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Summary

This thesis presents details o f an experimental and numerical programme of study undertaken 

on the fracture and self-healing o f cementitious materials at Cardiff University.

The experimental component reported in the thesis consists of an extensive programme of  

tests conducted on reinforced mortar specimens, autonomically healed with a low viscosity 

cyanoacrylate adhesive. The development o f the self-healing experimental procedure is 

explained and results o f a series o f three point bending tests are presented. These examine the 

effect o f reinforcement, pre-notching, and rate o f loading, on the healing performance o f the 

beams. Both primary and secondary healing behaviour was observed during the first and 

second loading cycles, respectively.

The numerical component o f this thesis describes development work undertaken on the 

discrete lattice beam modelling method. The aim of these developments is to improve the 

quantitative aspects o f the model, including mesh orientation and size dependency, and over­

brittleness of the force-displacement response. The orientation effect o f the lattice is discussed 

and various failure criteria which minimise, or omit, this effect are presented and compared. 

The effect o f mesh size (lattice resolution) on the specific fracture energy is also examined. A 

new regularisation method, which is based on the application o f statistical distributions of 

beam strengths that are linked to the beam length, is presented. This method is shown to 

significantly improve the objectivity of the force-displacement results, whilst maintaining the 

qualitative ability to capture the main phases o f crack formation, namely; macrocrack growth, 

crack branching and bridging.

In the final chapter the lattice method is used to simulate the self-healing response observed 

during the experiments. The method was found to be capable o f capturing realistic pre- and 

post-healing fracture patterns, in addition to the stiffness increase observed during primary 

healing, which occurs shortly after the release of adhesive from the glass supply tubes.
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Symbols and abbreviations

The following symbols and abbreviations are used in this thesis:

A cross-sectional area of beam

axial area o f beam
Arf shear area o f beam
ap percolation limit
b, t breadth (thickness) of beam
b width o f crack plane opening

bo crack opening at the bottom o f the cavity
bh crack opening at the top of the cavity
C elastic plane stress compliance matrix
Cl exponential softening curve coefficient

Dmax> Dm in maximum and minimum aggregate particle size
E Young’s modulus
Eb Young’s modulus o f beam

Ec Young’s modulus of continuum
F axial force

Ft local axial force in beam

feu cube strength (100mm cubes)

Fl local force vector for beam

fsplit splitting tensile strength (lOOmm^, 200mm long cylinders)

ft tensile strength o f material

ftb tensile strength o f  beam

F, local shear force in beam

g gravitational constant

Gf specific fracture energy
h height o f beam
I second moment o f  area

k ,k e element stiffness matrix

Kcr global stiffness matrix stored in compressed row format

kL local stiffness matrix o f element
I length o f beam
M bending moment
M Jacobian preconditioning matrix
m Weibull constant
N total number o f beams in lattice
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n total number o f beams in an RME
np number o f beam with strengths from lower strength distribution
no, number o f broken beams in RME at failure (i.e. co=l)
p c capillary potential
Pk prescribed aggregate content
Ppre prescribed load
Q, V shear force

reff relative effective stress (=<Teff/fb )
sg local axial stress in beam
Srj local shear stress in beam

Tct stress transformation matrix
tn scaled total force norm.
u displacement

un local displacements of beam
uo crack opening at failure
Ul local displacement vector for beam
Up prescribed displacement
uxi, uyi displacements at end of beam
W elastic section modulus (=bh2/6)
z distance o f fluid front from reservoir
a, f3, as scaling factors in failure criteria

a  orientation o f local element axes

ai orientation o f principal stress axes

as shear area correction factor

Pi, P2 axial and shear stress correction factors

y  surface tension o f the fluid

Yxy engineering shear strain

s  effective strain

, Y& local strain components o f beam 
Q beam strain
0  angle that the meniscus forms with the face o f the crack

0  orientation of principal axes
X non-dimensional lattice size
p  M-C shear/normal strength ratio

p  viscosity o f fluid

v  Poisson’s ratio

p  residual effective energy
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p  density of liquid

oeff effective stress in beam
<7/, ct// major and minor principal stresses

x shear stress

(j> inclination angle o f capillary or crack
cpi, (p2 rotations at end o f beam
o) rotation tensor
co, co damage parameter or tensor
AAR aggregate alkaline reaction
CG conjugate gradient
CMOD crack mouth opening displacement
CPU  central processing unit
CR compressed row
C-S-H calcium silica hydrates
CSL confined shear lattice
DEM  discrete element model
DEN double edge notched
DTI Department o f Trade and Industry, U.K.
ECC engineered cementitious composite
FE finite element
fpz  fracture process zone
GUI graphical user interface
hep hardened cement paste
ITZ interfacial transition zone
LEFM linear elastic fracture mechanics
LVDT linear variable differential transducer
M-C Mohr-Coulomb
NDT non-destructive testing
PCA Portland cement association
RBSM rigid body spring model
RFM random fuse model
RILEM Reunion Internationale des Laboratories d’Essais et de Recherches sur les

Materiaux et les Constructions.
RME representative material element
RVE representative volume element
SEM scanning electron microscope
SH self-healing
XFEM extended finite element model
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Chapter 1 - Introduction

Chapter 1 

Introduction

1.1 Cementitious materials

The Romans used pozzolanic materials such as quicklime, volcanic ash and pumice to create 

pozzolanic mortars. This was then mixed with aggregate to form concrete, which was used in 

many structures including the domed roof o f the Pantheon in Rome. It was not until the 

discovery o f Portland cement in the middle o f the nineteenth century, however, that the use of 

concrete as a building material accelerated. Today, cementitious materials including mortar 

and concrete are the most commonly used man made materials on the planet. Cement is used 

to make approximately 2.5 metric tonnes (over one cubic metre) o f concrete per person alive 

per year (van Oss, 2005).

Concrete is a truly multiscale material, containing hydration products such as calcium-silica- 

hydrates (C-S-H) at the nanoscale, cement particles at the microscale, and aggregate at the 

mesoscale. In addition, it is a heterogenic material which behaves isotropically in the case of  

plain concrete and anisotropically when reinforced with steel.

The compressive strength o f concrete may vary between 20 and 60MPa for traditional 

concrete, although strengths o f  up to 200MPa have been achieved with the use o f special 

additives and compaction techniques. Cementitious materials including concrete are, 

however, quasi-brittle in nature. This means that whilst they are relatively strong in 

compression, they are relatively weak in tension. The tensile strength of concrete is usually 

about 10 times less than its compressive strength. In order to account for the relatively low 

tensile strength o f concrete, most structures are reinforced with steel reinforcing bars. 

Nevertheless, before the tensile strength o f the steel can be utilised in a reinforced member the 

concrete must crack up to the level of the reinforcement. In addition to cracking caused by 

structural loading, other more common causes o f cracking include plastic shrinkage, drying 

shrinkage, and thermal effects as illustrated in Figure 1.1.
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(b) (c)

Figure 1.1. Common causes o f  cracking in concrete: (a) Plastic shrinkage; (b) Drying shrinkage, and

(c) Thermal effects (PCA, 2008)

1.2 D urab ility  issues

Whilst cracking o f concrete, especially microcracking, is extremely common, and is not 

classed as ‘failure’, it invariably leads to an increase in the number o f pathways open to the 

ingress o f saline water, acid rain, and carbon dioxide. Depending on the type o f concrete, the 

environmental conditions and the chemical makeup of the infiltrating fluid, various degrading 

processes can occur which cause further cracking and substantially reduce the durability o f 

the structure. These processes include freeze-thaw action, aggregate alkaline reaction, and 

reinforcement corrosion, as illustrated in Figure 1.2. In addition to reducing the structural 

integrity o f the concrete, cracking is aesthetically unsightly and also increases the porosity of 

the material, thus potentially compromising the water tightness o f the concrete that the 

structure is formed from. This is a very important requirement for water retaining structures 

such as dams and storage tanks, but also for other critical housing facilities such as nuclear 

reactors and disposal facilities for radioactive waste.
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(b) (c)
Figure 1.2. Common accelerated effects o f cracking in concrete: (a) Freeze-thaw action; (b) Aggregate 

alkaline reaction (AAR), and (c) Reinforcement corrosion (PCA, 2008)

1.3 Inspection , m ain ten an ce and repair o f  concrete stru ctu res

The durability problems associated with concrete structures are currently addressed through 

regular monitoring and maintenance programmes. Currently, maintenance work on concrete 

structures generally relies on regular inspection programmes, which are expensive, and 

depend on a combination o f non destructive testing (NDT) and human perception. As 

discussed by Kessler et al. (2003), NDT can offer some degree o f accuracy, however, human 

perception, due to its very nature can include a large degree o f subjectivity. In addition, these 

inspection programmes are costly, both in terms of time and money, since a high degree o f 

training and expertise is generally required to complete the inspection and interpret the 

results. It is also worth noting that NDT may not always produce conclusive results, hence 

intrusive, or partially destructive testing, such as core drilling may be required. Core drilling, 

and the subsequent testing o f cores, is generally used in order to investigate suspected large 

internal defects that NDT, such as acoustic emissions analysis, may highlight. However, such 

activities may well compromise the integrity o f the structure.

The periodic nature o f inspection programmes also means that the occurrence o f structural 

defects will only be addressed, at the earliest, during the next scheduled inspection. Thus, the 

regularity o f inspections is usually related to the risk associated with failure o f the structure,
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both in respect to serviceability and ultimate criteria. The concept o f continual ‘health 

monitoring’ o f structures through the use o f real-time sensors connected to centralised 

computers is therefore appealing (Mihashi et al., 2000).

The repair methods, which have been used to date, include techniques such as resin or grout 

injection into macro cracks, bolting or gluing fibre reinforced strips to the tension face, 

‘remove and replace’ techniques for parts o f members, or in the most severe cases, 

replacement o f structural members in their entirety. As noted by Kessler et al. (2003), access 

to the structure, in order to inspect and, if necessary, complete remedial works, may be 

difficult, if  not hazardous. There are, in fact, many examples of structures, in which thorough 

inspection is extremely difficult, if  not practically impossible e.g. buried concrete pipes, 

nuclear reactor chambers, waste disposal facilities, undersea structures, buried foundations 

etc. Even if  continuous, automated inspection o f such structures (as discussed above) were 

installed, subsequent remediation of identified defects would remain a significant problem.

1.4 Motivation for the research

1.4.1 Development o f self-healing cementitious materials

The financial cost o f traditional monitoring and maintenance programmes, as described 

above, is very large. Figure 1.3 illustrates the annual expenditure in billions of pounds 

(relative to 2000 prices) on construction work in the UK between 1995 and 2005. It can be 

seen that repair and maintenance costs account for over 45% of the total expenditure on 

construction, o f which concrete structures form a large proportion.

90

80

|  70
&
6 " 60

§ c°
I  30
X)

20

10

0
1096 1906 1697 1968 1900 2000 2001 2002 2003 2004 2006

Figure 1.3. Billions of pounds spent on repair and maintenance and new construction work in Great

Britain between 1995 and 2005 (DTI, 2006).

Page 4



Chapter 1 - Introduction

These issues are not just confined to the United Kingdom. In the USA, the annual 

maintenance cost for bridges is estimated at $5.2 billion, and the cost for bridge 

reconstruction is estimated to be between $20 billion and $200 billion (Yunovich and 

Thompson, 2003). In addition, as discussed by Freyermuth (2001), comprehensive life cycle 

analyses indicate that the indirect costs due to traffic jams and associated loss o f productivity 

are more than 10 times the direct cost of maintenance and repair.

As well as financial penalties, poor durability of concrete, which causes the need for the 

refurbishment or even complete replacement o f structures, also has a significant 

environmental impact. The production of 1 tonne o f Portland cement, for example, produces 

approximately 1 tonne o f CO2 when the emissions due to calcination and fuel combustion 

required to power the kiln are both taken into account (van Oss, 2005). Considering that about 

2.35x109 tonnes o f cement are used annually worldwide, the CO2 emissions associated with 

the production o f cement are very significant, and are estimated to be in the order of 5 - 7% of 

the total CO2 production in the world.

In order to enhance the durability o f our built infrastructure, and reduce mankind’s impact on 

the stability o f the biosphere, material scientists have recently turned their attention towards 

the creation o f smarter materials that have the ability to adapt to their environment. 

Researchers have therefore begun to challenge the traditional and long established view that 

structural materials should be designed to pre-defined specifications and are assumed to meet 

these specifications throughout the lifetime of the structure. In practice, not only do the 

external demands on such materials invariably change over time, but the materials ability to 

meet these demands often diminishes. Significant evidence of such developments was evident 

recently, at the first international conference on self-healing materials which was held in the 

Netherlands during April 2007. This conference was also succeeded by the first book devoted 

solely to self-healing materials (van der Zwaag, 2007). Examples o f these ‘smarter’ materials 

include smart coatings which are able to heal scratches, autonomic healing o f polymers and 

bacterial enhanced autogenous healing in concrete. Many researchers are gaining the 

inspiration for the development o f these sophisticated materials from nature e.g. blood supply 

system in humans, water uptake mechanisms in plants and trees, and bone healing in 

mammals. These materials are, therefore, often referred to as bio-mimetic materials.

In concrete, early research in this self-healing area has focused on both the natural ability of 

hydrates to heal cracks over time, and artificial means of crack repair from adhesive reservoirs 

embedded within the matrix. It is the latter concept that is investigated in this thesis. The
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motivation for developing this self-healing cementitious material is therefore to achieve a 

material with improved durability and service life and reduced lifetime costs, both in terms of 

money and environmental impact.

1.4.2 Numerical modelling

“How does a heterogeneous solid break when an externally applied displacement is slowly 

increased?” (Herrmann et al., 1989).

This is a question postulated by Hans Herrmann, Alex Hansen, and Stephane Roux almost 20 

years ago. It is a question, however, that has pre-occupied the minds o f mathematicians, 

material scientists, and engineers alike many years prior to, and since, the publication of this 

paper. Therefore, in relation to heterogeneous solid materials such as concrete, the question 

stated above should now be extended to include the words: “....and how does a partially 

damaged heterogeneous material recover its physical properties over time, when subjected to 

a self-healing process?”

The motivation for the development of the modelling work presented in this thesis is therefore 

to complement the observations made during the experimental programme, and to begin to 

shed some light on the answer to this question, particularly in respect to the autonomic 

adhesive based healing o f cementitious materials.

A suitable modelling approach should be capable of:

• Capturing the heterogeneity of the cementitious material.

• Predicting realistic crack patterns for given boundary conditions.

• Predicting a realistic constitutive response which is objective.

• Capturing the primary physical aspects o f the self-healing process in a simple way.

1.5 Scope and objectives of the research

The scope and objectives o f the research presented in this thesis are to:

1. Undertake novel autonomic healing experiments to better understand the kinematics of 

the healing process, and to obtain reliable data on the mechanical properties o f the 

healed material for the development o f numerical models;

2. Improve the quantitative abilities o f the discrete lattice beam modelling method in 

respect to modelling the damage o f cementitious materials, and;
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3. Model the fracture and autonomic healing process within cementitious materials using 

the discrete lattice beam modelling method.

1.6 Outline of the thesis

This thesis is divided into 9 chapters with 2 appendices. Chapter 2 describes the recent state 

of the art developments that have occurred in the field of self-healing materials with specific 

focus given to applications in cementitious materials. The use of modelling techniques 

applied to self-healing materials and cementitious materials in general is also discussed, and 

the main differences between continuum and discrete approaches are highlighted.

Chapter 3 focuses specifically on the fundamental aspects o f the discrete lattice beam 

modelling method, including the mesh geometry, element type and failure criteria. The main 

advantages o f the method are presented together with an appraisal o f its current limitations. In 

Chapter 4 a brief overview of the computational implementation o f the lattice method is 

presented, with specific attention being given to the issue o f computational efficiency. Details 

are presented o f the pre and post processor programs in addition to the main finite element 

code, all o f which have been developed as part of this thesis.

A detailed investigation o f the most appropriate failure criterion to be used in the lattice 

model in then presented in Chapter 5. A theoretical framework based on the equivalence 

between the discrete lattice and the underlying continuum is formulated. This is then used to 

investigate the isotropic properties o f various failure criteria, which are partly responsible for 

the mesh orientation dependency o f the method. The influence that the choice o f failure 

criterion has on the fracture pattern and force-displacement response for a lattice simulation is 

also investigated.

The mesh size dependency o f the lattice modelling method is discussed in chapter 6. A 

regularisation procedure based on a statistical distribution o f beam strengths that are linked to 

the element length is then proposed and evaluated.

Chapter 7 presents the body o f experimental work completed at Cardiff on adhesive based 

self-healing o f cementitious materials. The findings from the initial investigations and the 

development o f the current experimental procedure are described. The results of several series 

of three-point beam bending experiments are then presented and discussed.
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Finally, the application o f the discrete lattice beam method to the modelling of the self- 

healing process in cementitious materials is presented in chapter 8, and some general 

conclusions and an outlook towards future research in this area is presented in chapter 9.
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Chapter 2 

State of the art review

2.1 Introduction

This state o f the art review investigates the current situation in relation to the development of 

self-healing materials within the construction and manufacturing industries. Particular focus 

has been placed on the process o f autonomic healing and its associated technology. The 

application o f this technology to both cementitious materials and polymeric materials has 

been considered. This is because a far larger body o f research has been completed on the 

autonomic healing o f polymeric materials, and therefore, this offers potential opportunity for 

technology transfer between the different material types.

A summary o f the limited numerical modelling work which has been undertaken to date on 

self-healing polymeric and cementitious materials is discussed. In section 2.5 a brief overview 

is also given o f the far larger body o f work that has been completed on the modelling o f  

fracture in cementitious materials. The purpose of this overview is to identify an appropriate 

numerical technique for capturing the primary mechanisms occurring in the experimental self- 

healing work presented later in this thesis.

2.1.1 Definition of terms

There are many terms which are being used within the literature to describe the development 

of new composite materials designed to possess some ‘higher-order’ function. There is some 

ambiguity regarding the definition o f these terms, however, as reported by Joseph and 

Jefferson (2006a), Mihashi et al. (2000) and Sharp and Clemefia (2004) give some insight to 

their meaning, and attempt to differentiate between them.

2.1.1.1 Intelligent materials

Intelligent materials, as defined by Mihashi et al. (2000), are materials which ‘incorporate the 

notion of information as well as physical indexes such as strength and durability’. This higher
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level function or ‘intelligence’ is achieved through the systematic corporation o f various 

individual functions. As a result, intelligent materials exhibit a self-control capability whereby 

they are not only able to sense and respond to various external stimuli, but conduct this 

response in a regulated manner. This is analogous to the behaviour exhibited by many natural 

materials such as skin, bone, and tendons. Schmets (2003) identifies this inherent ‘intelligent’ 

adaptability o f natural materials, and states that their outstanding mechanical properties are a 

consequence o f their highly organised hierarchical structure, which is omnipresent at all 

levels (length scales) o f the material.

Given their complexity, it is not surprising that such materials are currently not used in 

practice. The development o f man made intelligent materials are still largely at the conceptual 

and early design stages, and are confined mainly to the fields o f medicine, bionics, and 

aeronautics/astronautics.

2.1.1.2 Smart materials

Smart materials, on the other hand, are engineered materials which are able to provide a 

unique beneficial response when a particular change occurs in its surrounding environment 

(Sharp and Clemena, 2004). Examples of smart materials include piezoelectric materials, 

magnetostrictive materials, shape memory materials, temperature-responsive polymers which 

are able to change colour with temperature, and smart gels which are able to shrink or swell 

by factors o f up to 1000 in response to chemical or physical stimuli. The difference between a 

smart material and an intelligent material is therefore defined by the degree to which the 

material can gather information, process this information and react accordingly.

2.1.1.3 Smart structures

Smart structures differ from smart materials, in that they are engineered composites o f  

conventional materials, which exhibit sensing and actuation properties, due to the properties 

of the individual components.

2.1.1.3.1 Self-healing materials

Many self-healing materials fall into the category of smart structures, since they contain 

encapsulated healing agents which are released when damage occurs, thereby ‘healing’ the 

‘injury’, and increasing the materials’ functional life.

Self-healing studies have been performed on polymers, coatings, and composites (inc. 

concrete), however, all o f these ‘structures’ rely on previous knowledge of the damage
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mechanisms to which they are susceptible, and are therefore classed as smart rather than 

intelligent. Self-healing polymers and cementitious composites are discussed at greater length 

in sections 2.2 and 2.3, respectively.

2.1.1.3.2 A utonomic and autogenic healing

A composite material which exhibits self-healing capabilities due to the release o f 

encapsulated resins or glues, as a result o f cracking from the onset of damage, is categorised 

as having autonomic healing properties.

If the healing properties o f a material are generic to that material, then the material could 

potentially be classed as a smart material, and the healing process is termed autogenic healing. 

Cementitious materials have this innate ability to self-repair, since re-submersion of a 

concrete specimen in water, can serve to kick-start the hydration process, when the water 

reacts with pockets o f unhydrated cement in the matrix.

2.1.1.3.3 Passive and active modes

Smart self-healing structures may also be classified depending on the passive or active nature 

of their healing abilities. A passive mode smart structure has the ability to react to an external 

stimulus without the need for human intervention, whereas an active mode smart structure 

requires intervention in order to complete the healing process. Both systems have been tested, 

in respect to concrete by Dry (1994), and are illustrated in Figures 2.1 and 2.2.

A fully passive release system draws its main benefits from the omittence o f the need for 

human inspection, repair and maintenance. The requirement for human intervention in an 

active mode system, nonetheless, allows for a larger degree o f control to be exercised, and is 

thus likely to inspire greater confidence within the end user.

•...................................... ...................................
....................  ..........................

j .--------------- i  \ ,  . 4 ' / .  ----------------. .
— f — — -

/ /
Fibers Coated With Wax and Filled 
With Methylmethacrylate Wax Coating Melted With Initial 

Heating. Methylmethacrylate 
R eleased From Fibers Into Cracks

it  A A A AM M M
Methylmethacrylate Polymerized During 
Second Heating, Closing Previous Cracks

Figure 2.1. Active release mode illustrated through the melting o f a wax coating on porous fibres 

containing methylmethacrylate healing agent (Dry, 1994)
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Adhesive Released By Cracking

Figure 2.2. Passive release mode illustrated through the physical cracking of the brittle fibre under

loading (Dry, 1994)

2.1. /. 4 Sensory structures

Sensory structures are the fourth and least intelligent of the advanced materials categories. 

These structures have sensing capabilities but lack actuating properties. Examples of sensory 

structures include: smart brick which are able to monitor temperature, vibration and 

movements within buildings; smart optical fibres which are able to sense undesirable 

chemicals, moisture, and strain; and, smart paints which contain silicon-microsphere sensors, 

and are able to monitor their condition and protection effectiveness.

2.1 .2  A d d ress in g  th e  d u r a b ility  issues o f  co n crete  th rou gh  a d v a n ced  m a ter ia l sc ien ce

Conventional methods for improving the durability o f concrete, involve the reduction of 

cracking through the use o f fibre reinforcing, or the reduction in permeability through the use 

of waterproofing agents, sealants, or the creation o f denser microstructures with reduced 

porosity.

It is evident, however, from the previous section that the field of advanced materials 

potentially has a significant amount to contribute to the areas o f civil and structural 

engineering. In the context o f concrete durability, in particular, the ability to self-repair 

microcracks through the release o f an encapsulated healing agent, will have a profound effect 

on the longevity o f concrete structures. The remainder of this chapter therefore focuses on the 

current work which has been completed in the area of self-healing concrete, after first 

considering progress that has been made in the development o f this technology in polymers.

2.2 A u ton om ic healing o f  p olym ers

Structural thermosetting polymers are susceptible to damage in the form of cracks, which 

form deep within the structure where detection is difficult and repair is almost impossible 

(White et al., 2001). Cracking leads to mechanical degradation o f fibre reinforced polymer 

composites, and in microelectronic polymer components it can also lead to electrical failure.
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White et al. (2001) stress that regardless of the application, once cracks have formed within 

polymeric materials, either through mechanical or thermal fatigue, the integrity of the 

structure is significantly compromised.

It is therefore no surprise that autonomic-healing polymers have been the subject o f much 

attention since their initial creation in the material laboratories o f the University o f Illinois at 

Urbana-Champaign. Their recent development is widely credited to the team at this institution 

led by Prof. White (Helmer, 2001), and significant literature has been published in this area 

recently by White et al. (2001), Kessler et al. (2003), and Brown et al. (2002, 2003a, 2003b, 

2004, 2005a, and 2005b). The novel properties of these polymeric materials have also gained 

interest with the press, and numerous articles have appeared in Nature (Helmer, 2001), The 

Washington Post (Gugliotta, 2001), The Chicago Sun-Times (Wisby, 2001) and U.S. News 

and World Reports (Fischer, 2001).

2.2.1 T h e  se lf-h e a lin g  co n ce p t in p o lym ers

The self-healing concept in polymers is illustrated in Figure 2.3 below.

^-catalyst • 

• microcapsule'il

™ ‘0 ' . C Po
"> • .  \

.  • healing agent |Po
iH) • . V ~ \  • #s polymerized m j  

* z healing agent • V. J  •

/ c ^ ' - j j

Figure 2.3. The three stages in the concept of self-healing in polymers (Kessler et al., 2003)

Initially a microcapsule is embedded in a structural matrix containing a catalyst. The first 

stage shows a crack propagating through the matrix due to the occurrence o f damage, such as 

fatigue loading. The second stage illustrates the rupturing o f the microcapsule, thereby 

releasing the healing agent into the crack plane through capillary action. The third, and final, 

stage illustrates the contact between the healing agent and the catalyst, resulting in 

polymerisation and ‘healing’ via bonding o f the crack faces.

This self-healing process has been realised by the group at the University o f Illinois using 

Urea-formaldehyde microcapsules embedded alongside a Grubbs catalyst inside a polymer
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matrix. The scanning electron microscope (SEM) images (Figure 2.4) illustrate the above 

process in an actual polymeric material.

(a) SEM image o f  Urea-formaldehyde microcapsules (b) SEM image o f Urea-formaldehyde microcapsules 

microencapsulating dicyclopentadiene liquid. (Brown breaking and tail formation in the wake o f the crack

et al., 2004). (propagation is from top to bottom) (Brown et al., 

2004).

500 Ltm

(c) SEM image o f  a ruptured microcapsule (White et (d) SEM image o f  a healed crack plane and depleted

al., 2001). microcapsules (White et al., 2001).

Figure 2.4. SEM images o f the occurrence of the self-healing process in polymeric materials

2 .2 .2  T h e  te ch n o lo g y  o f  s e lf-h e a lin g  in p o lym ers

The technology o f self-healing in polymers inevitably involves a large amount o f polymer 

chemistry, which is unfortunately outside the scope of this thesis. Stinson (2001), however, 

offers a brief and simplified description o f the associated technology:

2.2.2.1 Microcapsules

The microcapsules are formed by high speed stirring o f an aqueous mixture o f urea and 

formaldehyde, dicyclopentadiene, resorcinol acid catalyst, and ethylene-maleic anhydride 

resin emulsifying agent. The product is microcapsules of urea-formaldehyde resin containing 

dicyclopentadiene, a liquid tricyclic diolefin (Figure 2.4 (b)). As discussed by Stinson (2001)

20 pm
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the microcapsule properties are crucial: “They must be small enough so that their inclusion 

does not degrade the strength or stiffness o f the epoxy. The walls must be thick enough to 

survive the shear stresses o f moulding and yet thin enough to burst upon meeting the 

lengthening crack”.

Further investigations have also shown that the stiffness o f the microcapsules is also 

important. If the capsules are too stiff, stress distribution in the surrounding plastic will cause 

crack paths to deflect away from the capsules. Helmer (2001) reports that if  the microcapsules 

exhibit greater yielding, they will, in fact, serve to attract propagating cracks rather than 

deflect them, thus increasing the efficiency and effectiveness o f the self-healing process. 

Further information on crack-microcapsule interaction is presented in section 2.4.

A detailed analysis o f the microencapsulation technology associated with the autonomic 

healing o f polymers is presented by Brown et al. (2003a). The size o f the microcapsules 

produced by the authors range from 10 micron to 1000 microns, depending on the revolution 

rate o f the centrifuge.

2.2.2.2 Polymerising catalyst

The polymerising catalyst used in the current work is a ruthenium carbene complex invented 

by chemistry professor Robert H. Grubbs of California Institute o f Technology. The Grubbs 

catalyst remains active even on exposure to air, moisture, or most organic functional groups.

Figure 2.5(a) illustrates a test component moulded from epoxy resin, containing 10% 

microcapsules by weight. Components are cured for 24 hours at room temperature, and then 

baked at 40°C for a further 24 hours.

Figure 2.5. (a) Image o f a broken epoxy resin component (black spots are embedded powder catalyst) 

(b) Image o f microcapsules on a microchip. (White, 2005).
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The usual failure mechanism o f plastics (Stinson 2001) is the creation o f minute fatigue 

cracks, from repeated thermo-mechanical loading, which propagate to become microcracks, 

then macrocracks, and eventually through-cracks. As reported by Kabat (2001), the self- 

healing process in polymers heals these initial cracks before they grow beyond 100 microns in 

length. This ‘repair’ process is initiated when the healing agent comes into contact with the 

Grubbs catalyst. ‘The catalyst mediates gelation o f dicyclopentadiene by ring-opening 

metathesis polymerisation’ (Stinson 2001). This is a highly cross-linked polymerisation which 

effectively stitches the crack up, as shown in Figure 2.4(d).

2.2.3 Mechanical response of self-healed specimens

The ultimate aim o f a self-healing polymer is that the self-healing system: must not degrade 

the physical properties o f the plastic; must sense damage; must initiate healing; and, must 

restore the original strength and stiffness of the material (Stinson 2001).

These aims have been engineered and tested by the Illinois self-healing group at Urbana 

Champagne in a series o f scientific papers, since 2001 (Brown et al. 2003b; Brown et al. 

2002; Brown et al. 2004, 2005a, 2005b; Kessler et al. 2003; Rule et al. 2005; White et al. 

2001).

The early work o f White et al. (2001) focused on examining the fracture toughness of tapered 

double cantilever beam (TDCB) specimens, with sharp embedded pre-cracks. Control 

samples consisting o f (1) neat epoxy containing no Grubbs’ catalyst or microspheres; (2) 

epoxy with Grubbs’ catalyst but no microspheres; and (3) epoxy with microspheres but no 

catalyst were examined. Load was applied in a direction perpendicular to the pre-crack (Mode

I). The virgin fracture toughness was defined from the critical load required to propagate the 

crack and fail the specimen.

After failure, the load was removed and the crack was allowed to heal at room temperature for 

48 hours. The amount o f healing was quantified through re-loading to failure (Figure 2.6), and 

in every specimen the crack was observed to propagate along the original (virgin) crack plane.

The upper and lower dotted lines in Figure 2.6 represent the average peak loads obtained by 

manually injecting a mixture o f dicyclopentadiene and Grubbs’ catalyst, and neat epoxy resin, 

respectively, into the crack plane o f the control specimens. The representative curves for a 

virgin and self-healed composite show that both failure mechanisms are elastically brittle, and 

that the self-healing has effectively recovered about 75% of the virgin fracture load. As
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highlighted by the authors, this is in sharp contrast to all three types of control samples that 

showed no healing and were unable to carry any load upon re-loading.
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Figure 2.6. Self-healing efficiency o f an epoxy polymer, illustrated through fracture toughness testing 

o f tapered double-cantilever beam (TDCB) specimens (White et al., 2001).

A recent study by Rule et al. (2005) has considered, in detail, the role o f the catalyst, and 

proposed the embedment o f  the catalyst in a wax protected microsphere. This protective 

embedment has not only served to enhance the distribution of the catalyst, but has also helped 

reduce the effect o f the epoxy’s curing agent, diethylenetriamine (DETA), which destructively 

attacks the Grubbs’ catalyst as the epoxy initially cures.

Brittle virgin fracture
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a
40-o

o_i Non-linear, ductile 
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Figure 2.7. Representative virgin and healed load-displacement curves for samples with (a) 5% wt. 

microspheres containing 5% wt. Grubbs’ catalyst, and (b) 2.5% wt. unprotected Grubbs’ catalyst. Both 

samples contain 10% wt. DCPD microcapsules with an average diameter o f 180 microns (Rule et al.,

2005).
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Due to the presence of the wax, the failure mode of the healed specimen has changed from the 

perfectly elastic, brittle response, shown in Figure 2.7(b), to a non-linear, ductile response, as 

shown in Figure 2.7(a). Thus, not only has the failure mode changed from a sudden explosive 

mode to a safer ductile mode, but the same maximum load has been achieved whilst using 

only 10% wt. o f the original Grubbs’ catalyst.

More recent work by Brown et al. (2005a) has focused on the effect of low and high intensity 

cyclic fatigue loading on self-healing polymer based composites. These materials have been 

found to show significant crack arrest and material life-extension when the in-situ healing rate 

is faster than the crack growth rate. Also, for rapid loading cases (i.e. rate o f loading greater 

than the rate o f healing) the provision of rest periods has shown to dramatically increase the 

performance o f the healing agent, as shown in Figure 2.8(a) below.
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Figure 2.8. (a) Effect of a rest period under a low cyclic fatigue regime. X = 0% and X -  118% 

respectively (b) Comparison between the development of healing efficiency and degree of cure for a 

modified epoxy composite from monotonic fracture tests (Brown et al., 2005a).

The effect of rest duration on healing efficiency for monotonic fracture tests has also been 

investigated by the authors, and is presented in Figure 2.8(b) above. The authors concluded 

from these experiments that the microencapsulated in-situ self-healing material system 

demonstrated great potential for extending the material life under fatigue loading; firstly, by 

the retardation of crack growth due to the viscous flow of the healing agent into the crack 

plane, and secondly, by providing a short term adhesive effect which is followed by long term 

crack closure.

2.3 Self-healing of cementitious composites

As indicated in the introduction, cementitious composites have the ability to self-heal in one 

of two ways, either autonomically or autogenically.
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2.3.1 Autogenic healing of cementitious composites

The autogenic healing o f cementitious materials is a natural self-repair phenomenon which 

has been known about for many years. There are several processes that are considered to be 

responsible for this phenomenon. These include chemical, physical and mechanical 

interactions as discussed by Kishi et al. (2007). The main processes are: (i) swelling and 

hydration of cement pastes; (ii) precipitation of calcium carbonate crystals, and; (iii) blockage 

of flow paths due to deposition o f water impurities or movement o f concrete fragments that 

detach during the cracking process.

The autogenous healing effect is generally acknowledged as one o f the reasons why so many 

old buildings and structures have survived for so long with limited servicing and maintenance. 

Westerbeek (2005) attributes the unexpected longevity o f many old bridges in Amsterdam to 

this phenomenon. It is believed that this longevity is due to the high levels of chalk or calcium 

in the cement o f that area. Under the presence of water, this calcium is believed to dissolve 

and then deposit in cracks, thus partially healing them and hindering their propagation. 

Recently the autogenic healing o f microcracks has been the suggested reason for the reduction 

in diffusion coefficient o f  concrete marine structures with time. For non-submerged 

structures, however, the durability benefit that the self-healing o f microcracks affords is 

reduced, and whilst periodic ‘wetting’ of these structures may enhance healing, such a process 

is expensive and generally impracticable for most situations.

As described by Schlangen (2005), one of the first works on the healing o f cementitious 

materials was published more than 20 years ago. It was shown that the so called Kaiser effect 

(absence o f acoustic emission, which is usually observed at repeated loading o f structural 

elements, until the load exceeds the previously achieved level) disappeared for concrete which 

had been kept under water for a long period of time before re-loading: i.e. acoustic emissions 

were recorded during reloading o f the structure, thus indicating that partial healing o f the 

cracks caused during the first loading cycle had taken place.

Over recent years many authors have continued to investigate this natural self-healing ability: 

Reinhardt and Joos (2003) have examined the effect of temperature on permeability and self- 

healing of cracked concrete; Zhong and Yao (2008) have investigated the effect of the degree 

of damage on the self-healing ability o f normal strength and high strength concrete; §ahmaran 

and Li (2008) have considered the effect o f  autogenous healing on engineered cementitious 

materials (ECCs), and; Jacobsen and Sellevold (1996) have examined the efficacy of 

autogenic healing on strength recovery of ‘well cured’ concrete beams exposed to rapid
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freeze/thaw cycles. The latter paper concluded that only a 4-5% recovery o f compressive 

strength by means of autogenous healing was possible. Edvardsen (1999) noted, however, that 

the greatest potential for autogenous healing exists in early age concrete. More recent work by 

Ter Heide et al. (2005) has therefore focused on examining both the mechanical strength gain 

and reduction in permeability o f early age concrete which has been cracked and allowed to 

heal autogeneously. The authors examined the extent o f healing under a range of factors 

including the specimen age at the time of cracking, width of the crack opening, compressive 

strength applied during healing, and the curing conditions post-damage. The main results of 

this study were that crack healing was only observed to occur for specimens stored under 

water, and that the compressive stress applied to the crack faces did little to improve the 

healing behaviour other than to close the crack opening. Since the specimens that were 

cracked at an earlier age and then stored in water showed the greatest strength recovery, the 

authors concluded that the primary healing mechanism was ongoing hydration.

An interesting recent development has been the autogenous healing o f expansive concretes as 

studied by Japanese researchers: Kishi et al. (2007); Hosoda et al. (2007), and; Yamada et al. 

(2007). They have found, through microscopic observations and subsequent water 

permeability tests, that the inclusion of expansive agents in the concrete has allowed even 

large cracks of up to 0.3 -  0.4mm to heal (Hosoda et al., 2007). The authors have also found 

that the addition of small amounts o f various carbonates such as bicarbonate of soda increase 

the self-healing ability o f the concrete by allowing more calcium carbonate (CaCOs) to be 

precipitated (Yamada et al., 2007).

2.3.2 Autonomic healing of cementitious composites

The autonomic healing o f cementitious composites has received significantly less attention 

than its polymer counterpart, and the research efforts to date have been far more piecewise 

and sporadic. Nevertheless, several authors (Dry 1994, 1996a, 1996b, 1996c, 1996d, 2000; 

Dry and Corsaw 2003; Dry and Unzicker 1998; Li et al. 1998; Mihashi et al. 2000) have 

completed studies in this area.

2.3.2.1 The concept o f autonomic healing in cementitious composites

The concept of autonomic healing in concrete was originally proposed for cementitious 

materials by Dry (1994). This concept, as illustrated in Figure 7.1, is similar to that described 

previously for polymers (Figure 2.3). Due to the vastly different structure of concrete 

compared to plastic and the infancy o f this research area, the sophistication of the
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encapsulating methods and the encapsulated materials are somewhat different, although the 

underlying philosophy is the same.

2.3,2.2 Healing agents

Various healing agents have been proposed in the studies which have been undertaken on the 

self-healing of concrete. In contrast to the specialist healing agents employed in polymers, 

these healing agents have generally been ‘off the shelf agents. The relatively Tow cost’ and 

readily available nature o f ‘off the shelf products are important assets which must be 

possessed by any healing agent proposed for application to a large bulk material, such as 

concrete.

The main healing materials which have been proposed to date are epoxy resins, 

cyanacrylatates, and alkali-silica solutions. It is obvious that the effectiveness of the healing 

process in not only dependent on the capillary forces, which are dictated by the crack width, 

but also on the viscosity o f the repair agent; the lower the viscosity the larger the potential 

repair area. Another pre-requisite for the agent is that it must form a sufficiently strong bond 

between the surfaces o f the crack, in order to prevent the re-opening of the crack, and thus 

force other new cracks to open, hence increasing the total fracture energy that is required to 

break the specimen.

2.3.2.2.1 Epoxy resins

Low viscosity epoxy resins currently form the principle healing agent used in the post­

damage ‘active’ remediation o f critical concrete floors, and bridge decks. Sikadur 52 (Sika 

Ltd., 2001), and Tecroc Epoxy Injection Grout (Tecroc Products Ltd., 2004), have viscosities 

at room temperature (20°C) in the order o f 500 and 200 centipose, respectively (Note: Water 

has a viscosity o f 1 centipose (lm.Pa.s), milk is 3 centipose, and grade 10 light oil is 85-140 

centipose). Epoxy resins are durable materials that generally have good thermal, moisture and 

light resistance. They are available in either one or two part systems: a one part epoxy is 

activated by the presence o f heat; and, a two part epoxy is cured by the presence of both a 

hardener and resin component.

Nishiwaki et al. (2006) have recently designed and developed a single agent epoxy resin 

based self-healing system for concrete. The low viscosity epoxy resin is stored in an organic 

(ethylene vinyl acetate) film pipe which melts at 93 °C. The authors have managed to maintain 

a passive system by embedding a ‘self-diagnosis composite’ sensor adjacent to the repair 

agent supply tube in the concrete. This sophisticated self-diagnosis composite sensor is made
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from a fibre reinforced composite and an electro-conductive material. When a crack forms the 

sensor detects the increase in strain through reduced electrical conductivity, and as a result of  

the corresponding increase in resistance, heat is generated which melts the organic supply 

tube and cures the epoxy resin after it has flowed into the crack

The main problem with the application o f two-part epoxy resins to the autonomic healing of 

concrete is the fact that both components have to be simultaneously present at a crack 

location. Given that both liquids must be encapsulated, the likelihood o f both capsules being 

present at a crack location, and cracking at the same time, is extremely small. Mihashi et al. 

(2000), tried to overcome this by manually placing the two components in adjacent tubes. 

Despite both tubes cracking and releasing their respective agents, poor mechanical behaviour 

was observed due to insufficient mixing of the fluid blend.

The chemical reaction which occurs between the hardener and the resin is an exothermic 

reaction which, unfortunately, does not rely on the presence of oxygen to perpetuate. An 

encapsulated mixture o f both agents will therefore only remain liquid for the duration of the 

‘pot-life’ o f the resin, which is usually in the order of hours.

2.3.2.2.2 Cyanacrylates

Cyanoacrylates (superglues) are one part systems that react to the presence o f moisture, and 

are noted for their ability to cure rapidly (pot life in the order of seconds-minutes) and provide 

a bond strength that often exceeds the strength of the substrate, certainly in the case of 

concrete. They also have very low viscosities (<10 centipose), and therefore possess the 

ability to heal cracks less than 100 microns in thickness. Li et al. (1998) studied the 

effectiveness o f an ethyl cyanoacrylate as a healing agent, as described in section 2.3.3.

An important property o f cyanoacrylates in relation to their use in concrete is the fact that 

they are acidic solutions. Contact with concrete, which is an alkaline environment, will result 

in neutralisation o f the glue and thus quicker setting times. This quicker gain of bond strength 

can be beneficial in rapid cyclic loading conditions; however, if the setting time is too quick, 

the dispersion of the healing agent within the crack may be insufficient.

2.3.2.2.3 Alkali-silica solution

Mihashi et al. (2000) present the use o f a diluted and undiluted alkali-silica solution as a 

healing agent in concrete (see section 2.3.3). The alkali-silica solution in the presence of 

oxygen causes hydration and thus bonding o f the original crack faces. The strength of the
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bond is less than that of glue, although, this is immaterial so long as the bond strength is 

greater than the tensile strength of the surrounding material. The use of an alkali-silica based 

healing material in concrete is also likely to cause less material compatibility problems, than 

its polymer based counterparts.

2,3.23 Encapsulation techniques

Various encapsulation techniques have been proposed in the literature. Mihashi et al. (2000) 

discuss two encapsulation techniques, namely: a micro-capsule enclosing repairing agent 

mixed in concrete; and, a continuous glass supply pipe enclosing repairing agent, embedded 

in concrete, whilst Li et al. (1998) used cyanacrylycate enclosed in capillary tubes, sealed 

with silicon.

The shape o f the embedded capsule is a factor which should be considered. A spherically 

shaped capsule will provide a more controlled and enhanced release o f the healing agent upon 

breakage, and will also reduce the stress concentrations around the void left from the empty 

capsule. A tubular capsule, however, will cover a larger internal area o f influence on the 

concrete for the same volume o f healing agent (higher surface area to volume ratio). The 

release o f the healing agent upon cracking however will be o f inferior quality since localised 

and multiple cracking may occur inhibiting the effective distribution o f the healing agent.

2.3.2.3.1 Microcapsules

The advantage o f dispersed microcapsule inclusion is that the concrete can react to diffuse 

cracking at multiple locations; however, the disadvantage is that additional repairing agent 

cannot be supplied once the original agent has been exhausted.

In preliminary investigations by Mihashi et al. (2000), urea-formaldehyde microcapsules 

(diameter 20-70 microns) filled with epoxy resin, and gelatine microcapsules (diameter 125- 

297 micron) filled with acrylic resin were used in compression and splitting tests. In addition 

to the aforementioned problems o f blending two agent epoxies, the authors concluded that the 

quantity o f repairing agent provided by microencapsulation is very small and limited, and the 

bond strength between the micro-capsule and the matrix needs to be stronger than the strength 

of the microcapsule, to ensure that cracks propagate through and not around the capsules.

2 3 .2 3 .2  Glass capillary tubes

Li et al. (1998) utilised capillary tubes, developed for blood testing in the medical industry, as 

encapsulating containers for an ethyl cyanoacrylate healing agent. Their initial test regime
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was aimed at confirming the sensing and actuation mechanisms of an engineered cementitious 

composite (ECC), through forced cracking o f single hollow capillary tubes, under the eye of 

an environmental scanning electron microscope (ESEM). Custom made hollow capillary 

tubes, 500 microns in diameter, and 60 microns wall thickness were used, as illustrated in 

Figure 2.9.

Partially Embedded 
Glass Fiber Wedge
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Driving Force
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l o a d i n g  Hi*

/
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Figure 2.9. ESEM specimen loading configuration (Specimen dimensions are 10mm x 10mm x

1.5mm) (Li e ta l. 1998).

It was observed in the experiments that as the angle between the crack plane and the 

longitudinal direction o f the capillary tube became more acute, the failure o f the tube changed 

from a simple tensile mode (Figure 2.10(a)) to a flexural mode (Figure 2.10(b)). Some 

localised debonding between the borosilicate tube and cement matrix was also observed, 

however, subsequent testing o f dye filled tubes illustrated the success o f the sensing and 

actuation mechanisms.

Partially Exposed 
GlassFiber -

O e b o n d i n o

Figure 2.10. ESEM images showing (a) tensile failure (b) flexural failure o f hollow capillary tubes (Li

eta l., 1998)
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2.3.2.3.3 Continuous glass supply pipes

In later experimental work conducted by Mihashi et al. (2000) the authors reverted to the use 

of glass supply pipes, as oppose to individual microcapsules or capillary tubes, as shown in 

Figure 2.11.
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(b)Two glass pipes

Figure 2.11. Three-point bending experimental setup illustrating the continuous supply o f healing 

agent through glass pipes (Internal diameter 0.8mm, external diameter 2mm) (Mihashi et al., 2000)

In early work presented by Dry (1994), the active provision of healing agent was proposed via 

the use o f an internal delivery vacuum pressure system, as shown in Figure 2.12 below.

R eplacing  A dhesive by V acuum  

Figure 2.12. Design for the interior delivery o f chemicals from fibres by vacuum pressure (Dry, 1994)

Continuous glass supply pipes, with or without vacuum pumps, have the advantage of being 

able to allow the type o f repairing agent to be varied, and additional supply to be provided, 

thereby allowing larger fractures to be healed than with other encapsulation methods. The 

significant disadvantage of the method is the care that must be taken during casting, hence 

this method is not suitable for in-situ casting of concrete. It does, however, provide an 

interesting feasibility test for the concept o f self-healing in cementitious materials.

2.3.3 Mechanical response of self-healed specimens

As mentioned above, Li et al. (1998) undertook their self-healing experiments within the 

matrix o f an ECC. An ECC is essentially a fibre reinforced cementitious composite that
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exhibits significant tensile strain-hardening characteristics (Figure 2.13(a)) due to the 

inclusion o f high-modulus polyethylene fibres. These fibres serve to constrain the crack width 

opening o f the matrix, thus giving a large, controlled, ductile mechanical response.

4
Strain (%)

(a)
Figure 2.13. (a) Uniaxial tensile stress-strain curves of an ECC and normal FRC, and (b) Multiple 

cracking in an ECC with fine crack width control (specimen has been tensile strained to 4.6%) (Li et

al., 1998)

After investigating the sensing and actuation response of embedded glass capillary tubes in 

small ESEM specimens, as described above, the authors investigated the mechanical response 

of three-point beam members (76.2mm deep x 38.1mm wide x 203.2mm span), and four- 

point beams (304.8mm span and 101.6mm centre span), with and without healing agent, 

subjected to damage via mechanical loading (Table 2.1).

Table 2.1. Dosage o f cyanoacrylate sealing agent for specimens (Li et al., 1998)

Specimens No. of specimens No. of SAC fibers No. glass fiber w/ink Amount of SA (nil)

N-Ml 1
N-M2 5 - - -

N-MI-4 -

l-MI 2 10 -

S-MI 2 20 - 1.0
S-M2 6 20 - 1.0
S-MI-4 1 32* 8* 3.2

SA. scaling agent (Supcrgluc)
•200 mm length and KM) jd capacity glass libers with the same cross-section specified in the “ Passive Smart Self-healing Concept. Implementation" section

Note: M l and M2 in Table 2.1 refer to different fibre types included in the ECC. The average 

crack width for Ml specimens was 50 microns and 30 microns for M2 specimens. The three 

four-point bending tests are indicated by a 44 ’ following the specimen name.

The arrangement o f capillary tubes in the test specimens is illustrated in Figure 2.14.
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I
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(a) I-Ml (b) S-MI and S-M2

Figure 2.14. Cross-section o f  flexural specimens, showing position o f  glass fibres (units in mm) (Li et

al., 1998)

Evidence o f the healing mechanism was evaluated through studying the beam stiffness on 

repeated flexural loading. Specimens were loaded under displacement control into the early 

part o f the strain hardening region (1.5mm central deflection), and visible microcracks were 

observed. Unloading occurred under load control, and specimens were left for 5 minutes in 

order to allow setting o f the healing agent to occur. This loading-unloading process was 

repeated once more for a central beam deflection of 2.5mm (larger damage), and thereafter 

the beams were loaded to failure.

The authors used a linear curve fitting function to compute the stiffnesses, which were 

normalised to the initial uncracked stiffness. The normalised stiffnesses are presented in 

Figure 3.7 below.
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Figure 2.15. Normalised stiffness in flexural beams (Li et al., 1998)

It can be seen from Figure 2.15 that six out o f the nine specimens showed higher regained 

stiffness on first reloading than the initial stiffness. In contrast, specimens having no SAC 

fibres all suffered stiffness degradation from 10% to 40%. For the self-healing specimens that 

did not perform as well, post-mortem investigations indicated hardened sealing agent inside
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the capillary tubes, as shown in Figure 2.16. This indicates that the sealing agent may have 

hardened prior to testing due to poor sealing of the tubes.

Figure 2.16. Cut section of a specimen with SAC fibres after flexural testing (Li et al., 1998)

It is also noticeable from the results that the regaining o f stiffness in the second reloading 

cycle is less significant. As suggested by the authors, this is probably due to exhaustion of 

available sealing agent in the first damage/healing cycle. It is probably due to this reason that 

the crack shown in Figure 2.16 does not appear to have been healed; i.e. the healing agent has 

already been used to heal another crack which is not visible in the picture.

The most significant stiffness increase was observed for the four-point bend specimen (S-M l- 

4). This specimen exhibited an increase of 1.4 and 1.0 for first and second loading cycles, 

respectively. This result is believed by the authors to be a direct result o f the significantly 

larger amount o f healing agent that this specimen contains (3ml compared to 1ml for all other 

self-healing specimens).

Mihashi et al. (2000) also performed a study on the mechanical response o f self healed three- 

point bend specimens. However, unlike Li et al. (1998) the authors examined the effect of 

self-healing on normal notched concrete beams, subjected to the continuous supply o f healing 

agent through glass tubes, as illustrated in Figure 2.11. The healing properties of both epoxy 

resin and alkali-silica solutions were investigated, and compared to control specimens, and 

specimens where the healing agent had been actively injected into surface cracks.

Unlike Li et al. (1998) the specimens were initially loaded beyond their maximum flexural 

load, and unloaded at load level P I, as shown in Figure 2.17 below. The maximum load 

attained on reloading after healing is Pr, and thus the strength recovery ratio is defined as 

Pr/Pl.
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Figure 2.17. Typical Load v CMOD for test specimens (Mihashi et al., 2000) 

The results obtained for the experiments are reproduced in Figure 2.18 below.
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NOTE: P = Control specimens / g = glass tubes (as oppose to manually injected)
B = Alkali-silica solution (27% diluted solution) / B’ = Alkali-silica solution 
C = Two-part epoxy resin (low viscosity type)

Figure 2.18. Results of self-healing experiments (Mihashi et al., 2000)
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Both the diluted and undiluted alkali-silica solutions showed increases in the strength 

recovery ratios, 1.12, 1.48, 1.15, and 1.56 for test series g-B l, g-B4, g-B’l, and g-B’4 

respectively. A large strength recovery was observed for the manual injection of the diluted 

alkali-silica solution (B4); however, the authors believe that this was not replicated in the case 

of the undiluted solution due to its higher viscosity. As expected, the manual injection of the 

epoxy resin (Cl and C4) produced very good strength recovery results; however, no 

significant effect was measured when this healing agent was encapsulated. This is due to 

insufficient mixing o f the two agents, as mentioned previously. The final trend highlighted by 

the authors relates to the effect o f damage on self-healing ability. Despite the continuous 

supply o f healing agents in these experiments Figure 2.18(d) illustrates that self-healing is 

significant when the CMOD is less than approximately 0.5mm (see ringed zone *1). For 

damage greater than this level the size o f the cracks are believed to be too large to self-heal 

effectively.

Further results demonstrating the feasibility o f the autonomic healing o f cementitious 

materials are presented by: Dry (1994), (1996b), (1996c), (1996d), and (2000); Dry and 

Corsaw (2003); and, Dry and Unzicker (1998).

These studies consider various self-healing applications, including glass tube supply networks 

in loaded small scale rigid-framed structures, grids o f scored glass tubes in large scale 

concrete decks subject to shrinkage cracking, and hollow adhesive filled fibres in RC three- 

point bending samples. The majority of the results obtained from these studies are, however, 

largely qualitative, and are therefore not presented here.

2.4 Modelling the self-healing process

Given the natural tendency for the numerical modelling fraternity to lag behind the field of 

material science, and the fact that self-healing polymers and concrete are very new materials, 

still at the development stage, it is unsurprising that there is a lack o f published modelling 

literature on the subject.

Some early work has nevertheless been completed on the modelling o f self-healing polymers. 

White et al. (2001) attempted to capture the complex 3D effect of the interaction between a 

crack and a microcapsule using micromechanical modelling with the aid of the Eshelby-Mura 

equivalent inclusion method. An illustrative result from these studies is presented in Figure 

2.19. This figure shows the effect o f the relative stiffness o f the microcapsule on the 

propagation path of an approaching crack.
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The crack, the sphere, and the surrounding matrix are subjected to far-field tensile loading, a« 

perpendicular to the crack plane. The 0 2 2  stress distribution in the equatorial plane of the 

sphere illustrates the fact that the stiffness o f the sphere relative to the matrix, strongly affects 

the stress state in the proximity o f the crack tip and around the sphere itself. As stated by the 

authors; “in the case o f a stiffer inclusion, the stress field in the immediate vicinity o f the 

crack tip shows an asymmetry that indicates an undesirable tendency of the crack to be 

deflected away from the inclusion”. This is shown in the left hand stress contour of Figure 

2.19 below. The stress contour on the right hand side illustrates the reverse situation for the 

case o f a more compliant spherical inclusion, where the crack is attracted toward the 

microcapsule.

S p h e r e

x,JR x,/R

Figure 2.19. Stress state in the vicinity o f a planar crack as it approaches a spherical inclusion 

embedded in a linearly elastic matrix and subjected to a remote tensile loading perpendicular to the 

fracture plane. (E* = Esphere/Ematrix and v o f sphere and matrix = 0.3) (White et al., 2001)

Barbero and Lonetti (2003) present a continuum damage healing mechanics model, based on 

the theory o f generalised thermodynamics, with specific application to the damage, yielding, 

and healing o f fibre-reinforced polymer-matrix composites.

The model does not consider the propagation o f damage through the growth of discrete 

microcracks, but considers homogenised properties of the material through the inclusion of 

parameters such as damage evolution, yield evolution, and healing evolution. These 

parameters are obviously dependent on the properties of the material, and the properties and 

density o f healing agents, in the case o f healing. Expressions for the various domains, 

potentials, and evolution equations are based on insight gained from experimental 

observations. This method is therefore essentially a parameter based modelling method which 

lies towards the phenomenological side o f numerical modelling.
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Further work on the self-healing of polymer composites has been completed by Maiti and 

Geubelle (2006). Their proposal pertains to the numerical modelling of fatigue crack growth 

retardation induced by artificial crack closure. Their model is therefore a fictitious crack 

continuum model, which relies on the combination of cohesive modelling and a contact 

algorithm in the wake o f the advancing crack, to account for the effect of the introduced 

wedge. This model has a greater physical background than the previous model, however, 

modelling diffuse, or even a localised network of discrete cracks, in a concrete specimen 

using the cohesive crack model carries a large computational overhead.

More recently, Remmers and de Borst (2007) have developed a model which predicts crack 

growth using the method of cohesive segments. This is an extension of the partition of unity 

approach to cohesive fracture. Fluid flow through the porous medium is then captured using a 

classical two-phase theory, and healing is simulated by a reversed cohesive constitutive 

model, in which the strength o f the cohesive zone is restored as a function of time and stress 

state at the discontinuity. The approach employed to capture the effect o f healing by these 

authors is therefore o f a phenomenological character, in so much as a detailed analysis on a 

smaller level of observation, where the actual chemical reactions of the rebonding process are 

important, are avoided.

In respect to concrete, some early modelling work undertaken by Schlangen et al. (2006) has 

investigated autogenous healing o f early age cracks. The authors have used the finite element 

module MLS o f FEMMASSE (FEMMASSE, 2008) to confirm the validity o f their hypothesis 

that ongoing hydration is responsible for the crack healing observed during experiments. This 

model is based on the state parameter concept, which means that the material properties are 

assumed to be a function o f the state o f the material. This state can be considered as maturity, 

degree o f hydration, temperature or moisture potential.

Currently, no modelling work specific to the autonomic-healing o f cementitious materials 

appears to be available within the literature. Therefore, in order to identify suitable candidate 

methods for application to self-healing concrete, a brief overview of numerical models 

currently applied to cementitious materials is considered useful.
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2.5 Numerical modelling of fracture in cementitious materials

2.5.1 Introduction

The numerical modelling of cementitious materials has been a very active research area over 

the past 40 years, since the advent o f affordable computational power, and a comprehensive 

review is outside the scope o f this thesis. Therefore, only a general overview of the main 

techniques is presented here. For a more comprehensive overview see de Borst (2002).

Concrete is a highly heterogeneous material whose microstructure not only affects the 

geometry of crack propagation but also the stress re-distribution which occurs during the 

fracture process. Crack propagation in cementitious materials is therefore described through 

techniques based on iterative calculations. These techniques may generally be split into the 

two main categories o f continuum and discrete modelling.

Continuum models, which may be considered as the classical approach, generally exclude 

explicit consideration o f the micro- and meso-structure o f the material from the model, and 

treat the material as a continuum at the macro level. The constitutive relation o f the material at 

the macro-level must therefore be non-linear, and hence the damage process is described by a 

macroscopic evolution function which depends upon material properties. Conversely, in 

discrete models, such as lattice, particle and DEMs (Discrete element models), the global 

softening response is obtained from consideration o f a finite configuration o f discrete 

elements. The constitutive law at the element level may be brittle or a simple softening 

function, and the heterogeneity o f the material is generally represented by some pre-defined 

variation in material properties.

2.5.2 Continuum finite element modelling

In continuum modelling o f quasi-brittle materials, such as concrete, a number of different 

approaches have been developed. These can be considered to fall broadly into two categories. 

There are constitutive theories which relate to assumed stress-strain, or stress-relative 

displacement, behaviour, and there are computational approaches by which cracks are 

represented within, or at the boundaries of, finite elements.

The constitutive theories were originally developed separately and included the cohesive 

crack model of Hillerborg (1985), damage mechanics (Krajcinovic, 1996), and directional 

fracture models (Rots, 1993). However, the close relationship between these approaches has
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since been recognised and they can all, essentially, be classed as types of damage models (de 

Borst, 2002).

Continuum damage mechanics deals with the study of crack formation and growth in 

structures which may contain initial defects. Material integrity is considered to progressively 

diminish due to the growth and coalescence of microcracks, microvoids or other material 

defects. Damage evolution may therefore be modelled at the macroscopic level through 

degradation of the overall constitutive response of the material. This is often described by a 

scalar damage state variable co, or tensor ©, whose evolution is prescribed along the gradient 

of a damage loading surface. Various damage models for concrete are described in detail by 

Karihaloo (2003).

The bulk behaviour o f the material may either be described by phenomenological damage 

models (Lemaitre and Chaboche (1990), Krajcinovic (1996), Bazant and Planas (1997)) or 

homogenised micromechanics based models (Budiansky and O’Connell (1976), Kunin 

(1982), Frantziskonis et al. (2001)). The former are frequently based on the notion of effective 

stress and the constitutive response is described by a phenomenological strain energy 

function, while the latter approach considers an averaged response of the materials 

microstructural features over a representative volume element (RVE). It should be noted 

however, that homogenisation o f the material response is only valid so long as the material is 

statistically homogenous. Gitman (2006) has shown that for concrete undergoing distributed 

microcracking in the pre-peak hardening zone, the size of the RVE must increase to conform 

to this requirement, whereas in the post-peak softening regime, localisation of cracking 

effectively destroys the notion of a statistically representative material element, and 

homogenisation based approaches are therefore no longer applicable. The reason for this is 

that the crack localises to one element, or a band of elements, and creates a discontinuity that 

cannot be represented by an RVE.

The second broad category o f continuum models deals with computational approaches to 

cracking. These have traditionally been divided into two classes; smeared cracking (Rashid, 

1968), in which cracks (or damage) are represented at the integration points of elements 

(Figure 2.20(a)), and discrete approaches (Nilson, 1968) in which cracks are represented by 

separations between elements (Figure 2.20(b)). More recently, approaches based on 

embedding strong discontinuities within elements have also become popular (Sukumar et al., 

2000 and Oliver et al., 2002 and 2003).
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Traditional smeared models for cracking are essentially directional damage models but were 

not classified as such when they were developed. Examples of finite element models based on 

the smeared crack approach are given by Rots (1993), Ba2ant and Planas (1997), and 

Jefferson (2003a and 2003b). This approach is illustrated in Figure 2.20(a) below. Here, the 

cracks are not explicitly modelled but, in the simplest sense, are assumed to form a band of 

distributed microcracks across the finite element. Therefore, rather than considering a crack 

explicitly as a discrete displacement jump, the effect is spread or smeared to all Gauss points 

of the finite elements that contain the crack, by degrading the material properties at these 

points. The initially isotropic element stiffness is therefore transformed to an anisotropic 

form, and gradually the stiffness o f the element in the direction o f the principal stress is 

reduced to zero. This method can be though o f being synonymous with the crack band model 

of Bazant and Oh (1983), where the fracture process zone may be considered to be equal to 

the element size. Consequently, as noted by Vervuurt, mesh size and orientation significantly 

influence the results, however, consideration of higher order continua have been shown to 

decrease mesh dependency (de Borst and Muhlhaus, (1991)).
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Figure 2.20. Illustration o f (a) smeared crack approach (Rots, 1993), and (b) discrete crack approach

(Hillerborg, 1985)

An alternative computational approach is one which explicitly studies how a pre-existing 

crack or crack-like defect is likely to grow within a structure. A common application of this 

approach is the discrete crack method which is often implemented with a cohesive crack 

model (Hillerborg (1985), Bazant and Planas (1997)). In this model (Figure 2.20(b)) the crack 

is represented as a discrete entity through the use of interface or special crack tip finite
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elements. The zero thickness interface elements are embedded between the edges o f adjacent 

ordinary finite elements by splitting the node (or allowing separation of double nodes) where 

the crack occurs, and their constitutive behaviour is governed by a traction-displacement 

cohesive law. This law is used to evaluate interface traction, S which depends upon normal 

and tangential displacement jumps, or non-dimensional displacement jump parameters. Crack 

propagation is simulated through progressive failure of these interface elements, however, in 

the absence o f re-meshing, crack patterns are confined to the finite element edges, and the 

fracture is constrained to a discrete number of paths, decided a priori. The crack prediction 

capabilities of such models are therefore limited. Re-meshing techniques (Ingraffea and 

Saouma (1985), Valente (1991)), which modify the finite element mesh topology to explicitly 

capture a discontinuity, have a large computational overhead and are not readily applicable to 

non-linear problems (Alava et al, 2006).

The limitations o f the traditional continuum damage models and computational approaches, as 

outlined above, have spurred a whole new array of models to be developed over recent years. 

For example, the problem o f strain localisation, which is characterised by a concentration of  

deformations into a region o f finite size in a real cementitious material, but which is found to 

localise to a single element (ID) or a single line of elements (2D), irrespective of their size, in 

the FE method. This has been addressed by various strain localisation limiting techniques, 

including those based on nonlocal continuum concepts (Pijaudier-Cabot and Bazant, 1987), 

higher-order gradient theories (Peerlings et al., 1996), and micropolar or Cosserat continuum 

descriptions (de Borst et al., 1993). These techniques ensure a finite localisation zone, and 

finite energy dissipation, however, their implementation into standard finite element codes is 

problematic. Traditionally, Bazant and Oh’s (1983) crack band model has been used to 

regularise meshes but this method doesn’t improve solution stability in contrast to the more 

recent models described above.

The issue of restricted fracture patterns produced by the discrete crack method has been 

addressed by the development o f extended or generalised finite element methods (XFEM) 

(Daux et al., 2000) based on the partition o f unity (Malenk and Babuska, 1996). The method 

is not only capable o f modelling arbitrary propagation of cracks within elements, but is also 

capable of representing multiple cracks with secondary branches, thereby eliminating the need 

for remeshing. In addition, enhanced coarse mesh accuracy may be obtained by enriching the 

crack tip with true asymptotic displacement field information (Xiao and Karihaloo, 2006).
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Finally, the limitation of homogenisation methods in the post-peak regime, and the need to 

achieve more realistic crack growth in concrete, has motivated recent investigations to use 

finite element simulations that explicitly model the microstructure. In these models 

heterogeneity can be implemented by assigning different properties to the finite elements. As 

reported in Schlangen (1993) and Vervuurt (1997), Rossi and Richer (1987) proposed a 

stochastic based model, whereby distributed fracture energy (E) properties are assigned to the 

planar continuum elements and failure is modelled along contact interface elements which 

have an elastic-brittle constitutive relationship with a distributed failure stress (on) (Figure 

2.21(a)).

number number

volume elem entscontact elements

(a)

g& sa

(C) (d )

F igure 2.21. C ontinuum  m odel d isc re tisa tions con tain ing  heterogeneity : (a) S tochastic  m odel (R ossi 

and R icher, 1987); (b) LEFM  FE  m odel (W ang  et a l., 1992); (c) 2D  m icrostructural m odel (C arol et 

al., 2001), and (d) 3D  m icrostructu ral m odel (C aballero  et al., 2006).

Later models have explicitly represented the material structure to various degrees, as shown in 

Figure 2.21(b), (c), and (d). Wang et al. (1992 and 1997) represented the aggregate as fine
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discretisations of circular inclusions of various sizes. The authors adopted a linear elastic 

fracture mechanics (LEFM) approach, with cracks initiating from minor imperfections 

embedded in the matrix-aggregate interface (Figure 2.21 (b)). Carol et al. (2001) undertook a 

microstructural analysis of concrete fracture using interface elements embedded between 

linear elastic triangular elements (Figure 2.21 (c)), in a similar manner to the earlier model of 

Vonk et al. (1991). A regular array of aggregate particles is prescribed, and then randomised 

during the discretisation process according to the numerical work of Stankowski (1990). This 

work has recently been extended to the third dimension (Figure 2.21(d)), although only coarse 

aggregate is currently captured in the model (Caballero et al., 2006).

Whilst detailed finite element representations of grain structure greatly improves the physical 

basis of these models, the increased computational demand limits their use to small 

specimens, and, in many o f the approaches used, crack paths are still restricted to micro­

structure element boundaries. The use of extended finite elements in conjunction with an 

explicit micro-structure representation might offer an interesting solution to this problem in 

the future.

2.5.3 Discrete lattice modelling

Another classification o f fracture models which has received increasing attention in recent 

years, fuelled by the increase in readily available computational power, is discrete lattice 

based models.

In a similar manner to the continuum models described in the previous section the material 

domain is discretised into a finite number of elements, however, unlike continuum models 

these elements are usually simple one dimensional spring or beam elements rather than two 

dimensional planar or three dimensional volumetric elements. Material heterogeneity or 

disorder is generally represented by some variation in the material properties of the elements 

or through randomisation o f the geometric nodal structure. Damage is then simulated through 

progressive removal of elements when they are deemed to have reached some pre-defined 

failure criterion. Two broad classes o f lattice model may be identified from the literature.

2.5.3.1 Lattice spring or beam model

The first class is termed lattice spring or beam modelling and refers to the case whereby the 

material continuum is represented by a truss o f bars or a frame of beams, and the properties of 

the bars or beams are derived from the phase o f the material which they are considered to 

represent (e.g. aggregate, matrix, or interface in concrete). The elements may connect
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neighbouring nodes, as in the Delft lattice model described in Chapter 3 (Schlangen and van 

Mier (1992a), Schlangen (1993), Lilliu and van Mier (2007)), or longer range connections 

may be defined, as in the random lattice model described by Burt and Dougill (1977). 

Combinations of short- and long-range connections have also been used to represent the 

respective plain concrete phase and fibre phase o f fibre reinforced concrete, as illustrated in 

Figure 2.22(a) (Leite et al., 2007).

typical beam element 

r typical spring element

(a) (b)

Figure 2.22. (a) 2D lattice discretisation of three phase concrete (matrix-interface-aggregate) and fibre 

reinforcement represented by long range nodal connections (Leite et al., 2007) (b) Combined 

anisotropic beam and spring model for wood (Vasic et al., 2005)

Lattice beam models have been shown to possess very good qualitative properties, and have 

been used to correctly predict crack patterns in concrete under uniaxial tension (Prado and van 

Mier, 2003), four-point shear (Schlangen, 1993), mixed mode tension and shear (Nooru- 

Mohamed et al., 1993) and anchor pull-out (Vervuurt et al., 1994). In addition, the model has 

been shown to capture the effect o f varying boundary conditions under uniaxial tension (van 

Mier et al. (1995), van Vliet (2000)) and to a lesser degree uniaxial compression (Schlangen 

and Garboczi, 1997). It is the good qualitative properties and the flexibility to represent a 

multitude of varying types o f heterogeneity that has made lattice beam modelling a popular 

choice for researches in many different fields.

Lattice beam or bar models have been used extensively in physics for simulating problems of 

electrical conductivity and cracking in disordered materials, (e.g. Hermann and Roux (1990), 

Meakin (1991), and Alava et al. (2006)), and more recently by engineers studying the fracture 

of different heterogenic materials such as concrete (Schlangen and van Mier, 1992a),
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sandstone (Vervuurt et al. (1996), van Mier et al. (1996)), cement paste (Copuroglu (2005), 

Tan et al. (2007)). They have also been applied to a wide range of other materials, including: 

clay (Meakin et al., 1989); polymer fibres (Termonia et al., 1985); paper (Ostoja-Starzewski 

and Stahl, 2000), pharmaceutical tablets (Kuentz et al., 1999), bone (Bruyere et al., 1998) 

and; ceramics (Curtin and Scher (1990), Jagota and Bennison (1994)). Feng (2003) presents a 

multiscale lattice approach to the modelling of fatigue cracking in hot mixed asphalt. The 

determination o f lattice properties from averaged results of finer lattice simulations is an 

interesting concept, although the application o f a small strain, infinitesimal displacement 

model to a large strain viscoelastic composite such as asphalt is highly questionable. Hou 

(2007) presents a large strain lattice model which would be more suitable for such a material. 

The method has also been used to model anisotropic materials such as masonry (Beranek and 

Hobbelman, 1998) and wood (Vasic et al. (2005), Davids and Landis (2003), Parrod (2002)). 

The authors have chosen to represent the anisotropy o f the material by combining beam and 

spring elements as shown in Figure 2.22(b).

2.5.3.2 Centre particle lattice model

The second general class o f models are centre particle lattices, and they differ from beam 

models in that the particle structure of the material is maintained in the model, and the lattice 

elements now represent presumed inter-particle stress transfer mechanisms, as shown in 

Figure 2.23(a).

Figure 2.23. (a) Centre particle lattice model (Bazant et al., 1990) (b) Voronoi tessellation of a

Delaunay triangulation (Cusatis et al., 2006)

Bazant et al. (1990) and Beranek and Hobbelman (1994) applied central particle lattices to the 

constitutive modelling o f concrete through the assemblage o f spheres. In centre particle

(a) (b)
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lattices, elements are assumed to span between particle centres, and therefore comprise part 

aggregate, matrix and interface. Determination o f element properties is therefore more 

complicated, and softening is usually considered to be solely a material phenomenon since it 

is built into the constitutive relationship of every lattice element.

These forms of centre particle lattices have been developed extensively for application to 

concrete in recent literature. Cusatis, Bazant and Cedolin (2003a, 2003b, 2006) and Cusatis 

and Cedolin (2007) present a confined shear lattice (CSL) model in two and three dimensions. 

In this model, nodal geometry is generated randomly according to a given grain (aggregate) 

size distribution. Lattice connections are then obtained from a Delaunay triangulation of nodal 

points, and the effective cross-sectional areas of connecting struts, which are also potential 

crack planes, are obtained from a Voronoi tessellation, as shown in Figure 2.23(b) for the 2D 

case. The displacements and rotations at lattice nodes are defined by rigid body kinematics 

according to Zubelewicz and Bazant (1987), and each strut connecting adjacent particles can 

transmit both axial and shear forces. Quite a complicated constitutive law is implemented 

which is intended to simulate fracture, friction and cohesion at the meso-level. Transversal 

confining strains, obtained by assuming linear displacement fields within each tetrahedron of 

the Delaunay triangulation govern the behaviour in tension and shear.

p'

rigid-body-spring beam-spring
network network

(a) (b) (c)

Figure 2.24. (a) Conceptual development of the rigid body spring network (RBSN) from the lattice 

beam network and (b) Basic element of the RBSN model (Bolander and Saito, 1998) (c) Slice of 

fractured 3D RBSN model of notched three point bend beam with aggregate inclusions (Yip et al.,

2006).

A similar model has also been developed over the last decade by Bolander and co-workers at 

the University o f California (Bolander and Saito (1998), Bolander and Le (1999), Bolander et

Page 41



Chapter 2 - State o f  the art review

al. (2000, 2001), Bolander and Berton (2004), Bolander and Sukumar (2005), Yip et al. 

(2005, 2006), and Li et al (2006)). In the rigid body spring network (RBSN) model, Voronoi 

tessellations of Delaunay triangulations between randomly generated nodal structures have 

also been implemented, as in the CSL model described above, however, nodes are no longer 

confined to representing aggregate particle centres. The model is therefore used at a much 

finer scale than the CSL model, as shown by the Voronoi discretisation of individual 

aggregate particles in Figure 2.24(c).

The RBSN model may be thought of as a modification to the classical lattice beam model 

(Figure 2.24(a)), whereby the rigid particle is essentially obtained by considering the unit cell 

created by joining the ends o f half beams emanating from individual nodes. For a regular 

periodic triangular lattice this equates to a hexagonal shape in two dimensions (Figure 3.7). 

The two dimensional lattice element consists of a mass-less set of normal, tangential, and 

rotational springs connected to the lattice nodes via rigid arms, as shown in Figure 2.24(b). 

The analysis is again non-linear since a cohesive crack approach is adopted to maintain 

objectivity in terms o f fracture energy dissipation. As a result, adaptive mesh refinement is 

required in order to obtain sufficient fracture information without excessive computation 

overhead. Yip et al. (2006) did examine the use o f locally brittle fracture properties for the 

three concrete phases (aggregate, matrix and interface) in the context of three-point bending 

experiments, although the authors concluded that whilst qualitative results were maintained, 

the post-peak toughness was underestimated.

2.6 Conclusions

2.6.1 Self-healing materials - Blue sky or pie in the sky?

The realisation of the concept o f self-healing in polymeric materials has certainly moved 

closer to commercial viability in recent years. Motorola and the U.S. air force are now 

partially funding the self-healing research at the University o f Illinois. Recently, Prof. White, 

team leader at Illinois, has also been quoted, in relation to future development time frames, as 

saying that ‘self-healing circuit boards are probably only three to five years away’. The issue 

regarding the cost o f Grubbs’ catalyst (over $100 per kg (Dry, 2004)) has been recently 

addressed by the work on microencapsulation o f the catalyst in wax, however, questions 

remain regarding the long term shelf-life, and temperature resistance o f this material.

The progress made in recent years on the development of self-healing polymers suggests that 

this material is certainly on the way to becoming commercially viable, particularly for

Page 42



Chapter 2 - State o f  the art review

specialist uses, where it is not possible, or practical, to repair a material when in service; such 

as prosthetics, artificial organs, satellites, etc. Recent studies on self-healing polymeric 

material specimens have shown the great potential that microencapsulation of a healing agent 

has in increasing the longevity and durability of these materials.

Concrete is a material which is in serious need o f improvements aimed at solving its long 

term durability problems, and thus meeting its prescribed design life, without the need for the 

implementation of intensive inspection and maintenance regimes.

Concrete and polymers are very different materials, however. Thermosetting plastics are 

essentially hydrocarbons with various monomer inclusions, which have undergone a 

polymerisation process, and generally exhibit perfectly elastic brittle failure. Concrete, on the 

other hand, is a complex quasibrittle composite material which has length scales ranging from 

macro aggregate inclusions, to micro cement particles, down to C-S-H formation at the nano­

scale. In addition, concrete does not (generally) have specialist applications, where cost 

becomes secondary to performance. Therefore, any self-healing technology proposed for use 

in concrete, must not only produce the necessary mechanical and durability properties, but 

must also be readily available and at a commercially viable cost.

As highlighted in this chapter, autonomically healed concrete has a significant leap to make in 

order to catch up with its polymer counterpart. To date, the feasibility o f autonomic healing in 

cementitious materials has been shown through the active release of epoxy resin and alkali- 

silika solutions from continuous supply systems into concrete, and through the active release 

of cyanoacrylate from hollow glass fibres into an engineered cementitious material. However, 

no ‘prototype’ system for direct application to the construction industry has yet been 

developed.

The potential gains of developing an effective self-healing concrete are enormous: both in 

terms o f addressing the durability issues of concrete, and the resulting socio-economic impact 

that this would have. This potential socio-economic impact would be felt by many countries 

through: (i) an increase in the safety o f civil infrastructure and structures constructed from 

self-repairing concrete; (ii) a reduction in repair, refurbishment and replacement operations 

and costs, with consequential reductions in construction related injuries and deaths, and; (iii) a 

reduction in construction wastes, raw material and energy consumption, and production of 

greenhouse emissions.
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In a recent report (Sharp and Clemena, 2004) which studied the potential application of 

advanced materials specifically to the civil engineering area of highway infrastructure, self- 

healing concrete gained acknowledgement as offering potential benefit in the future, and was
thrated 12 out of the 48 advanced materials studied. Given the very early stages at which the 

development of this material is currently at, and the recommendation of the authors that “this 

material should not be ignored”, it is felt that the creation of a low cost, passive, and 

distributed self-healing mechanism for concrete is a research area which should be given 

serious attention in the future.

2.6.2 Modelling autonomic healing in concrete

It is clear from the literature that both continuum based and discrete modelling methods may 

be applied to the numerical analysis of self-healing cementitious materials. The choice of a 

suitable modelling method is dependent primarily on the type o f problem, the scale of the 

specimens to be considered, and the nature o f the information required, rather than the 

‘correctness’ o f the model.

In respect to continuum models, since the complex constitutive material relationships, 

damage, and potential healing evolution are incorporated within the model formulation, the 

computational overhead o f continuum models is considerably less than that o f discrete 

methods. They are therefore far more adept at providing global response predictions for full 

scale structural elements, although this is often at the expense of detailed fracture process 

information. In addition, parameter identification requirements of continuum models can be 

problematic, since experimental determination of material properties can introduce 

undesirable size effect and boundary effect conditions (van Mier et al., 1995).

Conversely, the simplicity o f the constitutive relations often employed in lattice models 

drastically limits the material input parameters to just the stiffness and strength properties of 

the material phases. The simple but yet effective consideration of damage evolution within 

cementitious materials offered by the lattice modelling method also opens up the potential of 

an equally simplified, yet potentially informative consideration o f the healing process. In 

addition, since the microstructure is explicitly included, discrete lattice models may be 

classified as offering a more physical-based approach because detailed information about the 

fracture processes in relation to the material structure is obtained. In this respect, the lattice 

beam method is considered to offer greater flexibility at representing material microstructure 

than centre particle lattices, since several different material phases may be included and the
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model is not confined to presumed stress transfer mechanisms between individual particles. 

This has been confirmed by the wide range of heterogeneous isotropic and anisotropic 

materials that the method has been applied to within the literature.

Therefore, with respect to the autonomic healing of small scale laboratory based specimens, it 

is considered that the additional fracture information offered by the discrete lattice beam 

model could prove useful in determining the onset of healing, modelling the degree of 

healing, and subsequently determining specimen fracture under loading post-healing. The 

lattice beam modelling method has therefore been described in further detail in Chapter 3.
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Chapter 3 

Lattice beam modelling -  the fundamentals

3.1 Introduction

This chapter contains an overview of the fundamental aspects of the lattice spring or beam 

modelling technique, as previously outlined in section 2.5.3.1. Particular focus is given to the 

current application o f the method to the modelling o f cementitious materials, and the main 

advantages and current limitations of the method are highlighted where appropriate.

3.1.1 Historical development

In 1941 Alexander Hrennikoff, in an attempt to overcome the mathematical difficulties 

associated with the solution of differential equations of the theory of elasticity, developed the 

‘framework method’:

“Essentially, the method consists in replacing the continuous material of the elastic body 

being studied by a framework o f bars arranged according to a definite pattern, the elements of 

which are endowed with elastic properties suitable to the type of problem”

(Hrennikoff, 1941).

Hrennikoff developed distribution factors which determined the stresses caused in various 

members by the movement o f a single main joint. Subsequent successive movement of nodes 

were then undertaken in order to minimise the out of balance forces at internal nodes. These 

laborious calculations were undertaken manually, and therefore it was not until the advent of  

computers that the method was given further attention and due acknowledgement as being of 

landmark status and a true predecessor to the more common finite element method.

Burt and Dougill (1977) then extended the method for simulating progressive failure of 

heterogeneous materials through successive beam removal, and more recently lattice models 

have been widely used in the form o f the random fuse model (RFM) for solving conductivity 

problems through the application of Kirchoff s Laws to fuse networks (see Krajcinovic, 1996
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for a comprehensive description). In addition, the lattice method has been used extensively 

within the field of physics for studying cracking in disordered materials (Herrmann and Roux, 

1990), and as a natural extension to pseudo one-dimensional fibre-bundle models, for 

developing statistical based fracture models, as extensively reviewed recently by Alava 

(2006).

Bazant et al. (1990) and Schlangen and van Mier (1992) were the first to extend the method to 

the simulation o f progressive failure within concrete, using truss (pin-jointed) and frame 

(Euler-Bemoulli) beams, respectively. Since 1992, the lattice beam method has been used 

extensively by the group in Delft to examine various aspects of concrete failure, including the 

effect of specimen size (van Vliet (2000), Man and van Mier (2008)), the effect of aggregate 

type (Schlangen and van Mier, 1992b), and the physical reasons behind the softening 

behaviour of quasi-brittle materials, such as crack face bridging (Schlangen and van Mier, 

1992a) and self-affine fractality (van Mier et al. (1997), Chiaia et al. (1997)). More recently, 

application o f the model has been further extended to examining deterioration mechanisms in 

cementitious materials such as autogenous shrinkage (Schlangen et al., 2007), frost salt 

scaling (Copuroglu et al., 2005), and alkali-silica reaction (Schlangen and Copuroglu (2005), 

Schlangen and van Breugel (2005)).

3.1.2 Basic concept

The basic concept o f lattice spring or beam models is that the material continuum is 

approximated a priori by a system of discrete one dimensional elements that are connected 

together at nodes. The generation of the nodal structure may be of a regular or random format 

and element connectivities may be defined on the basis of nearest neighbour, next nearest 

neighbour, or some other pre-defined rule. The connecting elements may be trusses or beams 

according to the number o f degrees of freedom they possess and they may be further 

classified according to the constitutive relationship employed.
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Figure 3.1. Schematic representation of the basic concept of the lattice beam modelling method

By means of compensation for this simplified approach, meshes are generally far finer than 

for continuum methods, and this allows for explicit representation of material disorder and 

justifies the common adoption o f very simple elastic-brittle material behaviour at the local 

element level. It is in fact the adoption of such an idealised constitutive relationship that 

allows such fine meshes, with vast numbers of degrees o f freedom, to be solved 

economically. This is of critical importance, since fracture is simulated through progressive 

removal of individual elements that are deemed to have reached some pre-defined fracture 

condition. By adopting linear elastic perfectly brittle material behaviour the problem is 

reduced to the solution of a set o f linear equations for each stage of the dilution process i.e. 

the fracture process may be followed step by step, in a series o f quasi-equilibria. This 

‘physical’ dilution process is mirrored numerically by the gradual degradation of the global 

stiffness matrix due to element stiffness removal. This results in a decaying macroscopic 

stiffness response for the specimen, as illustrated in Figure 3.1 by the diminishing gradients of 

the linear force-displacement relationships o f the lattice at various stages o f lattice dilution 

(damage). The envelope of these linear lines of ever decreasing gradient gives rise to the non-
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linear global hardening and softening response for the system. The nature o f this response is 

related to the evolution of the crack pattern, which in turn is dependent on factors such as the 

heterogeneity o f the material, the mode o f loading, the boundary conditions, and as will be 

shown in Chapter 5, the failure criterion chosen.

3.2 Lattice configuration

The main lattice types which have been utilised to date include regular periodic square and 

triangular forms, and random configurations, as illustrated in Figure 3.2.

(a) (b) (c)

Figure 3.2. Lattice configurations: (a) regular square lattice; (b) regular triangular lattice, and; (c)

random lattice.

Herrmann et al. (1989) and Herrmann (1991) originally used a regular square lattice to study 

the fracture of two dimensional elastic lattices with random disorder, and more recently 

Arslan et al. (2002) and Ince et al. (2003) have applied this type o f lattice to the fracture of 

concrete. Van Mier (2004) highlights the fact, however, that the regular square lattice yields a 

Poisson’s ratio o f zero, which makes it unsuitable for modelling concrete, which has a 

Poisson’s ratio of approximately 0.2. In addition, Karihaloo et al. (2003) showed that the 

square Euler Bernoulli beam lattice is a special case of an orthotropic micropolar continuum, 

and is therefore not suitable for representing an isotropic material such as concrete. Various 

modifications to the square (or cubic in 3D) configuration have been proposed, including the 

introduction of diagonal members connecting opposing comer nodes (Rocha and Riera 

(1991), Leite et al. (2004)). The adoption o f overlapping lattice elements seems to be rather 

arbitrary, however, and direct equivalence with the underlying continuum is less obvious.

Crossing of elements was also another disadvantage of the earlier random lattice model of 

Burt and Dougill (1977), as reported by Schlangen (1993). The randomness was intended to 

reduce the predisposition o f global crack orientations to follow heterogeneities in regular 

meshes, however, visualisation of the fracture process even in two dimensions proved
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extremely difficult. This problem has since been overcome by Schlangen (1993) and others 

through the development o f a random lattice based on a regular square grid, S (Figure 3.3(a)).

s

—i —i

—i ---- 1

__i

Figure 3.3. (a) Generation o f a random lattice based on a regular square grid (b) Re-meshing procedure

during crack growth (Vervuurt, 1997)

Nodes are allocated randomly within boxes of size A and the three closest nodes are 

connected using the Voronoi construction. The randomness of the mesh may then be altered 

by changing the ratio A:S from 0 to 1. Vervuurt (1997) extended this procedure even further 

by implementing the random lattice within a re-meshing procedure (Figure 3.3(b)). In this 

procedure, the coarse mesh around a crack tip is replaced with a circular ‘zone’ o f random 

mesh which has a finer resolution. Only elements contained within this finer discretisation are 

then allowed to fracture. The centre of this circular ‘zone’ is moved to the new location of the 

crack tip when this tip is about to penetrate the coarse mesh.

This method is clearly capable o f capturing more information about the post-localisation 

fracture process zone, however, the inability of beams to break outside o f this zone means that 

the model is not capable o f capturing long-range interactions and distributed microcracking 

prior to the localisation o f strains. The author also concludes, following a comparison of 

various lattice configurations, that the regular triangular lattice when combined with a 

microstructure overlay (section 3.4.1) offers an equal if not more realistic crack pattern than 

the random lattice.

All of the succeeding work presented in this thesis therefore focuses on the use of the regular 

periodic triangular lattice as illustrated in Figure 3.2 (b).
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3.3 L attice e lem en t

3.3.1 Element type

The type o f element used within lattice models is generally classified according to the number 

of degrees o f freedom given to the end nodes o f the element. Elements with only translational 

degrees o f freedom (Figure 3.4(a)) are generally classified as springs or bars, and are used in 

truss, pin-jointed, or central force lattice configurations. Elements with both translational and 

rotational degrees o f freedom (Figure 3.4 (b)) are generally called beams, and are 

incorporated in moment resisting or framed lattice configurations. As shown in Figure 3.4 the 

simple bar lattice can be shown to correspond to a classical continuum, whereas the beam 

lattice corresponds to a micropolar or Cosserat continuum (Schlangen (1993) and Karihaloo et 

al. (2003)). The bar element, when used in a regular triangular configuration, can only 

represent materials with a fixed Poisson’s ratio o f 1/3, and therefore only a limited range of 

materials like steel and ice can be studied (van Vliet and van Mier, 1996). The beam element, 

however, is theoretically able to represent any general Poisson’s ratio between -1 and 1/3, 

although Karihaloo et al. (2003) comments that due to the slenderness assumptions o f the 

Euler Bernoulli beam (see section 3.3.2), when this element type is used the model does not 

admit a ratio o f below approximately 0.2.

CTxy a xy ^ x z

(a) (b)

Figure 3.4. Stress in (a) classical continuum represented by a bar element, and (b) micropolar 

continuum represented by a beam element (Schlangen, 1993)
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Both element types have been used extensively to model disordered materials within the 

literature. Curtin and Scher (1990), Jagota and Bennison (1994), and Schlangen and Garboczi

(1996) among others have examined spring models, and Herrmann (1991), Schlangen and van 

Mier (1992a), and van Mier and van Vliet (2003) have utilised the additional rotational 

rigidity offered by beam models. Schlangen and Garboczi (1996 and 1997) undertook an 

interesting study on the effect o f element type on the crack patterns produced by a shear plate 

test, as investigated experimentally by Nooru-Mohamed (1992). They examined the two cases 

presented in Figure 3.4, and an intermediate case whereby the lattice elements had both axial 

and shear capacity but no moment capacity. The fracture patterns for the three cases without 

any heterogeneity are presented in Figure 3.5. It can be seen that the micropolar continuum 

represented by the beam discretisation (Figure 3.5 (d)) gives the best agreement with the 

experimentally observed crack pattern. Overlapping cracks at the scale shown in Figure 3.5, 

or locally in the form o f crack face bridges around aggregate inclusions (van Mier, 1997), are 

not captured very well by spring networks since local rotations o f the material cannot be 

accounted for (Schlangen and van Mier, 1995).

I
I
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(a) (b) (c) (d)

Figure 3.5. (a) Geometry and crack pattern of shear experiment on concrete plate (Nooru-Mohamed, 

1992), and simulated crack patterns in regular triangular mesh with (b) springs, (c) spring and shear 

elements, and (d) beam elements. (Schlangen and Garboczi, 1997)

Given the ‘stocky’ nature o f the beam geometry, which is obtained from the energy 

equivalence considerations described in sections 3.3.3 and 5.6, Karihaloo et al. (2003) also 

examined the use o f Timoshenko beam elements as a means of enhancing the accuracy o f the 

lattice solution by including the effect o f shear stresses on the deformation. They concluded 

that the shear deformation does little to alter the pre-peak load-displacement response, but it 

was found to suppress interfacial debonding and produce a more diffuse crack pattern, thereby 

increasing the amount o f energy absorbed before fracture, when compared to the Euler- 

Bemoulli beam. It should be noted, however, that their comparison was for the case whereby
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finite deformation was also considered through a simplified update o f the nodal coordinates at 

every loading increment. As a result of this the effect of the shear deformation would have 

been exaggerated when compared to an infinitesimal displacement model.

The Euler-Bemoulli beam has therefore been used exclusively in the development and 

modelling work reported in this thesis.

3.3.2 FE formulation

<7

(a)

Figure 3.6. (a )  Degrees o f  freedom and forces acting on beam (b) Constitutive relationship for single

beam

For an Euler-Bernoulli beam with a perfectly linear elastic constitutive relationship (Figure

3.6 (b)), the six degrees o f freedom per beam, u (uxj, uyi, (pi, uX2 , uy 2 , q>2) as shown in Figure

3.6 (a) are related to the applied forces, F (F/, Qi, Mi, F2 , Q2 , M2) by the element stiffness, ke, 

as given by equation (3.1):

F = k e u (3.1)

For a beam with Young’s modulus E, length /, height h, and thickness t this can be written as 

(Coates et al., 1988):
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(3.2)

Where the cross-sectional area of the beam (A), and the second moment of area (I) are given 

by the following:

And:

A = ht 

th3/  =
12

(3.3)

(3.4)

Prior to assembling the global stiffness matrix for the system, as illustrated schematically in 

Figure 3.1, the equilibrium condition must be written in terms of the global reference axes, 

thereby taking account o f the individual orientations of the beams (Figure 3.7(b)). Equation 

(3.1) therefore becomes:

F = Trk eT «  

where T  is the rotational transformation matrix:

(3.5)

cos(#) sin($) 0 0 0 0
-  sin(#) cos($) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(#) sin(#) 0
0 0 0 -  sin(#) cos(#) 0
0 0 0 0 0 1

(3.6)

3.3.3 Element geometry

For a regular periodic triangular lattice the length of the beam element has traditionally been 

selected based upon the minimum size of mesostructure that one wishes to represent (see 

section 3.4.1). For the case of concrete Schlangen (1993) suggests a beam length of the order 

of two to three times smaller than the minimum aggregate diameter. The thickness of the 

beam is generally set to unity for the two dimensional plane stress representation, and the
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height o f the beam is determined from consideration of the equivalence in strain energy stored 

in a unit cell o f the lattice compared to its continuum counterpart, under constant strains:

^ c e l l  ^ con tin u u m

JA V A V /gyA V A V A

AVAVAVAVAVAV^
7AV7AV7AV7AT7AV7AV7AV

(a)

□

(3.7)

Figure 3.7. (a) A regular triangular beam lattice with a hexagonal unit cell (b) Element forces and

displacements in global and local coordinates

This equivalence is presented by Schlangen and Garboczi (1997), and a rigorous 

mathematical derivation is given by Karihaloo et al. (2003), the main results o f which are 

presented in equations (3.8) and (3.9) below.

v =

i + f -

E(b)
H i

(3.8)

(*)
(3.9)

where E, v, and t are Young’s Modulus, Poisson’s ratio, and the thickness o f the continuum, 

and h, /, and are the Young’s Modulus, height, length, and the thickness o f the beam. 

In order to model a Poisson’s ratio o f 0.2 for concrete, equation (3.8) gives an aspect ratio for 

the beam of:

(3.10)
h _ _ 1_

In the results presented in later chapters the height o f the beam has therefore been set to //Vi 

so that a global Poisson’s ratio value of 0.2 is maintained. It should be noted, however, that
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substituting this aspect ratio into equation (3.9) suggests that Young’s modulus of the beam 

should be 1.25 times that o f the continuum it is representing.

The issue of strain energy equivalence is revisited in section 5.6. In this section a full 

derivation of the results given in equations (3.8) and (3.9) is provided by comparing terms in 

the matrix forms of the elasticity equations for the beam and the continuum.

Equations (3.8) and (3.9) are valid for infinite regular lattices, or regular lattices with 

compatible periodic boundary conditions, where boundary effects do not occur. For finite size 

lattices, boundary effects are unavoidable and these can affect the global elastic properties, 

van Vliet (2000) studied the range of validity for these expressions by considering the effect 

of boundary conditions on the values of E and v for different size lattices under uniaxial 

tension. (Note: size is defined as the number of elements in the horizontal or vertical 

direction). He concluded that as the size of the lattice increased the numerical values of E and 

v converged to the theoretically predicted values. The regular triangular mesh was also found 

to perform better when the base of the triangle was perpendicular to the direction of uniaxial 

loading.

3.4 Representing heterogeneity

In order to simulate fracturing of heterogeneous materials such as concrete, the disorder 

contained within the material must be represented in some form. For lattice discretisations 

utilising linear elastic perfectly brittle beam elements (Figure 3.6), only three properties o f the 

beams may be altered, namely: stiffness; strength, and; beam length. The main options for 

representing heterogeneity therefore include:

1. Randomly assigning individual element stiffnesses or strengths to a regular triangular 

lattice, usually according to some form of statistical distribution. (Schlangen (1993), 

van Mier et al. (2002)).

2. Overlaying a regular triangular lattice on top of a generated microstructure (particle 

overlay), and assigning beam properties according to their position, as illustrated in 

Figure 3.8. (Schlangen (1993), Lilliu and van Mier (2007)).

3. Adopting a ‘geometric’ heterogeneity, by using a random mesh (Figure 3.2(c) and 

Figure 3.3) with identical mechanical beam properties. (Vervuurt (1997), van Vliet 

(2000)).
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4. Using a combination of random geometry and generated microstructure, (van Vliet 

(2000), van Mier and van Vliet (2003)).

The first option has been investigated extensively in Chapter 6 in respect to regularising the 

fracture energy released from lattice simulations and also achieving realistic force- 

displacement response for cementitious materials.

It should be noted that altering the stiffness of the beams affects the local equivalence of the 

stored strain energy between the lattice unit cell and its continuum counterpart, as described 

above. Disorder has therefore been primarily introduced within the literature through variation 

of the element beam strengths. In addition, adopting a random lattice with identical elastic 

beam properties (Young’s Modulus, E, cross-sectional area, A, and second moment of area, I) 

introduces an additional ‘geometric’ heterogeneity. For the centre particle method (Figure 

2.23(a), Bazant, 1990) and for fibrous materials (Ostoja-Starzewski, 2002) the random mesh 

represents the underlying microstructure of the material, and hence the equivalence is unique. 

However, when random lattices are used to model concrete, with or without explicit particle 

overlay, the randomness is not representative of the microstructure and the additional 

heterogeneity it provides serves only to obscure the effect that the true material heterogeneity 

has on the fracture process. Schlangen and Garboczi (1996) recognised this fact and devised 

an iterative method o f altering the values of A and I  for each and every beam so that a random 

geometry lattice was capable o f representing an elastically homogenous medium. The method 

proved successful; however, negative values of A and /, which are obviously physically 

meaningless, were obtained for a small number of beams.

3.4.1 Particle overlay method

The particle overlay method has been the primary method of representing the microstructure 

of concrete in the lattice model. Concrete may be classed as a three phase material consisting 

of aggregate particles embedded in a cementitious matrix, with the third phase being 

attributed to the interfacial transitional zone (ITZ) between the two. At the simplest level, 

aggregate particles may be considered to be perfectly spherical objects distributed at an 

optimum density according to a Fuller curve:

p  = m 4 { D I D ^  (3.11)

where p  denotes the percentage by weight passing a sieve with aperture diameter D  and Dmax 

is the diameter of the largest aggregate particle.
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For 3D lattice simulations (Lilliu and van Mier, 2003), this distribution may then be projected 

onto the lattice mesh with strength and stiffness properties being assigned to the lattice 

elements according to the phase in which they fall (Figure 3.8). For two dimensional 

discretisations which may be considered as slices through the three dimensional domain, the 

aggregate particles take the form o f circles which may be distributed according to a 

cumulative probability function. Equation (3.12), as derived by Walraven (1980), is 

commonly used within the literature for this purpose.

PC(D <D J  = i> (1.455D ^ D ^ 3 - 0.5D 2D_.._~2 + 0 .0 3 6 D 4 D_...“  +o max

0 .0 0 6 D > m„ - 6 +0.002 + 0.001 o max (3.12)

where Pc represents the probability that an arbitrary point in the body, lying on an intersection 

plane, is located in an intersection circle with a diameter D<D0, and P* is the ratio o f total 

aggregate volume to concrete volume. For a given concrete mix with a maximum aggregate 

particle diameter (Dmax) equation (3.12) allows the percentage o f aggregate particles passing 

various sieve sizes to be determined, and hence an approximation for the particle distribution, 

based on integer valued aggregate sizes, may be obtained (Schlangen, 1993). The algorithm 

for the random distribution o f the aggregate is described in section 4.2.2.

The strength and stiffness properties of the beams are then assigned in a similar fashion to the 

three dimensional case given above, as schematised in Figure 3.8.

particle

interface

(a)

Figure 3.8. Schematic illustration of particle overlay method (a) randomly generated aggregate 

distribution (b) projection onto regular triangular lattice mesh and assignment of aggregate, matrix and

interface element properties.

The typical material parameters adopted in the literature and used in the standard three phase 

particle overlay tests described in section 6.2 are given in Table 3.1.
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Table 3.1. Typical parameters used in regular triangular lattice analysis with particle overlay (van Mier

and van Vliet, 2003)

E  (MPa) f t  (MPa)

Particle 87514 10.0

Interface 31255 1.5

Matrix 31255 5.0

One disadvantage in adopting simple spherical or circular aggregate geometries is that the 

actual modelled shape changes with lattice resolution or aggregate size. As the lattice 

resolution becomes finer or the aggregate size increases, the boundary becomes more 

spherical or circular. This is illustrated in the different lattice discretisations shown in Figure

6.1. In the coarse representation the aggregate takes on the appearance of crushed limestone, 

whereas in the finer representation it is more akin to rounded river gravel.

In an effort to obtain a more realistic representation of material microstructure, digitised 

images o f real material specimen cross-sections have also been used (Schlangen and Garboczi 

(1997), Schlangen and Copuroglu (2005)). Whilst this method clearly offers significant 

improvements, the time consuming production of such images means that it is not suitable for 

undertaking statistically based parameter studies. In this respect, recent developments in 

achieving realistic aggregate shapes through sophisticated geometric computational 

algorithms could offer an interesting alternative to microstructure representation in the future 

(Hafner et al., 2006).

3.4.2 Statistical distributions of beam strengths

The implementation o f heterogeneity through statistical distributions of beam strengths has 

been examined extensively over recent years by theoretical physicists such as Moukarzel and 

Duxbury (1994) and Duxbury et al. (1995), as reviewed by Hermann and Roux (1990), 

Krajinovic (1996), and Alava (2007). Work in this field has focused on issues such as phase 

percolation limits, fractality, scaling theories, criticality and avalanche behaviour. Invariably, 

this work has focused on the use o f the random fuse model (RFM). This is analogous to the 

elastic lattice model, whereby the current is comparable to stress, the voltage is representative 

of strain, and the conductivity is akin to elastic stiffness (Zapperi et al., 1997). The strengths 

(or fuse current thresholds, Ic) are often randomly assigned values from arbitrary, often
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uniform distributions, and the dielectric breakdown under increasing voltage is analysed in a 

statistical sense. Whilst mathematical treatment of such cases is often rigorous, the direct 

relevance to real materials such as concrete, where disorder is far more complicated, is not 

always clear.

van Mier et al. (2002) tried to capture the nature of disorder in cementitious materials by 

exploring the statistical aspects o f lattice simulations. The authors specifically examined 

whether or not it was possible to mimic the effects, in terms o f fracture patterns and 

mechanical response, obtained from explicit representation of the microstructure (particle 

overlay) with random distributions of beams strengths (and or stiffnesses) drawn from 

Weibull or Gaussian distributions (Figure 3.9).

320

240

160

80

0
(a)

320- 

240- 

160- 

80- 

0 I
(b )

Figure 3.9. Force-deformation diagrams and fracture patterns for 80mm square specimens under 

uniaxial tension, with random strength distributions drawn from (a) Gaussian (b) Weibull distribution.

(van Mier et al., 2002)

The authors surmised that whilst force-deformation behaviour comparable with the particle 

overlay method may be obtained for a given statistical distribution, the crack patterns are 

generally unrealistic, particularly for the case of the Gaussian distribution. The Weibull 

distribution seems to capture crack face bridging due to the larger number o f high strength 

beams, although the crack tortuosity observed when aggregate particles are considered is not 

represented.

force (N)
/ *2.0 mm

15105
deformation (|jm)

f o r c e  (N )

Weibull I =2.0 mm
P *  1.0 MPa

63 beams removed 211 beams removed

0 5 10 15

deformation (fjm) 5Q beams removed 400 beams removed
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3.5 Failure criteria

The traditional lattice beam modelling method represents isotropic damage within a material 

through the gradual dilution of the lattice via beam removal. In order to determine when a 

beam should be removed some form o f failure criterion must be implemented. Several forms 

of failure criteria have been proposed within the literature in relation to the lattice beam 

model.

Herrmann et al. (1989) considered the fracture of heterogeneous solids through the use of two 

dimensional square elastic lattices composed of beams with both longitudinal and flexural 

rigidity, and specified breaking thresholds. They adopted the rupture criterion given by 

equation (3.13), which can be derived from Tresca’s or von Mises’s general yielding criteria 

for the material that the beam is comprised.

where p  is the limiting value that can be related to the probability o f failure, F  is the axial 

force in the element, Mt and Mj are the beam end moments, and tp and tM are the elongation 

and flexural breaking thresholds, randomly chosen from given probability distributions.

Alternatively, Schlangen (1993) proposes the following stress based failure criterion, where

mode. The external load carrying capacity of the lattice, P , at each stage o f system dilution 

(successive beam removal) is given by:

where Ppre is the prescribed load, f  is the tensile strength of the beam, and p  is a further 

scaling parameter charged with matching the numerical peak response to that of an 

experimental specimen under uniaxial tension.

max (3.13)

the maximum tensile stress (o>) in a beam is taken to be a function of the normal force F and 

the maximum end moment M, or Mf

max

where A is the cross-sectional area of the beam (b.h), and W is the section modulus (b.h2/6). 

The scaling parameter a controls the contribution of the moment term to the final failure

(3.15)
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It should be noted, for the purposes o f clarity, that the scaling parameter /? has often been 

introduced directly into equation (3.14), by authors such as Vervuurt (1997), van Mier (1997), 

and van Vliet (2000). In this case, p  effectively becomes the reciprocal of the original scaling 

parameter proposed by Schlangen (1993), although its purpose remains the same.

For the simpler bar or spring system the failure criteria is a truncated version of equation

(3.14), whereby the axial stress (at = F/A) is compared directly to the tensile strength of the 

beam ,/.

Schlangen and Garboczi (1997) proposed a nodal stress based failure criterion in order to 

account for mesh orientation bias of the old failure criterion presented in equation (3.14). 

They applied this new criterion to uniaxial tensile, tensile splitting, and compression tests on 

mortar plate specimens with both free and fixed platen boundary conditions, and achieved 

good crack pattern prediction. Further details of this procedure are given in section 3.7.2.

Additional work on improving the predictive qualities of the lattice model in compression was 

investigated by van Vliet and van Mier (1996). They also acknowledged the limitations of the 

original failure criterion (eqn. (3.14)) in respect to modelling biaxial compression, and 

therefore proposed the use o f a principle stress based failure criterion, similar to Beranek and 

Hobbelman (1994). A simpler, alternative, method for considering compression has recently 

been proposed by Abreu et al. (2007). The failure criterion given by eqn. (3.14) is used in this 

model, however, the stiffness of the beams are degraded in a two stage process. On first 

failure, the beam is converted to a bar by removing the bending and shear stiffnesses, and then 

on second failure the axial stiffness of the remaining bar is removed completely. Whilst this 

staged method has given reasonable failure patterns the physical basis for such a staged 

failure criteria remains highly questionable.

More recently Karihaloo et al. (2003) implemented a strain based failure criterion within their 

model, whereby the longitudinal strain, e of each beam element was calculated from the nodal 

displacements according to equation (3.16). A strain based failure criterion was required in 

order to satisfy the linear tension softening relationship that was implemented within the 

matrix and ITZ phases.

1
£  — — 

I
h \

Ax cos# + A^sin^ + l^ ~(p2\—ots (3.16)
2 )

where I is the length of the beam, Ax and Ay are the extensions along the global x and y axes, 6 

is the angle of the beam in respect to the global x-axis (Figure 3.7(b)), h is the height of the
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beam, and tpi and (p2 are the nodal rotations at the ends of the beam. as, taken to be 0.005, is 

essentially the same as a in equation (3.14) and is chosen so that the tail o f the softening curve 

matches the measured one.

It should be noted that the failure criteria discussed above for the local lattice beam element 

allow for both shear and tension and hence could fail under a compressive shear mode, 

however, they have been developed by considering predominantly tensile failure cases. The 

issue of which is the most appropriate failure criterion to use is discussed further in Chapter 5.

3.6 Damage evolution

As outlined at the beginning of this chapter, damage evolution in lattice models is generally 

modelled in an isotropic fashion through successive beam removal. Usually, only a single 

beam is removed from the lattice before the system is allowed to relax and the effect of the 

localised stress re-distribution, from the removal of the beam, is analysed. The internal nodal 

displacements are solved following each and every beam removal, and the global parameters 

of force and displacement are obtained. This method results in a series of linear elastic 

relationships, as illustrated in Figure 3.1, which may be simplified to the ‘saw tooth’ external 

envelope schematised in the enlarged view of Figure 3.1.

The flexibility of the lattice method means that it is also possible to simulate some form of 

pseudo-dynamic effect by multiple beam removal, although in order to do this, some form of 

phenomenological relationship between actual loading rate and the number of elements 

removed would be required (Schlangen and Garboczi, 1997). Alternatively, Herrmann (1991) 

discusses a form o f staged damage whereby the breaking threshold o f bonds, in the vicinity of 

the crack, are reduced by an amount proportional to their strain. These bonds are therefore 

predisposed to complete failure during subsequent loading steps. This method can be thought 

of as physically representing the fracture process zone which is believed to contain a 

microcracked region in the highly stressed zone ahead o f a crack tip (Mihashi and Nomura, 

1992). This method is effectively a primitive implementation of a multiscale concept, 

whereby individual beams are considered to represent a finer underlying structure which 

degrades in a piecewise fashion. Whilst this has the potential to offer additional information 

about the mechanical response o f the system, it incurs an increased computational overhead 

due to the larger number of solution steps required for complete failure of the specimen.
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In order to maintain simplicity and limit computational demand, damage evolution through 

single beam removal has been implemented exclusively in the simulations presented in this 

thesis.

3.7 Current limitations

3.7.1 Computational demand

As previously mentioned, the original development of the ‘framework’ method proposed by 

Hrennikoff (1941) was initially stalled by the need to undertake repetitive calculations. 

Despite the recent advent o f fast, readily available computational power, the numerical 

overhead attributed to the method has remained, and always will remain, its single most 

limiting factor.

Concrete is a truly multiscale material, containing hydration products such as calcium-silica- 

hydrates (C-S-H) at the nanoscale, cement particles at the microscale, and aggregate at the 

macroscale. Whilst lattice models may be considered to be physically accurate at the atomistic 

scale, providing suitable interaction potentials are implemented in the elements, applying a 

lattice model over the full range of scales is computationally impossible.

Therefore, in all lattice simulations a compromise must be made between the lattice mesh 

(domain) size and individual element length, or in material science terms; specimen size and 

size of internal material structure. Currently, an element to mesh size ratio of 1:200—1:300 is 

common for square 2D plane stress simulations, and 1:20-1:30 for cubic 3D simulations 

(Lilliu and van Mier, 2007). Lilliu and van Mier (2007) also give an indication of the 

computational time involved in such analyses. For a 3D random lattice simulation on a 24mm 

cube, with a 1.3mm maximum beam length, the number o f beams and degrees o f freedom are 

approximately 450,000, and 430,000 respectively. This simulation was reported to take 2-3 

weeks on the 512 processor TERAS parallel computer in The Netherlands during 2002. The 

authors also comment that in light o f Moore’s law, and barring any significant technological 

developments, it is likely to be decades before an appreciable improvement in computational 

capacity allows the element to mesh size ratio given above to be increased significantly.

3.7.2 Mesh orientation dependency

When a continuum is represented by an interconnecting series of one dimensional finite 

elements there will inevitably be some form o f mesh orientation dependency, at least at the
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local level. This dependency can affect both the global fracture pattern which results from a 

sequence of localised failures, and the load-displacement response o f the system.

Schlangen and Garboczi (1997) studied the effect of lattice type and orientation on the 

fracture patterns produced from shear plate experiments, as illustrated in Figure 3.5 (a). The 

results for square, triangular, and random configurations without material heterogeneity are 

given in Figure 3.10. It should also be noted that the geometric heterogeneity introduced 

naturally by the random lattice mesh has been removed by altering the values o f A and I for 

every beam, as previously described in section 3.4.

If the elements o f the lattice model are considered to represent bonds between material 

regions and crack propagation, which is instigated by beam removal, is considered to occur 

perpendicular to the longitudinal axis of the elements, then even random lattice configurations 

will show localised mesh orientation dependency. However, on a global specimen scale this 

dependency becomes less obvious due to the randomness o f the mesh. The authors recognise 

this fact since even though Figure 3.10 suggests that the random lattice offers the most 

realistic crack pattern, a regular triangular mesh which directly implements material disorder, 

through beam strength or stiffness variation, is also believed to be able to yield similar quality 

overlapping crack patterns. For this to be true the beam size would have to be small relative to 

the length scale o f the inhomogeneous material.

(a) (b) (c) (d)

Figure 3.10. Simulated crack patterns in (a) square mesh, (b) regular triangular mesh, (c) rotated 

triangular mesh, and (d) random triangular mesh. (Schlangen and Garboczi, 1997)

In addition to the mesh orientation affecting the crack patterns, it has also been shown to 

affect the mechanical force-displacement response of the lattice system. Schlangen and 

Garboczi (1997) state that for a regular periodic triangular mesh orientated as shown in Figure

3.1, the maximum beam stress is 33% higher when the lattice is under constant horizontal 

strain than vertical strain. This result was obtained for a beam lattice with a simple axial
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failure criterion as given in equation (3.14) but with the moment contribution ignored. The 

reason for this discrepancy is that, under this failure criterion, beams whose axis is aligned 

with the principal direction of loading are more pre-disposed to failure than other beams. 

Incidentally, including the flexural component of equation (3.14) in the fracture law does not 

correct this problem of mesh orientation dependence.

Since this issue of directional dependence is intrinsically linked to the isotropy of the failure 

criterion, Schlangen and Garboczi (1997) developed a new failure criterion based on 

consideration of the resultant axial and shear stresses at nodes rather than in beams. The 

methodology for this criterion is illustrated in Figure 3.11.

(a) (b)

1
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Figure 3.11. (a) Lattice with forces in beam elements, (b) resulting normal and shear forces 

perpendicular to a nodal cut, (c ) maximum normal force F nodet max, (d) cross sections corresponding to 

angle with F node, max and (e) resulting stress in the node

The nodal stress <jnode calculated in 3.11(e) is assigned to each beam attached to this node, and 

the beam with the highest relative effective stress {reff=<Jnod</fd is broken and removed from 

the lattice. Whilst the authors obtained good agreement for both the fracture patterns and 

force-displacement response between lattices tested in orthogonal directions using this 

criterion, it may be argued that a beam failure criterion based solely on stresses within 

individual beams has more physical relevance. As a result of this, an alternative Mohr- 

Coulomb based criterion is proposed in Chapter 5 and its isotropy properties are investigated.

3.7.3 Mesh size dependency

Increasing the resolution o f a lattice and therefore decreasing the element length, clearly 

increases the ability of the mesh to capture fracture patterns in greater detail. However, the 

objectivity (independence to element length) of the force-displacement response obtained, as 

the element length is reduced, has been raised as a key limitation o f the method in the 

literature. The objectivity o f this mechanical response has been discussed within the statistical
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physics field (Krajcinovic (1996)), although it has been given relatively limited coverage 

within the engineering community.

Schlangen and Garboczi (1997) discuss the influence of lattice resolution (number of beams 

per unit length o f specimen) on the mechanical response of the specimen. They examined four 

different lattice mesh resolutions tested under uniaxial tension. Heterogeneity was modelled 

in a simple manner by randomly assigning low (1.0) or high (3.0) strengths to the individual 

beams in the ratio of 1:3. Whilst the crack patterns were comparable, although obviously 

varying in detail, the load-crack opening response showed significant variation in ductility, as 

shown in Figure 3.12.

•so
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crack o p e n in g

(a) (b)

Figure 3.12. (a) Load-crack opening, and (b) crack patterns for various lattice resolutions. Note: Load 

and crack opening displacement units are arbitrary. (Schlangen and Garboczi, 1997)

This mesh size dependency is due to the fact that the energy released per unit area o f new 

crack changes as the beam size changes. Since the ductility o f the response is represented by 

the specific fracture energy, which is in turn related to the strain energy released following 

beam removal, the non-unique response is to be expected. Given that an increased percentage 

o f microstructure inclusion generally increases the ductility o f the response prior to ITZ 

percolation (Lilliu and van Mier, 2007), then linking the size o f the smallest aggregate 

inclusion to the size o f the lattice beam may reduced the mesh size dependency effect shown 

in Figure 3.12. This method is, however, likely to mask the numerical deficiency highlighted 

here, rather than scientifically correct it. A fuller explanation o f this response and suggestions 

on how to correct for it are given in Chapter 6.
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3.7.4 Over-brittleness

The final key limitation of the lattice modelling technique as identified from the literature is 

the over-brittleness of the force-displacement response when compared to experimental 

observations. An example of this is given by Schlangen (1993) for a uniaxial tensile test on a 

double edged notched (DEN) specimen, as shown in Figure 3.13.

cr (N /m m 2)

experiment 
—  simulation

150

6 (/xm)

Figure 3.13. Experimental and model stress-deformation curves for a uniaxial tensile test on a standard

DEN specimen (Schlangen (1993))

The three main reasons for this over-brittleness according to van Mier and van Vliet (2003) 

are: (i) omittence o f small particles from laboratory scale simulations on concrete; (ii) 

neglecting the third dimension, and (iii) underestimation of the true particle density. In order 

to capture higher particle densities thinner ITZ layers must be modelled and therefore smaller 

beam elements are required. Likewise, in order to model smaller particle inclusions finer 

resolution meshes are required. Both of these solutions increase the number of degrees of  

freedom that must be considered, and moving to three dimensions further increases this by an 

order of magnitude. The solutions to the problems outlined above are therefore all essentially 

related to the computational overhead of the method, as discussed previously in section 3.7.1.

Three dimensional lattice analyses have nevertheless been completed by Lilliu and van Mier 

(2003), Lilliu and van Mier (2007) and Man and van Mier (2008). It should be noted 

however, that due to computational limitations the length o f the elements have to be increased 

or the size of the specimens reduced in these 3D analyses. Lilliu and van Mier (2007) have, 

nevertheless, compared two dimensional and three dimensional tensile analyses on concrete 

specimens with the same particle density (34%). It is not clear if these analyses were 

completed with the same beam length, thereby eliminating the mesh size effect described in
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the previous section, however, the 3D analysis showed far greater post-peak ductility when 

compared to the 2D analysis, as shown in Figure 3.14.
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Figure 3.14. Comparison of 2D and 3D relative load-displacement behaviour for the same particle
density (34%)

Due to the plane stress assumptions made in two dimensional lattice analyses, aggregate 

particles are essentially considered as cylinders and cracks that occur around these particles 

are assumed to propagate along the entire length of the cylinder (i.e. thickness of specimen) 

instantly. In three dimensional laboratory experiments and also lattice models, aggregate 

particles take on a spherical form and cracks may occur at discrete locations in the third 

spatial dimension. It is therefore unsurprising that the 2D plane stress simplification 

underestimates the ductility of the fracture response in quasi-brittle materials.

In this thesis, however, only two dimensional plane stress lattice examples have been 

considered. This is primarily because quicker run times greatly aid the model development 

process. The issue of over-brittleness, and the need to achieve better agreement with 

experimental force-displacement results has nevertheless been addressed in Chapter 6.

3.8 Conclusions

The lattice beam modelling method offers an extremely simple approach to capturing the 

fracture of materials. The main ingredients of the model are: (i) the lattice of elements; (ii) the 

representation of heterogeneity, and (iii) the adopted fracture criterion.

The model has been applied to a wide range o f materials, from paper and wood to quasi- 

brittle materials such as cement and concrete. In respect to the latter, the model, despite its 

simplicity, has been shown to correctly predict failure patterns under a range of loading
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conditions. These include uniaxial tension, tensile splitting, shear plate failure, and uniaxial 

compression with both free and fixed boundary conditions.

The qualitative properties of the model are therefore very good, and the main limitations of 

the model primarily relate to its quantitative capabilities. These limitations have been 

identified from the literature as being:

• Computational demand -  in order to represent material mesostructure in laboratory 

scale specimens, the number of degrees of freedom in lattice simulations is commonly 

in the hundreds of thousands, and the run time can therefore be considerable.

• Mesh orientation dependency -  due to the discrete representation of the continuum 

and the anisotropic properties of the failure criterion both the fracture pattern and 

mechanical load-displacement response may be influenced by the orientation of the 

mesh.

• Mesh size dependency -  due to the difference in strain energy stored in beams of  

different lengths under constant strain conditions the fracture energy released during 

cracking is not unique for simulations with varying lattice resolutions.

• Over-brittleness -  owing to computational limitation, the inability to model fine 

particles and therefore realistic particle densities, and also omittence of the third 

dimension, results in an overly brittle mechanical response when compared to 

laboratory experiments.

These issues, which are felt to be restricting an even wider application o f the method, have 

been addressed further in the following three chapters. In doing so, the specific type of lattice 

model which has been considered is a regular triangular configuration comprising beam 

elements.
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Chapter 4 

Computational implementation

4.1 Introduction

In this brief chapter the computational implementation of the lattice theory presented in 

Chapter 3 is discussed. This theory has been implemented in two separate computer codes, 

namely: the pre-processor, and the main finite element (FE) code. Both of these programs 

have been written in Fortran 90 using the Compaq Visual Fortran development studio. 

Visualisation of the input and output data from the model has been undertaken using a 

bespoke application, which has been written in Visual Basic 5. The main features of these 

individual programs are summarised in this chapter. Particular attention has also been given to 

the issue of computational efficiency within the numerical algorithms implemented in the 

main finite element engine.

4.2 Pre-processor

4.2.1 Main features

The main features of the pre-processor are:

1. Automatic creation of regular triangular lattice, including nodal coordinate generation, 

node and element numbering, and topology assignment;

2. Automatic creation o f specimen pre-notches through element removal;

3. Representation of material heterogeneity, through assignment o f beam properties, 

according to the particle overlay or statistical distribution of beam strengths methods, 

and:

4. Assignment of boundary conditions.
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Two methods of representing material heterogeneity have been discussed in this thesis, as 

presented in Chapter 6. These are the particle overlay method and the statistical distribution of 

beam strengths method. Both of these methods have been implemented in the pre-processor.

4.2.2 Particle overlay implementation

The particle overlay method has been implemented in a similar manner to that described by 

Schlangen (1993). As outlined in section 3.4.1, aggregate particles are assumed to be 

represented by spheres in three dimensions, which then produce circles when 3D specimens 

are cut to obtain 2D specimens. For a given specimen size, and aggregate content, P*, the 

probability density function given in equation (3.12), as derived by Walraven (1980), is used 

to obtain an approximate particle size distribution in terms of integer valued particle 

diameters. The particle sizes, which are actually overlaid onto the lattice mesh, range from 

Dmin to Dmax, where Dmin is taken to be twice the lattice resolution length, and Dmax is set to the 

maximum aggregate size in the concrete specimen being modelled. A typical particle size 

distribution for a 50mm x 50mm two dimensional specimen, with an aggregate content, Pk of 

55%, and a maximum aggregate size of 8mm, is shown in Table 4.1. It should be noted that 

for a lattice beam length resolution of 1mm, the smallest particle size represented would be 

2mm.

Table 4.1. Particle size distribution for 50mm x 50mm specimen with Pk = 55%, Dmax = 8mm

Do (mm) 1 2 3 4 5 6 7 8

No. 887 83 24 9 4 1 0 0

The structure o f the particle overlay, illustrated in Figure 4.1, is created using the following 

method:

1. The particles are distributed in order of size, starting with the largest.

2. Random coordinates are selected within the specimen domain for the centre point of 

the first particle.

3. For every particle distributed thereafter, a check is made on the distance between its 

centre point and the centre point of the previously allocated particles. The minimum 

distance between the centres of two particles A and B is taken to be \ .1 (D a + D b )/2 .  If 

the chosen coordinates violate this criterion, new coordinates are repeatedly chosen 

until the criterion is met.
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4. The particle structure is then overlaid on top of the lattice mesh and beam properties 

are assigned, as described in section 3.4.1.

(a) (b)

Figure 4.1. (a) Schematic illustration of two dimensional particle structure, and (b) Final appearance of

a typical lattice mesh

It should be noted, that since the centre points o f the particles, rather than their 

circumferences, have been confined to the specimen boundary, then the specimens produced 

using this method are more akin to cores taken from larger samples, than individually cast 

samples. This is evident in the final appearance of a typical lattice mesh, as illustrated in 

Figure 4.1(b).
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4.2.3 Statistical distribution of beams strengths implementation

The procedure for representing material heterogeneity via a statistical distribution of beam 

strengths, according to the theory presented in section 6.7, is as follows:

1. The specimen domain is subdivided into a grid o f smaller RMEs (Representative 

material elements), as illustrated in Figure 6.9.

2. The exact numbers o f elements, n in each RME are counted.

3. Equation (6.9) is solved for j = l  to n to obtain the beam strains, Q for each beam in a 

particular RME. The beam strengths for each beam are then obtained by multiplying 

the beam strain by the elastic modulus of the beam, Ê .

4. These strengths are then allocated randomly to all beams within the RME.
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4.3 FE code

4.3.1 Overview

The 2D regular triangular lattice model presented in this thesis is a small strain, infinitesimal 

displacement model, which utilises compressed row (CR) storage and a Jacobian 

preconditioned conjugate gradient (CG) solver. The outline structure o f the code is presented 

in Figure 4.2.

• Input

• Element loop

• Form transformed element stiffness matrix, k "I
r Compressed row storage

• Add to global stiffness matrix, K cr  J

r

End element loop 

Damage inc. loop

• Implement boundary conditions
Preconditioned CG solver}

V

• Solve F = K c r u  for u

• Calculate <7  ̂for all elements and check beam state

• Scale results for critical beam

• Remove failed beam from K c r  (add - ’ve k for failed element)

• EXIT if  specimen has effectively failed? (load<0.5% Peak load) 

Damage inc. loop

Output

Figure 4.2. Outline structure of the lattice FE code

Following the initial input and variable initialisation stages, the global stiffness matrix is 

formed from the assemblage o f the element stiffness matrices, which have been transformed 

into the global coordinate system. It should be noted that the global stiffness matrix is 

assembled using the compressed row storage scheme, as described in section 4.3.2.

The implementation of the boundary conditions and the solution of the system of equations, 

for a chosen value of the initial prescribed displacement, are then undertaken using a Jacobian 

preconditioned conjugate gradient solver. Further details of the solver are given in section
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The effective stress, oejf, in each and every beam is then calculated, according to the chosen 

failure criterion, as discussed in Chapter 5. This then allows the relative effective stress, reff, to 

be calculated for every beam according to:

V = ^  (4-!)
Jtb

where fb  is the beam strength.

Since the lattice system is linear elastic, the relative effective stress for the most critical beam, 

refjCRiT, may be used to determine the exact value of the prescribed displacement which would 

cause the most critical beam to break, i.e. oeff = fb. This may be achieved by scaling the 

originally prescribed displacement by \lrejjcmT‘ In fact, the full solution previously obtained 

for the internal displacements may simply be scaled by 1 lreffcmr without the need to resolve. It 

should be noted that since reffcmT may be greater than 1, the scaling factor may be less than 1, 

and this method is therefore able to capture any snap-back behaviour o f the lattice model.

The stiffness of the most critical beam is then removed from the global stiffness matrix by 

adding the negative component of the broken beams elements stiffness matrix to the global 

stiffness matrix. As a result, the compressed row version of the global stiffness matrix is only 

formed once in the code, for the case of the pristine, undamaged lattice. Thereafter, it is 

simply degraded as the lattice becomes diluted due to progressive beam failures.

From Figure 4.2 it can then be seen that, following a check on the degree of damage of the 

overall lattice, the system of equations is resolved for the new reduced global stiffness. The 

prescribed displacement, and the initial ‘guess’ for the displacement vector, u in the CG 

solver are set to the scaled values from the previous iteration. This is done in order to 

minimise the initial residual within the solver, as discussed in section 4.3.3.

4.3.2 Compressed row storage

The global stiffness matrix which is created from the assemblage of the transformed element 

stiffness matrices is extremely sparse for lattice models, as noted by Schlangen and Garboczi

(1997). The memory storage requirements of the method can therefore be dramatically 

reduced, by either solving element by element, or by storing only the non-zero terms of the 

global stiffness matrix. The latter approach has been implemented in this code, by adopting 

the compressed row storage technique.
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This technique is based upon traversing the global stiffness matrix in a row-wise fashion, and 

recording all non-zero values (val), their column index (col_ind) and the row pointer 

(row_ptr). The latter stores the index locations in the ‘vaT vector, of the values that start rows 

in the full matrix. This method is described in detail by Barrett et al. (1994), and is illustrated 

in Figure 4.3.

10 0 0 0 - 2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 -1

val 10 -2 3 9 3 7 8 7 3....... 9 13 4 2 -1

col_ind 1 5 1 2 6 2 3 4 1....... 5 6 2 5 6

r o w p t r 1 3 6 9 13 17 20

Figure 4.3. Compressed row storage o f a non-symmetrical matrix A (Barrett et al., 1994)

The disadvantage of the method, as presented in Figure 4.3, is that the full global stiffness 

matrix must be assembled, and therefore stored, prior to being compressed. This is avoided in 

the current code, by creating a ‘blockjptr’ matrix, which stores the connectivity o f each node;

i.e. all the nodes which are connected to any given node in the lattice mesh. The ‘block_ptr’ 

matrix can then be used to populate the ‘col ind’ and ‘row_ptr’ vectors. This allows the 

components o f the element stiffness matrices to be inserted directly into the correct locations 

in the ‘val’ vector during assemblage.

It should be noted that this modified method does not remove the zero components of the 

element stiffness matrices which are used to populate ‘vaT. However, the sparsity which this 

creates is very small compared to the sparsity generated by non-connected nodes.

4.3.3 Conjugate gradient solver

For a loaded lattice mesh, the solution of the displacement vector, u may be determined by 

either a direct method, such as Gaussian elimination, or and indirect iterative method, such as 

the conjugate gradient method. Since the conjugate gradient method is the most prominent 

iterative method for solving sparse systems of linear equations (Shewchuk, 1994), and is 

significantly faster than Gaussian elimination (Press et al., 1996), it has been implemented in

Page 76



Chapter 4 -  Computational implementation

the current code. In addition, as noted by Schlangen and Garboczi (1997), the modelling of 

fracture using the lattice method is based on successive removal of beams, which each result 

in a relaxation of the mesh. This relaxation is, in general, a localised effect. This implies that 

changes between successive solutions of the displacement vector will also include primarily 

localised effects around the vicinity of the removed element; i.e. changes in the translational 

and rotational movement of nodes will be relatively large in nodes located around the 

removed element, but small elsewhere. This, therefore, makes the lattice method particularly 

suited to an iterative solver. This is because the solution of the displacement vector from the 

previous lattice mesh is likely to offer a very good starting guess for the solution to the 

current mesh, which will only have one new additional beam removed. Experience has shown 

that this results in fewer iterations and improved solver efficiency.

Iterative solver efficiency, however, is known to reduce as the ill-conditioning of the stiffness 

matrix increases. This occurs when property differences between adjacent parts of the system 

become large, such as is often the case when material heterogeneity is represented. In order to 

improve the conditioning of the stiffness matrix and the efficiency of the solver, a Jacobian 

preconditioner (M) has been used in the implemented solver. This is a simple explicit 

preconditioner which is based on the reciprocal of the trace of the global stiffness matrix, K.

The preconditioned CG algorithm implemented in this code is given in Figure 4.4.

Compute =  b  — for some initial guess .r<°) 
for i  =  1 , 2 , . . .  

solve
pi-1 =
if  i  =  1

p(i) = 2(0)
else

f i i - 1 =  P i - 1  /  P i - 2
p ( %) =

endif
q(*) =  A p ^

=  p i - i / p { t )Tq (%) 
r (i) _  x ( i - l )  + a .p(i)

y.(») _  r ( » - l )  _

check convergence; continue if necessary

Figure 4.4. Preconditioned conjugate gradient algorithm (Barrett et al., 1994)
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In the present work the residual effective energy (p) is normalised by the square root of the 

inner product of the total load (Ft) and the reactions (Fr) based on the initial displacement 

vector. This gives the following convergence criterion:

^ < t o l  (4.2)
tn

where tn is the scaled total force norm, given by:

tn = 4(FT+ F ry  -K-' - (FT+Fr) (4.3)

and the error tolerance (tol) is taken as 10‘6.

Preliminary benchmark tests on the Jacobian preconditioned CG solver, presented above, 

compared with a direct Gaussian elimination solver implemented by Karihaloo et al. (2003), 

have shown that a speed-up factor of at least 20 can be achieved, with respect to the CPU time 

required per solution of the system of linear equations.

Finally, it should be noted that during all stages of general code and solver development, the 

results obtained from the Fortran code have been verified, for individual small scale lattice 

meshes, by comparing them with simulations undertaken in a commercial FE program called 

LUSAS (2008).

4.4 Post-processor

A bespoke post-processor has been specifically designed and developed in order to display 

the output generated by the FE code. This post-processor has been written in Visual Basic 5, 

and a screen shot of the graphical user interface (GUI) is shown in Figure 4.5.

The main features of the post-processor include the ability to:

1. Visually check the applied boundary conditions and locations of pre-notches;

2. View the pristine mesh, including the three phase mesostructure, displayed in user 

defined colours;

3. Display useful information such as the number of nodes, number o f elements, and how 

many of these elements have been assigned to the different mesostructure phases;

4. Plot fractured meshes at any load step, and at any scaled displacement value. In 

addition to the basic fractured mesh, broken beams may be plotted on their own, as 

well as graphical representations o f various properties of the beams. These include the 

beam strength, the effective stress in the beam, <reff, and the relative effective stress
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(stress ratio) of the beam, rejf., as defined by equation (4.1). The spatial distribution of 

values for each of these variables is represented by a coloured plot, whose range may 

be manually altered, in order to examine specific areas of interest;

5. Add any plot to an animation sequence, or to automatically generate and save an 

animation sequence for the entire fracture process of a specimen, for any chosen 

variable settings, and;

6. Plot the force-displacement graph, including labelling of the load steps, to allow 

comparison with the corresponding fracture plots.
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Figure 4.5. Screen shot o f the post-processor GUI

4.5 Sum m ary and conclusions

A brief overview of the computational implementation o f the lattice modelling method has 

been given in this chapter. The primary features o f the pre- and post-processors have been 

described, in addition to the main FE engine.

The pre-processor is able to automatically generate a regular triangular lattice mesh of any 

size, and represent material heterogeneity through either a particle overlay or a statistical
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distribution of beam strengths. The post-processor is able to automatically plot, and animate, 

fracture patterns and coloured contour plots of beam stresses, as well as illustrating the force- 

displacement response for the specimen.

The main FE engine, which has been written in Fortran 90, assembles and solves the system 

of linear equations for each stage of the fracture process. Various features have been 

implemented within the FE code in order to improve its computational efficiency. These 

include:

1. Assembly of the global stiffness matrix using the compressed row storage technique;

2. Solution o f the linear set of equations using a Jacobian preconditioned iterative 

conjugate gradient solver;

3. Scaling of results to achieve a stress state of 1 (i.e. failure point) in the most critical 

beam, without the need for re-solving;

4. Individual removal of element stiffnesses of broken beams from global stiffness 

matrix, without the need for re-assembly, and;

5. Minimisation of the initial residual in the CG solver by setting the initial ‘guess’ to the 

scaled value of the previous solution.

Preliminary benchmark tests have indicated that the Jacobian preconditioned CG solver, when 

compared with a direct Gaussian elimination solver implemented by Karihaloo et al. (2003), 

can achieve speed-up factors of at least 20, in respect to the CPU time required per solution of 

the system of linear equations.
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Chapter 5 

Failure criteria development

5.1 Introduction

This chapter focuses on the analysis and development of various failure criteria that may be 

used for capturing damage propagation with the lattice beam model. A brief summary of the 

existing failure criteria used within the literature is given initially, together with some 

comment on their efficacy and practical meaning.

A Mohr-Coulomb (M-C) type failure criterion is then proposed, which is based on beam 

forces. The isotropy of this criterion is examined under a theoretical framework. This 

framework is based on consideration of the equivalence between the lattice mesh and the 

underlying continuum. The optimum form of the Mohr-Coulomb criterion, which minimises 

the degree of anisotropy, is thereby obtained.

The theoretical equivalence theory is then developed further, and the possibility of obtaining 

stresses from the lattice mesh, which are directly equivalent to the continuum stresses at that 

location, is investigated. As a result, an isotropic failure criterion, based on principal stresses, 

is proposed for an elastic regular triangular mesh. The true isotropy of the principal stress 

failure criterion is then tested for a pristine lattice mesh which is subject to separate constant 

strain conditions in two orthogonal directions.

Finally, a continuum stress based version of the M-C criterion is proposed. This is based on 

the stresses in the continuum at the mid-plane location of a lattice beam. The axial and shear 

components for the continuum are then compared to the equivalent components in a beam and 

a modified M-C criterion based on beam stresses is developed.

For completeness, the theoretical formulations used for analysing the equivalence between the 

continuum and the lattice mesh are extended further to derive the geometric properties 

required for the beam cross-section. In doing so, the tensorial derivation of beam properties as
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given by Karihaloo et al. (2003), which is based upon matching the components of the

The chapter is concluded with a summary and comparison of all of the failure criteria 

presented.

5.2 Existing failure criteria

As opposed to a simple truss or spring systems, elastic beams can break in various modes 

including stretching, bending, shearing and even twisting if the third dimension is considered. 

Ideally, the mechanical breaking rule or failure criterion implemented in the model should be 

able to reflect all o f these different modes.

The various failure criteria which have been used in the literature to date have been presented 

and discussed in section 3.5 of this thesis. Two of these failure criteria, which have been used 

for beam elements, have been considered further in this chapter. The first of these is the stress 

based failure criterion used extensively by the Delft group in the Netherlands (Schlangen and 

van Mier (1992a), Chiaia et al. (1997), and van Mier et al. (2002)). This failure criterion, as 

given previously by equation (3.14), is:

where at is the maximum tensile stress in a beam, F  is the axial force, A is the cross-sectional

a  is the scaling parameter for the tail which is usually taken to be 0.005. It should also be 

noted that, as described in section 3.5, it is possible to scale the peak force by a factor p  

(equation (3.15)). However, /? has been taken to be 1 in this chapter.

The second failure criterion considered, is that used by Karihaloo et al. (2003), as given 

previously by equation (3.16):

where e is the effective strain, I is the length of the beam, Ax and Ay are the extensions along 

the global x and y axes, 0 is the angle of the beam in respect to the global x axis (Figure 3.7), 

h is the height of the beam, (pi and (p2 are the nodal rotations at the ends of the beam, and as is 

the scaling parameter taken to be 0.005.

elasticity tensor, is reworked using the explicit matrix forms of the equations adopted in this 

chapter.

max (5.1)

area of the beam (b.h), M, and Mj are the end moments, W is the section modulus (b.h2/6), and

s  = -  Ax cos0  + sin# + |^ ,-q>2\—ccs
l \  2  J

(5.2)
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This is essentially the strain equivalent of the Delft criterion, however, the difference between 

the end rotations of the beam are considered, rather than the maximum moment. As a result of 

this, it should be noted that if such a loading case arises whereby the end nodes experience 

equal rotation, no extension, but with some lateral translation, then, despite the beam being 

under constant shear, the effective strain, e, given by equation (5.2) will always be zero, 

irrespective of the shear stress.

Both of these failure criteria are based on combinations of actual physical beam properties 

when the lattice is in a stressed (or strained) state. The Delft criterion is based upon the axial 

force in the beam and the maximum end moment which also indirectly includes a shear force 

component. Karihaloo et al’s criterion considers the translational and rotational movement of 

the ends of the beam. They have both been shown to offer very good qualitative predictions of 

the failure envelope for lattice simulations (Schlangen (1993) and Karihaloo et al. (2003)), 

and with the correct choice of scaling parameters can also predict the quantitative properties. 

However, for both cases the scaling parameter does not have an underlying physical basis, 

and its value is obtained in an empirical manner from curve matching of experimental results.

5.3 Mohr-Coulomb based failure criteria

The beams in a lattice mesh can be considered to essentially connect the centres of continuum 

unit cells together, as shown in Figure 5.2. Under the framework o f Bolander and Saito (1998) 

these unit cells can actually be thought of as rigid bodies, or particles in a material, as 

illustrated in Figure 2.24. If this concept is applied to the lattice beam modelling method, then 

the mid-plane surface o f the beams can be considered to represent the interface between 

particles. Furthermore, if  beams are considered to only break at particle interfaces (i.e. beam 

mid-planes), then a failure criterion may be developed which is based on the stresses at the 

mid-plane of every beam. It should be noted, that unlike the rigid body model, which includes 

the effects of rigid body mechanics and has separate normal, tangential and rotational springs 

at each interface, the assumption that the lattice beam mid-plane represents a particle interface 

is more conceptual than physical. However, it does serve as justification for developing a 

mid-plane failure criterion. Given this notion of the beam mid-plane representing the interface 

between two particles, then a suitable failure criterion may be one based on the theory of 

Mohr-Coulomb.

The individual contribution of axial, shear, and centre-span moment may then be considered 

explicitly in determining the effective stress state of the beam, as follows:

Page 83



Chapter 5 -  Failure criteria development

M » - / * ) + H “ 0  (5-3)
where r is the shear stress (Q /A),fb  is the rupture strength of the beam, // is the shear/normal 

strength ratio, and a is the axial stress at the centroid o f the beam which includes the 

contribution from the centre span moment:

A W
(5.4)

where F  is the axial force, A is the cross-sectional area of the beam (b.h), Mc is the bending 

moment at the beam centre, and W is the section modulus (b.h2/6 ). It should be noted that 

since the shear force has been considered explicitly in the chosen failure criterion, the bending 

moment has been taken to be the value at the centre span (mid-plane), rather than the 

maximum end value, as for the Delft criterion (eqn. (5.1)).

The failure envelope for the beam is given by equation (5.3), and represented graphically by 

the diagonal line in Figure 5.1. This expression may be rearranged to give a general 

expression for the ‘effective’ stress (<refj) in a beam:

(5.5)

It is the beam with the highest relative effective stress (rejf=oeff Ifb) that is removed from the 

lattice during the progression of damage, as discussed in section 4.3.1.

FAIL

fb
a

Figure 5.1. Mohr-Coulomb failure envelope

The effect of mesh orientation dependency of the lattice modelling method has been discussed 

in section 3.7.2. In respect to the force-displacement response of the system, the effect of the 

mesh orientation is primarily due to the anisotropy of the failure criterion being used. The 

Delft failure criterion (equation (5.1)) has been shown to exhibit mesh orientation dependency 

even for the elastic (pre-damaged) phase (Schlangen and Garboczi, 1997). Therefore, the 

isotropy properties of the M-C failure criterion proposed above should be examined to see if 

this failure criterion offers any improvements in this area.
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A detailed, theoretically based, investigation has therefore been completed, as presented in the 

following section. During this investigation particular focus has been given to the 

determination of the most appropriate value to be used for the shear/normal strength ratio, ju, 

in addition to examining the equivalence between the M-C and continuum stresses.

5.3.1 Continuum equivalence and isotropy of the Mohr-Coulomb failure criterion

5.3, L I Outline o f the investigation

The aims of this investigation are therefore to see if it is possible to achieve:

(i) An isotropic failure criteria (i.e. first beam to break always occurs at the same 

principal tensile stress, regardless of the angle of the principal axes), and;

(ii) A match between the mid-surface beam stresses and the continuum stresses.

In order to investigate the relationship between continuum stresses and those in the beams it 

will be assumed that the lattice star (Figure 5.2) is fixed to the underlying continuum, to 

which a stress field is applied. The star is formed from the six lattice beams connected to an 

internal node of a regular triangular lattice within an infinite domain. The displacement at the 

centre of the star is assumed to be zero. The dotted hexagon formed from the intersection of 

the lines normal to the beam mid-surfaces represents the unit cell for the lattice, as illustrated 

previously in Figure 3.7. It is further assumed that each beam is effectively restrained 

rotationally by the flexural stiffness of the five beams connected to each of its ends.

—I ^  x

6 7

Continuum 
unit cell

Beam length, /

Figure 5.2. Representation o f  lattice star and hexagonal unit cell
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The procedure that has been adopted for comparing the lattice star mid-beam stresses with the 

continuum stresses is as follows:

1. Initially a uniform stress field is assumed in the continuum in the x’-x’ direction, at an 

angle of 6 to the x-axis.

2. The associated strain field is computed for an assumed homogenous material, and the 

displacements corresponding to the outer nodal positions of the star in Figure 5.2 are 

calculated.

3. These displacements, together with the stiffness properties of the beams, are then used 

to compute the resultant forces M, V, and F  in the beams.

4. The effective (or nominal) stress in the beams is then calculated according to the 

Mohr-Coulomb criterion given in equation (5.3).

5.3.1.2 Stress transformation

As outlined above, a stress field is to be assumed in the x’-x’ axis, which is at an angle of 6 to 

the x-axis. Before the associated strain field in the reference (*->>) axes may be computed, the 

stress field must be transformed into the reference axes system using the inverse of the stress 

transformation matrix, Tc. Therefore:

where: T =
cos2 0  
sin2 6

a = T a

sin2 6 
cos2 0

- 2 sin#cos#  
2  sin 6  cos 6

sin#cos#  -s in # co s#  cos2 # - s i n 2 6?

(5.6)

(5.7)

5.3.1.3 Constitutive relationship

The strains may then be obtained from the transformed stresses using the constitutive 

relationship for the continuum. Therefore:

£ = Ca (5.8)

where C is the elastic plane stress compliance matrix given by:

c = I
E

1

-  v 
0

- v  0  

1 0  

0  l + v
(5.9)

and E and v are Young’s modulus and Poisson’s ratio for the material.
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5.3.1.4 Continuum strain-displacement relationships

In a two-dimensional continuum there are three independent strain components but only two 

displacement components. Therefore, the direct displacement derivative-strain relationships 

are not sufficient to fully define the displacements, and thus a compatibility condition must be 

introduced. Considering the flexural stiffness of the 5 other beams at a connection, as 

mentioned previously, the rotation tensor (g>) may be taken to be zero:

1CO — —
2

du.

which implies:

v dy dx 

du, duv

=  0

dy dx

The shear strain in the continuum is defined as usual by:

(5.10)

(5.11)

xy
7xy_

2
du„ du.

+

and substituting (5.11) into (5.12) gives:

f  =  ? ~ * L  xy 2

dy dx

du„ du.

(5.12)

(5.13)
dy dx

where ]%, is the engineering shear strain.

The displacements at any given point in the continuum can now be uniquely determined if  the 

strain field is uniform across the region and the displacements at one point in the region are 

known. In this case, ux=uy=0 at x=y=0. The nodal displacements for the end node j  of a 

beam, in respect to the reference axes, can now be written in terms of the continuum strains:

7xy_

2

7xy_

2

£yy

(5.14)

These displacements, including the assumed zero rotation (<pj=0), can be transformed to the 

element local axes using the displacement transformation matrix, Tu.

u T»uy =

cos a  sin a  0  

- s in a  cosar 0  

0  0  1

u X

• U y-----1 ii

(5.15)

where a is the angle between the reference (x-y) axes and the local element axes, as shown in 

Figure 5.3.
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5.3,1.5 Local stiffness relationship for a single element

The degrees of freedom and forces acting on a beam for the general case have already been 

discussed in section 3.3.2, and illustrated in Figure 3.6. For the specific case presented here, 

where node i is completely restrained and node j  is restrained in the rotational sense, the nodal 

displacements in the local axes are given by:

(5.16)
U£

101

« /  = un = 0

A ; 0

r r

and:

11

V
= u„ — u„n n

J . j
0

= u (5.17)

where ui  is the local displacement vector. The deformed shape of a beam subject to such 

displacements is illustrated in Figure 5.3.

j

Figure 5.3. Element in local and global axis with rotations constrained 

The local force vector which gives rise to these displacements is given by:

n

M

And this is related to the local displacement vector by the local stiffness matrix, k/

(5.18)

Fi = k i ui (5.19)

Due to the translational and rotational restraint on node / the local stiffness matrix, k/, is given 

by the lower right 3x3 sub-matrix obtained from the full element stiffness matrix, ke given 

previously in equation (3.2). Therefore:
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k l = E

A
I
0

0

0

12/
/ 3

-6 1

0

- 6 1
12 
4 /

(5.20)

12 /

where I and /  are the cross-sectional area, length and second moment of area of the beam, 

respectively. If we take unit breadth for the beam in the z-axis (b = l ) then A=h.b becomes 

A=h, and /=  b.h /12 becomes /=  h /12. Equation (5.20) for kz, may then be re-written as:

k l = E

0 0

h3 - h3

/ 3 212-s:1 h3

21 3/

(5.21)

where h is the height o f the beam.

5.3.1.6 Failure criterion in terms of local beam axes

The general form o f the criterion as expressed in equation (5.3) may be re-written in terms of 

the local beam axes as:

= ~ ftb) + \s n  | = 0  at failure (5.2 2 )

where s% is the local nominal axial stress ( s ^ F / A g ) ,  s n is the local nominal shear stress 

{ s ^ F ^ A ^ ,  f tb is the failure strength of the beam, and /jl is the shear/normal strength ratio. It 

should be noted that ideally, mid-section beam stresses should match those in the continuum 

when A f  = A T]=  A ,  however for certain cases, as outlined in section 5.3.1.9, this does not hold 

true.

5.3.1.7 Examples

In order to examine the isotropy o f the M-C failure criterion, and the equivalence between 

mid-section beam stresses and continuum stresses, let us consider the application of a tensile 

stress in the x ’-x ’ axis, which is equal to the ultimate strength of the material,/. Therefore ox>. 

x, = 0 i= ft and Oy'.y' = on = 0. In addition, let us also consider, initially, the uniaxial case where 

Poisson’s ratio is zero (v=0). Therefore equation (5.8) reduces to:

1
8  = —<T

E
(5.23)
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(i) Case 1 (6=0°)

For this case:

And therefore from equation (5.23):

® X X ^ x ' x '

° y y = G y 'y ' = 0

ii T x<y< ^ j
O

i

(5.24)

£ xx £ xx 1 7 ;
0£ zz

yy yy -  E
J x y  _ i to i 0

(5.25)

If elements 1 and 2 of the lattice star given in Figure 5.2 are considered, the coordinates of the 

7 ’ nodes of these elements (i.e. nodes 2 and 3) are (X2, y i )  = (/, 0) and (X3, ys) = (1/2, V31/2), 

respectively. The displacements of these nodes in the reference axes for the computed strain 

field are given from equation (5.14) by:

y*y
£ x x 2
yXy
—

X _  l ' f t O' ~ r
- f "/■

y _ ho
1

0 0 0 E 0
(5.26)

And:
E

L
E 0

(5.27)

For element 1; a= 0°, and therefore from equation (5.15), and assuming zero rotation of node 

2  due to reasons cited previously:

u.
U x TX

0y E
J . 2

0
(5.28)

From equations (5.19), (5.21) and (5.28) the local forces for element 1 are given by:

0

f a ) , = n

M

=  E

* 0
/

0 K / 3

0 4  21

- h3 
2/2

31

L
E

~ f ,h

0 = 0

i o 1
O

i

(5.29)

Taking A ^ =  A 1] = h (recalling that beam breadth is unity) gives:

f , hFts , = —
s 4 h = f , (5.30)
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and sn=0. These are equivalent to the applied axial and shear stress, as expected. From 

equation (5.22), the M-C failure function is given by:

F{s) = - f lb) + 1*,| = ju(f,~f<b) + 10| = 0 (5.31)

which suggests that failure in the beam is also consistent with failure in the continuum.

For element 2; a=60°, and therefore from equation (5.15) and (5.27):

%
0

From equations (5.19), (5.21) and (5.32) the local forces for element 2 are given by:

cos or sin or 0 uX

UL = -s in  a  cos a  0 • Uy

i

oo
1 J

\tb
~l o

1

r a/  r \

K
S

i\^

1

Y i  0 A
E

/ 2
0 II S i /

A
0  1 0 0

(5.32)

~h

'Fi I

(F, ) 2 = = E 0

M 2
0

0

i 3
- h3 

212

0

- h3 
2/2 *L
3/

E

4
f3 L = f<

3

(5.33)

Therefore, noting that for a beam subject to zero end rotations and constant shear stress the 

bending moment at the mid-span reference surface is zero. Taking^{=Ar,=h as before gives:

s( =
! ± = L h .= L
A, 4 h 4

And: F , -V3ft3 1 -73h 1

S* Aq 4 /2 ' h 4/ 2 '

(5.34)

(5.35)

These values may be compared to the continuum stresses in this direction by transforming the 

stresses in the reference axes by 60°. Therefore:

(5.36)
cos2 6 sin2 # 2  sin # cos # ® X X

<*6o° =T ffo = sin2 6 cos2 # - 2 sin#cos# • &  yy

- s in #  cos# sin # cos # cos2 # -  sin2 #  ̂x y

a xx

1 / 3 /  V 3 /  " 
/ 4  74  72 7," 1/

74
Gyy = 3 /  1/ -VJ/ 

7 4  74  72 • 0 = / , 3 /74
Txy 60°

i
1

N
&

1 1
1

0

(5.37)
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Therefore, from equations (5.34) and (5.37) it can be seen that s ^ a ^ o 0) irrespective of the 

cross-sectional area of the beam. From equations (5.35) and (5.37), however, it can be seen 

that s^Txytfo0) only if h=l. This result is consistent with equation (5.96) which gives h=l for 

zero Poisson’s ratio.

By substituting these values into equation (5.22) a minimum value of n can be derived which 

ensures the ‘inclined’ beams do not fail before the primary horizontal beams in this case:

F(s) = /u 4 " / , +
VTh2
412

<0

ju>
h:

V3i

Therefore, if h=l then

(ii) Case 2 (0=30°)

The stresses in the reference (x-y) axes are given from equations (5.6) and (5.7) by:

yy

xy

cos2 30 
sin2 30 

sin 30 cos 30

sin2 30 -2sin30cos30
cos2 30 2sin30cos30

sin30cos30 cos2 3 0 - s in 2 30

3 // 4
0 = / , 1/

/  4
0

i

And, therefore, from equation (5.25):

r 3 / 1
/ 4
1/
74

£ xx

=
£ xx

eyy II

J  xy  _ ,2s*y.
.* A .

(5.38)

(5.39)

(5.40)

(5.41)

Therefore, considering elements 1 and 2 again, as for the previous case, the displacements of 

nodes 2 and 3, under the given strain field, are given by equation (5.14):
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For element 1; a=0°, and therefore from equation (5.15), and assuming zero rotation of node 

2  due to reasons cited previously:

(5.44)

r 3 / 1
U x / 4

U j  = uy II

J . 2 0

From equations (5.19), (5.21) and (5.28) the local forces for element 1 are given by:

(F j , = 1
M

= E

0 0

h3 - h 3
13 2 / 2

- h 3 h3
2 / 2 31

r 3 / 1
74

1

u>

i

. f ‘l
E = f , 73/j3/

/ 4 / 2
0

1
\

0°
n 

\1
1

(5.45)

Therefore, taking A  ̂= An = h (recalling that beam breadth is unity) gives:

F,

And:

st= '

s „ =  —  

* A.

3h f  _ 
t 4 h ' ~

S t f  _
4l 2h '

4

S h 2

41

f,

2 ft

(5.46)

(5.47)

As noted previously for case 1 (0=0°), equations (5.40), (5.46) and (5.47) show that 

irrespective of the cross-sectional area of the beam, the axial beam stress is equivalent to the 

direct continuum stress (s^o'xx), but the shear stresses are only equivalent (s^ixy) if h=l. 

Before checking the failure criterion lets first consider the local stresses on element 2.

For element 2; a=60°, and therefore since the principal axis for case 2 (0=30°) is a line of 

symmetry for elements 1 and 2 , not only are the displacements o f nodes 2  and 3 identical 

(equations (5.42) and (5.43)), but the local displacements and local forces can also be shown 

to be identical, apart from the direction (sign) of the displacement normal to the beam and 

also the shear force within the beam.

In addition, due to the symmetry of case 2 (0=30°) both elements (1 and 2) should fail at the 

same time and ideally at a continuum principal stress value o f f .  Therefore, from equation 

(5.22), the M-C failure function is given by:

F(.s) = /j{s( - f , )  + \sn\ = n \ - f l - f lb +
73/22 

4/ 2 '
=  0 (5.48)
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-s/3/*2

If h=l then in order for elements 1 and 2 to fail when ax .x' -  07 = f  at 6=30° then n 

is greater than 7/Vi and therefore compliant with the requirements o f equation (5.39)

5.3.1.8 General case

It has been shown for the two case examples described in detail above that when the Poisson’s 

ratio is taken to be zero, and therefore h=l, the mid-plane axial and shear stresses in the 

elements of the lattice star (Figure 5.2) are equivalent to the axial and shear stresses in the 

continuum after transformations to the direction of the respective elements have been 

undertaken. This stress equivalence can be shown to hold true for all directions o f principal 

stress (0°<9<360°) and for all elements (a=0°, 60°, 120°, 180°, 240°, 300°).

It has also been shown above that if these mid-plane stresses are combined in a M-C criterion 

then when the major principal axis is half way between two elements (e.g. 6=30°), both 

elements become simultaneously critical and therefore fail at an effective stress equal to the 

continuum s tre ss ,/, only when the shear/normal strength ratio, //=Vi. In addition, when the 

major principal axis is in line with an element axis (e.g. 6=0°), this element, which is by 

definition critical, fails at the same effective stress as the continuum principal stress in pure 

tension, and the failure stress o f such an element is independent o f the value of /i. For other 

values o f 6 the value o f the Mohr-Coulomb function as expressed in equation (5.3) has been 

calculated and is illustrated in Figure 5.4(a).

0.5 1.00

0.98
/  30 150 180

2 0.965-0.5

0.94

0.925 - 1.5

0.90
0 30 60 90 120 150 180Orientation of principal axes, 8 (°)

Orientation o f principal axes, 0 (°)
Elements 1 & 4  Elements 2 & 5 - - - - Elements 3 & 6

(a) (b)

Figure 5.4. (a) Value o f M-C function for elements within lattice star, and (b) The value o f the 

continuum major principal stress, Gi at failure normalised to the tensile strength,/, for varying 0.

(5.49) 

Vi. This
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It can be seen from Figure 5.4(a) that the value of the Mohr-Coulomb function for each 

element fluctuates in an oscillatory manner as the principal axes rotate. The function has a 

wavelength of 180° and has a discontinuity in the gradient every 90° due to the use of the 

absolute value of the shear stress in the Mohr-Coulomb function (equation (5.3)). It should be 

noted that due to the assumption that the lattice star (Figure 5.2) is fixed to the underlying 

continuum, and that both are restrained at x=y=0, then the stress state of elements 4, 5, and 6  

are identical to that of elements 1, 2, and 3, respectively, for any given principal stress, 07.

For a rotating principal stress value, oj =f=lM Pa , the value of the Mohr-Coulomb function in 

the most critical element is either equal to or greater than zero as shown in Figure 5.4(a). The 

most critical elements are initially elements 1 and 4, when 0=0°, and the critical status 

changes to elements 2 and 5 at 0=30° and elements 3 and 6  at 0=90°. The critical status then 

continues to cycle over the three pairs of elements every 60°. This behaviour is consistent 

with what one would intuitively expect from a rotating principal tensile stress, as illustrated in 

Figure 5.2. Therefore, the correct elements become critical for different orientations of the 

principal tensile stress, however, the value of the M-C function for the most critical element 

fluctuates between 0  and 0.13 every 15°, indicating that this failure criterion is not perfectly 

isotropic. The degree of this anisotropy is best quantified by considering the value of the 

principal tensile stress, 07 , at failure, normalised to the tensile strength of the material,^. This 

is illustrated in Figure 5.4(b), for varying 6. It can be seen from this figure that the normalised 

value of principal stress fluctuates between 1 and 0.93. The degree of anisotropy of the Mohr- 

Coulomb failure criterion is therefore only of the order of approximately 7%. This is 

considered to be an acceptable error given the natural fluctuation of material strength that is 

prevalent within real cementitious materials.

5.3.1.9 Match between continuum and beam stresses for v=0.2

The examples and observations discussed above are for a continuum Poisson’s ratio of zero, 

however, the value taken for concrete is generally of the order of 0.2. It has previously been 

stated in Chapter 3, and derived later in section 5.6 that in order to model a global Poisson’s 

ratio of 0 . 2  the height of the unit width lattice beam in a full lattice structure must be taken as 

h=lN3. This is, incidentally, equal to the geometric height of the mid-beam interface 

represented by one side of the hexagonal unit cell shown in Figure 5.2.

The isolated single lattice ‘star’ considered above, however, is not capable at a local level of 

matching the continuum stresses generated by the biaxial straining that occurs due to a non-
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zero Poisson’s ratio. After damage in the form of cracking has occurred, however, the 

Poisson’s ratio of a continuum, certainly at the local level, may be assumed to be zero. The 

accuracy of this assumption generally increases with the amount of damage that has occurred 

within the continuum.

As a result of the above, for a typical lattice simulation of concrete, the height of the beam 

elements are usually taken as //Vi to represent an initial Poisson’s ratio of 0 . 2  for the material 

in its elastic state. But, as noted previously, following damage to the material the value of 

Poisson’s ratio tends towards zero. It is therefore worthwhile considering how the axial and 

shear mid-plane beam stresses compare to the ‘damaged’ continuum stresses for a plane stress 

beam with a height, and therefore cross-sectional area, of //Vi.

We may now reconsider the two examples given above: For case 1 (0=0°), element 1 (a=0°), 

the mid-plane stress and failure criterion are independent of the cross-sectional area of the 

beam and the results are as previously given. For element 2 (a=60°) however, the axial stress 

remains the same but for /z=//Vi the shear stress at the mid-surface of the beam becomes:

-s
= (5 50)

7 Aq 41 41 12

This is one third of the continuum shear stress at this point (equation (5.37)).

For case 2 (6=30°), element 1 (a=0°), the axial stress is again independent of the cross- 

sectional area of the beam and the shear stress is equal to that given for element 2  of case 1 in 

equation (5.37) above. This is again one third of the continuum shear stress at this point.

It can be shown that generally for all orientations of the principal tensile stress (O°<0<36O°), 

that the axial stress in the elements and continuum are equivalent, irrespective of the cross- 

sectional area of the elements, and that the shear stresses in the elements are consistently one

third of their continuum counterparts. In addition, if we consider the value of the shear/normal

strength ratio, //, that causes elements 1 and 2  to fail at the same time for a principal stress 

orientation of 30°, then from equation (5.49):

( i V
r  2 - 4 - U

S h _  = _ A A L  = ± r (5 .51)i2 i1 s
Alternatively, equivalence may be obtained between the element and continuum shear stresses 

if  the shear area of the beam, A is taken to be one third of the beam cross-sectional area:
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A _ A _ h _ I
, - T - 3 - 3V3

(5.52)

If this revised definition for the shear area is adopted then the Mohr-Coulomb function given 

by equation (5.3) remains unchanged and elements 1 and 2 both fail, as previously, when

{i=yj3.

5.4 Principal stress based failure criterion

5.4.1 Matching strains in plane beams

The concept of a lattice ‘star’ fixed on top of a continuum as introduced above, may be 

extended in order to try and obtain a match between the strain state at element mid-surfaces 

and the strain state at the same location in the continuum. The nodal displacements of the end 

nodes j  of the six beams o f the lattice star shown in Figure 5.2, have already been expressed in 

terms of the continuum strains in the reference coordinate system by equation (5.14). As 

illustrated in Figure 5.5, the nodal coordinates may subsequently be written in terms of the 

element length, /, and the angle between the reference axes and the local element axes, a, 

giving:

X cos or
= i

_y_ j sin a

Equation (5.14) therefore becomes:

=  /
->J

Y xy_  

. 2

Ky_
2

eyy

cos a  
sin a

(5.53)

(5.54)

1 (0 , 0 )

Figure 5.5. Enlarged detail of lattice ‘star’
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The nodal coordinates given above may then be transformed into the local element axes using 

equation (5.15). If the nodal rotations are assumed to be zero due to reasons cited previously, 

then from (5.15) and (5.54):

u T„u,
coser sum  
-sin  a  cos or xy

2

7xy_

2 cos a  
sum

(5.55)

=  /
e^ cos2 a +  y  sin a  cos a  + e w sin2 ayy

r xsum  cos or+ - ^  (cos2 or-sin 2 a^+s^  s in a co sa
(5.56)

Therefore from (5.56), the local axial and shear strain components in the beam, noting that the 

engineering shear strain, is twice the true shear strain, sv, are given by:

V _ 1 u^

7n_ ~ I 2 urj

e cos2 ex + y  sin a  cos a  + s  sin2 ax y ~ ------------------------------ ~ y y

2exx sin a  cos a  + yxv (cos2 a  -  sin2 a  ) + I s
(5.57)

jty(COS" O' -  Sin" a)+'^S sin/ymsff

These should match the respective local strain components in the continuum. Therefore, 

considering the standard continuum strain transformation:

s tJ =n,nj£lj (5.58)

And, in explicit matrix form for a transformation angle of a:

i
■TVl

1

£■ —nn

7 * i .

cos a
2

sin a
. 2

cos oc sin ot
sin" a  cos2 a  - c o s  or sin or

- 2 sumcosor 2 sumcosor cos2 a  - s in 2 a

£ r rXX

.
yy

7  x y  _

(5.59)

Therefore, by expanding (5.59) it can be seen that the axial and shear strains are equivalent to 

those derived in (5.57), and in addition:

= sin2 a s „  + cos2 ae,n, - y xy(<cos2 a  -  sin2 a7777   x x  ■ y y  /  x y  ” ) (5.60)

In the beam elements em is not available, and hence at the local level the lattice star is 

incapable of capturing a non-zero Poisson’s ratio as previously described. This is due to the 

fact that when v£0 the stress components depend not only on direct strains but also on 

orthogonal strains. This problem may be addressed by considering the full lattice star, as 

illustrated in Figure 5.6, and evaluating em for a particular element mid-surface by 

considering the displacements in adjacent nodes.
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y

V3/

V
> 2

Interface under consideration

N .

6 7

Figure 5.6. Full lattice star highlighting alignment o f  element mid-surface and end nodes o f  adjacent

elements for determination o f  e m

It can be seen from Figure 5.6 that due to the geometry of the regular triangular lattice the 

element mid-surfaces are in alignment with the nodal positions of the end nodes of adjacent 

elements. Considering element 1, the relative displacements may be defined as follows:

U £ 2 u 4 \

Unn = U r)3 ~ Uril (5.61)

e l=1 . U n2 ~ Un\_

where £ and rj are the local axes of the element under consideration (i.e. element 1 above). 

Therefore, whilst the nodal displacements are all calculated in the reference axes for a strain 

field obtained from an applied stress field, as described previously, the transformations of 

these nodal displacements must relate to the orientation of the element under consideration. 

From equation (5.15), and ignoring nodal rotations:

Ug COS Of sin of U X

_u n_ j
-s in  of COS Of ; U. y .

where i is the element number under consideration and j  is the node number of the nodes 

required for calculating the full strain state at the interface of element i. For the above 

example, i= l  and j= l ,  2, 3 & 7. Once the respective nodal displacements have been obtained 

in the local axes, and the relative displacements calculated according to (5.61), then the strains 

at the element interface may be obtained from:
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%  
e n  n

" %
_ i  
~  i Vs

[ r < , \ i 2 u ^ n

(5.63)

noting that the reference length between the end nodes of elements adjacent to the one under 

consideration (e.g. nodes 3 and 7 for element 1 ) is Vi/, as shown in Figure 5.6.

The equivalent stress components at the element mid-surface must then be calculated from the 

elastic D-matrix for the material, as oppose to the element stiffness matrix for the beam as 

used previously. This is because the element stiffness matrix does not take into consideration 

the additional displacements orthogonal to the axis of the beam, as described above.

(5.64)

r “i

ct« E
1 v 0

%

Therefore: CT „„ v 1 0 • s
1 - v 2 1 — V

nn

_Tto_ 0  0
2

Ytn_

5.4.2 Failure criterion development

In light of the extended theoretical consideration of the strain state at the mid-surface of the 

elements forming the lattice star, the most appropriate failure criterion should be re-evaluated.

It has been shown previously that if the lattice is viewed as a plane in 2D, then the Mohr- 

Coulomb failure criterion is suitable, but never perfectly isotropic. An alternative continuum 

failure criterion, which is isotropic, is one based on principal stresses. This may be expressed 

as follows:

<7j - f t > 0  implies failure

where: + T

(5.65)

(5.66)

and f t is the failure strength o f the material.

The orientation of the principal stress axis (aj), which has zero shear stress, is then given 

relative to the direction of the beam axes by:

1
a  — tan 

'  2
-1 2tto

V (T  i
V «  /

(5.67)
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5.4.3 Continuum equivalence and isotropy of the principal stress failure criterion

The theory presented above suggests that the principal stress failure criterion, for the mid­

surface stresses of a plane beam in a single lattice ‘star’, is isotropic when the lattice is 

considered to represent an elastic continuum (i.e. all elements in the ‘star’ are intact). In order 

to confirm this for the more general case of an entire mesh, the failure criterion has been 

applied to a discrete regular triangular lattice mesh, which is loaded in orthogonal directions, 

as shown in Figure 5.7.

Figure 5.7 shows two 10x10 lattice meshes, which are undamaged and have an element length 

of 1mm. The continuum domain which has been discretised by the meshes is 10mm wide and 

8.660mm high. The two meshes are subject to prescribed displacement boundary conditions 

so that constant states of strain are set up in orthogonal directions. The strain is constant in the 

vertical direction in Figure 5.7(a) and in the horizontal direction in Figure 5.7(b).

For the purpose of this investigation E=1000MPa, and uy=8.6603x1O' mm. For an original 

mesh height of 8.660mm this gives a uniform vertical strain, S y= 0 .0 0 1 . In order to generate 

the same strain field in the horizontal direction (Figure 5.7(b)), the prescribed displacements 

for the outer (uxo) and inner (uxi) nodes must be varied to account for the oscillating boundary 

caused by the geometry of the regular lattice configuration. Considering the case where 

prescribed displacements are applied to both sides of the mesh (Figure 5.7(b)), the original 

reference lengths for the inner and outer prescribed displacements are 4.5 and 5.0mm, 

respectively. In order to achieve a horizontal strain, £x=0.007, the prescribed inner and outer 

displacements are therefore uxi=4.5 xl0'3mm and uxo=5 xl0'3mm, respectively.

As a result of the prescribed displacements given above a constant value of principal stress of 

IMPa should be generated in both meshes (a=E.e=1000x0.001=1MPa) if  the results are to be 

consistent with the underlying continuum. Also, the direction of this principal stress from the 

x-axis for case (a) and case (b) should be 90° and 0° respectively.

The continuum equivalence and isotropy of the principal stress criterion may now be 

evaluated by comparing the actual principal stress values and the calculated angle of the 

principal axes, for all of the individual lattice beams from the two orthogonal cases, with the 

continuum values given above. It should be noted that this has been undertaken for the elastic 

case only, where no elements have been broken.
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u y

4.5
5.0

(b)

Figure 5.7. Boundary conditions used to cause constant strain in 10x10 lattice mesh at (a) 0° and (b)

90° orientation.

The values of the major principal stress for every lattice beam of the mesh under constant 

vertical and horizontal strains are shown by the colour plots in Figure 5.8.
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Figure 5.8. Major principal stress variation in lattice elements under constant (a) vertical and (b)

horizontal strain fields

It can be seen that the variation in the value o f the major principal stress for both the constant 

vertical and horizontal strain cases is very small. The values range from 0.944 to 1.077MPa 

for the constant vertical strain case (Figure 5.8(a)), and from 0.974 to 1.041 MPa for the 

constant horizontal strain case (Figure 5.8(b)). Due to the periodically varying width of the 

lattice domain in Figure 5.7(a), the variation o f the major principal stress is far greater at the 

left and right boundaries o f Figure 5.8(a) than for the top and bottom boundaries o f Figure 

5.8(b). However, for both orientations o f the constant strain field it can be seen from Figure 

5.8 that the variation of the major principal stress is very small away from the boundaries, and 

within 1% of the true continuum value o f IMPa.

The values obtained for the orientation of the principal stress (a/) relative to the beam axes are 

also equally as accurate as the values o f the principal stresses themselves. The expected 

values o f a / for case (a) when the principal stress is in the vertical direction are 90°, 30° and - 

30° for the horizontal, upward diagonal and downward diagonal elements, respectively. For 

case (b) when the principal stress is in the horizontal direction, the expected values are 0°, - 

60°, and 60°. The values obtained for the internal elements were within 0.1% or less of the 

expected values for both cases. The outer elements show greater fluctuation due to boundary 

effects, with the error being greater for case (a) than case (b), as observed previously for the 

principal stress values.

The principal stress failure criterion described above has been verified to be isotropic for the 

elastic case of a pristine lattice mesh which represents an underlying continuum which is 

undamaged. However, once elements of the lattice begin to break, the fundamental

Page 103



Chapter 5 -  Failure criteria development

assumption on which the principal stress failure criterion is based begins to break down. This 

fundamental assumption is that the local ‘cross’ strains (ew) at the mid-plane of every beam, 

which are required in order to capture the local Poisson’s ratio effect, are obtained from the 

displacements of the two nodes perpendicular to the mid-plane in question. When beams 

begin to break, a displacement, and therefore strain, discontinuity is created in the lattice and 

the displacements from one (or both) o f these ‘cross’ nodes no longer give an accurate 

estimate of enn at the mid-plane o f the beam under consideration. The orthogonal nodal 

displacements which are used in the derivation of in equation (5.63) are therefore no 

longer directly connected. These beams then effectively become ‘free-boundary’ elements as 

illustrated in Figure 5.9.

Unbroken beams

Internal beam

Broken beams

Nodal displacements 
perpendicular to beam 
orientation used to 
calculate 8™

Free boundary 
beams

Figure 5.9. Creation o f free boundary beams due to beam breakages

Following beam breakage it is still possible to calculate a value o f em at the mid-plane of the 

free boundary elements using the perpendicular displacements from the remaining cross node, 

in the same manner as is originally done for the boundary elements o f the mesh (Figure 5.7). 

However, once damage has started to occur the idealisation o f a star representing part o f a 

continuum is no longer valid, and a failure criterion, such as Mohr-Coulomb, which is based 

on local beam stresses then becomes the most appropriate. In addition, a Mohr-Coulomb 

criterion which considers the shear/normal strength ratio, /j. at an interface has more practical 

relevance than a principal stress criterion, especially when microstructure is considered. The 

value o f //, for example, can be calculated from experiments on hcp/aggregate interface 

properties, as discussed by van Mier (1997).
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5.5 Further failure criteria considerations

5.5.1 Mohr-Coulomb criterion based on continuum stresses

In order to achieve the most accurate version of the Mohr Coulomb failure criterion it is 

therefore worth considering a version of the criterion which is based on the continuum 

stresses at the mid-plane of a beam, whilst these are valid.

The general form of the Mohr-Coulomb criterion as given in equation (5.3) can be written in 

terms of the local beam axes (Figure 5.3) to give:

m{c 4( ~ f a )+ |*V„| = 0 (5.68)

This may then be re-written to give an expression for the ‘effective’ stress in a beam element:

+ —  for: 0 < <reJf < f b (5.69)
M

where o g  and tg  are the continuum values of the local axial and shear stresses at the mid­

plane of an element. These may be obtained from equation (5.64), which gives the local 

element stresses from the axial, normal and engineering shear strains using the continuum 

elastic D-matrix for the material. Equation (5.64) may be expanded to give the following 

expressions for the axial and shear stress, respectively:

a M = J Z ^ ( e ( f +VEnn) (57°)

A n d :  T i '  =  2 E W ) r 4 n  ( 5 ' 7 1 )

The values of the local strain components eg, em and yg given above may be obtained, as for 

the principal stress criterion, from equation (5.63). These strain components have been 

derived from the displacements of the end nodes of the beam and the ‘cross’ nodes 

perpendicular to the beam mid-plane, as illustrated by equation (5.61) and Figure 5.6.

Since the above version of the Mohr-Coulomb failure criterion is based on strains calculated 

from the displacement of these ‘cross’ nodes, the criterion becomes invalid as the lattice 

becomes damaged due to reasons cited previously for the principal stress criterion. The local 

Poisson’s ratio then tends towards zero.
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5.5.2 Modified Mohr-Coulomb criterion based on continuum stresses

An alternative, modified form of the continuum stress based Mohr-Coulomb criterion given 

above may therefore be developed. If the axial stress component along the local beam axis o g  

is calculated from only the axial strain, eg, then considering the behaviour as uniaxial:

(5.68). This modified criterion may then be used throughout the entire duration of a fracture 

test on a lattice mesh since the normal strain, em which is obtained from the ‘cross’ nodes, is 

no longer considered. It should be noted, however, that as a result of this, the accuracy of the 

stress state captured by the criterion for an elastic mesh is less than that offered by the 

criterion described in section 5.5.1 above.

5.5.3 Modified Mohr-Coulomb criterion based on beam stresses

Considering that the lattice method is a discrete modelling method, the most appropriate form 

of a Mohr-Coulomb type failure criterion is one that is based on the stresses in a beam. Given 

this, it is therefore worthwhile investigating whether a criterion may be developed which is 

based on the stresses calculated from the forces in the beam, but that can also match the true 

continuum stresses for a pristine lattice. This would therefore avoid the need to switch failure 

criteria mid analysis.

By comparing stress terms for the beam and continuum it is possible to determine what 

corrections are required in order to satisfy this requirement.

If the rotation is assumed to be zero due to the restraint of the adjoining neighbouring 

elements, then the beam forces from equations (5.18), (5.19) and (5.20) are:

- E>
~A 0  " 

1 2 1
u^

Fn_ I 0 12 Ju_

Therefore, the local beam stresses are given by:

where as is the shear area correction factor, and the other variables are as previously defined.

(5.72)

This definition of <jg may then be adopted in the Mohr-Coulomb criterion given in equation

(5.74)
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But:

Therefore:

I2bh3 
1 2 /  1 2  h2

Pa.A Pa.bh Pa.

G, =

(5.75)

(5.76)

The axial and shear stresses in the continuum are given from equations (5.64) and (5.63) by:

o =
G44

~4n l — v ‘

U44

2u
£
4n

\ — y ‘

Uee U44 + y  nn

i £ i

(1 - ) ^

(5.77)

Assuming that, once a crack has occurred, uniaxial conditions apply locally:

e n n = - v s 44

Therefore, from equation (5.63):

u 

£ i
W -  y  j*

(5.78)

(5.79)

Substituting this into equation (5.77) gives:

g 44 1 -V ‘
(5.80)

The uniaxial stress terms between the beam (sg) and the continuum (g^), which are obtained 

from equations (5.76) and (5.80), may now be compared. Hence if g^  is taken as being 

correct, then:

v 4(=P\Sf (5.81)

where Pi is the correction factor applied to the axial stress in the beam so that it matches the 

continuum value, and is given by:

144

44 (5.82)

Comparing the shear stress terms between the beam { s n)  and the continuum ( r^), which are 

given by equations (5.76) and (5.77), and taking as being correct, gives:

(5.83)

Page 107



Chapter 5 -  Failure criteria development

where is the correction factor applied to the shear stress in the beam so that it matches the 

continuum value. Since = u n , is given by:

Eb {\ + v ) { h 2 )
b I l 2ccs

(5.84)

If the axial and shear stresses calculated from the beam forces are modified using the 

correction factors given above, then, in general, better agreement should be obtained with the 

true continuum stresses for a pristine elastic lattice.

Prior to examining the effect that the choice of failure criterion has on the mechanical 

response of an actual lattice mesh, the cross-sectional geometric properties of the lattice 

beams are derived for completeness.

5.6 Strain energy equivalence

As described in section 3.3.3, the geometric properties of the lattice beams have traditionally 

been chosen in order to satisfy equivalence between the strain energy stored in the unit cell of 

the lattice and the continuum. The tensorial derivation of these beam properties, as given by 

Karihaloo et al. (2003), which is based upon matching the components of the elasticity tensor, 

is reworked in this section using the explicit matrix forms of the equations previously adopted 

in this chapter.

For the strain energies to match under a constant strain field the terms in the constitutive 

relationship for the continuum (D-matrix) must be equivalent to those in the constitutive 

relationship for the beam (stiffness matrix, kj).

Noting that in the present derivation the hexagonal unit cell, as illustrated in Figure 5.2, 

comprises of six ‘half-beams’ rather than full beams, the total strain energy Wl is given by:

Recalling the assumption that the displacement at the central node is zero, and also that the

elements, then from equations (5.19), (5.20) and (5.56) the local element force is given by:

Therefore: \ \ juLrkLuL<fc = \ (5.85)

(5.86)

rotation (p is assumed zero due to the effective restraint of the five additional connecting
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F,,
A 0 0
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xy

(5.87)

where Eb is the Young’s modulus for the beam.

If the local strain energy for an element is given by wu, and:

W L i = * L i (5.88)

then pre-multiplying (5.87) by uu and making the same substitution for the local 

displacement as above, gives the following:

wLj=hbEbl- 8  •
sc 0

s sc 0
2 2 

C  ~ S f\sc ---------- 0

0  0

h2 - h 2
12

- h 2
21

21
h2__

3

7 2c s

- s c  sc 

0  0

sc 
2 2 c -  s

(5.89)

where the substitutions A=bh, I-bh /12, c=cos(a), and s=sin(a) have been made in addition 

to the lumping of scalar terms. Multiplying out the three central matrices gives:

wLi=hbEbl'£  •

4 , 2 2 ( h 2) 2 2 2 2c + s  c l'2J s c - s  c l'2J S C ‘

(  3 3 >\
SC — S C

4 . 2 2s +s  c ' h 1' s 3c +

\  /
(  3 3 V / 2 ^sc — s c \{ h

SYMM 2 2 SC +

v ' 2 /
2 f * 2)

2 J l ' 2 J

(5.90)

Therefore from (5.86):

(5.91)

The trigonometric terms in equation (5.90) must therefore be summed over i, where i= l to 6, 

and a,i=(i-l)7u/3 radians. Summing these terms and substituting the values into (5.90) and 

subsequently into (5.91) gives:
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W, = —hbEhl - et ■L 4 »

9 + 3' h^
v /y

1 -
\ l )

/
rh' 2>

l /
/  A

f

( h )
2>

1 - 9 + 3
V J , V J , J

0 0
f 2 >

1 +

V y

(5.92)

If we now consider the strain energy in the continuum; the volume of the hexagonal unit cell 

=('l3/2)l2b, and therefore, from equation (5.85) the total strain energy in the continuum unit 

cell is given by:

Wc = - — l 2b -zT - 
c 2 2

r E  ̂
1 - v 2

1 V 0
V 1 0
0 0

1 -v
(5.93)

Therefore, equating equations (5.93) and (5.92), and simplifying gives:

/rh Y E „ ' b_ Mate = D (5.94)

where Mate and D are the elastic constitutive matrices for the beam and continuum 

respectively.

We may consider the Poisson’s ratio represented by the lattice system, through examining the 

ratio of terms Mate(i,2) and Mate(i,i). Therefore:

1 -
v* J

1
v  = v /y

3 + 3 + h

\ h

(5.95)

This can be rearranged in terms of h to give:

h = L | l - 3 v  
v + l

(5.96)

The relationship between the Young’s modulus of the continuum and the beam may be 

obtained by comparing term D(i,i) with the equivalent term in the beam Mate(i,i), allowing for 

the additional pre-multiplication terms as given in equation (5.94). Therefore:

l - v :
h Y E ^ 13

. s U
3+ —

\ h  )
(5.97)
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Substituting in (5.95) for v gives:

1 - v I J

3 +

And simplifying:
E b  V /  j

A
4

1 +

3 + (h 2 A
(5.98)

v/ y

2 \

3 +
v/ y  y

(5.99)

It should be noted that both equation (5.95) and (5.99) agree with those derived by Karihaloo 

et al. (2003), as previously given in equations (3.8) and (3.9), respectively.

The ratio of the Young’s modulus of the continuum ( E )  and the beam ( E t )  may then be 

written in terms of the Poisson’s ratio, v by substituting equation (5.96) into equation (5.99), 

and simplifying to give:

= 73(1- .A f l-3 v  
v + 1

(5.100)

When v=0.2 equation (5.100) gives E /E b ~ 0.8 which implies that the Young’s modulus value 

used for the beam element must be 1.25 times greater than the Young’s modulus of the 

continuum being modelled.

5.7 Summary and comparison of different failure criteria

This chapter has investigated various options for the lattice beam failure criterion. A brief 

overview of two existing criteria was initially given. These are the stress based criterion used 

by the Delft group and the strain based criterion used by Karihaloo et al. (2003). In order to 

avoid the use of empirical scaling factors, and also to try and achieve mesh orientation 

independence (i.e. an isotropic failure criterion), various criteria have been proposed and 

investigated. These criteria have included a Mohr-Coulomb criterion based on axial, shear and 

moment forces, a principal stress criterion, a Mohr-Coulomb criterion based on continuum 

stresses, and a modification thereof, and finally, a modified version of the M-C criterion 

based on beam stresses.
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In developing these new failure criteria, a series of proofs, validations and verifications have 

been completed. A brief summary of these investigations, together with the main assumptions 

and results, are given below:

Continuum equivalence and isotropy of the Mohr-Coulomb failure criterion

The equivalence between the continuum stresses and the mid-plane stresses of a beam, and 

the isotropy properties of the criterion were examined in this investigation.

The main assumptions made in this investigation are that:

• The lattice star (Figure 5.2) is fixed to the underlying continuum, at the nodal points, 

to which a stress field is applied.

• The displacements at the centre of the star are assumed to be zero.

• Each beam is effectively restrained rotationally by the flexural stiffness of the other 

five beams connected to each of its ends.

• The stress state is uniaxial.

The main results from this investigation are that:

• For v^O the Mohr-Coulomb criterion can never predict a perfectly isotropic failure, 

since the normal strains, zm at the beam mid-planes are not considered.

• When the major principal axis is half way between two elements (e.g. 6=30°), both 

elements become simultaneously critical and therefore fail at an effective stress equal 

to the continuum stress, f h only when the shear/normal strength ratio, fi= l̂3.

• For yW=Vi the ‘correct’ beam (most in-line with the principal stress axis) always fails 

first and the maximum degree of anisotropy (difference between beam stress and 

continuum stress), for a rotating principal stress, is approximately 7%.

• If h=l/yl3 (to model a global Poisson’s ratio of 0.2), then the shear stress calculated 

from the resultants matches the continuum shear stress when An=A/3.

Continuum equivalence and isotropy of the principal stress failure criterion

If the lattice represents an isotropic homogenous material, the most appropriate failure 

criterion becomes one based on principal stresses. This may be achieved if the normal strains, 

em are considered at the mid-plane of every beam.
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The main assumptions made in the development of this criterion are that:

• There are two ‘cross’ nodes located perpendicular to the direction of the beam at the 

mid-plane of the beam, or one in the case of a boundary element. This implies that the 

lattice mesh must have a regular periodic triangular configuration.

• The normal strain, em can be calculated from the displacements of these ‘cross’ nodes.

• The beams connecting the ‘cross’ nodes to the end nodes of the beam being 

considered are intact, and therefore the value of em calculated is representative of that 

in the underlying continuum.

The main results from this investigation are that:

• The principal stress criterion is isotropic for the two orthogonal cases of uniaxial stress 

considered, i.e. the magnitude and direction of the principal stress calculated at the 

mid-plane of each of the lattice beams, irrespective of their orientation, agrees very 

closely with the continuum stress state.

• The criterion is only truly accurate for the pre-damage elastic case, and as damage 

occurs the local Poisson’s ratio tends to zero and the most appropriate failure criterion 

becomes one which is based on beam stresses.

Modification of the Mohr-Coulomb criterion based on beam stresses to match 

continuum.

The purpose of this investigation was to establish whether a M-C based failure criterion could 

be developed, which was based on beam rather than continuum stresses, but which could also 

be modified so that it matched the true continuum stresses for a pristine lattice.

The main assumptions made in this investigation are that:

• The rotation is assumed to be zero due to the restraint of the five adjoining 

neighbouring elements.

• The stress terms for the beam and continuum may be compared, and the continuum 

stress values may be assumed to be correct.

• Uniaxial stress applies locally.

The main results from this investigation are that:
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• The stress components may be matched if two correction factors, pi and P2, are used 

to correct the axial and shear components of the beam stress, respectively.

Strain energy equivalence between lattice and continuum

energy stored in a lattice ‘star’ and the equivalent continuum unit cell, under a constant strain

The main assumptions made in this investigation are that:

• The dotted hexagon formed from the intersection of the lines normal to the beam mid­

surfaces represents the unit cell of the continuum, as illustrated in Figure 5.2.

• The strain energy stored in a continuum unit cell may be compared to the strain energy 

stored in the six ‘half beams emanating from the centre of the unit cell.

The main results from this investigation are that:

• In order to model a Poisson’s ratio of 0.2, the required height of a lattice beam

(assuming unit thickness) is h=lM3.

• When v=0.2 the Young’s modulus value used for the beam element must be 1.25 times

greater than the Young’s modulus of the continuum being modelled.

The seven failure criteria that have therefore been considered and discussed in this chapter are 

summarised in Table 5.1 below:

The geometric properties of the lattice beam have been derived from comparison of the strain

field.

Table 5.1. Summary of failure criteria investigation

Failure criteria Key Equations Assumptions
1. Delft

max

A W

• Shear force considered 
implicitly

• a=0.005

A = bh and W = —
6

2. Karihaloo et al. 
(2003) s  = -  A„cos0 + A..sin0 + l<2? i a.

• Strains calculated from beam
end node displacements. 

• as=0.005
3. M-C beam 

forces
M = o • Stresses calculated from 

beam forces.
• Axial stress includes 

component from centre 
moment.
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F M c 
cr = —  + — - 

Af W

x=Fl/An 
A^=A, A^A/3.

// = V3
4. principal stress

 ,cr, = -------------- h

O = D.£

+ r
Regular elastic lattice 
configuration.
em is obtained from 
displacements of ‘cross’ 
nodes.
Beams connecting ‘cross’ 
nodes with end nodes of 
beam are intact.

5. M-C • Regular elastic lattice
continuum configuration.
stresses • em is obtained from

= CT«  + f ° r: 0 ^ < />» displacements of ‘cross’
nodes.

E ( \ • Beams connecting ‘cross’
a i ( = X_ V2\SS(+VSJ nodes with end nodes of

beam are intact.

T{1 ~ 2(l + v f  ̂

II•

6. Modified M-C Main equations as 5 above, but: 
continuum

a ce = Eezf and

em is not used.

stresses = V3
2(1+ y ) ‘

7. Modified M-C Main equations as 5 above, but: 
beam stresses

= A  s 4

u,
where p x = and s^ = E b-j-  

E, 1
Where p 2 =

E„ 0 + v )

f  12 A l a

Nodal rotations assumed to 
be zero.
Axial and shear forces based 
on beam forces corrected to 
match the continuum values 
for elastic stage.
Ap=A, A^=A/3.

M = V3

and

s . = E ^ h2
I l 2a .

In order to compare the failure criteria summarised in Table 5.1, two lattice examples have 

been considered. The first example is a simple uniaxial tension ‘unzipping’ test undertaken on 

a 10x10 mesh with 1mm beam elements. The boundary conditions for this test are given in 

Figure 5.10 below.
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Elastic

‘Unzipping’
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Elastic 
section

8.660
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Figure 5.10. Boundary conditions for ‘unzipping’ uniaxial tension example

All of the elements are elastic (very high failure strengths) apart from the single line o f 20 

diagonal elements located in the central area of the specimen. These elements have been given 

a linear distribution o f beam strengths from 2 to 11.5MPa, in 0.5MPa increments. As a result 

of this, the failure mode of the mesh for all simulations is identical. This is an ‘unzipping’ 

mode from left to right, i.e. element 1 fails first, followed by element 2, 3 then 4 etc. The 

values of E and v  used in the analysis are 31255MPa and 0.2 respectively.

All of the failure criteria summarised in Table 5.1 have been implemented in the numerical 

code, and a comparison of the force-displacement response produced by each of the criteria is 

given in Figure 5.11 below.

Since the lowest beam strength is 2MPa, and the cross-sectional area of the mesh is 

approximately 10mm (assuming unit depth), the value of the force at the point o f first beam 

breakage should be approximately 20N. It can be seen from Figure 5.11 that the actual force 

at first beam breakage varies considerably between the different failure criteria. The value is 

31.6N for Karihaloo et al’s criterion, and 25.IN for the Delft criterion, but only 16.IN for the 

M-C criterion with no corrections to match the continuum stresses (criterion 3). When these 

corrections are considered (criterion 7) the strength at first beam breakage is 21.5N, which is 

far more accurate. As expected, the three remaining criteria, which are also based on the 

continuum stress values at the mid-plane o f the beam are all reasonably consistent, and are 

within approximately 7% of the expected value o f 20N. The most appropriate criterion is the
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principal stress criterion, which gives a strength value o f 19.8N at the point of first beam 

breakage.

Secant stiffness 
after 17 beams 
broken£ 20

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
D i s p l a c e m e n t  ( m m )

- e - 1 .  Delft - e - 2 .  Karihaloo et al. (2002)
—• — 3. M-C beam forces —• —4. Principal stress

X 5. M-C continuum stresses A 6. Modified M-C continuum stresses
a -  7. Modified M-C beam stresses

Figure 5.11. Force-displacement response o f ‘unzipping’ uniaxial tension example

The order o f beam breakages, and hence, the degradation of the lattice stiffness, is identical 

for all o f the simulations presented in Figure 5.11. A different secant stiffness line may 

therefore be drawn from the origin to represent each of the 20 stages o f damage that occur 

during the complete failure o f the specimen shown in Figure 5.10. The secant stiffness line for 

the lattice after 17 beams have been removed, in an ‘unzipping’ manner, is shown in Figure 

5.11. The force and displacement values of the lattice required to cause failure in the next 

beam (beam 18) for each of the different failure criteria may then be compared along this line. 

In addition, if the relative effects o f the different criterion are compared along all of the secant 

stiffness lines, then it can be observed from Figure 5.11 that the relative effects o f the 

different criteria remain reasonably constant until the end of the simulation when they deviate 

slightly. This deviation is probably due to the change of failure mode that occurs towards the
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end of the simulation when the remaining beams are likely to experience greater rotational

effects.

As a result of the above, the post-peak response given by the different failure criteria show 

significant variation in the fracture energy. It should be noted that criteria 5 and 4 have only 

been used for the elastic stage o f the analysis. After the first beam has broken, these criteria 

have been replaced by the modified M-C continuum stress criterion (criterion 6). The reason 

for this switch is the effect that beam removal has on the accuracy of the calculation of the 

normal strain from the ‘cross’ nodes, as previously discussed.

The second example considered is a more realistic uniaxial tensile experiment on a doubly 

notched 100x58 element lattice with 1mm beams. The boundary conditions for this example 

are illustrated in Figure 5.12.

F,u

 1____________________________

8mm notch

Regular 
lattice with 
1 mm beams

▲
100

50.2

Figure 5.12. Boundary conditions for uniaxial tensile experiment on a doubly notched 100x58 lattice

mesh with 1 mm beam elements

The same values of E and v  have been used for this example as the previous one, but the 

beam strengths have been obtained from a statistical strength distribution. The statistical 

distribution used is given in equation (6.9) and is justified in full under section 6.7. The 

lowest beam strength in this distribution is 2MPa. It should be noted that exactly the same 

strength distribution (same input file) has been used for all o f the simulations presented 

below.

This example is primarily aimed at investigating the effect that the choice of failure criterion 

has on the fracture pattern. The most appropriate criteria to investigate and compare, at a stage
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of significant damage, are therefore considered to be the criteria based on stresses within the 

beams. The example outlined above has therefore been run with four different failure criteria. 

The four criteria considered are the Delft criterion, the strain based criterion of Karihaloo et 

al. (2003), the newly proposed M-C based criterion incorporating axial, shear and mid-beam 

moment contributions, and finally the version of the M-C beam stress criterion which has 

been corrected to match the continuum stresses in the elastic state. The fracture patterns 

produced by each of these criteria are shown in Figure 5.13 below. All of the fracture patterns 

are taken after 700 beams have been broken and removed, and the displacements have been 

scaled by 300 for the purpose of clarity

(b) 2. Karihaloo et al. (2003)

(c) 3. M-C beam forces (d) 7. Modified M-C beam stresses

Figure 5.13. Fracture patterns for different failure criteria after 700 beams have broken

It can be seen from Figure 5.13 that the fracture patterns for the Delft and Karihaloo et al’s 

criteria are very similar to each other. Both of these criteria have located an upper and lower 

path of weak beams from the statistical beam strength distribution, and as a result two distinct 

overlapping cracks have formed. The modified M-C fracture pattern has also captured the 

same two cracks, with a slight deviation in the upper crack, but the original M-C criterion, 

which includes the beam mid-span moment contribution, shows only the upper crack. This 

upper crack (Figure 5.13 (c)) has localised to a far greater extent that the other cracks in 

Figure 5.13, and has therefore developed into a macro crack which will eventually lead to 

complete specimen failure.
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The complete force-displacement response for all four failure criteria is given in Figure 5.14 

below:
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(b) 2. Karihaloo et al. (2003)
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Figure 5.14. Force-displacement response for different failure criteria

In light of the observations made above, it is unsurprising therefore that the criterion which 

produces the lowest fracture energy response is criterion 3; the M-C criterion based on beam 

forces. This is considerably less than the fracture energy of the other three responses, due to 

the reduced amount of distributed cracking that occurs prior to localisation and development 

of the main macro crack. This is most likely due to the effective stress (equation (5.5)) in the 

beams being overestimated by the inclusion of the moment contribution, in addition to the 

shear and axial components, in the failure strength criterion. The order of the remaining three
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criterion in terms of the amount of fracture energy required for specimen failure agrees with 

that suggested by the simpler example presented in Figure 5.11. The strain based criterion of 

Karihaloo et al. (2003) is seen to give the most ductile response. The increased ductility of 

this criterion, over the Delft criterion, is probably due to the fact that the criterion considers 

the difference in the beam end rotations, whereas the Delft criterion considers the maximum 

end moment.

Figure 5.15 gives the force-displacement values and secant stiffness of the lattice after 700 

beams have broken and their stiffness have therefore been removed from the total stiffness of 

the system.

200
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-  o  1. Delft
-  - o -  -  2. Karihaloo et al. (2002)
— ■—  3. M-C beam forces
- - - A- - - 7. Modified M-C beam s tre s s e s

Figure 5.15. Force-displacement values and secant stiffness o f lattice for different criteria after 700

beam removals

The graph therefore illustrates the result that would be obtained at the next iteration if the 

damaged lattices, as shown in Figure 5.13, were loaded to the point at which the next beam to 

fail becomes critical. This occurs when the effective stress in that beam equals the failure 

strength of the beam. Since all of the beams in the single data file used for this comparison 

have different beam strengths, and the order of beam breakages is generally different for each 

of the failure criteria, the element number of the next beam to break, and therefore its 

strength, will be different for each of the four cases considered here. As a result, the failure 

criteria cannot be compared in respect to the absolute value of the force and displacement at
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the point of fracture of the 701st beam, however, the value of the secant stiffness is significant. 

This indicates the effect that the removal of the first 700 beams has had on the reduction of 

the overall global stiffness of the lattice system. Figure 5.15 shows that the secant stiffness is 

greatest for Karihaloo et al’s criterion, followed closely by the Delft criterion, then the 

modified M-C criterion, and finally the modified M-C criterion. The secant stiffness for the 

latter is considerably less than that given by the three other criteria.

The stiffness of the lattice at any one point in its dissolution (damaging process) gives an 

indication of the diffusivity of damage, with more diffuse damage leading to a smaller 

reduction in the original elastic stiffness. Given this, the results of Figure 5.15 therefore agree 

with the fracture patterns observed in Figure 5.13. Karihaloo et al’s criterion gives the greatest 

diffusivity and highest secant stiffness, and the lowest stiffness is given by the M-C criterion 

based on beam forces, which can be seen to produce the most localised cracking pattern with 

the lowest diffusivity of damage.

5.8 Conclusions and future work

This chapter has given an overview of the existing failure criteria that are used for the lattice 

modelling method, and has presented some new alternatives. The properties of the newly 

proposed criteria have been studied in some detail, through a series of investigations. These 

investigations, which have examined the isotropy of the criterion and the equivalence between 

beam and continuum stresses, have been summarised in section 5.7.

The newly proposed and existing criteria have then been compared in two separate examples; 

a simple 10x10 element lattice which fractures in a controlled ‘unzipping’ manner, and a 

more complex but realistic example of a uniaxial tension test on a 100mm by 50mm mortar 

plate, with randomly distributed beam strengths obtained from a statistical distribution.

Both examples have illustrated that the choice of failure criterion is extremely important since 

it exercises great influence over the results obtained for a lattice simulation with a given 

heterogeneity. The ‘unzipping’ example shows that even when the order of beam breakages is 

identical for all criteria, the mechanical force-displacement response obtained varies 

significantly depending on the criterion chosen. The second example has identified that when 

a more realistic lattice simulation, with random heterogeneity, is considered; the fracture 

patterns produced also differ significantly for the different criterion used. Since the force- 

displacement response of the system is dependant on the nature of the fracture pattern as well
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as the criterion implemented, the fracture energy has also been shown to vary considerably 

depending on the failure criterion adopted.

Since it has been shown that the choice of criterion has a significant effect on both the fracture 

pattern and the fracture energy emitted, it is important that the criterion implemented has an 

underlying physical basis. If the mid-planes of the beams in a lattice are considered to 

represent particle interfaces, and furthermore, if the beams are considered to only break at 

these particle interfaces, then a failure criterion based on the theory of Mohr-Coulomb may be 

considered to have such a physical basis. The value of fi which has been derived from 

isotropic considerations in this chapter also has a physical representation, since it is defined as 

the axial shear strength ratio at an interface.

The failure criterion which therefore offers the greatest physical basis is the modified Mohr- 

Coulomb criterion based on beam stresses (criterion 7). In addition, this criterion may also be 

considered to be the most accurate of the four criteria which are based on stresses or strains 

obtained solely from the displacements of the end nodes of the beam being considered. This is 

due to the fact that the axial and shear stresses at the mid-surface of the beam have been 

theoretically equated and corrected to match the corresponding values at the same location in 

the continuum that the beam is intended to represent.

Future work should further investigate the relationship between the discrete lattice and the 

underlying continuum. In this respect, non-local failure criteria may be developed which take 

information from the displacement field of surrounding nodes. Alternatively, attention may be 

given to understanding the relationship between the moment component in a lattice beam and 

the micro rotation that this relates to in a higher order micropolar (Cosserat) continuum.
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Chapter 6 

Stochastic regularisation of lattice modelling

6.1 Introduction

The lattice beam modelling method has been shown to have the ability to offer very good 

qualitative observations of fracture processes in cementitious materials, as described in 

Chapter 3. However, the quantitative properties of the numerical method are somewhat 

limited, since it has been shown to exhibit both mesh orientation and mesh size dependency 

(Schlangen and Garboczi, 1997), in addition to being overly brittle in respect to the predicted 

force-displacement response (Schlangen, 1993).

The previous chapter has focused on improving the mesh orientation dependency of the 

method by developing failure criteria with improved isotropy characteristics. This chapter 

focuses on enhancing the quantitative force-displacement response provided by the model. 

Specific attention has been given to ensuring that the numerical results are more 

representative of experimental data, and that they are also objective i.e. independent of the 

mesh size used in the simulation.

The pathological mesh size dependency of the ‘traditional’ lattice method is initially 

highlighted, through means of a simple tensile test on a concrete specimen containing 

mesostructure. A novel theory is then presented which is aimed at achieving a unique 

regularised mechanical softening response from the lattice through employing a statistical 

distribution of beam strengths (Joseph and Jefferson, 2006b and 2007).

6.2 Mesh size dependency

The mesh size dependency of the discrete lattice modelling method is an issue which has 

already been raised in the literature, as outlined in section 3.7.3. Schlangen and Garboczi 

(1997) examined the objectivity of the method for simple regular triangular lattice meshes 

with different beam length resolutions. In this study heterogeneity was modelled in a simple
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manner by randomly assigning low (1.0) or high (3.0) strengths to the individual beams in the 

ratio of 1:3. It is therefore worth investigating whether the method of representing the 

material heterogeneity significantly affects the degree of mesh size dependency. A uniaxial 

tensile test on a 50mm square concrete specimen, doubly notched with 3mm deep notches, 

has therefore been considered. The heterogeneity is explicitly represented by a mesostructure 

overlay, generated in the manner described in section 4.2.2.

The concrete specimen has then been discretised into three different regular triangular lattice 

meshes. The beam length resolutions of these three meshes are 1mm, 0.5mm and 0.25mm, as 

shown in Figure 6.1 (a), (b) and (c), respectively.

(c) 1 = 0.25mm (A,=200) (d) P -  8 curves for varying beam lengths

Figure 6.1. Crack patterns and force-displacement curves for 50mm square notched specimens, 

modelled using varying lattice beam lengths of 1mm, 0.5mm, and 0.25mm.
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The prescribed aggregate content, P* for the mesostructure overlay shown in Figure 6.1 is 

55%, and the maximum and minimum aggregate diameters are 8mm and 2mm, respectively. 

The stiffness and strength properties of the three mesostructure phases are Eagg = 87.5GPa, 

Emat = Em  = 31.3GPa,ft,agg = 10MPa,ft>mat = 5MPa, and ft, in  = l.SMPa. These have been 

taken to be the same as the typical parameters used in the literature for lattice simulations with 

particle overlay, as given in Table 3.1 (van Mier and van Vliet, 2003). The boundary 

conditions employed for this uniaxial tensile experiment are identical to those given for the 

simple tensile experiment presented in the previous chapter (Figure 5.10). The failure 

criterion implemented for this particular example is the Delft criterion as given by equation

(5.1), with a=0.005.

The force-displacement results for the three lattice discretisations are given in Figure 6.1(d). 

These results show that both the peak force and the fracture energy of the lattice system 

reduce as the mesh size decreases or the non-dimensional lattice size, X as defined in equation

(6.1), increases. The peak force reduces by approximately 12.5% from 48N to 42N as the 

lattice resolution reduces from 1mm to 0.25mm. The fracture energy also reduces by 

approximately 50% between 1mm and 0.5mm resolution, and a further 50% as the beam 

length reduces from 0.5mm to 0.25mm. It should also be noted that the load-displacement 

response for the 0.25mm regular lattice simulation agrees well with results published recently 

by Prado and van Mier (2003) on 60mm square specimens with an aggregate content, TV, of 

51%, and similar phase properties.

Since the fracture pattern for all three simulations is a horizontal crack with an approximately 

equal amount of deviation, then the crack area (considering unit depth) may also be 

considered to be approximately the same for all three cases. As a result, it may therefore be 

concluded that the specific fracture energy (energy released per unit area of crack), G/, is not 

preserved with mesh refinement. The lattice method may therefore be deemed to exhibit 

pathological mesh size dependence.

The trend described above may be illustrated schematically for the case of a fine and coarse 

lattice mesh as shown in Figure 6.2. The fine mesh consists of 2n x 2n elements which are of 

length, /, and the coarse mesh is made up of n x n elements of length 21. The geometric size of 

these mesh are therefore the same. In order to preserve the strain energy equivalence of the 

regular lattice with the continuum, as described in section 5.6, the cross-sectional height (h), 

and therefore area (A), of the beams must be proportional to the beam length, / (equation
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(3.10)). The cross-sectional area of the short beams is therefore A, and that of the long beams 

is 2A.

F,u

Force

F/4n

D isplacem ent
u/2n

Elastic . 
section i

F,u
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t= l
h-*i
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Elastic j  
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‘U nzipping’
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Elastic ^  
section

2n
‘U nzipping’ 
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Figure 6.2. Schem atic illustration o f  the effect o f  mesh resolution and lattice beam size on the 

approxim ate strain energy stored  in a  single beam  for (a) a 2n x 2n lattice and (b) an n x n lattice

If these two meshes are then loaded in uniaxial tension with a total force, F and an upper 

boundary displacement, u, it may be assumed that constant strain and stress states are set up. 

The axial force in a single diagonal beam is then approximately F/4n and F/2n, and the 

elongation of a single diagonal beam, assuming identical stiffnesses, is u/2n and u/n, for the 

fine mesh and coarse mesh, respectively.
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From the shaded areas on the local element force-displacement graphs shown in Figure 6.2, it 

can be seen that the elastic strain energy stored in the longer beams is therefore four times the 

energy stored in the smaller beams. In order for the global load-displacement results to be the 

same for both mesh the total amount of strain energy released from all beams during the 

fracture process (i.e. fracture energy) must be equal. The total strain energy includes both 

strain energy released from the fracturing beams themselves and the strain energy released 

from the elastic unloading of the beams surrounding the fractured beam.

Assuming that the crack propagates in a controlled manner from one side of the specimen to 

the other along the central ‘unzipping’ region, then the number of beams required to break for 

complete failure is 4n and 2n for the fine and coarse mesh, respectively. If uniform stress and 

strain conditions are assumed to hold for the central undamaged section, which gradually 

diminishes as the crack propagates, then the total elastic strain energy released from the actual 

beams that break in the coarse mesh is twice as large as that from the fine mesh. This is due to 

the fact that during cracking, even though twice the number of beams break in the fine mesh 

compared to the coarse mesh, the elastic strain energy stored in each of those beams is only 

about a quarter of the energy stored in the larger beams.

When a beam breaks there is also a release of strain energy in the surrounding beams. In order 

for the two meshes shown in Figure 6.2 to provide objective results the strain energy released 

from the elastic unloading of the beams surrounding the fractured beam should be 

approximately twice as large for the fine mesh as it is for the coarse mesh. However, due to 

the significant lateral cross-linking that is prominent within the 2D lattice this is not the case.

The cross-linking is responsible for very significant amounts of stress redistribution following 

the removal of a beam, and as a result, the elastic unloading of the elements above and below 

the removed beam only occurs to a very limited degree in the localised zone around the wake 

of a crack. This is illustrated in Figure 6.3(a) for the case of a central 50mm slit-like cut 

placed in a 200mm square lattice with 0.5mm beams. The upper boundary has been subjected 

to a prescribed displacement of 0.01mm, and all resulting nodal displacements have been 

scaled by a factor of 1000 for the purposes of clarity. It should be noted that an analytical 

solution for a slit-like cut in an ‘infinite’ elastic body is available, as given by Karihaloo 

(1995). It should also be noted that the slightly unsymmetrical solution given in 6.3(a) is 

believed to be due to computational round-off. This stress redistribution is in direct contrast to 

the case of parallel multi-element strands (chains) which fully unload following the fracture
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:• •  ••

of one element of the strand. The fracture energy dissipation for this case would therefore be 

independent of mesh size resolution, as illustrated in Figure 6.3(b).
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Figure 6.3. Illustration of the effect of cross-linking on stress redistribution: (a) Large amount of stress 

redistribution in 2D lattice and (b) no stress redistribution in a parallel chain model

In respect to the peak forces generated by the three mesh resolutions given in Figure 6.1, one 

would expect these to be equal, if the peak was associated with the point at which the first 

beam broke. This is because the material strengths of the three mesostructure phases have 

been kept identical for the three simulations, and the stress and strain in the elements at the 

elastic stage are expected to be the same irrespective of element length. This may be seen if 

we refer once again to the simplified example of Figure 6.2, where despite the forces and 

elongations being different in the two beam resolutions, the stress and strain are equal, and are 

given as F/4nA and u/2nl, respectively. However, from Figure 6.1(d) it can be seen that there 

is an approximate decrease of 12.5% in the peak strength between the coarse and fine lattice 

meshes. This is because there is, in fact, some pre-peak hardening, and the amount of 

hardening is different for the different lattice resolution meshes.

One possible reason for this may be the effect that the lattice resolution has on the 

representation of the mesostructure; i.e. despite the prescribed aggregate content (Pk=55%) 

being exactly the same for all three simulations shown in Figure 6.1, the actual ‘modelled’ 

content varies from 28% for 1=1 mm to 45% for 1=0.25mm. This is because the thickness and 

thus area of the ITZ layer reduces with beam length, /. A finer lattice resolution therefore 

leads to a finer representation o f the weak ITZ layer surrounding the aggregate particles. 

However, a more likely reason is the fact that a finer lattice is also better able to capture the
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high stress concentrations that occur at crack tips, as found in continuum fracture mechanics. 

Therefore, if a single ITZ beam is removed at the early stages of pre-peak hardening, when 

diffuse damage occurs at distributed aggregate boundary locations (van Mier, 1997), then 

higher stresses will be experienced by the neighbouring beams in a fine mesh when compared 

to a coarse mesh. This makes the surrounding beams in the fine mesh more susceptible to 

fracture than those in the coarse mesh. This is believed to result in an avalanche effect and an 

earlier onset of localisation, as shown by the sharp drop-off in the load carrying capacity of 

the 0.25mm lattice when compared to the 0.5mm, and in particular the 1.0mm lattice, in 

Figure 6.1(d). This effect is also further exacerbated in the example considered in Figure 6.1 

by the stress concentrations caused by the pre-fabricated notches. It is therefore believed that 

the peaks would show closer agreement for an un-notched specimen.

Finally, it may be concluded that the overall degree of mesh size dependency shown by the 

example in Figure 6.1 is similar to that obtained in the simpler example studied by Schlangen 

and Garboczi (1997), as shown in Figure 3.12. The presence of mesostructure in the form of 

an explicit particle overlay does not appear in itself to eradicate or even reduce the 

inobjectivity of the model.

6.3 Options for regularisation

Having identified a major limitation of the traditional lattice model it is worth considering 

what options for regularising the specific fracture energy release may be gleaned from the 

literature. The main options that have been identified are:

1. Introducing a cohesive stress-strain or stress-crack opening relationship at the local 

element level, which has post-peak softening.

2. Using scaling factors to correct the peak load and ductility of the global load- 

displacement response.

3. Linking the smallest mesostructure particle size to the element size used in the mesh.

4. Using statistical distributions of beam strengths or stiffnesses.

The first option is that which is most commonly used in traditional finite element models. In 

fact the resolution length effect described in section 6.2 above is consistent with that found in 

finite element solutions for fracturing materials, and is the reason for the introduction of the 

Bazant and Oh crack band model (1983). Implementing this model within the lattice method 

would require the introduction of a tension softening relationship for all beams. Solving for
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the internal displacements at every load step would then become a non-linear process. Whilst 

this is possible, and has in fact been implemented for the mortar phase by Karihaloo et al. 

(2003), the method significantly reduces the computational efficiency of the model, and as a 

result further increases its computational demand, which is already one of its main limitations 

(section 3.7.1). It should be noted that this method of achieving regularisation is also used in 

the RBSM (Bolander and Saito, 1998) as illustrated in Figure 2.24. However, the number of 

spring connections is far less in this model than the number of beams in a typical lattice 

model, and therefore the computational demand created by the non-linear solution is 

significantly less.

In addition, it is felt that regularising the lattice beam model in this manner compromises one 

of the fundamental philosophies of the method, as the author perceives it; namely, that the 

individual lattice elements should be of such a size that they may be considered to be brittle; 

i.e. the constitutive response of the small volume of material that each beam represents may 

be considered to be brittle when compared to the constitutive response of the structure as a 

whole. It is interesting to note that the systematic rupture of brittle elements during the 

dissolution of a lattice causes a discontinuous energy release which reflects the ‘energy 

jumps’ observed during cracking of actual experimental specimens. This is illustrated by the 

stepwise form of the softening tail in Figure 6.5(b).

The second option involves the use of scaling parameters to correct for the differences in peak 

load and ductility caused by the choice of lattice resolution. The scaling factors may be 

applied within the model at the failure criterion stage, as for the a  and p  factors used in the 

Delft criterion (equations (3.14) and (3.15)). Alternatively, the outputted force-displacement 

curves from the model may be scaled during the post-processing stage according to the lattice 

resolution used in the simulation. These scaling factors will be different, however, for every 

lattice resolution used. This has been addressed by physicists studying stress driven rupture in 

central force (pin jointed truss) lattice systems, where the lack of uniqueness in the system 

macro parameters, such as peak strength, and specific fracture energy, is an issue which has 

been recognised for some time (Krajcinovic, 1996). Here the size effect has been related to 

the non-dimensional lattice size X, which is defined as:

A = L / l  (6.1)

where L represents the geometric size of the lattice in the direction of uniaxial stress, and / 

represents the length of a link. Finite scaling laws may then be established whereby response 

curves for lattices of different size X collapse onto a single master curve plotted in the FX'P vs.
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uXy coordinate system. The exponents /? and y are fitting parameters that may be determined 

from multiple Monte-Carlo type numerical simulations, as described by Krajcinovic (1996). 

Whilst it is possible to correct the peak and tail of load-displacement graphs using scaling 

factors, the scientific basis for this is weak, and it is unlikely that the factors will be unique; 

i.e. they are likely to vary for different representations of heterogeneity, for example.

The third possibility for ensuring objectivity involves linking the smallest mesostructure 

particle size to the element size used in the mesh. For example, the smallest particle size 

modelled may be taken to be two or three times the element size. As the resolution of the 

simulation is increased and the element size is reduced, the size of the smallest mesostructure 

represented in the model is also reduced. The net effect of this is that the actual percentage of 

aggregate content modelled increases significantly with increasing lattice resolution. Prado 

and van Mier (2003) have shown that an increase in aggregate content, Pk, increases the 

fracture energy values until percolation of the weaker bond (ITZ) phase occurs. The main 

reason for the increase in fracture energy is believed to be due to the greater deviation that the 

crack must take in order to propagate across the specimen. If we consider the fracture pattern 

shown in Figure 6.1(c), then it becomes intuitive that if an additional amount of smaller 

strong aggregate particles are added to the simulation then these would serve to further 

‘block’ the propagation of the crack. This would increase the overall tortuosity of the final 

through crack and also increase the fracture energy required to create this crack.

Increasing the percentage of aggregate inclusions in the manner described above is more 

likely to mask the mesh size dependency effect rather than correct for it, however. In addition, 

a method of regularising the fracture energy which is based on altering the total crack area is 

not going to achieve true objectivity in respect to the specific fracture energy, G j ; i.e. the 

fracture energy per unit area of crack.

The final option for regularisation, as proposed here, involves the use of some form of 

statistical distribution of beam strengths or stiffnesses. The most common form of 

representing material inhomogenity, currently used in the literature, is the particle overlay 

method as described previously in section 3.4.1. In this method pre-defined material strength 

and stiffness properties are assigned to the three separate phases that the concrete is assumed 

to comprise. Any stochastic variation of material properties within individual phases are 

omitted, since all elements of a particular phase are assigned the same properties. In real 

experimental specimens, of course, the strength and stiffness properties of these three phases 

are likely to fluctuate significantly and show considerable variation. This raises the possibility
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of including a statistical distribution of beam strengths within the three mesostructure phases. 

Furthermore, due to the variation in material properties, the distinction between the different 

phases becomes less clear, and the possibility of replacing the mesostructure with a single 

statistical distribution may also be considered. In fact, van Mier et al. (2002) have already 

completed some early work in this area, as reviewed in section 3.4.2.

The use of some form of statistical variation of beam strengths therefore raises two interesting 

questions. Firstly, is it possible to achieve realistic force-displacement responses that are 

representative of actual experimental values? Secondly, through linking the statistical 

distribution of beam strengths to the element size is it possible to ensure that these force- 

displacement responses are independent of the mesh resolution?

6.4 ID  parallel bar m odel

In order to address these questions it is first of all worthwhile considering the simplified case 

of a one dimensional parallel bar model. Since there is a tendency for cracks to localise into a 

single layer following the onset of damage, a uniaxial test on a two dimensional specimen, as 

given in Figure 6.1, may be considered in a simplified manner as a combination of an elastic 

region and a one dimensional parallel bar model, as illustrated in Figure 6.4.

Elastic region

Fracture process 
zone(FPZ)

Figure 6.4. Simplified representation of fracture process zone with ID parallel bar model

The N  bars in the parallel bar model may then be considered to represent the elements in the 

fracture process zone over which the strain is assumed to localise. Krajcinovic (1996) 

discusses, in some detail, the application of a Weibull distribution o f bar strengths to N  bars in 

a loose bundle parallel bar model. Interestingly, the macro mechanical response of such a 

system under uniaxial tension is similar to that obtained from experimental observations on 

concrete specimens; i.e. a linear elastic region followed by pre-peak hardening, and post-peak 

softening. The form of the response curve is governed by the Weibull shape parameter, m,
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which is an indication of the material’s strength variability; the larger the value of m the 

smaller the variability, and the more brittle the response of the parallel bar model.

Alternatively, it is also possible to work from a given softening curve back to a statistical 

distribution of bar strengths. A standard softening curve that is commonly used to represent 

the stress-strain relationship in the damage zone is the exponential softening curve, as 

illustrated in Figure 6.5(a). It can be seen from the experimental result in Figure 3.13 and also 

van Mier (1997) that the exponential function is suitable for capturing the tensile softening 

behaviour of cementitious materials. The softening relationship may therefore be written as:

_ c

a  = f te 'e°-£' (6.2)

where f  is the average tensile strength, c\ is the softening curve constant, et is the strain at 

peak strength (et=f/E), and £q is the failure strain.

The constitutive relationship may also be written in terms of the damage parameter, co as:

<j = (l -  cd)Es (6.3)

where E is the Young’s modulus of the material.

On the damage surface s=Cand (6.2) and (6.3) may be combined to give:

- C  ^ ~ E ‘

<t = (1 -a>)E$ = f ,e  V e ' 

which may be simplified and written in terms of co to give:

co = \ - ^ e  (6.4)
(

The aim of the statistical softening model is therefore to replace the softening curve in each 

bar by a series of bars, which break at different strains, such that the proportion of broken bars 

in the zone of interest approximates the damage variable, co. If there are N  bars and at any 

point i bars are broken, and the strain at which a particular bar breaks is denoted by £, then 

noting that the current total strain on the damage surface is that associated with the strain at 

which bar i breaks, equation (6.4) may be written in a discrete form, giving:

co = j-= ° fp (O d £  = (6.5)
€/ ^  i

which is a non-linear equation to be solved for £.
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(a) (b)

Figure 6.5. (a) Target idealised exponential softening curve, (b) Typical macro-mechanical response

from discrete parallel bar model.

If a constant E-value is assumed for all bars in the FPZ then the bar strengths obtained from 

the solution of £  for n=l to N  may be placed back into the parallel bar model. A typical 

response curve obtained from the model is shown schematically in Figure 6.5(b). In order for 

this response to be objective it should be independent of the bar length, I.

The key to achieving regularisation is maintaining an average-stress, versus crack opening 

displacement, u at localisation, irrespective of the resolution length, /. If this criterion is to be 

satisfied, then Go must be a function of element length, as in the Bazant & Oh (1983) model;

£  n =
I

(6.6)

where uo is the total crack opening at failure, and / is the length of elements in the fracture 

process zone.

Assuming that uo is an actual material parameter, Go is therefore inversely proportional to the 

element length, /. The value of Go specified on the tail of the softening curve (Figure 6.5(a)) 

therefore changes according to the element length being used. Furthermore, the distribution of 

bar strengths obtained from this specified softening curve, as given by equation (6.5), also 

changes with element length. As a result it is possible to maintain a global softening response 

from the model that is independent of the length of the elements in the FPZ.

It should be noted that a simple exponential decay function has been used above rather than a 

Weibull function, since the Weibull function does not allow the softening tail to be scaled 

whilst keeping the peak the same.
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6.5 2D lattice m odel w ithout m esostructure

The theory presented in the previous section may then be applied directly to a two 

dimensional lattice model subject to uniaxial tension, as illustrated in Figures 6.6 and 6.7 

below. Figure 6.6 shows enlarged crack patterns for a notched 100mm by 50mm specimen 

which has been discretised using three different element lengths; 2mm, 1mm and 0.5mm. The 

beam failure strains, £  have been obtained by solving equation (6.5) for i = 1 to N, where N  is 

the total number of elements in the lattice mesh for the particular beam length resolution 

under consideration. The values off  and cj have been taken to be 2MPa and 5.0, respectively, 

and the value of eo has been calculated from equation (6.6) for the chosen beam length, / and a 

crack width opening, uo o f 0.2mm. The beam strengths have then been obtained from the 

beam strains by multiplying by the Young’s modulus of the material, taken to be that of the 

matrix (mortar); E = 31255MPa. Finally, the full range of beam strengths has been assigned 

to all beams in the specimen in a random manner. It should be noted that the failure criterion 

implemented in this simulation and the remaining simulations in this chapter is the Mohr- 

Coulomb criterion based on beam forces (criterion 3 in Table 5.1). It should also be noted that 

the shear area has not been corrected (An = A), and ju has been taken as 2.

1=2 mm

1=1 mm

1=0.5 mm

Figure 6.6. Enlarged crack patterns for three different beam length discretisations of a 100mm x 50mm

notched specimen subject to uniaxial tension

It can be seen from Figure 6.6 that whilst the finer resolution lattice clearly shows more crack 

information, including some crack branching, the crack patterns for all three simulations agree 

reasonably well and exhibit similar amounts of fluctuation across the width of the specimen. 

Figure 6.7 shows, however, that the macro mechanical response of the system remains 

inobjective. A clear trend of diminishing fracture energy with decreasing beam length is still 

evident and this is of the same order as that observed originally for the traditional lattice 

model with mesostructure (Figure 6.1). The peak force for all three simulations is of the right 

order for a 100mm wide specimen, given an f  of 2MPa and allowing for the reduction due to
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the presence of notches. The value of the crack opening displacement, uo is, however, 

approximately two orders of magnitude less that the 0.2mm specified in the target softening 

curve. This indicates that all three force-displacement responses are overly brittle.

1=2 mm 
1=1 mm 
1=0.5 mm

160

140

w  100

0.0015 0.0020 0.0005 0.001

Dis placement (mm)

Figure 6.7. Force-displacement graph for three different beam length discretisations of a 100mm x 

50mm notched specimen subject to uniaxial tension

The main reason for the over-brittleness and lack of objectivity observed above is that the 

parallel bar model is incapable of capturing the spatial stress concentrations and re­

distributions that are prevalent within the two dimensional lattice model.

ftb

Decreasing I

i/N

Broken beams

Figure 6.8. Illustration of beam strength (ftb) variation with damage for varying lattice beam length

The adjustment of e0 to account for the lattice beam length used in the discretisation (eqn. 

(6.6)) does increase the strength o f the strongest beams significantly, as illustrated in Figure 

6.8. This does not, however, significantly influence the mechanical response during failure, 

since the propagating macro-crack tends to follow the path of ‘weakest resistance’ rather than 

localising into a pre-defmed single layer of beams, as per the assumption made in Figure 6.4. 

As a result, only the lower portion of relatively low strength beams, as encircled in Figure 6.8,
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are actually broken in the simulations. This is the reason for the over-brittleness of all three 

responses in Figure 6.7. In addition, since the strength difference between beams of varying 

length is very small in the lower region of the exponential curves of Figure 6.8, the trend of 

diminishing fracture energy with element length has not been corrected by any significant 

degree.

6.6 RM E (R epresentative m aterial elem ent)

In order to adjust the one dimensional statistical regularization theory for application to a two 

dimensional lattice, it is useful to introduce the concept of a representative material element 

(RME). An RME is defined here as the smallest region of a specimen domain over which the 

full range of material strength variation may be considered to exist. In respect to the discrete 

lattice mesh the RME is the smallest area of lattice over which the full array of beam 

strengths may be found.

Since the lattice beam strengths are considered here to represent bond strengths within phases 

of the continuum; i.e. weak beams representing ITZ regions and strong beams representing 

aggregate regions, then the size of an RME is intrinsically linked to the size of an RVE 

(Representative volume element), commonly used in multiscale continuum FE models. It 

should be noted that the size of the RME, as for the RVE, is therefore considered to be linked 

to the degree of heterogeneity contained within the material. For a material containing a 

mesostructure, such as concrete, the maximum aggregate size is commonly used as a measure 

of the degree of heterogeneity. An RME size, in the order o f 3-5 times the maximum 

aggregate size, as suggested for the case of the crack band model by Bazant & Oh (1983), has 

therefore been implemented in this model.

Regular triangular lattice of n beams

 i____

Specimen

RMEs

Figure 6.9. Division of specimen domain into RMEs containing n beams

The total discretised domain has therefore been segregated into RME regions as shown in 

Figure 6.9, and the full range of beam strengths, as obtained from equation (6.5), have been
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distributed randomly over each and every RME. It should be noted that an RME is 

representative of a materials make-up rather than its constitutive behaviour, as is the case for 

an RVE. As a result, an RME is considered to exist post-localisation, unlike an RVE which is 

considered to break down after the strains have localised (Gitman, 2006), as described in 

section 2.5.2.

6.7 Double strength distribution over an RME

The challenge of achieving objective results in a two dimensional lattice may now be 

specifically considered as the need to regularize the energy released during damage of any 

given RME.

The number of beams that are fractured during complete failure of an RME, nw is given by;

1.13na = amn with: —=■ < a a < 1 (6.7)

where n is the total number of beams in an RME, and is the proportion of the total number 

of beams that are fractured.

The actual value of nw depends on the amount of fluctuation or the tortuosity that the crack 

exhibits as it propagates through the RME, and also the amount of distributed beam breakages 

that occur prior to crack localisation. The lower limit on am is therefore derived for the case of 

zero tortuosity whereby a single horizontal row of diagonal elements break, as illustrated in 

the unzipping example shown in Figure 5.10.

If the damage is now considered to be complete (i.e. co=l) when nm beams (rather than n 

beams) have broken, then equation (6.5) may be re-written as;

—c  ^ * ~ g<

co = —  = \ — —  e e°~e‘ for: 1 < j  < n a (6.8)

where Q is the beam strength for beam j.

It is necessary, however, to assign strengths to all beams (1 to n) within the RME, in such a 

way that the distribution for the weakest nm beams follows equation (6.8). This may be 

achieved by generating a two-part probability function which matches co in the range 1 to nm 

and then increases thereafter. It should be noted that since the function given in (6.8) tends 

towards a horizontal asymptote at C=eo (Figure 6.10), it is not possible to extrapolate this 

function to produce a complete distribution for n beams. The second part of the probability
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curve, as illustrated in Figure 6.10, is therefore defined as a Weibull function, with constant 

m=12:

P ( 0  = ^  = l "■n
£ t c  e 0 - e ,

S,

Part 1

v n

£i
4 e 0 for: 1 < j  <n (6.9)

~^r~
Part 2

J

It should be noted that a Weibull form of the function has been adopted here for convenience 

only.

The beam strengths derived from the double strength distribution given by equation (6.9) may 

be considered to retain some form of physical relevance to the underlying mesostructure, 

despite this not being modelled explicitly in the present model. The weaker beams from the 

first part of the distribution may be considered to represent the ITZ and weaker mortar 

elements that fracture during propagation of the macro crack. The stronger beams from the 

second part of the distribution have little numerical significance, since they should not break 

according to the theory, however, physically they may be considered to represent the stronger 

mortar and aggregate phases that serve to ‘block’ the propagation of the crack.

m

Part 2

©(0=1njn
Part 1

Figure 6.10. Schematic representation o f the two-part probability function.

6.8 Percolation limit

The full array of beam strengths obtained from solving the double strength distribution, given 

in equation (6.9), for i= l to n, are allocated randomly to the n beams within the RME. The 

number of beams that actually fracture during complete failure of an RME has previously

been defined as nw. This should be of the order of 4n  for a predominantly one dimensional
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crack propagating through a two dimensional RME containing n beams. According to the 

theory, the beam strengths of the nM beams that fail should come from the lower part (part 1) 

of the probability function illustrated in Figure 6.10. However, for this to be the case, the 

actual number of lower strength distribution beams that must be scattered across the two 

dimensional RME must be significantly greater than nw.

The number of beams which therefore break during complete damage of an RME, nm is 

considerably less than np\ the number of beams that are required to be distributed in order to 

achieve a percolation path of Tow strength’ beams across an RME. For a random distribution 

of lower strength beams across a two dimensional lattice RME, np is defined as:

np = apn (6.10)

where ap is the percolation limit expressed as a fraction of the total number of beams n in an 

RME.

Herrmann & Roux (1990) discuss at some length percolation theory in relation to the 

conductance of lattice networks. It should be noted, however, that the stress concentration 

effects contained within structural lattice networks are not present in conductance networks. 

These effects serve to further complicate any theoretical determination of the percolation limit 

from the mechanical response of the system, since this is dependent on whether the stress 

driven crack path coincides with the percolation path.

The effect of the percolation limit, ap on the post-peak softening response of a notched 

100mm x 50mm specimen with a lattice resolution, / = 0.5mm, is given in Figure 6.11. The 

boundary conditions for this uniaxial test are as given in Figure 6.12. It can be seen from 

Figure 6.11 that as ap is reduced and hence the number of beams drawn from the lower part of 

the two-part strength distribution, np is decreased, the ductility of the softening curve 

increases significantly. Unlike conductance networks, structural lattices do not offer infinite 

resistance below some percolation limit, p c. Instead, the post peak response becomes 

increasingly ductile as a result of the need for an increasing proportion of beams from the 

upper strength distribution to be broken for complete failure. Conversely, if ap is increased 

and the proportion of beams drawn from the lower strength distribution becomes too large, 

the post peak response becomes overly brittle. This is because too many percolation paths 

then exist and as a result the stronger beams from the lower strength distribution, which 

control the softening tail, remain unbroken.

Page 141



Chapter 6 -  Stochastic regularisation o f lattice modelling

160
 a p = 0 . 75

- --  ap=0.7 3
 ap=0.70
 ap=0.68
- - - ap=0.65

140

120

100

0 0.05 0.1 0.15 0.2

Displacement (mm)

Figure 6.11. Sensitivity  o f  the post-peak soften ing  response  to  the percolation threshold, ap.

From Figure 6.11 it is apparent that an ap of 0.7 produces a post peak response which is 

comparable to the chosen input curve parameters (ft=2MPa, uo=0.2mm), and which is 

representative of a typical cementitious material (van Mier, 1997). It should be noted that a 

peak load of HON equates to a peak stress, over the un-notched area, o f 1.6MPa. This is less 

than the peak target stress o f 2MPa, due to the initial stress concentrations created by the 

8mm notches located at either side of the specimen.

6.9 O bjectivity o f  double strength d istribution

The degree of objectivity offered by the double strength distribution theory applied to a two 

dimensional lattice without explicit mesostructure may now be examined. Figure 6.13 shows 

the force-displacement curves for three different element length discretisations of a 100mm x 

50mm DEN mortar specimen. This specimen is subjected to uniaxial tension as illustrated in 

Figure 6.12. The values of ft, uo and ap used in these simulations are 2MPa, 0.2mm and 0.7, 

respectively. The specimen has been segregated into 50No. 10mm square RMEs which are 

each allocated the full range of beam strengths as obtained from equation (6.9). The size of 

the RME has been taken to be five times a maximum particle size o f 2mm, which is typical 

for a mortar.
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F ,u  Specim en subdivided into
50No. 10mm square RM Es

8mm notch

50.2

R egular —  — 
lattice w ith 
2m m , 1mm 
or 0.5m m  A  
beam s 100

Figure 6.12. B oundary  cond itions for uniaxial tensile experim ent on a doub ly  notched 100x50m m  

specim en d iscre tised  using  three different lattice resolutions: 2m m , 1mm and 0.5m m

It should be noted that, in addition to the beam length, only the height o f the beams have been 

altered between the lattice simulations shown in Figure 6.13. This is required in order to 

maintain a global Poisson’s ratio of 0.2, as given by equation (3.10). It should also be noted 

that eight separate simulations have been completed for each o f the three lattice resolutions 

chosen. Each o f these simulations has a different random distribution o f beam strengths across 

the RMEs. However, only three typical force-displacement responses have been shown in 

Figure 6.13 for the purposes o f clarity.

160

l=2mm140

1=1 mm 

1=0.5 mm
120
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Figure 6.13. Three typ ical fo rce-d isp lacem ent graphs for 100mm x 50m m  notched specim ens w ith 

vary ing  m esh reso lu tions o f  2m m , 1mm, and 0.5m m .
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It may be seen from Figure 6.13 that whilst there appears to be a small decrease in fracture 

energy between the curves, particularly in the initial post peak response, the force- 

displacement results show a vast improvement in objectivity when compared to the traditional 

lattice model shown in Figure 6.1(d). One possible reason for the remaining difference in the 

curves may be attributed to the percolation limit, ap. This has been kept constant at 0.7 in the 

present simulation, and therefore 30% of the beam strengths in any one RME have been taken 

from the upper Weibull part of the strength distribution given in equation (6.9). These high 

strength beams, which are randomly scattered across an RME, essentially act as crack 

propagation ‘blockers’. The effect of these blockers in respect to the geometric deviation of 

the crack is obviously greater for the case of a 2mm resolution lattice than for a 0.5mm 

resolution lattice. Further improvement in the objectivity might therefore be achieved by 

making ap a function of the element length, / in order to allow for this effect.

The general over-brittleness of the curves shown in Figure 6.7 for the one dimensional 

statistical theory has also been corrected in the modified double strength distribution theory. 

This is evident in the far larger displacement values obtained for the tail of the softening 

curves, which are now of the same order as the 0.2mm crack opening displacement (uo) 

specified in the target exponential softening curve. All three curves are still nevertheless 

slightly over brittle in the immediate post-peak softening response, when compared to the 

idealised target exponential curve. The primary reason for the very significant energy drops 

observed in this region is believed to be due to the breakage of early crack bridges that have 

formed across the propagating macrocrack, as shown in Figure 6.14. These bridges ‘serve to 

pull material in’ thereby creating localised stress bulbs either side of the crack. When these 

bridging beams break a substantial amount of strain energy is released due the elastic 

unloading of this ‘pulled-in’ material. In respect to the theory, therefore, the ‘effective length’ 

of this bridging element is far greater than its geometric length, /. The amount of material 

pull-in and therefore the magnitude of strain energy release will increase with increasing 

beam strength of the bridging elements.

This observation therefore raises the possibility of correcting the beam strength distribution to 

allow for the increased strain energy release that occurs with increasing beam strength. Early 

investigation work in this area has focused on obtaining correction factors by comparing the 

output force-displacement graphs from two dimensional lattice simulations with the idealised 

exponential target softening curve. However, obtaining a smooth correction function from
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these correction factors has been found to require the completion o f a very large number of 

simulations in order to account for the random allocation of heterogeneity in the model.

M P a)
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3.96000 

D.54000 
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Figure 6.14. D etailed effective stress p lo t a round  a propagating  m acrocrack  illustrating the stress the

stress bulbs caused  by crack  bridg ing

The peak load in Figure 6.13 has also been maintained at approximately HON, which is 

considered reasonable, given the specified f  value o f 2MPa and allowing for the stress 

concentrations caused by the notches, as previously discussed. The peak value is nevertheless 

observed to reduce slightly with reducing beam length, as originally observed for the 

traditional lattice model in Figure 6.1(d). Since the minimum strength o f the beams has been 

set at 2MPa irrespective of the lattice resolution used, then the ability of the finer mesh to 

better capture the high stress concentrations around the notch tips has only been implicitly 

allowed for in the current version of the statistical beam strength theory. Some indication of 

the magnitude of this resolution affect is given by the linear elastic fracture mechanics 

(LEFM) problem shown in Figure 6.3(a). The maximum stress in the beams surrounding the 

crack tip is twice as large for a 1mm element length discretisation as it is for the 2mm case.

In addition to producing vastly improved quantitative results, the method also appears to 

maintain good qualitative results in respect to predicting feasible crack evolution. The fracture 

patterns for all three lattice resolutions were found to be realistic for a uniaxial tensile test, 

and were also observed to have a degree of tortuosity that was of the order of the 10mm RME 

size chosen. In statistical terms, this implies that for a percolation limit, ap o f 0.7 the macro 

crack was able to locate a percolation path through individual RMEs that contained beams 

that were primarily drawn from the lower part o f the strength distribution given in equation 

(6.9). The size of the RME was specifically chosen to be five times the maximum aggregate

S t r e s s * c a u s e d  
by crack bridging
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size, and since this is also recognised in the literature (Gitman, 2006) to approximate the size 

of the fracture process zone, then it is felt that the degree of tortuosity given by the model is 

realistic for a mortar specimen.

The evolution of the fracture pattern for the finest resolution (1=0.5mm) lattice is illustrated in 

Figure 6.15. The three stages of crack propagation correspond to the locations indicated by 

the numbers on Figure 6.13.

aefr(MPa)
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Figure 6.15. Enlarged v iew s o f  typ ica l fracture evolution for 100mm x 50m m  notched  specim en w ith a 

0.5m m  m esh reso lu tion  (see Figure 6.13 for respective m echanical response)

Figure 6.15, in conjunction with Figure 6.13, illustrates that the model has captured three 

distinct phases of crack evolution, namely: (i) initial crack propagation from the notch tip at 

peak response; (ii) crack branching during the softening phase, and; (iii) crack bridging at the 

tail of the softening curve. In the present model these three distinct phases can be attributed 

primarily to: (i) the stress concentration around the notch tips; (ii) the availability of multiple 

percolation paths containing weaker beams at crack tips, and; (iii) the cross-linking of the 

segregated specimen parts with higher strength lattice beams.

These phases are also representative of actual fracture processes that have been captured in 

experimental observations using optical microscopy, fluorescent impregnation, AE 

monitoring and photoelastic coating techniques (van Mier, 1997). Prado and van Mier (2003) 

categorise these fracture processes into three distinct stages, namely microcrack growth,

Crack Branching
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macrocrack growth and crack bridging and branching, as schematised in Figure 6.16. The 

fracture pattern illustrated in Figure 6.15 may therefore be considered to capture the second 

and third stages; however the initial microcracking stage is negligible in the present 

simulation. This is because the large stress concentrations around the notch tips predispose the 

beams in the immediate vicinity to failure, thereby severely limiting the amount of distributed 

microcracking, and therefore pre-peak hardening that occurs.

stress [MPa]

microcrack
growth

macrocrack
growth

bridging and branching

deformation [pm]

Figure 6.16. Fracture processes in concrete under uniaxial tension (Prado and van Mier, 2003)

6.10 C onclusions and future w ork

Lattice models have been recognised for some time as having the ability to disclose important 

information about the physical processes occurring during the fracture of cementitious 

materials. The quantitative limitations of the model, which include over-brittleness and mesh 

size dependence of the force-displacement response, have, however, limited its wider 

application.

This chapter has presented and discussed the reasons for the non-uniqueness of the traditional 

lattice method and the range of options that may be implemented in order to address this 

problem. The key to achieving regularisation has been identified as the need to maintain an 

average-stress, oav versus crack opening displacement, u at localisation, irrespective of the 

lattice resolution length, /. In order to achieve this, particular attention has been given to the 

development of a regularisation theory based on the statistical distribution of beam strengths. 

The underlying aim of the statistical softening model is to replace the softening curve in each 

bar by a series of bars, which break at different strains, such that proportion of bars broken in 

the localised zone approximates the damage variable, co.
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A statistical distribution was initially proposed which represents the localised fracture process 

zone as a bundle of one dimensional parallel bars. The strengths of these bars are obtained by 

solving the discrete form of a target exponential softening curve, whose tail is taken to be a 

function of the element length, /.

The theory has then been recast into a double strength distribution format to account for the 

additional spatial effects prevalent in two dimensional lattices. In doing so, the concept of a 

representative material element (RME) has been introduced which is considered to be the 

smallest area of a specimen over which the entire range of material variability can be expected 

to be found. The range of beam strengths obtained from this distribution may be considered to 

physically represent the materials variability; i.e. weak ITZ bonds, weak-strong mortar bonds, 

and strong aggregate bonds.

Initial results obtained from uniaxial tensile tests on 100mm x 50mm DEN specimens have 

shown that the stochastic regularisation model is able to:

1. Predict softening responses that agree well with target softening curves, which in 

turn are representative of experimental softening behaviour.

2. Produce softening responses that are largely independent of mesh size.

3. Give realistic fracture patterns with a fracture process zone comparable to the 

chosen size of the representative material elements, without explicitly representing 

the mesostructure.

4. Capture the main phases of crack formation, namely macrocrack growth, crack 

branching and crack bridging.

In addition, the nature of the post peak response has also been found to be sensitive to the 

percolation limit, ap. A percolation limit of 0.7 (70% of all beams drawn from the lower 

strength distribution) has been determined to give an optimal post-peak response for a lattice 

resolution of 0.5mm.

Analysis of the initial results from the model has also indicated that the main issues to be 

considered when applying this theory to two dimensional lattices are:

1. The effect of the lattice resolution size on the ability of the mesh to capture stress 

concentrations at pre-fabricated notches and crack tips.

2. The existence o f multiple percolation, and therefore cracking paths.
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3. The relationship between the percolation limit, ap and the element length, /.

4. The increase in ‘effective length’ of the beams as damage progresses.

It is believed that by randomly distributing beams drawn from the lower strength distribution, 

up to the percolation limit, the issues of multiple cracking paths and stress concentrations 

affecting the choice of crack path are significantly reduced. During damage evolution, it is 

therefore believed that the vast majority o f the broken beams are representative of the entire 

lower part of the dual strength distribution, as assumed in the theoretical derivation.

The effect of element length on the percolation limit, and the increase in ‘effective length’ of 

the beams as damage progresses are not considered explicitly in the present model, however, 

and will therefore be explored in future work. Due to the underlying statistical basis of the 

present regularisation model, future work should also focus on detailed quantification of the 

degree of regularisation offered by the model. This should be completed through undertaking 

large numbers of repetitive simulations with different random distributions of heterogeneity 

for different mesh resolutions. In addition, the effect of combining the statistical theory with 

an explicit mesostructure overlay will also be explored.

One further topic that future development of the model might also focus on is the inclusion of 

the Weibull size effect. The current theory has already introduced and utilised the concept of 

an RME in respect to distribution of material heterogeneity. However, in the present model 

the average tensile strength, f  for every RME is considered to be identical. If the average 

tensile strength is therefore given a Weibull distribution of its own, as illustrated in equation 

(6.11) and by Figure 6.17, then the model would feasibly be able to capture the Weibull size 

effect as discussed by Bazant (2005).

m

m

10
f, 0

I k

ft (MPa)

for: f > 0

f t

1

(6.11)

RMEs

Figure 6.17. Schematic illustration of Weibull distribution of average tensile strengths,/of RMEs
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Chapter 7 

Experimental study on self-healing cementitious 

materials

7.1 Introduction

The amount of experimental data relating to the autonomic healing of cementitious materials 

within the literature is currently very limited, as noted in Chapter 2. Therefore, in order to 

facilitate the development o f a numerical model to simulate the autonomic healing process, it 

was deemed necessary to first undertake an experimental programme, for which all 

observations and data would be available. These include:

1. Width, nature and location of cracks;

2. Viscosity and degree o f migration of glue, and;

3. The strength and stiffness of specimens pre- and post-healing.

The autonomic healing concept investigated in this work is illustrated in Figure 7.1.

Cementitious 
material

Brittle vessel

Healing agent

Crack breaks 
vessel and 
healing agent 
flows out

Healed crack 

Figure 7.1. Autonomic healing concept
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The concept is based on the principle that crack formation in the cementitious matrix also 

causes brittle adhesive-filled capsules or tubes, embedded within the matrix, to crack. The 

contents of the capsules or tubes are thereby released into the crack plane where the agent is 

intended to cure and heal the damaged host matrix. This concept was originally proposed for 

cementitious materials by Dry (1994), as noted in section 2.3.2.1.

The primary objectives of this experimental work are therefore:

1. To design, produce and embed a healing mechanism within a cementitious matrix;

2. To determine the degree of actuation of the healing mechanism in response to damage 

caused by external loading, and;

3. To establish the degree to which the healing mechanism restores, or improves, the 

original mechanical properties of the cementitious matrix.

This chapter initially outlines the main issues associated with achieving adhesive based self- 

healing within small scale laboratory specimens, as identified by the preliminary experimental 

investigation work. Details of the development of a successful self-healing experimental 

method are then given, followed by the presentation and analysis of the results of a series of 

self-healing experiments conducted on reinforced mortar prismatic beams.

7.2 Preliminary investigations

A substantial amount of preliminary experimental work has been completed prior to the 

development of a successful self-healing experimental method, as outlined in Joseph and 

Jefferson (2007). The various aspects that have been investigated include: (i) The type of 

healing agent; (ii) The method of encapsulation; (iii) The form of the host cementitious 

matrix, and; (iv) The quantity of reinforcement used. These issues are discussed in the 

following sections, and are followed by a summary of the main findings obtained from the 

final two sets of preliminary self-healing experiments undertaken.

7.2.1 Healing agent

As referred to in Chapter 2, there are three main healing agents which have been utilised in 

the literature to date, namely: (i) Epoxy resins; (ii) Cyanacrylates, and; (iii) Alkali-silika 

solutions. In addition to being readily available and cost effective, a suitable agent for the 

autonomic healing of cementitious materials should:
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1. Have the ability to be readily encapsulated within an internal or external supply 

system;

2. Be sufficiently mobile to allow migration to the areas of damage following release;

3. Have sufficient mechanical properties on curing, ideally equal to or greater than the 

properties of the cementitious matrix, in order to resist crack re-opening, and;

4. Have sufficient longevity, and compatibility with the cementitious matrix, over the 

lifetime of the structure.

It should be noted that only the first three requirements have been specifically addressed 

during the preliminary investigation work on the selection of a suitable healing agent. The 

final criterion will be important, however, in determining the optimal long term solution.

Three different adhesives were selected and examined for their suitability as potential healing 

agents; an epoxy resin and two types of cyanoacrylate. The epoxy resin tested was a Tecroc 

products injection grout TG07 (Tecroc, 2004). The cyanoacrylates examined were SICOMET 

9000; a methoxyethyl based product from Henkel Sichel-Werke (Henkel Sichel-Werke, 

1997), and Rite Lok EC-5; an ethyl based adhesive produced by 3M Ltd (Appendix A).

The suitability of these adhesives were evaluated in a largely qualitative manner, based on:

1. Their initial workability, viscosity, and curing period,

2. Their mechanical ability to bond both smooth and rough concrete surfaces together, 

and;

3. Their longevity within an encapsulated system.

The epoxy injection grout, despite its current use as a remedial crack injection and repair 

method for concrete, was rejected for two reasons: (i) its viscosity of 200 centipose, despite 

being low for an epoxy resin, is only capable of filling cracks down to 100 microns (Tecroc, 

2004), and (ii) its two-part system cures in the absence of air, which makes it unsuitable for 

internal encapsulation, or for use in an external circulatory supply system, where good post­

encapsulation longevity (i.e. extended pot-life) is required. It should be noted that Mihashi et 

al. (2000) examined the feasibility of separate storage of the two epoxy resin components, 

adjacent to one another within a cementitious matrix. They concluded that insufficient mixing 

on release resulted in poor curing and therefore poor mechanical performance of the adhesive. 

This system was therefore not examined during the preliminary investigation stage of these 

experiments.
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Both of the cyanoacrylates examined performed well, and offered good workability due to 

low viscosities, quick curing times in the order of seconds, and mechanical strengths 

significantly greater than the parent cementitious matrix. In addition, both cyanoacrylates 

were single agent and had good pot-lives; i.e. providing the moisture content o f the capsule 

was low and it was adequately sealed, then no significant degradation o f the adhesive, in 

terms of viscosity, was observed over a period of 60 days post-encapsulation.

Rite Lok EC-5 cyanoacrylate was chosen as the most suitable healing agent for achieving self 

repair within a mortar matrix, and was therefore used for the duration o f the experimental 

programme described in section 7.3. The data sheet for this cyanoacrylate is included under 

Appendix A. Rite Lok EC-5 was chosen because of its suitability at bonding a wide range o f 

substrates including ceramics, and for its wicking ability due to its extremely low viscosity; 1- 

10 centipose, compared to 15-25 centipose for SICOMET 9000. This increases its potential 

self-healing capability due to its ability to infiltrate micro-cracks within the cementitious 

matrix. As indicated on the data sheet (Appendix A), it has a full cure time o f 24 hours and a 

tensile strength (ISO 6922) o f 20MPa after curing.

7.2.2 Encapsulation method

In the absence o f a readily available source of hollow spherical microcapsules, and a suitable 

technique for encapsulating healing agents within them, all preliminary investigations focused 

on the use o f hollow capillary tubes, as illustrated in Figure 7.2. These are small diameter 

quartz or borosilicate glass tubes traditionally used for the sampling and storage o f blood in 

the medical industry. They obtain their name from the high capillary attractive forces that 

exist between the walls o f the tube due to their small internal diameter.

Classification 
diameter (mm)

Wall thickness
i ( m m )

(a) (b)

Figure 7.2. (a) Borosilicate capillary tube cross-sectional details, and; (b) Pictures of 1.5mm and 

3.0mm diameter tubes filled with cyanoacrylate and plugged with wax
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75mm long tubes of 0.8mm ID (internal diameter) and 1.5mm ID, and 100mm long tubes of 

3mm ID were internally encapsulated within prismatic mortar beams during the preliminary 

experiments. The specification details for these tubes are given in Table 7.1.

Table 7.1. Specifications o f  capillary tubes used in preliminary experiments

Classification diameter (mm) 0.8 1.5 3.0

Wall material Borosilicate glass

Wall thickness (mm) - - 0.5

Length (mm) 75 75 100

Total internal capacity of single tube, 
excluding wax end plugs (pi)

34 118 650

Two different configurations of capillary tubes were explored. These included: (i) a single 

layer of 5No. tubes, and; (ii) a double layer of 10 tubes (2 layers of 5No.), placed evenly 

across the beam, as illustrated in Figure 7.3.

In all cases the tubes were filled with adhesive by rotating the tube to a near horizontal 

position and using the capillary attractive force of the tube itself to draw up the liquid. The 

ends were then sealed by inserting the tube into a soft wax compound. This method of filling 

was found to minimise the amount of air trapped within the tubes. In the control specimens, 

the adhesive was replaced with an ink tracing die, although the same filling procedure was 

utilised.

Various methods for placing the tubes within the mortar during the casting process were also 

explored including the use of wire supporting frames. However, in order to ensure sufficient 

compaction of the mortar around the capillary tubes, manual placement of the tubes in layers 

was deemed to be the most practical solution, although this did result in some variation in the 

final placement, as shown in Figure 7.4. In order to minimise tube breakages, and provide a 

sufficient supply of agent to the crack face, and also reduce the capillary resistive force of the 

tube walls on the adhesive as it flowed out into the crack, the largest 3mm ID tubes were used 

in the final experimental series.

7.2.3 Cementitious matrix

For the purpose of proving the self-healing concept, small scale laboratory specimens of 

dimensions 75x75x255mm were used during the entire experimental programme, as 

illustrated in Figure 7.3. In order to achieve a more homogenous material at this specimen
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scale the beams were cast using mortar as oppose to concrete. The maximum aggregate size 

was limited to 2mm, and the maximum aggregate to specimen dimension ratio was therefore 

limited to 1:35. Following a series of trial mixes, a ratio of 0.6 : 1 : 3.5 (water : OPC : sand), 

by weight, was found to offer suitable workability in respect to achieving sufficient material 

compaction around the reinforcing bar and capillary tubes. This mix design was used for all 

subsequent sets of experiments (apart from set 1), as shown in Table 7.3.

7.2.4 Reinforcement

The purpose of reinforcing the mortar beams is to control the rate of crack opening in the 

specimens during the three-point bending test. The self-healing system is also envisaged to be 

applicable to reinforced concrete. The minimum level of reinforcement specified in Eurocode 

2 (BS EN1992, 2004) for reinforced concrete beams is 0.13% bd; where b is the beam breadth 

and d  is the depth to the centre o f the reinforcement. This equates to a 3mm diameter bar for 

the beam dimensions adopted in these experiments, as given in Figure 7.3.

A smooth 3.15mm diameter high yield steel reinforcing bar was therefore used in the 

preliminary experiments to satisfy the minimum level of reinforcement. Higher levels of 

reinforcement were also examined during both the preliminary and final experimental 

programme, as described in section 7.3. A smooth 6.7mm diameter high yield steel bar was 

used to provide the higher amounts of reinforcement in the more heavily reinforced beams.

Three 250mm long samples of the 3.15mm diameter and the 6.7mm diameter steel bar have 

been tested in a tensile testing machine in line with the recommendations of BS4449 (2005). 

The mean mechanical properties for both bar materials are given in Table 7.2 below:

Table 7.2. Summary o f  the mean mechanical properties for the 3.15mm (J) and the 6.7mm (|) high yield

steel reinforcement bars

Diameter
(mm) Profile Elastic modulus 

(GPa)
0.2% Proof 
stress (MPa)

Ultimate 
strength (MPa)

Elongation at 
failure (%)

3.15 Smooth 205.2 563.1 597.3 12.0

6.70 Smooth 192.3 526.1 576.3 12.7

7.2.5 Summary of preliminary investigation work

Following various individual studies on the healing agent, encapsulation mechanism, 

cementitious matrix and reinforcement, as described previously, two sets of experiments were
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completed. These preliminary experiments consisted of two sets o f 6 beams, with each set 

comprising 4 self-healing (SH) and 2 control (C) beams, tested under three-point loading. The 

first set contained a single layer of 5No. 100mm long capillary tubes, and the second set 

contained lONo. capillary tubes, placed in two layers, as illustrated in Figure 7.3. For both 

sets of experiments, capillary tubes of 3mm internal diameter were used.
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Figure 7.3. Specim en configuration for the tw o sets o f  prelim inary experim ents contain ing (a) a  single 

layer, and (b) a double layer o f  5No. 100mm long, 3m m  d iam eter glass capillary tubes

The tubes in the SH beams were filled with Rite-Lok EC5 cyanoacrylate, and the tubes in the 

control beams were filled with ink, before being sealed with wax plugs, prior to casting. All 

beams were subjected to a two-stage, three-point bending, test procedure, in an identical 

manner to that undertaken in the final experimental procedure described in section 7.3.3, and 

illustrated in Figure 7.8. The two-stage test includes the creation of some degree of initial 

damage during the first loading cycle, followed by a period of healing, after which the beam 

is loaded to complete failure during the second loading cycle.

Results from these two sets of preliminary experiments showed some evidence of a small 

amount of healing in one of the four SH beams containing a double layer of tubes, but overall 

it was concluded that the glue had not been drawn into the cracks in sufficient quantity to 

allow for any significant amount of healing to occur. This conclusion was supported by the 

very limited extent of ink penetration which was observed on the crack faces of the control
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beams, as illustrated in Figure 7.4. It should also be noted that the glue has a slightly higher 

viscosity than the ink, and is therefore likely to have penetrated the crack to an even lesser 

degree than the ink. No obvious glue deposition was observed on the crack faces of the SH 

beams, but large quantities of liquid glue and ink were observed to remain in both sections of 

the capillary tubes following complete fracture of all of the specimens.

Figure 7.4. Ink stain ing on crack faces o f  control specim ens from  pre lim inary  experim ents

The reason for this inadequate release of agent is believed to be due to the high negative 

pressure forces created by the wax plugs at either end of the capillary tube. The capillary 

attractive force of the opening crack, and the gravitational force on the fluid mass, are clearly 

not of sufficient magnitude to overcome the capillary resistive force of the supply tube, and 

the negative pressure force due to the sealed ends, as shown in Figure 7.5.

Capillary 
attractive forceWax plug Capillary tube

Capillary resistive force

Meniscus 
surface . 
tension

Negative 
pressure forceCrackHealing

agent

Weight

Figure 7.5. Schem atic illustration o f  the m ain forces acting  on an in ternally  encapsulated  healing agent

The small amount of ink migration shown in Figure 7.4 is therefore believed to be attributed 

to the release of ink from the localised vicinity of the crack site o f the capillary tube. The 

amount of ink released in this area may be affected to some degree by the nature of the tube 

fracture. Li et al. (1998) have shown that the primary failure mechanism for a capillary tube
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lying perpendicular to a crack is clean and discrete. This failure mechanism becomes more of 

a compound fracture when the angle between the axis of the tube and the direction of the 

crack decreases, thus increasing the likelihood of releasing a greater volume of agent. These 

two distinct failure mechanisms have been shown previously in Figure 2.10. The tubes in the 

three-point bending preliminary experiments described above, are subject primarily to a 

tensile failure mechanism. The fracture of the tubes is therefore more likely to follow the 

tensile failure shown in Figure 2.10(a) than the flexural failure shown in Figure 2.10(b). This 

was confirmed by observations of the fractured ends of the capillary tubes shown in Figure 

7.4.

It should also be noted that the issue of high negative pressure forces inhibiting the release of 

agent is less likely to be as pronounced in the case of encapsulation within an ECC 

(Engineered Cementitious Composite), as discussed by Li et al (1998). This is due to the fact 

that the fibre reinforcement causes controlled cracking at multiple sites in the cementitious 

matrix (Figure 2.13(b)). Also, in work undertaken by Williams et al. (2007), on self-healing 

within laminated composites, the hollow holding vessel is sheared along its length as a result 

of the delaminating mode of failure, thus no significant negative pressure forces are apparent.

To overcome the above difficulties, longer capillary tubes have been encapsulated in the final 

experimental setup (section 7.3), whose ends extend outside of the beam and are open to the 

atmosphere, thus removing the strong resistance of the negative pressure force on the 

adhesive at the point of tube fracture.

7.3 Experimental procedure

As a result of the preliminary investigation work described in the previous section, the 

following experimental procedure was established. This procedure was considered to be the 

most suitable method for gathering key data for the development of a model for adhesive 

based self-healing within reinforced mortar prismatic beams.

7.3.1 Programme of study

The experimental programme of study undertaken to date has comprised six sets of 

experiments. The specimen configuration for each of these sets of experiments is outlined in 

Table 7.3. All of these experiments have involved three-point bend testing of reinforced 

prismatic mortar beams.
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The influence of various parameters on the self-healing behaviour of the beams has been 

investigated. The parameters that have been considered include:

1. The level of reinforcement;

2. The monotonic stroke controlled rate of loading, and;

3. The effect of pre-notching.

It can be seen from Table 7.3 that sets 1, 2, 3 and 5 have been tested after 28 days, and sets 4 

and 6 have been tested after 70 days. It should be noted that this delay in the experimental 

programme was due to unforeseen mechanical failure of the testing equipment. This delay 

has, nevertheless, provided the opportunity to examine a fourth parameter, namely:

4. The effect of specimen age on the autonomic-healing ability of the beams.

In addition to the self-healing (SH) and control beam (C) tests, as described in the following 

sections, material tests have also been completed for the majority of the experimental sets. 

Three material tests have been undertaken, including:

1. Cube strengths, feu -  Based on 100mm cubes tested in accordance with BS1881-Part 

116(1983).

2. Cylinder splitting strengths, f spnt -  Based on 100mm diameter, 200mm long cylinders 

tested in accordance with BS 1881-Part 117 (1983). It should be noted that the true 

tensile strength o f the mortar, f  may be considered to be approximately 0.9.fspnt 

(Neville, 1995).

3. Specific fracture energy, G f -  Based on 255x75x75mm prisms, pre-notched to 10mm, 

and tested in three-point bending with a span of 200mm. The specific fracture energy 

has been calculated from the force-central deflection response of the beams in line 

with the guidance provided by RILEM Committee FMC-50 (1985).

The results of these material tests, where available, are given in Table 7.3. It should be noted 

that the material test specimens have been cast from the same mortar mix that the self-healing 

and control beams have been cast from. All beams and material specimens were also tested at 

the same age, as specified in Table 7.3.
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7.3.2 Specimen preparation procedure

The self-healing and control specimens for each of the experimental sets given in Table 7.3 

have been prepared in a similar manner to the first set of tests on lightly reinforced notched 

beams, as illustrated in Figure 7.6.

Curved supply 
tube open to

A pplied  load under 
stroke control

3.15m m  high 
yield bar

atm osphere

Glue level at 
start o f  test

W ax plug

^  5m m  notch 
200
255

4No. Capillary 
tubes 

OD=4m m , 
ID=3mm

Section A-A

Figure 7.6. Specimen arrangem ent for set 1 experim ents on lightly reinforced notched beam s. (Note: 

Experim ental sets 2 to 6 have an open curved supply tube at both ends o f  the specim en)

The set 1 beams are reinforced with a single 3.15mm diameter high yield steel bar placed on 

10mm brick spacing blocks, as shown in Figure 7.7. Since the bar has a smooth profile, shear 

anchorage is provided by the bent section at either end of the bar. Experimental sets 2, 5 and 6 

have an identical reinforcement arrangement. For set 4 the 3.15mm bar is replaced with a 

larger 6.7mm diameter bar, and for set 3 the single 3.15mm bar is replaced with two 3.15mm 

bars, spaced at a horizontal distance of 30mm apart.

3.15m m  high yield 
steel bar

3mm internal 
d iam eter capillary 
tubes projecting 
through m ould end 
plates

D ouble specim en 
m oulds
255x75x75m m

10mm thick brick 
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Figure 7.7. Illustration o f  g lass tube and reinforcem ent configuration for set 1 experim ents
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The healing agent, for all SH specimens in all experimental sets, is supplied via 4 No. 3mm 

diameter hollow capillary tubes, placed in a single layer, 20mm from the bottom of the beam. 

These tubes are inserted through lubricated pre-drilled holes in the mould end plates prior to 

casting, as illustrated in Figure 7.7. The capillary tubes were open to the atmosphere on one 

side and plugged with wax on the other side for the first set of tests on notched, lightly 

reinforced beams (Figure 7.6). The capillary tubes for all beams in experimental sets 2 to 6, 

however, have open ended supply tubes fixed to both ends of the specimen. This is in order to 

maximise the provision of healing agent to both crack faces during the self-healing tests.

All specimens were demoulded 24 hours after casting, and then cured for 28 or 70 days in air, 

prior to being tested. For all experimental sets, apart from set 5, a 5mm deep notch was sawn 

on the underneath of the specimens at the mid-point of the beam prior to testing, as shown in 

Figure 7.6.

7.3.3 Testing procedure

Prior to testing, all of the capillary tubes within the SH specimens were filled with Rite-Lok 

EC5 cyanoacrylate to a level of 25mm above the centre-line of the tube (Figure 7.6). In order 

to minimise air voids, adhesive was injected into the tubes using a syringe.

The four capillary tubes in each of the two control beams were also filled and sealed in an 

identical manner, but with the adhesive being replaced by an ink tracing die of low viscosity 

(approximately 3 centipose). It should be noted that the amount of adhesive or ink placed in 

the supply system prior to testing was approximately 10ml for each specimen, and that this 

amount was fixed, and not replenished during the testing procedure.

A series of three-point bend tests were then completed under machine stroke control as 

illustrated in Figure 7.8. The first set of experiments was completed in a Shimadzu AG-1 

testing machine fitted with a 20kN load cell. The remaining sets of experiments were 

completed in an Avery Denison 7152 universal servo hydraulic testing machine, fitted with a 

Dartec 9600 digital control system, and a 600kN load cell. The loading rate for experimental 

sets 1 to 5 was 0.003mm/s. For experimental set 6 three different loading rates were used;

0.00075mm/s, 0.003mm/s and 0.012mm/s, in order to examine the effect of loading rate on 

the self-healing response of the beams.

For all tests, the central deflection of the beam was measured using a transducer supported via 

an aluminium armature, connected to the centreline of one side of the beam (Figure 7.8). This 

method of measuring central deflection ensured that ‘bedding in’ effects, as indicated in the
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stroke results for the preliminary experiments, were not captured. For all notched 

experiments, the crack mouth opening displacement (CMOD) was also recorded, in addition 

to the central deflection and load, using a clip gauge with a 5mm range.

Central deflection 
transducer

Support arm ature 
for transducer

C M O D  clip gauge

Figure 7.8. T esting  arrangem en t fo r set 1 experim ents on lightly reinforced notched beam s

All of the control beams and self-healing beams, for all sets o f experiments, were subjected to 

a two cycle loading process. In the first loading cycle the beam was loaded until it reached its 

initial peak value, at which point a sharp drop in the strength of the beam was recorded at the 

same time as a macro crack was observed to propagate from the underside of the beam. The 

test was then continued until the beam regained its initial peak strength, and a CMOD value 

of at least 0.3mm had been reached. At this point, the specimen was unloaded under stroke 

control, at the same constant rate used in the loading part o f the cycle. A typical response 

from the first cycle o f loading for a SH and control beam is given by the light red (SH beam) 

and blue (Control) lines shown in Figure 7.10.

In the second loading cycle the beams were tested at the same loading rate to failure, or until a 

central deflection value in excess o f 3mm was recorded. For the control specimens the second 

loading cycle was completed immediately after the first loading cycle, and for the SH 

specimens the second loading cycle was delayed for a period of 24 hours, in order to allow 

full curing of the cyanoacrylate adhesive to occur. A typical response from the second loading 

cycle for a SH and control beam is given by the dark red (SH beam healed) and blue (Control) 

lines shown in Figure 7.10.

It should be noted that the only exception to the two cycle testing procedure described above 

was for the first experimental set. The control beams for the set 1 experiments were tested to 

failure in a single loading cycle, and whilst the SH beams were tested in two loading cycles, 

as described above, the unloading curves from the first cycle were not recorded. A typical

4 N o. adhesive 
supply tubes

Base support block
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response for a SH and control beam from the first set of experiments is illustrated in Figure 

7.9.

7.4 Results and discussion

The complete three-point bending results for all six sets of self-healing experiments are 

presented in Appendix B. Whilst there is inevitably some variability in the results obtained 

from these experiments, due to the nature of the self-healing system investigated, several 

trends and features have been identified. These are presented in the following sections.

7.4.1 Typical healing response

The load-CMOD and load-central deflection response of a representative SH beam and a 

control beam are presented in Figure 7.9.
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Figure 7.9. (a) Load-C M O D  and (b) L oad-central deflection  response for SH beam 4 and Control

beam  1 from  set 1

It may be seen that, for both the control specimen and the first test on SH beam 4, there is 

some pre-peak non-linearity due to microcracking between about 4 and 5.2kN. This is 

followed by a sudden drop o f approximately 0.7kN over a CMOD increase of approximately 

0.1mm for the self-healing beam, compared with about 1.1 kN over 0.13mm for the control 

beam. This drop is caused by the brittle fracture of the four borosilicate capillary tubes which 

emit a distinctive breaking sound during testing. Thereafter, the primary load carrying 

mechanism is performed by the steel reinforcement and the stiffness of the control beam is 

gi^en by the gradient of the line at point ‘a’ in Figure 7.9(a). It should be noted that a lightly
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reinforced beam without the glass tubes would also show a drop, but it is likely to be less 

pronounced.

It can be observed from Figure 7.9 that, even during the first test on SH beam 4, there is some 

evidence of ‘primary’ healing. This is apparent in the increased gradient of the line at point 

‘b’ when compared to the equivalent gradient of the control at point ‘a’. Cyanoacrylates are 

acidic solutions which have the ability to cure rapidly within a period of seconds, and it is 

believed that the conditions within the mortar, including the presence of moisture and the 

alkaline environment, further accelerate the curing process, and are therefore responsible for 

the rapid primary healing observed in the majority of the tests.

After the SH beam has been unloaded and left to cure for a period of 24 hours, the efficacy of 

the passive autonomic healing mechanism may be examined, by comparing the mechanical 

response of the healed beam to the initial response of the SH beam, or the control beam, from 

the first loading cycle. The dark red line (SH beam healed) in Figure 7.9 indicates that in 

addition to the ‘primary’ healing observed during the first loading cycle there is also clear 

evidence of a ‘secondary’ healing effect in the second loading cycle. This is illustrated by the 

fact that the gradient of the response up to point ‘c’ is stiffer than that of the original control 

beam, the peak has increased by over 20%, and the post-peak response is more ductile.

For experimental sets 2 to 6, where first cycle unloading information is available, the efficacy 

of the self-healing system may also be examined in a different manner; i.e. by comparing the 

mechanical response of the ‘healed’ beam to that of the control beam during the second 

loading cycle.

The difference between the two methods of examining the efficacy of the self-healing process 

may therefore be attributed to whether or not the second loading cycle results for the SH beam 

include the permanent CMOD or central displacement set values, as obtained at the end of the 

first loading cycle. Both of these methods of plotting the data are illustrated for SH beam 1 

from the second set of experiments on lightly reinforced notched beams, as given in Figure 

7.10.

Further evidence of the primary healing effect is shown in Figure 7.10, both by the increased 

stiffness response of the SH beam following tube breakage, and the increased stiffness of this 

beam during unloading. The latter results in an approximate doubling of the permanent set 

value for the SH beam, compared to the control beam, following unloading. The reason for 

the stiffer unloading response is believed to be due to the rapid curing and hardening of the
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adhesive that has entered the crack, which then serves to act as a ‘wedge’ between the crack 

surfaces on unloading.
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Figure 7.10. Load-CMOD response for SH beam 1 and Control beam 2 from set 2; (a) without, and (b) 

with the permanent set from the first loading cycle considered

Interestingly, on reloading after a period o f 24 hours, the high level of stiffness observed 

during the unloading o f the SH specimen is maintained, as illustrated by line ‘d’ in Figure 

7.10(b). If the gradient o f SH beam response ‘d ’ is compared to the gradient of the control 

response ‘e’, then it is clear that the 0.3mm crack created during the first loading cycle has 

been healed. The reloading o f the SH specimen must, therefore, result in new crack formation, 

or a peeling apart o f the newly bonded original crack faces. Qualitative evidence of the 

occurrence of both o f these situations is presented in section 7.4.6.2. As a result o f the above, 

the hysteresis loop for the SH beam is also therefore far less than that o f the control beam.

In Figure 7.10(a) the permanent set obtained from the first loading cycle on the SH beam is 

removed, and the second loading cycle response is plotted from the origin. The response of 

this set 2 SH beam post-healing, when compared to the virgin response of the control beam, is 

similar to that illustrated previously for the SH beam from set 1 (Figure 7.9(a)), and once 

again shows an increase in stiffness, peak strength and post-peak ductility. This apparent 

‘enhancement’ o f the post-healed beam properties, when compared to the virgin properties, is 

believed to be due to two reasons:

1. The very low viscosity cyanoacrylate is believed to not only flow onto the crack faces 

and to the crack tip under the influence o f capillary forces, but is also believed to 

infiltrate the region o f micro-cracks within the FPZ, behind the crack faces, thus
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creating a cementitious-polymer composite, with improved mechanical properties, in 

the central region of the beam.

2. Since the loading arrangement employed in the current experimental series creates a 

peak bending moment at the specimen centre span, then the final macro crack created 

during the second loading cycle is forced to propagate through this mechanically 

improved zone, or deviate significantly around it.

It should be noted that the primary and secondary healing effects described above, for the two 

individual SH beams from the first two sets of experiments, have been observed repeatedly 

throughout the course of the experimental programme. This may be seen from the full 

experimental results presented in Appendix B.

7.4.2 Effect of reinforcement level

Three levels of beam reinforcement have been examined in the experimental programme, as 

detailed in Table 7.3. These include reinforcement configurations consisting of a single 

3.15mm bar, two 3.15mm bars, and a single 6.7mm diameter bar. The levels of reinforcement 

provided by each of these configurations are 0.16%, 0.32% and 0.72%, respectively.

The force-CMOD response for a typical SH beam from experimental sets 2, 3 and 4 are given 

in Figure 7.11. It can be seen from this figure that the strength of the control beams, after 

initial cracking of the mortar and glass tubes, increases with an increase in the percentage of 

reinforcement, as expected.

The main effect that the level of reinforcement has on the self-healing behaviour is evident in 

the gradient of the primary healing response that occurs immediately after the fracture of the 

glass tubes. It can be seen from Figure 7.11 that as the level of reinforcement increases so 

does the gradient of the primary healing line. The reason for this trend is believed to be due to 

the rate at which the macro crack opens. For higher levels of reinforcement the rate of crack 

opening is slower, and therefore, the adhesive, which has flowed into the crack, and is in the 

process of hardening, is effectively being loaded at a slower rate. When an adhesive layer is 

being loaded in tension at the same time as it’s curing, it is to be expected that a slower 

loading rate will result in a stiffer response, since the bonds have more time to form.
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a single 6.7mm reinforcing bar

7.4.3 Effect of loading rate

The effect o f the stroke loading rate has been examined for lightly reinforced prismatic beams 

in experimental set 6. Three different rates of loading have been examined, each of which are 

four times faster than the previous loading rate. The rates, which were used for both the first 

and second loading cycles, are 0.00075mm/s, 0.003mm/s and 0.012mm/s.

The force-CMOD response for three typical SH beams, from experimental set 6, tested at 

different loading rates, are presented in Figure 7.12. It may be seen from this figure that the 

main effect o f the loading rate on the self-healing behaviour is once again evident in the 

gradient of the primary healing response. As the monotonic rate of stroke controlled loading 

is increased, the stiffness of the primary healing response decreases. This trend is again 

believed to be due to the effect that the loading rate has on the stiffness response of the layer
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of adhesive which is hardening between the crack faces, as outlined in the previous section. It 

should be noted that this effect is absent in the response of the control specimens.
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Figure 7.12. Load-CMOD response for (a) SH beam 1 from set 6, tested at a rate of 0.00075mm/s, (b) 

SH beam 4 from set 6, tested at a rate of 0.003mm/s, and (c) SH beam 7 from set 6, tested at a rate of

0.012mm/s.

The second loading cycle response of the highest loading rate specimen (Figure 7.12(c)) also 

shows a loading rate effect on the secondary healing behaviour. The stiffness, peak and post­

peak ductility of the ‘healed’ response o f the SH beam is greater than the virgin response of 

the control specimen, as described in section 7.4.1. However, in addition, there is a significant 

drop in the peak strength, from 7kN to 6kN, which is further evidence of new crack 

formation. The reason for the significantly higher peak and subsequent drop in strength is 

believed to be due to the higher loading rate that SH beam 7 was tested at, since this response 

is reminiscent of the increase in tensile strength seen in standard concrete tests conducted at
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increased strain rates. It should be noted, however, that the control beam response in Figure 

7.12(c) does not show the same strain rate effect, despite being subject to the same loading 

rate as the SH beam. It is possible, therefore that the strain rate effect for the SH beam is 

accentuated by the viscous response of the adhesive in the healed crack. It is also possible 

that, due to the faster loading rate, the adhesive is in a more fluid state at the crack tip during 

the unloading part o f the first loading cycle, and is therefore better able to bond the original 

crack faces together.

7.4.4 Effect of pre-notching

One set of un-notched experiments have been undertaken on lightly reinforced beams, in 

order to examine the effect that pre-notching has on self-healing. The force-central deflection 

graphs for a typical un-notched SH beam from set 5, are compared to a typical notched SH 

beam from set 2, as shown in Figure 7.13.
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Figure 7.13. Load-central deflection response, including permanent set, for (a) Notched SH beam 1 

from set 2, and (b) Un-notched SH beam 1 from set 5.

Figure 7.13 illustrates two distinct differences in the mechanical response of the notched and 

un-notched beams. The first difference is in the initial post-peak response of both the control 

and the SH beams. It can be seen that the immediate post-peak drop in strength is far greater 

for the un-notched specimens than for the notched specimens. This is because the 5mm pre­

notch not only reduces the amount of material below the reinforcement level, but also acts as 

a crack initiator. The stress concentration created by the notch therefore results in an earlier 

onset of cracking, which is evident in the greater pre-peak non-linearity, for both the SH beam 

and Control beam, in Figure 7.13(a).
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Of greater interest, however, is the effect that the more energetic crack propagation, in the un- 

notched beams, has on the fracture of the four capillary tubes. In Figure 7.13(b), the large 

post-peak drop of approximately 2kN occurs almost instantaneously due to the simultaneous 

rupture of all four capillary tubes, whereas in Figure 7.13(a) the tubes break individually, 

thereby producing a ‘saw tooth’ response. The net effect of this is that at the point of first glue 

release into the crack plane, the central deflection of the un-notched beam is approximately

0.15mm, compared to 0.1mm for the notched SH beam. Since the CMOD responses for all 

experiments closely follow the central deflection response (see Appendix B), then the crack 

width will also be greater for the un-notched specimen compared to the notched specimen. 

The smaller crack width at first tube breakage and the slower crack opening response, which 

in turn results in a longer primary healing period, are therefore believed to be the main 

reasons for the increased primary healing behaviour of the notched beam compared to the un- 

notched beam.

The second difference between the notched and un-notched beams given in Figure 7.13 is in 

the secondary healing response. The un-notched SH beam shows clear evidence of new crack 

formation, due to the post-peak drop in load during the second loading cycle, as previously 

observed for the high loading rate test shown in Figure 7.12(c). This peak and post-peak drop 

is not evident in the second loading cycle for the notched specimen. This is probably as a 

result of the stress concentration created by the pre-notch. Further, qualitative evidence to 

substantiate the increase in new crack formation for the un-notched specimens compared to 

the notched specimens in presented in section 7.4.6.2.

7.4.5 Effect of specimen age

As detailed in Table 7.3, four of the experimental sets (sets 1, 2, 3 and 5) have been tested at 

28 days, whilst the remainder (sets 4 and 6) have been tested at an age of 70 days. In order to 

ascertain whether the age of the specimen has an effect on its autonomic healing ability, SH 

beams 4, 5 and 6 from experimental set 6 may be compared with the SH beams from set 2.

It has been concluded, from comparison of these experimental results, that there are no clear 

discemable trend differences that emerge in the self-healing response, due to the age of the 

mortar beams. This is not surprising since, unlike autogenous healing which is intrinsically 

linked to the age of the specimen (Schlangen et al., 2006), the efficacy of the autonomic 

healing response is dependent primarily on the viscosity and curing abilities of the adhesive, 

and the quality of the delivery system.
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7.4.6 Qualitative results

In addition to the quantitative trends presented above there are also many qualitative 

observations which serve to demonstrate the occurrence of the self-healing process.

7.4.6.1 Glue flow

During all experiments, on both the self-healing and control beams, the distinct sound of 

capillary tube fracture was noted. The individual fracture of the four tubes was observed to 

coincide with an instantaneous drop in strength of the specimen, as previously discussed. For 

the control specimens the sound o f tube fracture was followed within 20-30 seconds by a 

distinct flow of tracing die to the side faces of the beams, as shown in Figure 7.14(a). This is a 

clear indication of the capillary suction effect caused by the propagating crack.

(a) (b)

Figure 7.14. (a) Ink migration during testing of lightly reinforced, notched control specimen (b) Glue 

flow during testing o f lightly reinforced, notched self-healing specimen

The migration of cyanoacrylate during loading of the self-healing specimens is less 

pronounced than the ink tracing die, due to its colourless appearance and higher viscosity. 

Figure 7.14(b) clearly indicates, however, that the adhesive has flowed from the capillary 

tubes and has entered the crack plane. It should be noted that despite there being a large 

amount of adhesive available within the reservoir (approximately 10ml), only about 0.1-0.3ml 

was initially observed to flow into the crack, following the fracture of the capillary tubes. This 

value was estimated from the observed glue level drop in the curved supply tubes shown in 

Figure 7.6. A further drop in the glue level was then generally recorded as the crack widened 

and surplus adhesive was observed to flow from the underside of the beam in the locality of 

the notch, as shown in Figure 7.14(b).

It should also be noted that despite the rapid curing abilities o f cyanoacrylate, when deposited 

in thin layers which are in contact with moisture and oxygen, when stored in larger volumes
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its curing rate is significantly slower. The cyanoacrylate which remained in the supply tubes 

following testing was observed to remain in liquid form for over a week, despite being open 

to the atmosphere. As a result, many of the specimens released additional adhesive during the 

second loading cycle. This observation suggests that it may be possible to capture a tertiary 

healing effect from the fixed supply system used in these experiments, although this has not 

been investigated in the current work.

Visual confirmation of glue flow into the crack plane is illustrated for the case of two SH 

beams from the first set of experiments in Figure 7.15. Similar glue migration patterns were 

obtained for all of the self-healing beams tested. It can be seen from Figure 7.15 that the 

extent of the spread of the adhesive is linked to the effectiveness o f the mechanical healing 

results obtained from the three-point bend tests. SH beam 1 exhibited very little self-healing 

due to specific problems with its supply system, and as a result the adhesive capillary rise 

appears to have been in the order of only 10mm. Conversely, SH beam 4, which exhibited 

increased stiffness, peak strength, and ductility (Figure 7.9) shows a significantly greater 

adhesive capillary rise, which is in the order of 30mm.

30mm
(Approx.)

(a) (b)

Figure 7.15. Glue migration and effective zone o f healing for experimental set 1 on notched, lightly 

reinforced mortar beams (a) SH beam 1, and (b) SH beam 4

It should be noted that the dark orange discoloration shown in Figure 7.15 is the actual cured 

colour of the cyanoacrylate found on the final crack face, and has not been dyed or digitally 

enhanced in any form. Preliminary investigations undertaken on Rite-Lok EC5, as described 

in section 7.2.1, found the adhesive to dry in a colourless layer on both cast (smooth) and 

cracked (rough) surfaces of mortar specimens. In addition, the adhesive was not observed to 

visibly react in any way with the constituents of the beam, namely; sand, cement, water, steel 

or glass. The discolouration is therefore believed to arise when the layer of adhesive is 

mechanically loaded, and therefore strained, as the original crack surfaces begin to peel apart. 

This theory has not been specifically tested in the current work, however.
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The staining pattern o f the ink tracing die from the control specimens offers a far less realistic 

indication as to the area infiltrated by the adhesive during healing, since not only is the 

viscosity less than that o f the adhesive, it is also readily absorbed into the mortar and 

produces only a light staining effect. It should be noted that as a result o f the limited benefit 

that the ink tracing die was deemed to offer, the capillary tubes in the control specimens for 

experimental sets 2-6 were left empty during testing.

7.4.6.2 New crack formation

Further qualitative evidence o f the efficacy of the autonomic healing process is given by the 

clear indication of new crack formation for both notched and un-notched specimens. Figure 

7.16 shows the original and final crack patterns on the side face of two notched SH beams 

from the first set o f experiments.

(a) (b)

Figure 7.16. Original and final crack patterns on the side face of (a) SH beam 2, and (b) SH beam 3, 

for the first experimental round on notched, lightly reinforced beams

It is clear from Figure 7.16 that despite the stress concentration created by the notch, the final 

cracking path for the self-healing specimens is different from the original macro-crack created 

during the first loading cycle. This new crack formation was not observed to occur in either o f 

the control specimens, and therefore, this is clear evidence of the effectiveness of the bonding 

capabilities of the ethyl cyanoacrylate, when used within a mortar matrix.

These new crack formations also explain why there appear to be areas towards the boundaries 

of the final fracture surfaces, shown in Figure 7.15, that have very limited adhesive coverage. 

This is somewhat misleading, since on closer inspection it may be seen that new crack
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surfaces are formed during the second loading cycle, and therefore any adhesive released into 

the original crack would not necessarily be evident on the final fracture surface.

New crack formations were also observed for the fifth set o f experiments on un-notched, 

lightly reinforced prismatic beams. The original and final fracture patterns for all four SH 

beams, created during the first and second cycles of loading, respectively, are shown in Figure 

7.17. It should be noted that the photographs have been taken at an angle o f 45° and therefore 

show both the side and underside faces of the beams. The original fracture patterns, created 

during the first loading cycle, have also been highlighted in red for the purpose o f clarity.

Underside  
o f  beam

(a) SH 1 (b) SH 2 (c) SH 3 (d) SH 4 (e) Control

Figure 7.17. Original and final crack patterns, on the side and underside faces, from the fifth set o f 

experiments on un-notched, lightly reinforced beams.

It may be seen from Figure 7.17(e) that for the control specimen the original crack formed 

during the initial loading cycle is simply re-opened during the second loading cycle, without 

the occurrence of any additional cracking.

(a) (b)

Figure 7.18. SH beam 3 from set 5: (a) Glue migration and effective zone o f healing, and; (b) Original

and final crack patterns on underside o f beam
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The spread of adhesive on the original crack face has also been observed for the un-notched 

specimens, as illustrated for SH beam 3 in Figure 7.18(a). The capillary rise o f the adhesive 

appears to be approximately 20mm, and less extensive than that observed for the first set of 

experiments on notched beams (Figure 7.15(b)). It should be noted, however, that due to the 

absence o f the stress concentration caused by the pre-sawn notch, the degree o f new crack 

formation is far higher for the un-notched specimens than for the notched specimens. The 

original and final crack patterns on the underneath of all the beams are completely different, 

as illustrated in Figure 7.17 and Figure 7.18(b). As a result of this, the glue migration pattern 

shown in Figure 7.18(a) only reflects the areas of the original and final fracture planes which 

coincide.

Further evidence o f the bonding abilities of the Rite-Lok EC5 cyanoacrylate are shown in 

Figure 7.19. It can be seen that the surplus glue released from the delivery system during the 

first loading cycle has effectively bridged the final through crack. In addition, evidence o f 

glue stringing, which is created when the two crack surface are separated during the adhesive 

curing period, has also been identified.

Figure 7.19. G lue bridging and string ing  on th e  underside o f  SH  beam  4 from  set 5 

7.5 C onclusions and fu ture w ork

Details of the preliminary and final experimental work undertaken on the autonomic healing 

of cementitious materials has been given in this chapter. Six sets o f self-healing experiments 

have been reported, which have involved the three-point bend testing of small reinforced 

prismatic mortar beams, containing a supply system filled with a low viscosity cyanoacrylate 

healing agent.
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Force-CMOD and force-central deflection results from these experiments have shown that 

two stages of healing have been observed to occur. A primary healing response occurs during 

the first loading cycle after the glass capillary supply tubes have fractured, and a secondary 

healing response occurs during the second loading cycle, after the adhesive has fully cured.

The effect of various parameters on the efficacy of the SH response have also been 

investigated as part of the experimental programme, including reinforcement level, loading 

rate, pre-notching, and the age of the specimen. The following trends and features have been 

observed to occur:

1. The stiffness of the primary healing response is observed to increase with increasing 

percentage of reinforcement, due to the slower crack opening rate;

2. The stiffness of the primary healing response is observed to decrease with increasing 

loading rate, due to the faster crack opening rate, relative to the glue set time;

3. The initial post-peak drop in strength is greater for the un-notched beams compared to 

the notched beams, and the stiffness of the primary healing response is therefore less;

4. The secondary healing response shows greater evidence of new cracking for the un- 

notched beams compared to the notched beams, and;

5. The age of the mortar specimens showed no discemable effect on the nature and 

efficacy of the self-healing response.

The quantitative evidence of a self-healing action was also reinforced by several qualitative 

observations. These include:

1. Distinct cracking of the capillary tubes during the first loading cycle, followed by 

immediate release of healing agent from the supply reservoir;

2. Evidence of the capillary suction effect, resulting in ink and glue flow to the side faces 

of the beams;

3. Glue migration patterns on the final cracked faces of the self-healing beams;

4. Evidence of new crack formation, created during the second loading cycle, for both 

notched and un-notched specimens, and;

5. Evidence of adhesive bonding resulting in crack bridging and stringing.

It may be concluded, therefore, from both the quantitative and qualitative observations noted 

above, that the primary objectives of the experimental work, as outlined in the introduction
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(section 7.1) have been met, in addition to the overall aim of providing quantitative data for 

the development of a numerical model.

The ability of an externally supplied low viscosity cyanoacrylate, to heal, and, in certain 

circumstances enhance the strength of the cementitious material, makes it an interesting 

technique for possible future commercial exploitation. The capacity of the system to offer 

rapid primary healing, in addition to long term secondary material healing, greatly increases 

its flexibility, and makes it akin to the far more sophisticated biological healing systems such 

as blood clotting and scar tissue creation.

The efficacy of the autonomic healing system presented in this chapter has been examined 

solely in terms of the mechanical properties, such as strength and stiffness, of the mortar 

beams pre and post-healing. The durability issues of concrete, as presented in Chapter 1, are 

primarily related to increased permeability caused by various microcracking processes. Whilst 

the mechanical self-healing demonstrated in this chapter is also likely to decrease the 

permeability of the specimens, and therefore improve their durability, this needs to be 

confirmed in future work.
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Chapter 8 

Modelling of self-healing cementitious materials

8.1 Introduction

The overall mechanical response observed during the self-healing experiments described in 

Chapter 7, is a complex combination of individual physical and chemical processes. The 

migration of glue from a cracked supply tube is dependent not only on the crack width 

opening, which is constantly growing for a monotonically increasing stroke displacement 

controlled test, but also on the viscosity of the glue, which is also increasing as the glue 

begins to cure. The speed of the curing process itself is in turn dependent not only on the type 

of adhesive, but on the thickness of the adhesive layer, the moisture content and alkalinity of 

the mortar, and the ambient temperature at which healing occurs.

This complex physical-chemical process may be captured through the development of a non­

linear coupled phenomenological based constitutive model. Alternatively, the main physical 

processes may be captured in a simplified manner using a physically based discrete modelling 

method (Joseph et al., 2008a and 2008b). It is the latter approach that has been explored in 

this chapter.

The lattice beam modelling method, as outlined in Chapter 3, has therefore been used in this 

chapter to model the autonomic healing process that has been quantified in the experimental 

work presented in Chapter 7. The preliminary modelling work presented here is therefore 

aimed at investigating whether or not the lattice modelling method is capable of capturing the 

main mechanical behaviour observed during the self-healing experiments.

8.2 Lattice modelling of the self-healing process

The lattice modelling method used in this chapter to model the autonomic healing process is 

essentially the same as that described in Chapter 3 with some adjustments made to the 

algorithm to allow for the implementation of the healing process.
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Since cracks are modelled discretely in the lattice approach, crack openings are therefore 

determined automatically. For a notched beam tested under three-point loading the CMOD 

may therefore be obtained directly from the model. The value of the CMOD can therefore be 

used as the criterion for governing the breakage of the glass capillary tubes, and hence the 

onset o f healing. Once the capillary tubes have broken, it is assumed that the flow of the 

adhesive is controlled by the varying aperture of the crack at that location.

Glue setting may then be modelled in a staged manner whereby broken beams are replaced 

with ‘healed’ beams at predefined CMOD limits. The height of glue rise, and therefore, 

determination of which broken beams are to be healed, is obtained from the non-uniform 

capillary flow theory described in section 8.2.3. The healed beams are considered to be 

composite beams comprising part mortar and part glue. The axial stiffness of these composite 

beams is therefore determined from the axial stiffness of the mortar part and the glue part 

combined in series. The length of the glue part is determined by the width of the opening at 

the beam location just prior to healing.

8.2.1 Healing algorithm in ID

The numerical algorithm, as outlined above, is illustrated schematically in Figure 8.1 for the 

simple case of a ID parallel bar model comprising two elements supported between two rigid 

bar supports. The support bar on the left is fully fixed and the one on the right is only allowed 

to translate in the x-direction. The elements have identical stiffness (ki=ki), but the tensile 

strength of element 1 is less than element 2 {fti<fti).

The system is initially subject to a prescribed displacement (up), and resists this displacement 

with a stiffness, k (k=kj+k2), as illustrated by line (i) in Figure 8.1(b). When the stress in 

element 1 reaches its tensile strength (ftj), element 1 breaks and its stiffness is removed from 

the system. The difference in the distance between the supports and the unstrained length of 

element 1 is defined as the crack mouth opening displacement (CMOD) for this simple ID 

model.
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Figure 8.1. Schem atic illustration o f  (a) healing  process in a  ID  parallel bar m odel, and (b) m echanical

response o f  m odel pre- and post-healing

As the prescribed displacement (up) increases further, the CMOD increases by the same 

amount. The stiffness of the system at this point is k=k2 as represented by the gradient o f line 

(il) in Figure 8.1(b). When the value of the CMOD reaches the predefined healing point 

(CMOD 1 in Figure 8.1(b)) element 1 is healed. This involves replacement o f the element
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with a new composite mortar/glue element. The new composite element is therefore 

considered as comprising two springs in series. The axial stiffness of this element (k ’i) is 

given by equation 8.1.

+V,)fl (8-D
where km is the axial stiffness of the mortar part, and kg is the axial stiffness of the glue part, 

as given by:

F A
* - = “ 7 ^  (g-2>

m

EeAe
And: kg = -E -E  (8.3)

L g

where Em, Eg, Am, Ag, Lm and Lg are the Young’s modulus, cross-sectional area and length of 

the mortar and glue parts respectively.

Lm is taken to be the original unstrained length of element 1 and Lg is taken to be the CMOD 

value at the point of healing. Therefore, the adhesive is assumed to completely fill the crack at 

the time of healing. The stiffness of the system now becomes k=k ’i+k2, as given by (iii) in 

Figure 8.1(b). It should be noted that the gradient of line (iii) is less than line (i) since Eg < 

Em, and therefore k ’t < kj. It should also be noted that the origin of the force-displacement 

response has been reset to the value of these variables (CMODi, F c m o d i )  at the point of 

healing. This is necessary in order to achieve an unstrained state in the new composite 

element prior to subsequent loading of the system.

Finally, the prescribed displacement is increased further until the axial stress in element 2 

equals the failure strength (ft2), and the element breaks. The stiffness of the system from this 

point onwards is then given by k= k ’j, as depicted by line (iv) in Figure 8.1(b). Due to the 

resetting of the origin at the point of healing the total displacement of, and force within, the 

system during stage (iv) is given by:

up =CMODl +up (8.4)

And. F = FCMODi + F  (8.5)

8.2.2 Extension of healing algorithm to 2D

The ID healing theory, as explained above, may be extended for use in a 2D lattice 

simulation. In this respect, element 1 can be considered to represent the group of beams that 

initially break and are subsequently healed when the CMOD reaches the predefined healing
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point. Element 2 can then be considered to represent the group of elements that break after 

healing, when the specimen is tested to failure.

The point at which healing occurs (CMOD 1) takes on a physical meaning in the two 

dimensional case. In the 2D model CMOD 1 is the value of the CMOD when the capillary 

tubes are said to have broken and healing is considered to have begun. It should be noted that 

CMOD 1 is a predefined value and is based on the average CMOD value at which the 

capillary tubes are heard to break during the experiments. At the point at which healing is 

considered to occur and the selected broken beams are healed, the value of the opening at the 

location of the broken beams varies depending on the location of the beam. The width of the 

opening, which is also the length of the glue segment in the composite healed element, is 

therefore defined as the difference between the extended length of the original beam 

(assuming that it never broke) and the length of the original unstressed beam element. The 

length of the glue part (Lg) in the composite elements is therefore far less for elements healed 

at the top of the crack during stage (viii) (Figure 8.1(b)) than at the bottom of the crack just 

above the notch. The composite healed elements at the bottom of the crack are therefore less 

stiff than those at the top of the crack. This is because a greater Lg results in lower stiffness for 

the glue segment kg and for the beam as a whole kj as shown by equations 8.1 and 8.3.

It should be noted that the ID methodology described above when applied to a 2D lattice 

simulation can be extended to allow for multiple healing events at a range of predefined 

CMOD values. The nodal displacements would have to be zeroed at every healing point in 

order to ensure that the newly healed elements are unstrained at each point of healing. The 

nodal displacement values and system forces recorded prior to each healing point could then 

be summed, as shown for the ID case in equations 8.4 and 8.5, to obtain the overall 

mechanical response of the system. In essence this procedure means that the overall non­

linear mechanical response of the system can be modelled as a series of linear simulations.

8.2.3 Glue flow theory

When the borosilicate glass tubes crack the adhesive is free to flow into the crack. This occurs 

in a downward and upward direction. In both the downward and upward directions the 

capillary attractive force of the narrow crack draws the adhesive out of the tubes. In the 

downward direction this is assisted by gravity, and conversely in the upward direction gravity 

resists the flow of adhesive. The main forces acting on the adhesive following the cracking of 

the tubes are illustrated in Figure 7.5. For the purpose of this model the adhesive is assumed
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to migrate fully in the downward direction, and therefore all fractured lattice elements situated 

below the level of the tubes are automatically healed. This assumption is consistent with 

experimental evidence o f free glue flow out of the bottom of the beam shortly following the 

cracking of the tubes (Figure 7.14(b)).

In order to model the flow of adhesive in the upward direction, however, the balance of 

capillary and gravitational effects must be considered. The approach utilised within this 

model is therefore based on capillary flow through non-uniform sections (Young, 2004) and is 

similar to that employed by Roels et al. (2003) for modelling moisture flow in discrete cracks 

in building materials. This involves using a ID moving front model in which both capillary 

and gravity forces are considered. The governing equations are Darcy’s equation of flow and 

mass continuity.

The two main crack faces (Figure 8.2) which are opening up about a hinge at the top of the 

mortar beam, when under three-point loading, are simply considered in this model as plates 

with a linearly varying spacing.

A(x)

/

/

Figure 8.2. Illustration of the flow of adhesive in a crack

The velocity of the viscous flow v(x) inside a capillary tube or between two plates can be 

given by the basic ‘Darcy like’ flow equation:
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where p  is the viscosity, P  the pressure, g  the gravity, (j> the inclination angle of the 

capillary/crack (Figure 8.2) and p  and k are the density and permeability of the adhesive 

respectively.

Rearranging equation (8.6) and integrating from the reservoir to the meniscus interface gives:

z
/• V

p  \—dx = p c -  pgzsin<j> (8.7)
o*

where z is the distance of the fluid front from the reservoir and p c is the capillary potential. 

The capillary potential for a plane opening of width b is given by:

PC= ^  (8.8)b

where 6 is the angle that the meniscus forms with the wall of the opening (or face of the

crack), as shown in Figure 8.2, and y  is the surface tension of the fluid. For a non-uniform

cross-section (b=b(x)) the capillary potential depends on the position of the interface.

The velocity can also be related to the speed of the fluid front based on the conservation of 

mass:

dz A(z)
VW  = — (8-9)dt A(x)

where A(x) is the cross-sectional area of the capillary and A(z) is the cross-sectional area at the 

meniscus interface.

Substituting equation (8.9) into equation (8.7), and rearranging gives an expression for the 

flow velocity at the front (dz/dt):

^ - = - { p c -pgz%m<f) (8.10)
dt rj

where: ti = /jA(z) (8.11)
0 KAyx)

From equation (8.10) is can be seen that the flow velocity at the front is zero when the

capillary potential drawing the fluid up the crack is matched by the weight of the fluid acting

downwards. Therefore, by placing dz/dt=0 in equation (8.10) and substituting the expression 

given in equation (8.8) forp c„ the rise height h may be defined as:

. . 2rcos#
h = zsm<f> = — - (8.12)

bpg
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The theory given above has been implemented within a relatively simple time-stepping 

algorithm for tapering cracks, as shown in Figure 8.3.

•  C h o o se  At

•  S tart w ith  v e ry  sm a ll z = zq  

-► •  E v a lu a te  7/

• t = t +A t

• Az = —  (pc — pgz sin (/>)
11

• z  =  z  + Az 

—  •  If Az  < tol e x it, o th e rw ise  co n tin u e

•  R ep ea t p ro ce ss  w ith  sm a lle r  At to  en su re  th a t th e  so lu tion  is tim e-s te p  c o n v e rg e d

F ig u re  8 .3 . T im e -s te p p in g  a lgo rithm  to  ca lcu la te  z  v e rsu s  t

The algorithm has been evaluated in MathCAD, and rise height versus time graphs for two

different crack openings have been calculated, as given in Figure 8.4.

Reservoir

(a)

0.035

0.03

_  0.025

o>
2  0.015

0.01

 b0=0.3mm
 b0=0.1mm0.005

2 3 4 50 1
t im e ,  t  ( s )

(b)

Figure 8.4. (a) Idealised vertical tapering crack, and (b) Rise height versus time for two different crack

openings, b0

The parameters used for the glue in the above calculation are viscosity, ju=5mPa.s, density, 

p=1060kg/m3, meniscus angle, 6=0° and surface tension, y=0.033 N/m. The viscosity was 

obtained from the adhesive data sheet (Appendix A), and the surface tension was determined 

experimentally from measured glue rises in capillary tubes o f known diameter. The maximum
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experimentally observed crack height was 30mm above the level of the supply tubes, as 

illustrated in Figure 7.15(b). This was therefore taken to be the height of the cavity, h, in the 

above simulations. The crack opening at the top of the cavity, bh, was assumed to be a 

nominal 0.01mm.

It can be seen from Figure 8.4(b) that for both sizes of crack opening (bo=0.1mm and 0.3mm) 

the glue rises to the maximum rise height, h. More significantly, for both examples, this 

occurs within a period a few seconds. As a result of these findings, all of the broken beams in 

the lattice model, up to the total rise height, h, have been healed in an instantaneous manner, 

as described in the following section.

Finally, it should be noted that ‘sink’ terms, associated with glue going into the surrounding 

area (fpz), have been ignored in the current theory.

8.3 2-D modelling example

In this section a 2-D lattice simulation is used to model the self-healing response of a typical 

adhesive healed mortar beam, as described in Chapter 7. The specific experimental beam that 

has been considered is SH beam 1 from the second experimental set on notched, lightly 

reinforced prismatic beams (Figure 7.10). This has been chosen since the mechanical response 

of this beam is considered to be representative of the general form of healing response 

obtained for a typical notched beam.

For the purpose of examining whether or not the lattice model is capable of capturing the 

main mechanical behaviour observed during the self-healing experiments, a relatively coarse 

mesh has been used for the analysis. The regular triangular mesh discretisation used has an 

element length of 4mm and boundary conditions as shown in Figure 8.5(a). The notch is 

modelled via the removal of 5 elements prior to the application of any load, and the CMOD is 

measured as the increase in distance between the nodes either side of the notch at the bottom 

of the beam. The crack mouth opening under the three-point bending arrangement is 

controlled within the model by a line of stronger and stiffer steel reinforcement elements, as 

illustrated in Figure 8.5 (a). The strength and stiffness values for the mortar, steel and glue 

phases used in the model are given in Table 8.1.
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Table 8.1. Material properties used in the numerical simulation

Strength,/; (MPa) E-value (MPa)

Mortar 1 -6.5 15800

Steel 597 (from Table 7.2) 205200

Glue 20 3500

The strength of the ethyl cyanoacrylate used in the model is taken from the RiteLok EC 5 data 

sheet as given in appendix A. The Young’s modulus of the adhesive is taken to be 3500 MPa, 

as suggested by Kim et al. (2006). The strength and stiffness values used for the steel have 

been obtained from tensile testing of the 3.15mm reinforcing bar used in the experiments, as 

described under section 7.2.4. The lattice beam analysis is a 2D plane stress simulation with a 

beam width of 1mm. Therefore, in order to account for the single 3.15mm diameter steel 

reinforcing bar used in the 75mm wide experimental beam, the steel lattice element cross- 

sectional area (As) has been reduced to 0.104mm2 (As= k (3.15/2)2/75). It should be noted that 

in reality this element is a composite element comprising part steel and part mortar (either 

side of the steel). Once the beam becomes cracked up to the level of the steel the stiffness of 

the mortar part is then lost and the stiffness of the element is based on the stiffness of the steel 

alone. Since consideration of the mortar part makes only a small difference to the initial 

stiffness of the beam, and also to maintain simplicity of the algorithm, the horizontal elements 

at the level of the steel have been considered to be steel only elements.

The E-value for the mortar phase has been estimated from three point bending fracture energy 

tests that were conducted on plain mortar beams cast from the same mortar mix used in the 

self-healing experiments. Based on the average central deflection of the fracture energy beams 

in the elastic region, the E-value of the mortar has been back calculated to be approximately 

15,800 MPa as given in Table 8.1.

In order to capture the shape and tortuosity of the crack that propagates upwards from the 

notch, the central band of mortar elements are assigned randomly distributed strengths 

selected from a predefined strength range. The strength range used for the simulation 

presented in Figures 8.5 and 8.6 is 1 to 6.5 MPa. The width of this central band of mortar 

elements, whose strength is drawn from this range, has been set to 16mm, as illustrated in 

Figure 8.5(a). The remainder of the mortar elements are then set to elastic (i.e. very high 

failure strengths). The choice of the width of the central band is based on the estimated width 

of the fracture process zone (fpz) obtained from the experimental investigation, as illustrated
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in Figure 7.16(b). This simplified method of introducing heterogeneity into the current model 

also allows for subsequent post-healed cracking to deviate away from the original crack, as 

observed experimentally in Figure 7.16(b).

Figure 8.5(b) illustrates the development of initial cracking, healing, and final crack formation 

of the three-point bend beam under the prescribed displacement (up), and the boundary 

conditions shown in Figure 8.5(a). The displacements shown in the meshes of Figure 8.5(b) 

have been scaled by a factor of 50 for the purpose of clarity.

Meshes (i) to (vii) illustrate the development of the macro crack which propagates from the 

notch upwards, to a distance of approximately 50mm above the base of the beam. At this 

point the value of the CMOD reaches 0.05mm and all of the previously broken mortar beams 

are healed and replaced with composite mortar/glue elements, as outlined previously in the 

description of the model algorithm. It should be noted that from Figure 8.6(a) the first 

capillary tube fractures in the experimental test at a CMOD of approximately 0.1mm. The 

healing in the model has, however, been initiated at a CMOD value of 0.05mm. This is due to 

the inability of the model to capture some of the non-linear processes which increase the 

ductility of the experimental response. These are discussed in more detail later in this section.

The healing in this simulation occurs instantaneously, in one stage, and is applied to all 

previously broken beams. The reason for the decision to heal instantaneously is based on the 

idealised glue rise calculations (section 8.2.3), and experimental evidence; in particular, the 

occurrence of ink staining very shortly (several seconds) after tube fracture (Figure 7.14(a)) 

and the rapid rate dependent primary healing effect observed in the SH experiments. This 

evidence indicates that the adhesive is not only drawn up the crack very quickly but also cures 

rapidly. The fixture time according to the RiteLok EC5 data sheet (Appendix A) is 5-15 

seconds, however, this is likely to be further accelerated by the alkaline environment of the 

mortar and the presence of moisture. The decision to heal in one stage is justified by the large 

reservoir of adhesive that is provided by each and every one of the individual capillary tubes, 

and also the relatively short time period over which all four capillary tubes are heard to crack. 

Therefore, it is felt that there is a readily available and plentiful source of adhesive available 

at the crack faces within a few seconds of the first tube breaking. Finally, the justification for 

healing all of the broken beams shown in mesh (vii) (Figure 8.5(b)) is based upon the 

observed glue rise o f approximately 30mm above the capillary tube level (50mm above the 

base of the beam), as shown in Figure 7.15(b).
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Figure 8.5. Coarse mesh discretisation of SH beam: (a) Boundary conditions, and; (b) Development of

initial cracking, healing, and final crack formation.
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The strength of the healed composite mortar/glue phase in the current model is set 

instantaneously to 20 MPa following healing. Whilst this element is considered to comprise 

two distinct separate parts for the purpose of modelling, in reality, the glue, due to its very 

low viscosity, is likely to permeate into the fracture process zone surrounding the main crack 

face. Indirect experimental evidence of this is found in the observed differences between the 

initial and final post-healing crack patterns on the side faces of the beams (Figure 7.16). The 

effect, therefore, o f setting the strength of the healed beam elements to 20 MPa is to cause the 

final crack pattern to deviate from the initial crack pattern. This can be seen in meshes (viii) to 

(xii) in Figure 8.5(b). In mesh (xii) the specimen is effectively broken through. Its residual 

strength is due to the triangulation caused by the mortar hinge at the top o f the beam, the steel 

reinforcement bridging the crack, and the elastic mortar elements either side o f the central 

band.

The force-displacement response from the simulation shown in Figure 8.5 is given in Figure 

8.6(b). Since the lattice beam analysis is a 2D plane stress simulation of unit depth the forces 

obtained from the simulation have been multiplied by 75 so that they may be compared 

directly with the experimental results of SH beam 1, as shown in Figure 8.6(a).
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Figure 8.6. (a) Experimental and (b) Numerical load -  CMOD response for a notched mortar beam

subject to adhesive based autonomic healing

The initial stiffness o f the lattice response agrees well with the experimental response. This 

confirms that the stiffness values used for the mortar and steel in the model are correct. 

Between 0mm and 0.05mm CMOD the response of the experimental beam shows a gradually 

increasing drop-off in stiffness as a result o f initial micro-cracks which then coalesce to form 

a larger macrocrack. During the same period the numerical response is significantly stiffer
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and oscillates considerably. The increased stiffness is largely due to the limits of the current 

model, in that the mortar elements outside of the central FPZ band are considered to be 

perfectly elastic. The model is therefore not able to adequately capture initial microcracking 

which serves to reduce the stiffness of the beam. The oscillatory response is due in the main 

to the very coarse mesh used in this analysis, and also the omittence of any form of 

smoothing, as illustrated in Figure 3.1. The value of the load towards the end of this initial 

stage is nevertheless predicted correctly by the model at about 5kN.

The response of the experimental beam between 0.05mm and 0.18mm CMOD is largely due 

to the combined effect of the four borosilicate tubes and the steel reinforcement. The stiffness 

increase between 0.05mm and 0.1mm CMOD is due to the action of the steel and glass, and 

the discontinuities, signified by the drops in the force-displacement response, are a result of 

the individual tubes breaking. There is also possibly a degree of steel/mortar slip occurring 

during this period as a result of the smooth steel bars that were used as reinforcement in the 

experiment. Since, neither the non-linear effects of the glass tubes breaking nor the 

steel/mortar slip are included in the model it is not able to capture the additional ductility in 

the force-displacement response that these processes provide. For this reason the value chosen 

for initiating healing in the model (CMOD 1) has been set to 0.05mm rather than a value 

corresponding to actual tube breakages in the experimental beam.

After the breakages of the tubes in the experimental beam, the primary healing effect is 

observed. This is identified in Figure 8.6(a) by the increased stiffness of the force- 

displacement response from 0.18mm CMOD onwards for the SH beam, when compared to 

the control beam. Likewise, for the numerical response, the simulation whereby healing is 

undertaken shows a stiffer response than the one where no healing occurs (control) and the 

crack shown in mesh (vii) (Figure 8.5(b)) simply continues to open up.

In the present model the axial and bending stiffness of the mortar part of the composite 

mortar/glue element has been reduced to account for the loss of stiffness that will occur in this 

area due to microcracking of the mortar in the FPZ around the macro crack. The axial and 

bending stiffness of the mortar part have therefore been pre-multiplied by a microcracking 

factor, m. The axial stiffness of the mortar part for example, as given in equation 8.2, then 

becomes:

km'=rnkm= r n ^ -  (8.13)
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The value of m used in the simulation shown in Figure 8.6(b) is 0.1. It can be seen from this 

figure that the stiffness of the beam post-healing is significantly less than the initial stiffness 

of the beam pre-damage. However, this post-healing stiffness is also substantially greater than 

the primary healing response obtained in the experiments (even after allowing for the different 

x-axis scales in Figure 8.6). It is possible to further reduce the gradient of the primary healing 

response with an even lower value of m. However, it is felt that the main reasons for the 

overly high stiffness of the model at this point are the absence of the non-linear effects of 

steel yielding and slip, and the overestimate of the degree of healing.

Both the healing and control responses of Figure 8.6(a) begin to plateaux out at approximately 

7kN due to the yielding of the steel reinforcement. The numerical results shown in Figure 

8.6(b), however, show a continuation in the load carrying capacity of the beam since the 

Young’s modulus of the steel remains constant in the current model. In respect to the second 

point, since the model is a 2D plane stress model, healing all of the beams up to a level of 

30mm above the capillary tubes is equivalent to full healing across the entire width of the 

beam in the experiment. However, as indicated by the glue migration pattern on the face of 

the experimental beam (Figure 7.15(b)), the adhesive flow is mainly confined to the middle 

two thirds of the crack face.

8.4 C onclusions and future w ork

The results presented in this chapter have shown that the lattice modelling method is capable 

of capturing the main mechanical behaviour which has been observed during the self-healing 

experiments on three-point bending of adhesive filled mortar beams. The initial stiffness and 

pre-healing strength is captured correctly, as is the fracture pattern pre- and post-healing. The 

increasing stiffness of the self-healing beams, relative to the control, caused by the primary 

healing in the experiments is also captured by the model.

Whilst the qualitative predictions are good, the quantitative properties of the current model 

require improvement. The inability of the current model to capture the early microcracking, 

and the full scope of damage in the fracture process zone around the macro crack, means that 

the force CMOD response is overly stiff pre- and post-healing. In addition, the current model 

is not able to capture the non-linear effects of tube breakages, steel bar slip and steel yielding. 

As a result of this, the overall numerical response is overly brittle, and the predicted ultimate 

load carrying capacity of both the healing and control beams is too high.
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Future development work is required in order to improve the quantitative characteristics of 

the model. Implementation of the stochastic theory presented in Chapter 6 to all mortar 

elements should allow for diffuse microcracking around the main macro crack, thereby 

reducing the pre- and post-healing stiffness of the beam. In addition, inclusion of the non­

linear effects of steel bar slip and yielding would improve the ductility of the mechanical 

response. It should be noted that it is possible to model the stiffness reduction that both of 

these processes cause in a similar manner to that currently used for capturing the stiffness 

change during the healing process. The effect of steel slip or yield may therefore be captured 

by reducing the stiffness of the elements surrounding the steel bar, or the steel elements 

themselves, when pre-defined CMOD values are reached in the analysis.

Further model development is also required in respect to the coupling of the flow theory with 

the lattice model. It is envisaged that in future models glue setting will be modelled using a 

time dependent function, with the strength of the composite healed elements developing over 

time, rather than instantaneously. This will allow the rate dependency effect of the primary 

healing process, as discussed in section 7.4.3, to be captured by the model. In addition, a 

‘sink’ term is required to be added to the flow theory, to allow for the volume of glue entering 

the fracture process zone around the main crack.
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Chapter 9 

Conclusions and future outlook

This chapter summarises the general conclusions that may be drawn from the present 

investigation and comments on the future outlook of the research. For specific conclusions 

and future work suggestions readers are directed to these sections at the end of each of the 

individual work chapters.

The research objectives, as outlined in the introduction to this thesis, were to:

1. Undertake novel autonomic healing experiments to better understand the kinematics of 

the healing process, and to obtain reliable data on the mechanical properties of the 

healed material for the development of numerical models;

2. Improve the quantitative abilities of the discrete lattice beam modelling method in 

respect to modelling the damage of cementitious materials, and;

3. Model the fracture and autonomic healing process within cementitious materials using 

the discrete lattice beam modelling method.

In respect to each of these three objectives, the following research has been undertaken, which 

has led to the following conclusions being made:

1. An experimental programme has been designed, developed and completed, which has 

examined the efficacy of adhesive based autonomic healing within small scale 

reinforced mortar beams. The main conclusions of which are that:

o Both primary and secondary healing effects occur within the self-healing beams, 

during the first and second loading cycles, respectively, which can result in 

improved mechanical properties of the composite;

o The primary healing response improves with increasing reinforcement level, and 

decreasing load rate, and;
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o The quantitative self-healing response is confirmed by qualitative observations 

that show clear evidence of crack healing due to glue flow on the crack face, and 

new crack formation.

2. The main quantitative limitations of the traditional lattice modelling method have been 

identified as: (i) Computational demand; (ii) Mesh orientation dependency; (iii) Mesh 

size dependency, and; (iv) Over-brittleness. The first two have been addressed, 

respectively, through implementation of an efficient FE computational algorithm, and 

development of a Mohr-Coulomb based failure criterion which minimises mesh 

orientation dependence. The second two limitations have been addressed by the 

development of regularisation theory based on the statistical distribution of beam 

strengths. The aim of this theory is to achieve realistic and objective softening curves 

from the lattice simulations, irrespective of the mesh resolution used. The main 

findings of these research areas are that:

o The implementation of efficient assembly and solver routines are extremely 

important in a lattice FE code, since the global stiffness matrix is very sparse and 

the number of DOF are generally very high;

o The choice of failure criterion used in the lattice model is very important since it 

can effect both the predicted fracture pattern and the force-displacement response;

o A Mohr-Coulomb failure criterion, when based upon the mid-plane beam stresses, 

which are in turn corrected to match the continuum stresses at this point, is 

considered to offer the best accuracy, and have the greatest underlying physical 

basis;

o The double strength distribution of beam strengths, distributed randomly over 

RMEs, significantly improves the objectivity of the softening response obtained 

for different mesh resolutions, and improves the over-brittleness of this response 

when compared to experimental results, and;

o The stochastic regularisation theory, despite not having an explicit mesostructure 

overlay, is still able to capture the main phases of crack formation, namely 

macrocrack growth, crack branching and crack bridging.

3. The self-healing response recorded during the experimental programme has been 

modelled using the discrete lattice beam modelling method. This has been undertaken
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in a simple manner by replacing broken beams with the properties of healed beams at 

a pre-defined CMOD value. The main conclusions of this modelling work are that:

o The lattice model is capable of capturing the main stages of the mechanical 

behaviour of the experimental self-healing beams, including the initial stiffness, 

pre-healing strength and the stiffness increase during primary healing;

o The initial crack pattern is realistic for a three-point bending test, and the post­

healed crack pattern deviates away from the initial crack, reflecting the new 

cracking observed during the experiments, and;

o The quantitative predictions of the model may be improved by including the non­

linear effects of tube breakages, steel bar slip and steel yielding.

As discussed in Chapter 2, the lattice modelling method has been recognised for some time as 

having the ability to offer good qualitative predictions of fracture evolution under varying 

loading conditions. It is for this reason that the model has been used by researchers in many 

different fields of engineering to model materials with different types of heterogeneity. 

Nevertheless, it is felt that the quantitative limitations of the method, which include both mesh 

orientation and mesh size dependency, have inhibited further widespread application of the 

model.

As a consequence of the improvements made to the quantitative properties of the model, as 

outlined by the research presented in this thesis, the future outlook for the lattice method is 

considered to be positive. Further development and quantification of the stochastic 

regularisation theory, and integration of this theory within simulations containing explicit 

representation of mesostructure, is likely to improve this outlook even further, as will further 

analysis of the equivalence between the underlying continuum and its discrete representation.

The application of the lattice method to the modelling of the autonomic healing process in a 

cementitious material is, in the understanding of the author, the first time that the model has 

been used to capture the self-healing behaviour in any material. The ability of this relatively 

simple model to capture the main phases of the self-healing response, serves as further 

evidence of its flexibility, and augurs well for its future application at capturing various self- 

healing phenomenon.

The autonomic healing system developed and investigated in this thesis clearly offers a 

successful mechanism for restoring, and, in certain circumstances, enhancing the mechanical 

properties of the composite. The infiltration of the cyanoacrylate into, and around, the

Page 197



Chapter 9 -  Conclusions and future outlook

macrocrack is likely to also reduce the permeability, and, therefore, improve the durability of 

the new composite material. This, however, requires confirmation during future work. The 

rapid flow and curing ability of the low viscosity cyanoacrylate, which is evident in the 

primary healing strength gain, also suggests that the method might be applicable to healing 

damage created under dynamic situations, such as in earthquakes.

There are two main issues which need to be addressed, however, before this self-healing 

mechanism can move towards commercialisation. The first issue relates to the practical 

feasibility of the healing system, and the second issue relates to the attitude o f the client.

The feasibility of the brittle glass delivery system is clearly the biggest drawback o f the 

present method, in respect to on-site structural applications. The most robust system currently 

available, probably involves the inclusion of adhesive filled microcapsules within the concrete 

mix during casting. Recent self-healing research within sandwich structures (Williams et al., 

2007) and polymers (Wu et al., 2007) has, however, moved away from micro-encapsulation 

towards the development of continuous supply networks that allow healing agent reserves to 

be replenished frequently. In light of this, two possible supply systems, which would improve 

the future outlook of the autonomic healing process in concrete, are suggested in Figure 9.1.

3D interconnected 
hollow network with 
ability to transform 
from ductile to 
brittle post-casting

t[ Adhesive 
reservoir and 
circulatory 
pump

(a)

t

(b)

Figure 9.1. Future options for development of SH delivery system in concrete: (a) Ductile network 

with ability to turn brittle post-casting, and (b) Two-part supply tube which prevents blockages

Healed crack

Brittle tube

Blockage

Permeable
flexible
tube
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The second issue, and possibly the biggest issue, which requires addressing prior to 

widespread uptake of this, or any other self-healing material, is the attitude of the client. Any 

system which involves some form of modification to the constituents, or manufacture, of an 

engineering material will result in an additional initial cost. However, providing the long term 

efficacy of the system in respect to improving the materials durability is proven, these initial 

costs should be more than offset by the long term savings from reduced repair and 

maintenance. Clients must, therefore, be prepared to evaluate the whole life costs, both 

financial and environmental, of their structures, before they are likely to seriously consider 

the adoption of these new and emerging self-healing materials.
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Appendix A -  Data sheet for Rite-Lok EC5 cyanoacrylate

A p p e n d ix  A  -  D a ta  s h e e t  f o r  R i t e - L o k  E C 5  c y a n o a c r y la t e

This appendix contains the data sheet for Rite-Lok EC5 cyanoacrylate. This adhesive has 

been used exclusively as the healing agent in the final self-healing experimental programme 

presented in section 7.3.

3M
RITE-LOK™ C y a n o a c r y l a t e  A d h e s i v e  E C 5

Updated : February 2007
Supersedes : New

Product Description RITE-LOK EC5 is a low viscosity (5 cPs) Ethyl Cyanoacrylate based adhesive.
EC5 is suitable for bonding a wide range of materials where very fast cure speed is required.

Key Features ECS is specially formulated for high strength, general purpose bonding of most plastics, rubbers,
metals and other common substrates. Recommended for use on assemblies with very close fitting 
parts and smooth, even surfaces. Can be used as a post-assembly adhesive to wick into parts.

Physical Properties Base Ethyl

Soluble In Acetone, MEK

Viscosity (cps) Range 1-10
Typical Value 5

Specific Gravity 1.06

Colour Clear

Performance Characteristics Maximum Gap Fill (best 
results are obtained with very 
thin bond lines)

0.05mm

Fixture Time 5-15secs

Tensile Strength
(ISO 6922)

20 N/mm*

Full Cure 24hrs

Speed of Cure The speed of cure of cyanoacrylates varies according to the 
substrate to be bonded. Acidic surfaces such as paper and 
leather will have longer cure times than most plastics and rubbers.

Moisture Resistance Low resistance to high levels of moisture and humidity over time.

Service Temperature Range -50 to +80°C
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Date: February 2007 
RITE-LOK
Cyanoacrylate Adhesive EC5

Additional Product 
Information

Application Techniques

RITE-LOK Activators AC11 and AC12 may be used in conjunction with RITE-LOK cyanoacrylates 
where cure speed needs to be accelerated. Cute speeds of less than 2 seconds can be obtained 
with most RITE-LOK cyanoacrylates. The use of an activator can reduce the final bond strength by 
up to 30%.

Bond speed is very fast so ensure that parts are properly aligned before bonding. RITE-LOK 
Activators may be required if there are gaps or porous surfaces. Some plastics may require 
application of RITE-LOK AC77 Primer. Ensure parts are dean, dry and free from oil and grease. 
Product is normally hand applied from the bottle.
Apply sparingly to one surface and press parts firmly together until handling strength is achieved. As 
a general rule, as little cyanoacrylate as possible should be used -  over application will result in slow 
cure speed and lower bond strength.

Storage Conditions Once opened, keep the adhesive in a cool, dry place away from direct sunlight. Under such 
conditions shelf fife at room temperature will be 12 months.

Refrigeration to 5°C gives optimum storage stability.

Shelf Life 12 months from date of despatch by 3M vtoen stored in the original carton at 21 °C

Precautionary Information Refer to product label and material Safety Data Sheet for health and safety information before using 
the product For information Diease contact vour local 3M Office. www.3M.com

For Additional Information To request additional information or to arrange for sales assistance, cad 0870 6080050 
Address correspondence to: 3M United Kingdom PLC, 3M House, 28 Great Jackson Street 
Manchester, M15 4PA

Product Use All statements, technical information and recommendations contained in this document are based 
upon tests or experience that 3M believes are reliable. However, many factors beyond 3M’s control 
can affect the use and performance of a 3M product in a particular application, including the 
conditions under which toe product is used and the time and environmental conditions in which toe 
product is expected to perform. Since these factors are uniquely within the user’s knowledge and 
control, it is essential that the user evaluate the 3M product to determine whether it is fit for a 
particular purpose and suitable toe user’s method or application.

Note Values presented have been determined by standard test methods and are average values
not to be used for specification purposes.
Our recommendations on the use of our products are based on tests believed to be reliable 
but we would ask that you conduct your own tests to determine their suitability for your applications. 
This is because 3M cannot accept any responsibility or liability direct or consequential for loss 
or damage caused as a result of our recommendation

3M and RITE-LOK are trademarks ofthe3M Company.

industrial Actoesives & Tapes Division © 3M United Kingdom PLC 2000

3M United Kingdom PLC 
3M House,
28 Great Jackson Street, 
Manchester,
M154PA

Product Information:

Tel 087060 80050 
Fax 08706070099

3M Ireland
3M House, Adetphf Centre,
Upper Georges Sheet
Dun Laoghaire.Co. Dublin, Ireland

Customer Service:

Tel
Fax

(01)280 3555 
(01)280 3509
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Appendix B -  Self-healing experimental results

Appendix B -  Self-healing experimental results
This appendix contains the force-CM O D and force-central displacement results for all six sets 

o f  experiments w hich make up the full self-healing experimental programme reported in 

Chapter 7. A  summary o f  the specim en configurations for the different sets o f  experiments 

has been presented previously in Table 7.3, and is reproduced in Table B .l  for convenience.

It should be noted that the results o f  the second loading cycle, after full adhesive curing has 

taken place, are presented in tw o formats; with and without the permanent set from the first 

loading cycle included. This has been done for sets 2-6  inclusive, where unloading data is 

available for the first loading cycle  (initial damage phase) o f  the experiment. The purpose o f  

presenting the data in these tw o formats is to a llow  the m echanical response o f  the self-healed  

beams to be compared to both the corresponding control beam response, and the initial virgin 

response (first cycle  loading) o f  the self-healing beam  itself.
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Set 1. Notched, Set 2. Notched, Set 3. Notched, Set 4. Notched, 
lightly lightly moderately heavily

reinforced reinforced reinforced reinforced

Set 5. 
Unnotched, 

lightly 
reinforced

Set 6. Notched, 
lightly 

reinforced, 
varied loading 

rate H
a ;
n“
GO

C/3C
3
3

o*-4
C/i■aao
a>3
Oo
3
HiOQ
3

&o
3

3*ft

ftv
5'OQ
O
OQ
3
3
3ft

No. of Beams

Age at first test

Mix ratio by 
weight 

(water:OPC:sand)

Cube strength, f cu 
(MPa)

Specific fracture 
energy, 6/(N/mm)

Cylinder splitting 
s t r e n g th ,/^  

(MPa)

Reinforcement 
(see Table 7.2 for 

properties)

Adhesive supply 
system

5mm deep notch

2 Ctrl & 4 SH 2 Ctrl & 4 SH

28 days

0.55:1:3.5

INo. 3.15mm <j) 
high yield steel 

bar

28 days

0.6:1:3.5

27.9 
(After 28 days)

2.4
(After 28 days)

INo. 3.15mm <|) 
high yield steel 

bar

4No. 3mm ID 4No. 3mm ID 
capillary tubes, capillary tubes,

2 Ctrl & 4 SH 

28 days 

0.6:1:3.5

24.1 
(After 28 days)

0.068 
(After 28 days)

2.0
(After 28 days)

2No. 3.15mm <|) 
high yield steel 

bar

4No. 3mm ID 
capillary tubes,

2 Ctrl & 4 SH

70 days

0.6:1:3.5

35.7 
(After 70 days)

0.096 
(After 70 days)

3.6
(After 70 days)

1 No. 6.7mm <j> 
high yield steel 

bar

4No. 3mm ID 
capillary tubes,

2 Ctrl & 4 SH

28 days

0.6:1:3.5

24.2 
(After 28 days)

2.2
(After 28 days)

INo. 3.15mm <J> 
high yield steel 

bar

4No. 3mm ID 
capillary tubes,

1 Ctrl & 3 SH at 
each loading rate

70 days 

0.6:1:3.5

33.0 
(After 70 days)

0.077 
(After 70 days)

3.5
(After 70 days)

INo. 3.15mm <j> 
high yield steel 

bar

4No. 3mm ID 
capillary tubes,

open at one end open at both ends open at both ends open at both ends open at both ends open at both ends

Yes Yes Yes Yes No Yes

Stroke loading 
rate (mm/s) 0.003 0.003 0.003 0.003 0.003 0.00075, 0.003 

and 0.012
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B .l Set 1: N otch ed , lightly  reinforced  beam s
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Figure B.l. Load-CMOD and load-central deflection for set 1
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B.2 Set 2: N otch ed , lightly  reinforced beam s
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Figure B.2. Load-CMOD and load-central deflection for set 2
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Figure B.3. Load-CMOD and load-central deflection for set 2 (including permanent set)
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B.3 Set 3: N otch ed , m od erate ly  rein forced  beam s
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Figure B.4. Load-CMOD and load-central deflection for set 3
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Figure B.5. Load-CMOD and load-central deflection for set 3 (including permanent set)
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B.4 Set 4: N otch ed , heavily  rein forced  beam s
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Figure B.6. Load-CMOD and load-central deflection for set 4
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Figure B.7. Load-CMOD and load-central deflection for set 4 (including permanent set)
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B.5 Set 5: U n -n otch ed , ligh tly  reinforced  beam s
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Figure B.9. Load-central deflection for set 5 (including permanent set)
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B.6 Set 6: N otch ed , ligh tly  rein forced , varied  load ing rate beam s
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Figure B.10. Load-CMOD and load-central deflection for set 6, with loading rate of 0.00075mm/s
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Figure B. 11. Load-CMOD and load-central deflection for set 6, with loading rate of 0.00075mm/s

(including permanent set)
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Figure B .l2. Load-CMOD and load-central deflection for set 6, with loading rate of 0.003mm/s
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Figure B .l3. Load-CMOD and load-central deflection for set 6, with loading rate of 0.003mm/s

(including permanent set)
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Figure B. 14. Load-CMOD and load-central deflection for set 6, with loading rate of 0.012mm/s
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Appendix B -  Self-healing experimental results
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Figure B .l5. Load-CMOD and load-central deflection for set 6, with loading rate of 0.012mm/s

(including permanent set)
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