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Summary

This thesis deals with two types of mathematical objects: alternating sign matrices and
polytopes.

Alternating sign matrices were first defined in 1982 by Mills, Robbins and Rumsey. Since
then, alternating sign matrices have led to some very captivating research (with multiple
open problems still standing), an outline of which is presented in the opening chapter of this
thesis.

Convex polytopes are extremely relevant when considering enumerations of certain classes
of integer valued matrices. An overview of the relevant properties of convex polytopes is
presented, before a connection is made between polytopes and alternating sign matrices: the
alternating sign matrix polytope.

The vertex set of this new polytope is given, as well as a generalization of standard alternating
sign matrices to give higher spin alternating sign matrices. From a result of Ehrhart a result
concerning the enumeration of these matrices is obtained, namely, that for fixed size and
variable line sum the enumeration is given by a particular polynomial.

In Chapter 4, we give results concerning the symmetry classes of the alternating sign matrix
polytope and in Chapter 3 we study symmetry classes of the Birkhoff polytope. For this
classical polytope we give some new results.

In the penultimate chapter, another polvtope is defined that is a valid solution set of the
transportation problem and for which a particular set of parameters gives the alternating sign
matrix polytope. Importantly the transportation polytope is a subset of this new polytope.
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Chapter 1

Introduction

1.1 Alternating sign matrices

1.1.1 Definitions

Enumerative combinatorics studies the counting of structures obeying certain properties.
Any undergraduate text on combinatorics is sure to contain some work on permutations,
one class of such structures. Another class of structures of more recent interest is that of
alternating sign matrices.

Definition 1.1.1. The set of alternating sign matrices of size n, denoted ASM(n), is the

set of n x n matrices with the following properties:

e The entries are from the set {-1,0,1}.
e The sum of the entries in each column and in each row is 1.

e Disregarding the 0 entries, the 1’s and -1’s alternate along each row and column.
Figure 1.1 shows the alternating sign matrices of size 3. Note that any permutation matrix
is an alternating sign matrix.

How these matrices appeared and the earlier years of research that evolved around them will

be the subject of our next section. Some of this material has appeared in the review papers
[24, 93, 113] and the book [25].

Throughout this thesis, P denotes the set of positive integers, N denotes the set of nonnegative
integers, [m, n| denotes the set {m, m+1,...,n} for any m,n € Z, with [m,n} = 0 for n < m,

12
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100 100 0 01
010 0 01 010
0 01 010 100
0 01 010 010
100 1 0 001
010 0 1 100

0 1 0

1 -1 1

0 1 0

Figure 1.1: ASM(3)

and ‘[n] denotes the set [1,n] for any n € Z. The notation (m,n)g and [m,n]g will be used
for the open and closed intervals of real numbers between m and n. For a finite set T, |T|
denotes the cardinality of 7. The symbol I,, denotes the identity matrix of size n x n.

1.1.2 Historical overview

Alternating sign matrices have been appealing combinatorial objects for more than 20 years.
Before explaining how they appeared we recall another mathematical object. The determi-
nant of an n X n matrix a can be defined as:

n

|a| = Z sign(o) Haia(i)

0€Sn =1

The determinant is a sum over the symmetric group S,,. Mills, Robbins and Rumsey worked
on Dodgson condensation, an algorithm for iteratively calculating the determinant of an nxn
matrix in terms of 2 x 2 determinants:

ain a12| _ _
'021 Qg | = @11022 — 412021

Changing this slightly to give:

|€111 a2

as a22| = a11a32 + Aaj2as;

Robbins and Rumsey [95] were led to define the A determinant of an n x n matrix a, as:
n
ay=">_ Pl ][]
oc€ASM(n) =1

where P is a certain function of A and o. A simple question arose: for given n how many
terms are there in this sum? The first few enumerations offered were 1,2, 7,42, 429, 7436, . . ..
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Not having the many references available today they asked the combinatorialist Richard
Stanley if he knew of this sequence. He responded that this sequence (A005130 of [99])
also enumerates so-called descending plane partitions as shown by Andrews in [3]. A plane
partition of a number n is defined as an array of positive integers with non-increasing rows and
columns, such that the sum of its entries is n. Turning their interest towards these objects,
Mills, Robbins and Rumsey started working on the Macdonald conjecture [77]. Macdonald’s
conjecture concerned a particular type of these objects: cyclically symmetric plane partitions.
Macdonald conjectured a form for the generating function of these elements and Stanley
claimed proving this formula was “the most interesting open problem in all of enumerative
combinatorics” [102]. Andrews [3] proved a particular case of this conjecture and conjectured
another result. These conjectures were proved in [80] by Mills, Robbins and Rumsey. In
[80] they defined alternating sign matrices and gave two conjectures concerning these new
mathematical objects that they developed further in [81]. Returning to their initial query, if
we let A, be the number of alternating sign matrices of size n, they conjectured the following
formula

(35 +1)!
H ore (1.1)

j=0
It is easy to note that there can be only a single 1 in the first row of any alternating sign
matrix. If we let A, x be the number of alternating sign matrices with single 1 in the first
row and column k, we have the refined alternating sign matriz conjecture:

_(n+k—2\(2n—k—1)!TT (35 +1)!
= () e Lo 02

Equations (1.1)-(1.2) are the previously mentioned conjectures given in [80] by Mills, Robbins
and Rumsey. In [93], Robbins offered the following opinion on a range of conjectures related
to alternating sign matrices: “These conjectures are of such compelling simplicity that it is
hard to understand how any mathematician can bear the pain of living without understanding
why they are true”. Some of these conjectures are still open but a review of the proof of (1.1)
will follow in Section 1.1.4.

1.1.3 The many faces of alternating sign matrices

The title of this section is actually the title of an extremely relevant article by Propp: [89).
In [22, 89] different bijections are given between alternating sign matrices and other combi-
natorial objects. The 1995 paper [22] offers a nice snapshot of history since the authors were
hoping that one of their bijections would offer an insight into proving the alternating sign
matrix conjectures (1.1) and (1.2). However the proof of (1.1) appeared in [111] at practically
the same time as did [22] without using the particular bijection mentioned.
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Edge matrix pairs

Definition 1.1.2. Define the set of edge matrix pairs EM(n) as:

- th hln Vo1 --- Uon
EM(n) :={ (h,v) = : N I I : € {0, 1}mx(n+1) x {0, 1}(n+D)xn
hnO h,m Uni .- Upn
o hip=v5; =0 foralli,je€ [n]
o hiyn=un; =1 foralli,jen]
O'h,',j._1 + v =15+ h,'j foralli,j € [’l’l]
(1.3)

We shall refer to h as a horizontal edge matriz and v as a vertical edge matriz. It can be
checked that there is a bijection between the set ASM(n) and EM(n) in which the edge
matrix pair (h,v) which corresponds to the alternating sign matrix a is given by:

h‘ij = E§,=1 a; j for all 7 € [n], ] € [0, n]

1.4
vij = u_,0¢; forall ie€[0,n], j€[n| (1.4)

and inversely:

aij = hij — Rij—1 = Vij — Vi—1,5 for all ’L,] € [n] (15)
Therefore h is the column sum matriz and v is the row sum matriz of a. The correspondence
between alternating sign matrices and edge matrix pairs was first identified in [95]. Using

equation (2.4) we get for the matrices from Figure 1.1 the edge matrix pairs as shown in
Figure 1.2 (the ordering of these matrices corresponds to the ordering of Figure 1.1).

Corner sum matrices

Definition 1.1.3. Define the set of corner sum matrices CSM(n) as:

CSM(n) :=
Coo --- Con ®cor =Cro=0 forallk €[0,n]
c=| : : | € [0,n]prixne1| ® Gk =cok =k forallk €[0,n] (1.6)
: : ’ ecij—cij-1 €{0,1} foralli,j € [n]
Cr0 -+ Con ' ®cij —Ci—1; € {0,1} foralli,j € [n]

It can be checked that there is a bijection between ASM(n) and CSM(n) in which the corner
sum matrix ¢ which corresponds to the alternating sign matrix a is given by:

i
cj=3_3 ayy, foralli,je[0,n] (1.7)

=1 j'=1
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o1y CON (o1 (000
0011}, 110 0001}, 10 1
0001 111}/ 0011 111
0001 88(1)\\ 0001 88(1)
0011}, 01 1 0111}, 10 1
0111 111)} 0011 111}/
/0011 8‘1)8\\ 0011 g‘l’g\\
011 1], 110 0 001}, 01 1
0001 111}) 0111 111))

o011\ (o770

0101}, 101

0011 111

Figure 1.2: EM(3)

and inversely,
Qi5 = Cijj — G j—1 — Ci—1,5 +Ci~1,j__1, for all 2,]€[n] (18)

Combining the bijections (1.4) and (1.5) between EM(n) and ASM(n), and (1.7) and (1.8)
between ASM(n) and CSM(n), the corner sum matrix ¢ which corresponds to the edge matrix
pair (h,v) is given by:

i J
Cij = Zhi;j = Z'Uijl, for all l,] € [O,n] (19)

=1 i'=1

and inversely, ] [
hij = ¢ij — cim1j, foralli€[n],j€[0,n
'Ui; = ¢ — Cij—1, forallie [0,n],j€[n (1.10)

Corner sum matrices were introduced in [95]. Figure 1.3 gives CSM(3).
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0000y, /0000, (0000
0111] [o111] [o001
0122 o122 loo12
0123 \o123 \o123
0000y 0000y (0000
0001| [oo11] [0011
0112] o122 [0oo012
0123 \o123/ \o123

00 0 0

0011

0112

012 3)

Figure 1.3: CSM(3)

Monotone triangles

Definition 1.1.4. Define the set monotone triangles MT(n) to be the set of all triangular

arrays t of the form:

such that:

e Each entry of t is in [n].
° t,'j < t,',j.;.l fOT alli e [n], ] € [’L - 1]
o ti+1,j < tij < ti+1,j+1 fOT alli e [n - 1], jE€ [’L]

It follows that the last row of any monotone triangle in MT(n) consists of each integer of [n].
It can be checked that there is a bijection between ASM(n) and MT(n) in which the mono-
tone triangle ¢ which corresponds to the alternating sign matrix a is obtained by first using
(1.4) to find the vertical edge matrix v that corresponds to a, and then row i of ¢ corresponds
to the positions of the 1’s of row ¢ of v, with these integers being placed in increasing order
along each row. Using this bijection we get Figure 1.4 for MT(3).

The set MT(n) of monotone triangles was introduced in [81].
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3 2 2
1 3 2 3 1 2
1 2 3 1 2 3 1 2 3
1
1 3
1 2 3

Figure 1.4: MT(3)

The next form we consider is arguably one of the most important. The bijection given here
made a connection between combinatorics and physics.

Configurations of the six-vertex model with domain-wall boundary conditions

Definition 1.1.5. We define the m by n lattice Ly, to be the graph with vertex set:
[0,m+1] x [0,n+ 1]\ {(0,0),(0,n+ 1),(m+ 1,0),(m + 1,n+ 1)}

where two points (i,7), (i, 5") from this set form an edge if and only if (3,5) — (¢,j") €
{(0,£1),(£1,0)}.

The vertices will be depicted in a grid in which vertex (7,j) appears in row i from the
top and column j from the left as shown in Figure 1.5. If (3,7) — (¢,7') = (0,£1) or
(¢,7) — (¢,5") = (£1,0) then the edge {(¢, ), (¢, 7')} is horizontal or vertical respectively.
Definition 1.1.6. A configuration of the six-vertex model with domain-wall boundary con-
ditions is an assignment of left or right arrows to each horizontal edge of L, , and an up or

down arrow to each vertical edge of L,, ,, such that:
o At each internal vertex the number of arrows directed in is the same as the number of
arrows directed out.
o All arrows on the left/right/top/bottom boundary are oriented left/right/down /up.
It can be shown that there is a bijection between configurations of the six-vertex model with

domain-wall boundary conditions on £,, and ASM(n). To map such a configuration to a
matrix a € ASM(n) the following rule is used at each vertex (¢, j) to give a;;.
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n
AN

( 0.1,0.2 1,n+1)

1,0

8¢

(myn+1)

N(m)o) b
(m+1,n)

Figure 1.5: L,

e e o

e
O — =t
O — —p———
O — >
O — =t

-1

For the inverse mapping, given an alternating sign matrix, once the arrows for the vertices
corresponding to the 1’s and -1’s have been assigned there is a unique way in which the
other arrows can be inserted into £,, ,. Figure 1.6 gives the configurations corresponding to
Figure 1.1. The correspondence between alternating sign matrices and configurations of the
six-vertex model with domain-wall boundary conditions was first identified in [53].

Figure 1.6: Six-vertex model configurations with domain-wall boundary conditions on L33

A configuration of the six-vertex model with domain wall boundary conditions can alterna-
tively be regarded as an assignment of 0’s and 1’s to the edges of £, , such that:
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* The values assigned to the four edges surrounding an internal vertex satisfy the rule
given in Figure 1.8.

» All of the edges on the left and upper boundaries are assigned 0’s and all of the edges
on the right and lower boundaries are assigned 1’s.

Thus the relationship between the two forms of configurations is simply that left and down
arrows correspond to 0’s and right and up arrows correspond to 1’s as shown in Figure 1.7.
The configurations of the six-vertex model with domain wall boundary conditions on £33
using 0’s and 1’s are shown in Figure 1.9. Also the mapping between edge matrix pairs and
configurations of the six-vertex model with domain wall boundary conditions using 0’ and
I’s is simply that for any (/z,v) G EM(n), Aijj is assigned to the horizontal edge between (zj)
and (zj + 1) and is assigned to the vertical edge between (i,j) and (z+ 1,j). This is
shown in Figure 1.10.

Figure 1.7: Orientation Convention

<2 2 a+0=~+6

Figure 1.8: Relation between the edge matrix entries surrounding a vertex

Lattice paths

Definition 1.1.7. The set LP(n) of lattice paths is the set of all sets P of n directed lattice

paths on £nn such that:

» For each i G [n\, P contains a path which begins at [n+ 1,2) and ends at (z,n + 1).
» Each step of each path of P is either (—1,0) or (0,1).

* Different paths of P do not cross or share any edge of the lattice (but may share a vertex

of the lattice).

It can be checked that there is a bijection between EM(n) (and hence ASM(n)) and LP(rz)
in which the edge matrix pair (/i, v) which corresponds to the path set P is given by:
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0 0 o 0 0 o 0 0 0
ol ., dagal., ,Jolol,
1, fo, 1, 10, 10 o, fo,

0 1 o 10 1
0, 11, fo 1, o, h o 1, I
0 2 o 10 1
0 0 0 0 0 o 0 0 0
odolol el Jolal,
0, fo, 1 o, 1, o 0, 1, fo
0 1 0 10 1
1 b b 1 h o o h h
ool o leto Il
0 0 o0
o— 4 11
o, fi, fo
0 1
1, o, 1
0 1

Figure 1.9: Configurations of the six-vertex model with domain wall boundary conditions on

L33 using 0’s and 1’s

Vo1 Vo2 ... Uon
hio hu hin
v11 pvi2 Vin
hao han
h21
hnO hnl hnn
Unl Yn2 °°° Unn

Figure 1.10: Assignment of edge matrix entries to lattice edges
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* hij = 1 if and only if there is a path of P that passes from (iff) to (i,j + 1).

. = 1 if and only if there is a path of P that passes from (i + 1,j) to (i, j).

The set LP(n) is studied in [14, 22, 23, 51, 106]. Figure 1.11 gives the lattice paths corre-
sponding to Figure 1.1.

Figure 1.11: LP(3)

Fully packed loops

Definition 1.1.8. The set FPL(n) of fully packed loop configurations is the set of all sets

P of nondirected open and closed paths on Cnn such that:

* Any two edges occupied successively by a path of P are different.
* Exactly one path of P passes through each internal vertex of £nn.
» Each path of P does not cross itself or any other path of P.

* At each external vertex (0,2k-1) and (n+lLn-2k+2) for k € [Tfl], and (2k 0) and
(n —2k+ 1,n + 1) for k € [L{]] >there is an endpoint of a path of P, these being the

only lattice points which are path endpoints.
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It can be checked that there is a bijection between EM(n) and FPL(n) in which the element
of FPL(n) which corresponds to (/i, v) G EM(n) is obtained by first forming:

T _ ( hij for z+j odd
b~1 1— forz+ ?even
(1.11)
__f1—Vijfori+j odd
Vj ~ | for i -fj even

and then assigning a path segment to each horizontal edge of Cnn between (z,j) and (zj + 1)
which has 4ij = 1 and to each vertical edge between (zj) and (z+ 1,j) which has Vij = 1.
Figure 1.12 gives the fully packed loop configurations on £ 33.

Figure 1.12: FPL(3)

Fully packed loops are interesting combinatorial objects in their own right as shown for
example in [37, 38, 48, 49, 107, 109, 118].

These are most of the forms of alternating sign matrices considered by Propp in [89]. In the
next section we give an overview of one of the proofs of (1.1) that uses one of these particular
forms.

1.1.4 Proving the alternating sign matrix conjecture

The original proof of the alternating sign matrix conjecture (1.1) appeared in an article by
Zeilberger [111]. He originally submitted this article as a 20 page paper in 1992. In [113]
Zeilberger explains how the referee (Dave Robbins) constantly found “gaps” in his arguments.
After resubmitting quite a few times, Zeilberger decided to make his paper “pre-refereed”.
He shared out all the lemmas in his argument to different mathematicians who checked each
one individually. This led to his final 80 page paper being accepted and recognized as the
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original proof of the long standing conjecture. To quote Zeilberger in [113]: “this innovative
format, and the pioneering idea of communal checking, are even more important than the
content of my article”. The proof itself involved showing that alternating sign matrices
are equinumerous with totally symmetric, self-complementary plane partitions, which had
already been enumerated by Andrews [4].

The second proof of conjecture (1.1) that appeared was by Kuperberg [72]. We will go over
the key points in Kuperberg’s proof, in very much the same way that Bressoud does in his
book [25].

Kuperberg’s proof relies on configurations of the six-vertex model with domain wall boundary

conditions as dven bv Definition 1.6. Consider an internal vertex of this model usine 0’s and
\

¢ > A Boltzmann weight W / a ,2,8 E C is defined, where a and 2 are complex
v % J

variables, often called the crossing parameter and spectral parameter respectively. Defining

1°s:

1’2:0 ] = W ,2,0 =1
=W 5,2,a 1= 5(20,0) (1.12)
5,2,0 = W -7,2,0n =5s(J,a)
/ZV . 2ip)
In general we consider I : : I E Cnxn, with zqg being used for vertex (i,j). For
\2ni ... ZwJ

given (h, v) E EM(n) and its corresponding six-vertex model configuration with domain wall
boundary conditions using Os and 1’s we calculate the weight of this configuration by taking
the product of the weights of all the vertices:

/ vi 13 \

Whv)= Yl w | L

i,jzl V Vij g
In the case needed here we associate row i with x{and column j with yj and set 2* =  for
some complex numbers X\t..., xn and 21,..., yn. A particular tool of statistical mechanics

is the partition function Zn(x\,... xn,j/i,... yn,a), which is the sum of the weights of all the
possible states of a system:
vi-1,3 >
hij X,
Zn(xi,...xn,yi,...yn,a) := w —U,—{,a
(M)eEM(n) i,j=1 Vi Vi

This partition function had already been well studied [18, 64, 65, 70] giving the determinant



Chapter 1 Introduction 25

formula:

*)e -
Zn(xl,...xn,yi,...yn,a\),-lvv ($/ )\(%y ), / (I \
SRR /s 0/ =1
nr j=i (a2g?-i") - '
(- ) n(r-1) (02 THW) B Inisi<j <, (*2nf)(rjon?) @7 DL(7-ad7) .y
(1.13)

where ITj= denotes the determinant of an » x n matrix a with entries a”.

The proof of (1.13) relies on showing that the right hand side of (1.13), denoted by
Fn(xi,...xn,yi,... yn,a) and Zn(xi,... xn,yi,... yn,a) both satisfy the following properties:

* They equal 1forn = 1
* They are symmetric in aq, and symmetric in yi,..., yn (separately).

* (niLi Zi&r-1 Fn(xi,... xn,yu ... yn,a) and (f[’=i M2 1 ... XN, YU ... Y,, a) are
polynomials of degree » —1 in each xf and y”.

* Fn(xi,...xn,yi,... yn,a) and Z,,(a:i,... xn,yi,... yn,a) obey the same recursion relation
for certain values of x, and yj.

The proof of symmetry is done using the Yang-Baxter equation [8]. The Yang-Baxter equa-
tion states that for a certain triangle of vertices, with each edge assigned a fixed value, if we
move the left vertex across to the right, maintaining the values for the external edges but
switching the top and bottom spectral parameter values, then the sum of the weights over
all possible values for the internal edges stays the same. Diagrammatically this gives:

f <72 \
ai 12
~  weight B _ y : weight
21
3
n
where the orientated weight of the left hand side is W n, ,, »a and the orientated
fom v
weight on the right hand side is W % ,a I (with Ti, r2 being summed over).
03 22

Symmetry in xi,...xn follows since it is possible to introduce a new vertex on the left
boundary of the lattice (thus creating a triangle) and push it across the lattice, switching
the top and bottom labels at each step and keeping the same overall weight, and similarly
for yi,. ..,y,,.

( 3 \

If we can choose a particular set of parameters such that IV ; ¢ 7*aFnj
vea
1 0

a,/?,7,d then Zn(x\,.. .xn,yi,... yn,a) = An. This is indeed what Kuperberg realized
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and used in [72]. Setting Xi = ¢*£%,y] = = el” (to avoid confusion with label-
ing of rows we use 1 to denote the imaginary constant: 12 = —1) and letting ¢ = 1 gives
6 1
w . =i-
v i
Note that ¢ (v yeemm) Ul]:lW Hij A
\% J

hand side of (1.13) is not. Indeed ¢ = 1 implies that XY = Xj and yi = yj for all i,j and
s(1,a) = 0 so that the determinant and the denominator of the prefactor are both 0. We
thus have An = limg i Zn(xi,... x,,, j/i,... yn,a). Kuperberg now had a valid method for the
enumeration of ASM(n) however to prove conjecture (1.1) there was still a fair bit of work to
do. Kuperberg, using results of Cauchy, proved what is known as Kuperberg’s determinant
formula [25, 72]:

- (1.14)

N |

Note:

(ax} —yf) (xf —ayf) =q2 2je*f (1 + qt4j 1-1-q2@t+i
227 If 1-qW +i-V

x? - x> (] -y)=-Ql+H4! - 9102 (1.15)

n(n-1)

(ad- 1)"(" b= (v/3el%)

Using this we have:

r(n2-n)

o— -, n(n- ..
An = lim o
¢ 1(v'Se'®) ( 1(—g)mr2 " n,<i3<, (1-9% 12 Call
(1.16)
This reduces to:
nin- T:r_n':. 2. 2] n ., 1—g3(«+J-U 1 i+J—1
An= (-3 2" lim° .2 ) f+97 lim Lot e 1_—gfg3(i+j_}) ]
931 ril<t<j<n? '’ n*s.a-fl'-12 >j:J
which gives:
!-Tf” i- g3 (t+j-1)
_ : . 1- g'+j-1
An= (-3 )~ lim UiJ=1 1 gWHj-i) (1.17)

since the term in the first limit is simply a product of ¢'s whose limit is therefore 1. Using
(1.14) with s = ¢ and ¢ = ¢3 we have:

(1.18)
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which gives (using the identity 1 — 2™ = (1 +z+ 2%+ --- + 2™ 1) (1 — 1))

~ n 2 3(j—i)

zn(n=1) . 1+g+q¢°+---+¢g : i—i L 2(i—i))2
A = (— 3 ”1 _ lim (14 ¢ 7" +¢°Y
= MO Trgr @+ g 1] tm(eemea®)

1<i<j<n
Taking the limits we have:

nn-1) r 3(j — i) +1
A= ™ [T

4,j=1

Considering the numerator of [7._, 3341 we have

i,j=1 i+j-1
1 4 T an — 2
n -2 I | 3n—5
_ -5 -2 1 3n — 8
[[6G-9+)=][— . . .
ij=1 : : : .. :
I—3n | 7—3n [ 10-3n[... T
which is the product (—1)*F" p (k4 1) 53k — 1)k
Also we have the denominator as
T 2 3 n
n 2 3 4 n+1
. . 3 ! ) 2
[l 6+s-0-1I R
1,j=1 . : : t. :
nin+ln+2]... [2n-1

which is the product n" [Tp_] k*(n + k)"~*. Thus we have:

3252 ol /(3 — 1) R(Bk + 1) 13 (3K — 1)(3k)(3k + 1))
A= E( k*(n + k)n—* )—n—l}( kn(n + k)n* )

A bit more observation gives:

A (2x3x4)"1(5x6x7)"2...((3n — 4)(3n — 3)(3n — 2))! _ l:[1 (3i + 1)!
TUImmdn (n = 1)tan(n+ 1) (n+ 272 (20 - 3320 - 2)2(2n — 1) L4 (n+0)!

as required.

Once Kuperberg’s proof was published, Zeilberger used this same connection between alter-
nating sign matrices and statistical mechanics to prove the refined alternating sign matrix
conjecture (1.2) [112]. A good review of this proof is available in [25]. Another proof of (1.13)
is given in [18]. In [40] a determinant formula is applied at the outset, however they offer a
different method that gives formula (1.2) in a more natural way.
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Before our next section let us consider a different set of weights to those of (1.12):

0 1
w’ (9_—1, z, 3/) =1 W, (L—Q,x, y) =T+ Yy
1 0

. 1 0
w' L—"—},«’an =Y w’ Q__(')’ T,y )| = 1 (119)
1 0
1 0
Wt lzy|=c W | 4=y =1
1 0
which give the following partition function:
. ’U,’_I‘J‘
n hij-1| hij
Za(Z1y - Tny Y1y - - Yn) = D (hwyeEM@m) LLij=1 W' ( J—{foj»yj)
1 1 i 1
M(L+JMM)N(L%—hmJ M(L+4wm)
n 1 1
= Z(h,v)eEM(n) | J Y; (z: + yi) o

5

8
where N; ("—1—7, (h, v)) denotes the number of vertices of the form"‘—lJ in column 7 of
Y 8

the six vertex model configuration with domain wall boundary conditions using 0’s and 1’s of
(h,v). It has been shown bijectively in [39] that Z,(z1,...Zn, Y1,.- - Yn) = H1§i<j5n(xi + yi)-

Setting x; = y; = 1 for all ¢ € [n] we get Z,(z1,...Tn,Y1,---Yn) = HISi<an2 =25 and:

1 1 1
Ni (Q—[—O,(h,v)) Ni (L'l—lv(hv’v)) Ni (L—-[—Q‘(h’v))
1 1
(i + v2) ° =

Z(h,v)eEM(n) [T = Yi ) .
N,.(l._l_.f{(h,v)) ELIM(L_._@M)
Z(h,v)eEM(n) H?:l 2 0 = Z(h,v)eEM(n) 2 0
1 1
However, > 7 | N; (I——l——g, (h,v)) is the number of vertices of the form *——2 of the six
0 0

vertex model configuration with domain wall boundary conditions using 0’s and 1’s of (h,v).
Recalling (1.5) we see that this corresponds to the number of —1’s in a € ASM(n) where a
corresponds to (h,v) € EM(n). This gives a weighted enumeration of the alternating sign
matrices known as the 2-enumeration:

n(n—1

Number of)

Z 2(-1’5 ina

a€ASM(n)

This weighted enumeration is relatively simple to prove compared to the original conjectures
(1.1) and (1.2). Proving these original conjectures was not however the end of research into
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alternating sign matrices. Indeed Kuperberg had made a connection that spurred multiple
new questions that needed explanation. For example in [97] a variation of the six-vertex
model is considered, namely the 8 vertex model which includes the six vertices of Definition

1.1.6 as well as the two extra vertices: ¢ and 1

Using methods similar to those of Kuperberg, Rosengren shows that the partition function
of this system contains two terms: A, (as expected) and C, = []., W (sequence
A006366 of [99]). In fact C, enumerates cyclically symmetric plane partitions (as discussed
in Section 1.1.2). Surprisingly A,,C, enumerates the number of 2n x 2n half turn symmetric
alternating sign matrices (sequence A059475 of [99]). In 2007 yet another proof of (1.2) was
offered by Fischer in [56]. This proof uses the bijection with monotone triangles together with
a particular operator formula [55] for the number of certain generalized monotone triangles
with specific bottom row. A lot of other work has been undertaken and this will be the

subject of the next section.

1.1.5 Further work on alternating sign matrices

Alternating sign matrices invariant under symmetries of the square

Let us consider the dihedral group of symmetries of the square:

Dy:={(q,h|q*=h>=1, hg=q'h) (1.21)

We consider ¢ to be the operation of rotating the square 90° anti-clockwise about the centre,
h to be the operation of reflecting the square through a horizontal line through the centre.
It then follows that d = gh is the operation of reflecting the square through a diagonal line
through the centre, v = ¢?h is the operation of reflecting the square through a vertical line
through the centre and a = ¢3h is the operation of reflecting the square through an anti
diagonal line through the centre. These operations are shown in Figure 1.13.

S e S T~y =
o H-¥ e H-H o~

Figure 1.13: Group elements of D, as operations on the square

Figure 1.14 gives the operation table for Dj.

The group Dy contains 10 subgroups. Ordering these by inclusion gives the Hasse diagram
of Figure 1.15.

In general for any set S and group G such that an action of G on S is defined (i.e., gs € S
for each g € G and s € S and g1(g2s) = (g192)s for each g1,92 € G and s € S) we define the
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1 0 92 93 h d V  a
1 1 0 @ 93 h d vV a
Q0 9 92 93 | d V. a h
@ 92 93 |1 9 V. a h d
B & 1 9 92 a h d V
h h oa vV o d 1 93 92 9
d d h a v 9 1 93 92
Vv Vv d h a 93 o I 93
a a |4 d h 93 92 9 1

Figure 1.14: D+ operation table

Figure 1.15: Hasse diagram for the set of subgroups of D+ ordered by inclusion

subset of S invariant under G as:

SG:={a€ S|a=ga foral g E G} (1.22)

It follows that if two subgroups H\ and H: of G are conjugate (where H\| and H: are defined
to be conjugate if H: = gH\g~[ for some g G G) then there is a bijection between SHl and
Su2 (since if H> = gH\g~[ then <& SHI —®S 1+ given by 0(s) = gs for each s € SH is such
a bijection).

I11 Chapters 3 and 4, we shall consider /inear actions of groups on subsets S of Rn, i.e. those
in which the action of each element of G can be regarded as a linear mapping from Rn to Rn
(which also still satisfies g(S) C S for each g G G, and gi(g:s) = (g\g2)s for each 9, <R £ G
and s € S).

If we consider a subgroup G of Z4, SG is the symmetry class of S for some symmetry of
the square. As discussed D4 has 10 subgroups of which {1, 4! and {1, v} are conjugate and
{1,d} and {1, a} are conjugate. The elements of D+ have a natural action 0Ol1 the set of square
matrices of fixed size. For example the rotations and flips of the square shown in Figure 1.13
become rotations and flips of the square matrix entries as shown in Figure 1.16

Using the notation of (1.22), symmetry classes of alternating sign matrices can be denoted
as ASM(n)G where G is a subgroup of D4. It is of interest to study the cardinalities of
ASM(n)G for each subgroup G of D4. Due to the conjugacies of the respective subgroups,
[ASM(){1/IY = [ASM™m)"LtY and IASMM)*1* = 1ASMM)*1™ , leaving 8 cases. The
conditions imposed on the matrix entries by each of these cases are shown in Figure 1.17.



=An+1-jn+1-i

Figure 1.17: Symmetry classes of square matrices
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ajr a2 a3 ai4 Q14 (24 Q34 Q44 a;y a2 a3 a4 a41 Q42 Q43 Qag4q
azy G2 a3 a24 N a1z a3 as3z a43 h: a1 Qa2 a3 a24 N asy a32 asz as4
asy ag2 az3 asz4 a2 a2 asz2 Q42 a3r as2 as3 as4 a21 Q22 4a23 Ga24
41 Q42 Q43 Qg4 aj1 Q21 Q31 Qa4 a41 Q@42 Q43 Q44 a1 @12 a3 Qg

Figure 1.16: Elements of D4 acting on a 4 X 4 matrix
4
Name Conditions Sufficient Conditions Subgroup Possible Generators
No Symmetry {1}
Horizontal Symmetry Qij = Qn41-ij Qij = Qntl-i,j {l,h} {h}
Half Turn Symmetry Qij =Ani+l-intl—j Qij=Cn+l—i,nt+1—j {1,¢°} {¢*}
Diagonal Symmetry aij =a;; ai; =a;; {1,d} {d}
Horizontal Qij=Qn+1—-1,j o B
and =i n+1-j a":zf'*Ll*"’, {1,h,v,q%} {h,v}
Vertical Symmetry =0n4l-intl—j TGintl-j
Qij=Qjn41-i
uarter Turn A
QSymmetry =Cn41-in+l-j Qij=qjnt1-i {quqz,qs} {q}
=Qn+1-3,i
Both Diagonal a‘jf‘;j" . A aij=a;,i {1,d,a,¢%} {d,a}
Symmetry =Cn+1-jnt+l-i =An+1-jint1_i 1a,a,q s
=Qntl—intl_j
@3 =0nt1-4,5
=@i,n41-j
=Qj,n+1-i R .
All Symmetry =ani1-inti-j M an 1= Dy {a,h}
_ =Qjn+1—i
=0n+1-j,i
=a;,;

Mills and Robbins conjectured results for the cardinalities of some of the symmetry classes of
ASM(n) [93, 94]. We present these conjecture in the form they were given (note the absence

of conjectures for |[ASM(n){14}|, |ASM(2k){1’d'“’q2}

and |ASM(n)D4 |)
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[ASM(2k+1)0% - (%) (129
; 2k—1 :
|ASM(2k — 1){Lh}| 2(*5:1)
ASM(2k + 1){e} ()
~ = k& (1.24)
|ASM (2k) (12| )
AsM(2k — 1){1'} 4(%)
= (1.25)
[ASM(2k) )] 3(%)
|ASM(4k){1’q*q2’q3} = |asM(2k)te | |ASM(k)? (1.26)
|ASM(4k +1)ltede}| = ‘ASM(?k + 1)1 |ASM(k)[? (1.27)
lASM(4k — et = |asM(2k (1.28)
ASM(2k + 1){1ded’} )
. = ok (1.29)
|ASM(2k — 1){1.d.ag?}| **1
1,hw,q? _
ASM(4k + 1){1aoe'} 1 (8 L
v,q? - _ k— .
|ASM(4k — 1){Lhv.a?} 4k —1 (3572
{l,h,v,qz}
,h,v,q2 4k :
[ASM(4k + 1)(LAva]] 4k + 1 (3
These lead to the following product formulae:
|ASM (n) (4] { S (1.32)
]_L_l (n(_&u%)-z)" n odd '
g1 i)! (3 +2)!
ASM(n)119}| = 1.33
|AsM(n) H JH),H (DY (1.33)
( dBi+ D) 2 +i)!
i}l%%,n:0m0d4
2zl i4! 222 (3i41)12(3i+2)!
0,n = 2 mod 4
i 4)1(3i+1)12 2T (Bit+2)!
i=0 (nT-(gll()s;(-:_g;ﬂ), IT.2% (Eifm),, n =3 mod 4
{l daqz} ! Tvz;elven )
[Asmm{raea}) — & et Sy, m odd (1.35)
{1} 0, n even
ASM(n)1H"9 (1322 1) (3i)! 1.36
l ) { 3 ET(n—2)1 2331 .5 ey M odd (1.36)

In [73] Kuperberg uses a similar method to that of [72] to prove enumerations (1.32) and the
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n even cases of (1.33) and (1.34) H e also proves the interesting fact that the number of off
diagomnally sym m etric alternating sign m atrices of size 2k (elem ents of A SM (2A :)~1,d~ w ith all
diagomnal entries 0) is equal to the number of horizontally sym m etric alternating sign m atrices
of size 2k + 1. In 185] O k ad a proves th e en um eration form ulae (1.3 6) T h e n od d cases o f
(1.33) and (1.34) were proved by R azum ov and Stroganov [91, 92]. In [22] cardinalities for
the 3 rem aining cases (A SM (n)f{1,d}, A SM (n){1>d°a,92} and A SM (n)D4) are given, B ousquet-
M e¢lou and H absieger do not however prove the form ula for ASM (2A; + } noOr do they
conjecture any other form ulas. W e believe that this is still an open problem
W e label the alternate external vertices of £ n>n using the follow ing rule: (0 ,2A: — 1) and (n +
1,n — 2k + 2) are labelled by k and n + k respectively, for each k G [T fl] and (n — 2/c+ 1 , n + 1)
and (2 k 0) are labelled by n o+ 1 — Kk an d 2 n + I — ok respectively, for each k € || (as shown
in F igure 1.18). T h en any elem ent of F P L (n) can b e m apped to a particular noon crossing
pairing of these labels for w hich the paired labels are joined by an open path Such a pairing
is called a link pattern and can b e represen ted on a disc as sh own in Figure 1.19.
S+1 I "
2n
£+2 2n Sf1 +1
%
o+2
3n+l
X 1
)
52 n+ 2 n+1 n+2 n+1
2
(n even) (n odd)
F igure 1.1 8: L abeling of extermnal vertices of C n.n
2n
F igure 1.109: D isc used to represent pairings o f Z/2n
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Definition 1.1.9. We define L2n to be the set of non crossing pairings o fln points (i.e. link

patterns).

It is knmowwmn that |L 2n]| = ni(n+inp Qe - tAiat is emum eratedby the C atalan numbers

(sequence A 000108 of [99]). Figure 1.20 gives the set L 6.

Figure 1.20: T he link patterns of L 6

U sing this we ecan give the classification by link pattern of FPL (3) from Figure 1.12. W e

define the notation F P L 7r(n), by:

Definition 1.1.10. For« E L2n:

FPLn(n) := {a E FPL(n) \a has link pattern Tr}

Figure 1.21 gives the classification for F P L (3).

N ote the relationship betw cen the sets of sam ¢ cardinality. Indeed the link patterns corre-
sponding to equations (1.37),(1.38),(1.39) are all rotations of each other, sim ilarly for ¢qua-

tions (1.40) and (1.41). T his has been proved to happen for genecral W by W icland [109].

Theorem 1.1.11. If« « E L2n are such that .. can be obtained from ' by rotation or
reflection then:

\FPLn(n)\ = \FPLAn)\

T his gives for the square objects of FPL (n) a m uch larger symm etry group than Z)4 nam cly
D2n +v vis cu.e the square is indeed a circle. « . veour orrerca in 11091 b wijective. T
fully packed loop representation of alternating sign m atrices led to the R azum ov-Stroganoy
comnjectures [90]. T hese conjectures relate enum erations of alternating sign m atrices w ith
elem ents of the w avefumnctions of different integrable m odels. A vast am ount of w ork h as been
done on the surprising conmnection betw een eigenstates of physical system s and com binatorics.

See for exam ple [7, 45, 46, 47, 117].
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'O
FPL 3 = <6 )
FPL” J 3) = 16 w3
2
ppL~J3) = < .6
o

Figure 1.21: C lassification of F P L (3)
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(1.37)

(1.38)

(1.39)

(1.40)

(1.41)
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R ccalling that elem ents of L 2n are non crossing pairings of 27 points, n E L 2n ecan be repre-
sented as 7T = {(«z,:z},{«3,*4},-", {*2“—1."2n}},whcrc{ifc,yfc+i} E 77 corresponds to a pairing
of the points ik,ik+ Do L et us define the operator ¢/ for j E [2n] acting on elem ents n E L 2n

{Jj.j + 1 m od 2n}n7r

(ttu (i, § -1-1 m od 2n 3, (A :,/33) \ {(& .0}, (1./j + 1 m od 2n}}

ile . we have ejlr E L 2n, such that, if {k,/,‘.,//‘/ + I m od 2n} are pairings of 7r then
{],]+ I m od 2mn },{& ,/} are pairings of ejn (all other pairings of ejir are pairings of 7r).
A fjij + 1 m od 2nj is @Q pairing of 7r then ej7T = 7r. T he operator ¢j canm be represented

diagram m atically as:

2n
If we order the link patterns 7Ti,...,7rw. EI_anc can comnstruect the m atrix corre-
n!(n+1)! 3
sponding to the operator ey
(Juf \ — / ejNs — TIr
v ei)rs I 0, otherw ise

A's an exam ple, Figure 1.22 shows the m atrices corresponding to the operators ¢j on L6 (we

use the order given by Figures 1.20 and 1.21).

0

—_-c oo o
cComo o
CoOmoo
=)
N
N
]
oo -°
SOmooc o
oOmoco o
omo° o
=) —
-
co o me
o° oo
cCoome
-

YQOO
[SY

<
S

<
—

CO OO
(== N i ]
(==Y
cn
|
[~ —)
]
N — I —
=R~
(=]

S
L)

[=2}

I
S OO =D
=2 W — R ]
S =

=]

o
A
<
>
=
o
<
o
=
~

Figure 1.22: M atrices corresponding to the periodic operators defined on L 6

T he stationary state $ 2n of the periodic H am iltonian: H 2an = 1\1 (an)! — M P |, s

3 n!(n+l)! N

th e solu tion of H 2n$ 2n = 0 in w hich th e sm allest emn try of $ 2n is morm alized to b e 1 (th e
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Perron-Frobenius theorem and certain elementary considerations can be used to show that
the solution space of Hy,®,, = 0 is 1 dimensional), and this brings us to our conjecture.

(2n)!
Amazingly (®2,); = |FPL,,(n)| and so 320" (®2,); = |ASM(n)|. Therefore, ®y, is a
partition of |[ASM(n)| corresponding to the link pattern classification of ASM(n). The fact
that i'il'”’i” (®2.); = |ASM(n)| has been proved [47] but the fact that (®2,); = |FPLy,(n)]
remains a conjecture. As an example the periodic Hamiltonian corresponding to Figure 1.22

18:

4 0 0 -1 -1
0 4 0 -1 -1
Hi=|0 4 0 -1 -1
2 -2 -2 3 0
-2 -2 -2 0 3

which has stationary state ®¢ = (1, 1,1, 2,2). Figure 1.21 confirms this conjecture and Figure
1.23 gives ®,, for n € [4] with suitable ordering for the link patterns of Loy,.

n | ®,

1 (1)

2 (1,1)

3 (1,1,1,2,2)
41(1,1,1,1,3,3,3,3,3,3,3,3,7,7)

Figure 1.23: Vectors ®,, for n € [4]

Until now we have represented the elements of Lo, around a disc, we can however unfold
them as shown in Figure 1.24. On these unfolded link patterns the operator ¢} for j € [2n—1]
is defined:

= =

/N
2 j-1 i j+1 j+2 2n—-1 2n

Note that €} = e; for j € [2n — 1]. The difference between these two operators corresponds
to different boundary conditions, in the first case we have periodic boundary conditions on
our pairings but in this case we have closed boundary conditions. The closed Hamiltonian
is defined as Hj, = Zfi;l(l — €;) and the stationary state of Hy,, @, is a partition of
lASM(?k + 1){Ln} I corresponding to the link pattern classification of ASM(2k+1){t} . Figure
1.25 gives @), for k € [4] with suitable orderings for the link patterns of Loy [46]. Defining
other boundary conditions on Lo, gives similar conjectures.

Alternating sign matrices have been, and continue to be, a source of many unexplained
conjectures. Also for those conjectures which have been confirmed (such as formula (1.1))
the proofs are unfortunately often non-combinatorial. There are connections between these
simple matrices and many other fields of mathematics (including the Riemann hypothesis
[51]), however, we still have no simple explanation for this. Sadly, in the next section we do
not offer this explanation, but yet another connection.
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Figure 1.24: Lorepresented on an unfolded line segment

k

! (1)

2 (1,2)

3 (1,4,5,5,11)

4 (1,6,14,14,14,14,30,50,56,56,71,75,75,170)

Figure 1.25: Vectors 42X for £ G [4]
1.2 Polytopes

Another class of objects studied in combinatorics is polytopes. This section deals with these
objects. Firstly, we start with a rather tedious listing of the many relevant definitions, as well
as some relevant results. Most of the notions considered here can be found in [12, 60, 114].

1.2.1 Definitions

Definition 1.2.1. 4 set S C R* is convex if and only if for all a,b G S, the closed line

segment with endpoints a,b is contained in S.

The set of convex sets with straight boundaries in R2 is the set of convex polygons. An
example of such a polygon is shown in Figure 1.26.

Figure 1.26: A polygon in R2

Definition 1.2.2. For any set S C R and any r GR we define the rth dilate of S:

rS = {ra 10 6 5}
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In higher dimensions polygons generalize to the convez polytopes which will usually be referred
to as simply polytopes.

Definition 1.2.3. A convez polytope P is defined as the convex hull of a finite set of vectors:

PIZ {)\1'01 +---+)\mvm

zm:)\,- =1, ;>0 forallic [m]} (1.42)

=1

where vy, . .., Un are fized vectors in R¥.

A convez polytope P has an equivalent definition as the bounded intersection of finitely-many

closed half spaces (a proof of this equivalence is available in [12, 114]):
P:={a€R" | Aa < b} (1.43)

where A € R>¥ (with | the number of half spaces used to define P), b € R} and the inequality
Aa < b is used to denote that (Aa); < b; for all i € [l].

Figures 1.27 and 1.28 show examples of these two equivalent definitions. Note that in the
first case we write: P = conv{vy,...,v,}. It follows that for positive r, if P is given by
(1.42) then its r** dilate is 7P = {Mv1+ - + A | Iopey Ai =7, A > 0for all i € [m]}
and if P is given by (1.43) then its r** dilate is 7P = {a € R* | Az <rb}. It also follows
that hyperplanes in R* can be included together with halfspaces in the second form of the

definition, since a hyperplane is simply the intersection of the two closed halfspaces which
meet at the hyperplane.

v

vs, Vo

Vg 3

Figure 1.27: Convex hull definition of a polygon in R?

Definition 1.2.4. The dimension dim P of a polytope P is defined to be the dimension of
its affine hull (where the affine hull is AP == {z+ My —z) | z,y € P, A € R)}).

A polytope of dimension d is called a d polytope. The polygon in Figures 1.26,1.27 and 1.28
is a 2 polytope.

Definition 1.2.5. A face of a polytope P C R* is a polytope of the form:
{aeP|la-a=p}

where o - a < 3 is an inequality (for some o € R¥, B € R) which is valid for all a € P.
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A face of dim ension 0 contains a single point called nvel’l‘ex.

Definition 1.2.6. A vertex of a polytope V is a vector v E » such that there exists a half

space H for which:

Lemma 1.2.7. Let V CR k be a polytope, consider. « ». Then a is not a vertex of V if

and only if there exists a non zero point a* E such thata. a*E . .

Proof. Let a E P \ vertP. Then there exists al * E P, AE (0, 1)k such that a =
Aai 4 (1 —A)d2- If we take a+ = a + min(A, 1 —A)(d2 —ai), then a+ E P. Indeed if
12 < A< l,at=a+ (1 —A)(d2—01) = A+ (A—1))ai + (1 —A<£ (1 —A))d2, giving
a =ai EP and a+ = 2A —I)di + (2 —2A)d2. However 0 < 2A —1 < 1 so a+ is contained
within the line segment between a! and 02 as required. We get the equivalent result for
0 < A< 1/2. Taking a* = min(A, 1 —A)(02 —«i) gives the required result. Now let there
exist a* ~ 0 such that ata* EP. Then a = —a*) + 5(0 + a*) and so a is not a vertex

o P

Lemma 1.2.8. 7//C, C are two polytopes then JCOC is a polytope with ICDvertC C vert (ICfl C)
and C fl vertJC C vert(K, D£).
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Figure 1.29: Intersection of polytopes

Corollary 1.2.9. IfK, L are two polytopes and K C L then K N vertl C vertK.

Lemma 1.2.10. Let P C R* and let ¢ be an affine map from R* to R¥. Then ¢(P) is a
polytope in R¥ and vertd(P) C ¢(vertP).
This can be seen by considering the convex hull definition of P (1.42).

Definition 1.2.11. Polytopes K C R* and L C R¥ are defined to be affinely isomorphic if
there is an affine map ¢ from R* to R¥ which is bijective from K to L.

This leads to the following lemma:

Lemma 1.2.12. If polytopes K C R¥ and L C R¥ are affinely isomorphic and ¢ is an affine
map from R* to R¥ which is bijective between K and L then:

¢ (vertK) = vertl

If all the vertices of P have integer coordinates then P is called an integer polytope. Similarly
if all the vertices of P have rational coordinates then P is called a rational polytope.

Definition 1.2.13. The denominator of a rational polytope P is defined as:
D(P) := min{p € P | pP is an integral polytope}
Note that one can also define D(P) as the least common multiple of the denominators of the

coordinates of the vertices of P (when these coordinates are all written in lowest terms).

Edges are defined to be faces of dimension 1, whereas facets are defined to be faces of
dimension d — 1. The edge shown in Figure 1.30 is also a facet sinced — 1 = 1.

One last important definition before giving some results concerning polytopes is the definition
of a simplez.
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Vi

Figure 1.30: The edge between W and v2 of a polygon in M2
Definition 1.2.14. A simplex is a d polytope with exactly d p i vertices.

Indeed it can be shown that every d polytope has at least d + 1 vertices. The polytope of
Figure 1.26 is a 2 polytope with 5 vertices and thus is not a simplex. The simplices in K2
are triangles. It is well known that any polygon can be triangulated as shown in Figure 1.31.
This leads to a generalized result (using a suitable definition of triangulation in Rd, see for
example Section 3.1 of [12]).

Figure 1.31: Triangulation of a polygon in M:

Theorem 1.2.15. Any polytope V can be triangulated into simplices using no new vertices.
In M2 triangulation can be used to prove Pick’s theorem:

Theorem 1.2.16. For a polygon P with vertices in Z2 let A be the area of P, I the number
of interior integer points of P and B the number of integer points on the boundary (where

an integer point is a point in 7?). Then:

|

For the case in Theorem 1.2.16 the total number of integer pointsin Pis/+ B =4+ + 1.
If we dilate P giving the polygon P we have new area A¢2, and the number of boundary
integer points B¢ so that the total number of integer points in ¢P is

\tPnz2= A2ty +1 (L44)

Note that this is a polynomial of degree 2 = dim P. Also if we only want the interior points
of tP, denoted tP°:
2 s
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Comparing equations (1.44) and (1.45) gives |[tP° N Z2?| = |(—t)P N Z?|. Thus evaluating the
polynomial for |tP N Z?| at negative ¢ enumerates the interior points of tP. Equations (1.44)
and (1.45) are examples of the forthcoming Theorem 1.2.18 for the case of a polytope of
dimension 2.

Definition 1.2.17. A function f : Z — C is a quasi-polynomial if there exists an integer N
and polynomials fy, f1,..., fn-1: such that

f(n) = fi(n), n=1 mod N

The smallest such integer N is called the period of f. The degree of f is defined to be the
largest degree among those of fo, fi1,- .., fN-1-

In higher dimensions, Theorem 1.2.15 will be useful in the proof of the following important
theorem based on results of Ehrhart and Macdonald:

Theorem 1.2.18. If P C R* is a rational polytope of dimension d then there erists a quasi-
polynomial Lp(r) of degree d and period which divides D(P) such that for allT € Z,

|Z*NrPl,r>0
L‘p(T) = 1, r=0
(-1)?*|Zk N (=r)P°|, r <0

where P° is the relative interior of P.

The quasi-polynomial Lp(r) is called the Ehrhart quasi-polynomial of P. If P is an integral
polytope then D(P) =1 and so Lp(r) is a polynomial, known as the Ehrhart polynomial of
P.

For an insight into Ehrhart quasi-polynomials the reader is encouraged to read [13, 75, 79,
110]. For a standard proof of Theorem 1.2.18 the reader is encouraged to read [12, 103],
however here we give a review of part of the new bijective proof given in article [98]. The
proof will use the following lemma from corollary 4.3.1 of [103]:

Lemma 1.2.19. A function f : N — C is a polynomial of degree at most d if and only if:

d+1

Z(_l)d+l—i (d“: l)f(r +1i) =0 forallr eN

=0

Now for part of Sam’s proof [98] of Theorem 1.2.18. In particular, it will be shown that for
an integral simplex P C R* and a non negative integer r, |r'P N Z"| is a polynomial in r of
degree at most dim P.
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Proof. Assume P is an integral simplex of dimension d with vertices vp, vy, ..., v4 and define:

Q:=(r+dP+v,foranyreN

It follows that:

.A,'Zl

Qi == { Aot + -+ Aqug
e XN+ Mg=7+d+1

.)\0,.../\420 }

Now consider Q := Uf=0 Q;. It follows that Q C (r +d+1)P. Since r > 0 any element
a € (r +d+ 1)P has a particular ); > 1 (since otherwise Z‘f:o Ai<d+1)andso,a€ Q
giving (r +d +1)P C Q. Thus, we have @ = (r +d + 1) P. Using inclusion-exclusion we

get:
d+1
QNZH =) (-1 Y |Nxunzk
J=1 ICo,d] li€l
Ml =3
Considering @; N Q; for ¢ # j:
®)g,...¢q>0
QiﬂQ,: Ao‘vo+'°'+)\d‘vd OAi,AjZI
eX+- -+ N=r+d+1

=(r+d+1-2)P+uv;+v;
It can be seen that for any I C [0, d):
NQ=F+d+1-|IHP+> v
i€l il
Importantly since P is integral, the sets (t+d+1—|I|)P+>_,.; v; and (t+d+1—|I|)P are
simply integer translations of each other and so contain the same number of integer points.

Also note that there are (7}) subsets of [0, d] of size |I|, giving:

> IN&nz =(d_’__1)|(r+‘d+l—-j)’PﬂZ'°]
I1C(0,d) liel J
1=
and so:
. d+1 ‘ d+1
|(r+d+1)PNZF| = Z(—l)f"( i )|(r+d+1—j)PnZ’°|
i=1

d
S0 (T v ipoz

J=0
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Using Lemma 1.2.19 we get the result that |r'P oV A | is a polynomial in r of degree at most d.
This is not a complete proof of Theorem 1.2.18 and the reader is encouraged to read [98]. O

In the next section we consider a particular polytope: The Birkhoff polytope.

1.2.2 The Birkhoff polytope

The Birkhoff polytope has been the subject of a vast amount of research [5, 10, 11, 16, 17,
29, 30, 31, 32, 33, 52, 54, 82, 87, 100, 108]. We go over some of the main results concerning

this polytape.

Definition 1.2.20. The Birkhoff polytope B, is defined to be the set of all doubly stochastic
matrices of size n, i.e., the set of all nonnegative real entry n X n matrices in which all row

and column sums are 1:

Bn = {a € R™*n»

®a;; >0 forall (i,j) € [n] x [n]
o Y ai =37 0i5=1 foralli,j € [n]

This polytope is named after Garrett Birkhoff [17]. Following Definition 1.2.4 we have:
Theorem 1.2.21.

dim B, = (n — 1)?

Proof. 1t follows from Definition 1.2.20 that:

ia‘-j = iaij =1 foralli,je [n]}

i=1 j=1

affB, = {a € R™"

Of the 2n linear equations in n? variables within this set, only 2n — 1 equations are indepen-
dent, so that dim B, = dim(affB,) =n? — (2n — 1) = (n — 1)2 O

Also of interest are the faces of this polytope. From Definition 1.2.5, it is easy to see that
any face of B, is of the form:

B.y:={a€B, |a;=0 forall (i,j) € H} (1.46)

where H C [n] x [n].
This leads to the following result:

Theorem 1.2.22. The Birkhoff polytope B, has n? facets for n > 3.
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The proof of this follows immediately from equation (1.46) using H = {(4,5)} for all (i, j) €
[n] x [n] and the fact that a facet is a face of dimension dim B, — 1.

The r** dilate of B, is given by:

8 = fa e R

>0 forall(z ) € [n] % [n]
L . }

i1 @i = D5 ai; =1 for all 4, j € [n]

The integer points of this polytope are defined as the semi magic squares:

Definition 1.2.23. The set of semi magic squares of size n and line sum r SMS(n,r) is
defined as:

SMS(n, r) = {a € [0,r]"*"

iai‘j=ia{j =r foralli,je [n]}

=1 Jj=1

Semi magic squares have been studied for a very long time, we believe that the earliest formal
definition was given in [78]. For further information see for example [2, 12, 20, 52, 100, 103,
104]. Figure 1.32 gives some cardinalities of SMS(n,r). Note that SMS(n,0) contains only
the n X n zero matrix, and that SMS(n, 1) is the set of permutation matrices, isomorphic to
the group of permutations of [n]. Also SMS(1,7) contains only the 1 x 1 matrix with entry

r, and SMS(2,7) = {(z r_z)|z€[0r]}

r—i i
r=0 1 2 3 4
n=1]1 1 1 1 1
211 2 3 4 5
3|1 6 21 55 120
411 24 282 2008 10147
511 120 6210 153040 2224955
6|1 720 202410 20933840 1047649905

Figure 1.32: |SMS(n,r)| for n € [6], r € [0, 4]

In [17, 108] the following theorem is given. (The proof provided here is essentially that of
[108].)
Theorem 1.2.24. X

vertB, = SMS(n,1)

Proof. Consider a € SMS(n, 1) and assume a ¢ vertB,. Then by Lemma 1.2.7 there exists
a* # 0 such that a + a* € B, so that 0 < a;; £ aj; < 1 for all 4, j € [n]. Choose i, j such that
aj; # 0. If a;; = 0 then +aj; > 0 which gives +aj; > 0 (since aj; # 0) which is impossible.
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If a;; = 1 then 1+ af; < 1 which leads to +a}; < 0 (since a;; # 0) which is also impossible.

1) —

Therefore SMS(n, 1) C vertB,,.

Now consider a € B, \ SMS(n,1). This implies that we have i, j; such that 0 < a;, ; < 1.
Then we must have ?;, j» such that 0 < a;, j, < 1 and j2 # j; since the sum of entries in row
iy of a is 1. Similarly, we must have i3, j» such that 0 < a;, j, < 1 and i3 # i, since the sum
of entries in column j; of a is 1. If we continue in this way we can create a cycle of entries
iy 1 Qi jas Big jas Big,gar - -+ + > Bia_1,ja-1) Bia—1,Ges Biajar By gy €8ch of which is strictly between 0 and
1 where i # ik+1,%s # 1, Jk 7 Jk+1 a0d j, # 71 for all k € [s—1]. Taking € to be the minimum

of these entries, we define a matrix a* € R®*" with entries:

{ €, (%J) € {(ilajl)’ (i2, j2)’ sy (is,ja)}

a;; =

’ —¢, (i,5) € {(i1,2), (32, J3), - - -, (461, Js), (15, J1) }

0, otherwise

It then follows that a* # 0 and a+a* € B,, and so a is not a vertex. Thus, SMS(n,1) D vertB,
as required. O

Recalling Theorem 1.2.18 we define the following set:

SMS°(n,r) := rB, N Z™" (1.47)
Equivalently:

SMS°(n,r) = {a € [r]™"

ia,-j =ia.~j =r foralli,j € [n]}

i=1 =1
This leads to the following theorem:
Theorem 1.2.25. For fized n € P there exists H,(r), the Ehrhart polynomial of B, which
satisfies:

1. H,(r) is a polynomial in r of degree (n — 1)2

2. |SMS(n,r)| = Hy(r) for allT € N

3. |SMS(n,r)| = (-1)""'H,(-r) = H,(r —n) forallT € P

4. Ho(=1) = Hy(-2) =---=Hp(-n+1) =0
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5. H,(1) =mn!

Proof. Most of these results are direct implications of Theorem 1.2.18 since Theorem 1.2.24
implies that B, is an integral polytope. The second equality of property (3) is obtained since
we have a bijection between SMS°(n, ) and SMS(n,r —n) for r > n (in which 1 is subtracted
from each entry of an element of SMS°(n,r) to give an element of SMS(n,r — n)). Property
(4) is implied by the fact that SMS°(n,r) =0 for r < n. 0O

The following enumerations illustrate this [2, 19, 84]:

mo = (p) mo=("1")

4 3 2
me = (71041 (1.48)
r+9 r+8 r+7 r+6 r+5 r+4
mr = (72%) (5 e () () ()
+(’;3) (1.49)
Hs(r) = (" “;615) + 103("+ 15) (’J’ 14) +63110(T Jlr613) +388615(r ‘;612)
+1115068(' *1'611) + 1575669( T ) + 1115068 ('129) +388615(’1";8)
r+7 r+6 r+5 r+4 )
+63110( - )+4306( - )+1o3( - )+( - ) (1.50)

Polynomials (1.48), (1.49) and (1.50) correspond to the sequences; A002817, A001496 and
A003438 of [99]. Another interesting result concerns the decompositions of a semi magic

square.

Theorem 1.2.26. Any matriz a € SMS(n,r) can be written as the sum of r permutation
matrices of size n.

In [20] a proof of this theorem is offered based on Hall’s theorem:

Theorem 1.2.27. Let G be a bipartite graph with color classes A and B, and for all X C A,
let N(X) be the set of all vertices in B that have a neighbor in X.

Then A has a perfect matching into B (i.e. each vertez of A can be matched with an adjacent
vertez of B), if and only if | X| < |[N(X)| forall X C A
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Before using this theorem however we need one further definition:

Definition 1.2.28. For any matriz a € R™*" we define the bipartite graph of a as the
bipartite graph with ordered color classes A = {vy,...,vn} and B = {v},...,v,}, such that
{vi,v;} is an edge if and only if a;; # 0.

Returning to the proof of Theorem 1.2.26, consider a € SMS(n,r). It can then be shown
that the bipartite graph of a satisfies the condition in Theorem 1.2.27 and that it therefore
has a perfect matching. Thus a — p € SMS(n,r — 1) where p is the permutation matrix that
corresponds to the perfect matching. Induction on r then gives the required result that a can
be written as the sum of » permutation matrices. However Theorem 1.2.26 is a special case
of the following theorem concerning 0,1 polytopes [71, 115]. A 0,1 polytope is a polytope,

for which all the coordinates of all of the vertices are either 0 or 1.

Theorem 1.2.29. Let P C RF be a 0,1 polytope and let P have the halfspace description
P ={z€0,1)* |Az =b} for some matrir A € R™* and b € R™. Then, for anyr € P,
any integer point of the r* dilate of P can be written as the sum of r vertices of P.

Proof. Take x € P. Since P is a polytope then there exists a non empty set V C vertP such
that z =3 o Ayv, with each A\, >0 and )_ ., A\, = 1. Also since P is 0,1 it follows that:

o If z; =0 then v; =0 for all v € V.

o Ifx;=1thenv; =1 for all v € V.

Indeed if we let V; = {v € V| v; = 1} then we have z; =) ), Ap. Soif z; =0 then V; =0
and if Ty = 1 then V,~ =Y.

Now consider a € rP N Z*.

Then z = 2 € P and so there exists as before a set V C vertP. Taking any element v € V,
we have A(a — v) = (r — 1)b. We now check that a — v € [0,7 — 1}¥. Indeed, if a; = r then
vi=1so(a—v);=r—-1,iffa;=0thenv; =0s0 (a—v); =0,and if 1 < a; <7 — 1 then v;

canbeOoflwhichgivesOS(a—v),-Sr—l.

Thus, for all @ € 7P N ZF there is a v € vertP such that a — v € (r — 1)P N Z* and so by
induction on r we get the required result. O
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In [19] Bona gives a combinatorial argument for the formula for [SMS(3,7)| as given by
equation (1.48). We give an equivalent argument here. Let us label the elements of SMS(3, 1)

- 100 010
h1= 010 h2= 0 01 h3=
001 100
100 0
hs=10 0 1} he= {1
010 0

Figure 1.33: SMS(3,1)

as in Figure 1.33.

S
(= )
OO -0 O
-0 O OO -
S— N—

It can be checked that we have a bijection ¢ between SMS(3,r) and the set:

0/\1+A2+/\3+/\4+/\5+)\6=1’}

C(r) = {()‘11 Az, A3, Mg, As, A6) € N° ® MAsAg =0

where ¢ : C(r) — SMS(3,7) is defined by ¢ (A1, A2, A3, Ag, As, A6) = E?=1 Aihi. The condition
Aads)e = 0 in C(r) is related to the fact that hy + hy + hs = hy + hs + he, so that 30, ph;

for arbitrary nonnegative integers y; can be written as Zf=1 Ash; with:

A = {l‘i‘*'min(m,ﬂs,us),i: 1,2,3
' Hi—l'n.in(p4,}l,5,[1,6),i=4,5,6

which satisfy MAs ¢ = 0 and \; € N for all i € [6]. Note that C(r) can be written as the

disjoint union:

C(r) = {(Al, X2, As, A, Ao, Ao) € NS

e+ X+A3+ MMt A+ =T
./\4=0

oA+ X+ A3+t A+ A=T
OA421,/\5=0

oA+t A3+t Mt A+ A=T
OA421,/\521,A6=0

u {()\1, A2, A3, Mg, As, ) € N®

U {(Alv A2) )‘39 A‘l’ ’\5’ Aﬁ) € N6

Using this decomposition and the following lemma, the formula (1.48) for |SMS(3, )| follows.
Lemma 1.2.30. The number of ways of writing an integer s as a sum of n integers:
s=a+ax+---+a,

where a; > k; for some fired integers k; for alli € [n] (withs+n >3 ki+1) is:

(3-2?=1k,-+n—-1)

n—1
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Proof. We let ¢; = a; — k; > 0 and so:
n
S—Zk,‘=cl+02+"‘+Cn
=1
Thus our problem is equivalent to finding the number of ways of writing the integer s— ., k;
as a sum of n non negative integers. This is equivalent to choosing s — Y .., k; objects from

n with repetition allowed which gives the required result. O

Until now we have considered enumerations of semi magic squares of fixed size n and variable
line sum 7, however other problems have been considered. Indeed semi magic squares of line
sum 2 and variable size n (equivalent to sequence A000681 of [99]) can be enumerated using
the following formulae [2]:

1 p ,,2_% ISMS(n, 2)| —— 5 |)2 (1.51)
or
|SMS(n, 2)| = n?|SMS(n — 1,2)| — (g) (n — 1) |SMS(n — 2,2)| (1.52)
with |[SMS(1,2)| = 1 and |SMS(2,2)| = 3 which gives:
|SMS(n,2)| =47" Z(Z(n — z))‘z'( ) 2t ' (1.53)
=0

In [68] the polytope B (using the convention of equation (1.22)) is considéred. This is
simply the polytope of size n doubly stochastic matrices which are symmetric under standard
transposition. It can be shown that vertBS™® C {&tds| € SMS(n,1)}. However not all

iy — “ﬁzli give a vertex of B"¥. In [68] the following result is given:

Theorem 1.2.31. Let p € SMS(n,1). Then @fﬁ € vertB{"% if and only if u represents a

permutation containing no cycles of even length greater than 2.

In {101, 104] the enumerations of these vertices (corresponding to sequence A006847 of [99])

are given:
Liz) o =5 Ivert Bt

’vertB,{,ﬁ} =|vertBL"¥| + n2|vertBMY| — (’2‘)|vertB{1 H—nn-1)(n- 2)|vertBL-3)

(with |verth1’d}| ,...,IvertBil’d}’ =1,2,5, 14)
(1.54)
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For example let us consider the permutation: = = (1,2, 3)(4,6,5)(7) which gives the vertex:

110000
(310000
f 160000
0000%%0
000121010
0o00f 100
\0 0000 0 1

However, 3 other permutations give this same vertex:

(1’ 33 2)(4) 5» 6)(7)
(1,3,2)(4,6,5)(7)
(1,2,3)(4,5,6)(7)

Applying d to a permutation written in cyclic notation simply reverses the order of each
disjoint cycle, however disjoint cycles of length 1 and 2 remain unchanged. Thus if a permu-
tation (equivalent to £4%) has K cycles of odd length, then there are 2¥ total permutations

which give the same vertex. To enumerate the vertices we use the following lemma (a proof
of which is given in [103]).
Lemma 1.2.32. The number of permutations of [n], with c; disjoint cycles of length i is:
n!
[T e

If we consider a permutation with no cycle of even length greater than 2, we have:

cg=cg=---=0,¢c1,0,C3,C5,--- >0

thus using Lemma 1.2.32 the number of permutations with ¢; cycles of length 1, ¢, cycles of

length 2 and c3,c5,¢7,... cycles of odd length is:

n!

i
Hi=1,2,3,5,7... G

Our previous discussion shows that 2%+¢5+¢7 of these permutations give the same vertex,

thus the number of vertices with disjoint cycles as above is:

n!

9ca+cs+cr... Hi-—l 9357 z'c.'ci!
bt bt bt g RN
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Note that n = )" | ic; and so summing over all possible cycles, we get the rather cumbersome
enumeration:
!
a3y n
Ivert By = 2estest Il 03,5,7.. 1CH! (1.59)

where the sum is over all non negative integers c;, ¢z, ¢3, Cs,¢7 . . . satisfying ¢; + 2¢c; + 3c3 +

n!
1°1¢;1!12%2¢y!

5cs + Ter + -+ - = n. Using the same argument we see that |SMS(n, 1){14| =
(an element u € SMS(n, 1)1} corresponds to a permutation with disjoint cycles of length 1
or 2) where the sum is over all non negative integers c; and c; satisfying ¢; + 2c; = n. This
gives: ‘

n!

13
|SMS(n, 1)1} = Z mﬁ (1.56)
pore 12k k!

Note that the permutations here are involutions, and that k counts the number of cycles
of length 2 (i.e. transpositions) in each involution. This formula (1.56) could be obtained
directly without using Lemma 1.2.32.

This is equivalent to sequence A000085 of [99]. The problem of enumerating the diago-
nal symmetry class of semi magic squares has been considered in [35, 62]. Further similar
problems are considered in [1, 36, 41, 42, 43, 59, 61, 66, 68].

Symmetry classes of semi magic squares can be linked to chess problems. A chess problem
of a particular type of size n is the problem of finding the number of configurations of chess
pieces of a particular type (Rooks, Queens, Bishops, ... ), such that every square on an n xn
board is attacked without any of the pieces attacking each other [9, 76, 96]. Figure 1.34 gives
an example of a configuration of Queens that attack the whole board without attacking each
other, this being one solution to the problem of the Queens. The added requirement that
such a configuration of chess pieces be symmetric leads to a link with symmetry classes of
semi magic squares. Indeed configurations of the chess problem of the Rooks correspond to
permutation matrices where empty squares on the n x n chess board correspond to 0 entries
in an n X n matrix, and every Rook on the board corresponds to a 1 (since for no Rooks to
attack each other we must have exactly one Rook in every row and column). Figure 1.35
shows an example of a half turn symmetric solution to the problem of the Rooks of size 8

corresponding to a half turn symmetric permutation matrix of size 8.

Another set of the form BE (but for which G is not necessarily a subgroup of D,) is considered



Chapter 1 Introduction 54

Figure 1.34: A solution to the problem of the Q uweens

=

1 /o

[y
SOCQCOG

O OO m OO
O O C S DS O m O
OO m oSO SO0
[N e B — I I — I — )
[ R A — I — e i — I ]
SO m o0
(e RN e BN — I — N I e R ]

Figure 1.35: H alf turn sym m etric solution to the problem of the R ooks

by B rualdi in [27]. He defines the polytope B an (P ,Q ):

where P, O £ SMS(n, 1). If we consider the action | —x fa T) : [n]2 ~* [n]2 defined by:

X(hj) '=

where a« and r are the perm utations corresponding to P and Q , then | can be considered

as a perm utation on [n]2 N ote that any elem ent (ot B a (P . 0 ) is invariant under the action

of x + Also, (x) is a ecyeclic group and therefore, B a (P, Q) = B * and so B oa (P ,Q0 ) is indeed
of the form B% . N ote also that x can be written as a product of disjoint cyecles. It can be
shown that the set of elem ents u (i.c. the orbit) of any ecyele of x is a subset of 5 x 1 for
som e orbit 8§ of a and som e orbit 7 of r. Loet the orbits of a be Ol ..., §P and the orbits of r
ve 71,..., % . T hen one of the results of B rualdi is:
e € voertT ((USil,..., <sey, (1 Til, ..., 7.0
vertf&£n (P, 0 ) = I a(e,u>) . is any set {u irs | (3 [pl, s € |9]} o(ft psr7b)its o

l woith v i, X T, for cacn r 6 (p1, s s (5 1 3
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where a(e,w) is the n x n matrix with entries given by:

iy (6J) €w .
.. = 4 lem(jor]|vs])’ \7 re 2
a(e,w);; { 0. otherwise for all (i, ) € [n]

Also, T ((|61),- - -5 1855 (Im1ls - - - » [7ql)) is a transportation polytope which will be defined in
Definition 1.2.33.

In the next section we consider one more polytope, a generalization of the Birkhoff polytope

with applications in operational research: the transportation polytope.

1.2.3 The transportation polytope

Let us consider the following logistical problem. A total of m sources with respective supply r;
for 1 <i < m, must ensure delivery to n destinations with respective demand s; for1 < j < n,
such that the total supply is equal to the total demand i.e. Y ;v r; = E;=1 s; = 7. The
transportation problem consists in finding a solution to this situation that is optimal with
respect to a total cost function. This can be seen diagrammatically in Figure 1.36 where

every arc contains the following information:

cij : cost per unit per arc
a;j : units shipped

or equivalently in matrix form as shown in Figure 1.37.

Sources Destinations

¢ @ 0:'11 :11 @ 51)
"® ®-

Units of Supply
puswa( Jo sy

(P (:) Cmn Gmn @ 8n)

Figure 1.36: A classical transportation problem

The aim of the problem is to minimise p(a) = } .. cija;; over the transportation polytope

T(r,s).
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D, | D, |- | Da
\
a1 |ai2 ain
S1 T1
[en][en [ en
S a1 |az azn S
r
2 | [en] [em [eam] "2 &
e
(o
§
=2
<
S Gmil Gm2 Gmn r
™ fem] [ema |cmn m )
81 82 e Sn
Units ofv Demand

Figure 1.37: The transportation problem

Definition 1.2.33. For r € R™,s € R" such that all entries of r and s are non negative,

n

and Y o T = )_j=18j =T, we define the transportation polytope, 7 (r,s):

®a;; >0 forallie[m],je€ n]
T(r,s):={acR™"| e Y™ a;=r; forallic [m]

e Y ! a;=s; forallje€[n]

A class of problems similar to transportation problems was originally proposed by Kan-
torovich in [67] (the reference given here is the 1959 English translation of the 1939 paper
originally published in Russian). However it is accepted that the standard form of the trans-
portation problem was formulated by Hitchcock in 1941 [63]. This polytope has an obvious
interest to academics in the fields of operational research but has also been examined from
a purely combinatorial point of view [26, 28, 44, 69, 74, 88]. Integer points of transportation
polytopes are known as contingency tables, and are investigated in, for example, [6, 50, 57].
Chapter 8 of 28] gives a great review of the results obtained for 7(r,s). A subset of these

results will follow. They are mostly generalizations of the results of Section 1.2.2.

Theorem 1.2.34. 7 (r,s) is non empty and dim 7T (r,s) = (m —-1)(n - 1)

The proof of the dimension is analogous to the proof of Theorem 1.2.21. Non emptiness

comes from considering the matrix a € T (r, s) with entries defined as follows:

’"‘Tsf for all i € [m)], j € [n]

a,—,- =
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The vertices of T(r, s) are surprisingly easy to identify. One such classification is given in

[69]:

Theorem 1.2.35. Let a € T(r,s). Then the following statements are equivalent:

1. a € vertT (r,s).
2. a has no non zero cycles.

8. The bipartite graph of a has no cycle.

Note that non zero cycle here means a cycle:

(il,jl)y (il,jz)v (i2a j2)9 (i2a j3)a R (ia-—l, js—-l)v (ia—laja)a (iaajs)a (imjl)

where iy # tki1,1s F# 91,5k # Je+1,Js # J1 for all k € [s — 1], and such that each of the
corresponding entries of a is non zero. An example is shown in Figure 1.38. Note also that

the bipartite graph of a is defined in Definition 1.2.28.

Proof. Consider a € T(r, s) \ vertT(r,s). From Lemma 1.2.7 there exists a non zero matrix
a* such that a +a* € T(r,s). Considering the row and column sums we have: ) % a}; =
i1 a; = 0. Thus, for each (4, j) such that a}; is non zero, there must exist another i’ # i
and j' # j such that a;; and aj; are also non zero. Since there are only finitely many rows
and columns, it follows that a* must have a cycle of non zero entries. On this cycle we have
a;; £ aj; > 0 (since each entry of an element of 7 (r, s) is non negative). If a;; = 0 we have
+a;; > 0 (since af; # 0 on the cycle) which is not possible. Thus, a;; > 0, and so a must

have a non zero cycle. Therefore, (2) implies (1).
Now if we consider a € 7(r, s) such that a has a non zero cycle, we can in a similar way to
the proof of Theorem 1.2.24 find a* # 0 such that a +a* € T (r, s), so that a is not a vertex.
Thus, (1) implies (2). Statements (2) and (3) are obviously equivalent. O
If we now move onto faces of 7(r, s), then any face of 7 (r, s) is of the form:

Tk(r,s) :=={a € T(r,s) | a;; =01if (i,5) € K} (1.58)

where K C [m] x [n].
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a9 1
455
1

a4J4 U313 /

Figure 1.38: A mnon zero cycle

Definition 1.2.36. For a polytope V, we define facetsifP) to be the number of facets of V

(i.e. the number offaces ofV of dimension ..w «5_ 1).

T he follow ing theorem is proved in [69]:

Theorem 1.2.37. Form < n:

Il
[

facets(T(r, s))
facets(T....,, - 2 ifm

1 ifm

n- 2

m — o < facets(T(r,s)) <mn ifm> . andn -

Before stating a result concerning the diagonal sym m etry class of the transportation polytope

we need the follow ing definition :

Definition 1.2.38. For any diagonally symmetric matrix a G ... we define the ..., .:a

as the graph with vertex set {ici,..., wn}, such that {wi, Wj} is an edge if and only if aij * 0.

N ote that (w i, W i/ represents a loop at vertex W {, corresponding to a non zero diagonal
entry AN ot A. U sing D efinition 1.2.38 we give the follow ing result concerning the diagonal

sym m etry class of a transportation polytope T (r,r): T (r,r){1,dl (using the convention of

cquation (1.22)).

Theorem 1.2.39. Leta G+ .. ) LA\ Then a GvertT(r, ., .., if and only if the connected

components of the graph of a are either trees or odd near trees.

A NeAV Irée is a connecctea graph that consists of a cycle w ith a (possibly trivial) tree rooted
s caen vertex. an OAAd MEAV 1€ v 4 wear tree whose cycle has odd lengih. Eauivaien tly an
Oddneartl’eeunmnneuu graph w ith no cyecles of even length or odd cyecles connected by
a path. A proof of this result can be found in [28, 41]. Im portantly it should be noted thact

T heorem 1.2.31 is a special case of T heorem 1.2.39.
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Surprisingly it can be shown that Theorem 1.2.35 is a special case of Theorem 1.2.39. For
a particular matrix a € 7 (r,s) with r € R™, s € R®, we can construct a matrix a’ €
T (', r'){49 where ' € R™" has entries:

' 1 Si—m, t € [m+1,m+n]
It can be checked that a € vertT (r,s) if and only if a’ € vert7 (r’,r') and Theorem 1.2.39
can be used to give statement (3) of Theorem 1.2.35.

Dantzig [44] made a lot of progress on solving transportation problems efficiently. Indeed
it can be. shown that for a linear cost function p, the optimal solution is always a vertex.
For small m,ﬁ one can thus find the optima fairly simply. For larger m,n this becomes a
complicated problem. Dantzig developed an algorithm for solving this problem: the simplex
algorithm. Other algorithms from linear programming can also be used.

1.3 Conclusion

The main aim of this thesis is to apply the methods and results described in Section 1.2
to the ever intriguing alternating sign matrices of Section 1.1. Chapter 2 is the study of a
generalization of the Birkhoff polytope and semi magic squares: the alternating sign matriz
polytope and higher spin alternating sign matrices. Chapter 3 is a study of B,, under symmetry
conditions, leading to enumerations. This chapter serves as a basis to a methodology that we
apply in Chapter 4 to the alternating sign matrix polytope. Finally our penultimate chapter,
Chapter 5 is the logical conclusion in which we generalize our new polytope in the same way

that 7 (r, s) is a generalization of B,,.



Chapter 2

Higher Spin Alternating Sign Matrices

2.1 Introduction

This chapter is based on the article published in 2007 [15]. As described in Section 1.1.2
alternating sign matrices can be considered as generalizations of permutation matrices. Per-
mutation matrices are semi magic squares of line sum 1 (see Definition 1.2.23). Is there an
analogous set of square matrices with line sum r such that setting r = 1 gives ASM(n)? This
leads to the definition of higher spin alternating sign matrices.

Definition 2.1.1. We define the set ASM(n,r) of higher spin alternating sign matrices of

size n and line sum r:

ASM(n,r) := ,
a1 ... Gin ® i1 Giy =Y g 0w =T forall i,j€ [n]
a=| : D E€Z e 0L (aiy S forall i€n], j€[n-1]
Ani ... Gpn e0< > jav;<r forall ie[n-1], j €[n]

Note that this is equivalent to:

® Y i1Giy = p a0 =r forall i,j€ [n]
® Y iyai >0 forall i€[n, j€[n—1]
ASM(n,r) = qa €ZV" | @ 30 _.a;y >0 forall i€ [n], j€[2,n] (2.1)
L] Z:.=1a,-:j >0 for all i € [n— 1], ] € [n]
> i ;ay; >0 forall i€ [2n],je[n]

Thus ASM(n,r) is the set of n x n integer-entry matrices for which all complete row and

column sums are r and all partial row and column sums extending from each end of the row

/ 60
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or column are non negative. It is easy to see that setting r = 1 gives the set ASM(n,1) =
ASM(n) as given by Definition 1.1.1. We shall refer to the matrices of ASM(n) as standard
alternating sign matrices whenever it is necessary to emphasize these have r = 1. Throughout

this section we consider the following running example:

0 11 0 O
1 -10 2 0
a=|0 1 1 -2 2| € ASM(5,2) (2.2)
1 0 0 1 0
01 0 1 0
Note that ifollowing Definition 1.2.23 we have:
SMS(n,r) = {a € ASM(n,r) | a;; >0 for all i,j € [n]} (2.3)

The terminology chosen, higher spin alternating sign matrices is derived from the statisti-
cal mechanical connection discussed in Section 1.1.4 in which there is a bijection between
ASM(n,1) and configurations of the six-vertex model on L, , with domain wall boundary
conditions. This model 1s related to the spin § representation of the Lie algebra si(2,C). For
r > 1 there exists a similar statistical model related to the spin % representation of si(2,C)
and it can be shown that there is a bijection between ASM(n,r) and conﬁgurations of this
model on £, , with domain wall boundary conditions. See [15, 34] for details. Some cardi-
nalities of ASM(n,r) are shown in Figure 2.1 (note that these cardinalities are eduiva.lent to
sequence A143670 of [99]).

r=0 1 2 3 4
n=1]|1 1 1 1 1
211 2 3 4 5
3|1 7 26 70 155
411 42 628 5102 28005
511 429 41784 1507128 28226084
611

7436 7517457 1749710096 152363972022
Figure 2.1: |ASM(n, )| for n € [6], r € [0,4]

In the next section we define multiple sets that are generalizations of the sets of Section 1.1.3.
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2.2 The many faces of higher spin alternating sign ma-

trices

The sets EM(n), CSM(n), MT(n), LP(n) and FPL(n) (defined in Section 1.1.3) will now be
generalized to higher spin versions EM(n,r), CSM(n,r), MT(n,r), LP(n,r) and FPL(n,r),
however, the same terminology shall be used. For all of these new sets, setting r = 1 gives
the sets of Section 1.1.3.

2.2.1 Edge matrix pairs

Definition 2.2.1. We define the set of edge matriz pairs, EM(n,r):

h10 e hln Vo1 --- Von
EM(n,r) :=} (h,v) = : S I : € [0, r]*(+D) x [0, p] (1) xn
hno ... hun Unl -.- Unn
Oh‘-’0=‘vo’j=0 fOf‘ li,jE[n]
o hipn=uvnj=r foralli,jen]
® hij 1 +vy;=vi15+hy foralli,j€ [n]

It can be checked that there is a bijection between the set ASM(n,r) and EM(n,r) in which

the edge matrix pair (h,v) which corresponds to the alternating sign matrix a is given by:

ht] = 2‘1.,=1 aijl fOI' all 1 € [n]) .7 € [O’ n]

] 24
Vij = Dy ai; for all i€ [0,n], j € [n] (24)
and inversely:
a,,-j=h,~j—-h;,j_1 = Vij — Vi-1,5 for all i,je [n] ‘ (25)
The edge matrix pair corresponding to our running example (2.2) is:
001222 00000
01100
010022 10120
(hyv) = 00120 21, € EM(5,2) (2.6)
11202
011122
001122/ (21212
2 22 22

We can once again represent these entries on L, , as in Figure 1.10. The relation given by
Figure 1.8 still holds (the lattice diagram corresponding to our running example is given by
Figure 2.2).
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Figure 2.2: Running example represented on L5

0 1 0 1 0 2

0 1 1 0 0 2
1 0 2 1 0 2 .

2 2 1 1 1 0
1 0 2 1 2 1 2
0 0 2 2 1 1 2

Figure 2.3: The 19 vertex types of V(2)
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Definition 2.2.2. We define the set V(r) of vertex types for a spin % statistical mechanical
model:
V(r) = {(h,v,k,v') € [0,7]* | h+v=h +1'}

'

- v
A vertex type (h,v, h',v’) is depicted as ;r—{—";,' and the defining equality of V(r) is equiv-
v

alent to the relation given by Figure 1.8. The 19 vertex types for r = 2 are given by Figure
2.3. The set V(r) can be expressed as the disjoint union:

V(r)={(h,v,,h+v—h')| h,v,h € [0,7], h< K <v}U
{(M +v —v,0, K, v')|v,W,v € [0,7],  <v<h}U
{(h, ¥ + ' — h, W, V') | h, ;v € [0,7], ¥ <h <V} U
{(h,v,h+v —v',V)| hv,v' € [0,r], v <V < h}

2.7)

Each of these sets corresponds to a weak choice of minimum value. Thus, using Lemma

1.2.30 we have:
r+3 r+2 r+1
|V(r)|-( ' )+2( ' )+( ! ) (2.8)

The sequence |V(r)| corresponds to A005900 of [99]. Recalling equation (2.3) SMS(n,r) C
ASM(n,7). Thus there exists a particular subset EMg(n,r) of EM(n,r) in bijection with
SMS(n,r). The edge matrix pairs of EMg(n,r) are the edge matrix pairs of EM(n, ) such
that hy; < h;ji1 (and equivalently vy; < v, ) for all ¢, j. By the map (2.5) this implies
that a;; > 0. This leads to the set Vg(r) := {(h,v,k',v") € V(r) | h < I and v' < v}. These

requirements imposed on the previous disjoint union give:

Vs(r)={(h,v,,h+v—h)| h,v,h € [0,7], h< W <w}U
{(M +v —v,v, K, V)| v, W, v €0,7], V <v<h}

wsol= ("3 + (757

as given by sequence A000330 of [99]t Recalling the Boltzmann weights‘ (1.12), satisfying

(2.9)

leading to:

the Yang-Baxter equation, defined for the six vertex model, i.e. the vertex types of V(1),
Boltzmann weights satisfying the Yang-Baxter equation can also be defined for the vertex
types of V(r) for r > 1. Furthermore, for these weights the determinant formula (1.13) can
be generalized to the higher spin vertex model with domain wall boundary conditions [34].
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This is very promising, indeed if a part,icula.r choice of spectral and crossing parameters z

v

and a could be found such that W wy2,a | =1 for all (h,v,W,v') € V(r) forr > 1,

v

then a method similar to that of Section 1.1.4 could perhaps be used to obtain enumeration
formulae for |ASM(n, r)| for fixed r and variable n. Sadly, our investigations lead us to believe
that for r > 1 it is not possible to find Boltzmann weights which satisfy the Yang-Baxter
equation and for which there is also a choice of parameters leading to all weights being 1.

We now give a set that generalizes Definition 1.1.3.

2.2.2 Corner sum matrices

Definition 2.2.3. We define the set CSM(n,r) of corner sum matricesas:
CSM(n,r) :=

€00 --- Con ®ecor=cko=0 forallke€[0,n]
€ [0,n](w+Dx(n+1) | © Ckin = Caj = kr for all k € [0, ]
: ’ ®cij — ¢ij—1 €[0,7] foralli,j€ [n]
o e G ® i — i1, € [0,7] for alli,j € [n]

It can be checked that there is a bijection between ASM(n,r) and CSM(n,r) in which the

corner sum matrix ¢ which corresponds to the alternating sign matrix a is given by:

i g .
Cij = ZZa,-,,j,, for all 4, j € [0, n| (2.10)
=1 j'=1
and inversely,
Gij = Cij — Cij—1 — Ci—1,j + Ci—1,5-1, for all i,5 € [n] (2.11)

Combining the bijections (2.4) and (2.5) between EM(n,r) and ASM(n,r), and (2.10) and
(2.11) between ASM(n,r) and CSM(n,r), the corner sum matrix ¢ which corresponds to the

edge matrix pair (h,v) is given by:

.

i Jj
Cij = Zh,vj = Z'Uij’, for all 4,5 € [0,n] | (2.12)

=1 i'=1

and inversely,
h,‘j = Cij — Ci—1,j, foralli e [n],y € [O,TL]
(2.13)
Vij = Cij — Ci j-1, forall i € [0, ’n],] € [n]
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The corner sum matrix which corresponds to our running example (2.2) is:

€ CSM(5,2) (2.14)

ccoocoo
DD == O
AW O
SOCRNDNO
00N
S50 0 NO

Now for a generalization of Definition 1.1.4.

2.2.3 Monotone triangles

Definition 2.2.4. We define the set MT(n,r) of monotone triangles to be the triangular

arrays of the form:

tl,l ce tl’,-
21 .- t2,2r

tn,l ce tn,nr

such that:

o Each entry of t is in [n].
e In each row of t, any integer of [n] appears at most r times.
L] t,'j S ti,j+l fOT all i e [n], J € [‘l’l‘ - 1]

L] t,;+1,j < tij < ti+1,j+r fOT all i€ [n - ].], ] € [zr]

It follows that the last row of any monotone triangle in MT (n,r) consists of each integer of [n]
repeated r times. It can be checked that there is a bijection between ASM(n, ) and MT(n,r)
in which the monotone triangle ¢ which corresponds to the higher spin alternating sign matrix
a is obtained by first using (2.4) to find the vertical edge matrix v that correﬁpdnds to a, and
then placing the integer j v;; times in row ¢ of ¢, for each i, j € [n], with these integers being
placed in weakly increasing ordef along each row. (Note that there is an alternative bijection

in which the horizontal edge matrix h which corresponds to m is obtained, and the integer %
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is then placed h;; times in row j of ¢, for each %, j € [n]). For the inverse mapping, for each
i € [0,n] and j € [n], v; is set to be the number of times that j occurs in row i of ¢, and a

is then obtained from v using (2.5).

The monotone triangle which corresponds to our running example (2.2) is:

23

1344

123355 € MT(5,2) (2.15)
11233455
1122334455

We now move on to a set that will be useful in generalizing a result of Section 1.2.2.

2.2.4 Lattice paths

Definition 2.2.5. We define LP(n,r) to be the set of all sets p of nr directed lattice paths

on L, , such that:

1. For each i € [n], p contains r paths which begin at (n + 1,7) and end at (i,n+ 1).
2. Each step of each path of p is either (—1,0) or (0,1).
3. Different paths of p do not cross.

4. No more than r paths of p pass along any edge of the lattice.

It can be checked that there is a bijection between EM(n,r) (and hence ASM(n,r)) and
LP(n,r) in which the edge matrix pair (h,v) which corresponds to the path set p is given

simply by :
hij = number of paths of p which pass from (z, )
to (4,5 + 1), for each i € [n], j € [0,7] 216)
1
v;; = number of paths of p which pass from (i + 1, )

to (¢,5), for each i € [0,n], j € [n].

For the inverse mapping from (h,v) to P, (2.16) is used to assign appropriate numbers of path
segments to the horizontal and vertical edges of the lattice, and at each (3, j) € [n] x [n], the
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hij-i + Vij=  ij + segments on the four neighboring edges are linked without crossing

through (zj) according to the rules that

o If >v” (and hij-i > then |j paths pass from (i,j - 1)
to (i- 1,j), ™ - v~ = hij-1 - V{ ij paths pass from (z,j - 1)

to (zj + 1), and v" paths pass from (z+ 1,j) to (zj + 1). @.17)
e If% > h” (and i > then paths pass from (zj - 1) .
to z- 1,j), v - h™ =v”"ij - h”™-i paths pass from (z+ 1,j)

to (z—1,j), and hj paths pass from (z+ 1,j) to (zj + 1).

The two cases of (2.17) are shown diagrammatically in Figure 2.4. The lattice path vertex

types corresponding to Figure 2.3 are given by Figure 2.5.

Figure 2.4: P ath configurations throuwugh vertex (z,j) for the cases of (2.17).
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N ote that strictly speaking the elem ents of L P (n ,r) are m ultisets of lattice paths, since they

cam contain repetitions of the sam e paths. For exam ple, in the case in (2.18) the paths
(6.4, (5.4, (s.5), (4,50, (4.6)) ana ((6,5), (5.5), (5,0)) are each repeated twoice. T he set
L P (n,r) leads to the follow ing generalization of T heorem 1.2.256.

Theorem 2.2.6. Any matrix a G ASM {n,r) can be written as the sum of r standard alter-

nating sign matrices of size n.

Proof(_‘nnsider « G ASM(n,r). U sing bijection s 24 and 216 get the corresponding p GO

LP(I’I,I’). Note that the V' nested paths which begin at (M + 1’i)and end at (Z,Il+ l)can

r N
be naturally ordered w eakly from top to bottom at vertex (l,l’l+1). Wcue(inep for given

i 6l j 6 [ es e Jthwein wuier vexins o0 (M L) wns cous oo (Ga+ D aan,
p = UILi Uj=iPo'i sw apping the ordering of this umnion gi\'esp=Uj:i1X:iPij-’\ we define
p i) s= 0 ELy o ter an G[r],u.” woe have:

r

p:\']pw (2.19)
j=i

I m portantly r " G L P(rz, 1) for all j G Ir] (th is follow s from th e ordering of our p aths an d
the fact that no edge of p is occupied by m ore then r paths). U sing the bijections (2.17) and
(2.5) have:
a=" a®
3=1
w here GASM(n,I)cnrretp»ndSln the p * G L P (n, 1) of equation (2.19).

This is illustrated by:
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which gives the alternating sign matrix decomposition‘of (2.2):

0 1.1 0 O 01 0 0 O 0 01 0 O
1 -10 2 0 1 -10 10 0 0 01 0
01 1-22}=|0 0 1 -1 1}j+}j0 1 0 -11
1 0 01 0 01 0 0O 1 -10 1 0
01 01 O 0 0 0 1 0 01 0 0 O

Note that the converse of Theorem 2.2.6, i.e. that any sum of r standard alternating sign
matrices is an element of ASM(n,r), can easily be checked to also be true. Last but not least
we define another set, which is a generalization of Definition 1.1.8 however it is not in one to

one correspondence with higher spin alternating sign matrices.

2.2.5 Fully packed loops

Definition 2.2.7. We define the set FPL(n,r) of fully packed loop configurations, to be the
set of all (multi) sets q of non directed open and closed lattice paths on L, such that:

o Successive points on each path of q differ by (—1,0), (1,0),(0,-1) or (0,1).
e Any two edges occupied successively by a path of q are different.

e Each path of q does not cross itself or any other path of q.

o Ezactly r segments of paths of q pass through each internal vertez of L n.

e At each (external) point (0,2k — 1) and (n+1,n— 2k +2) for k € [|2£]], and (2k,0)
and (n—2k+1,n+1) for k € [|2]], there are ezactly r endpoints of paths of q, these
being the only lattice points which are path endpoints.

It can be seen that there is a mapping from FPL(n,r) to EM(n,r) in which the fully packed
loop configuration ¢ is mapped to the edge matrix pair (h,v) by first forming:

hi; = number of segments of paths of ¢ which occupy the edge between

(3,7) and (3,5 + 1), for each i € [n], j € [0,n] (2.20)
U;; = number of segments of paths of P which occupy the edge between '

(i+1,5) and (3,5), for each ¢ € [0,n], j € [n].
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Then similarly to (1.11), we have

for i +; odd

hij — r —h” for i+ j odd

(2.21)
r— fori+j odd
Vij for i + j odd

This mapping is surjective for each r € N and n € P and it is injective for » € {0,1} or
n 6 {1,2}. However it is not injective for » > 2 and n > 3. We define W (r) as the set of fully
packed loop vertex types, i.e. the set of ways of linking » path segments through a vertex.

For example, W(2) is given by Figure 2.6.

+ + + + + +
+ + + + + +

+ +

Figure 2.6: The 20 vertex types of W(2)

It can be shown that the number of fully packed loop vertex types with 4,A',v and v' path
v

segments on the surrounding edges of the vertex (i.e., h Mwith h+v +h +v' = 2r) is

min(h, 2 ,v,v',r —h,r —h ,r —v,r —v') + 1. For example Eor (h, A ,v,v) = (1,1,1,1) there

are two possible vertex types: or —t— . It is the fact that this number can be

arger (han 1 fer P o 2 wohnien deads (o the mom-injectivety of tne moap veiween FPL(N,7) 4ua

e 0, F) toe To 20ma Mo 5 using tnis we see onae [FPL(L,T)| v 0 W ciencea cnum cracion

of A SM (n,r) in w hich each higher spin alternating sign m atrix is w eighted by the number of

fully packed loop configurations corresponding to it. T he set W(I‘) is im bijection w ith:
w,/l X f, , emi+m2+ra3+rad+tl +2=r
w f= | (m 1, m 2, m 3, m 4 e N 3 t, = 0 Or (t, ”~ O an d t2 = O)

w o h (m 2 37714A1 2) rrrrrr P d t t ty p w ith m d 1 q d t
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4, t1 vertical lines and £2 horizontal dines. (N ote that the number of lines passing through a

vertex is r, so that the num ber of endpoints of lines surroumnding a vertex is 2r). W e get tw o

m4 Jill m3 m4 J[ m3

possible situations: or corresponding to the m utually exclusive cases 1 - 0

m 11 mi § n

or 1 A 0 ana £2- 0. U sing Lem m a 1.2.30 this gives the cardinality of W (r) as:

«'>'"-0r M r:s)

as given by sequence A 002415 of [909].

The two fully packed loop configurations of F P L (5,2) that m ap to our running exam ple (2.2)

are
J.
(a)
In [116] th e s et o f lin k pattermns L 2n is generalized to give th e definition of L 2ny
D efin ition 2.2.8. L 2n, is the set of nomn crossing pairings o f 2n points, in which r arches
m eet at each o f the points and no point is paired w ith itself

For exampile, L 62 is given by figure 2.7.

In [116], cells form ed by the arches and bounding circle of a link pattern are considered, and

nk pattern is defined to be adm issible if and only if all of its cells are bounded b an even

mum ber of lines.

D efinm ition 2.2.9. L'2nr is the set of link patterns in L 2nj which are adm issible
Thus L o2 is the set given by Figure 2.7 w ithout the last 3 link patterns. In [116] it is show n
tnat 24 = « T his is domne by showing that adm issible link patterns are in bijection

w ith L ukasiewicz words (the enum eration of w hich is known).
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Figure 2.7: The link patterns of LG2

73
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It can be seen that by labeling the external vertices of £ n>n as in Figure 1.18 a fully packed
loop configuration of FP L (n,r) can be naturally associated w ith the link pattern of L 2n,r
form ed by its open paths, provided that each open path has distinect endpoints. For exam ple,

the fully packed loop configuration (b) of (2.22) is associated w ith the link pattern

Whereas the fully packed loop configuration (a) of (2.22) aoes not have an associated link
pattern as omne of its paths form s a loop at the 9¢h endpoint (using the labeling of Figure

1.18). T his leads to the follow ing definition s:

Definition 2210 W e denote the set of fully packed loop configurations in FPL(n,r) fo

wohich each open path has distinect endpoints as FPLdlS(n,r).

Deflnltlon 2211 W e define the set offully packed loop configurations in FPLdiS(n , r) for

w hich the link pattern form ed by the open paths is adm issible as F P L adm (n ,r)

Cirnre 28 then s e bieeinin et mareis (220) cue (221) i i e st nen by
defined sets. T he configurations of (a) and (b) are both in FPL<£5(3,2), however m ap to th e
cem e erem et ot EM(3,2). tuus cur moan ts et tnsective veiw con FPLAIS(3,2) .. EM(3,2).
T he configuration of (c) is not in FPLadrn(3,z) ((a),(b),(c) correspond to the last three link
b vierns ot 27) vewever i e vaiy crem it or FPL(GL2) chat mans e bis imane
o EM(3,). tate cnens tnat our man i net curieeine nein oon FPL&M(3,2) .00 EM(3,2).
v contimaratien ot i nee i FPLAIS( 4,0, i was b ees siariins aea cnaies o0 (2,0)),
bewever i e eats crem ent ot FPL(4,2) toat moans o is imane 0 EM(40 ras e
b es i wet suriective veie oo FPL<iS(4,:, .00 EM(4,2).

In the next section we m ake a conmnection betw een the alternating sign m atrices of S ection

1.1 2nd the convex polytopes described in Scection 1.2
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Figure 2.8: Further exam ples of fully packed loop configurations

2.3 The alternating sign matrix polytope

Definition 2.3.1. We define the . ccvaiing sixn w arix poiviore, AR as:

r l G Knxn c 0 < sz y/i_iaij> < 1 for atl i G a1, ; G 4 — 11

Lant an anonf

E quivalently we have:

« Ef=l..,. ~ iy, = 1 forall M C [n]'
R R T T

An = <a G B PR O (o2
« saumiaiy no0 for.n . G/mn—1],, G
e v aaiy oo for.n o G[2,n],5 G ow

T hous Anis the set of X M reatl entry m atrices for w hich all com plete row and colum n sum s

are l,mnd all partial row and colum ns sum s extending from each end of the row or colum n are

mnonnegative. It follow s th at all entries of A4 n are b etw een — 1 an d 1, and alon g th e first/la st
row /colum n all en tries are non negative. T h u s Ani\ a b owumnded su b set of R nxn (in d eed,
sim ply considering real entry m atrices w ith total row and colum n sum lgives anm unbounded
set). T herefore, An is th e b oumnded in tersection of fimitely m any h alf spaces an d is th u s a
convex polytope according to (143) in D efinition 1.2.3. In |1051A7’li§ independently defined
by Striker using a convex hull description (see (1.42) in D efinition 1.2.3). A n exam ple of an
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3 0 & 1
Y 1 % ¥
a=|] 5 7 ¥ (2.24)
3 —3
0 1 0 O

Recalling Definition 1.2.20, and similarly to relation (2.3) the Birkhoff polytope is given by:

B,={a€ A, |a;; >0forallije[n]} (2.25)

Definition 1.2.23 gives rB, N Z"*" = SMS(n,r). Similarly Definition 2.1.1 gives:

rA, NZ™" = ASM(n,T) (2.26)
A counterpart to Theorem 1.2.21 is:
Theorem 2.3.2.

dim A, = (n — 1)?

This follows from:

zn:am' = iai,j =1 for all (¢, j) € [n] x [n]}

i=1 j=1

affA, = affB, = {aeR’”‘"

Before proving any further results we define another polytope.

Definition 2.3.3. We define the edge matrix polytope, &, as:

hm hln Vor --- Uon
En=q(hv)=1| 1 : e || e fo, R¥Y x [o, 1)+
hoo ... han Unl --- Unn
o hypp =1y =0 forall i,j € [n]
e hiypy=vpi=1 forall i,j € [n] }
® hij_1+ v =vi_1;+ hij forall i,j € n]

It is easy to see that r€, NZ*"**+Y) = EM(n,r), and that there are bijections between £, and
A, equivalent to bijections (2.4) and (2.5), i.e. the (h,v) € &, which corresponds to a € A,

is given by )
h‘i' = Z?i,=1 ai,j' for a.ll ) (S ['n], J € [03 n] ( )
2.27

v =Y_ ay, forall i€[0,n], j€[n]
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and inversely:

aij = hij — hij—1 Or aij = v; — vy forall i,j € [n] (2.28)

The equations (2.27) can be regarded as giving a linear map from R™*" to R?*"*+1) and each
of the equations of (2.28) can be regarded as giving a linear map from R?*"+1 to R**". Thus
A, and &, are affinely isomorphic as given by Definition 1.2.11. We now give an important
result, which forms a counterpart to Theorem 1.2.24.

Theorem 2.3.4.
vertA, = ASM(n,1)

Proof. The proof offered here differs slightly from the proof given in [15]. We show that
vertf, = EM(n, 1). The result then follows from Lemma 1.2.12 since A, and &, are affinely

isomorphic.

e We first show that EM(n, 1) C vertf,. Assume (h,v) € &, \ vert€,. Then by Lemma
1.2.7, there exists (h*,v*) # (0, 0) such that (h,v) % (h*,v*) € &,. Since (h*,v*) # (0,0)
there exists , j € [0, n] such that hf; # 0 or v}; # 0. Assume without loss of generality
that hY; # 0. Thus, 0 < hy;+hy; < 1 which implies 0 < hy; < 1 and so (,v) ¢ EM(n, 1)

(since EM(n, 1) = &, N Z2"+1), Thus as required EM(n, 1) C vert&,.

e Next we show that vertf, C EM(n,1). Consider (h,v) € &, \ EM(n,1). As in Figure
1.10 we can represent (h,v) on L, ,. For example, the (h,v) corresponding to the case
of (224) on [:4,4 is:

0 0 0 0
? 3?3 %?s ®
Oe < by by el
3 0 3 1
169 , % ,5¢ ,10¢
Ot &1 | o
i¢ 1 i¢ 04 14 (2.29)
Oe : g P o1
14 04 1g 1q
oo———1 41 4 | o
® ® ¢ )

Since (h,v) € £,\EM(n, 1) this implies that there exists ¢, j € [0, n] such that 0 < h;; <

1 or 0 < v;; < 1. Because of the boundary conditions imposed on &, all non integral
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en tries m ust b e associated to an internal edge. R e
see that we m ust have a cycle of non integer entries
in this equation is mon integral, then at least one o
For exam ple the follow ing cyecle of non integer entr
Select any such c¢yele on the lattice diagram o f (h
ticlock w ise, and denote the sets of points (i, j) for
(z,j) and (z,j - ) is in the cyecle and directed right o
the sets of points (i,j) for w hich the vertical edge b
cycle and directed up or dowan as respectively V + or
of (2.30) an anticlockw ise orientation then 27_ = {
v._ = {cr,1), (2,1)} and V + = fCr,3), (2,2)}
((hlo
W e now create the m atrix pair (h * v *) =
In0
Rnx(n+1) x R(n+l)xn with entries:
Y//Pf (z,j) G H o+
hoii m= { -A *if (*»i) € n - vii 'm=
On[h('rw e
N ote that w e w ill have:

K]'1+vt]* vi-ij + K j for all
since if the cycle does not pass throuwugh (i,j) then
does pass through (i.j) then because of the orien
out. For exam ple: .o gives — fi+ 0 = iV
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callin g Vi o=V i-ij o+ woe
(simece if any one of the four entries
f the others m ust be non integral).
ies exists for (2.29):
(2.30)
)., give it an orientation, say amn -
w hich the horizontal edge betw een
r left as respectively 77+ or 77 _, and
etw een (z,y) and (z + 1,j) is in the
Vo For exam ple if we give the cycle
(r,1), (1 ,2)}, 77+ = {(2,2), (3,1)},
w

Kn AQL e

hoi U . e <p)
lz if (z,j) Gv
Oolherwise
i€ [m],, Glnl
the equation is trivial. If the cyele
tation, all appearances of |i cancel

OI
0 or o gives 0 + /i = I+ 0.
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We choose: -
p:=min({hi;|(, ) € H4} U {hijl(3, 5) € HJU

{hijl (3, 5) € H-} U {hyj| (5, 5) € H-}U

{viil (3, 5) € V4 } U {53, 5) € Vs }U

{vil(3,5) € V-}u {w;|(2,5) € V-})
with hi; = 1 — h;; and %;; = 1 — ;5. It can now easily be checked that: (h*,v*) # (0,0)
and (h,v) £ (h*,v*) € &,. Thus as required EM(n, 1) D vert,

We thus have verﬁé',, = EM(n, 1) as required. O

Note that Theorem 2.3.4 implies that .A,, is integral and that &, is a 0,1 polytope. This gives
an alternate proof of Theorem 2.2.6, as an application of Theorem 1.2.29. It also follows from

Theorem 2.3.4 that A, is the convex hull of the standard alternating sign matrices of size n:

.An={ > e

a€ASM(n,1) ac€ASM(n,1)

Ao €[0,1]g for all a € ASM(n,1), > A= 1} (2.31)

This is how Striker defines A,, in [105]. In this paper Striker also considers other faces of A,,.
One of the theorems given is a counterpart to Theorem 1.2.22:

Theorem 2.3.5. The alternating sign matriz polytope A, has 4[(n — 2)% + 1] facets forn >
3. '

In the next section we give some structure to Figure 2.1.

2.4 Enumeration of higher spin alternating sign matri-

ces of fixed size

In this section we generalize Theorem \1.2.25. Recalling Theorem 1.2.18 we need to consider
A7, Similarly to B3, A9 is obtained by replacing each weak inequality in Definition 2.1.1 by
a strict inequality. Recalling Relation (2.26) and Definition 1.47 we define:

ASM°(n,r) :=rA2 NZ™"

/
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Equivalently:

ASM°(n,r)

- {ae goen

= a € Z™"

1<y 10y <r—1forall i€[n], j€[n-1]
01> jav; <r—1forall ie[n-1], j€[n]
. 2;,___1@-,,-::23:1(1”:7‘ for all i,jE[n]

o> _jaiy>1 forall i€[n], j€[n—1]

o Y ijaiy 21 forall i€[n], j€2n]

oY i_jav;>1 forall i€ n—1)], j€ [n]

o> i sav;>1 forall i€[2,n], j€[n]

[} Z;=lqidl=zz=la,v,j=r for all z,jG[n] }

Thus ASM°(n,r) =@ for 1 < r < n. Using this we have:

Theorem 2.4.1. For fized n € P there erists A,(r), the Ehrhart polynomial of A, which

satisfies:

1. A,(r) is a polynomial in r of degree (n — 1)2

2. |ASM(n,r)| = A,(r) forallTr €N

3. |ASM°(n,r)| = (-1)***Ap(-r) forallT € P

4 An(=1) = Ap(=2) = - = An(=n+1) =0
5. A1) =TTy S&5¢

Proof. The proof is a direct implication of previous results. The first three properties are
direct implications of Theorems 1.2.18, 2.3.2 and 2.3.4. Property (4) is obtained from the
fact that ASM°(n,r) = 0 for all 1 < r < n. Property (5) is implied by (1.1). | a

Thus A,(r) can be interpolated by the n + 1 values given by Theorem 2.4.1 and a further

n? — 3n + 1 enumerations of ASM(n,r) or ASM°(n,r). Similarly to equations (1.48)-(1.50)

we give the polynomials A, (r) for n € [1,5]:
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Aq(r)

(&) 40=(7")
(’:2)+2(r:3)+(r:4) (2.32)

Ar) = ( 3) (’+4)+415(’";5)+592(r;6)+253(’";7)+
(36
(" + 4) +14468 (' + 5) + 521651 (’ ;;5) + 6002192 (’ + 7) +

16
r+9 r+10
28233565( 16 )+61083124( 16 )+64066830( 16 )

r+11 r+12 r+13
32866092( 16 >+7998192( 16 )+854464( 16 )+

34627 (’ + 14) +412 (’ Jlfsl"’) + (’" “;616) (2.34)

As(r)

; As(r)

Polynomial (2.32) corresponds to sequence A006325 of [99]. Last but not least we shall pay
particular attention to ASM(n, 3) and FPL(n, 3).

2.5 The particular case of n =3

2.5.1 Alternating sign matrices of size 3

Recalling the argument presented in Section 1.2.2 used to prove the enumeration of SMS(3, )
we here give an analogous argument for ASM(3,7). We label the matrices of ASM(3,1) as
given in Figure 1.1.
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s =

I I
——— /—-\
-0 O [==2N T
O = O O O
OO = -0 O
\—/ \-—/

s &

] Il
/——-\ /——\
O O = i = )
= =] OO =
O O O - O

& &

il ]
N
S-S S~
SO = - O O
-0 O OO =

It can be checked that we have a bijection ¢ between ASM(n,r) and the set:

e+ X+ A+ M+ A+ A+ =1
0/\2/\3=0

C'(r) = { (A1, A2 A3, Aay As, A, Ar) € N7
e A6 =0

where ¢ : C'(r) — ASM(3,r) is defined by & (A1, A2, As, Mg, As, Aes A7) = 3o, Aihi. The
conditions A3 = 0 and AsA¢ = 0 in C'(r) are related to the fact that hy + h7 = he + h3 and
h1 + h7 = hs + he. Note that the set C’(r) can be written as the following disjoint union:

e+ X+ A3+ M+ A+ A+ Ar=71
C'(r) = { (M, A2, A3, M, A5, Mg, A7) EN7 [ @ A3 =10
e )g=0
e+t A3+ M+ A+ A+ A=
U (AIaA27A3aA47A5)A61A7)€N7 .A2=Oa A321
.A6=0

oA+ X+ A3+ M+ A5+ A+ A7r=T1
U (AlaA21 A37 A4’ A5*) A6) A7) €N7 'A3=0 :

OA5=0, ’\621
oM+ttt A+ A+ Ar=T
0A2=0, )\321

U (AI’A27 A3’ A41A5’ AG))W) € N7
*A=0 221

Using Lemma 1.2.30 we get the formula (2.32) for |ASM(3,r)|. In fact, formula (2.32) also
appears in [21] as the number of 2 x 2 non negative integer entry matrices with each row and

column sum at most r. A bijection ¢ between ASM(3,r) and the set of such 2 x 2 matrices

a1 a2 13
¢ [an Gz ags| =% 8
a3y 0ass

az1 Q32 as3

is given simply by:
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2.5.2 Fully packed loops of size 3

T he set FPL (3, r) is in bijection w ith the follow ing set:

e Qi+ 2+ a3+ ad+ A5+ D+ aT+ 228+ 2029 + 2o = T
10 * 0506 =07=08=0g= 0
@ €N or 0507 - 06 - o0, - 010- 0
0

or 2607 - 05 - 09 - .o -
(2.35)

Indeed let us consider the follow ing fully packed loop configurations:

It can be seen that B i,..., B 7 are the elem ents of F P L (3 ,1) and that Bg, B 0 and B i0 are the

non adm issible elem ents of F P L (3,2). It can also be seen that any elem ent of FPL (3, r) can

be w ritten as:
10

(J cuBi

i= 1

W here aiB i represents o* superpositions of B~. W e mneed to m ake sure that when taking this

union there is no crossing of paths. T his corresponds to the last three equalities of C " /[r)

T he set C "(r) can be w ritten as the disjoint union:
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eaj+ax+az+as+as+as+2a0=r
{(al,...,a4,a5,as,0,0,0,010) ENIO ® asag = 0 }

ea;+ax+tazt+astas+ar+2a=r
U{(al,...,(14,05,0,07,0,09,0)GNIO easar =0 }
ear+ag>1
ea;t+ay+astast+agt+ar+2as=r
U< (ay,...,a4,0,as,az,as,0,0) € N'°| e agay =0
eag>1

We now give the following lemma.:

Lemma 2.5.1.

1|+t + 2k =T1
{(cl,..-,ck+1) eN ock1c, =0

(k=147
T\ k-1
Proof. Indeed we have a bijection between the set on the left hand side and:

{(a,...,ak)GN"I a1+...+ak=,,.}

given by 8((a1,...,ax)) = (a1, ..., ak—2, max(ax-, — a,0), max(ax — ax_1,0), min(ax-1, ax))
and 67 '((cy,...,cx)) = (c1,---,Ck—2,Ck—1 + Cky1,Ck + Ckt1)- The enumeration follows from
Lemma 1.2.30. O

Using this we can enumerate the first set in the disjoint union as (rj,;s). The other two sets

can be enumerated using similar results, giving:

IFPL(3,7)| = (r;5)+(7"*5‘4>+(r-15-3)

Recalling Definition 2.2.11 we have that any element in FPL,4,(3,7) can be written as:
7
U a; B,-
]

This gives [FPLaam(3,7)| = ("1*) + 2("%), corresponding to sequence A001296 of [99]. We
now prove one more result concerning these fully packed loops. Recalling Theorem 1.1.11

and Definition 2.2.8 we generalize the result for n € [3].
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Theorem 2.5.2. For n € [3], if m,n’ € Lan, are such that m can be obtained from n’ by
rotation then |FPL.(n,r)| = |FPLy(n,t)|.

Proof. For n < 2 the result is trivial. For n = 3 it suffices to note that the permutation
(1,2)(3,4)(5,6,7)(8,9, 10) is a bijection on C”(r) (2.35). This particular permutation rotates
the link patterns as required. O

2.6 Conclusion

In this chaptef, firstly we offered a direct generalization of alternating sign matrices and
described the many combinatorial objects which are in bijection with, or related to, these
new matrices. Secondly we made the connection to polytopes by defining the alternating
sign matrix polytope A,,. The following chapters will show just how interesting an object A,

really is.



Chapter 3

Symmetry Classes of The Birkhoff
Polytope

3.1 General results on symmetry classes

We recall Figures 1.14 - 1.17 and the set P¢ as defined by (1.22):
PC:={a€P|a=gaforal g G}

where G is any group for which an action of G on P is defined. In Section 1.2.2 we discussed
the symmetry class B,{,l’d} and in this chapter we consider the symmetry classes BS for each
subgroup G of Dy (as given by Definition 1.21), in more detail. From Chapter 1 we have a
lot of results concerning B,, and D,. The rest of this section is a list of results that Awill help
us to deduce results concerning BS.

Definition 3.1.1. For P a polytope and G any finite group such that a linear action of G
on P is defined, we define the group projector of G on P as:

deG g

e ==g]

It is easy to see that Il is indeed a projector as I1% = IIg. This projector is a very powerful
tool (we shall be using it throughout this chapter and the next) as noted by the following

lemma
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Theorem 3.1.2. For P a polytope, G any finite group such that a linear action of G on P
is defined and Ilg as given by Definition 3.1.1,

g(P) = P¢

ZgEG ga
|G|

Proof. Consider any y € IIgP. By Definition (3.1.1) y = for some a € P, so

_ Yyec990 _ 2o 90

gy = G| = =G =y for any g € G. Also, y € conv{ga | g€ G} C P. Thus,

y € P¢ and so Ilg(P) C PC. Now consider a € PC. By definition, ga = a for all g € G and

SO }:ga = |Gla, giving a = Ilga € Ig(P) and so IIg(P) D PC, as required. O
g9€G

These results lead to the following powerful theorem:

Theorem 3.1.3. For P a polytope, G any finite group such that a linear action of G on P
is defined and Ilg as given by Definition 3.1.1, we have:

(vertP)® C vertP® C Ilg(vertP)

Proof. Since P¢ C P, Lemma 1.2.8 implies that vert? N P¢ C vertP®. Also, vertP N
PG = (vertP)®, giving the first inclusion. Since Il¢ is affine (it is actually linear), Lemma
1.2.10 implies that vertIlg(P) C IIg(vertP). The second inclusion then follows from Lemma
3.1.2 ' - O

Theorem 3.1.3 makes the study of P€ a lot easier as it sandwiches vertP® between two sets
that are easily obtained from a basic study of P. In some cases vertP¢ could be directly
obtained (if (vertP) = Ig(vertP)).

Applying Theorems 3.1.3 and 1.2.24 to B, and D, we have:
SMS(n, 1)¢ C vertBS C ng (SMS(n, 1)) (3.1)
for each subgroup G of D;. \ |
Theorem 3.1.3 leads to a convex hull description of P¢:
Corollary 3.1.4. For P and G defined as in Theorem 3.1.3:

PC = conv (Il (vertP))

I
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A form of this result is presented in [42]. Recalling Definition 1.2.13 the second inclusion of
Theorem 3.1.3 gives:

Corollary 3.1.5. For a rational polytope P and a finite group G such that a linear action
of G on P is defined:
1< D(P°) < |G| D(P)

Proof. From Theorem 3.1.3 we have vertP¢ C Ilg (vertP) = {Ilgv | v € vertP}, and from
(3.1.1) we have {IIgv | v € vertP} = I%v'T {Egecgv I vE vert'P}. ForallgeG,g: P —>P
is an affine bijection. Thus from Lemma 1.2.12 g(vertP) = vertP. Using this we have
l—é—l {dec gv l vE vert‘P} c TIG"I {212'1 v | v; € vertP for all i € [|G|]} This gives, using
Definition 1.2.13 for D(PC),

IGl

|G|D(P)vertP¢ C D(P) { D

=1

v; € vertP for all i € [|G|]} cz?

Therefore, |G|D(P)PC€ is an integral polytope, and so using Definition 1.2.13 for D(P),
D(P€) < |G|D(P). O

Corollary 3.1.5 gives:

1< DBM) <2 (3.2)
1< DB < (3.3)
1< DBM <2 (3.4)
1< DB H <4 (3.5)
1< D(BMTTH <4 (3.6)
1< DBl <4 (3.7)
1< D@B) <8 (3.8)

In this chapter we shall refine these inequalities, thus leading to enumeration theorems similar
to Theorem 1.2.25. In considering the integer points of the r** dilate of P¢ it is important

to note the following simple fact, which follows immediately from the definitions.

Lemma 3.1.6. For a polytope P C R™, and a finite group G such that a linear action of G
on P is defined:
(P nz" = (rPnZ")°
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For an integral polytope, a further inclusion, which follows from the properties of a linear
group, can be added to those of Theorem 3.1.3, giving:

Lemma 3.1.7. For an integral polytope P C R" and a finite group G such that a linear
action of G on P is defined:

(vertP)® C vertP® C Ig(vertP) C |G|P Nz

1.
&k
Thus for B, and G C D4 we have:

1

a (SMS(n, |G|))¢ (3.9)

SMS(n, 1)¢ C vertBE C Iz (SMS(n, 1)) C

We will make a note of these four sets for different G C D, throughout this chapter noting

the interesting relationship between them.
As well as these results we will use the idea of a fundamental region.

Definition 3.1.8. For a polytope P C R™ with coordinates of x € R™ labelled x; for some
indez set J (with |J| = m), a fundamental region is a subset R of J for which the affine
map fp: R™ — Rl given by:

(fp(2)); = z; for all j € R”

is injective between P and fp(P).

It is very important to note that R” is not unique and that fp depends on RP.

Definition 3.1.9. For a fundamental region RP (with fp as in Definition 8.1.8) we define
the corresponding fundamental polytope as P := fp (P).

For these new objects we can give the following lemmas. Since fp is bijective between P and

P we immediately have by Lemma 1.2.12:

Lemma 3.1.10. For P,P and fp as given by Definitions 3.1.8 and 8.1.9:

fp (vertP) = vertP

By definition fp does not change the values of the coordinates. Thus:
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Lemma 3.1.11. For 75,7_7 and fp as given by Definitions 8.1.8 and 8.1.9:

D(P) = D(P)

We have one last important result that follows straightforwardly:
Lemma 3.1.12. For P, P and fp as given by Definitions 3.1.8 and 3.1.9:

dimP = dimP

Throughdut this chapter we shall be using these results to study BS with G a subgroup of
D4. Thus the index set J of Definition 3.1.9 is [n] x [n]. To lighten notation, for a given
subgroup G of Dy we make the substitutions R¢ = RB and fe = feg. In Figure 3.1 we

give the fundamental regions we shall use as well as the dimensions of the corresponding

polytopes.
G< D, RC dim B¢ = dim B¢
wh {lhno=, (ot o
{1,h,v,¢%} {F’.—' 1 x%:[""—f—:‘i!‘:e:odd i@ ::;:1
e (s, =
{1,4,6%¢% {ﬁz fi %%%T]m: odd "':2 :::n
{1,d} {G.j) e[l x [n] |5 <i} 2
(Ld,0,¢) [{Ga) el xfml [i<i<nt1-}| {EnsS .
Dy {[zix E?En:;im: odd mﬁnodd

Figure 3.1: Fundamental regions used throughout this chapter

Figure 3.2 gives a summary of the results obtained (and the open problems) that we shall
present throughout this chapter. Note that in the final column of Figure 3.2, it is assumed
that n > 2 (since D(B) = 1 for all G).
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G C D, [SMS(n, 1)%] dim BS vertBY [vertBS | D(BS)
A , N even n!
L% 0 e o | V 287 2
!’ﬂi, n 3 neven 2 2, n even
{lvhav’qz} 0 t:l):’:z; \/ {;::'—:;0—1 l;;l! , n odd {4, n odd
R 2, n!!, n even .
1, 2l3i|2 { » m even 258 2n-3i (2501)° , m even
{ qZ} l.2.| gb_—fl)__‘ n odd \/ E'=o+(n_—14)‘!!',_n—o);d {2, n odd
ABD! " n , n even 2, n
{1,4,¢%, 6% {gf%_};j 05'31 oven gi,::d X X {4, n odd
13 Recursion rglation 1, n=2
1.4 ik i E 4 end genarating {2, n>3
1, n=1,2,4
: L'.'J n i) n',n 2,n=3,
{13 d,a, q2} 21:02'"5J_z (L;}:J) LZ:_'!)_ {Mnn odd X X { nnz 6 even
. 4,n>5odd
) Recursion relation ;: : : ;
D, 0 {gn;xgﬂ ",e:e:dd v Fancion for o hn=d
even. 8,n > 5 odd
Figure 3.2: Table of results for BS
3.2 Horizontal symmetry
Recalling the second row of Figure 1.17 the horizontal symmetry class of B, is:
B'M = {a € B, | aij = Gny1-i; for all 4, € [n]} (3.10)

Figure 3.3 gives the set SMS(4, 2){"#} and some cardinalities of SMS(n,7){*} are given by

Figure 3.4.

(/0 0
11
11
00
‘>10
01
01
L \1 0

O M= O =00 =

1\ (01
0 (10
o]'10
1/ \o 1
1\ /10
o] {o1
o]fo 1
1/ \10

-0 O MO MK M=O

1

0/

{

(0 1 1 0\ )
1001
1001
0110
1100\ (
0011
0011
\1 100/

Figure 3.3: Horizontally symmetric semi magic squares of size 4 and line sum 2

Note that if n is even and r is odd, then SMS(n,r){*} = §. This follows from the fact that

the column sums of a horizontally symmetric integer entry matrix of even size must be even.
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r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 0 1 0 1 0

3 1 0 3 1 6 3

4 1 0 6 0 19 0

5 1 0 30 0 35 51

6 1 0 90 0 238 0

7 1 0 630 0 94500 O

Figure 3.4: |SMS(n,r){"}| for n € [7], r € [0, 5]

Also, if n:and r are both odd with n > 7, then SMS(n,r){*} = @. This occurs since if n
and r are both odd and SMS(n,){"*} is non empty, then each entry in the central row of
any matrix in SMS(n, 7){1#} is odd (since each column sum must be odd) which implies that

r > n (since the central row contains n odd positive integers which sum to r).

Also note that there is a bijection between SMS(n,2){1*} and the set of all n-tuples in
which 1,...,|5| each appear twice, and for n odd, "T“ appears once. In this bijection,
the tuple (71,...,%,) corresponds to the n X n matrix a whose only non zero entries are

@i;j = Gny1-i;,5 = 1 for all j € [n] with i; ";‘1, and Qg1 ;= 2fori; = "‘2','1 (a.ndAn odd). For

0011
1100 110
example, (2,2,1,1) corresponds to 1100 and (1,1,2) correspondsto {0 0 2. It
0011 110
follows that:
n n!
|SMS(n, 2){14} = ) (3.11)
L13]
which is sequence A090932 of [99].
Recalling Figure 3.1 R4™ = [k] x [2k] and {,lcﬁ = [k + 1] x [2k + 1] giving:
{1,h} _ kx2k | ® Gij Z 0 for all € [k]" .7 € [2k]
B = {“ €R o YR ay=2%" a;=1forallie k], j € [2K]
and
oa;; >0forallie(k+1], je€[2k] -
Bélt-fl} = { a e R+ | E2k+1 ai; =23°F aij+ agy1; =1 for all i € [k + 1],
JjE[2k+1]
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K>{1 M
A lso [{i,lq .2k -*Bﬂ'h,l iggivcn by :
(a n .. < *],2n
an
a& i ... ajb”fe
RN
ajti & k. 2k
k)
. e aijik )
»{i>M
and f{l.h} S 2k+ 1 1S g1vVen PV:
( a il ai.2[c+i N
an «,2fc-hl
alfei ajt, 2+ i
IRy ajfe+i.i ajfe+ 1,25 41
. e Gd fifc,2fcH
«fei ajk,&fc+ i
\afe"‘l,l Uk 12K+ 1/
”~ an ni.z‘:*i /
Theorem 3.2.1.
vertBil'" =n {u) (SMS(n, 1)) = 2)(1">
Proof. W e shall first prove the second equality. T hen by considering different parity of n we

shall prove the first equality giving the overall result.

From the last inclusion of (3.9) it foltows that LLcIvy (s™M s(n, 1)) ¢ |s™M s (n,

N ow let us consider a« E SM S (n, 2) 1,/1~. A s indicated before equation (3.11), a corresponds
to a tupite (ii,...,in)- Now define an MXH m oatrix D winose onily non zero entries are
bijj = b+ i ijij> = 1 for all j, f E [ml w ith ij = ij> oA A an(j j < and bt ij = 1

for ij = A " e dd). For exam ple a =

gives 0 -

P
=R —]
e — R —

. S e -

P

=R~ I —

A
Vo i 0 1,
and a= 10 0 2 1 gives b = o 0 TR T It thenfollow s that b E SM S(n, 1) and that
\1 10/ v 1°/
a = b+ hb E 21 17~/q (SM S(n, 1)), giving H {ih} (SM S (n, 1)) D[S M S (n, 2)~ 1,717, W e have

therefore showwmn that (S M S (n, 1)) = s M s<n,2w1,m.
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We now move onto proving that vert B = II{1,5y (SMS(n, 1)). From the second inclusion
of (3.1) it follows that vertB{"" C 1,8y (SMS(n, 1)). We shall now show that vertBSM™ D
IT{1.y (SMS(n, 1)).

o For n = 2k, Definition 1.2.33 gives BU™ = T( 1,...,1), (%%)) By Theorem
k 2k

1

1T,hY _ . . . .
{Lh} with only non zero entries 5 1s a vertex, since

1.2.35 we see that any element of B;;
such an element has only one non zero entry in each column, making it impossible
for there to be a cycle of non zero entries. However, for all a € Il ) (SMS(2k,1))
and all (i,5) € [k] x [2k], (fum(a)),; € {0,3}. Thus f{1,h} (TTga,ny (SMS(2k,1))) C
vertB{1 ) By Lemma 3.1.10 we have that vertB = fl,n} (verthf,,lz’h}) and so
fany (H{l,h} (SMS(2k,1))) € fa.ny (verthk’ ) Therefore since f{; ) is bijective on
B and Iy 4y (SMS(2k, 1)) and vertBi™ are both subsets of Biy™, Ty 4) (SMS(2k, 1)) €

B{l sh}

vert as required.

e For n = 2k + 1 consider the affine map p : R*+Dx(2k+1) _, RE+1)x(2k+1) defined by:

a;; for all i € [k], j € [2k + 1]

(pla))s = {—21 for all j € [2k +1] and i = k+1 (3.12)

. oy Lh 1 1
It can be checked that this map is bijective from B;H; to T((l, e, 1 %) (— . —))

- A2 _2
2k+1
1 1
thus from Lemma 1.2.12 p (vertB%,lcﬁ = vertT((l, NP I %), (—2—, ceey 5)) The fact
k 2k+1

that IIg; 5y (SMS(2k + 1)) C vertBé,tﬁ follows as for the n = 2k case giving the required

result.

Recalling (3.9) for G = {1, h} we have:

SMS(n, 1){th} = ¢ ¢ vertBiM*} = Mg 4y (SMS(n, 1)) = %SMS(n, 2){tAH (3.13)

Note that vertB{"" is enumerated by (3.11). Theorem 3.2.1 immediately gives:
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Corollary 3.2.2.
{L,h}y _ 1, n=1
o ={3 35
Another result follows:

Corollary 3.2.3. Any matriz a € SMS(2k,2t){"} can be written as the sum of t matrices
from SMS(2k,2){:4},

Proof. We have: -
SMS(2k, 2t) {14} = (thg”‘}) A 7,2k (2K)

This is just the integer points of the t** dilate of 23{1 '}, From Theorem 3.2.1 232{,,1;"} is a
0, 1 polytope (since SMS(2k, 1){:h} = @ for all k € P). Thus the result follows from Theorem
1.2.29. (]

We believe that other decomposition theorems can be given however they do not follow

straightforwardly from Theorem 1.2.29.
The main result of this section follows from Theorems 1.2.18 and Corollary 3.2.2:

Theorem 3.2.4. For fired n € P there exists H,{,l’h}(r), the Ehrhart quasi-polynomial of

B which satisfies:

1. H{MM (r) is a quasi-polynomial in r of degree dim B and period which divides 2.
2. |SMS(n, r)h| = HM () for allr € N

3. |SMS(n, 7)1t} = (—1)dimBE LAy — gy n) for alir € P

The following enumerations illustrate this theorem:

HM () = {(l) : 22311 k , (3.14)
5+2 eve
M) = {(TLT i ozd (3.15)
. +1 +2 +3
HIM () = {(’ ) +2(53%) + (5;%), r even (3.16)
2Ny = 51 a'*“) + 161(5"'5) + 121(’5"'6) + 21(""7) + (538), r even (3.17)
5 (75*2) + 21 (T, 13 +121(F ) + 161(7T,+5) + 51(77,*9), r odd '
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Quasi-polynomials (3.15) and the non zero values of (3.16) correspond to sequences A008795
and A005900 of [99].

Note that Bi"" = B,(hl,,I,) and so the result of Brualdi discussed in Section 1.2.2 can

be used. If we consider the case n odd for example we get (using the notation from the
{rmn+1-r} 1<r<ot

end of Section 1.2.2): 6, = {{n+1} r= gl and v, = {s} for 1 < s < n. This
gives (|61|,...,|5L};|) =(2,...,2,1) and (|71, +lwml) = (@Q,...,1). Also, the orbits of x are

A;.l n
{(r,s),(n+1—r;8)} for all r € [25], s € [n] and {ZH,s} for all s € [n] (ie. 6, x 4,
contains oply a single orbit for each r € [251], s € [n]). Thus in Brualdi’s result (1.57),

e is a vertex of 7((2,...,2,1),(1,...,1)) and w is uniquely determined by wy, = 4, X 7,.
2t
Theorem 1.2.35 gives that vert7 (( ,2,1),(1,...,1)) is the set of 2! x n matrices with

a single one in the last row, two ones m a.ll the other rows, a single one in each column, and

all other entries zero. Using this in (1.57) now leads to an alternate proof of Theorem 3.2.1
for n odd. The n even case involves 7((2,...,2),(1,...,1)) and follows similarly.

3.3 Horizontal and vertical symmetry

We now look at the fifth row of Figure 1.17 giving the horizontal and vertical symmetry class
of B,:
B{l hod’t = {a €B, | Qij = Ani1—i,j = Qint1-j for all 4,5 € [n]} (318)

Figure 3.5 gives the set SMS(4,2){*%¢’} and some cardinalities of SMS(n, r){Lh»4"} are
given by Figure 3.6.

0110 1001
1001 01180
1001)’I01 10
0110 1001

Figure 3.5:- Horizontally and Vertically symmetric semi magic squares of size 4 and line sum
2



Chapter

4 3 4 5
5 11 3 16 4 49
6 21 0 ss 0 120
7 120 0 370 55 2901
8 2 4 282 0 2008 0 10147
g2
Figure 3.6: IS M S ( r) |,‘h"" ! or an G |8|. r G |0,8|
Since S M S {n r) L,oh,v.,q C S M S (n r) 1. h it follo w s from th e results for the horizomntally
m etric case th at if n is even an d r is o d d th en S M S (n = 0 and if n and
b o th odd w ith n > r th en S M S(n ,r) 1.,h,v,q2 = 0. A lso n oo te th at SM S (2/e, 2¢t)"1,h,v,q2"
S M S (fe,t)| and that S M S (n 2)510,h v, q2 = T hese results w ill becom e clear w hen
sid ering the fundam ental polytope: Bn'h,v,q
R ecalling Figure 3.1 E i~ h'v'g * = [k] x [k] and B Ko+ = & + 1] x [A; + 1] giving:
aij > 0 tor s i, J & )
Y k=i a.j = E f= i ij = Sfor all e [fc]
and
> 0 fer am i,j € IfC+ 1,
2 dij Otrfe+l = 2 yT i cLij + 1
for.n 1,j G-
B{i,h.. 2, K{l,hv,q*
°2k o~ % 2k * is given by:
(d1l dik d\k we du)
an aik
dkl  ees dkk dkk e dki
SLh\, 2 .
dkl dkk dkk  eee dki
Jdkl 0%*,
\an dik  dik e 4.
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{Lhv,q2} =

and f{i h,v.g2}

( dll

dkl
dk+1,1
dkl

filh,v,q2}

A oall

Theorem 3.3.1. Forn even:

Symmetry Classes of The Birkhoff Polytope

Siven by

dlk dik+1 dlk dn |\
dkk dk,k+1 dkk akl
dk+Lk GfctlfeHl dk+L,k  » Ofctl,]

dkk dk,k+1 dkk dkl

dlk alk+1 dlk dn )
an mee  &fc fifct )
Ofcl ... k1t ®fc, fe+1

\dk+ 1,1 oo  &AHfc Ofe+l,fe+l/

vertBpiMv'q2) = \sM
Forn odd:
vertBNhWWg: - {a G (SMS(n,1)) | /{1*.ura”a) Jias no non zero cycles)
Proof. s v.. n =2k BNohvgd = eoe’ oo’ = 2" 7 and from The
fc k

: R <

it can be

and the

= 2k+ 1, the proof follow s in

i) e (fe+ i) _> o1 (

checked th at

result follow s.

giving the required result.

the sam e way as the proof of T heorem

“ 4 i)x (H -i) given
aij, i,j e [k]

Wa> h-\& i =k+tXjel[k]
i=j = k+ 1

is affinely isom orphic with:

3.2 .1 .

ith
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Theorem 3.3.2.
n— (nzlir

1 » o1

¢ shall prove the result by show.ing

P roolf For n even the proof is trivial.
and the follow ing

th at we have a bijection betw een vertT

z,1'" G [s]

T .
U ((Sl-eesil). (iisee®)<») 6 W X W* * SMSA- s.1) Ve e e

s=0 v
that a has no non zero cycles

- -
C onsider a G vertT /\(_,1,1)(1, i) . R ecallin g

k
on zero

t have a n path.

In particular ak+ ije+ i =

G [fe + 1

= 1, rem oving colum n gives an elem ent of:

Tf afe+i,fe+i

w hich corresponds to an elem ent a' of SM S (Aj, 1). T hus a corresponds

w s X [*]m X SM S (fc - s,
ji = joti fo

U R T N IR R

there exises 11 G [fc]such ena e cnMeH - J. since

th en

(recall that the only non

cxisis ji GIR] suen onae ajuUl -

momn zero path:

(*i,fe + 1), (*i,ji),..., (is,j3), (fe+ 1,ja)

that each of the corresponding values

/\ji>(or a1l z,ZGIsI su ch
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Removing the s + 1 rows 4,,13,...,%,;,k + 1 and columns j,...,js,k + 1 gives an element of
vert ((3--05) (7))
e
—8 -8

which corresponds to an element a’ of SMS(k — s,1). Thus a corresponds to a triplet:

((il, ey is), (jl, . ,js)’ a')
as required.

The enumeration result follows from the fact that for given s we have k(k—1)...(k—s+1)
choices for (i3,-..,1,) and for (ji,...,Js), thus:

k

U

s=0

{((z’l,...,i,),(jl,...,js),a’) € [k]°* x [K]* x SMS(k — s, 1)

o i # iy foralll,l' € [s]
L] jl #jl’ for all l,l' € [8]

k
= (k(k—1)...(k—s+1))* (k- s)!

=0

which gives the required result. O

Recalling (3.9) for G = {1, h,v, ¢*} we have:

SMS(n, )14} = ¢ ¢ vertB{M9"} C Ty 44,42} (SMS(n, 1)) = %SMS(n, 4)Lhod’}
(3.19)

where the second inclusion is strict for n > 4. (In a similar (but far more tedious) way to the
horizontal symmetry case it can be checked that Il j 4 423 (SMS(n, 1)) 2 $SMS(n, 4) {Lava’} )
From Theorem 3.3.1 and the proof of Theorem 3.3.2 we have:
Corollary 3.3.3.

1,n=1

DB H = {2 n even

4, n > 3 odd

Also note that we can give a similar result to that of Corollary 3.2.3.

Corollary 3.3.4. Any matriz a € SMS(2k, 2t){1h*9"} can be written as the sum of t matrices
from SMS(2k, 2){Lhwa’},
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We believe that other decomposition theorems can be given however they do not follow

straightforwardly from Theorem 1.2.29.

The enumeration result follows from Theorem 1.2.18 and Corollary 3.3.3:

Theorem 3.3.5. For fized n € P there exists H{Bhoe) (r), the Ehrhart quasi-polynomial of

BERYCY yhich satisfies:

1. H,{.l'h"”q’}(r) 18 a quasi-polynomial in r of degree dim B,{,l’h’”"’z} and period which divides
2/4 for n even/odd respectively.

2. |SMS(n, r){Lhva}| — H o) (r) forallr eN

. va? v
9. ISMS”(n, r){l,h,v,q’} — (_l)dimB,{,l"" T }Hf{;l’h’ ,q“}(_r) — Hgl,h,v,q’}(r —n) forallr €P

This is illustrated by the following enumerations:

Hél’h’”’qa}(r) - {(1) : 2:’;:1 (3.20)
("+1) r =0 mod 4 ‘
. T") r =1 mod 4
HAo Y ) = ﬁ_rll’”) ) ——I;K:nod . (3.21)
T'H) =3 mod 4
{Lh,v,q°} _ [T, reven '
Hy (N = {0 r odd (8.22)
437 + 6('+3) + (5, r=0mod 4
(Lhw,a®} 2(°5,*1) + 6(°7,*2) + 3(°7,*%), r = 1 mod 4
Hs ™) (_‘_+2) + 6(T+3) + 2("’“) r =2 mod 4 (3:23)
(T“) + 6(—r+2) + 4("‘4‘*3) r =3 mod 4
Quasi polynomial (3.21) corresponds to sequence A008624 of [99].
3.4 Half turn symmetry
The third row of Figure 1.17 gives:
Bt = {a € B, | aij = Gny1-ins1_; for all i, € [n]} (3.24)

Figure 3.7 gives the set SMS(3, 2){1¢"} and Figure 3.8 gives some cardinalities of SMS(n, r) {14’}
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00 2 011 1 01 011 200
020),{101},10 20},4101},{0 2 0
200 011 101 110 00 2

Figure 3.7: Half turn symmetric semi magic squares of size 3 and line sum 2

r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 2 5 7 12 15
4 1 8 34 104 259 560
5 1 8 320 1611 3987 13392
6 1 48 978 11264 87633 513360

Figure 3.8: [SMS(n,r){¢}| for n € [6], r € [0, 5]

As discussed in Section 1.2.2 symmetry classes of SMS(n,r) are in some cases equivalent to
chess problems. We recall Figure 1.35 which shows a half turn symmetric solution to the
problem of the Rooks. Note also that half turn symmetric matrices are sometimes referred

to as centrosymmetric matrices.
In [76, 96] the set SMS(n, 1)1’} is considered and the following enumeration is given:

2 n P nl!, neven
SMS(n, 1)) = (2L5J)” = 2% 15“ - {(n — 1!, n odd (3.25)

which corresponds to sequence A037223 of [99]. If we consider a matrix of SMS(n, 1)1},
there are n choices for the location of the 1 in the first row, by symmetry this also forces the
location of the 1 in the n** row. Recalling that we have a single 1 in every column we then
have n — 2 choices for the location of the 1 in the second row, by symmetry this also forces
the location of the 1 in the (n — 1)t» row. This gives the enumeration: |SMS(n, 1){1¢’}| = nl!

for n even. For n = 2k + 1 odd we must have middle row/column:

{0,...,0,1,0...,0
k k

Removing this row and column gives an element of SMS(n — 1, 1)} giving the required

enumeration.

Recalling Figure 3.1: RS} = [k] x [2k] and RiF%} = [k + 1] x [2k + 1]. Thus:

. a,-,-% 0 for all € [k], j € [2k] }

B{lsqz} — { e ka2k ) )
% ¢ o Yt a5 =30 (0 + Gigkr—y) = 1for alli € [k], j € [K]

?



Chapter 3 Symmetry Classes of The Birkhoff Polytope 103

@i~ 0foralli GI?T 11,/ G 2k + 1]
a 6 R(fcH)xQfcH) OfcHj = Ofc{-,2(fcH)+ for &hj G [&
aij = Yli=l(aij ‘Vaiz2{k+\)-j) + ak+lj = 1
forall i G Vi L 1], j G [kT 1]

2kt =

(On e O2f

On Ol1,2fe”
aul a2
"M e o YAl Of2f/
AOIRE ... On)
an Ol 2fcH
0il Ol2fcH
ki Ofe2fcH
W) ORAl OfcH,1
OR2H  soe  akl o Oe2feH
\Ofct] O, 1)

\OL2fcH eee OH J

Theorem 3.4.1. Any matrix a in &n'q * can be written as the convex combination of elements

of SMS(n, V1B if and only if, either, n is even, or n is odd and an+inti = 1.

Theorem 3.4.2. Forn even:

vertBil' N = {1

Forn odd:
a has a unique non zero cycle

v BN a Gn {ix2} (SMS{n, 1)) containing an entry in its )y USMS(m, 1)*19 *
central column

PrOOf W e shall prove this result by considering different parity of H.
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e For n = 2k, the result is an immediate corollary of Theorem 3.4.1.

e For n = 2k+1, consider a € Bé,:fi}. If a has a non zero cycle or an open non zero path

with no entries in column k + 1 (the central column of a) then agy1%+1 = 1 and from
Theorem 3.4.1we can deduce that a is not a vertex and so:

All the non zero cycles of a
contain an entry in the central

vertBI9} € { a € Ty 42y (SMS(n, 1))
column of a

USMS(2k + 1,1){1e%}

From (3.1) we have SMS(2k + 1,1){1L.¢°} C vertB%,lcfi}. Thus we now need to show that
if a € II{3,42)(SMS(n, 1)) has a single non zero path with an entry in column & + 1 then

a is a vertex. To prove this we note the fact that for all a € Bg,lc’ﬂ} we have:

aik+1 < % for all i € [k]

(this is because 35 (@i k41 + Gi2(er1)— (k1)) + Crihtr = 235 1 Qi1 + Qrpr s = 1

and so 2 Zf___l aik+1 < 1).
Consider a € Bé,:f:} \vertBé,tfi} with f{'i,lqz}(a) € IIj;,42)(SMS(2k + 1,1)) and assume

that all the non zero cycles of a contain an entry in the central column of a. Thus

ak+1,k+1 7 1. Thus by Lemma 1.2.7 there exists a* # 0 such that a + a* € Bé,lcfi} and
there exists iy € [k] such that a ,,, # 0. Since f{‘lfqz}(a) € Il ,q3 (SMS(2k + 1, 1)),
Q5 k+1 € {0, %} for all i € [k] If Qo k+1 = 0 then Qi k+1 + a:o,k_'_l > 0 gives :I:a{o,k_,_'l > 0

which is impossible (since a, ;,; # 0). Similarly if a;, k41 = § then a1 £0a} ) < 3
(since as noted we have 0 < a; 441 < 3 for all i € [k]) gives +a} ,,, < 0 which is also
impossible. Thus a € vertBL %} and so falp (@) € verth,lcfi} giving:
All the non zero cycles of a
vertBé,tfl} 2 { a € Il 423(SMS(n, 1)) | contain an entry in the central
column of a
USMS(2k + 1,1){14%}

The fact that

a has a unique non zero cycle
a € I g23(SMS(n, 1)) | containing an entry in its =
central column
a € Il 423(SMS(n, 1)) | contain an entry in the central

All the non zero cycles of a
column of a
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follows from the fact that all the values on the non zero cycle of a are } (since a €

141,423 (SMS(2k + 1,1))), which gives the required result.

Theorem 3.4.3.

nll, n even

vertB,{,l'qz} = n=3 gn-2-i(n=1y)2 '
l | (n— 1)+ 217:2: l_f_lilz_ll, n odd

Proof. For n even the result follows from (3.25). For n = 2k + 1, we shall prove the result
using a particular map between vertB{"?"} and the set:

k
U {((il, ce ey i1y - -, Gs)a) € [K]* x [K]* x SMS(2(k — s), 1)1}

ei#ipforall|l' € [8]}
=0

o i #jyforall ,l' € [g]

For given s € [k] we take an element of

{((il, cearig), (1, - - -1 Js), @) € [K]® X [K]* x SMS(2(k — s), 1)1}

® il # ill for all l,ll € [S]
e ji#jyforal |l € [s]

and create the following full binary tree:

(41,6 +1)
(81,71) (i1,2k +2 — 51)
(i2,51) (2k +2 — iz, 1) (2, 2k + 2 — j1) (2k+2—i2,2k+2-51)
(“l—lyj!-l)
(‘a—l:jl) (is—lg2k+2—ja) ..
(i.,j.)/\ . /\(2k+2—i,,2k+2—j,)
(2k + 2 — i, s) (30, 2k + 2 — js) (3.26)

Note that this full binary tree has height 2s — 1 thus we have 22*~! rooted paths of length s.
We shall use this tree to create a map from verth,lc’ﬂ} and the set:

k . . . | ’
U {((il, bt daba) € K1 (K SMS(2(k - 5), D287 B 8 lz’,lz'ee[[ss]]}

8=0
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Consider a € vertBii®}. If a € SMS(2k + 1,1){4} then a corresponds to an element a’ of

SMS(2k, 1)(14"} (since ax41 441 = 1) which in turn corresponds to an element of

k o4 # iy all [,V
U {0l b € R R SMS(2( = ), )0 S 420 B0 0 )

s=0

with s set to 0 (from (3.25) we have (2k)!! such vertices).

Assume that a ¢ SMS(2k + 1,1)14'}. Thus from Theorem 3.4.2 a;; € {0,3,1} for all
i,j € [2k + 1] and there exists i) € [k] such that ay 1,1 = 3. Since il kv1 = %, by symmetry
Ogk+2-i) k41 = 3 80d 80 @ki1k41 = 0. Thus there exists j, € [k] such that axyj = 3. We

can create a non zero path:

(1,k+1),01,51), - -, (6, 52), (K + 1, 55)

with i}, 5] € 2k + 1]\ {k + 1} and 4} # i}, j; # jp for all [,I' € [s], such that each of the
corresponding values of a 1s . By symmetry such a path defines a non zero cycle of a. From
Theorem 3.4.2, removing the 2s+1rowsi),...,1, k+1,2k+2—1,,...,2k+2—14] and columns
Jlse-rdo k+1,2k+2—3. ..., 2k+2—j; gives an element a’ of SMS(2k+1—(23+1), 1)L’} =
SMS(2(k — s),1){14"}, The mapping from vertBik’f_zl}

k

. N g . R R ey Fipforall,l' e [s
stjo{((zl,...,z,),(al,...,g,),af) € [k]* x [k]* x SMS(2(k — s), 1)1} -jl, :;, or el “,E[[s]]}

then follows since every element a of vertBékfz} corresponds to an element a’ of SMS(2k +

1,1){4"} and a non zero path:

(@ k+1), (50, - (6, 5), (K +1,5)

for given s € [k]. This non zero path corresponds to one of the 22~! rooted paths of length
s of the full binary tree (3.26). Thus:

{1,4%} = d 28—109k—8 _ 22k - l(k')2
[vert B = @R)+D " (k(k = 1) ... (k — s + 1)) 227125 (k—s5)! = (2k)"+Z—————

s=1 i=0

as required. O

Note that Theorems 3.4.2 and 3.4.3 can be obtained using Brualdi’s method [27] as given in
(1.57), since B,{.l’qz} = B, (hl,,hl,). In this case, the transportation polytope which is used
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in (1.57) is 7((2,...,2),(2,...,2)) for n even and T((2,...,2,1),(2,...,2,1)) for n odd.

Theorem 3.4.3 can then be obtamed using Theorems 3.3.1 and 3.3.2.

We refine (3.9) for G = {1, ¢} to give:

e For n = 2k:

SMS(2k) ) = vert BET} C Iy 3y (SMS(2k, 1)) € %SMS(%, )0 (3.27)

e Forn=2k+1:
 SMS(2k + 1)1} € vertB&T} € Ty 2y (SMS(2k + 1,1)) € %SMS(% +1,2)106%
(3.28)
Theorem 3.4.2 immediately gives:

Corollary 3.4.4.

1P — n=1 orn even
D(B{ )= {2 n >3 odd

In [43] the following theorem is given:

Theorem 3.4.5. For n even any matriz in SMS(n, )%} can be written as the sum of r
half turn symmetric permutation matrices.

(This is confirmed by the fact that Theorem 3.4.2 identifies Bi{,,t’qz} as a 0,1 polytope.)
From Theorem 1.2.18 and corollary 3.4.4 we have:

Theorem 3.4.6. For fited n € P there ezists H,?’qz}(r), the Ehrhart quasi-polynomial of

BYY which satisfies:

1. H,{,l’qz}(r) is a quasi-polynomial inr of degree dim B and periodv which divides 1/2
for n even/odd respectively.

2, ]SMS(n, r){m’}| = HYYr) forallr € N

2
3. ISMS"(n, r){l"'z}| = (—l)dims'{'l’q }Hil'qz}(—r) = H,ﬁl’qz}(r —n) for allr € P
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(Of course a quasi-polynomial with period dividing 1, is a polynomial). Here we list some
quasi-polynomials illustrating this theorem:

MY < (“1“1) (3.29)
ety _ J2(53) + (537), v even
w0 = {(‘i-f+1)+2f%'é+2),rodd (5.50
H}l’qz}(r) _ (r-;—3)+2(r-;4)+(r-;5) (3.31)

Quasi-polynomials (3.30) and (3.31) correspond to sequences A001318, A033455 of [99].

3.5 Quarter turn symmetry

The sixth row of Figure 1.17 gives:
B9} = {a € B, | ai; = ajny1-i for all 4,5 € [n]} (3.32)

Figure 3.9 gives the set SMS(4, 2){(14¢".¢’} and Figure 3.10 gives some cardinalities of SMS(n, r){1:0:4*¢

) )

NO OO
ocooN

0 0 0
0 1 1
2 1 1
0 0 0

o O -
—_ OO =
O O -
O = - O
= N ]
—_O O
O NOoO O
oo N
O OO
cono

0
2
0
0

Figure 3.9: Quarter turn symmetric semi magic squares of size 4 and line sum 2

r=01 2 3 4 5

n=1 1 1 11 1 1
2 1 0 1. 0 1 O

3 1 0 11 2 1

4 1 2 4 6 9 12

5 1 2 4 6 23 33

6 1 0 18 0 135 O

Figure 3.10: |SMS(n,r)(1942}| for n € [7], r € [0,5]

In [76, 96] .the following enumeration is given:

SMS(2k, 1){1:4%4¢°}

(3.33)

_ {%, k even

0, k odd
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Note that % = (2k — 2)(2k — 6)...2. If we consider a € SMS(2k, 1){1944"} a4 can have
no non zero entries in either diagonal (i.e. ai; = @;n+1—; = 0 for all i € [2k]). Thus there
are 2k — 2 choices for the location of the 1 in the first row. By symmetry this also forces the
location of the 1 in three other rows which leads to 2k — 6 choices for the location of the 1 in
the next row needin‘g a 1. This gives the required enumeration for k even. For k odd it can
be checked that SMS(2k, 1){1"""2"13} = @ (since a;; = a;n+1-i = 0 for all i € [2]).

We have a simple bijection between SMS(2k, 1){194°.¢°} and SMS(2k+1,1){19¢"4’} Indeed
if a € SMS(2k + 1,1)1:94°4} then @ must have middle row/column:

9...,0,1,0...,0
{\._\k,_/ \_1,_/}

Removing this row and column gives the required bijection. And so we have:

K)!
lSMS(2k, 1){1M’vq3}| = lSMS(2k +1, 1){1’470”93}] _ @ keven (3.34)
0, k odd
corresponding to sequence A122670 of [99]. Combining (3.33) and (3.34) gives:
I5 L ‘
|SMS(n, 1){1’q,q2’q3}l - Bk n Oor1mod4 (335)
0,n=2o0r3mod 4 ~
Recalling Figure 3.1: R} = [k] x [k] and R} = [k + 1] x [k + 1]. Thus:
Lee ) _ kxk | ® @ij =0 for all i, j € [K]
sz - {a €R ] ELl(a,-j + aj.-) =1forallie [k]
and
®a;; >0forallije [k+1]
B{Lea et = { g ¢ REHDXHD) | 0 g4y = a4, for all i € [K]
° E;;l(ai,- +aji) + ik for all i € [k + 1]

17 ¥ ¥ 1 . .
Also f1,g,42,63 3%::”2 R 3§k’q"’2"’3} is given by:
(all e Mk Q1 .- an\
) ay; ... Qg
f L. Q1 ... Qkk Qkk --- 1k | _
{(Lad’a’} ik ... Gk Ok --- Qg1
. . : Akl ... Qkk
\au cee QK1 A1 .. an)
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31 »(1 A9 2030 . . s

264 1l is given by:
an d ik d il k+ 1 d k1 d n \
d ki d k k dk k+ 1 d k k d 1k
/{1gg2‘73} kel e ak ks i ak+ kv ak kt1 c A ikl
d ik d kK skt 1 d kK d kil
an d k1 d 1k aan >
an d\k d kL
Qi dkk dick+1
la i,k + i dk,/(+l d k + \,k+ i/
(th e fact th at a i~ + i = a , k+ i,i is evident from (3 .32) an d th e definition o f iAifc*i9q ). Iden -
tifying the vertices for this sym m etry class is om itted in this thesis. However, we give the

follow ing result:

Theorem 3.5.1.
P |
R (gO.?.?2.?3}I)\I: sz1 71

[4 ., n > 3 odd

even

Prool. « For m = 2k, the proof involves a graphical approach and is om itted.

. For n = 2k + 1 it can be checked wusing 1.2.7 that:

>13M’92’93}— J I

T aking a* = a) W8 to comnstruct a A Now ok A entries:

l,i =je [f]

aij = {od\_kj k.2,i G [fe + 1,n+ 2|

Thus a is of the form
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We can actually write a very concisely using direct sums: a = (3Ix) ® al. It is then
straightforward to check that a € vertBi% "}, Thus D (B{:%7"}) > 4 which gives
the required result.

We refine (3.9) for G = {1, q,42,¢%} to give:

SMS(n, YT ¢ vert BIT Y € Ty 4,2, (SMS(n, 1)) C % (SMS(n, 4))boe4")
(3.36)

From Theorems 1.2.18 and 3.5.1 we have:

Theorem 3.5.2. For fized n € P there ezists Hivor e} (r), the Ehrhart quasi-polynomial of

B LY yhich satisfies:

,qs}

1. H,{,l’q"'z"’s}(r) is a quasi-polynomial in r of degree dim BE**"""} and period which divides

2/4 for n even/odd respectively.
2. !SMS’“’“"’Z"""}(n, r)l = H,{;l’q’qz’qs}(r) forallr € N

2.3
9. ISMS"{l’q‘q"qs}(n, T)I - (__1)dim8§.1""“ e *Hr{‘l,q,qz,as}(_r) - Hil,q,q’,q’}(r__n) forallr € P

Here we list some quasi-polynomials illustrating this theorem.

{1,‘1,42,93} — 1, T even
H; (r) = {0, r odd (3.37)
(i71),r=0mod 4
r—-1
) r=
Hs{ly%qz,qa} ") = (7)), r=1mod 4 (338)

(551, r =2 mod 4
(=, ), r =3 mod 4

51) 4 (51%), 7 even
gited e’} - ( g_) 2 ) .

Quasi-polynomials (3.38) and (3.39) correspond to sequences A008624 and A002620 of [99].

3.6 Diagonal symmetry

The fourth row of Figure 1.17 gives:
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= {a C Bn a,ij = aji for all i,j E [n]} (3 .40)
R eccalling Theorem 1.2.31 we have already considered the diagonal sym m etry class of B n in
Section 1.2.2. For com pleteness we give som e cardinalities of SM S (n, r)"~/,d* in Figure 3.11
and a diagonally sym m etric solution to the problem of the R ooks in Figure 3.12. W e recall
(1.56)
Lty nt

I

—

—
N o

="

o

"

4 1 10 56 214 641 1620

5 1 26 348 26098 14751 62781
6 1 76 2578 44288 478711 3710272
Figure 3.11: 1S M S (n, T o r ok 161, - B 0.5

Figure 3.12: A diagomnally sym m etric solution to the problem of the R ooks

Figure 31 Roiu o= yony 1 [n]x [I’l] '/ < i for all i,j E [n]} giVing:

021 022 - “("2+l) coaij > 0 for all (i.j) E mm

E M '

——

.« E j11 +EJ=iur/i=:1'°rz“iE|"|

! Vbil eee  OnNnNy
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@& M s is given by:

f(ll’l @l eeeiinnnnnn.. onX \ fCl " \
@l «2 021 022
Jthd} - j —
On,n—1
Aanl /\n’n_l ®nn ) AOni On,n— annf

As stated there is no need to consider the fundamental polytope for this symmetry class as

Theorem 1.2.31 identifies the set vertBn,dl This leads to the following corollary:

Corollary 3.6.1.

DW 'd) ={2 n>1:

Recalling Theorem 1.2.31, the enumeration of vertSjil™ is given by (1.55).

We refine (3.9) for G = {1,0% to give:

SMS(n, 1) {I'd} C vertBfl~ £ II{M}(SMS(n, 1)) C 1sMS(n,2)<M> (3.41)

Note that enumeration of (SMS(n, 2))*l d* is given by Gupta in [61]:

(1- x )" =£ “ 0|SMS(n, 2)f1<}| £
ISMS(n, 2)*1<f = 2n —1) [SMS(n - 1,2)tI'dy - 2(";°) [SMS(n - 2,2)<w > (3.42)
-2(V) |SMS(« —3,2){ld> + 3C*;1) [SM S(n-4,2)<1d
(with |[SMS(1,2)*1dl ISMS(4,2)<M> = 1,3,11,56)
Using a similar argument to that used to obtain (1.55) we obtain:
nirT (¥ )%*
ISMS(n,2)<>* = £ 2 ~ ;4 1) ci (3.43)
w here the sum is over all non negative integers ci, c2,.¢3, c4,c5. .. satisfying ci + 2.2+ 3.3

4ed+ 5C5+ mee= N

Theorem 3.6.2. ... fixea N e » (wicn N - 3) there ..., Hn'd\r), e £ nhrhari quasi
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1. H® (r) is a quasi-polynomial in r of degree ﬂ"z_:_ll and period which divides 2.
2. |SMS{1”’}(n, r)l = H{"}(r) forallr €N

nnl

|SM;S"{l % (n, r)| =(-1) H{l’d}(—r) = H,{,l’d}(r —n) forallr e P

This is illustrated by the following enumerations:

H () = TH) (3.44)
wayy o JAET) +7(5%) + (557), r even 4
e = (RN T, (845
HMY )‘ _ (5“)+49(*+’)+270(*+3)+270(5+4) +49(’5+"’)+(’5+6) r even (3.46)
CT T V10T +144(T5 1Y) +322(TT5 ) + 144( T ) +10(To19), 1 0dd '

26(*1F) +2412(%FF) + 34533(*1F) + 134989( 5+f) +175880(°+5)+
HOD Gy = 78908(9 )+10978( +337(9 )+ (1°;{‘,5) T even
§ =

() + 337037 ) + 10978(‘ )+ 78908(5 )+ 175880(“
134989(™,; ) +34533(%*; ) +2412(°H7) + 26(1° °3"), r odd
(3.47)

Note that the quasi-polynomial for n = 6 is obtained in [83] however for clarity we omit it

in this thesis.

The fact that H. {l’d}(r) is a polynomial is immediate as vertB{"*# = {(1 O) , (0 1)}

01 10
11 10 01
it (1 1) =4 D)+ o)
The sequences given by (3.45) and (3.46) correspond to A019298, A053493 of [99].

3.7 Both diagonal symmetry

The seventh row of Figure 1.17 gives:

lel,d,a,q’} = {a € Bnl QAij = Qji = On+1—jn+l—i for all i,j € [n]} (348)

Figures 3.13 and 3.14 give the set SMS(3, 2){14:¢°} and some cardinalities of SMS(n, r) {1424’}

We note that |SMS(2k,1)(14e4"}| = |SMS(2k + 1,1){1424°}|. Indeed if a € SMS(2k +

1,1){1444’} then q2a¢ = a and so as before deleting the middle row and column gives the
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(3] Ged)-CaGedEid)

Figure 3.13: Both diagonal symmetric semi magic squares of size 3 and line sum 2

N OO
oON O
OO N
QO bt
— O =
oON O
— O =

r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 2 5 7 12 15
4 1 6 20 50 105 196
5 1 6 40 110 375 761
6 1 20 182 1040 4427

Figure 3.14: |SMS(n, r){14a4}| for n € [6], r € [0, 5]

required bijection. Secondly |SMS(2k,1)|{14e4’} is the sequence A000898 of [99] and is

related to the rook problem. The following enumeration is given in [76, 96]:
k .

ISMS(2k, 1) 4} | = ; 2k-% ( ;“z) 527’,)-' (3.49)

Assume we have i sets of 4 non zero entries that are symmetries of each other (i.e. no entries

on the diagonal or anti diagonal), we obviously have 0 < i < |§]. We are left with n — 4i

other non zero entries that are pairs of either entries on the diagonal or the anti diagonal,

thus we have % — 2i such pairs. For given i we have 23“2‘(%%‘) possible configurations for

fixed and anti fixed pairs. We are left with (4 — 2)(4i —6)...6 x 2 = %)—' configurations for

sets of 4 non zero entries ((4: — 2) so that we exclude the diagonal and anti diagonal). Note

we have the stronger result:

13) |

|SMS(n, 1){t4ee’}| = gzt 31— 2=(|.2ZJ) (2:')

equivalent to sequence A135401 of [99]. The fundamental region for this polytope is not

one that we will study here, however we give it for completeness. Recalling Figure 3.1:

R4} = {(u)e[n] [n) | j <iforalls,j € [n]} giving:

[ an \ )

a2
rildag?} . : |R,{.l’d’°’q2} e a,, > 0 for all (Z J) € R‘al ,d,a,g%}
B’n, 10,3, = < . . € ]R ® (a‘J + an+1-"1) + ;jll-t Jt - 1
: . for all i € [n]
Qp-1,1 Gn-12

‘\a,.l ) )

v~




Chapter 3

wowere fli,daq2} « BH'd'a'q2} --

B"kAa'qZ} is given by :

All (1), OkI  Ofc+l,1
L
dkl Okk  0,k+Lk
l,d,a,q2,
Jihdaq2i i Ofctife  Okk
02fc-1,1
Uoo2k )\ 02k—+) Ok+11  Orl
and f{lda,q2} wB 2k itgq2) B 2H i g2} is Siven by :
( an a2i me  Ofct+l,1 oo 02fc,i
021
fil,d,a,q2}  Ofctl,] ee  Ofctifec
02k,1
\02jfe+l,1  02fc,] .e. Ofctl,1 oo 021

It can be checked uwsing L em

verte|Lga:> = |

w . can similarly identify vert#]1709. ., give » » .+, d°9 .~ _

0 1
I010I,[i O
1 00

10 10 i

Symmetry Classes of The Birklioff Polytope

02kl \
021

o 02k-11

Ofctl,1
Ofcl

«21
Oil /
0il

021

021

Ofcl
Ofc+1,1

02k-1,1
| 02fc,l

02fc+L,i” f an

02fc,i 021

Ofc+1,1 = Ofc+1,1

021 02411

an | o02fc,1

SO ==
S = O
S

2 and »

7z

Okk

Ofc-Hi,fe

A

Ofc+i,fc

92 A

116
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However, D (B;l'd’“"’z}) = 4. Indeed using Lemma 1.2.7 we can verify that:

€ vertBél’d’“’qn}

O Onimnie O
O Ohi= Ohiw
B lai i € i i I
W Oni= O O
Ohial= © ©

These observations lead to the following result:

Theorem 3.7.1.

1,2 0r4
3 orn>6 even
5

\ 1, n
o(steet) = {2125

Y

vVl

Proof. The result for n < 4 is immediate so we now consider the case n > 5 odd. From (3.7)

we know that 1 < D (Bv{nl'd’a’qz}) < 4. Thus we simply need to show that 4 <D (Br{.l’d’a’qz} )

032 1oo
2 0 t oo

for all n > 5 odd. As in Section 3.5 we pad the matrixa' = [ 7 3 0 3 % to construct
00 %032
RERK

the matrix a € Bgi';‘;:"”} with entries:

o}y jp (,5) €[L+K,5+K x [1+k,5+K

l,i=j€lklori=j€[6+k,5+2k]
Qij
0, otherwise

Thus a is of the form:

Note that a = Iy®a! @ Ii. Using Lemma 1.2.7 we have a € verthi’g;f’qz}, otherwise we would
be able to find a* # 0 such that at +a* € B{"**?} which is not possible as a' € vertB{»><’},
The proof of the result for n > 6 even is omitted in this thesis as it involves a graph theoretical

approach which differs to the methodology used in this chapter and the next. O

From Theorems 1.2.18 and 3.7.1 we have:
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Theorem 3.7.2. For fited n € P there exists H,{,l’d’“"’z}(r), the Ehrhart polynomial of

B4} yhich satisfies:

1. Hf{,l’d’“"’a}(r) is a quasi polynomial in r of degree dim B,{,l’d"'"’n} and period which divides
1forn=1,20r4, 2forn=3orn>6 even and 4 forn > 5 odd.

2. |SM.S’(n, r)tdad’t = g4} r) for gllr € N

a,q2 a
3. |SMS°(n, r)idad}| = (—1)dmBE4tT) glldad _py _ gllded®} . py for glir € P

H2{1,d,a,q°}(r) - (" *1' 1) (3.50)
{Ld,a,a") 2(53%) + (57%), r even
H = r— r— . 1
3 ) {(‘f{“) +2("7,*?), r odd (3:51)
afree e = (770 + (77 @
(110(5F") +2486(5}2) + 7256(57°) + 4009(574) + 368(%1°) + (519),
r=0mod 4
= r—1 r— r— r— r—
40("T;*Y) +1606("T+2) + 6691 ("7, ) + 5258(°7, ) + 719(°T, %) + 6(°T, +),
H{l,d,a,q’}(r) = < r—3 r—2 r—2 r—2 r—ar =1 moq}:
5 6(TgtY) + T19(T, ) +5258( 7, 13) + 6691 (T T4) +1606( T, T0) +40( 77 ),
r=2mod 4
(FTo*) +368("Ty2) + 4099(TTo*3) 4 7256("To ) + 2486(7TotS) + 110(7T5 ),
L r =3 mod 4
(3.53)
3.8 All symmetry
The last row of Figure 1.17 gives:
B,?‘ = {a € Bn | Aij = Qnt1—i,j = Ajn41—i for allz,g € [n]} (354)

Figure 3.15 gives the set SMS(4,2)P¢ and Figure 3.1 gives some cardinalities of SMS(n, r)P.

Recalling Figure 3.1, Ry = [k] x [k] and RD%,, = [k + 1] x [k + 1] leading to the following
fundamental polytopes:

® a;; = Qji, for all 1,,] € [k]

BDt = { a € RF*¥
o > F ay=1forallic [k

®a;; >0, for all i, € [k] }
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/0 1 1 0N /I 0 O i\
10 0 1 0 110
10 0 1 0 110
VO 1L 10/ \1 00 1
r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 010 1 0
3 1 0O 1 1 2 1
4 1 02 0 3 O
5 1 0 2 0 7 3
6 1 0 4 0 11 O
7 1 0 4 0 32 0

:3.1: SMS(n,r)PH for n €77, . .

CLij 0 T 11 i G [k 1]
dij J f 1 i G [k 1]
2 X )ij j f 1 f G A 1]
w h fp 4 g b
/an  eee aub dik dn
dn dik
dik dik
Ini Clkk  CLkk dik
dkk.
lan ... aik dik dn)
snd DB Apyy B 2k+1 is Siven by:
/ an aut  djfed  aife du
dll Alfe dl,k+1
Ak g aftfc dik
o 4 difkti aicjfch  afctfct  dkk+i di,k+i
dkk 0,kk+1 Qd( dlk dlk dkk dk, k4-1
v yFH dk,k+1  a*+iifc+i/
Van . dik dn )

Theorem 3.8.1. Forn even:

rtB 7 = fE 1(jv ertB »)
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F or n odd

vertB?="la € 0 DISMS(n, 1)) =" = e e gf

W e recall T heorem 1.2.31 an d D efin ition 1.2.38 so that this result fully identifies vertB * 4.

P roolf . For n = 2k, we im m ediately have:

28 =2r1((l D),(!,.. 1)){Wl=BM>

Thus, vertzs "= 2verisB Mo VertBA1'A L The theorem follows from Loem m a 3.1.10.
« For n = 2k + 1 wsing the sam e argum ents used in the proofs of T heorem 3.2.1 and 3.3.1
we see that B :k+ i is affinely isom orphic w ith T ( s 1 and
the result follows from T heorem 1.2.309.

Figure 3.16: vertB ~d anda the corresponding graphs

Figures 3.16 and 3.17 give the sets veres -t4 ana 5 84 anda the corresponding graphs. N o te

(I J f\ ci fc

th oat 0 | i1 6 11jad (s M S (5,1)) however has graph \ / which has two conmnected
cyecles of length 1 (loops) and so is not a vertex. Indeed:

rm
i @
1
H
[ )
o0
%
Vv
[ )
[ )
[ )

Theorem 3.8.1 im m ediately gives D (B ~f) = 20D and so by C orollary 3.6.1 we have:
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/Q 1 i i 0\ /0103
% C};hOa 30
0 | 0 0 0 010
g 'io0i 003
| i \°%0
b 1 2
: ‘g 41004 4 00
I 1 1 010
o 19 ko 64§(V2V40i0031
v k240 1 0%011 030
I o« o M a4'Usy vioo00 y
¢c b
3
A) i 3 (A
Py
I O1 I
0 1! 1 0

Figure 3.17: vertB”4 and the corresponding graphs
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Corollary 3.8.2.

-

Ds\
D(B,*) = orn >4 even

odd

S 333

003&-&9 —
AV [ ([
UV W N

~

o
p—t

D(BP*) = 2 since verthl’d} = { ((1) (1)) , (1 O) } Also note that we can easily enumerate

the vertices for the n even case using (1.55) leading to:

|vertBo4 | 2\ 3 zia?
Zkzo xl xk=('}-—+-_z)4 ez (3.55)
|Vel'th: lzz 2¢3+eg+... ni L

—
=1,2,35,7... i8¢l

where the sum is over all non negative integers c;, ¢z, c3, c5 . . . satisfying ¢; +2c2 +3c3+ 5¢5 +

.

Recalling (3.9) for G = D4 we have:

SMS(n,1)P* = ¢ ¢ vertB>+ ¢ I1p,SMS(n,1) C %SMS(n, 8)Ds (3.56)

From Theorem 1.2.18 and Corollary 3.8.2 we have:
Theorem 3.8.3. For fized n € P there exists HP4(r), the Ehrhart quasi-polynomial of B2
which satisfies:
1. HPs(r) is a quasi-polynomial in r of degree dim B24 and period which divides 4/8 for
n even and n =3, n > 5 odd respectively.
2. |SMSP*(n,r)| = HP«(r) for allr € N

3. |SMS*P4(n,7)| = (—1)4mB=* HD4(—r) = HP4(r —n) for allT € P
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This is illustrated by the following enumerations:
1
) = {grom (357)
'(’3“) r =0 mod 4
De _ ("") r=1mod 4 3
Hg*(r) { ("‘;H) r=2mod 4 (3.58)
(T‘H) r =3 mod 4
Dy _ (’Hl) T even
H'(r) = {0 ” odd (3.59)
(16(537) +19(83%) + (87°), r =0 mod 8
2(‘5‘2 + 21(T+12 + 13(T+2) r=1mod 8
13('1'*1) + 21(T+2) + 2(T+3) r=2mod 8
Defn  _ (‘g‘) + 19(T+1) + 16(T+2) 7 =3 mod 8
H*() = 4(T“) + 25(T+2) + 7(T+3)r =4 mod 8 (3.60)
10(T+1) + 23(T+2) +3(F.*%), r=5mod 8
(‘-;“) + 23(-5:;2) + 10(T+3) r =6 mod 8
[7(F51) +25(75, %) +4(F5*0), r =7 mod 8
(4(53) +7(33%) + (33%), r =0 mod 4
Hé)‘(r) - 0,7=1mod 4 (3.61)

(()Li-;“% + 7((3—;“) +4("2*%), r =2 mod 4
0, 7 = 3 mo

The sequence given by (3.58) corresponds to A008624 of [99)].

3.9 Conclusion

As this chapter contains numerous results we here give a concise listing of these results.

3.9.1 Conclusion for B{l h}

o B{AY A Znxn SMS(n,1){14} = ¢,

(n—-1)(n—2)
. 1,h , I even
o dim B{ }={(n_12% n odd

2

o vertB{" = 1SMS(n, 2){04} = Iy 4)(SMS(n, 1)).

vertB,{.l’h}l = |SMS(n, 2)14} = ELBE'T

e Theorem 3.2.4 gives an enumeration result for fixed n, quasi-polynomials of period 2

are obtained for n € [5).
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3.9.2 Conclusion for B,{,l"""’qz }

. Bil,h,v,q’} N Z"*™ = SMS(n, 1){1,h,v,q2} = 0.

2)2

(n—2)
. 1,hv,q? n even
® dlmB;g v,q}={ 4 2’ .

(=1 1 odd

o — vertBI'Y = 19MS(2k, 2) {10’} = Ty, SMS(2K, 1)

_ VertB{,lc_fi" Y} _ {a, € My p oy SMS(2k +1,1) the fundamental region of a}

has no non zero cycles

21, n even
o |vertB{Aoe'}| = 2, 1)?
21—0 g—'_Q") n odd

e Theorem 3.3.5 gives an enumeration result for fixed n. Interestingly D(B.‘{,,lc’h'”’qz}) =2
and D(B, gc_,'_'i”qa} ) = 4. Quasi-polynomials are obtained for n € [5].

3.9.3 Conclusion for Br{.l’qz}

° B'{‘L‘f} N Znrxn

= lSMS(n, 1) = 21312,

R
= . .
&1 nodd

2

o — vertB{l' = SMS(2k, 1)1}

All the non zero zero cycles of a
B{l,q } _ {a €I 23SMS(2k + 1,1) | contain an entry in the central
— vertBy iy’ = column of a
USMS(2k + 1, 1){1¢’}

n!l, n even

220 L (- 1)1, nodd

vertBr{;l’qa} l = { n-3 -3
1—-0
e Theorem 3.4.6 gives an enumeration result for fixed n. Interestingly D(B;,t’qz}) =1and

D(Bé,lc’fl}) = 2. Quasi-polynomials are obtained for n € [4].

3.9.4 Conclusion for B{'#7¢}

= |SMS(n, 1){1,q,q=,q3}| - {zL?J-;)-, [3] even

° 81{1119,42»413} N Znxn
0, |2] odd
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ngn—2!
d' {va!qz!qa} - 4 ’ n even.
* dimBs (=1 ' odd

e We have not obtained a result concerning vertB,{.l"”qa"’s} however a result concerning

D(B,){1%4¢’} is obtained:

pese ) = {3 oo

e No results concerning verth{,l’q’qz’qs}l are obtained.

e Theorem 3.5.2 gives an enumeration result for fixed n. Quasi-polynomials are obtained

for n € [4].

3.9.5 Conclusion for B,{,l’d}

o 37{;1,4} NZrxn| = ISMS(n’ 1){1,d}| = 1’3(]) (—,1—_—2%55‘;;

o dim B = 2acl),
. vertB,{.l’d} is obtained from Theorem 1.2.31.

e Recursion and generating functions are given by (3.42). A cumbersome summation

formulae is given by (1.55) but no nice formula has been found.

e Theorem 3.6.2 gives an enumeration result for fixed n. Quasi-polynomials are obtained

for n € [4].

3.9.6 Conclusion for B{"*7}

° B’{'lad’a’qz} n ann

= [sM(n, psn)| = S 20 () 2.

n?
: 1,d,a,q%} =, n even
° dlmB,{,”’ =34’ .
n—1)(n+1 ,nOdd

4

e We still have not obtained a result concerning vertBi"#*?’},

e No results concerning 'vertB,{,l’d’“’qz} are obtained.
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) I,n=1,20r4
. D(B,{.l’d’“’q }) ={2,n=30rn>6even
4, n > 5 o0dd

e Theorem 3.7.2 gives an enumeration result for fixed n. Quasi-polynomials are obtained

for n € [5).

3.9.7 Conclusion for B>

e BD«nZrxn = SMS(n,1)P« = 0.

!n—?!n

n even
o dimBP+={ 8 ° .
n {!n 18!!ﬂ+1!, n odd

o - vertB3 = fp! (JvertB{®)

The connected components of
the graph of the fundamental
region of a are either trees or
odd near trees

— vertBpt,, = { a € IIp, (SMS(2k + 1,1))

e Recursion relations and generating functions are given for |vertB£:| by (3.55).

e Theorem 3.8.3 gives an enumeration result for fixed n. Quasi-polynomials are obtained

for n € [6].

In the next chapter we give a similar study of the symmetry classes of the alternating sign
matrix polytope A, (Definition 2.3.1). Even though this polytope is “more complicated”

then B, in some ways the study of symmetry classes is “easier”.



Chapter 4

Symmetry Classes of The Alternating
Sign Matrix Polytope

4.1 Introduction

This chapter aims to give counterpart results to those obtained for B, in Chaptér 3. Ina
similar fashion to Chapter 3 we shall study the symmetry classes of A, (Definition 2.3.1).
Recalling Theorem 2.3.4 (the main result of Chapter 2) the proof of this theorem used
bijections (2.27) and (2.28) between A,, and &, (Definition 2.3.3). If we are to study AS
using bijections (2.27) and (2.28) we need to define an action of the elements g of D4 on &,,.

For any g € D4 and for (h,v) € &, corresponding to a € A,, we define (gh,gv) to be
the element of &, corresponding to ga € A,. Thus, (gh);; = Z§,=1(ga,),-,-r and (gv);; =
> _,(ga)¢;. The conditions imposed on the matrix entries (ksj, vi;) by each of the cases of
Figure 1.17 are shown in Figure 4.1.

Recalling Definition 3.1.8, as in Chapter 3 to lighten notation we make the substitutions RS =
RA and fo = f 4g- As described we shall use the fact that A, and &, are affinely isomorphic
to transform the study of .AS into a study of £, thus we make a further substitution to lighten
notation: f’é = fec and so fL(E8) = :‘,'? - ]R|R€SI, where 5_,? is the fundamental polytope
of £C as given by Definition 3.1.9. Also, since the mapping from AS to £C involves only

addition of coordinates (2.27) it follows that D (AS) > D (£F) and since the mapping from

127
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Name ‘Sufficient Conditions
No Symmetry

Horizontal Symmetry

hij = hnt1-ij
Vij=1—tn_ij
T hij=1-hpy1-in-j
Halt Ss etry Vij=1—Un_inti—j
Diagonal Symmetry hij = vji
hij =hnt1-5,j =1—Rin—;

Horizontal and Vertical Symmetry _

- Vij =Vin41-j=1—Vn_ij
Quarter Turn Symmetry hij=vjint1-i=1—hn41-in—j
Both Diagonal Symmetry Bij=vji =1—hni1-in—j

All Symmetry hij=vji =hny1-ij=1—hin—j

Figure 4.1: Symmetry classes of edge matrix pairs

EC to AS involves only subtraction of coordinates (2.28) it follows that D (AS) < D (£F).

Therefore:

D (4S) =D (¢) = D (F) = D (£7) (1)

In Chapter 3, for certain parity of n and subgroups G of D, we had BG = T (r, s) (for some
r € R™, s € R*). This motivates the definition of the following polytope:

Definition 4.1.1. For

HIO Hln 10 H{n
H=| : L H = .| e Rmxte)
Hpo ... Hpn o --- Hpn
V01 “e VOn 0’1 e Vo’n
v=| : L, vi=] : .| e ROMHDXn
le cee an 7:11 ceoe V';'n

we define the polytope ©(H,H',V,V’):

th hln Vop --- Uon

hmO h,,m UYUnli -+ Umn
® H; < hi; < Hj; for alli € [m], j € [0,n]
€ Rmx(n+1) x Rim+)xn | Vi < wy; <V for alli € [0,m)], j € [n]
L] hi,j—l + Vij = Vi-1,j + h,‘j fOT alli e [m], ] € [Tl]

(H,H'V,V):={(h,v) =

0 ... 01 01 ... 1 0 0 2 .- 0
Note that ¥ : Y R -1, 0 0 . = &, (see
0 ... 01 01 ... 1 1 ... 1 1 1

Definition 2.3.3). Thus (H, H’, V, V") is a generalization of £,. Also, elements of Z(H, H',V, V")

have a representation on L,,,, similar to Figure 1.10 as shown in Figure 4.2.
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n
.
, V01 Y02 V03 Vo4 Vo5 ... VOn
hio = hin
vl 11
hao han
h3o han
X
hao han
UYm-1,n
hmo hmn
\
Uml Ym2 Ym3 VYmd4 Ums °°° un- 1

Figure 4.2: Element of X(r, s) represented on L,,

Note that if Hy = Hjy = Vo; = V; = 0 for all 4 € [m] and j € [n], then X(H, H',V,V’) is in
bijection (using (2.27) and (2.28)) with the following polytope:

[ J H,'J' < 2'2;=1 Qaij < Htl] foralli e [m], J € [n]} (4 2)

? ”n . mxn
A V) = o e e e 1

Recalling the proof of Theorem 2.3.4 we have:

0. 01\ 01 ..1 SRR B B
L0 I R B R Y PO O P
0 01/ \o1..1/ |] 1) 4 1
0
(0 ... 01 01 ... 1 11
(h,'v)€23 ) S I} I
o ..01/ o1, 1) (00
' 1 1/ \1 1

(h,v) does not have a non integer cycle

This leads to the following generalized result:

Theorem- 4.1.2. If Hip = Hjy, Vo; = Vg;, Hin = H}, and Vip; = V,.; for all i € [m], j € [n]
then:

vert(H, H',V,V') = {(h,v) € £(H, H',V, V') | (h,v) does not have a non extremal cycle}



Chapter 4 Symmetry Classes of The Alternating Sign Matrix Polytope 130

Note that we refer to entries h;; or v;; for which H;; < hyj < H{j or V;; < v < V;; as non
extremal. Thus, a non extremal cycle means a cycle of edges of the m by n lattice L, , such
that each entry of (h,v) associated with an edge of the cycle is non extremal. The proof of
this theorem is similm: to the proof of Theorem 2.3.4:

Proof. e Assume (h,v) € X(H,H',V,V') \ vertX(H, H',V,V’). Thus from Lemma 1.2.7

o --- P, Vg .- Vpp
there exists (h*,v*) = : S I : # (0,0) such that
' hyo - R Upi -+ Unn

(h,v) £ (h*,v*) € Z(H, H',V,V'). Note that we will have:

hi = hi, = v5; = vp,; = 0 for all i € [m], j € [n]
The fact that hjy = hj, = v5; = vj,; = Oforalli € [m], j € [n] follows from the
requirement that Hyo = Hjy, Voj = Vy;, Hin = Hi,, and Vi =V, for all i € [m], j € [n]
and so h,o = H,'o,h,'n = Hm,’Uoj = ‘/Oj and Umj = ij foralli e [m], ] € [n]

Since (h*,v*) # (0,0), (h*,v*) must have a non zero cycle. Such a cycle can be obtained
by starting with a non zero entry of (h*,v*) and repeatedly applying hf;_; + v; =
vj_,;+hjj, while noting that it is impossible for a path of non zero entries of (h*,v*) to
terminate at a boundary since the boundary entries are all zero. Recalling (h+h*,v+
v*) € X(H,H',V,V’), on the cycle we have:

Hi; < hy = h; < Hj;

Vij <wv v <V

thus:
H,'j < h,’j < H:J
Vii <wy <Vj

and so (h,v) has a non extremal cycle giving:

vertX(H, H',V,V') D {(h,v) € (r, s) | (h,v) does not have a non extremal cycle}

e Now assume (h,v) has a non extremal cycle. Since each boundary leads only to a single
boundary vertex a cycle will not include any boundary edges. Select any such cycle,
give it an orientation, say anticlockwise, and denote the sets of points (3, j) for which
the horizontal edge between (i,j) and (i,j + 1) is in the cycle and directed right or
left as respectively H.. or H_, and the sets of points (¢, ) for which the vertical edge
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between (i,j) and (i T /,j) is in the cycle and directed up or down as respectively V_
or V..

/ AT ee® h'ln \ 1‘,0]
We now create the matrix pair =

Viciw o £] Vi % C]

Kmx(n+1l) x R(m+1)xn with entries:

IVif +)) hiif(ij) € V+
hij == 4 if (V) € vij = <-n if(t,j) e V_
10 otherwise 10 otherwise

Figure 4.3 shows (/T,i>*) represented on £ mp.

m —1,i

Figure 4.3: (h*v* on Cmn

Note that we will have: A* [ +v% = v* ¢j +v¥ for all i £ [m], j € [n] since if the cycle
does not pass through (7,j) then the equation is trivial. If the cycle does pass through

(i,j) then because of the orientation, all appearances of /z cancel out. For example:
A Iy

Y 0 gives i+ 0= —L+ 0or 0 w gives 0+ [i=n+ 0.
0 A
We choose:
n=min ({hij - H"iJ)+}U Ay |(i,j)e
{hij - Hj) £« _}U 6 H }U

K- - VuKiJ) e v u{V' - %|(,j) € vtiu
{%-m i) ev }ufvr- %|@d, 6v-})

Also note that:

ho=Kn = voj =vinj = 0 forall i € [m], j € [n]
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since the cycle does not include any boundary edges. It can now easily be checked that
(h*,v*) # (0,0) and:
(h,v) £ (h*,v*) € X(r, 5)

which gives: -
vertX(r, s) C {(h,v) € £(r,s) | (h,v) does not have a non extremal cycle}
as required.
O
As an extensibn of this we define the non extremal paths of a matrix a € R™*” on L,,, as
the non extremal paths of the corresponding (k,v) which leads to:

Theorem 4.1.3. If Hy = Hjy = Vo; = Vy; = 0, Hin = Hj, and Vpj =V

for alli €
[m], j € [n] then:

vertA(H, H',V,V') = {a € A(H,H',V,V') | a on L does not have a non extremal cycle}
Theorems 3.1.3, 4.1.2, 4.1.3 and the notion of fundamental regions given by Definition 3.1.8

will be the main tools used throughout this chapter. As in Chapter 3 Figure 4.4 gives a

summary of the results that we obtain.

Note that affAS = affBS and so dim .AS = dim B¢ for each subgroup G of Dj.

4.2 Horizontal symmetry

The second row of Figures 1.17 and 4.1 give:

‘Aixl’h} —_ {a (= An I aij = an+l—i,j fOl’ a.ll ’L,J € ['n]} ‘ (43)

5,{.1"'} — {(h,v) € gn L] h,‘j = hn+l—i,j forall i € [n], J € [0, n] }

® ;= 1- Un—ij for all ¢ € [0, n]a .7 € [n] (44)

Figure 4.5 gives the set ASM(3,2){"*} and some cardinalities of ASM(n, r){*} are given by
Figure 4.6.
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G C D, [ASM(n, 1)¢] dim AS vert AS [vertAS | D(AS)
0 n even Q—_lm_’ n even
{1, R} {1’1:;.%’5; n odd {I";;)zi,nodd v 5 2
" (=5
22):
ﬂ' 7 even
{1,h,v,¢%} R df S R { i v X 2
ﬂl—ﬁ(ﬁ &0 1 odd
et , n odd
n{=; (S , N even 1,42
{1$ q2} &zjo—lﬁhi {_(’Ll)_ n odd \/ ASM(n, 1){ q } 1
( — F-1 06D FH)!
“11i=0
, n%:(‘)mod 4
2 !
n.=o _K_;lg“j
Hi=0 w-:H a ngn 2) n
{La.g%,¢%} | S RErAs e {g.. 2 v X 2
0,n=2mod 4
R CNC TN e
=0 (23,1 (2f44)!
,n=3mod 4
{1,d} % n(n-l) v % 1
{1,d,0,¢%) o |{(eaSam| v | (o | 1
n(n-2)
D, X g,._q;..lif":“odd v X 2

Figure 4.4: Table of results for AS

O
oN O
—
o O

1633

-

[ e R Y
O
- =
o N O

Je22)6 23

Figure 4.5: Horizontally symmetric alternating sign matrices of size 3 and line sum 2

r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 0 1 0 1 0
3 1 1 4 4 9 9 .
4 1 0 8 0 27 0
5 1 3 124 244 2448 3960
6 1 0 459 0 20682 0
7 1 26 27552 225560 18687186 83760732

Figure 4.6: |ASM(n, )"} for n € [7], r € [0, 5]
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Recalling (1.32) we have:

0, n even
|ASM(n, 1){1’h}| = { 2zl (6i-2)

i=1 (n—142{)°

n odd

For n odd this enumeration corresponds to sequence A005156 of [99]. Moving onto ALY e
have the following fundamental polytopes:

Recalling Figure 3.1 R = [k] x [2k] and REI™ = [k + 1] x [2k + 1] giving:

00< ¥ _ ay <1forall,i€lk], j€[2k]
AR = LacR¥* |0 0< Y ay; < 1forallic[k], j € [2k]
e Y% a;;=2%F ja;;=1forallieclk], j€[2Kk]

=1
and

©0< Yl jayy <lforallie[k+1], j€2k+1]
AR _ ], e RE+Dx@R+)) (00 S Yoojavj<1lforalie€[k+1], j€[2k+1]

Zk+1 L 23:41-1 ai; = 2 Ef:l Qi + Qk41,5 = lforallie [k + 1],
jeRk+1)
We thus have:
th ces hl,gk Voir --- U0,2k ’
& =qhv)= || : 3N ]| € 0, R x o, >
hko o hk,gk Vk1 ... Ug2k
oh,~0=v0j =0forallz€[k],_7€[2k] ’
o hisk = 2ui; = 1 for all é € [K], j € [2K]
° h,',j_l + v = Vi + h,‘j for all ¢ € [k], ] € [2’6]
and
hio ... hign Vo1 ... Vo2k+l
Elt =S (hyv) = : S :
hii10 ... hrt12e41 V41,1 --- Uk+12k+1

= [0’ 1]g6+1)x(2k+2) x [0’ llgc+2)x(2k+l)

® hi2k+l = Ug; + Uk+1,j = lforallie [k + 1], ] € [2k + 1]

.h,0=voj=0f01'a.ll’l,€[k+1],]6[2]6]
ohi,j_1+v,~j=v,-_1,,-+h.-jfora.lli€[k+1],je[2k+1]
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Fé)(M — Czlkl'*} is given by:
/0 hn hi,2k-1 | v L2k
p 0 hki hk,2k-1 1 ”k'%”’ Vk’é’Zk
Fokd 0 hg oeee hk2k-l 1
! |- Vk-11 1= Vh-iok
h L]
v> hn  we h\2k— 1- vU 1- Vh2k
\Y% \ 1 //
( /0 w0 \\
"0 hn hlk— 10 Vn e Vil
W hky ... hk2k-i 1/ VIg-11 oo, Vi 2k
Vi iyy
fj”kl’fl{l g ;:i} is given by:
o nn N ( 0 0 \\
vn V1,208l
0 h h k,2k
» 0 ) Vicl Vie,2A:H
/iy ’ ct 1- W 1 — Vic2fe+
0 h /*fC,ZfC
1 Vn — -+
\0 hn hi,2k-i 1/ I —vizat
v 1 1 !/
/0 Jin e 1O 0 WV
vn Vi,2JfcH
0 hkl hkok 1 . e
VO AMotl,] eee hkH,2k V “ e
v — Vfci 1 — WVie2fe+1) )

These fundamental polytopes can be represented on a lattice as in Figures 4.7 and 4.8.

Theorem 4.2.1.

vertAiLh"=

a G UfLh} (ASM(n. 1))

/{i,/i}(a) on a lattice does not have a

non integer cycle

135



Chapter 4 Symmetry Classes of The Alternating Sign Matrix Polvtope 136

where m = 1 —m for all m GR
Figure 4.7: E lem ents of £ ~ 1 ~ an (1 £ 2~ 011”2((,21’cand c k., 2k
) B 1 ) )
0 foil 1
n ) ) )
0 _1
Ufe-1, 20fcH un
0 fofc,2fc 1
Ufd Vk2 Vi3 Vi Vk,2k+1
0 _1 o _ 1
Vi 2 U3 Vied e2K ~Me,2feH Vi, 2k+1
0 1 0 ,1
i’fe-1"fe+1
vkl vk2 A~ 3 w4 Vi2fen
vn
0 1
foil

where m = 1 —m for all m 6 R

Figure 4.8: Edlem ents of ¢ de+i anda £2/+ i OIl A fewinte+i ana ¢ 25+ ik
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o 0 0 | 0 1 1 1\
VO 0 o 1 fi 1 1)
2kH 2kH
/o o\ /0 o\ 1
0 0
V >k o+ 1 v k 1
0 0
Vi 1)
2k
F or n od d comn sider th e affin e m a p P d e fined by (3 .12). T h e effect of p on £A+1 ls t° m a P
w  hn ... hlk 0 A\
vn VI, 2k+1
0 hki oo hk:k 1
.. ’ Vil Vi 2k+1
NO hk+ii e hk+i2k 1
b 2Dy 1~ Vi 2kHD)
to / \
(0 hn hi. 2k 1\ /0 . 0 \
. « vn Yoo VN, 2k+I
)
0 hki hk,2k |
b hk+11 hk+, 2k Vfci  se+ Vjbrctl
\Y% ? S A i/
/o 0 0 0 1 1 1\
H f +1 H = o+ 1
0 0 0 0 '1 11
Vo 0 0 \o0 12 <R % 21/
2k+2 2k+2
/o . A) . 0\
0 0 1 1
y - > -2 y - T2
0 0 1 1
1 1
\2 T 4 \2 \j )
2k+ 2k+
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In Figures 4.9, and 4.10 we illustrate T heorem 4.2.1 w ith the sets v er t* 1°° and vertA A~ 1°4

1 £ n {1)Aj}) (A S M (4 ,1)) however the non integer edges for this

moatrix are: . In the fundam ental region this gives: wohieh o hoas

a momn integer cycle. U sing this classification it is possible to identify vertA nl1,r for given .

Im portantly we have:

Corollary 4.2.2.
ZI(MIA>) = >2

A consequence of T heorem s 1.2.18 and C orollary 4.2.2 is:

Theorem 4.2.3. v, sivew v ¢ P ouvere cvives AELIR(@), e s nvnari wuasiovotvnom iat o

A on1°n w ohich satisfies

AL
1. T) is ¢« quasi-poiynomial in r of degree dim A nl1/1% and period which divides 2

2 VA S M (n, r)E1on = ailicey sor ait s £ N

5.oqa sk s .oroebiag = N N S S A 2

The follow ing enum erations illustrate this theorem .

/1, r even
~ 0, 7o0dd (-5

ANy W-(LiRt1) + (LSI+») (4.6)
= F1) +<(*?°) + (¥H)>+
({,irc))dd 27)+ (% .7

4 1AV) = (4.8)
12(5+2) +459(2+3) +2593(51H4) + 3628(° +5) 4- 1368(5+®) + 1155]J7) + (i+8), even
4(rVv 2)+261( +3)+2047( «) +3772( «) + 1872( «) +217(V+7) + 3(~ +8)j p odd

Sequence (4.6) is equivalent to A 008794 of [99] and coincidentally this sequence enum erates

solutions of a chess problem (of the K ings).
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4.3 Horizontal and vertical symmetry

The fifth row of Figures 1.17 and 4.1 give:

Alphod} = {a € An | 6ij = tny1-ij = Gin+1—j for all 4,j € [n]} (4.9)

{Lhwd®} _ ° h,‘j = hn+1—i,j =1- h,"n_j forall i € [n], j€ [0, n
g" {(h’ 'U) € gn ® Vij = VUin+1-j = 1- Un—i,j foralli e [0, n] , ] € [n] (410)

Figure 4.11 gives the set ASM(3, 5){1»*"} and some cardinalities of ASM(n,r){Lh*4"} are

0 5 0 1 3 1 21 2
5 -5 5},3 -1 3],|1 31
0 5 0 1 3 1 21 2

Figure 4.11: Horizontally and vertically symmetric alternating sign matrices of size 3 and

given by Figure 4.12.

line sum 5

r=01 2 3 4 5

n=1 1 1 1 1 1 1

2 1 01 0 1 0

3 1 1 2 2 3 3

4 1 0 2 0 3 O

5 1 1 10 10 42 42

6 1 0 11 0 48 0

Figure 4.12: |ASM(n,r){1A*4"}| for n € [6], r € [0, 5]

0, n even

Recalling (1.36) we have: |ASM(n, 1){1""””2}' = { (12222 j41)1
Ht—l (’%7’ n odd

IR
equivalent to sequence A005161 of [99].

Recalling Figure 3.1 R’} = [k] x [k] and {,lcfl"q Y= [k+1] x [k +1]. Thus:

o0 < z§'=1 a;j» <1 for all 4,5 € [k]

{1,h,v,q%} - kak 0< 1 ,. < 1 for all i. 7 k

A a€ o _kE.v=1 Gy = or all 4,5 € [K]
[ ] Zj=1 a;; = Ei=1 ai; = % foralli e [k], ] € [k]

and

o0 < Z;:,:la;j: < 1 for allz,] € [k+1]
AL} _ REDx(k+) [®0< 370 jay; S 1foralli,j € [k+1]
2k+1 ac€ £ ~ . _
o2 Ej:l (] + Qi k+1 = 2 Ei=1 Qa5 + Ak+1,5 = 1 for all
i,j€lk+1]
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fA A io oo . Wk ) (I/Q cee !
'2k LM ) = ; * * \ G (o0, 11& x(fe+1) X (o, 1] ~ * =
L A b ko "u hkk ) \Vfci Cew VK
hi0 - V@.: OforalliG[k/‘jG[H
Kk = vkj . | for all i,j G i
hij. + ij + hj for all i,j G /),
and
({ WO ... hMNH ) e e i

4 A r2'=hM )=
Whk+10 e [ifetifeti/  Victu o0 vk+ik+if

G [o,i ] r i)x(fc+2) x [0, 1R +2)x(fc+1)

c ndi0 = voj = 0 for att i,; G [a;+ 1]
h k o+ /ii.lc+1 = kj + V fe+ij = 1 f 1 j G [k + 1]
h ,,-1 + j j + h j fo 1 j G rx + 1]
where/{lA“,,ZQ:“w 17 e £ A v'Rs given by:
/ /0 h h otk 1 — ! f 1 — 1\
0 hki hick— ~ 1 hkk—i I-hki 1
@ 0 hki higk— 2~ —hkk- 1 I-/ifci 1
\\0  /in hi, k-i 1 hin-i I-/111 1/
( 0 0 0 0 \ A
ak Vik Mi
eril,l Vk-ll,k vk- f,k mee  'tfel,
2 2 2 "ok 2
1- Vi1 1- 1- Vk-i,k eo» 1~ Vfc i,
1- Vn 1- Vik I~Vik 1.
1 1 ;.
( 0O 0 \\

/0 hn  eee Jiifc-i

\O  hki ess hkth— 2 Vk-1,l <+« Vk-Lk

\ Vb e by
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nd /:l.w } £ 2k v ivVig*i £ 2k i r '] is given by:
/0 11 hik 1—hik 1- hu I\
0  hki hkk 1—hkk I-hki 1
0 hktii hk+Lk 1 —"McH.fo —Met,i 1
0  hki hkk 1—hikk hki 1
| \0  hn hn 1—"ife 1- hn 1J
( o 0 0 0 0 \\
vn Vik vl k+l vik vn
Vkl Vkk Vk,k+ 1 Vicke Vid

1—Vkl eee 1~ TVkk 1—"fc+i 1~Vik wm 1- VH

I1-Vn ... 1—VA 1-Vifer1 I-VIk ... 1-VI1I
1 1 1 1 I
. 0 0 VA
10 hn we 1-—hik |
vn VIk+1
0 ki eee [ Jkk
l Wd LN ]

0 Akt ... | —hk+ik/
\ b DY Vi~ Mg e - Moty

T hese fundam ental polytopes can be represented on a lattice as in F igures 4.13 and 4.14.
vu vn

where m = 1 —m for all m 6 R

Figure 4.13: E lem ents of § ~ h'v,g * and o n a£2A,2"and C k. k

Theorem 4.3.1.

viertd I1'h'v'g2)= | a e n {1,A,,,"} A(n 1))
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hon

«u

Vkk

Vkk

where m = 1- m for all m € R

Figure 4.14:

P roof A s before the proofof this result follow s im
w ith :
A) 0 £
H = k H
o 0
/o 0\
’
v V
1 1.
\2 2/ 4
T h e proof for the =n o d d case follow s th sam e
th e proof of T heorem 3.3.1 w ith a particular affin e

Elem en ts

whk

Vik

of S u fi”

hn

Vie.i

wE % anoe A

Symmetry Classes of The Alternating Sign Matrix Polytope

0 hn “hn
tn
0, *hkk
0
wWH ek Vi)feHl
on *~ 2k+ i, 2k+ i and

m oediately for n

\2

the proof for

even

e

as:

|

Cor

T h eorem

checked

th at
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d th result follow
JOIA Y AN
In F igures 4 .15, and 4 .16 th e sets verlAJ,l 9’and vertaA 1 ,9"ure given a s w ell as
corresponding non integer edges.
Foig 4.15 ere*4310,v ¢ and thoe corresponding non integer edges
/0 | | O\ 0 0 ..
ve 11 Oy ” 0 0
.
Figure 4.16: v rea AP 0 0 a i ew e corresponding non integer edges

Symmetry Classes of The Alternating Sign Matrix Polytope

LH L,V V') w ith :

0 A1 i\

2 4/ 7 \1

144
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s

€n {1iW } (ASM(4,])).

W e note th at € n {1tWwW } (A S M (3 ,1)) and f

L T Y
e T Y
e T

-

H ow ever, these m atrices have non-integer edges and b oth giv-

ing fundam ental regions having the sam e non integer cyocle: . Figures 4.15 and 4.16

give D(Al],h,v,q') = D(A\Z,h,\/;q') = 2. W e can gemeralize this by giving a result concerning

AN By
the denom inator of VG "“sim itar teo C orollary 4.2.2. In this section however because the
result needs m ore work we give it in the form of a theorem
T h e o r em 4 3 2
D - 2, 2

Proof mara = 2 6vert*"A"soD (L4& w >)>

I
0 d

—

2. N ow consider (h,v) E Sy.'h'v'g2l If there is an edge corresponding to an entry of (h,v) not
in (0, 1, tnen there m ust be anmother edge conmnected to this edge corresponding to an ecntry
not in {0, 1} . H owever since all boundary edges correspond to entries in {0, [} we m ust
have a non integer cycle and so (/i,v) £ vertfjl ' h,v.g T herefore if (h,v) E vert®jjl'h,v,g \ then
each entry of (h,v) m ust be in {0, 1} w hich im plies D A < 2. For an = 2k + 1,
the result follow s in a very sim ilar way (it is w orth noting that hk+ ik = Vk. k+i)- o

A s a consequence of T heorem s 1.2.18 and 4 .3 .2 w e hoave:

*Ih/l
T heorem 4.3 .3 . For fixed n E P ihere e;:van un;, the E hrhart gquasi-polynom ial olf

Anh'V 'O}y w hich satisfies
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v}

1. Aﬁl’h’"’qﬁ}(r) is a quasi-polynomial in r of degree dim A" and period which divides

2.

2. lASM(n, r){Lhvd}] — Albhva’} (r) for allr €N

v,q2
3. |ASM°(n, r){Lhea’}t| = (—l)dimA'{'l'h’ }Af,l’h’"'qz}(—r) forallr eP

The following series illustrate this theorem:

v,q? 1,

Aghe ey = (Lo (4.1)
ABRY gy (l§J1+ 1) (4.12)

e §+1
Aﬁl’h' \q }(r) - {'g, ; 3&5 even (4.13)
P TR {g(*f’)+6("‘13)+ (33%), r even (4.15)

y T

4.4 Half turn symmetry

The third row of Figures 1.17 and 4.1 give:
ALY = {a € A, | aij = Gns1-ins1-; for all i, j € [n]} - (4.16)

[ ] h,'j =1- hn+1—i,n—j foralli € [’I’l], J € [0, n]
o

{11q2} —
g" - {(h’ ’U) € Sn =1- Un—in+1—j for all 1 € [0, n], ] € [n] } (417)

Figure 4.17 gives the set ASM(3,2){1¢"} and some cardinalities of ASM(n, r){14"} are given

by Figure 4.18.
([0 0 2 011 0 2 0\ )
020,11 01}),12 -2 2
J 2 00 110 0 2 0
101 110 200
0 20}],{101},10 20
| 101 011 002/ |

Figure 4.17: Half turn symmetric alternating sign matrices of size 3 and line sum 2

~

Recalling (1.33) we have:

]-1 L3]-1
1,¢ 3 )‘ 3i+ 2
ASM(n)f }| (J’H' 11 ((f S
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r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 3 6 10 15 21
4 1 10 48 158 413 924
5 1 25 256 1552 6736 23232

Figure 4.18: |ASM(n, )44} for n € [5], r € [0, 5]

ASM(n, 1){44°}| corresponds to sequence A005158 of [99].
Recalling Figure 3.1: R,f,,l;qa} = [k] x [2k] and {}cﬂ} = [k + 1] x [2k + 1]. Thus:

i ©0< Y ey <1forallielk], j€[2k]
AT = La e R* |0 0< T ay; < 1forallic k], j € [2K]
o Y a =Yt (6 + aigks1—;) = 1 for all i € [K], j € [2k]

and

0 0< Y oy <lforallie[k+1], j€[2k+1]
0 0< Y jap;<1forallie[k+1], je[2k+1]

® Qi1 = Bry12(k+1)—; for all j € [K]

{142} _ ﬁ a € RE+Dx(2k+1)
2k+1

k+1 T

® ) j—1 G = Yor (05 + Gigren)—;) + arery =1
k forallie [k+1], j € [2k+1]
We thus have:
h10 e h1,2k Yo ... Vo,2k
2
gz{;,q ¥ _ (h,v) = 3 : A : € [0, 1];x(2k+1) x [0, 1]g=+l)x2k
hko ‘e hk,gk Vel ... Uk, 2k
® hyp =vg; =0 for all 7 € [k], j € [2k]
® hior = Vkj + vk okt1—; = 1 for all ¢ € [k], j € [2k]
° h,',j_l + v = Vi-1,5 + h,;j for all i € [k], je€ [2k]
and
i hio ... higkn Vo1 .- Vo2k+1
ERE) = (hyv) = : S :
herio oo Pry12k+ Uk41,1 -+ Uk+1,2k+1

0h,~g=vo,-=0fora.lli€ [k+1], Jj€ [2k+1]

® Ri2k+1 = Uk41,j + Uk 2(k+1)—j = Pk+1,j + Prt1,2641—5 = 1 for all i € [k + 1],
Jj€[2k+1]

® hijo1+ v =vi1;+hy foralli € [k +1], j € 2k + 1]
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w here f'n 02> : -+ S § gq2) is given by:
0 0 \\
vn Vi, 2k
‘o - hi,2k-1 1)\
ki wh2kei 1 Vk-1,1 Vk-1,2k
! - Ak vki = 1= w2k oo w2k—1- v
{192} 0 | —hk2k-i - 1. hki 1 1 .
1 — Vie-1,2k -
e 1 —hi,2k-i <« « 1_ .. 1, I~ V2K 1_ i
1 1
/ 0
~0 /il L. /1,2Tb—1 1 vn Vi,2k
A0 hkl ... hk2k-1 V Vk-1,1 Vk-1,2k
v VI - Vi2k = Vkl Vi2k = 1< Vk1I)
an d !¢ N 2) 5 s g en by
/ / 0 0 \\
/0 fin hi, 2k Vil N2fcH
0 fifd hk 2k 1 Vid Vk, 2k+1
fiu9 0 hkiioeee k42K 1 - Vi 2k+l 1~ Tkl
0 1 —hk2k wee 1 —/&% 1 | — Vk-1,2k+1 « 1- Vk-1,1
N 1—hik ee 1/ 1/ 1~ Vi2k+] 1- vn
1 1
7 hi,2k IN 0 0 W
b vn M2fcH
0 /fd ... #Wc2k 1
. Md Vi, 2k+1
VO AMfe+id  eee hk+i,2k 1/
\ VI ~ Vk2k+1 <+« 1~ Vkl)
T hese fundam ental polytopes can be represented on a lattice as in F igures 4.19 d 4.20
Theorem 4.4.1.
vertd "= 1){1'2)
P roof T o prove this result we shallshow th at: verthr r" 7n = and v ert*r * j* =
4 P * n Z 42+ 9fc+ 4. T h e fact th at v er t*~ P 2 4 P * n and v e r t f * 4 P ln
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hn

where m = 1- m for all m € R

Figure 4.19: E lem ents of E |k g * and A on a lattice diagram .
0 B (&) a3 . 0
0 hn 1
vu 0 0 0 6 .
0 hn 1
vn
0 hk2k
Vid W ffe,2k+1
0. 1 0 1
Vi 2+ Ve Vid ffc,2fc+
0, 1 0 1
hk,2k
Vi 2fe+i « oa M3 Mo W
vl
0. 1

hn
1 i

where m = 1—m forallm £ E

Figure 4.20: E lem ents of £ ~ + T- ana €204/ on 2 tattice diagram
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z MMe2H9fcHd fo o w s« straightforw ardly from T heorem 2.3 .4.

T hus we need to show that vertgAr 92% C nZﬁ(4fc+3lsnd vertt 2 P C £A'q2/\n Z 4k2jr9k+ 4.

Consider (h,u) G §~1'9 =\ g ~C Z "~ 4A:+3~ . T hus (h ,v) has a non integer cycle or an open

mon integer path. If (/i,v) has a cyecle then as for the proof of Theorem 4.1.2 we can find

(h* v*r) (0 ,0) such that (h . v) * (h*, v*) £ = Let us now assume that (hiv) does
mot have a mon imteger cycle. T hus (h.v) has an open path and there exists j0 such that
v kj0 1 A w hich im plies that Vi 2k+ i-;0 1+ T here m ust be a set of open paths (with no

cyecles) conmnecting the edges on the boundary corresponding to these coefficients (since on
the boundary we have Vkj = 1 — Vk2k+ i-j for all j € [2k]). A n exam ple of such a set of paths
is

If we orientate these paths and create index sets H + , V+ 7Y_ as for the proof of T heorem

4.1.2, we ecreate (h*,v* ) with entries:

[V~ (hj) Ui (i,j) Ev-
h oij H | - P if (*» ) G Vij 1= S if (* > i) G v

(0 onerwise F0 onerw ise

To continue our exam ple we have:

A 1 M +M M
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We choose: ) o -
w:=min({hy;|(%,5) € Hi} U {hyj|(3,5) € HiIU

{hijl (5, 5) € H-} U {Ryjl (3, §) € H-}U

{vil (3, 5) € V4 } U {m5](3,5) € V4 }U

{visl (6, 5) € V-}u {5(s, 5) € V-})
with h;; = 1 — hy; and ¥3; = 1 — vj;.

Note that vg; = —v n41-j, (since the corresponding edges will have opposite orientation)
and so (h,v) £ (h*,v*) € ELFY and (h*,v*) # (0,0). Thus vert&LT) C £} n Zk(@k+3) o5

required. The proof for Séif:} follows in the same way. O

Theorem 4.4.1 leads to:
Corollary 4.4.2.
DALY =1 for alln
As a direct implication of Theorems 1.2.29 and 4.4.1 we have:
Corollary 4.4.3. Any matriz a € ASM(n,r)%} can be written as the sum of r matrices
from ASM(n, 1)1},
As a consequence of Theorem 1.2.18 and Corollary 4.4.2 we have:

Theorem 4.4.4. For fized n € P there eists AL (r), the Ehrhart polynomial of Afbet

which satisfies:

1. Ai,l"ﬁ}(r) is a polynomial in r of degree dim ALY

2. IASM(n,r){l'qz} = A,{,l’qz}(r) foralreN

3. lASM"(n,r){l’qz} = (——l)dimA'{'l’qz}Af,l’qz}(—r) forallr € P

We illustrate this with the following éxamples:

| ALYy = (r Jlf 1) ' (4.18)
A8y = ("’ 42" 2) | (4.19)
AP = 3(’ : 3) + 4(’ . 4) + (r : 5) (4.20)

4
ARy = 10(’”2’ ) +64(r;5) +67(TZ6) + 16(’"“;7) + (”8'8) (4.21)

!
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Polynomial (4.19) corresponds to sequence A000217 of [99].

4.5 Quarter turn symmetry

The sixth row of Figures 1.17 and 4.1 give:

Ail,q,q’,q"} = {a €A, | Gij = Qjnt+1-i foralli,j € [n]} (422)

gil’q’qz’qa} = {(h, ’U) € gn | h,'j = VUjn+l—i = 1- hn+1—i,n-—j forall: e [n], _7 € [0, n]}

Figure 4.21 gives the set ASM(5,

given by Figure 4.22.

00010
10000
00100
000©O0T1
01000

(4.23)

1)1tea¢’} and some cardinalities of ASM(n, r){147¢°} are

0 0 1 0 O 01000
01 -1 1 0 00001
1 -1 1 -1 1}1,]0 0100
01 -1 1 0 10000
0 0 1 0 O 00010

Figure 4.21: Quarter turn symmetric alternating sign matrices of size 5 and line sum 1

r=01 2 3 4 5

n=1 1 11 1 1 1
2 1 01 0 1 O

3 1 1 2 2 3 3

4 1 2 4 6 9 12

5 1 3 12 24 56 92

6 1 0 37 0 38 O

Figure 4.22: |ASM (n, r){b¢4.2}| for n € [6], r € [0, 5]

We recall equation (1.34):

\ASM(n, 1){1»‘1»‘1"‘13}| =

4 n . . n s
21 d@Bi+1)( 5+4)!
4 § 5+i) -
=0 i‘—+i!3 ,n—0m0d4
n-1 n-5
7 3i)! = §3i+l%!2?3i+22! _
Ht=0 L‘f_l_.H !Hi:O n4—1+i ] "4i3+i P n= 1 m0d4

0, n =2 mod 4

n=-3 7

2 @)(3i+1)? 2 (3i+2) _
Hi=0 ("—;—g+i)l(ﬂ4’—l+iﬁ H,':fo (l}'—l+i)!’ n =3 mod 4

corresponding to sequence A005160 of [99).

’
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Recalling Figure 3.1: Rg};""”*"’} = [k] x [k] and Ré,lcf’lqz’qa} = [k+ 1] x [k + 1]. Thus:

©0< Y% air <1foralli,j€ [K]
Aéllc,q,q’.q"} ={aeR"* |e0< Y _avj <1foralli,je [k
- ° :-::1((.1,'3' + a,-,-) =1forallie€ [k]

and

00< Y _jay <1foralli,j€[k+1]
{Lag?a®} . a € RE+Dx(k+1) o0 < Z:'=1 ayj <1lforalli,je[k+1]
k+1 ) ® Qi ftl = G414 foralli e [k]

o E;=1(aij +aji)+aigs1 =1forallie [k+1]

We thus have:

hm hlk Vo1 ... Uok
82{’:»q,q2,q3} = (h, 'U) — , € [0’ 11;x(k+1) x [0, I]gH-l)Xk
hko hkk Vel ... VUkk
.h§0=’lloj=0f0r8.]1i€ [k], ]E[k]
ohy+u;=1forallie [k]
° h,"j_l + v = Vi—15 + h,'j for all i,j € [k]

and

hwo ... hl,k+1 Vo1 .- Upk+1

1,q,92,
82{k-:-11q <} = (h1 ’U) =

hit10 -+ Rrtipr U411 --- Uktlhtl

° hi,k+1 + Vg = U415 + hjk =1foralli,je [k + 1]

® hig =v; =0 for all 4,j € [k + 1]
® hij1+ vy = v+ hy; for all i, j € [k + 1]
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/ /0 ftn [-«i1 1\
/ 0 hki eee Ml 1 Vk-Lk e J-vik 1
ULV 0 Vik ... Mde 1—hk k-1 e 1-ha 1
\0 v V ok 1 — f l_hn IJ
/ 0 0 0
Vn Vik hki
Vkl Vik hkk
1—hitk-i **« 1 —hkk-i 1 — Ujb-ifc eeo
1—hn 1—hfd 1- Tik
1 1 1
/0
"0 hik)
7
0 ki hkk
147
311118 f(l,g,g2,q3} '-pt{c+i B >"2k+fg3! is Siven by:
o - hik 1—Vid 1-von 10
0 ke hide 1 —Vikk 1- Ve 1
{],q,qz’q’;} 0 hfc+],1 © mjferi 1 - vioreri 1- viMi 1
o LUk Wk 1- h o 1- hki 1
VA0 Vn Vik 1. - \Y,
( 0 0 0 0 o
vn Vife v hki b
Vicl Vifele Vi k+1 hkk Wire
1 —u 1 h*ifc 1 hok P 1 1 “« Vﬁi
1- 1 44 1 . hk 1,1 1
1 1 1
/0 h " 1~ Vfed \ (0 0
0 hfei h o a 1. v
VO hfetid L. L e v

Symmetry Classes of The Alternating Sign Matrix Polytope

Vkk) |

Viife+1

V fe,fe +1

1 -

154

\\
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T hese fundam ental polytopes can be represented on a lattice as in Figures 4.23 and 4.24.

/in 1744 % |

Dl

where m — I —m for all m € R

Figure 4.23: Elem ents of ‘g * and on and C k. k

hii W
hi 0 . 0 ¢

hti hé&fikied
174

where m = 1- m for all TO€ R
Figure 4.24: E lem ents of and on £zk+ i, 2k+ i and £ k+ i k+ i

Before studying the vertices of this polytope we give the follow ing useful lem m as:

L em m a 4.5.1. C onsider (h . v) G[O.l]"x(n+l)X[O.I]£n+l)xn woith + vis = W+ hoo-
fo r nII:G[m],/ G[n]r('llr'('rvnlr'tl o £m,nnnd p,8GM\Z associated to two edges of CH,n
such that there is an isolated nomn integer path (i.e at each vertex on the path only tw o of
the adjacent edges correspond to non integer entries of (h,v)) between these two edges T hoe

follow ing is an example of such a configuration
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T h en w e have:

, f1 — 5. K odd
A s K even
where K is the number of vertex configurations of the form

that appear in the non integer path between the edges corresponding to p and 5.

Proof. Adlomng the path, we have O possible vertex configurations:

n! ,J
5 s’
67
C onsidering the first four configurations we have an equation of the form p ' + T = 61+ A
where T, A £0 .13, which gives 1p' — 61 = *r A A ' A owever lp’~ A1l = 1 is im possible
(since //, 5°' (0, 1)r) SO we have p ' = s T he other tw o configurations give an equation o f
fo,r=A=0
’
the form p'+ 6= 1 + Ao where T.a4 G (0,13 whien gives p-+ 8 = <2 .1 = A = 1. since
A
(1, TN A
S’
/1, S G (0, 1)® we see that T = A is im possible, and thus p’ ' + = 1 as required. T he result

for p, S then follow s.



Chapter 4 Symmetry Classes of The Alternating Sign Matrix Polytope 157

T he proof of this lem m a can easily be adapted to give the follow ing sim ilar lem m a

Lem m a 4.5.2. Consider (h v *) € Rm x(n+1) x R (m +1)xn w ith h * ~ + = vt _hj o+ hjj fo r
all i € (m ], j € [n] represenied on Cmon and p. 8 6 R \ (0} associaied 1o two ecdges of £ mo.m

swoeli that there is an isolated non zero path between these two edges. T hen

s, K even
where K is the number of vertex configurations of the form
that appear in the non zero path between the edges corresponding to p and §

W e shall use Lem m a 4.5.2 to prove the follow ing result:

T h eorem 4.5 .3
A4 1l non integer cycles o fa on Cnn are
vertd {1,q'q2,q3*% = a € 11{1)q5q2)93} (4 S M (n , 1))
invariant under quarter turn rotation
P oroof W e shall prove the follow ing equivalent result:
A1l non integer cycles of (h, v) are
invariant under quarter turn rotation
« Consider

(M) ed IMV>

s A1l non integer cycles of(h,v}nre

[ 1 g 1 invariant under quarter turn rotation |

Select any non integer cycle of (h ,v) that is not invariant under quarter turn rotation,

give it an orientation, say anticlockw ise, and denote the sets of points («._]) for w hich

the horizontal edge betw een (LyJ) ana (l,_] + 1) is inmn the cycle and directed right or
L+ or and the sets of points (i.j) for w hich the vertical edge

left as respectively n

betw een (i,j) and (l+ 1,]) is in the cycle and directed up or dowwmn as respectively V +4

, EnTRS@. . .

4/

or v il?". For exam ple consider a =

I SR
J
v,

>
[ 5]
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11 s
41'> }19 1 141“
0 I
| 1 )
S TERY TR 13“ (4.24)

il’ 11| Ji 32‘1

1 * L

givin g: M- 10y, = {(3 .1 )}, Viil* = {((1,1), (2,1)} and V™ = {(1,2), (2,2)}.
s th 1 t d quarter tat b m m (
(h ) E E PRVEE S ther non teg 1 hoat b b d b
q t tat f th g 1 1 g g th t fop t w v

a v w h fashion t get t th teg 1 g g
3) 3) 13) 3) 4) 4) (4) (4) P tk Cy C Qf (4424) h w

0 —

R SRt (4.25)
4 1

3 - 3

4o | h 21,4

wi? = {(1,2), (1,3} W= {2,3)} = {31, 32}

wid = {22),23)  nf={(4,3)} @n.E 0
vig= {1} VD= {23), (3} Vig= (B}

VE= {14} V9= {2464} VI=(GI)

(hK. .. . h« . VA

P )\ = | )2ix(rH) v-p(aH)xn
Ubo .. LU . ke
(-1) feHMif (%, ) e (-1*"+Vif €V

h % = (-1)V if (*,} )€ «? m'aN {(-I)Vlf(f,l)eVlﬁ
0 oinerwise

0 ctnerwise
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The matrix pairs corresponding to (4.26) are:

0 —u 000 (_0088\
@ _ |0 0 00 0] 4 _oR
Sl R R Py
0 0 000 Lo 000
00 u p 0 (000 0)
00 —u —p 0 0 p 0 —p
h<2>‘=00 0“ 0“0 v@* =10 00 0
000 0
00 0 0 0 o 00 o)
(4.27)
000 0 O /gggg
8 =000 o of *=[00-uu
00 —p p
000 pu 0 00 o o)
00 0 00 (8888\
h(4)‘=gg 288 W@ —=loo 0 o
S g 0 —u O
0 —# —u 00 00 0 0

Note that we have:
R®7 . +v® =o® + h® for all i € [m], j € [n], k € [4]
We choose: " 3 o
pi=3 min({hy| (5, 5) € H$'} U {Ryl G, 5) € HP U

{hsl(i, 5) € HO}U {Rysl G, 5) € HO YU

{vi3] G, 5) € VPYU {335, 5) € VP JU

{viil(i,5) € VO U {53516, 5) € V)
with h;; = 1 — h;; and 7;; = 1 — v;; (the factor of 1 appears here since (h*,v*) could
have some entries corresponding to edges of two cycles overlapping). Defining (h*,v*) =

S8 (h®* 4®") it can now easily be checked that (b, v) % (h*,v*) € £} Thus

as required

ad, All non integer cycles of (h,v) are
vert£,1 % e {(h’ v) € g0} (EM(n, 1)) invariant under quarter tflrn rotation
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T he m atrix pair {h*,v*) corresponding to (4.27) is:
/ (0 0 0 o\\
0 V V |
{ 0 o2 0
0o 0 -/v -2 0 o
- —1
0 2/ 0 0 y 0 -2 p
o =/ -y /10 0 0 0
| o 1y
Setting /i = and uwsing (2.28) we have:
10 /-4
Ll 18
a & ar = 1 10 + I I 6 6 -4 (4.28)
0 *
2 4/ A% -\/
Now let us comnsider (h ,v) G n {ii(M2)93} (EM (2& , 1)) suech that all non integer cycles of
(/i,v) are invariant under quarter turn rotation, and assume that (h ,v) £ v e root g *
(note that we are om itting the n odd case as it follow s in a sim ilar w ay). T hus if we con -
sider the fundam ental region, from L em m a 1.2.7 there exists (h* v*) (0 ,0) such that
19 e N oote woe m uwst have: /i*fe = — v%i for all i G [k|
Since all th e non integer cycles of (h ,v) are inmvariant under quarter turn rotation it
can be checked that the only non integer paths orf[qqij’(h v) are isolated nomn integer
paths conmnecting the bottom and right boundaries of C k. km T hus (h*, v* ) can only have
isolated mnomn zero paths between the and lower boundaries of Ck,k (any other non
zero paths would im ply the sam e non integer path for (h . v)). T hese paths cannot
intersect (otherwise this would create a path between two edges of the sam e bowundary)
and so there exists 70 such that we have an isolated non zero path between (&, *o + 1)
and (o + 1, k) ana so stok.viio 7~ 0 (since these entries correspond to ecdges of the non
zero path). A lso by Lem m a 4.5.2 /1* t = 1 1\ A ° where K is the num ber of
lok K io, K even
vertex comnfigurations of the form
that appear in the isolated non zero path Sinmece this path conmnects the right and lower
boundary, these vertex configurations m ust appear an even number of tim es and so K
is even Thus, h~k = vkiQ. R ecalling that we noted that h*ik = vki for all i G [A:]l, this
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is the required comntradiction and so:

A Il non integer cycles of (h,v) are 1
verte M s 2 (e, v ) o 115023 (E M (0.1

invariant under quarter turn rotation J

In Figures 4.25 and 4.26 we give the sets vere™ 1,99 4 « ana verees; 1,99 9 v

=
(=} p— O
(=}

i o

Figure 4.25: verta o 1,99 ™ + and the corresponding non integer cdges

0\
1

0 %illg

oy

o O Q

0o 2/

Figure 4.26: vert~1;109 9« snd the corresponding non integer cdges

R ecalling (4.28) it can actually be checked (by setting /i = | instead of [) that o I 0

—_
[}

is on the edge between

— -
[— IR}

N— @ @ N
=
a

—_

Figures 4.25 and 4.25 show that D (A4 *'gq .q *) = D (A4 »'gq q *) = 2. Thus by padding we

have 2 < D (4 ongg D) < 4 tor all m H owever we can im prove on this:
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Theorem 4.5.4.
D(AUL Yy = 2 for alln > 2

Proof. Once again we present the proof for n even as the result follows in the same way for
n odd. Consider (h,v) € vert€f; gled e} \ EM(2k, 1){199%¢°}, Thus hy, = 1 — vy, for all 5 € [k]
and there must exist ig € [k] such that h;x = 1 — vk, is non integer. From Theorem 4.5.3 we

see that the edge between (i, k) and (%9, k+ 1) and the edge between (k, 7o) and (k+1, %) are
1 — vk, K odd
Ukig, K even

and as before K must be even and so hix = ki,. Thus (since hy = 1 — vy, for all ¢ € [k]),

connected by an isolated non integer path. By Lemma 4.5.1 we have h;;x =

higk = Vkip = % and all entries on the path are also % Therefore all entries on each non integer
cycle of an element of vert AL e} \ ASM(n, 1){1.9:4¢’} are 3 and so D(A,{,l’q’qz’qs}) =2. 0O

As a consequence of Theorems 1.2.18 and 4.5.4 we have:

Theorem 4.5.5. For fized n € P there exists Ai.l’q’qz’qs}(r), the Ehrhart quasi-polynomial of

ALY yhich satisfies:

1. Af.l’q’qz’qa}(r) is a quasi polynomial in r of degree dim Alpe? e} gng period which divides
2.

2. IASM(n, r)te? et = AP CY ) for alir € N

2.3
3. |ASM°(n, r)lede }l = (—1)'““‘“‘5'1'“' N )Af.l’q"’z"’s}(—r) forallr € P

We illustrate this theorem with the following series:

Agl,q,q’,qs} (r) = {(1): : 2‘(’13” (4.29)

ALS Yy o (l§J1+1) (4.30)
it (55%), r even :

AlLed’ e’} = ( g_) + %27 4.31

4 (T) 2(—’—2+2), r odd ( 3 )

ety o [8(7) +7(57%) + (51%), r even

. A3 (r) = { (L;—‘+2)+9(—,—+3)+3(—,—+4) r odd (4.32)
542 +3 +4 +5 5+6

Afted gy o {O(rsog d+ 110(53%) + 142(5¢%) + 30(52%) + (%), r even. (4.33)

Quasi-polynomials (4.30) and (4.31) correspond to sequences A008619 and A002620 of [99].

7
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4.6 Diagonal symmetry

The fourth row of Figures 1.17 and 4.1 give:

Aj;l»d} = {a € A, | aij =aj for all i,j € [n]} (4.34)
LS = {(h,v) € En | hij = vji for all i € [n], j € [0,n]} (4.35)

Figure 4.27 gives the set ASM(3,1){¥} and some cardinalities of ASM(n, r){*4} are given by

Figure 4.28.
(/0 0 1 0 1 0 0 1 0\)
010},{1 -1 1},{1 00
100 0 1 0 001
\ ¢
100 100
001},{010
L 010 001 )

Figure 4.27: Diagonally symmetric alternating sign matrices of size 3 and line sum 1

r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 5 14 30 59 91
4 1 16 106 444 1407 3696
5 1 67 1332 13204 84754 404784
6 1 368 27627 779616

Figure 4.28: |ASM(n,r){44}| for n € [6], r € [0, 5]

No formula is known (or conjectured) for |[ASM(n, 1){1#}| (sequence A005163 of [99]). Indeed
in [93] Robbins states: “Apparently these numbers do not factor into small primes, so a
simple product formula seems unlikely. Of course this does not rule out other very simple

formulas, but these would be more difficult to discover (let alone prove)”.

Recalling Figure 3.1 we have: R{' = {Gi,j) € [n] x [n] | j <iforallije€ [n]} giving:

a1 o0 < Z§,=1 a;y <1forall je [z - 1],

T&? a’21 0’22 n(n+1) i—1 J t e [n]
Arn"={a= . .. eR™ 2 o0 < Ej’:l air + Zj'=i aj; <1 for all

_ j €li,nl, i €[n]
Apl -+ -+ Qpp ° Z;;ll a'ij + Z;';iaji =1forall: € [n]
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/ M0 \' vl \\
A n2 VL 2
d Ml = < P B h2 5 N vz s
Vikno wnl mnz oo hnn—dj  \*nl Va2 Va3 e Vnn)
re(n+l) n(n+l) hio = 0 for all i G [n]
6 [0,1IR2 x[0,!], 2 Vi = 1 fer all g 6 ind
i+ for all j .71c[l'l—||
{14}
w here dy — >E »n 'a} is given by:
y . Vo1 ATO0 220 A30 se  hnO*
A v21 ”
1o " A1 ~21 /131 hnl
A2 /121 V22 V32 Vn2
V21 V22 A32 eee  An2
A30 231 hz2 V33 se e Vn3
/{M 1 V3l V32 A33 e«  An3
\hn0 ~nl hn2 An,n—1  Vnn
lynl  Vn2 Vn3 - Van)
! (hio va |
mno 21 V2l V22
0 M1 k2 Bl V32 133
\' | An0 “*nl “*n2 e hnn—J \ynl Vn2 Vn3 eem Vnn) /
w e can repr resent E n ' and E n on C no.n and a trian gular la ttice a s in F igure 4 .29 .
0O 0 0 O0. 0
0 w
M 1
0’
v
0 |
0
0
1 1 1 1 1
F igure 4 .29 E lem en ts of E »n 'd™ and E n 'd" o n C n.n an d a triamn gular la ttice

164
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Theorem 4.6.1.
vert AL = ASM(n, 1){1’d}

Proof. We show that vert&{? = {(h, v) € At | (h,v) does not have a non integer cycle}.

This is because, if (h,v) € &84 contains a non integer cycle, then as before we can find

(h*,v*) # (0,0) such that (h,v) + (h*,v*) € £ More importantly, if (h,v) contains a

non integer path we can also find (h*,v*) # (0, 0) such that (h,v) £ (h*,v*) € &M without
any restrictions -(apa.rt from being in [0, 1]g) from the diagonal boundary, giving the required
result. O

Corollary 4.6.2.
DAL = 1 for alln

As a direct implication of Theorems 1.2.29 and 4.6.1 we have:

Corollary 4.6.3. Any matriz from ASM(n,r){1% can be written as the sum of r matrices
from ASM(n,1){4},

From Theorem 1.2.18 and Corollary 4.6.2 we have:

Theorem 4.6.4. For fired n € P there exists Al (r), the Ehrhart polynomsial of Al

which satisfies:
1. Al (r) is a polynomial in r of degree '3"7'9
2. |ASM(n,r)0%| = AL (r) for allr € N
3. |ASM(n,r)1d| = (—l)ﬂ%ﬂA,{,l’d}(—r) forallr € P

We illustrate this with the following examples:

4890 = ("1 (4.36)
4903+ (3 | (437)
R R ey Ney
48D ) = (4.39)

T+4 r+5 r+6 T+ 7 r+8 r+9\  (r+10
30( 10 )+578( 10 )+2045( 10 )+2072( 10 )+650( 10 )+56( 10 )-’r( 10 )
Polynomial (4.37) corresponds to sequence A000330 of [99).

/
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4.7 Both diagonal symmetry

The seventh row of Figure 1.17 and 4.1 give:

Ail,d,a,qz} = {a €A, | Aij = Qji = Quyl—jn+l—i foralli,j € [n]} (440)
ENdadt = ((h,v) €&, | hij =vji =1 — hpy1_in_; for all i € [n], j € [0,n]} (4.41)

Figure 4.30 gives the set ASM(3,2){14%4"} and some cardinalities of ASM(n,r){1:44"} are

(/002 /011\ (/0 2 0\)
020),(101),[2 -2 2
200/ \110/ \o 2 o
Y/101\ /1 10\ /200
020),{101),[l020
\to1/ \o11) \ooz2 |

Figure 4.30: Both diagonal symmetric alternating sign matrices of size 3 and line sum 2

given by Figure 4.31.

s~

r=0 1 2 3 4 5
n=1 1 1 1 1 1 1
2 1 2 3 4 ) 6
3 1 3 6 10 15 21
4 1 8 30 80 175 336
5 1 15 94 378 1162 2982

Figure 4.31: |ASM(n, r){14%49°}| for n € [6], r € [0, 5]

Recalling equation (1.35) we have the conjectured formula:
? n even

ASM(n, 1){tded}| = { a5

corresponding to sequence A005162 of [99]. Note that conjecturing a formula for n even
(represented by a question mark in Figure 4.4) and proving the formula for n odd are both

still open problems.
Using the same argument as for the proof of the Theorem 4.6.1 we have:

Theorem 4.7.1.
verLAglyd,ayqz} — ASM(n’ 1){1'd»a’qz}
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For com pleteness recalling Figure 3.1 we have:
fri{id.a.q2} _ iy £ mox ol 1 o< i< oo+ 1 ter ani i G iniy

Figures 4.32 and 4.33 give the fundam ental polytopes on a lattice diagram .

0 ull
vn  *21 Vil

1 1 ]
0 o ek 1

Wi

*fe+i,fe-i

where m = 1 —m for allm 6 M

Figure 4.32: Elem ents of £ » dag 1 and £ p a-092) on 1attice dingram s

o Vi . 0
°i
Vil 1 vn

21 mi *21 LH(

1
MetLfe
*21

*21 vn

3
vir 1

where m = 1- m for all m 6 R

Figure 4.33: Elem ents of &2k + i'9 ~ and » 2k+' '0 ~ on lattice diagram s

T heorem 4.7.1 gives:

Corollary 4.7.2.

D (A4 il'd'a'q2})

A's a direct im plication of T heorem s 1.2.29 and 4.7.1 we have:

Corollary 4.7.3. . ., o o vivirom 45w i dagr can be w e

as the sum o fr m atrices

from A S M (n,i){M ,a,g2}
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Theorem 1.2.18 and Corollary 4.7.2 give:
Theorem 4.7.4. For fizedn € P there exists Afbdee (r), the Ehrhart polynomial of Afbaaa}

which satisfies:

1. A,{,l’d’“’qa}(r) is a polynomial in r of degree dim Albdad’}

2. IASM(n, r){bdod’}| = ALY for allr € N

. . ,d,a,q%
3. |ASM°(n, r){tdad’}| — (—l)d"”'“"{'1 e }Aﬁl’d’a’qz}(—r) forallr € P

We illustrate this with the following examples:

Aty (”1' 1) (4.42)
Agl,d.a,q’}(r) = ("';2) (4.43)
Aoty 3(" 1’ 3) + (r : 4) (4.44)
Alrdadt) gy m(";r 4) + s(’ : 5) + (’"“(;6) (4.45)

Polynomials (4.43) and (4.44) correspond to sequences A000217 and A002417 of [99].

4.8 All symmetry

The last row of Figures 1.17 and 4.1 give:

ADt = {a € An | G = ni1-ij = Gjmsr-i for all 4,5 € [n]} (4.46)
87?4 = {(h, ’U) S 8,. I h{j =V = hn+l—i,j =1- hi,n—j for all 7 € [n], ] € [O,n]}
(4.47)

Figure 4.34 gives the set ASM(5,2)P* and some cardinalities of ASM(n,r)P4 are given by
Figure 4.1. k

Recalling Figure 3.1 we have: Ry = [k] x [k] and Rp%,, = [k + 1] x [k + 1] leading to the
following fundamental polytopes:

ADs .= {aeRk"k o > lai;=1forallic K

0 0< Y ay < 1foralli,je [Ic]}
® a;; = Qj; for all 4,5 € [k]

’
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(/00 2 00 0 0 2 0 O (01010’
01 0 10 0 2 -2 2 0 1 -1 2 -11
20 -202},|]2 -2 2 -22},]0 2 -2 2 0
01 0 10 0o 2 -2 2 O 1 -1 2 -11
00 2 00 0 0 2 0 O 01 0 1 0
‘ 61010, /100 01\ /10001 [
10001 00 2 00 01010
00200],10 2 -2 2 01}],{00 2 00
10001 00 2 00 01010
\ 01010 \1oo0o01/ \10001 J
Figure 4.34: All symmetric alternating sign matrices of size 5 and line sum 2
r=01 2 3 4 5
n=1 1 111 1 1
2 1 010 1 O
3 1 1 2 2 3 3
4 1 0 20 3 O
5 1 1 6 6 18 18
6 1 6 7 0 22 0

Table 4.1: |[ASM(n,r)P4| for n € [5], r € [0, 5]

and

©2Y*% aij+aip=1foralie[k+1]

0 0< Y aiy < 1lforalli,j€ [k+1] }
oa,—,-:a,-.—fora.lli,je[k-f-l]

Aé’,;‘H = {a € RE+1D)x (k+1)

We thus have:

hm hlk Vo1 --- Yok
Ea =)= | | : AN L | € 0 R x [0, 1
hko hkk V1 ... VUkk
.h§0=’00j =0foralli€ [k], jE [k]
oh,-k=vkj=%fora,lli,je[k]
° h,',j_l + v = v + h,'j for all 1, € [k]
° hij = Vj; for all i € [k], JE [0, k]
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and

ho ... higa Vo1 .- Vok+1
555:-1 =4 (h,v) = : : ) :
hiy10 oo hriren Uk+1,1 .-+ Ukl k+1
c [O, I]R(:7+1)X(’C+2) X [O, 1]§f+2)x(k+l)
® hijp =vg; =0 for all 4,5 € [k + 1]
° hik+h,',k+1 = Ugj + Vpg15 =1 forall 7,5 € [k+ 1]

-h.ij_1+v,-j=v,-_1,j+h,-j fOf&lli,jE[k+l]
ehyj=uvjforallie[k+1], j€[0,k+1]

— 1 — {Ld}
We note that AD* = (A{Ave} and £ = | gfbdaad ) which leads to the following

theorem:

Theorem 4.8.1.
vertAPs = (vertAf,l’h’”’qz}) L}

)v7q2}

In other words the vertices of AP¢ are the elements of vert AL® that are diagonally

symmetric.

{1,d}
This proof follows from the proof of Theorem 4.6.1 where we see that vert (82{,:""""’2} ) =
( {1,hv,q%} {L.d} . . . ’
vert&yy, giving the required result.

From Theorem 4.3.1 we have:
Corollary 4.8.2.
D(Af‘) =2 for alln > 2

As a consequence of Theorem 1.2.18 and Corollary 4.8.2 we have:
Theorem 4.8.3. For fized n € P there exists AD4(r), the Ehrhart quasi-polynomial of AD4
which satisfies:

1. ADi(r) is a quasi polynomial in  of degree dim AP+ and period which divides 2.

2. |ASM(n,r)P4| = AD+(r) for allr € N

3. |ASM°(n,r)Ps| = (—1)4m A2 ADs(_r) for all v € P
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We illustrate this with the following examples

2o = {or e (448
AD(r) = ( J+1) (4.49)
apeey = e (430
0 - (507 (5
AD(r) = {8,(?:()1; (53°), r even (4.52)

4.9 Conclusion

As this chapter contains numerous results we here give a concise listing of these results.

4.9.1 Conclusion for A,{,,l’h}

0, n even
{1,r} nx 1,k !
o |AM N Zrxn| = |ASM(n, 1)MY = { a1t o oy
l I 1—.[1'=21 (,Eitlle)ia n Odd

!n——l!!n—2!
dim AL — , L even
o dim A; (n_ 2% n Odd

o vert AN = {a € I{1,n) (ASM(n, 1)) | fi1,n3(a) does not have a non integer cycle }

e Theorem 4.2.3 gives an enumeration result for fixed n. Quasi-polynomials of period 2

are obtained for n € [5]

4.9.2 Conclusion for .A,{,l’h"”f}

0, n even

= IASM(n, 1){1,h’v’q2}’ = { (Ls "Z . J+1)' "— 31)! n odd

ESIn2IT L k=1 (ERyp

° Aﬁlyh,quz} n ann

(n—2)?

e dim Ail,h,‘u,qz} — 41 2, n even
g";‘!L, n odd

o vert ALLPY} = = {a € M{1,hv,¢2} (ASM(n, 1)) | f(1,5,0,42}(a) does not have a non integer cycle}

?
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e Theorem 4.3.3 gives an enumeration result for fixed n. Quasi-polynomials of period 2
are obtained for n € [6).

o {1’q2}
4.9.3 Conclusion for A;

o Aill,qa} N Znxn

31-1 (s [3]-1 (3i+2)
=0 Z’éq}_;y =0 m

= lASM(n’ 1){11‘12} =

gn—1!2+
LA} _ , N even
e dim A; {gﬂ_ B v oodd

o vert At = ASM(n, 1)14%

° ATheorem 4.4.4 gives an enumeration result for fixed n. Polynomials are obtained for

n € [5].

4.9.4 Conclusion for A{7}

Ar{zl,q,q2,q3} A Zrxn| = lASM(n, 1){1,q,q’,q3}| =

( n 1(24. n, .
21 A@i+1)( 24+4)!
o 7——%—1( _3_ > n=0mod 4

nos 4(3‘!"}'41‘2(3%4'2)' n = 1 InOd 4

n-1
Hi=40 (n—l_HT H:_o (n 1+,) (__-t_+ )v’
0,n=2mod 4

34)1(3i+1)12 22l (3i+2)! _
H.=0 n3+'|_+__+‘|ni=0 -(S—)T#_’_“,n—?)modll

N

n(n—2
o dim ALOPPY _ {4——1n_ : ::;Zn

All non integer cycles of a on L, are}

{Lg.¢%.¢%} _
o vertAn {“ € M1 ,442,4%) (ASM(n, 1)) invariant under quarter turn rotation

e Theorem 4.5.5 gives an enumeration result for fixed n. Quasi-polynomials of period 2

are obtained for n € [6].

4.9.5 Conclusion for .A{1 d}

e There is no known enumeration for ASM(n, 1){1:4}

® dimAi.,l’d} — n!nz—l!
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o vert ALY = ASM(n, 1){14}

e Theorem 4.6.4 gives an enumeration result for fixed n. Polynomials are obtained for

n € [5].

4.9.6 Conclusion for AL}

? n even

. |ASM(n, 1){1""“’4’}‘ = { 2l @i
=0 (J_Ljn—:+.- ;» 1 odd
2

nﬂ
. 1,d,a,4%} 2, neven
e dim .A{ = z
n K"__l.%’ill, n odd

[ Vert.Ai,,l,d,a,qz} = ASM(n, 1){l,d)a’q2}

e Theorem 4.7.4 gives an enumeration result for fixed n. Polynomials are obtained for

n € [5].

4.9.7 Conclusion for AP

e There is no known enumeration for ASM(n, 1)24.

(2=2n 1, even
. ADs _ 2,
e dim A )¢ = {gn-1)85n+12’ n odd
(1.4}
L VertA'? 4 = (Vert Ai‘lvhx”’qz})
e Theorem 4.8.3 gives an enumeration result for fixed n. Quasi-polynomials of period 2

are obtained for n € [6).

We also believe counterpart decomposition results to Theorems 3.2.3 and 3.3.4 can be ob-

tained.



Chapter 5

The Alternating Transportation
Polytope

5.1 Definition

In Section 1.2.3 the transportation problem was presented. We recall Figure 1.37, and the
notation of Section 1.2.3. We here present a generalized transportation polytope based on
the work done in the previous chapters. Let us allow the entries a;; of Figure 1.37 to be
negative. A negative entry represents a delivery from a destination D; to a source S;.
Allowing these deliveries has been considered by Orden in [86]. He defines a new polytope:
the transshipment polytope. In this case all nodes are considered in the same way, having
both a unit of demand r; and a unit of supply s;. The problem is solved by reducing it to
a transportation problem and only considering polytopes whose elements have entries which
are all non negative. Indeed if we remove the a;; > 0 condition in Definition 1.2.33 of 7 (r, s),
we are left with an unbounded space. We need to impose further conditions. Let us consider
the following extra conditions to the classical transportation problem, to give a generalized

transportation problem:

This is an ordered transportation problem with m sources Si, ..., S, and n destinations
D,,...,D,. Thus we log the sequence of deliveries using an m x n array T of numbers

chosen from (1, mn] without repetition, such that the delivery between S; and D; is the

174
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(T,-,-)th delivery. The amount of material delivered between S; and D, is a;; units, where a

positive/negative value of a;; means that material is transported from/to S; to/from D;,

e T must be a-standard Young tableau [104] of rectangular shape with m rows and n
columns , i.e. Tj; < Ty jforallie m—1], j € [n]and T;; < T; j4q foralli € [m], j €
[n —1].

e Initially (i.e. before the first delivery) there are r; units of material at S; and finally
(i.e. after the last delivery) there are 0 units of material at S; for all 4 € [m]. This
gives:

Za"j =7, for all i € [m)]

=1

o Initially (i.e. before the first delivery) there are 0 units of material at D; and finally
(i.e. after the last delivery) there are s; units of material at D; for all j € [n]. This
gives:

Za,-j =s; for all j € [n]

i=1

e At any time there are between 0 and r; units of material at S;. This gives:

J
OSZa.-,-ISn for all i € [m],j € [n]
=1

e At any time there are between 0 and s; units of material at D;. This gives:

OSZa,vJ- < s;j for all i € [m], j € [n]

i'=1

This leads to the following definition:

Definition 5.1.1. For r € R™, s € R" such that r; > 0 and s; > 0 for alli € [m], j € [n],

and 371, ri = Y70, 5; we define A(r; s), the alternating transportation polytope:

e Y% aij=r; foralli€ [m]
' — mxn | ® 2iz1ij = 8; for all j € [n]
A(r,s):==¢a€eR ®0< 30 ay < foralli € [m],j € [n]
e 0< > _javj < sj foralli€ [m],j € [n]
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It follows that:

( e Y jai; =r; for all i € [m)] )
® Y iliai =s; forall j € [n]

> _a; >0 forall ie[m], jen—1]
® > i—jaiy 20 forall i€[m], je€[2n]

e u_,av; >0 forall ie[m—1], j€[n]

\ oY i ,ay; >0 forall i€[2,m], j€n] )

A(r,s) = { a € R™" (5.1)

“~

Let us assume the cost function is linear (as in Section 1.2.3) but also symmetric, i.e. we
assume that a delivery from D; to S; has the same cost as a delivery from S; to D;. Note
that this is not always the case (for example, transportation up or down a hill could have
different costs). The generalized transportation problem reduces to minimizing:
) _ o
pla) = Z;ZI% |as;] (5:2)
i=1 j=

over A(r, s). Note that similarly to equations 2.3 and 2.25 we have:

T(r,s) ={a€ A(r,s) |a;; > 0forall i € [m], j € [n]} (5.3)

Over 7 (r, s) the cost function (5.2) reduces to the same cost function p(a) = 372, 377 cijai;
considered in Section 1.2.3 and it can be seen that an extreme value of p (over 7(r, s)) must
occur at a vertex of 7(r,s). In A(r,s) it is no longer true that an extreme point of p(a)
given by (5.2) must occur at a vertex of A(r,s). As an example consider the following

transportation problem:

18 14 20
r=(1,1,1),s=(1,1,1),c={2 1 2

20 14 18

A diagram showing the proposed cost function is given in Figure 5.1.

By Theorem 2.3.4 vert.A((1,1,1), (1, 1,1)) = ASM(3, 1):
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33. As showwmn in Figure 5.2 this avoids the longest routes.

om=mY oo
—
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5.2 Results

The first result we give is a counterpart to Theorem 1.2.34.

Theorem 5.2.1. A(r, s) is non empty and dim A(r,s) = (m — 1)(n — 1).

Similarly to the edge matrix polytope given by Definition 2.3.3 we define the generalized edge
matriz pairs polytope E(r, s):

E(r,8) =

( e0< h;y; <r;forallie [m], je€[0,n] )

00 <wy; <sjforallie[0,m] je€[n]
mx(n m+1)xn | ® hio =v0; =0 for alli € [m],j € [n

§ (b v) € REHD s RO ohm:r,-Jfora.llie[m] ) 8 g

® v,; = s; for all j € [n]

{ oh,-,j_1+v,-,-=v,-_1,j+hij for a.llze[m],ye[n] J

As before any element (h,v) € £(r, s) can be represented on L,, , as in Figure 5.3 where the
condition given by Figure 1.8 still holds.

n
r % N

, 0 0 0 0 0 0

0 T 1

o § P11

0 T2

0 r3

g4
0 T4
Um-1,n

0 Tm

\

Figure 5.3: Elements of £(r, s) on L, ,

There is a bijection between A(r, s) and £(r, s) given by (5.4). Note that this is equivalent
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to bijections (2.4) and (2.5):

aj h,'j — h;‘j_l = Vij — Vi-1,5 for all i € [m], j€ [n]

. J
hij = Za,-j: for all ¢ € [m], j € [0,n] (5.4)

i=

v = ‘:a,-:j for all ¢ € [0,m], j € [n]
i"=1

As for previous chapters, when referring to particular paths of a € A(r, s) on L, ,,, we are
indeed referring to paths on the lattice diagram of the corresponding (h,v) € £(r, s) as in
Figure 5.3. We refer to entries 0 < h;; < r; or 0 < v;; < s; as non extremal. Thus, a
non extremal path of a € A(r,s) on L, is a set of edges of the lattice diagram of the
corresponding (h,v) for which 0 < h;; < r; or 0 < v;; < s;. The polytope £(r, s) will be used
throughout the rest of this chapter, firstly to prove the following theorem (a generalization
of Theorem 1.2.35):

Theorem 5.2.2.

vertA(r,s) = {a € A(r,s) | a on L, , has no non extremal cycles}

Proof. This result is actually a special case of Theorem 4.1.3 as A(r,s) = A(H, H' V,V')
with:

(00 ..0mn (0 rn ... nn
H=|:: i :i]pm B =|:: ;1 fem
0 0 ... 0 rp \O T - Tm Tm
n‘-;l nIl
(0 ... 0\ (0 .. 0\

0o ... 0 S1 ... S8p
Vo= Hgmrr Vo= | pm+1
0 0 S Sn
Ksl - 7 ) \81 Sn )

N e’ D

O

Note that Theorem 2.3.4 follows from Theorem 5.2.2. Also, we have the immediate corollary:

Corollary 5.2.3. If r € N™ s € N" then vertA(r,s) C A(r, s) N Z™*"

/
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W e define a generalization of the higher spin alternating sign m atrices given by D efinition

o e e
Deflllltlon 5.2 .4. For r GNm s € Nn suen thae vir=1ri = Y lij=isj> we define the set of
s

alternating transportation m atrices A T M (r.,s)

vitj=i Al = ri for alii £ [ra]
x x idl] - sj for aU J € [n] 1
AT M (r.s) =t a Gzmaxn
..y .
0 < xz+=idl] < r;/"rull;€[m\,] e [n] |
0 < X X =ia*i A~ S3 for all i e[m]']e (n] 3
N ote that ATM (r,s) = *4(r,s) n Zm xn.

A s an exam ple consider the set vd4((1,3,1), (2,1,2)). Figure 5.4 shows the set A TM ((1,3,1), (2,

as well as their non extrem al paths.

oON O
)
—

—
SN O
S - D
[—}

(=]
~

100 0 01

100 10 0\ 100
10 2
100 0 1 of 001

Figure 5.4: N on extrem al edges of the integer elem ents of A ((1,3,1),(2,1,2))
First of all we mnote that nomne of these elem ents havea non extrem alecycleand thus
vert 4 ((1,3,1), (2,1,2)) = AT M ((1,3,1), (2,1,2))
Ifwe now m ove onto faces, recalling D efinition 1.2.5 we see that for A4 (r, s) the linear equalities
that we need to consider correspond to the partial sum inequalities:

0~ Ej=t1aij ~ ritoravre mj]J ¢ o~ 1

0 < X X =1a%'j < S{ for nler[m—l|,/ G[n]
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Note that these are equivalent to:

0<hj<riforallie[m],je€n—1]
0<wy;<s;foralie[m-1],j€ [n]

Thus, setting one of these inequalities to be a defining equality of a face corresponds to setting
one of the edges on a lattice diagram to be extremal. Consider H C [m] x [n — 1] x [2] and
V C [m—1] x [n] x [2]. Then any face is of the form:

o hyj = 8y for all (4,5, k) € H}

A(r, 3)(H,V) = {a € A(r,3) ® v = 61k3j for all (3,5,k) € V

(5.5)

where (h,v) is the edge matrix pair corresponding to a. Note that this is similar to the
notation given by (1.58) for T(r,s). Using this notation it is straightforward to define the

following representation of faces of A(r, s).
Definition 5.2.5. For a face F of A(r,s), we define the lattice diagram of F ld(F) as the
following labeling of Ly, n:

o The left and upper boundary edges are labelled by zeros, and the right and lower boundary

edges are labelled by the entries of r and s respectively.

e The horizontal edge between (i, j) and (i,j+ 1) is labelled d1x7; if and only if hi; = d1rs
for all a € F (where (h,v) € E(r, s) corresponds to a).

e The vertical edge between (i,7) and (i + 1, ) is labelled 61x3; if and only if vi; = dixs;
for all a € F (where (h,v) € E(r, 8) corresponds to a).

e All other edges are unlabelled.

100
For example consider F' = { (O 1 2) } By Definition 5.2.5:

1 00

0 0 0
o——411

o fo
1d(F) = o—-2 3

1. |2
o—3i4+14

2 2

On the set of lattice diagrams of faces of A(r, s) the following operations can be defined:
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Definition 5.2.6. For two lattice diagrams of faces of A(r,s), ld(F1) and ld(F;) we define
ld(Fy) C ld(F3) to mean that:

o If the horizontal edge between (i,j) and (3,5 + 1) of ld(Fs) is labelled d1x7; then the
horizontal edge between (i, j) and (3,7 + 1) of ld(Fy) is labelled 6yxr;.

o If the vertical edge between (%, j) and (i, j+1) of ld(F3) is labelled 6xs; then the vertical
edge between (i, j) and (i, + 1) of ld(Fy) is labelled dyxs;.

0 0 0 0 0 0
o111 o— 411
o 1o, o o fo
For example consider 1d(F;) = o 3 and ld(Fy) = o 3. Then we
T
o—314311—1 0 1
3

have 1d(F}) C Id(F3).
Using these definitions we give the following result:

Theorem 5.2.7. The set of faces of A(r, s) ordered by inclusion is isomorphic to the set of

lattice diagrams of faces ordered by inclusion.

Proof. Let us consider two faces Fy = A(r, s)m,,vi) and F2 = A(r, 8)(m,,v) of A(r, s) where
Hy, Vi, Hy and V; are the largest possible sets which give F; and F5. Recalling (5.5), F; C F;
if and only if H, C H; and Vo C V;. The result then follows from Definitions 5.2.5 and
5.2.6. (]

Definition 5.2.8. For two lattice diagrams of faces of A(r,s), ld(F1) and ld(F3) we define
ld(F1) U ld(F3) as the following labeling of Lo n:

o The horizontal edge between (i,3j) and (3,7 + 1) of ld(Fy) U ld(F?) is labelled 611 if
and only if the horizontal edge between (i,7) and (i, + 1) of both ld(F,) and ld(F>) is
labelled Jlkri-

e The vertical edge between (i, j) and (i + 1,5) of ld(Fy) U ld(Fy) is labelled 01xs; if and
only if the vertical edge between (i, j) and (i +1,7) of both ld(Fy) and ld(F3) is labelled

51k8j.
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. A1l other edges are unlabelled

For exam ple we have:

D efinition 5.2.5 allow s us to comnstruct the lattice diagram 1d (F) from the halfspace definition
of F, however using D efinition 5.2.8 we give the follow ing result (the proof is om itted):
T h e or em 5.2 .9 . L et F b e a fa c e o f A4 (r s ) T h en

Id (F )= IJ )

vEvertF

For F = 4 (r. S)(H,V) a tace of 4 (r. s) recalling D efinition §.2.5 we sce that the entries of &
or v on certain edges of Id (F ) w ill be determ ined by th e b owumndary conditions, H v an d th e
equation + % = vii-i,j + hij at each vertex. W e define nec(F ) as the num ber of non
extrem al ecyecles of 1d (F) that do not enclose another cycle (an uwmnlabelled edge is considered

to be momn extrem al).

For exam ple for F = * 4 ((1,3,1), (2,1 ,2))({(i)iti)})) we have nec(F) = 2, indeed

0o 0 O

1d (F ) = 0.

(as usual we color the non extrem al edges in red). U sing this we give the follow ing result:

T h eor em 5.2 .10 . L et F b e a fa ce o f A (r s ) T h en
dim F = nec(F)
Proof. W e recall that dim F is the number of values needed to umniquely determ ine an eclem ent

of F W ¢ num ber the nec(F ) = k momn extrem al cycles of Id (F ) that do not enclose another
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cycle and define the follow ing sets:

G th e edge betw een (i.j) and (i, + 1) \
Ho1 : = ioCiLi X[n]
ety fral is in the Z* cycle tor all 1 < [ < Je
¢ edge between («,j) and (» + 1,§) j for all x A
yl e [m] x [n]
is m o the I cycle J
comsiaer (n.v) Qeyr. o) correspomding to an eclem ent of F. C hoosing a single value hij (or

vay ter somoe (ij) Gt or vor) ter att 1 G fk) determ imes all the values of the Iih eycle. T hous

all the values of (h, v) can be uniquely determ ined by setting k values (corresponding t

o th e
k mon extrem al cycles) giving: dim F < k H ow ever choosing any less than k values leaves
ws w ith a cyecle, and as can be seen by considering the proof of T heorem 5.2.2 this does not

fully determ ine (h , v) hus dim F > k as required o
N o te th at T h eorem 5.2 .2 is a special case of T h eorem 5.2.10, since if nec (F ) = 0 th en F is a
vertex. R ecalling T heorem 5.2.9, T heorem 5.2.10 im m ediately gives:
C orollary 5.2 .11. T aking Vi, V2 E »-L»HA”.S), the line segment between v and V2 is an edge
if and only if

mece(ld ({vi})) U 1d({fv2})) = 1

Figures 5.5,5.6,5.7,5.8 and 5.9 give the lattice diagram s of respectively the vertices, edges, 2

dim ensional faces, facets and the w hole polytope of *4((1,3,1), (2,1,2)). N ote that in these

diagram s, certain red edges are labelled if the corresponding values of h or v are fixed (b ut

non extrem al), however according to D efinition 5.2.5 these edges w ould

strictly speaking be

unlabelled

0 d 0 i 0 " 0
1 1 2 2 S 1
I ; 1 ; ; ! I

Figure 5.5: L attice diagram s of the vertices of 4 (1,3 ,1 ), (2,1 ,2))
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i.) 0 C o0 D d @ C C
1 n 9 9
]0 ” 0 "
)
q HZ 9 o 1 °j 2 14 2
( 0 9 d
o 17 0909. 09 1()
0 0 1 0 0 w1 . 1 o
2 12 Na 1 2_‘ n,
] > } ;
t c,( ( ) 0 0
N - b o (
p 00 w 0 0 0
1
AQ 2 h 2]
I 4 j 4 5
| Dol i
f ) ])1 J| 9)911
o 1o oo, 00 I,
1 1 1 lj
! i ( 4 P
1 tt d g m f th d g f 4 cc1 3 1) (2 1 2 ))
0 9 ii G e ) ) 0 1
9 ru 1
n.
% 2 " h 2 a il
[ 5 H
( I i 90 >§.r )
Lo 99 A } A
0 0 0 0 0 1 0 1 y\
° i .
4 ni !
) ( ) ( j
0 " 0
'mi’ ru ! N

e diagram s of the 2 dim ensional faces of 4 ((1 ,3,1), (2,1 ,2))

185
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A%

Figure 5.8: L attice diagram s of the facets of A4 ((1,

e

Figure 5.9: L attice diagram o f A ((C1, 3,1 ), (2,1 ,2))

Using Corollary 5.2.11 w are able to draw the graph of this polytope as shown in Figure

5.10. N ote that the graph of a polytope is defined as follow

the vertices of the polytope and two vertices are joined by an edge of the graph if and onl

if they are joined by an edge of the polytope. For the curious, Figure 5.11 gives the graph of

the alternating sign m atrix poltyope 4 3

In [105] analogowus results to T heorem s 5.2.7,5.2.10 and Corollary 5.2.11 are given for A n -

T hese results are given wusing flow girds as opposed to lattice diagram s. A sim ple bijection

betw een these tw o sets of objects can be given and so the results of [105] are particular cases of

Theorem s 5§.2.7,5.2.10 and C orollary 5.2.11 that can be obtained by setting r = s = (1,..., 1).
n

A's a coumnterpart to T heorem 1.2.39 we give using the convention of equation (1.22) ¢the

follow ing result:

Theorem 5.2.12.

veritd (r = (vertdir, r))*1,a*

T his result follow s in a sim ilar w a roof of T heorem 4.6 .1

“
B
=

o
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5.3 Conclusion

The polytope .A(r, s) has been shown to be a valid solution set of an ordered transportation
polytope. The transshipment problem is solved by reducing the problem to a transportation
problem, however the transportation polytope is a subset of the alternating transportation
polytope. Thus solutions of the transshipment problem can be found within the alternating
transportation polytope. Note that if the transportation problem does not have any ordered
delivery restrictions it is still possible to find a solution within .A(r, s) simply by considering
permutations of the labeling of nodes.Transport between two different sources or two different
destinations is however not allowed in A(r,s). Note that if r € Q™ and s € Q" then
| A(kr, ks) N Z™*"| is a quasi-polynomial in k of dimension (m — 1)(n — 1). This follows from
Theorem 1.2.18. Theorem 2.4.1 is a special case of this. The polytope A(r, s) is yet another
special case of the polytope A(H, H',V, V') considered in Chapter 4.
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Conclusion

6.1 Conclusions

This section is a summary of the work presented throughout this thesis. Every chapter has

a conclusive section. Thus the summary given here will be brief.

Chapter 1 served as a review of the literature on alternating sign matrices as well as an
overview of results concerning polytopes. In particular it was seen that alternating sign

matrices can be considered as a generalization of permutation matrices.

In Chapter 2 we built on this, generalizing the Birkhoff polytope B,, to define the alternating
sign matrix polytope A,. We introduced a new set of integer matrices and gave multiple

bijections to other sets. We believe that these sets could be studied in their own right.

Chapters 3 and 4 are a study of the symmetry classes of B, and A,. Using techniques
based on the fundamental regions of\th%e classes we were able to identify vertices of these
polytopes and give results for the enumeration of symmetric semi magic squares or higher
spin alternating sign matrices of fixed size and variable line sum. Once again the connection

between B, and A, was apparent.

In Chapter 5, in a similar fashion to Chapter 2, we generalize the transportation polytope
to define the alternating transportation polytope. This polytope could be the starting point

for many research projects.

7

189
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6.2 Further work

6.2.1 Enumeration of higher spin alternating sign matrices

Throughout this thesis we do not consider the enumeration of ASM(n,r) for fixed » and
variable n. Recalling (1.51),(1.52) and (1.53), enumerations of SMS(n,r) forr =2orr =3
and variable n are known (2, 20, 58, 104]. Obtaining similar enumerations for ASM(n,r)

would however seemingly be a very challenging project.

Altefnative approaches to the enumeration of higher spin alternating sign matrices for fixed
n and variable r could involve generating functions and constant term techniques. However,
it would also be interesting to see whether the techniques of Section 2.5 can be generalized
to give bijective derivations of enumeration formulae for SMS(n,r) and ASM(n,r) for fixed

n > 3 and variable r.

6.2.2 Generalization of the Razumov-Stroganov conjectures

In Section 2.5.2 we showed that for n € [3] and r € N we have |[FPL,(n,7)| = |FPLx(n,7)|
where 7,7’ € Lo, , are rotations of each other. Note that for r = 1 this has been shown to be
true for all n € P. Because of the decomposition of elements of ASM(n,r) (Theorem 2.2.6),
it seems natural that this result could be generalized for all » € N. To generalize the bijective
proof given by Wieland [109] of Theorem 1.1.11, a decomposition of elements of FPL(n,r)
into elements of FPL(n,1) would be ideal. However, such a simple decomposition seems
unlikely. Recalling the proof of Theorem 2.5.2 we showed that any element of FPL(3,7)
could be decomposed using elements of FPL(3,1) and FPL(3,2) \ FPLam(3,2). Careful
investigation shows that the decoml;osition of fully packed loop configurations for n > 4 is

not as straightforward as shown by the following example:
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G F P L adm (4, 2) (6.1)

O ne possible decom position of (6.1) is:

u (6.2)

however these tw o path configurations are not standard fully packed loop comn figurations.

It is reasomnably straightforw ard to define a polytope 7 n for w hich the elem ents of F P L (n ,r)

n. Studying this polytope m ay assist w ith finding a

correspond to the integer points of r

m ethod of decom position for the elem ents of F P L (n, r).

A nmother project would be to generalize the R azum ov-Stroganoy conjectures. In [116], Z inn -
Justin has defined operators on Z/2n,r- Perhaps the coefficients of certain ecigenvectors of these
operators could be found to enum erate certain sym m etry classes of F P L (n,r) w ith respect

to a lin k pattern classification

6.2.3 Considering the convex hull of symmetric vertices

In C hapters 3 and 4 we considered polytopes of the form ¥ ° (using the notation of (1.22)),
for ¥V either Bon or A4 n and G a subgroup of D = A nmother interesting problem W ould be to
comnsider the set conv ((verfP )6 ), i.e. the convex hull of the sym m etric vertices of V . T his
polytope has already been studied by C ruse for the cases of B w ith G = (1, d3} [42] and
G = {1.<r} [43]. N ote that for som e of the cases (half turn sym m etry, diagonal sym m etry,

both diagonal sym m etry) comnsidered in C hapter 4 of V = A un this polytope is equal to V G
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6.2.4 Further polytopes

In Chapter 4 we defined the polytope A(H, H',V,V’). Studying this polytope in general
would be an interesting problem, in particular when the following condition holds: H;y =
Hjp,Voj = Vigjs Hin = Hj, and Vip; = V3 for all 4 € [m], j € [n]. Theorem 4.1.2 gives
the vertices of this polytope. The results concerning the faces of A(r, s) given in Chapter 5
should also be straightforward to generalize.

It is also worth noting that the the connection made in Chapter 5 between .A(r, s) and the
transportation problem can be generalized to show that A(H, H’,V,V’) is a valid solution set

of the transportation problem under particular conditions.
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