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1.1 Summary of the equilibrium profile concept applied to deepwater sedimentary systems. 

Accommodation space in such settings is given by the difference between the depositional surface 
and a notional equilibrium profile. Modified from Kneller 2003.

7

1.2 Summary of the fill and spill and connected tortuous corridoor models for sedimentation in 
structurally complex seafloor settings. The fill and spill model (a and b) applies to confined mini­
basins where each basin is sequentially filled in a down-slope direction. The connected tortuous 
corridoor model (c and d) applies to slopes where flows are not confined, but guided by 
bathymetric features which obstruct flow. See text for details.

9

1.3 Definitions of growth sequence geometry used in this thesis, adapted from Burbank and Verges 
1994. Overlap (b), offlap (c) and onlap (d) indivually represent differring relative rates of uplift 
versus sedimentation during folding.

12

1.4 Overview of submarine channel systems and their down-slope variation in morphology. The 
overall scale and architectural complexity of the submarine channel decreases downslope due to 
progressive loss of flow volume both down slope and over time. The profiles A to D show general 
cross sections of the channel levee system at each point along the slope. Slope values from 
Pirmez and Imran 2003, channel cross sectional profiles modified from Babonneau et al 2002.

14

1.5 Summary of the key flow processes operating within submarine channel systems. Key processes 
include a portion of the flow which exists as an overbank cloud outside of the main channel. Other 
processes include flow stripping and reversed helical circulation (relative to subaerial channels) at 
meande bends. See text for details.

16

1.6 Response of submarine channel systems to variations in seafloor slope caused by deformation. 
Changes in the depositional slope result in channel re-adjustment in order to reach the equilibrium 
slope profile. Re-adjustment of the channel can involve a change in sinuosity as shown by the 
planform responses on the main part of the figure. Profiles A and B show the effect of re­
adjustment on the cross sectional morphology of the channel.

20

2.1 Seismic wave illustrating the conventions of polarity and phase used in this thesis. Adapted from 
Hart 1999.

25

2.2 Horizontal resolution and definition of the Fresnel zone. Horizontal resolution in seismic surveys is 
determined in part by the detector spacing which affects the sampling interval (a). The width of the 
Fresnel zone (b) also controls the resolution, and 3D migration reduces the size of the Fresnel 
zone to a small sphere. Adapted from Brown 1999.

26

3.1 3.1a shows a location map of the 3D seismic survey used in this study. DSF = Dead Sea Fault 
System, SAF = Syrian Arc Fold Belt, ES = Eratosthenes Seamount, ND = Nile Delta. Arrows 
indicate direction of salt flow from the Nile Delta and Levant Margin. Adapted from Vidal et al. 
2000, with salt movement direction from Netzeband et al. 2006. 3.1b shows a dip attribute map of 
the seabed over the 3D survey area. This map is draped with time contours (Interval = 10ms 
TWT). The map shows channel levee systems A, B and C which are described in this study. 
Several other channel levee systems are present and some key characteristics of these are 
summarised in the inset table.

34

3.2 Block diagram summarising the methodology used to characterise the channel levee systems in 
this study. Channel isochron maps were calculated between the top and base channel surfaces to 
reveal the thickness and extent of the channel levees. Other parameters measured were channel 
sinuosity (window length = 1km), channel thalweg and erosional depth and also channel width 
(between levee crests).

37

3.3 Strike (a) and dip (b) orientated seismic profiles through the study area showing the principal 
seismic stratigraphic units, as well as prominent strike-slip faults (a) and thrust faults associated 
with overlying folding (b). All of the channel levee systems described are located stratigraphically 
within the PM3 interval of the Post-Messinian sequence. See Figure 1(b) for location of seismic 
profiles.

39

3.4 Amplitude map of the top Messinian horizon (Top unit 2 in Figures 3.3a and 3.3a). This image 
shows the strike-slip faulting and thrusting which affects the Post Messinian sequence. Channels 
provide useful markers for assessing the sense of offset of the strike slip fault systems which 
characterise this study area.

41

3.5 Representative seismic profile through the PM2 interval showing channel levee systems with both 
high and low amplitude fill characteristics. These channel systems are separated by packages of 
disturbed or parallel low amplitude reflections of uniform thickness.

42

3.6 Isochron map of the PM3 interval, calculated between the seabed and base PM3 surfaces shown 
on Figures 3a and 3b. Contour interval is 25ms TWT. The isochron map shows a general 
increase in thickness towards the south east of the study area as well as the strong control on 
sediment distribution by north-east south-west trending folds.

44

3.7 Dip attribute map of the base PM3 surface shown in Figure 3.3, overlaid with time contours spaced 46
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at 20ms TW T intervals. This surface represents the deformation which affects submarine channel 
development in this area. A prominent conjugate strike slip fault system is present at this level, as 
is a north-west south-east trending fold belt (underlying thrust vergance indicated). These folds 
are associated with depressions in the hanging walls and footwalls which combine with the relief of 
the fold crest to affect sedimentation within the PM3 interval.

3.8 3.8a: Isochron map of Channel A (contour interval = 10ms TWT). This map reveals the strong 
control on channel development by the surrounding structures. Increased lateral migration is 
observed between Folds 1 and 2, with these folds also controlling channel levee distribution. The 
channel levee system shows a strong increase in thickness upstream of Fold 3 which blocks this 
channel resulting in a preserved channel remnant downstream of the fold. 3.8b: Dip attribute map 
with overlayed time depth contours (20ms TWT interval). Also indicated on this map is the axis of 
channel A and also the levee extent taken from the isochron. This map shows increased sinuosity 
and levee deposition in the footwall of Fold 3, as well as revealing the structural control on levee 
distribution.

48

3.9 Morphology measurements for channel A. FWS = foot-wall syncline, FC = fold crest. This channel 
system was affected by post-channel uplift which results in the increased thalweg and erosional 
depth over the fold crest. Also note the increase in sinuosity within the FWS, this can be observed 
qualitatively on Figure 8. See text for further details.

49

3.10 10a: Isochron map of the Channel B interval. Two zones of channel development can be identified 
from this map. Before channel B reaches the fold belt (Folds 1 and 2), levee distribution is 
approximately uniform on either side of the channel axis. In this area, variations in levee thickness 
and distribution are related to areas of increased sinuosity. This is in contrast to the asymmetric 
levee deposition seen as channel B crosses Fold 1 and also where channel B is diverted by Fold 2. 
10b: A dip attribute map of the base PM3 surface overlayed with time contours (Interval = 20ms 
TWT). The channel axis and levee extent are indicated. Note that where no underlying 
deformation affects this channel system, levee distribution is uniform about the channel axis, 
underlying structures induce the deposition of asymmetric levees. The exact levee extent within 
the hangingwall and footwall synclines of Fold 1 are untraceable due to interleaving of the levees 
of channel B with those of channel C to the south east.

51

3.11 Morphology measurements for Channel B. See text for details. SSF = strike slip fault, HWS = 
hangingwall syncline, FWS = footwall syncline, FC = fold crest.

52

3.12 3.12a: Isochron map of Channel C, contoured at an interval of 20ms TWT. Inset map shows the 
seafloor in the vicinity of several recently active strike slip faults which now offset the floor of 
Channel C. 12b Dip attribute map of the base PM3 surface overlayed with time contours spaced 
at 20ms TWT. The outline of the levee extent of Channel C and the channel axis are indicated. 
Points A to G are described in section 3.3.2. 12c: Seismic line illustrating confinement of Channel 
C, note the levee onlap onto the pre-channel fold induced topography.

54

3.13 Channel morphology measurements for Channel C. The area where this channel is affected by 
the fold belt is highlighted. See text for details.

55

3.14 14A: Amplitude map of the base Channel C surface. FWS = Footwall syncline, FC = Fold crest, 
HWS = Hanging-wall syncline. Increased lateral migration of the first meander occurs where 
Channel C exits the fold belt, with the direction of lateral migration being towards the footwall 
syncline to the north. An avulsed channel system also developed in this area at the apex of the 
first outwards facing meander bend after emergence of Channel C from the fold belt. 14B: Seismic 
profile showing increased tilting of the basal channel deposits contrasted with the undeformed top 
channel surface.

57

3.15 Block diagrams illustrating the four end member interactions between submarine channel 
development and underlying deformation. Compare with Figure 2 which shows an unconfined 
channel levee system. See text for details.

59

4.1 4.1a shows the location of the 3D seismic survey described in this paper. The survey is located at 
the boundary between the detachment fold belt and the outer fold and thrust belt. Structural 
zonation of the offshore Niger Delta is modified after Corredor et al (2005) and the positions of the 
submarine canyons are modified from Deptuck et al (2007). Fig. 4.1b (modified from Haack et al 
2000) shows a cross section through the western Niger Delta. The updip extensional domain 
passes into one of downdip compression where this study is located. The system of linked 
extension -  compression occurs above a detachment layer of overpressured shales. Fig. 4.1c 
(next page) shows a seabed dip attribute map of the seafloor of the study area with several key 
features identified which are referred to later in the paper.

73-74

4.2 Variations in style along strike of the Aga thrust. The location map shows the top pre-kinematic 
surface for the Aga fold with the lateral tip regions indicated. Both the upper and lower growth 
sequences are shown, with the lower growth sequence becoming increasingly affected by 
erosional truncation towards the lateral tips of the fold.

76

4.3 Seafloor dip map showing extensive mass wasting and degradation of the Aga fold forelimb, visible 
in 4.3a. 4.3b shows a representative seismic line though one of the prominent scars and shows 
material derived from mass wasting interbedded with the pelagic drape within the footwall.

78

4.4 4.4a shows the isochron of the lower growth sequence -  both the Aga and Bobo folds were active 80
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over this interval resulting in an increase in thickness of the sedimentary package within the 
hangingwall and the footwall. 4.4b shows an isochron of the upper growth sequence showing a 
much greater increase in thickness associated with fold growth than that seen within the lower 
interval.

4.5 Series of seismic profiles across the upper growth sequence within the hanging wall of the Aga 
fold. For line locations, see figure 4.4. Each seismic profile is accompanied by an interpretation 
which shows the seismic stratigraphic units described in this paper and shows the links to the 
relevant figures which show isochron maps of each unit. 4.4a shows a profile orientated parallel to 
the strike of the Aga fold showing an overall north-west dipping slope. Profiles 4.4b, 4.4c and 4.4d 
show a series of profiles across the north-west fold tip, the central area of the fold and the south­
east fold tip respectively. At the lateral fold tips (profiles 4.4b and 4.4d), the fold relief is not 
sufficient to block sedimentation resulting in overlap by the various seismic stratigraphic units. At 
the central area (profile 4.4c) the increased fold relief results in onlap and confinement of 
sedimentation within the hanging wall.

82

4.6 4.6a shows a dip attribute map of the upper surface of CLS 1. Key features include a sinuous 
channel axis, terraces formed by abandoned meander loops and slump scars formed by collapse 
of the channel sidewalls. Sediment waves orthogonal to the channel axis are also apparent on the 
channel levees. 4.6b shows a seismic line through CLS 1 illustrating some key CLS features 
including channel levees, internal levees/terraces and the channel axis which incises into the 
underlying deposits.

84

4.7 4.7a shows a coherence surface flattened on the top of CLS 2. This image shows the basal scours 
seen on the lower surface of MTD 1 -  these features are typical to all of the MTD deposits in this 
area. As well as the linear scours, larger scale erosion also occurs to form irregular depressions at 
the base of the MTD (labelled erosional scouring on Fig. 4.7a). Pressure ridges are also seen 
towards the south-east of the image. 4.7b is a representative seismic line through MTD 1 showing 
the chaotic, low amplitude internal seismic character and also U and V shaped scours in the basal 
surface corresponding to the linear scours seen in Fig. 4.7a.

85

4.8 4.8a shows a simplified isochron map of MTD 3, and illustrates its strongly east to west component 
of flow. The zones of increased thickness seen in this deposit correlate strongly to the prominent 
basal scours seen on the coherence image in 4.8b. These scours show a change in orientation as 
they cross the position of the Bobo fold and this is interpreted to be as a result of subtle fold 
topography influencing the depositional pathway of MTD 3.

87

4.9 The isochron map of CLS 3 seen in 4.9a has been extensively modified by erosion caused by the 
overlying MTD 2. Erosion by MTD 2 has resulted in removal of significant volumes of levee 
material and also formation of positive relief caused by ‘perched’ MTD material on top of CLS 3, 
this can clearly be seen in 4.9b. Figure 4.9c (next page) shows an amplitude map of the base CLS 
3 surface. This highly sinuous nature of the channel can be seen as well as the change in 
depositional style of the earliest channel deposits upon crossing into the foot wall.

89-90

4.10 Fig4.10a shows an isochron map of MTD 2. This deposit is concentrated around the south-east 
fold tip region where diversion is observed into the hanging wall and into the footwall. Diversion of 
material into the footwall results in a lobe-like depositional geometry of the MTD in this area as it 
responds to the available accommodation space within this area. 10b demonstrates the 
compensational relationship between levee relief and overlying MTD deposition where MTD 
material thins against the underlying channel levee. Perched MTD material can still be seen on 
this section, see also Fig. 4.10b for comparison.

91

4.11 4.11a shows the isochron for this channel interval. The channel levees are symmetrical about 
the channel axis in plan view within the hanging wall. As the channel is diverted around the NW 
fold edge, levee distribution becomes asymmetric due to the confining effect of fold relief. Also 
apparent is the increase in thickness of the channel deposits within the footwall, immediately 
down-dip from the forelimb to footwall break of slope. The change in channel morphology is 
emphasised in 10b, which shows a coherence slice flattened to the top of CLS 2. In this image, 
the channel shows increased lateral migration limited to the footwall area, with the formation of 
an abandoned meander loop labelled in Fig. 4.11b.

93

4.12 The isochron map of MTD 1 in 4.12a shows a strong south-east to north-west orientation in 
deposition due to confinement of this deposit against the backlimb of the Aga fold and the forelimb 
of the reactivated Bobo fold. 4.12b shows a seismic line which further illustrates the confined 
nature of this MTD deposit. Note the location of the overlying channel levee system (CLS 1), the 
axis of which is located between the pinch out of MTD 1 and the axis of uplift of the Bobo fold.

94

4.13 4.13a shows the isochron of CLS 1 showing a uniform levee distribution about the channel axis. 
The levees and channel fill thicken towards the source direction, indicating that this channel was 
backfilled during the latest stage of its deposition. 4.13b shows that reactivation of the Bobo fold 
has uplifted the north-east channel levee, resulting in a unique levee geometry compared to the 
south-west channel levee which is undeformed.

96

4.14 Summary of observations from the various growth sequence architectural elements. Black regions 
indicate areas of positive fold relief. Phase 1 (4.14a-d) is characterised by a fold-perpendicular 
sediment transport and deposition in which the various architectural elements are

102
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compensationally stacked within the hanging wall but are diverted around the fold edges due to the 
decreased fold relief in these areas. Phase 2 (4.14e and f) is characterised by increased relative 
rates of uplift vs sedimentation where the relief of the Aga fold, and partly of the reactivated Bobo 
fold confines deposition within the hanging wall of the Aga fold. This phase of deposition involves 
fold-parallel sedimentation.

4.15 Conceptual model of the key factors affecting the evolution of the growth sequence in this study 
area.

104

5.1 Location of the survey area within the context of the Nile Delta. 1a (inset) shows the area of 
interest in the Eastern Mediterranean sea, HA = Hellenic arc, DSF = Dead sea fault system. 1b 
shows the setting of the Nile Delta and the location of the seismic survey used in this study, which 
covers a portion of the eastern deep sea fan which is currently being affected by thin-skinned 
compression. The zone of compression within the Levant basin is driven by the gravitational 
collapse of both the Nile Delta and the Levant Margin. Figure adapted from Garziglia et al 2008; 
Netzeband et al 2006 and Gradmann et al 2005.

109

5.2 2a shows a seafloor dip (darker shades indicate increases in gradient) attribute map of the seismic 
survey area. This map is overlain by two way travel time contours spaced at 10ms intervals. 
Submarine channel systems sourced from the Nile to the south-west cross the seafloor and their 
development is affected by strike-slip fault structures and a series of folds whose strike is 
perpendicular to the submarine channel flow direction. These folds become progressively buried 
towards the south-east due to the increasing thickness of the syn-kinematic interval Unit PM3 -  
see figure 5.3. 2b shows the detailed study area, note the irregular seafloor expression of two 
folds, and the prominent, partially buried submarine channel levee system.

111

5.3 3a shows a strike-orientated seismic profile across the study area. This seismic section shows the 
principal seismic-stratigraphic units in this area with the interval of interest in this study being unit 
PM3, which represents the primary syn-kinematic interval. This unit thickens towards the south­
east of the survey area resulting in more subdued fold relief as can be seen on the seafloor in 
figure 5.2. The green marker indicates the horizon used to sub-divide unit PM3 into upper and 
lower growth sequences. Clearly visible in this seismic profile are numerous sub-vertical strike slip 
faults which segment the post-Messinian overburden, b shows a dip orientated seismic profile on 
which several thrust faults ramping upwards from the uppermost Messinian can be observed. 
These thrusts are associated with the development of overlying folds, the growth of which is 
recorded by the syn-kinematic interval, unit PM3.

114

5.4 a shows a dip attribute map of the top PM2 horizon (see figure 5.3 for location). This map 
represents the top of the pre-kinematic sequence throughout the survey area and more clearly 
shows the SE-NW  orientated fold belt a conjugate set of strike slip faults which segment many of 
the thrusts and folds, b is a schematic map showing the distribution of thrusts underlying the folds, 
as well as synclines which form within the hanging-walls and foot-walls of many folds in this area.

115

5.5 Methods used to characterise growth sequence development along strike in this study. The style 
of folding in this area involves depression of the footwall and hangingwall below the datum marked 
by relatively undeformed pre-kinematic level. The minimum structural relief of the onlapping 
(green) growth sequence is equal to the thickness A. Structural relief developed during the 
overlapping (blue) interval is given by B-C. These measurements were taken along strike at 100m 
intervals.

119

5.6 Nomenclature used within the results section of this study, a shows a dip attribute map of the top 
PM2 surface of the detailed study area. Folds 1 and 2 are indicated, as are the foot-wall synclines 
adjacent them. Red triangles mark the positions of lateral terminations of the folds against strike- 
slip faults, b shows an uninterpreted seismic profile showing folds 1 and 2 and the growth 
sequence, c is a line drawing interpretation of the same seismic profile showing the subdivision of 
the PM3 interval into lower and upper growth sequences. Channel levee systems described from 
the lower and upper growth sequences are termed the lower and upper channel levee systems, 
respectively.
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5.7 3D surface of the detailed study area, generated from the top surface of the pre-growth sequence. 
This surface illustrates the non-uniform lateral distribution of uplift along strike of each fold. 
Maximum fold uplift is concentrated towards the lateral terminations against strike-slip faults which 
segment individual thrusts and folds. The sense of offset for the strike slip fault systems can be 
determined from channel systems within the pre-growth sequence. Where these terminations 
occur, sub-vertical scarps are formed, and can be seen at south eastern lateral fold terminations. 
The foot-wall synclines associated with folding can also be seen, these form closed depressions in 
three dimensions, as indicated by the two way time contours (25ms Interval).
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5.8 Graphs showing the along strike distribution of uplift for folds 1 (a) and 2 (b). a shows that both 
lower and upper growth sequences display areas of increased uplift located at the lateral fold 
terminations. Inset map shows both folds with lateral terminations marked by red triangles. 1 and 2 
mark the zones of increased uplift observed at the lateral terminations for fold 1, see also Fig. 5.7. 
b shows a constant distribution of uplift along strike over the lower growth sequence for fold 2, with 
the exception of the north-east termination which shows a greatly increased uplift over the same 
interval (marked 3). The upper growth sequence shows a shift in the area of maximum uplift
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towards the central part of the fold (marked 4).
5.9 Graphs showing along strike measurements of expansion factor measured for both folds over the 

lower and upper growth sequence intervals. Black triangles mark the positions of lateral 
terminations of the folds against bounding strike-slip faults. Shaded regions indicated zones of 
increased fold activity. See text for details.
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5.10 Isochron map of the lower growth sequence, contours spaced at 25ms intervals. Dashed black 
arrows indicate the directions of sedimentary input for the deposits making up this sequence. LT = 
Lateral terminations, MT = Maximum thickness, CLS = Channel levee system. Note that uplift 
along folds 1 and 2 is distributed unevenly along strike, with areas of increased uplift being 
concentrated towards the lateral terminations of the folds against strike slip faults (marked LT). 
Points marked 1-4 correspond to the zones where an increase in expansion factor is observed, 
refer to figure 5.9.
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5.11 Isochron map of the upper growth sequence, contours spaced at 25ms intervals. Dashed white 
arrows indicate the sedimentary input directions. Points 5 and 6 correspond to the measured 
zones of increased expansion factor in figure 5.9 LT = lateral terminations, MT = Maximum 
thickness, CLS = Channel levee system. See text for details.
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5.12 a shows a amplitude map of the top lower growth sequence surface. UGS Channels mark upper 
growth sequence channel levee systems that have partially incised down to this stratigraphic level 
but are not part of the lower growth sequence. The lower channel levee system crosses the crest 
of fold 1 where a decrease in channel sinuosity is observed. Otherwise the course of this channel 
is unaffected by development of folds 1 and 2. b shows RMS amplitude extracted over a 60ms 
window below the top surface of the lower growth sequence. The map shows two channel levee 
systems (marked CLS) which also flow perpendicular to the strike of folds 1 and 2 but do not cross 
the fold crests.
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5.13 a shows the amplitude map at the base of the upper channel levee system. This channel splits at 
the south-east lateral termination of fold 1 into western and eastern segments, of which the 
western segment is the younger. The western segment shows spatial variability in channel lateral 
migration and in the formation of cut-off loops (dashed lines), b shows a series of interpreted 
seismic profiles of the upper growth sequence, with the upper channel interval marked in blue. 
These profiles illustrate the change in channel morphology as it is diverted around the relief formed 
by fold 2 over the upper growth sequence interval.
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5.14 Schematic figure showing the effect of laterally decreasing deposition rates from submarine 
channel systems on growth sequence architecture. At T1 shown in a, the blue channel system 
deposits progressively thin away from the channel axis, resulting in an apparent decrease in the 
relative rate of sedimentation compared to uplift at line B. At T2 shown in b, a later channel levee 
system repeats the process to build the overall growth sequence architecture where apparent 
changes in the relative rates of sedimentation vs uplift are affected by lateral variations in 
deposition rate away from the channel axis as well as from fold uplift itself.
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5.15 Conceptual model of fold development and growth sequence development. See text for details. 143-
144

6.1 Conceptual model of a deep water fold-belt setting where sedimentation interacts with deformation 
to control the evolution of seafloor bathymetry. The themes covered in the three chapters in this 
thesis are placed within the context of this environment.

148

6.2 Examples of channel-structure interactions which show the transition from diversion to 
confinement. Each figure shows a seabed dip map draped with time contours spaced at 10ms 
intervals, together with a isochron map of the submarine channel with the folds marked as 
anticlines and synclines. Figures a and b illustrate a simple diversion around the tip of a fold which 
causes a shift in channel course of c.400m to the south east. Figures c and d show a diversion 
and avulsion caused by multiple folds (see chapter 5 for more details). The eastern channel 
segment is diverted for over 4 km by two folds which show non-uniform uplift along strike. Despite 
the influence of multiple folds on the channel course, this system is still relatively free to migrate 
and still exhibits a sinuous planform geometry. Figures e and f show a channel diverted by 
multiple structures but which is confined -  this limits levee deposition and lateral migration of the 
channel.

150

6.3 Examples of channel-structure interactions which show the transition from deflection to blocking. 
Each pair of figures shows a base channel sequence amplitude map together with a seismic profle 
illustrating some key characteristics. Figure a shows deflection of a single meander loop into a 
foot-wall syncline. This deflection is associated with a avulsion at the base of the channel 
sequence, which has become tilted due to subsequent folding, shown in profile b. Figures c and d 
show a deflection away from a growing fold, associated with the formation of a HARP unit (seen in 
c), the formation of lateral accretion surfaces facing away from the axis of uplift and internal levee 
reflections showing increased rotation towards the base of the levee package (d). Blocking is 
illustrated by e and f. The seismic profle shown in f is taken along the channel centreline and 
illustrates the increased thickness of channel deposits downstream of the fold which has caused 
blocking of this channel. A much thinner sequence of channel deposits is preserved upstream of 
the fold. See also chapter 3 for more details.
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6.4 The contour map shown in a shows the time structure at the base of the growth sequence (T60 
horizon in b) for the Niger Delta study area. Coloured lines represent the paths of several 
submarine channel systems located at various stratigraphic levels within the growth sequence, as 
shown in the seismic profile in b. This figure shows that, from the onset of growth of the Aga fold, 
submarine channel systems were diverted around the lateral tip regions of the fold with the location 
of the diversions remaining fairly constant -  ie lateral propagation of the fold along strike was not a 
significant factor in controlling the pathways of submarine channel systems during growth of the 
Aga fold. Compare with the example of fold growth documented in chapter 5.
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6.5 Series of time structure maps of the top pre-kinematic surface (a, c, e) with the axes of anticlines 
and synclines marked. Points marked D correspond to diversion points where a change in overall 
channel course is observed. The graphs b, d, and f show sinuosity measurements taken between 
inflection points in order to compare the eastern Nile and Niger Delta examples (see chapter 2). 
White dashed lines on figure a, c and e indicate the courses of submarine channel levee systems 
which structurally controlled. All of the channel courses are diverted but spatial variations in 
sinuosity occur as the channel is diverted around the fold. The channel systems in a and c show a 
pre-diversion and post-diversion sinuosity increase respectively, as can be seen on the 
corresponding graphs b and d. The Niger Delta channel (located at the base of the growth- 
sequence) shows a lesser range of sinuosity values associated with diversion of the channel 
compared to the eastern Nile examples in a to d.
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6.6 Comparisons of folding styles from the eastern Nile (a and b) and the Niger Delta (c and d). a and 
c show dip attribute maps of the pre-kinematic surfaces (black dotted lines on seismic profiles) with 
overlayed time structure contours. Folds from the eastern Nile have typical lateral extents of 3- 
4km due to segmentation by the numerous strike slip faults (a). Folding is also associated with the 
formation of foot-wall and hanging-wall synclines which form closed depressions in three 
dimensions. The Niger delta folds shown in c considerably more laterally extensive (10s of km) 
compared to the eastern Nile folds. These folds extend along strike via thrust fault linkages (see 
Higgins et al 2007). Closed depressions within the hanging-wall and foot-wall are not associated 
with the Niger Delta folds, instead elevation of the hanging-wall above the footwall occurs, along 
with extensive degradation of the fold at the seafloor (d).
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6.7 Surface profiles extracted from seismic horizons following the pathways of submarine channel 
systems during diversion around folds. The surface shown in a is the top-pre kinematic surface 
from the eastern Nile dataset. The graph in b shows the surface profile above which a notional 
equilibrium profile has been positioned to illustrate conceptually the distribution of accommodation 
space. Key structures which control the distribution of accommodation around these folds include 
foot-wall synclines (FWS), strike-slip faults (SSF) and lateral terminations (LT). Accommodation 
can be subdivided into ponded (PA) and slope (SA). The structural style of folding from the Niger 
Delta study area is not associated with the development of synclines adjacent to the fold crest (c) 
with the result that variations in accommodation space (d) along a submarine channel system 
diverting around the fold occur only at the forelimb to foot-wall transition where an increase in slope 
accommodation (marked SA on d) occurs.
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Abstract

A B STR A C T

The progress of modern hydrocarbon exploration into increasingly deepwater settings has led to 

a renewed interest in deepwater fold and thrust belts. Deepwater fold and thrust belts often 

form as a result thin-skinned compression above a ductile substrate, such as overpressured 

shale or salt. The compression driving deformation in these settings accommodates up-dip 

extension due to gravitational collapse of passive margin deltaic systems. Deformation in these 

settings is accompanied by a range of coeval sedimentary processes which interact with the 

deforming seafloor topography both at large scales to form kilometre-thick growth sequences, 

and at smaller scales involving individual flow events. Thus, in order to fully understand how 

these systems evolve, it is necessary to link structural and sedimentary processes when 

developing conceptual models which may then be applied to predicting facies distributions in 

these settings.

Imaging of deepwater fold and thrust belts using three-dimensional (3D) seismic data permits 

detailed investigations to be carried out into the development of, and interactions between, 

features such as folds, growth sequences and submarine channel levee systems. Although 

such data has already been used to advance our understanding of many deepwater 

depositional systems, it has not been fully utilised to study the interactions between deformation 

and sedimentation in these settings.

The aim of this study is to utilise 3D seismic data volumes from the Eastern Nile Foldbelt and 

the deepwater western Niger Delta to study the interactions between sedimentation and 

deformation, and to extract some general principles which can be applied to other deepwater 

fold and thrust belts. The scale of investigation ranges from growth sequences - which are up 

to two kilometres thick, to more detailed interactions between smaller scale (c. 500m in width) 

submarine channel levee systems and fold growth.

For the first time, a coherent set of end-member interactions between submarine channel 

systems and evolving seafloor structures is presented. These interactions form a descriptive 

framework and serve as a basis for comparing submarine channel responses to deformation 

from various deepwater fold and thrust belt settings. Transitions between these interactions is 

controlled by factors such as relative timing and rates of deformation compared to 

sedimentation, and recognition of these interactions allows more accurate inferences to be 

made regarding the evolution of seafloor relief during folding. The interactions between 

submarine channel development and folding also depends on the fold structural style which is 

critical in controlling the nature of localised accommodation space adjacent to the fold.
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Abstract

Changes in accommodation space associated with folding can result in dramatic spatial 

variations in channel morphology over less than a hundred metres.

This study also documents the strong control on growth sequence development and internal 

architecture as a result of variations in structural style along strike. Relationships such as 

overlap and onlap can be used to predict submarine channel responses to folding, given a 

knowledge of the fold structural style. The internal architecture of growth sequences is also 

dependant on compensational stacking relationships, and the case study from the Niger Delta 

shows an important example of how mass transport deposits play a key role in filling local 

accommodation space and influencing subsequent sedimentation pathways.

The results presented in this thesis demonstrate that 3D seismic data can be a powerful tool in 

our understanding of deepwater fold and thrust belt systems, and that linking structural and 

stratigraphic investigations can provide new insights into the interactions between deformation 

and sedimentation.
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Chapter 1 Introduction

C H APTER  1 

IN TR O D UC TIO N

1.1 Rationale

Deepwater fold and thrust belts can occur in water depths of up to 3000m , and are becoming 

increasingly important, but high risk, settings for modern hydrocarbon exploration. These are 

geological settings where deformational processes can exert a powerful control on sediment 

distribution and also on sedimentary processes. Therefore, understanding the detailed 

interactions between deformation and sedimentation in such settings provides a link between 

the disciplines of structural geology and sedimentology, and such knowledge can be applied to 

better understand and predict reservoir occurrence (or lack of) in such settings. From a 

scientific perspective, these settings provide ideal natural laboratories for the study of a wide 

variety of structural and sedimentological processes. Deepwater fold and thrust belts occur in 

areas of tectonic compression, with the main driving processes being:

1 Thick skinned plate collision processes involving subduction, examples include the 

Barbados Accretionary Prism (Westbrook et al., 1988); the Makran Accretionary Prism 

(Kukowski et al., 2001), the Nankai Trough (Moore et al., 1990) and the Mediterranean 

Ridge (Chaumillon and Mascle, 1997).

2 Thin skinned, gravitational collapse of large deltaic sediment wedges deposited on passive 

margins. These form the systems studied in this thesis. Examples include the Niger Delta 

(e.g. Doust and Omatsola, 1990; Morley and Guerin, 1996; Billotti and Shaw, 2005), the Gulf 

of Mexico (e.g. Wu et al., 1990; Peel et al., 1995; Trudgill et al., 1995) and the Angolan 

Margin (Brun and Fort, 2004).

In addition, some deepwater fold belts may form as a result of a combination of the above 

processes, one exam ple being the N W  Borneo fold belt (Hesse et al., 2009).

The seafloor bathymetry of many deepwater fold belts is characterised by numerous folds which 

form above upwards propagating blind thrusts (e.g Dem yttenaere et al., 2000; Huyghe et al., 

2004; Heinio and Davies, 2006). The structural styles and mechanisms of formation of these 

folds have been extensively documented in the literature, primarily by using two-dimensional 

models and reconstructions based on natural examples from both seismic profiles (e.g. Shaw  

and Suppe, 1994; Rowan, 1997; Masaferro et al., 1999; Mitra, 2002) and outcrop analogues 

(e.g. Poblet and Hardy, 1995; Poblet et al., 1998; Ford et al., 1997). Coeval sedimentation
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during fold uplift results in the formation of geometrically distinctive sedimentary packages 

adjacent to the fold limbs termed growth sequences (e.g. Suppe et al., 1992; Burbank and 

Verges, 1994). Growth sequences provide a sedimentary record of the relative rates of uplift 

and also the sedimentary responses to emerging fold relief (e.g. Burbank et al., 1996). In deep  

water fold and thrust belts, the preservation potential of growth sequences is much greater than 

their subaerial counterparts exposed at outcrop, and this allows detailed studies using 3D  

seismic data to be undertaken. Relatively few studies take into account the three-dimensional 

spatial and temporal evolution of multiple fold structures and their associated growth sequences 

in these settings (Salvini and Storti, 2002; Higgins et al., 2007; Morley, 2009). One of the aims 

of this thesis is to study the three dimensional development of growth sequences from a 

stratigraphic, rather than structural perspective in an attempt to gain new insights into the 

interactions between sedimentation and deformation during fold uplift.

Sedimentation in many deepwater fold belts is driven by gravity current processes -  such as 

channel levee systems formed by the passage of successive turbidity currents over time (see  

recent review by Wynn et al., 2007), and also large scale, catastrophic mass wasting events 

(e.g. Frey Martinez et al., 2005; Gee et al., 2007). At a smaller scale, individual folds can also 

be affected by mass wasting from the fold limbs, and by erosion due to turbidity currents (Heinio 

and Davies, 2006). Submarine channel levee systems are now extensively documented in the 

literature, but relatively few studies focus on the link between channel development and 

deformation in structurally active settings (Huyghe et al., 2000; Ferry et al., 2005; Gee and 

Gawthorpe, 2006). This is despite a generally good understanding of the way in which flow 

character and deposition from turbidity currents varies in response to bathymetric features 

(Alexander and Morris 1994; Bursik and Woods 2000; Kneller et al., 1995; Lamb et al., 2005; 

Toniolo et al., 2006). Since submarine channels form key conduits for sedimentation in many 

deepwater fold belts, another primary aim of this thesis is to examine how these systems evolve 

in active deformational settings.
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1.2 Overview of sedimentation and tectonics in deepwater fold belts

Deformation in deepwater fold and thrust belts results in a complex seafloor bathymetry which 

controls the distribution of sediments via the slope gradient, and also by variations in 

accommodation space (e.g. Demyttenaere et al., 2000; Smith et al., 2004; Gee and Gawthorpe, 

2006). This section begins with a summary of current, large scale conceptual models for 

sedimentation in these settings (1.2.1). This is followed by a brief overview of growth 

sequences. Growth sequences are sedimentary packages which form coevally with fold growth 

and are critical in terms of recording sediment-structure interactions over time (1.2.2). The final 

section (1.2.3) summarises recent work on submarine channel systems with a focus on the 

interactions between channel development and underlying deformation.

1.2.1 Models of sedimentation on complex slopes in deepwater settings

Clastic sedimentation and submarine fan development in deep water environments can occur in 

water depths of over 5000m  (e.g. Babonneau et al., 2002). Accommodation space is a key 

control on submarine fan architecture, especially in structurally active settings (e.g. Prather,

2003). In deepwater environments, accommodation space is best defined in a similar manner 

to that used for subaerial fluvial systems, where the magnitude of accommodation space is 

given by the difference between the depositional profile (in this case the slope) and a 

hypothetical equilibrium profile (Fig. 1.1, see also Mackin, 1948). The equilibrium profile 

represents a hypothetical surface along which neither erosion or deposition occurs (Mackin, 

1948; Pirmez et al., 2000; Kneller, 2003;). For a submarine channel system, the shape of the 

equilibrium profile is generally thought to be concave upwards (Fig. 1.1), and limited at its 

uppermost and lowermost points by the head of the submarine feeder canyon and by the 

channel-lobe transition respectively (Pirmez et al., 2000; Kneller, 2003). Base level for 

deepwater environments can be described as the point at which channelised flows become 

unconfined when they reach the basin floor (i.e. the channel-lobe transition -  Kneller, 2003).

Modifications to the shape of the depositional surface due to deformation can cause variations 

in accommodation space and slope gradient leading to zones of enhanced erosion and 

deposition (e.g. Pirmez et al., 2000; Ferry et al., 2005; Smith, 2004). This is discussed in more 

detail in Chapter 6, section 6.2.3. Additionally, external controls also affect the overall shape of 

the equilibrium profile itself, such as sea level changes and variations in sediment supply 

character (Ross et al., 1994; Kneller 2003). Current conceptual models for the filling of 

structurally created accommodation space in deepwater settings can be summarised in terms of
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Sediment source

Slope profile

Equilibrium profile

Negative accommodation space
Positive accommodation space

Basin floor

Erosion Deposition

F igure 1.1: Summary of the equilibrium profile concept applied to deepw ater sedimentary systems. 
Accommodation space in such settings is given by the difference between the depositional surface 
and a notional equilibrium profile. Modified from Kneller 2003.
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two end-member models, described by Smith, (2004) as the cascade of silled sub-basins and 

the connected tortuous corridor models (Fig 1.2).

The cascade of silled sub basins style of structurally controlled sedimentation is more 

commonly known as the ‘fill and spill’ model, and was developed from studies of the Gulf of 

Mexico slope (Satterfield and Behrens, 1990; Badalini et al., 2000; Beaubouef and Friedmann, 

2000; Winker and Booth, 2000). This model describes the sequential down-slope filling of a 

series of enclosed mini-basins formed by salt withdrawal. Each successive mini-basin is filled 

up to its spill point, after which bypass occurs resulting in filling of the next basin down-slope 

(Fig 1.2). Erosion tends to focus at the spill points as the bypassing flows adjust to the local 

change in base level in order to reach the next mini-basin lower on the slope (Beauboeuf and 

Friedmann, 2000). The end result is a series of basin fills whose age progressively decreases 

in the down-slope direction (Fig 1.2). Each basin is linked by channels which bypass basins 

further upslope and incise the spill points between each basin.

The connected tortuous corridor model of structurally controlled slope sedimentation (Fig 1.2) 

involves a flow path that is not broken into separate mini-basins, but instead follows a tortuous 

route which is heavily influenced by the surrounding bathymetric relief (Smith, 2004). Examples 

of tortuous flow pathways on the present day seafloor of the Eastern Mediterranean can clearly 

be seen in Chapter 3 (Fig. 3.1). The down-slope flow pathway can be influenced by several 

types of deformation, some examples are:

1. Folds detached within salt or shale: These often form stepped slopes where sediment 

pathways are guided around the edges of multiple fold structures according to the 

overall down-slope gradient. Examples include the shale-detached folds offshore NW  

Borneo (Dem yttenaere et al., 2000; Morley, 2009), the Niger Delta fold belt (Pirmez et 

al., 2000; Hooper et al., 2002; Heinio and Davies, 2006)

2. Extensional faulting which guides flow pathways around the lateral terminations. An 

example of this is documented by Ferry et al., (2005) from offshore Angola.

3. Salt diapirism which guides sedimentation into the zones of withdrawal around growing 

diapirs. This is documented by Gee and Gawthorpe, (2006), from the Angolan slope.

Areas of increased erosion and deposition along the connected tortuous corridor are controlled 

by variations in the underlying slope gradient, such as where flow paths cross extensional faults 

or folds (Demytteneare et al., 2000; Huyghe et al., 2004; Ferry et al., 2005). In contrast to the 

fill and spill model, the age of deposits does not systematically young down-slope, but will be 

affected by channel avulsions (Fig1.2). O f these two models for slope sedimentation in 

structurally complex settings, the connected tortuous corridor model seems more appropriate to
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T  Oldest

Flow

Erosion
Successively filled 
mini-basins \

Youngest

Terminal lobe

Fill and spill model

Down slope younging of basin fillPonded fill of each basin prior 
to spill point being reached

Perched fill of each basin occurs 
once fill phase reduces relief to 
allow bypass next basin

Mobile substrate, e.g. salt
Terminal lobe on 
basin plain

Material removed -—  
by erosion once spill 
point is reached

Connected tortuous corridor modelSediment pathway 
controlled by anticlines

Flow

Age of deposits affected by avulsions but 
do not systematically young down-slope as 
in fill and spill modelT2 Post-avulsion deposits (yellow)

Erosion

Avulsion node

T2 post-avulsion depositsAvulsion node

Terminal lobe

T, Pre-avulsion deposits (green)

Erosion localised where increases 
in gradient occur

Figure 1.2: Summary of the fill and spill and connected tortuous corridoor models for sedimentation in structurally complex seafloor settings. The fill 
and spill model (a and b) applies to confined mini-basins where each basin is sequentially filled in a down-slope direction. The connected tortuous 
corridoor model (c and d) applies to slopes where flows are not confined, but guided by bathymetric features which obstruct flow. See text for 
details.
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the deepwater fold belts which are the structural setting of the systems analysed in this thesis. 

Both of these models for deepwater sedimentation are associated with the deposition of growth 

sequences, which are discussed in the next section.

1.2.2 Growth sequences

Sedimentation which is coeval with deformation forms geometrically distinctive growth 

sequences on the backlimbs and forelimbs of folds (Fig 1.3). These packages are termed 

growth sequences (c.f. Suppe et al., 1992) and can be used to determine the kinematic 

mechanism of folding (Rowan, 1997; Storti and Poblet, 1997; Poblet et al., 1997; Bernal and 

Hardy, 2002; Salvini and Storti, 2002) and also the relative rates of uplift and sedimentation 

over time (Suppe et al., 1992; Burbank and Verges, 1994). Growth sequences can also record 

the onset of fold growth via the first occurrence of onlap and/or thinning onto the fold limb or 

crest (Suppe et al., 1992). Despite the importance of growth sequences in constraining the 

kinematics and history of folding, there are comparatively few studies which consider their three 

dimensional development (Salvini and Storti, 2002; Higgins et al., 2009) and even less which 

document the evolution of fold relief at the depositional surface over time (Morley and Leong, 

2008). One possible reason for this is that much previous work is based largely on two- 

dimensional numerical modelling (e.g. Poblet et al., 1997; Storti and Poblet, 1997; Bernal and 

Hardy, 2002), outcrop data, which is not often fully exposed (e.g. Burbank and Verges, 1994; 

Ford et al., 1997; Zapata and Allmendinger, 1996) and on limited two-dimensional seismic 

profiles (e.g. Rowan, 1997; Masaferro et al., 2002; Suppe et al., 2002). Some recent studies 

however (Higgins et al., 2009; Morley, 2009) have demonstrated that 3D seismic data can be a 

powerful tool in characterising growth sequence evolution and fold development over time. The  

studies listed above tend to focus purely on the structural aspects of fold evolution derived from 

growth sequence analysis. However, growth sequences provide a record of the interactions 

between deformation and sedimentation (Burbank and Verges, 1994; Burbank et al., 1996). 

This is particularly true for deepwater fold belts, where the lack of significant erosion seen in 

subaerial examples is more likely to result in full preservation of the growth sequence in deep 

water settings. Despite our increasing knowledge of these systems, studies which fully 

appreciate the detailed record of sedimentation and tectonics recorded by growth sequences 

during fold growth are few (Morley and Leong, 2008).

In order for growth sequences to develop, the mechanism of sedimentation must involve a 

significant level of bed load transport and deposition -  for example turbidity currents, debris 

flows, slides and slumps (Morley and Leong, 2008; Morley, 2009;). These types of flows show 

a response to the structurally induced bathymetry and will pond within bathymetric low points
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and become diverted around positive fold relief (e.g. Demytteneare et al., 2000; Huyghe et al.,

2004). However, in deep water environments hemipelagic and pelagic sedimentation can form 

drape-like packages of uniform thickness across the fold crest (Chapter 4 -  Fig. 4.5). These  

result in a different stratal geometry compared to that observed for growth sequences, 

especially if the fold limbs are not steep enough to induce mass wasting. This creates an 

important pitfall when interpreting the correct timing of the onset of fold growth (Cartwright 

1992). This is discussed in more detail in Chapter 2 under section 2.2 -  seismic interpretation 

methods.

The key characteristic of a growth sequence associated with folding is a bed geometry showing 

expansion and divergence away from the fold crest (Fig 1.3). This has been recognised from 

studies at outcrop scale (e.g. Riba, 1976) but is most clearly seen on seismic profiles (Rowan et 

al., 1997; Suppe et al., 2002; Masaferro et al., 2002; Briggs et al., 2006). The geometry of the 

stratal boundaries within the growth sequence will vary according to the relative rates of uplift 

and sedimentation (Fig 1.3, see also Burbank and Verges, 1994). The use of the term ‘relative’ 

reflects the fact that, where age calibrations are unavailable it can be difficult to separate 

whether sedimentation rate or uplift rate is the key controlling factor in controlling growth 

sequence deposition. Another potential pitfall is caused by interpreting narrow stratigraphic 

intervals, where spatial variations can occur due to distance from the sediment source -  see 

Chapter 5 -  Fig. 5 .14) High relative rates of uplift versus sedimentation result in an onlapping 

and offlapping stratal geometry within growth sequences (Fig 1.3). The onlap and offlap 

termination points mark the positive relief against which deposition from the flows whose 

deposits comprise the growth sequence terminate against. These points form key markers in 

interpreting palaeo-seafloor relief during fold growth and coeval sedimentation. If the relative 

rate of uplift is low compared to sedimentation rates then sedimentary packages will show 

thinning but otherwise continuous stratal geometries across the fold crest (Fig 1.3). This 

stratigraphic relationship implies that no positive relief develops at the depositional surface 

during folding, and that sedimentation completely heals over the growing fold (Burbank and 

Verges, 1994).

Within deepwater fold belts, an important sedimentary component of many growth sequences 

are submarine channel levee systems. Hemipelagic and mass transport deposits can also form 

important components of growth sequences, with the proportion of each being dependent on 

the local geological setting (e.g. Morley and Leong, 2008, see also Chapter 4). The deposits 

from submarine channel systems form important hydrocarbon reservoirs in these settings 

however (e.g. Clemenceau et al., 2000; Fonnesu, 2000; Abreau et al 2003; Mayall et al., 2006), 

and they are described in the next section.
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Figure 1.3: Definitions of growth sequence geometry used in this thesis, adapted from 
Burbank and Verges 1994. Overlap (b), offlap (c) and onlap (d) indivually represent 
differring relative rates of uplift versus sedimentation during folding
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of folding x Area shown in b, c and d
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Chapter 1  Introduction

1.2.3 Submarine channel systems and their interaction with seafloor deformation

1.2.3.1 Overview of submarine channel systems:

This section presents a brief overview of submarine channel systems with an emphasis on the 

response of these systems to deformation and to complex seafloor bathymetry. The use of the 

term ‘submarine channel system’ as opposed to ‘turbidite channel’ throughout this thesis is 

deliberate in that the exact processes of sediment transport, deposition and flow behaviour 

within these channel systems is a relatively recent area of research (e.g. Corney et al., 2006; 

Keevil et al., 2006; Imran et al., 2007; Peakall et al., 2007; Straub et al., 2008). The use of this 

term also reflects recent studies which show that processes such as hyperpycnal flows may 

also be an important mechanism for sedimentation and erosion in submarine channels and 

canyons (Flood et al., 2009; Khriponouff et al., 2009).

Submarine channels are a primary mechanism of sediment distribution in many deep sea fan 

systems, for exam ple the Amazon fan (Damuth and Flood, 1984, 1985; Damuth et al., 1988), 

the Bengal fan (Curray et al., 2003, Schwenk et al., 2005), the Zaire/Congo fan (Babonneau et 

al., 2002; Droz et al., 1996, 2003), the Indus fan (Kolia and Coumes 1987; Deptuck et al., 2003; 

Von Rad and Tahir, 1997) and the Niger fan (Damuth 1994; Pirmez et al., 2000; Deptuck et al., 

2003; 2007). They typically extend for hundreds of kilometres from the shoreline and persist in 

water depths of over 4000m  (e.g. Hagen et al., 1994; Babonneau et al., 2002; Jegou et al., 

2008). The submarine channel system as a whole consists of a proximal canyon which feeds a 

number of individual channel levee systems further downslope. Each channel levee system  

ends on the basin plain with the formation of terminal lobes (Wynn et al., 2002; Jegou et al., 

2008). Avulsions of channel levee systems over time mean that a single submarine canyon will 

typically feed several channel levee systems, the entirety of which is termed a channel levee- 

complex, whereas an individual channel is termed a channel levee system (Deptuck et al., 

2003).

The submarine canyon can be up to over 10km in width and over 1km in depth (Fig. 1.4; 

Babonneau et al., 2002; Pirmez and Imran, 2003; Antobreh and Krastel, 2006). Present day 

highstand conditions mean that many submarine canyons are no longer directly connected to 

their original fluvial source (e.g. Bouma et al., 1985; Damuth et al., 1988). Notable exceptions 

to this include the Montery Canyon (e.g. Smith et al., 2007) and the Zaire Canyon (Heezen et 

al., 1964; Khripounoff et al., 2003) and also the V ar Canyon (Khripounoff et al., 2009). 

Submarine canyon morphology is often characterised by multiple scarps due to sidewall
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Simplified channel planform
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Figure 1.4: Overview of submarine channel systems and their down-slope variation in morphology. The overall scale and architectural complexity 
of the submarine channel decreases downslope due to progressive loss of flow volume (depicted by the red shaded areas) both down slope and 
over time. The profiles A  to D show general cross sections of the channel levee system at each point along the slope. Slope values from Pirmez 
and Imran 2003, channel cross sectional profiles modified from Babonneau et al 2002.
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collapse (Babonneau et al., 2002; Popescu et al., 2004; Antobreh and Krastel, 2006) and 

canyons are of sufficient vertical relief that flows passing down them cannot overtop the canyon 

margins (Pirm ez and Imran, 2003). Canyon relief gradually decreases down-slope (Fig .1.4) 

until a transitional zone is reached where flows begin to overspill the sidewalls and deposit the 

classic wedge shaped channel levees commonly documented from these systems (e.g. Skene 

et al., 2002). This transition zone between canyon and channel levee system is often 

associated with an increase in the sinuosity of the channel (Pirm ez and Imran, 2003). Sinuosity 

is defined as the straight line distance between two points divided by the along channel distance 

between the sam e two points -  a value of 1 indicates the channel is straight. Channel sinuosity 

is used a m easure of the effects of underlying deformation on channel levee system 

development in this thesis -  see Chapter 3. Sinuosity is a key morphological feature of 

submarine channel systems as progressive lateral migration over time results in deposition of 

extensive, sand-rich lateral accretion packages which can, and do form hydrocarbon reservoirs 

(e.g. Mayall and Stewart, 2000; Abreau et al 2003).

The down-slope transition from canyon to channel levee system is typically accompanied by a 

decrease in the depth of erosion into the pre-channel substrate and an increase in height of the 

channel levees (Fig. 1.4; Pirmez and Imran, 2003). Avulsions can frequently occur within this 

zone and form radial, fore-stepping or back-stepping avulsion patterns (Kolia, 2007). The  

channel levee systems within this zone (mid-fan) are up to 4km in width with a relief of over 

100m (e.g. Deptuck et al., 2003; Heinio and Davies, 2007). These systems often show multiple 

levels of terraces, formed by processes such as meander cut-off and incision, and also by 

sidewall collapse (Posamentier, 2003; Babonneau et al., 2004; Sawyer et al., 2007).

The large scale channel levee systems of the middle fan pass down-slope into smaller channel 

levee systems typically 500m  in width which often show highly sinuous planform geometries 

(Flood and Damuth, 1987; Damuth et al., 1995; Pirmez and Flood, 1995). These smaller 

channel levee systems show less morphological complexity than the large scale (km in width) 

channel levee systems further up dip (Fig 1.4). The lower fan channels pass into terminal lobe 

complexes on the basin floor, these terminal lobes mark the basinward limit of deposition from 

submarine channel systems with lobes showing frequent avulsions and fed by compensationally 

stacked small scale (c.10m width) distributary channels (e.g. Wynn et al., 2002; Jegou et al., 

2008).
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Figure 1.5: Summary of the key flow processes operating within submarine channel systems. Key processes include a portion of the flow which 
exists as an overbank cloud outside of the main channel. Other processes include flow stripping and reversed helical circulation (relative to subaerial 
channels) at meander bends. See text for details.
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1.2.3.2 Processes within submarine channel systems:

This section aims to briefly summarise the main processes involved in sediment transport, 

deposition and erosion within submarine channels (Fig 1.5). These processes exert a powerful 

control on submarine channel morphology (Peakall et al., 2000; 2007; Metivier et al 2005; Kane 

et al 2008; Straub et al 2008). There are also several important process differences between 

submarine and subaerial channels, despite apparent similarities in morphology. Key physical 

differences between subaerial fluid flow and submarine density currents include:

•  The density difference between the ambient fluid and the flow is much less for 

submarine density flows (difference of 50kg m3) than for air and water (difference of 

1000kg m3). This results in increased entrainment of ambient seawater into submarine 

density flows (e.g. Kneller and Buckee, 2000). This results in an increase in flow height 

of the channelised portion of flow until part of the volume of the flow overtops the 

channel axis and forms an overbank cloud. This overbank cloud gives rise to levee 

construction and sediment wave formation (e.g. Mohrig and Buttles 2007) particularly at 

meander bends where this portion of the flow can be preferentially removed -  termed 

flow stripping (Normark and Piper, 1983; Peakall et al 2000; Normark et al 2002). An 

excellent exam ple of sediment wave resulting from this process is shown in Chapter 3, 

figure 3.1 where channel C exits the eastern Nile fold belt: Flow stripping at a sharp 

meander bend results in the formation of prominent sediment waves facing down 

stream.

• The vertical velocity profile with depth for a density current shows a maximum value 

close to the base of the current (e.g. Kneller and Buckee, 2000). This is in contrast to 

the vertical velocity profile in fluvial systems where the velocity maximum occurs near 

the surface (e.g. Knighton, 1998). The result of this is that increased run-up occurs 

within density currents upon encountering a slope and particularly as at meander bends, 

leading to increased loss of material to the overbank portion of flow at these locations 

(e.g. Corney et al., 2006; Straub et al., 2008).

A key problem in determining the exact processes that operate within submarine channel 

systems is the lack of direct observations -  in part due to the destructiveness of the flows which 

occur, and also due to the infrequency of flow events over anthropogenic time scales 

(Khripounoff et al., 2003, 2009; Pauli et al., 2003). Despite this, much recent progress in 

understanding the initiation of submarine channels and the subsequent behaviour of the flows in 

these systems comes from recent numerical modelling and physical experiments.
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The inception of submarine channels from an initial flow spreading laterally downslope is still a 

relatively poorly understood process (Imran et al., 1998; Metivier et al., 2005; Yu et al., 2006). 

A key factor which appears to be responsible for the process of channel initiation is the 

difference between erosion and deposition rates across a spreading turbidity current (Imran et 

al 1998). Another necessary condition is the presence of a thin initial flow that incompletely 

covers the surface over which it is flowing, this results in the formation of flow lanes within the 

spreading flow with zones of increased deposition in between (Yu et al., 2006). This process 

then appears to generate a positive feedback where increasing deposition acts to separate and 

confine flow over time and establish a channel planform (Yu et al., 2006).

The flow processes operating within submarine channels are now better understood, with recent 

studies focussing on flow behaviour at channel bends associated with sinuous submarine 

channels (Corney et al., 2006; Keevil et al., 2006; 2007; Peakall et al., 2007; Kane et al., 2008). 

Interestingly, modelling of flows within sinuous submarine channels has shown that the direction 

of helical circulation at bends in submarine channel systems is reversed compared to subaerial 

channel systems (Fig. 1.5; Corney et al., 2006). This results in basal flow directed towards the 

outer bank of a m eander (Fig. 1.5). Basal flow towards the outer bank, combined with inertial 

runup (Straub et al., 2008) and overbank shearing (flow stripping -  Keevil et al., 2007) results in 

significantly increased super-elevation of the flow surface and increased over-spilling of material 

onto the outer bank at meander bends (Straub et al., 2008). An important implication of this 

process is that a significant proportion of the coarse grained basal flow portion can become 

deposited outside of the channel axis entirely (Straub et al., 2008). The commonly observed 

fields of sediment waves which occur on the down-stream facing outer banks of meanders in 

highly sinuous submarine channels appear to support these processes (Fig. 1.5; see also 

Normark et al., 2002; Posamentier, 2003).

1.2.3.3 Response o f submarine channels to deformation:

Relatively few studies focus on the interactions between submarine channel systems and 

deformation (Huyghe et al., 2004; Ferry et al., 2005; G ee and Gawthorpe, 2006; Heinio and 

Davies, 2007). This is despite the common occurrence of submarine channels within actively 

deforming deepwater settings (e.g. Hagen et al., 1994; Laursen and Normark, 2002; Broucke et 

al., 2004; Alonso and Ercilla, 2003; Fildani and Normark, 2004; Adeogba et al., 2005; Cross et 

al., 2009). Studies of submarine channels from Nigeria, the Amazon Fan, Gulf of Mexico and 

the Rhone fan indicate that these systems tend to adjust to a concave upwards equilibrium 

profile over time, despite the influence of deformation on slope profiles (Pirmez et al., 2000). In 

an analogous manner to fluvial systems, the planform response of submarine channel systems
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to underlying deformation and changes in slope can be explained in terms of the channel 

system adjusting to reach a hypothetical equilibrium slope for a given set of flow parameters 

(Fig 1.6; Ferry et al., 2005).

The morphological response of submarine channel systems to deformation is similar to that 

observed for fluvial systems (e.g. Ouchi, 1985). An increase in slope, caused for example by 

underlying folding or faulting can result in a decrease in channel sinuosity as the channel

decreases the length of the reach to match the equilibrium slope (Fig 1.6; Ferry et al., 2005).

The decrease in sinuosity will often be associated with an increase in the level of erosion over 

the particular channel segment -  this is most often expressed as a decreased width:depth ratio, 

with the channel becoming narrower and deeper and increasingly V-shaped in cross section 

(Ferry et al., 2005). The increase in erosion may be associated with decreased levee

deposition due to increased confinement of the flow by the more deeply incised channel, with

the maximum erosion localised at the point where the slope value increases. This was 

observed by Ferry et al., 2005 and also from studies from the Gulf of Mexico at the spill points 

between mini-basins (e.g. Beauboeuf and Friedmann, 2000). A decrease in sinuosity and 

increase in erosion due to underlying uplift may also be associated with the formation of knick- 

points which then propagate upstream and incise into previous channel deposits, resulting in 

the formation of terraces (Heinio and Davies, 2007). Knick-point formation and their upstream  

propagation may be one of the mechanisms by which submarine channels attempt to re-gain 

equilibrium where deformation of the underlying slope occurs.

Decreases in the underlying slope gradient lead to an increase in submarine channel sinuosity 

as the channel system lengthens in order to adjust its local slope to match equilibrium slope 

conditions (Fig 1.6; see also Ferry et al., 2005). An increase in sinuosity is accompanied by 

aggradation of the channel axis as well as lateral migration. Increases in submarine channel 

sinuosity related to an underlying decrease in slope values have been documented from the 

hanging walls of normal faults offshore Angola by Ferry et al., (2005). G ee and Gawthorpe, 

(2006) also observed localised sinuosity increases within a circular depression surrounding a 

salt diapir, again from the Angolan Margin.

Understanding the response in submarine channel development to deformation of the 

underlying slope is critical in order to predict, for example, localised areas of increased sinuosity 

and erosion in structurally active deepwater settings. Areas of increased sinuosity can 

potentially lead to laterally extensive, sand rich lateral accretion deposits (e.g. Abreu et al., 

2003), whereas localised zones of erosion can lead to loss of reservoir connectivity and 

cannibalisation of previously deposited channel axis deposits (e.g. Heinio and Davies., 2007).
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Many of studies listed above tend to focus on the response of the channel axis, however the 

channel levees also form an important component of the system as the height of the channel 

levees acts to confine flow within the channel axis. Variations in channel levee thickness and 

extent was documented in response to relief created by salt withdrawal from offshore Angola by 

Gee and Gawthorpe, (2006), and this suggests that mapping levee extent could provide a 

useful tool when interpreting channel systems in areas affected by deformation. Although many 

studies have collected measurements of channel morphometric parameters (e.g. Pirmez and 

Imran, 2003; Huyghe et al., 2004; Ferry et al., 2005), the potential use of these parameters as 

detailed indicators of channel responses to deformation remains to be addressed. There is also 

a lack of a coherent descriptive framework with which to describe submarine channel-structure 

interactions, particularly given that a wide range of possible interactions and timing relationships 

relative to deformation exist. A detailed knowledge of how submarine channels interact with 

deforming structures would aid our conceptual models of how these channel systems develop 

over time, and hopefully be of use in the interpretation of these systems based on 3D seismic 

data.
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1.3 Aims of study

The research presented here aims to address the interactions between sedimentation and

deformation in deepwater fold belts. Although 3D seismic datasets from specific localities are

used, the underlying aims of this research relate to sedimentation in fold and thrust belts in

general, as does the applicability of the results. The aims of this study are as follows:

•  To document the interactions between submarine channel levee systems and evolving fold 

structures.

•  To investigate the effects of these interactions on channel development and morphology 

over time.

•  Investigate the detailed relative timing relationships between channel-structure interactions 

and uplift in deep water fold belt settings.

•  To investigate how these interactions can be used to constrain the development of fold relief 

over time.

•  To document the relationship between detailed channel-structure interactions and larger 

scale growth sequence architecture.

•  To Investigate how the along-strike variation in structural style and magnitude of uplift along 

folds relates to growth sequence evolution over time.

•  To investigate the three dimensional stacking relationships and the filling of accommodation 

space over time around folds, not only by submarine channel systems but also by mass 

transport deposits.

•  To investigate the links between growth sequence architecture and the evolution of 

submarine channel systems

2 2
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CHAPTER 2 

METHODS

The results presented in this thesis are derived from the interpretation of 3D seismic data 

volumes. This type of data has contributed greatly to our understanding of many aspects of 

geology, particularly so in terms of deepwater sedimentary systems (e.g. Posamentier and Kolia 

2003). The aim of this chapter is to give a brief overview of 3D seismic data and then to 

introduce the main interpretive methods used to derive the results presented in this thesis.

2.1 3D seismic data

The marine 3D seismic data volumes used in this thesis are typically acquired using an airgun 

seismic energy source, a series of geophones then detect the reflected energy of compressive 

(P) waves from physical boundaries within the earth (Sheriff and Geldart, 1995; Kearey et al., 

2002; Hart, 1999). The strength of the seismic reflection from an interface is dependant on the 

acoustic impedance, z, where z = pv where p is the density of the rock unit and v is the p-wave 

velocity. At geological boundaries between rocks of different lithologies -  for example a shale 

layer above a sandstone layer, the contrast in physical properties (namely density) of the two 

rock units results in a strong acoustic impedance contrast giving a strong reflection. Seismic 

surveys also record the time taken for the p-wave to travel to and from the acoustic impedance 

contrast and as such the vertical scale in many seismic sections is given in two-way travel time 

(TwT).

Seismic data is displayed usually displayed in such a way that an increase in acoustic 

impedance corresponds with a peak in a seismic wavelet (Fig 2.1). This is termed ‘SEG  

(Society of Exploration Geophysicists) normal polarity’, this convention also applies to all of the 

data used in this thesis. The data used here is zero-phase (Fig 2.1), so called because the 

displayed wavelet is symmetrical with the peak corresponding to the zone of maximum energy 

(e.g. Brown, 1999). There are several advantages to using zero-phase data, namely that the 

zero phase wavelet shape reduces uncertainty when associating waveforms with subsurface 

interfaces and also that a horizon tracked along the centre of the wavelet coincides with the 

subsurface boundary causing the reflection.

The resolution of 3D seismic data varies with depth both vertically and horizontally, and 

generally decreases with depth. Despite the excellent three dimensional coverage which
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Figure 2.1: Seismic wave illustrating the conventions of polarity and phase used in this thesis. 
Adapted from Hart 1999
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Figure 2.2: Horizontal resolution and definition of the Fresnei zone. Horizontal resolution in seismic 
surveys is determined in part by the detector spacing which affects the sampling interval (a). The 
width of the Fresnei zone (b) also controls the resolution, and 3D migration reduces the size of the 
Fresnei zone to a small sphere. Adapted from Brown 1999.
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this data provides, it should be remembered that the smallest geological feature which can be 

imaged on will typically be an order of magnitude larger than any observations at outcrop scale.

Vertical resolution defines the potential to separate individual layers and is typically % of the 

dominant wavelength of the seismic pulse. Above this limit (the tuning thickness), the 

waveforms interfere constructively and will only enhance the amplitude of the tuned reflection, 

whose thickness cannot be determined (Brown, 1999; Sheriff and Geldart, 1995). It is possible 

however, to detect beds with a thickness of X/30, where X is the dominant wavelength, but 

impossible to determine their true thickness (Sheriff and Geldart, 1995). Two primary controls 

affect the horizontal resolution. The first is the spacing of the recording hydrophones; this 

determines the spacing of the depth estimates from which the subsurface interface is 

reconstructed. The horizontal sampling of a flat lying seismic reflection is typically half the 

detector spacing (Fig 2.2; Kearey et al 2002). The second factor is the width of the Fresnei 

zone, which is defined by the energy returned to the detector within half a wavelength of the 

initial reflected arrival. Within this zone the reflected waves interfere constructively to give the 

reflected signal (Kearey et al 2002). Both vertical and horizontal resolution decrease with depth 

due to loss of higher frequencies via elastic absorption, and due to increasing compaction of 

sediments. This increases the velocity further, thus lowering the dominant frequency.

Before seismic data can be interpreted, it is filtered to increase the signal to noise ratio and 

remove unwanted frequencies to improve vertical and horizontal resolution (Kearey et al 2002; 

Sheriff and Geldart 1995). Data migration is then performed involving a number of processes 

including correcting the positions of reflections from dipping surfaces and focussing the energy 

spread over the Fresnei zone (Fig 2.2) to improve resolution (e.g. Brown 1999; Kearey et al 

2002). Another purpose of migration is to collapse diffraction patterns caused by discontinuities 

whose radius of curvature is shorter than the wavelength of the incident rays. Offsets of stratal 

boundaries at faults can commonly cause diffraction patterns which unless removed can make 

fault interpretation difficult (e.g. Brown 1999).

The two datasets used in this thesis each have differing resolutions and acquisition parameters, 

and this information is given in the relevant chapters.

2.2 interpretation of 3D seismic data

The results presented throughout this thesis are derived from from mapping of 3D seismic data 

volumes using Schlumberger Geoframe software. Mapping is the basic process by which three- 

dimensional surfaces of both structural and stratigraphic features are created. These surfaces
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can then be used to derive additional seismic attributes, further aiding interpretation. Mapping 

is carried out by tracking the horizon of interest by hand on a series of lines orientated 

perpendicular to one another, typically in the original survey in-line and cross-line directions. In 

some complex areas, arbitrary lines are also picked but this is generally rare as these lines are 

difficult to subsequently correct. Spacing of the initial grid is of the same order of magnitude as 

the scale of the geological features of interest. The resulting grid then forms the seed points for 

automated tracking algorithms which interpolate the remaining data. The autotracking process 

can be controlled via a series of parameters to optimise the final map, for example the time 

search window can be narrowed in areas where reflections have similar amplitudes to avoid the 

autotracked horizon jumping up or down to another horizon.

Once mapping is complete, a number of attributes can then be derived to aid further 

interpretation. The seismic attributes used throughout this thesis are described below:

•  Dip: Dip attribute maps show the derivative of the surface which reveals changes in

gradient. Dip attribute maps are excellent indicators of surface morphology and

variations in slope (see Fig. 3.1, Chapter 3). Due to the increased visibility of surface 

features on dip maps, they also enable more accurate measurements of morphology to 

be taken -  for example the channel sinuosity measurements in Chapter 3.

•  Amplitude: Seismic amplitude is measured at the crest of the reflection and when

displayed in map form enables facies variations to be observed. An example is figure

4.8 in Chapter 4, which shows bright, high amplitude sheet like bodies inferred to 

represent coarser grained material relative to the surroundings. The amplitude observed 

for a horizon commonly varies laterally due to changes in the acoustic impedance 

caused by varying lithologies along the horizon. Amplitude maps are also useful for 

detecting faults, and a good example of this is seen on the top salt horizon for the 

Messinian from the Levant Basin in Chapter 3 (Fig 3.4).

• RMS Amplitude: RMS (root mean square) amplitude squares amplitude values over a 

specified time window and then averages the results. As RM S involves the squaring of 

amplitude values, high amplitudes will tend to become more noticeable on the final map 

(e.g. Brown, 2005). RMS amplitude can be used where the mapped horizon is of too 

poor quality to make horizon amplitude useful. Care must be taken when interpreting 

these maps however as the RMS window can cross stratigraphic and time boundaries, 

particularly if the time window is large and this can introduce unwanted values into the 

final map. For an example of this, see Chapter 5, Fig. 5.12, where the RMS amplitude 

map detects two small channel systems above the interval of interest, and care must be
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taken not to interpret these channels as avulsions, as they are stratigraphically higher 

than the main channel system shown in this figure.

•  Semblance: Semblance is an attribute calculated by comparing adjacent waveforms 

within a specified time window and returning a value which represents the similarity of 

the waveforms (see also Brown, 1999). Semblance is particularly useful for identifying 

discontinuous features in map view such as faults. Semblance can also prove useful for 

identifying stratigraphic features such as the basal scours on the lower surfaces of mass 

transport complexes -  am example of this is shown in Chapter 4 (figure 4.8 and 4.11).

Isochron maps showing the time thickness between two horizons are used extensively 

throughout this thesis. In the context of growth sequences, isochron maps, combined with 

analysis of seismic sections, can provide important information about where uplift is 

concentrated. Isochron maps can also be used to make measurements of fold growth where 

overlapping growth sequences occur (see Chapter 5, figures 8 and 9). Isochron maps of 

channel levee systems are used extensively in chapter 3 to reveal the depositional pattern of 

the channel levee system as a whole and to assess channel development in areas of complex 

seafloor bathymetry, figure 8 from Chapter 3 presents a good example of how using these 

detailed isochron maps can reveal how channel levee systems respond to underlying 

deformation.

2.2.1 Potential sources of error

Velocity pull-ups and push-downs result from localised increases or decreases in the interval 

velocities of lithological units and can be caused by lateral facies variations. This effect 

introduces a potential source of error in measurements of submarine channel depth and 

erosional depth where the coarse grained channel fill is thick enough to create a local velocity 

pull-up. The fill of the channel systems studied in Chapter 3 are typically 50m in thickness, and 

this does not appear to result in large scale pull-ups compared to much larger channel levee 

systems with fill thicknesses of over 300m (e.g. Deptuck et al., 2007).

Lateral velocity contrasts due to the increase in vertical thickness across thrust faults can also 

result in pull-up and disruptions of reflections in the footwall block (e.g. Trinchero, 2000). This 

‘fault shadow’ effect can lead to misinterpretation of structural styles and is relevant when only 

time-migrated data (as is used in this thesis) is being considered. In many cases where pull- 

ups and push-downs are observed in association with thrust faulting, evidence such as the 

occurrence of infilled footwall and hangingwall basins supports the interpretation that these
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depressions are real geological features and not artefacts caused by velocity variations across 

thrust faults (see Chapter 3).

The presence of shallow gas within the subsurface can introduce variations in velocity 

throughout the seismic section, and the presence of a shallow gas hydrate layer is imaged 

within the Nigeria dataset, as well as being recognised from other areas of the Niger Delta (e.g. 

Hovland et al., 1997). This layer however does not seriously compromise the quality of the 

underlying data, and was not found to affect mapping significantly enough to alter the results 

shown in Chapter 4.

2.3 Quantitative measurements derived from seismic data

In order to support the data obtained from mapping, quantitative measurements were obtained 

of channel morphometric parameters (see Chapter 3, section 3.2) and of fold crestal relief and 

growth ratio (see Chapter 5, section 5.4). The details of how these measurements were 

undertaken are given in the relevant chapters. These measurements were all taken from 

seismic sections and dip attribute maps and are accurate to 1ms Tw T and 10m respectively, 

these values representing the real dimensions of the on-screen cursor which forms the point 

from which the measurements were made. When measuring from seismic profiles (for example, 

channel depth -  see Chapter 3, Fig. 3.9), all measurements are taken between zero crossings 

(Fig. 2.1) on seismic profiles. The reason for this is that the zero crossing can often be 

unambiguously identified on seismic profiles and this provides a consistent method for taking 

morphometric measurements.

To convert measurements to depth values, an average interval velocity of 2000m s'1 was 

assumed. However in the shallow (e.g. first 300m ) part of the subsurface, the true interval 

velocity could be substantially lower -  1750ms'1, for example (see Deptuck et al., 2007). In the 

case of a shallowly buried channel fill which was 150ms in thickness, the difference in interval 

velocities leads to a thickness difference of c.19m. This affects the magnitude of the channel 

erosional depth profiles shown in Chapter 3, but not the interpretation of these profiles regarding 

timing of deformation.
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CHAPTER 3 

INTERACTIONS BETWEEN SUBMARINE CHANNEL SYSTEMS AND DEFORMATION IN 
DEEPWATER FOLD BELTS: EXAMPLES FROM THE LEVANT BASIN, EASTERN 
MEDITERRANEAN SEA. 

3.1 Abstract

Submarine channel levee systems form important hydrocarbon reservoirs in many deep marine 

settings and are often deposited within a structurally active setting. This study focuses on 

recent submarine channels that developed within a deepwater fold and thrust belt setting from 

the Levant Basin, eastern Mediterranean Sea. Compressional deformation within the study 

area is driven by the up-dip collapse of the Nile cone above the ductile Messinian Evaporites. 

Structures such as folds and strike slip faults exert a strong control on channel location and 

development over time. From this study four end m em ber submarine channel-structure 

interactions can be defined: Confinement, diversion, deflection and blocking. Each of these 

channel-structure interactions results in a distinct submarine channel morphology and pattern of 

development compared to unconfined channel levee systems. Each interaction can also be 

used to assess timing relationships between submarine channel development and deformation.

3.2 Introduction

Submarine channel systems are key architectural elements of submarine fans associated with 

many of the world’s major river systems (Lopez et al. 2001; McHargue and Webb 1986; 

Schwenk 2005). M any of these settings are affected by thin-skinned gravitational collapse, and 

are characterised by coeval sedimentation and deformation. Submarine channel systems are 

commonly described from such settings, examples include the Niger Delta (Deptuck et al. 2003; 

Adeogba et al. 2005; Heinio and Davies 2007), the Gulf of Mexico (Posamentier 2003; Pickering 

et al. 1986) the Nile Delta (Deptuck et al. 2003;2007, Heinio and Davies 2007), Brunei 

(Demyttenaere 2000) and Offshore West Africa (G ee and Gawthorpe 2006; Abreu et al. 2003). 

Submarine channels are also recognised from accretionary prisms located at subduction zones, 

examples include the Barbados Accretionary Prism (Huyghe et al. 2004), The Kuril Arc (Noda et 

al. 2008), the Central Chile Forearc (Hagen et al. 1996) and the Nankai Trough (Soh and 

Tokuyama 2002).

The use of 3D seismic data has contributed greatly to our understanding of submarine 

channels, particularly with regards to their architecture and temporal evolution (Deptuck et al. 

2003; 2007; Posamentier 2003). However, the number of studies which address the 

interactions between submarine channel development and deformation is relatively few and
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tend to focus only on a particular aspect of channel evolution, such as the channel axis. These 

studies have shown, for example, that increases in slope gradient caused by structural highs 

result in increased submarine channel incision, with channel down-cutting being localised where 

the gradient increase is highest (Huyghe et al. 2004; Ferry et al. 2005; G ee and Gawthorpe 

2006). Studies have also shown that submarine channel sinuosity is a key factor in the 

development of potentially sand-rich lateral accretion packages (Abreu et al. 2003). In 

structurally complex slope settings, submarine channel sinuosity can vary according to changes 

in gradient. Higher sinuosity channel reaches tend to be localised where the underlying slope 

gradient decreases (Ferry et al. 2005; G ee and Gawthorpe 2006).

This study uses a 3D seismic data volume to document the interactions between submarine 

channel levee systems and deformation within a deepwater compressional province. The term 

‘interaction’ is here used to represent the end result of submarine channel development under 

the influence of a structurally deformed seafloor. The aim is to investigate in detail how 

submarine channels respond to structurally modified slopes, with examples from the Levant 

Basin, Eastern Mediterranean. Compressional deformation results in folding and faulting, with 

the resulting topography causing obstructions to the down-slope flow pathways of recent 

(Pleistocene-Holocene) submarine channels. Based on our mapping, four end-member 

interactions between submarine channels and deformation can be defined -  confinement, 

diversion, deflection and blocking. Although this study uses examples only from the Levant 

Basin, we have observed that these four types of interaction are common wherever submarine 

channels occur in structurally active deepwater settings, many of which are also areas of 

current hydrocarbon exploration, such as the deepwater Gulf of Mexico and deepwater Nigeria.

3.2.1 Geological Setting

The Levant Basin is located in the Eastern Mediterranean Sea and is bounded to the east by 

the passive continental margin of Israel, Lebanon and Syria, to the south by the north- 

easternern lobe of the Nile Deep Sea Fan, to the west by Eratosthenes seamount and to the 

north by the subduction zone and transform fault of the Cyprus Arc (Fig. 3.1, Ben-Avraham et 

al. 1988; Ben-Avraham et al. 1995; Vidal et al. 2000). Formation of the Levant Basin and the 

adjacent margin is related to a sequence of rifting events occurring from Early Permian to 

Middle Jurassic times associated with the initial break-up of Pangaea (Garfunkel, 1998). Final 

continental break-up and the initiation of ocean spreading occurred at the end of Mid Jurassic 

times (Garfunkel and Derin 1984). Compression in the Late Cretaceous and the development 

of the Syrian Arc Foldbelt and resulted in a series of N E -S W  orientated folds along the Levant
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Figure 3.1: 3.1a shows a location map of the 3D seismic survey used in this study. DSF = Dead Sea 
Fault System, SAF = Syrian Arc Fold Belt, ES = Eratosthenes Seamount, ND = Nile Delta. Arrows 
indicate direction of salt flow from the Nile Delta and Levant Margin. Adapted from Vidal et al. 2000, 
with salt movement direction from Netzeband et al. 2006. 3.1b shows a dip attribute map of the 
seabed over the 3D survey area. This map is draped with time contours (Interval = 10ms TWT). The 
map shows channel levee systems A, B and C which are described in this study. Several other 
channel levee systems are present and some key characteristics of these are summarised in the inset 
table.
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Margin (Eyal 1996; Buchbinder and Zilberman 1977; Garfunkel 1998). During the Oligocene, a 

system of submarine canyons developed along the Levant Margin. Headward extension of 

these canyons occurred throughout the Miocene due to intermittent uplift and emergence of the 

Levant Margin (Druckman et al. 1995; Buchbinder and Zilberman 1997).

Towards the end of the Miocene (5.9 Ma), narrowing of the connection between the 

Mediterranean Sea and the Atlantic Ocean led to the Messinian Salinity Crisis (Hsu et al. 1978). 

This resulted in a sea level fall of 800-1300m  in the Mediterranean Sea (Druckman et al. 1995) 

and the deposition of a thick evaporitic sequence up to 2km thick. This was accompanied by 

erosion along the marginal areas of the Levant Basin (Cita and Ryan 1978; Garfunkel and 

Almagor 1987).

During Pliocene times, the Levant Basin was subjected to increased sedimentation, derived 

from the Nile Delta to the south west (Mart and Ben-Gai 1982). The increased sedimentation 

rate was accompanied by increased basin subsidence due to loading of the Messinian 

sequence (Tibor et al. 1992; Ben-Gai et al. 2005). In the Levant Basin, sedimentation was 

predominantly sourced by submarine channels. The source of these submarine channels was 

the Nile Delta, as is apparent from their north-east orientation and the down slope gradient in 

relation to the Nile Delta to the south-west (Fig. 3.1).

The 3D seismic data used in this study covers an area of approximately 1400 km2 (Fig. 3.1). 

This survey covers a portion of the distal, north-eastern area of the Nile Deep Sea Fan, which 

extends into the Levant Basin and provides a detailed record of the post-Messinian 

sedimentation. Average seafloor gradients in the study area vary between 0.38° in the down- 

slope direction and 0.02° in the cross slope direction. W ater depths typically range from 1000 to 

1350 meters below sea level across the survey area. Submarine channels are ubiquitous 

throughout the post-Messinian sequence, typically consisting of single, channel levee systems 

which are rarely erosionally confined (Fig. 3.1). In comparison to the larger scale slope system, 

the submarine channels in this study area are most likely within the middle to lower fan region 

(c.f. Babboneau. et al. 2002). The most recent of these channels are visible on the present day 

seafloor (Fig. 3.1). Submarine channels are common features associated with the Nile Delta 

and subsurface examples have been previously described from the deepwater Western Nile 

(Samuel et al. 2003).

3.3 Dataset and Methodology
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The 3D seismic dataset used in this study was acquired in 2000 by BG Group and partners. 

The data were migrated with a single pass 3D post-stack time migration to generate a 12.5 m 

by 12.5m grid with a 1ms sampling interval. The seismic data are processed to near zero 

phase and is displayed using SEG normal polarity, with an increase in acoustic impedance 

being represented by a positive amplitude (red) on seismic sections. The Plio-Pleistocene 

sedimentary section overlying the Messinian evaporites has a dominant frequency of 50Hz, with 

the estimated vertical and lateral resolution for this interval being 10 and 40m, respectively. 

This was determined using an average interval velocity of 2000 ms'1 derived from velocity 

checkshot data (Frey Martinez et al. 2005). The Messinian evaporites are characterised by a 

lower dominant frequency of 30 Hz, although the frequency within the Messinian sequence is 

variable and results in changes in vertical resolution within this unit (Bertoni and Cartwright 

2006).

The channel levee systems in this study were characterised qualitatively using isochron maps of 

channel intervals. Using these, the thickness and areal extent of the channel levees and 

channel axis can be assessed and compared to the surrounding structures. The base of the 

levee package in such maps is defined as the surface against which the internal levee 

reflections downlap. The base of the channel is defined as the lowermost erosive surface 

associated with incision into the pre-channel sequence (Fig. 3.2, Deptuck et al. 2003; Mayall et 

al. 2006).

In order to quantitatively characterise the submarine channels in this study, the following 

morphometric parameters were measured (Fig. 3.2):

•  Channel thalweg depth: Depth from modern sea level to the floor of the channel.

•  Channel erosional depth: Maximum depth of incision into the pre-channel sequence.

•  Width:Depth ratio: Channel width measured horizontally between levee crests and

channel depth measured vertically from the levee crest to the channel floor.

•  Sinuosity: Sinuosity is defined as the along-channel distance divided by the straight-line 

distance between the same two points along any particular reach of a channel (Fig. 3.2). 

Sinuosity was measured at 1km intervals along each channel segment as this 

adequately captures the sinuosity variations where typical meander widths are of the 

order of 500-1000m .

Each parameter (except sinuosity) was measured at 200m  intervals along the sinuous length of 

each channel segment, using seismic profiles orientated perpendicular to the path of the 

channel axis at each measurement point. This interval was chosen as significant changes in
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Figure 3.2: Block diagram summarising the methodology and terminology used to characterise the 
channel levee systems in this study. Channel isochron maps were calculated between the top and base 
channel surfaces to reveal the thickness and extent of the channel levees. Other parameters measured 
were channel sinuosity (window length = 1km), channel thalweg and erosional depth and also channel 
width (between levee crests).
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channel morphology were observed to occur at the seafloor over relatively short distances, 

typically of less than 1km (e.g. Fig. 3.1). Using measurements spaced at 200m  intervals also 

allows changes in channel morphology to be more accurately linked to specific underlying 

deformational features such as faults and folds. The raw data from which the results in this 

study are presented are given in Appendix A 1 .

The thickness and areal extent of the channel levees and channel axis were assessed 

qualitatively by using isochron maps which capture the time thickness of the channel interval. 

The aim of producing these maps is to understand how channel development as a whole 

responds to the underlying structurally controlled slope, rather than concentrating on just the 

response of the channel axis. The base of the levee package in such maps is defined as the 

surface against which the internal levee reflections downlap. The base of the channel is defined 

as the lowermost erosive surface associated with incision into the pre-channel sequence 

(Deptuck et al. 2003; Mayall et al. 2006).

3.4 Results and Observations

This section is presented in three parts. First, a summary of the seismic stratigraphy is 

presented in order to set the channel levee systems in their correct stratigraphic context. The 

second section describes the effects of Post-Messinian deformation which controls slope 

morphology. The third section describes three submarine channel systems in detail and their 

relationship with the surrounding deformation.

3.4.1 Seismic stratigraphy

This study focuses on the Post-Messinian, Plio-Pleistocene sedimentary section in the Levant 

Basin (Fig. 3.3). Recent studies in this area have focussed on either the Messinian sequence 

(e.g. Bertoni and Cartwright 2005; 2006; 2007; Gradmann et al. 2005), or the marginal areas of 

the Levant Basin (eg Frey-Martinez et al. 2005). Chronostratigraphic and lithological data for 

the post-Messinian sedimentary cover are based on unpublished reports from nearby wells 

(Frey-Martinez et al. 2005) as there are no published well calibrations within the area covered 

by the 3D seismic survey.

Previous work in this area (Bertoni and Cartwright 2005; 2006; 2007) studied the Messinian 

interval in detail, with the Pliocene-Quaternary overburden being assigned to a single unit. This 

study subdivides the post-Messinian sedimentary section further into three sub-units, with each
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unit being defined by its own seismic-stratigraphic characteristics and relationship to the 

extensive thin-skinned deformation affecting this area (see section 3.4.2).

3.4.1.1 Post-Messinian Unit 1 (PM1)

Unit PM1 is composed of locally continuous, high amplitude and parallel reflections, although 

continuity over the scale of the survey area is poor. Channels up to 500m  wide, are commonly 

observed within this unit. These channels pre-date deformation and now provide useful 

kinematic markers for post-Messinian faulting (Fig. 3.4). Localised thickness changes 

associated with these channels result in localised downlap and apparent onlap surfaces within 

unit PM1. These local thickness variations are related to deposition from the channels, and are 

not the result of syn-sedimentary structural growth. Aside from the localised thickness 

variations associated with channel deposition, unit PM1 does not show any syn-kinematic 

sedimentation and this unit is assumed to pre-date salt related deformation in this area.

3.4.1.2  Post-Messinian Unit 2 (PM2)

Unit PM2 consists of low to medium amplitude, mainly continuous reflections, with localised 

packages of lower amplitude, chaotic reflections which pass laterally into more continuous units 

(Fig. 3.5). Unit PM 2 contains several channel levee systems, which are larger and much more 

apparent on seismic sections that those described from within unit PM1. These channels are 

up to 2km wide, and show clear, wedge shaped levee deposits which taper away from the 

channel axis. The fill of the channel complexes within unit PM 2 shows a variable seismic 

character (Fig. 3 .5), with some channels having a high amplitude fill of discontinuous reflections 

and others having a low amplitude, seismically transparent fill. High amplitude channel fills are 

often associated with development of mounds above the channel axis that may be due to 

differential compaction of the sand-rich channel fill and the adjacent mud rich levee deposits 

(c.f. Posamentier 2003). The channel levee complexes are separated vertically by intervals of 

parallel reflections of constant thickness (Fig. 3.5). These intervals likely represent periods of 

channel abandonm ent in this area.

Unit PM2 displays internal thickness variations related to channel levee complexes where 

thinning of the channel levees occurs away from the channel axis. This thinning is associated 

with local downlap of the levee reflections onto the pre-channel surface as well as downlap 

within the levee packages themselves (Fig. 3.5). W here subsequent folding has occurred, tilting 

of the channel levees in the vicinity of the fold limbs can appear similar to onlap onto the fold 

crest, and failure to recognise this can result in a misleading interpretation of structural timing.
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F ig u re  3.4: Amplitude map of the top Messinian horizon (Top unit 2 in Figures 3.3a and 3.3a). This image shows the strike-slip faulting and 
thrusting which affects the Post Messinian sequence. Channels provide useful markers for assessing the sense of offset of the strike slip 
fault systems which characterise this study area.
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Figure 3.5: Representative seismic profile through the PM2 interval showing channel levee systems with 
both high and low amplitude fill characteristics. These channel systems are separated by packages of 
disturbed or parallel low amplitude reflections of uniform thickness.
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True syn-kinematic intervals within unit PM2 are associated with expansion into the hangingwall 

and footwall synclines of thrust-related folds, and weakly developed onlap onto the fold limbs. 

These syn-kinematic intervals are not synchronous across the study area, but the largest, most 

continuous fold structures appear to have been the earliest to have been initiated. Within unit 

PM2, growth packages are separated by intervals of parallel reflections of constant thickness, 

indicating that even after the onset of deformation, the growth of the thrust folds was episodic 

throughout the deposition of unit PM2.

3.4.1.3 Post-Messinian Unit 3 (PM3):

Unit PM3 comprises mainly continuous medium to high amplitude reflections associated with 

the development of multiple channel levee complexes, the most recent of which are clearly 

visible on the present day seafloor (Fig. 3.1b). This unit thickens towards the south east of the 

study area, and in many places the thickness is strongly controlled by post-Messinian 

deformation (Fig. 3 .6). Unit PM3 shows the greatest amount of thickening and growth into the 

hangingwall and footwall synclines associated with thrust related folds. Packages within PM3  

thin onto the crests of these folds with internal reflections showing onlap against the fold limbs 

in the typical m anner of syn-kinematic packages associated with growth folds (Burbank et al. 

1996; Salvini and Storti 2002). The amount of growth into the fold limbs is greater than that 

seen in PM2, and suggests that the rate of structural growth relative to the rate of deposition 

was greater during the deposition of PM3 compared to the deposition of PM2.

The internal architecture of unit PM3 consists of multiple, vertically stacked channel levee 

systems (Fig. 3.3a). The flow direction of the channels is from the south west to the north-east 

and the channels are assumed to have been sourced from the Damietta branch of the Nile 

(Loncke et al. 2002) based on the direction of the maximum slope gradient and the position and 

orientation of the channels. In contrast, the architecture of the growth sequence presented in 

Chapter 4 consists of a significant proportion of other depositional elements, such as mass 

transport deposits (M TD s) and hemipelagic drape deposits.

The submarine channels developed within unit PM 3 are all considered to be dominantly 

aggradational rather than erosional. The channel axis in these channels exhibits an 

aggradational geometry over the time period of channel deposition, with the channel axis being 

confined between the aggradational levee packages and not by incision into the underlying 

sequences (Fig. 3.2).
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Figure 3.6: Isochron map of the PM3 interval, calculated between the seabed and base PM3
surfaces shown on Figures 3a and 3b. Contour interval is 25ms TWT. The isochron map shows a 
general increase in thickness towards the south east o f the study area as well as the strong control on 
sediment distribution by north-east south-west trending folds.
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3.4.2 Post-Messinian thin skinned deformation

Deformation affecting the post-Messinian overburden is related to a combination of gravitational 

collapse and subsequent basinward spreading of the Nile Cone along with the tilting induced 

collapse of the Levant Margin above the ductile Messinian evaporitic sequence (Loncke et al. 

2006; Gradmann et al. 2005; Cartwright and Jackson 2008). Gravitational collapse and 

subsequent spreading of large prograding deltaic wedges results in linked extensional (up-dip) 

and compressional (down-dip) domains (Rowan et al. 2002 and references therein). Radial and 

concentric faults can also form as a result of perimeter extension and radial spreading 

respectively (Gaullier and Vendeville 2005; Cobbold and Szatmari 1991).

Post-Messinian deformation within the Levant Basin is further complicated to the east of 

Eratosthenes Seam ount. This feature acts as a buttress to the basinwards advance of the 

Messinian evaporites, resulting in changes in orientation of the extensional and contractional 

structures (Loncke et al. 2006).

A conjugate set of thin skinned strike slip faults affect the post-Messinian overburden (Fig. 3.7). 

Many, but not all of the strike slip faults propagated upwards during deposition to reach the level 

of the present day seabed. These strike slip faults can be traced downwards to the uppermost 

Messinian evaporites (Fig. 3.3). The strike slip faults show two dominant trends (Figs. 3.1 and 

3.7):

1. An E -W  trending set of strike slip faults which are visible on the present seabed, showing 

sinistral displacement.

2. A N E-SW  set of dextral strike slip faults which are largely obscured on the seabed by 

recent submarine channel sedimentation.

Both sets of strike slip faults are characterised by the developm ent of small scale pop-up and 

pull-apart structures developed at zones of local transpression and transtension respectively 

(Fig. 3.7). These structures form significant bathymetric obstacles and obstruct the flow of 

recent submarine channels. Typical values of vertical relief shown by these pop-up structures is 

90m, with the pull-aparts forming depressions up to 60m  deep.

Thrust faults, detaching within the uppermost post-Messinian sequence, ramp upwards through 

the post-Messinian overburden with individual faults reaching as high as the base of unit PM3 

(Fig. 3.3b). The dominant vergance of these thrusts is towards the north-east. The thrust faults 

are associated with overlying folds which vary in style along the strike of the thrust. At the 

lateral tips of individual thrusts, the fold style is commonly that of a symmetrical detachment fold
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Figure 3.7: Dip attribute map of the base PM3 surface shown in Figure 3.3, overlaid with time contours 
spaced at 20ms TWT intervals. This surface represents the deformation which affects submarine 
channel development in this area. A prominent conjugate strike slip fault system is present at this level, 
as is a north-west south-east trending fold belt (underlying thrust vergance indicated). These folds are 
associated with depressions in the hanging walls and footwalls which combine with the relief of the fold 
crest to affect sedimentation within the PM3 interval. .
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(c.f. Higgins et al. 2007). Along strike towards the centre of many thrusts, the fold style 

becomes that of a transported detachment fold, many of which resemble fault propagation folds 

(e.g. Mitra 1990; Mitra 2002). Development of these folds is associated with the formation of 

depressions within the hangingwall and footwall, termed hangingwall and footwall synclines, 

respectively (Fig. 3.3b). The overall trend of the thrusts and the resultant folds is along a north­

west, south-east orientation, perpendicular to the flow of the most recent submarine channels 

within unit PM 3 (Fig. 3.1). Chapter 5 documents in more detail the three-dimensional evolution 

of the folds within the Gal C survey area.

The onset of thrust-related folding is dated here using the earliest onlap relationships and 

occurrence of stratal thinning onto the fold crests. Throughout the study area, earliest initiation 

of folding occurs within the middle of the PM2 interval, but observed occurrences of this are rare 

(2 folds), however the PM3 interval forms the primary growth sequence of many thrust-related 

folds (Fig. 3.3). Variation in the onset of folding between individual structures is constrained to 

within a c.50ms T W T  interval of the top PM2 horizon.

3.4.4 Submarine channel case studies

Nine submarine channel levee systems were mapped in detail in to provide a database of 

channel structure interactions (Fig. 3.1). The channel levee systems are orientated south-west 

north-east, and all are developed within the PM3 interval. Three channel levee systems were 

selected from the database as being representative exam ples showing the full range of 

interactions between submarine channels and deformation in this area. These channel levee 

systems (Channels A, B and C) are described individually below.

3.4.4.1 Channel A

Channel A is the shortest of the three channel segments and crosses the study area in the 

north-west, where the PM3 interval is at its thinnest limit. This channel segment is 14.53 km in 

length, but has a high total sinuosity of 1.94. Although the length of this channel segment is 

short compared to the other described channels, the development of this channel system is 

strongly related to the underlying structurally formed slope (Fig. 3.8).

Development of Channel A is affected by three folds (termed 1, 2, and 3 in the downstream  

direction) orientated perpendicular to the channel flow direction (Fig. 3.8). The isochron map for 

this system shows that the thickest and most laterally extensive part of the channel-levee 

system occurs upstream of Fold 3 (Fig. 3.8). Within this area Channel A displays prominent
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Figure 3.8: 3.8a: Isochron map of Channel A (contour interval = 10ms TWT). This map reveals the strong control on channel development by the 
surrounding structures. Increased lateral migration is observed between Folds 1 and 2, with these folds also controlling channel levee distribution. The 
channel levee system shows a strong increase in thickness upstream of Fold 3 which blocks this channel resulting in a preserved channel remnant 
downstream of the fold. 3.8b: Dip attribute map with overlayed time depth contours (20ms TWT interval). Also indicated on this map is the axis of channel A 
and also the levee extent taken from the isochron. This map shows increased sinuosity and levee deposition in the footwall of Fold 3, as well as revealing 
the structural control on levee distribution.
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Figure 3.9: Morphology measurements for channel A. FWS = foot-wall syncline, FC = fold crest. This 
channel system was affected by post-channel uplift which results in the increased thalweg and erosional 
depth over the fold crest. Also note the increase in sinuosity within the FWS. this can be observed 
qualitatively on Figure 3.8. Figs. A1.1 and 1.2 show the location of additional seismic profiles in 
appendix A1 taken perpendicular to the channel axis orientation. See text for further details.
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lateral migration associated with a high channel sinuosity which has resulted in a meander 

cutoff (Fig. 3.8). Zones of high sinuosity (up to 2.2 upstream of fold 3) are accompanied by 

laterally extensive levees (Fig. 3.8). Levee deposition is strongly controlled by a series of folds, 

whose relief results in thinning of channel-levee deposits onto the fold limbs (Fig. 3.8). Channel 

A also displays a zone where a single channel m eander has migrated over 2 km towards the 

south east in a direction parallel to the strike of two folds which confine levee deposition in this 

area (Between folds 1 and 2 - Fig. 3.8A). Channel morphology measurements (Fig 3.9) show a 

high sinuosity peak over a 3 km channel segment within the footwall syncline of Fold 3. This 

increase in sinuosity (from 1 to 2.2) is accompanied by an equivalent area of this channel 

showing an increase in erosional depth and channel thalweg depth (30m  and 20m respectively). 

Immediately downstream of this area both the channel thalweg and erosional depth show a 

sharp decrease as Channel A crosses the fold crest (Fig 3.9). This correlates with a zone of 

decreased channel sinuosity (c.1.1) and indicates that a certain degree of post-channel folding 

has affected this part of the channel.

As Channel A crosses the crest of fold 3, the isochron map shows a sharp contrast in channel 

thickness and levee extent compared to upstream. Channel levees are absent across the fold 

crest where only the incision from the channel axis is observed. Levee development only 

occurs 2km downstream of the fold crest before Channel A  exits the study area (Fig. 3.8a).

3.4.4.2 Channel B:

Channel B is the youngest channel segment which crosses the Gal C survey area and is 

located in the north of the dataset where unit PM3 is relatively thin. This channel segment is 

26.78km in length, with an average sinuosity of 1.23. The channel is typically 340m wide and 

19m deep. Channel B is affected by two folds, termed 1 and 2 orientated perpendicular to the 

channel flow direction (Folds 1 and 2-Fig 3.10). However, channel B only exhibits a change in 

course in response to Fold 2 (Fig 3.10).

The isochron map for this channel interval shows two distinct regions, corresponding to the 

presence or absence of underlying deformation (Fig. 3.10). The initial 16.5km of this channel 

segment is unaffected by underlying deformation. This results in an approximately symmetrical 

distribution of levees either side of the channel axis (Fig. 3 .10) with localised zones of increased 

levee thickness concentrated around channel meanders (Fig. 3 .10). Before Channel A reaches 

the fold belt, it is affected by two strike slip faults which cross the channel at 15km and 16.5km  

(Fig 3.10). These strike slip faults have little effect on channel levee distribution. They do not
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Figure 3.10: 10a: Isochron map of the Channel B interval. Two zones of channel development can be identified from this map. Before channel B reaches the fold belt 
(Folds 1 and 2), levee distribution is approximately uniform on either side of the channel axis. In this area, variations in levee thickness and distribution are related to 
areas of increased sinuosity. This is in contrast to the asymmetric levee deposition seen as channel B crosses Fold 1 and also where channel B is diverted by Fold 2. 
10b: A dip attribute map of the base PM3 surface overlayed with time contours (Interval = 20ms TWT). The channel axis and levee extent are indicated. Note that 
where no underlying deformation affects this channel system, levee distribution is uniform about the channel axis, underlying structures induce the deposition of 
asymmetric levees. The exact levee extent within the hangingwall and footwall synclines of Fold 1 are untraceable due to interleaving of the levees o f channel B with 
those o f channel C to the south east.
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Figure 3.11: Morphology measurements for Channel B. See text for details. SSF = strike slip fault, 
HWS = hangingwall syncline, FWS = footwall syncline, FC = fold crest. Figs A1.3 and A1.4 correspond 
to additional seismic profiles in appendix A1, with profile orientation being perpendicular to the channel
axis.
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offset Channel B at the seafloor and are assumed to have pre-dated the development of 

Channel B.

Where Channel B crosses the fold belt significant changes in the thickness and extent of the 

channel levees are observed (Fig 3.10a). Upon crossing Fold 1, ponding of the levee deposits 

occurs into the hangingwall and footwall synclines to the south east of the channel (Fig. 3.10). 

Across the fold crest levee development is limited, which combined with preferential deposition 

into the hanging-wall and footwall synclines results in an asymmetric planform levee distribution 

(Fig. 3.10). This relationship is mirrored in the thickness of the channel axis deposits, which 

thicken as Channel B crosses the hanging-wall and footwall synclines and thins across the fold 

crest (Fig 3 .10a and 3.11). Interleaving of the levee deposits of Channel B with those of 

Channel C to the south (see next section) means that the exact extent of the levees associated 

with Channel B cannot be traced but it is clear from the isopach map that preferential deposition 

of levee material has occurred within these synclines (Fig 3.10).

Changes in channel morphological parameters occur upon crossing the fold belt. Within this 

zone, Channel B is characterised by having a lower sinuosity (close to 1) and an increased 

width to depth ratio (up to 45) compared to the initial 16.5km  channel segment where there is no 

significant underlying deformation. The erosional depth data for this channel shows significant 

variation (from 1425 to 1370mbsl) where Channel B crosses Fold 1 and where the channel 

course changes in response to Fold 2 (Fig. 3.11). An increase in the depth of erosion of up to 

30m is observed within the hanging-wall and foot-wall synclines, with a decrease in erosional 

depth occurring above the fold crest. This relationship is most obvious where Channel B 

crosses Fold 1, but also occurs to a less significant degree where the channel changes course 

around Fold 2 (Fig. 3 .11). The erosional depth profile of Channel B as it crosses the two folds is 

mirrored to a much lesser degree in the channel thalweg depth profile (Fig. 3.11). Upwards 

perturbations in the channel depth profile occur above the underlying points of decreased 

erosional depth.

3.4.4.3 Channel C:

Channel C crosses the study area to the south east of Channel B, this channel segment is 

41.97 km in length with a sinuosity of 1.34. The average width and depth for this channel 

segment is 490m  and 26.7m  respectively. The overall flow direction of this channel segment is 

perpendicular to the strike of the fold belt, which significantly affects channel morphology and 

the development of this channel levee system.
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Figure 3.12: 3.12a: Isochron map o f Channel C, contoured at an interval o f 20ms TWT. Inset map 
shows the seafloor in the vicinity o f several recently active strike slip faults which now offset the floor of 
Channel C. 12b Dip attribute map of the base PM3 surface overlayed with time contours spaced at 20ms 
TWT. The outline o f the levee extent o f Channel C and the channel axis are indicated. Points A to G are 
described in section 3.3.2. 12c: Seismic line illustrating confinement o f Channel C, note the levee onlap 
onto the pre-channel fold induced topography.
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The isochron map of Channel C shows that levee thickness and areal extent vary significantly 

along the length of this channel segment (Fig. 3.12). In the south west, where Channel C 

enters the survey area, development of Channel C is similar to the equivalent zone seen in 

Channel B where the channel is unaffected by underlying deformation (Fig. 3.12, point A).

Channel development in this area is, however affected by the close proximity of an older

channel system to the south east (Channel D -  Fig. 3.1b). In this area, the levees of Channel C 

as imaged on the channel isochron map are symmetrically distributed on either side of the 

channel axis but show a decrease in extent and thickness to the

north-east where a strike slip fault system underlies the channel (Fig. 3.12, point B). The

presence of this channel system does not induce asymmetry in the levee deposits of channel C, 

in contrast to where there is structural control on channel development (Fig. 3.12, compare 

points A and E). Channel morphology measurements show an increased sinuosity and 

generally increased W :D ratio (up to 30) within this part of Channel C (Fig. 3.13).

Downstream of this area the levee deposits of Channel C show a strong asymmetry where 

preferential deposition occurs to the north-west within a depression caused by underlying strike 

slip faulting (Fig. 3.12, point B). Channel C occupies the down-thrown block of a strike slip fault 

system with an extensional component. A prominent 4km  wide depression is expressed on the 

channel thalweg depth and erosional depth profiles corresponding to an underlying strike-slip 

pull apart zone (Fig 3.13). The strong control on the channel course and on levee thickness 

and distribution indicates that initial faulting pre-dated channel development. Fault scarps are 

seen at the present day seafloor (Fig. 3.1) indicating that post-channel faulting has occurred in 

this area.

The channel levees are weakly developed up until the point where Channel C changes course 

towards the north-west (Fig. 3.12, point C). This occurs as a result of the positive relief of thrust 

related folds whose strike is perpendicular to the flow direction. This change in the channels 

path to the north-west is associated with low values of channel sinuosity with the exception of 

two prominent peaks, representing sharp changes in channel course and not true sinuous 

meander bends formed by lateral migration of the channel axis (Fig. 3.13). The channel depth 

profile throughout this area is highly variable and this is most likely due to small amounts of 

post-channel deformation (mainly folding) causing perturbations to the profile. The levees of 

Channel C are strongly developed (thick and laterally extensive) within this area but show an 

asymmetric distribution (Fig. 3.12, points D and E, also Fig. 3.12c). Initially, the left hand (SW) 

levee is more strongly developed (Fig. 3.12, point D) until Channel C crosses a strike slip fault, 

after which the right hand (NE) levee is strongly developed (Fig. 3.12, point E) with its
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distribution being controlled by the surrounding folds and strike slip structures. Onlap of the 

internal levee reflections is observed onto the limbs of folds and onto the flanks of strike-slip 

pop-up structures, indicate that pre-channel deformation which controls the location of the 

channel axis and levee distribution in this area (Fig. 3 .12C ).

Prior to Channel C emerging from the fold belt the channel depth profile shows a sharp increase 

in depth in association with a straight (sinuosity = 1) channel segment in which the levees are 

poorly developed, showing limited thickness and lateral extent from the channel axis (Fig. 3.12, 

point F). This part of Channel C passes downstream into an area showing thick and laterally 

extensive levees covering an area of 22km2 in association with a high sinuosity reach of the 

channel (Fig. 3.12, point G). The thickest levee deposits (up to 14m) occur on the inside bends 

of channel meanders and immediately downstream of the point where Channel C exits the fold 

belt.

This zone of increased sinuosity and levee deposition is confined to the south-west by the 

forelimb of a thrust propagation fold onto which the internal levee reflections onlap (Fig. 3.14). 

An increase in the angle of onlap of the internal levee reflections is observed towards the base 

of the Channel C sequence (Fig. 3.14). The increase in sinuosity is clearly visible on the 

seafloor and is also expressed morphometrically as a broad peak which correlates with an 

increased channel W :D  ratio. This is in contrast to the isolated sinuosity peaks associated with 

sharp changes in channel course which correlate with low W :D  ratios. Channel C also displays 

an earlier channel developed at the base of the sequence in this area. This channel appears to 

have been relatively short lived and was followed by an avulsion to form the present day 

channel. The avulsion node (sensu Kolia et al. 2007) occurs at the base of the north-west levee 

where Channel C exits the fold belt (Fig 3.14). The point of avulsion is associated with a 

decrease in channel erosional depth (Fig 3 .13). This channel is relatively straight with a 

sinuosity of 1.1, near the avulsion node it is 150m  wide and c.7m deep, with the width 

increasing to 260m  towards the north where it eventually rejoins Channel C. No levees are 

observed to be associated with this channel but several linear small scale channels are present, 

typically having widths of 50m  (Fig 3.14). These small scale channels emerge from the outer 

bank close to the position where the first m eander (which developed subsequently) is now 

located. They join the course of the avulsed channel with the exception of one which joins the 

course of Channel C.
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3.5 Discussion

The channel systems described in the previous section all show examples of channel 

development influenced by deformation resulting from compressional salt tectonics which 

affects this area. Based on the various examples of channel levee systems interacting with 

many separate structures within this area, and comparing this with unpublished examples from 

other areas where channel-structure interactions occur (such as Deepwater Nigeria), four end- 

member channel structure interactions: ‘Confinement’, ‘Diversion’, ‘Deflection’ and ‘Blocking’ 

can be defined (Fig. 3.15). Each channel-structure interaction results in a specific pattern of 

channel development and provides important information about the temporal relationship 

between submarine channel development and deformation. In order to aid recognition and 

description of similar channel-structure interactions elsewhere, these four end-members are 

defined in more detail below, with reference to type examples described from the Levant Basin. 

Unconfined channel development is also briefly discussed for the purposes of comparison with 

the four end-member interactions.

Although each channel-structure interaction is defined individually for a particular area of each 

channel, many of the channels in this area are affected by more than one type of these 

interactions along their length. The full range of these channel-structure interactions is 

discussed in more detail in Chapter 6 -  section 6.2.1.

3.5.1 Definitions of key submarine channel -  structure interactions.

3.5.1.1 Unconfined channel development (Fig. 3.2):

Channel development that is unaffected by underlying deformation is associated with channel 

levees that thin exponentially away from the channel axis (Skene et al. 2002). The channel axis 

itself is only confined between the constructional relief of the levees and not physically 

constrained by the underlying slope. Sediment waves may be prominent on the channel levees 

and can either be parallel to the channel axis (such as at m eander bends) or orthogonal to the 

channel axis (Normark et al. 2002). W here the channel is unconfined, lateral migration of the 

channel is relatively unrestricted, and this can result in development of a highly meandering, 

sinuous channel levee system (Fig. 3.2).

Examples of unconfined channel development are observed along the south-western segments 

of channel segments B and C (Figs 3.10 and 3.12). These areas typically have higher 

sinuosities and thicker channel and levee deposits (Fig 3.12, points A and G). In areas of
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unconfined channel development, the thickness and lateral extent of the channel levees is 

approximately symmetrical about the channel axis in the along-channel orientation (Fig. 3.10).

3.5.1.2 Confinement (Fig. 3.15a):

Confinement of a submarine channel is defined as the restriction of the course of a channel and 

its overbank deposits as a result of pre-existing structures (Fig 3.15a). Due to these structures 

constraining the channel course, confinement limits the ability of the channel to laterally migrate 

and develop a sinuous planform geometry. If the confining structures are no longer active, then 

aggradation of the submarine channel can lead to the degree of confinement decreasing over 

time as the channel infills accommodation space. This process is similar to the well recognised 

fill and spill model of enclosed mini-basin development described from the Gulf of Mexico 

(Prather et al. 1998; Beaubouef and Friedmann 2000) but here applies specifically to the 

development of submarine channel systems. As well as limiting lateral migration, confinement 

can also limit the thickness and distribution of the channel levee deposits, due to the available 

accommodation space being restricted by the enclosing structures.

The effects of confinement on channel development are very clearly illustrated by the example 

of Channel C. In this example, confinement is caused by strike slip faulting and folding, the axis 

of which is parallel to*the channel course (Fig. 3.12, points D, E and F). In both cases the 

location of the channel axis, as well as levee deposits, are physically constrained by the folding 

induced topography (Fig 3.12, points D, E and F). W here strike slip faulting affects Channel C, 

levee development is asymmetric, with preferential deposition occurring within the areas of 

decreased relief formed by pull-apart structures (Fig. 3 .12, point B). Confinement of Channel C 

results in limited lateral migration (Fig 3.12, point F) causing a decrease in sinuosity in those 

areas where confinement occurs.

3.5.1.3 Diversion (Fig. 3 .15b):

Diversion is defined as a change in channel course resulting from a pre-existing structure (or 

series of structures) obstructing the flow pathway of the channel by modifying the slope 

gradient. Diversion is commonly caused by a pre-existing structure that is orientated at a high 

angle to the channel flow pathway which causes the channel to flow around the obstacle. Once 

the channel is diverted around the structure, it can resume its original down-slope course. 

Diversion of submarine channels in this study is associated with increased deposition of levee 

material into the synclines as the channel is diverted around the zones of positive seafloor 

topography above underlying thrust faulting (Fig. 3.10). Diversion can affect the courses of
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submarine channels at either a local or regional scale. Local diversions can involve the channel 

pathway being shifted by hundreds of metres laterally as the submarine channel flows around a 

single obstacle. Regional diversions cause a lateral shift in the course of the submarine 

channel of several to tens of kilometres and result from arrays of linked or overlapping 

structures obstructing the down slope channel pathway.

An example of a local diversion around a single fold is observed along Channel B, where 

diversion occurs 1km to the south east around a single thrust fold (fold 2 in Fig. 3.10). Diversion 

of Channel B results in preferential levee deposition towards the north west, into the depression 

formed by the hanging-wall syncline associated with fold 2 (Fig. 3 .10). The example of regional 

scale diversion of Channel C is caused by multiple folds and pop-up structures along strike slip 

faults, the combined effects of which result in a shift in the channel pathway of over 8km to the 

north-west until Channel C exits the fold belt (from point C to point G, Fig. 3.12). Large scale 

channel diversion by multiple structures affecting Channel C is associated with confinement into 

local depressions adjacent to the diverting structures (Fig. 3 .12, point C).

3.5.1.4 Deflection (Fig. 3.15c):

Deflection is defined as a progressive shift in channel position away from the axis of uplift of an 

adjacent growing structure, causing a shift in channel position to occupy the newly forming 

topographic low point. Deflection causes successive changes in channel course over time. This 

is distinct from diversion, which involves a single lateral shift in channel position around a 

passive obstacle to flow. The two types of interaction are therefore similar, with the relative 

timing of channel development and deformation being the key factor which sets diversion and 

deflection apart. Lateral accretion surfaces on the side of the channel adjacent to the structure, 

and erosion on the opposite side are indications that the channel pathway is being shifted away 

from the adjacent structure (see also Mayall et al. 2006). Deflection by an uplifting structure 

such as a growing fold may result in an abandoned channel or accretion surface perched above 

the present channel thalweg. This is a result of the channel’s course being shifted to occupy 

the local gravity base over time. Examples of submarine channel deflections by active 

structures (salt diapirs) have been documented from the Angolan slope (Gee and Gawthorpe 

2006).

An excellent example of deflection can be seen as Channel C emerges from the fold belt at the 

point where two oppositely verging thrust folds terminate against a transfer fault (Fig. 3.14). 

This area is characterised by the deposition of a lobe-like deposit covering approximately 

22km2, with the thickest channel levee deposits concentrated against the forelimb of the fold to
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the north west and, to a lesser extent, against the back limb of the fold to the south east (Fig. 

3.14B). The temporal evolution of Channel C in this area involves successive shifts in channel 

position towards the lowest bathymetric point over time -  in this case the low point is the 

footwall of the fold to the northwest of the channel (Fig. 3.14). During deflection of this channel, 

an avulsion occurred during the lateral migration of the channel position. The avulsed channel 

is located at the base of the channel sequence at the first downstream facing meander bend 

after emergence of Channel C from the fold belt. This avulsed channel is associated with small 

scale, linear channels developed in the overbank areas adjacent to the avulsed channel (Fig.

3.14). Following abandonment of the avulsed channel, the high sinuosity, present day channel 

segment progressively evolved over time from an originally less sinuous course.

3 .5 .1.5 Blocking (Fig. 3 .15d):

Blocking of a submarine channel is defined as a structure orientated at a high angle to the 

channel flow direction preventing downstream sedimentation due to structural relief and the 

upstream facing slope causing reflection of individual flow events along the submarine channel. 

Blocking can result from a relative rate of fold growth or uplift which exceeds the erosional and 

aggradational rates of the channel across the fold crest and the adjacent synclines. Blocked 

submarine channels may show an unfilled channel remnant preserved downstream of the 

blocking structure, whereas the channel segment upstream will have a subdued morphology 

due to backfilling and flow reflections from the blocking structure (e.g. Bursik and Woods 2001).

Channel A is an excellent example of a system which has become blocked due to fold uplift 

perpendicular to the channel, in a similar manner to that of a defeated fluvial system (Burbank 

et al. 1996). Continued activity of Channel A has resulted in increased deposition upstream of 

the blocking fold (Fig. 3 .8) which has partially healed over the constructional relief generated by 

this channel. Downstream of the blocking fold, a channel remnant is preserved which retains its 

original relief due to the relief of the fold preventing any downstream sedimentation.

3.5.2 Implications of submarine-channel interactions

The recognition and description of four end member types of submarine channel-structure 

interactions in a deepwater fold and thrust belt setting may have implications for reservoir 

development in any deep marine system where submarine channel development occurs on a 

structurally active slope. These interactions may be applicable, for example, to other slope 

settings, particularly those undergoing gravity driven collapse. Examples include the Niger Delta 

(Heinio and Davies 2007; Morgan 2004), the Angolan Margin (G ee and Gawthorpe 2005) and
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offshore Brazil (Viana et al. 2003). It is hoped that the recognition of these four channel- 

structure interactions will be a useful starting point for a descriptive framework for submarine 

channels within structurally active slope settings.

Thickness and lateral extent of channel levees within a confined channel are controlled by the 

available local accommodation space, which is in turn related to the nature of the confining 

structures (Fig. 3.12, point F). This could limit the development of any potential reservoir to 

between the confining structures, particularly if structural relief prevents lateral migration. An 

example of this is seen where Channel C is confined by multiple folds and strike slip pop-up 

structures (Fig. 3.12).

Local diversion of submarine channels around the tips of folds or faults results in a shift in 

overall channel direction until the channel passes around the structure. In the case of channel 

diversion around the edge of a fold, levee deposition is concentrated within the hangingwall and 

footwall syncline while the channel axis passes around the fold (Fold 2, Fig. 3.10). Increased 

deposition of levee material within these synclines could result in preferential development of 

crevasse splays and sheet sands localised in these areas, with important consequences for 

reservoir development in fold belt settings where channel levee systems are developed (Fig.

3.14). Regional scale.diversion of submarine channels also involves a degree of confinement, 

as is shown by Channel B (Fig. 3.12).

Deflection can result in the development of am algam ated, potentially sand-rich channel axis 

deposits adjacent to the uplifting structure as the channel’s position is shifted away from the 

axis of uplift and towards the newly forming low point. Deflection can also be associated with 

development of avulsions (Fig. 3.14) and increased deposition of crevasse splays and sheet 

deposits into structural lows forming during ongoing deformation. This too may have 

implications for reservoir prediction, in that lateral amalgamation of individual channels could 

result in a more prolific reservoir than a comparable channel where there has been no history of 

deflection.

Blocking can result in dramatic changes in submarine channel thicknesses upstream and 

downstream of the blocking structure. In the example in this study, channel development within 

the footwall syncline upstream of the blocking fold has resulted in a highly sinuous channel with 

potentially sand-rich lateral migration deposits. Blocking may also result in loss of connectivity 

within the channel axis deposits across the blocking structure, particularly if the channel 

becomes more erosive across the fold crest (Heinio and Davies 2007).
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3.5.3 Timing relationships between submarine channels and structural deformation.

Establishing the correct timing of the interactions between submarine channels and structures 

affecting their development is a key factor in predicting the depositional response to active 

deformation of the slope and will affect which of the four end-m em ber interactions is most likely 

to occur. This study documents several different relative timings of deformation with respect to 

submarine channel development:

1. Deformation pre-dates channel development: This is seen where Channel C is confined 

and diverted by multiple fold and strike-slip structures. In this case the surface resulting 

from faulting and folding controls the slope gradients as well as the available 

accommodation space into which levee deposition can occur.

2. Deformation post-dates channel development: An exam ple of this is where Channel A is 

blocked by a fold which developed perpendicular to the channel flow direction.

3. Deformation is coeval with channel development: This is seen where Channel C is 

diverted towards the footwall when it emerges from the fold belt (Fig 14). Another 

example occurs along Channel B which is affected by underlying folding which does not 

result in a channel diversion (Fig. 3.10).

In this study the most commonly observed interactions involve deformation which pre-dated 

submarine channel deposition. This is evident from the channel isopach maps, particularly as 

the channels pass through the fold belt (Fig. 3.12). These examples show that the thickness 

and lateral extent of the channel levees (as well as the location of the channel axis) are 

controlled by the pre-channel deformation surface (Fig. 3.12c).

Channel levees can be used as an indicator to assess the relative timing of deformation with 

respect to channel development. In situations where levee deposition from a submarine 

channel is unconstrained, the levee package thins exponentially away from the channel axis 

(Skene et al. 1998; Broucke et al. 2002; Deptuck et al. 2003). Internal reflections within the 

levees are often highly continuous but converge laterally away from the channel axis, this 

convergence often appearing as apparent downlap on seismic data.

Where a structure which pre-dates the submarine channel is present, channel diversion or 

confinement can result in the internal levee reflections showing downlap onto the flank of the 

structure (Fig. 3.12c). In addition, the gross shape of the levee package will differ from that 

seen where channel deposition is unconfined - compare levee geometry seen in Figure 3.12  

with that in Figure 3.2.
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If structural relief initially pre-dates channel development, but subsequent deformation is coeval 

with channel deposition, the gross geometry of the levee package will be similar to the previous 

case. The geometry of the internal levee reflections will differ however, as the basal levee 

reflections will become progressively rotated by the growing structure (in this case a fold) over 

time (Fig. 3.14). This will result in the basal levee reflections becoming tilted towards the 

channel axis, with the degree of rotation of the levee reflections decreasing upwards. An 

example of this relationship is observed for Channel C (Fig. 3.14B).

In the case of a structure which post-dates channel deposition, the levee will become 

incorporated into the growing structure and the internal levee reflections may become rotated 

and appear to onlap onto the flank of the structure. The levee should still retain its gross 

geometry however, and show tapering away from the channel axis. This relationship is not 

seen in the systems studied here as deposition of the channel systems post-dates deformation.

3.5.3.1 Using morphology to assess the timing o f channel-structure interactions:

The submarine channels in this study area are all significantly affected by the fold belt as they 

cross it. In the case of channel B however, there is no diversion when this channel crosses 

Fold 1 (Fig. 3.10). This is in contrast to the second fold, which diverts this channel, and also 

contrasts markedly with the 8km diversion to the N W  observed along Channel C (Fig. 3.12).

The erosional depth profile of Channel B shows a strong similarity to the cross sectional profile 

of the underlying fold, which is asymmetric with the fold crest flanked by a broad hangingwall 

syncline and a narrow footwall syncline (Fig. 3.11). Thus the increase in erosional depth 

observed over the hangingwall and footwall synclines and the decrease in erosional depth 

across the fold crest mirrors the geometry of the underlying fold profile. This similarity between 

the shape of the erosional depth profile underlying fold is interpreted to result from folding 

superimposed onto a normal erosional depth profile over the course of the channel’s 

development. This is in contrast to areas where underlying deformation does not affect, or post­

dates channel development (Fig. 3.11). In these areas, the difference between the erosional 

depth and the channel thalweg depth profile is fairly constant (Fig 3.11). Comparison of the 

erosional depth profile with the thalweg depth profile of Channel C across fold 1 (Fig. 3.11) 

reveals a contrast between the magnitude of folding that has affected the two profiles, with the 

erosional depth profile showing a more pronounced resemblance to the underlying fold than the 

thalweg depth profile The difference observed between these two profiles as Channel A 

crosses the edge of the fold is interpreted here to represent fold growth which was coeval with
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the development of this channel. Therefore, the difference between these two morphological 

parameters is a useful record of the response of this channel to uplift. Comparison of these two 

profiles where Channel B crosses the fold crest (Fig. 3 .11) shows that increased deposition 

occurs across the synclines with relatively less deposition occurring across the fold crest.

3.6 Conclusions

1. This study documents a series of submarine channel levee systems which developed 

within a deepwater fold belt setting. The channel levee systems described are typically 

500m in width and are dominantly aggradational, with well developed levee deposits. 

Where no underlying structures are present, the channels in this area typically have a 

sinuous planform geometry.

2. Evidence of the response of submarine channel systems to the structurally formed slope 

is exhibited by levee asymmetry which results from the surrounding structures which 

determine the available accommodation space for levee development.

3. In deepwater fold belt settings, where submarine channel systems develop on a 

structurally deformed seafloor, four end m em ber channel-structure interactions can be 

defined: Confinement, diversion, deflection and blocking.

4. These interactions can occur in combination with each other but each will result in a 

specific pattern of channel development, this can have implications for potential reservoir 

sand body distribution, thickness and connectivity, particularly around folds.

5. Recognition of these interactions provides a useful framework for describing submarine 

channel evolution in structurally active areas.

6. Channel-structure interactions also provide information about the relative timing of 

deformation vs channel development. For example, confinement and diversion result 

from pre-channel deformation, whereas deflection and blocking result from deformation 

which is coeval and post dates channel development respectively.

7. Variations in morphological parameters such as erosional depth vs thalweg depth can 

also be used to assess the timing and response of the channel to deformational features 

which are active over the time period of channel development.

8. The results of this study should be applicable to many other deepwater fold belt settings 

in which submarine channels are developed on a structurally active seafloor.

67



Chapter 4
This chapter has been submitted in revised form after being peer reviewed for inclusion into a 

special issue of the Journal of Sedimentary Research on the topic of seafloor geomorphology.

The work presented in this chapter is that of the lead author (IR C), editorial support was 

provided by the project supervisor, JAC in accordance with a normal thesis chapter.

68



Chapter 4 Coeval sedimentation and deformation: Niger Delta.

CHAPTER 4 

INTERACTIONS BETWEEN COEVAL SEDIMENTATION AND DEFORMATION FROM THE 

NIGER DELTA DEEPWATER FOLD BELT 

4.1 Abstract

The deepwater fold and thrust belt of the Western Niger Delta provides an ideal natural setting 

in which to study interactions between coeval sedimentation and deformation. Deformation in 

this area takes the form of folding resulting from the up-dip gravitational collapse of the Niger 

Delta above the overpressured shale detachment of the Akata formation. The seafloor relief 

formed by folding is initially orientated perpendicular to the downslope sediment transport 

direction. This results in a significant barrier to the basinwards transport of material and in the 

creation of accommodation space within the hangingwall and footwall areas of the fold. Coeval 

sedimentation during uplift results in deposition of a growth sequence comprised of a 

compensationally stacked vertical succession of mass transport deposits (MTDs), channel levee 

systems (CLSs), and hemipelagic drape deposits (HD). Variations in the along-strike structural 

style and relief of a large scale fold c.40km in length control variations in growth sequence 

geometry. These variations in fold style along strike also determine sediment flow pathways 

around the positive relief formed at the seafloor during fold uplift. Switching of sedimentation 

between the two structurally induced flow pathways around the fold is related to the 

compensational stacking patterns within the hangingwall which cause a shift in flow pathways 

from one fold edge to another. The combined structural-stratigraphic approach to the 

interpretation of sedimentation in deepwater fold belts is a useful method for reconstructing the 

development of relief during folding.

4.2 Introduction

Deepwater fold belts found on passive margins are characterised by zones of thrusts, and 

overlying thrust-related folds which develop to accommodate up-dip extensional structures at 

the head of large gravity spreading deformational systems (Bornhauser, 1958; Winker, 1982; 

Jackson, 1995; Letouzey et al., 1995; Morley and Guerin, 1996). The gravitational collapse of 

large prograding sediment wedges above ductile substrates such as salt or overpressured shale 

is typical of many of the world’s large deltaically driven depocentres on passive margins such as 

the Gulf of Mexico, the Niger Delta, the Kwanza-Congo Deltas, the Amazon Cone and the Nile 

Cone (McClay et al., 2003; Rowan et al., 2004; Cartwright and Jackson, 2008). Compression in 

these settings is often expressed at the seafloor as asymmetric folds which typically have a
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positive relief of several hundred metres (Cohen and McClay 1996; Demyttenaere et al., 2000; 

Heinio & Davies, 2006) and act as significant barriers to the downslope transport of sediment. 

This results in complex slope topography with multiple depressions acting as focal points for 

sedimentation as well as positive bathymetric barriers to down-slope sediment transport, all of 

which contribute to highly complex, tortuous flow pathways in these settings (Smith, 2004).

In deepwater fold belt settings, the main drivers for sediment accumulation are the interactions 

between slope topography and sediment transport and deposition. The interplay between 

accommodation space evolution controlled by fold amplification and sediment transport are the 

first order controls on sediment architecture and facies (reservoir) distribution, and influence, for 

example, reservoir-seal juxtapositions (Cartwright, 1989; Prather, 1998; Prather et al., 2003). 

Due to water depths of up to 4000m, the influence of eustatic sea level in directly controlling 

available accommodation space is secondary in such deep w ater settings, but can still influence 

long term variations in sediment supply and in conditioning the shelf-slope boundary zone for 

net bypass or accumulation (e.g. Jervey, 1988).

Gravity driven sedimentation in deepwater fold belt settings can be separated into two well 

recognised end member processes, defining a depositional continuum (e.g Reading and 

Richards, 1994). Firstly, turbidity current driven sedimentation results in the formation of 

channel levee complexes (e.g. Babonneau et al., 2002; Kolia et al., 2007; Wynn et al., 2007) but 

can also include more unchannelised, early stage sheet-like deposits (e.g. Beaubouf & 

Friedmann, 2000). Secondly, mass wasting processes can mobilise and displace large 

volumes of sediment over varying distances downslope through a range of transport 

mechanisms such as debris flows, sliding and slumping (Martinsen & Bakken, 1990; Mulder and 

Cochonat, 1996; Frey-Martinez e ta l., 2005).

Coeval sedimentation during folding results in the formation of growth sequences adjacent to 

the fold limbs (Cartwright, 1989; Suppe et al., 1992). The preservation potential of these growth 

sequences is much higher in deepwater fold belts than in any other setting (e.g. inverted rift 

basins (Cartwright, 1989) or foreland basins). Growth sequences are characterised by stratal 

thinning or onlap onto the fold crest and expansion of sedimentary packages into the forelimb or 

backlimb of the fold, as well as a progressive increase in stratal rotation with depth (e.g. Salvini 

and Storti, 2002, for review). Growth sequences are commonly studied in the context of 

structural geology and provide important indicators of the mechanism of folding (Suppe et al., 

1992; Poblet et al., 1997; Bernal & Hardy, 2002; Salvini & Storti, 2002). Understanding the 

mechanism of folding is important as the type of fold will determine the rate of uplift over time 

and also the shape of the fold which can affect sedimentation during fold growth (Salvini &
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Storti, 2002). Growth sequences can also provide information on the relative rates of uplift vs 

sedimentation (Burbank & Verges, 1994; Burbank et al., 1996). Detailed analysis of sediment- 

structure interactions between features such as submarine channels and emerging topographic 

relief within a regime of active deformation can provide detailed information which can be used 

to refine conceptual models of fold growth based upon larger scale features such as growth 

stratal architecture. Deepwater confined channels are highly sensitive indicators of gradient 

change (Huyghe et al., 2004; Heinio & Davies, 2007; Ferry et al., 2005; Clark & Cartwright, 

2009) and one of the aims of this chapter is to show how they can be used to identify subtle 

changes in fold amplitude and surface relief that otherwise would be undetectable from analysis 

of seismic profiles alone.

Deepwater fold belts in which sedimentation is coeval with deformation have been extensively 

described from a structural viewpoint, namely in the Gulf of Mexico (Wu et al., 1990; Trudgill et 

al., 1999), the Nile Delta (Letouzey et al., 1995; Gaullier et al., 2000; Cartwright and Jackson, 

2008), and the Niger Delta (Damuth, 1994; Morley & Guerin, 1996; Wu & Bally, 2000). 

However, comparatively few studies address the interactions between the structural 

deformation and sedimentation in these or equivalent settings (Cartwright, 1989; Hagen et al., 

1994; Huyghe et al., 2004; Heinio & Davies, 2007; Noda et al., 2008). 3D seismic data from 

deepwater fold belts provide ideal datasets to study sediment-structure interactions and to study 

growth sequences adjacent to folds, because the entire growth sequence architecture can be 

imaged in detail and placed in its structural context.

This study is based on a high resolution 3D seismic survey from the deepwater western Niger 

Delta and aims to present a detailed analysis of a growth sequence associated with a single, 

well defined fold. The main aims of the paper are to address the following questions:

1. How can detailed stratigraphic information from the growth sequence be used to 

reconstruct the seafloor relief during fold growth?

2. What is the architecture of the growth sequence in three dimensions and how does this 

relate to the filling of accommodation space created by folding over time?

3. What are the primary sediment pathways during fold growth and how do these change 

over time?

The underlying theme of this paper is to demonstrate how an integrated structural and 

stratigraphic analysis of growth sequences can not only be used to aid in reconstructing the 

structural evolution, but also help to refine depositional models in deepwater fold belts.
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Figure 4.1: 4.1a shows the location of the 3D seismic survey described in this paper. The survey is 
located at the boundary between the detachment fold belt and the outer fold and thrust belt. Structural 
zonation of the offshore Niger Delta is modified after Corredor et al (2005) and the positions of the 
submarine canyons are modified from Deptuck et al (2007). Fig. 4.1b (modified from Haack et al 2000) 
shows a cross section through the western Niger Delta. The updip extensional domain passes into one of 
downdip compression where this study is located. The system of linked extension -  compression occurs 
above a detachment layer of overpressured shales. Fig. 4.1c (next page) shows a seabed dip attribute 
map of the seafloor of the study area with several key features identified which are referred to later in the 
paper.
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2. A mud diapir zone beneath the upper continental slope (Morley & Guerin, 1996) with 

inter-diapir depocenters.

3. An inner fold and thrust belt, characterised by basinward verging thrusts and folds 

including detachment folds.

4. A transitional detachment fold zone beneath the lower continental slope characterised 

by areas of little or no deformation but with occasional large detachment folds above a 

structurally thickened Akata formation.

5. An outer fold and thrust belt characterised by basinward and hinterland verging thrust 

faults and associated folds.

The outer fold and thrust belt is separated into two distinct regions, separated from each other 

by the northern culmination of the Charcot fracture zone (Conners et al., 1998; Wu and Bally, 

2000).

4 .3.2  Study area and methods.

The study area is located inboard of the outer fold and thrust belt of the western Niger Delta 

(Fig. 4.1) in water depths ranging from 2000 to 2300m  below sea level. Structurally, the study 

area is relatively simple and shows the development of two folds -  the Aga and Bobo folds (Fig. 

4.1c). Both these structures can be described as thrust propagation folds (Mitra, 1990) in that 

along the greater part of their strike they are underlain by large thrust faults. The Aga fold is 

clearly visible on the present day sea floor (Fig. 4.1c), the Bobo fold was reactivated at a late 

stage but is now buried below sediments which have accumulated within the hangingwall of the 

Aga fold. This paper focuses on the most recent, and most clearly imaged, upper section of the 

growth sequence deposited during the latest phase (Plio-Pleistocene) of growth of the Aga fold 

(Fig. 4.2). This sequence provides an ideal interval in which to study sediment-structure 

interactions and three dimensional stacking architectures within the growth sequence, as well 

as being the within the highest resolution interval of the dataset.

The 3D seismic data used in this study covers an area of c .2000 km2 and is zero phase time 

migrated with a positive polarity reflection (black) representing an increase in acoustic 

impedance. The data are sampled at 4ms intervals with a line spacing of 12.5m. Where given, 

estimates of depth assume an interval velocity of 2000 m/s, calibrated by nearby wells. The 

dominant frequency of the upper 1.5s of data is approximately 45H z, giving a tuning thickness 

estimated at 12.5m.
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The methods used in this study involved detailed mapping of individual seismic-stratigraphic 

units within the growth sequence deposited adjacent to the Aga fold. The aim of this was to 

establish the three-dimensional architecture of the growth sequence and to document the 

effects of coeval uplift and deposition. Subdivision of the growth sequence into discreet 

architectural elements was based on standard seismic stratigraphic characteristics such as 

reflection continuity, amplitude, internal seismic character of the package and also relationships 

such as onlap, downlap and erosional truncation.

4.4 Results and observations.

4.4.1 Structural framework of the Aaa thrust and fold.

This section provides an overview of the structural characteristics of the Aga thrust and fold in 

order to demonstrate the link between the underlying structural characteristics and the resulting 

fold topography. The primary Aga thrust verges towards the southwest, is continuous over a 

length of 40km, and has a displacement that reaches c. 500m  in the central portion of the 

structure decreasing laterally towards the thrust lateral tips (Fig. 4 .2). The fault plane is well 

imaged on the seismic data but the limbs of the overlying fold show severe amplitude 

attenuation in some areas, particularly within the forelimb which dips at a steeper angle than the 

backlimb (Fig. 4.2, lines B and C). The thrust ramps upwards from a detachment level located 

at the top of the Akata Formation, and increases in dip upwards into the overlying Agbada 

formation. Typical values for the dip of the fault plane are 14° near the detachment, increasing 

to 35° towards the fault tip. The primary thrust splits into several frontal splay thrusts which 

propagate into the forelimb and footwall: these are most well developed within the central area 

of the primary Aga thrust (Fig. 4.2, lines C and D). Towards the lateral tips of the primary thrust, 

north eastwards verging backthrusts are developed which tip out at a lower stratigraphic level 

that the primary thrust (Fig. 4.2, lines A, E and F). The dip of these backthrusts is typically 26°. 

The seafloor expression of the Aga fold exhibits significant mass wasting (see Heinio and 

Davies, 2007), with maximum degradation concentrated on the forelimb (Fig. 4.3).

The geometry of the Aga fold is typically asymmetric, with the forelimb dipping at a steeper 

angle compared to the backlimb (Fig. 4.2, lines C and D). At the seafloor, the dip of the forelimb 

is difficult to measure due to extensive mass wasting which has modified the fold geometry (Fig. 

4.3), the backlimb has typical seafloor dips of c.6° (Fig. 4 .2, lines B and C). The asymmetry of 

the fold decreases with fold amplitude towards both the north-western and south-eastern lateral 

tips of the fold. The lateral tips of the Aga fold extend just beyond the resolvable limit of the 

underlying thrust lateral tips. In these regions, the fold has a broader, less asymmetric profile
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Figure 4.3: Seafloor dip map showing extensive mass wasting and degradation of the Aga fold forelimb, 
visible in 4.3a. 4.3b shows a representative seismic line though one o f the prominent scars and shows 
material derived from mass wasting interbedded with the pelagic drape within the footwall.
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with associated with decreased fold relief at the seafloor. In these lateral tip regions, fold style is 

similar to that of a faulted detachment fold (Fig. 4.2, lines A, E and F). In contrast, the fold style 

in the central portion is similar to fault propagation folding (Fig. 4 .2, line C and D), suggesting an 

evolutionary sequence as fold amplitude and thrust displacement increase (Higgins, 2007). See  

also Chapter 6, section 6.2.2 for a comparison of fold styles between the Niger Delta and the 

Levant Basin.

4.4.2 Growth sequence geometry.

The hangingwall growth sequence can be subdivided into two units (lower and upper -  Fig. 4.2) 

based on reflection continuity over the fold crest and onlap relationships of reflections against 

the backlimb (Fig. 4.2). The upper interval of the growth sequence forms the focus of this study 

as it is the most clearly imaged and contained entirely within the survey area. The stratal 

geometry of reflections within the upper growth sequence show that deposition was coeval with 

increased relative rates of uplift, compared to the lower growth sequence interval (Fig. 4.2, see 

also Burbank and Verges, 1994). This increased rate of relative uplift over this interval has 

resulted in clear interactions between uplift and sedimentation, particularly within the 

hangingwall of the Aga thrust and fold.

The lower unit of the growth sequence is characterised by largely continuous reflection 

packages that thin and converge over the fold crest with little observable onlap against the 

backlimb of the Aga fold (Fig. 4.2). Mass wasting of the fold forelimb has removed much of this 

sequence from the front of the fold (Figs. 4.1 and 4.2c). The lower growth sequence is eroded 

by the upper growth sequence at the fold lateral tips where erosional truncation by the upper 

growth sequence can be seen (Fig. 4.2). The isochron map of the lower growth sequence unit 

shows an elongate zone of increased thickness deposited against the backlimb of the Aga fold 

which thins towards the north-west (Fig. 4.4a). Deposition of the lower growth sequence was 

also affected by the growth of a separate fold which extends out of the study area to the SE, 

and appears to link with the Aga fold described here (Fig. 4 .4a).

The upper sequence shows a clear increase in thickness passing from the fold crest to the 

upslope limb with clear onlap of its internal reflections against the uppermost surface of the 

lower syn-kinematic sequence of the fold (Fig. 4.2). Thinning of this unit from the limb towards 

the crest is clearly seen on an isochron map of the upper syn-kinematic interval (Fig. 4.4b) 

which also shows a more general thickening of this sequence towards the SE corresponding to 

the entry point for sedimentation into the study area. The upper growth sequence is affected by 

late stage uplift of the smaller Bobo fold to the north east of Aga, resulting in thinning of the
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upper sequence across the fold crest, although the greatest am ount o f stratal thinning is 

observed during the lower growth sequence for the Bobo fold (Fig. 4 .4b ). T h ese  observations 

help to illustrate an important point with respect to analysing isochron maps of growth 

sequences: it is imperative to set the local fold within a broader context, to recognise larger 

scale thickness variations and to distinguish them from short-range effects related to folding and 

spatially varying sedimentation rates.

Variations in growth sequence geometry occur along the strike o f the A g a  fold. The growth 

sequence displays a progressive increase in the occurrence of onlap and thinning onto the 

backlimb towards the central zone of the fold (Fig. 4 .2). The top o f the low er growth sequence 

forms the onlap surface, and continued uplift of the Aga fold has resulted in progressive rotation 

of the points of onlap towards the base of the upper growth sequence (Fig. 4.5). At the south­

east and north-west lateral hinges of the fold, the upper growth sequence stratal architecture is 

that of overlap w here thinning but continuous reflection packages occur across the fold crest 

with little onlap onto the fold limbs observed (Figs. 4 .5b  & 4 .5d). O verlap  is accompanied by 

erosion of the lower growth sequence, as can be seen by the increased truncation of reflections 

against the base of the upper growth sequence at the fold edges (Fig. 4 .2 ). The transition along 

strike from the lateral fold tips to the central area is associated with a change from erosional 

truncation and overlap' of the lower growth sequence by the upper sequence to one of 

increasing conformity between the two, with increasing developm ent o f onlap onto the lower 

syn-kinematic sequence (Fig. 4.5c).

4.4.3 Seismic stratigraphic architecture of the upper growth sequence.

This section describes the principal seismic stratigraphic units which m ake up the upper growth 

sequence within the hangingwall of the Aga fold. The growth sequence in this study consists of 

a more diverse range of depositional elements compared to the previous chapter. Description 

of each seismic stratigraphic unit is followed by its interpretation. T h e  three dimensional 

stacking patterns of these units throughout fold growth are then described in the following 

section. The distribution of these units is illustrated in figure 4 .5 , which shows a series of dip 

orientated lines as well as a profile parallel to the strike of the  Aga fold to illustrate the 

distribution of the growth sequence elements.

4.4.3.1 Channel levee systems (CLSs):

Submarine channel levee systems and their architectural elem ents have been extensively 

described from many different basin settings (e.g. Abreau et al., 2003; Deptuck et al., 2003;
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Figure 4.5: Series of seismic profiles across the upper growth sequence 
within the hanging wall of the Aga fold. For line locations, see figure 4.4. 
Each seismic profile is accompanied by an interpretation which shows the 
seismic stratigraphic units described in this paper and shows the links to the 
relevant figures which show isochron maps of each unit. 4.4a shows a 
profile orientated parallel to the strike of the Aga fold showing an overall 
north-west dipping slope. Profiles 4.4b, 4.4c and 4.4d show a series of 
profiles across the north-west fold tip, the central area of the fold and the 
south-east fold tip respectively. A t the lateral fold tips (profiles 4.4b and 
4.4d), the fold relief is not sufficient to block sedimentation resulting in 
overlap by the various seismic stratigraphic units. At the central area (profile 
4.4c) the increased fold relief results in onlap and confinement of 
sedimentation within the hanging wall.

Folding does not obstruct sedimentation c ls  2
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Posamentier, 2003; Posamentier and Kolia, 2003). Many of the architectural elements identified 

from these previous studies can be identified here, and we describe only the key features of 

each system as a detailed description of all of the architectural elements is beyond the scope of 

this study. Channel levee systems (CLS) are a common component of the growth package in 

the hangingwall of the Aga fold. Three channel systems are described here, and are termed 

CLS 1-3, with CLS 1 being most recently deposited (Fig. 4 .6). The channel levee systems show 

a significant variation in scale, morphology and architectural complexity, (see next section). The 

youngest of these channel systems, CLS 1, lies below a recent c.100m s thick package of 

parallel reflections which cover most of the survey area, interpreted to result from hemipelagic 

draping. CLS 1 displays large scale outer levees that flank a channel belt up to 2km wide (Fig. 

4.6). The channel axis of all of these systems is typically U shaped and infilled with high 

amplitude, often discontinuous reflections which terminate against the margins of the channel 

axis. The depth of incision of the channel axis varies between different channel systems but 

generally shows some degree of incision into the pre-channel sequence (Fig. 4.6b). CLS 1 also 

displays terraces related to meaner loop abandonment and channel incision as well as semi­

circular scarps due to collapse of the channel sidewalls (Fig. 4 .6a). In contrast to large scale 

channels such as CLS 1, smaller systems are also observed (See CLS 2 described later). 

Sm aller channel systems, such as CLS 2 are typically no more than 500m  in width and do not 

show the sam e level of architectural complexity as the larger channel levee systems. A 

common characteristic of all channel levee systems in this area is that they display a high 

sinuosity, regardless of the scale of the system (See Figs. 4 .6, 4 .9c  and 4.11). Levees are 

clearly recognisable from all CLS by the characteristic tapering of the levee away from the 

channel axis, with individual reflections within levee packages showing downlap onto a basal 

surface (Fig. 4 .6b).

4.4.3.2 Mass transport deposits (MTDs):

Mass transport deposits (MTDs) are a common elem ent of the syn-kinematic sequence (e.g. 

Fig. 4.4). They are easily recognisable as units of generally low amplitude, chaotic seismic 

character in contrast to the higher amplitude and more continuous channel sequences which 

often incise into them (Fig. 4.6). Three major M TDs can be identified and traced throughout the 

hanging wall of the Aga fold. These units exhibit a number of key characteristics widely 

recognised within these types of deposit (e.g. Frey-Martinez et al., 2005; Bull et al., 2008):

1. Basal grooves are common and consist of linear erosional scours incised into the 

detachment surface of each M TD (Fig. 4.7).
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Figure 4.6: 4.6a shows a dip attribute map o f the upper surface o f CLS 1. Key features include a sinuous 
channel axis, terraces formed by abandoned meander loops and slump scars formed by collapse of the 
channel sidewalls. Sediment waves orthogonal to the channel axis are also apparent on the channel 
levees. 4.6b shows a seismic line through CLS 1 illustrating some key CLS features including channel 
levees, internal levees/terraces and the channel axis which incises into the underlying deposits. 4.6c 
shows interpreted depositional units which make up the seism ic section shown in 4.6b.
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2. Step-like erosional depressions also occur, and are often infilled by material of similar 

seismic character to the surrounding MTD. These depressions have very sharp lateral 

boundaries and are rectangular in cross section (See M TD 2 described later)

3. Compression ridges and thrusting are also observed at the base and at the top of 

several MTDs, these features provide useful kinematic indicators for the direction of 

transport (Bull et al., 2009, also Fig. 4.7).

All of the MTDs identified in this study extend outside of the area of data coverage, both in an 

upslope and downslope direction, and are assumed to be sourced from the east of the survey 

area according to the orientation of features such as the prominent basal grooves and also 

features such as pressure ridges (Fig. 4.7). Within the upper syn-kinematic sequence there is a 

clear and predictable stratigraphic relationship between M TDs and the CLS where in all cases, 

channel systems tend to incise into a previously deposited M TD. It is unclear from this dataset 

alone whether this represents cyclic deposition or whether the relationship is coincidental simply 

arising because the M TD  and CLS represent the most common depositional products within this 

part of the slope sequence.

4.4.3.3 Hemipelagic drape deposits (HDs):

These deposits possess a seismic facies comprised of high amplitude, continuous reflections 

that can often be traced across the whole study area. Reflections making up this sequence 

typically exhibit configurations that passively drape onto the previous topography of the 

underlying unit (Brown and Fisher, 1977). Some thickness variations do occur within this unit 

however, and it is possible that this unit has been modified by bottom current activity in some 

areas, with reflection configurations and planform topography reminiscent of contourite drift 

deposits identified on 3D seismic elsewhere (c.f. Knutz and Cartwright, 2003). One such area  

can be seen on the present day seafloor (Fig. 4.1c -  north-west fold tip area). Here, bottom 

current activity seems to have scoured a depression (moat) around the NW  edge of the Aga 

fold.

4.4.4 Stacking patterns within the upper growth sequence and the effects of fold uplift on 

deposition

This section describes in chronological sequence the influence of fold development on the 

deposition of the most recent architectural elements of the upper growth sequence. W e also 

highlight some of the characteristic relationships that reveal the interactions between fold-
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2500m

Figure 4.8: 4.8a shows a simplified 
isochron map of MTD 3, and illustrates 
its strongly east to west component of 
flow. The zones of increased thickness 
seen in this deposit correlate strongly 
to the prominent basal scours seen on 
the coherence image in 4.8b. These 
scours show a change in orientation as 
they cross the position of the Bobo fold 
and this is interpreted to be as a result 
of subtle fold topography influencing 
the depositional pathway of MTD 3.

Position o f Bobo fold

1000m.
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controlled topography and deposition. These relationships include deflection of the basal scours 

of MTDs, and changes in submarine channel m orphology in response to uplift of the Aga fold. 

The original isochron maps from which these interpretations are drawn are presented at the end 

of this thesis in Appendix A2.

At the base of the mapped interval within the upper growth sequence, M TD 3 exhibits an east- 

west oriented thickness trend, with the thickest portions o f the deposit concentrated above a set 

of prominent basal scour features at the base of this deposit, these scours are up to 500m  wide 

and 20m deep (Fig. 4.8). The orientation of these scours and the thickness distribution of the 

overlying deposit indicate that MTD 3 was sourced from  the east, outside of the study area. 

Importantly, the prominent scours imaged on the basal surface of this M TD show a change in 

orientation on crossing the subtle relief due to the B obo fold (Fig. 4.8). This highlights a potential 

use of recognising basal scour features associated with M TD s in revealing subtle variations in 

topography over which the flow passed. MTD 3 tap e rs  towards its southern margin, where  

erosion by CLS 3 has partially removed material.

CLS 3 lies stratigraphically above MTD3, which is incised by this channel in some areas (Fig. 

4.9). The pathway of this channel within the hangingwall of the Aga fold is controlled by the 

southwards thinning and pinch out of MTD3 (Fig. 4 .9 ) , and thus provides a good example of a 

compensational relationship between channel positioning and pinch out of an underlying M TD  

deposit. This channel also exhibits a clear exam ple o f a diversion related to fold-controlled 

topography as it passes around the north-west lateral tip of the Aga fold (see also Clark and 

Cartwright 2009). Diversion of this channel shows no significant change in sinuosity as CLS 3 

passes from the hangingwall to the footwall (Fig. 4 .9 c ) possibly suggesting little change in 

gradient upon passing from the hangingwall to the footw all (see also Ferry et al 2005). The only 

change in channel morphology associated with this transition is a thickening of the channel 

levee deposits and deposition of a high amplitude, sh eet like deposit beginning at the forelimb 

to footwall transition (Fig. 4.9c). This channel system has also suffered significant erosion in the 

north-east where it enters the survey area by the overlying M TD 2, with erosion appearing to 

preferentially remove the channel levees (Fig. 4 .9b). Preservation of the channel levees within 

the forelimb may be a result of the decreased thickness o f the overlying M TD 2 in this area.

The distribution of MTD 2 is much more extensive com pared to M TD 3 and shows a general 

thinning to the north of the survey area, with this deposit being sourced from the east of the 

study area with the direction of transport being w estw ards, as indicated by the thickness trends 

seen within this unit (Fig. 4.10). There are several key controls on the deposition of M TD 2. 

Firstly, relief resulting from aggradation of the channel levees deposited by CLS 3 results in run-
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Figure 4.9: The isochron map of CLS 3 seen in 4.9a has been extensively modified by erosion caused by 
the overlying MTD 2. Erosion by MTD 2 has resulted in removal o f significant volumes o f levee material 
and also formation of positive relief caused by ‘perched’ MTD material on top of CLS 3, this can clearly be 
seen in 4.9b. Figure 4.9c (next page) shows an amplitude map of the base CLS 3 surface. This highly 
sinuous nature of the channel can be seen as well as the change in depositional style of the earliest 
channel deposits upon crossing into the foot wall.
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Figure 4.10: 4.10a
shows an isochron map 
of MTD 2. This deposit 
is concentrated around 
the south-east fold tip 
region where diversion is 
observed into the 
hanging wall and into the 
footwall. Diversion of 
material into the footwall 
results in a lobe-like 
depositional geometry of 
the MTD in this area as it 
responds to the available 
accommodation space 
within this area. 10b 
demonstrates the
compensational 
relationship between 
levee relief and overlying 
MTD deposition where 
MTD material thins 
against the underlying 
channel levee. Perched 
MTD material can still be 
seen on this section, see 
also Fig. 4.10b for 
comparison.

Thinning onto leve<

1000m' Southwards pinch out of MTD 3
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up relationships where the material from MTD 2 thins against the wedge shaped levees which 

obstruct deposition (Fig. 4.10b). In the north-east of the survey area, M TD 2 has resulted in 

significant erosion of the channel levees of CLS 3, leaving only the channel axis preserved (Fig. 

4.10b). Erosion of the underlying channel system is concentrated in the north-east where 

MTD2 enters the survey area. The isochron map of CLS 3 shows that the channel levees have 

been removed during emplacement of MTD 2, particularly on the southern margin of the 

channel where M TD 2 increases in thickness (Fig. 4 .10a). The second control on the distribution 

of MTD 2 is the relief of the Aga fold and its primary role in shaping the accommodation space 

upslope and in obstructing the down-slope flow pathway of this deposit (Smith et al., 

2004; Prather et al., 2003; Beaubouef and Friedmann, 2000). This results in thinning of the 

MTD against the backlimb and diversion of material around the south-east lateral tip of the fold 

(Fig. 4.10). In this area deposition of MTD 2 within the footwall resulted in the formation of a 

lobe like deposit which infilled negative relief within the footwall of the Aga fold (Fig. 4.10a). 

Basal grooves are also observed to be diverted around the lateral hinge and diverge within the 

footwall. This echoes the relationship already noted for M TD 3, whereby basal grooves carry 

important directional information that reveals subtle gradient changes (Bull et al., 2008).

Following the emplacement of MTD 2, a small scale channel-levee system -  CLS 2 was 

deposited (Fig. 4 .11) that is up to 500m in width with the channel axis being no more than 50m  

deep. This channel system is sourced from the east and exhibits a clear diversion around the 

north-west lateral tip of the Aga fold. The levee distribution for CLS 2 is uniform within the 

backlimb of the Aga fold, with levee thickness and lateral extent approximately equal on each 

flank of the channel (Fig. 4.11a). Thickening of the channel and levee deposits is observed 

upon crossing from the forelimb to the footwall and is associated with a localised increase in 

channel migration in this area. See for example, the abandoned meander loop in Fig. 4.11b. 

The change in channel morphology is located at the transition from forelimb to footwall, in a 

similar manner to that previously observed for CLS 3.

The deposition of CLS 2 was followed by a hemipelagic interval (unit HD 2, Fig. 4.5). This unit 

shows no systematic thickness variations due to structural growth but some material has been 

eroded by MTD 1 which overlies this interval.

Deposition of M TD 1 was influenced by both the Aga and Bobo folds, as can be seen from the 

thinning of this deposit against the backlimb of the Aga fold and against the forelimb of the 

reactivated Bobo fold (Fig. 4.12). Basal grooves are also present at the base of this deposit 

(Fig. 4.6a) and, combined with the isochron map show that MTD1 was sourced from the east 

with deposition being confined entirely to the hangingwall of the Aga fold. The basal grooves of
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Figure 4.11: 4.11a shows the 
isochron for this channel
interval. The channel levees 
are symmetrical about the 
channel axis in plan view within 
the hanging wall. As the 
channel is diverted around the 
NW fold edge, levee distribution 
becomes asymmetric due to the 
confining effect of fold relief. 
Also apparent is the increase in 
thickness of the channel
deposits within the footwall, 
immediately down-dip from the 
forelimb to footwall break of
slope. The change in channel 
morphology is emphasised in 
10b, which shows a coherence 
slice flattened to the top of CLS 
2. In this image, the channel 
shows increased lateral
migration limited to the footwall 
area, with the formation of an 
abandoned meander loop 
labelled in Fig. 4.11b.
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Figure 4.12: The isochron 
map of MTD 1 in 4.12a 
shows a strong south-east to 
north-west orientation in 
deposition due to 
confinement of this deposit 
against the backlimb o f the 
Aga fold and the forelimb of 
the reactivated Bobo fold. 
4.12b shows a seismic line 
which further illustrates the 
confined nature of this MTD 
deposit. Note the location of 
the overlying channel levee 
system (CLS 1), the axis of 
which is located between the 
pinch out of MTD 1 and the 
axis of uplift of the Bobo fold.

Positive relief formed by surface of MTC 1

--^Confinem ent of MTD against fold relief
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MTD 1 show convergent and divergent relationships in response to the relief present at the time 

of deposition by the forelimb of the Bobo fold, which has resulted in confinement of this deposit 

into the accommodation space between the two folds (Fig. 4 .12b). M TD 1 is entirely confined 

within the hangingwall of the Aga fold and cannot be traced into the footwall (Fig. 4.12a), 

indicating that the seafloor relief prior to deposition was sufficient to confine M TD 1 within the 

hangingwall.

The isochron map of CLS1, the most recent channel system, shows that the levees are evenly 

distributed on either side of the channel axis but that the overall thickness of this system and the 

lateral extent of the levees decreases towards the west (Fig. 4 .13). The positioning of this 

channel within the study area is related to the northwards thinning and pinch-out of the 

underlying MTD 1 unit to the south-west and the Bobo fold towards the north east. Late stage 

of uplift of the Bobo fold is shown by tilted levee relationships seen along this channel (Fig. 

4.13b). Despite tilting of the channel levees caused by uplift of the Bobo fold, the lowermost 

levee reflections onlap the fold, demonstrating that fold-controlled relief controlled the course of 

CLS 1 early on in its development. Relatively rapid subsequent sedimentation due to levee 

deposition then resulted in overlap of the fold crest. This was followed by a phase of renewed 

uplift resulting in the folded levee geometry observed in Figure 4.13b.

The final and youngest stratigraphic unit (HD1) is composed mainly of parallel -reflections that 

drape the relief of the underlying channel levee system (Fig. 4 .4a). Within the forelimb of the 

Aga fold, the extensive degradation resulted in local mass wasting deposits which are 

intercalated with the draping facies (Fig. 4.3).

4.5 Discussion

The detailed description of the architectural elements comprising the upper growth sequence 

illustrates a number of key processes regarding the interaction between structurally controlled 

topography and depositional processes and products. These include the three dimensional 

stacking of individual architectural elements comprising growth sequence and also the more 

detailed interactions between deposition of these units and structurally induced relief present at 

the time of deposition. These generic themes are observable on similar folds in many 

deepwater fold belts, or indeed within inverted rift systems (Cartwright, 1989) or foreland basins 

(Burbank and Verges, 1994). These themes are discussed further below, in an effort to draw 

some wider conclusions that may help in predictive studies in areas of active deepwater 

exploration.
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Figure 4.13: 4.13a shows the 
isochron of CLS 1 showing a 
uniform levee distribution 
about the channel axis. The 
levees and channel fill thicken 
towards the source direction, 
indicating that this channel was 
backfilled during the latest 
stage of its deposition. 4.13b 
shows that reactivation of the 
Bobo fold has uplifted the 
north-east channel levee, 
resulting in a unique levee 
geometry compared to the 
south-west channel levee 
which is undeformed.
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4.5.1 Development of bathymetric relief during fold growth

Considerable insights into relief development during folding can be obtained when analysing 

growth folds, by comparing the central most highly deformed region with the lateral tips of the 

structure. At the lateral tip regions of the Aga fold, for example, the observed pattern of thinning 

of the upper growth sequence across the fold crest and lack of onlap against the backlimb 

suggest that no opposing slope was developed in these areas to block sediment transport into 

the footwall (c.f. Burbank and Verges, 1994; Burbank et al., 1996). This is in contrast to the 

central area of the fold, where the upper growth sequence onlaps the backlimb of the Aga fold, 

indicating that the fold formed positive seafloor relief resulting in a barrier to flow across this 

area of the fold (Fig. 4.2). Although no opposing slope developed at the lateral tip regions 

during deposition of the upper growth sequence, an overall basinwards dipping slope was 

maintained during uplift -  as can also be seen on the present day seafloor (Fig. 4.1c).

Evidence that a basinward dipping slope was maintained during fold growth at the forelimb to 

footwall transition can be seen in the subsurface where CLS 2 and CLS 3 are diverted around 

the north-west lateral hinge (Figs. 4.9 and 4.11). Thickening of CLS 2 occurs as it is diverted 

around the Aga fold, resulting in increased deposition localised in the immediate footwall (Fig. 

4.11). Another example of how the depositional style of channel levee systems changes at the 

forelimb-footwall transition is shown by the amplitude map at the base of CLS 3 (Fig. 4.9c). This 

shows development of a fan-like feature characterised by high seismic amplitudes, located at 

the base of slope of the forelimb-footwall transition. CLS 3 also shows an increase in overall 

channel deposit thickness within the footwall and slight ponding of the left hand levee against 

the forelimb (Fig. 4.9). These observations suggest that:

1. At the scale of individual flow events, there is a change in flow character at the 

backlimb to forelimb transition caused by the decrease in slope. The decrease in 

slope at this transition point results in flows becoming increasingly depositional 

within the footwall. This could be a result of processes such as hydraulic jumps 

(Garcia, 1993) occurring as a response to the change in gradient from the steep 

forelimb to the reduced slope of the footwall.

2. At the larger scale of slope architectural elements, the increased deposition within 

the footwall may be caused by the local perturbation in the base level of the 

channel profile due to folding. The channel response to this local lowering of 

gradient is to aggrade within the forelimb of the fold in order to reach its 

hypothetical equilibrium profile (Pirm ez et al., 2000; Ferry et al., 2004).
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At the lateral tips of the Aga fold, the relief resulting from fold growth did not create an opposing 

slope to block sedimentation around the fold. The curvature seen within the upslope limb close 

to the lateral tip regions reflects progressive rotation during uplift towards the base of the 

sequence during sedimentation, and not actual fold relief expressed on the seafloor (Fig. 4.5). 

An estimate can be obtained of the magnitude of uplift which has occurred during deposition of 

the upper growth sequence by taking the change in thickness of the upper growth sequence 

across the fold crest at the lateral tip regions of the Aga fold (see Masaferro et al., 2002 for 

more detail). Using an average interval velocity of 2000ms"1, the upper growth sequence 

records approximately 430m of uplift at the lateral tips of the Aga fold. This compares to at least 

1000m of cumulative positive relief being developed towards the central area of the fold over 

the same interval. Note that due to the increasing occurrence of onlap towards the central 

portion of the Aga fold, this estimate only provides a minimum value for fold relief in this area.

Evidence of low slope gradients during submarine channel deposition can be assessed based 

on observations of channel morphology. Large scale sinuosity variations of submarine channel 

systems down-slope have been documented by Clark et al. (1992), Pirmez and Imran (2003) 

and Babbonneau et al. (2002). Submarine channel systems also exhibit localised 

morphological variations in response to varying slope gradients (Ferry et al., 2004; Huyghe et 

al., 2004; G ee and Gawthorpe, 2006), these responses can be summarised as:

• Increases in slope gradient result in localised increased channel incision, often 

associated with a decrease in sinuosity.

•  Decreases in slope gradient result in localised channel aggradation, corresponding to a 

local increase in sinuosity.

There is also some evidence that highly sinuous submarine channels only occur where the 

underlying slope gradient is below a certain threshold value. Clark et al. (1992) also have 

shown that sediment calibre of the flows forming submarine channel systems also play a key 

role in determining the maximum sinuosity for a variety of given slope values. Babbonneau et 

al. (2002) suggested that a slope value of 0.3° acts as the threshold value for the Zaire and 

Amazon systems. Whilst it is not known whether this figure is generally applicable to all 

submarine channel systems, the implication is that wherever highly sinuous submarine 

channels occur, it will be in association with a certain underlying slope gradient for a given 

series of flows with particular characteristics in terms of sediment calibre. CLS 2 displays high 

sinuosity along its length throughout the study area, despite being diverted around the NW  

lateral hinge of the fold (Fig. 4.10). The high sinuosity of this system is evidence that low 

gradients (possibly below 0.5°) were present at the seafloor despite active uplift of the Aga fold 

during deposition of the upper growth sequence. These low seafloor gradients implied by
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submarine channel morphology reflect a rapid relative rate of sedimentation compared to uplift 

at the fold lateral tip. This is not surprising: the lateral tip regions are often the preferential flow 

pathways around the fold, and a laterally increasing sedimentation rate is thus to be expected. 

This is in turn controlled by lateral variations in the structural style of the fold along strike, and in 

particular by the way in which fold relief varies along strike, which can be affected by factors 

such as synthetic and antithetic thrust fault linkages (Higgins et al., 2007). Other examples of 

the strong control exerted by changes in gradient around a fold which diverts submarine 

channels is presented in Chapter 5 -  see section 5.5.4.

Analysis of isochron data for individual architectural elements which make up the upper growth 

sequence shows that development of sufficient fold relief to block deposition into the footwall 

only occurred after, or during, the deposition of unit HD2 (Com pare Figs. 4.10 and 4.12). 

Deposition of MTD 1 is not associated with any overspill of sediment into the footwall due to the 

backlimb of the Aga fold forming an obstacle to flow against which M TD  1 terminates along its 

south west margin (Fig. 4.12). Deposition of M TD 1 was also affected by a late stage 

reactivation of the Bobo fold, which caused partial confinement of this deposit and diversion of 

the basal grooves around the edges of the topography created by reactivation of this fold. This 

reactivation is a relatively late stage event in the development of the upper growth sequence 

and is associated with a shift in the direction of sedimentation from being fold-perpendicular 

(MTDs 3 and 2 and CLSs 3 and 2) to fold parallel (M TD  4.1 and CLS 4.1). Based on this 

information a two phase model of growth sequence developm ent can be described (Fig. 4.14):

1. The first phase of growth sequence development (Fig. 4 .14a-d) involves a significant 

element of deposition that is perpendicular to the strike of the fold. This can be seen 

where CLSs 3 and 2 are diverted around the N W  fold edge, and M TD 2 is diverted 

around the SE lateral hinge to deposit within the forelimb. During this phase of 

deposition, only the central area of the fold presented an obstruction to flow.

2. The second phase of deposition (Fig. 4 .14e  and f) was preceded by uplift of the Aga 

fold and also by reactivation of the Bobo fold. Following this renewed period of uplift, 

the deposition of MTD 1 and CLS 1 do not show diversion around the fold tips and 

are confined to the upslope limb of the Aga fold.

This change in the sediment distribution pathways from fold-perpendicular to fold-parallel results 

from increased relative uplift rates compared to sedimentation, which may be the result of an 

increase in the rate of shortening and uplift causing rapid development of positive relief, or 

alternatively a decrease in sediment volume input into hangingwall of the Aga fold. With lack of 

chronostratigraphic information and the limited coverage of this 3D dataset, it cannot be
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determined which of these two mechanisms is responsible for the change in sedimentation 

patterns over time.

4.5.2 Three dimensional growth sequence architecture and implications for reservoir 

development.

From the observations presented above, we suggest that the three-dimensional stacking 

relationships seen within the upper growth sequence are controlled primarily by two factors:

1. Compensational relationships within the hangingwall area upslope of the zone affected 

by fold relief. Here, deposition of each successive unit is affected partly by the 

topography resulting from the previous deposit.

2. The relief generated by the Aga fold which results in ponding and onlap of deposits onto 

the backlimb and diversion of sedimentation around the fold lateral tips resulting in 

overlap.

Compensational relief is largely generated by the deposition of M TD units and also results to 

some extent from the positive relief constructed during deposition of channel levees. The 

location of CLS 3 within the hanging wall occurs at the southward pinch out of the underlying 

MTD 3 (Fig. 4.9). Thus the relief generated by the previous M TD  deposit has also influenced 

this channels course in addition to the effect of the Aga fold whose structurally induced relief 

results in channel diversion around the north-west lateral hinge. The effect of compensational 

relief formed by a channel levee system within the hanging wall can also be seen where MTD 2 

thins against the levees of CLS 3 (Fig. 4.10b). Overall, a shift in the locus of deposition towards 

the south of the study area is seen over the depositional interval represented by MTD 3 to MTD  

2 (Figs. 4.14a-d). This is accompanied by southward shift in the input points into the study 

area.

This southwards shift in sedimentation within the hanging wall is also associated with a shift in 

sediment pathways around the fold edges. During deposition of M TD 3 and CLS 3 and 2, the 

north-west lateral hinge was the preferred flow pathway for sediment to deposit within the 

footwall. However deposition of MTD 2 was shifted to the south, due to compensational effects 

from the levee relief of CLS 3 and due to the southwards shift in the input point into the study 

area. MTD 2 utilises the south-east lateral tip, where diversion of material is seen around the 

hinge and is associated with lobe-like deposition of sediment within the forelimb (Fig. 4.10). 

Switching of the primary flow pathways between the north-west and the south-east fold lateral 

tips is related to the compensational stacking and southwards shift in deposition away from the 

north-west lateral tip of the Aga fold.
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The structural relief which developed during the upper growth sequence can be assessed by 

comparing the thickness change from the upslope limb to the fold crest. As discussed above, 

both of the fold lateral hinge regions show relatively equal amounts of structural relief 

development during deposition of the upper growth sequence (c.430m ). Therefore, the 

dominant control on flow path switching around the Aga fold appears to be the compensational 

backfilling of the hangingwall by alternating M TD  and CLS deposition as opposed to variable 

shortening and differences in fold relief at the lateral tips resulting in a preferred sedimentation 

pathway around the fold.

4.6 Conclusions

In conclusion, the central themes explored in this chapter are presented in figure 4.15, and 

summarised as follows:-.

1. Variations in structural style along strike of the Aga thrust and fold are controlled by factors 

such as shortening and the development of backthrusts. This in turn controls the style of the 

fold and its relief at the seafloor.

2. Fold relief developed at the seafloor and its evolution through time combined with the effect 

of compensational stacking within the hangingwall control the sediment distribution pathways 

around the fold tip regions.

3. The varying fold relief along strike controls the response seen in the stratal geometries of the 

growth sequence. At the fold lateral hinges, the growth sequence displays overlap and thinning 

across the fold crest, as well as erosional truncation of the underlying sequences. Across the 

central area of the fold, onlap against the fold limb results from an increased relative rate of 

uplift compared to sedimentation.

4. Although the fold geometry controls the accommodation space in the hanging wall, 

stratigraphic architectures are controlled by a combination of compensational stacking patterns 

and structurally confined deposition.

5. The growth sequence itself is comprised of a complex, three dimensionally stacked series of 

channel levee complexes, mass transport deposits and hemipelagic intervals. Many of these 

units exhibit a response to the emerging relief during fold growth which can be assessed using 

features such as scours at the bases of M TDs and changes in channel morphology and 

depositional style which respond to slope gradient.

The relationships between sedimentation and deformation documented in this case study are 

not specific to this particular area, and similar expressions of the interplay between tectonics
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and sedimentation have been observed by us in many other deepwater fold belts. As such, we 

suggest that these examples may be used as a reference set to base more general exploration 

play models wherever a slope system is being actively deformed, as well as forming a basis for 

further work involving comparative studies of the interactions between sedimentation and 

deformation from separate deepwater fold belt settings.
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CHAPTER 5 

A CASE STUDY OF THREE DIMENSIONAL FOLD AND GROWTH SEQUENCE 

DEVELOPMENT AND THE LINK TO SUBMARINE CHANNEL-STRUCTURE INTERACTIONS 

IN DEEPWATER FOLD BELTS. 

5.1 Abstract

Compressional deformation within deepwater fold and thrust belts is commonly associated with 

the formation of growth folds where sedimentation is coeval with deformation. This typically 

results in the formation of growth packages adjacent to the fold limbs. Growth sequence 

geometry can be a useful indicator of how the relative rates of uplift and sedimentation vary 

over time. In this study, we consider how the relative rates of sedimentation and uplift vary in 

three dimensions along strike of a series of folds from the Levant Basin, eastern Mediterranean. 

In many deepwater fold and thrust belts, submarine channel levee systems form important 

depositional systems and are often key targets for hydrocarbon exploration. This study 

documents examples of growth sequences that are comprised almost exclusively of submarine 

channel-levee complexes and examines their three-dimensional development over time in 

conjunction with the evolving three dimensional fold relief. The development of these channel 

systems is characterised by spatial variations in sinuosity in response to underlying 

deformation. W e demonstrate that growth sequence architecture and its variation along strike 

are key factors which affect the response of submarine channel systems to fold growth. The 

aim of these results is to improve our understanding of the links between sedimentation and 

deformation in these settings and to demonstrate that the resulting conceptual models benefit 

greatly from linking structural and stratigraphic observations at the scale of the overall growth 

sequence and at the more detailed scale of individual channel levee systems.

5.2 Introduction

Syn-kinematic sediments are deposited coevally with growing folds and faults and form 

geometrically distinctive growth sequences on the forelimbs and backlimbs of folds (Suppe et al. 

2002). Growth sequences associated with thrust related folds have received much interest in 

the context of structural geology, as they provide a useful means of reconstructing the 

kinematics of fold growth (e.g. Suppe et al. 1992; Poblet et al. 1997; Bernal & Hardy, 2002; 

Salvini & Storti 2002). However, there have been surprisingly few detailed studies of growth 

sequences in marine fold belts where preservation potential is high, and where availability of 3D
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seismic data allows a fully three-dimensional approach to be taken (Higgins et al. 2009 ; Morley 

and Leong, 2008).

Variations in the internal and external geometry of growth sequences such as the positioning 

and configuration of onlapping and overlapping sedimentary units can be used to constrain the 

evolution of topographic or bathymetric relief during folding. This analytical approach, which 

focuses on the stratigraphy is critical for understanding how sedimentary systems respond to 

growing folds (Puidefabregas et al. 1992 ; Burbank et al. 1996 ; Burbank and Verges 1994). 

Growth sequences are also progressively incorporated into the fold limbs during deformation. If 

the syn-kinematic sediments include reservoir prone lithologies, inclusion of these into the 

growing fold can result in potential hydrocarbon reservoirs contained within fold closure or on 

the fold limbs. From a hydrocarbon exploration perspective, it is important to understand how 

the interactions between sediment deposition and coeval fold growth control the distribution of 

reservoir and seal units, as well as considering how these are affected by any emergent fold 

relief.

Growth sequences are commonly observed from thin-skinned deep water fold and thrust belts 

associated with gravitational collapse of passive margins. Examples include the Angolan 

Margin (Brun and Fort 2003), North-West Borneo (Morley 2009; Morley and Leong 2008), the 

Mississippi Fan Fold Belt (Rowan 1997), the Niger Delta (Damuth 1994) and the Eastern Nile 

Delta (Gradmann et al 2005). In deepwater fold belt settings, growth sequences are commonly 

composed of deposits derived from gravity currents and mass transport processes, interspersed 

with background hemipelagic sedimentation (e.g. Stow and Mayall 2000). All of these 

sedimentary processes may interact with the emerging fold relief which will in turn determine the 

architecture of the growth sequence (Morley 2009; Morley and Leong 2008). The previous 

chapter, for example, documents the role of mass transport complexes in infilling fold-created 

accommodation space. Another key factor influencing the sedimentary response to uplift is the 

along-strike, three dimensional evolution of folds over time (Higgins et al 2009). Lateral 

propagation of folds can exert a strong control on sedimentary pathways and the location of 

depocenters through time (Demyttenaere et al 2000; Burbank et al 1996; Morley and Leong 

2008).

The aim of this study is to link structural and stratigraphic observations of fold growth in three 

dimensions. These observations are then linked to the detailed response of submarine channel 

systems to fold growth over time. An emphasis is placed here on describing along-strike 

variations in fold geometry through time so that the three-dimensional evolution of the system is 

documented. W e attempt to show how these variations can be critical in determining sediment
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transport routes, and ultimately in the geometry of the growth sequence. Knowledge of the way 

in which submarine channel systems respond to uplift during syn-kinematic sedimentation will 

be of wider use in deep water exploration in these settings in predicting the location or absence 

of potential reservoir units.

5.3 Geological setting and database

5.3.1 Pre-Messinian development of the Levant Basin.

The Levant Basin is located in the Eastern Mediterranean Sea and is bounded to the east by 

the passive continental margin of Israel, Lebanon and Syria, to the south by the north-eastern 

lobe of the Nile Deep Sea Fan, to the west by Eratosthenes seamount and to the north by the 

subduction zone and transform fault of the Cyprus Arc (Fig. 5.1, Ben-Avraham et al. 1988; Ben- 

Avraham et al. 1995; Vidal et al. 2000). Formation of the Levant Basin and the adjacent margin 

is related to a sequence of rifting events occurring from Early Permian to Middle Jurassic times 

associated with the initial break-up of Pangaea (Garfunkel, 1998). Final continental break-up 

and the initiation of ocean spreading occurred at the end of Middle Jurassic (Garfunkel and 

Derin 1984). Compression in the Late Cretaceous and the development of the Syrian Arc 

Foldbelt and resulted in a series of N E-SW  orientated folds along the Levant Margin (Eyal 1996; 

Buchbinder and Zilberman 1977; Garfunkel 1998). During the Oligocene, a system of 

submarine canyons developed along the Levant Margin. Headward extension of these canyons 

occurred throughout the Miocene due to intermittent uplift and emergence of the Levant Margin 

(Druckman eta l. 1995; Buchbinder and Zilberman 1997).

5.3.2 Messinian Salinity Crisis and Post-Messinian basin development.

Near the end of the Miocene (5.9M a), narrowing of the connection between the Mediterranean 

Sea and the Atlantic Ocean led to the Messinian Salinity Crisis (Hsu et al. 1978). This resulted 

in a rapid sea level fall estimated at between 800-1200m  in the Eastern Mediterranean Sea  

(Druckman et al. 1995; Bertoni and Cartwright, 2007) and the subsequent deposition of a thick 

evaporitic sequence up to 2km thick in some parts of the basin. The fall in sea level was 

accompanied by erosion along the marginal areas of the Levant Basin, resulting in the incision 

of a series of prominent canyons around the basin margin (Cita and Ryan 1978; Garfunkel and 

Almagor 1987).
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Figure 5.1: Location of the survey area within the context o f the Nile Delta. 1a (inset) shows the 
area of interest in the Eastern Mediterranean sea, HA = Hellenic arc, DSF = Dead sea fault system. 
1b shows the setting of the Nile Delta and the location o f the seismic survey used in this study, which 
covers a portion of the eastern deep sea fan which is currently being affected by thin-skinned 
compression. The zone of compression within the Levant basin is driven by the gravitational collapse 
of both the Nile Delta and the Levant Margin. Figure adapted from Garziglia et al 2008; Netzeband et 
al 2006 and Gradmann et al 2005.
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During the Pliocene, the Levant Basin was subjected to increased sedimentation derived 

primarily from the Nile Delta to the southwest (Mart and Ben-Gai 1982). An increase in 

sedimentation rate was accompanied by increased basin subsidence due to loading of the 

Messinian evaporitic sequence (Tibor et al. 1992; Ben-Gai et al. 2005). In the Levant Basin, 

sedimentation was predominantly sourced by submarine channels. The source of these NE 

oriented submarine channels was the Nile Delta (Folkman and Mart 2008).

The 3D seismic data used in this study (Gal C survey) cover an area of approximately 1400km2 

(Fig. 5.2). This survey covers a portion of the distal, north-eastern area of the Nile Deep Sea 

Fan, which extends into the Levant Basin and provides a detailed record of the post-Messinian 

sedimentation (Fig. 5.2). Average seafloor gradients in the study area vary between 0.38° in the 

down-slope direction and 0.02° in the cross slope direction. W ater depths typically range from 

1000 to 1350 meters below sea level across the survey area. Submarine channels are 

ubiquitous throughout the post-Messinian sequence, typically consisting of single, channel levee 

systems which are rarely erosionally confined (Fig. 5.2). In comparison to the larger scale slope 

system, the relatively small scale and lack of complexity of the submarine channels in this study 

area suggest they occupy the lower fan region (c.f. Babboneau. et al. 2002). The most recent of 

these channels are visible on the present day seafloor (Fig. 5.2). Submarine channels are 

common features associated with the Nile Delta and subsurface examples have been 

previously described from the deepwater Western Nile (Sam uel et al. 2003).
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Figure 5.2: 2a shows a seafloor dip (darker shades indicate increases in gradient)
attribute map of the seismic survey area. This map is overlain by two way travel time 
contours spaced at 10ms intervals. Submarine channel systems sourced from the Nile to 
the south-west cross the seafloor and their development is affected by strike-slip fault 
structures and a series of folds whose strike is perpendicular to the submarine channel 
flow direction. These folds become progressively buried towards the south-east due to 
the increasing thickness of the syn-kinematic interval Unit PM3 -  see figure 5.3. 2b 
shows the detailed study area, note the irregular seafloor expression of two folds, and the 
prominent, partially buried submarine channel levee system.
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5.3.3 Seismic stratigraphy

This study focuses on the uppermost sequence of the post-Messinian, Plio-Quarternary 

sedimentary section in the Levant Basin. Recent studies from this area have focussed on either 

the Messinian sequence (e.g. Bertoni & Cartwright 2005,2006,2007; Gradmann et al 2005), or 

along the marginal areas of the Levant Basin (e.g. Frey-Martinez et al 2005). 

Chronostratigraphic and lithological data, where given, for the Post Messinian sedimentary 

cover is based on unpublished well reports (Frey-Martinez et al 2005) and there are no 

published wells within the more basinal Gal C survey area.

5.3.3.1 Messinian Evaporite Sequence (6.7-5.2M a)

The top of the Messinian sequence is marked by Horizon M -  a regional high amplitude positive 

reflection recognisable throughout the entire Mediterranean Basin (Ryan 1973, see also Fig.

5.3). Internally, the Messinian sequence shows evidence of deformation with multiple thrust 

detachment levels observed (Cartwright & Jackson 2008; Bertoni & Cartwright 2007). Over the 

more marginal areas of the Levant Basin, Horizon M may represent an angular unconformity 

between the lower, deformed Messinian evaporites and the post Messinian sedimentary section 

(Bertoni & Cartwright 2007). However, this does not appear to be the case in the Gal C area, 

where the two sequences are seismically concordant (Fig. 5.3).

5.3.3.1 Post Messinian Sequence (5.2Ma-Present)

The post-Messinian overburden can be subdivided into three intervals (Units PM1, PM2 and 

PM3) based on seismic stratigraphic characteristics as well as the relationship to the extensive 

thin-skinned deformation throughout the study area (Fig. 5.3). The PM3 interval is the focus of 

this study as it is this sequence which comprises the syn-kinematic section which records 

coeval post-Messinian compression and sedimentation in this area, and is described in more 

detail below. Units PM1 and PM2 comprise the pre-kinematic section and were deposited prior 

to the deformational phase. Unit PM1 consists of locally continuous, high amplitude parallel 

reflections displaying low relief channel forms up to 500m  in width. These channels provide 

useful kinematic indicators for the many strike-slip faults throughout the study area. Unit PM2 

consists of low to medium amplitude, locally continuous reflections interlayered with minor 

packages of low amplitude, chaotic reflections which pass laterally into continuous packages. 

Unit PM2 shows internal thickness variations related to the development of channel-levee 

complexes, which are clearly visible within this interval (Fig 3.5, chapter 3). The uppermost part
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of unit PM2 consists of a package of low-amplitude, parallel reflections in which channel levee 

development is absent (Fig. 5.3).

Unit PM3 is considered to form the syn-kinematic sequence throughout the study area and is 

the focus of this study. The base of this unit records the first appearance of onlap associated 

with folding throughout the study area, with the exception of several folds where the first 

occurrence of onlap is observed c.50ms below the base of this unit. Over the scale of the 

survey area, the thickness of this unit increases towards the south-east (see Fig. 3.6, chapter 

3). At the kilometre scale, sedimentation within unit PM 3 is strongly controlled by numerous 

NW -SE trending folds (Figs 5.2 and 5.3). Unit PM3 shows systematic thinning of sedimentary 

packages across fold crests accompanied with thickening into hangingwalls and footwalls of the 

folds. This can be clearly observed on seismic profiles and also on the isochron map of this 

interval (Fig. 5.3). This geometry is typical of growth sequences associated with sedimentation 

coeval with uplift (e.g. Burbank and Verges 1994; Suppe et al 1995; Masaferro et al 2002; 

Cartwright, 1989; Morley, 2009) The stratigraphic architecture of unit PM3 consists of a vertical 

sequence of channel levee systems, many of which are strongly affected by post-Messinian 

deformation (Fig. 5.2). These channel levee systems typically have widths of 500m and depths 

of up to 60m. Many are highly sinuous (average value of 1.51), although variations can occur 

when channels are confined and diverted around the N W -SE trending folds (Clark and 

Cartwright, 2009). Diversion and deflection of channels are common when the strike of the folds 

and their associated bathymetric relief is perpendicular to the channel flow direction.

5.3.4 Post Messinian thin skinned deformation

The Gal C survey area is located in the contractional domain of a gravity driven, linked 

extensional-compressional system in the Eastern Mediterranean (Cartwright and Jackson, 

2008; Gradmann et al 2005). Thin-skinned contractional structures result from a combination of 

the gravity-induced collapse of the Nile Cone above the ductile Messinian evaporite sequence 

(Loncke et al 2006; Gradmann et al 2005). This is combined with westward tilting and thin- 

skinned collapse of the Levant margin (Cartwright and Jackson, 2008). Together, the effects of 

these variably oriented marginal collapses interact with a buttressing effect due to the 

Eratosthenes seamount, resulting in changes in orientation of the thrust, fold and strike-slip 

structures that characterise this complex area (Loncke et al 2006).
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Figure 5.3: 3a shows a strike-orientated seismic 
profile across the study area. This seismic section 
shows the principal seismic-stratigraphic units in 
this area with the interval of interest in this study 
being unit PM3, which represents the primary syn- 
kinematic interval. This unit thickens towards the 
south-east of the survey area resulting in more 
subdued fold relief as can be seen on the seafloor 
in figure 5.2. The green marker indicates the 
horizon used to sub-divide unit PM3 into upper and 
lower growth sequences. Clearly visible in this 
seismic profile are numerous sub-vertical strike slip 
faults which segment the post-Messinian 
overburden, b shows a dip orientated seismic 
profile on which several thrust faults ramping 
upwards from the uppermost Messinian can be 
observed. These thrusts are associated with the 
development of overlying folds, the growth of which 
is recorded by the syn-kinematic interval, unit PM3. 114
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Figure 5.4: a Dip attribute map 
of the top PM2 horizon (see 
figure 5.3 for location). This 
map represents the top of the 
pre-kinematic sequence
throughout the survey area and 
more clearly shows the SE-NW 
orientated fold belt a conjugate 
set of strike slip faults which 
segment many of the thrusts 
and folds, b Schematic map 
showing the distribution of 
thrusts underlying the folds, as 
well as synclines which form 
within the hanging-walls and 
foot-walls of many folds in this 
area.
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Deformation within the Gal C survey area is characterised by N W -SE striking thrust faults which 

show a predominant vergance towards the NE (Fig 5.4). These thrusts detach within the 

uppermost Messinian and ramp upwards into the overlying section, typically to terminate below 

the seafloor within the base of the unit PM3 (Fig. 5.3). A  small number (c.5) of these thrusts 

verge towards the SW  towards the N W  of the survey area (Fig. 5.4). All of these thrust faults 

are associated with the formation of overlying folds, and these exert a key control on the 

seafloor bathymetry (Fig. 5.2). Maximum displacement on the thrusts is typically of the order of 

500m, and the typical maximum structural relief of the folds is c. 300-400m . The thrusts 

generally dip at c. 30-40°, with a downwards decrease in dip observed towards the basal 

detachment. Detachment levels occur at two or three distinct horizons within the multilayered 

Messinian evaporite sequence, which can be up to 2km thick (Cartwright and Jackson, 2008).

The structural style of these folds typically varies along strike from that of symmetrical 

detachment folds to thrusted detachment folds and thrust propagation folds (c.f. Mitra 2002). 

Variations in fold style along strike are linked to the amount of shortening accommodated on 

each structure (Higgins et al 2007;2009). Antiformal and synformal folds are developed in 

hangingwalls and footwalls to the major thrusts, respectively. The antiformal structures raise the 

local folded and thrusted layers above the regional datum, whereas the synformal structures 

developed adjacent to the fold crest add an important component of local subsidence beneath 

the regional datum. This has important consequences for the sediment transport routes and for 

accommodation space evolution (see discussion in chapter 6). Depression of the synformal 

regions below the regional datum is only possible here because the mobile salt is preferentially 

depleted from these areas, and a similar response would not be expected in the case of 

deepwater fold belts with shale detachments (c.f Briggs et al. 2006).

A conjugate set of strike slip faults that detach within the uppermost Messinian sequence is 

present throughout the survey area (Figs. 5.3 and 5.4). These strike slip faults are strikingly 

linear in map view, and show two dominant trends: An E -W  trending set with a sinistral sense of 

displacement and a dextral N E-SW  trending set (Fig. 5.4). The angle bisecting this conjugate 

set of strike-slip faults is orthogonal to the orientation of the thrust and fold axes, suggesting a 

consistent NE direction for the maximum compressive stress throughout the deformation (Fig. 

5.4).

The displacement direction of the strike slip faults is measured using the horizontal component 

of the relative offset of channels developed at the top Messinian level and within unit PM1. 

Typical strike slip displacements are of the order of 200-500m  (see Fig.3.4, chapter 3). Zones of
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local transtension and transpression occur where strike slip fault segments link, these form 

push-up structures with a relief of up to 90m  above the present day seafloor and also pull-apart 

structures that are up to 60m deep (Fig 5.2). These push-up and pull apart structures can be 

used to constrain the timing of the strike-slip faults, because sediments post-dating the strike 

slip activity show onlap and infilling of the push-up and pull-apart structures respectively. These 

stratal relationships show that the timing of strike-slip fault activity can be constrained to the top 

of Unit PM2, synchronous with the onset of folding in many of the thrust/fold structures (Fig.

5.3).

5.4 Methods

Growth sequences can be described qualitatively using relationships such as onlap, overlap 

and offlap (Burbank and Verges 1994; see also Fig. 1.3, chapter 1). Such relationships, 

combined with observations of the reflection geometry within the growth sequence can be used 

to assess relative rates of sedimentation versus uplift (Burbank and Verges 1994; Cartwright, 

1989; Puidefabregas et al. 1992; Suppe et al 1992;). In this study, the growth sequence 

represented by unit PM3 can be sub-divided into two intervals termed the upper and lower 

growth sequences (Fig. 5.3). This sub-division is based on the gross geometrical style of the 

sequence (e.g. onlap or overlap) and also on the response of submarine channel systems 

within the growth sequence to uplift (see section 5.5.4). It should be noted that growth 

sequence geometry varies significantly along strike in response to variations in the relative rates 

of uplift versus sedimentation. Thus, an understanding of the along-strike variations in uplift 

combined with the nature of sedimentation is critical to understanding the three dimensional 

stratigraphic response to uplift in these settings. Isochron maps can be a useful tool in 

interpreting three dimensional growth sequence architectures as they show gross patterns of 

thinning over fold crests and thickening adjacent to the fold limbs (e.g. Salvini and Storti 2002). 

Overlapping growth sequences are revealed on isochron maps by thinning across the fold 

crests, whilst onlap results in stratal terminations against the emergent relief.

To quantify the three dimensional variations in fold uplift and growth sequence geometry, we 

undertook along strike measurements of the structural relief and growth sequence expansion 

factor. The measurements of structural relief were taken using a similar method to that 

previously described by Masaferro et al. (1999) and Poblet et al. (2004) for measuring crestal 

structural relief of folds (Fig. 5.5). This method is based on the assumptions that measured 

horizons were deposited horizontally, and that no limb-parallel shearing occurred during fold 

growth (Masaferro et al 1999). W here an overlapping growth sequence is observed, the 

thickness difference of the package between the footwall and the fold crest is interpreted to
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represent the cumulative fold uplift which occurred over the time interval in which the growth 

sequence was deposited (Fig. 5.5, see also Poblet et al. 2004, Masaferro et al. 1999). An 

overlapping growth sequence geometry also implies that any positive fold relief that developed 

was healed over due to high relative rates of sedimentation compared to uplift (Burbank and 

Verges 1994). In the case of onlapping growth sequences, the minimum value of crestal 

structural relief is equal to the thickness recorded in the growth sequence adjacent to the fold 

limbs (Fig. 5.5). The onlap terminations onto the fold limbs imply that the sedimentation rate 

was not sufficient to heal over the growing fold, resulting in positive relief at the depositional 

surface.

Measurements of crestal structural relief were taken at 100m intervals along strike- 

perpendicular seismic profiles for the folds studied here. W here the onlap geometry closely 

resembled a parallel onlap fill, it was assumed that the gross thickness of the onlapping units as 

measured in the flank areas was equivalent to the structural relief extant during the onlap 

interval. In the case of strongly convergent onlap, the relief measured using this method should 

be regarded as a cumulative relief developed during this interval.

These measurements were taken for both the lower and upper growth sequences in order to 

gain a finer resolution of along strike fold development than is represented by the whole of the 

syn-kinematic package, which has a total thickness of over 200m . Reference points for 

measuring stratigraphic thickness were taken between the fold crest and the lowest point of the 

adjacent footwall syncline. A regional datum was not imposed due to the close (less than 2km) 

spacing of the measured folds and the development of synclines within the footwalls of each 

fold. Taking a reference datum using the relatively undeformed top pre-kinematic surface (top 

PM2 marker) towards the west of the survey area it is apparent that the formation of negative 

relief occurs adjacent to the positive relief of the antiform itself. The negative relief formed by 

the synclines is important in terms of generating localised depocenters adjacent to the positive 

relief formed by the uplifting fold crest (see Fig. 5.1).

The expansion factor of each growth sequence was measured using the methodology defined 

for growth sequences associated with normal faults (Thorsen 1963; Roux 1979). For growth 

sequences associated with folds, the expansion factor E is defined as E = Z ’/Z, where Z ’ is the 

thickness of the growth sequence within the footwall or hangingwall and Z is the thickness over 

the fold crest. These measurements were taken for both lower and upper growth sequences at 

along strike intervals of 100m, and the data is given in Appendix A3.
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A i  M inim um  relief during deposition of onlapping growth sequence. 

B-C ! Folcl relief during deposition o f overlapping growth sequence. 

Ratio B:C ; Expansion factor for overlapping growth sequence.
O verlapp ing  grow th sequence

.S eab ed

Positive relief 
o f fold crest

A ctive fold

D atum  defined by top- 
pre k inem atic surface.N eg ative  relief o f 

footw all syncline
O nlapping growth sequence

Figure 5.5: Methods used to characterise growth sequence development along strike in this study. 
The style of folding in this area involves depression of the footwall and hangingwall below the datum 
marked by relatively undeformed pre-kinematic level. The minimum structural relief of the onlapping 
(green) growth sequence is equal to the thickness A. Structural relief developed during the 
overlapping (blue) interval is given by B-C. These measurements were taken along strike at 100m 
intervals.
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The use of these methods assumes that no hemipelagic sedimentation occurs during the 

deposition of the growth sequence. Hemipelagic deposition results in draping seismic facies 

across the fold crest with little or no thickness change from the fold crest to the fold limbs 

(Cartwright, 1989). Thus, deposition of hemipelagic sedimentation can make the correct 

interpretation of the onset of folding difficult to observe and quantify. In this study, the primary 

mode of deposition within the growth sequences was from gravity currents involved in the 

development of channel levee complexes, which are observed from the base of unit PM3 

onwards. Hemipelagic deposition is not observed at the seismic scale in PM3 across the folds, 

and we assume here that the growth sequences are predominantly composed of deposition 

from density currents.

5.5 Results and observations

The results section is structured in an attempt to describe the interactions between 

sedimentation and deformation from large to small scale. An summary of key observations 

linked to the appropriate figures, is presented at the end of this section in table 5.1. The section 

begins with an overview of the main structural features of the detailed study area within the Gal- 

C survey, and introduces the nomenclature used in the following sections, as well as 

establishing the relative timing of deformation. This is followed by a description of the 

quantitative results relating to along-strike relief developm ent and growth sequence expansion 

factor. The growth sequence isochron maps are then described in relation to the preceding 

measurements, before finally describing the interactions and development of individual channel 

levee systems which comprise the growth sequences in this area.

5.5.1 Along strike structural development and growth sequence evolution

Growth sequence development within the detailed study area is primarily affected by two fold 

structures (Folds 1 and 2). These folds both exhibit significant structural variation along strike 

(Fig. 5.6). The folds and their underlying thrust faults terminate laterally against SW -NE trending 

strike slip faults that act to compartmentalise the compressional belt and limit the lateral extent 

of individual thrusts and folds (Figs. 5.6 and 5.7). The zones of intersection between the 

thrust/fold pairs and the strike slip faults are recognisable as steep, sub vertical ‘scarps’ 

expressed on the pre-kinematic surface with a structural relief of up to 120m. (Fig. 5.7). Fold 1 

is 3.8km in length, with structural relief along strike showing a non uniform distribution such that 

relief is concentrated at two peaks at each end of the fold where terminations occur against the 

bounding strike slip faults, and with a minimum value of relief in the central zone of the fold (Fig. 

5.7). A more typical distribution of relief expected in deepwater fold belts would predict the
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maximum fold relief axio-symmetrically along the fold, but this applies where underlying thrusts 

tip out in either axial direction without any hard linkage to adjacent structures (Salvini and Storti 

2002; Higgins et al. 2009). Fold 2 is 5.6km in length and again shows asymmetric distribution of 

structural relief along strike -  in this case the maximum structural relief has developed at the 

north-western termination against its bounding strike slip fault (Fig. 5.7). Fold 2 is segmented 

where the zone of maximum uplift occurs by the sam e strike slip fault against which fold 1 

terminates at its north-western end (Figs. 5.6 and 5.7).

Periclinal synclines are developed on the back limb of the hangingwall and in the footwall to 

Folds 1 and 2 (Fig. 5.6). These synclinal structures were expressed as closed depressions on 

the palaeosurface which marks the onset of fold growth (Fig. 5.7). The location of maximum 

depth within each basin was adjacent to the central zone of each fold, excepting the footwall 

depression of Fold 2, where the topographically lowest point was asymmetrically disposed 

towards the southeastern termination even though the maximum structural relief is located at 

the northwestern termination (Fig. 5.7).

5.5.2 Timing of Growth

The onset of folding is marked by the first occurrence of onlap onto the fold forelimbs and 

backlimbs, on the basis that density current deposition responds to the presence of seabed 

topography created by- folding with the final deposit resulting in an onlap configuration (e.g. 

Kneller 1995; Alexander and Morris 1994). Onlap systematically directed towards the fold crests 

is first recorded at the base of unit PM3 for both folds (Fig. 5.6). However, onlap at the base of 

unit PM3 is not consistently observed along strike, particularly in the case of Fold 1. The central 

zone of Fold 1 shows no observable onlap onto the fold limbs, indicating that the areas of 

maximum structural relief observed against the lateral terminations also record the earliest 

onset of folding. These observations illustrate that without good three-dimensional control, it 

would be easy to misinterpret the onset of growth of this structure.
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Lateral
terminations

Foot-wall
synclines

1000m

Figure 5.6: Nomenclature used within the results section of this study, a shows a dip attribute map of 
the top PM2 surface of the detailed study area. Folds 1 and 2 are indicated, as are the foot-wall 
synclines adjacent them. Red triangles mark the positions o f lateral terminations o f the folds against 
strike-slip faults, b shows an uninterpreted seismic profile showing folds 1 and 2 and the growth 
sequence, c (next page) is a line drawing interpretation of the same seismic profile showing the 
subdivision of the PM3 interval into lower and upper growth sequences. Channel levee systems 
described from the lower and upper growth sequences are termed the lower and upper channel levee 
systems, respectively.
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Lateral
terminations

Figure 5.7: 3D surface of the detailed study area, generated from the top surface of the pre-growth 
sequence. This surface illustrates the non-uniform lateral distribution of uplift along strike of each fold. 
Maximum fold uplift is concentrated towards the lateral terminations against strike-slip faults which 
segment individual thrusts and folds. The sense of offset for the strike slip fault systems can be 
determined from channel systems within the pre-growth sequence. Where these terminations occur, 
sub-vertical scarps are formed, and can be seen at south eastern lateral fold terminations. The foot­
wall synclines associated with folding can also be seen, these form closed depressions in three 
dimensions, as indicated by the two way time contours (25ms Interval).
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The timing of strike-slip fault activity can be dated in a similar way using onlap relationships 

observed for the many pull-apart and pop-up structures that form at intersections between the 

conjugate strike slip faults. The local positive or negative topography at these intersections 

relates to localised transtension and transpression along the main fault trace and was of 

sufficient magnitude to result in well resolved onlap relationships. The basal onlap surfaces 

marking the creation of positive and negative relief related to strike slip faulting correlates with 

the top PM2 surface which also records the onset of the folding throughout the survey area.. 

These onlap relationships indicate that strike-slip faulting occurred coevally with thrust 

propagation and fold amplification. Many of the strike slip faults and folds continue to be active 

at the present day, as can be seen from their expression in the modern seafloor topography 

(Fig. 5.1).

5.5.2 Along strike measurements of structural relief and expansion factor.

The distribution of structural relief for the lower and upper growth sequences is highly skewed 

as a result of the hard-linked intersections with the confining strike slip faults. In detail, 

measurements for Fold 1 show clearly the extent to which the development of fold relief is 

accentuated at the lateral terminations, whereas relief values over the central part of the fold are 

relatively uniform throughout deposition of the growth sequence (Figs. 5.8 and 5.9). An example 

of this considerable asymmetry in fold relief is apparent where the southeastern termination of 

Fold 1 exhibits an increase in cumulative structural relief during deposition of the upper growth 

sequence, whereas over the same stratigraphic interval the northwestern termination shows a 

decrease when compared to the lower growth sequence (Figs. 5.8 and 5.9).

The distribution of along strike relief for Fold 2 shows a distinctive zone of structural relief 

spanning 2km at the northwestern lateral termination during deposition of the lower growth 

sequence (Fig. 5.8). The remainder of the fold exhibits uniform structural relief, albeit 

approximately twice that seen on average when compared to Fold 1 (Fig. 5.8). The upper 

growth sequence records a shift in the locus of uplift away from the north-west lateral 

termination towards the central area. Here, the magnitude of structural relief shows a general 

decrease along strike towards the south-east (Fig. 5.8). This is also evident from the isochron 

map covering the upper growth sequence interval (See next section -  Fig. 5.11).
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Figure 5.8: Along strike distribution of uplift for folds 1 (a) and 2 (b). a shows that both lower 
and upper growth sequences display areas of increased uplift located at the lateral fold 
terminations. Inset map shows both folds with lateral terminations marked by triangles. 1 and 
2 mark the zones of increased uplift observed at the lateral terminations for fold 1, see also 
Fig. 5.7. b shows a constant distribution of uplift along strike over the lower growth sequence 
for fold 2, with the exception of the north-east termination which shows a greatly increased 
uplift over the same interval (marked 3). The upper growth sequence shows a shift in the area 
of maximum uplift towards the central part of the fold (marked 4).
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F igure 5.9: Graphs showing along strike measurements of expansion factor measured for folds 1 and 2 (see text) over the lower and upper growth 
sequence intervals. Black triangles mark the positions of lateral terminations of the folds against bounding strike-slip faults. Shaded regions indicated zones 
of increased fold activity. See text for details.
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Measurements of expansion factor for both of these folds also show the development of a 

strongly asymmetric along-strike growth sequence architecture and mirror the observations 

above for structural relief (Fig. 5.9). Over the lower growth sequence, Fold 1 shows a maximum 

in expansion factor located at the lateral terminations, particularly towards the south-east (Fig. 

5.9). Over the same stratigraphic interval, Fold 2 shows the greatest expansion at the 

northwestern termination. The expansion factor values for the upper growth sequence show 

that the southeastern termination of Fold 1 continues to be highly active, whereas the 

northwestern termination is much more subdued (Fig. 5.9). Fold 2 displays a shift in the locus 

of uplift towards the central area which shows dramatically increased growth sequence 

expansion, with a decrease observed towards the northwestern lateral termination observed 

over the same interval (Fig. 5.9b).

5.5.3 Growth sequence isochron maps.

The style of fold development suggested by the m easurements of relief and expansion factor is 

also expressed very clearly in the gross patterns of sedimentation recorded by the isochron 

maps of the growth sequence in the detailed study area (Figs. 5.10 and 5.11). The isochron 

map of the lower growth sequence illustrates the asymmetric evolution of structural relief of 

Folds 1 and 2, and also the strong control this exerts on sediment distribution throughout the 

lower growth sequence (Fig. 5.10). Over this interval, both folds display a pattern of fold 

amplification where local maxima in uplift occur towards the lateral terminations against the 

bounding strike slip faults (Points 1 to 4 on Fig. 5.10). Stratigraphic thinning of the lower growth 

sequence across both fold crests is evident on the isochron map in figure 5.10, and is seen on 

profiles to correspond to the enhanced occurrence of basal onlap against the fold limbs, 

particularly at the northwestern termination of Fold 2. Basal onlap is generally succeeded by 

overlap across the fold crest (See Fig. 5.6c). Stratal thickening into the footwall and 

hangingwall depressions is achieved by sediment being sourced from a series of NE directed 

channel levee systems (see section below). The primary depocentre during the deposition of 

the lower growth sequence is within the footwall of Fold 2, with the maximum thickness at the 

northwestern margin of the footwall syncline (marked M T on Fig. 5.10). The depocentres 

formed by the footwall and hangingwall synclines are delimited laterally by the intersecting 

strike-slip faults (Fig. 5.10). The isochron map also shows the extent of the thickness variations 

resulting from the development of a NE oriented submarine channel system (marked CLS on 

Fig. 5.8).

The upper growth sequence isochron shows a dramatic change in the areas of active uplift 

along Folds 1 and 2 and also a change in the source direction of sediment input into the
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Figure 5.10: Isochron map of the lower growth sequence, contours spaced at 25ms intervals. Dashed 
black arrows indicate the directions of sedimentary input for the deposits making up this sequence. LT = 
Lateral terminations, MT = Maximum thickness, CLS = Channel levee system. Note that uplift along 
folds 1 and 2 is distributed unevenly along strike, with areas o f increased uplift being concentrated 
towards the lateral terminations of the folds against strike slip faults (marked LT). Points marked 1-4 
correspond to the zones where an increase in expansion factor is observed, refer to figure 5.9.
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detailed study area (Fig. 5.11). Uplift along Fold 1 is concentrated at the south-eastern 

termination (see points marked LT in Fig. 5.11). This has a notable effect on sediment 

distribution: a marked increase in thickness occurs within the hangingwall of Fold 1 in this area 

(marked MT on Fig. 5.11). Towards the northwest only minor stratal thinning occurs over the 

crest of Fold 1 (Fig. 5.11) indicating a lower relative rate of uplift compared to sedimentation in 

this area of the fold. Relief development for fold 2 is concentrated towards the northwest and 

central areas of the fold, linked to an increase in onlap towards the northwest. Amplification of 

fold 2 decreases along strike towards the southeast, to a position where almost no growth is 

visible near the intersection (Fig. 5.11). The depocentres within the upper growth sequence are 

not limited by the lateral terminations of Folds 1 and 2 against the intersecting strike-slip faults 

and become more open towards the southeast (compare figures 5.10 and 5.11). The upper 

growth sequence shows a general thinning towards the north-west, where thickness variations 

are caused by the development of a channel levee system (marked CLS on Fig. 5.11).

5.5.4 Growth sequence submarine channel development

A series of submarine channel levee systems comprise the main architectural elements of both 

the lower and upper growth sequences. These channel systems are affected by folding to 

various degrees according to whether they are located within the lower or upper growth 

sequence.

5.5.4.1 Lower channel levee system

The lower growth sequence contains three channel levee systems, all of which have a flow 

direction perpendicular to fold strike (Fig. 5.12). Two of these channel levee systems do not 

cross Folds 1 and 2 and are not discussed further. A  third channel (the lower channel levee 

system) crosses the crest of Fold 2, this channel is the youngest of the three channels 

comprising the lower growth sequence and is described here. The lower channel levee system 

is typically 500m in width and up to 20m in depth. Seismic amplitude attributes of this channel 

(Fig. 5.12) show that a decrease in sinuosity and lateral migration is observed as this channel 

crosses the fold crest and footwall syncline of Fold 2. The lack of diversion (c.f. Clark and 

Cartwright 2009) observed in this channel levee system is consistent with observations from 

seismic profiles and from the isochron map of the lower growth sequence: These show an 

overlapping stratal geometry above the crests of Folds 1 and 2 with variable thinning occurring 

along strike linked to changes in structural relief (see previous section). Reflection packages 

which are continuous across the fold crest but thin as they pass over it can be interpreted to
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Figure 5.11: Isochron map of the upper growth sequence, contours spaced at 25ms intervals.
Dashed white arrows indicate the sedimentary input directions. Points 5 and 6 correspond to the 
measured zones of increased expansion factor in figure 5.9 LT = lateral terminations, MT = Maximum 
thickness, CLS = Channel levee system. See text for details.
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UGS channels*

Lower CLS
Lower CLS

Figure 5.12: a shows a amplitude map of the top lower growth sequence surface. UGS (Upper growth sequence) Channels mark upper growth sequence 
channel levee systems that have partially incised down to this stratigraphic level but are not part of the lower growth sequence. The lower channel levee 
system crosses the crest of fold 1 where a decrease in channel sinuosity is observed. Otherwise the course of this channel is unaffected by development of 
folds 1 and 2. b shows RMS amplitude extracted over a 60ms window below the top surface of the lower growth sequence. The map shows two channel 
levee systems (marked CLS) which also flow perpendicular to the strike of folds 1 and 2 but do not cross the fold crests.
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represent a lack of positive relief at the depositional surface during fold growth due to the 

increased relative rate of sedimentation compared uplift. This interpretation is consistent with 

the results observed here where folding did not obstruct the flow path of this particular channel 

levee system (see also: Burbank et al 1996).

5.5.4.1 Upper channel levee system

The upper channel levee system shows significant differences in channel morphology and 

development compared to the lower channel levee system (Fig. 5.13). This channel enters the 

study area from the south-west, with an avulsion site located immediately downstream of the 

south-eastern lateral termination of Fold 1 (Fig 5.13). Upstream of the avulsion site, two highly 

sinuous channel segments are developed (Fig. 5.13), with the segment to the west being the 

most recent. This can be observed from the vertical stacking relationships between the two 

channel segments. The eastern channel segment displays a uniformly high sinuosity 

associated with a high degree of lateral migration of individual meander loops, as is apparent 

from the base channel amplitude map (Fig. 5.13). The western channel segment displays a 

variable sinuosity, with higher values observed within the hanging-wall of Fold 1, followed by a 

decrease where the channel segment is diverted around the north-western lateral termination 

(Fig. 5.13). The western channel segment also shows increased occurrence of meander cut-off 

loops within the hanging wall of Fold 2 associated with the higher values of sinuosity in this area 

(Fig. 5.13).
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Table 5.1: Summary of the observations presented in the preceeding section.

Results Growth seauence Kev Observations

Structural relief 

measurements.

Upper

•  Both folds show asymmetric relief development.

• Fold 1 shows maximum relief recorded towards the south-east, 

with little additional relief developed at the north-west 

termination.

• Fold 2 shows a shift in the location of maximum relief 

development towards the central zone of the fold.

Lower

• Fold 1 and fold 2 show maximum relief developed at the fold- 

strike slip fault terminations, and a decreased relief relative to 

these areas across the central part of each fold.

Growth sequence 

expansion factor.

Upper

• Expansion factor along strike mirrors the observations above -  

expansion is concentrated towards the fold:strike-slip fault 

terminations.

•  Fold 1 shows little expansion at its previously active north-west 

termination.

• Fold 2 shows increased expansion shift away from the north­

west termination towards the central zone.

Lower
• Maximum growth concentrated at terminations of folds 1 and 2 

against strike-slip faults.

Isochron maps.

Upper

• Change in direction of sediment input to fold-perpendicular 

directed sedimentation.

• Only the south-east termination of fold 1 obstructs deposition.

• Fold 2 shows increased uplift within its central area and towards 

the north-west termination.

Lower

• Sedimentation perpendicular to fold orientation.

• Deposition within hangingwall and footwall synclines.

• Thinning observed where lateral terminations of folds occur 

against strike-slip faults, which also limit deposition within the 

synclines.

Submarine channel

system

development.

Upper

• Upper channel levee system is strongly affected by the relief of 

both folds resulting in avulsion and spatial variations in sinuosity 

and lateral migration.

Lower

• Lower channel levee system flows perpendicular to fold 2 and 

crosses the fold crest without diversion.

• Planform morphology of this channel shows a clear decrease in 

sinuosity as the fold crest is crossed.
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5.6 Discussion

The observations presented above from the detailed case study of the deepwater fold belt of the 

Levant margin show a system of thrusts and overlying folds that are highly compartmentalised 

by a series of coeval conjugate strike slip faults. Both of these structural elements influenced 

seafloor topography to a varying degree according to the magnitude of uplift which is non- 

uniform along strike. The evolution of fold structural relief was conditioned in part by the 

intersections between thrust and strike slip faults. Fold propagation, and notably along strike 

development was thus more asymmetrical than would be traditionally expected (e.g. Salvini and 

Storti 2002). The following discussion considers in more detail the manner in which sedimentary 

pathways were controlled by the evolution of structural relief and its effect on seafloor 

topography. This discussion attempts to explore in more detail some of the factors affecting the 

architecture of growth sequences and their along strike variations, as a means of emphasising 

the possible problems confronting interpretations solely based on limited outcrop or 2D seismic 

profiles. W e also attempt to examine in more detail the link between growth sequence 

geometries and development of submarine channel systems.

5.6.1 Submarine channel development during folding: The link with growth sequence geometry

Studies from subaerial channel systems (e.g. Burbank et al 1996; Snow and Slingerland 1990) 

show that several factors influence the response of channel systems to underlying fold growth. 

These include the rates of growth and 3D geometry of multiple fold structures, the flow 

characteristics of the channel system, and the presence of any pre-existing topography which 

will influence flow pathways prior to any affects of subsequent deformation. Transverse channel 

systems, whose orientation is often perpendicular to fold strike, must maintain a sufficiently high 

ratio of aggradation upstream of the fold as well as erosion across the fold crest in order to 

avoid becoming ‘defeated’ and subsequently blocked by the growing structure (see also: 

Burbank et al 1996 for a summary of these concepts as applied to subaerial systems).

When attempting to apply these concepts to submarine channel-structure interactions it is 

important to note some key differences in terms of channel evolution between subaerial and 

submarine systems (e.g. Kolia et al 2007). Firstly, submarine channel systems often show 

significantly increased component of vertical aggradation compared to subaerial channels. 

Secondly, a significant proportion of the flow in submarine systems can overspill the channel 

levees, particularly at the downstream facing outer banks of channel meanders (Peakall et al 

2000; Kolia et al 2007; Straub et al 2008; Corney et al 2006). Thus, the role of increased 

aggradation in submarine channel systems should be taken into account when assessing
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W  Segment

Figure 5.13: a shows the amplitude map at the base of the 
upper channel levee system. This channel splits at the south­
east lateral termination of fold 1 into western and eastern 
segments, of which the western segment is the younger. The 
western segment shows spatial variability in channel lateral 
migration and in the formation of cut-off loops (dashed lines), b 
shows a series of interpreted seismic profiles of the upper growth 
sequence, with the upper channel interval marked in blue. These 
profiles illustrate the change in channel morphology as it is 
diverted around the relief formed by fold 2 over the upper growth 
sequence interval.
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-Channel becomes increasingly aggradational.
-Deposition concentrated within foot-wall of strike-slip fault. 
-Channel begins to show increased lateral migration.
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-Erosion into pre-channel sediments with little lateral migration. 
-Decreased width:depth ratio of channel axis.
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Chapter 5 Growth sequence architecture and channel-structure interactions.

channel response to underlying deformation, as this may result in an increased capacity for 

submarine channel systems to adjust to a deforming seafloor relative to subaerial systems. An 

example of this is presented in chapter 3, where channel B is responding to active uplift 

over the period of channel development - see figure 3.11.

This conceptual framework is particularly important when studying channel levee systems 

developed on the lower fan, as is the case in our study. In the lower fan, channel levee systems 

often are relatively small -  typically 0.5-1 km in width (Babonneau et al 2002; Pirmez and Imran 

2003), with the channel axis largely confined by the levees, and not by incision into the pre­

channel section. The increased magnitude of channel aggradation in lower fan channel levee 

systems implies that a channel flowing perpendicular to a growing underlying fold may be able 

to maintain its course and will not become blocked or diverted, particularly if the relative rate of 

uplift is low compared to sedimentation (c.f. Clark and Cartwright 2009). This appears to be the 

case for the lower channel levee system, whose course is not altered by the growth of Fold 2, 

even though a more subtle morphological response -  a decrease in sinuosity, is observed (Fig. 

5.12a).

The general link between large scale growth sequence architectures such as overlap, onlap and 

offlap and the pattern of drainage development is already well established for subaerial systems 

(Burbank and Verges 1994; Burbank et al 1996). Previous work on subaerial systems (Burbank 

et al 1996) and the recent studies from deepwater fold and thrust belts (Fluyghe et al 2004; 

Morley and Leong 2008) show that where overlapping growth sequence architectures occur, 

drainage tends to be perpendicular to the fold axis. Onlapping growth sequence architectures 

are characteristic of a drainage system that is parallel to fold axes, where diversion occurs 

around the lateral regions of folds (Burbank et al 1996). This case study also demonstrates that 

this set of structure-channel relationships applies in deepwater systems, but that channel levee 

development within growth sequences can vary greatly in their spatial and temporal evolution. 

The ultimate cause of this is likely to be the three-dimensional variability in underlying 

deformation.

An example of this relationship is seen in the lower channel levee system which flows 

perpendicular to the strike of Fold 2, which is developed within an overlapping growth sequence 

(Fig. 5.12). The overlapping stratal geometry implies that, at the scale of the seismic data used 

here, no positive topography developed during the growth of Fold 2 over the time interval 

represented by the lower growth sequence. Sinuosity of submarine channel systems has been 

demonstrated to be linked, in general, to the underlying slope gradient by several studies (See  

chapter 1; Ferry et al 2005; Pirmez et al 2000; Huyghe et al 2004; Babonneau et al 2002). The
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planform geometry of the lower channel levee system seen here is consistent with a channel 

response to an increased underlying gradient in the downstream direction, resulting in a 

decrease in channel sinuosity across the crest of fold 2 (Fig. 5.12). The decrease in sinuosity in 

this area is associated with a localised channel course which shows little lateral migration (Fig. 

5.12). The important implication of this is that although the growth sequence architecture 

implies no positive seafloor relief due to folding took place, the imprint of the underlying 

deformation still results in a decrease in channel sinuosity as it crosses the fold crest and 

footwall.

The evolution of the upper submarine channel system is characterised by the diversion of the 

western branch around the emerging topography of Fold 2. Diversion of this channel levee 

system, combined with the increasing occurrence of onlap onto the limbs of fold 2 within the 

upper growth sequence (Fig. 5.13) indicate that a higher relative rate of uplift compared to 

sedimentation characterised this sequence. The western branch of the upper channel shows 

an increase in sinuosity within the hangingwall of Fold 2, with the zone of increased sinuosity 

being associated with frequent meander cut-off loops (6) (Fig. 5.13). This is in contrast to the 

eastern branch, which shows prominent lateral migration with m eander cut-off being much less 

common, with only two clear cut-offs observed. The eastern branch also shows less spatial 

variation in sinuosity compared to the western branch (Fig. 5.13). The strong preferential 

development of sinuosity observed for the eastern branch of the upper channel is developed 

within the hangingwall syncline of Fold 2. The spatial association between this zone of high 

sinuosity and the underlying formation of negative relief suggests an important accommodation 

space control on the development of this particular reach of the upper channel (see also 

discussion, Fig. 6.7). This relationship is likely to be found in other deepwater channels 

interacting with structurally controlled topography.

5.6.2 Factors affecting growth sequence architecture along strike

The along-strike variation in fold amplitude is a key param eter in determining the final three 

dimensional growth sequence geometry (Salvini and Storti 2002). The examples documented 

here are excellent case studies in how the along-strike transition between onlap and overlap 

depends on variable relative rates of uplift versus sedimentation, that have wider implications 

for the way we interpret growth sequences in deepwater fold and thrust belt settings. The folds 

in this study show increased uplift relative to sedimentation at lateral terminations with strike-slip 

faults which compartmentalise the thrusts and folds. This is in contrast to systems where the 

maximum fold amplitude is located in the centre of the fold and decreases towards the lateral tip 

regions (Salvini and Storti 2002; Morley 2009; Higgins et al. 2009). The development of
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structural relief along strike is also a key factor which determines the sedimentary transport 

pathways around the fold (see examples in previous section). Folds 1 and 2 documented here 

both illustrate a mode of fold growth that is highly skewed and non-uniform both spatially and 

temporally (e.g. Figs. 5.10 and 5.11). The effects of this non-uniform spatial and temporal uplift 

pattern can be seen in the evolution of sediment flow paths and in net sediment accumulation, 

and attests to the coupled nature of the interactions between sediment transport and structural 

evolution in this type of deepwater fold belt.

The folds throughout this study area are characterised by the development of synclines within 

the footwall and hangingwall (Fig. 5.7). These are key features affecting sediment pathways in 

that the negative relief of these depressions causes local gradient changes that combine with 

the effects of positive relief over the fold crestal regions. An excellent example of this is where 

the eastern branch of the upper channel levee system displays an increased sinuosity 

associated with a number of meander cut-off loops within the hangingwall of Fold 2. Channel 

morphology in this area contrasts significantly with the reach downstream which is diverted 

around the north-west lateral termination of Fold 2, which is much straighter with limited lateral 

migration (Fig. 5.13). This example is a simple illustration of the strong controls exerted on 

channel morphology by structurally induced gradient changes.

Growth sequences can record important variations in the relative rates of sedimentation and 

uplift, particularly when sub-divided into narrower intervals. One of the most difficult aspects of 

the interpretation of growth sequences is to relate lateral variations in sedimentation rate to 

variations in fold amplification (Fig 5.14). In the discussion above it has been tacitly assumed 

that growth sequence deposition was spatially uniform. However, the channel levee systems 

comprising the growth sequences are effectively linear sources in terms of sediment flux, with 

sedimentation rates decreasing rapidly away from the channel axis (Fig 5.14). This increase in 

the local rate of deposition towards the channel axis leads to increased deposit thicknesses in 

this region and can result in a growth sequence architecture that can easily be interpreted in 

terms of a misleadingly high rate of sedimentation relative to uplift. This could be a common 

pitfall in many deepwater fold belt settings, where channels are frequently diverted around the 

lateral tips of folds (Demytteneaere et al 2000; Morley 2009; Huyghe et al 2004; Clark and 

Cartwright, 2009). The key implication of this is that the interpretation of relative sedimentation 

and uplift rates around fold tip/termination regions requires a three dimensional perspective 

which takes into account the mechanism of sedimentation within the growth sequence to 

accurately interpret fold growth.
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5.6.3 Summary: Conceptual model of deformation and sedimentation

Fold uplift during the lower growth sequence was non-uniform and concentrated towards the 

lateral terminations of Folds 1 and 2 (Fig 5.15a). The magnitude of uplift, from measurements 

of fold relief, was greater along Fold 2 compared to Fold 1. The growth sequence architecture 

is primarily one of overlap, indicating that no fold relief developed on the seafloor during this 

stage of folding (Fig 5.15b).

Submarine channel development during the lower growth sequence supports the observations 

above that no fold relief developed at the seafloor during deposition of the lower growth 

sequence (Fig. 5.15b). This resulted in development of channel levee systems which flowed 

perpendicular to the fold crest. Although channel developm ent is perpendicular to the fold crest, 

underlying deformation was still sufficient to affect channel sinuosity over the fold crestal region 

and the footwall. This was most likely a result of subtle gradient changes causing the channel 

to re-adjust its planform geometry in order to achieve equilibrium at this location (e.g. Pirmez et 

al 2000).
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Laterally decreasing 
deposition rate from 
channel axis

Laterally decreasing 
uplift gradient from 
central maximum.

Channel levee systems 
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Figure 5.14: Schematic figure showing the effect of laterally decreasing deposition rates from
submarine channel systems on growth sequence architecture. At T1 shown in a, the blue channel 
system deposits progressively thin away from the channel axis, resulting in an apparent decrease in 
the relative rate of sedimentation compared to uplift at line B. At T2 shown in b, a later channel levee 
system repeats the process to build the overall growth sequence architecture where apparent changes 
in the relative rates of sedimentation vs uplift are affected by lateral variations in deposition rate away 
from the channel axis as well as from fold uplift itself.
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The upper growth sequence is characterised by a highly skewed development of structural relief 

and resultant topography (Fig 5.15c). Uplift continued at the south-east termination of Fold 1 

but discontinued at the north-west lateral termination (Fig 5.15 c). Uplift along Fold 2 was 

concentrated towards the northwest termination and the central zones, but decreased towards 

the south-east, giving Fold 2 a south-eastwards plunge over this part of the growth sequence 

(5.15c). The geometry of the upper growth sequence is primarily of onlap, although the degree 

of onlap decreases towards the south east -  this reflects the progressive decrease in the 

magnitude of uplift of fold 2.

Development of the upper channel levee system is strongly affected by the non-uniform 

development of fold relief (Fig. 5.15d). Localised uplift at the south-east termination of fold 1 

results in an avulsion node separating eastern and western branches of the upper channel 

levee system (Fig. 5.15d). The eastern branch is little affected by fold 2 due to the decreased 

relief and south-eastwards plunge resulting in little obstruction to channel development. This is 

in contrast to the western branch, which is strongly affected by diversion around fold 1 and also 

exhibits marked changes in sinuosity and in lateral migration passing from the hanging wall to 

the footwall.

5.6.4 Implications

Studies based on growth stratal geometries have already examined the links between patterns 

of onlap and overlap and sediment transport pathways (Burbank et al. 1996; Morley and Leong 

2008). This study shows that, in growth sequences comprised mainly of submarine channel- 

derived sediments, simple patterns of diversion associated with onlap and unconfined channel 

development associated with overlap need to be applied with caution. Instead, patterns of 

submarine channel development reveal a more subtle influence of underlying deformation than 

can be ascertained from the study of growth sequence geometries alone. These include 

preferential sinuosity development and associated variations in the degree of lateral migration 

which can vary dramatically over relatively short distances -  100s of metres in the case of the 

examples discussed here (see Fig. 5 .13). These areas of increased lateral migration and 

sinuosity can be associated with potentially sand-rich lateral migration deposits (Abreau et al. 

2003; see also Fig. 5.13). Thus a more detailed knowledge of where these areas occur in 

structurally deformed areas may be of use in predicting potential reservoir characteristics at 

greater depths in seismic surveys where resolution is poorer. In contrast, the lower channel 

levee system shows a 

decreased sinuosity
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Figure 5.15: Conceptual model o f fold development and growth sequence development. See text for
details.
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across the fold crest and this implies that channel levee systems may still be affected by 

underlying deformation, even when they develop within an overlapping growth sequence. 

Subsequent folding which incorporates this part of the channel into the fold closure then results 

in a greatly decreased potential reservoir volume compared to a sinuous channel levee system 

which is incorporated into the fold crest.

5.7 Conclusions

1. In this study area, the structural style of folding plays a critical role in determining the 

available accommodation space for sediment deposition. The depressions which form in 

the hanging-wall and foot-wall syncline areas are coeval with the evolution of positive 

relief due to crestal uplift.

2. Control of the evolving structural relief on channel sinuosity: Depending on the rate of 

structural growth relative to channel deposition, the sinuosity of the channel can vary 

greatly over a short (hundreds of metres) distance. This results in preferential deposition 

of laterally accreted sand bodies, particularly within the hanging-wall and footwall 

synclines of folds. Preferential sinuosity developm ent in this way is usually associated 

with diversion and/or deflection of the channels around the fold so that a portion of the 

channel occupies the axis of the hanging-wall or foot-wall.

3. Overlapping growth sequences are commonly interpreted to result in little or no 

topographic expression of folding but in deepwater settings can result in significant 

changes in submarine channel morphology, causing a decrease in sinuosity across the 

fold crest.

4. Onlapping growth sequences imply diversion of sediments around the emergent fold 

relief, with the submarine channel systems in this study showing dramatic spatial 

variations in sinuosity and in the development of cut-off loops.

5. This study shows that folding during growth sequence development can be associated 

with a non-uniform distribution of uplift along strike. Therefore a fully three dimensional 

approach is needed when characterising these systems. Methods can include linking 

observations of growth sequence geometry with growth sequence isochron maps, and 

also measurements such as along-strike relief development.
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Chapter 6 Summary and Discussion

C H A P TER  6 

SU M M A R Y A N D  D ISC U SS IO N

6.1 Sum m ary

The work presented in this thesis can be summarised within the conceptual framework 

presented in figure 6.1. Chapter Three describes the detailed interactions between submarine 

channel systems and folding, using examples from the eastern Nile deepwater fold belt. From 

this description a novel and coherent framework for classifying submarine channel-structure 

interactions was introduced. Chapter Four is a more focussed study on the detailed three 

dimensional stacking patterns within a single growth sequence from the western Niger Delta. 

This chapter forms a case study of how three-dimensional stacking patterns within a growth 

sequence vary over time, and provides a useful basis for comparing deepwater fold belts from 

different locations. Chapter Five broadens the description and analysis of submarine channel- 

structure interactions previously documented and attempts to link these detailed interactions to 

larger scale growth sequence geometries. In Chapter Five, the interactions between three- 

dimensional fold development and sedimentation are described, and from this it is shown that 

this can be an important control on more subtle responses of submarine channels to 

deformation, such as spatial sinuosity variations. These three chapters form a coherent set of 

studies which aim to address the nature of sediment-structure interactions in deepwater fold 

belts, firstly by concentrating on detailed studies and then attempting to link this with growth 

sequences, which represent the larger scale result of coeval sedimentation and deformation. 

This work also highlights the advantages of taking a fully three dimensional approach to 

understanding both growth sequence architecture (Chapter 4) and fold evolution over time 

(Chapter 5)
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Figure 6.1: Conceptual model of a deep water foid-belt setting where sedimentation interacts with deformation to control the evolution of seafloor bathymetry. The  
themes covered in the three chapters in this thesis are placed within the context of this environment.



Chapter 6 Discussion

6.2 Discussion

The aim of this discussion is to draw together the main themes discussed in individual chapters 

and to develop them further. The general applicability and limitations of this work are also 

highlighted. Finally, some ideas for future research are presented.

6.2.1 Submarine channel-structure interactions as end-members

Chapter 3, which details a set of end-member channel structure interactions aims to provide a 

descriptive framework for describing submarine channel development in actively deforming 

settings. This section further refines this classification, and places the end-member interactions 

within the context of the timing of deformation.

The timing of deformation relative to sedimentation (pre-, post- or syn- channel development) is 

a key factor in controlling the type and style of interaction. Diversion and confinement form 

opposite end-members in terms of interactions which are governed by pre-channel deformation, 

and this is summarised graphically in figure 6.2. Both of these interactions require pre-existing 

bathymetry to be present to control the channel course. The transition between pure diversion 

(simple local diversions) and pure confinement (channel course and deposition of the channel 

levees is entirely physically constrained by surrounding structures) seems to be related to the 

number of structures which affect a channel’s course. Simple diversions typically involve a 

change in channel course related to a single structure which obstructs the channel pathway, an 

example of which is presented in figure 6 .2  (a and b) involving a simple channel diversion 

around a single fold from the Levant Basin. As seen in Chapter 3 (Fig 3.12), the influence of an 

increasing number of folds on a particular channel course is more likely to result in confinement, 

which in turn may be associated with larger scale diversions shifting the channel course by tens 

of kilometres laterally (Fig. 6.2, e and f). Between these two end-members exists regional scale 

diversions associated with only partial confinement, an exam ple of which is shown in figure 6.2 

(c and d). This exam ple shows clear diversion and also significant spatial variations in channel 

sinuosity (see also Chapter 5, section 5.5.4), with the high sinuosity region developed with the 

hanging-wall of the fold. Fold style and spacing may also play an important role. For example, 

in the eastern Nile fold belt, the structural style of the folds is associated with development of 

prominent hangingwall and footwall synclines. These depressions adjacent to the fold may 

increase the ability of this particular fold style to confine sedimentation due to the increased net 

structural relief resulting from the combined positive elevation of the fold and the depression 

formed by the adjacent syncline (See also section 6.2.2).
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Figure 6.2. Examples of channel-sbucture interactions which show the transition from diversion to confinement. Each figure shows a seabed dip map'draped with'
isochron map of the submarine channel with the folds marked as anticlines and syndines. Figures a and b illustrate a simple diversion around the tip.of a IfoldI which causes ® uniform uplift along strike
east. Figures c and d show a diversion and avulsion caused by multiple folds (see chapter 5 for more details^ The eastern channel segment ® “ d for over 4  km by two fdds ^ c h s h o w n o n  Un,form, upktt afongsfoke^ 
Despite the influence of multiple folds on the channel course, this system is still relatively free to migrate and still exhibits a sinuous planform geometry. Figures e and f show a channel diverted oy murapie structures out 
which is confined -  this limits levee deposition and lateral migration of the channel.
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Deflection and blocking form two end members associated with underlying deformation that is 

coeval with submarine channel development (Fig 6.3). The difference between the two will 

depend on the relative rates of uplift vs sedimentation. Another important factor is the initial 

timing of channel emplacem ent relative to folding. Many exam ples presented show that in 

nearly all cases the channel course is initially set by pre-channel folding. For situations where 

the rate of uplift is only slightly greater than sedimentation rate, deflection of the submarine 

channel will occur (Fig. 6.3). Accurate quantification of the absolute rate differences involved in 

this process of deflection have not been possible in this thesis, due to the lack of age 

constraints within the shallow stratigraphy. Deflection can result in a shift in channel position 

away from the focal point of uplift, or alternatively towards a newly forming bathymetric low 

point. This is illustrated in figure 6.3, where a channel m eander is deflected towards a 

bathymetric low point over time (Fig 6 .3a and b). W here the rate of uplift is significantly greater 

than the rate of deposition then blocking can occur, particularly if the growing structure is 

orientated at a high angle to the channel flow direction (Fig 6 .3e  and f). Blocking will also result 

in a sharply defined onlap relationship between the channel levee complex and the flank of the 

structure. Between these two end-members, intermediate modes of channel development may 

result in channel avulsions, or the formation of short-lived lobe-like deposits developed in 

particular at the base of the channel sequence (Fig 6.2c and d). The seismic profile shown in 

figure 6.2d also illustrates one of the key ways in which deflection can be recognised: The 

progressive increase in rotation of the points of onlap of the internal levee reflections towards 

the base of the channel levee sequence indicates active fold uplift during the time period of 

levee deposition, in a similar manner to rotated onlap relationships observed in growth 

sequences (Burbank and Verges, 1994).

Therefore, diversion and confinement may represent ‘passive’ responses of developing 

submarine channels to pre-existing structural relief. This is in contrast to deflection and 

blocking which represent the ‘active’ response of a developing submarine channel to coeval 

deformation. Recognition of these interactions provides a useful constraint on the timing 

relationships between deformation and folding where they can be recognised. Similar passive 

versus active responses are known from interactions between fluvial systems and neotectonic 

structures (e.g. Ouchi, 1985; Burbank et al., 1996; Burbank et al., 1999).
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Figure 6.3. Examples of channel-structure interactions which show the transition from deflection to blocking. Each pair of figures shows a base channel sequence amplitude map together with a seismic profle illustrating 
some key characteristics. Figure a shows deflection of a single meander loop into a foot-wall syncline. This deflection is associated with a avulsion at the base of the channel sequence, which has become tilted due to 
subsequent folding, shown in profile b. Figures c and d show a deflection away from a growing fold, associated with the formation of a HARP unit (seen in c), the formation of lateral accretion surfaces facing away from the 
axis of uplift and internal levee reflections showing increased rotation towards the base of the levee package (d). Blocking is illustrated by e and f. The seismic profle shown in f is taken along the channel centreline and 
illustrates the increased thickness of channel deposits downstream of the fold which has caused blocking of this channel. A much thinner sequence of channel deposits is preserved upstream of the fold. See also chapter 3 
for more details.



Chapter 6 Discussion

6.2.2  Com paring sediment-structure interactions from the Nile and Niger fans

A comparison of the subm arine channel-structure interactions from the eastern Nile (Gal C 

survey) and the N iger delta (O P L322 Survey) show that the most common channel-structure 

interactions can be classified as diversions of channel course around the lateral 

terminations/tips of folds. Com pare, for exam ple, figure 6 .2  with figures 4 .9  and 4.11 from 

Chapter 4). Diversion o f submarine channel systems around the lateral tips of the Aga Fold in 

the O P L322 survey occur imm ediately following onset of folding at the base of the growth 

sequence (Fig. 6 .4 ). T he  diversionary paths of all subsequent channel levee systems within the 

growth sequence are  then maintained around the edges of this fold during its subsequent 

developm ent (Fig. 6 .4). This is in contrast to som e folds within the Gal C survey area which 

have a  highly non-uniform history of along-strike uplift w here rates of fold uplift and the locations 

of m axim um uplift vary over time (S ee  C hapter 5, figures 5 .8  and 5.9).

Diversions of subm arine channel systems in the Nigeria study do, however, differ from the Nile 

Delta exam ples in term s o f channel morphology. The sharp changes in course observed as the 

Nile subm arine channels are diverted around folds and strike-slip structures is often associated' 

with a localised decrease in channel sinuosity, as is shown in figure 6.5(a-d). This figure shows 

several exam ples of diversions with the channel path overlaid onto the pre-kinematic surface to 

show clearly the relationship between structure and channel pathway. At the point where the 

channel crosses the fold, a low sinuosity reach is typically bounded upstream and/or 

downstream by zones of increased sinuosity which develop within hanging-wall and foot-wall 

synclines in exam ples from the Levant Basin (Fig. 6 .5). In contrast, channel levee systems from 

the Niger Delta study which divert around the lateral tips of the Aga fold show much less 

variation in sinuosity over the diverted channel reach. T he  Niger delta channel systems also do 

not show the strong structural control on levee deposition shown by many of the Nile delta 

channel systems as they are  diverted (Fig. 6 .5).

It should be stated that the num ber of documented channel-structure interactions from the 

Nigeria study presented here is far few er than those docum ented from the Nile data. One  

reason for this is that the Nile dataset records m any more channel levee systems which show a 

more diverse range of interactions with fold growth com pared to the exam ples from the Niger 

delta. O ther studies from the Niger Delta have revealed that a w ider range of channel-structure 

interactions do occur. These  include incision of channel systems across folds and the formation
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Flo'

Fig 6.4b
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Discussion

Contours in Fig 6.4a

Figure 6.4: The contour map shown in a shows the time structure at the base of the growth 
sequence (T60 horizon in b) for the Niger Delta study area. Coloured lines represent the paths 
of several submarine channel systems located at various stratigraphic levels within the growth 
sequence, as shown in the seismic profile in b. This figure shows that, from the onset of growth 
of the Aga fold, submarine channel systems were diverted around the lateral tip regions of the 
fold with the location of the diversions remaining fairly constant -  ie lateral propagation of the 
fold along strike was not a significant factor in controlling the pathways of submarine channel 
systems during growth of the Aga fold. Compare with the example of fold growth documented in 
chapter 5.
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The graphs b, d, and f show sinuosity measurements taken between inflection points in order to compare the eastern Nile and Niger Delta examples (see chapter 2). White dashed lines on figure a, c and e indicate the courses of submarine 
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diversion sinuosity increase respectively, as can be seen on the corresponding graphs b and d. The Niger Delta channel (located at the base of the growth-sequence) shows a lesser range of sinuosity values associated with diversion of 
the channel compared to the eastern Nile examples in a to d.
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of knickpoints (Heinio and Davies, 2007 ) and also spatial variations in channel morphology 

(Pirm ez et al., 2000, their Fig. 11; Adeogba et al., 2005).

Comparing these two datasets reveals som e important differences, both in terms of structure 

and also the morphological style of the subm arine channel systems in each area. Structurally, 

the study area  from the N iger Delta (Chapter 4, Fig. 4 .1 ) is much simpler than that seen in the 

eastern Nile study, showing only two folds (with possible linkages extending beyond the survey 

limits -  see Higgins et al., 2007 ) com pared to the c.27 folds and numerous bounding strike slip 

faults observed in the eastern Nile area (Fig. 6 .6). The folds in the Niger Delta study area are 

also larger, both in total crestal uplift and in lateral extent -  the Aga and Bobo Folds have 

respective lengths of 26km  and 21km , with the fold crests spaced 16km apart. Values of total 

crestal relief for the Aga and Bobo folds are 1800m  and 720m  respectively. In contrast, folds 

from the eastern Nile have an average lateral extent of 3 .8km  and an average crestal spacing of 

2.8km  (Fig 6 .6 ). Crestal uplift values reach a m axim um of up to 250m  above the footwall. In 

the eastern Nile, fold lateral extent tends to be limited by the bounding strike-slip faults, whereas  

in the Niger Delta folds can link up and join along strike via underlying thrust fault linkages. This 

can result in laterally extensive structures 10s of km in along strike length, resulting in a much 

more significant barrier to sedimentation com pared to the Levant exam ples (Higgins et al., 

2007). The eastern Nile folds are also associated with below-regional footwall and hangingwall 

synclines which act as important localised depocentres and are  related to zones of increased 

channel aggradation, this can be accom panied by a localised increase in channel sinuosity. 

This difference in fold style has important implications for sedimentation pathways and on the 

distribution of accom m odation space. This is explored in m ore detail in the following section.

6 .2.3  Subm arine channel responses to folding and the relationship to local variations in 

accommodation space

Some concepts of accom m odation space and equilibrium profile for deepw ater slope systems 

have already been established (Prather et al., 1998; Pirm ez et al., 2000; 2003; Booth et al., 

2003; Smith, 2004 ). In a similar m anner to that described for subaerial fluvial systems (Mackin, 

1948), the large scale morphological evolution of subm arine channel systems over time can be 

interpreted in term s of channel adjustment to reach a notional equilibrium profile, or graded 

slope. In this equilibrium state, the flows passing a particular point are neither net depositional 

or erosional (P irm ez et al., 2000; Kneller, 2003). This hypothetical profile is a concept most
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Figure 6.6. Comparisons of folding styles from the eastern Nile (a and b) and the Niger Delta (c and d). a and c show dip attribute maps of the pre-kinematic surfaces (black dotted lines on seismic profiles) with overlayed 
time structure contours. Folds from the eastern Nile have typical lateral extents of 3-4km due to segmentation by the numerous strike slip faults (a). Folding is also associated with the formation of foot-wall and hanging-wall 
synclines which form closed depressions in three dimensions. The Niger delta folds shown in c considerably more laterally extensive (10s of km) compared to the eastern Nile folds. These folds extend along strike via 
thrust fault linkages (see Higgins et al 2007). Closed depressions within the hanging-wall and foot-wall are not associated with the Niger Delta folds, instead elevation of the hanging-wall above the footwall occurs, along 
with extensive degradation of the fold at the seafloor (d).
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easily applied to channel systems over geological time scales, as at the scale of individual 

flows, each event may vary in volume, grain size and concentration, and the equilibrium profile 

for one particular type of flow will differ from others due to variations in these characteristics 

(e.g. Kneller, 2003). Thus the equilibrium profile concept involves effectively averaging the flow 

characteristics over geological time scales, in addition to other factors such as deformation 

which also introduce perturbations along the slope profile. For submarine channel systems, the 

shape of the equilibrium profile is roughly concave with pinning points at the head of the feeder 

canyon (effectively the sediment source) and channel-lobe transition where flows become 

unchannelised (Pirm ez et al., 2000; Kneller, 2003). It should be noted that in settings where 

sediment distribution is structurally controlled, the lowermost point of the equilibrium profile may 

be better described as the gravity base -  the lowest point in the basin within which a flow can 

deposit (Kneller, 2003). The accommodation space is represented by the difference between 

the seabed and the equilibrium profile.

The slope of the equilibrium profile m ay vary over time due to several factors:

1. The character of the flows passing down the submarine canyon can vary over time 

(Kneller, 2003; Sam uel et al., 2003). Decreases in flow density or thickness, or an 

increase in dominant grain size increases the gradient of the equilibrium profile 

resulting in the formation of accommodation space causing aggradation. The opposite 

to this case (erosion and loss of accommodation) can be caused by an increase in flow 

density or thickness, or a decrease in grain size.

2. Deformation resulting from, for example, thin-skinned gravitational collapse and salt 

tectonics or subduction and the formation of an accretionary prism can alter the slope 

of the equilibrium profile. Deformation will alter the position of the pinning points at 

either end of the concave profile to which the submarine channel is attempting to 

adjust, as well as modifying the slope profile (Pirm ez et al., 2000).

In addition to these large scale variations in equilibrium profile, local structures on a deforming 

slope result in many local perturbations to the overall slope equilibrium profile (Ferry et al., 

2002; Prather et al., 2003; Smith, 2004; Adeogba et al., 2005). W hen attempting to apply the 

equilibrium profile concept to explaining channel evolution over time, it is necessary to consider 

the effects of these multiple local structures. Each of which will introduce localised modifications 

to the slope profile resulting in a more complex overall response of the channel levee system 

over time.

Recognition of the differences in fold structural styles between the Nile and Niger delta study 

areas is relevant as the fold style act as an important local control on the distribution of 

accommodation space. The footwall and hangingwall synclines associated with the eastern
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Nile foldbelt generate zones of locally increased accommodation space, similar to the ponded 

accommodation described for salt withdrawal mini-basins on the Gulf of Mexico slope (Prather 

et al., 1998; Satterfield and Behrens, 1990; Beauboeuf and Friedmann, 2000). The 

development of this ponded accommodation adjacent to the fold crest appears to affect channel 

development in the eastern Nile in two important ways:

1. The localised increase in accommodation space results in increased channel 

aggradation in order for the system to reach its local equilibrium profile. This response 

of the submarine channel to the local increase in accommodation is similar to the model 

described by Beaubouef and Friedmann (2000) for the sequential filling of multiple 

enclosed basins on the Gulf of Mexico slope.

2. Increased deposition of high amplitude, sheet-like bodies at the base of the submarine 

channel systems are often observed in the foot-wall and hangingwall synclines within the 

eastern Nile survey (Fig. 6.3).

The distribution of accommodation space associated with the Aga Fold from the Niger Delta 

study area is much simpler due to lack of foot-wall or hanging-wall synclines. Figure 6.7 shows 

examples of folds from the eastern Nile and the Niger Delta with profiles taken along the 

diversionary sedimentation pathways around the edges of the folds. Upon each of these 

profiles a hypothetical equilibrium profile has been imposed purely to illustrate the nature of 

accommodation space along each flow pathway (Fig. 6 .7). Accommodation space associated 

with the style of folding observed for the Aga fold is healed slope accommodation (Chapter 1, 

see also Prather et al., 2003, for definition) within the footwall (Fig 6.7). Generation of this 

accommodation space is related to the fold crestal relief and also to the vertical separation 

between the hanging wall and footwall associated with this style of folding (see also Fig. 6.6). 

The response of submarine channel systems to this localised creation of accommodation space 

within the forelimb is a local increase in thickness at the forelimb to foot-wall transition (Chapter 

4, Figs. 4 .9, 4 .10  and 4.11). However this increase in thickness does not seem to result in a 

marked increase in local sinuosity compared to the eastern Nile submarine channels. In 

contrast, the fold style in the eastern Nile involves formation of synclines adjacent to the fold 

crests, and these tend to increase the amount of accommodation space by adding a significant
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component of ponded accommodation to the already established slope accommodation (Fig. 

6.7).

Variations in fold style may explain the spatial variations in channel morphology associated with 

diversions around the lateral regions of folds in both study areas. In the case of the diverted 

eastern Nile submarine channel systems (e.g. Fig 6 .2), the channel flow pathway must take into 

account the negative relief associated with the synclines adjacent to the fold crest (e.g. Fig. 

6.5), as well as any positive relief due to the fold crest or from the forelimb to footwall transition. 

For the folds in the Niger Delta study, the lack of footwall and hangingwall synclines (Chapter 4, 

Fig, 4 .2 ) results in a relatively simple stepped local slope w here the only significant variation in 

gradient occurs at the forelimb to foot-wall transition (Fig 6 .7). In contrast to the fold styles 

observed for the eastern Nile, the Aga Fold documented in chapter 4 shows significant (up to 

c.300m ) elevation of the hangingwall above the footwall.

Understanding the distribution of accommodation space around a particular fold is therefore 

considered here to be one of the primary factors which control the morphological response of 

submarine channel systems, particularly the spatial variation in sinuosity observed in many of 

the exam ples in this thesis. The distribution of accommodation space is closely related to the 

structural style o f the folds, and this places an increased emphasis on linking descriptions of 

structural style with stratigraphic observations in deepwater foldbelt settings.

6.2.4  G eneral applicability and key elem ents of a general predictive model

The results presented in Chapters 3 ,4  and 5 are generally applicable to any deepwater fold belt 

setting, particularly w here submarine channel systems form an important part of the 

depositional regime. The results presented in C hapter 3 which describes the basic interactions 

between subm arine channel developm ent and deformation should be applied with an 

understanding of:

1. Knowledge of the style of submarine channel and its approximate location within the 

larger scale canyon-channel levee system. Larger scale submarine channel systems 

may show different interactions due to larger scale or more frequent flow events which 

will alter the relative rates of erosion and deposition versus uplift.

2. The structural style of folding which affects the particular area, for example, the 

formation of synclines adjacent to the fold crests. This is important in terms of 

controlling local variations in accommodation space to which submarine channels will 

show a morphological response (see also Chapter 5).

161



Chapter 6 Discussion

The basic set of submarine channel-structure interactions can also be applied to different 

structural settings, and are not specific to deepwater fold belts. Som e examples include the 

numerous channel diversions caused by salt diapirism documented by G ee and Gawthorpe 

(2006) from offshore Angola. Salt diapirism in the Gulf of Mexico also results in channel 

diversions and confinem ent (Saw yer et al., 2007). O ther zones where channel-structure 

interactions could commonly be expected are from areas of extension and growth faulting (e.g. 

Anderson et al., 2002; Hooper et al., 2002; Ferry et al., 2005).

Chapters 4  and 5 present results which link the detailed stratigraphic and structural 

observations from Chapter 3 to the larger scale result of structural-stratigraphic interactions -  

growth sequences. Growth sequences are a commonly observed feature of deepwater fold 

belts, and the work presented here provides som e new insights into interpreting growth 

sequences in terms of their linked stratigraphic and structural evolution. The key parameter in 

linking observations of growth sequence geometry with detailed interactions between 

sedimentation and the growing fold is the evolution of positive fold relief over time. This can be 

assessed qualitatively by observations such as onlap and overlap, and quantitatively by 

m easurem ents such as growth sequence expansion factor using a similar method originally 

defined for extensional growth faults (Thorsen, 1963; Roux, 1979).

The work presented here, as well as previously published literature exam ples of sedimentation 

in structurally active deepw ater settings (Hubbard et al., 2008; G ee  and Gawthorpe, 2007; Ferry 

et al., 2004; Smith, 2004) suggest that there are several key controls which need to be 

considered when assessing the potential effect of seafloor deformation on submarine channel 

development:

•  The relative rates of sedimentation and uplift over time.

•  Orientation of deformational structures relative to flow pathways.

•  Structural style of deformation and its control on local accommodation space.

•  The location of deformation on the overall channel profile.

The importance of each of these factors is briefly discussed below in the context of practically 

applying these concepts to predict submarine channel developm ent.

6.2.4.1. Relative rates o f uplift and sedimentation: The relative rates of uplift and sedimentation 

can be assessed by observing the geometry of the growth sequence within which the reservoir 

is deposited (see also Chapter 1, section 1.2.2). Overlap indicates that the relative rate of 

sedimentation was greater than uplift and that deformation most likely did not result in positive
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topography during reservoir deposition. Onlap indicates that positive relief was present and 

was significant enough to affect sediment deposition. At a basic level, these observations 

reveal whether sedimentation w as able to bypass seafloor topographic features (overlap) or 

whether these features caused diversion of sedimentation pathways (onlap). Within an 

overlapping growth sequence however, spatial variations in the sinuosity of submarine channel 

systems can still result in poor reservoir developm ent across the crest of the developing fold, an 

important factor which could degrade any potential reservoir developed directly over the fold 

crest. Onlapping growth sequences signify diversion of sedimentation around topography, but 

reservoir developm ent can be strongly affected by the nature of the diversionary path (e.g. 

factors such as the level of confinem ent - Fig. 6.2). The formation of growth sequences can 

also occur during the formation of normal faults and salt diapirs and the use of growth sequence 

geometries can provide easily observable and useful insights in many deepwater settings to 

more detailed structural-stratigraphic interactions (see also Fig. 6 .8).

6 .2.4.2. Orientation o f structure relative to sedimentation pathways: The orientation of 

submarine channel systems to deformational features acts as an important control on the final 

channel geom etry and developm ent. The examples presented in this study generally consider 

relatively small scales of deformation, typically individual folds, although these can be up to 

40km  in lateral extent, as shown by the case study presented in Chapter 4. A  higher angle 

between sedimentation pathways and deformational structures results in an increased likelihood 

of diversion, and m ay result in a connected tortuous corridor style of sedimentation at the slope 

scale when multiple structures affect the channel course (Smith, 2004). Alternatively, if 

deformation post-dates an already established structure-perpendicular channel system, the 

channel course m ay becom e increasingly incised, in a similar m anner to an antecedent fluvial 

system (Burbank et al., 1996). W here  sedimentation pathways are parallel to deformational 

structures, confinem ent will play an increased role in determining the pattern of sedimentation, 

and limit lateral migration. ? Hubbard et al 2008 example?

6 .2.4.3. Structural style: The structural style of folds can vary according to geological settings, 

for exam ple the Eastern Nile fold-belt differs greatly in the structural style of folding compared to 

the W estern Niger Delta (see section 6 .2.2). The structural style plays a critical role in 

determining the local accom modation space, which is believed to be a key control on 

sedimentary architecture in these systems (see also section 6 .2 .3 ). The development of local 

accommodation around individual structures is a concept which can also be easily applied to 

other systems such as salt diapirs and extensional faults.
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6 .2.4.4. Location o f the sedim entary system on the slope profile: This factor is strongly linked 

the relative rates of uplift and sedimentation discussed in section 6 .2 .6 .1 . Submarine channel 

systems located on the upper to middle slope tend to be much larger scale systems and often 

possess a strong com ponent of erosional confinement of the channel axis, suggesting an 

increased capacity for incision and bypass of any underlying structural obstacles compared to 

the sm aller scale channel levee systems on the lower slope (such as the ones shown in 

chapters 3 and 5). Essentially, the more proximal the subm arine channel, the greater its 

potential for erosion and bypass of underlying deformational features.

6 .2.5  Implications for reservoir developm ent

The research presented in this thesis could have important implications for where likely 

reservoir deposition will occur in structurally active, deep-w ater depositional systems. 

Understanding the nature of the submarine channel-structure interactions that may have 

occurred is a key factor in determining the developm ent of any potential reservoir unit as many 

interactions involve localised changes in levee deposition and channel sinuosity over distances 

of 100s of meters. Deposits from the channel axis (including those related to lateral migration 

over tim e), as well as the channel levees, can form potential hydrocarbon reservoirs (Cross et 

al., 2009; Mayall et al., 2006; Abreau et al., 2003; C lem enceau et al., 2000). Diverted and 

confined channels can potentially degrade the reservoir potential of the channel levee system 

due to localised structures resulting in a static channel planform in which the coarse grained 

material in the channel axis is vulnerable to erosion from by-passing flows (Fig. 6.2e and f). 

Deflection m ay be result in more laterally extensive sand bodies formed by gradual lateral 

migration over tim e aw ay from the focal point of uplift. Coeval deformation and channel 

deposition m ay also promote the formation of HARPs at the base of channel levees, and also 

features such as crevasse splays which could form potentially good quality, laterally extensive 

sheet-like reservoirs (Fig. 6.3c).

Understanding the w ay in which submarine channel systems develop within growth sequences 

can also have important implications for the location of channel reservoirs which become 

incorporated into a growing fold (Fig. 6 .8). An overlapping growth sequence in which the 

channel shows spatial variations in sinuosity as it crosses the location of the underlying fold 

crest may result in the best potential reservoir bodies located off the fold crest and within the 

fold limbs (Fig 6 .8a ). An exam ple of this is presented in Chapter 5 (Fig. 5 .12). Here, a channel 

levee system developed within an overlapping growth sequence shows spatial variations in 

sinuosity across the crest of a growing fold, with a local decrease in sinuosity across the fold
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crest, accompanied by a lack of lateral migration. Thus, w e could expect any potential reservoir 

sands across the fold crest itself to be highly limited in terms of lateral extent, or even potentially 

eroded by bypassing flows. The more sinuous portions of the channel levee system would form 

better potential reservoirs located within the fold limbs (Fig 6 .8a ). The connectivity of these two 

reservoirs on either fold limb would depend on the evolution of the low sinuosity segment which 

crosses the fold crest. Localised bypass and erosion in this area could isolate the two sand 

bodies located in the fold limbs, for exam ple.

Within onlapping growth sequences, channel diversion may again result in spatial variations in 

sinuosity with incorporation of the lateral migration deposits into the fold limb which originally 

caused the change in channel course (Fig. 6 .8b). The final configuration of potential reservoir 

units will result in reservoir sands derived from the channel axis concentrated on one fold limb, 

whilst the other limb may consist of levee-derived deposits depending on the degree of channel 

diversion (Fig. 6 .8b). No connectivity should be expected across the crest of the fold in this 

case as the positive relief at the time of channel deposition would have formed a depositional 

barrier. This can be inferred from the onlapping growth sequence geometry.

165



C h a p te r  6

Folding coeval with sedimentation

Sand body development 
within fold limbs

Overlapping growth sequence

Thin-bedded sands within 
channel levees

Uplift<Sedimentation
-Overlapping growth sequence.
-Folding presents no obstacle to passing flows.
-Channel may still show variable sinuosity across underlying 
fold crest.

Planform
Lateral migration  
packages

G rowing fold

Little/no connectivity across fold crest

Folding coeval with sedimentation

Planform

Diversioi

Growing fold

Uplift>Sedimentation 
-Onlapping growth sequence.
-Fold relief at the seafloor obstructs passage of flows. 
-Channel is diverted but can still show variable sinuosity.

Positive relief at seafloor
due to rapid fold uplift compared
to sedimentation . , .Thin bedded sands within

channel levee sequence in
downstream fold limb

Laterally accreted sand body 
within upstream fold limb

Discussion

Figure 6.8a: Schematic figure illustrating the potential effects on 
reservoir development of a submarine channel developed within 
an overlapping growth sequence. Although the overlapping 
growth sequence geometry implies little/no positive seafloor relief, 
the channel system still displays a decrease in sinuosity across 
the fold crest, resulting in potentially poor reservoir development 
in this area. Further folding results in laterally extensive reservoirs 
located off of the fold crest within the limbs.

Figure 6.8b: Schematic figure showing submarine channel
development within an onlapping growth sequence due to a 
relatively high rate of uplift compared to sedimentation. The 
result is channel diversion around the fold resulting in potential 
reservoir deposition within one fold limb only. Connectivity across 
the fold crest is not possible as fold relief would have prevented 
deposition.
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6.2.7Further work

O ne of the most fundamental questions which the work in this thesis raises regards the 

response of deepw ater sedimentary systems to perturbations of the equilibrium profile. In order 

to properly address this question however, more work needs to be undertaken in usefully 

applying the equilibrium profile concept to deepw ater systems. A  key problem in applying this 

concept is that despite the ever increasing coverage of 3D seismic data, individual surveys 

often only im age a segm ent 10s of km in length of the much larger scale canyon-channel-lobe 

system which can be 100s of km in length. Application of the equilibrium profile concept to 

individual seismic surveys is difficult in practice as it is difficult to establish where the particular 

survey lies with reference to the overall equilibrium slope which governs the amount of 

accom m odation space. In order to address this problem, further consideration needs to be 

given to the location of the pinning points which limit the upper and lower extents of the 

equilibrium profile. In a submarine fan undergoing thin-skinned gravitational collapse, the 

location of these pinning points could change over time, as well as increased deformation 

resulting in tortuous sedimentation pathways (c.f. Smith, 2004) which act to lengthen the slope 

profile. Thus, fitting the equilibrium profile to the slope, especially in structurally deformed 

systems, would appear to be a key prerequisite to establishing where changes in 

accom modation space along the slope occur. From this it may then be possible to anticipate 

changes in subm arine channel morphology which may have a impact on the deposition of 

potential hydrocarbon reservoirs (see also Fig. 6.7).

Another key contrbl on the evolution of submarine channel systems over time is the 

characteristics of the flows, such as the frequency, volume and grain size (Pirm ez and Imran, 

2003; Kneller, 2003; Kane et al., 2008). How these characteristics control channel evolution in 

areas of com plex seafloor bathymetry is, so far, an unexplored avenue of research. This is 

despite a generally good understanding of the way in which unchannelised gravity flows 

respond to bathymetric obstacles (e.g. A lexander and Morris, 1994; Bursik and Woods, 2000; 

Woods et al., 1998; Sinclair and Cowie, 2002; Lamb et al., 2005; Kneller et al., 1991). Further 

work utilising numerical and physical models of submarine channel development would greatly 

com plement process-based interpretations from 3D seismic data.
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CHAPTER 7 

CONCLUSIONS

This study represents the first results from the utilisation of 3D seismic data to 

systematically study and understand the interactions between sedimentation and 

deformation from deep-w ater fold and thrust belts. The studies presented here 

illustrate how this type of data can yield insights into these interactions at several 

scales. These range from the detailed interactions between submarine channel 

systems and folds presented in chapter three, to the larger scale formation of growth 

sequences associated with folding presented in chapters four and five. Presented 

below are som e general concluding remarks, followed by chapter-specific 

conclusions.

7.1 General conclusions

•  3D  seismic data can provide important insights into the spatial and temporal 

interactions between sedimentation and tectonics in deepwater fold-beft 

settings.

•  T he  studies presented here highlight the importance of taking a combined 

structural-stratigraphic approach to the analysis of these systems.

•  T he  morphological response of submarine channel systems in deepwater 

fold-belts is ultimately governed by adjustment of the channel course to reach 

its equilibrium profile. In detail, channel response to deformation is related to 

the style of accom m odation space developed around a particular fold.

•  In order to apply the results presented in this thesis, an understanding of the 

structural style of folding is necessary as fold style critically controls the 

distribution of local accommodation space in these depositional systems.

7.2 Conclusions from Chapter 3 -  Channel-structure interactions from the 
Levant Basin

•  The Levant basin forms an ideal area to study the effects of recent (post- 

Messinian) thin skinned deformation on sedimentation derived from the Nile 

Delta.
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•  Several submarine channel levee systems where characterised qualitatively 

using channel isochron maps and quantitatively using measurements of 

channel morphometric parameters.

•  From this study, four basic interactions between submarine channel 

developm ent and deformation can be described:

o Confinement: Restriction of a submarine channel axis and the

channel levees by surrounding structures which physically constrain 

deposition.

o Diversion: A  change in channel course caused by a pre-existing

structure or series of structures which obstruct the flow pathway via 

modifying the slope gradient, 

o Deflection: A  progressive shift in channel course away from the axis 

of uplift, or towards a newly forming bathymetric low point. A key 

difference from diversion is that deflection causes successive changes 

in channel course over time, 

o Blocking: Blocking results from relative rates of uplift that are far

greater than the rates of deposition and erosion from the submarine 

channel. Structural relief prevents sedimentation downstream of the 

blocking structure.

•  These interactions are described as end-m em bers, and are intended to form 

a fram ework for describing the behaviour of submarine channel systems in 

structurally active settings.

•  Each interaction is associated with a specific style of submarine channel 

developm ent, thus recognition of these interactions may have practical 

implications in term s of predicting reservoir geometries. This cannot be fully 

assessed using just 3D  seismic data however.

•  Recognition of these channel-structure interactions provides information

regarding the relative timing of deformation and channel development. In 

particular, levee internal reflection geometries and m easurem ents of channel 

morphometric param eters can provide important information on detailed 

timing relationships over the period of channel development.

•  Diversion and confinem ent represent end-m em bers with the transition

between each interaction being controlled by the num ber of structures

influencing the channel course and also the magnitude of uplift. These

interactions represent the response of channel developm ent to the pre- 

depositional structurally controlled slope.
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•  The transition between deflection and blocking is controlled by the ratio of 

uplift to sedimentation. These two interactions represent the channel 

response to active deformation during sedimentation.

7 .3  Conclusions from Chapter 4  -  Coeval sedimentation and deformation from 

the western Niger Delta.

•  A  growth sequence associated with 32km  in length fold structure (the Aga 

fold) w as m apped in detail in order to provide a case study of three 

dimensional growth sequence developm ent from the western Niger Delta.

•  The growth sequence in this is comprised of a three-dimensionally stacked 

interval of channel-levee complexes, mass transport deposits and 

hem ipelagic intervals. Mass transport deposits and submarine channel 

systems respond to the emerging relief during fold growth and this can be 

assessed using features such as basal scours and also changes in channel 

morphology in response to folding-induced gradient changes.

•  Variations in the structural style of the large scale (32km  in length) Aga fold is 

controlled by factors such as shortening and the developm ent of back-thrusts. 

The low relief areas at the fold lateral tip regions are characterised by the 

formation of back-thrusts, whereas the high relief central area of the Aga fold 

is characterised by the developm ent of fore-thrusts.

•  The accom m odation space within the hanging-wall is controlled by the fold 

style, but growth sequence architecture is also strongly affected by 

com pensational stacking within a vertical sequence of mass transport 

deposits and subm arine channel systems.

•  This com pensational stacking controls the switching of sedimentation 

pathways from one fold edge to another during the fold growth.

7 .4  Conclusions from Chapter 5 -  The link between growth sequence 

architecture and channel-structure interactions.

•  In this study area, the structural style of folding plays a critical role in 

determining the available accommodation space for sediment deposition. 

The depressions which form in the hanging-wall and foot-wall syncline areas  

are coeval with the evolution of positive relief due to crestal uplift.
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Chapter 7 Conclusions

•  Control of the evolving structural relief on channel sinuosity: Depending on 

the rate of structural growth relative to channel deposition, the sinuosity of the 

channel can vary greatly over a short (hundreds of metres) distance. This 

results in preferential deposition of laterally accreted sand bodies, particularly 

within the hanging-wall and footwall synclines of folds. Preferential sinuosity 

developm ent in this w ay is usually associated with diversion and/or deflection 

of the channels around the fold so that a portion of the channel occupies the 

axis of the hanging-wall or foot-wall.

•  Overlapping growth sequences are commonly interpreted to result in little or 

no topographic expression of folding but in deepw ater settings can result in 

significant changes in submarine channel morphology, causing a decrease in 

sinuosity across the fold crest.

•  Onlapping growth sequences imply diversion of sediments around the 

em ergent fold relief, with the submarine channel systems in this study 

showing dram atic spatial variations in sinuosity and in the developm ent of cut­

off loops.

•  This study shows that folding during growth sequence developm ent can be 

associated with a non-uniform distribution of uplift along strike. Therefore a 

fully three dimensional approach is needed when characterising these 

systems. M ethods can include linking observations of growth sequence 

geom etry with growth sequence isochron maps, and also measurements 

such as along-strike relief developm ent.
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A P P E N D IX  A1

A1.1 A d d ition a l se ism ic  pro files  sho w in g  changes in channel m orphology  

NW SE

Fig. A1.1: Uninterpreted and partly interpreted seismic profiles showing channel A upstream of a fold 
which blocks this channel levee system.
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Fig. A1.2: Uninterpreted and partly interpreted seismic profiles showing channel A crossing the crest of 
the fold which blocked channel sedimentation.
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SE

Fig. A1.3: Uninterpreted and partly interpreted seismic profiles showing channel B crossing the crestal 
region of a laterally propagating fold perpendicular to the channel flow direction.
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Fig. A1.4: Uninterpreted and partly interpreted seismic profiles showing channel B crossing the foot- 
wall syncline and showing increased levee deposition into the accommodation space created by folding 
towards the south-east.
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A1.2 Channel A morphology measurements

Dist along 

channel/m
Channel W:D

Channel Depth/mbsl Erosional depth/mbsl Width/m Relief/m Ratio

0 1345.5 1435.5 182 8 22.75
500 1354.5 1442.5 216 8 27.00

1000 1360.5 1416.5 221 18 12.28

1500 1366.5 1418.5 231 21 11.00

2000 1368 1424 192 18 10.67

2500 1375.5 1431.5 225 19 11.84

3000 1375.5 1427.5 226 19 11.89

3500 1371 1425 206 25 8.24

4000 1371 1421 174 18 9.67

4500 1371 1413 165 28 5.89

5000 1366.5 1422.5 171 67 2.55

5500 1372.5 1428.5 177 41 4.32

6000 1366.5 1440.5 155 28 5.54

6500 1380 1438 177 35 5.06

7000 1396.5 1480.5 165 29 5.69

7500 1398 1492 138

8000 1402.5 1498.5 161

8500 1408.5 1470.5 143 27 5.30

9000 1414.5 1484.5 136 16 8.50

9500 1422 1494 119 20 5.95

10000 1410 1470 127 26 4.88

10500 1341 1421 168 18 9.33

11000 1359 1405 158 21 7.52

11500 1378.5 1450.5 145 19 7.63

12000 1396.5 1466.5 121 22 5.50

12500 1405.5 1449.5 168 16 10.50

13000 1408.5 1446.5 177 22 8.05

13500 1407 1441 236 21 11.24

A.1.3 Channel B morphology measurements

Dist along 

channel/m

W:D

Channel depth/mbsl Erosional depth/mbsl Width/m Relief/m Ratio

0 1233.00 1291.82 309 18.00 17.166667

500 1233.00 1308.29 338 19.88 17.006289

1000 1236.00 1301.88 280 12.00 23.333333

1500 1239.00 1302.53 340 16.88 20.148148

2000 1245.00 1303.82 318 16.88 18.844444

2500 1251.00 1312.18 268 18.75 14.293333

3000 1254.00 1325.76 253 19.50 12.974359

3500 1251.00 1314.53 274 15.00 18.266667

4000 1251.75 1325.87 273 11.63 23.483871

4500 1254.00 1315.18 396 20.25 19.555556
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5000 1257.75 1334.22 277 19.88 13.937107
5500 1257.00 1324.06 312 17.25 18.086957
6000 1258.50 1325.56 337 18.75 17.973333
6500 1260.00 1316.47 327 19.88 16.45283
7000 1262.25 1319.90 354 29.63 11.949367
7500 1263.00 1319.47 334 21.00 15.904762
8000 1265.25 1314.66 337 20.63 16.339394
8500 1266.00 1318.94 336 16.88 19.911111
9000 1271.25 1319.49 341 20.25 16.839506
9500 1276.50 1327.09 313 20.25 15.45679

10000 1281.75 1339.40 336 21.75 15.448276
10500 1284.00 1341.65 340 22.13 15.367232
11000 1284.75 1340.04 304 20.63 14.739394
11500 1290.00 1345.29 343 21.75 15.770115
12000 1291.50 1355.03 332 21.75 15.264368
12500 1293.00 1353.00 308 20.63 14.933333
13000 1293.00 1351.82 386 19.50 19.794872
13500 1296.00 1357.18 316 19.88 15.899371
14000 1301.25 1363.60 323 19.50 16.564103
14500 1308.00 1368.00 332 21.38 15.532164
15000 1308.00 1375.06 320 19.88 16.100629
15500 1312.50 1377.21 322 19.50 16.512821
16000 1317.00 1384.06 278 19.88 13.987421
16500 1320.00 1397.65 360 15.00 24
17000 1321.50 1429.74 354 7.88 44.952381
17500 1322.25 1410.49 359 11.25 31.911111
18000 1320.00 1401.18 352 19.50 18.051282

18500 1325.25 1374.66 332 21.00 15.809524

19000 1332.75 1402.16 395 13.88 28.468468
19500 1333.50 1429.97 350 14.25 24.561404

20000 1332.00 1383.76 357 21.00 17

20500 1335.00 1402.06 358 21.00 17.047619

21000 1336.50 1395.32 356 16.50 21.575758

21500 1338.75 1389.34 343 21.00 16.333333

22000 1341.75 1398.22 350 21.00 16.666667

22500 1345.50 1409.03 385 16.13 23.875969

23000 1347.75 1408.93 367 12.75 28.784314

23500 1349.25 1415.13 309 17.25 17.913043

24000 1347.75 1428.93 347 15.75 22.031746

24500 1353.00 1407.12 377 20.25 18.617284

25000 1359.00 1409.59 372 18.38 20.244898

25500 1369.50 1433.03 440 18.75 23.466667

26000 1374.00 1424.59 353 18.00 19.611111

A1.4 Channel C morphology measurements

Distance along W:D

channel/m Channel depth/mbsl Erosional depth/mbsl Width/m Relief/m Ratio
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0 1158.00 1195.40 614 36.00 17.06
200 1158.00 1197.10 694 34.13 20.34
400 1157.25 1198.90 687 33.38 20.58
600 1158.75 1195.30 415 36.75 11.29
800 1158.75 1196.15 390 34.50 11.30

1000 1158.75 1195.30 445 33.38 13.33
1200 1158.75 1196.15 434 32.25 13.46
1400 1161.75 1199.15 469 33.38 14.05
1600 1164.00 1202.25 544 33.75 16.12
1800 1164.75 1205.55 544 34.88 15.60
2000 1169.25 1204.95 465 38.63 12.04
2200 1170.00 1208.25 574 37.13 15.46

2400 1170.75 1208.15 545 36.38 14.98
2600 1173.75 1211.15 530 36.75 14.42

2800 1174.50 1214.45 681 36.75 18.53

3000 1176.75 1215.00 574 37.88 15.16

3200 1176.75 1213.30 658 33.38 19.72

3400 1178.25 1215.65 667 37.88 17.61

3600 1179.75 1216.30 553 35.25 15.69

3800 1181.25 1216.10 687 33.75 20.36

4000 1180.50 1215.35 505 33.75 14.96

4200 1181.25 1215.25 442 33.00 13.39

4400 1179.75 1217.15 501 29.63 16.91

4600 1179.75 1220.55 641 30.38 21.10

4800 1181.25 1222.90 587 30.75 19.09

5000 1182.00 1220.25 723 31.50 22.95

5200 1182.75 1219.30 861 33.75 25.51

5400 1185.00 1222.40 987 34.50 28.61

5600 1187.25 1222.95 893 39.00 22.90

5800 1187.25 1222.95 1037 36.75 28.22

6000 1188.00 1224.55 777 32.63 23.82

6200 1185.75 1222.30 520 28.50 18.25

6400 1189.50 1222.65 505 22.13 22.82

6600 1191.75 1222.35 460 34.50 13.33

6800 1191.75 1224.90 454 35.63 12.74

7000 1191.75 1225.75 421 28.13 14.97

7200 1191.75 1225.75 518 37.50 13.81

7400 1194.75 1230.45 618 27.00 22.89

7600 1195.50 1232.05 592 38.25 15.48

7800 1196.25 1242.15 457 36.75 12.44

8000 1197.75 1244.50 451 35.25 12.79

8200 1200.00 1245.90 619 33.00 18.76

8400 1199.25 1245.15 638 32.25 19.78

8600 1203.00 1242.10 553 32.25 17.15

8800 1200.75 1247.50 649 25.13 25.83

9000 1200.75 1247.50 479 27.00 17.74

9200 1201.50 1251.65 505 28.88 17.49

9400 1201.50 1248.25 525 30.75 17.07

9600 1200.75 1234.75 480 26.63 18.03

9800 1204.50 1254.65 531 29.63 17.92
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10000 1206.00 1254.45 474 30.00 15.80
10200 1203.75 1257.30 414 29.25 14.15
10400 1206.75 1261.15 399 31.50 12.67

10600 1209.75 1266.70 449 30.38 14.78
10800 1212.75 1276.50 458 34.13 13.42

11000 1217.25 1272.50 479 35.25 13.59

11200 1218.75 1267.20 440 36.38 12.10
11400 1224.00 1269.05 426 36.00 11.83
11600 1227.75 1278.75 481 35.25 13.65

11800 1230.75 1285.15 489 34.50 14.17

12000 1226.25 1275.55 467 35.63 13.11
12200 1230.75 1286.85 467 34.13 13.68

12400 1233.75 1278.80 561 39.00 14.38

12600 1227.00 1281.40 613 33.38 18.37

12800 1227.00 1272.90 419 32.25 12.99

13000 1223.25 1277.65 467 28.88 16.17

13200 1224.00 1277.55 390 34.13 11.43

13400 1223.25 1273.40 370 32.25 11.47

13600 1224.75 1274.90 352 33.75 10.43

13800 1218.75 1268.90 381 26.25 14.51

14000 1218.75 1266.35 374 28.50 13.12

14200 1218.75 1266.35 322 27.38 11.76

14400 1220.25 1272.95 305 23.63 12.91

14600 1221.75 1268.50 390 26.63 14.65

14800 1227.75 1277.90 488 33.75 14.46

15000 1221.00 1269.45 593 25.50 23.25

15200 1224.00 1272.45 453 31.13 14.55

15400 1223.25 1269.15 454 30.38 14.95

15600 1223.25 1278.50 404 29.25 13.81

15800 1224.75 1275.75 417 27.38 15.23

16000 1224.75 1279.15 450 25.50 17.65

16200 1226.25 1277.25 418 25.50 16.39

16400 1228.50 1277.80 400 24.00 16.67

16600 1229.25 1281.95 420 25.13 16.72

16800 1227.75 1278.75 436 22.50 19.38

17000 1230.75 1283.45 443 24.75 17.90

17200 1235.25 1287.10 454 27.38 16.58

17400 1234.50 1285.50 476 21.75 21.89

17600 1238.25 1290.95 438 24.75 17.70

17800 1239.75 1297.55 459 24.38 18.83

18000 1241.25 1296.50 488 24.75 19.72

18200 1244.25 1296.10 424 24.38 17.39

18400 1242.75 1287.80 443 22.88 19.37

18600 1245.75 1299.30 408 22.13 18.44

18800 1247.25 1299.10 421 22.50 18.71

19000 1248.00 1299.85 418 22.50 18.58

19200 1248.75 1304.85 466 22.88 20.37

19400 1248.75 1306.55 466 21.75 21.43

19600 1252.50 1305.20 462 23.25 19.87

19800 1255.50 1304.80 407 26.25 15.50
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20000 1257.75 1296.85 440 26.25 16.76

20200 1257.00 1302.90 419 23.63 17.74

20400 1260.00 1298.25 548 24.38 22.48

20600 1260.75 1301.55 583 24.75 23.56

20800 1262.25 1303.90 527 26.25 20.08

21000 1263.75 1302.85 498 25.88 19.25

21200 1265.25 1310.30 535 27.38 19.54

21400 1266.75 1321.15 502 28.88 17.39

21600 1266.00 1314.45 488 27.00 18.07

21800 1269.75 1326.70 488 29.63 16.47

22000 1272.00 1328.10 491 30.75 15.97

22200 1270.50 1330.00 533 30.00 17.77

22400 1272.75 1329.70 536 32.25 16.62

22600 1273.50 1326.20 522 33.75 15.47

22800 1272.75 1329.70 452 29.63 15.26

23000 1275.75 1330.15 483 36.00 13.42

23200 1278.00 1334.10 456 36.38 12.54

23400 1280.25 1332.95 669 39.00 17.15

23600 1280.25 1332.10 779 46.50 16.75

23800 1278.75 1327.20 844 37.50 22.51

24000 1278.75 1334.85 595 34.50 17.25

24200 1278.75 1329.75 553 33.38 16.57

24400 1278.00 1329.85 509 29.63 17.18

24600 1274.25 1326.95 513 27.75 18.49

24800 1272.00 1330.65 557 23.25 23.96

25000 1275.00 1330.25 567 25.50 22.24

25200 1275.75 1331.85 577 25.88 22.30

25400 1278.75 1337.40 677 25.50 26.55

25600 1283.25 1334.25 563 27.38 20.57

25800 1284.75 1345.10 618 24.00 25.75

26000 1284.75 1338.30 529 23.25 22.75

26200 1284.75 1341.70 597 22.13 26.98

26400 1285.50 1338.20 544 22.88 23.78

26600 1286.25 1341.50 537 25.50 21.06

26800 1284.75 1336.60 487 22.13 22.01

27000 1290.00 1341.85 419 27.38 15.31

27200 1287.75 1352.35 386 24.38 15.84

27400 1292.25 1350.90 401 25.50 15.73

27600 1287.75 1351.50 477 22.88 20.85

27800 1290.75 1351.95 545 25.88 21.06

28000 1294.50 1351.45 476 25.50 18.67

28200 1295.25 1358.15 531 30.38 17.48

28400 1290.75 1341.75 428 25.50 16.78

28600 1289.25 1347.90 480 23.25 20.65

28800 1290.75 1348.55 402 25.50 15.76

29000 1290.00 1349.50 462 21.75 21.24

29200 1290.75 1348.55 494 21.00 23.52

29400 1292.25 1351.75 561 24.00 23.38

29600 1292.25 1353.45 531 21.00 25.29

29800 1293.75 1355.80 539 24.00 22.46
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30000 1293.75 1337.95 524 23.63 22.18

30200 1294.50 1342.10 488 22.50 21.69

30400 1295.25 1344.55 421 20.63 20.41

30600 1296.75 1352.85 441 16.13 27.35

30800 1298.25 1360.30 443 17.63 25.13

31000 1298.25 1360.30 422 14.63 28.85

31200 1301.25 1357.35 450 17.25 26.09

31400 1302.75 1360.55 438 16.88 25.96

31600 1304.25 1363.75 488 16.88 28.92

31800 1305.75 1364.40 475 17.63 26.95

32000 1308.75 1371.65 428 17.63 24.28

32200 1311.75 1375.50 412 16.50 24.97

32400 1314.75 1371.70 428 17.25 24.81

32600 1317.75 1380.65 404 18.38 21.99

32800 1320.75 1383.65 428 18.00 23.78

33000 1320.75 1384.50 428 12.00 35.67

33200 1323.00 1386.75 394 15.38 25.63

33400 1328.25 1369.90 329 19.88 16.55

33600 1329.00 1370.65 311 16.13 19.29

33800 1329.75 1375.65 295 18.38 16.05

34000 1332.75 1376.10 304 24.75 12.28

34200 1332.75 1375.25 352 27.00 13.04

34400 1330.50 1377.25 432 26.63 16.23

34600 1331.25 1377.15 512 23.63 21.67

34800 1331.25 1413.70 432 25.13 17.19

35000 1329.75 1400.30 420 20.63 20.36

35200 1328.25 1393.70 454 20.25 22.42

35400 1326.00 1391.45 382 18.00 21.22

35600 1325.25 1400.90 360 16.88 21.33

35800 1321.50 1395.45 358 12.75 28.08

36000 1320.75 1395.55 352 10.50 33.52

36200 1320.75 1395.55 385 11.25 34.22

36400 1320.75 1390.45 400 11.25 35.56

36600 1326.75 1396.45 396 16.50 24.00

36800 1329.75 1393.50 527 21.38 24.65

37000 1331.25 1394.15 596 25.88 23.03

37200 1334.25 1392.90 608 26.25 23.16

37400 1332.75 1392.25 676 22.50 30.04

37600 1332.75 1393.95 658 19.50 33.74

37800 1332.75 1392.25 558 18.00 31.00

38000 1329.00 1394.45 557 24.00 23.21

38200 1331.25 1393.30 390 15.75 24.76

38400 1329.00 1391.05 416 20.25 20.54

38600 1329.00 1387.65 416 22.50 18.49

38800 1329.75 1387.55 401 24.38 16.45

39000 1328.25 1383.50 402 24.75 16.24

39200 1326.75 1383.70 352 18.38 19.16

39400 1326.75 1390.50 355 17.25 20.58

39600 1326.75 1393.90 327 18.38 17.80

39800 1331.25 1378.85 360 18.38 19.59

204



40000

40200

40400

40600

40800

41000

41200

41400

41600

41800

42000

42200

42400

42600

42800

43000

43200

43400

43600

43800

44000

1334.25 1389.50 545 28.13
1335.75 1391.00 552 24.38
1335.75 1390.15 498 23.25

1338.00 1389.85 418 26.25
1338.75 1392.30 359 25.50
1340.25 1395.50 409 24.00

1338.75 1394.00 452 22.88
1338.75 1392.30 374 25.88

1335.75 1393.55 438 22.50

1338.75 1392.30 449 22.13
1338.75 1396.55 483 24.00

1338.75 1393.15 477 23.25

1341.00 1397.10 386 21.75

1341.75 1392.75 386 23.25

1341.75 1391.90 421 24.38

1341.75 1389.35 459 24.75

1341.00 1392.00 420 22.50

1344.75 1394.90 422 22.88

1344.75 1400.00 403 19.88

1347.00 1404.80 451 21.38

1350.00 1410.35 463 24.75



Appendix

A P P E N D IX  A 2

The isochron m aps presented in this appendix are the original maps, of which simplified 

interpretations are presented in Chapter 4. The interpreted isochron maps show most clearly 

the thicknesses and distribution of the architectural elem ents within the upper growth sequence 

of the Aga Fold.
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Fig. A2.1: Isochron map of M TD 3.

207



Appendix

Fig. A2.2: Isochron map o f CLS3.
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Fig. A2.3: Isochron map of M TD2.
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Fig. A2.4 : Isochron map of CL S2.
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Fig. A2.5: Isochron map of M T D 1
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Fig. A2.5: Isochron map o f CLS1.
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A P P E N D IX  A 3

The tables in this appendix present the results from m easurem ents taken of fold structural relief 

and growth sequence expansion factor presented in Chapter 5.

Table A 3.1: Measurements from fold 1. LGS and UGS refer to Lower and Upper Growth Sequences 

respectively. T f00twan and Tcrest refer to stratigraphic thicknesses measured at the footwall and over the fold 

crest.

ice/m LGS
Tfootwall/m

UGS
Tfootall/m Tcrest: LGS/m Tcrest: UGS/m LGS Growth 

Ratio
UGS Growth 
Ratio

0 106 134 34 64 3.12 2.09

100 124 132 42 48 2.95 2.75

200 108 138 72 28 1.50 4.93

300 102 146 40 62 2.55 2.35

400 102 136 46 64 2.22 2.13

500 98 132 52 60 1.88 2.20

600 106 126 60 56 1.77 2.25

700 106 132 68 56 1.56 2.36

800 106 132 70 58 1.51 2.28

900 112 128 80 60 1.40 2.13

1000 116 126 72 90 1.61 1.40

1100 116 126 84 104 1.38 1.21

1200 118 126 98 98 1.20 1.29

1300 116 132 100 104 1.16 1.27

1400 120 132 100 110 1.20 1.20

1500 118 130 100 116 1.18 1.12

1600 118 134 102 110 1.16 1.22

1700 126 128 104 110 1.21 1.16

1800 124 128 108 108 1.15 1.19

1900 130 126 106 112 1.23 1.13

2000 130 130 110 106 1.18 1.23

2100 130 128 116 108 1.12 1.19

2200 132 126 112 110 1.18 1.15

2300 128 130 112 108 1.14 1.20

2400 132 124 118 102 1.12 1.22

2500 136 122 116 102 1.17 1.20

2600 138 120 118 100 1.17 1.20

2700 136 120 116 102 1.17 1.18

2800 130 126 106 104 1.23 1.21

2900 132 124 100 98 1.32 1.27

3000 134 124 96 94 1.40 1.32

3100 130 124 90 92 1.44 1.35

3200 132 120 84 90 1.57 1.33

3300 130 122 78 94 1.67 1.30

3400 130 126 78 92 1.67 1.37

3500 128 124 80 92 1.60 1.35

3600 124 126 80 96 1.55 1.31

3700 124 122 84 94 1.48 1.30

3800 126 116 92 100 1.37 1.16
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Table A3.2: Measurements from fold 2. LGS and UGS refer to Lower and Upper Growth Sequences 

respectively. Tf00twaii and T crest refer to stratigraphic thicknesses measured at the footwall and over the fold 

crest.

LGS UGS LGS Growth UGS Growth
ce/m Tfootwall/m Tfootwall/m Tcrest: LGS/m Tcrest:UGS/m Ratio Ratio

0 120 138 38 120 3.16 1.15
100 126 146 42 110 3.00 1.33
200 130 152 44 100 2.95 1.52
300 134 158 48 100 2.79 1.58
400 136 160 56 100 2.43 1.60
500 138 164 58 100 2.38 1.64
600 138 156 68 104 2.03 1.50
700 142 140 70 102 2.03 1.37
800 142 138 70 98 2.03 1.41
900 140 146 70 100 2.00 1.46

1000 144 146 70 98 2.06 1.49
1100 146 146 66 94 2.21 1.55
1200 148 146 72 90 2.06 1.62
1300 150 148 76 86 1.97 1.72
1400 148 146 74 86 2.00 1.70
1500 150 150 76 74 1.97 2.03
1600 150 152 72 78 2.08 1.95
1700 146 146 68 78 2.15 1.87
1800 144 148 74 76 1.95 1.95
1900 148 142 76 76 1.95 1.87
2000 150 142 78 74 1.92 1.92
2100 154 140 72 66 2.14 2.12
2200 152 144 74 62 2.05 2.32
2300 148 146 72 50 2.06 2.92
2400 148 148 72 46 2.06 3.22
2500 148 142 74 36 2.00 3.94
2600 146 142 74 34 1.97 4.18
2700 150 140 74 32 2.03 4.38
2800 150 136 74 36 2.03 3.78
2900 156 130 84 28 1.86 4.64
3000 158 122 90 28 1.76 4.36
3100 158 120 92 40 1.72 3.00

3200 158 116 100 30 1.58 3.87
3300 150 126 76 30 1.97 4.20
3400 150 122 82 30 1.83 4.07

3500 168 114 92 38 1.83 3.00

3600 174 102 98 36 1.78 2.83

3700 166 104 80 36 2.08 2.89

3800 160 110 50 60 3.20 1.83

3900 160 108 44 60 3.64 1.80

4000 160 106 40 58 4.00 1.83

4100 156 106 36 56 4.33 1.89

4200 152 114 28 56 5.43 2.04

4300 150 110 36 54 4.17 2.04

4400 150 112 38 52 3.95 2.15

4500 146 116 36 52 4.06 2.23

4600 148 112 38 50 3.89 2.24

4700 154 108 40 50 3.85 2.16

4800 150 110 46 50 3.26 2.20

4900 150 108 42 48 3.57 2.25

5000 152 108 46 48 3.30 2.25

5100 154 110 50 54 3.08 2.04

5200 160 100 56 58 2.86 1.72

5300 152 104 64 60 2.38 1.73
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5400 146 108 78 62 1.87 1.74
5500 142 100 88 60 1.61 1.67
5600 136 102 88 84 1.55 1.21
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