and cooled to -78 °C. A solution of methyl cyclohexa-2,5-diene-1-carboxylate 72 (1.5 g, 10.8 mmol) in THF (5 mL) was added and the stirring was continued for another 30 min. 2-Bromobenzoyl chloride (2.38 g, 10.8 mmol, 1.0 equiv.) was then added as a solution in THF (5 mL) and the reaction mixture was stirred for 1 h at -78 °C, then at room temperature for 18 h. 2 M aqueous HCl (50 mL) was added, the organic layer separated and the aqueous phase extracted with Et₂O (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (14 % EtOAc in hexane) to afford the title compound (2.98 g, 86 %) as a yellow solid, m.p. 43 - 45 °C; v_{max} (neat) 3051, 2952, 2882, 1741, 1705, 1433, 1286, 1231, 1052, 922, 737 cm $^{-1}$; $\delta_{\rm H}$ (400 MHz) 7.49 (1 H, d, J 7.4, aromatic CH), 7.24 - 7.14 (3 H, m, 3 x aromatic CH), 6.03 (2 H, br. d, J 10.2, 2 x alkene CH), 5.93 (2 H, br. d, J 10.2, 2 x alkene CH), 3.78 (3 H, s, CH₃O), 2.63 (1 H, br. d, J 23.5, one of ring CH₂) and 2.45 (1 H, br. d, J 23.5, one of ring CH₂); δ_c (100 MHz) 200.4 (C), 170.4 (C), 170.4 (C), 140.7 (C), 133.0 (CH), 130.7 (CH), 128.6 (2 x CH), 127.2 (CH), 126.5 (CH), 122.6 (2 x CH), 118.7 (C), 62.7 (C), 53.0 (CH₃) and 26.1 (CH₂).

1-(2-Bromophenyl)-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)methanol (74b)

A solution of methyl 1-(2-bromobenzoyl)cyclohexa-2,5-dienecarboxylate **73b** (2.98 g, 9.8 mmol) in THF (10 mL) was added to a stirred suspension of LiAlH₄ (1.1 g, 28.9 mmol, 3.0 equiv.) in THF (20 mL). After stirring for 1 h the reaction was quenched with 2 M aqueous NaOH, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica (33 % EtOAc in hexane) to give the *title compound* (1.90 g, 66 %) as a colourless viscous oil; v_{max} (neat) 3374, 3025, 2878, 2814, 1469, 1435, 1020 and 749 cm⁻¹; δ_{H} (400 MHz) 7.44 (1 H, dd, *J* 7.9, 1.8, aromatic CH), 7.41 (1 H, dd, *J* 8.0, 1.1, aromatic CH), 7.24 - 7.18 (1 H, m, aromatic CH), 7.03 (1 H, app. td, *J* 7.6, 1.7, aromatic CH), 6.00 (1 H, app. dtd, *J* 10.3, 3.3, 1.6, one of alkene CH), 5.83 (1 H, app. dq, *J* 10.3, 2.0, one of alkene CH), 5.21 (1 H, s, CHOH), 3.79 (1 H, d, *J* 10.5, one of CH₂OH), 3.49 (1 H, d, *J* 10.5, one of CH₂OH), 2.49 (1 H, app. dtt, *J* 23.1, 3.6, 1.8, one of CH₂) and 2.25 (1 H, app. double quintet, *J* 23.1, 2.7, one of CH₂). δ_{C} (100 MHz) 139.9 (C), 132.3 (CH), 130.2 (CH), 129.6 (CH), 129.0 (CH), 128.5 (CH), 126.9 (CH), 125.8 (CH), 125.4 (CH), 123.9 (C), 76.3 (CH), 69.2 (CH₂), 48.8 (C) and 26.7 (CH₂).

(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)phenylmethanol (74c)

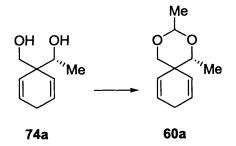


2.5 M *n*-BuLi was added to a cooled (-78 °C) solution of DPA (6.1 mL, 43.5 mmol, 1.0 equiv.) in THF (20 mL). This was allowed to warm to room temperature and recooled to -78 °C. A solution of ester **72** (6.0 g, 43.5 mmol) in THF (4 mL) was added slowly and stirring continued for 30 min. A solution of benzoyl chloride (5.1 mL, 43.5 mmol, 1.0

equiv.) in THF (5 mL) was added slowly and the reaction allowed to warm to room temperature. Saturated aqueous NH_4Cl (30 mL) was added, the organic layer separated and the aqueous phase extracted with Et_2O (2 x 15 mL). The combined organic extracts were dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by Kugelrohr distillation (oven temp. 200 °C at 0.5 mm Hg) to give the keto-ester **73c** (7.9 g, 75 %) as a pale yellow oil.

This was added as a solution in THF (20 mL) to a suspension of LiAlH₄ (2.5 g, 65 mmol, 2 equiv.) in THF (60 mL). After stirring for 30 min the reaction was quenched with 2 M aqueous NaOH, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (30 - 50 % EtOAc in petroleum ether) giving the *title compound* (5.89 g, 84 %) as a viscous, pale yellow oil. v_{max} (CH₂Cl₂) 3362, 3027, 2876, 1453, 1022 and 700 cm⁻¹; δ_{H} (500MHz) 7.30 - 7.15 (5 H, m, 5 x aromatic CH), 5.93 (1 H, dtd, *J* 10.2, 3.3, 1.6, one of alkene CH), 5.81 (1 H, dtd, *J* 10.2, 3.3, 1.6, one of alkene CH), 5.81 (1 H, dtd, *J* 10.2, 3.3, 1.6, one of alkene CH), 5.67 (1 H, dq, *J* 10.2, 2.0, one of alkene CH), 5.41 (1 H, dq, *J* 10.2, 2.0, one of alkene CH), 2.80 - 2.60 (1 H, br. s, OH), 2.50 (1 H, dtt, *J* 23.0, 3.5, 1.8, one of CH₂), 2.34 (1 H, dtt, *J* 23.0, 3.0, 2.4, one of CH₂) and 2.25 - 2.00 (1 H, br. s, OH); δ_{C} (125 MHz) 140.4 (C), 128.9 (CH), 128.3 (CH), 127.6 (2 x CH), 127.5 (2 x CH), 127.5 (CH), 126.5 (CH), 126.1 (CH), 78.9 (CH), 68.6 (CH₂), 47.5 (C) and 26.8 (CH₂).

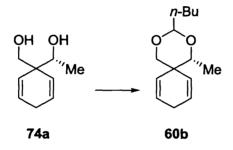
1-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)ethanol (74a)



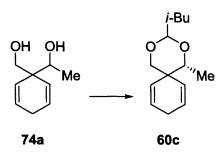
To a solution of DPA (2.0 mL, 14.3 mmol, 1.0 equiv.) in THF (50 mL) at -78 °C was added 2.5 M *n*-BuLi (5.7 mL, 14.3 mmol, 1.0 equiv.). After stirring for 30 min a solution of methyl cyclohexa-2,5-diene-1-carboxylate **72** (2.0 g, 14.5 mmol) in THF (10 mL) was added and stirring was continued for another 30 min. Acetyl chloride (1.1 mL, 15.5 mmol, 1.1 equiv.) was added and the reaction mixture was stirred for 1 h at -78 °C,

then at room temperature for 18 h. Saturated NH₄Cl solution (50 mL) was added, the organic layer separated and the aqueous phase extracted with Et_2O (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo* to give the crude keto-ester **73a** (3.3 g) as an orange oil.

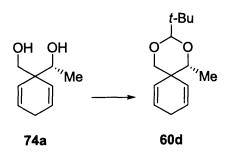
This was dissolved in THF (10 mL) and added to a stirred suspension of LiAlH₄ (1.5 g, 39.5 mmol, 2.7 equiv.) in THF (30 mL). After stirring for 1 h, the reaction was quenched with 2 M NaOH, dried over Na₂SO₄ and filtered. The filtrate was concentrated *in vacuo* and the residue chromatographed on silica (33 % EtOAc in hexane) to give the *title compound* (1.50 g, 67 %) as a colourless solid, m.p. 50 - 52 °C; v_{max} (CH₂Cl₂) 3394, 3022, 2973, 2879, 1635, 1421, 1372, 1130, 1025, 904 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.99 (1 H, m, one of alkene CH), 5.88 (1 H, m, one of alkene CH), 5.68 (1 H, app. dd, *J* 10.3, 2.0, one of alkene CH), 5.36 (1 H, app. dd, *J* 10.3, 2.0, one of alkene CH), 5.36 (1 H, app. dd, *J* 10.3, 2.0, one of alkene CH), 3.75 (1 H, q, *J* 6.4, CHOH), 3.58 (1 H, d, *J* 10.5, one of CH₂OH), 3.50 (1 H, d, *J* 10.5, one of CH₂OH), 2.70 - 2.56 (2 H, m, CH₂), 2.52 (2 H, br. s, 2 x OH) and 1.04 (3 H, d, *J* 6.4 Hz, CH₃); $\delta_{\rm C}$ (100 MHz) 128.4 (CH), 127.9 (CH), 127.0 (CH), 125.5 (CH), 72.9 (CH), 69.6 (CH₂), 46.7 (C), 27.2 (CH₂) and 19.1 (CH₃).


1,3-Dimethyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60a)

To a solution of 1-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)ethanol **74a** (440 mg, 2.9 mmol) and acetaldehyde (3.2 mL, 57.1 mmol, 20 equiv.) in CH_2Cl_2 (20 mL) was added PPTS (500 mg, 2.0 mmol, 0.43 equiv.). After stirring for 18 h the reaction was quenched with water (20 mL), the organic layer separated and the aqueous phase extracted with CH_2Cl_2 (2 x 10 mL). The combined organic extracts were dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the *title compound* (444 mg, 85 %) as a colourless oil; v_{max}

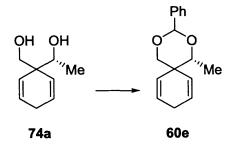

(neat) 2981, 2844, 1454, 1410, 1378, 1320, 1234, 1147, 956, 868 and 703 cm⁻¹; δ_{H} (400 MHz) 6.04 - 5.96 (1 H, m, one of alkene CH), 5.89 - 5.77 (2 H, m, 2 x alkene CH), 5.09 - 5.01 (1 H, m, one of alkene CH), 4.70 (1 H, q, J 5.0, CHO₂), 3.65 (1 H, d, J 11.0, one of CH₂O), 3.52 (1 H, q, J 6.3, CH₃CHO), 3.45 (1 H, d, J 11.0, one of CH₂O), 2.64 - 2.57 (2 H, m, ring CH₂), 1.30 (3 H, d, J 5.0, CH₃) and 1.00 (3 H, d, J 6.3, CH₃); δ_{C} (100 MHz) 128.7 (CH), 126.6 (CH), 126.2 (CH), 125.3 (CH), 99.3 (CH), 79.2 (CH), 76.1 (CH₂), 39.7 (C), 27.4 (CH₂), 21.1 (CH₃) and 16.9 (CH₃).

3-Butyl-1-methyl-2,4-dioxaspiro[5.5]undeca-7,10-diene (60b)


To a solution of 1-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)-ethanol **74a** (385 mg, 2.5 mmol) and valeraldehyde (1.3 mL, 12.5 mmol, 5 equiv.) in CH₂Cl₂ (20 mL) was added PPTS (126 mg, 0.5 mmol, 0.2 equiv.). After stirring for 18 h the reaction was quenched with water (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the *title compound* (488 mg, 88 %) as a colourless oil. v_{max} (neat) 2956, 2860, 1455, 1410, 1376, 1146, 1022, 748 and 704 cm⁻¹; δ_{H} (400 MHz) 6.06 (1 H, app. dq, *J* 10.3, 1.9, one of alkene CH), 5.90 (2 H, m, 2 x alkene CH), 5.12 (1 H, app. dq, *J* 11.0, 2.0, one of alkene CH), 4.60 (1 H, t, *J* 5.1, CHO₂), 3.73 (1 H, d, *J* 11.0, one of CH₂O), 3.57 (1 H, q, *J* 6.4, CHO), 3.51 (1 H, d, *J* 11.0, one of CH₂O), 2.70-2.65 (2 H, m, ring CH₂), 1.69 - 1.63 (2 H, m, CH₂CHO₂), 1.45 - 1.30 (4 H, m, alkyl CH₂), 1.06 (3 H, d, *J* 6.4, CHOCH₃) and 0.90 (3 H, t, *J* 7.2, CH₂CH₃); δ_c (125 MHz) 128.6 (CH), 126.7 (CH), 126.4 (CH), 125.1 (CH), 102.5 (CH), 79.2 (CH), 76.2 (CH₂), 39.9 (C), 34.7 (CH₂), 27.4 (CH₂), 26.1 (CH₂), 22.6 (CH₂), 16.9 (CH₃) and 14.0 (CH₃).

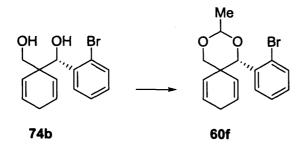
3-Isobutyl-1-methyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60c)

To a solution of 1-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)-ethanol **74a** (413 mg, 2.7 mmol) and isovaleraldehyde (1.4 mL, 13.4 mmol, 5 equiv.) in CH₂Cl₂ (20 mL) was added PPTS (135 mg, 0.54 mmol, 0.2 equiv.). After stirring for 18 h the reaction was quenched with water (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the *title compound* (518 mg, 87 %) as a colourless oil; v_{max} (neat) 3017, 2954, 2869, 1454, 1410, 1375, 1261, 1099, 800 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.99 (1 H, app. dd, *J* 10.4, 1.7, one of alkene CH), 5.87 - 5.78 (2 H, m, 2 x alkene CH), 5.05 (1 H, app. dd, *J* 10.4, 1.8, one of alkene CH), 4.58 (1 H, t, *J* 5.4, CHO₂), 3.66 (1 H, d, *J* 11.0, one of CH₂O), 3.50 (1 H, q, *J* 6.4, CH₃CHO), 3.45 (1 H, d, *J* 11.0, one of CH₂O), 2.70 - 2.53 (2 H, m, ring CH₂), 1.76 (1 H, app. nonet, *J* 6.8, CH(CH₃)₂), 1.55 - 1.39 (2 H, m, CH₂CH(CH₃)₂), 0.99 (3 H, d, *J* 6.4, CH₃) and 0.85 (6 H, app. d, *J* 6.6, 2 x CH₃); $\delta_{\rm C}$ (100 MHz) 128.6 (CH), 126.7 (CH), 126.3 (CH), 125.2 (CH), 101.5 (CH), 79.3 (CH), 76.2 (CH₂), 43.7 (CH₂), 39.9 (C), 27.4 (CH₂), 23.9 (CH), 23.0 (CH₃), 22.7 (CH₃) and 16.9 (CH₃).

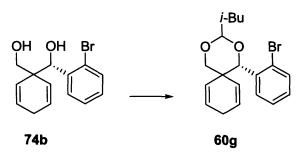

3-tert-Butyl-1-methyl-2,4-dioxaspiro[5.5]undeca-7,10-diene (60d)

To a solution of 1-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)-ethanol **74a** (268 mg, 1.7 mmol) and pivalaldehyde (0.95 mL, 8.7 mmol, 5 equiv.) in CH_2Cl_2 (20 mL) was added

PPTS (87 mg, 0.35 mmol, 0.2 equiv.). After stirring for 18 h the reaction was quenched with water (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 - 100 % Et₂O in petroleum ether) to give the *title compound* (269 mg, 71 %) as a colourless oil; v_{max} (neat) 2958, 2839, 1484, 1454, 1404, 1382, 1361, 1214, 1163, 1135, 1098, 1045, 1022, 990, 942, 746 and 704 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 6.01 (1 H, app. dq, *J* 10.3, 2.0, one of alkene CH), 5.87 (2 H, m, 2 x alkene CH), 5.11 (1 H, app. dq, *J* 10.3, 2.0, one of alkene CH), 4.18 (1 H, s, CHO₂), 3.73 (1 H, d, *J* 10.8, one of CH₂O), 3.52 (1 H, q, *J* 6.5, CHO), 3.48 (1 H, d, *J* 10.8, one of CH₂O), 2.70 - 2.64 (2 H, m, ring CH₂), 1.02 (3 H, d, *J* 6.5, CH₃) and 0.93 (9 H, s, C(CH₃)₃); $\delta_{\rm C}$ (125 MHz) 128.3 (CH), 127.0 (CH), 126.6 (CH), 124.8 (CH), 107.6 (CH), 79.0 (CH), 76.2 (CH₂), 40.0 (C), 34.9 (C), 27.4 (CH₂), 24.7 (CH₃) and 16.9 (CH₃).


(1RS,3SR)-1-Methyl-3-phenyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60e)

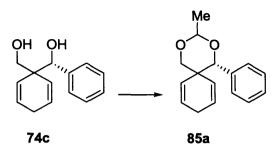
To a solution of 1-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)ethanol **74a** (408 mg, 2.6 mmol) and benzaldehyde (1.35 mL, 13.2 mmol, 5 equiv.) in CH₂Cl₂ (20 mL) was added PPTS (132 mg, 0.53 mmol, 0.2 equiv.). After stirring for 18 h the reaction mixture was quenched with water (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the *title compound* (575 mg, 90 %) as a colourless oil; v_{max} (neat) 3033, 2978, 2840, 1452, 1400, 1373, 1161, 1132, 1087, 1021, 970, 746 cm⁻¹; δ_{H} (400 MHz) 7.47 - 7.43 (2 H, m, 2 x aromatic CH), 7.33 - 7.23 (3 H, m, 3 x aromatic CH), 6.14 (1 H, app. dq, *J* 10.4, 2.0, one of alkene CH), 5.91 - 5.83 (2 H, m, 2 x alkene CH), 5.50 (1 H, s, ArCHO), 5.12 (1 H, app. dq, *J* 10.4, 2.0, one of alkene CH), 3.83 (1 H, d,


J 11.0, one of CH₂O), 3.74 (1 H, q, J 6.4, CH₃CHO), 3.66 (1 H, d, J 11.0, one of CH₂O), 2.72 - 2.56 (2 H, m, ring CH₂) and 1.07 (3 H, d, J 6.4, CH₃); $\delta_{\rm C}$ (100 MHz) 138.6 (C), 129.0 (CH), 128.9 (CH), 128.4 (2 x CH), 126.6 (CH), 126.3 (2 x CH), 126.2 (CH), 125.4 (CH), 102.0 (CH), 80.0 (CH), 76.6 (CH₂), 39.9 (C), 27.5 (CH₂) and 17.0 (CH₃).

(1SR,3SR)-1-(2-Bromophenyl)-3-methyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60f)

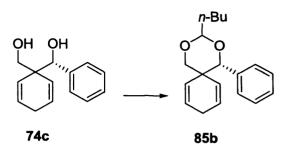
To a solution of 1-(2-bromophenyl)-(1-(hydroxymethyl)-cyclohexa-2,5-dienyl)methanol **74b** (808 mg, 2.73 mmol) and acetaldehyde (5.0 mL, 89.4 mmol, 33 equiv.) in CH_2Cl_2 (20 mL) was added PPTS (0.5 g, 2.0 mmol, 0.7 equiv.). After stirring for 48 h the reaction was quenched with water (20 mL) and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL), the combined organic extracts dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to afford the *title compound* (667 mg, 76 %) as an off-white solid, m.p. 52 - 54 °C; v_{max} (CH₂Cl₂) 3025, 2991, 2858, 2360, 1698, 1474, 1410, 1162, 1117, 1032, 911 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.37 (2 H, m, 2 x aromatic CH), 7.20 - 7.14 (1 H, m, aromatic CH), 7.01 (1 H, app. td, J 7.6, 1.8, aromatic CH), 6.21 (1 H, app. dq, J 10.3, 2.0 Hz, one of alkene CH), 5.74 - 5.68 (1 H, m, one of alkene CH), 5.65 - 5.59 (1 H, m, one of alkene CH), 5.48 (1 H, app. dq, J 10.1, 2.0, one of alkene CH), 5.08 (1 H, s, CHAr), 4.94 (1 H, q, J 5.0, CH₃CHO), 3.81 (1 H, d, J 11.0, one of CH₂O), 3.76 (1 H, d, J 11.0, one of CH₂O), 2.34 (1 H, app. dtt, J 22.8, 3.7, 1.8, one of ring CH₂), 1.90 (1 H, app. double quintet, J 22.8, 2.6, one of ring CH₂) and 1.38 (3 H, d, J 5.0, CH₃CHO); δ_c (100 MHz) 137.3 (C), 131.9 (CH), 130.9 (CH), 128.9 (CH), 128.5 (CH), 126.4 (CH), 126.4 (CH), 126.3 (CH), 125.3 (CH), 123.6 (C), 100.2 (CH), 83.7 (CH), 76.5 (CH₂), 42.1 (C), 26.8 (CH₂) and 21.1 (CH₃) ppm.

(1SR,3SR)-1-(2-Bromophenyl)-3-isobutyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60g)

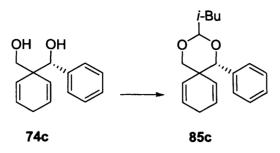

A solution of 1-(2-bromophenyl)-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)methanol 74b (758 mg, 2.6 mmol) isovaleraldehyde (2.7 mL, 25.7 mmol, 10 equiv.) and PPTS (0.5 g, 2.0 mmol, 0.8 equiv.) in CH_2Cl_2 (20 mL) was stirred for 48 h. The reaction was quenched with water (20 mL), the organic layer separated and the aqueous phase extracted with CH₂Cl₂ (2 x 10 mL) The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica (5 % Et₂O in petroleum ether) to give the *title compound* (644 mg, 69 %) as a colourless oil; v_{max} (neat) 3026, 2956, 2923, 2854, 1467, 1439, 1362, 1260, 1128, 1017 and 804 cm⁻¹; δ_H (400 MHz) 7.38 (1 H, dd, J 8.0, 1.1 Hz, aromatic CH), 7.36 (1 H, dd, J 7.8, 1.8, aromatic CH), 7.19 - 7.14 (1 H, m, aromatic CH), 7.00 (1 H, app. td, J 7.6, 1.8 Hz, aromatic CH), 6.19 (1 H, app. dq, J 10.4, 1.9, one of alkene CH), 5.72 - 5.67 (1 H, m, one of alkene CH), 5.65 - 5.59 (1 H, m, one of alkene CH), 5.49 (1 H, app. dq, J 10.2, 1.9, one of alkene CH), 5.05 (1 H, s, ArCH), 4.82 (1 H, t, J 5.4, CHO), 3.81 (1 H, d, J 11.0, one of CH₂O), 3.74 (1 H, d, J 11.0, one of CH₂O), 2.35 (1 H, app. dtt, J 22.9, 3.7, 1.9, one of ring CH₂), 1.89 (1 H, app. doubled quintet, J 22.9, 2.7, one of ring CH₂), 1.80 (1 H, app. nonet, J 6.7, CH(CH₃)₂), 1.64 - 1.48 (2 H, m, CH₂CH(CH₃)₂), 0.88 (3 H, d, J 6.7, CH₃) and 0.86 (3 H, d, J 6.7, CH₃); δ_c (100 MHz) 137.5 (C), 131.9 (CH), 131.0 (CH), 128.9 (CH), 128.4 (CH), 126.4 (CH), 126.3 (CH), 126.3 (CH), 125.4 (CH), 123.5 (C), 102.2 (CH), 83.8 (CH), 76.5 (CH₂), 43.7 (CH₂), 42.1 (C), 26.8 (CH₂), 23.8 (CH), 23.2 (CH₃) and 22.8 (CH₃).

(1SR,3SR)-1-(2-Bromophenyl)-3-phenyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (60h)

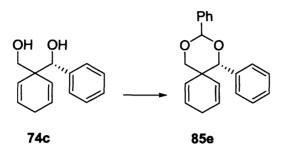
To a solution of 1-(2-bromophenyl)-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)methanol 74b (1.0 g, 3.4 mmol) and benzaldehyde (3.5 mL, 34 mmol, 10 equiv.) in CH₂Cl₂ (20 mL) was added PPTS (0.5 g, 2.0 mmol, 0.6 equiv.). The resulting mixture was stirred at room temperature for 6 d. The reaction mixture was guenched with saturated NaHCO₃ and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL) and the combined organic extracts dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the title compound (716 mg, 55 %) as a colourless solid, m.p. 104 - 105 °C; v_{max} (CH_2Cl_2) 3022, 2886, 2852, 1449, 1401, 1322, 1223, 1112, 1023 and 753 cm⁻¹; δ_H (400 MHz) 7.82 (2 H, d, J 7.8, 2 x aromatic CH), 7.75 (1 H, dd, J 7.8, 1.6 Hz, aromatic CH), 7.70 (1 H, dd, J 8.0, 0.9 Hz, aromatic CH), 7.67 - 7.58 (3 H, m, 3 x aromatic CH), 7.48 (1 H, app. t, J 7.9, aromatic CH), 7.32 (1 H, app. td, J 7.7, 1.7, aromatic CH), 6.65 (1 H, app. dg, J 10.3, 1.6 Hz, one of alkene CH), 6.11 - 6.02 (2 H, m, one of alkene CH and PhCHO), 5.98 (1 H, br. d, J 10.1, one of alkene CH), 5.88 (1 H, app. dq, J 10.2, 1.7, one of alkene CH), 5.62 (1 H, s, ArCH), 4.30 (2 H, app. singlet, CH₂O), 2.75 - 2.63 (1 H, m, one of ring CH₂) and 2.29 - 2.18 (1 H, m, one of ring CH₂); δ_{C} (100 MHz) 138.3 (C), 137.2 (C), 131.9 (CH), 131.1 (CH), 129.1 (CH), 128.9 (CH), 128.7 (CH), 128.3 (2 x CH), 126.6 (CH), 126.4 (CH), 126.3 (2 x CH), 126.1 (CH), 125.2 (CH), 123.6 (C), 102.5 (CH), 84.2 (CH), 76.9 (CH₂), 42.3 (C) and 26.8 (CH₂).


3-Methyl-1-phenyl-2,4-dioxaspiro(5.5)undeca-7,10-diene (85a)

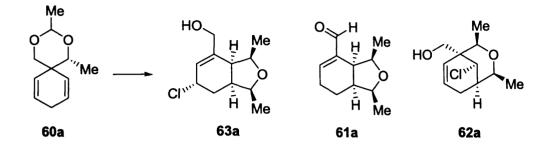
To a solution of (1-(hydroxymethyl)cyclohexa-2,5-dienyl)phenylmethanol 74c (494 mg, 2.3 mmol) in CH₂Cl₂ (20 mL) was added acetaldehyde (2.6 mL, 45.8 mmol, 20 equiv.), PTSA (approx. 20 mg) and DMF (1 mL). After stirring for 24 h the reaction was quenched with saturated aqueous NaHCO₃ (20 mL), the organic layer separated and the aqueous phase extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the title compound (392 mg, 71 %) as a colourless oil. v_{max} (neat) 3031, 2961, 2845, 1496, 1454, 1410, 1354, 1119, 1024 and 712 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.20 - 7.11 (5 H, m, 5 x aromatic CH), 6.11 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 5.69 (1 H, app. dtd, J 10.2, 3.4, 1.5, one of alkene CH), 5.58 (1 H, app. dtd, J 10.2, 3.4, 1.5, one of alkene CH), 5.26 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 4.89 (1 H, q, J 5.0, CH₃CHO), 4.48 (1 H, s, ArCH), 3.79 (1 H, d, J 11.0, one of CH₂O), 3.67 (1 H, d, J 11.0, one of CH₂O), 2.33 (1 H, app. dtt, J 22.8, 3.4, 2.0, one of ring CH₂), 1.92 (1 H, app. dtt, J 22.8, one of ring CH₂) and 1.41 (3 H, d, J 5.0, CH₃); δ_H (100 MHz) 138.2 (C), 129.2 (CH), 127.5 (CH), 127.2 (CH), 127.0 (CH), 126.4 (CH), 125.7 (CH), 125.4 (CH), 99.8 (CH), 85.6 (CH), 76.4 (CH₂), 41.1 (C), 26.9 (CH₂) and 21.1 (CH₃).



3-Butyl-1-phenyl-2,4-dioxaspiro[5.5]undeca-7,10-diene (85b)


To a solution of (1-(hydroxymethyl)cyclohexa-2,5-dienyl)phenylmethanol 74c (452 mg, 2.1 mmol) in CH₂Cl₂ (20 mL) was added valeraldehyde (1.1 mL, 10.5 mmol, 5 equiv.), PTSA (approx. 20 mg) and DMF (1 mL). After stirring for 24 h the reaction was quenched with saturated aqueous NaHCO₃ (20 mL), the organic layer separated and the aqueous phase extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the title compound (394 mg, 66 %) as a colourless oil. v_{max} (neat) 3031, 2956, 2860, 1452, 1410, 1360, 1142, 1025 and 713 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.19 - 7.11 (5 H, m, 5 x aromatic CH), 6.08 (1 H, app. dq, J 10.3, 2.0, one of alkene CH), 5.69 (1 H, app. dtd, J 10.3, 3.4, 1.5, one of alkene CH), 5.57 (1 H, app. dtd, J 10.3, 3.4, 1.5, one of alkene CH), 5.27 (1 H, app dg, J 10.3, 2.0, one of alkene CH), 4.73 (1 H, t, J 4.9, CHO), 4.47 (1 H, s, ArCH), 3.80 (1 H, d, J 11.0, one of CH₂O), 3.65 (1 H, d, J 11.0, one of CH₂O), 2.33 (1 H, app. dtt, J 22.8, 3.4, 2.0, one of ring CH₂), 1.92 (1 H, app. dtt, J 22.8, 3.4, 2.0, one of ring CH₂), 1.73 - 1.68 (2 H, m), 1.45 - 1.37 (2 H, m), 1.29 (2 H, app. sextet, J 7.3, CH₂CH₃) and 0.85 (3 H, t, J 7.3, CH₃); δ_{C} (125 MHz) 138.5 (C), 129.1 (CH), 127.4 (CH), 127.1 (CH), 127.0 (CH), 126.5 (CH), 125.8 (CH), 125.3 (CH), 102.7 (CH), 85.4 (CH), 76.4 (CH₂), 41.3 (C), 34.7 (CH₂), 26.9 (CH₂), 25.9 (CH₂), 22.7 (CH₂) and 14.0 (CH₃).

3-Isobutyl-1-phenyl-2,4-dioxaspiro[5.5]undeca-7,10-diene (85c)


To a solution of (1-(hydroxymethyl)cyclohexa-2,5-dienyl)phenylmethanol 74c (474 mg, 2.2 mmol) in CH₂Cl₂ (20 mL) was added isovaleraldehyde (1.2 mL, 11.0 mmol, 5 equiv.), PTSA (approx. 20 mg) and DMF (1 mL). After stirring for 24 h the reaction was quenched with saturated aqueous NaHCO₃ (20 mL), the organic layer separated and the aqueous phase extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by chromatography on silica (5 % Et_2O in petroleum ether) to give the *title compound* (410 mg, 66 %) as a colourless oil. v_{max} (neat) 3033, 2957, 2867, 1450, 1411, 1361, 1122, 1022 and 706 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.25 - 7.19 (5 H, m, 5 x aromatic CH), 6.15 (1 H, app. dq, J 10.1, 2.0, one of alkene CH), 5.77 (1 H, app. dtd, J 10.1, 3.3, 1.5, one of alkene CH), 5.63 (1 H, app. dtd, J 10.1, 3.3, 1.5, one of alkene CH), 5.34 (1 H, app. dq, J 10.1, 2.0, one of alkene CH), 4.84 (1 H, t, J 5.3, CHO), 4.55 (1 H, s, ArCHO), 3.86, (1 H, d, J 11.0, one of CH₂O), 3.73 (1 H, d, J 11.0, one of CH₂O), 2.40 (1 H, app. dtt, J 23.0, 3.3, 2.0, one of ring CH₂), 1.99 (1 H, app. dtt, J 23.0, 3.3, 2.0, one of ring CH₂), 1.95 - 1.84 (1 H, m, CH(CH₃)₂), 1.70 - 1.65 (2 H, m, CH₂CHO) and 0.95 (6 H, d, J 6.7, CH₃); δ_{c} (125 MHz) 138.5 (C), 129.1 (CH), 127.4 (CH), 127.0 (CH), 127.0 (CH), 126.6 (CH), 125.9 (CH), 125.2 (CH), 101.9 (CH), 85.5 (CH), 76.5 (CH₂), 43.1 (CH₂), 41.4 (C), 26.9 (CH₂), 23.8 (CH), 23.1 (CH₃) and 22.9 (CH₃).

1,3-Diphenyl-2,4-dioxaspiro[5.5]undeca-7,10-diene (85e)

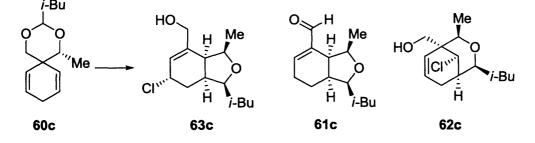
To a solution of (1-(hydroxymethyl)cyclohexa-2,5-dienyl)phenylmethanol 74c (474 mg, 2.2 mmol) in CH₂Cl₂ (20 mL) was added benzaldehyde dimethyl acetal (1.7 mL, 11.0 mmol, 5 equiv.), PTSA (approx. 20 mg) and DMF (1 mL). After stirring for 24 h the reaction was quenched with saturated aqueous NaHCO₃ (20 mL), the organic layer separated and the aqueous phase extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (5 % Et₂O in petroleum ether) to give the *title* compound (280 mg, 42 %) as a colourless solid. v_{max} (CH₂Cl₂) 3032, 2956, 2842, 1497, 1452, 1399, 1360, 1123, 1027 and 698 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.56 - 7.52 (2 H, m, 2 x aromatic CH), 7.36 - 7.27 (3 H, m, 3 x aromatic CH), 7.25 - 7.21 (2 H, m, 2 x aromatic CH), 7.19 - 7.12 (3 H, m, 2 x aromatic CH), 6.23 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 5.75 (1 H, app. dtd, J 10.2, 3.4, 1.5, one of alkene CH), 5.70 (1 H, s, ArCHO₂), 5.61 (1 H, app. dtd, J 10.2, 3.4, 1.5, one of alkene CH), 5.35 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 4.72 (1 H, s, ArCHO), 3.97 (1 H, d, J 11.0, one of CH₂O), 3.90 (1 H, d, J 11.0, one of CH₂O), 2.36 (1 H, app. dtt, J 22.8, 3.6, 1.8, one of ring CH₂) and 1.94 (1 H, app. dtt, J 22.8, 3.0, 2.4, one of ring CH₂); $\delta_{\rm C}$ (125 MHz) 138.5 (C), 138.2 (C), 129.5 (CH), 128.9 (CH), 128.3 (CH), 127.5 (CH), 127.2 (CH), 127.0 (CH), 126.3 (CH), 126.3 (CH), 125.6 (CH), 125.6 (CH), 102.1 (CH), 86.0 (CH), 76.8 (CH₂), 41.4 (C) and 26.9 (CH₂).

7.2.1 Prins Reactions with TiCl₄

Prins Cyclisation of Acetaldehyde Acetal 60a

Titanium tetrachloride (0.32 mL, 2.9 mmol, 2 equiv.) was added to a cooled (-78 °C) solution of acetaldehyde acetal **60a** (260 mg, 1.44 mmol) in CH_2Cl_2 (10 mL). After stirring for 1 h the reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (14 % EtOAc in petroleum ether) to give compound **61a** as a yellow oil (73 mg, 28 %) and compound **62a** as a pale yellow oil (61 mg, 20 %), respectively. While compound **63a** was not isolated its existence was evident from the data obtained from the crude reaction mixture.

((1RS,2RS,4SR,5RS,9RS)-9-Chloro-2,4-dimethyl-3-oxabicyclo-(3.3.1)non-7-en-1yl)methanol (62a)


62a (61 mg, 20 %): (Found: MNH₄⁺ 234.1256. $C_{11}H_{21}^{35}$ ClNO₂ requires M, 234.1255); v_{max} (CH₂Cl₂) 3418, 2978, 1684, 1376, 1075, 722 cm⁻¹; δ_{H} (400 MHz) 5.92 (1 H, app. dt, *J* 10.0, 3.4, CCH=CH), 5.02 (1 H, app. dq, *J* 10.0, 1.8, CCH=CH), 4.45 (1 H, app. dd, *J* 3.3, 1.2, CHCl), 3.91 (1 H, d, *J* 11.2, one of CH₂OH), 3.72 (1 H, q, *J* 6.3, CCHCH₃), 3.70 (1 H, app. dq, *J* 1.7, 6.4, CHCHCH₃), 3.57 (1 H, d, *J* 11.2, one of CH₂OH), 2.33 (1 H, app. ddt, *J* 19.3, 5.9, 2.9, one of CH₂CH=CH), 2.28 - 2.20 (1 H, m, one of CH₂CH=CH), 2.00 - 1.95 (1 H, m, CHCHCH₃), 1.17 (3 H, d, *J* 6.4, CHCHCH₃) and 1.09 (3 H, d, *J* 6.3, CCHCH₃); δ_{C} (100 MHz) 130.8 (CH), 121.8 (CH), 76.5 (CH), 76.3 (CH), 63.5 (CH₂), 63.3 (CH), 45.6 (C), 41.2

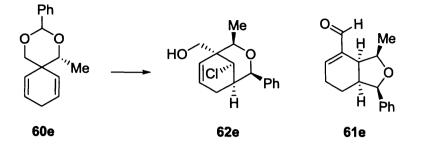
(CH), 22.7 (CH₂), 19.0 (CH₃) and 16.3 (CH₃). *m/z* (CI) 234 (M+NH₄⁺, 100 %), 198 (79), 181
(48), 137 (27), 121 (27).

(1*SR*, 3*RS*, 3a*SR*, 7a*SR*)-1, 3, 3a, 6, 7, 7a-Hexahydro-1, 3-dimethylisobenzofuran-4carbaldehyde (61a)

61a (73 mg, 28 %): (Found: M^+ 180.1161. $C_{11}H_{16}O_2$ requires M, 180.1150); v_{max} (CH₂Cl₂) 2924, 1686, 1458, 1375, 1259, 1165 cm⁻¹; δ_H (400 MHz) 9.40 (1 H, s, CHO), 6.95 (1 H, br. singlet, C=CH), 4.39 - 4.30 (1 H, m, CCHCHO), 4.02 - 3.94 (1 H, m, CH₂CHCHO), 3.18 (1 H, app. t, *J* 8.0, CCHCHO), 2.54 - 2.42 (1 H, m, one of CH₂CH=C), 2.28 - 2.15 (1 H, m, one of CH₂CH=C), 2.00 - 1.86 (1 H, m, CH₂CHCHO), 1.76 - 1.67 (1 H, m, one of CH₂CHCHO), 1.41 - 1.27 (1 H, m, one of CH₂CHCHO), 1.18 (3 H, d, *J* 6.4, CH₂CHCHCH₃) and 0.87 (3 H, d, *J* 6.4, CCHCHCH₃); δ_C (100 MHz) 194.5 (CH), 152.8 (CH), 140.9 (C), 76.2 (CH), 74.8 (CH), 40.2 (CH), 39.4 (CH), 25.7 (CH₂), 19.8 (CH₃), 19.2 (CH₂) and 15.1 (CH₃). *m/z* (EI) 180 (M⁺, 12 %), 178 (37), 136 (100), 107 (98), 79 (98).

Prins Cyclisation of Isobutyl Acetal 60c

Titanium tetrachloride (0.18 mL, 1.6 mmol) was added to a cooled (-78 °C) solution of isobutyl acetal **60c** (188 mg, 0.85 mmol) in CH_2Cl_2 (10 mL). After stirring for 2 h the reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (14 % EtOAc in petroleum ether) to give compound **61c** as a yellow oil (70 mg, 37%), and compound **62c** as a pale yellow solid (31 mg, 14%), respectively. While compound **63c** was not isolated its existence was evident from the data obtained from the crude reaction mixture.


((1*RS*,2*RS*,4*SR*,5*RS*,9*RS*)-9-Chloro-4-isobutyl-2-methyl-3-oxabicyclo(3.3.1)non-7-en-1yl)methanol (62c)

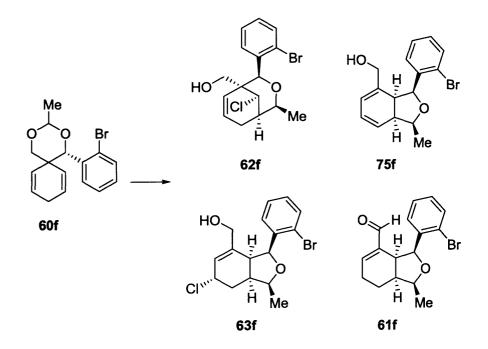
62c (31 mg, 14 %): m.p. 70 - 72 °C; (Found: MNH₄⁺ 276.1723. $C_{14}H_{27}^{35}CINO_2$ requires M, 276.1725); v_{max} (neat) 3442, 3024, 2955, 1467, 1369, 1107 and 1042 cm⁻¹; δ_H (400 MHz) 5.92 (1 H, app. dt, *J* 10.0, 3.5, CCH=*CH*), 5.02 (1 H, app. dq, *J* 10.0, 1.9, CC*H*=CH), 4.48 (1 H, app. dd, *J* 3.2, 1.3, CHCI), 3.91 (1 H, d, *J* 11.4, one of *CH*₂OH), 3.69 (1 H, q, *J* 6.4, CCHO), 3.57 (1 H, d, *J* 11.4, one of *CH*₂OH), 3.56 - 3.51 (1 H, m, CHCHO), 2.32 (1 H, app. ddt, *J* 19.3, 6.0, 2.7, one of *CH*₂CH=CH), 2.24 - 2.16 (1 H, m, one of *CH*₂CH=CH), 2.01 - 1.96 (1 H, m, *CH*CHO), 1.67 (1 H, app. nonet, *J* 6.6, isobutyl CH), 1.53 (1 H, app. ddd, *J* 13.9, 8.4, 6.4, one of isobutyl CH₂), 1.16 - 1.10 (1 H, m, 1 H, one of isobutyl CH₂), 1.08 (3 H, d, *J* 6.4, CCHC*H*₃), 0.84 (3 H, d, *J* 6.4, CH₃) and 0.83 (3 H, d, *J* 6.4, *CH*₃); δ_C (100 MHz) 130.9 (CH), 121.9 (CH), 79.1 (CH), 76.4 (CH), 63.5 (CH and CH₂), 45.9 (C), 42.0 (CH₂), 40.2 (CH), 24.6 (CH), 23.2 (CH₂), 23.0 (CH₃), 22.5 (CH₃) and 16.2 (CH₃) ppm. *m/z* (CI) 276 (M + NH₄⁺, 100 %), 240 (50), 223 (22), 179 (23).

(1*SR*, 3*SR*, 3a*SR*, 7a*SR*)-1-IsobutyI-1, 3, 3a, 6, 7, 7a-hexahydro-3-methylisobenzofuran-4carbaldehyde (61c)

61c (70 mg, 37%): (Found: M⁺ 222.1623. $C_{14}H_{22}O_2$ requires M, 222.1611); v_{max} (neat) 2954, 1684, 1642, 1466, 1371, 1093 cm⁻¹; δ_{H} (400 MHz) 9.39 (1 H, s, CH=O), 6.94 (1 H, app. d, *J* 5.1, HC=C), 4.31 (1 H, app. dq, *J* 9.9, 6.4, CCHCHO), 3.86 (1 H, ddd, *J* 7.3, 6.1, 4.0, CH₂CHCHO), 3.16 (1 H, app. t, *J* 8.1, CCHCHO), 2.45 (1 H, app. dtd, *J* 20.0, 4.2, 1.1, one of CH₂CH=C), 2.26 - 2.12 (1 H, m, one of CH₂CH=C), 1.90 (1 H, app. ddt, *J* 13.1, 6.9, 4.0, CH₂CHCHO), 1.72 - 1.59 (2 H, m, one of CH₂CHCHO and isobutyl CH), 1.47 (1 H, app. dt, *J* 13.6, 7.2, one of isobutyl CH₂), 1.41 - 1.27 (2 H, m, one of isobutyl CH₂ and one of CH₂CHCHO) and 0.91 - 0.84 (9 H, m, 3 x CH₃); δ_c (100 MHz) 194.5 (CH), 152.7 (CH), 141.0 (C), 78.7 (CH), 74.5 (CH), 39.4 (CH), 39.2 (CH), 38.8 (CH₂), 25.7 (CH₂), 25.5 (CH), 23.3 (CH₃), 22.8 (CH₃), 19.8 (CH₃) and 19.3 (CH₂). *m/z* (CI) 222 (M⁺, 1 %), 178 (26), 136 (59), 107 (81), 91 (100).

Prins Cyclisation of Benzaldehyde Acetal 60e

Titanium tetrachloride (0.17 mL, 1.5 mmol, 2 equiv.) was added to a cooled (-78 °C) solution of benzaldehyde acetal **60e** (183 mg, 0.76 mmol) in CH_2Cl_2 (10 mL). After stirring for 15 min the reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (10 % EtOAc in petroleum ether) to give the aldehyde **61e** as a colourless solid (36 mg, 20 %) and alcohol **62e** as a colourless solid (80 mg, 38 %), respectively.


((1*RS*,2*RS*,4*SR*,5*RS*,9*RS*)-9-Chloro-2-methyl-4-phenyl-3-oxabicyclo(3.3.1)non-7-en-1yl)methanol (62e)

62e (80 mg, 38%): m.p. 144 - 145 °C; (Found: $[M - OC_2H_4]^+$ 234.0829. $C_{14}H_{15}^{35}$ ClO requires M, 234.0811); v_{max} (CH₂Cl₂) 3429, 3030, 2924, 1653, 1451, 1387, 1368, 1310, 1250, 1119, 1058, 1031, 724 cm⁻¹; δ_H (400 MHz) 7.31 - 7.16 (5 H, m, 5 x aromatic CH), 5.87 (1 H, app. dt, *J* 10.0, 3.4, CCH=*CH*), 5.06 (1 H, app. dq, *J* 10.0, 1.9, CCH=CH), 4.70 (2 H, m, CHCHO and CHCl), 3.96 (1 H, d, *J* 11.2, one of CH₂OH), 3.90 (1 H, q, *J* 6.2, CCHO), 3.64 (1 H, d, *J* 11.2, one of CH₂OH), 2.42 - 2.36 (1 H, m, CHCHO), 2.09 (1 H, app. ddt, *J* 19.3, 6.7, 2.7, one of CH₂CH=CH), 1.87 - 1.78 (1 H, m, one of CH₂CH=CH) and 1.20 (3 H, d, *J* 6.2, CH₃); δ_C (100 MHz) 140.2 (C), 130.9 (CH), 128.2 (2 x CH), 127.2 (CH), 125.6 (2 x CH), 121.5 (CH), 81.7 (C), 77.1 (CH), 63.6 (CH₂), 63.1 (CH), 46.6 (C), 41.9 (CH), 23.2 (CH₂) and 16.3 (CH₃). *m/z* (EI) 234 ([M - OC₂H₄]⁺, 8 %), 198 (12), 181 (15), 107 (25), 91 (100).

(1*RS*,3*RS*,3a*SR*,7a*SR*)-1,3,3a,6,7,7a-Hexahydro-3-methyl-1-phenylisobenzofuran-4carbaldehyde (61e)

61e (36 mg, 20%): m.p. 94 - 96 °C; (Found: MNa⁺ 265.1200. $C_{16}H_{18}NaO_2$ requires M, 265.1199); v_{max} (CH₂Cl₂) 2966, 2925, 2885, 2805, 1671, 1637, 1449, 1172, 1092 and 1027 cm⁻¹; δ_H (400 MHz) 9.40 (1 H, s, HC=O), 7.27 (3 H, m, 3 x aromatic CH), 7.22 - 7.15 (2 H, m, 2 x aromatic CH), 6.94 (1 H, app. d, *J* 4.8, HC=C), 5.04 (1 H, d, *J* 4.4, CH₂CHCHO), 4.57 (1 H, dq, *J* 10.0, 6.4, CCHCHO), 3.39 (1 H, app. t, *J* 8.2, CCHCHO), 2.35 (1 H, app. dtd, *J* 20.0, 5.3, 1.3, one of CH₂CH=C), 2.21 (1 H, app. ddt, *J* 13.1, 6.8, 4.6, CH₂CHCHO), 2.14 - 2.02 (1 H, m, one of CH₂CH=C), 1.18 (1 H, app. dq, *J* 13.3, 5.3, one of CH₂CHCHO), 1.09 - 1.01 (1 H, m, one of CH₂CHCHO) and 0.99 (3 H, d, *J* 6.4, CH₃); δ_C (100 MHz) 194.3 (CH), 152.9 (CH), 140.8 (C), 138.9 (C), 128.1 (2 x CH), 127.0 (CH), 125.9 (2 x CH), 82.1 (CH), 75.1 (CH), 41.6 (CH), 39.6 (CH), 25.7 (CH₂), 20.2 (CH₂) and 20.0 (CH₃). *m/z* (APCI) 260 (M + NH₄⁺, 100), 257 (54), 198 (13).

Prins Cyclisation of Acetaldehyde Acetal 60f

Titanium tetrachloride (0.18 mL, 1.64 mmol, 2.2 equiv.) was added to a cooled (-78 °C) solution of acetaldehyde acetal **60f** (235 mg, 0.73 mmol) in CH_2Cl_2 (10 mL). After stirring for 30 min the reaction was quenched with saturated NaHCO₃ (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2 x 10 mL).

The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (17 % EtOAc in hexane) to give compound **75f** as a colourless oil (40 mg, 17 %), compound **62f** as a pale yellow oil (26 mg, 10 %) and compound **61f** as a colourless oil (104 mg, 44 %), respectively. While compound **63f** was not isolated, its existence was evident from the data obtained from the crude reaction mixture.

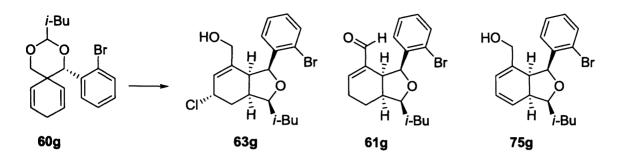
((1*SR*,3*SR*,3a*SR*,7a*SR*)-3-(2-Bromophenyl)-6-chloro-1,3,3a,6,7,7a-hexahydro-1methylisobenzofuran-4-yl)methanol (63f)

This compound was not isolated pure. These data are obtained from the crude reaction mixture under the above conditions. δ_{H} (400 MHz) 7.44 (1 H, d, J 8.2, aromatic CH), 7.22 - 7.17 (1 H, m, aromatic CH), 7.10 - 7.02 (2 H, m, 2 x aromatic CH), 5.84 (1 H, d, J 5.0, HC=C), 5.41 (1 H, d, J 9.9, ArCHO), 4.72 - 4.64 (1 H, m, ClCHCH=C), 4.10 (1 H, dq J 6.3, 4.8, MeCHO), 3.48 (1 H, d, J 14.4, one of CH₂OH), 3.35 - 3.28 (2 H, m, CHCHAr and one of CH₂OH), 2.70 - 2.61 (1 H, m, CHCHMe), 2.15 - 2.20 (2 H, m, CH₂CHCl) and 1.30 (3 H, d, J 6.3, CH3); δ_{C} (100 MHz) 140.9 (C), 138.0 (C), 132.5 (CH), 129.8 (CH), 129.4 (CH), 127.6 (CH), 125.0 (CH), 124.0 (C), 81.1 (CH), 76.9 (CH), 64.6 (CH₂), 53.9 (CH), 43.3 (CH), 36.9 (CH), 29.9 (CH₂) and 14.8 (CH₃).

((1RS,2SR,4SR,5RS,9RS)-2-(2-Bromophenyl)-9-chloro-4-methyl-3oxabicyclo(3.3.1)non-7-en-1-yl)methanol (62f)

62f (26 mg, 10 %): (Found: MH⁺ 356.0167. $C_{16}H_{18}O_2^{79}Br^{35}Cl$ requires M 356.0173); v_{max} (CH₂Cl₂) 3578, 3024, 2925, 1725, 1694, 1470, 1440, 1386, 1204, 1084 cm⁻¹; δ_{H} (400 MHz) 7.46 (1 H, dd, *J* 8.0, 1.2, aromatic CH), 7.40 (1 H, dd, *J* 7.8, 1.7, aromatic CH), 7.23 - 7.17 (1 H, m, aromatic CH), 7.08 (1 H, app. dt, *J* 7.6, 1.7, aromatic CH), 6.01 (1 H, app. dt, *J* 9.9, 3.4, one of alkene CH), 4.97 (1 H, s, ArCHO), 4.81 (1 H, app. dq, *J* 9.9, 1.9, one of alkene CH), 4.68 (1 H, dd, *J* 3.3, 1.5 Hz, CHCl), 3.89 (1 H, dq, *J* 1.7, 6.3, MeCHO), 3.60 (1 H, d, *J* 12.3, one of CH₂OH), 3.22 (1 H, d, *J* 12.3, one of CH₂OH), 2.47 - 2.30 (2 H, m, CH₂CH=CH), 2.12 - 2.06 (1 H, m, CHCHCl) and 1.22 (3 H, d, *J* 6.3, CH₃); δ_{c} (100 MHz) 137.5 (C), 132.3 (CH), 131.5 (CH), 130.3 (CH), 129.7 (CH), 127.3 (CH), 123.5 (C), 121.8

(CH), 80.7 (CH), 77.3 (CH), 63.2 (CH₂), 63.1 (CH), 46.5 (C), 41.1 (CH), 22.8 (CH₂) and 18.9 (CH₃). *m/z* (APCI) 361 (MH⁺ (⁸¹Br³⁷CI), 13 %), 359 (MH⁺ (⁷⁹Br³⁷CI), 48), 257 (44), 187 (65), 185 (75), 157 (25), 155 (65), 149 (29), 137 (100).


(1SR,3SR,3aSR,7aSR)-3-(2-Bromophenyl)-1,3,3a,6,7,7a-hexahydro-1methylisobenzofuran-4-carbaldehyde (61f)

61f (104 mg, 44%): (Found: MH⁺ 321.0480. $C_{16}H_{18}^{79}BrO_2$ requires M, 321.0490); v_{max} (CH₂Cl₂) 2935, 1685, 1641, 1472, 1441, 1392, 1212, 1162, 1089 and 1018 cm⁻¹; δ_{H} (400 MHz) 8.79 (s, 1 H, CHO), 7.38 (1 H, app. dd, *J* 8.7, 1.1, aromatic CH), 7.11 - 7.04 (2 H, m, 2 x aromatic CH), 6.97 - 6.91 (1 H, app. ddd, *J* 8.1, 6.5, 2.5, aromatic CH), 6.75 (1 H, app. ddd, *J* 5.0, 3.3, 1.0, one of alkene CH), 5.54 (1 H, d, *J* 9.4, ArCH), 4.07 (1 H, dq, *J* 6.5, 5.1, MeCH), 3.56 (1 H, m, CHCHAr), 2.45 (1 H, app. dq, *J* 19.1, 4.8, one of $CH_2CH=C$), 2.32 - 2.24 (1 H, m, CHCHMe), 2.24 - 2.13 (1 H, m), 1.80 - 1.63 (2 H, m, C=CHCH₂CH₂) and 1.31 (3 H, d, *J* 6.5, CH₃); δ_H (100 MHz) 192.2 (CH), 151.0 (CH), 141.0 (C), 137.6 (C), 132.6 (CH), 130.3 (CH), 128.8 (CH), 126.5 (CH), 125.1 (C), 81.4 (CH), 77.1 (CH), 39.9 (CH), 39.5 (CH), 24.7 (CH₂), 20.2 (CH₂) and 14.8 (CH₃). *m/z* (APCI) 323 (MH⁺ (⁸¹Br), 89%), 321 (MH⁺ (⁷⁹Br), 100), 305 (24), 303 (27), 279 (40), 277 (27), 243 (16), 229 (11), 185 (18).

((1*SR*,3*SR*,3a*SR*,7a*SR*)-3-(2-bromophenyl)-1-methyl-1,3,3a,7atetrahydroisobenzofuran-4-yl)methanol (75f)

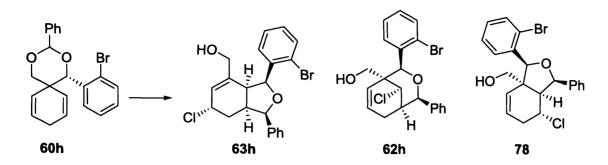
75f (40 mg, 17%): δ_{H} (400 MHz) 7.40 - 7.30 (2 H, m, 2 x aromatic CH), 7.12 (1 H, app. td, *J* 7.8, 1.0, aromatic CH), 7.00 (1 H, app. td, *J* 7.6, 1.7, aromatic CH), 5.85 (1 H, ddd, *J* 9.9, 5.5, 2.6, C=CHCH=CH), 5.74 (1 H, dd, *J* 9.9, 2.6, C=CHCH=CH), 5.69 (1 H, d, *J* 5.5, C=CHCH=CH), 5.49 (1 H, d, *J* 9.8, ArCH), 4.24 (1 H, app. quintet, *J* 6.1, CH₃CH), 3.69 (1 H, d, *J* 11.5, one of CH₂OH), 3.59 (1 H, dd, *J* 11.4, 9.8 Hz, CCHCHAr) 3.51 (1 H, d, *J* 11.5, one of CH₂OH), 3.17 (1 H, app. ddt, *J* 11.4, 5.0, 2.6, CHCHCH₃), 1.51 (1 H, br. s, OH), 1.43 (3 H, d, *J* 6.3, CH₃); Hydrogen connectivity fully supported by 1H-1H COSY NMR spectroscopy.

Prins Cyclisation of 3-Methylbutyraldehyde Acetal 60g

Titanium tetrachloride (0.18 mL, 1.64 mmol, 2.7 equiv.) was added to a cooled (-78 °C) solution of 3-methylbutyraldehyde acetal **60g** (217 mg, 0.6 mmol) in CH_2Cl_2 (10 mL). After stirring for 2 h the reaction was quenched with saturated NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2 x 20 mL). The combined organic extracts were dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by chromatography on silica (14 % EtOAc in petroleum ether) to give compound **75g** as a colourless oil (12 mg, 6 %) and compound **61g** as a colourless oil (46 mg, 21 %). While compound **63g** was not isolated, its existence was evident from the data obtained from the crude reaction mixture.

((1*SR*,3*SR*,3a*SR*,7a*SR*)-3-(2-Bromophenyl)-6-chloro-1,3,3a,6,7,7a-hexahydro-1isobutylisobenzofuran-4-yl)methanol (63g)

This compound was not isolated pure. These data are obtained from the crude reaction mixture under the above conditions. δ_{H} (400 MHz) 7.44 (1 H, d, *J* 7.9, aromatic CH), 7.21 - 7.16 (1 H, m, aromatic CH), 7.10 - 7.01 (2 H, m, aromatic CH), 5.86 (1 H, dd, *J* 5.0, 1.0, C=CH), 5.40 (1 H, d, *J* 9.9, ArCHO), 4.71 - 4.62 (1 H, m, CHCl), 4.00 (1 H, app. dt, *J* 7.8, 4.9, *i*-BuCHO), 3.51 (1 H, d, *J* 14.3, one of CH₂OH), 3.32 (1 H, d, *J* 14.3, one of CH₂OH), 3.30 (1 H, app. t, *J* 8.7, HC=CCHO), 2.72 - 2.62 (1 H, m, *i*-BuCHCH), 2.14 - 2.03 (2 H, m, CH₂CHCl), 1.78 - 1.40 (4 H, m, isobutyl CH2, isobutyl CH and OH) and 0.91 (6 H, app. d, *J* 5.0, 2 x CH₃); δ_{C} (100 MHz) 141.0 (C), 138.2 (C), 132.5 (CH), 129.9 (CH), 129.4 (CH), 127.6 (CH), 124.8 (CH), 124.1 (C), 81.0 (CH), 76.4 (CH), 64.7 (CH₂), 54.1 (CH), 43.3 (CH), 38.3 (CH), 36.2 (CH), 29.9 (CH₂), 25.6 (CH), 23.3 (CH₃) and 22.8 (CH₃).


(1SR,3SR,3aSR,7aSR)-3-(2-Bromophenyl)-1,3,3a,6,7,7a-hexahydro-1isobutylisobenzofuran-4-carbaldehyde (61g)

61g (46 mg, 21%): (Found: MH⁺ 363.0946. $C_{19}H_{24}^{79}BrO_2$ requires M, 363.0960); v_{max} (CH₂Cl₂) 2952, 1687, 1641, 1469, 1367, 1208, 1160, 1026, 751 cm⁻¹; δ_{H} (400 MHz) 8.79 (s, 1 H, CHO), 7.37 (1 H, d, *J* 7.6, aromatic CH), 7.11 - 7.05 (2 H, m, aromatic CH), 6.94 (1 H, app. ddd, 8.1, 6.0, 2.9, aromatic CH), 6.72 (1 H, br. app. t, *J* 3.6, one of alkene CH), 5.51 (1 H, d, *J* 9.5, ArCHO), 3.95 (1 H, app. dt, *J* 7.9, 5.1, *i*BuCHO), 3.54 (1 H, app. t, *J* 8.6, CHCHAr), 2.45 (1 H, app. dq, *J* 19.4, 4.7, one of CH₂CH=C), 2.30 - 2.22 (1 H, m, *i*BuCHC*H*), 2.22 - 2.11 (1 H, m, one of CH₂CH=C), 1.80 - 1.40 (5 H, m, ring CH₂, *i*Bu CH₂ and isobutyl CH) and 0.91 (6 H, app. d, *J* 6.6, 2 x CH₃); δ_{H} (100 MHz) 192.2 (CH), 150.8 (CH), 141.1 (C), 137.8 (C), 132.6 (CH), 130.5 (CH), 128.7 (CH), 24.7 (CH₂), 23.4 (CH₃), 22.8 (CH₃) and 20.2 (CH₂). *m/z* (ES+) 365 (MH⁺ (⁸¹Br), 100 %), 363 (MH⁺ (⁷⁹Br), 95), 347 (18), 345 (17), 279 (25), 277 (23), 207 (54), 179 (19).

((1SR,3SR,3aSR,7aSR)-3-(2-Bromophenyl)-6-chloro-1,3,3a,7a-tetrahydro-1isobutylisobenzofuran-4-yl)methanol (75g)

75g (12 mg, 6 %): δ_{H} (400 MHz) 7.42 - 7.33 (2 H, m, aromatic CH), 7.12 (1 H, app. dt, *J* 7.6, 1.0, aromatic CH), 7.04 - 6.95 (1 H, m, aromatic CH), 5.83 (1 H, ddd, *J* 9.9, 5.5, 2.6, C=CHCH=CH), 5.72 (1 H, dd, *J* 9.9, 2.6, C=CHCH=CH), 5.67 (1 H, d, *J* 5.5, C=CHCH=CH), 5.46 (1 H, d, *J* 9.8, ArCH), 5.14 (1 H, app. dt, *J* 7.9, 5.0, *i*BuCH), 3.74 (1 H, d, *J* 11.4, one of CH₂OH), 3.56 (1 H, dd, *J* 11.1, 9.8, CCHCHAr), 3.52 (1 H, d, *J* 11.4, one of CH₂OH), 3.19 (1 H, app. ddt, *J* 11.1, 4.7, 2.3, CHCH*i*Bu), 1.80 (1 H, br. s, OH), 1.76 - 1.54 (3 H, m, isobutyl CH₂ and CH), 0.94 (3 H, d, *J* 6.4, CH₃) and 0.93 (3 H, d, *J* 6.5, CH₃).

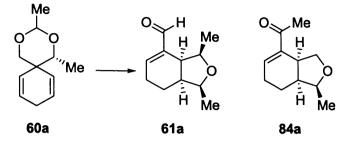
Prins Cyclisation of Benzaldehyde Acetal 60h

Titanium tetrachloride (0.16 mL, 1.5 mmol, 2 equiv.) was added to a cooled (-78 °C) solution of benzaldehyde acetal **60h** (280 mg, 0.73 mmol) in CH_2CI_2 (10 mL). After stirring for 15 min the reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous phase extracted with CH_2CI_2 (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica (10 % EtOAc in petroleum ether) to give compound **62h** as a colourless solid (85 mg, 28 %), compound **78** as a pale yellow oil (30 mg, 9 %) and compound **63h** as a pale yellow solid (74 mg, 24 %), respectively.

((1RS,3SR,3aSR,7aSR)-3-(2-Bromophenyl)-6-chloro-1,3,3a,6,7,7a-hexahydro-1phenylisobenzofuran-4-yl)methanol (63h)

63h (74 mg, 24 %): m.p. 50 - 52 °C; (Found: MNH₄⁺ 400.0909. $C_{21}H_{23}$ ⁷⁹BrNO₂ requires M, 400.0912); v_{max} (CH₂Cl₂) 3426, 3061, 3021, 2929, 1732, 1567, 1470, 1367, 1267, 1206, 1121, 916 cm⁻¹; δ_{H} (400 MHz) 7.82 (2 H, d, *J* 7.8, 2 x aromatic CH), 7.14 (3 H, m, 3 x aromatic CH), 7.10 - 7.05 (2 H, m, 2 x aromatic CH), 7.05 - 6.99 (2 H, m, 2 x aromatic CH), 6.14 (1 H, d, *J* 7.4, C=CH), 5.36 (1 H, d, *J* 5.0, CCHCHO), 5.25 (1 H, d, *J* 9.2, CH₂CHCHO), 3.53 (1 H, app. t, *J* 5.7, CCHCHO), 3.40 - 3.32 (1 H, m, CH₂CHCHO), 3.32 - 3.26 (1 H, m, CHCl), 2.93 (1 H, d, *J* 13.5, one of CH₂OH), 2.84 (1 H, d, *J* 13.5, one of CH₂OH) and 2.01 - 1.89 (2 H, m, CH₂CHCHO); δ_{C} (100 MHz) 139.0 (C), 136.4 (C), 135.9 (C), 132.6 (CH), 132.2 (CH), 130.9 (CH), 130.8 (CH), 129.1 (CH), 128.6 (CH), 127.6 (CH), 127.6 (CH), 126.7 (CH), 121.3 (C), 83.6 (CH), 77.6 (CH), 64.7 (CH2), 44.1 (CH), 37.7 (CH), 35.1 (CH) and 29.6 (CH₂). *m/z* (ES+) 402 (MNH₄⁺ - HCl, (⁸¹Br), 86 %), 400 (89), 367 (84), 365 (100).

((1*RS*,2*SR*,4*SR*,5*RS*,9*RS*)-2-(2-Bromophenyl)-9-chloro-4-phenyl-3oxabicyclo(3.3.1)non-7-en-1-yl)methanol (62h)


62h (85 mg, 28 %): m.p. 70 - 72 °C. v_{max} (CH₂Cl₂) 3466, 3061, 3027, 2924, 1472, 1266, 1122, 1071, 1030, 751 cm⁻¹; δ_{H} (400 MHz) 7.59 (1 H, dd, *J* 7.9, 1.6, aromatic CH), 7.49 (1 H, dd, *J* 8.0, 0.9, aromatic CH), 7.32 - 7.24 (5 H, m, 5 x aromatic CH), 7.23 - 7.17 (1 H, m, aromatic CH), 7.12 (1 H, app. td, *J* 7.7, 1.7, aromatic CH), 5.99 (1 H, app. dt, *J* 9.9, 3.4, CCH=CH), 5.16 (1 H, s, CCHO), 4.92 (2 H, m, CHCl and CHCHO), 4.87 (1 H, app. dd, *J* 9.9, 1.6, CCH=CH), 3.66 (1 H, dd, *J* 12.3, 7.6 Hz, one of CH₂OH), 3.31 (1 H, dd, *J* 12.3, 4.8, one of CH₂OH), 2.52 - 2.47 (1 H, m, CHCHO), 2.19 (1 H, app. ddt, *J* 19.4, 6.7, 2.6, one of CH₂CH=CH), 2.14 - 2.09 (1 H, m, OH) and 2.01 - 1.91 (1 H, m, one of CH₂CH=CH); δ_{C} (100 MHz) 139.6 (C), 137.5 (C), 132.3 (CH), 131.6 (CH), 130.6 (CH), 129.8 (CH), 128.3 (2 x CH), 127.4 (CH), 127.3 (CH), 125.6 (2 x CH), 123.5 (C), 121.7 (CH), 82.4 (CH), 80.9 (CH), 63.2 (CH₂), 62.7 (CH), 46.6 (C), 41.1 (CH) and 23.2 (CH₂) ppm.

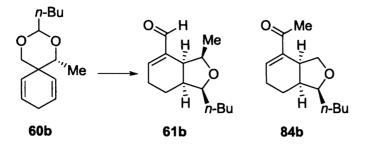
((1*RS*,3*SR*,3a*RS*,7*RS*,7a*SR*)-3-(2-Bromophenyl)-7-chloro-1,6,7,7a-tetrahydro-1phenylisobenzofuran-3a-yl)methanol (78)

78 (30 mg, 9%): v_{max} (neat) 3450, 3065, 3032, 2931, 1470, 1439, 1374, 1269, 1206, 1067, 1020, 909, 733 cm⁻¹; δ_{H} (400 MHz) 7.54 (1 H, dd, *J* 7.9, 1.6, aromatic CH), 7.49 (1 H, dd, *J* 8.0, 0.9, aromatic CH), 7.42 (2 H, d, *J* 7.4, 2 x aromatic CH), 7.35 - 7.22 (4 H, m, 4 x aromatic CH), 7.12 (1 H, app. td, *J* 7.6, 1.6, aromatic CH), 5.66 (1 H, app. dt, *J* 10.2, 4.1, CCH=CH), 5.25 (1 H, d, *J* 7.5, CHCHCHO), 5.23 (1 H, s, CCHO), 4.81 (1 H, app. dt, *J* 10.2, 1.7, CCH=CH), 4.04 - 4.01 (1 H, m, CHCl), 3.89 (1 H, d, *J* 11.3, one of CH₂OH), 3.83 (1 H, *J* 11.3, one of CH₂OH), 3.23 (1 H, app. t, *J* 7.0, CHCHCHO) and 2.20 - 2.06 (2 H, m, CH₂CH=CH); δ_{C} (100 MHz) 137.6 (C), 137.2 (C), 132.6 (CH), 130.9 (CH), 129.4 (CH), 128.3 (2 x CH), 127.7 (CH), 127.2 (CH), 127.0 (CH), 126.5 (2 x CH), 122.6 (C), 82.4 (CH), 81.3 (CH), 66.3 (CH2), 55.4 (CH), 55.0 (C), 51.3 (CH) and 32.5 (CH₂).

7.2.2 Prins Reactions with Triflic Acid

Prins Cyclisation of Acetaldehyde Acetal 60a

Reaction of acetal **60a** (183 mg, 1.02 mmol) with TfOH (0.15 mL, 1.6 mmol, 1.6 equiv.) in CH_2Cl_2 (10 mL) at 0 °C for 10 min gave **61a** (120 mg, 66 %) as a yellow solid followed by **84a** (10 mg, 6 %) as a yellow oil.


(1*SR*, 3*RS*, 3a*SR*, 7a*SR*)-1, 3-dimethyl-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4carbaldehyde (61a)

61a (120 mg, 66 %): See data in Section 7.2.1.

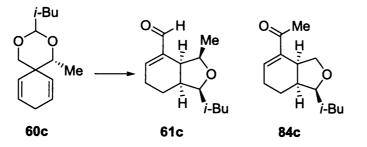
1-((1*SR*, 3a*SR*, 7a*SR*)-1-Methyl-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4-yl)ethanone (84a)

84a (10 mg, 6%): v_{max} (CH₂Cl₂) 2966, 2925, 2885, 2805, 1671, 1637, 1449, 1172, 1092 and 1027 cm⁻¹; δ_{H} (400 MHz) 6.97 (1 H, br. d, *J* 5.7, CH₂CH=C), 4.26 (1 H, dd, *J* 8.4, 9.6, one of CHCH₂O), 4.09 (1 H, dq, *J* 6.4, 4.4, MeCHO), 3.37 (1 H, app. t, *J* 8.4, one of CHCH₂O), 3.18 (1 H, app. br. q, *J* 8.2, C=CCH), 2.42 (1 H, dtd, *J* 19.4, 5.7, 1.9, one of CH₂CH=C), 2.28 (3 H, s, CH₃), 2.27 - 2.15 (1 H, m, one of CH₂CH=C), 1.96 (1 H, ddt, *J* 13.1, 6.6, 4.2, one of C=CHCH₂CH₂CH₂), 1.73 - 1.65 (1 H, m, CHCHMe), 1.34 - 1.19 (1 H, m, one of C=CHCH₂CH₂) and 1.22 (3 H, d, *J* 6.4, CH₃); δ_{C} (100 MHz) 199.1 (C), 141.4 (CH), 140.8 (C), 77.4 (CH), 72.2 (CH₂), 40.2 (CH), 38.1 (CH), 25.5 (CH₂), 25.2 (CH₃), 18.0 (CH₂) and 15.1 (CH₃).

Prins Cyclisation of Valeraldehyde Acetal 60b

Reaction of acetal **60b** (200 mg, 0.90 mmol) with TfOH solution (1.51 mL, 1.1 mmol, 1.2 equiv.) in CH_2Cl_2 (10 mL) at 0 °C to r.t. for 1 h 30 min gave **61b** (120 mg, 60 %) as a yellow oil followed by **84b** (15 mg, 8 %) as a yellow oil.

(1SR,3RS,3aSR,7aSR)-1-Butyl-3-methyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (61b)


61b (120 mg, 60 %): v_{max} (CH₂Cl₂) 2934, 2870, 1683, 1458, 1376, 1458, 1375, 1223, 1163, 1093, 960, 735 and 684 cm⁻¹; δ_{H} (400 MHz) 9.43 (1 H, s, CHO), 7.00 (1 H, br. d, *J* 4.5, CH=CC=O), 4.39 (1 H, app. dq, *J* 9.8, 6.4, MeCHO), 3.82 (1 H, td, *J* 6.8, 4.0, BuCHO), 3.21 (1 H, app. br. t, *J* 8.2, CHCHMe), 2.52 (1 H, dtd, *J* 20.2, 5.4, 1.5, one of CH₂CH=C), 2.32 - 2.20 (1 H, m, one of CH₂CH=C), 1.97 (1 H, ddt, *J* 13.1, 6.8, 4.1, CHCHBu), 1.74 (1 H, br. dt, *J* 13.4, 4.4), 1.64 - 1.59 (1 H, m, one of CHOCH₂CH₂), 1.59 - 1.49 (1 H, m, one of CHOCH₂CH₂), 1.59 - 1.27 (5 H, m) and 0.95 - 0.89 (6 H, m, 2 x CH₃); δ_{C} (100 MHz) 194.4 (C), 152.7 (CH), 140.9 (C), 80.8 (CH), 74.5 (CH), 39.1 (CH), 39.0 (CH), 29.5 (CH₂), 28.7 (CH₂), 25.7 (CH₂), 22.9 (CH₂), 19.8 (CH₃), 19.1 (CH₂) and 14.0 (CH₂).

1-((1SR, 3aSR, 7aSR)-1-Butyl-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4-yl)ethanone (84b)

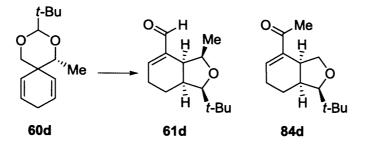
84b (15 mg, 8%): v_{max} (CH₂Cl₂) 2933, 2870, 1667, 1467, 1383, 1356, 1250, 1061 and 783cm⁻¹; δ_{H} (400 MHz) 6.97 (1 H, br. d, *J* 5.1, CH=CC=O), 4.25 (1 H, dd, *J* 9.6, 8.3, one of CH₂O), 3.88 (1 H, td, *J* 6.7, 4.3, BuCHO), 3.36 (1 H, app. t, *J* 8.5, one of CH₂O), 3.16 (1 H, app. br. q, *J* 8.6, CHCH₂O), 2.40 (1 H, dtd, *J* 19.4, 5.6, 1.7, one of CH₂CH=C), 2.28 (3 H, s, CH₃), 2.27 - 2.15 (1 H, m, one of CH₂CH=C), 1.99 (1 H, ddt, *J* 13.1, 6.3, 4.2, CHCHO), 1.70 - 1.63 (1 H, m, one of CHCH₂CH₂), 1.63 - 1.46 (2 H, m, CHOCH₂CH2), 1.46 - 1.22 (5

H, m) and 0.90 (3 H, t, J 7.0, CH₃); δ_{c} (100 MHz) 199.1 (C), 141.4 (CH), 140.8 (C), 82.1 (CH), 72.0 (CH₂), 39.2 (CH), 37.9 (CH), 29.8 (CH₂), 28.9 (CH₂), 25.5 (CH₂), 25.2 (CH₃), 22.9 (CH₂), 18.0 (CH₂) and 14.0 (CH₃).

Prins Cyclisation of Isovaleraldehyde Acetal 60c

Reaction of acetal **60c** (218 mg, 0.98 mmol) with TfOH solution (1.54 mL, 1.1 mmol, 1.1 equiv.) in CH_2Cl_2 (10 mL) at 0 °C for 1 h 30 min gave **61c** (116 mg, 53 %) as a yellow oil followed by **84c** (15 mg, 7 %) as an orange oil.

(1*SR*, 3*RS*, 3*aSR*, 7*aSR*)-1-IsobutyI-3-methyI-1, 3, 3*a*, 6, 7, 7*a*-hexahydroisobenzofuran-4carbaldehyde (61c)


61c (116 mg, 53 %): See data in Section 7.2.1.

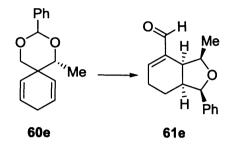
1-((1*SR*, 3a*SR*, 7a*SR*)-1-IsobutyI-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4-yl)ethanone (84c)

84c: (15 mg, 7%): v_{max} (CH₂Cl₂) 2952, 2869, 1667, 1467, 1426, 1384, 1248 and 1063 cm⁻¹; δ_{H} (400 MHz) 6.97 (1 H, br. d, *J* 5.0, CHC=CC=O), 4.25 (1 H, dd, *J* 9.7, 8.3, one of CH₂O), 4.01 - 3.95 (1 H, m, CHO), 3.36 (1 H, app. t, *J* 8.3, one of CH₂O), 3.17 (1 H, app. br. q, *J* 8.3, CHCH₂O), 2.40 (1 H, dtd, *J* 19.4, 5.8, 2.1, one of CH₂CH=C), 2.27 (3 H, s, CH₃), 2.26 - 2.15 (1 H, m, one of CH₂CH=C), 1.98 (1 H, ddt, *J* 13.1, 6.4, 4.1, CHCHO), 1.77 - 1.60 (2 H, m, CH(CH₃)₂ and one of CH₂CH₂CH=C), 1.51 (1 H, ddd, *J* 14.2, 8.1, 6.5, one of CH₂CHO), 1.40 - 1.18 (2 H, m, one of CH₂O and one of CH₂CHO), 0.94 (3 H, d, *J* 6.6, CH₃) and 0.93 (3 H, d, *J* 6.6, CH₃); δ_{C} (100 MHz) 199.1 (C), 141.3 (CH), 140.9 (C), 80.0 (CH), 72.0 (CH₂), 39.6 (CH), 39.0 (CH₂), 37.9 (CH), 25.6 (CH), 25.6 (CH₂), 25.2 (CH₃), 23.3 (CH₃), 22.7 (CH₃) and 18.2 (CH₂).

Prins Cyclisation of Pivalaldehyde Acetal 60d

薇

Reaction of acetal **60d** (219 mg, 0.99 mmol) with TfOH solution (1.55 mL, 1.1 mmol, 1.1 equiv.) in CH_2Cl_2 (10 mL) at 0 °C to r.t. for 4 h gave unreacted acetal **60d** (55 mg, 25 %), followed by **61d** (24 mg, 11 %) as a yellow oil, and finally **84d** (11 mg, 5 %) as a yellow oil.

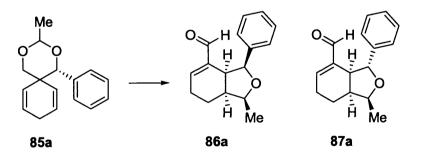

(1*RS*,3*RS*,3a*SR*,7a*SR*)-1-tert-Butyl-3-methyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (61d)

61d (24 mg, 11 %): v_{max} (CH₂Cl₂) 2958, 1683, 1461, 1367, 1161, 1094, 1033, 939, 800 and 678 cm⁻¹; δ_{H} (400 MHz) 9.45 (1 H, s, CHO), 6.97 (1 H, br. d, *J* 5.4, CH=CC=O), 4.41 (1 H, dq, *J* 9.9, 6.4, CH₃CHO), 3.48 (1 H, d, *J* 3.7, C(CH₃)₃CHO), 3.15 (1 H, br. t, *J* 8.0, CHCHCH₃), 2.50 (1 H, dtd, *J* 20.1, 5.5, 1.1, one of CH₂CH=C), 2.28 - 2.16 (1 H, m, one of CH₂CH=C), 2.02 (1 H, ddt, *J* 13.3, 6.6, 4.0, CHCHC(CH₃)₃), 1.90 (1 H, br. dt, *J* 13.1, 4.8, one of CH₂CH₂CH=C), 1.51 (1 H, qd, *J* 13.1, 5.2, one of CH₂CH₂CH=C), 1.01 (9 H, s, C(CH₃)₃) and 0.91 (3 H, d, *J* 6.4, CH₃); δ_{C} (100 MHz) 194.4 (CH), 152.2 (CH), 141.0 (C), 88.2 (CH), 73.9 (CH), 39.3 (CH), 39.3 (CH), 33.1 (C), 27.5 (CH₃), 26.1 (CH₂), 21.0 (CH₂) and 20.0 (CH₃).

1-((1*RS*,3a*SR*,7a*SR*)-1-tert-Butyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4-yl)ethanone (84d)

84d (11 mg, 5%): v_{max} (CH₂Cl₂) 2961, 1671, 1365, 1259, 1056, 800, 733 and 700 cm⁻¹; δ_{H} (400 MHz) 6.96 (1 H, br. d, *J* 5.9, CH=CC=O), 4.29 (1 H, dd, *J* 8.1, 9.6, one of CH₂O), 3.55 (1 H, d, *J* 3.8, CHO), 3.38 (1 H, dd, *J* 8.1, 9.2, one of CH₂O), 3.13 (1 H, br. q, *J* 8.6, CHCH₂O), 2.39 (1 H, dtd, *J* 19.3, 5.9, 1.5, one of CH₂CH=C), 2.27 (3 H, s, CH₃) and 2.24 - 2.15 (1 H, m, one of CH₂CH=C), δ_{C} (100 MHz) 199.1 (C), 141.1 (CH), 140.7 (C), 89.7 (CH), 71.6 (CH₂), 39.6 (CH), 38.0 (CH), 33.5 (C), 27.5 (CH₃), 26.1 (CH₂), 25.2 (CH₃) and 19.9 (CH₂).

Prins Cyclisation of Benzaldehyde Acetal 60e



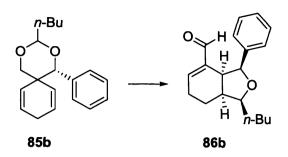
Reaction of acetal **60e** (237 mg, 0.98 mmol) with TfOH solution (2.10 mL, 1.5 mmol, 1.5 equiv.) in CH_2Cl_2 (10 mL) at 0 °C for 5 min and chromatography on silica (6 % to 10 % EtOAc in petroleum ether) gave **61e** (100 mg, 42 %) as a yellow oil.

(1*RS*, 3*RS*, 3a*SR*, 7a*SR*)-3-Methyl-1-phenyl-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4carbaldehyde (61e)

61e (100 mg, 42 %): See data in Section 7.2.1.

Prins Cyclisation of Acetaldehyde Acetal 85a

Reaction of acetal **85a** (0.6 mmol) with TfOH at 0 °C, as specified in Table **3**, followed by chromatography on silica (10 % to 15 % EtOAc in petroleum ether) gave **86a** (see Table **3**) as a yellow solid, followed by **87a** (see Table **3**) as a yellow solid.

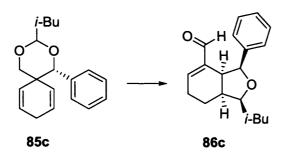

(1*RS*,3*RS*,3a*SR*,7a*SR*)-3-Methyl-1-phenyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (86a)

86a: v_{max} (CH₂Cl₂) 3033, 2977, 2933, 2867, 1683, 1450, 1273, 1175, 1092, 1020, 734 and 701 cm⁻¹; δ_{H} (400 MHz) 9.04 (1 H, s, CHO), 7.20 - 7.16 (4 H, m, 4 x aromatic CH), 7.16 - 7.19 (1 H, m, ArCH), 6.68 (1 H, br. d, *J* 3.9, HC=C), 5.33 (1 H, d, *J* 10.2, ArCHO), 4.25 (1 H, qd, *J* 6.3, 4.4, CH₃CHO), 3.60 (1 H, br. t, *J* 8.4, CCHCHO), 2.43 (1 H, dtd, *J* 20.0, 5.3, 1.7, one of CH₂CH=C), 2.25 - 2.13 (1 H, m, one of CH₂CH=C), 2.09 (1 H, ddt, *J* 13.0, 6.9, 4.5, one of CH₂CHCHO), 1.86 - 1.78 (1 H, m, CH₂CHCHO), 1.68 (1 H, qd, *J* 13.0, 5.5, one of CH₂CHCHO) and 1.40 (3 H, d, *J* 6.4, CH₃); δ_{C} (100 MHz) 193.7 (C), 151.6 (CH), 141.0 (C), 140.0 (C), 127.9 (2 x CH), 127.4 (2 x CH), 127.0 (CH), 82.1 (CH), 77.0 (CH), 41.1 (CH), 39.9 (CH), 25.2 (CH₂), 19.0 (CH₂) and 14.9 (CH₃).

(1*SR*, 3*RS*, 3a*SR*, 7a*SR*)-3-Methyl-1-phenyl-1, 3, 3a, 6, 7, 7a-hexahydroisobenzofuran-4carbaldehyde (87a)

87a: v_{max} (CH₂Cl₂) 3033, 2978, 2933, 2867, 1689, 1450, 1383, 1217, 1167, 1083, 1011, 756 and 700 cm⁻¹; δ_{H} (400 MHz) 9.23 (1 H, s, CHO), 7.30 - 7.21 (5 H, m, 5 x aromatic CH), 6.86 (1 H, dd, *J* 5.1, 2.5, CH=C), 4.56 (1 H, qd, *J* 6.4, 4.9, CCHCHO), 4.53 (1 H, d, *J* 8.9, PhCHO), 3.29 (1 H, br. t, *J* 7.4, CCHCHO), 2.57 (1 H, dtd, *J* 20.2, 5.4, 1.7, one of CH₂CH=C), 2.36 - 2.24 (1 H, m, one of CH₂CH=C), 2.16 (1 H, br. dq, *J* 12.8, 4.9, CH₂CHCHMe), 1.80 (1 H, br. dt, *J* 13.3, 4.5, one of CH₂CHCHMe), 1.63 (1 H, qd, *J* 13.3, 5.6, one of CH₂CHCHMe) and 1.25 (3 H, d, *J* 6.4, CH₃); δ_{c} (100 MHz) 192.5 (C), 151.2 (CH), 142.8 (C), 140.7 (C), 128.1 (2 x CH), 127.6 (CH), 126.7 (2 x CH), 85.7 (CH), 78.0 (CH), 45.2 (CH), 41.2 (CH), 25.9 (CH₂), 18.8 (CH₂) and 15.8 (CH₃).

Prins Cyclisation of Valeraldehyde Acetal 85b

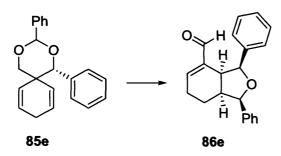


Reaction of acetal **85b** (0.6 mmol) with TfOH at 0 °C, as specified in Table **3**, followed by chromatography on silica (10 % to 15 % EtOAc in petroleum ether) gave **86b** (see Table **3**) as a yellow oil.

(1*RS*,3*RS*,3a*SR*,7a*SR*)-3-Butyl-1-phenyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (86b)

86b: v_{max} (CH₂Cl₂) 3056, 2956, 2870, 1689, 1451, 1273, 1110, 736 and 713 cm⁻¹; δ_{H} (400 MHz) 9.04 (1 H, s, CHO), 7.19 - 7.09 (5 H, m, ArH), 6.67 (1 H, br. d, *J* 3.3, CH=C), 5.31 (1 H, d, *J* 10.2, PhCHO), 4.03 (1 H, td, *J* 6.8, 4.2, BuCHO), 3.57 (1 H, br. t, *J* 8.3, CC*H*CHO), 2.41 (1 H, dtd, *J* 20.2, 5.3, 1.4, one of CH₂CH=C), 2.24 - 2.06 (2 H, m, one of CH₂CH=C), 1.87 - 1.75 (2 H, m), 1.75 - 1.63 (2 H, m), 1.57 - 1.47 (1 H, m), 1.45 - 1.30 (3 H, m), 0.94 (2 H, t, *J* 7.1, CH₃); δ_{C} (100 MHz) 192.4 (C), 151.2 (CH), 143.1 (C), 140.9 (C), 128.1 (2 x CH), 127.5 (CH), 126.6 (2 x CH), 85.4 (CH), 82.7 (CH), 45.1 (CH), 40.2 (CH), 30.2 (CH2), 28.7 (CH2), 25.9 (CH2), 22.9 (CH₂), 18.7 (CH₂) and 14.0 (CH₃).

Prins Cyclisation of Isobutyraldehyde Acetal 85c



Reaction of acetal **85c** (0.6 mmol) with TfOH at 0 °C, as specified in Table **3**, followed by chromatography on silica (10 % to 15 % EtOAc in petroleum ether) gave **86c** (see Table **3**) as a yellow oil.

(1SR,3SR,3aSR,7aSR)-1-Isobutyl-3-phenyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (86c)

86c: v_{max} (CH₂Cl₂) 2955, 2869, 1685, 1451, 1271, 1174, 1109, 735 and 701 cm⁻¹; δ_{H} (400 MHz) 9.04 (1 H, s, CHO), 7.19 - 7.08 (5 H, m, 5 x aromatic CH), 6.66 (1 H, br. d, *J* 4.0, CH=C), 5.30 (1 H, d, *J* 10.2, ArCH), 4.13 (1 H, ddd, *J* 7.7, 5.5, 4.5, *i*BuCHO), 3.61 - 3.53 (1 H, m, CCHCHAr), 2.40 (1 H, dtd, *J* 20.1, 5.3, 1.5, one of C=CHCH₂), 2.24 - 2.04 (2 H, m, two of butyl CH₂), 1.87 - 1.62 (4 H, m, four of butyl CH₂), 1.53 (1 H, ddd, *J* 13.0, 7.0, 5.7, one of CCH₂CH₂), 1.00 (3 H, app. d, *J* 6.5, CH₃) and 0.99 (3 H, app. d, *J* 6.5, CH₃); δ_{c} (100 MHz) 193.7 (CH), 151.5 (CH), 141.0 (C), 140.2 (C), 127.8 (2 x CH), 127.3 (2 x CH), 126.8 (CH), 81.7 (CH), 79.5 (CH), 40.9 (CH), 39.1 (CH), 38.5 (CH₂), 25.6 (CH), 25.2 (CH₂), 23.3 (CH), 22.8 (CH) and 19.0 (CH₂).

Prins Cyclisation of Benzaldehyde Acetal 85e

Reaction of acetal **85e** (0.6 mmol) with TfOH at 0 °C, as specified in Table **3**, followed by chromatography on silica (10 % to 15 % EtOAc in petroleum ether), gave **86e** (see Table **3**) as a yellow oil.

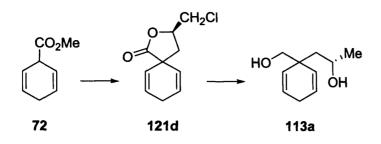
(1*RS*,3*SR*,3a*SR*,7a*SR*)-1,3-Diphenyl-1,3,3a,6,7,7a-hexahydroisobenzofuran-4carbaldehyde (86e)

86e: v_{max} (CH₂Cl₂) 3030, 2926, 2856, 1702, 1599, 1495, 1451, 1268, 1025, 734 and 700 cm⁻¹; δ_{H} (400 MHz) 8.98 (1 H, s, CHO), 7.40 (2 H, app. d, *J* 8.3, ArH), 7.32 (2 H, app. t, *J* 7.5, ArH), 7.25 - 7.19 (2 H, m, ArH), 7.19 - 7.13 (2 H, m, ArH), 7.13 - 7.09 (2 H, m, ArH), 6.59 (1 H, br. d, *J* 3.4, HC=C), 5.45 (1 H, d, *J* 10.3, CCHCHOCH), 5.20 (1 H, d, *J* 4.4, CH₂CHCHO), 3.72 (1 H, br. t, *J* 8.4, C=CCHCHO), 2.35 (1 H, ddt, *J* 13.2, 6.8, 4.6, one of CH₂CHCHO), 2.21 (1 H, dtd, *J* 20.2, 5.4, 1.4, one of CH₂CH=C), 1.99 (1 H, dddt, *J* 20.2, 11.7, 6.0, 2.5, one of CH₂CH=C), 1.43 (1 H, br. qd, *J* 13.2, 5.6, one of CH₂CHCHO) and 1.19 - 1.10 (1 H, m, CH₂CHCHO); δ_{c} (100 MHz) 193.6 (C), 151.8 (CH), 140.7 (C), 139.9 (C), 138.5 (C), 128.1 (2 x CH), 128.0 (2 x CH), 127.5 (2 x CH), 127.1 (CH), 127.0 (CH), 125.5 (2 x CH), 82.3 (CH), 82.1 (CH), 41.0 (CH), 41.0 (CH), 25.1 (CH₂) and 19.8 (CH₂).

7.3 Experimental Data for Chapter 3

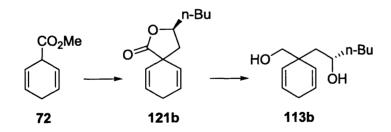
General Procedure 1 - Formation of Lactones (121 and 127) and Ketoesters (122)

Methyl cyclohexa-2,5-diene-1-carboxylate **72** (1.38 g, 10 mmol) in THF (3 ml) was added dropwise to a cooled (-78 °C) solution of LDA (11 mmol, 1.1 equiv.) in THF (30 ml). The resulting suspension was stirred for 30 min before addition of the epoxide or α -bromoketone (11 mmol, 1.1 equiv.). The reaction was allowed to warm slowly to room temperature and monitored by TLC. On completion (typically 4 h) the reaction was quenched with saturated aqueous NH₄Cl (30 ml). The phases were separated and the aqueous phase extracted with ether (2 x 25 ml). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel.


General Procedure 2 - Reduction of Lactones (121 and 127) and Ketoesters (122)

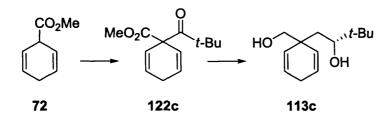
The lactone **121** or **127**, or ketoester **122** (5 mmol) in THF (5 ml) was added to a suspension of LiAlH₄ (380 mg, 10 mmol, 2 equiv.) in THF (20 ml). After stirring for 15 min, the reaction was quenched with 2M aqueous NaOH (2 ml), dried over Na₂SO₄ and filtered. Concentration of the filtrate followed by chromatography on silica gave the diol.

General Procedure 3 - Iodocyclisation Reactions

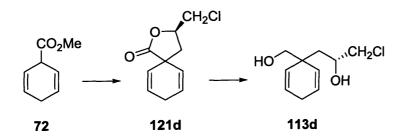

lodine (762 mg, 3 mmol) and NaHCO₃ (252 mg, 3 mmol) were added to a solution of diol (1 mmol) in acetonitrile (10 ml). Stirring was continued for the time shown in Table **5**, Scheme **58**, or Scheme **61**, before addition of saturated aqueous sodium thiosulfate (15 ml). The organic phase was separated and the aqueous phase extracted with ether (2 x 10 ml). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo* and the residue purified by chromatography on silica gel.

1-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)propan-2-ol (113a)

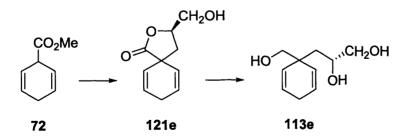
Lactone **121d** was prepared from epichlorohydrin according to general procedure 1. Reduction according to general procedure 2 followed by Kugelrohr distillation (200 °C, 0.5 mmHg) gave the *title compound* (741 mg, 87 %, 2 steps) as a colourless solid, m.p. 70 - 72 °C (Found: M^* -H₂O, 150.1040. C₁₀H₁₄O requires M, 150.1045); v_{max} (Nujol) 3244, 1060, 1021, 739 and 713 cm⁻¹; δ_{H} (400 MHz) 6.07 - 5.97 (2 H, m, 2 x alkene CH), 5.68 (1 H, app. dq, *J* 10.1, 2.0, one of alkene CH), 5.43 (1 H, app. dq, *J* 10.1, 2.0, one of alkene CH), 4.04 - 3.95 (1 H, m, CHOH), 3.35 (2 H, app. s, CH₂OH), 2.79-2.63 (2 H, m, CH₂CH=CH), 2.24 (1 H, br. s, OH), 1.79 (1 H, br. s, OH), 1.53 (1 H, dd, *J* 14.2, 9.2, one of CH₂), 1.41 (1 H, dd, *J* 14.2, 2.2, one of CH₂) and 1.14 (3 H, d, *J* 6.3, CH₃); δ_{C} (100 MHz) 130.5 (CH), 129.5 (CH), 128.1 (CH), 127.4 (CH), 70.4 (CH₂), 65.5 (CH), 46.4 (CH₂), 42.3 (C), 26.5 (CH₂) and 24.0 (CH₃); *m/z* (TOF ES+) 150 (M-H₂O, 1%), 119 (14), 92 (18) and 91 (100).


1-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)-hexan-2-ol (113b)

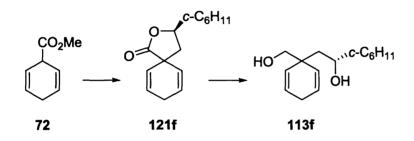
Lactone **121b** was prepared according to general procedure 1. Reduction according to general procedure 2 followed by Kugelrohr distillation (220 °C, 0.5 mmHg) gave the title compound (1.97 g, 86 %, 2 steps) as a colourless oil (Found: MH⁺, 211.1696. $C_{13}H_{23}O_2$ requires M, 211.1698); v_{max} (neat) 3417, 2950, 1652, 1463, 1204, 1141, 1048, 887, 776, 730 and 667 cm⁻¹; δ_{H} (400 MHz) 6.05 - 5.97 (2 H, m, 2 x alkene CH), 5.69 (1 H, app. dq, *J* 10.3, 2.1, one of alkene CH), 5.43 (1 H, app. dq, *J* 10.3, 2.1, one of alkene CH),


3.82 - 3.76 (1 H, m, CHOH), 3.35 (2 H, app. s, CH₂OH), 2.79 - 2.64 (2 H, m, CH₂CH=CH), 2.10 (2 H, br. s, 2 x OH), 1.49 (1 H, dd, *J* 14.2, 9.0, one of CH₂), 1.43 (1 H, dd, *J* 14.2, 2.4, one of CH₂), 1.40 - 1.24 (6 H, m, 3 x CH₂) and 0.88 (3 H, t, *J* 7.0, CH₃); $\delta_{\rm C}$ (100 MHz) 130.6 (CH), 129.6 (CH), 127.9 (CH), 127.3 (CH), 70.4 (CH₂), 69.2 (CH), 44.8 (CH₂), 42.2 (C), 37.6 (CH₂), 27.7 (CH₂), 26.5 (CH₂), 22.7 (CH₂) and 14.1 (CH₃); *m/z* (TOF ES+) 252 (MH⁺.CH₃CN, 100%), 211 (MH⁺, 12), 193 (14) and 175 (3).

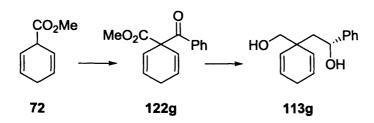
1-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)-3,3-dimethylbutan-2-ol (113c)


Ketoester **122c** (2.37 g, 90%) was prepared according to *General Procedure* 1. Reduction according to *General Procedure* 2 followed by crystallisation from Et₂O/petroleum ether gave the *title compound* (1.2 g, 57%) as a colourless solid, m.p. 81 - 84 °C (Found: $M^+ - H_2O$, 193.1585. $C_{13}H_{20}O$ requires M, 193.1592); v_{max} (Nujol) 3280, 1063, 1010 and 714 cm⁻¹; δ_H (400 MHz) 6.05 - 5.97 (2 H, m, 2 x alkene CH), 5.67 (1 H, app. dq, *J* 10.0, 2.0, one of alkene CH), 5.42 (1 H, app. dq, *J* 10.3, 2.2, one of alkene CH), 3.45 - 3.36 (3 H, m, CH₂OH and CHOH), 2.81 - 2.65 (2 H, m, CH₂CH=CH), 2.05 (1 H, br. s, OH), 1.77 (1 H, br. s, OH), 1.53 (1 H, dd, *J* 14.3, 0.8, one of CH₂CHO), 1.38 (1 H, dd, *J* 14.3, 9.5, one of CH₂CHO) and 0.87 (9 H, s, C(CH₃)₃); δ_C (100 MHz) 130.5 (CH), 129.8 (CH), 127.9 (CH), 127.4 (CH), 76.5 (CH), 70.4 (CH₂), 42.2 (C), 39.5 (CH₂), 34.8 (C), 26.5 (CH₂) and 25.7 (CH₃); *m/z* (TOF AP⁺) 193 (M - H₂O, 48%) and 175 (100).

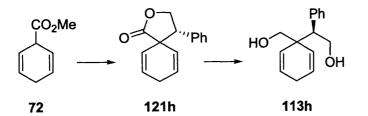
1-Chloro-3-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)propan-2-ol (113d)


Lactone 121d (5.47 g, 97 %) was prepared according to General Procedure 1. Sodium borohydride (1.9 g, 50.4 mmol, 2 equiv.) was added in one portion to a solution of the crude lactone (5.0 g, 25.2 mmol) in ethanol (200 ml). The reaction was stirred for 2 h until complete consumption of starting material was evident (TLC). Glacial acetic acid was carefully added until hydrogen evolution ceased and the ethanol removed under reduced pressure. Water (200 ml) and diethyl ether (100 ml) were added to dissolve the residue and the organic layer separated. The aqueous phase was further extracted with diethyl ether (2 x 50 ml) and the combined organic extracts washed with water (2 x 100 ml). The organic layer was dried over sodium sulfate and concentrated in vacuo. Chromatography of the residue on silica (33 % EtOAc in petroleum ether) gave the title compound (3.5 g, 70%) as a colourless oil (Found: M^+ - H, 201.0683. $C_{10}H_{14}ClO_2$ requires M, 201.0682); v_{max} (neat) 3372, 2920, 1422, 1328, 1047, 947, 877 and 720 cm⁻ ¹; δ_H (400 MHz) 6.09 - 6.01 (2 H, m, 2 x alkene CH), 5.67 (1 H, app. dq, J 10.2, 2.1, one of alkene CH), 5.48 (1 H, app. dq, J 10.6, 2.1, one of alkene CH), 4.04 - 3.97 (1 H, m, CHOH), 3.58 (1 H, dd, J 11.1, 4.0, one of CH₂Cl), 3.49 (1 H, dd, J 11.1, 6.6, one of CH₂Cl), 3.41 (2 H, app. s, CH₂OH), 2.76 - 2.71 (2 H, m, CH₂CH=CH), 2.56 (1 H, br. s, OH), 1.77 (1 H, br. s, OH), 1.67 (1 H, dd, J 14.3, 8.1, one of CCH₂CHOH) and 1.58 (1 H, dd, J 14.3, 3.4, one of CCH₂CHOH); δ_c (100 MHz) 129.5 (CH), 129.4 (CH), 128.0 (CH), 127.7 (CH), 70.3 (CH₂), 69.0 (CH), 50.3 (CH₂), 41.9 (C), 41.8 (CH₂) and 26.5 (CH₂); *m/z* (TOF ES+) 203 (M⁺ - H (³⁷Cl), 12%), 201 (37), 95 (46) and 91 (100).

3-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)propane-1,2-diol (113e)

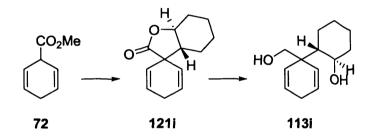

Lactone **121e** (330 mg, 23%) was prepared according to *General Procedure* 1. Reduction according to *General Procedure* 2 followed by chromatography on silica (EtOAc) gave the *title compound* (179 mg, 56%) as a colourless solid, m.p. 78 - 80 °C; v_{max} (Nujol) 3272, 1234, 1036 and 715 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 6.00 - 5.93 (2 H, m, 2 x alkene CH), 5.62 (1 H, app. dq, *J* 10.2, 2.1, one of alkene CH), 5.37 (1 H, app. dq, *J* 10.1, 2.1, one of alkene CH), 3.85 (1 H, dddd, *J* 8.9, 7.5, 3.2, 2.5, CHOH), 3.50 (1 H, dd, *J* 11.0, 3.2, one of CH_2OH), 3.36 (1 H, dd, *J* 11.0, 7.5, one of CH_2OH), 3.32 (2 H, app. s, CH_2OH), 2.68 - 2.64 (2 H, m, $CH_2CH=CH$), 2.46 (1 H, br. s, OH), 1.94 (1 H, br. s, OH), 1.70 (1 H, br. s, OH), 1.50 (1 H, dd, *J* 14.3, 8.9, one of CCH_2CHOH) and 1.33 (1 H, dd, *J* 14.3, 2.5, one of CCH_2CHOH); δ_c (100 MHz) 130.0 (CH), 129.5 (CH), 127.9 (CH), 127.4 (CH), 70.4 (CH₂), 69.6 (CH), 67.1 (CH₂), 41.9 (C), 40.9 (CH₂) and 26.5 (CH₂).

1-Cyclohexyl-2-(1-(hydroxymethyl)cyclohexa-2,5-dienyl)ethanol (113f)

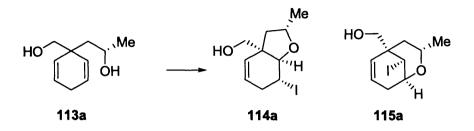

Lactone **121f** (1.39 g, 55 %) was prepared according to *General Procedure 1*. Reduction according to *General Procedure 2* gave the *title compound* (0.65 g, 91 %) as a colourless oil (Found: M⁺ - OH, 219.1760. $C_{15}H_{23}O$ requires M, 219.1749); v_{max} (neat) 3364, 2910, 2855, 1451, 1422, 1035 and 711 cm⁻¹; δ_{H} (400 MHz) 6.05 - 5.96 (2 H, m, 2 x alkene CH), 5.68 (1 H, app. dq, *J* 10.4, 2.1, one of alkene CH), 5.41 (1 H, app. dq, *J* 10.4, 2.1, one of alkene CH), 3.59 (1 H, app. dt, *J* 8.5, 4.4, CHOH), 3.37 (2 H, app. s, CH₂OH), 2.79 - 2.64 (2 H, m, CH₂CH=CH), 2.01 (1 H, br. s, OH), 1.78 - 1.59 (7 H, m), 1.49 - 1.42 (2 H, m, CH₂) and 1.32 - 0.93 (5 H, m); δ_{C} (100 MHz) 130.6 (CH), 129.7 (CH), 127.9 (CH), 127.4 (CH), 73.0 (CH), 70.4 (CH₂), 44.2 (CH), 42.3 (C), 41.9 (CH₂), 29.0 (CH₂), 27.7 (CH₂), 26.5 (CH₂), 26.5 (CH₂), 26.3 (CH₂) and 26.2 (CH₂); *m/z* (TOF ES+) 219 (M - OH, 89%), 201 (100) and 155 (62).

2-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)-1-phenylethanol (113g)

Ketoester **122g** (3.2 g, 87%) was prepared according to *General Procedure* 1. Reduction according to *General Procedure* 2, followed by crystallisation (CH₂Cl₂/hexane) gave the title compound (1.0 g, 35%) as a colourless solid, m.p. 77 - 80 °C (Found: MH⁺, 231.1378. C₁₅H₁₉O₂ requires M, 231.1385); v_{max} (Nujol) 3281, 1048, 1021, 712 and 699 cm⁻¹; δ_{H} (400 MHz) 7.36 - 7.33 (3 H, m, aromatic CH), 7.31 - 7.24 (2 H, m, aromatic CH), 6.13 (1 H, app. dtd, J 10.2, 3.2, 1.6, one of alkene CH), 6.05 (1 H, app. dtd, J 10.2, 3.2, 1.6, one of alkene CH), 5.82 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 5.50 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 4.92 (1 H, app. br. d, J 9.7, CHOH), 3.44 (1 H, d, J 11.1, one of CH₂OH), 3.40 (1 H, d, J 11.1, one of CH₂OH), 2.86 - 2.71 (2 H, m, CH₂CH=CH), 2.54 (1 H, br. s, OH), 1.89 (1 H, dd, J 14.4, 9.7, one of CH₂), 1.79 (1 H, br. s, OH) and 1.67 (1 H, dd, J 14.4, 2.3, one of CH₂); δ_{C} (100 MHz) 144.8 (C), 130.3 (CH), 129.4 (CH), 128.4 (CH), 128.3 (CH), 127.6 (CH), 127.4 (CH), 125.7 (CH), 71.9 (CH), 70.4 (CH2), 47.5 (CH₂), 42.6 (C) and 26.6 (CH₂); *m/z* (TOF ES+) 231 (MH⁺, 41%), 230 (M⁺, 63), 213 (16), 195 (19), 132 (25) and 105 (100).

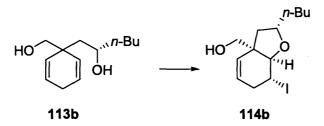

2-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)-2-phenylethanol (113h)

Lactone **121h** (1.29 g, 40 %) was prepared from styrene oxide according to *General Procedure 1*. Reduction according to *General Procedure 2* followed by chromatography on silica (33 % EtOAc in petroleum ether) gave the *title compound* (1.1 g, 84 %) as a colourless solid, m.p. 83 - 86 °C (Found: MH⁺, 231.1397. $C_{15}H_{19}O_2$ requires M, 231.1385); v_{max} (Nujol) 3265, 1377, 1032, 1000, 724 and 698 cm⁻¹; δ_H (400 MHz)


7.28 - 7.13 (5 H, m, aromatic CH), 5.99 (1 H, app. dtd, J 10.2, 3.3, 1.7, one of alkene CH), 5.89 (1 H, app. dtd, J 10.3, 3.3, 1.7, one of alkene CH), 5.60 (1 H, app. dq, J 10.2, 2.1, one of alkene CH), 5.43 (1 H, app. dq, J 10.3, 2.1, one of alkene CH), 3.92 (1 H, dd, J 11.3, 5.4, one of CH_2OH), 3.82 (1 H, dd, J 11.3, 9.1, one of CH_2OH), 3.27 (1 H, d, J 10.6, one of CH_2OH), 3.07 (1 H, d, J 10.6, one of CH_2OH), 2.86 (1 H, dd, J 9.1, 5.4, CHAr), 2.60 (1 H, app. dtt, J 23.2, 3.5, 1.9, one of $CH_2CH=CH$) and 2.53 (1 H, app. dtt, J 23.2, 3.1, 2.2, one of $CH_2CH=CH$); δ_C (100 MHz) 138.2 (C), 129.6 (CH), 129.6 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 127.1 (CH), 126.6 (CH), 69.0 (CH₂), 63.7 (CH₂), 54.2 (CH), 44.5 (C) and 26.6 (CH₂); *m/z* (TOF ES+) 272 (MH⁺.CH₃CN, 43 %), 231 (MH⁺, 12), 213 (100) and 195 (58).

Lactone **121i** (1.19 g, 34 %) was prepared according to *General Procedure 1*. Reduction according to *General Procedure 2* followed by chromatography on silica (33 % EtOAc in petroleum ether) gave the *title compound* (1.1 g, 92 %) as a colourless solid, m.p. 67 - 70 °C (Found: MH⁺, 209.1540. C₁₃H₂₁O₂ requires M, 209.1542); v_{max} (CH₂Cl₂) 3296, 2926, 2855, 1450, 1422, 1352, 1058, 980 and 713 cm⁻¹; δ_{H} (400 MHz) 5.95 (1 H, app. dtd, *J* 10.2, 3.3, 1.7, one of alkene CH), 5.87 (1 H, app. dtd, *J* 10.2, 3.3, 1.6, one of alkene CH), 5.72 (1 H, app. dq, *J* 10.3, 2.0, one of alkene CH), 5.53 (1 H, app. dq, *J* 10.3, 2.0, one of alkene CH), 3.61 (1 H, app. dt, *J* 10.1, 4.3, CHOH), 3.58 (1 H, d, *J* 10.8, one of CH₂OH), 3.49 (1 H, d, *J* 10.8, one of CH₂OH), 2.99 (2 H, br. s, OH), 2.71 - 2.58 (2 H, m, CH₂CH=CH), 1.99 - 1.92 (1 H, m), 1.76 - 1.59 (3 H, m), 1.43 (1 H, ddd, *J* 12.5, 10.1, 3.7, CHCHOH), 1.33 - 1.04 (3 H, m) and 0.96 (1 H, app. dq, *J* 12.8, 3.3, one of CH₂); δ_c (100 MHz) 130.0 (CH), 129.4 (CH), 127.0 (CH), 125.4 (CH), 71.3 (CH), 69.8 (CH₂), 50.0 (CH), 44.8 (C), 36.4 (CH₂), 26.8 (CH₂), 26.7 (CH₂), 25.7 (CH₂) and 24.7 (CH₂); *m/z* (TOF ES+) 250 (MH⁺.CH₃CN, 100 %), 209 (MH⁺, 38), 191 (12) and 173 (11).

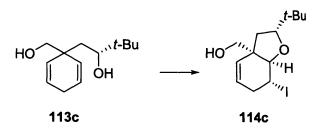
((2*SR*,3a*RS*,7*RS*,7a*RS*)-7-lodo-2-methyl-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114a) and ((1*RS*,3*RS*,5*SR*,9*RS*)-9-lodo-3-methyl-2-oxabicyclo(3.3.1)non-6-en-5-yl)methanol (115a)


lodocyclisation of diol **113a** (178 mg, 1.06 mmol) according to *General Procedure 3* followed by chromatography on silica (10 % EtOAc in petroleum ether) gave the *title compounds* as colourless oils (**115a**: 17 mg, 5.5 %; **114a**: 204 mg, 65.5 %).

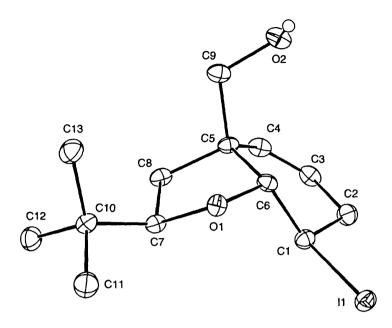
Data for compound **114a**: Found: MH^+ , 295.0202. $C_{10}H_{16}IO_2$ requires M, 295.0195; v_{max} (neat) 3444, 2966, 1456, 1384, 1205, 1060, 834, 724 and 668 cm⁻¹; δ_H (400 MHz) 5.74 (1 H, app. dt, *J* 10.0, 3.9, CH₂CH=CH), 5.68 (1 H, app. dt, *J* 10.0, 1.5, CH₂CH=CH), 4.38 - 4.36 (2 H, m, CHICHO and CHICHO), 4.11 (1 H, app. doubled quintet, *J* 8.7, 6.1, CH₃CHO), 3.69 (1 H, d, *J* 10.7, one of CH₂OH), 3.60 (1 H, d, *J* 10.7, one of CH₂OH), 2.81 - 2.74 (1 H, m, one of CH₂CH=CH), 2.62 (1 H, dddd, *J* 17.8, 7.7, 3.6, 1.9, one of CH₂CH=CH), 1.95 (1 H, dd, *J* 12.5, 6.4, one of CH₂CHO), 1.73 (1 H, br. s, OH), 1.59 (1 H, dd, *J* 12.5, 8.7, one of CH₂CHO) and 1.26 (3 H, d, *J* 6.0, CH₃); δ_C (100 MHz) 130.4 (CH), 127.3 (CH), 83.3 (CH), 73.3 (CH), 68.6 (CH₂), 50.8 (C), 43.5 (CH₂), 33.8 (CH₂), 27.0 (CH) and 21.0 (CH₃). *m/z* (TOF ES+) 295 (MH⁺, 56%), 277 (100), 132 (37) and 119 (40).

Data for compound **115a**: Found: MH^* , 295.0179. $C_{10}H_{16}IO_2$ requires M, 295.0195; v_{max} (CH₂Cl₂) 3396, 2933, 1457, 1417, 1380, 1344, 1209, 1153, 1046, 789, 720 and 688 cm⁻¹; δ_H (400 MHz) 6.01 (1 H, app. dt, *J* 10.0, 3.4, CH₂CH=CH), 5.29 (1 H, app. dq, *J* 10.0, 2.0, CH₂CH=CH), 4.50 - 4.48 (1 H, m, CHICHO), 4.29 (1 H, app. br. t, *J* 4.5, CHICHO), 3.97 (1 H, app. dqd, *J* 12.2, 6.1, 2.8, CH₃CHO), 3.63 (1 H, dd, *J* 10.9, 4.8, one of CH₂OH), 3.50 (1 H, dd, *J* 10.9, 5.4, one of CH₂OH), 2.83 (1 H, app. ddt, *J* 19.9, 5.4, 2.5, one of CH₂CH=CH), 2.34 (1 H, app. br. d, *J* 19.9, one of CH₂CH=CH), 1.80 (1 H, dd, *J* 13.0, 11.3, one of CH₂CHO), 1.67 (1 H, br. t, *J* 5.6, OH), 1.57 (1 H, dd, *J* 13.0, 2.8, one of CH₂CHO) and 1.14 (3 H, d, *J* 6.1, CH₃); δ_c (100 MHz) 128.4 (CH), 127.2 (CH), 72.7 (CH), 71.4 (CH₂),

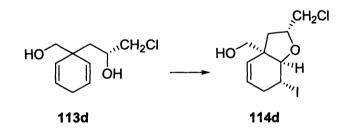
65.0 (CH), 41.2 (CH₂), 40.2 (C), 36.2 (CH), 30.1 (CH₂) and 21.2 (CH₃); *m/z* (TOF ES+) 295 (10 %), 277 (18), 208 (100) and 146 (14).


((2*SR*,3a*RS*,7*RS*,7a*RS*)-2-Butyl-7-iodo-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114b)

lodocyclisation of diol **113b** (480 mg, 2.29 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (153 mg, 65%) as a pale yellow oil (Found: MH⁺, 337.0667. C₁₃H₂₂IO₂ requires M, 337.0665); v_{max} (neat) 3419, 2928, 2863, 1456, 1046 and 728 cm⁻¹; δ_{H} (400 MHz) 5.75 (1 H, app. dt, *J* 9.9, 3.8, CH₂CH=CH), 5.68 (1 H, app. br. d, *J* 9.9, CH₂CH=CH), 4.37 (1 H, app. dt, *J* 4.5, 7.2, CHICHO), 4.34 (1 H, d, *J* 7.3, CHICHO), 3.92 (1 H, app. dq, *J* 9.0, 6.3, BuCHO), 3.69 (1 H, d, *J* 10.7, one of CH₂OH), 3.60 (1 H, d, *J* 10.7, one of CH₂OH), 2.77 (1 H, app. dtd, *J* 17.9, 4.5, 1.3, one of CH₂CH=CH), 2.62 (1 H, dddd, *J* 17.9, 7.2, 3.5, 1.8, one of CH₂CH=CH), 1.91 (1 H, dd, *J* 12.5, 6.3, one of CH₂CHO), 1.71 (1 H, br. s, OH), 1.70 - 1.62 (1 H, m, one of CH₂), 1.61 (1 H, dd, *J* 12.5, 9.0, one of CH₂CHO), 1.50 - 1.39 (1 H, m, one of CH₂), 1.27 (CH), 82.8 (CH), 77.4 (CH), 68.6 (CH₂), 50.3 (C), 41.7 (CH₂), 35.3 (CH₂), 33.7 (CH₂), 28.2 (CH₂), 26.7 (CH), 22.7 (CH₂) and 14.0 (CH₃); *m/z* (TOF ES+) 337 (MH⁺, 81%), 319 (71), 268 (100), 250 (87), 209 (48), 191 (46), 173 (34), 161 (49) and 132 (38).

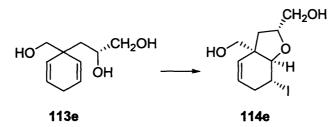

127

((2RS,3aRS,7RS,7aRS)-2-tert-Butyl-7-iodo-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114c)

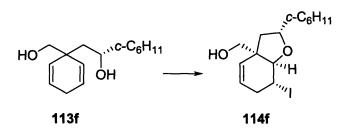


lodocyclisation of diol **113c** (186 mg, 0.89 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (265 mg, 89 %) as a colourless solid, m.p. 84 - 86 °C (Found: MH⁺, 337.0675. C₁₃H₂₂IO₂ requires M, 337.0665); v_{max} (CH₂Cl₂) 3389, 2954, 2858, 1464, 1396, 1362, 1205, 1044, 973, 780 and 727 cm⁻¹; δ_{H} (400 MHz) 5.71 (1 H, app. dt, *J* 10.0, 3.9, CH₂CH=CH), 5.62 (1 H, app. dt, *J* 10.0, 1.5, CH₂CH=CH), 4.36 (1 H, app. td, *J* 7.0, 4.8, CHICHO), 4.23 (1 H, d, *J* 7.0, CHICHO), 3.65 (1 H, dd, *J* 10.4, 4.5, one of CH₂OH), 3.58 - 3.52 (2 H, m, one of CH₂OH and tBuCHO), 2.73 (1 H, app. dt, *J* 17.9, 4.6, 1.6, one of CH₂CH=CH), 2.52 (1 H, dddd, *J* 17.9, 6.9, 3.8, 1.7, one of CH₂CH=CH), 1.67 (1 H, dd, *J* 12.5, 9.9, one of CH₂CHO), 1.61 (1 H, dd, *J* 12.5, 6.5, one of CH₂CHO), 1.56 (1 H, br. s, OH) and 0.82 (9 H, s, C(CH₃)₃); δ_{C} (100 MHz) 130.4 (CH), 127.2 (CH), 85.0 (CH), 82.3 (CH), 68.3 (CH₂), 49.9 (C), 36.8 (CH₂), 33.2 (CH₂), 33.1 (C), 26.6 (CH) and 25.7 (3 x CH₃); *m/z* (TOF ES+) 337 (MH⁺, 28 %) and 319 (100).

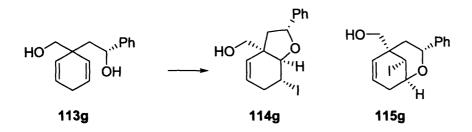
Single crystal X-ray diffraction data for this compound has been deposited with the CCDC, number 646880, and can be obtained free of charge *via* <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>. The Ortep plot (50% probability thermal ellipsoids) is shown below:


((2RS,3aRS,7RS,7aRS)-2-(Chloromethyl)-7-iodo-2,3,3a,6,7,7a-hexahydrobenzofuran-3a-yl)methanol (114d)

lodocyclisation of diol **113** (81 mg, 0.40 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (115 mg, 87 %) as a colourless oil; (Found: M^+ - I, 201.0681. C₁₀H₁₄ ³⁵ClO₂ requires M, 201.0682); v_{max} (neat) 3418, 2936, 2874, 1424, 1371, 1315, 1204, 1140, 1047, 971 and 729 cm⁻¹; δ_{H} (400 MHz) 5.77 (1 H, app. dt, *J* 10.0, 3.9, CH₂CH=CH), 5.68 (1 H, app. dt, *J* 10.0, 1.7, CH₂CH=CH), 4.43 (1 H, d, *J* 7.0, CHICHO), 4.37 (1 H, app. td, *J* 6.8, 4.8, CHICHO), 4.24 - 4.17 (1 H, m, CH₂CHO), 3.77 (1 H, d, *J* 10.8, one of CH₂OH), 3.62 (1 H, dd, *J* 11.2, 4.9, one of CH₂Cl), 3.57 (1 H, dd, *J* 11.2, 5.6, one of CH₂Cl), 2.82 (1 H, app. dtd, *J* 18.1, 4.3, 1.7, one of CH₂CH=CH), 2.61 (1 H, dddd, *J* 18.1, 6.4, 3.9, 1.7, one of CH₂CH=CH) and 1.98 (2 H, app. d, *J* 7.7, CH₂CHO); δ_{c} (100 MHz) 130.3 (CH), 127.4 (CH), 83.3 (CH), 78.7 (CH), 68.5 (CH₂), 50.2

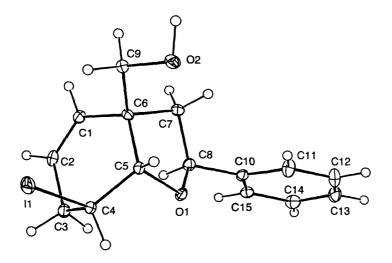

(C), 43.4 (CH₂), 33.9 (CH₂), 27.1 (CH) and 21.1 (CH₃); m/z (TOF ES+) 203 ((M-I)⁺ (³⁷CI), 11%), 201 ((M-I)⁺ (³⁵CI), 32), 105 (28) and 91 (100).

((2RS,3aRS,7RS,7aRS)-2-Hydroxymethyl-7-iodo-2,3,3a,6,7,7a-hexahydrobenzofuran-3a-yl)methanol (114e)

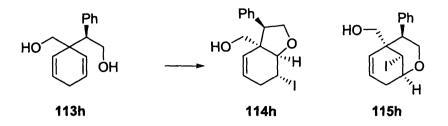

lodocyclisation of triol **113e** (45 mg, 0.25 mmol) according to *General Procedure 3* followed by chromatography on silica (67 % EtOAc in petroleum ether) gave the *title compound* (69 mg, 91 %) as a colourless solid, m.p. 87 - 88 °C (Found: MH⁺.CH₃CN, 352.0407. C₁₂H₁₉INO₃ requires M, 352.0410); v_{max} (Nujol) 3215, 1144, 1042, 1029 and 726 cm⁻¹; δ_{H} (400 MHz) 5.69 - 5.60 (2 H, m, 2 x alkene CH), 4.34 (1 H, d, *J* 8.2, CHICHO), 4.28 (1 H, app. td, *J* 8.1, 4.8, CHICHO), 4.11 - 4.02 (1 H, m, CH₂CHO), 3.76 (1 H, dd, *J* 12.0, 2.4, one of CH₂OH), 3.64 (1 H, d, *J* 10.8, one of CH₂OH), 3.54 (1 H, d, *J* 10.8, one of CH₂OH), 3.48 (1 H, dd, *J* 12.0, 4.1, one of CH₂OH), 2.74 (1 H, app. dtd, *J* 17.9, 4.6, 1.1, one of CH₂CH=CH), 2.62 - 2.54 (1 H, dddd, *J* 17.9, 7.8, 2.9, 1.9, one of CH₂CH=CH), 2.38 (1 H, br. s, OH), 2.23 (1 H, br. s, OH), 1.88 (1 H, dd, *J* 12.7, 8.4, one of CH₂CHO) and 1.79 (1 H, dd, *J* 12.7, 7.4, one of CH₂CHO); δ_{C} (100 MHz) 130.3 (CH), 127.3 (CH), 83.7 (CH), 77.4 (CH), 68.2 (CH₂), 63.9 (CH₂), 50.5 (C), 36.5 (CH₂), 34.3 (CH₂) and 26.6 (CH₂); *m/z* (TOF ES+) 352 (MH⁺.CH₃CN, 32 %), 328 (25), 293 (100) and 165 (42).

((2RS,3aRS,7RS,7aRS)-2-Cyclohexyl-7-iodo-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114f)

lodocyclisation of diol **113** (277 mg, 1.17 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (188 mg, 44 %) as a pale yellow oil (Found: MH⁺, 363.0828. C₁₅H₂₄IO₂ requires M, 363.0821); v_{max} (neat) 3403, 2914, 1446, 1385, 1356, 1266, 1204, 1048, 975, 777 and 668 cm⁻¹; δ_{H} (400 MHz) 5.75 (1 H, app. dt, *J* 9.9, 3.9, CH₂CH=CH), 5.68 (1 H, app. br. d, *J* 9.9, CH₂CH=CH), 4.38 (1 H, app. td, *J* 7.2, 4.7, CHICHO), 4.31 (1 H, d, *J* 7.4, CHICHO), 3.71 - 3.61 (2 H, m, one of CH₂OH and CH₂CHO), 3.59 (1 H, d, *J* 10.4, one of CH₂OH), 2.77 (1 H, app. dtd, *J* 17.8, 4.5, 1.3, one of CH₂CH=CH), 2.60 (1 H, dddd, *J* 17.8, 7.2, 3.6, 1.8, one of CH₂CHO), 1.76 - 1.54 (5 H, m), 1.44 - 1.35 (1 H, m), 1.30 - 1.10 (3 H, m) and 0.99 - 0.83 (3 H, m); δ_c (100 MHz) 130.4 (CH), 127.3 (CH), 82.5 (CH), 81.6 (CH), 68.5 (CH₂), 50.0 (C), 42.7 (CH), 39.3 (CH₂), 33.5 (CH₂), 30.0 (CH₂), 28.6 (CH₂), 26.9 (CH), 26.5 (CH₂), 25.9 (CH₂) and 25.8 (CH₂); *m/z* (TOF ES+) 363 (MH⁺, 100 %), 294 (61), 276 (73) and 199 (58).


((2RS,3aRS,7RS,7aRS)-7-lodo-2-phenyl-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114g) and ((1RS,3SR,5SR,9RS)-9-lodo-3-phenyl-2-oxabicyclo(3.3.1)non-6-en-5-yl)methanol (115g)

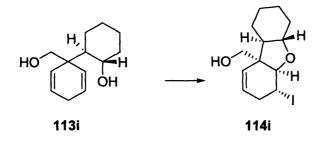
lodocyclisation of diol **113g** (198 mg, 0.86 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave compound **114g** (181 mg, 59 %) as a colourless solid and compound **115g** (12 mg, 4 %) as a pale yellow waxy solid.


Data for compound **114g**: Found: MH⁺, 357.0363. C₁₅H₁₈IO₂ requires M, 357.0352; v_{max} (Nujol) 3442, 1199, 1014, 721 and 700 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.29 - 7.18 (5 H, m, 5 x aromatic CH), 5.80 (1 H, app. dt, *J* 10.2, 4.0, CH₂CH=CH), 5.68 (1 H, app. br. d, *J* 10.2, CH₂CH=CH), 4.89 (1 H, dd, *J* 9.6, 6.2, CHAr), 4.56 (1 H, d, *J* 6.2, CHICHO), 4.46 (1 H, app. q, *J* 5.6, CHICHO), 3.76 (1 H, dd, *J* 10.7, 6.9, one of CH₂OH), 3.67 (1 H, dd, *J* 10.7, 50.0, one of CH₂OH), 2.83 (1 H, app. br. d, *J* 18.3, one of CH₂CH=CH), 2.57 (1 H, app. br. dt, *J* 18.3, 4.9, one of CH₂CH=CH), 2.15 (1 H, dd, *J* 12.6, 6.2, one of CH₂CHAr), 1.99 (1 H, dd, *J* 12.6, 9.6, one of CH₂CHAr) and 1.62 (1 H, dd, *J* 6.9, 5.0, OH); $\delta_{\rm C}$ (100 MHz) 141.7 (C), 129.7 (CH), 128.5 (CH), 127.7 (CH), 127.3 (CH), 125.8 (CH), 82.6 (CH), 79.3 (CH), 68.2 (CH₂), 50.3 (C), 45.1 (CH₂), 32.8 (CH₂) and 25.9 (CH); *m/z* (TOF ES+) 374 (MH⁺.NH₄, 43 %), 357 (MH⁺, 52), 339 (43), 311 (30), 270 (25), 194 (38) and 183 (100).

Single crystal X-ray diffraction data for this compound has been deposited with the CCDC, number 646881, and can be obtained free of charge *via* <u>http://www.ccdc.cam.ac.uk/data_reguest/cif</u>. The Ortep plot (50% probability thermal ellipsoids) is shown below:

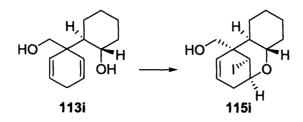
Data for compound **115g**: Found: MH⁺, 357.0314. C₁₅H₁₈IO₂ requires M, 357.0352; v_{max} (CH₂Cl₂) 3427, 2920, 2852, 1494, 1453, 1415, 1344, 1264, 1151, 1026, 979, 937, 745 and 689 cm⁻¹; δ_{H} (400 MHz) 7.28 - 7.18 (5 H, m, 5 x aromatic CH), 6.07 (1 H, app. dt, *J* 10.1, 3.3, CH₂CH=CH), 5.33 (1 H, app. dq, *J* 10.1, 1.7, CH₂CH=CH), 4.83 (1 H, dd, *J* 11.5, 2.8, CHAr), 4.60 - 4.58 (1 H, br. s, CHICHO), 4.42 (1 H, app. t, *J* 4.4, CHICHO), 3.61 (1 H, br. d, *J* 10.8, one of CH₂OH), 3.47 (1 H, dd, *J* 10.8, 3.0, one of CH₂OH), 2.86 (1 H, app. ddt, *J* 20.0, 5.2, 2.6, one of CH₂CH=CH), 2.40 (1 H, br. app. d, *J* 20.0, one of CH₂CH=CH), 2.06 (1 H, dd, *J* 13.4, 11.5, one of CH₂CHAr), 1.73 (1 H, dd, *J* 13.4, 2.8, one of CH₂CHAr) and 1.51 (1 H, br. s, OH); δ_{C} (100 MHz) 141.7 (C), 128.9 (CH), 128.4 (CH), 127.6 (CH), 127.1 (CH), 126.0 (CH), 73.0 (CH), 71.5 (CH), 71.3 (CH₂), 41.7 (CH₂), 40.5 (C), 35.6 (CH) and 30.1 (CH₂); *m/z* (TOF ES+) 357 (MH⁺, 12 %), 270 (100), 211 (49), 193 (41) and 183 (35).

((3RS,3aSR,7RS,7aRS)-7-lodo-3-phenyl-2,3,3a,6,7,7a-hexahydrobenzofuran-3ayl)methanol (114h) and ((1RS,4SR,5RS,9RS)-9-lodo-4-phenyl-2-oxabicyclo(3.3.1)non-6-en-5-yl)methanol (115h)

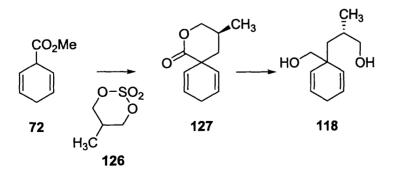

Iodocyclisation of diol **113h** (200 mg, 0.87 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave compound **114h** (243 mg, 79 %) as a colourless solid, m.p. 89 - 91 °C and compound **115h** (10 mg, 3 %) as a pale yellow waxy solid.

Data for compound **114**h: Found: M^+ .NH₃, 374.0599. $C_{15}H_{21}NO_2I$ requires M, 374.0617; v_{max} (Nujol) 3313, 1044, 1011, 726 and 704 cm⁻¹; δ_H (400 MHz) 7.28 - 7.18 (3 m, m, 3 x aromatic CH), 7.12 - 7.09 (2 H, m, 2 x aromatic CH), 5.75 (1 H, app. dt, *J* 10.2, 4.1, CH₂CH=CH), 4.94 (1 H, app. br. d, *J* 10.2, CH₂CH=CH), 4.54 (1 H, d, *J* 6.0, CHICHO), 4.39 (1 H, app. q, *J* 5.8, CHICHO), 4.09 (1 H, dd, *J* 8.6, 7.2, one of CH₂O), 3.93 (1 H, dd, *J* 9.6, 8.6, one of CH₂O), 3.78 (1 H, d, *J* 11.0, one of CH₂OH), 3.54 (1 H, dd, *J* 9.6, 7.2, CHAr), 3.50 (1 H, d, *J* 11.0, one of CH₂OH), 2.76 (1 H, app. dtd, *J* 18.0, 4.5, 2.1, one of CH₂CH=CH), 2.56 - 2.48 (1 H, m, one of CH₂CH=CH) and 1.52 (1 H, br. s, OH); δ_c (100 MHz) 136.6 (C), 129.3 (2 x CH), 128.2 (2 x CH), 128.1 (CH), 127.3 (CH), 127.1 (CH), 82.4 (CH), 71.6 (CH₂), 66.2 (CH₂), 52.2 (C), 50.8 (CH), 32.4 (CH₂) and 26.1 (CH); *m/z* (TOF ES+) 398 (MH⁺.CH₃CN, 100 %), 374 (59), 357 (59) and 270 (30).

Data for compound **115h**: Found: MH^+ , 357.0364. $C_{15}H_{18}IO_2$ requires M, 357.0352; v_{max} (CH₂Cl₂) 3436, 2924, 1494, 1462, 1416, 1352, 1266, 1151, 1062, 970, 910, 868, 796, 721, 734 and 702 cm⁻¹; δ_H (400 MHz) 7.24 - 7.16 (3 H, m, aromatic CH), 7.12 (2 H, app. br. d, *J* 6.5, aromatic CH), 6.13 (1 H, app. dt, *J* 10.0, 3.2, CH₂CH=CH), 4.99 (1 H, app. dq, *J* 10.0, 1.6, CH₂CH=CH), 4.76 - 4.73 (1 H, m, CHICHO), 4.33 (1 H, app. br. t, *J* 4.3, CHICHO), 3.98 (1 H, app. t, *J* 11.7, one of CH₂O), 3.75 (1 H, dd, *J* 11.7, 4.6, one of CH₂O), 3.47 (1 H, dd, *J* 11.9, 4.6, CHAr), 3.41 (1 H, d, *J* 11.1, one of CH₂OH), 3.20 (1 H, d, *J* 11.1, one of CH₂OH), 2.89 (1 H, app. dtt, *J* 20.1, 5.3, 2.6, one of CH₂CH=CH), 2.42 (1 H, app.

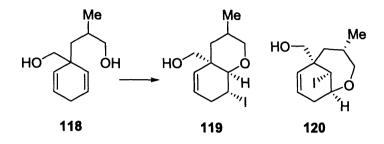

br. d, J 20.1, one of CH₂CH=CH) and 1.45 (1 H, br. s, OH); δ_{C} (100 MHz) 137.8 (C), 129.2 (CH), 128.3 (4 x CH), 127.5 (CH), 125.1 (CH), 72.6 (CH), 67.7 (CH₂), 64.0 (CH₂), 47.6 (CH), 43.8 (C), 37.0 (CH) and 30.3 (CH₂); *m/z* (TOF ES+) 374 (MH⁺.NH₄, 63 %), 357 (MH⁺,29), 310 (50), 280 (30) and 229 (100).

((4aSR,5aRS,6RS,9aSR,9bRS)-6-lodo-1,2,3,4,4a,5a,6,7,9a,9bdecahydrodibenzo(b,d)furan-9a-yl)methanol (114i)


lodocyclisation of diol **113i** (223 mg, 1.07 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (222 mg, 62 %) as a colourless oil (Found: MH⁺.CH₃CN, 376.0770. C₁₅H₂₃INO₂ requires M, 376.0774); v_{max} (neat) 3418, 2929, 2858, 1454, 1427, 1336, 1197, 1125, 1088, 1052, 959, 878, 836 and 726 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.95 - 5.90 (1 H, m, CH₂CH=CH), 5.59 (1 H, app. br. dd, *J* 10.4, 2.6, CH₂CH=CH), 4.52 (1 H, app. q, *J* 3.5, CHICHO), 4.48 (1 H, d, *J* 3.5, CHICHO), 3.90 (1 H, d, *J* 11.0, one of CH₂OH), 3.80 (1 H, d, *J* 11.0, one of CH₂OH), 3.12 (1 H, app. dt, *J* 10.7, 4.0, CHCHO), 2.75 (1 H, app. ddt, *J* 18.5, 4.7, 2.5, one of CH₂CH=CH), 2.56 - 2.49 (1 H, m, one of CH₂CH=CH), 2.09 - 2.04 (1 H, m), 1.90 - 1.65 (5 H, m) and 1.31 - 1.00 (4 H, m); $\delta_{\rm C}$ (100 MHz) 127.3 (CH), 126.9 (CH), 81.5 (CH), 81.1 (CH), 66.8 (CH₂), 51.8 (CH), 49.0 (C), 31.6 (CH₂), 30.9 (CH₂), 26.6 (CH), 25.4 (CH₂), 25.1 (CH₂) and 24.0 (CH₂); *m/z* (TOF AP⁺) 376 (MH⁺.CH₃CN, 100 %) and 173 (10).

((1*SR*,2*RS*,6*RS*,8*RS*,13*RS*)-13-Iodo-7-oxotricyclo(6.4.1^{2,6}.0)tridec-3-en-2-yl)methanol (115i)

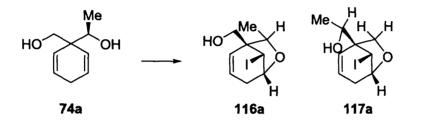
lodocyclisation of compound **113i** (113 mg, 0.54 mmol) according to *General Procedure* 3, with the omission of NaHCO₃, followed by chromatography on silica (14 % EtOAc in petroleum ether) gave the *title compound* (103 mg, 57 %) as a colourless oil (Found: MH⁺.CH₃CN, 376.0770. C₁₅H₂₃INO₂ requires M, 376.0774); v_{max} (CH₂Cl₂) 3425, 2927, 2857, 1448, 1416, 1365, 1264, 1150, 1067, 962, 923, 904, 868, 805, 737 and 700 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.98 (1 H, app. dt, *J* 10.1, 3.1, CH₂CH=CH), 5.03 (1 H, app. dq, *J* 10.1, 2.0, CH₂CH=CH), 4.67 - 4.65 (1 H, m, CHICHO), 4.29 - 4.25 (1 H, m, CHICHO), 3.75 (1 H, d, *J* 11.5, one of CH₂OH), 3.33 (1 H, app. td, *J* 10.5, 3.9, CHCHO), 2.81 (1 H, app. ddt, *J* 20.0, 5.6, 2.8, one of CH₂CH=CH), 2.31 (1 H, app. br. dt, *J* 20.0, 2.5, one of CH₂CH=CH), 1.87 - 1.50 (6 H, m, cyclohexane CH and OH), 1.31 - 1.09 (3 H, m, cyclohexane CH) and 0.77 (1 H, app. qd, *J* 12.4, 3.6, cyclohexane CH); $\delta_{\rm C}$ (100 MHz) 129.5 (CH), 125.6 (CH), 72.5 (CH), 72.2 (CH), 66.7 (CH₂), 46.6 (CH), 42.7 (C), 38.9 (CH), 32.3 (CH₂), 30.5 (CH₂), 26.3 (CH₂), 25.7 (CH₂) and 24.5 (CH₂); *m/z* (TOF AP⁺) 376 (MH⁺.CH₃CN, 100 %) and 173 (9).


3-(1-(Hydroxymethyl)cyclohexa-2,5-dienyl)-2-methylpropan-1-ol (118)

A solution of methyl cyclohexa-2,5-diene-1-carboxylate **72** (1.50 g, 10.9 mmol) in THF (3 ml) was added dropwise to a cooled (-78 °C) solution of LDA (12 mmol, 1.1 equiv.) in

THF (30 ml). The resulting suspension was stirred for 30 min before addition of 5methyl-2,2-dioxo-1,3,2-dioxathiane **126⁶⁶** (1.82 g, 12 mmol) as a solution in THF (5 mL). After stirring at -78 °C for 1 h the reaction was allowed to warm to room temperature and stirred overnight. 2M aqueous HCI (50 ml) was added, the organic layer separated and the aqueous phase extracted with diethyl ether (2 x 25 ml). The combined organic extracts were dried over sodium sulfate and concentrated in vacuo. Chromatography of the residue on silica (14 % EtOAc in petroleum ether) gave the lactone, 127 (1.29 g, 67 %), as a pale yellow oil. A solution of lactone 127 (1.20 g, 6.7 mmol) in THF (4 ml) was added to a suspension of LiAlH₄ (0.46 g, 13.5 mmol, 2 equiv.) in THF (20 ml). After stirring for 15 min the reaction was quenched with sufficient 2M aqueous NaOH to turn the aluminium salts into a granular consistency. The mixture was dried over sodium sulfate, filtered and concentrated to give a residue that was purified by chromatography on silica (33 % EtOAc in petroleum ether) to give the title compound (0.59 g, 48 %) as a colourless oil (Found: MH⁺, 183.1370. C₁₁H₁₉O₂ requires M, 183.1385); v_{max} (CDCl₃) 3358, 2922, 1456, 1423, 1378, 1034, 947 and 711 cm⁻¹; δ_{H} (400 MHz) 5.96 - 5.87 (2 H, m, 2 x alkene CH), 5.40 (1 H, app. dq, J 10.1, 2.1, one of alkene CH), 5.35 (1 H, app. dq, J 10.1, 2.1, one of alkene CH), 3.37 (1 H, dd, J 10.4, 6.0, one of CH₂OH), 3.33 (1 H, dd, J 10.4, 6.3, one of CH₂OH), 3.25 (1 H, d, J 10.5, one of CH₂OH), 3.23 (1 H, d, J 10.5, one of CH₂OH), 2.68 - 2.56 (2 H, m, CH₂CH=CH), 1.69 - 1.61 (1 H, m, CHCH₃), 1 54, (2 H, br. s, OH), 1.38 (1 H, dd, J 13.9, 4.7, one of CH₂CHCH₃), 1.03 (1 H, dd, J 13.9, 6.6, one of CH₂CHCH₃) and 0.86 (3 H, d, J 6.8, CH₃); δ_c (100 MHz) 130.4 (CH), 130.0 (CH), 127.7 (CH), 127.1 (CH), 70.7 (CH₂), 68.7 (CH₂), 43.3 (C), 40.2 (CH₂), 32.4 (CH), 26.6 (CH₂) and 18.9 (CH₃); *m/z* (TOF ES+) 224 (MH⁺.CH₃CN, 100 %), 183 (MH⁺, 11) and 165 (53).

((3*SR*,4a*RS*,8*RS*,8a*RS*)-8-lodo-3-methyl-3,4,4a,7,8,8a-hexahydro-2*H*-chromen-4ayl)methanol (119) and ((1*SR*,4*SR*,6*RS*,10*SR*)-10-iodo-4-methyl-2-oxabicyclo(4.3.1)dec-7-en-6-yl)methanol (120)

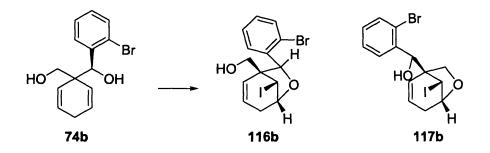

lodocyclisation of diol **118** (60 mg, 0.33 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave compound **119** (42 mg, 41 %) as a colourless oil and compound **120** (10 mg, 10 %) as a colourless oil.

119 (42 mg, 41 %): Found: MH⁺, 309.0372. C₁₀H₁₄O requires M, 309.0352; ν_{max} (neat) 3406, 2923, 2874, 1456, 1383, 1213, 1090, 1053, 923 and 717 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.66 (1 H, app. dt, *J* 10.1, 3.8, CH₂CH=CH), 5.37 (1 H, app. br. d, *J* 10.1, CH₂CH=CH), 4.49 (1 H, app. q, *J* 6.0, CHICHO), 3.99 (1 H, d, *J* 6.2, CHICHO), 3.96 (1 H, dd, *J* 11.3, 4.9, one of CH₂OH), 3.78 (1 H, ddd, *J* 11.2, 4.6, 0.9, one of CH₂O), 3.54 (1 H, dd, *J* 11.3, 8.3, one of CH₂OH), 3.11 (1 H, dd, *J* 11.2, 8.5, one of CH₂O), 3.04 (1 H, dddd, *J* 18.9, 6.2, 4.2, 1.8, one of CH₂CH=CH), 2.72 (1 H, dddd, *J* 18.9, 5.5, 3.5, 2.4, one of CH₂CH=CH), 1.80 - 1.72 (1 H, m, CHCH₃), 1.64 (1 H, dd, *J* 8.3, 4.9, OH), 1.56 - 1.53 (2 H, m, CH₂CHCH₃) and 0.89 (3 H, d, *J* 6.8, CH₃); $\delta_{\rm C}$ (100 MHz) 131.2 (CH), 126.4 (CH), 76.4 (CH), 70.2 (CH₂), 69.4 (CH₂), 41.7 (C), 39.0 (CH₂), 34.9 (CH₂), 27.1 (CH), 22.2 (CH) and 18.1 (CH₃); *m/z* (TOF ES+) 350 (MH⁺.CH₃CN, 11 %), 309 (MH⁺, 12), 291 (100), 181 (20), 164 (47) and 145 (27). **120** (10 mg, 10 %): Found: MH⁺, 309.0367. C₁₀H₁₄O requires M, 309.0352; ν_{max} (CDCl₃) 3432, 2922, 1460, 1421, 1273, 1106, 1055, 872, 806 and 690 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.79 - 5.73 (1 H, m, one of alkene CH), 5.22 (1 H, app. ddt, *J* 10.4, 2.9, 1.6, one of alkene

CH), 4.76 (1 H, app. dt, *J* 3.5, 1.6, CHICHO), 4.53 - 4.50 (1 H, m, CHICHO), 3.64 - 3.56 (2 H, m, CH₂OH), 3.49 (1 H, app. dt, *J* 12.9, 2.2, one of CH₂O), 3.35 (1 H, dd, *J* 12.9, 9.8, one of CH₂O), 2.90 (1 H, app. dq, *J* 18.5, 2.9, one of CH₂CH=CH), 2.31 (1 H, app. ddq, *J* 18.5, 5.2, 1.7, one of CH₂CH=CH), 1.88 (1 H, app. br. t, *J* 7.0, OH), 1.86 - 1.79 (1 H, m, CHCH₃), 1.70 (1 H, ddd, *J* 14.0, 4.6, 1.7, one of CH₂CHCH₃), 1.54 (1 H, dd, *J* 14.0, 12.4,

one of CH_2CHCH_3) and 0.83 (3 H, d, J 6.9, CH_3); δ_c (100 MHz) 126.0 (CH), 125.4 (CH), 77.3 (CH₂), 74.7 (CH), 69.5 (CH₂), 42.6 (C), 42.2 (CH₂), 37.1 (CH), 33.1 (CH), 32.0 (CH₂) and 17.9 (CH₃); m/z (TOF AP⁺) 309 (MH⁺, 100 %) and 291 (23).

((1RS,5SR,7RS,8SR)-8-lodo-7-methyl-6-oxabicyclo(3.2.1)oct-2-en-1-yl)methanol (116a) and 1-((1SR,5SR,8SR)-8-iodo-6-oxabicyclo(3.2.1)oct-2-en-1-yl)ethanol (117a)


Iodocyclisation of diol **74a** (90 mg, 0.58 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave a mixture of the *title compounds* (118 mg, 72 %) as a colourless oil. Further chromatography on silica gel (10 % EtOAc in petroleum ether) provided analytical samples of the individual compounds.

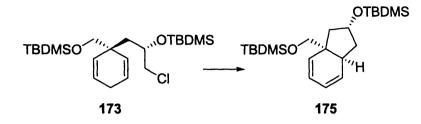
Data for compound **116a**: Found: $M^+.CH_3CN$, 322.0327. $C_{11}H_{17}INO_2$ requires M, 322.0304; v_{max} (CH₂Cl₂) 3419, 2927, 1417, 1379, 1318, 1235, 1202, 1172, 1124, 1056, 1004, 918, 876, 848, 815, 737 and 638 cm⁻¹; δ_H (400 MHz) 5.74 (1 H, app. dtd, *J* 9.8, 3.1, 1.5, CH₂CH=CH), 5.14 (1 H, app. dq, *J* 9.8, 1.7, CH₂CH=CH), 4.47 (1 H, dd, *J* 5.4, 1.2, CHICHO), 4.27 (1 H, app. br. dd, *J* 5.0, 1.9, CHICHO), 4.21 (1 H, q, *J* 6.2, CHCH₃), 3.63 (1 H, dd, *J* 11.4, 5.4, one of CH₂OH), 3.59 (1 H, dd, *J* 11.4, 5.1, one of CH₂OH), 2.59 (1 H, br. app. dq, *J* 18.7, 1.7, one of CH₂CH=CH), 2.26 (1 H, app. dq, *J* 18.7, 2.6, one of CH₂CH=CH), 1.61 (1 H, app. t, *J* 5.3, OH) and 1.18 (3 H, d, *J* 6.2, CH₃); δ_C (100 MHz) 127.0 (CH), 126.9 (CH), 80.2 (CH), 75.5 (CH), 62.1 (CH₂), 49.7 (C), 35.4 (CH₂), 27.5 (CH) and 16.8 (CH₃); *m/z* (TOF ES+) 322 (MH⁺.CH₃CN, 6 %), 280 (9), 262 (49), 218 (100) and 132 (60).

Data for compound **117a**: Found: $MH^+.CH_3CN$, 322.0300. $C_{11}H_{17}INO_2$ requires M, 322.0304; v_{max} (CH_2CI_2) 3435, 2930, 1458, 1418, 1376, 1250, 1169, 1073, 1013, 919, 872, 824 and 725 cm⁻¹; δ_H (400 MHz) 5.66 (1 H, app. dtd, J 9.8, 3.2, 1.5, $CH_2CH=CH$), 5.51 (1 H, app. dq, J 9.8, 1.8, $CH_2CH=CH$), 4.46 (1 H, dd, J 5.5, 1.5, CHICHO), 4.36 - 4.33

(1 H, m, CHICHO), 3.93 (1 H, d, J 6.8, one of CH₂O), 3.86 (1 H, q, J 6.5, CHCH₃), 3.80 (1 H, d, J 6.8, one of CH₂O), 2.61 (1 H, app. doubled quintet, J 18.8, 2.2, one of CH₂CH=CH), 2.34 - 2.28 (1 H, m, one of CH₂CH=CH), 1.60 (1 H, br. s, OH) and 1.20 (3 H, d, J 6.5, CH₃); δ_{c} (100 MHz) 130.3 (CH), 126.2 (CH), 77.2 (CH), 73.7 (CH₂), 66.5 (CH), 50.4 (C), 34.8 (CH₂), 26.9 (CH) and 18.6 (CH₃); *m/z* (TOF ES+) 322 (MH⁺.CH₃CN, 28%) and 263 (100).

((1RS,5SR,7RS,8SR)-7-(2-Bromophenyl)-8-iodo-6-oxabicyclo(3.2.1)oct-2-en-1yl)methanol (116b) and (2-bromophenyl)-((1SR,5SR,8SR)-8-iodo-6oxabicyclo(3.2.1)oct-2-en-1-yl)methanol (117b)

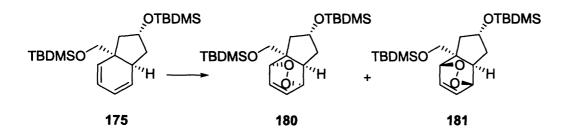
lodocyclisation of diol **74b** (191 mg, 0.65 mmol) according to *General Procedure 3* followed by chromatography on silica (14 % EtOAc in petroleum ether) gave compound **116b** (109 mg, 40 %) as a colourless solid and compound **117b** (88 mg, 32 %) as a colourless oil.


116b (109 mg, 40 %): m.p. 130 - 132 °C; v_{max} (CH₂Cl₂) 3454, 2906, 1470, 1418, 1267, 1203, 1171, 1105, 1036, 1011, 916, 750, 732 and 637 cm⁻¹; δ_{H} (400 MHz) 7.43 (1 H, dd, *J* 8.0, 1.2, aromatic CH), 7.35 (1 H, dd, *J* 7.9, 1.7, aromatic CH), 7.22 (1 H, app. td, *J* 7.9, 0.8, aromatic CH), 7.09 (1 H, app. td, *J* 7.6, 1.8, aromatic CH), 5.79 (1 H, app. dtd, *J* 9.8, 3.1, 1.6, CH₂CH=CH), 5.48 (1 H, s, CHAr), 4.83 (1 H, dd, *J* 5.5, 1.3, CHICHO), 4.63 (1 H, app. dq, *J* 9.8, 1.9, CH₂CH=CH), 4.50 (1 H, br. app. dd, *J* 5.1, 2.0, CHICHO), 3.70 (1 H, dd, *J* 12.5, 5.9, one of CH₂OH), 3.58 (1 H, dd, *J* 12.5, 7.9, one of CH₂OH), 2.78 (1 H, br. app. d, *J* 19.0, one of CH₂CH=CH), 2.55 (1 H, app. dq, *J* 19.0, 2.5, one of CH₂CH=CH) and 2.02 (1 H, dd, *J* 7.9, 5.9, OH); δ_{C} (100 MHz) 136.4 (C), 132.3 (CH), 130.9 (CH), 129.5 (CH), 127.2 (CH), 126.9 (CH), 126.4 (CH), 122.6 (C), 82.6 (CH), 76.1 (CH), 60.6 (CH₂), 52.5 (C), 35.3 (CH₂) and 27.5 (CH).

117b (88 mg, 32%): v_{max} (CH₂Cl₂) 3396, 2892, 1469, 1436, 1418, 1262, 1194, 1167, 1029, 972, 918, 877, 825, 736 and 623 cm⁻¹; δ_{H} (400 MHz) 7.50 (1 H, dd, *J* 8.1, 1.2, aromatic CH), 7.36 (1 H, dd, *J* 7.9, 1.8, aromatic CH), 7.28 (1 H, app. td, *J* 7.9, 1.2, aromatic CH), 7.12 (1 H, ddd, *J* 8.0, 7.3, 1.8, aromatic CH), 5.61 - 5.55 (1 H, m, one of alkene CH), 5.44 (1 H, app. dq, *J* 9.9, 1.9, one of alkene CH), 5.40 (1 H, d, *J* 3.9, CHAr), 4.65 (1 H, dd, *J* 5.6, 1.6, CHICHO), 4.37 - 4.34 (1 H, m, CHICHO), 4.29 (1 H, d, *J* 6.5, one of CH₂O), 3.70 (1 H, d, *J* 6.5, one of CH₂O), 2.66 (1 H, app. doubled quintet, *J* 18.8, 2.2, one of CH₂CH=CH), 2.26 (1 H, app. dq, *J* 18.8, 2.3, one of CH₂CH=CH) and 2.22 (1 H, br. s, OH); δ_{C} (100 MHz) 139.8 (C), 132.9 (CH), 129.7 (CH), 129.7 (CH), 128.8 (CH), 128.0 (CH), 125.7 (CH), 124.2 (C), 76.6 (CH), 73.8 (CH₂), 71.2 (CH), 51.3 (C), 34.5 (CH₂) and 27.7 (CH).

ż.

7.4 Experimental Data for Chapter 4

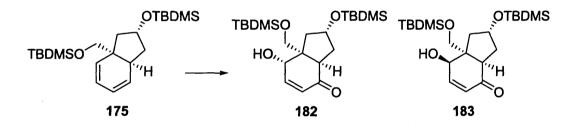

tert-Butyl(((2*RS*,3a*SR*,7a*SR*)-2-(*tert*-butyldimethylsilyloxy)-2,3,3a,7a-tetrahydro-1*H*inden-3a-yl)methoxy)dimethylsilane (175)

1.6 M BuLi (12.1 mL, 19.4 mmol, 1.1 equiv.) was slowly added to a solution of chloride 173 (7.6 g, 17.7 mmol) in THF (50 mL) at -78 °C. The cooling bath was removed and the reaction allowed to warm to room temperature. After stirring for 1 h at this temperature, 2 M HCl (50 mL) was added, the organic layer was separated and the aqueous phase extracted with Et₂O (2 x 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo to give the title compound as a pale yellow oil (6.75 g, 97 %); (Found: MO_2H^{\dagger} , 427.2729. $C_{22}H_{43}O_4Si_2$ requires M, 427.2700); v_{max} (CH₂Cl₂) 2942, 2855, 1472, 1255, 1098, 836 and 774 cm⁻¹; δ_{H} (500 MHz) 5.78 - 5.74 (1 H, m, one of alkene CH), 5.74 - 5.71 (2 H, m, 2 x alkene CH), 5.43 (1 H, d, J 9.5, one of alkene CH), 4.12 (1 H, app. tt, J 5.5, 3.8, CHOTBDMS), 3.46 (1 H, d, J 9.2, one of CH₂O), 3.34 (1 H, d, J 9.2, one of CH₂O), 2.66 - 2.60 (1 H, m, ring junction CH), 1.97 - 1.90 (2 H, m, one of CCH₂CHO and one of CHCH₂CHO), 1.67 (1 H, dd, J 13.6, 5.6, one of CCH₂CHO), 1.59 (1 H, ddd, J 12.4, 10.2, 5.5, one of CHCH₂CHO), 0.87 (18 H, s, 2 x SiC(CH₃)₃), 0.04 (6 H, s, 2 x SiCH₃), 0.01 (3 H, s, SiCH₃) and 0.01 (3 H, s, SiCH₃); δ_{c} (125 MHz) 132.4 (CH), 129.9 (CH), 120.8 (CH), 120.3 (CH), 70.4 (CH), 69.6 (CH₂), 46.3 (CH₂), 46.0 (C), 44.3 (CH₂), 37.8 (CH), 25.9 (CH₃), 25.9 (CH₃), 18.3 (C), 18.1 (C), -4.7 (CH₃), -4.8 (CH₃) and -5.4 (CH₃); m/z (TOF ES+) 428 (10) and 427 (MH⁺, 100 %).

142

Endoperoxides 180 and 181

A solution of diene **175** (2.67 g, 6.7 mmol) and Rose bengal (cat., approx 100 mg) in IPA (50 mL) was cooled to approximately 15 °C by an external flow of tap-water. While passing a steady stream of dry O_2 , the solution was irradiated by a 500 W halogen lamp from a distance of approximately 10 cm for 18 h. The solvent was removed *in vacuo*, with the minimum heat possible, and the residue purified by chromatography on silica (1 - 2 % Et₂O in petroleum ether) giving the major isomer **180** (1.53 g, 53 %) and minor isomer **181** (0.81 g, 28 %), both pale yellow oils.

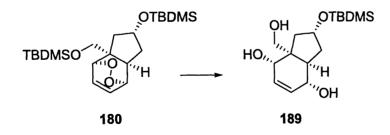

180 (1.53 g, 53 %): Found: MH⁺ 427.2719, C₂₂H₄₃O₄Si₂ requires 427.2700; v_{max} (CH₂Cl₂) 2955, 2856, 1636, 1472, 1361, 1254, 1071, 836 and 774 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 6.65 (1 H, ddd, *J* 7.9, 6.1, 1.5, one of alkene CH), 6.52 (1 H, ddd, *J* 7.9, 6.1, 1.5, one of alkene CH), 4.73 (1 H, app. dt, *J* 6.1, 1.5, CCHO), 4.61 (1 H, app. ddt, *J* 6.1, 4.4, 1.5, CHCHO), 4.20 (1 H, app. tt, *J* 4.4, 1.8, CHOTBDMS), 3.88 (1 H, dd, *J* 8.9, 1.3, one of CH₂OTBDMS), 3.81 (1 H, dp. dt, *J* 13.8, 0.00 of CH₂OTBDMS), 2.18 (1 H, app. td, *J* 8.4, 4.4, ring junction CH), 2.03 (1 H, app. dt, *J* 13.8, 1.8, one of CCH₂CHO), 1.82 (1 H, ddt, *J* 13.3, 8.4, 1.8, one of CHCH₂CHO), 1.19 (1 H, ddd, *J* 13.3, 8.4, 4.4, one of CHCH₂CHO), 1.14 (1 H, dd, *J* 13.8, 4.4, one of CCH₂CHO), 0.89 (9 H, s, SiC(CH₃)₃), 0.87 (9 H, s, SiC(CH₃)₃), 0.05 (6 H, s, 2 x SiCH₃), 0.02 (3 H, s, SiCH₃) and 0.02 (3 H, s, SiCH₃); $\delta_{\rm C}$ (125 MHz) 133.1 (CH), 131.3 (CH), 74.3 (CH), 73.6 (CH), 66.7 (CH₂), 49.1 (C), 41.9 (CH), 41.1 (CH₂), 39.9 (CH₂), 25.9 (CH₃), 25.9 (CH₃), 18.3 (C), 18.0 (C), -4.8 (CH₃), -4.9 (CH₃), -5.3 (CH₃) and -5.4 (CH₃); *m/z* (TOF ES+) 427 (MH⁺, 100 %) and 295 (10).

181 (0.81 g, 28 %): Found: MH^{+} 427.2730, $C_{22}H_{43}O_4Si_2$ requires 427.2700; v_{max} (CH₂Cl₂) 2942, 2856, 1466, 1361, 1255, 1094, 836 and 775 cm⁻¹; δ_{H} (400 MHz) 6.63 - 6.60 (2 H, m, 2 x alkene CH), 4.64 - 4.58 (1 H, m, CHOTBDMS), 4.54 - 4.49 (1 H, m, one of HC=CHCHO), 4.35 - 4.31 (1 H, m, one of HC=CHCHO), 3.64 (1 H, d, J 9.3, one of CH₂OTBDMS), 3.23 (1 H, d, J 9.3, one of CH₂OTBDMS), 2.19 (1 H, dd, J 13.3, 4.8, one of

CCH₂CHO), 2.12 (1 H, ddd, *J* 13.1, 7.1, 4.8, one of CHCH₂CHO), 1.86 (1 H, ddd, *J* 13.3, 3.0, 2.0, one of CCH₂CHO), 1.77 (1 H, dddd, *J* 13.1, 8.6, 3.0, 2.0, one of CHCH₂CHO), 1.61 (1 H, ddd, *J* 8.6, 7.1, 2.0, ring junction CH), 0.88 (9 H, s, SiC(CH₃)₃), 0.87 (9 H, s, SiC(CH₃)₃), 0.06 (6 H, s, 2 x SiCH₃), 0.01 (3 H, s, SiCH₃) and 0.00 (3 H, s, SiCH₃); $\delta_{\rm C}$ (125 MHz) 132.1 (CH), 131.3 (CH), 76.4 (CH), 76.2 (CH), 74.6 (CH), 70.2 (CH₂), 48.1 (C), 39.2 (CH), 38.9 (CH₂), 37.0 (CH₂), 25.9 (CH₃), 25.8 (CH₃), 18.1 (C), 18.1 (C), -4.7 (CH₃), -4.8 (CH₃), -5.4 (CH₃) and -5.6 (CH₃); *m/z* (TOF ES+) 427 (MH⁺, 100 %) and 295 (10).

(2RS,3aRS,7SR,7aSR)-2-(tert-Butyldimethylsilyloxy)-7a-((tert-

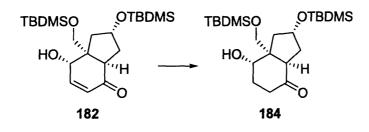
butyldimethylsilyloxy)methyl)-7-hydroxy-3,3a,7,7a-tetrahydro-1*H*-inden-4(2*H*)-one (182) and (2*RS*,3a*RS*,7*RS*,7a*SR*)-2-(*tert*-butyldimethylsilyloxy)-7a-((*tert*butyldimethylsilyloxy)methyl)-7-hydroxy-3,3a,7,7a-tetrahydro-1*H*-inden-4(2*H*)-one (183)


Oxidation of diene **175** (3.80 g, 9.6 mmol) was conducted as described above, after 18 h irradiation the lamp and oxygen supply were removed and Et_3N (10 mL) added. After stirring for a further 48 h the solvent was removed *in vacuo* and the residue chromatographed on silica (5 - 10 % EtOAc in petroleum ether) to give the *title compounds* **182** (1.51 g, 37 %) as a light yellow oil, followed by **183** (1.03 g, 25 %) as a yellow oil.

182 (1.51 g, 37 %): Found: MH^+ 427.2701, $C_{22}H_{43}O_4Si_2$ requires M, 427.2700; v_{max} (CH₂Cl₂) 3448, 2943, 2857, 1666, 1472, 1256, 1083, 837 and 776 cm⁻¹; δ_H (400 MHz) 6.95 (1 H, dd, *J* 10.2, 2.2, *HC*=CHC=O), 5.95 (1 H, dd, *J* 10.2, 1.9, CH=CHC=O), 4.67 (1 H, d, *J* 7.4, OH), 4.33 - 4.38 (1 H, app. tt, *J* 5.7, 2.3, CHOTBDMS), 4.37 - 4.33 (1 H, app. tt, *J* 7.4, 2.2, CHOH), 4.09 (1 H, d, *J* 10.0, one of CH₂OTBDMS), 3.61 (1 H, d, *J* 10.0, one of CH₂OTBDMS), 2.66 (1 H, dd, *J* 11.3, 8.1, ring junction CH), 2.38 (1 H, dd, *J* 14.4, 6.2, one of CCH₂CHO), 2.08 - 1.94 (2 H, m, CHCH₂CHO), 1.72 (1 H, br. d, *J* 14.4, one of CCH₂CHO),

0.89 (9 H, s, SiC(CH₃)₃), 0.87 (9 H, s, SiC(CH₃)₃), 0.09 (3 H, s, SiCH₃), 0.07 (3 H, s, SiCH₃) and 0.04 (6 H, s, 2 x SiCH₃); δ_{C} (125 MHz) 153.0 (CH), 127.2 (CH), 72.7 (CH), 71.8 (CH), 69.6 (CH₂), 51.8 (C), 51.0 (CH), 45.0 (CH₂), 38.7 (CH₂), 25.8 (CH₃), 25.7 (CH₃), 18.0 (C), -4.8 (CH₃), -4.8 (CH₃) and -5.7 (CH₃); *m/z* (TOF ES+) 427 (MH⁺, 10 %), 336 (77), 295 (62), 277 (100) and 163 (11).

183 (1.03 g, 25 %): Found: MH⁺ 427.2729, C₂₂H₄₃O₄Si₂ requires M, 427.2700; v_{max} (CH₂Cl₂) 3449, 2943, 2857, 1675, 1471, 1362, 1256 and 1085 cm⁻¹; δ_{H} (400 MHz) 6.74 (1 H, dd, *J* 10.3, 1.9, CH=CHC=O), 5.95 (1 H, dd, *J* 10.3, 2.4, CH=CHC=O), 4.81 (1 H, app. q, *J* 2.2, CHOH), 4.28 - 4.22 (1 H, m, CHOTBDMS), 3.93 (1 H, d, *J* 9.4, one of CH₂OTBDMS), 3.74 (1 H, d, *J* 9.4, one of CH₂OTBDMS), 3.43 (1 H, d, *J* 3.0, OH), 2.62 (1 H, ddd, *J* 13.8, 7.1, 2.3, one of CHCH₂CHO), 2.45 (1 H, br. d, *J* 8.4, ring junction CH), 2.02 (1 H, dd, *J* 14.5, 8.1, one of CCH₂CHO), 1.88 (1 H, ddd, *J* 13.8, 8.4, 5.7, one of CHCH₂CHO), 1.75 (1 H, br. d, *J* 14.5, one of CCH₂CHO), 0.92 (9 H, s, SiC(CH₃)₃), 0.86 (9 H, s, SiC(CH₃)₃), 0.11 (6 H, s, 2 x SiCH₃) and 0.01 (6 H, s, 2 x SiCH₃); δ_{C} (125 MHz) 199.6 (C), 151.3 (CH), 127.2 (CH), 71.5 (CH), 70.8 (CH), 70.2 (CH₂), 52.6 (C), 49.9 (CH), 39.9 (CH₂), 38.0 (CH₂), 25.9 (CH₃), -4.7 (CH₃) and -5.5 (CH₃); *m/z* (TOF ES+) 428 (9), 427 (MH⁺, 100 %) and 295 (11).


(2RS,3aSR,4SR,7RS,7aRS)-2-(*tert*-Butyldimethylsilyloxy)-3a-(hydroxymethyl)-2,3,3a,4,7,7a-hexahydro-1*H*-indene-4,7-diol (189)

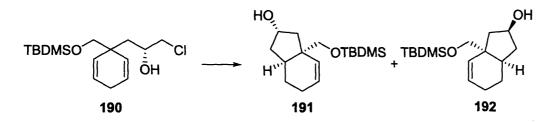
To a solution of peroxide **180** (379 mg, 0.89 mmol) in THF (10 mL) was added a 1 M solution of LiAlH₄ in THF (2.0 mL, 2.0 mmol, 2.2 equiv.). After stirring for 90 min the reaction was quenched with 2 M NaOH, dried over Na₂SO₄ and filtered. The solvent was removed *in vacuo* and the residue crystallised from Et₂O and petroleum ether to give the *title compound* (191 mg, 72 %) as a colourless solid, m.p. 84 - 87 °C; (Found: MH⁺ 315.1996, C₁₆H₃₁O₄Si requires M, 315.1992); v_{max} (CH₂Cl₂) 3406, 2924, 2856, 1458, 1260, 1089, 1022, 800 and 750 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 6.07 (1 H, dd, *J* 9.8, 3.7, one of

alkene CH), 6.00 (1 H, br. dd, J 9.8, 4.9, one of alkene CH), 4.29 - 4.23 (1 H, m, CHOTBDMS), 4.08 (1 H, br. s, one of HC=CHCHOH), 4.00 - 3.92 (2 H, m, one of HC=CHCHOH and one of CH₂OH), 3.69 (1 H, br. d, J 10.9, one of CH₂OH), 3.09 (1 H, br. s, OH), 3.01 (1 H, br. d, J 5.3, OH), 2.85 (1 H, d, J 8.2, OH), 2.41 (1 H, ddd, J 11.8, 7.9, 2.0, ring junction CH), 1.89 (1 H, app. ddt, J 13.4, 7.9, 1.5, one of CHCH₂CHO), 1.86 (1 H, dd, J 13.8, 5.9, one of CCH₂CHO), 1.58 - 1.49 (2 H, m, one of CHCH₂CHO and one of CCH₂CHO), 0.87 (9 H, s, SiC(CH₃)₃) and 0.04 (6 H, s, 2 x SiCH₃); $\delta_{\rm C}$ (125 MHz) 134.2 (CH), 130.5 (CH), 71.3 (CH), 70.5 (CH), 69.1 (CH₂), 66.2 (CH), 48.7 (C), 47.9 (CH), 45.5 (CH₂), 41.0 (CH₂), 25.8 (CH₃), 18.0 (C), -4.8 (CH₃) and -4.8 (CH₃); *m/z* (TOF ES+) 315 (MH⁺, 29 %), 183 (4) and 165 (100).

(2SR,3aRS,7SR,7aSR)-2-(*tert*-Butyldimethylsilyloxy)-3a-((*tert*butyldimethylsilyloxy)methyl)-7-hydroxyhexahydro-1*H*-inden-4(2*H*)-one (184)

10 % Pd/C (100 mg) and ammonium formate (560 mg, 8.9 mmol) were added to a solution of enone **182** (377 mg, 0.88 mmol) in EtOH (10 mL). This was heated to reflux for 2 h, allowed to cool and filtered through a pad of silica, washing with Et₂O. The filtrate was concentrated *in vacuo* and the residue partitioned between Et₂O (20 mL) and brine (20 mL). The organic layer was separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo* to yield the *title compound* (341 mg, 91 %) as a pale yellow oil (Found: MH⁺, 429.2870. C₂₂H₄₅O₄Si₂ requires M, 429.2856); v_{max} (CH₂Cl₂) 3446, 2942, 2857, 1706, 1472, 1362, 1255, 1075, 837 and 776 cm⁻¹; δ_{H} (400 MHz) 4.53 (1 H, br. s, OH), 4.35 - 4.29 (1 H, m, CHOTBDMS), 4.00 (1 H, d, J 10.1, one of CH₂O), 3.91 - 3.85 (1 H, m, CHOH), 3.77 (1 H, d, J 10.1, one of CH₂O), 2.77 (1 H, app. t, J 7.7, ring junction CH), 2.67 (1 H, ddd, J 16.5, 10.1, 7.2, one of CH₂C=O), 2.29 (1 H, ddd, J 16.5, 6.3, 4.1, one of CH₂C=O), 2.23 (1 H, ddd, J 13.2, 7.7, 5.4, one of CHCH₂CHO), 2.13 - 1.92 (2 H, m,

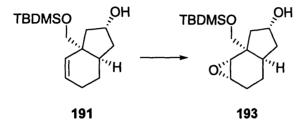
CH₂CH₂CHOH), 1.83 - 1.75 (1 H, m, one of CHCH₂CHO), 1.75 (1 H, dd, *J* 14.3, 6.0, one of CCH₂CHO), 1.51 (1 H, br. d, *J* 14.3, one of CCH₂CHO), 0.90 (9 H, s, SiC(CH₃)₃), 0.86 (9 H, s, SiC(CH₃)₃), 0.10 (3 H, s, SiCH₃), 0.10 (3 H, s, SiCH₃), 0.03 (3 H, s, SiCH₃) and 0.03 (3 H, s, SiCH₃); δ_c (100 MHz) 213.3 (C), 72.8 (CH), 72.0 (CH), 69.6 (CH₂), 52.8 (C), 51.8 (CH), 43.4 (CH₂), 38.1 (CH₂), 34.0 (CH₂), 27.5 (CH₂), 25.8 (CH₃), 25.7 (CH₃), 18.0 (C), 17.9 (C), -4.8 (CH₃), -5.0 (CH₃) and -5.7 (CH₃).


7.5 Experimental Data for Chapter 5

(*RS*)-1-(1-((*tert*-Butyldimethylsilyloxy)methyl)cyclohexa-2,5-dienyl)-3-chloropropan-2ol (190)

Imidazole (2.53 g, 40 mmol, 2.2 equiv.) and TBDMSCI (2.72 g, 18 mmol, 1.0 equiv.) were added to a solution of diol 113d (3.65 g, 18 mmol) in CH₂Cl₂ (30 mL). After stirring for 1 h saturated aqueous NH₄Cl (30 mL) was added and the organic phase separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL), the combined organic phases were dried over Na₂SO₄ and the residue purified by chromatography on silica (10% Et₂O in petroleum ether) to give the *title compound* (4.35 g, 76 %) as a colourless oil; (Found: MH⁺ 317.1710, C₁₆H₃₀O₂SiCl requires M, 317.1724); v_{max} (neat) 3426, 2942, 2855, 1471, 1409, 1361, 1255, 1107, 940, 837, 776, 723 and 698 cm⁻¹; δ_{H} (500 MHz) 5.91 - 5.82 (2 H, m, 2 x alkene CH), 5.70 (1 H, app. dq, J 10.2, 2.0, one of alkene CH), 5.48 (1 H, app. dg, J 10.2, 2.0, one of alkene CH), 3.98 - 3.92 (1 H, m, CHOH), 3.53 (1 H, dd, J 11.0, 4.4, one of CH₂Cl), 3.48 (1 H, dd, J 11.0, 4.4, one of CH₂Cl), 3.41 (1 H, d, J 9.5, one of CH₂O), 3.40 (1 H, d, J 9.5, one of CH₂O), 2.99 (1 H, d, J 2.9, OH), 2.69 - 2.66 (2 H, m, CH=CH-CH₂), 1.76 - 1.69 (2 H, m, CH₂CHOH), 0.89 (9 H, s, SiC(CH₃)₃) and 0.03 (6 H, s, 2 x SiCH₃); δ_c (125 MHz) 130.1 (CH), 130.0 (CH), 126.2 (CH), 125.6 (CH), 71.3 (CH₂), 69.2 (CH), 50.2 (CH₂), 42.5 (CH₂), 40.9 (C), 26.7 (CH₂), 25.9 (CH₃), 18.3 (C) and -5.4 (CH₃); m/z (TOF ES+) 319 (5), 317 (MH⁺, 21 %), 187 (9) and 185 (100).

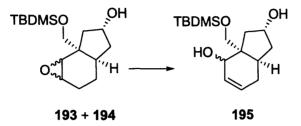
(2RS,3aRS,7aRS)-7a-((*tert*-Butyldimethylsilyloxy)methyl)-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-ol (191) and (2*SR*,3a*RS*,7a*RS*)-7a-((*tert*-butyldimethylsilyloxy)methyl)-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-ol (192)


Chloride **190** (2.265 g, 7.16 mmol) was dissolved in benzene (30 mL) and the solution heated to reflux. Solutions of AIBN (235 mg, 1.43 mmol, 0.2 equiv.) and Bu₃SnH (2.3 mL, 8.59 mmol, 1.2 equiv.), each in 5 mL benzene, were added over 10 h by syringe pump. After a further 6 h at reflux the solvent was removed *in vacuo* and the residue chromatographed on silica containing approximately 10 % w/w NaF (7 - 10 % EtOAc in petroleum ether).

191 (960 mg, 48%): Found: MH⁺ 283.2091, C₁₆H₃₁O₂Si requires M, 283.2093; v_{max} (neat) 3369, 2930, 2851, 1652, 1470, 1253, 1096, 838, 756, 709 and 677 cm⁻¹; δ_{H} (500 MHz) 5.70 (1 H, ddd, *J* 10.0, 5.4, 2.4, CH₂CH=CH), 5.36 (1 H, br. d, *J* 10.0, CH₂CH=CH), 4.14 - 4.09 (1 H, m, CHOH), 3.39 (1 H, d, *J* 9.5, one of CH₂O), 3.38 (1 H, d, *J* 9.5, one of CH₂O), 3.14 (1 H, d, *J* 9.0, OH), 2.41 (1 H, app. ddt, *J* 11.4, 7.5, 4,1, one of CH₂CH=CH), 2.02 - 1.93 (1 H, m, one of CH₂CH=CH), 1.88 (1 H, app. dqd, *J* 17.6, 4.7, 1.2, one of CH₂CH=CH), 1.84 (1 H, dt, *J* 14.1, 1.7), 1.75 - 1.56 (5 H, m), 0.92 (9 H, s, SiC(CH₃)₃) and 0.09 (6 H, s, 2 x SiCH₃); δ_{C} (125 MHz) 132.3 (CH), 126.6 (CH), 71.1 (CH), 68.4 (CH₂), 45.7 (CH₂), 45.7 (C), 39.7 (CH), 26.0 (CH₃), 22.1 (CH₂), 20.5 (CH₂), 18.4 (C), -5.5 (CH₃) and -5.5 (CH₃); *m/z* (TOF ES+) 283 (MH⁺, 92%), 189 (17) and 133 (100).

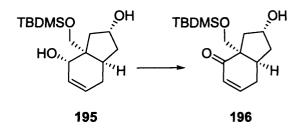
192 (385 mg, 19%): v_{max} (neat) 3336, 2927, 2856, 1652, 1472, 1255, 1093, 837, 774, 705 and 668 cm⁻¹; δ_{H} (500 MHz) 5.76 (1 H, ddd, *J* 10.0, 5.0, 2.5, CH₂CH=CH), 5.52 (1 H, app. ddt, *J* 10.0, 2.6, 1.4, CH₂CH=CH), 4.21 (1 H, app. tdd, *J* 7.0, 5.4, 4.2, CHOH), 3.34 (1 H, d, *J* 9.7, one of CH₂O), 3.32 (1 H, d, *J* 9.7, one of CH₂O), 2.20 - 2.03 (4 H, m, CHCH₂CHOH, one of CCH₂CHOH and one of HC=CHCH₂), 1.95 (1 H, app. dtdd, *J* 18.1, 5.0, 3.0, 1.4, one of HC=CHCH₂), 1.68 - 1.50 (3 H, m, HC=CHCH₂CH₂ and ring junction CH), 1.45 (1 H, dd, *J* 13.4, 4.2, one of CCH₂CHO), 0.88 (9 H, s, SiC(CH₃)₃), 0.02 (3 H, s,

SiCH₃) and 0.02 (3 H, s, SiCH₃); δ_{C} (125 MHz) 133.5 (CH), 127.4 (CH), 72.4 (CH), 68.2 (CH₂), 46.6 (C), 44.4 (CH₂), 39.7 (CH₂), 36.4 (CH), 25.9 (CH₃), 22.2 (CH₂), 20.7 (CH₂), 18.3 (C), -5.5 (CH₃) and -5.5 (CH₃).

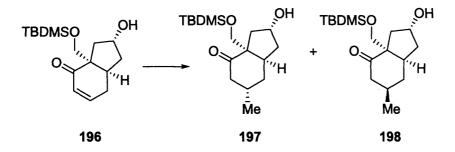

(1aSR,3aRS,5RS,6aSR,6bRS)-6a-((*tert*-Butyldimethylsilyloxy)methyl)octahydro-1aHindeno(4,5-b)oxiren-5-ol (193)

NaHCO₃ (0.84 g, 10 mmol, 1.5 equiv.) and mCPBA (77 %, 2.24 g, 10 mmol, 1.5 equiv.) were added to a solution of alkene 191 (1.88 g, 6.67 mmol) in CH₂Cl₂ (40 mL). The resulting suspension was stirred for 3 h at room temperature before quenching with saturated aqueous Na₂S₂O₃ (30 mL) and saturated aqueous NaHCO₃ (10 mL). After stirring vigorously for 10 min the organic layer was separated and the aqueous phase extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was filtered through a column of silica, washing with Et₂O, to give the *title compound* as the major component of an approx. 7:1 mixture of diastereoisomers (1.90 g, 96%) as a colourless oil; (Found: MH^{+} , 299.2043. C₁₆H₃₁O₃Si requires M, 299.2042); v_{max} (CH₂Cl₂) 3438, 2932, 2856, 1471, 1256, 1083, 1063, 838 and 779 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 4.13 (1 H, app. br. t, J 3.8, CHOH), 3.66 (1 H, d, J 9.5, one of CH₂O), 3.61 (1 H, d, J 9.5, one of CH₂O), 3.17 (1 H, app. br. t, J 3.3, CH₂CH(O)CH), 2.75 (1 H, dd, J 4.1, 0.7, CH₂CH(O)CH), 2.19 (1 H, app. tdd, J 13.1, 6.7, 4.6, ring junction CH), 1.94 (1 H, app. ddt, J 13.1, 4.6, 2.3, one of CCHCH₂CH₂), 1.85 (1 H, dd, J 14.4, 2.7, one of CCH₂CHOH), 1.84 (1 H, app. tdd, J 13.1, 4.6, 0.7, one of CCHCH₂CH₂), 1.78 (1 H, dd, J 14.4, 4.6, one of CCH₂CHOH), 1.74 (1 H, app. tt, J 13.1, 4.6, one of CCHCH₂CH₂), 1.62 (1 H, ddd, J 12.9, 6.7, 2.2, one of CHCH₂CHOH), 1.52 (1 H, td, J 12.9. 3.5. one of CHCH₂CHOH) 1.27 (1 H, app. ddt, J 13.1, 4.6, 2.3, one of CCHCH₂CH₂), 0.92 (9 H, s, SiC(CH₃)₃), 0.14 (3 H, s, SiCH₃) and 0.13 (3 H, s, SiCH₃); δ_c (125 MHz) 71.8 (CH), 67.3 (CH₂), 56.0 (CH), 51.3 (CH), 44.1 (CH₂), 43.1 (C), 40.1 (CH₂), 32.3 (CH), 25.9

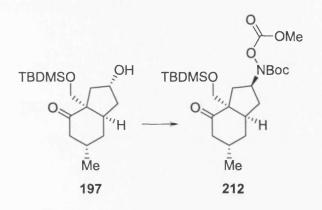
(CH₃), 19.2 (CH₂), 18.4 (C), 16.9 (CH₂) -5.6 (CH₃) and -5.6 (CH₃); m/z (TOF ES+) 299 (MH⁺, 100 %), 281 (19), 167 (47) and 149 (21).


(2RS,3aSR,4SR,7aRS)-3a-((*tert*-Butyldimethylsilyloxy)methyl)-2,3,3a,4,7,7ahexahydro-1*H*-indene-2,4-diol (195)

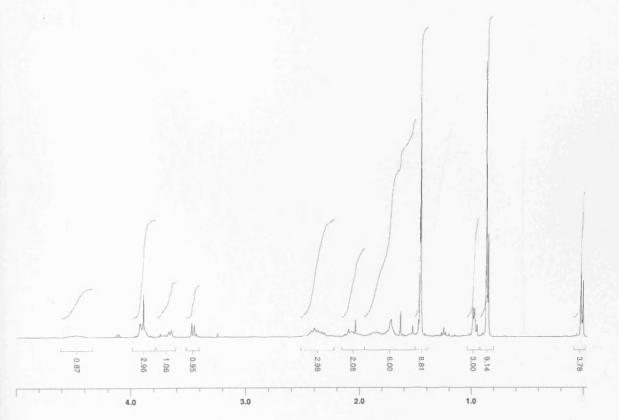
NaBH₄ (291 mg, 7.66 mmol, 1.2 equiv.) was added in small portions to a suspension of (PhSe)₂ (1.20 g, 3.83 mmol, 0.6 equiv.) in EtOH (30 mL). After hydrogen evolution had subsided, a mixture of epoxide diastereoisomers 193 and 194 (1.90 g, 6.38 mmol) were added as a solution in EtOH (10 mL). The solution was heated to reflux overnight, the solvent removed in vacuo and the residue re-dissolved in THF (30 mL). H₂O₂ (5 mL, 49 mmol, 30 % aqueous solution) was added and the mixture was carefully warmed in an oil bath until a vigorous exothermic reaction began. The oil bath was removed until the reaction began to subside, and then replaced in order to maintain reflux for a total of 1 h, resulting in a clear homogeneous solution. This was washed with brine (30 mL) and the aqueous phase extracted with Et_2O (2 x 20 mL). The combined organic layers were washed with Na₂S₂O₃ (30 mL) then dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (25 - 50 % EtOAc in petroleum ether) to give the title compound (1.46 g, 77 %) as a colourless waxy solid, m.p. 87 - 94 °C (Found: MH⁺, 299.2047. C₁₆H₃₁O₃Si requires M, 299.2042); v_{max} (CH₂Cl₂) 3394, 2934, 1648, 1435 and 1049 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.89 - 5.79 (1 H, br. d, J 9.9, one of alkene CH), 5.75 - 5.68 (1 H, app. dtd, J 9.9, 4.6, 2.0, one of alkene CH), 4.41 (1 H, app. tdd, J 6.2, 2.8, 1.7, CH₂CHOH), 3.96 (1 H, br. s, CH=CHCHOH), 3.93 (1 H, d, J 9.7, one of CH₂O), 3.48 (1 H, d, J 9.7, one of CH₂O), 2.38 (1 H, dd, J 14.2, 6.2, one of CCH₂CHOH), 2.27 (1 H, ddd, J 17.1, 7.4, 4.6, one of CH₂CH=CH), 2.05 (1 H, app. dtd, J 11.7, 7.4, 4.2, ring junction CH), 1.84 (1 H, app. ddt, J 13.5, 7.4, 1.4, one of CHCH₂CHOH), 1.79 (1 H, ddd, J 17.1, 4.2, 2.0, one of CH₂CH=CH), 1.68 (1 H, ddd, J 14.2, 2.8, 1.4, one of CCH₂CHOH),


1.63 (1 H, ddd, J 13.5, 11.7, 6.2, one of CHCH₂CHOH), 0.90 (9 H, s, SiC(CH₃)₃), 0.09 (3 H, s, SiCH₃) and 0.08 (3 H, s, SiCH₃); $\delta_{\rm C}$ (100 MHz) 132.2 (CH), 125.9 (CH), 73.1 (CH), 71.5 (CH), 69.2 (CH₂), 49.3 (C), 44.5 (CH₂), 43.0 (CH₂), 37.4 (CH), 26.8 (CH₂), 25.8 (CH₃), 18.1 (C) and -5.7 (CH₃); *m/z* (TOF ES+) 300 (8), 299 (MH⁺, 100 %).

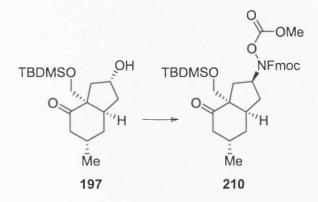
(2RS,3aSR,7aRS)-3a-((*tert*-Butyldimethylsilyloxy)methyl)-2-hydroxy-3,3a,7,7atetrahydro-1*H*-inden-4(2*H*)-one (196)

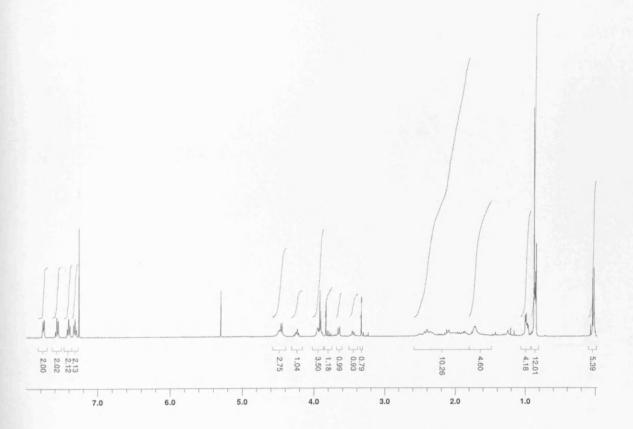

 MnO_2 (4.25 g, 49 mmol, 10 equiv.) was added to a solution of allylic alcohol 195 (1.46 g, 4.9 mmol) in CH₂Cl₂ (40 mL), and the resulting suspension stirred for 24 h. The mixture was filitered through a pad of silica, washing well with EtOAc, and the solvent removed in vacuo giving the title compound (1.40 g, 97 %) as a pale yellow oil (Found: MH⁺ 297.1880, C₁₆H₂₉O₃Si requires 297.1886); v_{max} (CH₂Cl₂) 3410, 2929, 2856, 1657, 1471, 1393, 1253, 1089, 839 and 777 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 6.84 (1 H, dddd, J 10.1, 5.7, 2.4, 1.3, CH=CHC=O), 6.04 (1 H, ddd, J 10.1, 2.8, 1.2, CH=CHC=O), 4.23 - 4.18 (1 H, m, CHO), 3.82 (1 H, d, J 9.3, one of CH₂O), 3.60 (1 H, d, J 9.3, one of CH₂O), 2.85 (1 H, app. dt, J 12.3, 7.0, ring junction CH), 2.78 (1 H, app. ddt, J 19.1, 7.0, 2.8, one of CH=CHCH₂), 2.47 (1 H, dd, J 14.7, 6.3, one of CCH₂CHOH), 2.33 (1 H, br. dd, J 19.1, 5.7, one of CHCHCH₂), 1.83 (1 H, app. ddt, J 13.3, 7.0, 1.7, one of CHCH₂CHOH), 1.75 (1 H, ddd, J 13.3, 12.3, 5.2, one of CHCH₂CHOH), 1.62 (1 H, dt, J 14.7, 2.1, one of CCH₂CHOH), 0.85 (9 H, s, SiC(CH₃)₃), 0.03 (3 H, s, SiCH₃) and 0.00 (3 H, s, SiCH₃); δ_{c} (100 MHz) 202.5 (C), 148.3 (CH), 129.3 (CH), 70.7 (CH), 68.8 (CH₂), 56.9 (C), 43.6 (CH₂), 42.3 (CH₂), 37.4 (CH), 26.9 (CH₂), 25.8 (CH₃), 18.2 (C), -5.7 (CH₃) and -5.7 (CH₃); m/z (TOF ES+) 297 (MH⁺, 100 %).

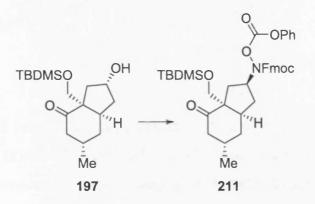
(2*RS*,3a*SR*,6*SR*,7a*RS*)-3a-((*tert*-Butyldimethylsilyloxy)methyl)-2-hydroxy-6methylhexahydro-1*H*-inden-4(2*H*)-one (197) and (2*RS*,3a*SR*,6*RS*,7a*RS*)-3a-((*tert*butyldimethylsilyloxy)methyl)-2-hydroxy-6-methylhexahydro-1*H*-inden-4(2*H*)-one (198)

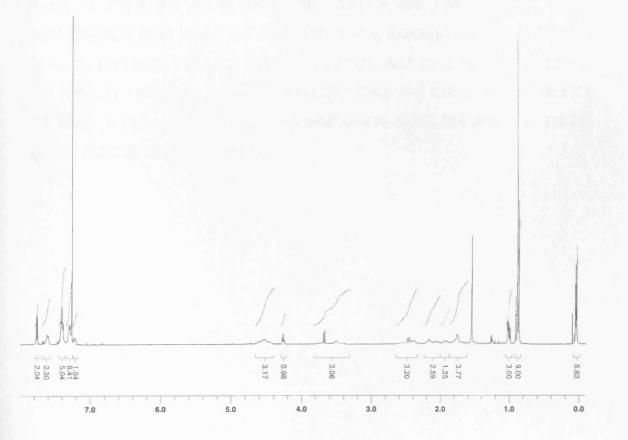


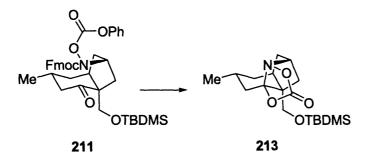
Cu(OTf)₂ (29 mg, 0.08 mmol, 0.1 equiv.) was added to a solution of enone **196** (235 mg, 0.79 mmol) in toluene (10 mL) and the resulting suspension cooled to 0 °C. A 2 M solution of Me₃Al in hexanes (1.2 mL, 2.37 mmol, 3 equiv.) was added dropwise, the cooling bath was removed and the reaction stirred for 8 h before quenching carefully with saturated aqueous NaHCO₃ (20 mL). This was all filtered through a pad of silica, washing with Et₂O, and the organic layer separated. The aqueous phase was extracted with Et₂O (2 x 20 mL) and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (20 - 25 % EtOAc in hexane) to give the *title compounds*, **197** and **198**, approx. 3:1, as a pale yellow oil (200 mg, 81 %); v_{max} (CH₂Cl₂) 3388, 2952, 1694, 1455, 1344 and 1041 cm⁻¹; δ_{H} (400 MHz) 4.21 - 4.16 (1 H, m, CHOH), 3.68 (1 H, d, J 9.2, one of CH₂O), 3.62 (1 H, d, J 9.2, one of CH₂O), 2.79 - 2.75 (1 H, m, ring junction CH), 2.55 (1 H, dd, J 14.8, 5.8, one of CCH₂CHOH), 2.38 (1 H, app. ddd, J 14.6, 3.5, 1.9, one of CH₂C=O), 2.10 (1 H, dd, J 14.6, 12.6, one of CH₂C=O), 2.05 - 1.90 (1 H, m, MeCH), 1.79 - 1.66 (3 H, m, one of CHCH₂CHOH and MeCHCH₂CH), 1.60 (1 H, app. td, J 13.2, 4.8, one of CHCH₂CHOH), 1.51 (1 H, app. dt, J 14.8, 2.1, one of CCH₂CHOH), 1.00 (3 H, d, J 6.4, Me), 0.89 (9 H, s, SiC(CH₃)₃), 0.06 (3 H, s, Si(CH₃)₂), 0.04 (3 H, s, Si(CH₃)₂).


tert-Butyl (2*SR*,3a*SR*,6*SR*,7a*RS*)-3a-((*tert*-butyldimethylsilyloxy)methyl)-6-methyl-4oxooctahydro-1*H*-inden-2-yl(methoxycarbonyloxy)carbamate (212)

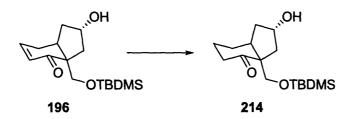

To a solution of alcohol **197** (220 mg, 0.74 mmol) in CH_2Cl_2 (10 mL) was added PPh₃ (291 mg, 1.1 mmol, 1.5 equiv.) and BocNHOCO₂Me (283 mg, 1.5 mmol, 2.0 equiv.). DIAD (0.22 mL, 1.1 mmol, 1.5 equiv.) was added dropwise and stirring continued for 15 min. The solvent was removed *in vacuo* and the residue purified by chromatography on silica (10 % EtOAc in petroleum ether) to give the *title compound* (280 mg, 78 %) as a viscous colourless oil. v_{max} (neat) 2953, 1794, 1713, 1455, 1393, 1371, 1337, 1259, 1156, 1102, 937, 839 and 772 cm⁻¹.


(9*H*-Fluoren-9-yl)methyl-(2*SR*,3a*SR*,6*SR*,7a*RS*)-3a-((*tert*butyldimethylsilyloxy)methyl)-6-methyl-4-oxooctahydro-1*H*-inden-2yl(methoxycarbonyloxy)carbamate (210)

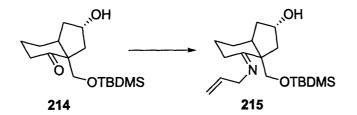

PPh₃ (387 mg, 1.47 mmol, 1.2 equiv.) and FmocNHOCO₂Me (420 mg, 1.34 mmol, 1.1 equiv.) were added to a stirred solution of alcohol **197** (390 mg, 1.25 mmol) in CH₂Cl₂ (10 mL). DIAD (0.29 mL, 1.47 mmol, 1.2 equiv.) was added dropwise and stirring continued for 1 h. The solvent was removed *in vacuo* and the residue purified by chromatography on silica (10 - 25 % EtOAc in petroleum ether), giving the *title compound* (200 mg, 27 %) as a colourless oil, followed by unreacted alcohol **197** (100 mg, 26 %).


(9*H*-Fluoren-9-yl)methyl (2*SR*,3a*SR*,6*SR*,7a*RS*)-3a-((*tert*butyldimethylsilyloxy)methyl)-6-methyl-4-oxooctahydro-1*H*-inden-2yl(phenoxycarbonyloxy)carbamate (211)

To a solution of alcohol **197** (177 mg, 0.60 mmol) in CH_2Cl_2 (10 mL) was added PPh₃ (255 mg, 0.97 mmol, 1.6 equiv.) and FmocNHOCO₂Ph (365 mg, 0.97 mmol, 1.6 equiv.). DIAD (0.19 mL, 0.97 mmol, 1.6 equiv.) was added dropwise and stirring continued for 15 min. The solvent was removed *in vacuo* and the residue purified by chromatography on silica (10 % EtOAc in petroleum ether) to give the *title compound* (130 mg, 36 %) as a viscous colourless oil. v_{max} (CH₂Cl₂) 3060, 2955, 2857, 1808, 1731, 1714, 1593, 1454, 1394, 1318, 1209, 1104, 840 and 742 cm⁻¹.

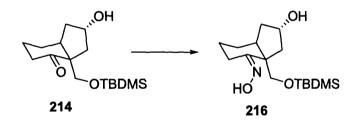


Carbonate 213


DBU (0.02 mL, 0.13 mmol, 2.8 equiv.) was added to a solution of ketone 211 (32 mg, 0.05 mmol) in THF (2 mL). After stirring for 1 hr the solvent was concentrated in vacuo and the residue chromatographed on silica (5 - 10 % EtOAc in petroleum ether) giving the *title compound* (6 mg, 35 %) as a colourless oil (Found: MH^+ , 354.2125. $C_{18}H_{32}NO_4Si$ requires M, 354.2101); v_{max} (CH₂Cl₂) 2928, 2855, 1808, 1704, 1471, 1257, 1097, 838 and 777 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 3.86 (1 H, d, J 10.5, one of CH₂O), 3.78 (1 H, d, J 10.5, one of CH₂O), 3.73 - 3.70 (1 H, m, CHN), 2.37 (1 H, app. dq, J 11.5, 3.8, ring junction CH), 2.04 - 1.96 (3 H, m, MeCH, one of CCH₂CHN and one of MeCHCH₂C), 1.94 (1 H, ddd, J 13.6, 11.8, 4.1, one of CHCH₂CHN), 1.64 (1 H, d, J 11.8, one of CCH₂CHN), 1.54 (1 H, app. t, J 13.5, one of MeCHCH₂C), 1.48 (1 H, br. d, J 14.1, one of MeCHCH₂CH), 1.40 (1 H, app. dt, J 13.6, 3.8, one of CHCH₂CHN), 1.24 (1 H, ddd, J 14.1, 12.4, 3.8, one of MeCHCH₂CH), 0.98 (3 H, d, J 6.4, CH₃), 0.89 (9 H, s, SiC(CH₃)₃) and 0.06 (6 H, s, 2 x SiCH₃); δ_c (125 MHz) 154.1 (C), 106.6 (C), 65.4 (CH), 60.1 (CH₂), 54.1 (C), 37.8 (CH₂), 37.1 (CH₂), 34.3 (CH), 32.3 (CH₂), 30.8 (CH₂), 25.9 (CH₃), 23.6 (CH), 21.3 (CH₃), 18.3 (C), -5.5 (CH₃), -5.5 (CH₃); *m/z* (TOF ES+) 395 (MH⁺.CH₃CN, 100%), 354 (MH⁺, 15), 338 (5), 310 (9), 262 (10), 234 (7) and 191 (3).

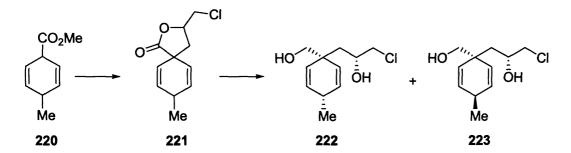
(2*SR*,3a*RS*,7a*SR*)-3a-((*tert*-Butyldimethylsilyloxy)methyl)-2-hydroxyhexahydro-1*H*inden-4(2*H*)-one (214)

Pd / C (100 mg, 10 % w/w) was added to a solution of enone **196** (0.5 g, 1.7 mmol) in EtOAc / EtOH (10 mL, 2:1) and the reaction placed under an atmosphere of H₂. After stirring for 4 h, the mixture was filtered through a short pad of silica, washing well with EtOAc. The filtrate was concentrated under reduced pressure to afford the *title compound* (0.36 g, 71 %) as a pale yellow oil; $\delta_{\rm H}$ (400 MHz) 4.20 (1 H, app. tt, *J* 5.3, 1.8, CHOH), 3.72 (1 H, d, *J* 9.2, one of CH₂OTBDMS), 3.64 (1 H, d, *J* 9.2, one of CH₂OTBDMS), 2.71 (1 H, app. dq, *J* 12.1, 5.8, ring junction CH), 2.48 (1 H, dd, *J* 14.7, 5.8, one of CHCH₂CHOH), 2.41 - 2.35 (2 H, m), 2.07 - 1.76 (4 H, m), 1.65 - 1.48 (3 H, m), 0.91 (9 H, s, SiC(CH₃)₃) and 0.09 (6 H, s, 2 x SiCH₃).


(2*SR*,3a*SR*,7a*SR*)-4-(Allylimino)-3a-((*tert*-butyldimethylsilyloxy)methyl)octahydro-1*H*inden-2-ol (215)

2 M Me₃Al (2 mL, 4 mmol, 9 equiv.) was added to a solution of ketone **214** (140 mg, 0.47 mmol) and allylamine (0.25 mL, 3.3 mmol, 7 equiv.) in DCM (10 mL). After stirring overnight, the reaction was quenched with saturated aqueous NaHCO₃ (20 mL). The organic layer was separated, the aqueous phase extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic layers dried over Na₂SO₄. The solvent was removed under reduced pressure to give the *title compound* (approx 140 mg) as a pale yellow oil; $\delta_{\rm H}$ (400 MHz) 5.97 (1 H, app. ddt, *J* 17.2, 10.4, 5.2, CH₂=CHCH₂), 5.12 (1 H, app. dq, *J* 17.2, 1.9, one of CH₂=CHCH₂), 5.08 (1 H, app. dq, *J* 10.4, 1.9, one of CH₂=CHCH₂), 4.12 (1 H,

br. t, J 4.8, CHOH), 4.05 - 3.99 (1 H, m, one of $CH_2=CHCH_2$), 3.97 - 3.91 (1 H, m, one of $CH_2=CHCH_2$), 3.64 (1 H, d, J 9.1, one of $CH_2OTBDMS$), 3.51 (1 H, d, J 9.1, one of $CH_2OTBDMS$), 2.69 (1 H, dd, J 14.7, 5.4, one of CCH_2CHOH), 2.56 (1 H, app. dq, J 11.9, 7.0, ring junction CH), 2.49 - 2.41 (1 H, m), 2.14 - 2.06 (1 H, m), 1.99 - 1.86 (2 H, m), 1.76 (1 H, br. d, J 14.7, one of CCH_2CHOH), 1.73 - 1.62 (1 H, m), 1.47 (1 H, ddd, J 12.6, 12.0, 4.5, one of $CHCH_2CHOH$), 1.26 - 1.17 (1 H, m), 0.91 (9 H, s, SiC(CH₃)₃) and 0.09 (6 H, s, 2 x SiCH₃).


(2*SR*,3a*SR*,7a*SR*)-3a-((*tert*-butyldimethylsilyloxy)methyl)-2-hydroxyhexahydro-1*H*inden-4(2*H*)-one oxime (216)

A solution of ketone **214** (16 mg, 0.05 mmol), NH₄OH.HCl (4.5 mg, 0.6 mmol, 1.2 equiv.) and NaOAc (14.6 mg, 0.11 mmol, 2.0 equiv.) was refluxed for 16 h. The solvent was removed under reduced pressure and the residue partitioned between water (10 mL) and Et₂O (10 mL). The organic layer was separated, the aqueous phase extracted with Et₂O (10 mL) and the combined organic layers dried over Na₂SO₄. Concentration under reduced pressure gave the *title compound* (approx 15 mg) as a colourless oil; $\delta_{\rm H}$ (500 MHz) 4.13 (1 H, m, CHOH), 3.57 (1 H, d, J 9.3, one of CH₂OTBDMS), 3.48 (1 H, d, J 9.3, one of CH₂OTBDMS), 2.84 (1 H, ddd, J 18.0, 8.6, 6.9), 2.53 - 2.45 (2 H, m), 2.19 (1 H, app. dt, J 18.0, 5.8), 1.95 - 1.87 (2 H, m), 1.79 (1 H, br. d, J 14.5, one of CCH₂CHOH), 1.74 - 1.66 (1 H, m), 1.57 - 1.45 (2 H, m), 1.20 - 1.12 (1 H, m), 0.91 (9 H, s, SiC(CH₃)₃), 0.10 (3 H, s, SiCH₃) and 0.09 (3 H, s, SiCH₃); δ_c (125 MHz) 163.0 (C), 71.4 (CH), 70.8 (CH₂), 51.9 (C), 44.4 (CH₂), 43.3 (CH₂), 38.0 (CH), 28.1 (CH₂), 25.9 (CH₃), 23.1 (CH₂), 19.7 (CH₂), 18.4 (C), -5.5 (CH₃) and -5.6 (CH₃).

7.6 Experimental Data for Chapter 6

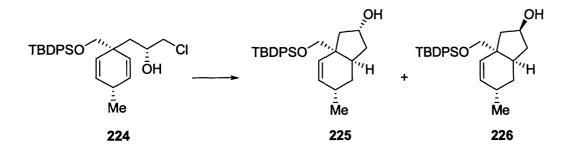
1,4-*cis*-1-(3-Chloro-2-hydroxypropyl)-1-hydroxymethyl-4-methylcyclohexa-2,5-diene (222) and 1,4-*trans*-1-(3-chloro-2-hydroxypropyl)-1-hydroxymethyl-4methylcyclohexa-2,5-diene (223)

To a solution of DPA (5.0 mL, 35.5 mmol, 1.1 equiv.) in THF (30 mL) at -78 °C was added *n*-BuLi (22.2 mL, 1.6 M, 1.1 equiv.) and the resulting solution allowed to warm to room temperature. After re-cooling to -78 °C ester 220 (4.91 g, 32.3 mmol) was added dropwise. Stirring was continued for 30 min before the addition of epichlorohydrin (3.3 mL, 42 mmol, 1.3 equiv.), the reaction was then allowed to warm to 5 °C over approx. 3 h. Saturated aqueous NH₄Cl (75 mL) was added and after stirring for a few minutes the organic layer was separated and the aqueous layer extracted with Et₂O (2 x 30 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo to afford the crude intermediate lactone 221 (7.72 g) as an orange oil. This lactone was dissolved in ethanol (200 mL) and NaBH₄ (2.45 g, 64.6 mmol, 2 equiv.) added in one portion. The exothermic reaction was allowed to subside and stirring continued for 1 h before quenching with glacial AcOH (approx. 3 mL). The solvent was removed in vacuo and the residue partitioned between saturated aqueous NaHCO₃ (200 mL) and EtOAc (100 mL). The organic layer was separated and the aqueous layer extracted with EtOAc (2 x 75 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (50 % Et₂O in petroleum ether) to give 222 (2.57 g, 37 %) and 223 (2.15, 31 %), both as a colourless oils.

Major diastereoisomer **222**: Found: MH^+ - CH_3OH , 184.0667. $C_{11}H_{13}CIO$ requires M, 184.0655; v_{max} (neat) 3364, 2958, 2869, 1516, 1429, 1047, 803 and 743 cm⁻¹; δ_H (400

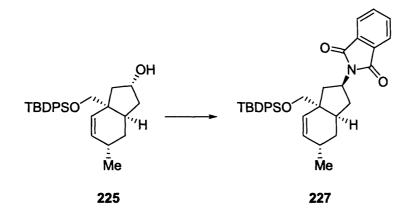
MHz) 5.89 (1 H, ddd, J 10.2, 3.1, 1.9, one of alkene CH), 5.87 (1 H, ddd, J 10.2, 3.1, 1.9, one of alkene CH), 5.58 (1 H, app. dt, J 10.2, 2.1, one of alkene CH), 5.39 (1 H, app. dt, J 10.2, 2.1, one of alkene CH), 3.94 (1 H, app. ddt, J 10.4, 7.0, 3.4, CHOH), 3.53 (1 H, dd, J 11.1, 4.1, one of CH₂Cl), 3.45 (1 H, dd, J 11.1, 6.5, one of CH₂Cl), 3.36 (1 H, d, J 11.4, one of CH₂OH), 3.34 (1 H, d, J 11.4, one of CH₂OH), 2.83 (1 H, d, J 3.1, OH), 2.81 - 2.73 (1 H, m, MeCH), 1.64 (1 H, dd, J 14.3, 8.1, one of CH₂CHOH), 1.55 (1 H, dd, J 14.3, 3.4, one of CH₂CHOH) and 1.08 (3 H, d, J 7.3, CH₃); $\delta_{\rm C}$ (100 MHz) 134.3 (CH), 134.0 (CH), 128.3 (CH), 128.1 (CH), 69.9 (CH₂), 69.0 (CH), 50.2 (CH₂), 42.2 (C), 41.8 (CH₂), 30.9 (CH) and 22.3 (CH₃); *m/z* (TOF ES+) 184 (M - CH₃OH, 17%) and 167 (100).

Minor diastereoisomer **223:** Found: $MH^+ - CH_3OH$, 184.0655. $C_{11}H_{13}ClO$ requires M, 184.0655; v_{max} (neat) 3412, 2957, 1516, 1454, 1048, 805 and 748 cm⁻¹; δ_H (400MHz) 5.94 -5.86 (2 H, m, two of alkene CH), 5.61 - 5.55 (1 H, m, one of alkene CH), 5.42 - 5.37 (1 H, m, one of alkene CH), 3.94 (1 H, app. ddt, *J* 8.0, 6.4, 3.8, CHOH), 3.55 (1 H, dd, *J* 11.1, 4.1, one of CH₂Cl), 3.45 (1 H, dd, *J* 11.1, 6.4, one of CH₂Cl), 3.37 (2 H, app. s, CH₂OH), 2.83 - 2.73 (1 H, m, MeCH), 2.70 (1 H, broad s, OH), 2.01 (1 H, broad s, OH), 1.64 (1 H, dd, *J* 14.3, 8.0, one of CH₂CHOH), 1.54 (1 H, dd, *J* 14.3, 3.5, one of CH₂CHOH) and 1.09 (3 H, d, *J* 7.3, CH₃); δ_c (100 MHz) 134.4 (CH), 134.0 (CH), 128.2 (CH), 128.1 (CH), 70.2 (CH₂), 69.0 (CH), 50.2 (CH₂), 42.2 (CH₂), 41.6 (C), 30.8 (CH) and 21.9 (CH₃); *m/z* (TOF ES+) 184 (M - CH₃OH, 21%) and 167 (100).

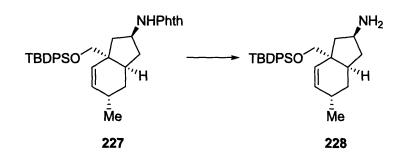

1-((1*SR*,4*SR*)-1-((*tert*-Butyldiphenylsilyloxy)methyl)-4-methylcyclohexa-2,5-dienyl)-3chloropropan-2-ol (224)

To a solution of diol **222** (2.57 g, 11.9 mmol) in CH_2Cl_2 (20 mL) was added imidazole (1.68 g, 26.2 mmol, 2.2 equiv) followed by TBDPSCI (3.4 mL, 13.1 mmol, 1.1 equiv.). After stirring overnight the reaction was quenched with saturated aqueous NH_4Cl (30 mL) and the organic layer separated. The aqueous layer was extracted with CH_2Cl_2 (2 x 15 mL) and the combined organic extracts dried over Na_2SO_4 and concentrated *in*

vacuo. The residue was purified by chromatography on silica (10 % Et₂O in petroleum ether) to give the *title compound* (4.35 g, 81 %) as a colourless viscous oil (Found: MH⁺, 455.2190. C₂₇H₃₆ClO₂Si requires M, 455.2173); v_{max} (neat) 3420, 3072, 2931, 2858, 1590, 1516, 1470, 1428, 1390, 1362, 1303, 1261 and 1111 cm⁻¹; δ_{H} (400 MHz) 7.66 - 7.63 (4 H, m, 4 x aromatic CH), 7.45 - 7.35 (6 H, m, 6 x aromatic CH), 5.83 - 5.77 (2 H, m, 2 x alkene CH), 5.69 (1 H, app. dt, *J* 10.0, 1.9, one of alkene CH), 5.69 (1 H, app. dt, *J* 10.0, 1.9, one of alkene CH), 5.49 (1 H, app. dt, *J* 10.0, 1.9, one of alkene CH), 5.49 (1 H, app. dt, *J* 10.0, 1.9, one of CH₂Cl), 3.48 (1 H, dd, *J* 11.0, 6.3, one of CH₂Cl), 3.44 (1 H, d, *J* 10.3, one of CH₂O), 3.42 (1 H, d, *J* 10.3, one of CH₂O), 2.80 - 2.73 (1 H, m, MeCH), 2.60 - 2.50 (1 H, br. s, OH), 1.80 - 1.72 (2 H, m, CH₂CHOH), 1.06 (9 H, s, SiC(CH₃)₃) and 1.02 (3 H, d, *J* 7.3, CH₃); δ_{C} (125 MHz) 135.7 (3 x CH), 134.8 (CH), 133.3 (C), 132.7 (2 x CH), 132.4 (2 x CH), 129.7 (2 x CH), 129.4 (CH), 128.6 (CH), 127.7 (C), 127.6 (3 x CH), 72.5 (CH₂), 69.6 (CH), 53.4 (C), 50.2 (CH₂), 42.0 (CH₂), 41.7 (C), 31.1 (CH), 26.9 (CH₃), 22.0 (CH₃) and 19.4 (C); *m/z* (TOF ES+) 457 (26 %), 455 (MH⁺, 100), 280 (12) and 199 (10).

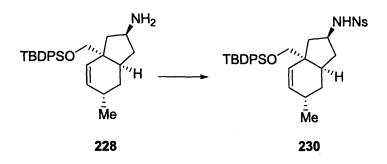

(2RS,3aRS,5SR,7aRS)-7a-((*tert*-Butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7ahexahydro-1*H*-inden-2-ol (225) and (2SR,3aRS,5SR,7aRS)-7a-((*tert*butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-ol (226)

A solution of chloride **224** (2.43 g, 5.35 mmol) in benzene (40 mL) was heated to reflux and solutions of AIBN (88 mg, 0.54 mmol, 0.1 equiv.) and Bu₃SnH (1.7 mL, 6.42 mmol, 1.2 equiv.), each in 5 mL benzene, were added over 10 h by syringe pump. After a total of 18 h reflux the solution was concentrated and purified by silica gel chromatography (5 - 10 % EtOAc in petroleum ether) to give compound **225** (1.16 g, 52 %) followed by compound **226** (0.51 g, 23 %), both as colourless oils. Major diastereoisomer **225**: Found: MH⁺, 421.2605. $C_{27}H_{37}O_2Si$ requires M, 421.2563; v_{max} (neat) 3361, 3071, 2952, 1657, 1464, 1428, 1391, 1110, 822, 743 and 703 cm⁻¹; δ_H (400 MHz) 7.70 - 7.65 (4 H, m, 4 x aromatic CH), 7.47 - 7.36 (6 H, m, 6 x aromatic CH), 5.45 (1 H, br. d, *J* 10.1, CHCH=C*H*), 5.26 (1 H, br. dd, *J* 10.1, 2.4, CHC*H*=CH), 4.19 (1 H, app. tt, *J* 4.6, 2.2, *CHOH*), 3.40 (2 H, app. s, CH₂O), 2.59 (1 H, app. tt, *J* 7.2, 3.5, ring junction CH), 2.16 - 2.08 (1 H, m, MeCH), 1.95 (1 H, app. dt, *J* 14.0, 2.1, one of CH₂CHOH), 1.81 - 1.64 (4 H, m, one of MeCHCH₂ and three of CH₂CHOH), 1.18 (1 H, ddd, *J* 13.3, 11.1, 4.6, one of MeCHCH₂), 1.08 (9 H, s, SiC(CH₃)₃) and 0.93 (3 H, d, *J* 7.0, CH₃); δ_C (100 MHz) 135.7 (2 x CH), 135.7 (2 x CH), 133.0 (C), 132.9 (C), 132.9 (CH), 131.5 (CH), 129.8 (2 x CH), 127.7 (4 x CH), 71.4 (CH), 69.0 (CH₂), 45.8 (C), 45.7 (CH₂), 39.7 (CH₂), 35.4 (CH), 31.2 (CH₂), 26.9 (CH₃), 25.3 (CH), 21.5 (CH₃) and 19.2 (C); *m/z* (TOF ES+) 422 (18) and 421 (MH⁺, 100 %).

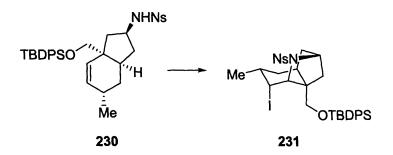

Minor diastereoisomer **226:** Found: MH^+ , 421.2570. $C_{27}H_{37}O_2Si$ requires M, 421.2563; v_{max} (neat) 3360, 3030, 2943, 1649, 1590, 1461, 1425, 1390, 1108, 820, 744 and 697 cm⁻¹; δ_H (400 MHz) 7.67 - 7.62 (4 H, m, 4 x aromatic CH), 7.45 - 7.35 (6 H, m, 6 x aromatic CH), 5.57 (1 H, br. d, *J* 10.1, CHCH=*CH*), 5.49 (1 H, dd, *J* 10.1, 1.8, CH*CH*=*CH*), 4.22 (1 H, app. tt, *J* 6.8, 4.5, CHOH), 3.41 (1 H, d, *J* 9.8, one of CH₂O), 3.38 (1 H, d, *J* 9.8, one of CH₂O), 2.26 - 2.13 (4 H, m, MeCH, ring junction CH and two of *CH*₂CHOH), 1.70 - 1.55 (2 H, m, one of MeCH*CH*₂ and one of *CH*₂CHOH), 1.51 (1 H, dd, *J* 13.4, 4.5, one of *CH*₂CHOH), 1.25 - 1.14 (1 H, m, one of MeCH*CH*₂), 1.06 (9 H, s, SiC(CH₃)₃) and 0.97 (3 H, d, *J* 7.0, CH₃); δ_C (100 MHz) 135.7 (2 x CH), 135.6 (2 x CH), 133.7 (CH), 133.6 (C), 133.6 (C), 132.8 (CH), 129.6 (CH), 129.6 (CH), 127.6 (4 x CH), 72.4 (CH), 69.0 (CH₂), 46.6 (C), 44.6 (CH₂), 40.0 (CH₂), 36.8 (CH), 31.2 (CH₂), 26.9 (CH₃), 25.5 (CH), 21.3 (CH₃) and 19.4 (C).

2-((2*SR*,3a*RS*,5*SR*,7a*RS*)-7a-((*tert*-Butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-yl)isoindoline-1,3-dione (227)

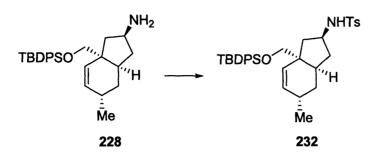
To a solution of alcohol 225 (705 mg, 1.68 mmol) in CH₂Cl₂ (15 mL) was added PPh₃ (660 mg, 2.52 mmol, 1.5 equiv.) and phthalimide (370 mg, 2.52 mmol, 1.5 equiv.). After the phosphine had dissolved DIAD (0.49 mL, 2.52 mmol, 1.5 equiv.) was added dropwise. The resulting yellow orange solution was stirred for 20 min, concentrated in vacuo and chromatographed on silica (10 % Et₂O in petroleum ether) to give the title compound (665 mg, 72 %) as a colourless oil; (Found: MH^{\dagger} , 550.2775. $C_{35}H_{40}NO_{3}Si$ requires M, 550.2777); v_{max} (neat) 3071, 3011, 2954, 2855, 1770, 1713, 1614, 1590, 1468, 1372, 1105, 910, 820, 703, 648 and 609 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.81 (1 H, d, J 5.4, aromatic CH), 7.79 (1 H, d, J 5.4, aromatic CH), 7.71 - 7.66 (6 H, m, 6 x aromatic CH), 7.46 - 7.37 (6 H, m, 6 x aromatic CH), 5.60 (1 H, br. d, J 10.1, CHCH=CH), 5.48 (1 H, dd, J 10.1, 1.8, CHCH=CH), 4.71 - 4.60 (1 H, m, CHN), 3.45 (2 H, app. s, CH₂O), 2.53 (1 H, app. q, J 11.9, one of CHCH₂CHN), 2.32 - 2.19 (3 H, m, MeCH, ring junction CH and one of CCH₂CHN), 2.10 (1 H, dd, J 12.6, 10.3, one of CCH₂CHN), 1.79 (1 H, app. dt, J 11.9, 6.2, one of CHCH₂CHN), 1.71 (1 H, app. dt, J 13.4, 3.5, one of MeCHCH₂), 1.27 - 1.22 (1 H, m, one of MeCHCH₂), 1.10 (9 H, s, SiC(CH₃)₃) and 0.98 (3 H, d, J 7.0, CH₃); δ_{c} (100 MHz) 168.4 (2 x C), 135.7 (2 x CH), 135.7 (2 x CH), 133.7 (2 x CH), 133.6 (2 x C), 132.1 (2 x C), 132.0 (CH), 131.9 (CH), 129.6 (2 x CH), 127.6 (2 x CH), 127.6 (2 x CH), 122.9 (2 x CH), 69.4 (CH₂), 48.8 (CH), 45.6 (C), 37.5 (CH₂), 37.4 (CH), 33.1 (CH₂), 31.4 (CH₂), 26.9 (CH₃), 25.8 (CH), 21.4 (CH₃) and 19.4 (C); m/z (TOF ES+) 551 (20%), 550 (MH⁺, 100) and 294 (14).


(2SR,3aRS,5SR,7aRS)-7a-((*tert*-Butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7ahexahydro-1*H*-inden-2-amine (228)

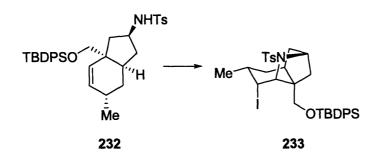
To a solution of phthalimide 227 (1.05 g, 1.91 mmol) in EtOH (15 mL) was added hydrazine hydrate (0.42 mL, 8.60 mmol, 4.5 equiv.) and the mixture bought up to reflux. After 20 min the suspension of hydrazide was cooled and diluted with Et₂O (30 mL) with good stirring. The precipitate was removed by filtration and the filter cake washed well with Et₂O. The filtrate was concentrated in vacuo to give the title compound (0.75 g, 94 %) as an essentially-pure colourless oil (Found: MH⁺, 420.2733. C₂₇H₃₈NOSi requires M, 420.2723); v_{max} (CDCl₃) 3364, 3070, 3002, 2930, 2856, 1643, 1589, 1459, 1428, 1390, 1110, 822, 741 and 703 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.68 - 7.63 (4 H, m, 4 x aromatic CH), 7.45 - 7.35 (6 H, m, 6 x aromatic CH), 5.47 (1 H, br. d, J 10.1, CHCH=CH), 5.41 (1 H, dd, J 10.1, 1.5, CHCH=CH), 3.39 (1 H, d, J 9.7, one of CH₂O), 3.37 (1 H, d, J 9.7, one of CH₂O), 3.31 - 3.22 (1 H, m, CHN), 2.26 (1 H, dd, J 13.1, 8.1, one of CCH₂CHN), 2.22 - 2.09 (2 H, m, MeCH and ring junction CH), 1.94 (1 H, app. dt, J 12.2, 6.5, one of CHCH₂CHN), 1.64 - 1.57 (1 H, m, one of MeCHCH₂), 1.37 (1 H, app. td, J 12.2, 9.5, one of CHCH₂CHN), 1.28 - 1.11 (2 H, m, one of MeCHCH₂ and one of CCH₂CHN), 1.05 (9 H, s, SiC(CH₃)₃) and 0.95 (3 H, d, J 7.0, CH₃); δ_{c} (100 MHz) 135.7 (2 x CH), 135.7 (2 x CH), 133.7 (C), 133.7 (C), 132.8 (CH), 132.0 (CH), 129.5 (2 x CH), 127.6 (4 x CH), 69.5 (CH₂), 51.0 (CH), 46.2 (CH₂), 45.8 (C), 40.9 (CH₂), 37.9 (CH), 31.4 (CH₂), 26.9 (CH₃), 25.6 (CH), 21.5 (CH₃) and 19.4 (C); m/z (TOF ES+) 461 (MH⁺.CH₃CN, 36 %) and 420 (MH⁺, 100).


165

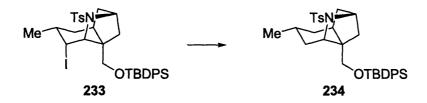
N-((2*SR*,3a*RS*,5*SR*,7a*RS*)-7a-((*tert*-Butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-yl)-4-nitrobenzenesulfonamide (230)


To a solution of amine 228 (0.75 g, 1.79 mmol) in CH_2Cl_2 (10 mL) was added Et_3N (0.37 mL, 2.69 mmol, 1.5 equiv.) followed by 4-nitrobenzenesulfonyl chloride (0.52 g, 2.33 mmol, 1.3 equiv.). The resulting solution was stirred overnight, concentrated in vacuo and chromatographed on silica (10 - 20 % EtOAc in petroleum ether) to give the title compound (1.01 g, 93 %) as a pale yellow oil (Found MH^{\dagger} , 605.2538. C₃₃H₄₁N₂O₅SSi requires M, 605.2505); v_{max} (CH₂Cl₂) 3282, 3071, 2956, 2857, 1707, 1607, 1531, 1427, 1349, 1310, 1265, 1165, 1093, 924, 855, 822, 738, 704 and 614 cm⁻¹; δ_{H} (400 MHz) 8.32 (2 H, d, J 8.8, 2 x aromatic CH), 8.02 (2 H, d, J 8.8, 2 x aromatic CH), 7.61 - 7.55 (4 H, m, 4 x aromatic CH), 7.47 - 7.33 (6 H, m, 6 x aromatic CH), 5.51 (1 H, br. d, J 10.0, CHCH=CH), 5.29 (1 H, dd, J 10.0, 1.6, CHCH=CH), 4.81 (1 H, d, J 8.9, NH), 3.80 - 3.69 (1 H, m, CHN), 3.32 (1 H, d, J 9.9, one of CH₂O), 3.31 (1 H, d, J 9.9, one of CH₂O), 2.15 (2 H, m, ring junction CH and one of CH₂CHN), 2.10-1.98 (2 H, m, MeCH and one of CH₂CHN), 1.56 (1 H, app. dt, J 13.6, 3.6, one of MeCHCH₂), 1.40 (1 H, app. dt, J 11.8, 8.4, one of CHCH₂CHN), 1.19 (1 H, dd, J 13.3, 6.2, one of CCH₂CHN), 1.13 - 1.05 (1 H, m, one of MeCHCH₂), 1.02 (9 H, s, SiC(CH₃)₃) and 0.93 (3 H, d, J 7.1, CH₃); δ_c (100 MHz) 149.9 (C), 146.9 (C), 135.6 (2 x CH), 135.5 (2 x CH), 133.8 (CH), 133.3 (C), 133.2 (C), 131.6 (CH), 129.7 (2 x CH), 128.2 (2 x CH), 127.7 (4 x CH), 124.3 (2 x CH), 68.4 (CH₂), 52.9 (CH), 46.1 (C), 42.5 (CH₂), 37.8 (CH₂), 36.7 (CH), 30.4 (CH₂), 26.8 (CH₃), 25.4 (CH), 21.2 (CH₃), 19.3 (C); m/z (TOF ES+) 606 (33%), 605 (MH⁺, 100), 418 (29) and 280 (63).

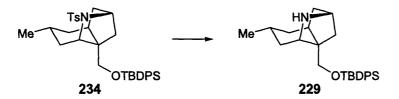
(2RS, 3aSR, 4RS, 6RS, 7RS, 7aRS)-3a-(*tert*-Butyldimethylsilyloxymethyl)-7-iodo-6-methyl-1-(4-nitrobenzenesulfonyl)-2, 4-methanooctahydroindole (231)


To a solution of sulfonamide 230 (400 mg, 0.66 mmol) in MeCN (10 mL) was added NaHCO₃ (167 mg, 1.98 mmol, 3 equiv.) and I_2 (505 mg, 1.98 mmol, 3 equiv.). The reaction was stirred overnight before quenching with saturated aqueous Na₂SO₃ (10 mL). The organic layer was separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was chromatographed on silica (10 % EtOAc in petroleum ether) to give the title compound (437 mg, 91 %) as a colourless oil that crystallised on standing, m.p. 173 - 175 °C (Found MH⁺, 731.1436. C₃₃H₄₀IN₂O₅SSi requires M, 731.1472); v_{max} (CH₂Cl₂) 3071, 2959, 2857, 1605, 1533, 1470, 1428, 1351, 1312, 1263, 1155, 1109, 959, 926, 856, 800, 740, 704, 632 and 601 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 8.18 (2 H, d, J 8.8, 2 x aromatic CH), 7.96 (2 H, d, J 8.8, 2 x aromatic CH), 7.52 - 7.47 (4 H, m, 4 x aromatic CH), 7.45 - 7.27 (6 H, m, 6 x aromatic CH), 4.92 (1 H, br. s, CHI), 4.19 (1 H, d, J 10.7, one of CH₂O), 3.99 (1 H, br. d, J 2.2, CHICHN), 3.92 (1 H, br. s, CH₂CHN), 3.71 (1 H, d, J 10.7, one of CH₂O), 1.91 - 1.85 (2 H, m, ring junction CH and one of CH₂CHN), 1.80 - 1.71 (1 H, m, one of CH₂CHN), 1.61 - 1.50 (1 H, m, MeCH), 1.29 - 1.10 (2 H, m, MeCHCH₂), 0.99 - 0.94 (13 H, m, CH₃, SiC(CH₃)₃ and one of CH₂CHN) and 0.74 (1 H, br. d, J 10.3, one of CH₂CHN); δ_c (100 MHz) 150.0 (C), 143.2 (C), 135.8 (2 x CH), 135.6 (2 x CH), 133.3 (C), 132.9 (C), 129.8 (CH), 129.8 (CH), 128.8 (2 x CH), 127.6 (2 x CH), 127.5 (2 x CH), 124.5 (2 x CH), 64.5 (CH₂), 64.2 (CH), 59.6 (CH), 52.5 (C), 43.1 (CH₂), 40.7 (CH), 37.0 (CH₂), 34.1 (CH), 29.3 (CH₂), 26.9 (CH₃), 24.1 (CH and CH₃) and 19.3 (C).

N-((2*SR*,3a*RS*,5*SR*,7a*RS*)-7a-((*tert*-Butyldiphenylsilyloxy)methyl)-5-methyl-2,3,3a,4,5,7a-hexahydro-1*H*-inden-2-yl)-toleuenesulfonamide (232)

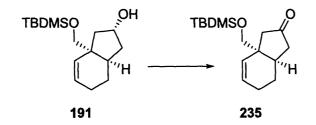

To a solution of amine 228 (230 mg, 0.55 mmol) in CH₂Cl₂ (10 mL) was added Et₃N (0.11 mL, 0.83 mmol, 1.5 equiv.) and TsCl (126 mg, 0.66 mmol, 1.2 equiv.). After stirring overnight the solution was concentrated and chromatographed on silica (20 % EtOAc in petroleum ether) to give the title compound as a colourless oil (265 mg, 84 %). (Found: MNH₄⁺, 591.3063. $C_{34}H_{47}N_2O_3SSi$ requires M, 591.3077); v_{max} (CDCl₃) 3271, 3071, 2955, 2857, 1598, 1428, 1325, 1160, 1094, 910, 815, 735, 704, 665 cm⁻¹; δ_H (400 MHz) 7.66 (2 H, d, J 8.3, aromatic CH), 7.53 - 7.49 (4 H, m, aromatic CH), 7.38 -7.27 (6 H, m, aromatic CH), 7.19 (2 H, d, J 8.3, aromatic CH), 5.40 (1 H, br. d, J 10.1, CHCH=CH), 5.22 (1 H, dd, J 10.1, 1.7, CHCH=CH), 4.62 (1 H, d, J 8.7, NH), 3.57 (1 H, m, CHN), 3.23 (1 H, d, J 9.8, one of CH₂O), 3.20 (1 H, d, J 9.8, one of CH₂O), 2.33 (3 H, s, ArCH₃), 2.05 1.94 (2 H, m, ring junction CH and MeCH), 2.03 (1 H, dd, J 13.3, 8.2, one of CCH₂CHN), 1.92 (1 H, app. dt, J 12.3, 7.3, one of CHCH₂CHN), 1.46 (1H, app. dt, J 13.5, 3.7, one of MeCHCH₂), 1.37–1.27 (1 H, ddd, J 12.3, 11.5, 8.3, one of CHCH₂CHN), 1.11 (1 H, dd, J 13.3, 6.3, one of CCH₂CHN), 1.00 (1 H, ddd, J 13.5, 10.8, 4.1, one of MeCHCH₂), 0.93 (9 H, s, SiC(CH₃)₃) and 0.84 (3 H, d, J 7.0, CH₃CH); δ_c (125 MHz) 143.1 (C), 138.0 (C), 135.6 (2 × CH), 135.6 (2 × CH), 133.5 (C), 133.4 (C), 133.3 (CH), 131.9 (CH), 129.6 (2 × CH), 127.6 (4 × CH), 127.1 (2 × CH), 68.8 (CH₂), 52.6 (CH), 46.0 (C), 42.5 (CH₂), 37.8 (CH₂), 36.8 (CH), 30.7 (CH₂), 26.9 (CH₃), 25.4 (CH), 21.5 (CH₃), 21.2 (CH₃) and 19.3 (C); *m/z* (TOF ES+) 593 (19%), 592 (53) and 591 (M.NH₄⁺, 100).

(2RS,3aSR,4RS,6RS,7RS,7aRS)-3a-(*tert*-Butyldimethylsilyloxymethyl)-7-iodo-6-methyl-1-(4-toluenesulfonyl)-2,4methanooctahydroindole (233)

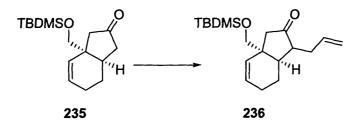

To a solution of sulfonamide 232 (250 mg, 0.44 mmol) in MeCN (5 mL) was added NaHCO₃ (110 mg, 1.31 mmol, 3 equiv.) and I_2 (332 mg, 1.31 mmol, 3 equiv.). After stirring overnight the reaction was guenched by the addition of saturated aqueous Na₂SO₃ (10 mL), the organic layer separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica (10% EtOAc in petroleum ether) to give the title compound (210 mg, 69 %) as a colourless oil that crystallised on standing, m.p. 150–152 °C (Found: MH⁺, 700.1765. C₃₄H₄₃INO₃SSi requires M, 700.1778); v_{max} (CH₂Cl₂) 3070, 2958, 2857, 1597, 1469, 1428, 1346, 1260, 1153, 1110, 958, 926, 802, 740, 704 and 665 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.68 (2 H, d, J 8.3, 2 x aromatic CH), 7.54 - 7.51 (4 H, m, 4 x aromatic CH), 7.45 - 7.29 (6 H, m, 6 x aromatic CH), 7.14 (2 H, d, J 8.3, 2 x aromatic CH), 4.94 (1 H, br. t, J 3.1, CHI), 4.15 (1 H, d, J 10.6, one of CH₂O), 4.01 (1 H, br. d, J 2.3, CHICHN), 3.88 (1 H, br. s, CH₂CHN), 3.69 (1 H, d, J 10.6, one of CH_2O), 2.36 (3 H, s, Ar CH_3), 1.87 - 1.80 (2 H, m, ring junction CH and one of CH₂CHN), 1.76 - 1.70 (1 H, m, one of CH₂CHN), 1.65 - 1.50 (1H, m, MeCH), 1.28 - 1.11 (2 H, m, MeCHCH₂), 0.99 (9 H, s, SiC(CH₃)₃), 0.95 (3 H, d, J 6.4, CH₃CH), 0.95 - 0.91 (1 H, m, one of CH₂CHN) and 0.85 (1 H, app. dt, J 10.1, 2.2, one of CHCH₂CHN); δ_{c} 143.5 (C), 135.9 (2 × CH), 135.7 (2 × CH), 133.7 (C), 133.3 (C), 129.9 (2 × CH), 129.7 (CH), 129.6 (CH), 127.7 (2 × CH), 127.5 (2 × CH), 127.4 (2 × CH), 64.7 (CH2), 64.0 (CH), 59.3 (CH), 52.3 (C), 42.9 (CH₂), 42.1 (CH), 37.1 (CH₂), 34.2 (CH), 29.5 (CH₂), 27.0 (CH₃), 24.2 (CH₃), 24.1 (CH), 21.5 (CH₃) and 19.3 (C); m/z (TOF ES+) 701 (25%), 700 (MH⁺, 100) and 572 (14).

(2RS, 3aSR, 4RS, 6RS, 7RS, 7aRS)-3a-(*tert*-Butyldimethylsilyloxymethyl)-6-methyl-1-(4toluenesulfonyl)-2, 4-methanooctahydroindole (234)

To a solution of iodide 233 (40 mg, 0.06 mmol) in benzene (10 mL) was added Bu₃SnH (0.15 mL, 0.57 mmol, 10 equiv.) and AIBN (25 mg, 0.15 mmol, 2.7 equiv.). The solution was heated to reflux overnight, concentrated and chromatographed on silica containing approx. 10 % w/w NaF (10 % EtOAc in petroleum ether) to give the title compound (33 mg, 100%) as a yellow oil (Found: MH⁺, 574.2834. C₃₄H₄₄NO₃SSi requires M, 574.2811); v_{max} (CH₂Cl₂) 3071, 2956, 2855, 1599, 1457, 1428, 1341, 1156, 1111, 957, 934, 898, 802, 739 and 705 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.71 (2 H, d, J 8.3, 2 x aromatic CH), 7.56 - 7.50 (4 H, m, 4 x aromatic CH), 7.45 - 7.33 (6 H, m, 6 x aromatic CH), 7.24 (2 H, d, J 8.3, 2 x aromatic CH), 4.04 (1 H, br. s, CCH₂CHN), 3.62 - 3.58 (2 H, m, MeCH₂CHN and one of CH₂O), 3.49 (1 H, d, J 10.6, one of CH₂O), 2.39 (3 H, s, ArCH₃), 2.12 (1 H, br. d, J 13.9, one of MeCHCH₂CHN), 2.07 - 1.95 (1 H, m, MeCH), 1.88 - 1.78 (2 H, m, ring junction CH and one of CCHCH₂CHN), 1.72-1.62 (1 H, m, one of CCHCH₂CHN), 1.44 (1 H, br. d, J 13.8, one of MeCHCH₂CH), 1.02 (1 H, app. d, J 9.8, one of CCH₂CHN), 0.98 - 0.89 (11 H, m, one of CCH₂CHN, one of MeCHCH₂CHN and SiC(CH₃)₃), 0.88 - 0.83 (1 H, m, one of MeCHCH₂CH) and 0.86 (3 H, d, J 6.6, CH₃); δ_c (125 MHz) 142.9 (C), 135.6 (2 × CH), 135.5 (2 × CH₂), 133.1 (C), 133.1 (C), 129.8 (CH), 129.8 (CH), 129.7 (2 × CH), 127.7 (2 × CH), 127.7 (2 × CH), 127.6 (2 × CH), 62.8 (CH₂), 59.8 (CH), 59.7 (CH), 51.3 (C), 41.2 (CH2), 37.2 (CH2), 34.9 (CH), 33.7 (CH₂), 33.5 (CH₂), 26.8 (CH₃), 21.6 (CH₃), 21.5 (CH₃), 20.2 (CH) and 19.2 (C); *m/z* (TOF ES+) 575 (22%) and 574 (MH⁺, 100).

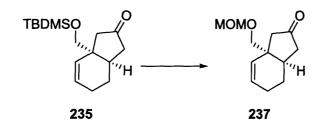

(2RS,3aSR,4RS,6RS,7RS,7aRS)-3a-(*tert*-Butyldimethylsilyloxymethyl)-6-methyl-2,4methanooctahydroindole (229).

To a solution of naphthalene (125 mg, 0.98 mmol) in THF (2 mL) was added sodium (22 mg, 0.96 mmol) and the metal crushed with a spatula. After stirring for 30 min a 1 mL aliquot of the resulting green solution was added dropwise to a -78 °C solution of tosylate 234 (25 mg, 0.04 mmol) in THF (3 mL), giving a permanent green colour. After stirring for 15 min the reaction was quenched by addition of 2 M NaOH (10 mL) and allowed to warm to room temperature. The organic layer was separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was chromatographed on silica (10 % EtOAc in petroleum ether followed by 1 % Et₃N in MeOH) to give a yellow oil which proved to be a salt by ¹H NMR. This was dissolved in CH₂Cl₂ (10 mL) and washed with 2 M NaOH (10 mL). The aqueous phase was extracted with CH_2Cl_2 (10 mL) and the combined organic phases dried over NaOH and concentrated in vacuo to give the *title compound* (15 mg, 82 %) as a yellow oil (Found MH^+ , 420.2731. C₂₇H₃₈NOSi requires M, 420.2723); v_{max} (neat) 3398, 3072, 2929, 2861, 1587, 1428, 1111, 1097, 823, 737 and 703 cm⁻¹; $\delta_{\rm H}$ (500 MHz) 7.66 (4 H, app. br. d, J 7.1, 4 x aromatic CH), 7.45 - 7.36 (6 H, m, 6 x aromatic CH), 3.70 (1 H, d, J 10.5, one of CH₂O), 3.69 (1 H, d, J 10.5, one of CH₂O), 3.29 (1 H, br. s, CCH₂CHN), 3.22 (1 H, br. s, CCHN), 2.07 (1 H, m, ring junction CH), 1.85 (1 H, app. td, J 12.3, 2.8, one of CHCH₂CHN), 1.86 - 1.75 (1 H, m, MeCH), 1.71 (1 H, app. dt, J 9.3, 2.2, one of CCH₂CHN), 1.62 (1 H, br. d, J 14.3, one of MeCHCH₂CHN), 1.55 (1 H, d, J 9.3, one of CCH₂CHN), 1.45 (1 H, br. d, J 13.7, one of MeCHCH₂CH), 1.35 (1 H, app. dt, J 12.3, 3.4, one of CCHCH₂CHN), 1.05 (9 H, s, SiC(CH₃)₃), 0.98 - 0.88 (2 H, m, one of MeCHCH₂CH and one of MeCHCH₂CHN) and 0.85 (3 H, d, J 6.5, CH₃); δ_c (125 MHz) 135.7 (4 x CH), 133.8 (2 x C), 129.6 (2 x CH), 127.6 (4 x CH), 63.8 (CH₂), 56.0 (CH), 55.2 (CH), 49.8 (C), 44.9 (CH₂), 38.2 (CH₂), 34.6 (CH₂), 34.2


(CH), 33.6 (CH₂), 26.9 (CH₃), 21.9 (CH₃), 19.7 (CH) and 19.4 (C); m/z (TOF ES+) 422 (10%), 421 (35) and 420 (MH⁺, 100).

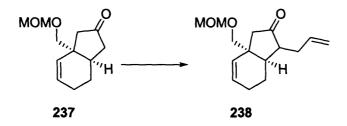
(3aRS,7aRS)-3a-((*tert*-Butyldimethylsilyloxy)methyl)-3,3a,7,7a-tetrahydro-1*H*-inden-2(6*H*)-one (235)

PDC (500 mg, 1.3 mmol, 1.5 equiv.) was added to a solution of alcohol **191** (250 mg, 0.89 mmol) in CH₂Cl₂. After stirring for 16 h, the mixture was filtered through a short column of silica gel, washing well with CH₂Cl₂. Removal of the solvent *in vacuo* afforded the *title compound* (200 mg, 81 %) as a pale yellow oil. $\delta_{\rm H}$ (500 MHz) 5.81 (1 H, app. dt, *J* 10.1, 3.8, one of alkene CH), 5.38 (1 H, app. dt, *J* 10.1, 1.9, one of alkene CH), 3.50 (1 H, d, *J* 9.9, one of CH₂OTBS), 3.43 (1 H, d, *J* 9.9, one of CH₂OTBS), 2.52 (1 H, d, *J* 18.2, one of CCH₂C=O), 2.47 - 2.39 (2 H, m), 2.12 - 2.02 (3 H, m), 2.05 (1 H, d, *J* 18.2, one of CCH₂C=O), 1.77 (1 H, dddd, *J* 13.8, 7.7, 6.2, 3.5), 1.55 (1 H, app. dq, *J* 13.7, 5.9), 0.89 (9 H, s, SiC(CH₃)₃) and 0.04 (6 H, s, 2 x SiCH₃).

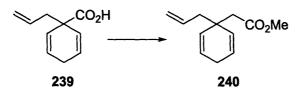

(3a*SR*,7a*RS*)-1-Allyl-3a-((*tert*-butyldimethylsilyloxy)methyl)-3,3a,7,7a-tetrahydro-1*H*inden-2(6*H*)-one (236)

A solution of ketone **235** (0.5 g, 1.8 mmol) in THF (2 mL) was added to a solution of 2M LDA (1.1 mL, 2.2 mmol, 1.2 equiv.) in THF (10 mL) at -78 °C. After stirring for 30 min, allyl iodide (0.21 mL, 2.3 mmol, 1.3 equiv.) was added dropwise and the reaction allowed to warm to room temperature while stirring overnight. Saturated aqueous

NH₄Cl (20 mL) was added, the organic layer separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica gel (2 % Et₂O in petroleum ether) giving the *title compound* (300 mg, 76 %) as a yellow oil. $\delta_{\rm H}$ (500 MHz) 5.85 - 5.69 (2 H, m, 2 x alkene CH), 5.40 - 5.28 (1 H, m, alkene CH), 5.11 - 4.97 (2 H, m, 2 x alkene CH), 3.50 (1 H, d, *J* 10.1, one of CH₂OTBS), 3.39 (1 H, d, *J* 10.1, one of CH₂OTBS), 2.57 (1 H, d, *J* 18.3, one of CCH₂C=O), 2.38 - 2.27 (2 H, m), 2.18 (1 H, app. dtd, *J* 11.3, 5.8, 1.5), 2.10 - 1.99 (3 H, m), 1.82 - 1.67 (2 H, m), 1.55 (1 H, app. dq, *J* 13.7, 5.6), 0.88 (9 H, s, SiC(CH₃)₃) and 0.03 (6 H, s, 2 x SiCH₃); $\delta_{\rm C}$ (100 MHz) 135.3 (CH), 130.5 (CH), 129.0 (CH), 116.6 (CH₂), 65.0 (CH₂), 48.6 (CH), 45.7 (CH₂), 43.0 (C), 37.7 (CH), 32.8 (CH₂), 25.6 (CH₃), 19.9 (CH₂), 18.7 (CH₂), 17.9 (C), -5.8 (C) and -5.8 (C).


(3aRS,7aRS)-3a-((Methoxymethoxy)methyl)-3,3a,7,7a-tetrahydro-1H-inden-2(6H)-one (237)

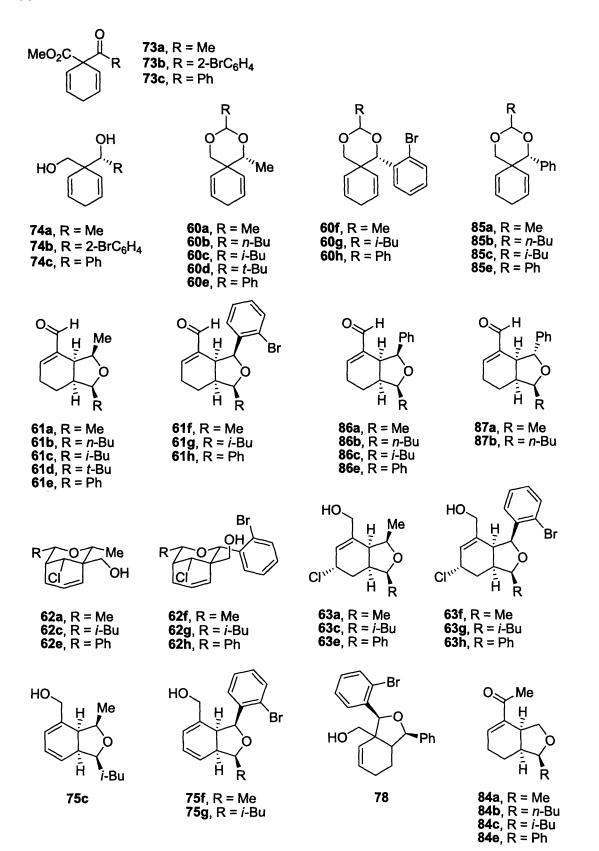
A 1 M THF solution of TBAF (3 mL, 3 mmol, 1.5 equiv.) was added to a solution of ketone **235** (0.6 g, 2.1 mmol) in THF (10 mL). After stirring for 30 min, the reaction was quenched with water (20 mL), the organic layer separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL) then dried over Na₂SO₄. The solvent was removed *in vacuo* and the residual orange oil (364 mg) dissolved in DCM (20 mL). DIPEA (1.74 mL, 5 mmol, 2.5 equiv.) was added, followed by an approximately 1 M solution of MOM-Cl in CH₂Cl₂. After stirring for 16 h, the reaction was quenched with 2 M HCl (20 mL), the organic layer separated and the aqueous phase extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layer separated under reduced


pressure, and the resulting residue purified by chromatography on silica (15 % EtOAc in petroleum ether) to yield the *title compound* (0.29 g, 67 %) as a colourless oil.

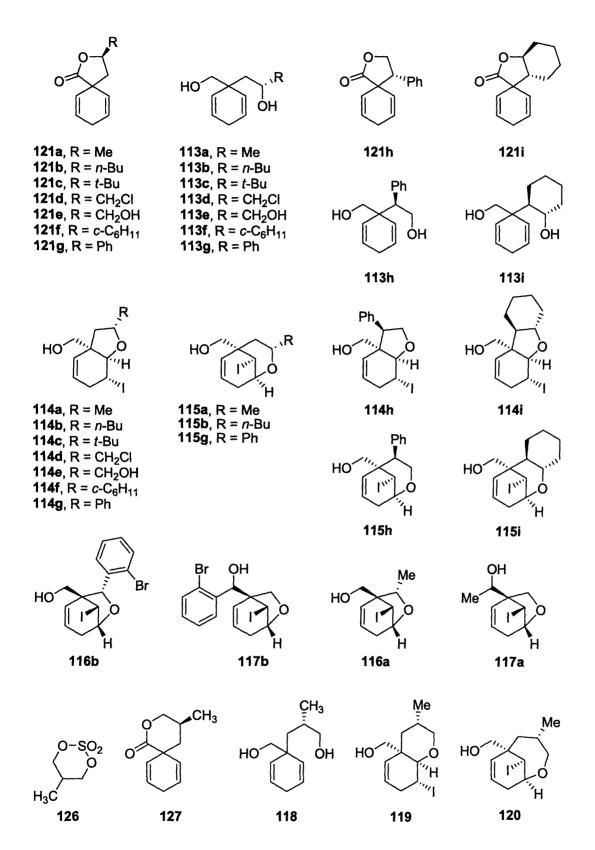
(3a*SR*,7a*RS*)-1-Allyl-3a-((methoxymethoxy)methyl)-3,3a,7,7a-tetrahydro-1*H*-inden-2(6*H*)-one (238)

A solution of ketone **237** (0.29 g, 1.4 mmol) in THF (2 mL) was added to a solution of 2M LDA (0.84 mL, 1.7 mmol, 1.2 equiv.) in THF (10 mL) at -78 °C. After stirring for 30 min, allyl bromide (0.24 mL, 2.8 mmol, 2.0 equiv.) was added dropwise and the reaction allowed to warm to room temperature while stirring overnight. Saturated aqueous NH₄Cl (20 mL) was added, the organic layer separated and the aqueous phase extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over Na₂SO₄, concentrated under reduced pressure, and the residue purified by chromatography on silica gel (8 % EtOAc in petroleum ether) giving the *title compound* (165 mg, 47 %) as a yellow oil; $\delta_{\rm H}$ (500 MHz) 5.88 - 5.66 (2 H, m, 2 x alkene CH), 5.40 - 5.35 (1 H, m, one of alkene CH), 5.13 - 4.98 (2 H, m, 2 x alkene CH), 4.62 (3 H, s, OCH₃), 3.47 (1 H, d, *J* 9.6, one of CH₂OMOM), 3.42 (1 H, d, *J* 9.6, one of CH₂OMOM), 3.49 (2 H, s, OCH₂O), 2.48 (1 H, d, *J* 18.4, one of CCH₂C=O), 2.06 - 1.99 (2 H, m), 1.83 (1 H, dddd, *J* 13.8, 10.2, 6.8, 3.5) and 1.75 (1 H, app. ddt, *J* 14.1, 5.8, 2.7).

Methyl 2-(1-allylcyclohexa-2,5-dienyl)acetate (240)

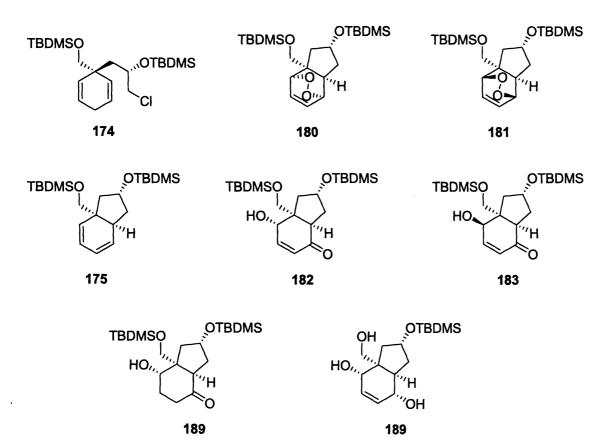

Methyl chloroformate (1.32 mL, 16.7 mmol, 1.1 equiv.) was added dropwise to an icecold solution of acid **239** (2.5 g, 15.2 mmol) and Et_3N (2.32 mL, 16.7 mmol, 1.1 equiv.) in Et_2O (50 mL). The resulting suspension was stirred for 30 min, while a suspension of Diazald (4.9 g, 22.8 mmol, 1.5 equiv.) in EtOH (10 mL) was prepared and warmed to approx. 50 °C in a separate flask. A solution of KOH (5 g) in H_2O (8 mL) was added dropwise to the well stirred Diazald suspension and the gas generated was passed into the flask containing the mixed anhydride.

Stirring was continued for 30 min before the crude diazoketone solution was filtered through a short column of silica, washing well with Et₂O. Removal of the solvent under reduced pressure gave a residue which was redissolved in MeOH (50 mL) and treated with a solution of freshly prepared silver (I) benzoate (100 mg) in Et₃N (10 mL). This was heated cautiously to reflux, resulting in vigorous gas evolution. After 4 h at reflux, the mixture was again filtered through a short column of silica, washing with Et₂O, and the filtrate concentrated under reduced pressure. The residue was purified by chromatography on silica (2 - 10 % EtOAc in petroleum ether) to afford the *title compound* (1.24 g, 42 %) as a colourless oil; $\delta_{\rm H}$ (500 MHz) 5.82 - 5.78 (2 H, m, 2 x alkene CH), 5.71 (1 H, app. ddt, *J* 17.6, 10.4, 7.2, alkene CH), 5.56 - 5.52 (2 H, m, 2 x alkene CH), 5.07 - 4.98 (2 H, m, 2 x alkene CH), 3.62 (3 H, s, OMe), 2.56 (2 H, app. tdd, *J* 5.4, 3.3, 2.1, CHCH₂CH), 2.36 (2 H, s, CH₂CO₂Me) and 2.20 (2 H, br. d, *J* 7.2, CH₂=CHCH₂).

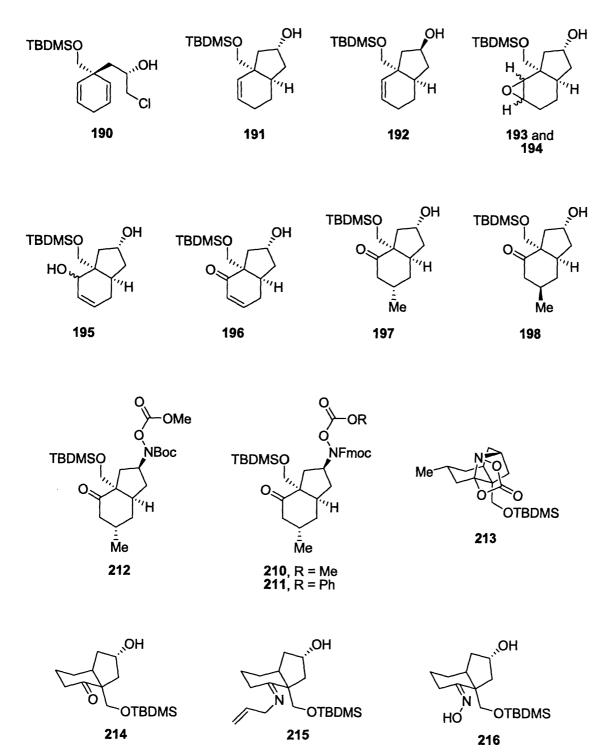

Appendix A

Compound Lists

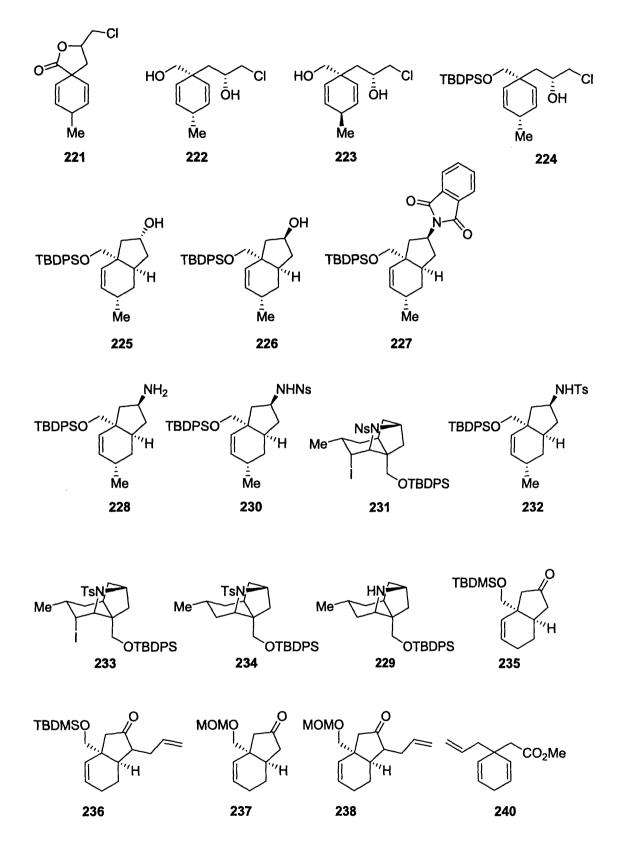
Appendix A-1. Compound List for Chapter 2



Appendix A-2. Compound List for Chapter 3



1.



Appendix B

References

- 1. R. Robinson, J. Chem. Soc., Trans., **1917**, 111, 762.
- 2. R. Robinson, J. Chem. Soc., Trans., 1917, 111, 876.
- C. S. Poss and S. L. Schreiber, Acc. Chem. Res., 1994, 27, 9; S. Magnuson, Tetrahedron, 1995, 51, 2167.
- 4. For a review of the synthesis of C2 symmetric natural products see: M. Vrettou, A. A. Gray, A. R. E. Brewer and A. G. M. Barrett, *Tetrahedron*, **2007**, *63*, 1487.
- For reviews of the enantioselective desymmetrisation of various classes of substrate see: R. S. Ward, *Chem. Soc. Rev.*, **1990**, *19*, 1; M. C. Willis, *J. Chem. Soc., Perkin Trans.* 1, **1999**, 1764.
- For a review of enantioselective desymmetrisation reactions of cyclic dienes, including cyclohexadienes, see: N. Abd Rahman and Y. Landais, *Current* Organic Chemistry, 2002, 6, 1369.
- For a review of desymmetrisation reactions of 1,4-cyclohexadienes see: A.
 Studer and F. Schleth, Synlett, 2005, 20, 3033.
- 8. D. Crich and M. Sannigrahi, *Tetrahedron*, **2002**, *58*, 3319.
- 9. D. Crich, D. Grant and D. J. Wink, J. Org. Chem., 2006, 71, 4521.
- R. Angelaud and Y. Landais, J. Org. Chem., 1996, 61, 5203; Y. Landais and E. Zekri, Eur. J. Org. Chem., 2002, 4037.
- 11. D. Crich and V. Krishnamurthy, *Tetrahedron*, **2006**, *62*, 6830.
- 12. R. Lebeuf, F. Robert and Y. Landais, *Org. Lett.*, **2005**, *7*, 4557.

- 13. R. Beniazza, J. Dunet, F. Robert, K. Schenk and Y. Landais, *Org. Lett.*, **2007**, *9*, 3913.
- 14. R. Umeda and A. Studer, Org. Lett., 2007, 9, 2175.
- F. Schleth and A. Studer, *Angew. Chem., Int. Ed.*, **2004**, *43*, 313; F. Schleth, T.
 Vogler, K. Harms and A. Studer, *Chem. Eur. J.*, **2004**, *10*, 4171.
- M. Honma and M. Nakada, *Tetrahedron Lett.*, **2003**, *44*, 9007; M. Honma, T.
 Sawada, Y. Fujisawa, M. Utsugi, H. Watanabe, A. Umino, T. Matsumura, T.
 Hagihara, M. Takano, and M. Nakada, *J. Am. Chem. Soc.*, **2003**, *125*, 2860.
- 17. R. Ida and M. Nakada, *Tetrahedron Lett.*, **2007**, *48*, 4855.
- 18. M. Abe and M. Nakada, *Tetrahedron Lett.*, **2007**, *48*, 4873.
- 19. R. Lebeuf, F. Robert, K. Schenk and Y. Landais, Org. Lett., 2006, 8, 4755.
- 20. H. Fujioka, K. Murai, Y. Ohba, H. Hirose and Y. Kita, *Chem. Commun.*, **2006**, 832.
- 21. M. C. Elliott and N. N. E. El Sayed, *Tetrahedron Lett.*, **2005**, *46*, 2957.
- 22. M. C. Elliott, N. N. E. El Sayed and L.-L. Ooi, *Tetrahedron Lett.*, 2007, 48, 4561.
- 23. M. C. Elliott, N. N. E. El Sayed and J. S. Paine, *Eur. J. Org. Chem.*, **2007**, 792.
- J. D. Elsworth and C. L. Willis, *Chem. Commun.*, 2008, 1587; E. Jiménez-Núñez,
 C. K. Claverie, C. Nieto-Oberhuber, A. M. Echavarren, *Angew. Chem., Int. Ed.*,
 2006, 45, 5452; C. S. Barry, N. Bushby, J. R. Harding, R. A. Hughes, G. D.
 Parker, R. Roe and C. L. Willis, *Chem. Commun.*, 2005, 3727; J. E. Dalgard and
 S. D. Rychnovsky, *J. Am. Chem. Soc.*, 2004, 126, 15662; R. Jasti, J. Vitale and S.
 D. Rychnovsky, *J. Am. Chem. Soc.*, 2004, 126, 9904; C. S. Barry, S. R. Crosby, J.
 R. Harding, R. A. Hughes, C. D. King, G. D. Parker and C. L. Willis, *Org. Lett.*,

2003, *5*, 2429; B. Patterson, S. Marumoto and S. D. Rychnovsky, Org. Lett., **2003**, *5*, 3163; J. J. Jaber, K. Mitsui and S. D. Rychnovsky, J. Org. Chem., **2001**, *66*, 4679.

- Kevin B. Bahnck and Scott D. Rychnovsky, J. Am. Chem. Soc., 2008, 130, 25. 13177; P. T. Seden, J. P. H. Charmant and C. L. Willis, Org. Lett., 2008, 10, 1637; X. Tian, J. J. Jaber and S. D. Rychnovsky, J. Org. Chem., 2006, 71, 3176; C. S. Barry, J. D. Elsworth, P. T. Seden, N. Bushby, J. R. Harding, R. W. Alder, and C. L. Willis, Org. Lett., 2006, 8, 3319; A. C. Durow, G. C. Long, S. J. O'Connell and C. L. Willis, Org. Lett., 2006, 8, 5401. K. D. Bahnk and S. D. Rychnovsky, Chem. Commun., 2006, 2388; C.-H. A. Lee and T.-P. Loh, Tetrahedron Lett., 2006, 47, 1641; C. S. Barry, N. Bushby, J. P. H. Charmant, J. D. Elsworth, J. R. Harding and C. L. Willis, Chem. Commun., 2005, 5097; D. L. Aubele, S. Wan and P. E. Floreancig, Angew. Chem., Int. Ed., 2005, 44, 3485; K.-P. Chan and T.-P. Loh, Org. Lett., 2005, 7, 4491; J. P. Vitale, S. A. Wolckenhauer, N. M. Do and S. D. Rychnovsky, Org. Lett., 2005, 7, 3255; C. S. Barry, N. Bushby, J. R. Harding and C. L. Willis, Org. Lett., 2005, 7, 2683; D. J. Kopecky and S. D. Rychnovsky, J. Am. Chem. Soc., 2001, 123, 8420; S. D. Rychnovsky and C. R. Thomas, Org. Lett., 2000, 2, 1217.
- 26. N. N. E. El Sayed, PhD thesis, Cardiff University, 2006.
- 27. S. D. Rychnovsky, G. Yang, Y. Hu and U. R. Khire, *J. Org. Chem.*, **1997**, *62*, 3022.
- 28. M. C. Elliott, N. N. E. El Sayed and J. S. Paine, *Eur. J. Org. Chem.*, **2007**, 792.
- 29. M. Butters, M. C. Elliott, J. Hill-Cousins, J. S. Paine and A. W. J. Westwood, *Tetrahedron Lett.*, **2008**, *49*, 4446.
- 30. M. J. Kurth and E. G. Brown, J. Am. Chem. Soc., 1987, 109, 6844.

- D. J. Hart, H.-C. Huang, R. Krishnamurthy and T. Schwartz, J. Am. Chem. Soc., 1989, 111, 7507.
- 32. K. Fuji, M. Node, Y. Naniwa and T. Kawabata, *Tetrahedron Lett.*, **1990**, *31*, 3175.
- Examples of desymmetrisation of acyclic dienes by halocyclisation reactions can be found in: T. Yokomatsu, H. Iwasawa and S. Shibuya, *Tetrahedron Lett.*, **1992**, *33*, 6999; T. Yokomatsu, H. Iwasawa and S. Shibuya, *J. Chem. Soc.*, *Chem. Commun.*, **1992**, 728; O. Kitagawa, S.-I. Momose, Y. Fushimi and T. Taguchi, *Tetrahedron Lett.*, **1999**, *40*, 8827 and H. Fujioka, Y. Ohba, H. Hirose, K. Murai and Y. Kita, *Angew. Chem. Int. Ed.*, **2005**, *44*, 734.
- H. Fujioka, H. Kitagawa, N. Matsunaga, Y. Nagatomi and Y. Kita, *Tetrahedron Lett.*, **1996**, *37*, 2245; H. Fujioka, H. Kitagawa, N. Matsunaga, Y. Nagatomi and Y. Kita, *J. Org. Chem.*, **1996**, *61*, 7309.
- 35. H. Fujioka, N. Kotoku, Y. Sawama, Y. Nagatomi and Y. Kita, *Tetrahedron Lett.*,
 2002, 43, 4825.
- H. Fujioka, N. Kotoku, Y. Sawama, H. Kitagawa, Y. Ohba, T.-L. Wang, Y. Nagatomi and Y. Kita, *Chem. Pharm. Bull.*, 2005, 53, 952.
- 37. H. Fujioka, K. Murai, Y. Ohba, H. Hirose and Y. Kita, *Chem. Commun.*, 2006, 832.
- 38. G. A. Kraus and K. Frazier, J. Org. Chem., **1980**, 45, 4820.
- 39. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
- 40. L. Chaveriat, I. Stasik, G. Demailly and D. Beaupere, *Carbohydrate Res.*, **2004**, *339*, 1817.

- 41. D. Jones, D. W. Knight and D. E. Hibbs, *J. Chem. Soc., Perkin Trans.* 1, 2001, 1182.
- 42. P. A. Bartlett and J. Myerson, J. Am. Chem. Soc., 1978, 100, 3950.
- 43. M. Butters, M. C. Elliott, J. Hill-Cousins, J. S. Paine and J. K. E. Walker, *Org. Lett.*, **2007**, *9*, 3635.
- 44. For reviews see: D. R. Gang and X. Ma, Nat. Prod. Rep., 2004, 21, 752; W. A. Ayer, Nat. Prod. Rep., 1991, 8, 455.
- 45. P. Kozikowski and W. Tückmantel, Acc. Chem. Res., 1999, 32, 641.
- T. Harayama, M. Takatani and Y. Inubushi, *Tetrahedron Lett.*, **1979**, *44*, 4307;
 T. Harayama, M. Takatani and Y. Inubushi, *Chem. Pharm. Bull.*, **1980**, *28*, 2394.
- 47. C. H. Heathcock, K. M. Smith and T. A. Blumenkopf, J. Am. Chem. Soc., 1986, 16, 5023; C. H. Heathcock, K. M. Smith and T. A. Blumenkopf, J. Org. Chem., 1989, 7, 1548.
- F. D. Toste, J. J. Kennedy-Smith and X. Linghu, Angew. Chem. Int. Ed., 2007, 46, 7671.
- 49. K. M. Liu, C. M. Chau and C. K. Sha, *Chem. Commun.*, **2008**, 91.
- G. C. Hirst, T. O. Johnson Jr. and L. E. Overman, J. Am. Chem. Soc., 1993, 115, 2992.
- L. A. Paquette, D. Friedrich, E. Pinard, J. P. Williams, D. St. Laurent and B. A. Roden, *J. Am. Chem. Soc.*, **1993**, *115*, 4377; J. P. Williams, D. R. St. Laurent, D. Friedrich, E. Pinard, B. A. Roden and L. A. Paquette, *J. Am. Chem. Soc.*, **1994**, *116*, 4689; C.-K. Ma, F.-K. Lee and C.-J. Chang, *J. Am. Chem. Soc.*, **1999**, *121*, 9875; M. Ishizaki, Y. Niimi and O. Hoshino, *Tetrahedron Lett.*, **2003**, *44*, 6029;

M. Ishizaki, Y. Niimi, O. Hoshino, H. Hara and T. Takahashi, *Tetrahedron*, **2005**, *61*, 4053; T. Kozaka, N. Miyakoshi, and C. Mukai, J. Org. Chem., **2007**, *72*, 10147; D. A. Sandham and A. I. Meyers, J. Chem. Soc., Chem. Commun., **1995**, 2511; G. Mehta and M. S. Reddy, *Tetrahedron Lett.*, **1990**, *31*, 2039; G. Mehta, M. S. Reddy and A. Thomas, *Tetrahedron*, **1998**, *54*, 7865; C.-F. Chen and C.-C. Liao, *Angew. Chem. Int. Ed.*, **2002**, *41*, 4090.

- 52. M. Shibasaki, M. Mori and Y. Sato, *Tetrahedron Asymmetry*, **1995**, *3*, 757.
- 53. L. Caglioti, Organic Syntheses Coll. Vol. 6, 1988, 62.
- 54. T. Tsunoda, M. Susuki and R. Noyori, *Tetrahedron Lett.*, **1980**, *21*, 1357.
- G. L. Carroll, A. K. Allan, M. K. Schwaebe and D. R. Little, *Org. Lett.*, 2000, *2*, 2531; M. K. Schwaebe and D. R. Little, *Tetrahedron Lett.*, 1996, *37*, 6635.
- 56. X. Jiang, B. D. Manion, A. Benz, N. P. Rath, A. S. Evers, C. F. Zorumski, S. Mennerick and D. F. Covey, J. Med. Chem., 2003, 46, 5334.
- 57. A. B. Dounay, P. G. Humphreys, L. E. Overman and A. D. Wrobleski, *J. Am. Chem. Soc.*, **2008**, *130*, 5368.
- 58. S. V. Ley, A. A. Somovilla, H. B. Broughton, D. Craig, A. M. Z. Slawin, P. L. Toogood and D. J. Williams, *Tetrahedron*, **1989**, *45*, 2143.
- 59. S.-H. Chen, R. F. Horvath, J. Joglar, M. J. Fisher and S. J. Danishefsky, *J. Org. Chem.*, **1991**, *56*, 5834.
- 60. T. Kozaka, N. Miyakoshi and C. Mukai, J. Org. Chem., 2007, 72, 10147.
- 61. D. W. Knight and M. P. Leese, *Tetrahedron Lett.*, **2001**, *42*, 2593.
- 62. S. L. Mellor, C. McGuire and W. C. Chan, *Tetrahedron Lett.*, **1997**, *38*, 3311.

- 63. K. Katakawa, M. Kitajima, N. Aimi, H. Seki, K. Yamaguchi, K. Furihata, T. Harayama and H. Takayama, *J. Org. Chem.*, **2005**, *70*, 658.
- 64. H. Takayama, K. Katakawa, M. Kitajima, K. Yamaguchi and N. Aimi, *Tetrahedron Lett.*, **2002**, *43*, 8307.
- 65. We would like to thank Professor H. Takayama (Chiba University, Japan) for providing copies of NMR spectra of lycoposerramine S.
- 66. M. S. Berridge, M. P. Franceschini, E. Rosenfeld and T. J. Tewson, J. Org. Chem., **1990**, 55, 1211.

