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Abstract
During development of the lens, epithelial cells at the lens equator begin a 
differentiation process to become secondary fibre cells. The differentiating cells 
elongate and migrate towards the centre of the lens where they envelop the older, 
central fibre cells. Differentiation into fibre cells is accompanied by the breakdown of 
all organelles, such as the mitochondria. All organelle degradation is completed and 
denucleation occurs at the border of the organelle free zone (OFZ) which contains the 
central, terminally differentiated, fibre cells. The differentiation pathway is not well 
characterised, though it is believed to have similarities to an attenuated form of 
apoptosis supported by the identification of apoptosis related genes, such as TNF, in 
the lens. This study continues the search for and characterisation of apoptosis related 
genes expressed during lens development, focusing on TNFs and their extended 
family.

Reverse Transcriptase- (RT-) PCR was carried out, identifying a number of TNF and 
extended family member genes in the chick lens, expression studies established novel, 
statistically significant differential expression for TRAF2 and TRAF3. TRAF2 protein 
expression from western blotting, similar to RT-PCR expression was found to decline 
as the lens developed. TRAF2 localisation studies showed limited expression in the 
equatorial region but there was extensive signalling found in the developing iris, a 
region in the comeal-scleral boundary and some staining was also detected in the 
ciliary body.

TRAF3 protein and RT-PCR expression were similar, with increasing expression as 
the lens developed. Western blotting identified two bands and subcellular fractionation 
confirmed different localisation for the two isoforms. Immunofluorescence identified 
increasing TRAF3 staining in the cortical fibre cells, this staining was found to be 
similar to proteins that were reported to be involved in lens fibre cell remodelling and 
maintenance, suggesting a possibly similar role for TRAF3.

Following interest in TRAIL as a gene therapy for Posterior Capsule Opacification 
(PCO) its expression was examined using RT-PCR and Western blotting which 
showed low, similar levels of expression throughout the stages of lens development 
studied. Peroxidase staining showed interesting staining in the equatorial epithelial 
cells and those just beginning to differentiate at the transition zone. Novel nuclear 
staining was identified at all time points in both epithelial and fibre cells containing 
nuclei.

Characterisation of whole lens culture was undertaken to discover the optimum culture 
system for the whole chick lens. Of the published research using whole chick lens 
culture none stated the basic morphology of the developing lens in organ culture, 
though each lab had their preferred methodology. The characterisation resulted in the 
preference of E10 chick lenses being grown with vitreous attached in medium 
containing glucose. Understanding the morphology of lenses in culture will be 
invaluable when undertaking the functional studies required to clarify the roles in the 
lens of the newly identified genes, specifically TRAF2 and TRAF3.
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Chapter 1: 
Introduction



1.1 General Introduction

The lens, an organ found behind the pupil of the eye, refracts light onto the retina 

providing the ability to focus. At a cellular level, it is known that once the lens vesicle 

forms, cells at the posterior of the lens elongate into the lumen of the lens vesicle and 

differentiate into primary fibre cells. At the anterior of the lens is a layer of epithelial 

cells which, after initial lens development, continue to proliferate and migrate, along 

the basement membrane, towards the equatorial region. At the equatorial region, cells 

then differentiate into secondary fibre cells and wrap around the primary fibre cells 

found at the centre of the lens. Differentiation into fibre cells involves the cells 

elongating and losing all of their intracellular organelles; once this occurs the cell 

becomes a part of the organelle free zone (OFZ), which is essential for transparency of 

the lens.

The development of the lens, at a molecular level, has been studied and 

hypothesised upon for a number of decades and research is still ongoing. The 

degradation of intracellular organelles, mentioned above, was once described as an 

attenuated form of cell death or apoptosis (Dahm, 1999). As research continued, many 

complex signalling pathways have been identified in the lens to investigate this 

process. Recent research has identified a number of apoptosis genes that are 

differentially expressed at stages of lens development where a substantial amount of 

organelle degradation occurs (Wride et a l, 2003; Mansergh et al., 2004; Geatrell, 

2007a). Prior to this a number of Tumour Necrosis Factors (TNFs), which have many 

roles including inflammation, cell proliferation and apoptosis (MacEwan, 2002), were 

identified during chick lens development (Wride & Sanders, 1998). Since this time 

there has been no attempt to study the expression and function TNF-related signalling 

pathways during lens development in any species.

In this chapter the, structure and development of the lens will be described 

before background on our current understanding on TNF-related genes, and their 

protein products studied during this research, will be provided.



1.2 Aims of this PhD

In 1998 (Wride & Sanders) identified a number of TNFs expressed in the lens during 

development, which they had previously termed TNF-cross reactive proteins (Wride & 

Sanders, 1998). It was hypothesised that TNFs may have a number of roles in 

embryonic development, based on their known roles in inflammation and in the 

immune system, including apoptosis (Wride & Sanders, 1995). It was then proposed 

that differentiation of lens fibre cells was an attenuated form of apoptosis (Dahm,

1999). This hypothesis has been bom out by various studies, including research using 

microarrays investigating gene expression profiles in mouse lenses of various ages, 

which revealed that a number of TNFs and apoptosis-related genes such as 

Lymphotoxin B and Caspase6 were up-regulated during stages of development 

associated with lens fibre cell differentiation (Wride et al., 2003). Further research into 

the expression of TNFs and their related family members in lens development is 

required to determine their possible roles during lens development and the overall 

objective of this thesis is to provide new insights into the roles of these factors in chick 

embryo lens development (shown in figure 1.4). The overarching hypothesis and 

specific objectives are provided at the end of this chapter.

1.3 The use of model organisms

There are many species that are used in scientific research and selecting the organism 

to be used has to take into account many variables that affect the decision. Each 

investigator will have their preference dependant on factors such as their own 

experience, available knowledge of the species, the species used in previous related 

research, availability, financial and time constraints.

The source of tissue in this investigation was Gallus gallus, though there were 

many other options e.g. mouse, rat, bovine and zebrafish, each with benefits and 

disadvantages for use of that particular organism for research (Norton, 1999). As 

research continues the similarities and variations between organisms are becoming 

clearer. An example of this is a recent study that highlights similarities and differences 

between lens development in zebrafish and humans. Though there are likenesses,



zebrafish lenses have been found to develop in markedly different ways to mammalian 

and avian lenses; i.e. as the ingression of a single mass of tissue rather then the 

invagination of a section of ectoderm to form a lens vesicle (Dahm et al., 2007b).

Embryonic chicks were used here for their ease of purchase, quantity of tissue 

available, relatively low costs, production time and because the original paper 

identifying TNFs in the lens used the chicken (Wride & Sanders, 1998).

The Chicken can live for up to eleven years depending on breed and the 

incubation time for eggs is 21 days. The eggs will only begin to develop when 

incubated, allowing a large number of eggs to be collected and incubated at the same 

time. This means that a larger volume of the required tissue can be obtained in less 

time and with less expense, when compared to other model systems such as the mouse 

or rat. Increased tissue volume collection is also aided by the fact that the lens in 

Gallus gallus is relatively large, for example in comparison to the mouse. Though there 

are morphological differences between lenses in different species; e.g. umbilical 

sutures in avian lenses and the complex star architecture of adult primate sutures 

(Kuszak et al., 2006), the molecular pathways that are of interest in this thesis are 

thought to be similar between mammalian and avian species (Dahm et al., 2007a).

1.4 Ocular Structure

The eye is one of the key sensory organs of the body. Figure 1.1., shows the main 

structures of the eye. The eye receives images via refracted light. Light is refracted 

from the cornea and through the pupil opening to the lens which then focuses light onto 

the retina.

The light passes through the cornea, which is transparent and coated by a tear 

film, which keeps the cornea moist. The cornea and the sclera together form the outer 

surface of the eyeball. The sclera is where the extra-ocular muscles attach externally. 

The optic, sensory and motor nerves and blood vessels enter the eye through the sclera 

at the posterior of the eye (Batterbury & Bowling, 2001).

The sclera surrounds the choroid, a vascular layer, which in turn surrounds the 

retina. The retina is found on the interior of the eye wall and covers the posterior of the 

eye. The inner retina is clear, so the focused light can pass through to the
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photoreceptors, which convert the light into electrical signals that are passed on by 

axons to the optic nerve. The optic nerve then carries these signals to the visual 

processing centres in the brain (Batterbury & Bowling, 2001).
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Figure 1.1 Diagram showing the structure of the eye. Adapted from 
www.mydr.com.

At the anterior of the eye, behind the cornea, is the iris, which is a coloured 

diaphragm that expands and contracts as light intensities increase and decrease 

respectively. The pupil defines the area found in the centre of the iris and once light 

passes through the pupil it hits the lens, which changes shape so that the image 

projected onto the retina is in focus, this is known as accommodation (Beebe, 2003).

The anterior chamber, found between the cornea and the lens, is filled with a 

clear fluid called the aqueous humour which maintains the intraocular pressure of the 

eye; it also supplies the cornea and lens with nutrients, and removes waste, as both 

these structures are avascular (Ofri, 2002). The aqueous humour is produced by the 

ciliary body, which is found at the most anterior point of the retina and behind the iris.

The ciliary body also has fibres called zonules, which attach to the lens and 

anchor it in place. Furthermore, the zonules help alter the shape of the lens. When the 

ciliary muscles contract, the zonules relax allowing the lens to thicken, sharpening near 

focus. If focusing in the distance the ciliary muscles relax and the zonules contract
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exerting pressure that makes the lens flatten its shape to focus the light on the retina 

(Batterbury & Bowling, 2001).

1.5 Ocular Development

The structure of the eye is different in many organisms, such as between Drosophila, 

compound eyes made up of 700-800 ommatidia (Wawersik & Maas, 2000); Mus 

musculus, a pair of complex, camera type eyes and the Platyhelminthes (flatworm) 

with a pinhole eye design (Land, 2005).

Though there are many variations in structure, it is believed that embryonic 

ocular development has been evolutionarily conserved (Oliver & Gruss, 1997). It is 

astonishing how many of the regulatory proteins and their molecular signalling 

pathways are conserved between evolutionary branches (Treisman, 2004). There are 

several genes known to be regulators of the development of the eye (Oliver & Gruss, 

1997). These include a large group of transcription factors (e.g. Pax6) and growth and 

differentiation factors (e.g. transforming growth factors (TGFs) and Fibroblast Growth 

Factors (FGF)). These factors are found in various locations throughout the embryo 

and are not only involved in eye development (Sanders & Wride, 1997). Though there 

has been a steady increase in our knowledge, the regulatory pathways that induce 

ocular development still have yet to be fully understood.

The induction of the eye begins when the diencephalic vesicle (presumptive 

optic vesicle) extends from the diencephalic neural plate towards the surface ectoderm 

of the embryo; this region is termed the optic placode (Creuzet et al., 2005). As the 

optic vesicle nears the optic placode, the ectoderm thickens and the mesenchyme is 

displaced forming the lens placode, shown in figure 1.2, (Chow & Lang, 2001). The 

optic vesicle is important in the induction of the lens but other tissue interactions are 

also required as shown by numerous transplantation studies since the 1950’s 

(Reviewed in Fisher & Grainger, 2004). As the lens placode forms, crystallins begin to 

be expressed and the invagination of the lens placode into the lens vesicle coincides 

with the development of the optic vesicle into the optic cup, the inner layer developing 

into the neural retina, the outer layer of the cup will form the RPE (retinal pigment 

epithelium) (Chow & Lang, 2001). The lens is internalised at this stage (Shimada et
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al., 2003) and, as the lens continues to develop, it secretes factors that induce other 

ocular tissues to develop, such as the cornea (Coulombre & Coulombre, 1964). The 

cornea forms from development of the surface ectodermal, mesenchymal and neural 

crest cells (Graw, 2003). The cornea, like the lens, is clear, though the cornea is more a 

layer of sugars and proteins rather than the cellular tissue of which the lens is made 

(Dahm, 2004).

Figure 1.2 Basic stages of vertebrate eye development A: Diencephalon extends out 
towards the presumptive lens placode forming the optic vesicle. B: The lens placode 
invaginates forming the lens cup while the optic vesicle also invaginates to form the 
presumptive retina. C: the lens vesicle is internalised with the cornea forming from the 
surface epithelium and the retina becoming more specialized.

The lens is a unique tissue with all stages of development in evidence throughout the 

life of the lens. At the anterior of the lens is a single epithelial layer. As the epithelial 

cells reach the equatorial region of the lens, the epithelial cells begin to differentiate 

into fibre cells. The fibre cells, once fully differentiated, do not contain any nuclei or 

organelles, but are maintained throughout the life of the organism at the centre of the 

lens (Modak & Perdue, 1970). Surrounding the lens is a capsule; within this capsule 

the age of the cells increases the closer to the centre they get. For an 80 year old 

organism, the fibre cells at the centre of the lens will have been in situ since the lens 

initially developed some 80 years previously. The presence of cells from initial 

development to the newly proliferated cells makes the lens an excellent model system, 

at both a cellular and molecular level, for the study of development, ageing and 

differentiation (Bloemendal, 1977; Piatigorsky, 1981a; Wride, 1996).
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Figure 1.3 Diagrammatic view of the various regions found in the lens The fibre 
cells at the centre of the lens are the primary fibre cells. Surrounding these primary 
fibre cells are the secondary fibre cells which continue to differentiate from the 
epithelial cells as they pass the equatorial region in their migration towards the 
posterior of the lens (adapted from Bloemendal, 1977).

The function of the lens is the transmission of light, and protein products called 

crystallins are involved in lens cells’ differentiation towards transparency (Gilbert,

2000). The lens is supported by the zonules and when the zonules relax the lens alters 

its shape and becomes more spherical. As the zonules become tense the lens stretches. 

This change in shape is how the lens focuses at different distances and is called 

accommodation. Once initial development of the lens is completed, the cellular 

structure is similar to figure 1.3, above. The epithelial cells are found at the front of the 

lens and, as cells proliferate; epithelial cells are pushed around the periphery of the lens 

towards the equatorial region. In this region, the cells elongate and differentiate into 

the secondary fibre cells, while migrating towards the centre of the lens. Differentiated 

fibre cells have a cytoskeletal framework, but the organelles usually contained within 

cells, such as mitochondria and nuclei, are degraded (Menko et al., 1984). This is 

thought to resemble a type of programmed cell death or apoptosis (Wride & Sanders, 

1998; Wride, 2000) and also involves activation of proteolytic pathways (Wride et al.,

2006). As the secondary fibre cells move into the centre of the lens, they spread over 

the primary fibre cells; this overlapping means that the lens is constantly growing and 

becoming more condensed throughout the life of the organism.



1.6.1 Lens Development

In 1901, Spemann carried out experiments on eye development on the frog Rana 

temporaria and was one of the first to identify the inductive effect in embryonic 

development. Spemann believed that the lens would not develop if the optic vesicle 

was destroyed. This experiment, amongst others, suggested that the optic vesicle sent 

signals that induced ectodermal competence to form the lens and that the signals could 

travel the distance between the optic vesicle and ectoderm (Oliver & Gruss, 1997). In 

this case, Spemann was not wholly correct. Though the optic vesicle is important in the 

development of the lens, there are other key interactions from other tissues that will 

allow lens or lens-like structures to form. The experiments carried out at the start of the 

20th century gave rise to more and more in depth studies which have led us to a fairly 

detailed knowledge of the tissue interactions involved in lens development (Ogino & 

Yasuda, 2000). We are now on our way to identifying the regulatory factors that have a 

role in lens development and as with all questions have now led us to begin to examine 

how these factors are themselves induced and controlled (Lovicu & McAvoy, 2005).
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Figure 1.4 A diagram of lens development, adapted from (Graw, 2003).

In a review on the structural analysis of chick development, which was first

printed in 1951 (Hamburger & Hamilton, 1992), it is stated that invagination of the

optic vesicle occurs at roughly between 50-55 hours (Hamburger & Hamilton, 1992).

In comparison, lens induction in the mouse has been stated to begin as early as 35

hours (Wride, 1996) with human lens development occurring at about the fourth week

of gestation (Francis et al., 1999). The gestation periods between species can be very

different, but the stages in which the vertebrate lens develops are surprisingly similar

and are described in the following sections.
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1.6.2 Induction of the lens

In early chick development, Wnt (described in 1.7.6) signals in the neural border are 

known to influence Bone Morphogenetic Protein (BMP) activity in the ectoderm to 

signal either olfactory or lens placode character cells during development of the 

embryo ectoderm. The length of the period of BMP (described in 1.7.3) exposure is 

thought to influence which character is undertaken (Sjodal et al., 2007; Patthey et al., 

2008). FGF (described in 1.7.5) is also thought to be required in placode development 

possibly in a proliferation or maintenance role (Litsiou et al., 2005; Bailey et al.,

2006). Around this stage, Pax6 (described in 1.7.2) is expressed in the head ectoderm 

(prior to diencephalon protrusion), which indicates that the area is competent for lens 

induction.

The frontal neural plate (diencephalon) protrudes and elongates towards the 

developing PLE (presumptive lens ectoderm) forming the optic vesicle (Kondoh, 1999; 

Ogino & Yasuda, 2000). Once the optic vesicle nears the PLE, the mesodermal layer is 

excluded allowing an extracellular matrix to form between the optic vesicle and the 

PLE (Wakely, 1977). The signalling proteins produced during lens development can 

diffuse between tissues; it is known that the optic vesicle and the ectoderm do not have 

to come into direct contact for lens induction to occur, though it has been known to 

happen (Bhat, 2001).

As the lens placode develops, the Rx homeobox gene is activated. Rx knockout 

mice do not produce an optic vesicle and the eyes do not develop (Mathers et al., 

1997). Homologous chick rax/rx genes are also expressed at corresponding timepoints 

and regions indicating a similarily key function in the chick (Ohuchi et al., 1999). 

Downstream of Rx, Pax6 is also found in the optic vesicle as it develops, but 

knockdown studies reveal that Pax6 is not necessary for development of the optic 

vesicle. Otx2 and Six3 have been identified to have a role during the evagination of the 

optic vesicle (Zhang et al., 2000).

The evagination of the optic vesicle towards the surface tissue and expression 

of its molecular signals, such as BMP4 and downstream signals such as Sox2 (Furuta 

& Hogan, 1998), leads to ectodermal thickening of the PLE, through cellular 

elongation to form the lens placode (Ogino & Yasuda, 2000). Crystallins (described in 

1.7.1) begin to be expressed during placode formation and are induced by the mutual
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expression of Sox2 and L-Maf transcription factors; downstream of Pax6, they are both 

essential for lens placode formation and 5-crystallin induction (Kamachi et al., 1998; 

Ogino & Yasuda, 1998; Reza et al., 2002).

1.6.3 The Lens Vesicle

After the lens placode has fully thickened, the optic vesicle invaginates around the 

same time as the lens placode to form the optic cup and lens pit respectively, as shown 

in figure 1.2 (b). It has been demonstrated that the extracellular matrix formed between 

the two tissues during lens induction is likely to have a strong role in the synchronised 

invagination, but the molecular/ biochemical signals have not been fully characterised. 

It is known that retinoic acid signalling, important in forebrain and retina development 

and also known to be able to activate crystallin expression (Patek & Clayton, 1990; 

Tini et al., 1993) is involved. There are retinoic acid receptors in the early PLE and 

experiments have shown that inhibition of these signals prevents or disrupts the lens 

placode invagination (Kastner et al., 1995; Bavik et al., 1996; Mic et al., 2004). The 

activity of the receptors is believed to be regulated by Pax6 and downstream signals 

(Enwright & Grainger, 2000).

The formation of the lens pit is thought to be affected by cell proliferation, 

rearrangement of the cytoskeleton, contributed to by actin, and finally by the 

movement of adhesion molecules (Piatigorsky, 1981a).

As the lens placode sinks, forming the lens pit, the upper-most points of the 

lens pit come together and fuse forming the lens vesicle, which is separated and 

internalised from the surface ectoderm. The lens vesicle is held within the ‘cup’ that 

the optic vesicle forms (Bhat, 2001). The molecular pathways involved in the 

formation of the lens vesicle are not well understood, but some of the genes involved 

in the development in the lens placode, e.g. Pax6, also have roles here, such as in 

modulating the expression of cell adhesion molecules, such as integrin, Ndst, N- 

Cadherin and P-catenin, which are known to be involved in the formation of the mouse 

lens vesicle (reviewed in Cvekl & Duncan, 2007).

The lens capsule is produced when the lens vesicle invaginates, effectively

turning the ectodermal cells upside down causing the basement membrane to be on the

outside of the lens vesicle, therefore forming the lens capsule. The lens capsule is
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primarily made of collagen that is strong and flexible allowing the accommodation of 

the lens via the zonules to which the capsule is attached (Krag & Andreassen, 2003).

1.6.4 Lens Fibre Cell Differentiation

The lens vesicle is made up of a single layer of epithelial cells and lens differentiation 

begins as soon as the vesicle is separated from the surface ectoderm. The anterior cells 

remain epithelial in nature, but the posterior cells exit the cell cycle and begin to 

differentiate, which is characterised by the cells elongating, accumulating crystallins 

and ultimately the degradation of subcellular organelles. The elongating posterior cells 

move into the lumen of the lens vesicle eventually filling up the whole space within the 

lens (figure 1.4).

In the 1960s Coulombre and Coulombre carried out a number of experiments 

that demonstrated that the surrounding tissues maintained the polarity of the lens and 

also showed that the surrounding tissues could influence the development of a new 

whole lens from the lens epithelium (Coulombre & Coulombre, 1969, 1971). The 

polarization of the lens means that the anterior cells remain as epithelial cells and the 

posterior cells are signalled to differentiate into lens fibre cells. It also means that once 

the posterior cells have produced the “primary” fibre cells, the continued polarity from 

the surrounding tissue signals the epithelial cells at the equator of the lens to 

differentiate into “secondary” fibre cells.

Since the 1960s the molecular signals to maintain the lens’ polarity, provided 

by the surrounding tissue, and from within the lens, have begun to be elucidated. Pax6 

expression is important in the anterior lens epithelial cells as it may have a role in 

maintaining epithelial polarity, it also has other roles in the activation of some of the 

crystallin genes (Francis et al., 1999). The expression of crystallins is also influenced 

by fibroblast growth factors (FGFs) which are known to have a role in adjusting the 

regulation of homeobox genes as well as Pax6 (Plaza et al., 1993). As Pax6 becomes 

down regulated in the ageing anterior epithelial cells, the cells move towards the back 

of the lens vesicle and differentiation into lens fibre cells occurs (Duncan et al., 2004).

It is thought that Proxl is important in the differentiation of the posterior cells

in the lens vesicle as studies using the Proxl knockout mouse show the posterior cells

do not elongate and the lens of the lumen remains unfilled (Wigle et al., 1999). It is
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thought that expression and function of Proxl in lens development is conserved 

between organisms namely mouse, rat, human and chicken (Duncan et al., 2002). 

Though the molecular pathway is not fully understood, its expression is known to 

increase at the equatorial region where differentiation occurs (Tomarev et al., 1996) 

and is thought to be involved as a transcriptional activator of P-crystallins as mentioned 

in 1.7.1 (Chen et al., 2008a).

Notch signalling (described further in 1.7.4) has recently been suggested to be 

involved in mediating the differentiation of fibre cells. A larger than normal number of 

epithelial cells at the anterior segment of the lens vesicle will begin to differentiate in 

the absence of Notch signalling and this premature differentiation results in the 

development of a smaller than normal lens due to the reduction in the number of future 

epithelial cells available to undergo proliferation and eventually differentiate (Jia et al.,

2007).

Wnt signalling, described in greater detail in 1.7.6, is known to be 

transcriptionally activated through (3-catenin and has an active role in the maintenance 

of the lens epithelium in an undifferentiated state and early differentiation into fibre 

cells (Stump et al., 2003; Cain et al., 2008). It has also recently been identified that 

interaction of Wnt signalling with frizzled receptors is important in cytoskeletal 

remodelling of the differentiating fibre cells (Chen et al., 2004, 2006; Chen et al., 

2008b). Studies using the chick throughout the embryonic development of the lens 

have identified 11 Wnt proteins expressed in the anterior eye; with 2 expressed in the 

lens epithelium and 4 were specifically identified in the differentiating fibre cells. 

Staining was found throughout the epithelium and differentiating primary fibre cells 

which was then later restricted to the epithelium and transition zone where secondary 

fibre cell differentiation is initiated (Ang et al., 2004; Fokina & Frolova, 2006).

1.6.5 Secondary Fibre Cell Differentiation

After the primary fibre cells have filled the lumen in the lens vesicle, the lens continues

to grow via proliferation of germinal cells which are part of the epithelial layer at the

lens anterior. As the epithelial cells divide they move around the periphery of the lens,

towards the posterior, until they reach the equatorial region where the cells then begin

to differentiate (Gilbert, 2000). The expression of numerous genes is involved in
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secondary fibre cell differentiation, though there are also genes that are required to be 

inactivated for differentiation to occur normally. FoxE3 is expressed from the 

development of the lens placode and remains expressed in epithelial cells throughout 

the life of the lens. It is essential for both survival and proliferation in epithelial cells 

and also for the normal development of the lens vesicle (Blixt et al., 2000). FoxE3 

expression disappears when the epithelial cells reach the lens equator and normal 

differentiation occurs. If FoxE3 expression continues in the fibre cells, remodelling of 

the cytoskeleton and organelle degradation is impaired (Landgren et al., 2008).

The differentiating secondary fibre cell undergoes similar stages as the primary 

fibre cells (i.e. exit from the cell cycle, cell elongation and crystallin, gap junction 

proteins and intermediate filament production). As these cells elongate, they migrate 

away from the equatorial region towards the centre of the lens. The tips of the fibre 

cells move along the epithelium at the anterior and the lens capsule at the posterior of 

the lens. As the tips of the cells reach their counterparts from the opposite equator, they 

no longer touch the epithelium or the capsule, but touch each other at the sutures and 

the cells gradually move into the lens nucleus as newer fibre cells overlap them 

(Bassnett et al., 1999).

1.6.6 Lens Organelle degradation

As fibre cells enter the nucleus (centre) of the lens, differentiation concludes via 

degradation of the organelles and denucleation. In primary fibre cells, the nucleoplasm 

condenses and dense bodies form in both the nuclei and the cytoplasm. The bodies are 

then invaded by vesicles and lysosomal elements as they move towards the fibre 

membrane, which suggests that membrane-related proteases, such as calpains help to 

degrade the proteins within the bodies. The waste products are thought to be extruded 

to the extracellular space and the presence of these waste products at the posterior and 

anterior poles suggests that they are transported here though what occurs after this is 

unknown (Vrensen et al., 1991). This may be similar to the process that occurs during 

development of erythrocytes, which also lose their nuclei during their development 

(Lockshin & Zakeri, 2004).

Secondary fibre cells undergo terminal differentiation through a different

process. The mechanism that carries out this differentiation has been proposed to
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utilise the apoptosis pathway. Some differences are that apoptosis in normal cells 

occurs in hours, whereas the breakdown in nuclei during terminal differentiation takes 

days (Bassnett & Mataic, 1997). Lens cells also have an undetermined signal that halts 

cell degeneration before the framework of the cell is also destroyed. A proposed gene 

that may be involved in this stage is Galectin-3, which, when it is down regulated, 

suggests some role in slowing degeneration (Dahm et al., 2003).

In support of the apoptotic-like degradation hypothesis is the identification of a 

number of signalling and downstream cascade molecules identified in the lens. For 

example, it is believed that factors that have similarities to, and including, Tumour 

Necrosis Factor a (TNFa) help to signal the degeneration of DNA within the nucleus 

of lens fibre cells during initial developmental stages and differentiation (Wride & 

Sanders, 1998). It is also thought that caspases, such as caspase-1 through to caspase-4, 

and Bcl-2 family members, like Bax and Bad, are involved in the breakdown of 

organelles required for complete fibre cell differentiation (Wride et al., 1999). Further 

research over-expressing bcl-2 in the embryonic chick lens resulted in reduced 

activation of caspase-9 and the lack of chromatin condensation, which also suggests 

that apoptotic nuclear degradation and denucleation of fibre cells appear to use similar 

molecular pathways (Sanders & Parker, 2003). Downstream of the caspases, a number 

of substrates have been identified and are known to be cleaved in the region of 

organelle degradation. These substrates include laminB and poly (ADP-ribose) 

polymerase (PARP), both known to be cleaved by caspase-3 (Ishizaki et al., 1998; Slee 

et al., 2001). Recent research has challenged the proposal of involvement of an 

apoptosis-like pathway in lens fibre cell denucleation, through studies involving 

knockout mice for the executioner caspases -3, -6 and -7. The single caspase knockout 

mice had a relatively normal phenotype with organelle degradation indistinguishable 

from wild-type mice controls. A further experiment using caspase-3 and caspase-6 

double knockouts, to test whether functional redundancy was involved, showed that 

even without both caspase-3 and -6, organelle degradation was relatively normal. 

These results indicate that the executioner caspases are not vital in organelle 

degradation (Zandy et al., 2005).

Nuclei in lens fibre cells are lost via a series of steps including the clumping of 

chromatin, which is then cleaved into sections through activity similar to that of DNase 

I, which has been identified in bovine lens fibres (De Maria & Arruti, 2004). This is

~  15 ~



then followed by the use of kinases, where phosphatidylinositol 3-kinase (PI3K) has a 

role in actin cytoskeleton reorganisation in the early stages of differentiation, which is 

sufficient to induce differentiation, while later on PI3K inactivates glycogen synthase 

kinase-3 (GSK3) signalling which protects against apoptosis (Weber & Menko, 2006).

The lysosomal nuclease DNase II-like acid DNase (DLAD) has also been 

identified in the lens and deficiency in it resulted in partial nuclei persisting in the 

normal OFZ (Nishimoto et al., 2003). The recognition of expression of DLAD and 

other lysosomal enzymes/ nucleases involved in nuclear degradation in the lens fibres 

has increased the uncertainty about the involvement of apoptosis-like pathways during 

terminal fibre differentiation (Counis et a l, 1998; Zandy et al., 2005; Nakahara et al.,

2007).

15-Lipoxygenase (15-LOX) expression has also been identified in the lens and 

is restricted to the region where organelle degradation occurs (van Leyen, 1998). 15- 

LOX had previously been identified in the precursors to erythrocytes immediately prior 

to organelle degradation, which was shown to allow the access of proteases to 

organelles and release of organelle proteins by permeabilising the membranes of 

organelles, while leaving the plasma membrane intact. Further studies identified that 

15-LOX formed pores in membranes of organelles, which allowed further degradation 

via cytosolic proteases, perhaps such as those involved in the ubiquitin/ proteasome 

pathway (Grullich et al., 2001).

The Ubiquitin-proteasome pathway (UPP) has been suggested as an alternative 

to the apoptosis-like pathway proposed above and its interaction with 15-LOX 

increases the validity of this suggestion. The UPP is a key proteolytic pathway found in 

the cytosol. First, poly-ubiquitinated conjugates are formed via the ligation of ubiquitin 

to the substrate protein, the marked protein is then degraded by the 26S proteasome 

(Hershko et al., 2000). The UPP is required in many processes from transcription and 

cell cycle regulation to immune responses and DNA repair. The UPP was first 

identified in the lens, in epithelial cells (Jahngen et al., 1986) and later studies showed 

that as fibre cell differentiation began there is an increase in ubiquitin conjugation 

(Shang et al., 1999). In a following study, rat epithelial cell explants were used to carry 

out bFGF-induced proliferation and differentiation. The expression levels for a number 

of substrates and enzymes were monitored during proliferation and differentiation and 

a number of the components of the UPP were differentially regulating during both
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processes (Guo et al., 2004). Localisation studies of the UPP components have shown 

that they leave the cytoplasm as differentiation occurs and staining becomes specific to 

the fibre cell nuclei (Girao et al., 2005). The most recent study again using rat 

epithelial cell explants, carried out bFGF-induced proliferation and differentiation with 

the use of a proteasome-specific inhibitor. The addition of the inhibitor delayed both 

proliferation and differentiation and cells exhibited both molecular and morphological 

changes, supporting the hypothesis that proteasome activity has a key role in lens 

development (Guo et al., 2006).

The fibre cells, which no longer contain organelles, are not thought of as dead, 

though they cannot repair themselves like normal cells. These fibre cells are found in 

the OFZ and receive only nutrients for “survival” via passive diffusion from the 

surrounding cells. In the chick, the OFZ begins to form around embryonic day 12 

(Modak & Perdue, 1970) and by hatching the OFZ is as large as the pupil opening 

therefore insuring light is not disrupted by organelles (Bassnett, 1992).

The border of the OFZ is where denucleation and degradation of organelles 

occurs (Bassnett & Beebe, 1992; Bassnett, 1995). It has been determined that DNA 

degradation occurs after the degradation of the mitochondria, ER and breakdown of the 

nuclear membrane (Bassnett & Mataic, 1997). The Golgi apparatus has been shown to 

be the first of the organelles to fragment and is only present at the earliest stages of 

lens differentiation (Bassnett, 1995). The last stage in organelle degradation occurs 

when fibre cell nuclei first change shape, followed by chromatin collapse, the nuclear 

envelope loses integrity and then finally the DNA fragments (Bassnett & Mataic,

1997). Physiologically, the stages in denucleation are similar to those undertaken in 

apoptosis. Mitochondrial molecules are known to be released during organelle 

degradation, which may be related to the effect of 15-LOX on its membrane 

(Vijayvergiya et al., 2004).

1.7 Molecular signals in lens development

The maturation of the eye is strictly ordered during development via molecular signals. 

Mutations in the genes involved can cause numerous different disorders (Graw & 

Loster, 2003), some of which have or will be mentioned. There are many signals from
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within the lens that help to maintain a functional lens but there have been a number of 

experiments that have clearly shown that there are key signals from the surrounding 

tissues. Examples of this include the Coulombre and Coulombre experiments in the 

1960s briefly described above in section 1.6.4. Some of the key molecules that 

influence development and maintain the order of the lens are described below.

1.7.1 Crystallins

Crystallins are soluble proteins made up of broad “classes” segregated by their 

physical properties and immuno-chemical properties, a-crystallins are members of the 

small heat shock protein (HSP) family and are molecular chaperones important in the 

maintenance of cytoskeletal integrity and also have a role in the prevention of 

apoptosis (Andley et al., 1998; Xi et al., 2003). A lack of aA-crystallins has been 

shown, in knockout mice models, to be involved in early onset cataract and an increase 

in epithelial cell death (Xi et al., 2003), while aB-crystallins in a knockout mouse 

model showed epithelial cell hyper-proliferation (Andley et al., 2001). Double 

knockout mice of both aA and aB- crystallin produced the disintegration of fibre cells 

after organelle degradation (Boyle et al., 2003). Further research on these double 

knockouts suggested that the a-crystallins were involved with the suppression of 

caspase activity, which in the normal lens would retain cytoskeletal integrity after 

apoptosis-like degradation of the intracellular organelles (Morozov & Wawrousek, 

2005).

(3-crystallins are the last crystallins to be expressed and found in the 

differentiated fibre cells. Pax6 represses its activity while L-Maf, c-Maf, MafB and 

Proxl are thought to have a role in p-crystallin regulation (Duncan et al., 1998; Cui et 

al., 2004).

5-crystallin is a key crystallin in the avian lens and is not found in mammalian 

lenses. These crystallins are early markers of lens differentiation and are the first 

crystallins to be expressed, during the formation of the lens placode, in the chick 

(Piatigorsky, 1981b). Pax6 and Sox2 form a complex that activates transcription of 81- 

crystallin (Kamachi et al., 2001).

It has also been shown that L-Maf, a m af gene family member, is required in

regulating the expression of crystallins in the mouse, though no homologus proteins
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have as yet been identified in humans (Reza & Yasuda, 2004). It is thought that L-Maf, 

along with Pax6 and Sox2, have important roles in the regulation of transcription, 

though the complex interaction of these proteins needs further study (Muta et al., 2002; 

Reza et al., 2002; Shimada et al., 2003).

Crystallins have evolved through divergence from ancestral proteins of an 

alternate functional role and gene duplication. Beta and gamma crystallins are thought 

to “be related to a bacterial spore coat calcium binding protein” (Wistow & 

Piatigorsky, 1988). The rest have evolved from regular cellular enzymes and some still 

have enzyme activity. Crystallins, the major lens fibre structural proteins, comprise 

-90% of the water soluble proteins in the lens. Their high concentration, along with 

metabolic enzymes, gives the lens transparency and refractive properties by a 

concentration gradient of crystallins through the layers of fibre cells (Cvekl & 

Piatigorsky, 1996).

1.7.2 Pax6

Pax6 is a gene encoding a key transcription factor in the ectoderm during lens 

development and as the lens develops it becomes segregated to the lens epithelium 

where it continues expression even after development has been completed. Upstream 

signals in the ectoderm had not been identified in 1993 though Pax6 autoregulation had 

been identified; it is now known that BMP and FGF have a role in Pax6 regulation 

(Plaza et al., 1993). Pax6 gene expression becomes restricted to the presumptive lens 

placode where Sox, Pitx3, Eyal and Otx genes are also expressed. Studies in murine 

lenses have identified that up to 500 genes may be expressed downstream of Pax6 

(Chauhan et al., 2002a; Chauhan et a l, 2002b; Chauhan et al., 2002c) Mutations in 

Pax6 can result in aniridia (human), small eye (mouse) and eyeless {Drosophila) 

phenotypes (Gehring, 1996). Sox3 ectopic expression produced ectopic lens in medaka 

(Koster et al., 2000). Mice with the phenotype aphakia (a deletion in Pitx3) and 

Drosophila with the deletion of Eyal (the eyes absent gene) have both been identified 

to have homologues in humans. The mutations of these genes have been identified in 

congenital cataract and anterior segment anomalies. These last two genes, though 

expressed during lens induction, are thought to have an important role later on in lens 

development (Semina et al., 1997; Azuma et al., 2000; Semina et al., 2000).
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1.7.3 Bone morphogenetic protein (BMP)

Both BMP4 and BMP7 are known to be required in normal mouse lens placode 

formation. BMP7 is thought to have a role in maintaining the expression of Pax6 as 

without this signal Pax6 expression is lost in the lens placode area and lens induction 

ceases to occur (Wawersik et al., 2000). BMP4 is believed to be necessary later on in 

placode formation as mutants still express Pax6 but the lens placode does not form 

(Furuta & Hogan, 1998). The BMPs have similar signalling cascades and in the chick 

it is thought that BMP4 and BMP7 signal different morphological processes to those 

found in the mouse; eg BMP4 is known to be the key BMP in lens placode 

development, while BMP7 is only found in the optic vesicle at the presumptive 

pigment epithelium during development (Trousse et al., 2001). The receptors of BMPs 

seem to be similar between organisms, suggesting that downstream signalling remains 

the same (Dewulf et al., 1995; Dudley & Robertson, 1997).

Once the chick lens vesicle forms, studies on BMPs and Pax6 confirm that 

many signals from a number of tissues are required for normal lens placode formation 

with interaction between each other being essential (Cvekl & Duncan, 2007). Later in 

development, BMPs have recently also been shown to have a role in the differentiation 

of fibre cells and blocking BMP signals delays the elongation of differentiating fibre 

cells and an increase in the normally very limited cell death in epithelial cells was 

identified (Belecky-Adams et al., 2002).

1.7.4 Notch Signalling

Notch signalling, mentioned in 1.6.4 and involved in primary fibre cell differentiation, 

is also believed to be involved in secondary fibre differentiation. Research has 

suggested that Notch signalling maintains epithelial cells and, when the signal gradient 

decreases; the epithelial cells can undergo differentiation. Supporting this theory is the 

expression of Jagl by differentiating fibre cells. Jagl initiates feedback signals to 

nearby epithelial cells to activate Notch receptors, which helps maintain the epithelial 

cells from differentiation. Only when Notch signalling is suppressed or the 

differentiation signal is stronger will the next epithelial cells in the equatorial region 

begin to differentiate (Jia et al., 2007).
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1.7,5 Fibroblast Growth Factors (FGF)

FGFs are also strong candidates for the uncharacterised signals that induce epithelial 

cells to differentiate into fibre cells. The signal is thought to be emitted from the retina 

and produces a gradient from the posterior to the anterior, possibly determining the 

boundary of the epithelial cells (Lovicu & McAvoy, 2005). This was proposed when it 

was discovered that lens epithelial cells were induced to proliferate when low doses of 

FGF was present, but at high doses these cells began to differentiate (McAvoy & 

Chamberlain, 1989). It is also known that extracellular regulated kinase 1/2 (ERK1/2) 

(explained in 1.12.0.2) is required downstream of FGF to induce proliferation or 

differentiation. Though the morphological changes of differentiation are stopped when 

ERK signalling is blocked, the molecular mechanisms, such as p-crystallin production, 

are not inhibited. This suggests that multiple signalling pathways are involved in the 

normal maturation of the lens (Lovicu & McAvoy, 2001). As well as FGF’s role in 

fibre differentiation it is also known that FGF8 has a role in the expression of L-Maf, a 

widely known lens induction marker (described in 1.7.2) in Gallus gallus (Vogel- 

Hopker et al., 2000).

FGFs used to be thought of as key in signalling fibre cell differentiation for 

many years, but more recently it has been suggested that FGF works together with 

BMPs (described in 1.7.3) and Wnt signalling (described in 1.7.6, below) in the 

regulation of differentiation (Fokina & Frolova, 2006).

1.7.6 Wnt signals

As mentioned in 1.6.2 Wnt signals are involved in the earliest specification of the lens 

placode (Litsiou et al., 2005), and their interaction with BMPs and FGFs are key in this 

role. A number of Wnts have been identified in the chick developing lens and two of 

those, Wnt5b and Wnt7b, are expressed in the lens epithelium just before elongation of 

the differentiating fibre cells. In addition to a role in primary fibre cell differentiation, 

Wnt5b is downregulated in the cortical fibre cells then becomes more highly expressed 

in the cortical fibres suggesting a role in the formation of the syncytium, a network of 

cell-cell interactions described in 1.8 (Shestopalov & Bassnett, 2000, 2002, 2003). 

Wnt7a is expressed later in development at the region of differentiation for the
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secondary fibre cells. Wnt2 and Wnt2b have been suggested to have a role in the 

proliferation of epithelial cells; Wnt5a is involved in a different (non-canonical) 

pathway to the other Wnt’s and is expressed in the equatorial region. It is suggested 

that it may have a role in epithelial cells’ exit from the cell cycle and the start of 

differentiation of the secondary fibre cells (Fokina & Frolova, 2006).

1.7.7 Caspases

Caspases are apoptosis-associated molecules known to be involved in lens 

development, though their roles are still being elucidated; it has been shown that lens 

epithelial cells that undertake apoptosis also express caspase-3 (Ishizaki et al., 1998; 

Yao et al., 2003). Caspases are effector proteases that act in a cascade where the 

initiator caspases cleave the effector caspases found downstream in molecular 

pathways (Thomberry, 1997). The key executioner/ effector caspases then cleave a 

number of structural and regulatory proteins; for example, caspase-3, degrades death 

substrates, which then leads to DNA-fragmentation.

Research involving knockout mice of caspase-3, -6 and -7 found that both 

caspase-6 and -7 lenses exhibited normal morphology, while caspase-3 knockout mice 

had polar cataracts in about 75% of cases, only a few weeks after birth. The 

executioner caspases are not thought to be involved in organelle degradation but may 

have a role in lens transparency suggested by the development of cataract in caspase-3 

knockouts (Zandy et al., 2005).

From the above research, an interaction has been proposed between aA- 

crystallin and caspase-3 and -6. Further research discovered that aA- and aB-cystallin 

double knockout mice experienced fibre cell disintegration resulting from increased 

DEVDase and VEIDase activity which are indicative of caspase3 and-6 activity 

respectively. From these findings it is thought that aA-crystallin suppresses caspase 

activity, which in turn maintains the integrity of the terminally differentiated fibre cells 

(Morozov & Wawrousek, 2006).

Though knockout studies are still being carried out, it is known that it will be 

difficult to characterise the precise roles of the caspase family members, due to their 

close relationship, which results in a functional redundancy between members. This
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means that the loss of one or even a number of caspases may have little effect on the 

end result (Zandy et al., 2005).

1.7.8 Connexins

There are two connexin subunits that have been identified in the formation of 

intercellular channels called gap junctions in the lens fibres. These gap junctions 

transport water, ions and metabolites in the lens. Alpha3, otherwise known as 

connexin46 or Gja3, is vital for transparency of the lens (Gong et al., 1997). Alpha8, 

known as connexin50 or Gja8, is important for both transparency and growth of the 

lens and can also be found in low concentrations in the lens epithelium (White et al., 

1998). The gap junctions formed from various subunits are thought to modulate 

different roles in either primary or secondary fibre cell differentiation as described in 

Xia et al (2006b). The research showed that alterations to which subunits are used, or 

alterations to the subunits themselves, resulted in various cataracts confirming that 

connexins and gap junctions are necessary for lens formation and transparency (Xia et 

al., 2006a; Gong et al., 2007)

1.8 Cvtoskeleton remodelling during differentiation

Since early studies in the late 1970’s, it has been confirmed that the lens is a living 

organ despite the initial failure of electrophysical studies to distinguish individual cells 

within the lens due to the low electrical resistance between cells (Benedetti et al., 

1976; Nonaka et al., 1976). The circulating current, which transports the metabolites, 

ions and water throughout this avascular system, is of a uniform current throughout the 

lens and is the reason that distinct cells could not be identified within the lens nucleus 

during early studies (Mathias et al., 1997). Along with the circulating current, the lens 

contains a huge number of gap junctions made up of connexins (described in 1.7.8) 

which are key in cell-cell communications.

It is now also suggested that there is a syncytium within the lens core that 

allows large molecules to diffuse around the lens nucleus (Shestopalov & Bassnett, 

2003). Both the gap junctions and the permeable membrane, which forms the
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syncytium, are formed during the remodelling of the cytoskeleton during 

differentiation.

Actin, a major cytoskeleton protein, has been well characterised in the lens and 

actin filament assembly and integrity is known to be important in fibre differentiation 

(Weber, 2004). Actin binds to myosin forming assemblies that have a role in the 

formation and stability of junctions and adhesions; mutation in myosinllA (important 

in cell adhesion) is thought to be involved in the development of cataract (Rao & 

Maddala, 2006). Changes in the organisation of the actin cytoskeleton are associated 

with the differentiation of epithelial cells, which elongate as they migrate as described 

in section 1.6.4. As the differentiating fibre cells lose contact with the epithelium and 

the capsule, when they reach the suture, there is an increase in plasma membrane 

folding and interdigitations (Bassnett, 1995), the membranes then fuse prior to 

organelle degradation (Shestopalov & Bassnett, 2000), pores are present between 

adjacent cells and expression of a number of proteins increases. There are a number of 

proteins that have been identified in the fibre cells that act as cell-cell adhesion 

molecules: N-cadherin (a transmembrane protein that links and stabilises contact 

between neighbouring cells), vinculin (a regulator of cell-cell interactions, such as the 

complexes containing N-cadherin, with the actin cytoskeleton) and paxillin (expression 

has been identified around the time of fusing between cells and prior to organelle 

degradation) (Beebe et al., 2001).

Microtubules have been identified along the long axis of the differentiating 

fibre cells, though their role has not been clarified. The presence of multiple motors 

e.g. kinesin and dynein suggests a role in transporting organelles and membrane 

proteins, such as aquaporin during elongation and differentiation (Lo et al., 2003).

Two intermediate filaments have been identified (filensin and CP49), thought to be 

exclusively expressed in the lens fibre cells, and which make up the beaded filament. 

Mutations in both of these proteins have been linked with cataract and myopia 

respectively. Mouse knockout models for these proteins have shown that although the 

morphology of the lens remains normal there is increased light scatter with age and 

abnormalities in the fibre membrane architecture suggesting a role in the maintenance 

of the differentiated fibre cells (Alizadeh et al., 2003; Sandilands et al., 2003; Alizadeh 

et al., 2004; Pemg et al., 2007).
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Cell shape, integrity and polarisation are some of the cellular processes 

dependant on the cytoskeleton. The lens is a finely balanced system, which with only 

one protein mutation, as shown above, can cause cataract or myopia. Some of the 

possible types of cataract are described below.

1.9 Cataract

There has been a great deal of research into cataract formation with numerous studies 

focusing on the molecular networks that contribute to cataract. Recent work has shown 

that connexins, crystallins and other proteins are very important in lens development. 

The key to understanding the formation of cataract may be found in identifying the 

signalling pathways undertaken by these and other proteins. The leading reason for 

blindness throughout the world is cataract, which is the opacification of the lens 

(Vijaya et al., 1997). Cataract can be cortical, nuclear, posterior, sub capsular or found 

throughout the lens as a combination of the stated types (Asbell et al., 2005). Barring 

cataract formed by mechanical or chemical insult, cataract can be congenital or age- 

related (Reddy et al., 2004). Other defects that can occur in the lens includes 

abnormalities in shape, size, position and complete absence of the lens (Graw, 1999). 

Changes in the structure of lens cells, or the aggregation of soluble proteins (e.g. 

crystallins), scatters the light that would normally be transmitted through the lens. 

Blockage of the transmission of the light is commonly known as cataract.

1.9.1 Congenital Cataract

Congenital cataract occurs less frequently than its age-related counterpart and though 

some of the causes of congenital cataract are intrauterine infection, trauma, ocular 

inflammatory disease or metabolic disorders, around half of these cataracts are 

attributed to genetic factors (Francis & Moore, 2004; Krishnamurthy & Vanderveen, 

2008). There have been a number of mouse models of cataract that have helped to 

identify genetic mutations that relate to human congenital cataract. While many mutant 

models do not have a human homologue there a number of models which do. 

Examples of some of the known mutations that can cause cataract during each of the
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stages of lens development in both humans and animal models are shown in the table 

below.

Table 1.1 A selection of genes from various stages of development whose 
mutations that can cause cataract

Stage of lens development Gene/ Mutation Reference

Lens Induction Pax6 (Grindley et al., 1995)

Lens Vesicle Pitx3 (Semina et al., 2000)

Primary fibre elongation c-Maf (Ring et al., 2000)

Membrane stability Gja3 (Jiang et al., 2003; Gong et a l, 2007)

Fibre cell differentiation CRYG (Smith et al., 2000; Graw et al., 2002)

Gap junctions Connexion, Cx50 (Shiels et al., 1998; White et al., 

1998)

1.9.2 Age-Related Cataract

Without taking into account any other factors that cause cataract, genetic 

predisposition can count for over 50% of cortical cataract alone (Heiba et a l, 1995). 

Other studies on the different types of cataract have also found a statistically 

significant heritability (The Italian-American Cataract Study Group 1991). A genetic 

predisposition can result in age related cataract when taking into consideration other 

factors that can contribute to the development of cataract. Some of the major 

contributors to age-related cataract include excessive sunlight /UVB radiation 

(McCarty & Taylor, 1996), smoking (Flaye et al., 1989), diet e.g. alcohol (Munoz et 

al., 1993) and disease related cataract such as sugar cataract from diabetes (West & 

Valmadrid, 1995) and from steroid use for asthma (Robman & Taylor, 2005).

It has recently been confirmed that specific combinations of weak attraction 

and repulsion between dissimilar proteins produces a molecular formation that was 

transparent. If this fine balance of forces is disrupted, it causes the interactions to 

becomes unstable and the proteins can aggregate causing light entering the lens to 

scatter (Stradner et al., 2007).

Along with this basic science above and the contributions of external factors, it 

is known that the aggregation of proteins, structural defects and nuclear remnants form 

opacifications in the lens and scatters the entering light.
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1.9.3 Posterior Capsular Opacification

Currently there is only one effective treatment for cataract, which is surgery. Cataract 

surgery can vary, but phacoemulsification involves an opening being made into the 

anterior of the lens capsule and the lens being removed. An intraocular lens (IOL) is 

then substituted into the “capsular bag” created by the remaining lens capsule. Though 

this surgery is relatively simple and widely used, there is a common complication that 

occurs; this is known as Posterior Capsular Opacification (PCO). PCO occurs when 

lens epithelial cells, left behind following cataract surgery, proliferate. Only a few 

epithelial cells left behind can proliferate to form a monolayer between the IOL and the 

lens capsule. Though in some cases this does not go any further, there are many cases 

in which the epithelial cells begin to differentiate or wrinkling of the capsular bag 

occurs (Apple et al., 1992). PCO is currently treated by Neodynium: Yttrium 

Aluminium Garnet laser treatment (Nd:YAG). Though cataract surgery and PCO 

treatment are effective, there are risks such as retinal detachment (Ranta et al., 2004). 

The study of the biological pathways involved in cataract formation could give insight 

to novel treatments that may delay, stop or even reverse the development of cataract 

and/or PCO. Though this may seem a far-distant aim, recent research has found that 

the introduction of either procaspase-3 or bax into the capsular bag when the IOL is 

inserted has prevented PCO in rabbits (Malecaze et al., 2006); this is now being 

followed by research involving other inhibitory molecules (to inhibit proliferation of 

epithelial cells) with the possible aim of inserting IOLs pre-treated with pro-apoptotic 

molecules, such as those mentioned above.

1.10 Apoptosis

Apoptosis was characterised in 1972 (Kerr & Searle, 1972), but was originally 

identified as shrinkage necrosis (Kerr, 1971). As more molecular mechanisms were 

identified in cell death, it became clear that the cell death system was becoming more 

complex with each discovery. Instead of increased understanding, research just 

increased confusion about cell death. Even into the 1990s, the differences between 

necrosis and apoptosis had not been clarified (Columbano, 1995). Though apoptosis
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was first described in 1972 and has now been researched for a number of decades, 

there are still many questions still to be answered (Evan, 2003).

Apoptosis, otherwise known as programmed cell death, is critical during 

development as well as during adulthood. Apoptosis is used by organisms to cause cell 

death for many reasons, including if the cell is damaged, infected, cancerous, or no 

longer required and it is also important during development (Evan, 2003). Apoptosis 

occurs through a signal cascade, which is thought to include a number of possible 

signalling pathways that are either intra or extra-cellular (Dahm, 1999). The 

mechanism of apoptosis was initially studied using a nematode worm Caenorhabditis 

elegans. There are two apoptosis pathways: the extrinsic (death receptor) pathway and 

the intrinsic (mitochondrial) pathway.

Extracellular induction of apoptosis can occur from signals, such as reduction 

in survival factor concentrations or the interaction of pro-apoptotic factors with cell 

surface receptors. If induced, Tumour necrosis factor (TNF) ligands (e.g. Fas) bind to 

the death receptor (DR) e.g. Fas-associated protein with a death domain (FADD), 

which is extracellular and also a member of the TNFR family (Boatright & Salvesen,

2003). Proteins then bind to the intracellular death domain (DD) of the DR (e.g. 

FADD). These interactions form the death-inducing signalling complex (DISC). The 

DISC then recruits an adaptor protein and an apoptosis initiator such as pro-caspase-8. 

Proteolysis occurs and caspase-8 is activated and released intracellularly (LeBlanc & 

Ashkenazi, 2003). Caspase-8 then activates caspase-3 and caspase-7, which are found 

in the cytosol and are thought to be involved in the regulation of apoptotic executioner 

caspases, such as caspase-6 (Boatright & Salvesen, 2003).

Interactions are known to occur between caspases involved in both the intrinsic 

and extracellular apoptosis pathway and caspases from one pathway may serve as an 

amplifier to the apoptotic signal of the other pathway (Kidd et al., 2000).

The intrinsic pathway, otherwise known as the mitochondrial pathway, can be 

triggered by a number of signals including mitochondrial damage or DNA 

fragmentation (Nagata, 2005).

Caspase-8 is necessary in apoptosis, though it depends on other protein signals 

such as caspase-3 to activate it. Once caspase-8 is activated via an intracellular signal, 

such as DISC activation, it can either go directly to the effector caspases to carry out 

apoptosis or can initiate the intrinsic pathway. In the intrinsic pathway, caspase-8 can
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activate bid and bax (Bcl-2 family members), which move to the mitochondrial surface 

and signal the release of proteins such as cytochrome-c (a pro-apoptotic protein) (Kidd 

et al., 2000; Harada & Grant, 2003). Cytochrome c is released into the cytosol and 

together with Apaf-1 and ATP activates caspase-9 (Kidd et al., 2000).

Both apoptotic pathways initiate a protease cascade involving caspases. The 

initiator caspases, once activated, proteolytically cleave the effector (or executioner) 

caspases, which in turn cleave a number of protein substrates (Salvesen & Riedl,

2008). The substrates include poly (ADP-ribose) polymerase (PARP), which has been 

found in the differentiating lens fibre cells of rats (Ishizaki et al., 1998), DNA 

fragmentation factor (DFF), identified in the developing chick lens (Wride et al., 1999) 

and Dnase I (Counis & Torriglia, 2000) shown to be present in the bovine lens fibres 

(De Maria & Arruti, 2004). The activation via cleavage of these and other substrates 

leads to the morphological changes signifying apoptosis, including shrinkage of the 

cell, condensation and marginalisation of chromatin and DNA fragmentation, which 

has also been identified in differentiating lens cells (reviewed by Bassnett & Mataic, 

1997; Kerr, 2002).

Necrosis occurs when cell membrane integrity is lost leading to the unregulated 

release of the cell contents causing an inflammatory response in the tissue. A key 

difference between apoptosis and necrosis is that apoptosis is tightly controlled by a 

complex network of signals that constantly regulate the molecular pathway with pro

survival signals, which may signal cell survival, which is itself regulated by another 

signalling cascade that can feedback and inhibit the anti- apoptotic signals, allowing 

apoptosis to conclude (Jin & El-Deiry, 2005). Apoptosis terminates with the formation 

of apoptotic bodies containing the cellular contents, which are either taken in by 

lysosomes of neighbouring cells and digested or phagocytosed by macrophages that 

recognise the bodies through phosphatidylserine signalling proteins found on the 

extracellular surface of the plasma membrane (Fadok et al., 1998).

1.11 Tumour Necrosis Factor Ligands and Receptors

At the start of July 2008 entering a TNF search into the PubMed database resulted in 

little less than 70,000 articles. This immense amount of knowledge is being built upon
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daily yet there is still much to learn. The TNF family is broken down into two super 

families; the ligands and receptors. Each of the members of these individual families 

have conserved structures and interact in similar fashions (Bodmer et al., 2002).

The TNF ligands (cytokines) are known by their THD (TNF homology domain) 

and have well known roles in the immune system (Bodmer et al., 2002). These TNFs 

undertake their roles through interaction with membrane bound receptors termed the 

TNF-R (Tumour Necrosis Factor Receptor) super family (Wajant et al., 2003). TNF- 

Rs have cysteine rich domains (CRDs) to which the THD may bind (Bodmer et al., 

2002).

As with any large molecular family, there is a Fine balance to be maintained, 

within the normal boundaries, TNF members carry out their usual functions, which 

include signalling for apoptosis, developmental processes (Zhang, 2004) and also has 

roles in the aggravation of, or protection from diseases/ injury such as malignancies or 

Crohns disease (Wajant et al., 2003).

Whether TNFs are a help or a hindrance depends on the concentration and 

length of time that TNFs are involved. Even without disease or injury TNFs can have a 

serious effect; for example, if concentrations are low for a substantial length of time, 

cachexia, a wasting disease may occur. On the other hand, at high concentrations, 

TNFs may induce septic shock (Locksley et al., 2001).

In 2002, Bodmer et a l reported that there were 19 ligands and 29 receptors 

identified in humans that were grouped in the TNF superfamilies, though these 

numbers have since increased. Originally Wride and Sanders proposed a hypothesis for 

the potential roles of TNFs in general development and they later confirmed the 

expression of TNFa, TNFR1 and TNFR2 was present in the differentiating lens fibre 

cells (Wride & Sanders, 1995, 1998).

1.11.1 Tumour Necrosis Factor Ligands (TNFs)

The TNF ligands are part of a large family of cytokines. Cytokines, when bound to a

corresponding receptor, act as a signal in many mechanisms including cell growth,

differentiation and death (Thain & Hickman, 2000) TNF ligands are type II

transmembrane proteins with a complex structure. All TNF ligands exist as trimers and

each has a 25-30% amino acid similarity with the other members in the family
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(Locksley et al., 2001). When these ligands bind their receptors they can either initiate 

a signalling cascade themselves or form a complex so that another ligand can bind; this 

more intricate complex, when bound, will increase the competence in the signalling 

cascade (Wajant et al., 2003).

1.11.2 Tumour Necrosis Factor Receptors (TNFR’s)

There are many more TNF receptors than ligands and some of these receptors may 

form complexes with adaptors before the ligand binds or the signal is sent (Dempsey et 

al., 2003). There are also adaptor proteins that are involved in TNF signalling, which 

allows flexibility in the signalling pathways. Examples of this are TRAFs (explained in 

more detail in 1.12) and FADD (Fas-associated Death Domain protein). FADD, when 

bound to Fas, will recruit Caspase-8 or even Caspase-10 (Locksley et al., 2001). Of the 

two apoptosis pathways only adaptors called CARD (“caspase recruitment domain”) 

molecules are involved in the intrinsic pathway, but these are also involved in response 

to inflammation and not just apoptosis. Many members of the TNF family are involved 

in pathways other than those carrying out apoptosis, such as those involved in 

inflammatory responses or cell proliferation (Locksley et al., 2001)

1.11.3 The Tumour Necrosis Factors in the lens

The TNFs have a standard role throughout the development of the eye, which relates to 

all parts of the body and that is to induce apoptosis in cells that are damaged, infected 

or no longer required, such as cells that make up the lens stalk when the lens vesicle 

invaginates from the lens placode (Ozeki et al., 2001). In lens fibre cell differentiation, 

full apoptosis does not occur, but it has been suggested that TNFs or TNF-like 

molecules may induce a pathway with similarities to apoptosis (Wride & Sanders, 

1998); this does not result in the cell being engulfed by macrophages, but rather the 

organelles within the cells are degraded leaving a “living skeleton” of the cell intact. 

Understanding TNFs as signalling factors and their affect on apoptosis pathways may 

be of use in slowing/ curing diseases and may even relate to problems within the lens. 

This has been tested briefly by the use of TRAIL and downstream apoptosis-related
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molecules Bax, procaspase3 and p53 over expression to induce apoptosis in cells that 

remain in the lens capsule after phacoemulsification (Malecaze et al., 2006).

1.11.4 Selected Tumour Necrosis Factors and their adaptors

Though selected TNFs were identified in the lens previously (Wride & Sanders, 1998) 

their role in the lens has not been studied any further. It is known that many processes 

are undertaken through TNF superfamily signalling and that while adaptors containing 

death domains activate signalling leading to apoptosis, TNF receptor associated factor 

(TRAF) protein signalling pathways can lead to survival, differentiation, immune and 

inflammatory responses (Dempsey et al., 2003). Prior to the start of the research 

described in this PhD, only a select number of TNFs and TRAFs were identified in the 

Gallus gallus. When primers were first designed, the choice was limited, though many 

more became available throughout the study (e.g. TRAF7). The same issues were 

present in the selection of antibodies as none of those chosen were recommended/ 

identified for the detection of the Gallus gallus proteins. BLAST 

(www.ncbi.nih.gov/blast/cgi) analysis was undertaken to find antibodies against TNF- 

related proteins in other species with the closest homology to the Gallus gallus 

proteins. The design of primers and selection of antibodies is explained in section 2.26 

and 4.2 respectively.

1.11.5 TNF Related Apoptosis Inducing Ligand (TRAIL)

TRAIL/Apo2L is a type II transmembrane protein that can initiate apoptosis through 

binding to two of its five death receptors (Kimberley & Screaton, 2004). The first 

receptor is soluble OPG, osteoprotegerin, (which also binds to RANKL) but this has 

low affinity at normal physiological temperatures in comparison to the other receptors 

(Truneh et al., 2000). OPG is a decoy receptor along with two others that are not 

soluble; DcRl and DcR2. These decoy recptors have homology to the active receptors, 

but DcRl does not have the required cytosolic region so the apoptotic signal cannot be 

transmitted through the plasma membrane into the cytosol. DcR2 has the cytosolic

http://www.ncbi.nih.gov/blast/cgi


region, but it is truncated and therefore this induction signal also cannot be initiated 

into the cytosol.

TRAIL initiates apoptosis when it binds to its active, non-soluble death 

receptors DR4 or DR5. The two active receptors contain the full cytoplasmic death 

domains, which signal the induction of apoptosis on the intracellular side of the 

membrane. The death domains engage the cytoplasmic protein FADD (Fas associated 

death domain) and caspase-8, which then forms the DISC (Kamradt et al., 2005). 

Caspase-8 proteolyses and then activates other caspases, which are termed effectors, 

such as caspase-3, -6 or -7. Caspase-10 is also known to be involved in the formation 

of DISC. It is thought that caspase-10 is activated by the DISC, but only signals 

apoptosis weakly.

TRAIL has been steadily researched in the field of cancer therapies. It is widely 

expressed in many tissues without causing harm, but can selectively kill cancerous 

cells while leaving the surrounding non-malignant cells intact and undamaged (Ricci et 

al., 2004). Originally it was suspected that TRAIL was tightly regulated by its death 

receptors, therefore controlling its apoptotic abilities (MacFarlane, 2003), but as 

always seems the case when relating to cell death it was found to be more complicated 

than initially thought as 5 death receptors have been identified to date.

TRAIL has been identified in numerous tissues and is thought to have a role in 

immune surveillance, where it first identifies tumourgenic cells before initiating cell 

death (Wang et al., 2004). In 2002, Lee et al published a paper on ocular TRAIL 

expression, though they excluded the lens from this investigation they found TRAIL 

(and Fas ligand known for its role in tumour surveillance) were expressed on tissues 

that were the boundary between the eye and the surrounding environment, for example 

the corneal epithelium and RPE, it was noted that tumours of the eye tended to be 

found outside the boundary formed by TRAIL and Fas expression (Lee et al., 2002).

1.12 TNF receptor-associated factors (TRAFs)

Tumour Necrosis Factor receptor-associated factors (TRAFs) are a sub-family of 

adaptor proteins that mediate a wide range of cellular processes from proliferation to 

apoptosis (Lee & Lee, 2002). The TRAFs continue signal transduction through to the
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activation of NF-kB and JNK transcription factors therefore mediating differentiation, 

survival and inflammatory responses (Dempsey et al., 2003). This intracellular protein 

family interacts with many cell surface receptors, such as TNFRII. TRAF1 and TRAF2 

were originally identified through their interaction with this receptor (TNFRII) and this 

relationship is where they got their name (Arch & Thompson, 1998).

Of the 7 TRAFs that have been identified to date, TRAF1 and TRAF2 were the 

first identified (Rothe et al., 1994). The most recent, TRAF7 began to be characterised 

by Xu et al in 2004 (Xu et al., 2004). During this short time-frame, copious amounts of 

research have been undertaken on these signal transduction molecules, but there is yet 

much to be understood. Though the TRAFs are a family of cytoplasmic proteins with 

structural similarities, each is unique. A diagrammatic representation of TRAFs 

structure can be viewed in figure 1.5.
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TRAF2 (Song 1995) takeuch 1996
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112 114

18 55 102 151156 210 253151 308
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Figure 1.5 Proposed structures of the known TRAFs. TRAF1 does not have a RING 
domain and only has one zinc-finger repeat similar to TRAF7. TRAF2, 3, 5, and 6 
contain 5 zinc-finger repeats while TRAF4 has 7 zinc-finger repeats. TRAF3 and 
TRAF5 contain a coiled-coil domain otherwise known as an isoleucine zipper. TRAF1 
to TRAF6 contain the TRAF domain containing the sub domains N-TRAF and C- 
TRAF. TRAF7 is unique among the TRAFs as it does not contain the TRAF domain, 
but in its place has seven WD40 repeats.



The TRAF domain or carboxyl terminus is conserved in TRAFsl-6 and is split into 

two regions: The TRAF-C region, which is known to “bind downstream signalling 

molecules such as TANK”, the second region is TRAF-N which can bind c-LAPs, 

which are anti-apoptotic molecules (Dempsey et al., 2003). In TRAFs 1-6, the whole 

TRAF domain is required for receptor interactions and also hetero- and homo- di/ 

trimerization (Rothe et al., 1995; Pullen et al., 1999). TRAF7 does not have this 

domain; instead it has seven WD40 repeats that are involved in MAKK3 signalling. 

All TRAFs, barring TRAF1, contain a RING finger domain at the N terminus of the 

TRAF. The RING finger is now known to be involved in ubiquitin modulation of the 

TRAFs and, in the case of TRAF2 and TRAF6, does not signal degradation, but 

changes their subcellular localisation which in turn regulates the TRAFs’ action on 

their respective downstream signalling cascades; e.g. TRAF2 activation of MAPK and 

JNK (Laine & Ronai, 2005).

Adjacent to the RING finger domain, which is crucial for NF-kB activation, are 

a number of zinc finger domains that also have a role in NF-kB as well as JNK 

activation (Dempsey et al., 2003). TRAF3 and 5 also have a coiled-coil (or isoleucine 

zipper) domain; the significance of this domain has not been elucidated though 

isoleucine zipper sequences are known to mediate homo-oligomerization and it is 

thought that this domain may have a role in TRAF3/ TRAF5 interaction (Pullen et al.,

1998).

It has been proposed that mRNA splicing of the TRAFs produces isoforms, 

which are structurally different thereby modulating their normal functions (Brink & 

Lodish, 1998; van Eyndhoven et al., 1999b). The normal functions of TRAFs result in 

the activation or mediation of a number of signal transduction pathways. The key 

pathways are described below before moving on to a brief discussion of the individual 

TRAFs.

1.12.0.1 NF-kB

NF-kB  is a homo- or heterodimeric transcription factor that has been most studied in 

its role in the immune system. NF-kB  also has key roles in its transcriptional regulation 

of signalling cascades influencing proliferation, differentiation and cell survival
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(Hayden & Ghosh, 2008). TRAFs are involved in the activation of both the canonical, 

involved in inflammation and protection from cell death, and non-canonical pathways, 

which occurs during the development of lymphatic tissue (Bonizzi et al., 2004). 

TRAFs activate IKK (IkB Kinase), which phosphorylates IkB (Inhibitor of NF-kB); 

this phosphorylation signals the ubiquitination and proteosome-dependant degradation 

of IkB. This results in the nuclear localisation of NF-kB, which was previously 

sequestered in the cytoplasm. NF-kB is then activated and induces transcription 

(Brown et al., 2003). Though TRAFs activate IKK, which results in a selected 

response from the NF-kB pathway, it is the way that NF-kB interacts (cross-talks) with 

the upstream, initially unrelated signalling pathways, that will result in the ultimate 

NF-kB response (Hayden & Ghosh, 2008).

1.12.0.2 MAPK pathways

Mitogen-activated protein kinases (MAPK) are involved in three different signalling 

pathways: JNK, ERK and p38 of which the TRAFs are involved in signal one or more. 

At the core of each of the pathways is a signalling cascade: MAPK, MAPK kinase 

(MAPKK) and MAPK kinase kinase (MAPKKK/ MAP3K). MAPK3, when activated 

via phosphorylation, in turn activates MAPKK via phosphorylation. MAPKK activates 

MAPK by its phosphorylation ability as a dual specificity kinase. MAPKs then 

phosphorylate one of many possible targets; examples include proteins, transcription 

factors or other kinases (Uhlik et a l , 2004; Krishna & Narang, 2008).

The resulting pathways mediate many activities, such as cell cycle, survival, 

differentiation and apoptosis. The p53/ MAPK pathways have a role in cell cycle 

events and respond to extracellular stress; they are known to respond to the same 

stimuli that activate JNK, for example growth factors such as FGF and IGF and stress 

(Tan et al., 1996). P53 regulates cell cycle arrest, apoptosis (downstream of caspase 

activation) and differentiation (Bourdon, 2007).

Extracellular signal-related kinases (ERKs) are activated by many extra- and 

intracellular stimuli, for example growth factors, serum, and hormones and they are 

also activated by osmotic stress and cytokines. ERK is a regulator of cell proliferation 

and, though it is mostly known for its cell survival roles, it is now thought to have a 

role in apoptosis through cross-talk with apoptosis-regulator factors such as Bax and 

p53 (Rubinfeld & Seger, 2005).
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JNKs were renamed to highlight their activation and phosphorylation of 

transcription factor c-jun, which regulates gene expression by targeting specific DNA 

sequences (Yujiri et al., 1998). JNKs are activated by growth factor deprivation, 

cytokines and external stressors such as UV irradiation. JNK’s proposed pro-apoptotic 

roles include ubiquitin-mediated degradation of p53 and the inhibition of anti-apoptotic 

mitochondrial proteins Bcl-2 and Bcl-xl through phosphorylation, though this is in 

question in vivo. JNK is also thought to have a role in survival through the activation of 

pro-survival pathways and in the mediation of apoptosis after extended activation. JNK 

knockout mice are not embryonically lethal like ERK2 and p38a knockouts are and it 

has been suggested that JNK has roles in insulin response and obesity (Hirosumi et al., 

2002).

1.12.1 TNF receptor-associated factor 1 (TRAF1)

TRAF1 is unique among the TRAFs as it does not contain the RING finger domain

that all the other TRAFs have and which is required for their interactions with other

proteins (Zapata & Reed, 2002). TRAF1 was initially identified through its interaction

with TNFRJI, which was thought to occur via a heterodimeric complex of TRAF 1 and

TRAF2 bound to the C-terminal region of the cytoplasmic domain, which then allowed

the transduction of signals into the cell (Rothe et al., 1994). TRAF1, the smallest

adaptor protein, can bind directly to the cytosolic domain of a number of TNFRs such

as CD30 and RANK; to bind to other TNF receptors, it requires hetero-oligomerisation

(forming associations/complexes) with other TRAFs. For example TRAF1/ TRAF2

heterodimers can bind to TNFRI, which then recruit anti-apoptotic proteins, which in

turn suppress TNFRI induced apoptosis (Wang et al., 1998). TRAF1 has restricted

expression and has only been identified in lymphocytes, dendritic cells and some

epithelia (Zapata & Reed, 2002). Experiments using transgenic and knockout mice

have suggested that TRAF1 has a role in inhibiting apoptosis (Speiser et al., 1997;

Tsitsikov et al., 2001). Inhibiting apoptosis is thought to be undertaken by various

interactions, such as binding IAPs (which can suppress caspase-8 activation) (Wang et

al., 1998), or by increasing NF-kB activation, via TRAF2, which could then increase

the transcription of anti apoptotic proteins (Duckett & Thompson, 1997). Recent

research has also implicated TRAF1 in a pro-apoptotic role when cleaved by caspase-8
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(Irmler et al., 2000). This is supported by the finding of increased JNK activation in 

TRAF1-deficient mice. It may be that deficiency or cleavage of TRAF1 slows the 

activation of NF-kB, tipping the scales in favour of JNK, which is known to be pro- 

apoptotic. The varied participants interacting in TRAF1 signalling can result in both 

inhibition or increase in apoptosis and there are many factors (some about which we 

have little understanding) that affect the final cellular response, such as cell type, 

protein interactions and TRAF1 cleavage (Zapata & Reed, 2002).

1.12.2 TNF receptor-associated factor 2 (TRAF2)

TRAF 2, along with other TRAFs, has been demonstrated to mediate activation of NF- 

kB  and JNK as described above. TRAF2 binds with TNF receptors, such as TNFR-II, 

RANK and CD40. TRAF2 has been identified in most tissues, making it the most 

ubiquitously expressed of the TRAFs (Rothe et al., 1994). Deficiencies in TRAF2 

expression lead to a slight reduction in TNF-induced N F -kB  activation, but a large 

decrease in JNK activation which results in an increase in apoptosis that has been 

confirmed in knockout mice (Lee et al., 1997; Yeh et al., 1997). Recent studies have 

highlighted that TRAF2 is regulated by ubiquitin signals and its ability to form poly- 

ubiquitin chains, thought to be due to co-localization with a number of E2 and E3 

complexes, result in its various functional abilities (Wu et al., 2005).

TRAF2 is thought to be involved in B cell homeostasis and regulates 

proliferation and survival within lymphocytes. TRAF2 is necessary for JNK activation 

signalled by TNFR family members within lymphocytes where it is also thought to 

initiate anti-apoptotic signals independently of NF-kB on which TRAF2 seems to have 

no regulatory effect (Lee et al., 1997).

TRAF2 is thought to be essential in CD40 (B cell proliferation and activation) 

signalling leading to NF-kB canonical pathway activation, while TRAF2 is also known 

to negatively regulate the non-canonical pathway of NF-kB (Nguyen et al., 1999; 

Jabara et al., 2002).

TRAF2 has also been shown to bind to the intracellular transmembrane 

endoplasmic reticulum (ER) receptor IRE1 (Urano et al., 2000), which is a part of one 

of three signalling pathways activated by ER stress when misfolded proteins have 

accumulated in the ER. The ERE1 pathway is normally active at the same time as two
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other stress pathways, but is the first one to switch off if ER stress does not abate, 

studies have suggested that the IRE1 pathway protects cells and, once this signalling 

pathway switches off, cell death increases. Following IRE1 switching off, ATF6 is 

then down regulated while PERK signalling was maintained (Lin et al., 2007). IRE is 

known to interact with Bcl-2 family members who regulate apoptosis, activate IRE la  

signalling and link ER stress and apoptosis pathways (Hetz et al., 2006). IRE also 

activates the JNK signalling pathway by binding TRAF2 (Urano et al., 2000).

TRAF2 knockout mice die within a few weeks of birth, in the small percentage 

of embryos that are not embryonic lethal. This suggests a key role in embryonic 

development and a protective role, suggested to either come from transcriptional 

activation of survival genes via NF-kB, or TRAF2 activates an, as yet unknown, 

pathway that supports the survival signals from NF-kB (Yeh et al., 1997).

1.12.3 TNF receptor-associated factor 3 (TRAF3)

TRAF3 (LAP-1, CD40bp, CRAF-1) was described independently as a cytoplasmic 

factor that interacts with CD40 and LMP-1 (Hu et al., 1994; Cheng et al., 1995; 

Mosialos et al., 1995; Sato et al., 1995). Though TRAF3 can bind to CD40, it is not 

essential (unlike TRAF2 above), though it does have the ability to inhibit CD40 

signalling through an unknown interaction (Hostager & Bishop, 1999). TRAF3 is also 

recruited in a ligand-dependent manner to the lymphotoxin- receptor (LTpR) and can 

have an inhibitory effect on NF-kB activation and it has a role in cell death signalling 

(Force et al., 1997; Kuai et al., 2003a; Kuai et al., 2003b).

MIP-T3 (the only NF-kB protein that binds to only one TRAF) may provide a 

novel mechanism in sequestering TRAF3 to the cytoskeletal network. In experiments, 

using 293 cells in culture, TRAF3 is released when localised to microtubules allowing 

it to bind to CD40 after stimulation by CD40L (Ling & Goeddel, 2000).

TRAF-3 appears to negatively regulate protein activation and expression, 

which was confirmed in a study using embryonic kidney cells; the over-expression of 

TRAF-3 suppressed TNF-RII and CD40-dependent activation of NF-kB dependent 

reporter genes (Pullen, 1999).



Unlike TRAF2, 5 and 6, which are activators of the NF-kB canonical pathway, 

TRAF3 inhibits the non-canonical NF-kB pathway through interaction with its RING 

finger domain and C-terminal TRAF domain which is necessary to bind with NIK (NF- 

KB-inducing kinase)(He et al., 2007).

TRAF3 is expressed in B cells, dendritic cells, macrophages and monocytes, 

endothelial cells, smooth muscle cells and fibroblasts. TRAF3 null mutant mice, 

though visually normal at birth, die around 10 days after birth and research suggests 

that TRAF3 is required for an active immune system and postnatal development. 

Though major organs were not obviously faulty, glucose levels dropped continuously, 

which has been previously associated with runting. Further research suggested that 

TRAF3 may be important in B cell development and survival (Xu 1996).

1.12.4 TNF receptor-associated factor 4 (TRAF4)

TRAF4, first known as CART1, (C-rich motif associated with RING and TRAF 

domains 1) was isolated by differential screening of a cDNA library of lymph nodes 

that contained metastatic tumour cells (Regnier et al., 1995). TRAF4 has been shown 

to be expressed in the neuroeplithelium, limb buds, and sensory organs including the 

neuroretina of the developing mouse; there has been no comment on TRAF4 

expression in the lens (Masson et al., 1998). In the zebrafish, two cDNA constructs 

traf4a and traf4b have been identified; the latter was expressed ubiquitously and at low 

levels, while traf4a was expressed at higher levels in the early developing eye, 

becoming more restricted during development to the lens outer layer and proximal 

retina (Kedinger et al., 2005). By the time a fully functional lens has developed, traf4 

expression was restricted to the equatorial region where secondary fibre cell 

differentiation begins, which was corroborated by the statement that TRAF4 (traf4a 

zebrafish orthologue) expression was “restricted to post mitotic cells away from 

proliferative zones” (Kedinger et al., 2005).

Intracellularly, TRAF4 is mostly found in the nucleus and in undifferentiated 

cells; it promotes JNK activation through binding to MEKK4 and increasing MEKK4 

kinase activity (Abell & Johnson, 2005).

TRAF4 deficient mice are embryonic lethal, though there are some who survive 

through to adulthood, they have skeletal malformations, such as spina bifida and
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respiratory problems due to the incorrect formation of the trachea (Regnier et al., 

2002).

1.12.5 TNF receptor-associated factor 5 (TRAF5J

The discovery of TRAF5 was published in 1996. It was identified by degenerate 

oligonucleotide PCR amplification with primers that were homologous to a highly 

conserved region of the TRAF-C domain that is known to interact with CD40, LTpR, 

CD27 and CD30 (Ishida et al., 1996b; Nakano et al., 1996).

TRAF5 binds to CD40 via TRAF3, though is not necessary for CD40 signalling 

as shown in research using CD40 mutants with truncations in its cytoplasmic tail where 

the TRAFs bind (Leo et al., 1999). TRAF5 is also thought to have a role in modulating 

0X40 expression, which regulates T cell differentiation (So et al., 2004).

TRAF5 is known to be expressed in the lungs, thymus and spleen (Abdalla et 

al., 2004) and TRAF5 null mice are healthy, though there is impaired activation of 

lymphocyte activation mediated by CD40 and CD27 (Nakano et al., 1999). The key 

pathways that TRAF5 is involved in have not yet been clarified.

1.12.6 TNF receptor-associated factor 6 (TRAF6)

TRAF6 was isolated independently by the screening of an EST expression library and 

by utilizing CD40 as bait for a yeast two-hybrid screen (Cao et al., 1996; Ishida et al., 

1996a). Overexpression of TRAF6 can result in activation of JNK, p38 and NF-kB 

(Baud et al., 1999; Song et al., 2006). The RING finger domain of TRAF6 can act as 

an ubiquitin ligase that is thought to have a regulatory role in IKK activation (Deng et 

al., 2000).

IL-1 is known to regulate cytoskeleton reorganisation in osteoclast-like cells. 

IL-1 signalling stimulates TRAF6 to move with c-Src to actin ring structures around 

the sides of the cell (Nakamura et al., 2002).

TRAF6 null mice suffer severe bone formation problems as well as defects in 

tooth eruptions and these mice become runted and die early on in postnatal life (Naito



et al., 1999). TRAF 6 is thought to be necessary in osteoclast differentiation factor 

signalling (Naito et al., 1999).

1.12.7 TNF receptor-associated factor 7 (TRAF7)

From the figure 1.5, TRAF7, can be seen to have an N-terminal RING finger domain 

found next to a zinc finger domain, while, on the other end of the protein, the C 

terminus contains 7 WD40 repeats. Published in 2004 the discovery of TRAF7 

occurred through an investigation of novel proteins containing TRAF-like ring finger 

domains (Xu et al., 2004). It was found (via transfection studies) that TRAF7 

interacted with MEKK3 through the WD40 repeats at its C-terminus. This interaction 

increased MEKK3 autophosphorylation, which in turn induced API and, to a lesser 

degree, CHOP activation which is involved in the JNK and p38 kinase pathways, 

respectively. It was also found that the RING finger domain was highly involved in 

TRAF7-induced caspase dependant apoptosis, causing cellular condensation and DNA 

fragmentation. This was proven through inhibition of TRAF7-induced apoptosis by 

crmA, a caspase inhibitor (Xu et al., 2004). TRAF7 (with TRAF6) is also involved in 

Toll-like receptor2 (TLR2) signalling, which causes activation of the IKKs-IicBa and 

MKK3/6-p38 pathways. These pathways then induce the transcription of proteins such 

as TNFa and CLYD (cylindromatosis), a tumour suppressor. CLYD, likely involved in 

“a deubiquitination-dependant mechanism”, will then inhibit TRAF6 and 7, which will 

negatively regulate the TLR signalling. The study showed that TRAF7, together with 

TRAF6, was required to mediate TLR signalling through auto- and negative regulation 

(Yoshida et al., 2005). TRAF7 has been shown to affect the cellular localization of 

molecules such as c-Myb via sumoylation when bound (Morita et al., 2005). Other 

roles of TRAF7 include E3 ubiquitin ligase activity for self-ubiquitination and possible 

links with proteins involved in epithelial cell growth and polarity (Bouwmeester et al.,

2004).
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1.13 Summary of Introduction

In this introduction, the current knowledge of lens development and a number of the 

TNFs and TNF-related factors of interest have been discussed. It has been highlighted 

that chick is an excellent model for this research due to the ease of collection of the 

samples and the relatively simplistic, quick and cheap cultivation of the fertilised eggs.

1.13.1 Objectives:

The objectives of this thesis are:

1) To obtain information on the temporal expression patterns of the TNFs and 

TNF-related factors (Chapter 3):

2) To characterise the spatiotemporal and protein expression patterns of TRAIL 

and TRAF2 and TRAF3 in the developing chick lens across the developmental 

stages E6- E l6 (Chapter 4).

3) Characterisation of whole E10 chick lens culture as a model system and 

development of an optimised methodology for further functional studies on the 

role of apoptosis-related factors, including TNFs, on chick embryo lens 

development (Chapter 5).

The Overall hypothesis for the thesis is:

In this thesis, the hypothesis is tested that TNFs and TNF related factors 

(specifically TRAIL and TRAFs) are expressed in the developing chick lens at both the 

mRNA and protein levels and that characterisation of a whole chick embryo lens in 

vitro system is important and useful for potentially dissecting the roles of TNFs and 

TNF-related factors in embryonic lens development in future studies.
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Chapter 2: 

Materials and Methods



2.1 T issu e  C o llection

2.1.1 Egg collection and incubation

Fertilised white leghorn eggs (Henry Stewart & Co, Lincolnshire, UK) were placed in 

an Octagon 100 incubator set at 37.5°C ± 0.5 °C (Brinsea, Sandford, UK) as shown 

below in figure 2.1. The date and time at the start of incubation were noted on each egg 

using a pencil. Water levels in the incubator were checked twice a day to ensure water 

was continually available to maintain a humid environment of 55%.

Figure 2.1 Octagon 100 incubator containing eggs.

The eggs were removed on specific days of embryonic development (E) 

corresponding to embryonic stages as described by Hamburger & Hamilton (1992) and 

shown in the table 2.1.



Table 2.1 Hamburger & Hamilton stages selected for study of lens development.

Embryonic day (E) Hamburger & Hamilton Stages and description of 

development.

6 29: 3 digits, 4 toes rudiment of 5th toe. Lens secondary fibre 

cell differentiation has begun

8 34: Nictitating membrane

10 36: Length of 3rd toe from tip to middle of metatarsal joint = 

5.4±0.3mm; Length of beak from anterior angle of nostril to 

tip of bill = 2.5mm; primordium of comb; labial groove; 

uropygial gland, Lens OFZ begins to form

12 38: Length of 3rd toe = 8.4±0.3 mm; length of beak = 3.1 mm

14 40: Length of beak = 4.0 mm; length of 3rd toe = 12.7±0.5 

mm, Lens OFZ is clearly visble

16 42: Length of beak = 4.8 mm; length of 3rd toe = 16.7±0.8 mm

18 44: Length of beak = 5.7 mm; length of 3rd toe = 20.4±0.8 mm

2.1.2 Tissue collection

At specific time points, eggs were removed from the incubator. The upper side of the 

egg shell was sterilised using ethanol and a circular hole was made to open the egg, 

where the embryo was found as it floated on the surface of the albumen. The embryo 

was removed from the egg then placed in a 100mm diameter Petri dish (Sigma, UK) 

with PBS (Sigma, UK), on a dissecting microscope (Swift Optics Europe), as shown in 

figure 2.2.



Figure 2.2 Stages in obtaining embryos. A, Whole fertilised egg. B, The first incision 
into the egg shell using the pointed reverse end of tweezers (Sigma, Dorset, UK). C, 
Large hole being made in the egg shell. D, The shell being removed. E, At E4-E6 the 
embryos tend to be found on the inside of the egg shell instead of floating. F, Life size 
image of a chicken embryo at E6.

Embryos were sacrificed in accordance with ARVOs recommendations for the 

use of animals in ophthalmic and vision research. Briefly, embryos were placed in ice 

cold double autoclaved (da) PBS followed immediately by decapitation. At this point 

tissue being collected for histology would be treated as explained in 2.4.1. If samples 

were being collected for RNA or protein the eyes were removed with #5 dissecting 

tweezers (R.A.Lamb, UK) and placed under a Nikon SMZ800 (Jencons Pic, UK) 

dissecting microscope for the more intricate dissection, any waste tissue was placed in 

a biological waste container for proper disposal.

An incision was made at the junction between the cornea and the sclera using 

fine bow spring scissors (R.A.Lamb, UK). The vitreous was removed with the lens 

attached. The vitreous allows the lens to be held in place without causing damage, 

enabling lenses to be cleared of remnants of surrounding tissue e.g. iris. The lens was 

removed from the vitreous and placed in fresh ice-cold PBS. Once lenses were 

removed and cleaned the subsequent methodology changed depending on the future 

use of the tissue i.e. for PCR (polymerase chain reaction) or Western blotting.
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2.2 Polymerase Chain Reaction (PCR>

2.2.1 Preparation of RNA (Ribonucleic Acid~> from tissue

While preparing the RNA and converting it to cDNA (complementary 

Deoxyribonucleic Acid), RNase-free filter pipette tips (Thistle, UK), RNase-free 

ependorff tubes (Sigma) and RNase-free water (Ambion, UK) were used to protect 

samples from contamination.

Table 2.2 Grid showing amount of tissue and solution values used for TRIzol®

methodology explained below.

E6 E8 E10 E12 E14 E16 E18
Number of 
lenses

30 20 20 18 18 16 14

Number of 
Embryos

15 10 10 9 9 8 7

TRIzol (ml) 0.5 0.5 0.5 0.5 1 1 1
Chloroform 0.1 0.1 0.1 0.1 0.2 0.2 0.2
Isopropyl
alcohol

0.25 0.25 0.25 0.25 0.5 0.5 0.5

75% Ethanol 0.5 0.5 0.5 0.5 1 1 1
RNase-free
water

30 40 40 50 50 50 50

lOx DNase I 
buffer

0.1 vol.
= 3

0.1 vol. 
= 4

0.1 vol. 
= 4

0.1 vol.
= 5

0.1 vol.
= 5

0.1 vol
= 5

0.1 vol.
= 5

DNase I 1 1 1 1 1 1 1
DNase
Inactivation
Reagent

5 5 5 0.1 vol.
= 5

0.1 vol.
= 5

0.1 vol
= 5

0.1 vol.
= 5

Shown in the table above were the numbers of lenses pooled to collect the 

required concentration of sample and the volumes of solutions used for each of the 

aforementioned samples. When a suitable number of lenses had been collected, the 

sample was placed in a sterilised glass Dounce homogeniser (Wheaton, UK) using a 

Pasteur pipette (Sigma-Aldrich, UK) with a widened end, the PBS pipetted up during 

collection was subsequently aspirated using sterile pipettes (Sigma, UK) of decreasing 

sizes, leaving the lenses intact.



2.2.2 TRIzol Preparation

Depending on the quantity of lenses, between 0.5 and lpl of TRIzol® (Invitrogen, 

Paisley, UK) was added, as shown in table 2.1, the lenses were then homogenised 

using a Dounce homogeniser. The homogenate could then be stored for up to a week at 

-20°c.

The homogenised sample was incubated at room temperature for 5 minutes 

before 0.2ml of chloroform (Fisher Scientific, UK) was added for every 1ml of 

TRIzol® used. The mixture was vortexed and incubated at room temperature for 2 

minutes then centrifuged for 15 minutes at 12,000 x g  at 4°C in a Sorvall® fresco 

centrifuge (Jencons, UK). The mixture separated into three phases during 

centrifugation: the lower red phase, which contained the phenol chloroform; an 

interphase, containing cellular debris; and the upper colourless, aqueous phase 

containing the RNA. The colourless RNA phase was transferred, via sterile filter 

pipette, to a new, sterile eppendorf tube (Sigma, UK) insuring that neither of the other 

phases was transferred.

The RNA was precipitated from the aqueous phase by adding 0.5ml (per 1ml TRIzol®) 

of isopropyl alcohol (Fisher Scientific, UK) and incubating at room temperature for 10 

minutes before centrifugation was carried out at 12,000 x g  at 4°C for 10 minutes. The 

pellet on the side/ bottom of the eppendorf tube was the RNA precipitate. The 

supernatant was removed by pipetting and the RNA pellet washed by adding 1ml (per 

lml TRIzol®) of 75% ethanol (Fisher Scientific, Leicestershire, UK). The sample was 

mixed gently and centrifuged at 7,500 x g  at 4°C for 5 minutes.

Most of the liquid was removed using a pipette and the remaining liquid was left to air 

dry for up to ten minutes. Depending on the amount of RNA left in the tube, between 

30- 50pl of RNase-free water (Ambion, UK) was added to the eppendorf tube. The 

RNA was dissolved in the RNase-free water by pipetting up and down 5-10 times. The 

mixture was then incubated at 55°C for 10 minutes using a GRANT, Q.B.T. Block 

Heater (Jencons, UK).



2.2.3 Quantification and Integrity of RNA

Quantification of the RNA samples was undertaken using Gene Quant II 

spectrophotometer (Pharmacia, BioTech, UK). 2pi of sample was added to 98pi of 

nuclease free water in a sterile cuvette. The absorbance was read at 260 and 280nm. 

Nuclease free water was used as the reference before each samples absorbance reading. 

RNA concentration was obtained by multiplying the 260nm absorbance by the dilution 

(50) and then by 40 (RNA constant).

The integrity of RNA was confirmed by running the RNA out on a formaldehyde 

denaturing gel. The composition of the gel can be found in appendix 1. The gel was 

left to set under the fume hood for 1 hour. The RNA samples were denatured before 

being run on the gel. The components of the RNA reaction were 4pl RNA sample, 2pl 

lOxMOPS electrophoresis buffer (composition found in appendix 1), 3.5pl 

Formaldehyde (Sigma, UK), lOpl Formamide (Ambion, UK) and 0.5pl Ethidium 

Bromide (Sigma, UK). The components of the reaction were added to an eppendorf 

tube and incubated at 55°C for 15 minutes in a heating block. The samples were then 

placed on ice and 5pl of loading buffer (composition in appendix 1) was added to each 

of the samples. 200mls of running buffer was then added to the gel dock covering the 

pre-set gel by l-2mm. The samples were then loaded onto the gel and the gel was run 

for 5mins at 40V followed by 80V for 30 minutes using the Consort E l22 Mini Power 

Pack (Jencons Pic, UK). The bands on the gel were visualised and photographed using 

a UV transilluminator using a Gel Doc system (UVP BioDoc-It™ System).

Intact RNA gives two bands on the gel, one corresponding to the 28S and the other to 

the 18S ribosomal species (example shown in figure 3.1). If there was smearing of the 

bands then it suggested that the RNA had degraded and the sample was disposed of. 

Samples that were intact were all diluted to a concentration of 10pg/50pl using RNase- 

free water (Sigma, UK).



2.2.4 DNase digestion

Within 24 hours of collecting the RNA sample, DNase digestion was carried out to 

remove any contaminating genomic DNA. This was done using DNA-free™ (Ambion, 

Cambridgeshire, UK): To each sample of RNA, 0.1 volume of lOx DNase I Buffer and 

lpl of DNase I was added. This was mixed by gentle pipetting and then incubated for 

25 minutes at 37°C. DNase Inactivation Reagent, 0.1 volume or 5pi (whichever was 

greater) was added to the sample, which was mixed and incubated at room temperature 

for 2 minutes. The mixture was then centrifuged at 10,000 x g  for 1 minute. The 

resultant solution containing the RNA was pipetted into a sterile eppendorf tube 

making sure that none of the pellet was also transferred. The pellet was discarded, 

while the RNA solution was stored at -20°C.

2.2.5 Reverse Transcriptase (RT) Reaction

RT reactions were carried out using the Superscript™ II Reverse Transcriptase kit 

(Invitrogen, Paisley, UK):

From the concentration calculated earlier, the volume of RNA required for 

between l-5ng was noted. Up to lOpl of DNase digested RNA was used depending on 

concentration and placed in a nuclease free micro-centrifuge tube (Triple Red, UK); a 

replicate tube was also begun so it could be the No RT control. All the steps were 

carried out on both tubes, with the exception of the addition of the Superscript™ II RT. 

The no RT control is to insure there is no reagent contamination causing false positive 

results.

In brief, lpl of Oligo dT (Invitrogen, Paisley, UK) and lpl of lOmM dNTP mix 

(Invitrogen, Paisley, UK) was added to both tubes. If less than lOpl of RNA was used 

then the difference up to 12pl, all inclusive, was filled using DNase free water. The 

mixtures were heated at 65°C for 5 minutes and then chilled on ice. While they were 

on ice 4pl of 5x First Strand Buffer and 2pl of 0.1M DTT (Dithiothreitol) was added to 

each tube. The solution was then mixed and incubated at 42°C for 2 minutes, lpl of 

Superscript™ II RT was added and mixed by pipetting up and down into the RT tube 

while lpl RNase free water was added to the No RT tube. RT and NO RT were marked
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on the respective tubes. The tubes were both incubated for 50 minutes at 42°C. The 

reactions were then inactivated by incubation at 70°C for 15 minutes. The final step 

carried out was to add lpl RNase H and incubate the solutions at 37°C for 20 minutes. 

The samples were then stored at -20°C until use.

2.2.6 Primer design

The primers for GAPDH and 8 crystallins were taken from Faulkner-Jones et al, 

(2003). All other primers were designed using primer3 (http://frodo.wi.mit.edu/cgi- 

bin/primer3/primer3 www.cgi). To design the primers, the genes were selected and 

identified in the chicken, which was carried out using Entrez Gene on the NCBI 

website: (http://www.ncbi.nlm.nih.gov/entrez). The accession numbers for the selected 

genes can be found in table A.2.1 in appendix 2. Once the selected genes were 

identified in the chicken, the mRNA sequence was noted and selected; the coding 

sequence (cds) was then selected and displayed in FASTA format. The cds was then 

cut and pasted into primer3. The selections made on this website were:- 

To tick both the boxes for the 3’ end (forward primer) and 5’ end (backward primer). 

Pick a sequence ID e.g. “chick TRAF”.

Standardise the set up as below:

Primer size: Min 20, Opt 21, Max 24.

Primer annealing temperature: Min 58, Opt 62, Max 64.

Maximum temperature difference: 2.

Primer GC% Min 40, Opt 50, Max 60.

Maximum Self complementation: 3.

Maximum self 3' Complementation: 0.

Maximum poly “X” tail: 3.

GC Clamp: 0.

Select button PICK PRIMERS.

Selections of possible primers were then shown and the most suitable i.e. the one that 

most closely matched to the optimums was chosen. Both the forward (3’) and 

backward (5’) were copied and then pasted into the Operon > Custom Oligos ordering 

page (https://www.operon.com/store/oligo order.php).
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The primers ordered (in lOng aliquots) were sent dry and were then rehydrated by 

adding the stated amount of TE buffer (Ambion, Cambridgeshire, UK) and thoroughly 

vortexing (Vortex-Genie, Jencons Pis, UK). The amounts advised for rehydration 

varied from primer to primer. The re-suspended primers were stored at -20°C.

The relative concentrations of the primers were revealed by running the primers out on 

a 1.5% agarose gel. The gel was prepared by adding 1.5 g of agarose to 100ml of TAE 

(Tris Acetate buffer) (Sigma, Dorset, UK) and then heating until the agarose dissolved. 

5pl of ethidium bromide (Bio-Rad, Hertfordshire, UK) was added and mixed gently. 

The gel was then poured into a horizontal electrophoresis unit (Jencons, Bedfordshire, 

UK) and allowed to set for a minimum of 1 hour. The primers were diluted before 

being run on the gel. lpl of primer was added to 2pl of loading buffer (Sigma, Dorset, 

UK) and 9pl of double autoclaved water. The 12pl mixture was then pipetted into a 

well in the gel. The gels were run at 40W for 5minutes going up to 80W for a further 

20 minutes. The gels were then visualised. The primers were normalised so that the 

concentration for all primers was similar. The quantities used for each primer, after 

normalisation, are shown in table A.2.1 in appendix 2. The table also shows the primer 

sequences, expected PCR product size, optimised temperature and cycle number as 

explained below.



2.2.7 Optimisation of Primers

Though a recommended temperature for annealing was supplied with each primer set 

purchased, these and the optimum cycle number were confirmed before use. These 

optimums were found by carrying out PCRs at various temperatures around that 

recommended by Operon (Sigma, UK). The optimum temperature was decided by the 

temperature that offered a single, sharply defined band when visualised. Once the 

temperature was optimised the optimum cycle number was decided by running 5-7 

PCRs of ascending cycle numbers and forming a standard curve by analysing the band 

intensities as explained in section 2.2.10. A cycle number was chosen from the bottom 

of the curve. An example of this is shown in the image and corresponding graph below 

which shows the GAPDH standard curve.

GAPDH standard curve

•  250 1 
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n
d
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X 0 Hm
18 20 22 24 28 30 

Cycle number

Figure 2.3 Graph showing GAPDH standard curve with corresponding PCRs.

2.2.8 Polymerase Chain Reaction (PCR)

PCR was carried out using GoTaq® Flexi DNA Polymerase (Promega, UK). The 

amounts used are found in table 2.3.

Table 2.3 Amounts used for GO Taq system.

Green Buffer lOpl

dNTPs lpl

Primer IF Various

Primer 1R Various

H20 Make up to 50pl

MgCl2 4pl

Go Taq 0.25pl

cDNA various
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For each sample used, the quantities in table 2.3 were added. The amount of cDNA 

varied between 0.5-2.5pl depending on the sample concentration and the amount of 

primer varied between 1- 3pl (as shown in table A.2.1 in appendix 2). The amount of 

RNA-ffee water used depended on the quantities of cDNA and primers.

Once the PCR mix was made up in PCR tubes (Ambion, UK), 2 drops of mineral oil 

(to prevent evaporation) were placed into each PCR tube, the lids of the tubes were 

closed and the samples were agitated by flicking the tubes. The tubes were then placed 

into a Techne flexigene PCR machine (Jencons, Bedfordshire, UK). The heated lid was 

switched off.

An example of a PCR programme used was:-

For 30 cycles with annealing temperature of 60°C.

94°C 3 mins.

94°C 1 mins. Melting.

60°C 1 mins. Annealing.

72°C 1 mins.20secs. Extension.

End and hold at 4°C.

N.B. The reaction was then to be left in either the fridge or in the machine until the 

reactions were ready to be run on a gel.

2.2.9 PCR Visualisation

A DNA gel of 2% agarose was left to set, for lhour, while PCRs were running. In this 

time a DNA ladder (Invitrogen, Paisley, UK) was prepared by mixing lpl of DNA 

ladder with 2pi of Green Buffer (GO Taq kit) and then adding in 9pl of RNA-ffee 

water. A stock of DNA ladder was made up and stored in the freezer until required. 

Once the PCR had run and the gel was set, 12pl of diluted DNA ladder and each 

sample were placed into separate wells in the gel. It was standard practice to load the 

NO RT samples first therefore reducing the risk of cross-contamination. The loaded gel 

was run for 5mins at 40V followed by 80V for 40 minutes using the Consort E l22 

Mini Power Pack (Jencons Pic, UK). The bands on the gel were visualised and



photographed using a UV transilluminator using a Gel Doc system (UVP BioDoc-It™ 

System, Jencons Pic, UK).

2.2.10 Normalisation of GAPDH

After the GAPDH primer was optimised as stated in 2.2.7 a sample at each time point 

was selected and a PCR was carried out at the optimum temperature and cycle number. 

The resulting PCR for each sample was run out on an agarose gel as described 

previously in 2.2.9. The image of the gel was analysed using Scion Image software 

(freeware). The image analysis allowed the intensities of the bands to be valued 

numerically. These values were then compared and the concentrations of the samples 

were adjusted accordingly. The PCRs were repeated with the new sample 

concentrations and the band intensities re-analysed. When the concentrations were 

found to be within 10% of each other and the band intensities were visually 

indistinguishable, the sample set was said to be normalised using the housekeeping 

gene GAPDH.

2.2.11 Analysis of Genes

Once the primers had been optimised in temperature and cycle number as detailed in 

2.2.7, the primers for each genes were run with a normalised sample set (E6, 8, 10, 12, 

14, 16 and positive control Whole E8 embryo). The resulting PCR samples were run 

out on an agarose gel and visualised as described in 2.2.9. The bands from the images 

of the PCRs were analysed using Scion Image software; a section of the background 

image intensity was measured and subtracted from a same size section, measuring the 

intensity, from the centre of the bands giving a numerical value that was then 

normalised to the GAPDH measurements produced from the same sample set. This 

was carried out in triplicate, using different sample sets, and values were placed into 

SPSS 11 software and statistical analysis was carried using one-way ANOVA with 

Tukey’s post-hoc test out to identify any significant difference of RNA expression 

between the developmental stages.
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2.3 Western Blotting

2.3.1 Protein Isolation

Table 2.4 Number of embryos required for each time point.

Embryonic day E6 E8 E10 E12 E14 E16

No. Embryos 26 18 14 12 12 10

No. of lenses 52 36 28 24 24 20

When a suitable number of lenses (shown in table 2.4, above) had been collected for a 

protein sample they were placed in a glass Dounce homogeniser (Sigma, Dorset, UK) 

and the PBS was aspirated leaving the lenses. Immediately after PBS was removed 

between 500/rl-lml of an ice cold RIP A buffer mixture (depending on quantity of 

lenses) was added to the homogeniser. lx RIPA (Upstate, USA) was made up before 

dissection by adding 4.5mls distilled water to 500/xl (lOx) RIPA, this was stored on 

ice. Just prior to adding RIPA to the lenses, 50/il Protease Inhibitor Cocktail (Sigma, 

UK) was added to the diluted, ice cold RIPA. The lenses were homogenised in the 

RIPA buffer and the sample was pipetted into an eppendorf and placed for 30minutes 

at 4°C on a Spiramix 5 rotating platform (Denley, UK). The sample was then 

centrifuged at 13,000 x g at 4°C for 30 minutes. The supernatant was removed in 20pl 

aliquots into fresh eppendorf tubes and stored at -20°C. The pellet was disposed of.

2.3.2 Subcellular Fractionation

Subcellular fractionation was carried out to distinguish the cellular localisation of 

distinct bands identified using the TRAF3 antibody. Pooled E l6 lenses were placed in 

a cooled Dounce Homogeniser, removing PBS, as stated above. 500 /zl ice cold 

fractionation buffer (composition appendix 1) was added to the lenses which were then 

homogenised lightly (10 to 12 strokes of the homogeniser). The homogenate was 

transferred to an eppendorf tube. A 40pl aliquot was taken and 40pl 2x Laemmli buffer 

was added to produce the Homogenate (Ho) fraction. A lOpl aliquot was also removed 

for protein quantification. These were labelled and frozen immediately. The remaining 

homogenate was then centrifuged at 1000 x g for 5 minutes at 4°C. The (post-nuclear)
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supernatant was transferred to a new eppendorf tube and aliquots were taken as above 

i.e. a lOpl aliquot was removed for protein quantification and a 40pl aliquot was taken 

and and added to 40pl 2x Laemmli buffer to produce the post-nuclear (pn) fraction. 

They were labelled and frozen immediately.

The pellet that remained from the previous spin was resuspended in 500pl of 

fractionation buffer. The aliquots were taken as described as above, labelled nuclear 

(n) fraction and frozen.

The post-nuclear supernatant was centrifuged at 14000x g (or max speed) for 15 

minutes at 4°C. The post-mitochondrial supernatant (cytosol) was transferred to a fresh 

eppendorf tube. Aliquots were again taken as above and labelled cytosol (c) faction 

then frozen. The final pellet was resuspended in 50pl fractionation buffer. The aliquots 

were taken as above and labelled- mt- this faction contained membranes, cytoskeleton 

and mitochondria.

The flow diagram in figure 2.4 clarifies this procedure:

Transfer to eppendorf tube

Transfer post-nuclear supernatant to a new 
eppendorf tube

Spin at lOOOxGs for5mms at 4*c

Spin post-nuclear supernatant 14000g (or 
max speed) for 15 minutes at 4°C

Resuspend pellet (membranes, 
cytoskeleton, mitochondna) in 50 ul

Transfer post-mitochondnal supernatant 
(cytosol) to afresh eppendorf tube

Take 40 ul aliquot add 40 ul 2x 
Laemmli Buffer (c)

Take 40ui aliquot add 40ul 2x 
Laemmli Bufer (Nuclear)

Take lOul aliquot for protein 
estimation, liquid nitrogen 

freeze (Nuclear)

Take 10 ul aliquot for protein 
estimation Freeze immediately

Take 40ul aliquot acd 40ul 2x 
Laemmli Bufer (Homogenate)

Take lOul aliquot for protein 
estimation, liquid nitrogen 

freeze (Post-Nuclear)

Take 40ul aliquot add 40ul 2x 
Laemmli Bufer (Post-Nuclear)

Take 40 ul aliquot add 40 ul 2x 
Laemmli Buffer (Mitochondna)

Take 10 ul aliquot for protein 
estimation Freeze immediately 

(Mitochondna)

Take lOul aliquot for protein 
estimation, liquid nitrogen 

freeze (Homogenate).

Resuspend pellet in 500 ul of fractionation 
buffer

Homogenise (10-12 strokes) with 500ul iced

Figure 2.4 Flow diagram explaining the stages undertaken during subcellular 
fractionation.
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2.3.3 Protein Quantification

Protein samples were quantified via the protocol obtained with the BCA (bicinchoninic 

acid) assay (Pierce, UK). BSA (bovine serum albumin) standards were produced in 

lml microcentrifiige tubes and labelled A to I. Various volumes of BSA stock and 

distilled water were mixed as shown in table 2.5, below, the final BSA concentrations 

were between 2000(ig/ ml and Opg/ ml. The quantity of working solution required was 

calculated by adding the number of samples to be quantified to the number of BSA 

standards, multiplying by 2 (duplication for accuracy) and then multiplying by 200 

(pi). Once the amount of working solution needed was known this was made up using 

50parts reagent A to lpart reagent B from the BCA assay.

Table 2.5 Volumes for BSA standards.

Vial Vol. Diluents (H20) Vol. BSA Final BSA conc.

A 0 pi 300 pi of stock 2000 pg/ ml

B 125 pi 375 pi of stock 1500 pg/ ml

C 325 pi 325 pi of stock 1000 pg/ ml

D 175 pi 175 pi of vial B 750 pg/ ml

E 325 pi 325 pi of vial C 500 pg/ ml

F 325 pi 325 pi of vial E 250 pg/ ml

G 325 pi 325 pi of vial F 125 pg/ ml

H 400 pi 100 pi of vial G 25 pg/ ml

I 400 pi 0 0 pg/ ml

Protein samples were defrosted and diluted 5 fold with fresh lx RIPA buffer to make a 

volume of 50pl. 25 pi of each standard or unknown sample was added to a 96 well 

plate (Triple Red, UK). 200pl of the working reagent was then added to each well. The 

plate was covered with foil and incubated in a Model 1525 Incubator (VWR Scientific, 

UK) at 37°c for 30minutes. The absorbance was then measured at 562-570nm on the 

Multiskan ascent plate reader (Labsystems, UK). The readings were recorded and 

transferred to excel and an XY scatter graph was produced from the readings of the 

standards. A trend line and its equation were inserted into the graph. Rearranging the
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formulae for the trend line allowed the calculation of the protein samples’ 

concentrations.

2.3.4 SDS-Page

For SDS-PAGE (Sodium dodecyl sulphate polyacrylamide gel electrophoresis) the kit 

used was the Mini-Protean®3 cell system (Bio-Rad, UK). Every piece of kit was 

cleaned with warm soapy water then sterilised with ethanol (Fisher Scientific, UK) 

before use. A set of glass plates were locked in to the casting frame, which was then 

put in its holder, distilled water was poured into the casting frame to ensure there were 

no leaks.

12% resolving gels were used for all proteins and was made up of 3.3mls Acrylamide- 

30% (Bio-Rad, UK), 4mls water, 2.5mls 1.5M Tris pH 8.8 (composition in appendix 

1), lOOpl of 10%SDS (Bio-Rad, UK), lOOpl of 10%APS, (composition in appendix 1) 

and 20pl of TEMED (Bio-Rad, UK) which was added last and used in the fume hood 

(Bio-Rad, UK). The solution was lightly mixed and poured into the casting plates 

leaving 1.5cm at the top which was filled with distilled Water.

The resolving gel was left to set for 20 minutes and the stacking gel was made up using 

1.67mls Acrylamide-30%, 5.83mls water, 2.5mls 0.5M Tris pH 6.6, lOOpl of 10%SDS, 

50pl of 10%APS, and lOpl of TEMED which again was added last and used in the 

fume hood. The water was removed from the casting plates and the stacking gel was 

then poured in, a casting comb was inserted between the casting plates to produce the 

sample wells while insuring no bubbles formed. The casting frame was covered with 

soaked tissue to keep the gels moist while they were left to set for 1 hour.

The casting plates containing the set gel was carefully removed form its frame, the 

comb was also removed. Gels, within their casting plates, were placed into the 

electrode assembly with the short plates facing towards each other. The electrode 

assembly was placed, securely into the clamping frame and placed into a mini-tank. 

200mls running buffer (composition in appendix 1) was added to the mini tank and 

125mls were added to fill the chamber formed by the gel plates. The protein samples 

(preparation described in 2.3.5) and a molecular weight marker (Bio-Rad, UK) were 

loaded into individual wells in the gel and the lid was placed on the mini tank. The gel 

was run for 30 minutes at 200 volts, 300mA using a Consort E l22 Mini Power Pack.
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2.3.5 Preparation of protein sample sets

Protein samples from E6 to E16 were all diluted to the same concentration (10pg/ 4pl) 

using the calculations from protein quantification, 2.3.3 the lysis buffer (lx  RIP A) used 

to extract the protein initially was used to dilute the samples. 50pl of (3- 

mercaptoethanol was added to 950pl sample loading buffer and the same volume of the 

sample loading buffer was added to each sample i.e. if loading 4pl protein sample, 4pl 

sample loading buffer was added. The proteins in loading buffer were boiled for 5 

minutes on a Grant QBT2 heating block (Jencons Pis, UK) at 100°C under a fume 

hood.

2.3.6 Protein transfer

Once the SDS-Page was complete the gel was removed from its casting plates and 

placed in transfer buffer (composition in appendix 1) Filter paper, nitrocellulose 

membranes and fibre pads were soaked in transfer buffer and left on a Stuart platform 

rocker STR6 (Jencons Pis, UK), for 15minutes. A gel sandwich was then made up in a 

gel holder cassette consisting of the gel and transfer membrane in between two filter 

papers which were then sandwiched between two fibre pads. The sandwich was 

smoothed out using a tube hard enough to remove bubbles but gentle enough not to 

damage the gel. The cassette containing the gel sandwich was placed in a mini tank, on 

magnetic cooling unit, with a magnetic stirrer and 600mls transfer buffer. The lid was 

placed on the tank and the transfer was carried out using a Consort E l22 Mini Power 

Pack at 100V, 350mA for 1 hour. After completion the sandwich was unpacked and 

the membrane, now containing the transferred protein samples, was placed in lx 

TBS/Tween (composition in appendix 1) in the fridge until use (maximum 2 days). At 

all times, throughout this protocol it was ensured that the membrane was never allowed 

to dry out and the lx TBS/Tween was maintained at 4°C by replacing in the fridge 

between washes. Before blocking the membrane the lx TBS/Tween was poured away 

and the protein samples were visualised using 20mls Ponceau S (Sigma, UK). The 

membrane was left, in Ponceau S, until staining developed (5-10minutes) and was then 

photographed using the white light source on the Gel Doc system to confirm equal
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loading of protein samples. The membrane was replaced on the rocker and washed 

multiple times (3minutes each) with lx TBS/Tween until all staining had been 

removed.

2.3.7 Membrane blocking

Blocking solution was made up using 5% milk (Fluka, UK) in lx TBS/Tween (5g in 

lOOmls), 20mls was added to the membrane once the lx TBS/Tween had been poured 

away. The membrane, in solution, was left on a rocker for 1 hour at room temperature. 

The blocking solution was then disposed of and the membrane was washed 6 x 5  

minutes in lx TBS/Tween.

2.3.8 Primary antibody incubation

After optimisation of the antibodies (which was carried out by using various dilutions, 

incubation times and temperatures for each antibody) the antibody was diluted 

appropriately in 1% milk (0.2g in 20mls lx TBS/Tween). The lx TBS/Tween was 

poured off the membrane and the antibody solution, 20mls, was added to the 

membrane and left on the rocker for an hour at room temperature. For smaller 

dilutions, membrane and antibody solution, 5mls, was placed in a 40ml Falcon tube 

(BD Biosciences, UK) and placed on rotating platform therefore reducing the amount 

of antibody required. The antibody solution was removed and stored in the refrigerator 

for up to 2 days as each antibody solution could be used twice. The membrane was 

washed 6 x 5  minutes in lx TBS/Tween.

2.3.9 Secondary antibody incubation

Secondary antibody solution was made up in 1% milk (as above). 20ml of secondary 

antibody solution was added to the membrane and left on the rocker for an hour at 

room temperature. Again, the antibody solution was removed, stored and the 

membrane was washed 6 x for 5 minutes in lx TBS/Tween.
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2.3.10 Developing films from the membranes

The membrane was placed into a plastic wallet in a developing Hypercasstte™ 

(Amersham, UK) removing excess liquid from around the membrane using small 

pieces of blue roll (Newhall Janitorial, UK). In a dark room, ECL (enhanced 

chemiluminescence reagents; ECL Plus Western Blotting Detection Reagents, 

Amersham, UK) were made up -  50parts reagent A to 1 part reagent B. 1ml of ECL 

solution was added to the membrane, allowed to incubate for 3 minutes and excess 

solution around the membrane was removed. The membrane was then covered by the 

plastic wallet, removing all air bubbles. A Hyperfilm™ (Amersham, UK) was placed 

on top of the plastic wallet and the Hypercassette™ was sealed for either 2, 5, or 10 

minutes. The film was then removed form the cassette and put into a developing 

solution (Photosol Ltd, UK) for 3minutes followed by a fixing solution (Photosol Ltd, 

UK) for 3 minutes. The film was then rinsed in water and dried using a RCD3200 print 

dryer (Durst, Germany).

2.3.11 Stripping membrane

Once the initial western blot was completed the membrane was re-probed with an 

Actin antibody (1-19, Santa Cruz, USA). To do this the membrane was first stripped by 

washing the membrane for 2 x lOminutes with a medium strength stripping buffer 

(composition appendix 1). The stripping buffer was poured away and the membrane 

was washed twice with lx PBS for 10 minutes each.

2.3.12 Re-incubation with Actin antibody

After stripping and washing with lx PBS the membrane was washed with lx 

TBS/Tween. The methods in 2.4.7 to 2.4.10 were then repeated using the actin 

antibody to confirm concentration of samples was equal.



2.3.13 Western Blotting Analysis

Films containing the results from the western blots (carried out in triplicate) were 

scanned into the computer using an Epson Expression 1680 Pro (Office Direct, UK). 

The images were saved using the software obtained with the scanner and then opened 

in the software Labworks™ (Media Cybernetics, UK). Densitometry analysis was then 

carried out by obtaining numerical values for the intensities of each of the bands 

observed. The results were then imported into Microsoft® Excel (Microsoft, USA) and 

the intensities of the experimental bands were normalised to the band intensities 

obtained in the corresponding reprobe using Actin. The mean band intensities 

(normalised) for each protein at each time point were calculated along with the 

standard error. Statistical analysis was then carried out to identify any significant 

difference of protein expression between developmental stages using one-way 

ANOVA with Tukey’s post-hoc test.

2.4 Histology

2.4.1 Preparing tissue for histology

The embryo heads were collected and placed in lxPBS as stated in 2.1.2 and were then 

only dissected further only if they were over E8 (H&H 34). E6 (H&H 29) heads were 

embedded whole. At E8 or over the eyes were removed from the surrounding tissue. 

The posterior half of the eye was then removed using bow sprung dissecting scissors, 

therefore allowing easier penetration of the fixative and wax into the lens. The tissue 

from this point on was treated the same no matter what the developmental stage. Once 

the tissue was dissected as necessary it was fixed in 4% PFA (Paraformaldehyde 

purchased from Sigma, UK), made as described in appendix 1, and stored in the fridge 

overnight. The 4% PFA was removed (taking care to put the PFA into a glass storage 

bottle marked for chemical disposal) and the tissue was washed 3x 30minutes in lx 

PBS. The tissue was then placed in 50% ethanol (Sigma, UK) and stored overnight. To 

continue dehydration, the tissue was washed in fresh 50% ethanol for 30 minutes and
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then 2x 30 minutes each of 70, 90 and 100% ethanol. The tissue was then transferred to 

small glass containers and washed 2x 30 minutes in 50:50 ethanol: xylene followed by 

2x lhour washes in xylene (Sigma, UK). The tissue was then placed in molten wax 

(RALamb, UK) and stored in the oven for 30 minutes before being transferred to fresh 

glass containers of molten wax and soaking overnight in a 60°C oven (Weiss 

Gallenkamp, UK).

2,4,2 Embedding tissue

Following incubation overnight in molten wax the tissue samples were removed 

individually using tweezers and placed into a mould tray (Disposamould, RALamb, 

UK) full of molten wax. Once the tissue was orientated as shown in image 2.5, below, 

a paper tab was added to the wax giving details of the age of tissue and date of 

collection, the tab was placed on the side of the wax block the lens was facing and 

fixed in place with an embedding ring (RALamb, UK). The tray was placed on a cold 

plate (RALamb, UK) and the wax was allowed to set. After ~30 minutes the mould 

trays containing tissue were placed overnight in the refrigerator allowing them to 

completely harden. The wax blocks were then removed from the mould trays and 

stored at room temperature until use.

Direction of sectionii

Figure 2.5 Diagram of the orientation of the tissue within a wax block.

2.4.3 Sectioning tissue

Excess wax was removed from wax block using a Gem Razor Blade (LabX, USA) 

leaving around 0.5cm of wax surrounding the tissue. The wax block was then 

positioned on the microtome (HM325, Microm, Germany) and thick sections (~30pm)

W ax block mount.
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of wax were removed from the top of the block, until tissue was revealed, using a 

microtome blade (Nakura systems, Japan). Just before sectioning the lens, the 

thickness of the sections was reduced to 7pm. Sections containing lens tissue were then 

placed on cold water to ensure there were no air bubbles before being transferred via 

slide to a warm water bath (RALamb, UK), containing a solution of 20mls Mayers 

Albumen (Histolab, Gothenburg) in boiled water, where any folds or waves in the wax 

would soften away. Once the wax sections had warmed they were lifted from the water 

bath using a clean Histobond slide (RALamb,UK) ensuring that the sections were flat 

and that there were no air bubbles. Excess water/solution was removed from the slide 

using soft tissues and the slide was placed on a Photax dishwarmer 2 (Photax, UK) at 

40°C for a few minutes evaporating the water. Once the slides were dry notations were 

made on the slide stating the age of lens, date, slide number and thickness of section. 

The slides were stored in a slide container until use.

2.4.4 Selecting sections/ slides for staining

Slides were chosen for each developmental stage. These were judged by eye under a 

Olympus BH-2 light microscope. If the lens was in the right orientation when fixed, 

the sections at each stage with the largest lens gave a cross-section through the centre 

of the lens showing the equatorial region and the OFZ (if formed).

2.4.5 Haematoxvlin and Eosin Staining

Haematoxylin and eosin stains were used to highlight lens morphology. The selected 

slides were placed in slide holders and dipped in 2x 5minutes xylene, then decreasing 

concentrations of IMS (Industrial Methylated Spirit purchased from Fisher Scientific, 

UK) 2x 5minutes 100% followed by 2 minutes 90%, 70, 50% IMS followed by 2 

minutes in water. The slides were placed in Haematoxylin (RALamb, UK) for 3 

minutes then placed in a bowl of gently running tap water until the water ran clear 

(~4minutes) the slides were then placed for 2 minutes in Eosin (RALamb, UK) before 

again being washed in a bowl of gently running tap water. Once the water ran clear the 

sections were dehydrated using fresh containers of IMS at the above concentrations for 

the same lengths of time but in reverse order, finishing in fresh containers of xylene.
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The xylene containing the slides was transferred to a mounting hood where all 

mounting was carried out. Slides were removed from the xylene containers one at a 

time and the excess xylene was removed with tissue. Depending on the number of 

sections on a slide, between 1-3 drops of DPX (RALamb, UK) was placed onto a 

coverslip (Fisher Scientific, UK). A slide was then gently placed on top of the 

coverslip, at an angle therefore producing fewer air bubbles. The slide and cover slip 

were immediately turned over and any remaining air bubbles are teased out by 

applying gentle pressure to the coverslip. The slides were then left under the mounting 

hood overnight before being viewed under the Leica DMRA2 microscope (Leica, UK). 

Images were recorded using the Leica software.

2.4.6 Peroxidase staining

The wax clearing, hydration, dehydration and mounting stages are the same as stated in 

2.4.5., above.

Before wax clearing and hydration, 15mls of Antigen Unmasking Solution (Vector 

Labs, Peterborough, UK) was added to 1600mls of distilled water and placed in a 

pressure cooker and heated on a heating block until it boiled. Once the solution was 

heating, selected slides were cleared of wax and hydrated as above. The slides were 

then transferred to a metal holder and stored in distilled water (ensuring the slides did 

not dry out at any point) until the Antigen Unmasking Solution was boiling. Once 

boiling the slides were transferred to the solution and, once pressurised, timed for 1 

minute. After the cooker cooled the slides were stored in distilled water until they were 

individually removed, excess water dried from the slide and using a PAP pen (a 

hydrophobic marker pen, Vector Lab, UK) a circle was drawn around the sections on 

the slide. The slide was then placed in a moisture chamber and the area circled on the 

slide was filled with PBS (again ensuring the sections never dried out). This area was 

then filled with a quench solution, 1:1:8 parts Methanol: Hydrogen Peroxide (Fisher 

Scientific, UK): distilled Water, for 5 minutes. The slides were then washed 3x 

5minutes in lx PBS before blocking with Goat Serum (Vectorstain ABC elite Kit, 

Vector Lab, UK), 150pl in lOmls PBS for lhour. Excess goat serum was removed 

from the slides before incubation with the Primary Antibody. After optimisation it was
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found that all antibodies worked well at room temperature, incubating for 4hours at 

concentration of: primary antibody: lx  PBS, TRAIL 1:300, TRAF2 1:250 and TRAF3 

1:350, all antibodies were purchased from Santa Cruz Biotechnology Inc, USA. After 4 

hours the primary antibody was removed by washing for 3x 5minutes in lx PBS. 

Again, after optimisation it was found that the secondary antibody worked best for 

TRAIL at 1:750, TRAF2 at 1:1000 and TRAF3 1:750. The sections were incubated 

with secondary antibody at room temperature for lhour before being washed for 3x 

5minutes in lx PBS. Vectrastain Elite ABC Reagent (Vector Lab, UK) was then added 

to slides for 30 minutes before the sections were again washed for 3x 5minutes in lx 

PBS. Very intense purple (VIP) peroxidase (Vector Lab, UK), composition in 

appendix 1, was added until the appropriate intensity of staining developed 

(~2minutes). The sections were dehydrated, dried, mounted and images were taken as 

in 2.4.5.

2.4.7 Immunofluorescence

The wax clearing, hydration, antigen retrieval and slide preparation (PAP pen) were 

carried out as stated in 2.4.5. Sections were then incubated for 1 hour in 1.5% Goat 

Serum (Vector, UK) in lx PBS containing 0.2 % Tween20 (Sigma, UK). Excess 

serum was removed from the slides before the primary antibody was added (diluted in 

lx PBS containing 0.5% goat serum and 0.05% Tween20). The primary antibody was 

left overnight at 4°C before being washed with lx  PBS for 3 x 5 minutes. The sections 

were then incubated with 1:1000 Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen, 

UK) diluted in lx PBS (containing 0.5% goat serum and 0.05% Tween20) and 3ul/ml 

of Hoescht 33342 (Invitrogen, UK) was also added. The sections were incubated with 

the solution for 1-2 hours in the dark, before being washed with lxPBS 3x 5minutes 

and were then mounted using Vectrashield (Vector, UK). The slides were then left 

under the mounting hood overnight (in the dark) before being viewed under the Leica 

DM6000B microscope (Leica, UK). Images were recorded using the Leica AF6000 

software.



2.5 Organ Culture

2.5.1 Preparing Medium

Medium for organ culture was prepared under sterile conditions in a Hera Safe 

D3505cell culture hood (Thermo Electro Corporation, UK). All solutions used to make 

the medium were passed through a 0.2pm filter (Triple Red, UK) before addition. Two 

solutions of medium were prepared, one with glucose (Sigma, UK) and one without. 

The 199 Medium (Gibco, UK) was placed in a water bath (Jencons Pis, UK) at 37°C 

until warmed. The solution for Medium with glucose was 106.13mls Medium 199, 

670ul Glucose, 12mls FCS (10% total vol.) (Sigma, UK), 1.2 mis (1 in 100 dilution) 

solution of penicillin (Penna-lOOmu, Sigma, UK) and streptomycin (s-6501, Sigma, 

UK) (composition of solution in appendix l.xxii).The solution for Medium without 

glucose was 106.8mls Medium 199, 12mls FCS and 1.2 mis pen-strep. When putting 

medium onto lenses the medium was warmed in the water bath before use. After use 

the medium was sealed before being stored in a refrigerator.

2.5.2 Preparing Tissue

Whole eyes at E10 were removed as stated in 2.1.2 (being careful not to damage the 

eye) and they were placed in sterile PBS on ice. The eyes were then transferred to a 

sterile Petri dish containing a 1: 8 solution of Betadine (Seton Healthcare Group, UK) 

in distilled water. The Petri dish was sterilised with ethanol and placed under the cell 

culture hood. Within 2-5 minutes the eyes were transferred into a sterile 50ml pot of 

sterile lx PBS this was repeated twice to remove the betadine. Individually the eyes 

were removed to a sterile Petri dish of lx PBS and the lens was dissected as required. 

Three different dissections were carried out, while maintaining the sterile environment. 

Lenses were either removed with the iris and vitreous attached, with only the vitreous 

attached or the lens was dissected without any of its surrounding tissue. Once dissected 

using sterile implements the tissues were placed in either medium with or without 

glucose. Once all dissection had been completed the tissue/ organ was placed in 

individual wells of a culture plate containing 1.5mls of either medium with or without
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glucose. The cultures were then transferred to a Biohit incubator (Wolf Labs, UK) at 

37°C and with 0.5% C02.

2.5.3 Assessment of tissue quality

After incubation for 4 hours, cultures were checked under a microscope for 

opacifications which would indicate that the lens had been damaged during dissection. 

If opacifications were observed then the lens was disposed of. The cultures were then 

returned to the incubator.

2.5.4 Tissue collection

Every 2 days, for a total 8 days, 3 replicates of each of the 6 different cultures (with or 

without glucose in the medium, with iris and vitreous, with vitreous or lens alone) were 

taken from culture. The remaining cultures were placed in fresh, sterile and warmed 

mediums and replaced in the incubator. The lenses collected were photographed under 

dark field using a Leica MZ10F microscope (Leica, UK).

2.5.5 Analysis of cultured lens opacities

The images of the cultured lenses were then placed in Scion Image software and the 

opacity of the lens measured. This was done by measuring the intensity of the lens 

image in three places; the centre, the periphery and the centre of the radius of the lens. 

The background reading of the image was subtracted from the average of the above 

three readings to give an idea of the overall opacity within the lens. The final amounts 

were then converted into a reading between 0 and 5, where 0 was no opacity going up 

to five where there was the most extensive opacification.

2.5.6 Fixing cultures

After photography the lenses were immediately placed in 4% PFA overnight and then 

transferred to fresh tubes containing lx  PBS, after 30mins the lenses were placed in
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eosin for 10-15 seconds (very light stain) to allow the lenses to be orientated and 

embedded correctly. The lenses were then washed 3x 30mins in lx PBS before 

dehydration, embedding, sectioning and selection of tissue was carried out as stated in 

sections 2.4.4.

2.5.7 Haematoxylin and Eosin Staining

To characterise the morphology of the lens cultures haematoxylin and eosin staining 

was carried out as stated in 2.4.5. Images of the sections were taken using the Leica 

DMRA2 microscope (Leica, UK). Images were recorded using the Leica software and 

the sections photographed from the centre of the lens (the largest lens sections) were 

then used to take measurements of the lens using using Image-Po Plus (Media 

Cybernetics, UK). The length and height of the whole lens was taken and where 

appropriate (after the development of the OFZ at E l2) the size of the OFZ was 

measured as well as the distance of the OFZ from the anterior and posterior of the lens 

was taken to measure any variations in the development of the lens in culture. A 

diagram showing the measurements taken can be seen in Chapter 5, figure 5.2.



Chapter 3:
TNF family member 

expression in developing 
Chick Lens



3.1 Introduction

In 1998, Wride and Sanders characterised the expression of TNFa and its receptors TNFR1 

and TNFR2 in the developing chick lens (Wride & Sanders, 1998). Since then, no research 

has been carried out to identify the TNFs and associated family members found in the chick 

{Gallus gallus) lens. Primers for all TRAFs and TRAIL were designed as stated in the general 

methods section 2.2.6. Briefly, the sequence of selected genes identified in Gallus gallus were 

placed in the primer3 online program where primers can be designed from published DNA 

sequences.

Embryonic stages (on even days) from E6 to E l6 were used to examine the gene 

expression of TRAIL and TRAFs in the lens. From previous studies, it is known that organelle 

degradation, accompanying fibre cell differentiation, begins at around E l2, though 

mitochondrial fragments have been noted as early as E8 (Bassnett & Beebe, 1992). Also at 

E8, nuclei in cells at the centre of the lens condense. At E10, mitochondria are noticeably 

enlarged and, from E l2, both nuclei and mitochondria are absent from the cells (Bassnett & 

Beebe, 1992). The ER has been shown to be removed at around the same time as nuclei 

(around E l2) but the Golgi apparatus fragments much earlier, when the cells begin to 

differentiate at the equatorial region (Bassnett, 1995). As these organelles degrade and the 

OFZ forms, it has also been found that transcription ceases, forming an “RNA-depleted zone”, 

first identified at E l3 by Faulkner-Jones et al. (2003).

The development of the OFZ is a key part of lens development and without this region 

light is scattered as it enters the lens, inhibiting the progress of the light onto the retina. The 

organelle degradation, which allows light to pass through the lens, was suggested to be similar 

to an attenuated from of apoptosis (Dahm, 1999), but it has also been published that the 

ubiquitin-proteasome pathway is required for lens proliferation and differentiation (Shang et 

al., 1999). There is recent data showing relationships between TNF family members and 

ubiquitination (Wertz & Dixit, 2008). Though the molecular pathways involved in lens 

development/ differentiation have not been elucidated, it is shown here that TNFs and related 

family members, known to be involved in apoptosis signalling pathways, have been identified 

in the developing chicken lens.

The aim of this chapter is to determine whether TRAIL and the TRAFs are present in 

the developing chick lens using semi-quantitative RT-PCR.



3.2 Experimental design

The experimental design has been discussed in greater detail in subchapter 2.2. Briefly, RNA 

was collected from lenses of chick embryos on even days of development from E6 to E l6. 

The RNA samples were purified using SV Total RNA Isolation system resulting in the 

removal of genomic DNA. cDNA was then synthesised from the RNA using Superscript™ II 

Reverse Transcriptase kit (Invitrogen, Paisley, UK). The RT and no-RT samples produced 

using the kit were used in semi-quantitative PCR reactions using the primers designed as 

stated in section 2.2.6. The primers were resuspended in volumes of sterile TE buffer. Once 

resuspended, the primers were run on an agarose gel to check their concentrations. When 

visualised, the primers were diluted as necessary and rerun on a gel to confirm that they were 

of equal concentration.

Each set of samples were initially normalised using the housekeeping gene Glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH). This housekeeping gene is an evolutionarily conserved 

glycolytic enzyme, expressed in all organisms and most cells. It is involved in glycolysis and 

also in DNA base excision repair. It has a low variability in expression, which makes it a 

better housekeeping gene than actin (Hirono et al., 2000). After normalisation, sample sets 

were then used in experimental PCRs. PCRs were replicated three times with different cDNA 

samples collected from separately obtained sets of pooled lenses. The products of the PCR 

reactions were visualised on an agarose gel and the intensities of the bands were quantified 

using Scion image software (Freeware). The three replicates gave confirmation of gene 

expression for the genes examined and also the variation involved in the PCRs. This approach 

accounted for both biological and experimental variation.

3.3 Integrity of RNA samples

Once lenses were pooled and RNA isolated, the integrity of the sample was examined by 

running an aliquot of the sample on a formaldehyde denaturing gel as described in the general 

methods 2.2.3. If RNA was intact, the RNA produced two distinct bands on the denaturing 

gel. The higher band, the 28S ribosomal band should be brighter by a ratio of 2:1 to the lower 

18S ribosomal band. Examples of RNA samples obtained are shown in figure 3.1. Any 

samples showing a smear were discarded as they were degraded.
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Figure 3.1 Image of RNA denaturing gel.

This RNA was collected on alternate days for six days and stored short-term at -20°C. The 

longest length of storage for RNA was 8 days before DNase digestion was carried out this was 

followed by synthesis of cDNA and the reverse transcriptase (RT) reaction, using the 

Superscript II kit. Though the concentration of RNA was calculated (as described in 2.2.3), 

variations in the RT step efficiency lead to inaccuracies that make true quantification 

impossible using this method. Semi quantitative RT-PCR will only produce information on 

the relative changes in gene expression, when levels of expression are normalised with respect 

to a housekeeping gene, such as GAPDH.

3.4 PCR primer optimisation

Before gene expression could be quantified via RT-PCR, the primers used were optimised by 

finding the most favourable conditions, including concentration of MgCb (which influences 

the productivity and fidelity of the polymerase); this was done by carrying out a titration of 2, 

4, 6 and 8pi of 25mM MgCh (results not shown). The optimum annealing temperature was 

also established by trying various temperatures between 55 and 68°C (results not shown). An 

E l2 sample was selected to plot annealing temperatures and also to obtain the most suitable 

cycle number. To insure that the expression levels found using RT-PCR were of quantifiable 

intensity an increasing number of PCR cycles was used to produce a standard curve.
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Figure 3.2 Shows PCR standard curves for selected genes. In the TRAIL standard curve 
the arrows from the bands point to their corresponding points in the graph.

Standard curves (shown in figure 3.2) were completed for all genes, shown in figure 3.3, 

below. The PCR reactions were carried out at different cycle numbers to produce the standard 

curves shown above each graph. The visualised PCRs were then quantified using Scion Image 

and a graph of the resulting band intensities plotted. The PCR cycle number used in all 

subsequent reactions was selected from the lower region of the exponential phase of the curve.
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The selection of the cycle number meant that the gene expression studies would not be 

incorrect from over-bright (bleached) bands. From the results, the cycle number used for each 

set of primers was selected and is shown in table A.2.1 of appendix 2.

3.5 Semi-quantitative RT(reverse transcriptaseVPCR.

Semi-quantitative RT-PCR was undertaken with sets of samples normalised as 

described above and in chapter 2.2.10.

N o RT
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Figure 3.3 Semi-quantitative RT-PCRs with no RT controls are representative of 
the three replicates of PCRs gained form each set of primers.

3.6 Analysis of Semi-quantitative RT-PCR.

The analysis of the differential expression of genes was undertaken using the 

housekeeping normalisation method stated in section 2.2.10. Briefly, in Scion Image, 

the background was measured and subtracted from the band intensities measured. The 

band intensities were then normalised with respect to GAPDH. The mean and the
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standard error of the mean for the three replicates for each of the PCRs were calculated 

and graphs are shown in figure 3.3. The densitometry table for these results is shown in 

table A.2.2, appendix 2.
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Figure 3.4 Graphical representation of RT-PCR results obtained. These graphs show the 
results of the mean from PCR reactions carried out in triplicate. The error bars shown represent the 
standard error of the mean.



3.7 Statistical analysis of RT-PCR

Table 3.1 TRAF1 results of Tukeys post hoc test. Highlighted values show p values

E6 E8 E10 E12 E14 E16
E6
E8 pO.OOl

E10 1.00 pO.OOl
E12 0.89 p<0.001 0.76
E14 0.99 pO.OOl 0.94 1.00
E16 0.17 pO.OOl 0.11 0.66 0.42

Table 3.2 TRAF2 results of Tukeys post hoc test. Highlighted values show p values 
indicating significant differences between timpoints. ________________

E6 E8 E10 E12 E14 E16
E6
E8 0.38

E10 0.09 0.91
E12 0.56 1.00 0.76
E14 p=0.04 0.70 1.00 0.51
E16 pO.OOl 0.09 0.37 p=0.05 0.62

Table 3.3 TRAF3 results of Tukeys post hoc test. Highlighted values show p values

E6 E8 E10 E12 E14 E16
E6
E8 0.99

E10 p=0.02 p=0.01
E12 pO.OOl pO.OOl 0.36
E14 pO.OOl pO.OOl pO.OOl pO.OOl
E16 pO.OOl pO.OOl pO.OOl pO.OOl 1.00

Once normalised to GAPDH, statistical analysis was carried out on the PCR results. 

One-way ANOVA with Tukey's post-hoc test was used to detect any significant 

changes in expression between the developmental timepoints used. All of the analysis 

can be found in appendix 2 and from this it was found that TRAF1 had significantly 

increased expression at E8 that was significantly different to any other time point (p< 

0.001). TRAF2 expression at E6 was statistically higher than that at E14 and E l6 

(p=0.04 and p< 0.001 respectively). TRAF2 expression at E12 was also shown to be 

statistically higher than at E l6 with a p value of 0.05. TRAF3 expression at E6 and E8
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were not significantly different from each another; this was the same for the pair E10 

and E l2 and also pair E14 and E l6. There was a significant difference of expression 

found between these sets increasing as development continued as shown in table 3.3, 

above. TRAIL, TRAF4 and TRAF7 were found not to have any statistically significant 

difference in expression.

3.8 Discussion

The semi-quantitative PCRs confirmed the expression of the genes shown in figure 3.3. 

Of those genes shown to be differentially expressed using semi-quantitative RT-PCR, 

TRAF1 was shown to have significantly increased expression at E8. At this stage in 

development, the earliest signs of organelle degradation can be seen such as 

mitochondrial debris.

TRAF2 had significantly decreased expression at E14 and E l6 compared to at 

E6, it is possible that this suggests a role for TRAF2 in the maintanence of the cells, 

specifically in the maintenance of the organelles. It is known the deficiences in TRAF2 

expression lead to an increase in apoptosis (shown in knockout mice) and in 

lymphocytes TRAF2 is involved in anti-apoptotic signals (Lee et al., 1997). It can be 

suggested that the decrease in TRAF2 expression in the developing lens may indicate 

that survival/ maintenance signals are reducing allowing the signalling for the 

degradation of the organelles, which is known to be evident in the mitochondria by E8, 

to become active.

TRAF3 had statistically increasing expression at E10, which then increased 

again at E l4. The continued increase in expression of this gene around the 

development of the OFZ could suggest a role in maintenance of the fibre cells once the 

OFZ begins to form. The increase in expression corresponds to the start and increase in 

size of the OFZ. The knowledge of the role of TRAF3 is limited though it is thought to 

be involved in B cell development and survival (Xu et a l , 1996) which suggests that 

the role of TRAF3 proposed here is plausible.

The developmental time points used were chosen to show genes expressed 

around the stage in lens development where organelle degradation is initiated and the 

genes above were found to be differentially expressed in the lens at these
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developmental time points. However, these results do not confirm that they have 

significant roles in formation of the OFZ and the possible roles suggested above are 

hypothetical. These genes could be found in any or all regions of the lens and there is 

the possibility of their involvement in numerous other processes such as maintenance 

or remodelling of cell membranes at the equatorial region of the lens where epithelial 

cells begin to differentiate, proliferation or many other aspects of lens development. 

Semi-quantitative RT-PCR shows the expression of the genes at the developmental 

timepoints examined, but does not confirm the region of expression within the lens nor 

can it confirm that these genes are translated into proteins, which carry out the required 

functions within the cell. Protein studies including western blotting and 

immunohistochemistry, carried out in the next chapter for a selection of genes, will 

give insight into whether the corresponding proteins are expressed during the 

developmental timepoints studies and also supply information on the spatiotemporal 

pattern of expression and nature of the sub-cellular localisation of the proteins, further 

elucidating any potential roles for the genes.

All genes in the table shown in appendix 2, table A2.1, were expressed in the chick 

lens during development. Due to time, financial constraints and experimental 

problems, such as multiple bands (TRAF5) and degradation of the primers (TRAF6), 

not all PCRs were completed at all time points examined or in triplicate. Therefore 

these results were presented in appendix 2, table A.2.23. Future experiments may find 

statistically significant expression in these genes and other TNF-related factors not yet 

shown to be present in the lens during development.



Chapter 4: 
TNF-related factors in the 
Developing Chick Lens: 

Spatio-temporallv Regulated 
Expression of TRAF2, 

TRAF3 and TRAIL proteins



4.1 Introduction

Following the semi-quantitative RT-PCR in the previous chapter, TNF-related genes 

with interesting, statistically significant, differential expression were chosen for further 

study at the protein level.

TRAF2 is described in detail in section 1.12.2. Briefly, TRAF2 is one of the 

most highly studied members of the TRAF family and is important in many TNFR 

signalling pathways initiating downstream signalling that can activate transcription 

factors from the NF-kB family and either JNK or p38 though MAP kinase cascades 

(Song et al., 1997). TRAF2 is known to initiate anti-apoptotic signals when the TNF 

pathway is activated and it is thought that the pathway is independent from NF-kB, 

though this pathway and the NF-kB anti-apoptosis pathway working in synergy are 

much more effective (Lee et al., 1998).

TRAF3 (described in section 1.12.3) was first identified by its ability to bind to 

the cytoplasmic tale of TNFR and for many years its functions were unclear. Since the 

turn of the century, it has been found that TRAF3 negatively regulates the N F - kB  non- 

canonical pathway (Liao et al., 2004), though TRAF3 is known to have a number of 

splice variants that can induce N F - kB  activation (van Eyndhoven et al., 1999b). 

TRAFs are also required in the production of type 1 interferon via a number of the 

viral recognition pathways (Saha et al., 2006).

TRAIL/ Apo2L is a type II transmembrane protein that initiates apoptosis when 

it binds to its active, non-soluble death receptors (DR4 and DR5). The death domain on 

these receptors then engages the cytoplasmic protein FADD (Fas associated death 

domain) and caspase-8, which forms the DISC (death inducing signalling complex) 

(Kamradt et al., 2005). Caspase 8 proteolyses and then activates other caspases, which 

are termed effectors, such as caspase 3, 6 or 7. TRAIL’S selective induction of 

apoptosis in a wide range of cancer cells (which most normal adult cells can resist) has 

made it popular in anticancer therapy research (Sayers & Murphy, 2006). Though 

TRAIL was not found to have differential expression during the stages of lens 

development studied during PCR, research by (Jordan et al., 2001) highlighted TRAIL 

expression in cultured human lens epithelial cells (hLECs) with possibilities discussed 

for future use in PCO therapies. Only RT-PCR was carried out in the 2001 study
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(Jordan et al., 2001) leaving the question of the nature of TRAIL protein temporal and 

spatial expression in the lens unanswered.

The aim of this study is to show, for the first time, the protein expression of 

TRAF2, TRAF3 and TRAIL in the developing chick lens, there has been very limited 

information published of the expression and roles of these factors during embryonic 

chick development. The methods used were western blotting, which gave the intensity 

of protein expression at the same developmental time points used for PCR, and 

immunohistochemistry and/or immunofluorescence, which revealed the localisation of 

the corresponding antigen of the protein within the lens.

4.2 Experimental Design

Both western blotting and histology were carried out on lenses taken from the same 

time points as in the previous chapter (ED6, 8, 10, 12, 14 and 16). Western blotting 

analysis was used to show the temporal protein expression of TRAF2, TRAF3 and 

TRAIL in the developing chick lens. Immunohistochemical studies were also 

undertaken to elucidate the localisation of the above proteins at the selected time 

points.

All three antibodies used in this study were purchased from Santa Cruz, USA 

and were raised in rabbit. When selecting antibodies available for purchase the limiting 

factors included whether antibodies for the genes were available to purchase and if 

those antibodies were likely to work on Gallus gallus samples. To assess whether 

antibodies were likely to be appropriate for use in the chick, BLAST analysis was 

undertaken and comparisons between the chick and antibodies’ animal of origin were 

made. BLAST alignments with 80% identity or greater were accepted as more likely to 

be successful. On this basis, three proteins of interest were suitable for further analysis: 

TRAF2, TRAF3 and TRAIL.

The two main methods used in this chapter were western blotting and 

histology; their methodologies have been explained in detail in sections 2.3 and 2.4, 

respectively. They will only be briefly described below.



4.2.1 Western Blotting
Western blotting showed the protein expression of the selected genes at the developing 

stages (E6 to E l6) of the chick lens. Lenses were collected, pooled together and 

homogenised in a solution of dilute RIPA buffer and Protease Inhibitor Cocktail. The 

protein samples were then quantified using a BCA assay kit. The samples were diluted 

so each aliquot contained 10pg/ 4pl of protein. Three sets of samples were collected so 

as to insure reproducibility. Protein samples were run on denaturing polyacrylamide 

resolving gels in order to separate the protein content according to size. The protein 

bands were then transferred onto a nitrocellulose membrane using electrophoresis. The 

membrane was blocked with 3% semi-skimmed milk and then incubated with the 

primary antibody at a dilution of TRAF2 1:3000, TRAF3 1:2500 and TRAIL 1:1000, 

followed by the secondary antibody at a dilution of 1:10000 for all the primary 

antibodies. Between incubations, the membranes were thoroughly washed with 3% 

skimmed milk for 5 minutes, 3 times each. The membranes were then incubated in an 

ECL solution and a film was exposed to the membranes for between 2 and 10 minutes. 

The film was then placed in developer followed by fixer and allowed to air dry. After 

exposure of the membrane to film, the membrane was chemically stripped to remove 

the antibodies. Membranes were subsequently re-probed using an actin antibody raised 

in Donkey (which ensured that no previously used, i.e. rabbit, antibody was detected) 

at a dilution of 1: 2500 followed by an anti-donkey secondary at a dilution of 1:10000. 

The resulting film was developed and was used to confirm equal loading and for 

normalisation during analysis. The films were scanned into a computer (using an 

Epsom Expression 1680 Pro scanner) and band intensities were analysed using 

Lab works™ software (Media Cybernetics, UK). The data, collected in triplicate, were 

normalised against actin and statistical analysis was carried out to identify any 

significant changes in expression using a one-way ANOVA with Tukey’s post-hoc 

test.

4.2.2 Subcellular Fractionation
In order to determine in which sub-cellular compartment the TRAF3s’ isoforms were 

present, subcellular fractionation was carried out on pooled E l6 lenses and samples 

were collected for; the whole homogenate, nuclear, post-nuclear, cytosol and the final
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sample contained membrane, mitochondria and cytoskeleton. This method was used to 

determine in which sub-cellular compartments TRAF3 was found. A diagram of the 

protocol is shown on page 58, figure 2.4.

4.2.3 Histology

Section 2.4 explains the histological methodology in detail, but briefly, eyes were 

collected from chick embryos at even days of development from E6 to E l6. The eyes 

were washed in ice cold lxPBS and the back half of the eye was removed using 

dissecting scissors. The eyes were fixed overnight in 4% Paraformaldehyde in PBS, 

dehydrated using 2 washes of 30 minutes each of 50, 75, 90 and 100% IMS followed 

by washes of a 50:50 mix of IMS: xylene. Two washes of pure xylene, lasting 30 

minutes each, were undertaken before the tissue was placed in molten wax. After 30 

minutes, the wax was changed and the eyes were left in molten wax overnight. The 

eyes were then embedded in blocks of fresh wax with the front of the eye facing the 

side of the block (as shown in figure 2.5). The blocks were left to harden for at least 24 

hours before the lenses were sectioned in 7pm slices onto slides using a Microm 

microtome.

Sections through the centre of the lens were selected for staining using the same

antibodies as were used in Western blotting. Paraffin wax was removed and the tissues

sections hydrated using 2x 5 minute washes of xylene followed by 100, 90, 75 and

50% IMS. The slides of sections were placed in a pressure cooker of antigen

unmasking solution (2 minutes), for antigen retrieval, and then washed in tap water for

5 minutes. The tissue was then quenched to remove any endogenous peroxidase. The

tissue was blocked in 5% BSA in PBS/Tween for 1 hour to inhibit non-specific binding

of antibody. The sections were then incubated with the primary antibody (TRAIL

1:300, TRAF1 1:250, TRAF2 1:350) for 4 hours, washed 3x 5 minutes in lx

PBS/Tween and incubated with secondary antibody for 1 hour (the secondary antibody

dilution for sections incubated with TRAIL, TRAF2 and TRAF3 were 1:750, 1:1000

and 1:750 respectively) then washed with lx PBS/Tween for 3x 5 minutes. For

peroxidase staining Vectastain Elite ABC Reagent was then added to slides for 30

minutes before VIP (very intense purple) peroxidase was added until the appropriate

intensity of staining developed (~2 minutes). The sections were dehydrated and
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mounted. Images were taken using a Leica microscope with attached digital camera 

using QWin V3 software.

For staining with immunofluorescence, a similar methodology is undertaken as 

above but without quenching and secondary antibody; Alexa Fluor 488 goat anti-rabbit 

IgG with 3|jl/ml of Hoescht 33342 at a concentration of 1/1000 was used before being 

washed and mounted using Vectrashield. Images were taken using a Leica microscope 

and AF6000 software.

In all histological experiments a negative control of Rabbit IGg was used at the 

same dilution and incubated for the same time as the primary antibodies.



4.3 Results

4.3.1 Western Blotting

4.3.1.1 TRAF2

m m 2  2  2  2
o° o  ro ^  CD

TRAF2, 50kD a.

A ctin , 43kD a.

Figure 4.1 Representative western blot of TRAF2 protein expression with actin as 
a sample loading control. Expression of TRAF2 was high at earlier timepoints (E6- 
10) which then progressively decreased at E l2 and E l4. At E l6, expression remained 
low.
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Figure 4.2 Graphical representation of densitometry results of TRAF2 protein 
expression. Expression of TRAF2 diminishes as development proceeds.

Western blots were performed in triplicate, expression of TRAF2, in the representative 

western, figure 4.3, was shown to be higher at earlier timepoints i.e. E6-10, expression 

progressively decreased at E12 and E l4, at E l6 expression remained low. Normalised 

densitometry results are shown above in figure 4.4 followed by the results of the 

statistical analysis in table 4.1.
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Table 4.1 TRAF2 p values obtained from Tukey’s post hoc test. Cells highlighted 
in yellow show values that are significantly different from each other._______

E6 E8 E10 E12 E14 E16

E6

E8 0.4

E10 0.96 0.13

E12 0.15 0.98 p=0.04

E14 pO.OOl 0.08 pO.OOl 0.24

E16 pO.OOl p=0.04 pO.OOl 0.11 1

The analysis confirmed the TRAF2 expression, shown in figure 4.3, at E6 was 

significantly higher than at E14 or E l6. At E8 expression was higher than at E l6 and 

E10 expression was statistically, significantly higher than all later days of expression 

studied. More detail of the statistical analysis can be found in appendix 3.

4.3.1.2 TRAF3

00 ro 05

TRAF3, 64kDa.
30 -  35 kDa

Actin, 43kDa.

Figure 4.3 Western blotting of TRAF3 at all developmental time points with actin 
as a loading control. TRAF3 expression at 64 kDa remains relatively constant, while 
the 30 kDa TRAF3 shows minimal expression at E6 and is then up-regulated as 
development of the lens proceeds.

TRAF3 western blots were performed in triplicate, and expression in the representative 

western, figure 4.5 and the graphical representation in figure 4.6 show that overall, 

TRAF3 expression increases as the lens develops (within the stages studied) but that 

this expression is found in two different molecular weight bands. The 64 kDa band



(shown in the datasheet of the antibody) remains relatively constant while the lower 

band, at 30 and 35 kDa, was increasingly expressed as development continued.

TRAF3 p ro te in  ex p re ss io n

^ 120 TRAF3 higher 

TRAF3 lower

8 10 12 14 16
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Figure 4.4 Graphical representation of densitometry results from TRAF3 protein 
expression. Expression of the short (30 kDa) form increases as development proceeds 
while the longer (64 kDa) form only shows minimal differences in expression.

Table 4.2 TRAF3 p values obtained from Tukey’s post hoc test. Cells highlighted 
in yellow show values that are significantly different from each other.__________

Higher band

6 8 10 12 14 16

6 1 0.63 1 0.9 1

'O
8 1 0.545 1 0.95 1

§
X> 10 0.94 0.99 0.72 0.17 0.56
<D
£
O

12 0.06 0.09 0.24 0.83 1

14 p=0.01 p=0.02 p=0.05 0.91 0.94

16 pO.OOl pO.OOl pO.OOl p=0.01 p=0.02 \
Though no statistical difference was found for the band representing full-length 

TRAF3 (64kDa), the lower weight band of TRAF3 (30- 35 kDa) had statistically, 

significantly increased expression at E l6 in comparison to all earlier developmental 

time points.TRAF3 at E14 was also found to have higher expression than at E6, E8 or



E10 as shown in figure 4.5 and 4.6. Details of the statistical analysis carried out for 

TRAF3 can be found in appendix 3.

4.3.1.3 TRAF3 Subcellular Fractionation
Western blotting of TRAF3, above, was found to have two distinct bands at 64 kDa 

and also a substantially smaller band at 30-35 kDa. This seemed very unusual and no 

research using the antibody had mentioned any additional bands. To identify the 

expression of the two bands further subcellular fractionation was carried out.
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Figure 4.5 Subcellular fractionation of TRAF3 at E16. The full-length TRAF3 (64 
kDa) is found associated with membranes and/or mitochondria, but not in the post- 
mitochondrial supernatant (cytosol), whereas the lower molecular weight isoform of 
TRAF3 (30-35 kDa), is found associated with all fractions but most highly expressed 
in fractions with higher concentrations of soluble proteins i.e. homogenate and cytosol.

Subcellular fractionation carried out on pooled E l6 lenses shows that the full-length 

high molecular weight (64 kDa) TRAF3 is found in factions containing membrane 

material and organelles, but not in the cytosol suggesting it is associated, if not bound 

to membranes. The lower molecular weight isoform (30-35 kDa) is found in all 

factions, though there is a reduced amount in the re-suspended pellets of the nucleus 

and the mitochondria and membrane debris.



4.3.1.4 TRAIL
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Figure 4.6 Western blot of TRAIL in the developing chicken embryo lens showing 
bands at 34kDa as stated on the Santa Cruz datasheet.
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Figure 4.7 Graphical representation of densitometry results from TRAIL protein 
expression. The trend is a minimal increase in expression during the developmental 
stages shown.

Statistical analysis showed there was no significant difference in TRAIL protein 

expression in the developing chick lens between timepoints though there is a limited 

increase in expression as the lens develops.

4.3.2 Histology

Prior to localisation studies, using the antibodies from the western blots, the standard 

morphology of the lens at the developmental time points selected was confirmed in 

figure 4.10 and 4.11 shown below.

TRAIL protein expression
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Figure 4.8 H and E staining at E6, E8 and E10. The#  indicates pycnotic nuclei,O 
indicate elongated nuclei and C highlight degenerating nuclei during early pycnosis.

4.3.2.1 Haematoxylin and Eosin staining



Heamatoxvlin and Eosin staining continued

Figure 4.9 H and E staining at E12, 14 and E16 The circles at the centre of the lens 
show the organelle free zone. The ̂ indicates pycnotic nuclei, Oindicate elongated 
nuclei and (£ highlight degenerating nuclei during early pycnosis.

The normal lens morphology during development was characterised through the use of 

Haematoxylin and Eosin (H & E) staining. The staining shows the morphology of 

individual cells within the various regions of the lens. The haematoxylin stains the
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nuclei displaying any changes in their presence or shape, while eosin stains the 

cytoplasm.

In general, the H & E staining shows that epithelial cells, originally cuboidal in shape, 

begin to elongate as they reach the equatorial region. In all stages of development, as 

these cells begin to elongate, the nuclei also change shape becoming elongated in the 

same orientation as the cells. At E10, some of the nuclei found at the centre of the lens 

are pycnotic in nature; this number increases greatly at E l2. At E l4, an organelle free 

zone (OFZ) is visible, which increases in size by El 6. At both E14 and E16, pycnotic 

nuclei can be seen at the border to the OFZ.



4 3 .2.2 TRAF2

TRAF2 Alexa488 TRAF2 Alexa488 and DAPI

211 295 um211 295 urn

E6TRAF2

E8 TRAF2

E10TRAF2

E10 Rabbit IGg 
control

Figure 4.10 TRAF2 staining at E6, E8 and E10 An E10 Rabbit IGg control is at the 
bottom of the panel and is negative for staining. On the left are the TRAF2 alexa 488 
images, on the right are the same images merged with DAPI staining. TRAF2 staining 
is associated with the lens epithelium at E6 (arrowhead) and then diminishes as 
development proceeds, similar to the Western blotting data (figure 4.3).
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TRAF2 continued

TRAF2 Alexa488 TRAF2 Alexa488 and DAPI

E12TRAF2

E14TRAF2

E16TRAF2

E16 Rabbit IGg 
control

Figure 4.11 TRAF2 staining at E12, E14 and E16. An E16 Rabbit IGg control is at 
the bottom of the panel. On the left are the TRAF2 alexa 488 images, on the right are 
the same images merged with DAPI staining. TRAF2 staining diminishes as 
development proceeds, similar to the Western blotting data except at E l6 where 
staining is more condensed to the equatorial region (figure 4.3).



DAPI Alexa488 Alexa488 and DAPI

E16TRAF2

61 825 pm

Figure 4.12 TRAF2 cytosolic staining at E l6. Image shows TRAF2 staining at the 
equatorial region of an E l6 lens. Staining is intense in the cytosol of the lens epithelial 
cells and in early differentiating lens fibre. There is a distinct lack of staining in the 
nuclei of both the lens epithelial cells and the lens fibre cells.

As can be seen in figures 4.12 and 4.13, using immunofluorescence, staining is seen in 

E6 lens epithelial cells, but diminishes thereafter, remaining low in the lens until later 

in development (E l6) when it is found expressed at the equatorial region. TRAF2 was 

stated to be cytoplasmic in the datasheet and literature (Horie et al., 2002); this was 

confirmed in figure 4.14 showing a lack of staining in the nuclei of differentiating cells 

in the equatorial region of an E l6 lens which is representative of a lack of TRAF2 

staining found in nuclei at all developmental time points.



TRAF2 alexa488 Alexa488 and DAPI

E10TRAF2

E12 TRAF2

E14TRAF2

E16TRAF2

E12 TRAF2 
Rabbit IGg control

2 0 6  8 4 8
Figure 4.13 TRAF2 staining of the iris and ciliary body from E10 to E16. The
symbols in the images show the iris (MR) comeal-scleral boundary(♦), ciliary body(#) and 
lens(^). Staining is found at increasing intensities in both the iris and comeal- scleral 
boundary as the development continues from E10 to E l6 there is also limited expression in the 
ciliary body.
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During analysis of the images of TRAF2 expression, it was found that, while there was 

little staining in the lens, at later stages of development there was increased staining in 

the iris and the ciliary body as well as in a region at the comeal-scleral boundary that 

could represent an early manifestation of the stem cell niche for the cornea (limbal 

stem cells). Research of past publications suggest the staining is more likely to be 

muscular as the staining is similar to that in the iris, which was identified as stromal 

muscle when comparing staining to past research (Ferrari & Koch, 1984). This can be 

seen in figure 4.15, which shows staining, in increasing intensities, from E10 (where 

TRAF2 expression is first seen at the tip of the iris) to El 6 where intense expression of 

TRAF2 has developed throughout the iris. At stages prior to E10, there was no TRAF2 

staining visible. At E10, the first suggestion of staining is seen at the base of the 

comeal-scleral boundary (red diamond) and in the presumptive ciliary body (red circle) 

and in the developing iris (yellow arrow) mostly found at the tip of the iris, which 

extends over the anterior of the lens as development continues. Staining at E l2, shows 

a larger and slightly more intense stain at the comeal-scleral boundary (red diamond) 

and in the developing ciliary muscle (red circle) and also on the edge of the tip of the 

iris (the sphincter of the iris; yellow arrow). At E l4, staining is present in a distinct 

‘crescent’ shape throughout the ciliary body (above red circle), while the staining in 

the iris is no longer present at the sphincter and is now found throughout the stroma, 

though is still more highly expressed towards the tip of the iris (yellow arrow). 

Staining also becomes much more intense at the comeal-scleral boundary (red 

diamond). At E l6, the staining at the comeal-scleral boundary gains in intensity with 

more condensed and higher expression at the end closest to the cornea (red square). In 

the iris, the staining is still intense at E l6 though it is more evenly expressed 

throughout the stroma (yellow arrow), while TRAF2 expression in the ciliary muscle is 

more diffuse (red circle).



4.3.2.3 TRAF3

TRAF3 alexa488 Alexa488 and DAPI

E6

E8

E10

E10 Rabbit IGg

Figure 4.14 Immunofluorescent staining of TRAF3 at E6, 8 and 10 with a Rabbit 
IGg control of an E10 section. Staining is found throughout the E6 lens but with more 
intensity at the anterior. Staining intensity decreases and at E10 can be seen in the 
differentiating fibre cells.
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TRAF3 continued

TRAF3 alexa488 Alexa488 and DAPI

E12

E14

E16

E l6 Rabbit IG

Figure 4.15 Immunofluorescent staining of TRAF3 at E12, 14 and 16 with a 
Rabbit IGg control of an E16 section. The intensity increases as development 
continues from E12 to E l6. The staining is highly visible in the differentiating 
secondary fibre cells before they cross the boundary into the central fibre cell mass, at 
this point there is a clear decrease in staining which is visible as a darker circle at the 
centre of the lens.
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TRAF3 alexa488 Alexa488 and DAPI

Figure 4.16 Immunofluorescent staining of TRAF3 at E14. Staining is clearly 
cytosolic (as indicated by the lack of nuclear staining) and ubiquitous, being absent 
only from the centre of the lens where the OFZ is forming.

In figures 4.16 and 4.17, the localisation of TRAF3 can be seen as the lens 

develops. At E6, staining was slightly more intense at the anterior of the eye. At E8, 

staining intensity has reduced. At E10 there appears a large area at the centre of the 

lens that contains considerably less staining than that found within the newer 

differentiating fibre cells, prior to their incorporation in to the central fibre cell mass, 

and the epithelial cells. As the lens develops the staining in the lens progressively 

increases while maintaining the same localisation. At E l6, the brightest staining is 

found in the same location; i.e. the cortical fibre cells while absent from the central 

fibre cell mass.



4 3 .2.4 TRAIL
TRAIL Rabbit IGg control
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Figure 4.17 TRAIL staining from E6 to E16 visible at increasing intensities in the 
epithelial layer and into the transition zone at E12 and later. Staining at the transition 
zone (arrow).
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E14 TRAIL E14 Rabbit IGg control

*

Figure 4.18 TRAIL immunocytochemical staining at E l4. Staining is present in 
both the epithelial and differentiating fibre cells in the lens epithelium, but becomes 
localised to the nuclei of the lens fibre cells at the equatorial region (arrow).

In figure 4.19, staining for TRAIL can be seen in the nuclei at E6 and E8 with 

expression in the the cytoplasm of the epithelial cells as well as the nuclei at E10. At 

E12 expression is reduced but still found in the epithelial cell cytoplasm as well as the 

nuclei throughout the lens. At E14 and E l6 expression at the equator of the lens 

increases with nuclei staining remaining throughout the epithelial and transition zone 

(arrow).

TRAIL was found to be expressed in the nuclei of both the epithelial and 

differentiating fibre cells. Staining was also found in the cytoplasm of the epithelial 

cells, which dissipates as the cells begin to differentiate (figure 4.20).

4.4 D iscussion
Protein expression of TRAF2, TRAF3 and TRAIL was observed at all developmental 

time points examined using Western blotting which was carried out in triplicate. 

Localisation studies showed light expression of TRAF2 throughout the lens in earlier 

stages of development moving towards the equatorial region at later stages after the 

OFZ had begun to form. TRAF3 was found in the differentiating fibres before they 

became separated from the basement membrane and epithelial layer. TRAIL 

expression was found in the nuclei throughout the lens and also in the cytoplasm in the 

equatorial cells at later stages of development.



4.4.1 TRAF2
TRAF2 interactions have been described in detail in section 1.12.2. TRAF2 is known 

as an adapter protein, which mediates the signalling of NF-kB, and JNK. It has been 

previously shown to be widely expressed in human and mouse and while it has not 

been identified previously in the lens, iris, ciliary body or at the comeal-scleral 

boundary at any stage of development, it has recently been identified in human retinal 

pigment epithelium (RPE) cells (Yang et al., 2005). TRAF2 function in RPE cells has 

not been elucidated, though it has been shown not to be upregulated during TNFa 

stimulation suggesting its role was not primarily in survival through NF-kB activation. 

When NF-kB was blocked, RPE cells were still resistant to apoptosis, likely to be due 

to the continued expression of survival factors such as TRAF2 (Yang et al., 2005).

TRAF2 protein expression in the lens was found to vary slightly between 

western blotting and immunofluorescence. As all experiments were undertaken in 

triplicate, it is unlikely that the variations are due to experimental error. Western 

blotting is a more sensitive technique and showed a clear decrease in expression as 

development progressed in comparison only an overall reduction in expression in 

immunofluorescence which seemed to slightly increase at E16 was identified. This 

“increase” in expression is most likely to be a result of the localisation of staining to 

the equatorial region and lens epithelium.

Though TRAF2 lens staining was of low intensity in histological studies, a 

significant amount of expression was identified in the developing iris, ciliary muscle 

and in an intense band at the boundary between the cornea and sclera. Both the iris 

and ciliary body originally develop from a mixture of cells, including optic cup 

ectodermal cell, head migratory mesenchymal cells and in the chick the iris muscles 

have been shown to develop from neural crest cells (Johnston et al., 1979; Creuzet et 

a l , 2005). The similarities of the iris and ciliary muscle in regards to the time and 

progress of development suggest that TRAF2 may have a role in the initial 

development of these structures, which occurs between E5 and E l5 when the smooth 

muscles in the iris stop growing (Gabella & Clarke, 1983). Research into the transition 

of “smooth-to-striated” muscle in the iris identified similar patterns of expression 

between TRAF2 (as revealed here) and a-smooth muscle-specific actin (aSMA), used 

as the transition marker. The signalling for both was initiated at the papillary margin
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(tip of the iris), which then spread peripherally and by E l6 was expressed throughout 

the stroma, though aSMA was less intensely expressed at this time point (Link & 

Nishi, 1998).

These results suggest that TRAF2 maybe involved in the development of the 

muscle within these tissues, which is supported by research that has shown that TRAF2 

knockout mice have decreased muscles mass though no eye defects have yet been 

identified (Lee et al., 1997; Yeh et al., 1997). TRAF2 is normally present in skeletal 

muscle, though is more highly expressed in terminally differentiated rather than 

undifferentiated forms (MacLachlan & Giordano, 1998). Also, TNF has been shown to 

modulate myogenesis (Szalay et al., 1997) whose histological features were first used 

to identify iris muscle differentiation (Ferrari & Koch, 1984).

4.4.2 TRAF3
The complex and not fully understood roles of TRAF3 have been described in section 

1.12.3. TRAF3 is important in signalling the activation of the immune response, NF- 

kB  activation and also cell death (Chung et al., 2002). Both TRAF2 and TRAF3 are 

necessary for postnatal survival (Xu et al., 1996; Lee et al., 1997; Yeh et al., 1997). In 

this chapter, TRAF3 protein expression was found to be similar to that of the RT-PCR 

data, increasing as the lens develops. A band around 30 kDa is clearly visible and this 

is likely to be a splice variant or cleavage product of the 64 kDa native form of 

TRAF3.

Subcellular fractionation revealed that the larger 64 kDa isoform was found at 

the highest concentration, at E l6, in the fraction containing re-suspended 

mitochondrial and membrane debris, figure 4.7. It was also present in all the other 

factions except the one containing the post-mitochondrial supernatant (i.e. the cytosolic 

fraction remaining after the mitochondria had been removed). The lower molecular 

weight 30 kDa isoform was expressed in all factions, though there was considerably 

less in the factions containing the resuspended nucleus and mitochondrial or membrane 

debris.

TRAF3 has previously been reported to bind p-62 Nucleoporin, a protein involved in 

the formation of pores and nuclear transport (Hurt, 1993) suggesting that TRAF3 has 

an adaptor function at the nuclear membrane (Gamper et al., 2000) as well as at the
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plasma membrane (Lee & Lee, 2002). Though TRAF3 is a cytoplasmic protein its 

interactions with membranes bound proteins support the finding of its increased 

expression in fractions containing membranous debris.

The immunofluorescent staining shows highest TRAF3 expression in cortical 

lens fibre cells. The finding that this expression does not pass to those fibre cells that 

have been covered by newer fibre cells at the centre of the lens, and certainly not into 

the OFZ, suggests that the lack of staining corresponds to the point in the 

differentiation of the fibre cell when the tips at the posterior and anterior of the lens 

fibre cells have reached the sutures. It is at this point that fibre cells first come into 

contact with the corresponding fibre cell from the opposite equator and is also when 

the fibre cell loses it attachment to the lens capsule and epithelial layer at the posterior 

and anterior of the lens, respectively (Menko, 2002; Zelenka, 2004). The staining 

pattern of TRAF3 is similar to that of N-cadherin and band 4.1, which were found to 

be expressed at the region of the lens where extensive remodelling of the cell adhesion 

complexes occurs (Beebe et al., 2001). N-cadherin is a transmembrane protein known 

to form bonds between cells and its role is thought to be in holding cells together, 

stabilization and possibly the formation of the extracellular space found between fibre 

cells which has been proposed to be important in maintaining the transparency of the 

lens (Frenzel & Johnson, 1996; Ferreira-Comwell et al., 2000; Beebe et al., 2001). 

Band 4.1 protein is believed to have a role in the interaction between the membrane 

and the actin cytoskeleton possibly being involved in the change in shape and 

elongation of the fibre cells (Hoover & Bryant, 2000). The similarities in the 

localisation of staining between TRAF3, N-cadherin and band 4.1 suggest that further 

functional studies might first look at a membrane-related role for TRAF3 in the 

differentiating fibre cells, indeed TRAF3 is known to be able to interact with LMP 

(latent membrane protein) (Sandberg et al., 1997) which in turn has been shown to 

stimulate PI3K activation and actin stress-fibre formation associated with 

transformation (Dawson et al., 2003). TRAF3 has also been identified to associate with 

TRAF3 interacting protein-1 (MIP-T3) which is proposed to form a link between the 

microtubule network and TRAF3, though its role has not been elucidated (Ling & 

Goeddel, 2000). Though these links are tenuous for identifying the role of TRAF3 in



lens differentiation, the collation of these interactions can propose a path for further 

research.

It has been shown here that TRAF3 (full length) is not found in the post nuclear 

supernatant (i.e. cytoplasmic fraction), suggesting that it is not found free in the 

cytoplasm and is membrane-bound which would explain its high expression in the 

resuspended debris, containing much of the membrane fragments from the cell. TRAF3 

is known for its adaptor function in membrane bound proteins such as TNFRs, CD40, 

LTp and OX-40 (Baker & Reddy, 1998) Its binding with the membrane bound 

proteins, along with its interactions with proteins involved in membrane remodelling 

and stabilisation suggest a reason for its presence in the subcellular fractionations 

containing membrane and an active role in the membrane of differentiating fibre cells, 

though whether its true purpose is structural, maintenance or something entirely 

different would require further studies.

4.4.3 TRAIL

TNF related apoptosis-inducing ligand (TRAIL) can bind two out five of its receptors 

to induce apoptosis; its three other receptors are decoys, which cannot transmit the 

apoptotic signal (Kamradt et al., 2005). In this chapter, it was shown that while there 

were no statistically significant changes in protein expression, which is comparable to 

the results shown using RT-PCR in chapter 3, TRAIL was found to be present at the 

equatorial regions, at mildly increasing intensities, as the lens developed and also in the 

nuclei of all cells in the lens whether in the epithelia or the differentiating fibre cells 

(excluding the terminally differentiated fibre cells in the OFZ). The novel 

identification of TRAIL in the nuclei requires further study but it is possible that 

fragments of TRAIL are transported to the nuclei via an unknown nuclear transport 

protein. The expression of TRAIL at the equatorial region, and in the transitional zone, 

at later stages, suggest a possible role in early signalling of epithelial cells to begin 

differentiation into fibre cells.

Use of TRAIL was previously identified as a potential PCO therapy (Jordan et 

al., 2001), but it was found that over-expression of TRAIL in lens cells remaining in 

the capsular bag after cataract surgery did not induce the apoptosis of those cells and

could not prevent PCO (Malecaze et al., 2006).
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4.4.5 Summary
The western blotting results in this chapter showed the protein expression of TRAF2, 

TRAF3 (a prospective long and short isoform) and TRAIL. Spatio-temporal studies 

using immunofluorescence and immunocytochemistry illustrated the localisation in the 

lens of the proteins examined. While TRAIL had no statistically differential expression 

in either Western or immunohistological studies there was specific expression in the 

epithelium especially around the equatorial region which proposes a role for TRAIL in 

signalling the early stages of epithelial cell differentiation.

The short isoform of TRAF3 (30-35 kDa) exhibited increased expression 

during lens development in Western blotting, and in the subcellular fractionation 

studies was present in all the fractions, whereas the 64 kDa fraction was absent from 

the cytosolic fraction. Immunofluorescence found increasing expression of TRAF3 in 

the differentiating fibre cells of the lens cortex prior to them being incorporated into 

the central fibre cell mass, suggesting that when they no longer had any physical 

contact with the epithelial cells or the basement membrane the TRAF3 signal was 

abruptly lost.

TRAF2 had decreasing protein expression with development during Western 

blotting which, along with immunofluorescence expression suggests that expression at 

earlier stages of lens development merits further study, though the lack of expression at 

later stages suggests that it does not have a role during later stages of lens 

development. The considerable expression of TRAF2 in the iris, ciliary body and in the 

comeal-scleral boundary increased as development of the embryo continued. When 

compared to published expression of known muscle markers; eg aSMA, this suggests a 

role in ciliary muscle and iris stromal development. The expression at the scleral- 

corneal boundary may indicate a role in limbal stem cell differentiation.

The novel expression of TRAF2 and TRAF3 in the developing eye has given 

the opportunity to begin a new path in the discovery of the factors involved and 

subsequently their roles through functional studies in the future.



Chapter 5: 
Optimisation of whole chick

lens culture



5.1 Introduction

The lens in the eye is an accepted model for studying various developmental events 

including proliferation, cellular specialisation, differentiation and maturation (Hawse et 

al., 2005). Menko et al (1984) developed lens epithelial culture. In the intervening 

time, the method has been well characterised and optimised in many species and has 

been useful in many studies (Taylor-Papadimitriou et al., 1977; Taylor-Papadimitriou 

et al., 1978; Wride, 1996). In comparison to epithelial cell culture, the experimental 

protocol for lens organ culture between laboratories in the published papers was seen 

to vary greatly.

Whole lens culture has been sporadically used since 1991 (Hightower & 

McCready, 1991). In this study, lenses from 4 week old rabbits were cultured in 

medium and used to identify the damage caused by Selenite in whole lens and whether 

the affect it has on membrane permeability and cell-cell transport is localised to 

specific regions of the lens.

Previous research has used lens organ culture in a number of studies including 

“The role of Src family kinases in cortical cataract formation” (Zhou & Menko, 2002) 

and the phosphorylation of connexins in lens organ culture to identify lens organ 

culture as a valid in vitro model in functional studies of connexins (Jiang & 

Goodenough, 1998). Lens organ culture has been used in various papers, but there are 

different methods for culture. Unlike lens epithelial cell culture, there has been no 

published research to show the optimum protocol for whole lens culture.

Previous research has used Medium 199 with the lens alone (Zhou & Menko, 

2002), with the vitreous attached to the lens (Weber & Menko, 2005), with the iris and 

vitreous cultured with the lens (Jiang & Goodenough, 1998) and the lens cultured in 

medium 199 with glucose (Zhou & Menko, 2004) as an option in whole lens culture. In 

this chapter, we will characterise the optimum method for whole lens culture in order 

to provide an additional method for carrying out functional studies to investigate the 

role of various factors in lens development (including TNFs and TNF-related 

molecules). Undertaking a histological comparison between whole lens cultures and 

lenses removed from embryos at the corresponding developmental time points will



reveal any differences in development between the lens developing in ovo and the 

lenses grown in culture.

5.2 Experimental Design

Two cell culture media of different composition were made up prior to eye dissection: 

one with and one without 14mM Glucose (Sigma, UK). Other than this difference, 

both were made with Medium 199 (22350 Gibco, UK), 10% Foetal Calf Serum (FCS), 

(Biosera, UK) and 0.1pg/ml penicillin (Penna-lOOmu, Sigma, UK) and streptomycin 

(s-6501, Sigma, UK). While whole eyes were dissected from chick embryos, the media 

were placed in a water bath at 37°C. The eyes were then placed in a solution of 1:8 

betadine: distilled water to sterilise them before being placed under a class II cell 

culture hood so that the fine dissection (e.g. removing the lens) would be carried out 

under sterile conditions. The lenses were prepared in one of three ways: either the lens 

was separated from all surrounding tissue; with only the vitreous attached or with both 

the surrounding iris and vitreous attached. Within 2 minutes, the betadine was washed 

from the eyes using lx  PBS, the eyes were further dissected in the medium they would 

be cultured in. Once the excess tissue was removed, the lenses were placed in fresh 

medium and transferred to a cell culture incubator (5% CO2/ 95% air). After 4 hours, 

the lenses were checked under a microscope for any opacity, which would indicate the 

lens had been damaged during dissection; such lenses were removed from the 

experiment and disposed of. The lenses that remained were replaced in the incubator. 

The medium was replaced every two days and three lenses from each culture condition 

were removed to be fixed and embedded in paraffin wax at 2 day intervals throughout 

the period of culture every day for 8 days. The lenses were then sectioned and stained 

using H & E.

During this experimental chapter a number of issues were identified with the 

methodology. Due to the fragility of the lens, the size and softness of the organ was a 

problem, to minimise the mechanical trauma that could occur during dissection of the 

lens, extensive practice was undertaken to improve technique. After 4 hours of culture, 

lenses were examined using dark field microscopy to identify any lenses damaged 

during the process of dissection. Any damaged lenses were removed from the 

experiment and disposed of. To examine and identify any opacifications, the lenses had



to be isolated from any surrounding tissues cultured with the lens, in these situations 

the lens could not be examined for damage or opacifications until culture had been 

completed. Once completed the surrounding tissue was then removed from the lens and 

those with no visible damage were photographed using dark field microscopy and 

fixed as described in 2.5.6. When lenses had been fixed and were to be embedded in 

wax it was discovered that without the surrounding tissue for guidance it was very 

difficult to orientate the lens correctly. To overcome this problem the lenses were 

placed for 10 seconds in haematoxylin (after dehydration) to express a light stain 

making the lens more visible when placed in the molten wax block therefore making it 

less difficult to correctly orientate the lens. In a number of papers it was stated that 

experienced technicians were used for dissection and especially for embedding the 

lenses in the correct orientation due to the difficulty of the technique (Ghosh & Zigler, 

2005).
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5.3 Results

5.3.1 Darkfield visualisation of cultured whole lenses.

Before lenses were fixed overnight with 4% Paraformaldehyde in PBS at 4°C, they 

were washed with ice cold PBS and any surrounding tissue blocking the view of the 

lens was removed. Images of the lenses were taken with a Leica microscope on a dark 

field platform, this allowed the visualisation of any opacities found in the cultured 

lenses.

With Glucose Without Glucose

Lens only Lens + 
Vitreous

Lens, 
Vitreous 
and Iris

Lens only Lens and 
Vitreous

Lens, 
Vitreous 
and Iris

E10+2

E10+6

E10+4

E10+8

Figure 5.1 Dark field images of E10 lenses cultured for 2, 4, 6 and 8 days (as 
shown on left of table) with various methods (at the top of table), scale bar 0.5mm.

Table 5.1 Showing the amount of opacification in whole lens cultures, from zero = 
no opacity upto 5 = extensive opacity.

With glucose Without glucose
Lens Lens+ Lens, Lens Lens+ Lens,
only Vitreous Vitreous+Iris only Vitreous Vitreous+Iris

E10 E10 + 2 1 1 3 1 1 2
lenses + E10 + 4 1 1 3 2 1 2
days in E10 + 6 2 2 3 2 2 3
culture E10 + 8 4 3 5 3 5 5
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The dark field images above (figure 5.1) show any opacification of the whole 

lens cultures. This data was obtained in duplicate, and the amount of opacity was 

measured as stated in section 2.5.5, briefly the overall opacity of the lens was measured 

in three places, the centre, the periphery and the centre of the radius of the lens. The 

background reading was then subtracted from the average of the above three readings. 

The final amounts (which can be found in Appendix 4, table A4.1) was then converted 

into a reading between 0 and 5, where 0 was no opacity going up to five where there 

was the most extensive opacification. For lenses cultured alone with glucose, there was 

a faint opacification around the periphery of the lens with flecks of opacities towards 

the centre; this was noticed in many of the lenses after 4 days of culture. By 6 days of 

culture, opacification at the presumed region of organelle degradation and the 

periphery of the lens becomes more defined and clearly pronounced by 8 days culture.

Lenses with vitreous in medium containing glucose showed a faint ring of 

opacification in the centre of the lens from 2 days in culture, this became gradually 

more noticeable as culture continued and this is confirmed by table 5.1 which shows 

that even by 8 days in culture there is only a three out of five opacity reading.

Lenses with both vitreous and iris cultured in medium containing glucose show 

clear opacification in a central ring of the lens, which became more widespread and 

intense during the period of culture resulting in extensive opacity by 8 days of culture.

Lenses cultured in medium without glucose begin to develop a ring of opacity 

within 2 days of culture that intensifies and spreads towards the periphery of the lens. 

At 6 days of culture, an obvious peripheral opacification has developed with the rest of 

the lens becoming slightly cloudy by 8 days culture. The overall opacity of lenses 

cultured this way by 8 days in culture was the least found in the lenses cultured in 

medium without glucose at a 3 out of 5 reading.

A light cloudiness is perceptible in a wide band around the lens at both 2 and 4 

days of culture in medium without glucose, with vitreous attached to the lens. A vague 

secondary ring towards the middle of the radius of the lens is seen at 6 days in culture 

with a wide deeply opaque ring visible at 8 days in culture resulting in an extensive 

opacity reading of five.

Cultured lenses, with iris and vitreous attached, in plain medium show two 

clearly defined rings of opacification in the lens within 2 days of culture that becomes
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wider after 4 days and denser until, at 8 days in culture, it is apparent that the whole 

lens is extensively opacified which is confirmed with an opacity reading of 5 out of 5 

(table 5.1).

5.3.2 Haematoxvlin and Eosin staining.

On the following pages, figures 5.3 -  5.7 show examples of H & E staining obtained 

from fixed and sectioned lenses cultured alone, with the vitreous or with the iris and 

vitreous attached, in medium 199 with or without glucose.

H & E staining was used to highlight any variations in the morphology of the 

lenses in culture and in comparison to lenses, at the corresponding time points, that had 

been fixed, embedded, sectioned and stained directly after being dissected from the 

embryo. In normal early lens development (prior to El 0-El 2), well characterised in 

previous research and described in section 4.3.2.1, nuclei are found to run through the 

centre of the lens in lens fibre cells from equator to equator. However, at E10 nuclei at 

the centre o f the lens begin to condense and at E l2 pycnotic nuclei are clearly visible 

at the centre of the lens. By E l4, nuclei at the centre of the lens have disappeared and 

the organelle free zone (OFZ), characterised by the lack of nuclei, is clearly visible. As 

development continues, the OFZ expands in size as more fibre cells migrate towards 

the centre of the lens and the organelles and nuclei contained within them are 

degraded. At the border of the OFZ, nuclei condense and become pycnotic in nature 

until they are no longer visible (reviewed in Wride, 1996; Bassnett, 2002).

Any variations in the cultured lenses from the standard lens developmental 

process in vivo will be clearly visible in the following H & E images. The images were 

obtained from the sections through the centre of the lens which were found by 

measuring the size of multiple sections, from multiple slides, under the microscope. 

The largest one was taken as the section through the centre of the lens.

Measurements of the largest lens sections were carried out so comparisons 

between the various culture methodologies could be done. The measurements done are 

shown in figure 5.2. Briefly, the full width (fig. 5.2, line a) and anterior to posterior 

length (fig. 5.2, line b) was measured, the lens was then broken down to the width (fig. 

5.2, line c) and length (fig. 5.2, line d) of the OFZ shown as a gray circle at the centre
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of the lens in figure 5.2. The distance of the OFZ from the anterior and posterior of the 

lens was also measured, shown in figure 5.2 as line e and f, respectively.

Figure 5.2 Diagram showing the measurements of the lenses used in this 
experiment. The first measurement taken is the grey circle at the centre of the lens 
showing the area of the OFZ, this was only done when relevant (ie after E l2). a=length 
of lens, b=height of lens, c=length of OFZ, d= height of OFZ, e=distance between 
anterior of the lens and the top of the OFZ and finally f= distance between posterior of 
the lens and the lowest most point of the OFZ.



Normal E10 lens 
obtained directly 
from embryo for 
comparison to 
cultured lenses.

Figure 5.3 E10 lens cultured for 4 hours. E10 lens obtained directly from an embryo (far left), within the table, lenses cultured for 4
hours with or without glucose, either culturing the lens alone, lens with vitreous attached or lens with iris and vitreous attached.
Showing the disassociation of the epithelium layer from the fibre cell mass.
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Normal E l2 lens 
obtained directly 
from embryo for 
comparison to 
cultured lenses.

Figure 5.4 E10 lens cultured for 2 days. E10 lens obtained directly from an embryo (far left), within the table, lenses cultured for 2 days
with or without glucose, either culturing the lens alone, lens with vitreous attached or lens with iris and vitreous attached.★indicating the
degradation at the anterior of fibre cells.

Lens alone Lens and vitreous Lens, vitreous and iris

100 pm
HH
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Normal E l4 lens 
obtained directly 
from embryo for 
comparison to 
cultured lenses.

Figure 5.5 E l0 lens cultured for 4 days. E10 lens obtained directly from an embryo (far left), within the table, lenses cultured for 4 days
with or without glucose, either culturing the lens alone, lens with vitreous attached or lens with iris and vitreous attached. ★ Indicates the
degradation at the anterior of fibre cells.

-$ 1 0 0

Lens alone Lens and vitreous Lens, vitreous and iris
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Normal E l6 lens 
obtained directly 
from embryo for 
comparison to 
cultured lenses.

Lens alone Lens and vitreous

Figure 5.6 E l0 lens cultured for 6 days. E10 lens obtained directly from an embryo (far left), within the table, lenses cultured for 6 days
with or without glucose, either culturing the lens alone, lens with vitreous attached or lens with iris and vitreous attached. ★ Indicates the
degradation at the anterior of fibre cells.
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Lens alone Lens and vitreous Lens, vitreous and iris

Figure 5.7 E10 lens cultured for 8 days. E10 lens obtained directly from an embryo (far left), within the table, lenses cultured for 8 days
with or without glucose, either culturing the lens alone, lens with vitreous attached or lens with iris and vitreous attached. 'A'Indicates the
degradation at the anterior of fibre cells.

Normal E l8 lens 
obtained directly 
from embryo for 
comparison to 
cultured lenses.

100 pm
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Table 5.2 Mean measurements (in pm) of E10 lenses cultured for 4 hours.
a=length of lens, b=height of lens.____________________________________________

With glucose Without glucose

E10 no 
culture

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

E10 + a 946.63 914.34 870.67 815.76 763.43 808.08 871.41
4hours b 595.45 518.53 535.33 537.73 459.71 478.03 510.45
Lens
replicates 6 2 3 2 2 1 1

Table 5.3 Mean measurements (in pm) of E10 lenses cultured for 2 days. a=length 
of lens, b=height of lens._____________________________________________________

With glucose Without glucose

E12 no 
culture

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

E10 + a 896.02 774.49 841.49 869.76 931.57 812.80 982.74
2days b 530.24 516.43 591.20 591.72 570.09 474.83 531.98

Lens
replicates 2 1 1 2 2 1 2

Table 5.4 Mean measurements (in pm) of E10 lenses cultured
of lens, b=height of lens, c=length of OFZ, d= height of OFZ, 
anterior of the lens and the top of the OFZ and finally f= distance

for 4 days. a=length 
e=distance between 

between posterior of

With glucose Without glucose

E14 no 
culture

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

E1
0 

+ 
4d

ay
s

centre 328.44 0.00 716.28 383.27 458.67 339.29 326.73
a 758.18 820.06 784.09 864.11 836.06 866.58 810.49
b 509.34 610.37 522.25 551.18 557.04 582.02 514.41
c 164.64 0.00 142.13 degraded 204.00 158.00 176.01
d 150.07 0.00 154.05 250.07 210.04 334.00 231.15
e 106.84 0.00 228.04 124.00 146.01 108.00 103.08
f 104.64 0.00 230.14 120.00 146.05 104.00 104.12

Len 5 replicates 3 2 2 2 1 2 2



Table 5.5 Mean measurements (in |im) of E10 lenses cultured for 6 days. a=length 
of lens, b=height of lens, c=length of OFZ, d= height of OFZ, e=distance between 
anterior of the lens and the top of the OFZ and finally f= distance between posterior of 
the lens and the lowest most point of the OFZ.___________________________________

With glucose Without glucose

E16 no 
culture

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

E1
0 

+6
da

ys

centre 1130.97 342.21 1047.20 467.04 926.77 792.94 542.45
a 1428.00 716.17 954.21 903.02 920.19 835.53 804.20
b 864.75 596.59 650.36 527.11 666.58 664.81 522.39
c 228.32 106.13 113.13 degraded 284.92 239.17 133.97
d 264.00 103.18 219.00 287.04 243.29 199.35 211.41
e 360.00 192.76 333.18 88.03 294.36 249.85 175.55
f 341.32 201.83 333.38 86.02 295.31 251.64 172.26

Lens
replicates 2 3 3 2 3 3 2

Table 5.6 Mean measurements (in pm) of E10 lenses cultured for 8 days. a=length 
of lens, b=height of lens, c=length of OFZ, d= height of OFZ, e=distance between 
anterior of the lens and the top of the OFZ and finally f= distance between posterior of 
the lens and the lowest most point of the OFZ._________ __________________________

With glucose Without glucose

E l8 no 
culture

Lens
only

Lens+
Vitreous

Lens,
Vitreous
H-Iris

Lens
only

Lens+
Vitreous

Lens,
Vitreous
+Iris

E1
0 

+ 
8d

ay
s

centre 719.42 947.19 848.23 304.73 656.59 511.03 653.45
a 648.62 825.39 860.87 813.40 794.11 841.38 901.12
b 398.17 589.57 619.59 729.21 532.65 605.27 477.03
c 63.45 72.57 97.43 degraded 108.56 140.39 52.26
d 109.44 213.61 257.76 273.71 222.53 295.09 216.12
e 227.95 303.15 271.53 130.60 208.73 140.77 209.33
f 227.27 300.25 269.05 144.50 212.23 140.26 208.78

Len:
repli cates 4 4 3 2 2 3 2

In all the previous figures (5.3-5.7), the clearest, largest sections showing the 

centre of the lens were chosen. At all variations, at all time points, a minimum of 3 

lenses were sectioned and stained using the same methodology as stated in section 

2.5.6. Looking at figure 5.3, the variability between the lenses (i.e. lens directly from 

embryo and lenses grown under different culture conditions) is already beginning to be
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visible after only 4 hours in culture. In each set of cultures carried out (4 lenses per 

difference in culture) the lenses were obtained from the same batch of eggs, which 

were incubated at the same time; the lenses were dissected and placed in culture within 

as short a time frame as possible, the only differences between their treatments being 

that clarified in the experimental protocol (i.e. the addition or lack of; glucose/ 

vitreous/ vitreous and iris). After 4 hours, lenses were checked under a darkfield 

microscope and any imperfections that were observed resulted with the lenses being 

disposed of. Unfortunately a number of the lenses that were cultured were embedded in 

the wrong orientation resulting in the lens not being sectioned through its centre. When 

this occurred the lens was discarded and measurements could not be taken which 

meant that the required number of replicates (a minimum of 3) were unavailable for 

statistical analysis of the data though the mean of the measurements that were obtained 

are shown in tables 5.2-5.6.

In figure 5.3, lenses from all culture variables, after 4 hours in culture, were 

stained and imaged. From the E10 lens, on the far left, the differentiation of the lens 

fibre cells can be clearly seen at the equatorial regions with the nuclei all following the 

same line through the centre of the lens. This line is also found in all the culture 

variations at the same time point, though in all of these cultured lenses the nuclei are 

shown to be slightly more dispersed and the nuclei of the fibre cells just beginning to 

elongate at the equatorial regions are shown to be found closer to the epithelial layer 

than those at the centre o f the lens. This was most noticeable in the lenses cultured with 

both the iris and vitreous attached. In lenses with iris and vitreous, in both medium 

with and without glucose, the epithelial layer was found to have pulled away from the 

fibre mass at the equatorial region shown in the arrows on images of lens with iris and 

vitreous atached, figure 5.3.

After two days culture (figure 5.4), the morphological variations become more 

apparent with the nuclei of the newly differentiating fibre cells clearly migrating 

towards the anterior of the lens where the epithelial layer can be found. The nuclei of 

the older fibre cells, found at the centre of the lens, have maintained the position of the 

corresponding cells found in in ovo lenses (far left image in figure 5.4) at the same 

time point. In the lens cultured alone in medium without glucose, the nuclei at the 

centre of the lens were the most tightly packed in a line progressively losing this order
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in younger fibre cells in the cortex; i.e. further from the centre and nearer the equatorial 

region. Lenses with vitreous attached cultured in both types of medium contained 

nuclei in central lens fibre cells and these were pycnotic in nature, although the number 

of these was clearly less than those found in the centre of the uncultured lens (figure 

5.4, far left). In all cultures, variations in the morphology of the lens between culture 

methods, including separation of the epithelial layer from the fibre mass, were visible. 

This dissociation is most noticeable in the lens cultured without surrounding tissue in 

medium with glucose and both types of culture medium containing lenses with the iris 

and vitreous attached. The cultures of the lenses with the iris and vitreous attached in 

the medium containing glucose has a visibly degraded morphology of the fibre cells at 

the anterior of the lens (indicated by a star, bottom right, figure 5.4); the epithelial 

layer has thickened with multiple cell layers spreading towards the fibre cell mass 

which itself is ruined, the fibre mass is no longer defined, with the ends of the fibre 

cells closest to the epithelial layer separating and tearing from one another.

Lenses cultured for four days (figure 5.5) were all found to have the nuclei of 

the newer fibre cells migrating towards the anterior of the eye, towards the epithelial 

layer, rather than the normal situation in which they migrate along the equator as they 

differentiate into fibre cells (shown in the normal lens, far left, figure 5.5). In the lenses 

cultured with both the iris and the vitreous, in either type of medium, the epithelial 

layer was again found to be separated from the fibre cell mass with the anterior-most 

parts in the fibre cells degrading and tearing in the lenses cultured in medium 

containing glucose (figure 5.5, star). At the centre of the lens, not cultured (figure 5.4 

far left), the fibre cells at the centre of the lens are empty and OFZ has formed. A 

corresponding region, though smaller, can be found in all cultured lenses except that of 

the lens cultured alone in medium containing glucose, of four lenses sectioned and 

stained for this culture variation only one seemed to contain an OFZ, which was 

extremely small, and was one of two lenses that were in the wrong orientation and 

therefore measurements could not be taken.

By six days in culture (figure 5.6) all OFZs had increased in size, with the 

smallest OFZ being found in lenses cultured alone in medium containing glucose 

(confirmed by the measurements in table 5.5). The nuclei of the newer fibre cells 

continue to migrate to the anterior of the eye with the original migrating nuclei, after
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the start of culture, having reached two thirds of the way across the anterior of the lens 

in cultues with and without vitreous in plain medium. The epithelial layer in two out of 

three lenses cultured with vitreous, in medium containing glucose, were found to have 

separated from the fibre cells. In lenses cultured with iris and vitreous attached, the 

epithelial layer was separate from the fibre cell mass and under both medium 

conditions (plus and minus glucose) the newly differentiating fibre cells were noted to 

have limited elongation. In lens, with iris and vitreous attached, cultured in medium 

containing glucose, the limited elongation of differentiating fibre cells is clearly visible 

with these cells following migration along the posterior of the lens and no longer 

extending towards the epithelium.

At eight days in culture, more mechanical tears occurred during sectioning, as 

can be seen in all images of the cultured lenses. In all cultured lenses, after eight days 

in culture, it was clearly visible that the elongation of the fibre cells at the equatorial 

region was delayed as these fibre cells continued to migrate towards the posterior of 

the lens to a certain extent. The least migration towards the posterior of the lens was 

seen in lenses cultured with vitreous in medium, both with and without glucose, while 

the most dramatic alteration from normal fibre cell differentiation was observed in 

lenses cultured with iris and vitreous attached, in medium containing glucose. In these 

lenses, differentiating fibre cells completely failed to elongate instead continuing to 

migrate to the posterior o f the lens until reaching the counterpart layer of cells from the 

opposite equator, at this point the fibre cells became more densely packed, folding 

back on themselves in an apparently random manner.

5.4 Discussion

In previous research on whole chick lens culture, the effects of glucose in the medium 

were shown to have a role in preventing the formation of cortical cataract due to the 

developing lens having a high rate of metabolism that was not supported in medium 

199 alone (Zhou & Menko, 2002). In figure 5.1 (and table 5.1), this conclusion was 

supported, to a small extent, in earlier stages of culture with or without glucose in the 

medium for lenses cultured alone and with vitreous attached. By 8 days in culture



intense opacification was visible in all lenses, in all variations of culture, though to a 

lesser intensity in lenses with vitreous attached cultured in medium containing glucose.

Though further replications need to be carried out to confirm and clarify the 

results, the preliminary data suggests that the use of vitreous in culture with glucose 

helps to maintain the clarity of the lens for a longer period than any other culture 

method.

The use of tissue from the surrounding eye was shown to have a large affect in 

the opacification of the lens which had the most extensive opacification at any of the 

timepoints in comparison to lenses cultured alone or with vitreous attached. It is 

possible that leaving some of the surrounding tissue attached, i.e. the iris, meant that 

the nutrients in the medium were not as accessible to the lens therefore causing an 

increase in opacity.

The use of darkfield microscopy in whole lens culture can give insight into the 

balance of factors required for maintaining the clarity of the lens through the addition 

of supplements to the medium, such as glucose as used in this chapter.

Lenses cultured with iris and vitreous attached in medium containing glucose, 

displayed gross morphological alterations. The signal for the elongation of fibre cells 

within these cultured lenses, at any time point, was severely limited. This lack of fibre 

cell elongation towards the anterior of the lens can be seen at the equatorial region, 

from the earliest time point of only 4 hours in culture. Though elongation did occur to 

a limited degree, this was only visible when there was open space in the equatorial 

region of the lens, due to the disassociation of the epithelial layer from the fibre cell 

mass. During culture, the epithelial cells continued to proliferate and migrate towards 

the posterior o f the lens, due to this the space at the posterior of the lens became 

condensed. By 8 days of culture, the layer of cells that would normally be elongating 

fibre cells had condensed as they moved towards the posterior of the lens taking on the 

morphology of an epithelial cell layer. This layer folded away from the basement 

membrane when it reached the corresponding cell layer from the opposite equator, it 

continued to fold into a different direction whenever it encountered an obstruction such 

as the layer itself or the fibre cell mass. The length of this cell layer suggests that the 

differentiation of fibre cells, after the start of culture, had ceased and while epithelial 

cells appeared to be continuing to proliferate and migrate, the signals for the elongation
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of fibre cells and the incorporation of these cells into the OFZ seemed to be entirely 

lost. Though the “differentiating fibre cells” that were initiated after the start of culture 

seem to have entirely lost their signal to differentiate, the continued development of the 

OFZ in culture suggests that those cells that had already been induced to differentiate 

before the lenses were removed from the embryo continue to differentiate resulting in 

the loss of organelles, denucleation and the cells becoming part of the OFZ at the 

centre of the lens.

In all cultured lenses, at eight days, mechanical tears were caused during 

sectioning, though this was attempted to be corrected by softening the tissue before 

sectioning the tears still occurred. This may suggest an underlying weakening of the 

the lens tissue. At 8 days in culture it was also clearly visible that the differentiation of 

the fibre cells at the equatorial region was delayed as the epithelial cells continued to 

migrate towards the posterior of the lens. From studying the morphology, the most 

abnormal is found in lens with iris and vitreous cultured in medium with glucose as 

discussed above. The lenses with iris and vitreous cultured in plain medium were 

slightly improved but those lenses cultured without iris, in either medium, were 

significantly more morphologically normal. From histological examination it can be 

seen that differentiation gets progressively more delayed, with differentiation being 

initiated gradually more posteriorly as the lens continues to grow in culture. To 

identify whether the lens epithelial cells are in fact differentiating into fibre cells 

staining with antibodies to various genes would be useful. An example of a suitable 

gene to identify fibre cells is pBl-crystallin (Cui et al., 2004).

In transgenic mice Insulin-like growth factor-1 (IGF-1) was over expressed 

resulting in a delay in the differentiation of the epithelial cells to a more posterior 

point, a similar morphology to that above, there was also increased proliferation in the 

epithelial cells. IGF-1, also identified in the chick lens as lentropin, has been shown to 

increase proliferation and differentiation in lens epithelial cell culture. FGFs, described 

in section 1.7.5, as well as IGF-1 were first detected in the vitreous humour by Arnold 

et al (1993) and the vitreous has been known to contain factors that affect 

differentiation since the 1960’s (Coulombre et al., 1963). The presence of these factors 

in the vitreous of the lenses cultured may have contributed to the slower development 

of opacity in the lenses cultured with vitreous and glucose than the lens cultured alone.
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The large morphological alterations between lenses cultured with vitreous and 

lenses cultured with iris and vitreous attached in glucose tell us it is not possible that 

the factors such as IGF and FGF from the vitreous themselves caused the large 

abnormalities in the lenses cultured with iris and virteous. It is reasonable to assume 

that signals are coming from the iris which either directly or indirectly (through other 

factors from the vitreous), are stopping differentiation in the lenses cultured with iris 

and vitreous. It is also possible that proliferation is being separately upregulated 

through the addition of glucose in the medium or through other factors in the iris. 

Though addition of IGF or FGF signalling from the iris directly could be resulting in 

their over expression in the lens which may explain the increased proliferation in the 

epithelial cells (Shirke et al., 2001).

The cause o f the degradation of the anterior parts of the fibre cells in lenses 

cultured with iris and vitreous attached in medium containing glucose could be due to 

the disassociation of the epithelial layer from the fibre cell mass which may have 

severely reduced the signal of factors, such as that of the Wnt’s and receptors, into the 

fibre cells resulting in a lack of elongation and structural maintenance contributing to 

the degradation seen (Chen et al., 2008b). The reason for the disassociation of the 

epithelial layer is unknown though it is highly unlikely to be due mechanical insult as 

all lenses in this culture variation had the same morphology.

The signals from the surrounding ocular tissue have been consistently 

researched through the years and this methodology, once completely characterised, 

may provide further insight into the roles of these tissues and the factors released from 

them. FGFs are prime candidates for the unknown signal that induces epithelial cells to 

differentiate into fibre cells. The signal is thought to be emitted from the retina and 

produce a gradient from the posterior to the anterior possibly determining the boundary 

of the epithelial cells (Lovicu & McAvoy, 2005). From the results of this culture 

experiment it is not likely that it is a signal from the retina that induces the epithelial 

cells in culture to begin differentiation initially as the lenses cultured without any 

surrounding tissue do begin elongating and migrating towards the centre of the lens 

which are characteristics of differentiation. If this culture experiment was repeated 

with the retina it is plausible that it could be identified whether the signals from the 

retina have any role in inducing the terminal differentiation of the new (after culture
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had started) fibre cells and also if  the signals inducing the gradient suggested to occur 

above, maintains the nuclei of the differentiating fibre cells to the equator of the 

cultured lenses.

A similar role to FGF has been proposed for BMPs (Belecky-Adams et al., 

2002) described in 1.7.3. Wnt signals described in 1.7.6, are also known to have great 

involvement in various stages of development and is known to both enhance the FGF 

signal for lens fibre cell differentiation (Lyu & Joo, 2004) and, very recently, 

transgenic mice over expressing a wnt signalling antagonist showed attenuated 

elongation of fibre cells which were also disordered in structure implying a role of Wnt 

signals in the organisation and structure of the cytoskeleton (Chen et al., 2008b). It is 

possible that the expression of Wnt’s and associated factors present in the lens 

epithelium, transition zone and iris, such as Wnt7a in the developing murine lens (Ang 

et al., 2004), may have a role in the abnormal morphology of the older lens cultures 

grown in glucose with the iris and vitreous still attached.

For definitive results a minimum of one more set of cultures would be required 

to quantify and statistically analyse the images but this was not possible in this PhD 

due to the financial and time constrictions. Any attempts to carry out any relevant 

measurements were found to vary too greatly between replicates to obtain any 

significant numerical data. For a thorough, quantifiable experiment a larger number of 

replicates would be preferable, to be able to incorporate the differences in development 

prior to culture. As a result only a visual comparison was undertaken though the 

corresponding numerical data was included in the results.

From the morphological study it is hypothesised that despite the abnormal 

differentiation of new epithelial cells into fibre cells at the equatorial region (during 

culture), the existing differentiating fibre cells (induced prior to culture) continue to 

undergo terminal differentiation resulting in the loss of their nuclei as usual. It is 

known that it takes between 4 and 5 days for a cell that has just begun differentiation to 

elongate and lose all its organelles before it enters the OFZ during normal lens 

development (Beebe et al., 2001). If this time (for complete differentiation) is not 

severely increased during whole lens culture a future experiment of the incorporation 

of BrdU into whole lens at the start of culture may shed light onto whether the novel



hypothesis that the new (after the start of culture) differentiating fibre cells cannot 

terminally differentiate is correct.



Chapter 6: 
Discussion



6.1 Discussion

During development, epithelial cells at the equator of the lens begin a differentiation 

process to become secondary fibre cells. The differentiating cells begin to elongate and 

migrate to the centre of the lens with tips of the cells attached to the epithelial layer and 

the basement membrane. As the cells reach the centre of the lens, they envelop the 

fibre cells that have migrated to the centre previously; the tips of the cells meet their 

counterpart fibre cells from the opposite equator and move down the suture losing 

contact with the basement membrane and epithelial layer. This migration wraps the cell 

around the central fibre mass of differentiating fibre cells that have undertaken the 

process previously. As these cells differentiate and migrate, the intracellular organelles 

begin to degrade culminating, with complete degradation and denucleation, at the 

organelle free zone (OFZ) (reviewed in Bassnett, 2002; Wride, 2007; Bassnett, 2008). 

The OFZ is a transparent tissue that is free from any organelles that would scatter the 

light entering the eye. Any flaws in the signalling can result in opacities in the lens 

known as cataract.

The molecular pathways involved in these processes are numerous, have been 

found to be increasingly complex and many are still to be elucidated (Wride, 2007; 

Bassnett, 2008). The pathways involved in terminal differentiation of fibre cells have 

not been confirmed though a number of possibilities have been published. These 

include the suggestions of;

• an attenuated form of apoptosis; though a large number of apoptosis genes have 

been shown to be expressed in the developing lens (Dahm, 1999; Wride, 2000; 

Bassnett, 2002; Wride et al., 2003; Mansergh et a l , 2004; Geatrell, 2007b; 

Geatrell, 2007a), functional studies have not elucidated their roles within this 

organ; indeed knockout mice of executioner caspases did not identify any 

defects in the development of the OFZ (Zandy et al., 2005).

• ubiquitin proteasome pathway (UPP); research has shown that during bFGF- 

induced lens cell proliferation and differentiation in rat lens explants, 

components of the UPP show differential expression suggesting a role in both 

lens cell proliferation and differentiation (Guo et al., 2004; Guo et al., 2006). A



study showing nuclear localisation of UPP components supports the theory that 

they are involved in denucleation (Girao et al., 2005).

• Lipoxygenase; identified to have a role in reticulocyte organelle degradation 

and identified in the lens epithelial cells and in the fibre cells where organeele 

degradation occurs (Arora et al., 1996; Grullich et al., 2001).

• Autophagy; is no longer thought to be involved in organelle degradation 

(Matsui et al., 2006) though lysosomal enzymes such as DNase 11(3 have been 

identified in the lens lysosmes which is released into the cytoplasm as 

differentiation continues (De Maria & Bassnett, 2007).

In this thesis a number of TNFs and their downstream signalling molecules 

were identified in the developing chick lens. These include The TRAF family, EDA, 

EDAR, EDARADD, TRAIL, DR5, TACE and RAIDD. The EDA family have 

previously been shown to be expressed in the developing mouse and are known to be 

required in ectodermal organ development such as in mouse tooth and hair 

development (Pispa et al., 2003), similar expression has been found in the developing 

chick feather tract though its function is thought to be more of a maintenance role than 

inducing development (Houghton et al., 2005; Houghton et a l, 2007). EDA and 

EDAR have also been shown in the mouse lens, though the research suggested the 

staining was non-specific (Pispa et al., 2003). EDA, EDAR and EDARADD are 

known to be required in ectodermal organ development such as in mouse tooth and 

hair development and have now also been shown here to be expressed in the chick 

lens, though their functional roles have not been elucidated. TACE was shown to be 

expressed in the E l2 chick embryo and research targeting deletion of its zinc binding 

domain resulted in embryological defects similar to those found in TGFa null mice 

(Luetteke et a l,  1993; Kenny & Bissell, 2007). TGFa expression in the lens has been 

associated with signalling cellular division and differentiation in the equatorial region 

of the lens (Chen et al., 2001) As well as its role in proteolytically releasing TNFa 

(Black et al., 1997), which has been proposed to be involved in the degeneration of 

nuclei within fibre cells (Wride & Sanders, 1998), this shedding of TGFa (Peschon et 

al., 1998) suggests TACE may have a role in lens differentiation.



RAIDD (receptor-interacting protein [RIP]-associated ICH-l/CED-3- 

homologous protein with a death domain) was also shown to be expressed in the 

developing chick lens at E l2. RAIDD is fairly well characterised in its role in 

apoptosis and its interaction with TNFRI but it has recently been shown to be 

expressed in the equatorial region of the developing mouse lens and is thought to be 

involved in cell differentiation in a number of organs though its role has not been 

clarified (Motaln et al., 2005).

During this PhD, DR5 was shown to be expressed in the chick lens and is 

known to be a pro-apoptotic receptor for TRAIL, though there is no categorised role 

for either of these genes in the lens, TRAIL has been previously been shown to be 

expressed in mouse ocular tissue, though the lens was specifically excluded from that 

research for unknown reasons. TRAIL is thought to be have a role in tumour 

surveillance (Lee et al., 2002). It was also considered as a prospective gene therapy for 

PCO, though TRAIL over-expression did not result in apoptosis (Malecaze et al., 

2006); here, the expression of TRAIL was found to have no statistically significant 

difference in expression in the chick lens at different stages in either PCR or Western 

blotting analysis, though increasing immunohistological staining was found at the 

equatorial regions of the lens as the lens developed as well as staining in the nuclei of 

both epithelial and differentiating fibre cells. This staining has not previously been 

seen in the lens; indeed, the staining in the nuclei has not been identified previously in 

any tissues and its significance remains undetermined.

Here, all members of the TRAF family have been shown to be expressed in the chick 

lens using RT-PCR. Of those genes listed above TRAF1, TRAF2, TRAF3 and TRAF4 

were shown to be differentially regulated between E6 to E l6, where considerable 

differentiation occurs and around the time point (E l2) at which complete organelle 

degradation begins and the OFZ starts to form (Bassnett & Beebe, 1992). Antibodies 

were available for TRAF2 and TRAF3 that, after BLAST analysis, were thought may 

work in protein expression and localisation studies using Western blotting and 

immunocytochemistry in the developing chick lens.

TRAF2 showed similar RT-PCR and Western blotting expression, though protein 

expression levels decreased more rapidly as development proceeded.
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Immunofluorescence staining revealed novel TRAF2 expression in the ciliary body. 

Though the ciliary body was only briefly mentioned in the introduction (section 1.5), 

where the focus was on the lens, it is important for accommodation of the lens, since it 

contains the ciliary muscle, which attaches to zonules, which in turn attached to the 

lens capsule. The ciliary body is found just behind the iris and produces the fluid that 

nourishes the lens, cornea and maintains the pressure in the eye (Coulombre & 

Coulombre, 1957; To et al., 2002). TRAF2 was also intensely expressed in the iris and 

the comeal-scleral boundary. The iris is made of two pigmented epithelial layers that 

extend the entire length of the iris to the papillary margin. Adjacent to this margin the 

epithelium at the anterior of the eye form epithelial buds whose cells detach and fill the 

vascular stroma. The muscle cells in the stroma begin to differentiate at 11 days 

(Ferrari & Koch, 1984) which coincides with the novel expression of TRAF2 found 

during this research.

The tissue labelled comeal-scleral boundary could not be characterised within this 

thesis though previous literature was scmtinized. The identity of the tissue could not be 

confirmed without further histological analysis, such as staining with aSMA which 

would stain any smooth muscle actin known to be found in the iris and the ciliary 

muscle as they develop. If staining of this nature were found in the comeal-scleral 

boundary it would suggest that this region was ciliary muscle as suggested by 

morphological comparison with figure la  found in the study on the architecture of the 

ciliary muscle (Tedesco et al., 2005).

TRAF3 expression levels for both RT-PCR and protein were similar with increasing 

expression as the lens developed. The subcellular fractionation showed that the larger 

splice variant was not found in the post mitochondrial supernatant representing the 

cytosol. This finding suggests that the larger isoform is membrane bound while the 

shorter isoform is cytosolic, which is implied by the decreased expression in the 

fractions containing the nucleus and the resuspended debris containing mitochondria 

and membrane. The cytoplasm would not be totally removed from these fractions, but 

only found at reduced concentrations. Though 8 splice variant forms of TRAF3 were 

identified in human lymphoma cell lines with 7, when over expressed, able to induce 

NF-kB activation in 293 cells, only 3 were active in BJAB cells. The mediation of
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TRAF3 functions between cell lines is therefore suggested to involve the differences in 

isoform (Gamper et al., 2001). It is also suggested that the TRAF3, when full length, is 

inactive but augments the signalling of the smaller isoforms (van Eyndhoven et al., 

1999a).

In much of the published research, the role of TRAF3 as an adaptor in NF-kB 

signalling mostly through its binding with TNFR family member is highlighted. 

TRAF3 is known as a cytoplasmic adaptor molecule and has also been shown to 

interact with p62 nucleoporin which supports the theory that it has a role as an adaptor 

molecule at the nuclear membrane as well as its known role as an adaptor at the plasma 

membrane. The previous research supplies tantalising possibilities into the function of 

TRAF3 in the lens as well as supplying theories into how the signal resulting in the 

function is undertaken. Future functional research will hopefully provide some relief to 

the supposition and clarify this novel genes’ role in the differentiating (cortical) fibre 

cells.

During this PhD functional studies investigating the role of TNFs in lens 

development were planned to be undertaken using whole lens culture. Studying the 

published research and correspondence with Dr Sue Menko (who has used this 

technique) highlighted that an assumption had been made during published whole lens 

culture experiments that the lens developed “relatively normally”, though the 

development of these lenses using the various methods published had never been 

characterised. A number of the various, published, methods were used and whole 

lenses were cultured for up to 8 days, it was found that at this time point there was 

severe opacity under all culture conditions (including with glucose). The lenses were 

removed from culture on alternate days, fixed, embedded and stained. Preliminary 

findings have shown that while culturing lens with vitreous attached in glucose 

produced the most morphologically normal lens, this lens still had morphological 

abnormalities, namely that the nuclei in the newly diffenetiating fibre cells did not 

migrate along the equator. Once placed in culture, the nuclei in the newly 

differentiating fibre cells migrate towards the epithelial layer staying at the anterior of 

the fibre cells as they move towards the lens centre. The existing fibre cells (prior to 

culture) continued to differentiate and undergo organelle loss in a normal manner but 

while the newly differentiating fibre cells elongated and migrated towards the centre of
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the lens they were seemingly only able to partially differentiate, leaving the nuclei in 

evidence, this delayed or incomplete differentiation is likely to be major contributor to 

the opacities found in the cultured lenses.

The most abnormal cultured lenses were found as those growing in glucose 

with iris and vitreous attached. In these lenses, though epithelial cells continued to 

proliferate, the signal for differentiation seemed to be gradually lost as the time in 

culture increased. At the equatorial region the “differentiating” cells elongated a little, 

but this did not compare to that found during normal lens development. Whether this 

was due to the disassociation of the epithelial layer from the fibre cell mass or the loss 

(or gain) of signal from the iris is not known, but by 8 days in culture the 

“differentiating” cells had continued to develop in a layer of cells of approximately the 

same morphological size as epithelial cells and this layer had migrated to the posterior 

of the lens where it continued to increase in length folding over itself. This strongly 

suggested that differentiation had discontinued when these lenses had started culture 

and the size and length of the layer may indicate that proliferation of epithelial cells 

has been increased.

Though the existing differentiating fibre cells, in the lens alone and lens with 

vitreous culture options, continued to elongate normally, the migration of the nuclei 

towards the epithelium raised the question of whether the cells differentiating, after 

culture began, were entering the OFZ and losing all their organelles like in normal 

development. To test this hypothesis BrdU incorporation into the whole lens at the start 

of culture was attempted, it was believed that the labelled, proliferating cells in the 

germinative zone of the lens would migrate and begin to differentiate during culture. 

Collecting the lenses at different time points during culture, then fixing, embedding 

and detecting the BrdU would allow the study of the newly differentiating cells in 

culture. Within the time and financial constraints, staining of BrdU was not obtained 

and would be the first task in any future work. However, it was clear from H & E 

labelling that the existing fibre cells at E10 continued along an intrinsic developmental 

programme resulting in the loss of their nuclei and organelles. This is the first time that 

this has been noted in any study to date and suggests that this model system is valid for 

studying lens fibre cell denucleation and organelle loss instead of or in combination 

with functional studies manipulating lens development in chick embryos in ovo.
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In conclusion, this thesis has identified a number of genes previously unknown 

to be expressed in the developing lens, of these genes TRAF2, TRAF3 and TRAIL 

were studied further. TRAF2 and TRAF3 had statistically different gene and protein 

expression in the developing lens, while TRAF2 was also found to be highly expressed 

in surrounding ocular tissue, such as the developing iris. The novel identification of 

these genes in the lens has laid a foundation and further studies need to be undertaken 

to elucidate the role of these novel genes in the developing lens and indeed the 

development of the eye. The whole lens culture characterisation will aid in the eventual 

understanding of the role of these and other genes in the differentiation and 

development of the lens. Ultimately this thesis has unmasked a number of novel genes 

expressed in the developing lens and characterised a culture system that was ill 

understood and its potential as a useful tool little known. The continued identification 

of novel gene expression and understanding their functions in the lens and indeed the 

surrounding tissue is important and with further refinement could potentially prove to 

be a therapeutic benefit in a number of ocular disorders.

6.2 Future work

During this PhD, the expressions of a number of TNFs have been shown to be 

expressed via reverse transcriptase (RT)-PCR. The RT-PCR method is only semi- 

quantitative and for future studies the use of quantitative PCR would be advisable, 

especially to assess the expression of those genes that were found in the lens but their 

expression profiles, for the developmental timepoints studied, were not obtained.

Knock out mice are available for TRAFsl -6 (reviewed in Bharti & Aggarwal, 

2004), but there have been no thorough examinations of eye/lens development in these 

mice. Examination of the eyes/ lenses of these mice would supply further information 

suggesting whether these genes had a key role in the development of the eye/lens. If 

abnormal lenses were found in any of these knockout mice the role of the TRAF could 

be hypothesised and further researched.

Ideally further characterisation of the whole lens culture method would be 

carried out using the BrdU method mentioned above to ascertain the level of 

differentiation of the newly differentiating fibre cells. It may also be possible to 

improve the method by culturing the lens with other ocular tissues such as the retina,
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which may improve the differentiation of the new fibre cells by helping to maintain 

their nuclei at the equator of the lens and even allowing them continued entry into the 

OFZ. The tissue or factor involved in maintaining the normal line of nuclei in the fibre 

cells of lenses in culture was not found during this PhD.

Once satisfactorily characterised, the whole lens culture method could be 

further used to investigate the effects of a selected recombinant gene, e.g. TRAF3, on 

cell proliferation and differentiation in whole lens cultures by studying the morphology 

of the lenses and/or in dissociated lens cell cultures (Wride et al., 1999).

Another technique in chicken embryo research is in ovo electroporation. This 

method is used to create reversible pores in the plasma membrane to allow the 

introduction of si/ shRNAs (small interfering/small hairpin RNAs) or dominant- 

negative constructs resulting in the loss of function of selected genes (reviewed in 

Sauka-Spengler & Barembaum, 2008).

Though it is important to understand the roles, within the lens, of the genes 

identified in this research there are also wider implications. Understanding the varied 

functions of these genes within one tissue may not categorically imply the same 

functions is undertaken in another tissue. Gaining knowledge of the physiological roles 

of these TNF related genes in multiple tissues can only help in the development of 

therapies that may use gene manipulation in treatments of diseases from ocular 

tumours (Gregory et al., 2005) to psoriasis (Tan et al., 2007).
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Appendices
Appendix 1- Solution concentrations

10x PBS (Phosphate Buffered Saline)
800mls of dd (double distilled) water added to a sterile flask. Add magnetic stirrer and 
mix (not so vigorously that oxygen is introduced). For lOx PBS add 80g of Na2Cl, 2g 
of KC1, 14.4g o f  Na2H P04 and 2.5g of KH2P 0 4. Dissolve for 5 minutes or until fully 
dissolved. To adjust the pH, calibrate pH meter, reduce speed of mixing then pH the 
solution to 7.4. Put the solution into a sterile graduated cylinder and add d.d. water up 
to 1 litre. Put solution into a litre bottle and then autoclave.

lOx MOPS (morpholinepropanesulfonic acid)
To make up one litre, add 41.85g 4-morpholinepropanesulphonic acid (MOPS-acid 
free) and 6.8g sodium acetate-3H20  to 800 mis of double autoclaved H20 and stir until 
completely dissolved. Add 20mls 0.5M Na2EDTA solution and adjust pH to 7.0 with 
lOx NaOH. Adjust volume to 1 litre with double autoclaved water. Store in fridge at 
4°C wrapped in foil

Composition of RNA gel
To produce a gel volume of 150mls, 2.75g of agarose was added to 108mls da (double 
autoclaved) water, giving a final 1.5% agarose concentration. The agarose solution was 
brought to boil until all the agarose had dissolved then 27mls Formaldehyde and 15mls 
lOxMOPS was added under a fume hood, poored into a casting gel and left to set for 1 
hour.

RNA loading buffer recipe
50% Glycerol (so it sinks quicker into the gel wells), lOmM EDTA, 0.25% 
Bromothenol Blue, and 0.25% Xylene.

4% PFA (Paraformaldehyde)
Dissolve 4g Paraformaldehyde (using face mask when weighing PFA) in lOOmls -  
heat until dissolved- store at 4°C.

10% SDS
lOOmls SDS into 900mls H20.
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10% APS
lg of Ammonium persulphate in lOmls distilled water, store at 4°C

0.5M Tris-HCl buffer pH 6.8
6g Tris base, 60mls d water, pH to 6.8 with HC1. Make up to lOOmls with d water, 
Store at 4°C.

1.5M Tris buffer pH8.8
27.23g Tris base, 80mls d water, pH to 8.8 with HC1. Make up to 150mls with d water.

DNA ladder.
Ladder lpl 
Loading Buffer 3pi 
H20 11pi

Fractionation Buffer
0.32 M sucrose (1 lg  in 100ml buffer)
2 mM Hepes (200pl of 1M stock)
dH20 to 100ml
Stored frozen in 10ml aliquots.

Laemmli Buffer (2x stock)
4x stock 500pl
P-mercaptoethanol lOOpl or 15.4 mg DTT 
d.H20 400pl

1M Hepes
238mg / ml, alter pH to 7.2 -  7.5 with NaOH.

2x Loading Buffer
2x sample loading buffer (to make 10ml)

4% SDS 4ml of 10% SDS
20% glycerol 2ml
120mMTris 2.4ml 0.5M Tris pH 6.8
Water 1.6ml
Bromophenol blue 0.01% (w/v)
Aliquot and freeze at -20oC.

Western blotting running buffer
100ml lOx Tris/glycine/SDS buffer (Bio-Rad, UK) to 900ml distilled water



Transfer buffer
200ml methanol (Fisher Scientific, UK), 100ml Tris/glycine buffer (Bio-Rad, UK) and 
700ml water

10 xTBS
lOmM Tris, lOmM NaCl, pH 7.6. Make up to 11 with water 

TBS/Tween.
lOOmls lOx TBS in 900mls d water, add 1ml Tween20 (Sigma, UK)

Stripping buffer
15mls glycine, lg  SDS, 10ml Tween20, pH to 2.2. Make up to 11 with da water.

VIP peroxidase
5mls PBS + 3 drops of reagents 1, 2 and 3, mix well + 3 drops of Hydrogen peroxide.



Appendix 2- PCRs, primers, densitometry and statistics
Table A.2.1 Primers designed showing primer sequences, band size, optimised temperature and cycle number. This table shows the 
sequence of the primers designed from the accession numbers listed and using Primer3 as described in chap 2.2.6. Also listed are the 
expected PCR product sizes, the optimised annealing temperatures and cycle numbers used. Primers highlighted in yellow indicate those 
whose expression was studied in triplicate. GAPDH, highlighted in green, is the housekeeping gene. The primers not highlighted were 
shown to be expressed in the lens at E l2, but a thorough temporal expression analysis was not undertaken due to time and financial

Primers Band
size

Annealing
Temp. Cycles Forward primers pl

used Reverse primers pi used Accession Number

GAPDH 169 61 18 GGAGAAACCAGCCAAGTATGATG 1 AAAGGTGG A AGAATGGCTGT CA 1 PMID:12957145
TRAF1 183 60 30 GAATGGAGATGGGATGGGAAA 1 TGAAAGGAAGCAGAAGCCAAG 1 XM 415406
TRAF2 260 62 32 CTTCCTGCCATTCCCTCATC GCACCACACACCTTGTTACTC 1 XM 415561
TRAF3 658 62 28 TCAGGGAACAAACCAACAAA 1 AAGGT AAACTCTGGC AC AC ATC 1 XM 421378
TRAF4 204 62 27 AGGAGAGCACCAAGGCACAC 1 TGT AGAAAGGAGGGCTGAAGAA 1 XM 415823
TRAF5 300 Multiple 3ands ACAGATGGCAAACCAGCAAC 1 CT GAAGAT GGAGAGGACACGA 1 NM 204219.2
TRAF6 172 62 32 GCTGCTTTCCTGCT CTTCTGT 1 GTTCT C AACTGCT GCTTCTGG XM 421089.2
TRAF7 228 62 28 AACGGGACAAGAATGGAAACA 1 GCAATGAACGGACGGAGATAG 1 NM 001012528.1
TRAIL 146 62 26 GGAACGAATAAAGAATCCCAAG 1 CGCCCTGGTAGACGGAATAAA NM 204379
TNFR1 154 62 30 CACTGAACTCCCCATCTCTACCTT 1 CCCACTTGCTTCCACTTCTTG 1 XM 414067
TACE 172 62 34 GTCC AGT AT CC AGC AGC ACT C CTTCCCTTCACCATCCACAA 1 NM 001008682.1
DR5 102 64 32 TTGTGCCCCGTTCTACTGCT 1 G AGGT CTGGCTT CTGG AGGT 1 NM 204115

CD40L 237 60 38 GCTGAAGTGGATGACGACGAG 1 TC AC AG AG AGCCGT GG AGGT NM 204733.1
EDA 228 62 38 GGTGCTCGCTTTGAT AGTGGT 1 AGAGGTGGTGGTGAGGTGATG 1 XM 420158.1

EDAR 245 Multiple ?ands TTTCTGGT GGTTTCCTTGGTG 1 AATCCCTCGCAGTCCTTGTG 1 NM 001012611.1
EDARADD 108 62 36 GTCCAGCAGCCAGAAGACAAA 1 ACGGA AT AAGC AC AAGGAGC A 1 NM 001012405.2



Densitometry Results

Table A.2.2 Densitometry results of gene expression found via semi-quantitative 
PCR. PCRs were carried out in triplicate and densitometry analysis of the resulting 
bands was quantified using Scion Image software (Scion Corporation, freeware). The 
results were normalised from the GAPDH intensities then the mean intensity and 
standard error of the mean (SEM) were calculated.____________________________

Embryonic day
6 8 10 12 14 16

TRAIL

setl 273.38 230.78 156.6 158.74 169.34 40.24
set2 232.85 313.26 258.87 311.8 185.14 190.43
set3 153.35 349.15 227.94 308.35 382.52 213.14
Mean 219.86 297.73 214.47 259.63 245.67 147.94
SEM 35.25 35.04 30.28 50.45 68.58 54.25

TRAF1

setl 31.41 134.81 26.19 17.16 34.04 6.37
set2 22.12 168.37 36.55 36.52 23.23 9.29
set3 45.39 176.54 44.22 13.03 22.05 4.91
Mean 32.97 159.91 35.65 22.24 26.44 6.86
SEM 6.76 12.77 5.22 7.24 3.82 1.29

TRAF2

setl 66.44 57.24 45.35 44.98 47.28 31.45
set2 105.75 51.75 41.4 88.42 34.88 27.42
set3 85.04 75.54 62.69 63.56 51.06 17.54
Mean 85.74 61.51 49.81 65.65 44.41 25.47
SEM 11.35 7.19 6.54 12.58 4.89 4.13

TRAF3

setl 4.28 2.48 37.22 49.09 99.87 88.16
set2 7.02 2.74 18.85 33.16 82.65 92.64
set3 5.65 1.14 24.44 32.13 91.81 85.63
Mean 5.65 2.12 26.84 38.13 91.45 88.81
SEM 0.79 0.49 5.44 5.49 4.97 2.05

TRAF4

setl 36.77 32.2 43.59 61.9 34.87 71.23
set2 17.62 11.2 36.31 31.46 44.3 39.28
set3 38.1 36.59 33.33 39.96 40.81 63.04
Mean 30.83 26.66 37.74 44.44 39.99 57.85
SEM 6.62 7.83 3.05 9.07 2.75 9.58

TRAF7

Setl 224.77 237.41 223.99 235.29 229.28 225.06
Set2 231.8 221.16 236.72 218.17 211.54 210.51
Set3 206.01 234.46 230.16 228.92 211.04 211.09
Mean 220.86 231.01 230.29 227.46 217.29 215.55
SEM 7.7 5 3.68 5 6 4.76



Statistical Analysis

One way ANOVA was carried out on the normalised densitometry results and this was 
followed by Turkey’s post-hoc test. Statistical analysis was carried out to identify any 
significant changes in expression. In each case, the test for homogeneity of variance 
was not significant showing that the variability within the sample groups was similar, 
thereby allowing these statistical tests to be undertaken.

TRAIL

Table A.2.3 TRAIL Descriptives

N Mean
Std.

Deviation
Std.

Error
95% Confidence Interval 

for Mean Minimum Maximu
Lower
Bound

Upper
Bound

1.00 3 219.8 61.06 35.25 68.18 371.54 153.35 273.!
2.00 3 297.7 60.69 35.04 146.96 448.50 230.78 349.
3.00 3 214.5 52.45 30.28 84.18 344.76 156.60 258.:
4.00 3 259.6 87.39 50.45 42.54 476.72 158.74 311.:
5.00 3 245.7 118.78 68.58 -49.40 540.74 169.34 382.:
6.00 3 147.9 93.96 54.24 -85.46 381.34 40.24 213.
Total 18 230.9 83.96 19.79 189.13 272.63 40.24 382.:

Table A.2.4 TRAIL ANOVA

Sum of 
Squares df

Mean
Square F Sig.

Between 38353.37 5 7670.67 1.130 .396
Groups
Within Groups 81473.89 12 6789.49
Total 119827.2

5 17



Table A.2.5 TRAIL Multiple Comparisons

(I)
Timep
oint

(j)
Timep
oint

Mean 
Differe 
nee (I-

J)
Std.

Error Sig.

95% Confidence 
Interval

Lower
Bound

Upper
Bound

1

2 -77.87 67.27 0.848 -303.85 148.11
3 5.39 67.27 1 -220.59 231.37
4 -39.77 67.27 0.99 -265.75 186.21
5 -25.8 67.27 0.999 -251.78 200.17
6 71.92 67.27 0.884 -154.05 297.9

2

1 77.87 67.27 0.848 -148.11 303.85
3 83.26 67.27 0.811 -142.72 309.24
4 38.1 67.27 0.992 -187.88 264.08
5 52.06 67.27 0.967 -173.91 278.04
6 149.79 67.27 0.294 -76.18 375.77

3

1 -5.39 67.27 1 -231.37 220.59
2 -83.26 67.27 0.811 -309.24 142.72
4 -45.16 67.27 0.982 -271.14 180.82
5 -31.2 67.27 0.997 -257.17 194.78
6 66.53 67.28 0.913 -159.45 292.51

4

1 39.77 67.28 0.99 -186.21 265.75
2 -38.1 67.28 0.992 -264.08 187.88
3 45.16 67.28 0.982 -180.82 271.14
5 13.96 67.28 1 -212.02 239.94
6 111.69 67.28 0.579 -114.29 337.67

5

1 25.81 67.28 0.999 -200.17 251.79
2 -52.06 67.28 0.967 -278.04 173.92
3 31.2 67.28 0.997 -194.78 257.18
4 -13.96 67.28 1 -239.94 212.02
6 97.73 67.28 0.698 -128.25 323.71

6

1 -71.92 67.28 0.884 -297.9 154.06
2 -149.79 67.28 0.294 -375.77 76.19
3 -66.53 67.28 0.913 -292.51 159.45
4 -111.69 67.28 0.579 -337.67 114.29
5 -97.73 67.28 0.698 -323.71 128.25



TRAF1

Table A.2.6 TRAF1 Descriptives

N Mean

Std.
Deviati

on
Std.

Error
95% Coi 
Interval

nfidence 
for Mean

Minim
um

Maxim
um

Lower
Bound

Upper
Bound

1.00
2.00
3.00
4.00
5.00
6.00 

Total

3.00
3.00
3.00
3.00
3.00
3.00 

18.00

32.97
159.91
35.65
22.24
26.44

6.86
47.34

11.71
22.11

9.05
12.54
6.61
2.23

53.68

6.76
12.77
5.22
7.24
3.82
1.29

12.65

3.88
104.97

13.18
-8.92
10.02

1.32
20.65

62.07
214.84

58.13
53.39 
42.86
12.40 
74.04

22.12
134.81
26.19
13.03
22.05

4.91
4.91

45.39
176.54 
44.22 
36.52 
34.04

9.29
176.54

Table A.2.7 TRAF1 ANOVA

Sum of 
Squares df

Mean
Square F Sig.

Between
Groups
Within Groups 
Total

47160.36

1828.13
48988.49

5

12
17

9432.07

152.34

61.91 .000



Table A.2.8 TRAF1 Multiple Comparisons

Dependent Variable: Tukey HSD
(I)
Timepoi
nt

(J)
Timepoi
nt

Mean
Difference

(I-J)
Std.

Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

1.00

2.00 -126.93(*) 10.08 0.00 -160.78 -93.08
3.00 -2.68 10.08 1.00 -36.53 31.17
4.00 10.74 10.08 0.89 -23.11 44.59
5.00 6.53 10.08 0.99 -27.32 40.38
6.00 26.12 10.08 0.17 -7.73 59.97

2.00

1.00 126.93(*) 10.08 0.00 93.08 160.78
3.00 124.25(*) 10.08 0.00 90.40 158.10
4.00 137.67(*) 10.08 0.00 103.82 171.52
5.00 133.47(*) 10.08 0.00 99.62 167.32
6.00 153.05(*) 10.08 0.00 119.20 186.90

3.00

1.00 2.68 10.08 1.00 -31.17 36.53
2.00 -124.25(*) 10.08 0.00 -158.10 -90.40
4.00 13.42 10.08 0.76 -20.43 47.27
5.00 9.21 10.08 0.94 -24.64 43.06
6.00 28.80 10.08 0.11 -5.05 62.65

4.00

1.00 -10.74 10.08 0.89 -44.59 23.11
2.00 -137.670s) 10.08 0.00 -171.52 -103.82
3.00 -13.42 10.08 0.76 -47.27 20.43
5.00 -4.20 10.08 1.00 -38.05 29.65
6.00 15.38 10.08 0.66 -18.47 49.23

5.00

1.00 -6.53 10.08 0.99 -40.38 27.32
2.00 -133.470s) 10.08 0.00 -167.32 -99.62
3.00 -9.21 10.08 0.94 -43.06 24.64
4.00 4.20 10.08 1.00 -29.65 38.05
6.00 19.58 10.08 0.42 -14.27 53.43

6.00

1.00 -26.12 10.08 0.17 -59.97 7.73
2.00 -153.050s) 10.08 0.00 -186.90 -119.20
3.00 -28.80 10.08 0.11 -62.65 5.05
4.00 -15.38 10.08 0.66 -49.23 18.47
5.00 -19.58 10.08 0.42 -53.43 14.27

* The mean difference is significant at the .05 level.



TRAF2

Table A.2.9 TRAF2 Descriptives

N Mean

Std.
Deviati

on
Std.

Error

95% Coi 
Interval

nfidence 
or Mean

Minim
um

Maxim
um

Lower
Bound

Upper
Bound

1 3 85.74 19.66 11.35 36.89 134.59 66.44 105.75
2 3 61.51 12.46 7.19 30.57 92.45 51.75 75.54
3 3 49.81 11.33 6.54 21.68 77.95 41.4 62.69
4 3 65.65 21.80 12.58 11.51 119.80 44.98 88.42
5 3 44.41 8.46 4.89 23.38 65.43 34.88 51.06
6 3 25.47 7.16 4.13 7.69 43.25 17.54 31.45

Total 18 55.43 22.84 5.38 44.07 66.79 17.54 105.75

Table A.2.10 TRAF2 ANOVA

Sum of 
Squares df

Mean
Square F Sig.

Between
Groups
Within Groups 
Total

6333.13 5 1266.63 5.99 .005

2536.04
8869.17

12
17

211.34



Table A.2.11 TRAF2 Multiple Comparisons

Dependent Variable: Tukey HSD

(I)
Timep

oint

(j)
Timep

oint

Mean
Difference

(I-J)

Std.
Error Sig.

95% Confidence 
Interval

Lower
Bound

Upper
Bound

1.00

2.00 24.23 11.87 0.38 -15.64 64.10
3.00 35.93 11.87 0.09 -3.94 75.80
4.00 20.09 11.87 0.56 -19.78 59.96
5.00 41.34(*) 11.87 0.04 1.47 81.21
6.00 60.27(*) 11.87 0.00 20.40 100.14

2.00

1.00 -24.23 11.87 0.38 -64.10 15.64
3.00 11.70 11.87 0.91 -28.17 51.57
4.00 -4.14 11.87 1.00 -44.01 35.73
5.00 17.10 11.87 0.70 -22.77 56.97
6.00 36.04 11.87 0.09 -3.83 75.91

3.00

1.00 -35.93 11.87 0.09 -75.80 3.94
2.00 -11.70 11.87 0.91 -51.57 28.17
4.00 -15.84 11.87 0.76 -55.71 24.03
5.00 5.41 11.87 1.00 -34.46 45.28
6.00 24.34 11.87 0.37 -15.53 64.21

4.00

1.00 -20.09 11.87 0.56 -59.96 19.78
2.00 4.14 11.87 1.00 -35.73 44.01
3.00 15.84 11.87 0.76 -24.03 55.71
5.00 21.25 11.87 0.51 -18.62 61.12
6.00 40.18(*) 11.87 0.05 0.31 80.05

5.00

1.00 -41.34(*) 11.87 0.04 -81.21 -1.47
2.00 -17.10 11.87 0.70 -56.97 22.77
3.00 -5.41 11.87 1.00 -45.28 34.46
4.00 -21.25 11.87 0.51 -61.12 18.62
6.00 18.94 11.87 0.62 -20.93 58.81

6.00

1.00 -60.27(*) 11.87 0.00 -100.14 -20.40
2.00 -36.04 11.87 0.09 -75.91 3.83
3.00 -24.34 11.87 0.37 -64.21 15.53
4.00 -40.18(*) 11.87 0.05 -80.05 -0.31
5.00 -18.94 11.87 0.62 -58.81 20.93

* The mean difference is significant at the .05 level



TRAF3

Table A.2.12 TRAF3 Descriptives

N Mean
Std.

Deviati
on

Std.
Error

95% Co] 
Interval:

nfidence 
'or Mean Minim

um
Maxim

umLower
Bound

Upper
Bound

1 3 5.65 1.37 0.79 2.25 9.05 4.28 7.02
2 3 2.12 0.86 0.50 -0.01 4.25 1.14 2.74
3 3 26.84 9.42 5.44 3.44 50.23 18.85 37.22
4 3 38.13 9.51 5.49 14.51 61.75 32.13 49.09
5 3 91.44 8.62 4.97 70.04 112.85 82.65 99.87
6 3 88.81 3.55 2.05 79.99 97.63 85.63 92.64

Total 18 42.16 37.51 8.84 23.51 60.82 1.14 99.87

Table A.2.13 TRAF3 ANOVA

Sum of 
Squares df

Mean
Square F Sig.

Between
Groups
Within Groups 
Total

23376.97 5 4675.394 104.465 .000

537.07
23914.03

12
17

44.755



Table A.2.14 TRAF3 Multiple Comparisons

Dependent Variable: Tukey HSD

(I)
Timep

oint

(j>
Timep

oint

Mean
Difference

(I-J)

Std.
Error Sig.

95% Confidence 
Interval

Lower
Bound

Upper
Bound

1.00

2.00 3.53 5.46 0.99 -14.82 21.88
3.00 -21.19(*) 5.46 0.02 -39.53 -2.84
4.00 -32.48*) 5.46 0.00 -50.82 -14.13
5.00 -85.79(*) 5.46 0.00 -104.14 -67.45
6.00 -83.16(*) 5.46 0.00 -101.51 -64.81

2.00

1.00 -3.53 5.46 0.99 -21.88 14.82
3.00 -24.72(*) 5.46 0.01 -43.06 -6.37
4.00 -36.01(*) 5.46 0.00 -54.35 -17.66
5.00 -89.32(*) 5.46 0.00 -107.67 -70.98
6.00 -86.69(*) 5.46 0.00 -105.04 -68.34

3.00

1.00 21.19(*) 5.46 0.02 2.84 39.53
2.00 24.72(*) 5.46 0.01 6.37 43.06
4.00 -11.29 5.46 0.36 -29.64 7.06
5.00 -64.61(*) 5.46 0.00 -82.95 -46.26
6.00 -61.97(*) 5.46 0.00 -80.32 -43.63

4.00

1.00 32.48(*) 5.46 0.00 14.13 50.82
2.00 36.01(*) 5.46 0.00 17.66 54.35
3.00 11.29 5.46 0.36 -7.06 29.64
5.00 -53.32(*) 5.46 0.00 -71.66 -34.97
6.00 -50.68(*) 5.46 0.00 -69.03 -32.34

5.00

1.00 85.79(*) 5.46 0.00 67.45 104.14
2.00 89.32*) 5.46 0.00 70.98 107.67
3.00 64.61(*) 5.46 0.00 46.26 82.95
4.00 53.32(*) 5.46 0.00 34.97 71.66
6.00 2.63 5.46 1.00 -15.71 20.98

6.00

1.00 83.16(*) 5.46 0.00 64.81 101.51
2.00 86.69(*) 5.46 0.00 68.34 105.04
3.00 61.97(*) 5.46 0.00 43.63 80.32
4.00 50.68(*) 5.46 0.00 32.34 69.03
5.00 -2.63 5.46 1.00 -20.98 15.71

* The mean difference is significant at the .05 level.



TRAF4

Table A.2.15 TRAF4 Descriptives

N Mean
Std.

Deviati
on

Std.
Error

95% Coi 
Interval

nfidence 
for Mean Minim

um
Maxim

umLower
Bound

Upper
Bound

1 3 30.83 11.46 6.62 2.36 59.30 17.62 38.1
2 3 26.66 13.57 7.83 -7.05 60.37 11.2 36.59
3 3 37.74 5.28 3.05 24.63 50.85 33.33 43.59
4 3 44.44 15.71 9.07 5.42 83.46 31.46 61.9
5 3 39.99 4.77 2.75 28.15 51.84 34.87 44.3
6 3 57.85 16.60 9.58 16.63 99.07 39.28 71.23

Total 18 39.59 14.53 3.42 32.36 46.81 11.2 71.23

Table A.2.16 TRAF4 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.

1.949 5 12 .159

Table A.2.17 TRAF4 ANOVA

Sum of 
Squares df Mean

Square F Sig.

Between 
Groups 

Within Groups 
Total

1813.07 5 362.62 2.450 .095

1776.33
3589.41

12
17

148.02



Table A.2.18 TRAF4 Multiple Comparisons

Dependent Variable: Tukey HSD

(I)
Timepoi
nt

(j)
Timepoi
nt

Mean 
Differen 
ce (I-J)

Std.
Error Sig.

95% Confic ence Interval
Lower
Bound

Upper
Bound

1 2 4.17 9.93 1.00 -29.20 37.53
3 -6.91 9.93 0.98 -40.28 26.45
4 -13.61 9.93 0.74 -46.98 19.76
5 -9.16 9.93 0.93 -42.53 24.20
6 -27.02 9.93 0.14 -60.39 6.35

2 1 -4.17 9.93 1.00 -37.53 29.20
3 -11.08 9.93 0.87 -44.45 22.29
4 -17.78 9.93 0.51 -51.14 15.59
5 -13.33 9.93 0.76 -46.70 20.04
6 -31.19 9.93 0.07 -64.55 2.18

3 1 6.91 9.93 0.98 -26.45 40.28
2 11.08 9.93 0.87 -22.29 44.45
4 -6.70 9.93 0.98 -40.06 26.67
5 -2.25 9.93 1.00 -35.62 31.12
6 -20.11 9.93 0.38 -53.47 13.26

4 1 13.61 9.93 0.74 -19.76 46.98
2 17.78 9.93 0.51 -15.59 51.14
3 6.70 9.93 0.98 -26.67 40.06
5 4.45 9.93 1.00 -28.92 37.81
6 -13.41 9.93 0.75 -46.78 19.96

5 1 9.16 9.93 0.93 -24.20 42.53
2 13.33 9.93 0.76 -20.04 46.70
3 2.25 9.93 1.00 -31.12 35.62
4 -4.45 9.93 1.00 -37.81 28.92
6 -17.86 9.93 0.50 -51.22 15.51

6 1 27.02 9.93 0.14 -6.35 60.39
2 31.19 9.93 0.07 -2.18 64.55
3 20.11 9.93 0.38 -13.26 53.47
4 13.41 9.93 0.75 -19.96 46.78
5 17.86 9.93 0.50 -15.51 51.22



TRAF7

Table A.2.19 TRAF7 Descriptives

N Mean

Std.
Deviati

on
Std.

Error

95% Coi 
Interval:

nfidence 
br Mean

Minim
um

Maxim
um

Lower
Bound

Upper
Bound

1 3 220.86 13.33 7.70 187.74 253.98 206.01 231.80
2 3 231.01 8.66 5.00 209.51 252.52 221.16 237.41
3 3 230.29 6.37 3.68 214.48 246.10 223.99 236.72
4 3 227.46 8.65 5.00 205.97 248.95 218.17 235.29
5 3 217.29 10.39 6.00 191.48 243.10 211.04 229.28
6 3 215.55 8.24 4.76 195.09 236.02 210.51 225.06

Total 18 223.74 10.20 2.40 218.67 228.81 206.01 237.41

Table A.2.20 TRAF7 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.

.711 5 12 .627

Table A.2.21 TRAF7 ANOVA

Sum of 
Squares df Mean

Square F Sig.

Between 679.67 5 135.93 1.50 .26Groups
Within Groups 1087.79 12 90.65

Total 1767.46 17



Table A.2.22 TRAF7 Multiple Comparisons

Dependent Variable: Tukey HSD

(I)
Timepoint

(j)
Timepoint

Mean
Difference

(I-J)
Std.

Error Sig.

95% Confidence Interval
Lower
Bound

Upper
Bound

1 2 -10.15 7.77 0.78 -36.26 15.96
3 -9.43 7.77 0.82 -35.54 16.68
4 -6.60 7.77 0.95 -32.71 19.51
5 3.57 7.77 1.00 -22.54 29.69
6 5.31 7.77 0.98 -20.81 31.42

2 1 10.15 7.77 0.78 -15.96 36.26
3 0.72 7.77 1.00 -25.39 26.83
4 3.55 7.77 1.00 -22.56 29.66
5 13.72 7.77 0.52 -12.39 39.84
6 15.46 7.77 0.40 -10.66 41.57

3 1 9.43 7.77 0.82 -16.68 35.54
2 -0.72 7.77 1.00 -26.83 25.39
4 2.83 7.77 1.00 -23.28 28.94
5 13.00 7.77 0.57 -13.11 39.12
6 14.74 7.77 0.45 -11.38 40.85

4 1 6.60 7.77 0.95 -19.51 32.71
2 -3.55 7.77 1.00 -29.66 22.56
3 -2.83 7.77 1.00 -28.94 23.28
5 10.17 7.77 0.78 -15.94 36.29
6 11.91 7.77 0.65 -14.21 38.02

5 1 -3.57 7.77 1.00 -29.69 22.54
2 -13.72 7.77 0.52 -39.84 12.39
3 -13.00 7.77 0.57 -39.12 13.11
4 -10.17 7.77 0.78 -36.29 15.94
6 1.73 7.77 1.00 -24.38 27.85

6 1 -5.31 7.77 0.98 -31.42 20.81
2 -15.46 7.77 0.40 -41.57 10.66
3 -14.74 7.77 0.45 -40.85 11.38
4 -11.91 7.77 0.65 -38.02 14.21
5 -1.73 7.77 1.00 -27.85 24.38



Table A.2.23 Genes shown to be expressed at E12, without further studies 
undertaken. Table showing expression of genes expressed at E12 with optimised 
temperature and cycle number. Temporal expression was not undertaken on these 
genes due to limited time and finances.

'

Primers Band size Tem peratire C yde  number E12

6-Crystallin 100 64 20 ■
TRAF5 300 60 28 Mdtiple bands

TRAF6 172 62 32 □
TNFR1 154 62 30 D
TACE 172 62 28 □
DR5 102 62 32

CD40L 237 60 34
;

RAJ DO 186 60 28 a
EDA 228 62 34 a
EDARADD 108 62 34

EDAR 245 60 32 a
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Appendix 3- Western Blotting analysis 

TRAIL western blotting analysis

Table A3.1.1 TRAIL densitometry results

TRAIL 6 8 10 12 14 16
setl 97.78 124.81 179.84 278.74 161.25 295.75
set2 36.21 43.89 40.90 25.54 29.33 42.49
set3 29.04 120.38 108.82 34.64 107.16 219.25

Table A3.1.2 TRAIL Descriptives from SPSS analysis

N Mean
Std.

Deviation
Std.

Error

95% Confidence 
Interval for Mean

Minimum Maximum
Lower
Bound

Upper
Bound

6 3 54.34 37.79 21.82 -39.52 148.21 29.04 97.78
8 3 96.36 45.50 26.27 -16.66 209.38 43.89 124.81
10 3 109.85 69.47 40.11 -62.73 282.44 40.90 179.84
12 3 112.97 143.63 82.93 -243.83 469.78 25.54 278.74
14 3 99.25 66.32 38.29 -65.49 263.98 29.33 161.25
16 3 185.83 129.89 74.99 -136.84 508.50 42.49 295.75

Total 18 109.77 86.75 20.45 66.63 152.91 25.54 295.75

Table A3.1.3 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.

2.41 5 12 .098

Table A3.1.4 TRAIL ANOVA

Sum of 
Squares df Mean Square F Sig.

Between Groups 27474.03 5 5494.81 .66 .66
Within Groups 100448.33 12 8370.69
Total 127922.36 17



Table A3.1.5 TRAIL Multiple Comparisons using Tukey’s post hoc test

(I)
Timepoint

(J)
Timepoint

Mean
Difference

(I-J)
Std.

Error Sig.

95% Confidence 
Interval

Lower
Bound

Upper
Bound

6 8 -42.01 74.70 0.99 -292.93 208.91
10 -55.51 74.70 0.97 -306.43 195.41
12 -58.63 74.70 0.97 -309.55 192.29
14 -44.90 74.70 0.99 -295.82 206.02
16 -131.49 74.70 0.52 -382.41 119.43

8 6 42.01 74.70 0.99 -208.91 292.93
10 -13.49 74.70 1.00 -264.41 237.42
12 -16.62 74.70 1.00 -267.54 234.30
14 -2.89 74.70 1.00 -253.81 248.03
16 -89.47 74.70 0.83 -340.39 161.45

10 6 55.51 74.70 0.97 -195.41 306.43
8 13.49 74.70 1.00 -237.42 264.41
12 -3.12 74.70 1.00 -254.04 247.80
14 10.61 74.70 1.00 -240.31 261.53
16 -75.98 74.70 0.90 -326.90 174.94

12 6 58.63 74.70 0.97 -192.29 309.55
8 16.62 74.70 1.00 -234.30 267.54
10 3.12 74.70 1.00 -247.80 254.04
14 13.73 74.70 1.00 -237.19 264.65
16 -72.86 74.70 0.92 -323.78 178.06

14 6 44.90 74.70 0.99 -206.02 295.82
8 2.89 74.70 1.00 -248.03 253.81
10 -10.61 74.70 1.00 -261.53 240.31
12 -13.73 74.70 1.00 -264.65 237.19
16 -86.58 74.70 0.85 -337.50 164.34

16 6 131.49 74.70 0.52 -119.43 382.41
8 89.47 74.70 0.83 -161.45 340.39
10 75.98 74.70 0.90 -174.94 326.90
12 72.86 74.70 0.92 -178.06 323.78
14 86.58 74.70 0.85 -164.34 337.50

Table A3.1.6 TRAIL Tukey’s Post Hoc

Timepoint N

Subset for alpha 
= .05

1.00
6.00 3.00 54.34
8.00 3.00 96.36
14.00 3.00 99.25
10.00 3.00 109.85
12.00 3.00 112.97
16.00 3.00 185.83
Sig. 0.52

Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 3.000.
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TRAF3 (higher band) western blotting analysis

Table A3.2.1 TRAF3 (higher band) densitometry results

TRAF3 6 8 10 12 14 16
setl Higher band 73.31 41.92 74.12 73.43 47.14 33.05
set2 Higher band 34.25 58.17 109.63 94.54 86.66 156.81
set3 Higher band 92.68 90.58 114.46 42.47 22.29 80.35

Table A3.2.2 TRAF3 (higher band) Descriptives from SPSS analysis

N Mean Std.
Deviation

Std.
Error

95% Confidence 
Interval for Mean

Minimum Maximum
Lower
Bound

Upper
Bound

6.00 3.00 66.75 29.76 17.18 -7.19 140.69 34.25 92.68

8.00 3.00 63.55 24.78 14.30 2.01 125.10 41.92 90.58

10.00 3.00 99.40 22.03 12.72 44.68 154.13 74.12 114.46

12.00 3.00 70.15 26.19 15.12 5.09 135.21 42.47 94.54

14.00 3.00 45.36 22.24 12.84 -9.89 100.61 22.29 66.66

16.00 3.00 64.07 26.88 15.52 -2.70 130.84 33.05 80.35

Total 18.00 68.21 27.00 6.36 54.79 81.64 22.29 114.46

Table A3.2.3 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.

.123 5 12 .98

Table A3.2.4 TRAF3 (higher band) ANOVA

Sum of 
Squares df Mean

Square F Sig.

Between
Groups 4619.32 5.00 923.86 1.43 0.28

Within
Groups 7775.94 12.00 648.00

Total 12395.26 17.00



Table A3.2.5 TRAF3 (higher band) Multiple Comparisons using Tukey’s post hoc 

test

(I)
Timepoint

(J)
Timepoint

Mean
Difference

(1-J)
Std. Error Sig.

95% Confidence 
Interval

Lower
Bound

Upper
Bound

6.00

8.00 3.19 20.78 1.00 -66.62 73.01
10.00 -32.66 20.78 0.63 -102.47 37.16
12.00 -3.40 20.78 1.00 -73.21 66.41
14.00 21.38 20.78 0.90 -48.43 91.20
16.00 2.68 20.78 1.00 -67.14 72.49

8.00

6.00 -3.19 20.78 1.00 -73.01 66.62
10.00 -35.85 20.78 0.54 -105.66 33.96
12.00 -6.59 20.78 1.00 -76.41 63.22
14.00 18.19 20.78 0.95 -51.62 88.00
16.00 -0.52 20.78 1.00 -70.33 69.30

10.00

6.00 32.66 20.78 0.63 -37.16 102.47
8.00 35.85 20.78 0.54 -33.96 105.66
12.00 29.26 20.78 0.72 -40.56 99.07
14.00 54.04 20.78 0.17 -15.77 123.85
16.00 35.33 20.78 0.56 -34.48 105.15

12.00

6.00 3.40 20.78 1.00 -66.41 73.21
8.00 6.59 20.78 1.00 -63.22 76.41
10.00 -29.26 20.78 0.72 -99.07 40.56
14.00 24.78 20.78 0.83 -45.03 94.60
16.00 6.08 20.78 1.00 -63.74 75.89

14.00

6.00 -21.38 20.78 0.90 -91.20 48.43
8.00 -18.19 20.78 0.95 -88.00 51.62

10.00 -54.04 20.78 0.17 -123.85 15.77

12.00 -24.78 20.78 0.83 -94.60 45.03

16.00 -18.71 20.78 0.94 -88.52 51.11

16.00

6.00 -2.68 20.78 1.00 -72.49 67.14

8.00 0.52 20.78 1.00 -69.30 70.33

10.00 -35.33 20.78 0.56 -105.15 34.48

12.00 -6.08 20.78 1.00 -75.89 63.74

14.00 18.71 20.78 0.94 -51.11 88.52



Table A3.2.6 TRAF3 (higher band) Tukey’s Post Hoc

Timepoint N
Subset for alpha = 

.05
1

14 3 45.36
8 3 63.55
16 3 64.07
6 3 66.75
12 3 70.15
10 3 99.40

Sig. 0.17
Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 3.000.

TRAF3 (lower band) western blotting analysis

Table A3.3.1 TRAF3 (lower band) densitometry results

TRAF3 6 8 10 12 14 16
se t l Lower 3.80 8.05 9.09 7.52 9.53 127.99

set2 Lower 3.13 9.32 28.24 39.46 58.59 150.30

set3 Lower 1.87 10.67 32.64 113.75 140.69 221.27

Table A3.3.2 TRAF3 (lower band) Descriptives from SPSS analysis

N Mean Std.
Deviation Std. Error

95% Confidence 
Interval for Mean Minimum Maximum

Lower
Bound

Upper
Bound

6.00 3 2.93 0.98 0.57 0.50 5.36 1.87 3.80

8.00 3 9.35 1.31 0.76 6.10 12.60 8.05 10.67

10.00 3 23.32 12.52 7.23 -7.78 54.43 9.09 32.64

12.00 3 76.15 37.15 21.45 -16.14 168.44 39.46 113.75

14.00 3 98.19 41.13 23.75 -3.98 200.36 58.59 140.69

16.00 3 183.19 35.77 20.65 94.33 272.04 150.30 221.27

Total 18 65.52 68.88 16.24 31.27 99.78 1.87 221.27

Table A3.3.3 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig. ...

2.346 5 12 .105



Table A3.3.4 TRAF3 (lower band) ANOVA

Sum of 
Squares df Mean

Square F Sig.

Between
Groups 71637.07 5 14327.42 19.06 0
Within
Groups 9021.28 12 751.77

Total 80658.35 17

Table A3.3.5 TRAF3 (lower band) Multiple Comparisons using Tukey’s post hoc 

test

(I) Timepoint (J)
Timepoint

Mean
Difference

(I-J)
Std. Error Sig. 95% Confidence Interval

Lower
Bound Upper Bound

6.00

8.00 -6.42 22.39 1.00 -81.62 68.78
10.00 -20.39 22.39 0.94 -95.59 54.80
12.00 -73.22 22.39 0.06 -148.42 1.98
14.00 -95.26(*) 22.39 0.01 -170.46 -20.06
16.00 -180.26(*) 22.39 0.00 -255.45 -105.06

8.00

6.00 6.42 22.39 1.00 -68.78 81.62
10.00 -13.98 22.39 0.99 -89.17 61.22
12.00 -66.80 22.39 0.09 -142.00 8.39
14.00 -88.84(*) 22.39 0.02 -164.04 -13.64
16.00 -173.84(*) 22.39 0.00 -249.03 -98.64

10.00

6.00 20.39 22.39 0.94 -54.80 95.59
8.00 13.98 22.39 0.99 -61.22 89.17
12.00 -52.83 22.39 0.24 -128.02 22.37
14.00 -74.86 22.39 0.05 -150.06 0.33
16.00 -159.86(*) 22.39 0.00 -235.06 -84.67

12.00

6.00 73.22 22.39 0.06 -1.98 148.42
8.00 66.80 22.39 0.09 -8.39 142.00
10.00 52.83 22.39 0.24 -22.37 128.02
14.00 -22.04 22.39 0.91 -97.23 53.16
16.00 -107.04(*) 22.39 0.01 -182.23 -31.84

14.00

6.00 95.26(*) 22.39 0.01 20.06 170.46
8.00 88.84(*) 22.39 0.02 13.64 164.04
10.00 74.86 22.39 0.05 -0.33 150.06
12.00 22.04 22.39 0.91 -53.16 97.23
16.00 -85(*) 22.39 0.02 -160.19 -9.80

16.00

6.00 180.26(*) 22.39 0.00 105.06 255.45
8.00 173.84(*) 22.39 0.00 98.64 249.03
10.00 159.86(*) 22.39 0.00 84.67 235.06
12.00 107.04(*) 22.39 0.01 31.84 182.23

14.00 85(*) 22.39 0.02 9.80 160.19
* The mean difference is significant at the .05 level.
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Table A3.3.6 TRAF3 (lower band) Tukey’s Post Hoc

Timepoint N
Subset for alpha = .05

1 2 3
6.00 3 2.9296
8.00 3 9.3481
10.00 3 23.3239 23.3239
12.00 3 76.1507 76.1507
14.00 3 98.1889
16.00 3 183.1865
Sig. .058 .051 1.000

Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 3.000.

TRAF2 western blotting analysis

Table A3.4.1 TRAF2 densitometry results

TRAF2 6.00 8.00 10.00 12.00 14.00 16.00

Setl 196.84 130.06 200.19 147.95 72.07 29.13

Set2 181.52 66.54 248.66 127.66 30.91 19.53

Set3 220.52 215.38 224.22 73.34 23.64 29.92

Table A3.4.2 TRAF2 Descriptives from SPSS analysis

N Mean Std.
Deviation Std. Error

95% Confidence Interval 
for Mean Minimum Maximum

Lower
Bound

Upper
Bound

6.00 3 199.63 19.65 11.35 150.80 248.45 181.52 220.52

8.00 3 137.33 74.69 43.12 -48.21 322.86 66.54 215.38

10.00 3 224.36 24.23 13.99 164.15 284.56 200.19 248.66

12.00 3 116.32 38.57 22.27 20.49 212.14 73.34 147.95

14.00 3 42.21 26.12 15.08 -22.67 107.09 23.64 72.07

16.00 3 26.20 5.78 3.34 11.82 40.57 19.53 29.92

Total 18 124.34 82.02 19.33 83.55 165.12 19.53 248.66

Table A3.4.3 Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.

2.27 5 12 .114
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Table A3.4.4 TRAF2 ANOVA

Sum of 
Squares df Mean Square F Sig.

Between Groups 96845.32 5 19369.06 13.27 .000
Within Groups 17511.20 12 1459.27
Total 114356.52 17

Table A3.4.5 TRAF2 Multiple Comparisons using Tukey’s post hoc test

(I)
Timepoint

(J)
Timepoint

Mean
Difference

(I-J)
Std.
Error Sig.

95% Confidence Interval
Lower
Bound

Upper
Bound

8 62.3 31.19 0.4 -42.47 167.07
10 -24.73 31.19 0.96 -129.5 80.04

6 12 83.31 31.19 0.15 -21.46 188.08
14 157.42(*) 31.19 0 52.65 262.18
16 173.43(*) 31.19 0 68.67 278.2
6 -62.3 31.19 0.4 -167.07 42.47
10 -87.03 31.19 0.13 -191.8 17.74

8 12 21.01 31.19 0.98 -83.76 125.78
14 95.12 31.19 0.08 -9.65 199.88
16 111.13(*) 31.19 0.04 6.36 215.9
6 24.73 31.19 0.96 -80.04 129.5
8 87.03 31.19 0.13 -17.74 191.8

10 12 108.04(*) 31.19 0.04 3.27 212.8
14 182.14(*) 31.19 0 77.38 286.91
16 198.16(*) 31.19 0 93.39 302.93
6 -83.31 31.19 0.15 -188.08 21.46
8 -21.01 31.19 0.98 -125.78 83.76

12 10 -108.04(*) 31.19 0.04 -212.8 -3.27
14 74.11 31.19 0.24 -30.66 178.87
16 90.12 31.19 0.11 -14.64 194.89
6 -157.42(*) 31.19 0 -262.18 -52.65
8 -95.12 31.19 0.08 -199.88 9.65

14 10 -182.14(*) 31.19 0 -286.91 -77.38
12 -74.11 31.19 0.24 -178.87 30.66
16 16.02 31.19 1 -88.75 120.78
6 -173.43(*) 31.19 0 -278.2 -68.67
8 -111.13(*) 31.19 0.04 -215.9 -6.36

16 10 -198.16(*) 31.19 0 -302.93 -93.39
12 -90.12 31.19 0.11 -194.89 14.64
14 -16.02 31.19 1 -120.78 88.75

* The mean difference is significant at the .05 level.
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Table A3.4.6 TRAF2 Tukey’s Post Hoc

Timepoint N
Subset for alpha = .05

1 2 3 4
16 3 26.20
14 3 42.21 42.21
12 3 116.32 116.32 116.32
8 3 137.33 137.33 137.33
6 3 199.63 199.63
10 3 224.36

Sig. 0.11 0.08 0.15 0.13
Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 3.000.
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Appendix 4- Lens culture

Lens opacity following whole lens culture

Table A4.1 Densitometry results of opacities in cultured lens

With glucose Without glucose

Lens
only

Lens+
Vitreous

Lens,
Vitreous+lris

Lens
only

Lens+
Vitreous

Lens,
Vitreous+lris

E10 + 2 65.26 44.78 105.26 37.83 47.32 84.65
E10 + 4 42.41 48.98 116.14 84.39 38.47 70.46
E10 + 6 77.82 71.04 135.54 74.75 61.11 148.03
E10 + 8 149.18 146.51 177.24 139.03 194.92 189.74
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