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Summary

The Critical Care Unit (CCU) is the sector of the hospital where, as the name 
suggests, critically ill patients receive treatment. The main aim of this research is 
to identify and apply suitable Operational Research techniques to model patient 
flow in the CCU at the University Hospital of Wales, Cardiff. The Operational 
Research techniques employed in this thesis include queueing theory and 
simulation. These methods have been utilised previously in the field of 
healthcare with much success.

The thesis begins by considering two aspects of queueing theory, namely batch 
service queueing theory and batch arrival queueing theory. The latter of these is 
utilised to model patient flow within the CCU. Although queueing theory may be 
used as a good approximation to activities in the Unit, it does not incorporate all 
aspects of real-life. Thus discrete-event simulation is suggested as an alternative 
approach.

Two types of statistical analysis, CART and Regression, are applied to both 
length of stay and mortality variables. The results from these statistical tests are 
compiled and investigated in more depth.

Finally, a discrete event simulation model is built in Visual Basic for 
Applications, for Microsoft Excel. This simulation model incorporates many of 
the complexities of a CCU, such as patient priority and cancellation of scheduled 
patients if all beds on the Unit are occupied. The model is then used to test 
various “what-if type” scenarios, including the possibility of funding additional 
beds, the concept of ring-fencing of beds for different levels of care, and the 
likely effect of reducing the impact of bed-blocking.
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Chapter 1: Introduction

1.1. Introduction

In the United Kingdom the National Health Service (NHS) is a very important 

provision which affects the lives of all residents. Yet despite substantial increases 

in healthcare expenditure during the past decade (OECD 2006), problems such as 

long waiting times for treatment continue to be reported on a regular basis. It is 

essential therefore that the NHS works to its optimum capacity in order to meet 

the ever increasing demand for healthcare services in the UK.

Healthcare in the UK is administered through a devolved government department 

so that each of the constituent countries (England, Northern Ireland, Scotland and 

Wales) has its own targets and policies. The waiting time target for Wales, where 

this study is based, as set by the National Assembly for Wales, was that by the 

end of March 2008 no patient should have been waiting for admission as an in­

patient or day case for over 22 weeks. In August 2008, there were 21,290 people 

on the waiting list for inpatient appointment or day case care. Of these 67 

patients had been waiting for 40 weeks or more already, with approximately 

2.5% of patients already past the 22 week waiting time target (WAG 2007b). The 

situation is improving but there is still a long way to go. The corresponding 

waiting time targets for England were that all patients experienced a wait of less 

than 18 weeks from referral to treatment (DOH 2008).

One factor which can contribute to waiting time problems is the cancellation of 

Elective surgery. These cancellations occur for many reasons but can generally 

be classified into one of three groups, namely hospital reasons, clinical reasons or 

patient reasons. Clinical reasons (worsening of health, for example) and patient 

reasons (such as patients rethinking their treatment options) are largely out of the 

control of hospital managers. However, hospital reasons such as insufficient beds 

available on the Critical Care Unit (CCU) for recovering patients, or that no 

surgeon is available, can be addressed by managers and can therefore be
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optimised. This research will focus on one of the hospital reasons, that is 

ensuring that there are an optimal number of beds available in CCU to minimise 

cancellations of Elective surgery.

1.1.1. Critical Care Unit at the University Hospital of Wales

The CCU is the sector of the hospital where, as the name suggests, critically ill 

patients receive treatment. In many hospitals, the CCU is split into two Units, the 

Intensive Care Unit (ICU) and the High Dependency Unit (HDU). In such 

hospitals, the HDU acts as an intermediate venue for care between the ICU and 

the ward. The nursing requirements for ICU and HDU are different; patients in 

the ICU require 1:1 nursing care, whereas patients in the HDU require 1:2 

nursing care.

This thesis investigates activities at the CCU at the University Hospital of Wales, 

Cardiff (UHW). This Unit consists of 24 beds (with 5 additional beds that can be 

utilised in periods of peak demand) and is the largest in Wales. Since it is the 

largest Unit, very often patients from all over Wales are treated at this Unit. The 

CCU in UHW is the amalgamation of the previous ICU and HDU. This 

amalgamation occurred in 2003 and has been running as a combined Unit ever 

since. The 24 beds in the Unit can either be utilised as HDU beds or ICU beds. 

The nursing requirement in the Unit is thus 1 nurse to 2 beds or 1 nurse per bed 

depending on the severity of illness of the patient.

The Critical Care Unit nurses are specially trained, in short supply and 

expensive. An important factor is the cost of beds in CCU. In 2005-2006 it was 

estimated by the Department of Health (DOH 2006) that each CCU bed costs the 

NHS £1,716 per day, which includes nursing costs. However, in 2006-2007 the 

Department of Health (DOH 2007) changed their policy on costing and now 

calculate the cost per patient in CCU according to the number of organ failures 

they have rather than the average cost of a bed.
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1.1.2. Patients

The patients who are treated at the CCU of any hospital are diverse in nature.

The patients at the CCU at UHW are especially so since it is the largest Unit in 

Wales and thus accounts for much of the specialist care for the Welsh population. 

Patients are admitted from 6 different sources onto the Unit; Accident and 

Emergency, the Wards, Emergency Surgery, Elective Surgery, X-Ray and Other 

hospitals. The largest source of admission is Elective surgery which accounts for 

approximately 28% of admissions. The smallest source of admission is X-Ray 

which accounts for only 1% of admissions. The source of admission can be sub­

classified into two groups; planned and unplanned admissions. The planned 

admissions are simply those which the hospital has control over which is only 

Elective surgery patients. The remaining sources of admission are unplanned in 

nature, whereby the hospital very often has no idea that the patients will be 

arriving at the Unit. The Clinical Director of the CCU at UHW attempted 

previously to control the number of admissions from other hospitals (which 

presently account for approximately 6% of admissions) but the number of 

admissions has been fairly stable year on year and this source is thus accepted as 

being uncontrollable also (or unplanned).

The length of stay of patients at the CCU is also varied in nature. Many patients 

only require a stay of 1 or 2 days in the Unit, until their condition stabilises. 

However, a small proportion become long stay patients and can stay for many 

months. In the data set under investigation, the longest length of stay was 374 

days.

A large proportion of patients admitted from Elective surgery have a short length 

of stay. The reason for this is that following some major operations patients 

require forms of life support such as ventilation, for a short time and once their 

bodies have sufficiently recovered from the surgery they require no further 

treatment and are thus discharged to a ward.
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The unplanned admissions have a more varied length of stay profile. Very often 

they are admitted onto the CCU as they are acutely ill and have one or more 

failed organ system. Others are admitted as a result of major trauma. Intuitively, 

it is clear that the unplanned admissions will have a diverse length of stay profile.

1.1.3. Data

The UHW is the largest hospital in Wales. It has an average of 1064 beds 

available each day with 86.1% occupied (WAG 2007a). The CCU is also large, 

with 24 beds currently employed, but with space available for a further five beds, 

which may be utilised at times of peak demand.

The data set used in this study, which is routinely collected, has fairly complete 

records between April 2004 and May 2007. It contains a vast amount of 

information about each patient who is admitted into the CCU. Firstly, it has 

information about source of arrival of the patient, and at what time and date they 

arrived. Secondly, it has discharge data, which is the patient’s destination and the 

time at which they left the Unit. Thirdly, it includes over a hundred physiological 

factors such as body temperature or blood pressure, measured on each day the 

patient is in the CCU. Fourthly, it has information about the treatment received; 

the primary reason a patient was admitted into the CCU, and several other 

diagnostic variables. Finally, it has information specifying the medical specialty 

of the patient’s consultant.

Some interesting variables worthy of mention are the Acute Physiology and 

Chronic Health Evaluation score (APACHE), the Simplified Acute Physiology 

score (SAPS) and the Therapeutic Intervention Scoring System (TISS score).

The APACHE score ranges from 0 to 71 and is calculated based on 12 

physiological scores. The higher the APACHE score, the more severely ill the 

patient. The SAPS score is similar to APACHE and is calculated by a score 

between 0 and 163 based on 12 physiological factors. The TISS score is an 

integer value between 0 and 200 and is calculated from a set of 76 variables. 

Many of the variables, in contrast to APACHE and SAPS, relate to the therapies
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a patient has received rather than physiological factors. The TISS score will be 

discussed in more depth in Chapter 4.

In the UHW there is a separate Paediatric CCU, so only data on patients aged 

sixteen or over were used in this analysis. With these restrictions, the data set 

available for use in the analysis has 4226 patients.

1.2. Objectives of thesis

The Critical Care Unit is highly resource intensive and deeds with a variety of 

patient groups. Also, poor management of this facility can result in many 

problems for the NHS as a whole such as the cancellation of Elective surgeries. 

This thesis proposes several models which address these issues and predicts 

improvements based on varying the parameters.

The main aim of this study is to produce several complementary models using 

suitable Operational Research techniques which can model patient flow at the 

CCU at UHW. More specifically, four objectives can be identified:

• Identify and investigate appropriate queueing systems which can model 

activities at the Critical Care Unit

• Understand the factors which affect length of stay and outcome at the 

Critical Care Unit

• Use the insight gained from the previous objectives to build a simulation 

model of the Critical Care Unit.

• Analyse the results from the simulation model to show how varying some 

parameters will affect cancellations and cost.

These objectives are addressed in the thesis in the following way:

Objective 1 is addressed in Chapters 2 and 3 where two queueing models are 

discussed namely batch service queues and batch arrival queues. The novel 

model, M(b)/He/c is presented and analysed.
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Objective 2 is addressed in Chapters 4 and 5. Both Chapters begin by considering 

two statistical analysis techniques, CART and Regression, applied to length of 

stay and outcome. The influential variables in both models are discussed and 

analysed in greater depth. Finally, a novel approach, using five logistic 

regression equations is suggested which can predict the daily probability of a 

patient remaining in the system until the next day. Once again, the influential 

variables are highlighted.

Objectives 3 and 4 are addressed in Chapter 6 whereby a discrete event 

simulation model is built in VBA which seeks to imitate the real-life practice of 

the Critical Care Unit. This simulation model is then adjusted to account for 

factors such as bed-blocking and a change of working pattern in the Unit. The 

results are presented and analysed.

The remainder of this Chapter acts as a thorough review of the literature. The 

first two sections, 1.3 and 1.4, review the literature from the middle of the last 

century to the present day, relating to batch queueing theory, whereas section 1.5 

concentrates on advances made in the past 10 years alone in the field of 

modelling length of stay, mortality and patient flow, due to the way that medical 

practice has developed recently.
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1.3. Batch service queueing theory

This section aims to chart the evolution of the theory and application of batch 

service queuing systems from their earliest roots in the middle of the last century 

to the present day. In order to achieve this, a thorough literature search was 

undertaken and the relevant papers are summarised below.

1.3.1. 1950s

Much of the foundational work of queuing theory was undertaken in the 1950s 

and one of the earliest pieces was by Kendall (1951). His paper outlined some of 

the key features of queuing theory and considered a system with Poisson arrivals 

with a single server and a General service-time distribution; the M/G/l queue. 

He also introduced the concept that even though fluctuations in queue size are 

not usually Markovian in nature, an imbedded Markovian technique can be 

adopted. In a later paper Kendall (1953) extended his analysis to include regular 

arrivals with up to three servers.

Shortly after the publication of the second of Kendall’s papers, the concept of 

batch (or bulk) service from a queue was introduced by Bailey (1954). In this 

influential seminal study, he assumed that the inter-arrival rate followed the %2 

distribution and utilised imbedded Markov chains to find the solution. He was 

also the first to suggest an application of this theory in the medical field. He 

studied waiting times for an out-patient appointment with a hospital consultant 

and concluded that if a clinic were held once per week and the consultant were 

prepared to see at least one more patient than the average demand per week, then 

the average waiting time for an appointment would not be greater than one week.

During the following year Downton (1955) published results which were 

complementary to, and added to, the work of Bailey. He calculated the variance 

of the waiting time distribution and was the first to publish tables of summary 

statistics for waiting times (for values of p of 0.8 and 0.9). Shortly afterwards, in
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an extension to his own work, Downtoji (1956) considered the case of Negative 

Exponential service time distributions and the limiting properties of batch service 

queues. He noted the similarity of these limiting results to the solution for multi­

server queues with random arrivals and regular service.

Again in 1956, in a transport application, Luchak (1956) investigated Poisson 

arrivals and General service times (which he called holding times). This work 

was investigatory in nature and examined what happened if traffic intensity was a 

continuous function of time. He considered the system for various holding time 

distributions.

The end of this decade saw early consideration of the impact on waiting time 

distributions of batch arrivals to a queue (Gaver 1959) as well as batch arrivals 

and batch service (Miller 1959). These papers will not be considered in this 

section since they are largely focussed on batch arrivals as well as batch services.

1.3.2. 1960s

The 1960s saw the start of the move from steady state solutions to time- 

dependent solutions. As one of the early researchers in this area, Jaiswal (1960a) 

utilised the phase method and differential-difference equations to find the time- 

dependent solution to the queuing system presented by Bailey in 1954. He 

considered particular cases for the service distribution, including Erlang. In the 

same year Jaiswal (1960b) again extended Bailey’s work to encompass the 

situation where the maximum number that can be served at one time is dependent 

on the number of units already present within the server, as well as the capacity. 

In this paper he compared two methods of solving this system - the imbedded 

Markov chain technique and the phase method utilised in his earlier work. He 

argued that although the phase method is simpler and useful for certain cases, the 

imbedded Markov model is statistically more sound and of greater general use.

Fabens (1961) used the theory of semi-Markov processes to further investigate 

the batch service queueing system. Two basic theorems were developed; the first
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found a relationship between the probability of the Markov chain reaching a 

given state, the mean of the waiting time distribution and the mean recurrence 

time; the second looked at the limiting behaviour of the Markov chain transition 

probabilities. An equivalence theorem was found indicating that the batch service 

queue is equivalent to a single server queue with Gamma inter-arrival 

distribution and a General service distribution. He also published the waiting 

time distribution and many other summary measures. Two years later, Fabens 

and Perera (1963) submitted a correction to the previous work which suggested 

that there was a small error in the waiting time distribution that Fabens found 

earlier, simply as a result of an incorrect assumption regarding independence.

During this period the concept of multiple servers was introduced. Arora (1964) 

developed an extension to Bailey’s seminal work incorporating two-servers with 

different capacities. He also presented results for the mean queue length for a 

special case (where each server has the same mean service rate) and found the 

distribution of the busy period. In an extension to the work of Arora (1964), 

Ghare (1968) generalised the system to incorporate c (c > 2) service channels.

The work of Roes (1966) further extended the system to consider n service 

channels, each of which was a batch service facility. In this study, arrivals were 

not assumed to be Markovian while service time was assumed to have a Negative 

Exponential distribution. Roes found waiting time distributions for a number of 

scenarios including service in order of arrival (FIFO), service in random order 

(RIRO) and service in inverse order (LIFO).

In the previous year Neuts (1965) studied the busy period of a batch queue. He 

discovered that the busy period was equal to the time between successive visits 

to the state zero in an imbedded semi Markov process. He also obtained the 

transform of the distribution of the busy period.
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1.3.3. 1970s

The 1970s saw consideration of special cases of the queueing systems already 

derived. Love (1970) considered the system where there were S servers with only 

batches of size Q being served. Arrivals were assumed to be Erlangian in nature 

and service Markovian. Love presented summary measures including the mean 

waiting times in the system and in the queue.

In 1972, Bahary and Kolesar (1972) used the imbedded Markov chain technique 

to study bulk service queueing systems. The system they chose to analyse had a 

variable service capacity and a variable service mechanism which depended upon 

the number of customers waiting in the queue when service began. In addition, 

they developed the concept of ‘scale’ which allowed the characteristics of small 

systems to be used to develop the characteristics for large systems.

Chaudhry and Lee (1972) derived probabilities and calculated the transient 

steady state solutions for a bulk service queue with Poisson arrivals and alternate 

Exponentially distributed service intervals with different means. On a similar 

theme, three years later Medhi (1975) considered a queue with Poisson input and 

an Exponential service distribution with the number served being greater than a 

and less than b, the acceptance threshold.

In 1975, Griffiths and Cresswell (1976) applied the theory of batch service 

queues to a Pelican crossing. In this, the first application in this domain, several 

different aspects of the system mechanism, were considered such as the 

distribution of the queue of cars and pedestrians.
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1.3.4. 1980s

The 1980’s saw the emphasis shift onto a general service time distribution with 

Markovian arrivals.

In 1981, Chaudhry and Templeton (1981) studied the M/G(B)/1 queueing 

system. They assumed Poisson arrivals and a General batch service distribution 

with maximum batch size B. They aimed to generalise Jaiswal's queueing system 

(M/Ek(b)/1), derived twenty years previously, to find a relationship between the 

probability generating functions of the number of customers in the system at a 

random instant of time and the number in the system at post-departure instants. 

They discovered a simple derivation of the waiting time distribution having 

utilised the supplementaiy variable technique. They were also able to 

demonstrate that Little’s result holds for this queueing system. Graphical 

representations of the roots of the characteristic equations were included and 

these are complementary to ones found in Chapter 2 of this thesis.

In a traffic application, Griffiths (1981) extending his previous work, applied 

batch service queueing theory to pedestrian crossings. The system assumed that 

vehicles arrived at a crossing at mean rate X and pedestrians arrived at the 

crossing with mean rate p. Car arrivals were described by a displaced 

Exponential distribution and groups of pedestrians took time a to cross the road 

(a was fixed for each individual pedestrian crossing). When vehicles were 

present in the queue, they dispersed at constant time intervals f3 (once the 

crossing is empty). Distributions of effective red and green periods were 

considered as well as probabilities regarding the number of vehicles in the queue 

at regeneration points. Pedestrian queues were also discussed.

Neuts & Nadarajan (1982) studied the (M/M(a,b)/N) queue, considering the 

marginal density of the number of customers waiting, the stationary probability 

that there were j  servers free and the waiting time distribution.
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In 1983, a book was written by Chaudhry and Templeton (1983) which discussed 

both batch arrival and batch service queues. Much of their previous work was 

summarised in this volume, as well as some interesting special cases, such as 

infinite time-dependent queues.

In 1985, Madill, Chaudhry and Buckholtz (1985) investigated the solution of a 

deterministic queueing system. In an extension of Medhi (1975) the system had a 

single server providing service in batches with an acceptance threshold 

(minimum batch size a, maximum batch size b). Analytic results were found for 

the steady state probabilities at both random and pre-arrival instants. The solution 

was not trivial and therefore graphical solutions were discussed but the system 

required the traffic intensity (p) to be rational.

Two years later Chaudhry, Madill and Briere (1987) considered the (M/G(a,b)/1) 

queueing system. They employed the supplementary variable technique to find 

the post-departure and arbitrary time instant probabilities and then used the 

results to find various summary measures including the mean queue length and 

the mean waiting time in the system.

Liu, Kashyap and Templeton (1987) introduced the concept of allowing the 

customer to choose which of the queues to join when each queue had a different 

service distribution and the number of servers was infinite. In this piece of 

research, the transient results for the mean and variance for the number in the 

system were obtained, in addition to the waiting time distribution and steady 

state results.

Once again in 1987, Ozekici (1987) considered the case where arrival and 

service rates were not independent. He analysed and exploited the relationship 

between the arrival and service processes with emphasis on the impact of this 

relationship on mean times. He applied the work to the transportation arena.

In 1988, Jacob and colleagues (1988) explored the impact of a limited waiting 

area. They considered a single server bulk service queueing system where
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arrivals were assumed to be Markovian and any arrival which occurred when the 

waiting area was full was lost.

Later in that same year, Bertsimas and Papaconstantinou (1988) considered the 

system where the service distribution was assumed to be Coxian-2 with s service 

facilities. Batches were served with a minimum size a and a maximum size b.

The method of stages was used to find the steady state probabilities. They found 

the probabilities of each state where all servers were busy and found waiting 

time, idle server and service batch distributions.

Finally, in 1989 Briere and Chaudhry (1989) constructed algorithms to find the 

solutions to the queue M/G[Y]/1 using transform methods. They found the 

steady-state probabilities and moments of the number of customers in the system 

at three instants of time: post-departure, pre-arrival and random. Then, they 

presented numerical results for the deterministic, Erlang, Hyperexponential and 

Uniform distributions.

1.3.5. 1990s

The early 1990s heralded the introduction of more flexibility into queueing 

systems. For example Reddy, Nadadajan and Kandasamy (1991) considered the 

situation where additional servers were available if the queue length exceeded a 

value Y with server vacations, and Zili, Wang and Li (1991) investigated a novel 

idea of a non-symmetric cyclic queueing system. Briefly, a cyclic queueing 

system consists of N stations with k queues at each station and a single server 

who moves along the cycle. A little later Lee and colleagues (1992) examined the 

batch service queueing system with a single vacation policy. In this instance if no 

customers were present the server remained idle.

In a technical method paper Chaudhry, Gupta and Madill (1991) undertook a 

study comparing two analysis techniques: the Jacobi and the root-finding 

method, and reported steady state probabilities, means and variances for the 

number in the system. They also considered a special case for a specific batch
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size b and published a number of performance measures for this queue including 

blocking probabilities. Numerical results were obtained for several service time 

distributions including Erlang, Deterministic and Hyperexponential. They 

concluded that the Jacobi method is less cumbersome than the root-finding 

method.

Griffiths and colleagues (1991) applied batch service queueing theory to the 

Channel Tunnel. The main focus of the study was to investigate whether the 

planned provision of freight service in the Tunnel was sufficient to deal with the 

demand. Specifically, an approximation to the time-dependent solution of a bulk 

service queue was utilised.

Next the emphasis moved to consideration of a constant service time distribution. 

Ryden (1993) looked at the system where the time between services was 

constant. Arrivals were assumed to be Markovian, and batches were served with 

a maximum batch size of n. A buffer of size L was included in the system. As an 

extension to the work of Roes (1966) the authors analysed this system looking at 

various queue disciplines including FIFO and LIFO. They also introduced the 

concept of age-related service where if the buffer was full, then an arriving 

customer could either be lost or could replace the customer who had been 

waiting in the queue for the longest length of time. Sample results (for the 

waiting time probability distribution functions) were included for various 

scenarios. Alfa and Yannopoulos (1993) and Sivasamy and Senthamariakannan 

(1994) extended this work by including the idea of renewal processes.

In 1994, an extension of the work on server vacations by Reddy and colleagues 

(1991) was undertaken by Choi and Han (1994), who introduced multiple 

vacations with vacation times which followed the Negative Exponential 

distribution. The authors used the supplementary variable technique to obtain 

queue length probabilities, and the shift operator method to solve the resulting 

equations. Results were verified by comparing them to the GI/M/1 queueing 

system with multiple vacations with single service.
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Griffiths (1995) applied batch service queueing theory to the Suez Canal in a 

case study paper. The capacity of the Suez Canal was increased by 44%, by 

simply changing the cycle times from 24 hours to 48 hours.

A further development occurred in 1996 when Baba (1996) introduced the 

concept that service rate could depend upon the number in the batch being 

served. He showed that the queue size and service batch size at arrival instants 

form imbedded Markov chains and found the steady-state probabilities.

In 1997 Selim (1997) considered a traffic applications system where customers 

were served in batches of maximum size n. Time-dependent probability 

distributions for the number of customers in the system were obtained and the 

solution was used to predict the optimal service rates.

Reddy and Anitha (1998) also considered the possibility of multiple vacations, 

but the focus of their work was on determining the stationary distribution of the 

number of customers in the queue and the waiting time distribution of an arriving 

customer. Various numerical examples and expected length of queue were 

reported.

The end of this decade saw an extension to the work of Ryden (1993) when 

Laxmi and Gupta (1999) considered a buffer system with Exponential arrival and 

service times. Distributions for the number of customers in the queue were 

obtained at pre-arrival instants and arbitrary times. Analysis of waiting time in 

the queue was also carried out. In that same year Hebuteme and Rosenberg

(1999) found a relationship between steady-state probability distributions of the 

buffer occupancy at arrival and departure instants.

In another technical method paper Chaudhry and Gupta (1999) put forward an 

alternative approach for solving the finite capacity bulk service system. Arrivals 

were assumed to be Markovian and service times had an arbitrary distribution. 

The queue was analysed using the imbedded Markov chain technique and the
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supplementary variables technique. Relations between state probabilities at 

departure instants and arbitrary instants were presented.

Holland and Griffiths (1999) developed an approximate solution to the mean 

number of customers in a queue for the time-dependent M/M(l,s)/c queue. The 

Coordinate transformation solution method was utilised where steady state 

queueing results were transformed to deal with traffic intensities of 1.

Finally, Worthington and Hall (1999) built on previous works by Worthington 

and colleagues (Omosigho and Worthington, 1985, Brahiami and Worthington, 

1991) to consider the time-inhomogeneous batch queueing system,

M(t)/G(0,c)/1. They utilised discrete time modelling methods to evaluate this 

queue. They discovered that although solution algorithms were developed, they 

proved to be less good than for the single service case.

1.3.6. 2000s

The new millennium heralded the beginning of investigations into more complex 

queueing systems. For example, in 2000 Krishnamoorthy and Ushakumari

(2000) considered the system whereby customers were served in batches but 

departed individually. Also, the concept of accessibility came into the forefront. 

In this paper, the batches were accessible which means that if an arriving 

customer found service underway but the maximum batch size had not been 

reached, the arriving customer could join the service facility to complete the 

remaining service time. The authors found the number in system probabilities in 

both transient and steady-state conditions. They also found the waiting time 

distribution, the busy period distribution and other summary measures as well as 

the optimum values for maximum batch size and system capacity. In addition, 

they showed that Little’s formula holds for this queueing system.

In the same year Adan and Resing (2000) considered a specific multi-server 

batch service queueing model. Arrivals followed a Poisson process, service batch 

size must be between a and b and there were two types of service distribution: 

Coxian-2 and Erlang-r. Equilibrium probabilities for states with all servers busy
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were expressed as a sum of geometric terms. The waiting time distribution was 

also deduced and summary measures computed.

In 2002, Xia and colleagues (2002) considered the single server batch processor. 

The system under consideration had a set of parallel queues and only customers 

from the same queue could be included in a batch. The batch service distribution 

was Exponential. When both finite buffers of equal size and infinite buffers were 

present, the server was allocated to the longest queue to maximise the throughput 

of the system. The most interesting results occurred when there were unequal 

buffer sizes. Here simulation methods were used to determine the best system for 

service.

Again in 2002 Tadj and Tadj (2002) examined the single-channel bulk service 

queueing system with the added dimension of a specified accumulation level. 

Given the accumulation level r, the server stopped processing customers when 

there were fewer than r customers present, then resumed when there were r 

present. They developed a recursive numerical procedure which calculated the 

steady state probabilities. To assess the accuracy and efficacy of the recursive 

procedure they compared it to an exact solution procedure. Effectiveness and 

computation time were compared with other approximation techniques.

A year later, Tadj (2003) investigated the bulk queueing system under D-policy. 

Customers were served in batches of r units if queue length was larger than r. 

Otherwise service was delayed until the cumulative service time of the customers 

in the queue first reached D (hence the label D-policy). Steady state probabilities 

were then derived at departure instants. Special cases were considered and 

examples were provided.

In that same year Tadj and Sarhan (2003) developed an extension to the earlier 

work of Tadj and Tadj (2002) and evaluated the optimal control of a single 

channel bulk service queueing system with random service capacity with an 

accumulation level R. A search procedure was designed to determine the value of 

R that yielded the minimum expected cost per unit time. Sensitivity analysis was
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then conducted to assess the validity of the results. This was the first time that the 

cost dimension was added to batch queueing systems.

In 2004, Chaudhry and Chang (2004) considered the discrete time bulk service 

queue with variable capacity and finite waiting space - an extension of the work 

of Jacob et al (1988). Arrivals were assumed to follow a Bernoulli distribution 

and the service distribution was General. Analytic and computational aspects of 

the distributions for the number of customers in the queue (at departure instants, 

arrival instants and random instants) were discussed.

Again, that same year, Gupta and Sikdar (2004) investigated the single server 

finite-buffer bulk service queue. They considered the arrival distribution to be 

Exponential and the service distribution arbitrary with maximum batch size w 

and minimum batch size v. A single vacation was taken when less than v 

customers were present and the server was available. The distribution of the 

number in the queue at various time instants was calculated and summary 

measures were obtained.

The following year saw the introduction of a new approach -  the use of fuzzy 

logic. Chen (2005) considered a queueing system using fuzzy logic where arrival 

and service rates were deemed to be fuzzy numbers. They transformed a fuzzy 

queue into a family of crisp queues by using the alpha-cut approach. Using these 

alpha-cut representations, two parametric nonlinear programs were formulated to 

describe the family of crisp queues.

Again in 2005, Denteneer and Van Leeuwaarden (2005) considered the system 

where the arrival process was linked to the number in the queue, assuming that a 

fixed minimum delay exists between arrival instant and service commencement. 

This is called the delayed bulk service queue. Higher dimension Markov chains 

were required to characterise this system. Approximate bounds for the mean 

queue size were derived and simulations showed interesting results.

Alfa (2005) introduced the GI/G[y]/l queuing system where both arrivals and 

service were assumed to follow a General distribution in discrete time.
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In 2006, Goswami, Mohanty and Samanta (2006) once again considered a 

queueing system in discrete time and introduced the concept of accessibility in 

discrete time. Arrivals and service times were assumed to be geometrically 

distributed and a buffer was present in this system. Late entries could join the 

service part way through as long as there were fewer than d customers in the 

server (where d is less than the maximum batch size). If there were fewer than d 

customers in a batch when the late entry arrived, then the batch was labelled 

‘accessible’, if not it was labelled ‘non-accessible’.

2006 saw the introduction of another new approach with Armero and Conesa 

(2006) using Bayesian statistics as well as queueing theory to analyse the 

congestion of bulk service queues.

In 2007, Yi and colleagues (2007) developed an extension to the work of 

Chaudhry and Chang (2004) and considered a system with Bernoulli arrivals and 

batch service, where service commenced when the number in the queue reached 

a threshold value. The authors derived queue length distributions just after a 

service was completed and deduced a relationship for the queue length 

distribution at a random moment in time. They then evaluated the mean queue 

length and other summary measures.

Finally, Claeys and colleagues (2007) considered the system where a batch 

server operated with a minimum batch size 1 and a maximum batch size c. They 

developed the probability generating function for the number in the system when 

there was a dependency between the number in the batch and the service time of 

a batch.
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1.4. Batch arrival queueing theory

The next section of the literature review will consider the development of the 

batch arrivals queueing system. The roots of this system are again found in the 

middle part of the last century and one of the first researchers to study batch 

arrivals was Donald Gaver. He considered the system whereby groups of 

customers arrived at a single service facility according to a stationary compound 

Poisson process and utilised imbedded Markov chains to investigate the busy 

period (1959).

1.4.1. 1960s

Developmental work on the batch arrivals queueing system continued into the 

1960s and one of the first papers published during that decade was by Conolly 

(1960). He presented an extension to the work on batch service queues 

undertaken earlier by Bailey (1954), and considered the bulk arrival single 

service system where customers arrived according to a General distribution and 

are served according to the Negative Exponential distribution. He also used the 

imbedded Markov chain technique.

A few years later Hawkes (1965) was the first to consider the time-dependent 

solution of a queue with bulk arrivals operating with a priority setting. He used 

Laplace transforms to consider a case for two classes of arrivals (priority and 

non-priority) and derived the equilibrium distribution (steady-state) for both 

classes of arrivals, as well as the distribution of the number of customers 

remaining in the system immediately after a departure occurred. The mean 

queueing times were also calculated for the case where the service distribution 

was Negative Exponential.

Later that year Gupta and Goyal (1965) considered the queueing system 

M(x)/He/1, that is, Markovian batch arrivals (x is a random variable here) with 

one Hyperexponential service facility. The authors derived the Laplace
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Transform for the number in the system using the imbedded Markov chain 

method adopted by Bailey (1954). This work is extended upon in Chapter 3.

Abolniko (1967) was the first to consider multi-server batch arrival queues and 

the concept was further developed by Reynolds (1968). Reynolds investigated 

bulk arrival queues with an infinite number of servers and Poisson arrivals. The 

number of customers within a batch was random. The time-dependent queue 

length was investigated and a generating function expression was derived. This 

distribution was used to show that the limiting distribution is compound Poisson. 

Interestingly, Reynolds showed that the regression model of the queue length at 

time t initially is linear, and this expression was used to find the autocorrelation 

function.

In the same year Kabak (1968) was the first to consider c service facilities when 

he developed the M(«)/M/c batch arrival queue (with n arrivals in each batch). 

He examined the blocking probabilities for a loss system and a delay system, and 

calculated the mean and variance of the delay time along with other numerical 

results.

1.4.2. 1970s

Two years later Kabak (1970) extended his earlier (Kabak 1968) work to look at 

the M(x)/M/c queueing system where x is a random variable. He calculated the 

steady state probabilities, the blocking probabilities and the mean and variance 

for the delay time.

In that same year Harris (1970) extended the current theoretical base to consider 

the system where the service time was state-dependent. The single service 

facility system was deemed to have a service distribution which was dependent 

upon the number of customers in the queue. The imbedded Markov chain 

technique was utilised and numerical results for steady-state probabilities and 

expected queue sizes were included.
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The issue of the time-dependent solution of a queueing problem with correlated 

batch arrivals and a general service time distribution was first considered by 

Murari (1972). In this paper the author found Laplace transforms of a variety of 

probability generating functions of queue lengths and used these to derive special 

cases.

Later in that same year Halfin and Segal (1972) returned to the issue of priority 

(this time defined as primary and secondary groups) within the queue thereby 

extending the work of Hawkes (1965). The primary group of customers 

immediately entered service if there was a facility available, if not, they were 

sent away. Their service time was Negative Exponential. The secondary group 

had a General service time distribution and entered service if there was a service 

facility available, if not, they were sent to the buffer. The moments for the 

number of customers in the buffer were derived for steady state conditions.

During the mid 1970s Dagsvik wrote two papers (1975a, b). In the first of these, 

he outlined the waiting time process of the single server bulk queue and found a 

corresponding waiting time equation. The second paper was an extension to this 

whereby the inter-arrival or service time distributions were a linear combination 

of Erlang distributions. In order to solve this queueing system he used algebraic 

methods (Wiener-Hopf). He also noted that the solution of the waiting time 

equation may be reduced to the problem of fitting a Hyperexponential solution in 

a modified equation when the service distribution is Hyper-Erlang.

One year later Cohen (1976) investigated the GI/G/1 queueing system with batch 

arrivals and individual service. He considered the steady state results for the 

waiting time distribution using the theory of regenerative processes.
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1.4.3. 1980s

The early part of this decade saw the introduction of the use of algorithms into 

modelling methodology and the emergence of case-study techniques to highlight 

issues surrounding very specific queueing problems.

In 1981, Van Hoom (1981) used algorithms to find the state probabilities in a 

single server queueing system with batch arrivals. The author developed this 

theory for finite or infinite capacity models where arrival batches could be totally 

or partially rejected. Baily and Neuts (1981) also derived an algorithm for 

computing the steady state probabilities for the c-server queue with Exponential 

service times and bounded group arrivals. Probability densities for queue length 

were found at various time instants. Algorithmic methods for the waiting time 

distribution for a customer in a batch were derived.

That same year saw one of the first explicit case study papers using the batch 

arrival queueing in a clinical setting (Lopezsoriano et al. 1981). Different 

hospital departments release their staff at different times for their lunch, 

enforcing a batch arrival queueing scenario. The authors sought to optimise the 

system such that long queues and excessive waiting times for customers during 

the lunch period were minimised. What-if type scenarios were tested and the 

performance of the system was evaluated.

A few years later Yao, Chaudhry and Templeton (1984) produced bounds for the 

mean waiting time and the mean queue length for bulk arrival queues by utilising 

the established results for the bound of single arrival queues. The two main forms 

of bulk arrival queues GI(x)/G/l and GI(x)/G/c were discussed. At around the 

same time Kimura and Ohsone (1984) used a diffusion approximation to 

calculate the steady state distribution of the number of customers in the system.

In 1986 Kulkami (1986) investigated a very specific but interesting situation 

whereby two types of customers (for example, customers with different priority) 

arrived in batches at a single server queueing station with no waiting room. If a
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customer arrived and found the server busy, the customer would immediately 

enter a Negative Exponential holding time and would then try to enter service 

again. The expected waiting time for the customers was derived. A little later 

Falin (1988) developed this work further in order to derive the waiting time for 

two types of customer arriving in batches. The author suggested a different 

method for solving this problem which extended Kulkami’s work to look at the 

case where there are greater than two types of customer.

The previous year, in a more technical method paper, Briere and Chaudhry 

(1987) looked at the computations required for the bulk arrival queueing model 

GI(x)/M/l. Firstly, the roots of the characteristic equation were found, then the 

roots were utilised to find the moments and the steady state distribution of the 

number of customer in the system. Briere and Chaudhry (1988) extended this 

work in 1988 to look at the queueing system M(x)/G/1 with batch arrivals. They 

consider 4 types of service distribution: Hyperexponential, Erlang, Deterministic 

and Uniform for which they found the limiting distribution of the number of 

customers in the system at a random instant in time.

In an extension to a previous study looking at finite or limited waiting areas, 

Jacob and colleagues (1988) discussed the queueing system with General inter­

arrival and service time, one service facility and finite waiting space. The authors 

suggested two different rejection strategies which come into force when a batch 

arrives while there is not enough space in the buffer: the entire batch is rejected 

or only the excess is rejected. The rejection probabilities were calculated and the 

waiting time distribution was considered.

At the end of this decade Lee (1989) was the first author to consider the batch 

arrival queueing system where the server had vacations. He considered two cases 

of server vacation: if the server finds no customer present in the system when the 

server returns from vacation, another is immediately taken, or if the server finds 

no customer present when the server returns from vacation, the server waits until 

the next group of customers arrive. The server idle probabilities and waiting time
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distributions were derived as well as the mean number of customers in the 

system.

1.4.4. 1990s

This decade saw the blossoming of interest and research in the field of queueing 

theory. It was also the time when the impact of queueing systems on cost was 

beginning to be acknowledged as a factor for consideration. It began by the 

introduction of the systems where priorities could be set in anticipation of certain 

queueing events occurring. Takahashi and Takagi (1990) discussed a single 

server priority system where the arriving batch contains customers from many 

different classes. Preemptive and non-preemptive priority rules were discussed 

and the supplementary variable technique was utilised to find the queue length 

and waiting time distributions. In an extension to their previous paper, Takahashi 

and Takagi (1991) considered the M(x)/G/1 priority queue with single or 

multiple vacations. Again preemptive and non-preemptive priority rules were 

discussed. Also in that same year Pechinkin (1990) discussed a batch arrival 

queueing system with absolute continuous priorities. The steady-state 

distributions for the waiting time and the number of customers in the system 

were found. In a further extension relating to priority queues, Towsley and 

Tripathi (1991) considered a priority queue with two classes of customers. This 

time, the server could fail and when it did, the system emptied. The queueing 

system was described as M(x)/M/1 with General repair times and Exponential 

inter-failure times.

In the previous year Van Ommeren (1990) considered approximations for the 

waiting time probabilities of individual customers for the M(x)/G/1 queueing 

system. A variety of batch and service time distributions were examined yielding 

accurate results.

In a development of the work of Kabak (1968), Fakinos (1990) considered the 

equilibrium behaviour of the M(x)/G/k loss system. If an arriving batch did not 

find enough available service facilities for the whole batch, the excess were lost.
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The author began by deriving explicit results for particular service time 

distributions and concluded by discussing specific results for the situation where 

the service distribution was general and there were two service facilities.

The following year Lee and Lee (1991) introduced the concept of multiple server 

vacations to the batch arrival queueing system, in which the vacations were 

differently distributed. The distributions of the number in the system and the 

waiting time in the queue were derived.

Also at that time, Fakinos (1991) introduced the concept of group departure after 

a bulk arrival queueing system.

During that time a number of papers were published which adopted new methods 

of solving batch arrival queueing problems. Firstly, Stanford and Pagurek (1992) 

utilised generating functions for the serial covariances for number in the system 

for the GI/M/1 queue with a fixed batch size. Next Moustafa and Elsayed (1992) 

examine the matrix-geometric solution for the M(x)/C2/s queueing system (C2 

refers to the Coxian-2 distribution). Analytic expressions for the mean number of 

customers in the system and the mean queue length were found. A year later 

Ferrandiz (1993) used Palm-Martingale calculus to find the queue length moment 

generating function for the BMAP/GI/1 queueing system (Batch Markovian 

Arrival Process) with server vacations. A new notation was introduced for the 

Batch Markovian Arrival Process queue -  the BMAP queue. He also extended 

the concept of vacation to include the time when an arriving customer finds an 

empty service facility. In this case, a set up time was required before the server 

could commence with the next service.

In 1992 members of the same research group -  Chaudhry and colleagues -  

published widely on the M(x) system of queues. Firstly Chaudhry, Templeton 

and Medhi (1992b) extended the work of Briere and Chaudhry (1988) to look at 

the queueing system M(x)/D/c with batch arrivals. Numerical results and graphs 

were included for interest. Next in that same year, again as an extension to the 

work of Briere and Chaudhry, Chaudhry and Gupta (1992) studied the queueing
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system M(x)/G/1 with batch arrivals. They found the waiting time distribution 

for the first and a random customer in an arriving group. They considered 

different service distributions, including Hyperexponential, Erlang and 

Deterministic. Finally in that year Chaudhry, Gupta and Agarwal (1992a) 

suggested an alternative method for deriving the limiting distribution for the 

number of customers in the system for the M(x)/G/1 queueing system. The roots 

of the characteristic equation proved to be useful here.

1994 saw the introduction of a number of new ideas. Initial investigations of 

queues in series was undertaken by Zhu (1994), while Vinck and Bruneel (1994) 

were the first to publish work on the G(G)/GEO/l queueing system (General 

inter-arrival distribution, General batch size distribution and Geometric service 

time distribution). The probability generating function of the number of 

customers in the system was found at various time instants. The method of 

solution is suggested also for the G(G)/G/1 queueing system. The BMAP queue 

was considered by Schellhaas (1994). This study investigated the system where 

the server could take two types of vacation. The steady state equations were 

derived using the imbedded Markov chain technique. It is also one of the first 

studies to include cost considerations. Early investigation of the generalised 

switch batch Bernoulli arrival and general service time process (Generalised 

SBBP/G/1) was undertaken by Ishizaki and colleagues (1994) . The batch size 

and the service time distributions followed a discrete-time alternating renewal 

process with states 1 and 2. The main focus of the research was to derive analytic 

results for discrete time queues and to show possible applications of this system.

Stadje (1994) considered the busy period of the M(x)/M/1 queueing system. The 

main object of interest was the queue size distribution.

Shanthikumar (1994) examined the convexity of the waiting time in a batch 

arrival queue. The author demonstrated that the number of customers in the 

G(x)/GI/l queueing system and the G(x)/M/c queueing system was component­

wise convex in x.
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Moustafa and Elsayed (1994) extended their previous work (1992) to include a 

finite buffer. Expressions for the mean number of customers in the system and 

the mean queue length were found.

In 1994, Falin (1994) developed his own previous work (1988) to look at the 

problem of M/G/infinity queues with batch arrivals where there were k types of 

arrivals. Falin also developed the transient solution to this problem.

Cong (1994) considered the M(x)/G/infinity queue (as Falin above) and derived 

an expression for the joint probability generating function of the number of 

customers of type i being served at a fixed time t.

In 1994 Bocharov and Yakoutina (1994) considered the GI/G/l/r queueing 

system with batch arrivals. They particularly considered the case where the 

service time was of phase-type. The Laplace-Stieltjes transformation of the 

steady state waiting-time distribution was found.

The following year saw the publication of a paper which acknowledged the effect 

of queueing on the cost of running a system. Lee and colleagues (1995) 

examined the M(x)/G/1 queueing system with N-policy and a single vacation. 

When the server is empty, the server went on vacation of a random length. If 

there were more than N customers present in the system when the server 

completed the vacation period, the server began to serve the customers, 

otherwise the server remained idle until there were N customers present. The 

distribution of the number of customers in the system was derived and also the 

distribution of the waiting time. A procedure for finding the optimal stationary 

operating policy under a linear cost structure was also outlined.

That same year, a further study was published on the impact of preemptive 

priorities. Langaris and Moutzoukis (1995) examined a retrial queue which 

accepted two types of customers with correlated batch arrivals and preemptive 

priorities. The service distribution was arbitrary and different for each customer 

type. When the server became free, a single vacation was taken. Transient and
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steady state probabilities were obtained and the virtual waiting time for a 

customer was deduced.

Sharma and Sharma (1996) investigated the time-dependent queueing system 

where the batch arrival rate depended upon the service type. Each customer must 

go through one stage of service; after this, if the number in the system was low, 

they could go through a second optional service stage. The researchers then 

derived Laplace transforms of the probability generating functions for the 

number of customers in the system.

A little later in the decade Chaudhry and Gupta (1997), in an extension to Vinck 

and Bruneel (1994), considered the discrete time GI(X)/Geom/l queueing 

system. The supplementary variable technique was utilised for early and late 

arrival systems. The distribution of the number of customers in the system was 

derived at pre-arrival instants. Numerical results were included for different 

inter-arrival distributions and batch size distributions. The following year 

Chaudhry and Gupta (1998) extended this work by considering the discrete time 

GI(X)/Geom/l queueing system with a finite buffer. The supplementary variable 

and imbedded Markov chain techniques were used to find the queue size for 

early and late arrivals. Loss probabilities for batches and customers were also 

discussed as well as a waiting time analysis.

Also in that year the M(X)/M/1 queueing system with bilevel control was 

considered by Lee and colleagues (1998). Once the system was empty, the server 

was idle until there were m or more customers present. Once there were m 

customers present, the server began a start-up process and then would commence 

service when there were at least n customers in the system. The distribution of 

the number of customers in the system and the waiting time distribution were 

derived. The same system was studied a year later by Liu and Tseng (1999). In 

this paper there were two control threshold values of interest, k and n. If the 

number in the system was more than n, the service rate was switched from u to 

tu. If the number in the system dropped off to k (k is smaller than n) then the 

service rate was switched back from tu to u. The steady state probabilities for the
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number in the system were calculated. The concept of a cost model was 

introduced where there was a service cost, a queueing cost and a switching cost.

A year earlier Choudhury (1998) studied the steady state behaviour of a batch 

arrival Poisson queue with a random set-up time and a vacation period. Before 

the first customer from each new batch was served, the server undergoes a set-up 

period. Once complete, service could begin. Once the system was empty, the 

server began a vacation and continued to do so until there were customers 

present in the system. The author derived an expression for the probability of the 

number of customers in the system and system performance measures.

Shin and Pearce (1998) considered the single server vacation queue where the 

queue length was dependent upon the vacation schedules and with BMAP 

arrivals. The Laplace-Stieltjes transform of the queue length distribution 

(transient) was found.

Takahashi, Osawa and Fujisawa (1999) considered the batch arrival retrial queue 

where non-preemptive priority existed among two types of customer. The joint 

generating function was derived for the number of customers in the priority 

queue and in the retrial group at an arbitrary instant of time. The mean number of 

customers in the system was found. The relationship between the discrete time 

and continuous time system was discussed.

Nobel and Tijms (1999) investigated the M(x)/G/1 queueing system with a 

controllable service rate. There was one server present but the server could take 

two modes. If the server was required to switch modes, a switch-over time was 

required. A set of switch-over rules was considered and an algorithm was derived 

which minimised the long-run average number of customers in the system. This 

work was an extension to the work of Liu and Tseng (1999).
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1.4.5. 2000s

The new millennium brought with it a further increase in interest in the theory of 

batch arrival queues once more. Several strides were made in investigating 

vacations for the server as well as multiple servers and buffer systems.

In 2000, Tang and Tang (2000) examined the M(x)/G/1 queueing system with a 

single server vacation. They derived a recursion expression of the Laplace 

transform of the transient queue length distribution. The result was confirmed by 

looking at special cases including the M/G/l queue with single arrivals and the 

M(x)/G/1 queue without vacations.

Later on in the same year, Laxmi and Gupta (2000) analysed the GI(x)/M/c/N 

queueing system, that is General batch arrivals, Markovian service, c channels 

and a finite buffer of size N. They discussed the model in two ways; when a 

batch arrival occurs and finds the buffer full (or too full to take the entire batch), 

either the whole batch is rejected or the excess in the batch will be rejected thus 

extending the work of Nobel (1989). The probability distributions of the number 

of customers in the system at pre-arrival and random instants of time were 

derived. Also blocking probabilities were found and waiting time analysis was 

undertaken.

Kawasaki and colleagues (2000) studied the M(x)/G/1 queueing system by 

considering the order of service to be random. Laplace-Stieltjes transforms were 

developed of the waiting time distributions and the first two moments were 

calculated. The relationship found by Takacs (1963) and Fuhrmann (1991) 

relating the second moments under random order of service to the second 

moments found for the FIFO queue discipline, for single arrival queues was 

confirmed for batch arrival queues.

Finally in 2000, Armero and Conesa (2000) dealt with the statistical analysis of 

bulk arrival queues using Bayesian statistics. The main focus of the research was 

to discover the performance measures of the system in equilibrium.
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Moving into the first year of the new millennium, Chaudhry and colleagues 

(2001) considered the multi-server queue with batch arrivals, a General arrival 

distribution and a geometric service distribution in discrete time. This 

development built on the previous work of the research group in the 1990s (1997, 

1998). The supplementary variable technique and imbedded Markov chain 

technique were utilised to analyse the queue. Chaudhry and Gupta (2001) 

continued to work in this field and discussed the discrete time bulk arrival queues 

with a general inter-arrival and service distribution. A simple procedure was 

described for computing the waiting time probabilities of the first and a random 

customer in a batch. In 2004, Chaudhry and Kim (2004) examined the same 

system but with an infinite number of servers. System size distributions were 

derived at pre-arrival instants and random instants. Numerical results were also 

provided for special cases.

In 2002 Masuyama and Takine (2002) considered the infinite server queue with 

multiple batch Markovian arrival streams. Customers arriving from different 

streams may have different service time distributions. A system of ordinary 

differential equations was derived for the time-dependent matrix joint generating 

function of the number of customers in the system. The service distributions 

were assumed to be phase-type and they derived the time-dependent and limiting 

joint binomial moments. Numerical examples were provided which illustrated 

the influence of parameters on the performance of the queueing system.

Kumar and colleagues (2002), investigated the single-server batch arrival retrial 

queue with Bernoulli vacation schedules and general retrial times. The queue 

length distribution was derived and other summary measures were found.

An extension to the previous vacation systems was developed in 2002. The 

M(x)/G/1 queueing system was considered by Choudhury (2002) whereby the 

server took a vacation between two successive busy periods. Steady state queue 

size distributions were derived for this model.

32



In 2003, Chaudhry and Kim (2003) investigated the system size of a discrete 

time multi-server queue with batch arrivals. The service distribution was 

Deterministic and the distribution of the waiting time in the queue was derived.

Bratiychuk and Kempa (2003) considered the G(x)/G/1 batch arrival system 

once again. They concentrated on the non-steady state characteristics such as the 

first busy period and the first idle time.

In 2003, Ke and Wang (2003) examined the M(x)/M/1 queueing system where 

breakdowns could occur and where a start-up time was required, under N policy. 

The arrival rate also varied depending upon the status of the server. Breakdowns 

to the server occurred following a Poisson process and the repair distribution was 

Negative Exponential. The steady state system size distribution was derived at a 

departure instant. Also costs were taken into account to optimise the system from 

an economic perspective.

The following year, Choudhury and Krishnamoorthy (2004) built on 

Choudhury’s previous work (1998, 2000) and investigated the M(x)/G/1 

queueing system with a random set-up time. At the commencement of each busy 

period, the server needed to be set-up, then service could commence. The busy 

period distribution was derived.

Takagi and Wu (2004) considered the multiserver case with semi-Markovian 

batch arrivals, Exponential service time. The theory of piecewise Markov 

processes was utilised to analyse this queue.

Choudhury and Madan (2004) considered the system whereby batch arrivals 

occurred and where the server provided two stages of heterogeneous service 

under Bernoulli schedule vacation (similar to (Kumar et al 2002)). Each 

customer undergoes two stages of service then once these are complete, the 

server takes a vacation with probability r. Queue size distributions were derived 

for steady state conditions. Later that same year, Choudhury and Paul (2004) 

considered the same system but with service under N-policy. Until there were N
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customers present in the system, the server was idle. Once N were present, the 

server commenced service and each customer goes through at least one stage of 

service. The customer will undergo the second phase of service in a second 

service channel with probability 0. Queue size distributions were again derived 

for steady state conditions for this queue. In 2005, Choudhury and Madan (2005) 

extended this system. This time, each customer had to go through two phases of 

service. Once the second phase was complete, the server could take a vacation or 

begin the next service. Queue size distributions were derived for steady state 

conditions. In 2007 Choudhury (2007) extended the theory to a control admission 

policy on arrival. The model under consideration generalised the M/G/l system 

with retrial policy. Steady state analysis was undertaken and many statistical 

distributions were found using the imbedded Markov chain technique. Later that 

year, Choudhury and colleagues (2007) extended this work to include a multiple 

vacation policy. The way that vacation policies worked in this setting was until 

there was a batch present in the system the server could go on multiple vacations. 

Steady state analysis of this system was undertaken and many statistical 

distributions were found using the imbedded Markov chain technique.

Chen (2004) considered the batch arrival queueing system using fuzzy logic. 

Arrival and service rates were deemed to be fuzzy numbers. They transformed a 

fuzzy queue into a family of crisp queues by using the alpha-cut approach. Using 

these alpha-cut representations, two parametric nonlinear programs were 

formulated to describe the family of crisp queues.

Hur and Ahn (2005) investigated the system where the arrival stream was 

compound Poisson and the service times followed a General distribution. The 

authors considered three types of idle period: threshold, multiple vacations, and 

single vacation. After an idle period, the server needed to undergo a setup time 

before service could commence once more. Steady state distributions were found 

for system size and waiting time.

Franx (2005) found the waiting time distribution for the M(x)/D/c queueing 

system without using probability generating functions of Laplace transforms.

34



Numerical calculations were shown to be simple, even when the traffic intensity 

was high.

2005 saw the first consideration of a control of admissions. Artalejo and 

colleagues (2005) investigated the Geo/G/1 retried queue with batch arrivals in 

discrete time. The underlying Markov chains were studied. The results for 

various special cases were verified using known theory.

Ke and Chu (2006) investigated the M(x)/G/1 queueing system with a modified 

vacation policy, that is, at most J vacations could be taken in a row. The system 

size distributions were derived and also the expected busy period. These results 

were shown to be a generalisation of the multiple and single vacation policy for 

the same queueing system. A cost model was developed to determine the 

optimum value of J to achieve minimum cost.

Chydzinski (2006) looked at the buffer overflow period (i.e. the service time 

remaining when a customer arrives and finds a full buffer).

Choudhury and Paul (2006) considered the M(x)/G/1 queueing system with a 

second optional service channel which behaves under N-policy. Once there were 

N present, the server began to serve the most essential of the customers present. 

Some of the customers go through a second, optional, service. They derived the 

queue size distribution at a random instant of time and look at some costs. 

Numerical examples were also considered.

The transient departure process was considered by Tang (2007). The author uses 

the M(x)/G/1 queueing system with single vacations. A probability 

decomposition method was used to derive the expected number of departures in a 

finite time interval from any initial state. Tang then looked at practical results for 

some special cases.

An unreliable server in an M/M/1 queueing system was considered by Wang and 

colleagues in 2007 (2007). The server also took multiple vacations of
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Exponential time when the system was empty. The server could breakdown and 

these times (as well as repair times) followed the Negative Exponential 

distribution. Also, the arrival rates were dependent on the status of the server.

The maximum entropy principle was used to develop approximate expressions 

for the probability distributions of the number of customers in the system. Later 

that year, Wang et al (2007) extended this work to encompass continuous time 

loss behaviours in a space priority queue rather than discrete time.

The year 2007 sees the introduction of balking into the batch arrival queueing 

theory. Balking is simply the phenomena when a customer arrives in the system, 

they choose not to join the queue for some reason. The queuing system under 

consideration from Ke (2007b) looked at the M(x)/G/1 queueing system with 

server vacations and balking. At most J vacations could occur in a row and an 

arriving batch would balk with a probability (1 -  b) when the server was either 

operating or on vacation. System size and waiting time distributions were derived 

and numerical illustrations were given.

Ke (2007a) examined the queueing system with Markovian batch arrivals and a 

General service distribution (with one server) whereby vacations occurred and 

also where start-up and closedown times were also taken into consideration. 

When all customers in the system had been served, the server undergoes a 

closedown time. Once closed, the server could take one or more vacations. Once 

an arrival occurred, the system needed to undergo a start-up time before service 

could commence. Also, the server could break down at any point while working 

according to a Poisson process. Ke developed characteristics of the system.

Banik and Gupta (2007) investigated the system whereby customers arrived in 

batches to a finite buffer single server queue. The time between batch arrivals 

had a General distribution and the batch size was Random. The service process 

was more complicated in nature and was described as a Markovian service 

process which was correlated. This model was then used to analyse two customer 

rejection policies namely partial batch rejection and total batch rejection. Steady 

state distributions were developed at specific and arbitrary time instants. They
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obtained performance measures including the blocking probabilities and 

summary measures. Numerical results were presented graphically showing the 

affect of the model parameters on the performance measures.

In 2007, the authors Back and Lee (2007) investigated the waiting time of the 

M(x)/G/1 queue under workload control. This workload control was simply the 

server does not begin service until the number in the queue reaches a threshold 

value. They derived the Laplace-Stieltjes transform of the waiting time of an 

arbitrary customer which was then used to derive the mean waiting time. Two 

systems were considered as special cases, the M/G/l queue and the M(x)/M/1 

queue using the same workload control. The mean waiting time was then 

discussed in relation to the importance of the workload control.

Chydzinski and Winiarczyk (2008) consider the blocking probability in a finite- 

buffer queue with arrivals following a batch Markovian process (BMAP). Firstly 

the authors gave a comprehensive description of the BMAP under consideration. 

They then derived an expression for the transform of the blocking probability and 

demonstrated time-dependent and steady state characteristics from this 

expression. Numerical results were provided for two different types of BMAP.

1.5. Modelling of length of stay, mortality and patient flow in CCU

Operational research (OR) techniques have been widely utilised in the field of 

healthcare. Some examples of these are queueing theory (Cooper and Corcoran 

1974, Gomescu et al. 2002, Griffiths et al. 2006, Worthington 1987), Markov 

modelling (Kapadia et al. 2000) and simulation modelling (Ashton et al. 2005, 

Griffiths et al. 2005a, Harper and Shahani 2002, Moore 2003, Pilgrim and 

Chilcott 2008, Ridge et al. 1998, Su and Shih 2003). In fact, a survey was 

undertaken by Jun et al (1999) of applications of discrete event simulation in 

health care clinics from 1979 -  1999. The review was subdivided into two 

sections, patient flow and allocation of resources. Very little was included on the 

use of simulation in an Intensive Care Unit. However, Costa and colleagues
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(2003) applied OR techniques directly to the CCU but used CART analysis to 

generate similar patient groups.

The purpose of this review is to ascertain the factors which affect Critical Care 

Unit mortality and Critical Care length of stay by highlighting the results of 

research undertaken by others. The section will be divided into two parts; the 

influence of clinical factors, and the influence of organisational factors. It is 

worth noting that the terms ICU and CCU were utilised in the literature search. A 

number of studies were found which could easily be eliminated on the basis that 

they compared the effectiveness of existing tools such as SAPS, APACHE and 

MPM to predict length of stay and mortality. Other studies were excluded on the 

basis that they focussed on Paediatric Intensive Care Units. The main 

methodological techniques used to determine length of stay, mortality and bed- 

occupancy were: simulation, queueing theory, multiple linear/logistic regression, 

Artificial Neural Networks and CART analysis. The concluding section describes 

some methodological articles which compare and contrast these techniques.

1.5.1. Clinical factors

In a study based in Australia and New Zealand, Moran and colleagues (2008) 

found that similar variables proved significant in predicted mortality and length 

of stay in a logistic or linear regression model. Specifically, the factors affecting 

both length of stay and mortality were age, gender, APACHE III score, 

mechanical ventilation and Elective or Emergency surgery.

In a study to determine a multiple regression equation for length of stay in the 

ICU of patients with an intra-cerebral haemorrhage, Ohawki and colleagues 

(2008) found once again that gender, age and surgical intervention were 

influencing factors, along with the Glasgow Coma Scale score on admission and 

complicating infection.

Using a multiple logistic regression model, concentrating on patients with acute 

lung injury, Cooke and colleagues (2008) found that an array of measures were
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independently predictive of in-hospital death. These factors were modified acute 

physiology score, age, co-morbidities, arterial pH, minute ventilation, PaC02, 

Pa02/FI02 ratio, intensive care unit admission source, and number of Intensive 

Care unit days before onset of acute lung injury. Patients within the general 

Intensive Care Unit population were shown to have a similar profile to those with 

acute lung injury.

Using a logistic regression, Gomes and colleagues (2007), considered mortality 

of patients awaiting cardiac surgery both pre-operatively and post-operatively. 

They found that the important pre and intra operative factors were age, left atrial 

diameter, creatinine, and cardiopulmonary bypass time. In the post-operative 

period, the significant variables were found to be PaO(2)/FiO(2), epinephrine or 

norepinephrine dose and mechanical ventilation time for longer than 12 hours.

In a study in the Netherlands Van Houdenhoven and colleagues (2007) 

developed three models to predict length of stay in an ICU -  pre-operative, post­

operative and intra-ICU. The models for pre-operative and post-operative periods 

did not explain a sufficiently large proportion of the variance of the data. 

However, that for intra-ICU, was able to explain 45% of the variation. The 

factors which were found to affect intra-ICU length of stay were patient age, co­

morbidity, type of surgical approach, intra-operative respiratory minute volume 

and complications occurring within 72 hours in the ICU.

In a study limited to patients undergoing coronary artery bypass surgery 

(CABG), Rosenfeld and colleagues (2006) found that factors increasing length of 

stay in ICU were age, increased pump time, chronic obstructive pulmonary 

disease, and Emergency surgery.

Friere and colleagues (2002) investigated the use of the APACHE II score and 

the Logistic Organ Dysfunction System as predictors of prolonged ICU length of 

stay in patients with Diabetic Ketoacidosis (DKA). It was concluded that patients 

with DKA are less severely ill and have a lower mortality risk than those without
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DKA and that severity of illness scores do not predict length of stay well in this 

group of patients.

Nierman and colleagues (2001) fitted an ordinal logistic regression model to 

predict discharge location -  discharge to home, rehabilitation or death. The 

factors of influence were found to be age, gender, baseline support level, type of 

ICU, heart rate at ICU admission, use of mechanical ventilation, vasopressors or 

a pulmonary artery catheter during the ICU stay, and the development of 

respiratory, Neurologic or haematologic failure or sepsis while in the ICU.

1.5.2. Organisational changes

There is some evidence to suggest that the time of day that a patient is admitted 

or discharged from ICU can impact on mortality rates. Laupland and colleagues 

(2008) considered this issue and using logistic regression concluded that 

admission or discharge on the weekend was not associated with increased 

mortality, while admission and discharge during the night-time period were both 

independently associated with mortality.

In contrast, Wunsch and colleagues (2004) found that there was no significant 

difference in hospital mortality, once adjusted for individual components of the 

APACHE II score (which are confounding variables), between patients admitted 

on the weekend compared to mid-week, nor during the night compared with the 

day.

In another study considering the influence of time of admission to ICU, Luyt and 

colleagues (2007) concluded that patients admitted outside the normal working 

week were less critically ill than those admitted during normal working hours, 

had fewer failed organs, required fewer support procedures, and had a lower 

death rate. There are some differences between these outcomes and those found 

by Laupland and colleagues (2008) and Wunch and colleagues (2004).
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Zare and colleagues (2007) found that, when considering Elective surgery that 

was undertaken on Fridays rather than earlier in the week, there were no 

significant differences in 30-day mortality.

Duke and colleagues (2004) investigated the link between the time of discharge 

from ICU and mortality. Using Logistic regression, they found that patients 

discharged during the night had a higher mortality rate.

Another investigation into time of discharge at an intensive care unit was 

undertaken by Goldfrad and Rowan (2000). They found that the percentage of 

patients discharged at night was increasing, and that these patients did not fare so 

well as those discharged during the day. Also, discharges which occurred at night 

were more likely to be premature.

A literature review undertaken by Coombs and Lattimer (2007), focussing on 

organisational issues, found that staffing levels and skill mix within the CCU 

team can have an impact on patient outcome. They called for long-term 

evaluation using a whole systems approach in order to ensure efficiency within 

workforce modelling.

Several studies including Keenan and colleagues (2007) investigated the link 

between hospital site and size to ICU length of stay. While this study is located 

in a single site, and therefore cannot investigate the possible disparity between 

various Critical Care Units, this may be an area of possible future research.

A study undertaken by Friedrich and colleagues (2006) considered patient 

outcomes after very long stays in Intensive Care. Using multivariate logistic 

regression, they found that predictors of hospital mortality were age, 

immunosuppression, mechanical ventilation for longer than 90 days, treatment 

with inotropes or vasopressors for more than 3 days at or after day 30 in the ICU, 

and acute renal failure requiring dialysis at or after day 30 in the ICU.
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Ranhoff and colleagues (2006) investigated the possibility of treating severely ill 

elderly patients in a sub-intensive care setting. They found that patients treated in 

the SICU were less likely to die than those in the Acute Care for the Elderly 

Unit. They argued that this approach could avoid overcrowding in an ICU.

Shahani and colleagues (2008) used CART analysis to populate a simulation 

model of patient flow in a Critical Care Unit. The main aim of the study was to 

investigate the role of mathematical modelling in the Critical Care setting. They 

used a case-study approach modelling 5 different scenarios (several of which will 

be considered in Chapter 6 of this thesis). Patient characteristics were not 

considered; the study focussed on organisational changes only.

A simulation model was built using PASCAL by Ridge and colleagues (1998) to 

slid in bed-occupancy planning in an Intensive Care Unit. A simplified version of 

the model was developed analytically and summary measures for the queue were 

derived. Several what-if type scenarios were investigated such as, varying bed- 

numbers, changing the deferral period of a planned admission and changing the 

number of beds reserved for emergency admissions. The authors suggest that to 

improve the model, CART analysis should be employed to create homogeneous 

patient groups.

A simulation model was built by Griffiths and colleagues (2005b) to model 

patient flow in a CCU. The main focus of the research was to optimise the 

number of rostered nursing staff. The purpose of the study was to minimise cost 

by reducing the use of supplementary nurses.

In 2004, McManus and colleagues (2004) constructed a model of an ICU in a 

children’s hospital. The ICU was considered as an M/M/c/c queueing system. 

What if type scenarios tested included a change in bed numbers. Although 

interesting, the assumption of Markovian service times for hospital length of stay 

data is not very useful.
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Kim and colleagues (1999) utilised a simulation model and queueing theory to 

describe activities in an ICU. The admission and discharge process was of 

particular interest to the researchers. Four sources of admission were included in 

the model; Ward, A&E, Emergency surgery and Elective surgery and inter- 

arrival and length of stay distributions were fitted for these sources. The model 

was utilised to determine whether the 14 bed capacity of the ICU was sufficient.

1.5.3. Methodological comparisons

An illustrative paper into methods of modelling hospital length of stay was 

developed by Vasilakis and Marshall (2005). The authors compared modelling 

techniques such as survival analysis, mixed-exponential distributions, phase type 

distributions, simulation modelling and compartmental modelling. A comparison 

was drawn between the parameter estimates calculated for the phase type 

distribution and compartmental modelling and were found to be very similar. It 

was concluded that all of these techniques were valuable in the prediction of 

length of stay for stroke patients. It was also suggested that their implementation 

could be extended to cover many other patient groups.

Harper (2002) developed a framework for modelling of hospital resources. The 

author discussed several issues regarding the complexity of a hospital system 

such as uncertainty in demand, variability in factors such as length of stay and 

limited resources and suggested that any simulation model should take these 

issues into account. A generic hospital model, PROMPT, is described in the 

paper. The author concludes that it is imperative to capture the variability of the 

data using classification tools such as CART analysis, and then to use this 

information to populate detailed simulation models.

Lin and colleagues (2006) undertook a comparison of logistic regression and 

artificial neural networks in the prediction of survival in an ICU. They found that 

the neural network model was better able to predict survival than the logistic 

regression model.
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Another comparison of Artificial Neural Networks and Logistic regression in 

predicting mortality, (Clermont et al. 2001), concluded that these techniques 

have similar performance when sample size is at least 800.
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Chapter 2: Batch service queues

2.1. Introduction

This Chapter investigates the theory and practical applications of batch service 

queues and forms a contribution to the first objective highlighted in section 1.2, 

to identify and investigate appropriate queueing systems which can model 

activities at the Critical Care Unit.

A batch service queue is a queueing system whereby customers arrive (singly for 

the sake of this Chapter) and are served in batches. Practically, batch service 

queues crop up frequently. For example, a lift is a batch service queue (people 

arrive singly and are served in a batch). Also, many different forms of transport 

such as an aeroplane and a train are examples of batch service queues. For the 

sake of this thesis the main practical applications considered will be those in the 

field of healthcare. A day surgery unit can be considered as an example of a 

batch service queue. People arrive singly first thing in the morning and are 

served (that is they undergo treatments) as a group (or a batch) during the day. 

This work has been investigated in much depth in the past (section 1.3 highlights 

many of the key papers) and acts as a stepping stone to the more sophisticated 

and difficult models investigated in Chapter 3.

2.2. The M/G(0,s)/1 queueing system

The M/G(0’5)/l queue (i.e. Markovian arrivals, general batch service times with a 

minimum batch size of zero and a maximum batch size of s, with one server) will 

be discussed in this Chapter, with consideration given to different service time 

distributions.

In many queueing systems, s (the maximum batch size) is pre-defined and fixed 

and the minimum batch size is zero. The minimum batch size is called the
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quorum. This Chapter will only consider systems with a quorum of zero and a 

fixed maximum batch size of s. An assumption of this queueing system is that 

the server will begin service regardless of the number of customers waiting, 

including the case when there are no customers waiting.

Assume that customers arrive singly and at random at a mean rate X , and that 

batches of customers are served at a mean rate ju with maximum capacity s, then

_ Demand on system over long period of time T 
Capacity of system over long period of time T

The total demand on the system during a long time period T will be equal to the 

average rate at which the customers arrive (X) multiplied by the time period T.

The total capacity of the system over a long period of time T will be equal to the 

average service rate(/i), multiplied by the maximum number that could be

served (5 ), multiplied by the time period T.

XT X
P = —  = —  s/iT s / j

Hence, — = sp  
M

To analyse this queue, the imbedded Markov chain technique is used and since 

we have random arrivals, it is appropriate to use the departure instants as 

regeneration points. However, since a new service starts immediately after the 

previous one has finished, the instants at which we link the probabilities need to 

be clearly defined.

For clarity the procedure is magnified at the instants where one batch service 

ends and the next begins. We will consider the process at points such as A and B
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(as indicated in Figure 2.1). However, it should be remembered that all three 

event instants at A and B in fact correspond to one time instant.

Batch service finishes Batch service finishes

Next batch 
service starts

Next batch 
service starts

A B
Figure 2.1: Regeneration points for the M/G(0,sVl system

Let pn be the probability that there are n customers in the system just after a

batch service finished (e.g. at A or B). The interval AB represents the service 

time of a batch.

Let kj be the probability that j  customers arrive during the batch service time

Through multiplication of appropriate powers of z, and summation, the following 

expression for G(z) is found:

AB.

The probabilities, pn are expressed as follows:

Define the probability generating functions, G (z) and K (z)to be

00

G(z)  = p„ + zpi + z2p2 +... = X  z"pn
n=0

00

K (z) = k0 + zkj+ z2k2 +... = X  Z"K

47



K ( z ) Z(zS- z>< 
G(Z) [  " - * ( , ) ]

G(*) = - i=0

K (z)
-1

We note that the numerator contains s unknown constants, 

p i9 where/ = 0,1,... (*?-!)

Rouche’s theorem can be applied to the denominator of the above expression for 

G (z ), since G(z) is an analytic function of z within and on the unit circle. We

show that the denominator of G(z)  has exactly s zeros within and on the unit 

circle.

Denote the s zeros of the denominator within and on the unit circle as

1, z,, z2, ..., zs_j (1 will always be a root of G (z)). For G(z) to remain analytic

the numerator must also equal zero for these values of z. When each of the z( 's 

are individually substituted, s simultaneous equations are produced that can be 

solved for the unknowns, p0,Pi,—>Ps-i •

Rouche’s theorem

If / (z) and g(z)  are analytic within and on a closed contour, C, and if

on C, then /  (z) and /  (z) + g  (z) have the same number of zeros

within C.

Take as the closed contour, a circle slightly bigger than the unit circle.
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—j  x = rcos0 y  = rsmO 

C :z  = re10 =r(cos0 + isin0) where r = l + £ , S> 0 but small.

Choose / (z) = z s and g  (z) = - K  (z ) . It is clear that both /  and g  are analytic

within and on the unit circle. Thus the first condition of Rouche’s theorem is 

satisfied.

We now need to show that |/ (z)| > |g(z)| on C.

On C,

|/ (z)| = |zs = \z\s = (l + <?)* = 1 + sS to first order in 5.

= \k0+zkl +z2k2 + ...

= k0 + k, |z| + z21 + ...

= fc0 + /t1(l + £) + £2(l + <?)2 +. 

= £(!+<?)

By Taylor’s theorem:

A:(i+<?)=.*:(i)+<y/r(i)+— £ '( i)+ .. .

K  (1 + S)  = •£(!) + SK'  (1) to first order in 8.

But K  (l) = 1 since it is a PGF, and
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k£ '( l )  = —, since A^'(l) is the mean number of arrivals in a service time.

= sp

So

|g(z)| < 1 + spS  onC

| / ( z ) l > k ( z ) l  o n C
if \ + sS> \  + spS  
i.e. if p  < 1

So Rouche’s theorem is satisfied if p  < 1. Hence / (z) has the same number of 

zeros as f ( z )  + g (z )  within and on C.

Clearly z 5 has s zeros within and on the unit circle (all at z = 0) therefore z s -  

K(z) has s zeros within and on the unit circle.

Previously, we had

G(z) = 1=0

K(z)
-1

We noted that if G(z) was to remain analytic on the unit circle then the s zeros 

of the denominator 1, zp z2, ..., z5_,, must also be zeros of the numerator.

If we write the numerator out in full, we have:

(z5 -l)p<> +(z5 -z )P i +(zs - z 2)p 2 + -  + ( z s - z s_i )p s-,

We see that this is a polynomial in z of degree s. Thus, the numerator will have 

exactly s zeros and we have already seen that these must give the factors
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(z - l)(z - Zj)(z -  z2)...(z -  zsA) . However the numerator could also have a 

constant multiplier apart from its factors, i.e. numerator = 

^ ( z - l ) ( z - z 1) ( z - z 2) ...(z -z J,1) where A is constant.

Thus we may write G (z) in the form:

«(*) =  ---------

W ) ~ l

The problem has now been simplified -  only the constant A needs to be found.

To find A, straightforward substitution of z = 1 is not possible since both 

numerator and denominator become zero. By using differentiation, the solution 

can be found.

K(z)
-1

5-1

G { z )  =  A { z - \ ) Y \ ( z - zi )
i=l

Differentiating both sides with respect to z gives:

* (* )
- i G '(z) +

K(z)szs- ' - z sK'(z)

[*w 2] G(z) = A (z -1 ) ~ P  + f K z - z <)
1=1

Setting z = 1 gives

G(1) = A
5-1no-*.)
i=1

Using AT(1) = 1 and G (l) = land K'(l) = -  = sp

(2.1)
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s - s p -  A no-*.)
1=1

:.A = ̂ A5-1no-*.)Z=1

Hence

K (z)
- l /=1

f  ^
£Z5 

\ l ~ z i j

To complete the picture for G(z), the following observations relating to K(z) may 

be made.

K(z) is the PGF of the kj probabilities that j  arrivals occur during a service time.

K(z) is related to the Laplace transform of the PDF of the service time 

distribution.

* ( * ) = V » I A ') }

Substitution of the appropriate form of K(z) into G(z) gives an expression for 

G(z) that can be expanded in ascending powers of z to pick out the probabilities 

p o ,p i , - -  However, the summary measures are usually required and the mean 

number of customers in the system at A, B (i.e. immediately after a service time 

has been completed) is given as L+d = G'(l) . Therefore differentiation of G(z) is 

required.

Manipulation of Equation 2.2 gives:

G(z)
K(z)

-1 z — z.
/=1 U - zJ

(2.2)
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Differentiation gives:

G'(z)
K{z)

+
K (z) V I d: 11

{ \ \  z - z ;
1 — z,i JJ

Setting z = 1 in the above equation causes G'(z) to disappear. Thus 

differentiation a second time is required:

G’(z)
K(z)

-1

+G(z)

-G (z )

( k ( z ) 2 [ j ( ^ ’( z ) z SI + a : ( z ) ( 5 - i ) z ^ 2 ) - ^ z ' ' a : ' ( z ) - z 5a : ' ( z ) ] )

^ f

i \K {z )szs• ' - z sK,( z ) \ l K ( z ) K ,(z)\

2 [K (z )sz ° - ' - z ‘K ' { z ) \ c

K ( z )2 1 }

/i \ ( / i \ ^ 2n  ~ d n) _ . 2 _

Now, setting z = l gives:

([.(r(i)+(5-i))-,r(i)-r(i)]) ([,-r(i)]2 (̂i)) | 2[,-r(i)]
i i + i ^ '

= -s ( l-p )

The final terms that are required are ^5- and K ” ( l ) .
dz

Firstly,
dz

5-1n
/= !

f  w  z - z t j-i i
= Y —t r i - z ,

Therefore, substituting in the appropriate expressions gives:
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i=1 1 - Z ,

Rearrangement then finally gives an expression for L+i:

s2p  + K" (l) -  s (sp + ( 5  - 1)) 
2 s ( \ - p ) (2.3)

As previously noted, the values of z which are zeros of the denominator of G(z) 

need to be found. The only zeros of interest are the ones which lie within the unit 

circle. Within the unit circle there should be s -  1 roots. If 5 is an even number, 

one root will be real (less than 1) and the remaining roots will be complex 

conjugate pairs. If s is an odd number then all roots will be complex conjugate 

pairs. When considering a service time distribution from the Exponential family, 

and when considering small batch sizes, finding the zeros of the denominator of 

G(z) is a fairly simple task, but if large batch sizes are considered or if the service 

time distribution differs from Exponential, an iterative process is used to find the 

roots.

Equation 2.2 showed that:

Therefore, we need to find the roots of the equation:

—  1 =  0
K(z)

The computer software package, MAPLE, was used to solve (2.4) for various 

values of p and s (batch size).
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Once the zeros were found, ILd could be easily found. A simulation model was 

built in Visual Basic (in Excel) to simulate the batch service queue system as a 

check. The summary measures b, Lq, W and Wq were calculated from the output. 

For the sake of comparison, and for completeness, the values L, Lq, W and Wq 

needed to be derived theoretically and compared with the simulation output. This 

derivation may be found in (Holland 1991):

L = L+d + sp

Lq =L+d- 1- 1 + c sp

2.3. Service time distributions

Different service time distributions will be considered individually. The first 

distribution considered will be the Negative Exponential. After this the E2 

distribution will be considered, extending to the E 10. Following this, the k 

parameter in the Erlang distribution will be taken to tend to infinity, thus giving 

the constant service distribution. Finally, the 2 phase Hyperexponential 

distribution will be considered.

2.3.1. Negative Exponential distribution

The probability density function of the Negative Exponential distribution is: 

f ( t )  = p e * ,  t> 0,

To find the probability generating function, K (z), the following expression 

needs to be evaluated:
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K(z)  = £Ml_2){f(t)} 

= A(1 -z){ve **}

Initially, the Laplace transform using the variable x will be taken and then 

X{\ - z) will be substituted for x.

oo

t x = je'^pie'^dt
o

= M 
x + n

Substitution of A(l - z )  for x gives:

* W - 7 7 r 4 r r r

Very often, when considering a queueing system, the quantity p is of most 

interest rather than the individual arrival rate (2) and service rate {pi). Substitution 

Xof — = s p , where s = maximum batch size, gives,

K(z)  = [\ + s p ( l - z ) j '

To complete the expression previously derived for G '( l) , that is (2.3), A^(l) is 

required:

A',(z) = 5p[l + 5 p ( l-z ) ]  2

Setting z = 1 gives:

A^'(l) = sp  as expected.

X (l-z )+ ju  

X{\- z )
1 +
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Differentiation once again gives:

JT'(z) = (sp )2(2)[l + s /> (l-z )] 3 

Setting z = 1 gives:

* '( ! )  = 2 (*p)2

Substitution of these expressions back into (2.3) gives:

T+d V *  1 | | 2 S P  ( S  / o  C \L =2^1-----+ sp  + —r----- r (2.5)
t i l - Z ,  2 ( l - P )

To verify the above expression, a simulation model was built in Simul8. Simul8 

has the capability of producing summary measures for any queue that is built, but 

it will not give a definitive value for L, the mean number of customers in the 

system. However Little’s result can be utilised to calculate L from W, the mean 

time spent in the system.

For this queueing situation, M /M ^ /l, the summary measures are defined below. 

It is worth noting that the coefficient of variation for the Negative Exponential 

distribution is 1:

S - \  1

l  = Y —tr l-r,+ 2 sp  +
2sp1 -  ( j - l )

20  - P )

2sp2 -  ( j - l )j-i i

» t n - z ,  ^  2 (1- p )

y .  1 | 2 , 2 V - (^ -1 )
y ly l - Z j  // 21(1 ~ p)

W l f  1 i 1 i 2*P2- ( * - 1) 
q 1 m  1 - z t n  21(1 -  p)
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Table 2.1 summarises the simulated values compared with the theoretical values 

obtained from the above expressions. As can be seen, the theoretical values 

correspond to the simulated values very well, even for large batch sizes.

Table 2.1: Theoretical and simulated summary measures of the M/M(0,IVl

system, s = 3,5,10,100

BATCH SIZE RHO THEORETICAL VALUE SIMULATED VALUE

3

0.1
Lq = 0.30 Lq =  0.30

L = 0.60 L =  0.60

0.5
Lq = 2.24 Lq =  2.26

L =  3.74 L =  3.76

0.9
Lq = 18.32 Lq =  18.33

L =  21.02 L =  21.03

5

0.1
Lq = 0.50 Lq =  0.50

Z=1.00

opII

0.5
Lq =  3.49 Lq =  3.51

L = 5.99 L =  6.01

0.9
Lq = 27.64 Lq = 27.79

Z = 32.14 L = 32.30

10

0.1

ooII Z# = 1.01

L = 2.00 L =  2.01

0.5
Lq = 6.62 Lq = 6.64

Z = 11.62 1  = 11.65

0.9
Lq = 50.94

r-HII

L = 59.94 Z = 60.16

100

0.1
Lq= 10.00 = 10.02

L = 20.00 Z = 20.02

0.5
Lq = 63.09 Z? = 63.11

Z = 113.09 Z = 113.16

0.9
Lq = 470.41 Lq =  466.40

1  = 560.41 Z = 556.53
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Table 2.1 demonstrates that as p increases, the values of L and Lq increase. As p 

tends to 1 the value of L tends to infinity. Figure 2.2 demonstrates the value of L 

as p tends to 1 for a maximum batch size of 10:

600

500

400

200

100

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P

Figure 2.2: Mean number of customers in the system (L) as p increases -  

Negative Exponential service

Graphical representation o f  z,

The following graphs display the roots within the unit circle, of (2.4), where the 

service time is Negative Exponential. As p increases, the modulii of the roots 

decrease, irrespective of the batch size. As the batch size, 5, increases, the roots 

become closer together. The roots are conjugate pairs, apart from one real root 

when s is even, and as s increases they tend towards forming a circle.
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Figure 2.3: z* values for the Negative Exponential distribution, s = 3, p = 0.1, 

0.5, and 0.9
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Figure 2.4: zj values for the Negative Exponential distribution, s = 5, p = 0.1,
0.5, and 0.9
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Figure 2.5: Zj values for the Negative Exponential distribution, s = 10, p = 

0.1, 0.5, and 0.9
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Figure 2.6: Zj values for the Negative Exponential distribution, s = 100, p

0.1, 0.5, and 0.9
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s - l  J
The value of V  will be largest when p is largest for each value of s. Also,

the value of L will be largest when p is largest. The parameter p incorporates the 

batch size (see section 2.3) but (2.5) shows that in fact s will influence L. As 5 

increases the value of L also increases.

2.3.2. Erlang-k distribution

The probability density function of the Erlang (parameter k) distribution is:

kMiktay- 'e- '"  
W  (it —1)!

To find the probability generating function, the following expression needs to be 

evaluated:

K(z)=-<V;> {/(')}

k/u(kjjt)k 1 e
= £

( * - 1)!

Since the Erlang distribution is effectively the sum of k Negative Exponential 

distributions, the convolution theorem can be used. The convolution theorem 

states that the Laplace transform of a sum of random variables, is the product of 

their Laplace transforms.

Therefore, the Laplace transform of the Negative Exponential distribution is 

required. This was calculated in the previous section as,

v ; * + //

Substitution of A(l -  z) for z gives:
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4 {/'*'"} = i+ ^ —̂
' ft

From the convolution theorem we have:

4 {*(0} = 4 {/ (0}4 {A (')}•••• 4 {/* (0} where hi‘) = (frfi ■-•/*)(')

Therefore

* (* )  = 4  ( ,- .,{ /« }  

’1+i ( i z £ ) '
m

-k

Substitution of — = 5/?, where 5 = batch size, and gives, 
M

K (z)  =
' s p Q - z )  

k

-k

To complete the expression previously derived for V d, (2.3), A^"(l) is required: 

spkK'{z) = 1+i£(lz£)
k

Differentiation again gives:

Setting z = 1 gives:

1 + £ p ( l - z )  
k

\ , ^ ( i - Q
k

- k - 2

- k - 2

Therefore AT"(z) = (s p f  + (sP f

Substitution of these expressions back into (2.3) gives:

r+d
s-1 1

=  Y — —
m 1 - z,

+ sp  +

2 Sp 
S p  +— ---- 5  + 1
H k

2(1 - p )
(2.6)
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Using this expression for L+d, the mean number of customers in the system and 

the mean number of customers in the queue, at an arbitrary instant in time, are 

given by:

5-1 1
L = Y  —  

t r i - z ,
+ sp\f 3 * + n  ( ^ - 0

V 2k 2(1 - p )

5-1 1

L = Y ——
* h i - * ,

+ sp k + 
~2k

+ ■
n  V 2+£f — (■s- 1)

2(1 - p )

Corresponding waiting time expressions can be found simply by utilising Little’s 

result.
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The results were verified numerically using the simulation model for k = 2 and k 

=  10:

Table 2.2 Theoretical and simulated summary measures of the M/Ek(0rS)/l

system, s = 3, 5,10,100 and k = 2,10

BATCH

SIZE
P

K = 2

oll

THEORETICAL

VALUE

SIMULATED

VALUE

THEORETICAL

VALUE

SIMULATED

VALUE

3

0.1
Lq = 0.23 Lq = 0.23 Z<7 = 0.17 Z(jr = 0.17

L = 0.53 L = 0.49 Z = 0.47 Z = 0.46

0.5
Lq=  1.54 = 1.56 Lq=  1.01 Lq = 1.03

L = 3.04 L = 3.06 Z = 2.51 Z = 2.53

0.9
Lq = 11.65 Lq = 11.69 Lq = 6.37 Z<7 = 6.42

L = 14.35 L = 14.39 Z = 9.07 Z = 9.12

5

0.1
Lq = 0.38 Z? = 0.39 Lq = 0.28 Lq = 0.2*

L = 0.88 L = 0.78 Z = 0.78 L = 0.78

0.5
Lq = 2.36 Z«? = 2.38 Z ? =  1.52 Z<7= 1.54

L = 4.86 L = 4.88 Z = 4.02 Z = 4.04

0.9
L q=  16.57 L q=  16.57 Lq = l . n Lq = l .90

L = 21.07 L = 21.07 L =  12.37 L = 12.40

10

0.1
Lq = 0.75 = 0.77 Z<? = 0.55 Z? = 0.56

L =  1.75 Z =  1.65 Z =  1.55 Z =  1.56

0.5
Lq -  4.41 Lq = 4.44 Z? = 2.85 Lq = 2.*l

L = 9.41 Z = 9.44 Z = 7.85 L = 7.87

0.9
Lq = 28.89 Z? = 28.91 Z<?= 11.69 Z? = 11.72

L = 37.89 Z = 37.92 Z = 20.69 Z = 20.72

100

0.1
Lq = 7.50 Z<? = 7.52 Z<? = 5.50 Z<7 = 5.52

L -  17.50 Z =  17.52 Z =  15.50 Z =  15.52

0.5
Lq = 41.68 Z<7 = 41.66 Lq = 27.58 Z? = 27.60

L = 91.68 L = 91.65 Z = 77.58 Z = 77.60

0.9
Lq = 250.78 Lq = 254.65 Z<7 = 81.74 Lq =81.88

L = 340.78 Z = 344.72 L =  171.74 Z =  171.89

As can be seen from the above table, the simulated values correspond well to the 

theoretical values for different values of k. Another interesting point is the way in 

which as k increases, the values of L and Lq decrease. As p tends to 1, Z, will tend 

to infinity but more quickly when k is small. The graph below demonstrates this
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fact. Note that the Negative Exponential distribution is simply the Erlang 

distribution with k = 1.

|  k = 1  k = 2  k = 10 |
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Figure 2.7: Mean number of customer in the system as p tends to 1 (Negative 

Exponential, E2 and E10)

Graphical representation o f  z(

The following graphs represent the values o f Zj found for various batch sizes, 

values of p and k = 2:
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Figure 2.8: Zj values for the E2 distribution, s = 3, p = 0.1, 0.5, and 0.9
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Figure 2.9: Zj values for the E2 distribution, s = 5, p = 0.1, 0.5, and 0.9
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Figure 2.10: z■, values for the E2 distribution, 5 = 10, p = 0.1, 0.5, and 0.9
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Figure 2.11: Zj values for the E2 distribution, s = 100, p = 0.1, 0.5, and 0.9
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Figures 2.8 to 2.11 illustrate the same pattern that is evident when the service
5 -1  |

time distribution is Negative Exponential. The value of ^  will t>e largest
i=i 1 ~ zi

5 -1

when p is largest for each value of s and comparing the value of V  for the
m 1 - z t

E2 distribution with the same corresponding value for the Negative Exponential 

distribution indicates that it is larger with the E2 distribution. Once again, the 

mean number of customers in the system, L will be largest when p is largest and 

as s increases the value of L also increases.

The following set of graphs illustrate the case where k = 10, thus we have the E 10 

distribution:
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Figure 2.12: Zj values for the Eiodistribution, s = 3, p = 0.1, 0.5, and 0.9
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Figure 2.13: Zj values for the Eio distribution, s = 5, p = 0.1, 0.5, and 0.9
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Figure 2.14: zj values for the Ei0 distribution, s = 10, p = 0.1, 0.5, and 0.9
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Figure 2.15: z\ values for the Ei0 distribution, v = 100, p = 0.1, 0.5, and 0.9

Figures 2.12 to 2.15 illustrate the values o f z\ for the Eio distribution. 

Comparison of Figure 2.12 with Figures 2.3 and 2.8 indicate that as k increases, 

the Zj move nearer to the origin and separate from one another.

5-1  |

The value of ^  will be largest when p is largest for each value of s and
m 1 -z /

5 -1  J

comparing the value of V  for the Eio distribution with the corresponding
M 1-Z,

value for the E2 distribution and the Negative Exponential distribution indicates 

that it is largest with the Eio distribution.
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2.3.3. Constant distribution

The constant service time distribution is very useful in many situations. For 

example a ski-lift on a mountain slope could have a constant service time 

distribution. K(z) can be found for the constant distribution by taking the limit as 

k tends to infinity of the Erlang distribution. This will be justified later.

For the Erlang k distribution, K(z) was derived above:

K (z)  = 1 + 'P ( I - z)
-k

Rearranging this formula gives:

K(z)  =
! | sP( i ~ z ) 

k

Taking limits gives:

lim
00

1

\  | ^ 0 ~ z) 
k

_ e *p(l z) fj0m the definition of ex

Therefore K (z)  = e sp̂1 ^

Differentiation of the above gives the following:

K'(z) = spe-Sp{l-Z)

Differentiation again and setting z = 1 gives: 

* '( ! )  = ( s p f
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Substitution of this value into (2.3) gives:

5-1 1 „  _25 -1  1

r *  = y —  
t r i - z ,

sp  -s+ 1  
+ SP+ , r -2(1 - p )

Using the definitions for L and Lq previously noted:

5—1 1 „  - .2

L = Y —M 1-Z,
1 3 5 / 0  5 /0  - 5  + 1

+  — +
2 2(1 - p )

1 5 / 0  S  / 0 2 — 5  +  1
£ = > ------ + —  + — ,------r-* t f l - z ,  2 2(1 - p )

The values of z, are a little more difficult to find for this queueing system. An

iterative solution is required by equating real and imaginary parts. This method 

was devised by Griffiths, Williams and Holland (1991) and a brief outline of the 

procedure is below:

Equation (2.3) is:

z*
K{z)

zs
e ~ sp( l-z )

-1  =  0 

-1  =  0

z*= ev('-;)

Simplification and substitution of well known representations of complex 

numbers gives:

rei6 _ gp(l-Kcos(0)+/sin(0)))

(2.7)
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Equating real and imaginary parts gives:

Real:

r _ ep(l-rcos(d))

Imaginary:

e  = - p r  sin (0)+ —— , k= 0,1, 2, . . (s -  1)
s

These equations were then solved iteratively to find the values of r and theta, 

then these values were substituted into the expression below:

z - r  (cos (6 ) + i sin (0))

The table below shows the theoretical and simulated summary measures for the 

queueing system. As can be seen, the simulated values agree very well with the 

theoretical values thus adding confidence that both methods are working 

correctly.
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Table 2.3: Theoretical and simulated summary measures of the M/D(0tS)/1

system, s = 3,5,10,100

BATCH SIZE p THEORETICAL VALUE SIMULATED VALUE

3

0.1

in©II Lq= 0.15

L = 0.45 L = 0.45

0.5
Lq = 0.88 Lq = 0.88

L = 2.38 L = 2.38

0.9
Lq = 5.07 Lq = 5.08

L = 7.77 L = 7.78

5

0.1
Lq = 0.25 Lq = 0.25

L = 0.75 L = 0.75

0.5
Lq= 1.33 Lq = 1.35

L = 3.83 L = 3.85

0.9
Lq = 5.75 Lq = 5.78

Z = 10.25 L = 10.28

10

0.1
Lq = 0.5 Lq = 0.5

L=  1.5 Z=1.5

0.5
Lq = 2.52 Z? = 2.55

L = 7.52 Z = 7.55

0.9
Lq = 7.60 Lq = 7.65

L = 16.60 Z= 16.65

100

0.1
Lq = 5.00 Z? = 5.00

L=  15.00 Z= 15.00

0.5
Lq = 25.00 Lq = 25.00

L = 75.00 Z = 75.00

0.9
Lq = 46.11 Lq = 46.21

L = 136.11 Z= 136.21

The batch size, once again, dictates the number of roots to be found. If s is the 

batch size, then s -  1 roots need to be found within the unit circle. If 5 is an odd
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s

number, there will be — conjugate pairs. If s is an even number, there will be one 

real number then - —- conjugate pairs.

|  k = 1  k = 2  k = 10  Constantj

560

480

400

240

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

Figure 2.16: Mean number of customers in the system against p (Negative 

Exponential, E2, Eio and Constant)

Figure 2.16 displays the mean number of customers in the system for values of p 

for four different service time distributions; the Negative Exponential, the E2 , the 

Ejo and the Constant distribution. It is evident that as k increases, L decreases.

The largest mean occurs when the service time distribution is Negative 

Exponential and the smallest when we have constant service times. The reason 

for this is that the coefficient of variation is largest for the Negative Exponential 

distribution and smallest (i.e. 0) for the constant distribution. However, service 

time distributions exist which have coefficients o f variation greater than 1, so it is 

possible to find service time distributions which will produce greater values of L 

(e.g. Hyperexponential distribution).
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Figure 2.17: Zj values for the Constant distribution, s = 3, p = 0.1, 0.5, and 0.9

♦  p = 0.1 ■ p = 0.5 *  p = 0.9

------------------------------1—

♦

A |

♦

*  0 ’v.X
A

-1 -0.8 -0.6 -0.4 -0.2 
A

A 7

0.2 0.4 0.6 0.8 1

■ 02

♦

1

----------------------------------------------------- -4—
♦

p = 0.1, L =  0.75 
p = 0.5, L =  3.83 
p “  0.9, L - 10.25

Real

Figure 2.18: Zj values for the Constant distribution, s = 5, p = 0.1, 0.5, and 0.9
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Figure 2.19: zj values for the Constant distribution, s = 10, p = 0.1, 0.5, 

and 0.9
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Figure 2.20: Zj values for the Constant distribution, s = 100, p = 0.1, 0.5,
and 0.9
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As has been mentioned several times already, the constant distribution is simply 

the Ek distribution with limits taken as k tends to infinity. The above graphs 

(Figures 2.17 to 2.20) confirm all of the previous patterns observed with the 

Negative Exponential distribution and the Ek distribution with k = 2 and k = 10. 

The value of L increases with p and 5. To get the z\ values to form a shape close 

to the unit circle, a far smaller value of p is required compared with the other 

service time distributions.

Figure 2.21 illustrates the roots of this equation where p approaches zero (with 5 

= 10,000). As can be seen, the graph approaches the unit circle as p tends to zero.

.  p =  0 1 .  p = 0.01 • p = 0.00l

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Real

Figure 2.21: Zj values for the Constant distribution, s = 10,000, p = 0.1, 0.01, 

and 0 .0 0 1
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2.3.4. Hyperexponential distribution

Another service time distribution of interest is the Hyperexponential distribution. 

This distribution deals adequately with data which has a significant probability of 

obtaining a small value and a small probability of obtaining a large value (i.e. 

long tails).

2\lg 
2 n( 1 -o)

Figure 2.22: The M/H(0,s)/1 queueing system

o o o ...... o
1 ~

The Hyperexponential distribution is illustrated in Figure 2.22. Customers arrive 

singly and form a queue. With a probability a, they enter the top branch of the 

service facility where they will be served according to the Negative Exponential 

distribution with a mean rate 2po.With a probability (1 -  a) they will enter the 

bottom branch of service where, once again, they will be served according to the 

Negative Exponential distribution with a mean rate 2p(l -  a). The service rate 

for each branch has been chosen in order to ensure that the overall service rate is

p.

The PDF of the above Hyperexponential distribution is as follows: 

/ (t) = cr(2jucre~2/1<Tt) + (l-c r)^ 2 / / ( l - c r ) e~2̂ ~a^^, where t > 0

From the above PDF, we can calculate the expected value and the variance of 

this distribution:

E (t ) = j|^cr/(2//<je"2//<T,) + ( l-c r )^ 2 //( l-c r )e " 2̂ 1~<T̂
0
1
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£ (* 2) =  J^0*2(2//<7e 2/iff,) + ( l - < r ) / 2 ( l j u { \ - a ) e  2//(1 
o

1
2 //2<t ( 1 ^ ct)

Therefore

Kar(' ) = 2 ^ ( l - a ) - 7
_  1 -  2cr + 2<t 2 

2 //2<t ( 1 - ct)

^  ^  . „ . , _ standard deviation
The coefficient of vanation is defined a s ----------------------- .

mean

1 -  2cr + 2cr2

c k > ( , ) = S E 3

7
_  1 -  2cr + 2 <t 2 

2 c r( l-< r)

2 c r ( l - c r )

Hence

Differentiation of the above expression gives:

dCV2(t) _ 2 c r- l

2<t 2(1 - (t )2

This is zero when o = 0.5. This is a minimum point since
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 = 16 when c  = 0.5. The minimum value of CV2 (f) = 1. Therefore,
dcr

C V (t)>  1

Figure 2.23 illustrates the behaviour of the coefficient of variation as a  ranges 

from near zero to 0.5:
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0 .0 0  0 .0 2  0 .0 4  0 .0 6  0  0 8  0 .1 0  0 .1 2  0 .1 4  0 .1 6  0 .1 8  0 .2 0  0 .2 2  0 .2 4  0 .2 6  0 .2 8  0 .3 0  0 .3 2  0 .3 4  0 .3 6  0 .3 8  0 .4 0  0 .4 2  0 .44  0  4 6  0 .4 8  0 .5 0

a

Figure 2.23: Coefficient of variation for the Hyperexponential distribution

The coefficient of variation has a value greater than 1 for 0 < cr < 0.5, but for 

cr = 0.5 the coefficient of variation has a value o f 1.

In order to solve the batch service queueing system, we need to find K(z), i.e. the 

Laplace transform of the service time distribution.

4  { /( ')}  = (0 *  = )«’” ( 2  + 2 // (1 -  a f  e 1̂  U
0 0

2 //cr2 2 ju (\-cr)2
( x + 2/jct) (x + 2 //( l-c r ) )
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Substitution of x = A ( l -  z)into the above equation gives the following:

c  ; f M ] _  2^ 2 I  2^ - ° f _____
^  ( A ( l - z )  + 2//cr) ( A ( l - z )  + 2 / / ( l - o - ) )

= K(z)

An expression for K ” (l) needs to be calculated:

r f . - l  2fta2 i M 1- * ) 2
(>3 ,(l-z) + 2//o-) (>1(1- z ) + 2 //(1 -< t ))

r ' ( z )  2A//Q-2 | 2 / L f i ( \ - a f

(A(1- z )  + 2 /« t ) 2 (A (l-z )  + 2 / / ( l - c r ) ) 2

Setting z = 1 gives:

r ( l) = 2 V  + W l
(2 //o-) (2 / / (l-o -))

_X_
M

= sp

as expected.

Then,

K ’(z) ! 4A V (1-o -)2

( A ( 1 - z ) + 2 //ct)3 ( 2 . ( l - z )  +  2 ^ ( l - c r ) ) 3

( 2 ^ )  ( 2 / / ( l - c r ) )

A2 | A2 

2 / / V  2 //2( l - o - )

A2

2 //2o - ( l-o - )
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Hence, (2.3) becomes

-  i 5  p + M \ ~ o \ ~ ' ( sp  ̂ I* 
g -( i ) = t — + ^ + — y  ° ] , -------------------

W  t f l - z ,  F 2 s ( \ - p )
5-1  1

= Y—— 
t n - z ,

(5 - 1) i p 2
+  5 0  !t ^ r-H  r

2(1 - p )  4 c r ( l- ( r ) ( l-p )

To check this expression, the trivial case cr = 0.5 is tested. This should yield the 

same results for G '(l) as the eEponential distribution version of this formula.

For the Exponential case, G '(l) = V —?—
W  t f  1-z,  2 ( 1  - p )

Substitution of cr = 0.5 into the above equation gives:

(5 - 1)G ' ( l )  =  Y - L - + 5 p - . ^ . v  + j > r -------
W  t f l - z ,  y  2 ( 1 - p)  4 (0 .5 )(0 .5 )(l-p )

^  1 2 s p - s  + l
=  >  -----------+ — y -------- —

t r i 2 ( i - p )

To find the summary measures of the batch service queue, the zeros of the 

denominator of G(z) need to be found.

G(z) =

*(*)

where A- (z) = . ■ +
2 /i ( l - o ’)2

(>3,(l-z) + 2 //cr) ( A ( 1 - z )  +  2 / / ( 1 - < t ) )

Therefore it is necessary to solve

(2.8)
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K{z)
-1  = 0

Z  =
2 //CT2

+
( > 1 ( 1 - z )  +  2 / * t )  ( A ( 1 - z )  +  2 / / ( 1 - < j ) )

(2.9)

Special case, 5 = 1

Firstly, considering the special case where 5 = 1 , i.e. a batch size of 1. The 

following equation needs to be solved:

2 //<r2 + 2 / / ( l - c r ) 2

( l ( l - z )  + 2 //cr) (A (l-z )  + 2 //( l-c r ) )

Rearranging gives:

(4 //cr2 +2//-4//<r)>3,(l-z) + (<7 -c r2 ) v
z =

zU 2 + (-2 /l2 -2 //< rA -2 //(l-c r)^ )z  + ( ^ 2 +2//<xl + 2 //( l-( j)A  + 4//2<T(l-cr)^ 

Now, collecting terms gives:

0  =  a 2z 3 +

( - 2 A ( A  +  / / ) ) z 2 +

(4//<j2A + 2///1 -  4//<tA + A2 + 2/U + 4//2<t(1 -  <y))z +

(2 / / (2 cr(l -  cr)(/l - / / )  -  A))

A solution is known to exist at z = 1. After long division, the above equation 

factorises to:

0  = (z - l)^ /l2z2 - ( ^ 2 + 2 /U )z  + (2 / / ( / i - 2 < r(l-c r)(/l-//)))j

This quadratic equation can easily be solved using the quadratic formula to find 

the remaining roots:
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(A2 + 2 ^ )  ± J ( / t2 + 2 M ) 2 -4A 2 (2^(A -2< t(1 -o -)(A -^)))
' 1,2

2 A2

Which simplifies to

(A + 2 / i ) ± ^ ( A - 2 / i ) 2 + 1 6 / /c r ( l - c r ) ( A - / i )

2 l' 1,2

This equation can be verified easily for the special case where a  -  0.5 i.e. when 

we have a Negative Exponential server.

Using the above equation,

(A + 2 ju) ± yJ(A-2ju)2 + 4 /i(A -/i)
Z|-2 = 2 1

(JL + 2 f i ) ± J I?
~ 2 l

(A + 2//)± A 
“  2A 

Giving:

(A + 2 /i) + A 
Zl_ 2A

_ A + /i
>1

= 1 + —, a root outside the unit circle.
P

(A + 2 /i)-A
*2~ 2A

A

= —, another root outside the unit circle.
P

Therefore, there are no roots within the unit circle, so G'(l) collapses to be:
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G '(l)  =  v > -  ^  l \ + ,  4̂ ? -------r

P
" ( 1 - P )  

when a  = 0.5

This is expected since this is the M/M/1 queue.

General batch size, s

Extending the theory further to a batch size of s gives:

^  2  hcf1 | 2 / / ( l - c r ) 2

A ( \ - z )  + 2jucr / l ( l - z )  + 2 //(l-< j)

Rearrangement gives:

A2zs+2 -2A(A + //) zJ+1 + (A2 + 2nA + 4ju2a  (1 -  o’)) z*

+2 //A (l -  2 cr (l -  cr)) z + 2 / / (2 <j (l -  <r) ( A = 0

Factorisation gives:

(z - 1)(A2z s+l - A ( A  + 2 / / ) z s + 4 ^ a (l -  cr) z s~x +... + 4 /i2<7(l -  cr) z  + 2fi(A -  2 a (l -  a ) ( A  -  //)))

This will not readily factorise, and solutions were found using Maple.

Table 2.4 summarises the values of L and Lq found when looking at a variety of 

batch sizes and values of p and a:
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Table 2.4: Theoretical summary measures of the M/He(0,sVl system, s = 3,5, 

10,100 and o = 0.1,... 0.4

BATCH SIZE P a  = 0 .1 o  = 0 .2 o = 0.3 o = 0.4

3

0 .1
Lq =0.88 £ 9  = 0.48 £<7 = 0.36 Lq = 0.32

£  = 1.18 £  = 0.78 £  = 0 .6 6 L = 0.62

0.5
Lq =  7.52 £<7 = 3.90 £<7 = 2.80 £g  = 2.36

L = 9.02 £  = 5.40 £  = 4.30 £  = 3.86

0.9
Lq =  66.26 £<7 = 33.47 Lq = 23.44 £<7 = 19.44

L =  68.96 £  = 36.17 £  = 26.14 £  = 22.14

5

0.1
£ 9 = 1 .4 5 £ 9  = 0.80 Lq = 0.60 £ 9 = 1 .0 2

1 =  1.95 £ = 1 .3 0 £ = 1 .1 0 £  =  0.52

0.5
Lq=  12.27 £<7 =  6.24 £<7 = 4.41 £ 9  =  3.69

L =  14.77 £  =  8.74 £  =  6.91 £  =  6.19

0.9
Lq=  107.52 Lq =  52.88 £<7 = 36.18 £ 9  = 29.51

L = 112.02 £  = 57.38 £  = 40.68 £  = 34.01

10

0.1
Lq =  2.88

00IIo Lq =  1.20 £ 9 = 1.04

£  =  3.88 £  =  2.58 £  =  2.20 £  =  2.04

0.5
Lq =  24.16 Lq =  12.10 £<7 =  8.46 Lq =  7.02

1  =  29.16 £ = 1 7 .1 0 £  = 13.46 £  = 12.02

0.9
£<7 = 210.68 £<7 = 101.41 £ ?  = 68.01 £ 9  = 54.67

£  = 219.68 £ = 1 1 0 .4 1 £  = 77.01 £  = 63.67

100

0.1
£ 9  = 28.63 £<7 = 15.73 £ < 7 = 1 1 .92 £ 9 = 10.42

£  = 38.63 £  = 25.73 £  = 21.92 £  = 20.42

0.5
£<7 = 238.19

f-t--'IIo Lq =  81.39 £ 9  = 67.07

£  = 288.19 £  = 167.74 £ = 1 3 1 .3 9 £= 1 1 7 .0 7

0.9
£<7 = 2067.68 £<7 = 975.01 £<7 = 641.06 £ 9  = 507.71

£  = 2157.68 £ =  1065.01 £  = 731.06 £  = 597.71
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Figure 2.24: Value of V  against p, o = 0 . 1 , 0 . 4
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Figure 2.25: Value of L+d against p, a = 0 . 1 , 0 . 4



5-1 |

Comparing Figure 2.24 with 2.25, it is evident that the value of V  behaves
m l - z (

5-1  J

differently to the value of L+d. When o is small the value of ^  is small,
m 1 ~ zi

5-1  |

a  is large, the value of ^  is larger. Note that a  = 0.5 would
/=i 1 ~ zi

whereas when

5-1  i

give us the largest value of V  but this would in fact be the Negative
t f  1

Exponential distribution. Examining Figure 2.25 shows that when a  is small the 

value of L+d (and thus the values of L and Lq) is larger, whereas when a  is large, 

the values are small. The summary measure L+d is smallest when we have a  = 

0.5 which is the Negative Exponential distribution (see Figure 2.16). This 

implies, that of the five distributions that have been considered in this Chapter, 

the Hyperexponential distribution with a small value of a  gives the highest 

values for the summary measures.

Graphical representation o f  z,
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Figure 2.26: Zj values for the Hyperexponential distribution, s = 3, o = 0.1,

p = 0.1, 0.5, and 0.9
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Figure 2.27: zf values for the Hyperexponential distribution, s = 5, cr = 0.1, 

p = 0.1, 0.5, and 0.9
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Figure 2.28: z\ values for the Hyperexponential distribution, s = 10, o = 0.1, 

p = 0.1, 0.5, and 0.9
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Figure 2.29: Zj values for the Hyperexponential distribution, s = 100, o = 0.1, 

p = 0.1, 0.5, and 0.9

Figures 2.26 to 2.29 illustrate the values o f z\ (i.e. the roots of (2.8) which are 

within the unit circle) for o = 0.1 and various values of s. Comparing Figure 2.26 

with Figure 2.3 shows that the values o f z\ for the Hyperexponential distribution 

with a  = 0.1 are further away from the origin and closer together than in Figure

2.3. As was previously mentioned, the values of L are considerably higher for the 

Hyperexponential even with very small batch sizes. The pattern is repeated for 

each value of s given.

2.4. Conclusion

For each service distribution it is clear that as 5 increases, the mean number of 

customers in the system, L, also increases. In addition, as p increases, L also 

increases. When considering the distributions from the Erlangian family (the 

Negative Exponential, E2 , E 10 and the Constant) it can be seen that as k increases, 

L decreases. Looking at the values of Zj, it is evident that when p is small, the z\ 

values, when plotted on an Argand diagram, are nearer to the unit circle. Also,
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when s is large and p is small, these roots tend quickly towards the unit circle. 

Although, for larger values of k, p must be very small to have the roots approach 

the unit circle. When k is large, the roots are much nearer to the origin than when
5-1  J

k is small. The value of V  will be large when p is large for each value of s,
w l - 2,

s-l  |

but the value of ]jT will be larger for the constant distribution (as long as
»=i 1 ~ zi

all other quantities remain constant).

When considering the Hyperexponential, it is clear to see that when a is small the 

value of L is larger. Also, as with the previous distributions, it is clear to see that 

as s increases, L also increases. In addition, as p increases, L also increases.

When considering the values of z\ themselves, it is clear that when a is small the 

roots are further away from the origin and closer together compared to when a is
5-1  j

large. Moreover, when a  is small the value of  is small, whereas when a
/=i 1 ~ zi

j - i  |

is large, the value of V  is larger.
w H

In this Chapter, the theory has been presented. This theoretical work can be 

applied to a variety of real life situations, many of which are in the medical field. 

As well as the applications mentioned in Section 2.1, the theory could be applied 

to a blood bank situation, where blood is taken from a patient singly and then a 

batch of blood is “served” together in a screening process. Also, the theory, with 

a slight modification, could be applied to operating theatres, whereby patients 

who require surgery “arrive” (or become ill) individually, and are then “served” 

in a batch in parallel operating theatres, with one surgical team serving the entire 

batch. Research has been done in this field but without utilising this batch service 

queueing theory.

In light of these conclusions, the work in this Chapter acts as a foundation to the 

work found in Chapter 3 where the first objective is met in its fullness.
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Chapter 3: Batch arrival queues

3.1. Introduction

Batch arrival queues occur in many places in the real world. For example, 

batches of people will arrive each day at a hospital and will then be served singly 

or batches of mail will arrive at a sorting office and will be sorted singly. This 

Chapter, which seeks to address the first objective found in section 1.2, will 

commence by considering the M(b)/M/1 queue, that is, Markovian batch arrivals 

of size b and Markovian single service with one server. Then, this work will be 

extended to investigate the Hyperexponential service time distribution, with one 

server. Finally, the steady state queueing equations of the M(b)/He/c queue will be 

derived and this theory will be applied to a real life situation, namely the Critical 

Care Unit at the University Hospital of Wales, Cardiff. This queueing system has 

not been developed in the literature and thus is one of the most prominent 

research contributions in this thesis.

3.2. The M(b)/M/1 queue

Let P„ (t) denote the probability of having n customers in the system at time t.

Let arrivals occur in batches at a mean rate X according to a Negative 

Exponential distribution and let batches of size i arrive where 

/ ’(Batch size = i) = b,, i = 0,1,...

It is assumed that batches of size zero are allowed in this Chapter. It is assumed 

that customers are served singly according to the Negative Exponential 

distribution with a mean rate p.
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Let p  -  — be the traffic intensity of this system, where b is the mean batch size 

and p is the mean service rate.

The following equations can be derived for this situation:

+*(*)

+o(dt)

f  00 \
l - X

1-/1

2 > , * + • ( * )
«=o )

v »=o /

Before solving this equation, it is worth noting that ^ 6 , = 1 and hence will not
i= 0

be included in any further expressions.

After rearranging and taking limits, the following differential difference equation 

is obtained:

Equating to zero gives the following steady state equation:

A.P0=fiPt

In the same manner, the equations for n > 0 are obtained: 

Pn (t + St) = Pn (/)[l -  XSt + o ( * ) ]  [ l -/uSt + o (<»)]

+P„+1 (/) [l -  XSt + o (St)] [ fiSt +

+ Z  P'-t (t) [ A * + » (* ) ] [> -  ̂ + « (* ) ]



After rearranging and taking limits, the following differential difference equation 

is obtained:

dPn{t)_
dt k=1

Equating to zero gives the following set of steady state equations:

(x+fi)pn =ttP„+1 + ^ ' t lP„- A
*=l

To calculate summary measures for a queue, G (z ), the probability generating 

function is required.

00 oo
Let G(z) = £ z"Pn and B(z)  = ^ znbn. Multiplying the steady state equations

n=0 «=o

by ascending powers of z and summing by column gives the following equation:

G(z) X + n ~ — -A B (z )  = fiPQv r
V Z)

(3.1)

Rearranging gives:

G(z) =

To complete this expression for G (z ), P0 must be evaluated. Simple use of 

G(l) = 1 will not suffice, as the right hand side of this equation will produce

Differentiation of Equation 3.1 gives:

G'(z) \ + f i - - - Z B ( z )  +G(z) - ^ - X B ' ( z )
v z ) \ z

Setting z = 1 gives:

_.mPq
z2

(3.2)

96



0
M

Now, by definition, 5 '( l)  is the mean batch size. Therefore, 

Ab

Hence, the final expression for G(z) is

(3.3)

The next step in the derivation of summary measures is to find an expression for 

Gf(z ) . To do this, (3.2) has to be differentiated again.

G \ z ) { x + f i - E -X B { z ) \  + 2 G ' ( z ) { ^ - X B ' ( z ) \  + G ( z ) { - ' ^ - - X B - ( z ) \  = - 2M^ i
\  z j  \ z  )  \  z ) z

Setting z = 1 gives:

XB’{\) + 2p

Division of top and bottom by p gives:

G '(l) =
' = * ’0)1 + 2 P

 J
2 (1  - p )

(3.4)

To complete this expression, 2P(l) is required.
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3.2.1. Batch size distribution

Batches o f fixed size

Let b be the number in a batch. Therefore P (i? = b ) = 1

oo

Recall, the probability generating function, B(z) is defined as J5(z) = ^Z?(z'
;=o

Therefore

5 (z) = Z V
i= 0

=  Z*

Differentiation of this expression gives:

B'(z) = bzF-1

Setting z = 1 gives i?'(l) = b as required 

Differentiation again gives:

S '(z ) = 6  (A - 1)z ‘ ~2 

Setting z = 1 gives:

S '( l)  = i ( A - l )

Substitution into (3.4) gives:

- A ( A - l ) l  + 2 p  
G'(l) = — <------

/>(»+!)
= 2 ( l - p )

98



A simulation model was built in Simul8 as a check, and the results are outlined in

the table below (simulation was run 20 times):

Table 3.1 Summary measures for batch arrivals where batches are of 

Constant size and service is Exponential

BATCH SIZE 3 BATCH SIZE 10

P W WQ L Lq G'(l) P W WQ L Lq G'(l)

0.1 0.07 0.04 0 .2 2 0 .1 2 0 .22 0.1 0.06 0.05 0.61 0.51 0.61
0 .2 0.17 0.1 0.5 0.3 0.5 0.2 0.14 0 .1 2 0.37 1.17 1.38
0.3 0.29 0.19 0 .8 6 0.56 0 .8 6 0.3 0.24 0.21 2.36 2.06 2.36
0.4 0.45 0.31 1.34 0.94 1.33 0.4 0.37 0.33 3.68 3.28 3.67
0.5 0.67 0.50 2 1.50 2 0.5 0.55 0.50 5.52 5.02 5.5
0 .6 1.00 0.80 3.01 2.41 3 0 .6 0.83 0.77 8.28 7.68 8.25
0.7 1.56 1.33 4.68 3.98 4.67 0.7 1.29 1.22 12.85 12.15 12.83
0.8 2.67 2.41 8.01 7.21 8 0 .8 2.21 2.13 22.06 22.26 22

0.9 6 .0 2 5.72 18.06 17.16 18 0.9 4.99 4.90 49.89 48.99 49.5

As may be seen, there is good agreement between the simulated values of L and 

the theoretical values for G '(l).

Batches o f a variable size (following a Poisson distribution)

Let b be the mean number in a batch. Therefore

( b )  e~b
p (B  = i) = ̂ —  = bi, i = 0 , 1 ,...

Recall, the probability generating function, B(z) is defined as:

s (z)= Z * fz'
i= 0
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Therefore 

B{z) = Y Jb,z‘

(>)'

»=0

-be

m>= S

( s y

Differentiation of this expression gives: 

B'(z) = beS(‘~])

Setting z=  1 gives 

B'(l) = b as required 

Differentiation again gives:

B’(z) = b V (- ' )

Setting z  = 1 gives:

B’{\) = b 2

Substituting into (3.4) gives:
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Again, a simulation model was built in Simul8 to compare the results, as outlined

in the table below (simulation was run 20 times):

Table 3.2: Summary measures for batch arrivals where batch size follows a 

Poisson distribution and service is Exponential

MEAN BATCH SIZE = 3 MEAN BATCH SIZE = 10

P W Wq L Lq G'(l) P W Wq L Lq G'(l)

0.1 0.09 0.06 0.27 0.17 0.28 0.1 0.07 0.06 0.66 0.56 0.66

0.2 0.21 0.14 0.63 0.43 0.63 0.2 0.15 0.13 1.48 1.28 1.5

0.3 0.36 0.26 1.07 0.77 1.07 0.3 0.26 0.23 2.56 2.26 2.57

0.4 0.56 0.42 1.67 1.27 1.67 0.4 0.4 0.36 4.01 3.61 4

0.5 0.83 0.67 2.5 2 2.5 0.5 0.6 0.55 6.03 5.53 6

0.6 1.25 1.05 3.76 3.16 3.75 0.6 0.91 0.85 9.06 8.46 9

0.7 1.95 1.71 5.85 5.15 5.83 0.7 1.42 1.35 14.15 13.45 14

0.8 3.33 3.07 10.01 9.21 10 0.8 2.43 2.35 24.34 23.54 24

0.9 7.5 7.2 22.53 21.63 22.5 0.9 5.49 5.40 54.96 54.06 54

Once more, we have close agreement between the simulated values of L and the 

theoretical values for G '(l).



3.3. The M(b)/He/1 queue

Let P„ x (?) denote the probability of having n customers in the system at time ?, 

with the customer in service in the first branch of the service facility. Let 

Pn 2 (f) denote the probability of having n customers in the system at time t, with

the customer in service is in the second branch of the service facility. Let arrivals 

occur in batches at mean rate X according to a Negative Exponential distribution 

and let batches of size i arrive where P (Batch size = i) = bn i = 0,1,...

For a more detailed description of the Hyperexponential distribution, see Chapter 

2.

2 ^  _
Let p  = — be the traffic intensity of this system, where b is the mean batch size 

M

and the overall mean service rate is p.

The following equation can be derived for this situation:

P0(t + St) = P0(t)[ l -XSt  + o(St)]

+PU (f)[l -  XSt + o(St)][2fU7St + o ( * ) ]

+f> 2 ( f ) [ l- I S t  + o ( * ) ]  [2 p  (1 - a ) S t  + o (* ) ]

+o(St)

After rearranging and taking limits, the following differential difference equation 

is obtained:

= ~AP0 (/) + 2fiaPu (/) + 2fi (1 -  cr) Pl2 (t)

Equating to zero gives the following steady state equation:

AP0 = 2paPlx + 2p  (1 -  <t) Pl2 (3.5)
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In the same manner, the equations for n > 0 are obtained:

Pn i (f + St) = Pn i (/) [l -  XSt + o (£f)] [l -  2 jucrSt + o (<5f)]

+Pn+u ( 0  [} ~ + 0 (^0 ] + 0 (^0 ] G
+Pn+12 (/) [l -  &St + o ( # ) ]  [2// (l -  <t) St + o (<fr )] <J

+ 2 Pn-,.> ( 0 [ ^ / ' + « ( * ) ] [ ' - 2M ° 8 t  +  o ( * ) ]
7=1

+PIJ(t)[ZbJt  + o(6t)]a  

+o(St)

After rearranging and taking limits, the following differential difference equation 

is obtained:

? ! ^  = -(Z + 2Mv)Pjt)  + (2pa1)P,.J,)+(2»(l-a)a)P„,1(,) + l Y y , - , A ‘h ^ b.pA‘) 

Equating to zero gives the following steady state equations:

(X + 2tta)Pni =(2fi<r 2 )P„tll + (2/u(l-o-)o-)Pn+u+ l]T  +XabnP0
7=1

(3.6)

Similarly, for the second branch of the service facility, by symmetry,

(X + 2(1 (1 -  tr)) P„ 2 = [2fi (1 -  a )  <x) P„tll + {2fi (1 -  a f ) P„,;
w-1

y=i

To calculate summary measures for a queue, G (z ) , the probability generating

function is required. It is useful first to define sub-probability generating 

functions,

Define Gx (z) = ^ z JPj x, G2 (z) = z jPj2 and B(z)  = ^ z jb
7=1

Then G ( z) = / >0 + G ,( z)+ G 2( z)

7=1 7=1 7=1 ^
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Multiplying (3.6) by z” and summing by column gives:

cr (2 //cr Plx +2ji(\-<j )P12) = G1( z )

+G2 ( z )

>3,2?(z) + ̂ —<7 - ( A + 2 //cr) 
z

2 //<r(l-cr)

+Acr B ( z ) P q

Substitution of (3.5) into (3.8) and rearranging gives:

o-Ai>0( l - S ( z ) )  =  G ,(z ) ^ g (z )+ 2 //<7— (2 . + 2 //<x) A - G  (
2 //<x(l-<x)

2 \ Z ) z

(3.9)

Multiplying (3.7) by z” and summing by column then using (3.5) once more 

gives:

(1 -  or) AP0 (l -  B (z)) = G2 (z) 

+G,(z)
2 //c r(l-c r)

This gives two simultaneous equations involving Gl (z) and G2 (z ) . Solving 

these gives:

G.M '
-<tA.P0z  | - 2 / /  (1 —<r) (B  (z )  - 1) + A ( 5  (z )  - 1)2 j

2 (z)

G2 ( z )  =
XP0z  (2 f ia  (1 -  <r) (B  (z )  - 1) -  2  (l -  cr) (B  (z) - 1)2 j

e(z)

(3.8)

(3.10)
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Where

Q (z) = -4//cr (1 -  cr) (l -  z) + A (B ( z )  - l)) + A {B ( z )  - l) (Az (B ( z )  - l) + 2/i (l -  z))

Note, Q( 1) = 0.

G(z) = P0 + G1(z)+G 2 (z):

A z ( B ( z ) - l ) ( ^ ( l - . ) - . ( g (z )- l) )P 0 +

e (z )

To evaluate the summary measures for this queueing system, it is required to 

differentiate G(z)

G(*)G(z) = A * (* (* ) - l) (4 |» ( l- f f ) -A (* (z ) - l) )P ,+ f i(z )P , (3.12)

Differentiating requires the following component parts to be evaluated: 

g '(z )G (z) + g (z)G '(z) = (A z(S (z)-l)(4 //C T (l-< r)-^(B (z)-l))P 0 + e(z)P 0)

The derivative of Q(z) is:

Q  (z) = 4//<t (1 -  cr) (// -  A£' (z))

+A2?'(z)(Az(2?(z)-l) + 2 / /( l-z ) )

+ A (5 (z )- l)(A (£ (z )- l)  + A z£ '(z)-2 //)

Setting z= l gives:

Q  (1) = 4//cr (1 -  a )  (// -  Aft)

The derivative of the right hand side is:
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[X z ( B { z ) - \ ) { 4 h (t { \ - ( t ) - X { B ( z ) - \ ) ) P !i + Q { z )P,') =

A (S(z)-l)(4 //t7(l-cr)-/? .(B (z)-l))i>0

+^.zB '(z)(4^cr(l-(T)->l.(5(z)-l))i^

- l 2z(B {z)- l)B '(z)P ,

Setting z =1 gives:

4>16//<t (1-C 7)jP0

Substituting for the derivatives,

4//cr (1 -  <t ) (// -  A&) G (1) = 4Ab n o  (1 -  cr) P0 + 4//cr (1 -  cr) (// -  Ab) P0 

( /i -A b )  = AbP0 +({i-Ab)P0

Therefore P0 = 1 -  p

To find G '(z), differentiate (3.12) again:

(r(z)G(z)+2&(z)G'(z)+Q(z)G’(z) = (A.z(B(z)-\)(4fi<T(l-cr)-A(B(z)-l))P!l+Q(z)Poy

The term Q(z)G”(z) will vanish as Q( l) = 0. Rearrangement of the above 

gives:

°  w ------------------------------------------------ W F ) ---------------------------------------------

The second derivative of Q(z) is:
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0 '( z ) = -4 /I./«t (1 -  tr) S '(z)

+A.B’ ( z ) f a ( B ( z ) - \ ) + 2 f i ( l - z ) )

+2XB'{z)[x{B{z)- l )  + X z S { z \ -  2p)

+A (B (z) - \){2Xff (z) + IzB ’ (z))

Setting z = 1 gives:

0 '  (1) = -4Xfia (1 -  cr) B’ ( l )+ 2M> (M  -  2/i)

The second derivative of the right hand side is:

( Xz (B (z )  - 1) (4//o- (1 -<t) - X ( b (z) ~  l) )  (1 -  /?)) =

X ( l -  p){AfKT (l -  cr) -  X {B (z ) - l) )  ( lB'  (z )  + zB" (z ))

- X 2 (B (z) - 1) (1 -  p )  (2 B' (z )  + zB” (z ))

-AXpo  (l -  cr) B" (z )  (l -  p )

-2 X 2z {b ' ( z ) )2 ( l -  p )

Setting z = 1 gives:

4 p c r ( l - < r ) ( l - p ) ( 2 X b  +XB”(z ))

Completing the expression for G '(l) and simplifying gives:

4Xfia(1 - <r)(l - p)(2b  + B’ ( l))- p(2Xb (Xb - 2fi)~ AA.fia(\- <r)S '(1)) 

° ' (1)= % P a ( \ - a ) ( \ - p )

Further simplification yields:

g  (1) — /?+— r \  +
2 p ( \ - p )  4<x(l-cr)(l-/?) (3.13)

= L
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To check this result several steps will be taken; firstly, comparison with known 

theoretical results for the M/He/1 queue with single arrivals and secondly, 

comparison with a simulation model built in Simul8 .

As was shown in the previous section, if batches are of a constant size, the 

quantity iT (l) is simply b [b - l ) ,  where b is the mean batch size.

Therefore (3.13) becomes:

G '(l) = p +— )----- (+
4 < r ( l - o - ) ( l - p )

p ( F - l )  p '
= P  + —J------ f  +

2 (1  - p )  A c r ( \ - a ) ( \ - p )
= L

Letting 6=1, G '(l) becomes:

G'(\) = p+

= L

which is the same as the result for M/He/1,

As an aside, it is always interesting to see which value of a will produce the 

minimum value of L. Differentiation of (3.13) gives:
r

4(1 - p )
1 1

- a y

Equating to zero gives cr = 0.5, which is of course the Negative Exponential 

distribution.

(3.14)

Differentiating Z'(cr)
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t*{ \ P1 2  2

(<T) = 4 ( l - p ) k<T3 + ( l - a ) 3 ,

Since 0 < cr < 0.5 this quantity is always positive, confirming that L is a 

minimum at <7 = 0.5.

Hence

L ■ = ——  as for M/M/1.
ffim 1 - p

3.3.1. Batch size distribution 

Batches o f fixed size

A simulation model was built in SimulS to confirm these equations. The model 

was run for various values of p, a  and batch size. The results below hold for the 

constant batch case, where batch size = 2 :

Table 3.3: Summary measures from simulation package Simul8 for batch 

arrivals where batches are of Constant size 2 and service is 

Hyperexponential

©IIb ©IIb ©IIb ©IIb

p
Lq W , L W Lq W , L W Lq W , L W Lq W, L W

0.1 0 09 0.04 0 18 0.09 0.07 0 0 4 0.18 0 0 9 0.07 0.03 0.16 0.08 0.07 0.03 0.16 0.08

0.2 0.27 0.13 0.46 0.23 0.20 0.10 0.4 0.20 0.18 0.09 0.38 0.19 0.18 0.09 0.38 0.19

0.3 0.58 0 2 9 0.88 0.44 0.42 0.21 07 2 0.36 0.37 0 18 0.66 0.33 0.35 0.17 0.64 0.32

0.4 1.07 0.54 1.48 0.74 0.75 0.38 1.16 0.58 0 65 0 33 1.06 0.53 0.61 0.31 1.02 0.51

0.5 1 89 0 9 4 2.38 1.19 1.28 0.64 1.78 0.89 1 10 0 55 1.6 0.80 1.02 0.51 1.52 0.76

0.6 3.25 1 62 3.86 1.93 2 17 1.08 2.76 1.38 1.83 0.92 2.44 1.22 1.70 0.85 2.3 1.15

0.7 5.71 2.85 6.4 3.20 3.75 1.87 4.44 2.22 3.17 1.58 3.86 1.93 2.90 1.45 3.6 1.80

0 8 10.94 5 46 11.74 5.87 7.07 3.53 7.88 3.94 5 9 6 2 9 8 6.76 3 38 5.46 2.73 6.26 3.13

0.9 27.07 13.52 27 94 13.97 17.00 8.49 17.88 8 94 1433 7.13 15.22 7.61 13.13 6.56 14.02 7.01
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Table 3.4: Theoretical solutions for L , where batches are of Constant size 2

and service is Hyperexponential

G'(1) = Z

P <7 = 0.1 cr = 0 .2 <7 = 0.3

©llb i/~>©IIb

0 .1 0.19 0.17 0.17 0.17 0.17

0 .2 0.46 0.40 0.38 0.38 0.38

0.3 0.87 0.72 0.67 0.65 0.64

0.4 1.47 1.15 1.05 1.01 1 .0 0

0.5 2.39 1.78 1.60 1.52 1.50

0 .6 3.85 2.76 2.42 2.29 2.25

0.7 6.40 4.42 3.81 3.57 3.50

0 .8 11.69 7.80 6.61 6.13 6 .0 0

0.9 27.90 18.06 15.04 13.84 13.50

It is worth noting here that Little’s result will hold for the above queueing 

system. When considering a queueing system whereby customers arrive in 

batches, it is clear that the overall arrival rate is equal to the arrival rate of 

batches multiplied by the mean number in a batch, or algebraically^ .

Therefore, for a queueing system where arrivals occur in batches, Little’s result 

is:

L = M W

The theoretical solutions for L, or G '(l) are found in Table 3.4.

When X = 1, and the batch size is 2, it is clear that Little’s result holds. It is worth 

noting that other results from queueing theory hold for this queueing system.

For example, when comparing the mean wait in the queue, Wq, to the mean wait

in the system, W, it is clear that the difference is simply —. This is to be
M
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expected. Also, when comparing the mean number in the queue, Lq, to the mean 

number in the system, L, the difference is simply p.

Thus the following expressions hold also:

W = w + — 
p

L = Lq + p

It is imperative that we ensure that L remains stable for larger batches. At a first 

glance, the Simul8  model showed that in fact as the batch size increased, the 

summary measures obtained from the model differed from the theoretical values. 

Running the Simul8  model for a considerable number of runs takes much time. 

Thus a simulation model was built in VBA for Excel which ran very much faster.

The following table includes the simulated summary measures for a batch size of 

1 0  and X equal to 2 :

Table 3.5: Summary measures from VBA simulation for batch arrivals 

where batches are of Constant size 10 and service is Hyperexponential

<7 =  0.1 <7 =  0.2 <7 =  0.3

OIIb

p Lq w, W L Lq W, W L Lq W, W L Lq W, W L

0.1 0.53 0.03 0.03 0.63 0.52 0.03 0.03 0.62 0.51 0.03 0.03 0.62 0.51 0.03 0.03 0.61

0.2 1.26 0.06 0.07 1.46 1.20 0.06 0.07 1.40 1.18 0.06 0.07 1.40 1.18 0.06 0.07 1.38

0.3 2.28 0.11 0.13 2.58 2.13 0.11 0.12 2.43 2.08 0.10 0.12 2.43 2.08 0.10 0.12 2.36

0.4 3.74 0.19 0.21 4.14 3.42 0.17 0.19 3.82 3.32 0.17 0.19 3.82 3.32 0.16 0.18 3.68

0.5 5.89 0.29 0.32 6.39 5.28 0.26 0.29 5.78 5.09 0.25 0.28 5.78 5.09 0.25 0.28 5.52

0.6 9.23 0.46 0.49 9.83 8.15 0.41 0.44 8.75 7.82 0.39 0.42 8.75 7.82 0.38 0.41 8.27

0.7 15.00 0.75 0.78 15.70 13.06 0.65 0.69 13.76 12.43 0.62 0.66 13.76 12.43 0.61 0.64 12.88

0.8 26.81 1.34 1.38 27.61 22.95 1.15 1.19 23.75 21.70 1.08 1.12 23.75 21.70 1.07 1.11 22.16
0.9 62.78 3.14 3.18 63.68 52.45 2.62 2.67 53.35 50.02 2.50 2.55 53.35 50.02 2.44 2.49 49.77

Comparison of Table 3.5 with the theoretical values for L (Table 3.6), yields a 

good result. Therefore it is clear that the expression derived for L is satisfied for 

large and small batch sizes.
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Table 3.6: Theoretical solutions for L, where batches are of Constant size 10

and service is Hyperexponential

q II t"**

P (7  = 0.1 <7 = 0.2 (7 = 0.3

"3-oIIb

(7  = 0.5

0.1 0.63 0.62 0.61 0.61 0.61

0.2 1.46 1.40 1.38 1.38 1.38

0.3 2.59 2.43 2.38 2.36 2.36

0.4 4.14 3.82 3.72 3.68 3.67

0.5 6.39 5.78 5.60 5.52 5.50

0.6 9.85 8.76 8.42 8.29 8.25

0.7 15.74 13.75 13.14 12.90 12.83

0.8 27.69 23.80 22.61 22.13 22.00

0.9 63.90 54.06 51.04 49.84 49.50

Before moving on to consider batches o f variable size, it is worth examining 

what happens to the summary measures as batch size increases (keeping all other 

values constant). The following set of graphs demonstrate this for different 

values of p and a:
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|  q =  0.1  o ’* 0.2  g » 0 .3   g - 0 .4   q » 0 .5  |

Figure 3.1: Graphs for L against batch size for p = 0.1, and various 
values of c
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Figure 3.2: Graphs for L against batch size for p = 0.5, and various 

values of o
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Figure 3.3 Graphs for £ against batch size for p = 0.9, and various 
values of a
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From the above graphs it is clear that as batch size increases, the value of L will 

also increase (even when the value of p stays constant). This may also be clearly 

seen from (3.14).

Batches o f  a variable size (following a Poisson distribution)

The model was then altered to encompass a variable batch size. The most 

probable batch size distribution would be the Poisson distribution. It was shown 

previously that B” (l) = b 2 in this case. When considering batches which follow a 

Poisson distribution, (3.13) becomes:

2 p ( l - p )  4cr(l —tr)(l —/>)

p  + ,P* , + ---- 7— ^ 7 ------r (3.15)
2 ( 1  - p )  4 cr( l-c r ) ( l-p )

= L

Comparison of (3.14) and (3.15) show that the mean time a customer spends in 

the system, L, will be higher, by a factor of , ^ —- for the case where arrivals
2 { \ - p )

occur in batches of variable sizes (following a Poisson distribution).

Since the VBA simulation model proved to be more time efficient for the 

constant batch sizes, it was decided to use this model to gather summary 

measures for the system where arrivals occur in batches of variable size.

The following table summarises the results obtained for this system from the 

VBA simulation model. Note here that the mean batch size is 2 and A, is 1:
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Table 3.7: Summary measures from VBA simulation model for batch 

arrivals where batch sizes follow a Poisson distribution with mean 2 and 

service is Hyperexponential

1

r"H

'©IIb cr =  0 .2 <7 =  0.3
■<7
©IIb

p Lq Wq W L Lq w, W L Lq W, W L Lq W, W L

0.1 0.14 0.07 0.12 0.24 0.14 0.07 0.12 0.24 0.12 0.06 0.11 0.22 0.12 0.06 0.11 0.22

0.2 0.39 0.20 0.30 0.60 0.34 0.17 0.27 0.54 0.31 0.16 0.26 0.52 0.3 0.15 0.25 0.50

0.3 0.79 0.39 0.55 1.10 0.64 0.32 0.47 0.94 0.58 0.29 0.44 0.88 0.56 0.28 0.43 0.86

0.4 1.41 0.71 0.91 1.82 1.08 0.54 0.74 1.48 0.98 0.49 0.69 1.38 0.94 0.47 0.67 1.34

0.5 2.39 1.19 1.44 2.88 1.78 0.89 1.14 2.28 1.6 0.8 1.05 2.10 1.52 0.76 1.01 2.02

0.6 3.99 1.99 2.29 4.58 2.92 1.46 1.76 3.52 2.57 1.29 1.59 3.18 2.44 1.22 1.52 3.04

0.7 6.86 3.43 3.78 7.56 4.90 2.45 2.80 5.60 4.28 2.14 2.49 4.98 4.04 2.02 2.37 4.73

0.8 12.85 6.42 6.82 13.64 9.00 4.50 4.90 9.80 7.81 3.91 4.31 8.62 7.34 3.67 4.07 8.13

0.9 31.12 15.55 16.15 32.30 21.66 10.83 11.28 22.56 18.64 9.32 9.77 19.54 17.44 8.72 9.17 18.34

Values of L and Lq were calculated using Little’s result. Comparison of the 

above table with the theoretical values in the table below provides confirmation 

that the derived expression for variable batch sizes (following a Poisson 

distribution), as well as the constant batches shown previously, is correct.

Table 3.8: Theoretical solutions for L, where batch sizes follow a Poisson 

distribution with mean 2 and service is Hyperexponential

G '(l) = Z

P <7 = 0.1 <7 = 0.2 <7 = 0.3

©IIb in©IIb

0 .1 0.24 0.23 0 .2 2 0 .2 2 0 .2 2

0 .2 0.59 0.53 0.51 0.50 0.50

0.3 1.09 0.93 0 .8 8 0 .8 6 0 .8 6

0.4 1.81 1.48 1.38 1.34 1.33

0.5 2.89 2.28 2 .1 0 2 .0 2 2 .0 0

0 .6 4.60 3.51 3.17 3.04 3.00

0.7 7.57 5.59 4.98 4.73 4.67

0 .8 13.69 9.80 8.61 8.13 8 .0 0

0.9 32.40 22.56 19.54 18.34 18.00

Next consideration will be given to larger batch sizes. Table 3.9 presents the 

simulated summary measures for a batch size of 1 0  and X equal to 2 :
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Table 3.9: Summary measures from VBA simulation model for batch 

arrivals where batch sizes follow a Poisson distribution with mean 10 and 

service is Hyperexponential

1—H 
©IIb

<7 =  0.2 <t = 0.3
©IIb

p Lq W, W L Lq Wq W L Lq W, W L Lq W, W L

0.1 0.58 0.06 0.07 0.70 0.56 0.06 0.07 0.68 0.56 0.06 0.07 0.68 0.56 0.06 0.07 0.68

0.2 1.38 0.14 0.16 1.62 1.31 0.13 0.15 1.52 1.29 0.13 0.15 1.49 1.28 0.13 0.15 1.50

0.3 2.49 0.25 0.28 2.81 2.34 0.23 0.26 2.64 2.29 0.23 0.26 2.61 2.27 0.23 0.26 2.58

0.4 4.08 0.41 0.45 4.48 3.77 0.38 0.42 4.17 3.66 0.37 0.41 4.08 3.62 0.36 0.40 4.02

0.5 6.40 0.64 0.69 6.90 5.81 0.58 0.63 6.31 5.62 0.56 0.61 5.13 5.55 0.55 0.60 6.04

0.6 10.00 1.00 1.06 10.60 8.93 0.89 0.95 9.53 8.62 0.86 0.92 9.16 8.47 0.84 0.90 9.07

0.7 16.23 1.62 1.69 16.93 14.26 1.42 1.49 14.95 13.67 1.36 1.43 14.34 13.39 1.34 1.41 14.09

0.8 28.94 2.89 2.97 29.70 25.00 2.50 2.58 25.78 23.84 2.38 2.46 24.63 23.32 2.33 2.41 24.12

0.9 65.80 6.57 6.66 66.66 57.32 5.73 5.82 58.23 53.92 5.39 5.48 54.83 52.58 5.25 5.34 53.48

Comparison of the results in Table 3.9 with the theoretical values for L, shown in 

Table 3.10, gives good agreement. Thus we have evidence that the expression 

derived for L, (3.15), is satisfied for large and small batch sizes.

Table 3.10: Theoretical solutions for L, where batch sizes follow a Poisson 

distribution with mean 10 and service is Hyperexponential

G'{\) = L

P <7 = 0 .1 <7 = 0.2 <7 = 0.3

■'7
©IIb II © L/i

0 .1 0.69 0.67 0.67 0.67 0.67

0 .2 1.59 1.53 1.51 1.50 1.50

0.3 2.80 2.64 2.60 2.58 2.57

0.4 4.47 4.15 4.05 4.01 4.00

0.5 6.89 6.28 6 .1 0 6 .0 2 6 .0 0

0 .6 10.60 9.51 9.17 9.04 9.00

0.7 16.90 14.92 14.31 14.07 14.00

0 .8 29.69 25.80 24.61 24.13 24.00

0.9 68.40 58.56 55.54 54.34 54.00

The following set of graphs demonstrate what happens to the value of I  as batch 

size increases.
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Figure 3.4: Graphs for L against batch size for p = 0.1, and various 
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Figure 3.6: Graphs for L against batch size for p = 0.9, and various 

values of a

From the above graphs it is clear that as batch size increases, the value of L will 

also increase (even when the value of p stays constant). This may also be seen 

clearly from (3.15).

Also, from the graphs it is clear that as o increases, L decreases. This was of 

course proven previously by considering the derivative of L and finding a 

minimum value at o = 0.5.
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3.4.The M(b)/He/c queue

We now consider the case where we have multiple service channels. This system 

has not been considered before in the literature and is therefore a substantial 

contribution to the knowledge base.

Let Pj m (t) denote the probability of having/ customers in the system at time t, 

and m of which are in the first branch of the service facility. For ease of notation, 

let PQQ (/) denote the probability of there being no customers present in the

system at time t. Let arrivals occur in batches at mean rate X according to a 

Negative Exponential distribution and assume batches of size i arrive with 

probability / ’(Batch size = /) = bt i = 0, 1,....

When there are fewer than c customers present in the system, the arriving 

customers enter any of the vacant service channels in random fashion. When 

there are c service channels occupied, arriving customers form a single file 

queue.

Firstly, the situation where there are no customers present in the system at 

time t + St will be considered:

PQfi (ir+ St) = P0fi (t) [1 -  A8t+*(*/)]

+PU (/) [l -  ASt + o (£f)] [2n&dt + o (<&)]

+Ph0 (t) [l -  ASt + o (<fr)] \_2ju (l -  <t) St + o )]

+o(St)

After rearranging and taking limits, the following differential difference equation 

is obtained:

= -xp0 (/) + 2MaPu (t) + 2n  (1 -  a ) P,,0 (/)
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Equating to zero gives the following steady state equation:

XP0 = 2/do,Pll + 2 / / ( l - c r ) / > 0 (3.16)

The following set of three equations, (3.17) to (3.19) describe the situation 

whereby an arriving customer find at least one service facility available.

Equation (3.17) describes the situation where all customers are served in the first 

branch of the service facility. This equation will hold for 1 < j  < c -1

P j j  (t +St )  = Pjj  (r)[l -  XSt + o (A )] [l -  ( j )  2/iaSt + o(<5f)]

+ Z  P j - u - i  ( 0  +  °  ( S t ) ]  Q  ~  U  ~ 0  2 P<j S t + 0  ( * ) ]
/=1

+ P J * l,j* l ( ' ) [ 1 _  X S t  +  0 ( * ) ] [ C /  +  0  2 V a S t  +  0  ( * ) ]

+Pj+ij (t) [l -  XSt + o ) ] \2jli (1 -  cr) St + o (<fr )]

+o(<fr)

This becomes after some algebraic manipulation:

^ ^ -  = - (X + ( j )  2fitr)pj j  + ( 0  + (7+1)2 ^ . i j .i ( 0  + 2 / /( 1 - c t ) ^ , j  (t)

The set of steady state equations are thus:

{X+(j)2na)P]] = ̂ b , P MJ_, +(j+i)2iurPMJtl+2fj(l-<T)PMJ (3.17)
/=1

if  ( i< y < c - i )

Equation (3.18) describes the situation where all customers are served in the 

second branch of the service facility. This equation will hold for 1 < j  < c -1
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PJ0 (t + St) = Pj0 (t) [ l -XSt+ o  ( * ) ]  [l -  ( j )  2n  (1 -  <t) St + o(£/)] 

>{t)[M,St + o {8 t) \ \ -{ j - i )2 f i{ \-< T )S t+ o {8 t) \{ \-c7 )
(=1

+Pj+U (/) [l -  XSt + o (£f)] \ l i io8 t  + o )]

+pj, i.o ( ') [ ' -  XSt+ • ( * ) ] [ ( / + O ^ O  -  * ) * + » ( * ) ]
+o(<fr)

This becomes after some algebraic manipulation:

= -{X + {j)2n (\-cr))P Jfi ( r ) + ^ ( l - a ) '  b,PHfi (t)+2^rPw  (t)
u t  i=i

+ (j + \)2f l { \ -a )P Ĵ { t )

The set of steady state equations are thus

(A + (y)2iu(l-er))i>  0 = ^ ( 1 - < t ) '6 ,P 7. , 0 +2/urPJtU +(j+ \)2 fj( l -a )P Jtl(l

(3.18)

If ( l < y ^ c - l )

Equation (3.19) describes the situation where m customers are served in the first 

branch of the service facility and (j -  m) customers are served in the second 

branch of the service facility. This equation will hold for 

1 < j  <c - 1  and 1 <m< j - 1
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Pjm (t + St) = PJm (t)  [ l  -  XSt+ o (<?f) ]  [ l  -  (m ) 2 noSt  -  ( j  -  m) 2 // ( l - o ) S t  + o (<fr ) ]

+ P j+ \,m  (0  [} ~  ASt+o (£f )] [(y +1 -  m) 2fi (l -  cr) S t+o (<fr)] [l -  mlfiaSt + o (<fr)] 

+ p j+ \,m +i (0  [} -A&t + o (<?/)] [(m +1) 2 noSt + o (<?*)] [l -  ( j  -  m - 1) 2// (l -  o) St + o ( # ) ]

, p j-i,n , (0 [ t o f t  +  o ( # ) ]  [l -  (m) 2n<T -  ( j  - i - r n )  2n  (l -  o )  St +  o (<&)] (l -  o )+
i=l

+Z (0 + °  (*)] D “ (m “ 02̂  “ ( j  -  m ) 0 -<r)St + 0 (*)] &
i=1

+Z 2 P i- n - i ,m - n  (0 [^+„* + ° (*)] [l ~ (W '~ ") " V  " * “ W) 2»  ̂ ~ ° ) 5 t +0 (*)] 0 ~ ̂
n=1 i=l

+o{St)

The differential-difference equation for PJ m (^)is: 

dPj' l ^  = - ( A  + ( j - m ) 2 f i ( l - ( r )  + (m) 2 f ia) Pjm (O + ̂ Z O "  a )  b>PH,m (0
1=1

m j-m

dt

+^Z&b.PJ-K<n-, W ^ Z Z O -y  v'KJ’i-n-l*,-* (0
z=l n=1 i=l

+( j  + 1 -  m) 2fi (1 -  cr) PMjn ( t )+(m + 1) 2//o7%l„t] (t)

The steady state equations are therefore:
j - m

(Z + { j-m )2 f i{ l-c r )  + (m) 2fio) Pjm = /1 ^ ( 1 -c t) ' b,PMJ,
/=1

+ x f j a ‘blPl. l̂ l
»=1

+ f £ I ( l - - ) ' (3.19)
n =1 1=1

+ (y + i-/w )2 /< (i-o-)/>ytl, 

+(m + l)2ficrPJ+l,,m+1

If (l < j  < c - 1) and (l <m< j - 1)

The following set of three equations, (3.20) to (3.22) describe the situation 

whereby an arriving customer finds all service facilities occupied, but no queue.

Equation (3.20) describes the situation where all customers are served in the first 

branch of the service facility:
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P„ (f + St) = Ptf  (f) [1 ■-.XSt+.o ( * ) ]  [1 ■- (c) 2 p o s t+o ( * ) ]

+ 'E Pc-,,c-l {t)\_M>,8t+o{8tj§\-(c-i)2ftu8t+o(8t)]<r‘

+/>c+i,c (0 11 “  M t  + o ( # ) ]  [(c) Ificrdt + o (<fr )] cr

+Pc+1,c_i (t) [l -  X St + o (<fr )] [2// (1 -(r)S t + o (£f)] [l -  (c)2{icrSt + o (<$/)] cr 

+o(St)

This becomes after some algebraic manipulation:

dP c
‘̂  = - { ^  +  { C) 2M ^ )P c,c(t )  +  X l L <T‘biPc-i,C-l i t )  +  ( C) 2^ ' l P^.c ( 0  +  2^ ( 1-<T) <T̂ +l,e-I (0

The steady state equations are therefore:

(/l + (c)2/u<r)/>cc = /lJ]o - '6,Pc_,c_, +(c)2{ur2PctU +2/u(l-cr)crPĉ c_l (3.20)
i=1

Equation (3.21) describes the situation where all customers are served in the 

second branch of the service facility:

Pc0(t + St) = Pc0( t ) [ l - m  + o ( S t ) J l - ( c ) 2 t l (l-<T)St + o(&)]

+ X  pc-ifi + o (8 t j \ \ \ - ( c - i )2 p ( \ -o )8 t+ o (8 t ) ' \ ( \ -< 7 )
Z=1

+PC+i i (f) [l -  XSt + o (<fr)] [2 ficrSt + o (<fr )] (l -  cr)

+o{dt)

This becomes after some algebraic manipulation: 

dP c
^ i  = _(^  + (c) 2^ ( l - £T))i>e0(,) + A X ( l - ^ ) ' ^ , , 0(0  + 2//a(l-cr)/>e+u(z)

+(c)21u(1- o-)2P„,o(z)
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The steady state equations are therefore:

(X+(cpM  (1 -  <r )) Pcfi = X ^  (1 ■- <7 )' b,Pc_ia
i=1

■P2na{\~a)PctV (3.21)

+ ( c ) 2 ^ ( 1 - o-)2 / ' „ 10

Equation (3.22) describes the situation where m customers are served in the first 

branch of the service facility and (c -  m) customers are served in the second 

branch of the service facility. This will hold for \ < m < c - \

pc„ (t + * )  = pc* ( 0 p  - ■M t  +.o( * ) ] [ l - (m) 2naSt-{ c-m)2^i { \ -a )S t  + o{St)\

+PC+, m (/) [ l -  XSt + )]  £(/w) 2 ficr2St + ( c - m ) 2// (1 -  o f  St+ o{St) J

+ ^ +i,„+i (O P  - M t  + o(St)\\{m + \)2/jcrSt + o(<fc)]0 “  <0

+ w .  (Op “ M t  + o (* ) ][(c  -m  + l)2 //(l -  <r)5t + o (S t)]a

Pc_i/H ( 0 [Xi>fSt + o(St)J[l -  (m)2fj.o -  (c -  i -  m) 2 p (l -  <x)S t + o(<fr)]0  " a )'
i=1

+Z (t)[XA,St + o(St)][\-(m-i)2fUT-(c-m)2fi(l-tT)St + o(St)'\af
i=i

+S  2  Pc-n-iJK-n + o (S t) \\ \- (m -n )2 n < T -(c - i-m )2 ii( \-< 7 )S t + o(8tj\(T’, (\-<T)
«=i i=i

+o(St)

Extending this theory it is possible to see that the differential-difference equation 

for/>c.»(')is:

= - ( ' L + (m) 2t“T + (C- m) 2fi (l - ‘7) )Pc.rn( 0

+(m) 2//<r2i>„ 1 „ (t) + ( c -m )  2// (1 -  <r)2 P„,,„ (0 
+ (m + 1) 2 //<t (1 -  c )  (f)+ (c -  m + 1) 2fi<y (1 -  a )  (()

c -m  m

+x t .b ,  ( l-o -y  pe_,m ( / ) u £  v w ,  (0
1=1 /=1
m c -m

«=1 1=1

The steady state equations are therefore:
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(/I+ (m) 2ficr + (c -  m) 2/y (1 -  <7 )) Pcm = (m) 2[icr2Pnim +

(m + \ )2 f ja ( l -a )P ctlm̂

+(c -  m +1) 2 f w  ( l - u )

h T |> , ( 1 - < t ) ' (3 .2 2 )

m

i=l
m c—m

+ ^ L ' L b ^ a " ( \ - a )  Pm m _,

If \ < m < c - \

Finally, equations (3.23) to (3.25) describe the situation whereby an arriving 

customer finds all service facilities occupied and a queue in place.

Equation (3.23) describes the situation where all customers are served in the first 

branch of the service facility. This holds if j  > c +1

+PJ+lc (0  [l ~ A&t + o (<5/)] [(c)2ju(TSt + o (<fr)] cr

+PJ+i,c-i (0  [l ~ AS* + 0 (^ 0 ]  [2 //(l — a)  St + o )] [l -  (c -1) 2 n&St + o (<fr )] cr

Pjc (t + St) = PJC (t) [ l -A S t  + o ( # ) ]  [l -  (c) 2 juaSt + o (<»)]

+ Z  P J-I,C + ° ( * ) ] [ 1 _ ( c )  I f i a S t + o  ( » ) ]
»=1

+ Z  p c-,,c~ i (0 [ + o ( * ) ] [ 1 “ ( c _ 0  2^ S t+° ( * ) ] <T'

+o(St)

This becomes after some algebraic manipulation:

C

1=1

The steady state equations are therefore:
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J - c

(Z + (c)2fta-)PJC = X ^ ibiPJ_lc +(c)1Ma'2pj*u
1=1

+2//(l-t7)crPJ+lc_1 (3.23)

+XY lK j-c^‘Pc-i,c-l
i=1

If j > c  + 1

Equation (3.24) describes the situation where all customers are served in the 

second branch of the service facility. This holds for j  > c +1

PJ0 (t + St) = PJ0 (t) [l -  XSt + o(St)j  [l -  (c) 2// (1 -  cr) St + o )]

+Z  PH.o ( 0  [-**<* + « (* ) ]  [l -  (c) 2 /* (1 -  a )S t+o (* ) ]»=1
+Pj+U (^) [l -  XSt + o (<& )] [ 2 n<jSt + o ( #  )] [l -  (c - 1) 2 // (1 -  <j) St + o )] (1 -  cr) 

+pj* 1.0 ( 0 [ 1_ XSt + 0  ( # ) ]  [{c)2pi(\-<r)St + o ( * ) ] 0  “  CT) •

+ Z  Pc-,<> + o (8 t ) \[ \ - ( c - i )2 f i ( \ -< j)S t  + o(St)\(\-<T)
i = 1

+o(<fr)

This becomes after some algebraic manipulation:

dP ( J~c
=  - ( A +(c) 2p (1 -  ct)) p j ,o (0 + /lZ  f y P j - i f l  (0 + 2/“°'(1-  )^.u (0

i=l

+ (c )2 /i( , -o -)J /%,„ (r)+ X ^ b , ^  (1 -<j )  Pc_,„ (/)
i=l

Thus the steady state equations are:

(A + (c) 2// (1 -  cr)) Py 0 = b,Pj_,fi
i = 1

+2fia(l-<r)P '
»=1

■ t l I
J+1.

y+1,0 

1=1

+  ( c ) 2 >£ / ( 1 - £ 7 ) 2 Pj

(3.24)

If y >c + l
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Finally, Equation (3.25) describes the situation where m customers are served in 

the first branch of the service facility and (c -  m) customers are served in the 

second branch of the service facility. This holds for j > c + 1 and \ < m < c - \

Pjs, (*+ ̂ 0 = Pjjm (0 [l- M**+ ° ( ^ 0 ] ~ im)2 /x rS t - ( c -m )2//(l- <j)St + o(£/)]
( t )[ l-A S t  + o(St)][(c-m  + l)2v(l-cr)S t  + o(St)]cT 

+PJ+i>m (*)D-  ̂  + o(St)~^(m)2fi<r2St + ( c - m )2//(l -  cr)2 St +

+/W +i ( t ) \ } - M t  + o(<?/)][(m+1)2ficrSt + o(*)](1- a)

+Z  (0 [ t y f t  + ° (<*')] D “ (m) 2^ aSt-(c -m )2 n ( \-< r)5 t  + o(Si)]<=i
+ 2  pc-i,m (0 [^ /+y-c* + ° (St)] t 1 “ (m) 2MoSt -  (c - m - i ) 2/̂ (1 -cr)St + o(St)] (l -  cr)1

i=\

+Z pc-,m-i + ° (St)] [ l - ( m - 0 2 n a S t - ( c -m )  2//(l- a ) S t  + o ( S t ) y
i=i

+Z z  Pc-*-',m-n (0 [M }_c+i+„St + o ( S t ) \ \ - ( m - n )  l / i o S t - ( c - m - i ) 2 / i ( \ - a ) S t  + o(St)]crn ( l - a ) ‘
n=l i=l

The differential-difference equations for/> m (f)are:

= - (A + (m)2fi<T + (c -m)2fi(l-<T))PJ'm(t)+(c-m+l)2/i(l-<T)  <tP (/)

+ ((m)2m<t 2 + (c - m )2 fi( l- <rf) Pnlm (t)+(m + \ )2 f i ( j ( \ -<r)PJtljmi (t)

/-I 1 = 1 1=1
m c -m

+AZ  Z  (X~ a )  ( 0M=1 1=1

The steady state equations are therefore:
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(A + (to) IfiCJ + (c -m ) 2ft (1 -  cr)) PJm = (c -  to +1) 2p  (1 -  cr) aPj+Ub_,

+ ((to) I f ia 1 + (c -  to) 2fi (1 -  <r)2) Py+1, 

+(TO + l)2 /iO -(l-«7 )P y+1„+1

I* 1 
c-m

+ ^ X - c O - y ^ ,
i=l

/=1 
m c-m

+ * z  z  b,-c^»a " o  -  ̂ y
n=l /=1

(3.25)

If j  >c+l and 1 < m < c - \

Therefore, the steady state equations are:

(A + ( 7 )  2//<t) Pjj = a £  v'b.Pj-u-, + 0  +  1) 2 t x r P , w  + 2 //(l-cr) y
/=1

i s / s c - i

(A+ ( 7 )  2/i(l -  <r)) Pjfi = A £ ( l  -  a )  btPj_l0 + 2fi<rP^u + ( 7  + 1) 2fi{\-  a ) PJtl<I
f=l

1 < 7 < c - 1

(A + ( 7  -  to) 2// (1 -  <7 ) + (to) 2ficr) PJ m = A ^ ( I - c t ) ' „
1=1

+ A f > V ,
»=1

to j - m+az zo-*y ̂ nK„Pj-„-^-„
n=1 »=1

+(7 + l-rn)2 //(l-o-)/>;+lm
+ (TO + l)2^£7i»+li

7 + l . T O + l

1 < j  < c -1 and 1 < m <  j - 1
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(X + (c)2/rcr)Pcc = x Y ia lbiPc_lc_i +(c)2fur2Pctlc+2ft(l-cr)<TPctU_l
J=1

(X+(c)2M(\-a ) )P c„ = 4 L ( \ - a )  b,Pc_„
»=1

+2//<t(1-<t )P„u 

+(c ) l f i ( \ - a ) 2 Pn „t

(X + (m) 2h <j  + ( c - m )  2 p ( l - a ) )  Pcm = ((m) 2fia2 + (c -m ) I n  (1 -  cr)2 )p„, „ +

(m + l)2 /io -(l-o -)P „ ,^ ,

+ (c  -  m + 1) 2 f ia  (1 -  cr) PM  m_t

+ X Z b ,(l-< rj Pĉ m
i - \

+ Z Y b icriPc lm ,/ c—/,/w—i
i=i

+ ^ Z  Z  0  -  ff)'
n=l i=l

1 < m < c - 1

(X+(c)2 /ra)PJC=X'£1blPJ_l'C + (c)2ficr2PJtlc
i=1

+2//(l-o-)o7% lc_,

+XiHb'+J-c<J'Pc-,.c-,
/=1

j  >c + l

J - c

(2 + (c)2 / / ( l - a ) ) i % = 2 £ 6 ,P,_ l0
7=1

+2/«7(1-o-)P /+1>1

+ (c)2 / / ( l - c r ) 2 Py+10

7=1

y > c  + l
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(X + (m) 2 //0 - + (c -m )2 f t{ \ -a ) )P JM= (c -m  + \ ) 2 f i ( \ - a )  (TPJtlm_,

+ ((m) 2fi<r2 + (c -  m) 2p  (1 -  <r) 2 ) PJHjn 

+ (rn+ l)2 Ju<7 (l-c r)P J+lm+1

/=1 

/=1

+^'Zlb,^_ca ‘Pc_,m_,
i=1

n=l /=1

y > c + 1  and 1 < m < c - 1

This infinite set of equations must be solved to individually find Pjm for all j  and

m. Analytically, this is a very difficult task; therefore the equations will be solved 

iteratively in order to find the probabilities. Once the probabilities have been 

found, they can be used to find summary measures for the system, thus 

completing the picture. Once these summary measures have been calculated, 

comparison will be made with the Simul8  model. Finally, data from the Critical 

Care Unit will be used to populate the model.

3.4.1. Solution

A program was written in VBA for Excel in order to solve these equations 

iteratively. Initially, the probabilities P0id(/, m) are estimated using a convergent 

series which sums to 1. These probabilities are then used in the right hand side of 

the above equations to generate new probabilities, Pnew(j, w). As soon as a Pnew is 

created, any subsequent equations involving P j w i l l  use the value Pnew(j, m)- 

Once each probability required has been generated in this fashion once, P0id(/, m) 

is set equal to P new ( / ,  m) and the process begins again. The iterative procedure is 

terminated when the difference between P0id(/, m) and Pnew(j, m) is small.
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Equations (3.16 -  3.25) were rearranged and solved in a non-intuitive order (for 

example, Pnew(0, 0 ) was generated after Pnew(/, 0 ), Pnew(j, m) and Pnew(jj))- This 

was done to ensure that each new probability generated used the previous “new” 

probabilities, rather than the estimated “old” probabilities. The equations, as they 

were entered in the VBA program, are found in Appendix 3.2.

In order to gain precise probabilities, the number of iterations required (limit in 

the above piece of code) is approximately 1,000,000. Due to the complex nature 

of the equations and the many “for” loops within the “do” loop, running such a 

large number of times takes a long time, a couple of days at least.

To verify the equations, several steps were taken. To begin with, the parameters 

were set in the equations such that the equations would describe the M/He/1 

queueing system and could thus be verified with known theoretical results. With 

c = 1 and a fixed batch size of 1 , the equations become:

AiJ = 2ficrPu +2/x(\-<j) Pl0 

(X + 2/«t) Pu = Aab}Pl: + 2{icr2P?: + 2/j (1 -  O’) aP20 

(X + 2 n ( \ -a ) )P h„ = X ( \ - a ) b lP0 + 2/icr(l-cr)P21 + 2/i(1-<x) 2 P20

j -1

(A+ 2 M<r)Pji=*Z,biPj-i,> + 2/ur2PJtll + 2// (1 -  <t) <t PJ+lfi + ZbjCrP„
1=1

(A + 2 /i( l-< r ))PJfi = btPH 0 + 2//0-(1 - c r )PJtU + 2 M( \ - a f  PJtl» + ̂  (1 -a )P ,
/=1

Comparison with (3.5 -  3.7) show that the equations do in fact collapse to give 

the M/He/1 equations.

Next, c was set equal to 6 , a  was set equal to 0.5 and the batch distribution was 

set to be fixed and constant with a batch size of 1. This situation is directly 

comparable to well-known M/M/c queueing system and the steady state 

probabilities and the summary measures are well documented.

The probability of there being n customers in the system is given by:
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Where P0 = j
M cp)

v«-° •
+

f  c°pc  ̂
r!(l- p )

The summary measures, L, Lq, W and Wq are given by the following 

expressions:

L = ccp c+lP0
c ! ( l -p )

_c+l

c°oc+1P 
2 +cp, Lq = f  = c V C+'^o 1 j  0 + — and

!(!-/?)

The M/He/c equations contain probabilities in the form Pj m, whereas the M/M/c

equations do not have this second suffix. Some facts concerning the probabilities 

of the M/He/c queue when a = 0.5 need to be established before the equations are 

manipulated.

1. P00 can simply be changed to P0

2. Since a  = 0.5 Pj 0 = Pj . and thus only one of these equations need to be 

considered.

3. In fact, each probability Pj m can be expressed in terms of P} 0 using the 

following expression:



4. Ifj >  c then

pt,  =
' c '

\ m J
pj, 0 J’^ C

5. As a result of the above observations, it is clear that

m
y.o

m=0 V ' V

= 2J P.

or
y, o

( c \
m y.o

m=0 V ' V

= 2CPy.o

The final probabilities can be expressed as the following, using the M/He/c 

expressions as a starting point:

The equation for Po becomes:

= + ^ ,o)

=>P = — Pr\ o
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The equation for i \o  becomes:

+ M) pi,o ~ 2 + ̂ MP2,o

(^  + ̂ ) f  = |^ o  + 4A f

p2 = +1
KM

+ 1
KM

K . ± P
2 2p  0

A R - J
2 M

P -  -*0 ^ 2 02ju

=> P2 —
2 n 2 *0

The equation for 7*2,o becomes:

(A + 2//) 7^0 = —/Jo + //TJj + 3//7^0

^ \ pi h p\ t  P3(A + 2 u ) —  = — - + 6 / J —  
v '  4 2 2 8

— / / P .  =  ( s l  +  2 u ) — --------- L
4 4 2 2
3///^ = (/I + 2//) P2 -  XPx

3MP,=(1. + 2m) ^ P 0- ^ P 0

J 3
= > P3 =  T Po

3 3 lju 0

In the same manner, P4 P5 and P6 can be derived. Finally, considering the 

equation for P7 we have:
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'  64 2 32 64
(A+6|/)/> =Ai>+6/*/>

6 mP, = (/t +  6 / / ) - —f* 7V » 5!//’ «

It is clear therefore, that for the case a  = 0.5 and b} = 1, bt, = 0 V i * 1, the 

M(b)/He/c equations collapse to give the known theoretical equations for M/M/c.

Next comparison with the M(b)/He/1 is required, this will be done in using two 

different batch size distribution, firstly the fixed distribution, then the Poisson 

distribution. For the sake of this piece o f verification, a  will be kept constant at 

0.2 and p will be kept constant at 0.5:

Batches o f fixed size

Table 3.11: Iterative and theoretical values for L and Lq for fixed batches

ITERATIVE THEORETICAL

BATCH SIZE L L L q

1 1.28125 0.78125 1.28125 0.78125

2 1.78125 1.28125 1.78125 1.28125

3 2.28125 1.78125 2.28125 1.78125

4 2.78125 2.28125 2.78125 2.28125

5 3.28125 2.78125 3.28125 2.78125

10 5.78125 5.28125 5.78125 5.28125

15 8.28125 7.78125 8.28125 7.78125

Table 3.11 displays the results for L and Lq for the iterative procedure as well as 

the theoretical solution found in section 3.3. The results from the iterative



procedure concord well with the theoretical results, but for larger batch sizes, the 

iterative procedure required a long run time.

Batches o f a variable size (following a Poisson distribution)

When the batch distribution is changed to Poisson, the summary measures, found 

in Table 3.12, are slightly less accurate than with the fixed batch size. But when 

batches are larger than 3, the results, for all practical purposes, are close enough.

Table 3.12: Iterative and theoretical values for L and Lq for Poisson batches

ITERATIVE THEORETICAL
PERCENTAGE 

DIFFERENCE IN L
MEAN 

BATCH SIZE
L L q L L q

1 1.936 1.393 1.78125 1.28125 8%

2 2.449 1.925 2.28125 1.78125 7%

3 2.873 2.363 2.78125 2.28125 3%

4 3.324 2.821 3.28125 2.78125 1%

5 3.800 3.298 3.78125 3.28125 <1%

10 6.281 5.781 6.28125 5.78125 <1%

15 8.781 8.281 8.78125 8.28125 <1%

If the batch size distribution is changed to Poisson, the results for L and Lq are 

larger. As the mean batch size increases, the iterative results approach the 

theoretical results.

The iterative procedure needs to be verified for two final cases, where c is larger 

than 1 and batch size is o f fixed size, or where batch size follows the Poisson 

distribution. Table 3.13 contains the summary measures produced by the iterative 

procedure and also, for comparison, the simulated values produced by the Simul8 

model, for the case c = 2.
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Table 3.13 Summary measures for the M(b)/He/2 queue

Distribution a P
Iterative Simul8

L Lq L Lq

0.1 0.30 0.11 0.33 0.13

0.1 0.5 3.67 2.67 3.55 2.54

Fixed, 0.9 41.38 39.60 40.45 38.64

mean = 5 0.1 0.30 0.10 0.32 0.12

0.3 0.5 3.26 2.26 3.15 2.14

0.9 29.90 28.10 29.21 27.41

0.1 0.31 0.12 0.34 0.14

0.1 0.5 4.10 3.09 4.00 3.01

Poisson, 0.9 43.34 41.55 43.08 41.28

mean = 5 0.1 0.31 0.11 0.32 0.12

0.3 0.5 3.72 2.72 3.62 2.61

0.9 32.82 31.01 32.65 30.85

Table 3.13 demonstrates that the equations for the M(b)/He/c queue are valid for c 

> 1 and for the two batch distributions, constant and Poisson. It is clear from the 

table that as p increases the accuracy of the results are slightly less good, but for 

all practical purposes, they are close enough.

The main purpose of deriving the above queueing equations is to apply them to a 

real life situation. As was explained in Chapter 1, the Critical Care Unit (CCU) at 

the University Hospital of Wales, Cardiff (UHW) have given us a wealth of data 

referring to the number of patients present in the Unit on each day and also data 

related to each patient. The following section seeks to model bed-occupancy in 

the CCU by utilising the above queueing theory.
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3.5. Application to CCU data

Since the above equations have proven to be valid when compared with 

simulation, the next step is to populate the equations with parameters which 

reflect the conditions of arrival and service in the Critical Care Unit.

3.5.1. Arrival distribution

Since the theory developed in this Chapter relates to batches of customers, the 

first step in generating suitable parameters for this model is to consider the 

arrival process.

The number o f patients that arrive at the CCU each day was calculated. Stat::Fit 

was utilised to obtain the statistical distribution of the number in a batch. Figure 

3.7 displays a histogram of batch size along with the fitted Poisson distribution. 

The Poisson distribution provides a good fit with mean value 3.61. This will 

correspond to the batch size distribution which is utilised in the above set of 

expressions.

0.25

0.13

0.00
0.00 2.0 4.0 6.0 8.0 10.

Input Values

Figure 3.7: Histogram of batch size with fitted Poisson distribution

Table 3.14 contains summary measures for the number of patients in a batch.
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Table 3.14: Summary statistics of the number of patients in a batch
1 Mean Std Dev Variance Minimum Median Maximum

3.61 1.95 3.79 0 3 10

As can be seen from the summary statistics the theoretical mean and variance 

(both 3.61) are a very good approximation of the actual mean and variance.

One point worthy of consideration is the duration between each batch arrival.

The theory assumes that the time between each batch arrival follows a Negative 

Exponential distribution. The batch distribution calculated above relates to the 

number of patients who arrive at the CCU each day. The time between each 

batch arrival from the data is thus Deterministic. The Deterministic batch arrivals 

case will be considered briefly in Chapter 7, but its solution is beyond the scope 

of this research.

Therefore, the arrival process utilised in the equations developed in this Chapter 

will act as an approximation to the real-life arrival process at the CCU and hence

we have A = — .
24

3.5.2. Service time distribution

The Hyperexponential distribution, as has been mentioned before in this thesis, 

can provide a good fit to data which is highly skewed to the right where the 

coefficient of variation is greater than 1. For a description of the 

Hyperexponential distribution see section 2.3.4.

Recall that the PDF of the Hyperexponential distribution can be expressed as 

f { t )  = 2 n a e 'lf™ +2iu(l-o-)e~2"<1-<’)' t > 0
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In order to calculate suitable values for the parameters p and a, the method of 

least squares was utilised. Firstly, from the CCU data, the probability of a patient 

having a length of stay of 0 -  24 hours, 24 -  48 hours, etc, was calculated. 

Corresponding Hyperexponential probabilities for these intervals were also 

calculated by integrating the PDF across the appropriate limits. The squared 

difference of these quantities was calculated for each 24 hour interval, and the 

sum of the squared differences was calculated. The optimisation tool, Solver 

which uses the Simplex algorithm to find the optimal value, was used to find 

values of p and a  such that the sum of the squared differences was minimised.

Table 3.15 contains the summary measures for the length of stay of patients at 

the CCU. Note that patients with a length of stay greater than 3000 hours, which 

is 125 days, were excluded as they account for only 0.3% of the data and cause a 

large skew in the mean.

Table 3.15: Summary statistics for length of stay of patients, in hours

N Mean Std Dev Min Median Max

4212 121.51 203.32 0 50 2170

Figure 3.8 presents the histogram of length of stay of patients at the CCU with 

the fitted Hyperexponential overlaid. The values of p and a are 0.0083 and 0.073 

respectively and thus the estimated mean and standard deviation is 121.51 and 

306.62 hours. The mean, as can be seen from Table 3.15, is a very good 

reflection of reality, but the standard deviation is not as accurate. If the number 

of phases of the Hyperexponential was extended from 2 to 4, the fit provided is 

much better. Future research is required in order to develop similar queueing 

equations for the four phase Hyperexponential distribution.
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Figure 3.8: Length of stay distribution for all patients

3.5.3. Number of beds (c)

The final quantity of interest is c, the number o f service channels or beds. The 

CCU, at present, has 24 funded beds. Therefore, c = 24.

3.6. Results

Table 3.16 contains the theoretical value for L calculated using the iterative 

method and also the actual mean number o f customers in the system calculated 

from the data.
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Table 3.16: Mean number of customers in the system, L, using the M(b)/He/c 

queueing equations compared with the mean number of customers in the 

system found from the data

THEORETICAL

VALUES
REAL VALUES

L L

17.55 18.86

Comparison of the theoretical L with the real L obtained from the data itself 

shows that the theoretical equations provide a slight underestimate in results. 

There are many reasons why this may be the case and some of these will be 

considered later.

Figure 3.9 contains the probability density function for the real data and the 

theoretical model using the above parameters and limiting the number of 

admissions to 24:

0.14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of occupied beds

Figure 3.9: Probability density function of the number of occupied beds

It is clear from Figure 3.9 that the M(b)/He/c queue acts as an approximation to 

the queueing system in the Critical Care Unit. It is evident that compared to the 

smooth distribution obtained from the theory, the actual occupancy profile in the
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Unit is more jagged in nature. Also, the actual occupancy profile is more peaked 

than the theoretical model.

There are many reasons why there is a difference in distribution. Firstly, as has 

been mentioned already, the time between successive batch arrivals in the 

theoretical work is assumed to be Markovian, whereas the way in which the data 

was considered assumed that batches arrived daily.

Secondly, the CCU itself has priority set in place. For example, if a patient who 

has undergone Emergency surgery requires the use of a CCU bed, they will have 

precedence over any Elective surgery case. Thus, Elective surgery can be 

cancelled due to lack of CCU bed space (for further consideration of this point, 

see Chapter 6).

Finally, the Hyperexponential distribution with two phases is a reasonable 

approximation to the length of stay distribution of patients in the CCU but a 

better fit is found when the number of phases is extended to 4. The theoretical 

work requires extending to incorporate these additional phases.
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3.7. Conclusion

This Chapter has introduced a novel queueing system, M(b)/He/c, which has not 

been considered before in the Literature. A solution has been suggested and an 

application to a real life situation has been made.

To conclude, it is worthy to note that the M^/He/c queueing system proves to be 

a good approximation to the CCU thus addressing the first objective of this 

thesis. However, notable improvements could be made by considering constant 

time-intervals between batch arrivals, extension to different service time 

distributions (such as additional phases in the Hyperexponential distribution) and 

also introducing an element of priority to the queueing system to account for the 

priority present in the CCU.

There are many avenues for further work to investigate, for example, a loss 

system, whereby customers of certain characteristics are “lost” if there is 

insufficient space for them. This system would correspond well to the CCU also 

and would possibly give simpler solutions than the queueing system considered.

One final system that would be worth considering would be the M/He/c queueing 

system (the same system but with single arrivals). This queueing system has been 

considered before in the literature but could prove to be another useful 

approximation to the CCU.
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Chapter 4: Length of stay analysis

4.1. Introduction

In this Chapter, a discussion follows into the factors which affect length of stay 

in the Critical Care Unit at the University Hospital of Wales, Cardiff. A 

description of the data set used can be found in Chapter 1. In a clinical setting, it 

can help in the management of patients if the clinicians have an estimate of 

patients’ likely length of stay and if a tool is available which can predict the 

length of stay of a patient based on a set of patient characteristics relating to the 

first day of admission into the hospital. Also, from a modelling perspective, this 

type of analysis can be utilised in future pieces of work to suggest the most 

influential variables in the prediction of length of stay and thereby constructing 

more intuitive models. This Chapter seeks to identify the main factors which 

affect length of stay at the CCU and thus helps to address the second objective of 

this thesis, which is to understand the factors which affect length of stay and 

outcome at the Critical Care Unit.

The statistical analysis techniques used to analyse the influence of different 

factors upon length of stay include CART analysis and Regression analysis. Both 

techniques provide a predictive tool for length of stay. Using these two initial 

analyses, the important variables in deducing length of stay will be highlighted. 

Mann-Whitney tests and the Kruskal-Wallis test follow to investigate the 

influential variables in more depth.

4.2. CART analysis

CART analysis, undertaken using the TreeWorks (Harper and Leite 2008) 

program in this study, takes the data set as a whole and systematically subdivides 

the data set until homogenous groups are formed. The end product is a “tree” 

consisting of nodes. The aim of this splitting procedure is to create homogenous
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groups (nodes) thus reducing the overall variance of the data. Typically, seventy 

percent of the data is used to create the splitting rules (this is called the learning 

sample) and the final 30%, the testing sample, is then passed through the tree and 

is used to validate the final nodes (Harper and Leite 2008).

4.2.1. Data

The data set used to perform the CART analysis consists of 2448 observations 

(note, the original CCU data set consisted o f4226 observations but TreeWorks 

requires a data set which is complete therefore some observations could not be 

used). The learning sample had 1713 observations and the testing sample had 

735 observations.

To ensure that the final nodes were helpful from a modelling perspective and 

appropriate for this study, the first split by the source of admission variable 

(Elective/Non-elective) was undertaken manually. The remaining procedure was 

purely statistical in nature, free from researcher intervention. It was specified 

that final nodes should have no fewer than 50 observations. The rules used to 

determine the final nodes are listed below (the actual tree appears on the next 

page) and the validated final nodes have been shaded (20 in total).
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Table 4.1: Split specifications -  with final nodes shaded

N O D E ID S P L IT  V A R IA B L E S P L IT  S P E C IF IC A T IO N

0 NONE None

1 ADMSOURCE Elective

2 ADMSOURCE A+E, Emergency, Ward, Other Hosp, X-Ray

3 SDCODE
47, 22, 36, 50, 34, 13, 41, 52, 28,43, 1, 23, 31, 46, 21, 20, 49, 19, 42, 16, 25, 

24, 15, 48, 30, 9. 44

4 SDCODE 4, 10, 6, 29, 51, 45, 37, 5, 3 ,14 , 2, 39, 12, 32, 2 6 ,7 ,27 , 11,18, 8, 38

5 TISSPOINT <= 56.5

6 TISSPOINT >56.5

7 HC03 <= 32.8

8 HC03 >32.8

9 ORGSCORE <= 10.1

10 ORGSCORE > 10.1

11 PRECIP 29. 1. 32, 10, 4 ,26 , 22, 27, 24, 5, 23, 15, 12

12 PRECIP 7, 6, 20 ,3 , 28, 34.37. 35, 19

13 PO <=81.4

14 PO > 81.4

15 SDCODE 50, 47, 52, 41, 34, 22, 48, 25, 15, 16, 19

16 SDCODE 43, 1, 21, 30, 23, 42, 20, 49, 24, 13, 28

17 PO <= 85.9

18 PO >85 .9

19 VENT N

20 VENT Y

21 PRECIP 12, 4, 5 ,2 , 25, 16, 8, 23, 7, 15, 27, 26, 36, 13, 6, 34,22, 1, 37, 24

22 PRECIP 20, 17, 3 0 ,3 5 ,3

23 PRECIP 29, 19. 4. 5, 13, 37, 9, 35, 10, 7, 32, 6, 27, 34

24 PRECIP 28, 24, 3, 1,23, 15, 22, 20, 26

25 N W ER BAL 0

26 NVVERBAL 1

27 ALBUMIN <= 2.35

28 ALBUMIN >2.35

29 SDCODE 47, 34, 31, 36, 19, 22, 16, 24, 42, 25,41

30 SDCODE 49. 46, 21, 48, 20, 28, 43,15, 30, 44

31 DIALYSED N

32 DIALYSED Y

33 ALBUMIN <=2.55

34 ALBUMIN >2.55

35 TPN T, N

36 TPN E

37 HC03 <= 18.95

38 HC03 > 18.95
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The most striking result of this analysis is that Node 1 (the elective surgery 

group) is a final node, implying that the homogeneity of this group cannot be 

improved by splitting. In practice this means that when a patient is admitted on a 

planned elective basis none of the variables routinely collected at admission can 

help predict LoS. However it can be seen that the LoS for elective patients is 

almost 80 hours shorter, on average, than non-elective patients.

The CART analysis resulted in a reduction in variance of 12%, which means that 

the classification of patients into more homogeneous groups reduced the overall 

variation in the data by 12%. It should be noted that nodes 8 and 38 have a very 

high standard deviation thus contributing substantially to the overall variation. 

Further examination of these nodes shows that in both groups the maximum LoS 

is greater than 40 days and the minimum is less than 6 hours, hence the very high 

standard deviation. This outcome is problematic from a homogeneity and 

statistical perspective, but from a clinical point of view it is an important 

indication as to which types of patients are likely to have a very long LoS.

The remaining final nodes yield better results for homogeneity. The best example 

of a homogeneous node is 15. This node has a low mean and standard deviation 

and the coefficient of variation is 0.81. Therefore, any patient admitted onto the 

CCU who meets the classification criteria for node 15 is likely to have a short 

predictable length of stay in the CCU.
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The CART analysis results in 38 splitting rules depending upon the following 12 

distinct variables:

• Source of admission

• SDCODE -  Specific Diagnostic Code

• TISS point -  Daily TISS point

• HC03 - The plasma bicarbonate variable

• Org Score -  Knauss’s organ score

• PRECIP -  Precipitating factor

• Po -  Pa(>2 - measurement of arterial partial pressure of oxygen

• Ventilated -  was the patient ventilated?

• NWERBAL - verbal response in intubated patients

• Dialysed -  was the patient dialysed?

• Albumin - concentration of Albumin in plasma

• TPN -  Total Parenteral Nutrition

For a full definition of the above variables, refer to Appendix 4.1. The influence 

of these variables will be discussed in greater detail later on in this Chapter.

To make this information useful from a modelling perspective, it is important to 

fit statistical distributions to the length of stay and inter-arrival time data within 

each node. Using Stat::Fit the LoS distributions were found and are presented in 

Table 4.2. Note that these distributions were found to be significant at the 95% 

level.
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Table 4.2: Length of stay distributions for CART final nodes

Node

Data Theoretical

N
Mean

(hrs)
Std Dev Median Distribution

Mean

(hrs)
SD

1 394 104.41 151.65 48.00

8 78 558.01 1094.04 244.00 Lognormal 563 1163

11 75 99.85 128.51 57.00 Exponential 99.9 99.9

12 68 283.71 318.50 211.50 Exponential 284 277

15 141 29.60 48.08 21.00 Exponential 29.6 24.6

16 73 54.74 48.02 41.00 Exponential 54.7 48.7

18 190 64.41 75.92 38.50 Exponential 64.4 64.4

19 73 75.45 67.91 59.00 Exponential 75.5 63.5

22 92 208.59 233.22 142.50 Exponential 209 208

24 127 154.08 154.01 120.00 Exponential 154 153

27 93 158.66 206.61 87.00 Exponential 159 157

28 174 94.60 160.07 46.50 Lognormal 111 298

29 74 79.04 93.50 45.00 Exponential 79 73

30 95 109.73 110.94 76.00 Exponential 110 107

32 82 353.60 359.07 265.50 Exponential 354 348

34 172 269.41 375.61 133.00 Lognormal 277 469

35 182 134.55 185.73 61.00 Lognormal 160 397

36 99 371.13 774.15 199.00 Lognormal 356 543

37 93 297.74 289.81 233.00 Exponential 298 293

38 104 484.24 958.19 238.50 Lognormal 475 872
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The distribution fitting exercise gave reasonably accurate results for the first and 

second moments. For the mean, the majority of nodes are within a margin of 5% 

of the actual mean, apart from two nodes (28 and 35). When considering the 

standard deviation, the theoretical fit is not as accurate but according to the chi - 

square goodness of fit test (which Stat::Fit utilises), these distributions cannot be 

rejected. The Elective patients, node 1, have a time dependent length of stay 

distribution.

Next, the inter-arrival distribution for each node was found, again using Stat::Fit. 

The results which are presented in Table 4.3 show that, apart from the elective 

patients (node 1) which is time-dependent in nature and discussed in depth in 

Chapter 6, the Negative Exponential distribution is a good fit to the data. Nodes 

16 and 36 do not have as good a fit as the others but the Negative Exponential 

distribution is still not rejected at the 95% level.
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Table 4.3: Inter-arrival distribution for CART analysis nodes

Node
Data Theoretical

N Mean Std Dev Median Mean

1 394 69.09 69.20 48.00

8 78 345.95 386.50 264.50 346

11 75 354.76 337.60 280.00 355

12 68 391.00 317.36 339.50 391

15 141 194.13 200.37 164.00 193

16 74 341.09 282.93 303.00 335

18 190 141.79 136.17 96.00 142

19 73 373.37 356.65 252.00 368

22 94 269.55 260.13 244.50 270

24 127 211.62 232.27 117.00 212

I 27 93 282.88 307.30 186.00 283

[ 28 174 155.78 141.56 119.00 156

1 29 74 343.54 346.38 203.00 344

1 30 95 283.53 285.35 216.00 284

| 32 82 328.60 359.57 201.00 329

34 172 158.75 156.74 120.00 159

35 182 150.36 164.55 95.00 150

36 99 266.83 302.50 178.00 267

37 93 292.25 298.94 196.00 292

38 106 253.19 238.35 187.50 253

The length of stay and inter-arrival distributions can be used to populate a 

simulation model based upon these nodes. Each node would represent an arrival 

source and then the service time would be dependent upon the arrival source. 

This is beyond the scope of this thesis since a different simulation model is built 

in Chapter 6, but would certainly be an area for further work.
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4.3. Linear Regression

A linear regression analysis was undertaken in order to consider which variables 

influence LoS, from a different perspective.

Linear regression is a statistical technique which seeks to model a dependent 

variable using a linear combination of independent variables. The parameters 

found will be deemed as significant or not using the f-test. The model itself will 

be deemed as significant or not using the F-test. It is important to note here that 

fitting the model is a fairly trivial task; the more difficult task is to ensure that the 

correct model is fitted.

Linear regression has various assumptions that need to be satisfied before the 

results can be used with any confidence.

Firstly, it is assumed that the independent variables have no error attached to 

them, i.e. they are measured accurately and correctly each time. It is also 

assumed that the independent variables are linearly independent. The remaining 

assumptions are related to the errors associated with the dependent variable -  the 

errors must be normally distributed with a mean of zero and a constant variance.

The computer program SAS 9.1.3 was used to undertake this analysis. SAS can 

test the independence assumption as well as the assumptions associated with the 

errors. SAS will flag up any variables which are a linear combination of others. 

The assumptions associated with the errors are simply tested by looking at a plot 

of residuals against predicted values. If this plot represents a random scatter 

about the point zero which is fairly symmetrical about zero then the error 

assumptions are satisfied.
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Once the assumptions have been met, it is possible to use the findings of the 

regression analysis to predict the outcome of the dependent variable using values 

of the independent variables.

It became evident that a number of the variables in the original data set were 

linear combinations of others and were therefore excluded from the regression 

analysis. Also, some variables contained many missing values or were 

inappropriate for regression, such as details concerning GP practices. The 

remainder were used as independent variables for this regression analysis.

Initially, the variable LoS (Length of stay) was used as the dependent variable 

but it was found that the errors associated with LoS did not satisfy the 

assumptions of normality of errors and therefore a log transformation was made.

Given that the CART analysis indicated that the elective group of patients was 

homogenous, and that the regression was undertaken in order to compare the 

outcomes of the regression with those of CART, only non-elective patient data (n 

= 2102) were included in this part of the analysis. The analysis was run using an 

option in SAS which would search for the model (from all independent variables) 

that would maximise R .

Figure 4.2 illustrates the residual against predicted plot (N.B. this must be a 

random scatter about the line residual = 0 to satisfy the assumptions).
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Predicted Value

Figure 4.2: Residual vs. predicted plot -  non-elective patients

This is clearly a random scatter which is fairly symmetrical above and below the 

predicted axis.

Figure 4.3 represents a plot of the observed data against the predicted data. If the 

model corresponded to a perfect fit, this plot would be a straight line.
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Figure 4.3: Observed vs. Predicted values -  non-elective patients

There is an obvious positive trend in these points. Therefore these two figures 

indicate that the results o f the regression procedure may be considered.

The ANOVA results show that the model is significant (p <0.00010) and Table 

4.4 shows the parameter estimates generated by the regression procedure.
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Table 4.4: Parameter estimates for the fitted model
Variable Parameter Estimate Standard E rror t Value Pr>W

INTERCEPT 3.7502 0.10641 1241.96 <.0001
PRECIP08 1.18453 0.36371 10.61 0.0011

DIALYSED 1 1.088 0.09527 130.42 <.0001
PRECIP29 0.72251 0.40464 3.19 0.0743

SDCODE 12 0.61263 0.29341 4.36 0.0369
VENT1 0.53383 0.0856 38.89 <.0001

SDCODE 18 0.52081 0.14839 12.32 0.0005
TISS071 0.46907 0.12505 14.07 0.0002

SDCODE29 0.4593 0.1926 5.69 0.0172
PRECIP20 0.39159 0.17311 5.12 0.0238

PHSCORE3 0.3784 0.06886 30.2 <.0001
SDCODE7 0.3685 0.07833 22.13 <.0001

PHSCORE1 0.34076 0.0912 13.96 0.0002
TISS039 0.30995 0.13355 5.39 0.0204

EYESCORE3 0.30153 0.12494 5.82 0.0159
PHSCORE2 0.26291 0.06198 17.99 <.0001

TEMPSCORE3 0.24185 0.10217 5.6 0.018
RESPSCORE3 0.23037 0.09985 5.32 0.0211
MBPSCORE2 0.22319 0.05173 18.62 <.0001

TISS063 0.12208 0.05659 4.65 0.0311
RESPSCORE1 0.11804 0.06429 3.37 0.0665
TEMPSCORE1 0.10204 0.05413 3.55 0.0595

HC03 0.09721 0.0279 12.14 0.0005
VSYSBP 0.09016 0.02679 11.32 0.0008

ORGSCORE -0.0997 0.03077 10.5 0.0012
ALBUMIN -0.15064 0.02811 28.72 <.0001

PO -0.24373 0.03353 52.83 <.0001
PRECIP24 -0.27334 0.10464 6.82 0.0091

SDCODE 14 -0.29195 0.18114 2.6 0.1072
SDCODE27 -0.30826 0.14399 4.58 0.0324
SDCODE 19 -0.38929 0.13853 7.9 0.005
PRECIP05 -0.40645 0.19819 4.21 0.0404
PRECIP06 -0.45656 0.1312 12.11 0.0005
TISS065 -0.47285 0.15054 9.87 0.0017
TISS068 -0.47809 0.12137 15.52 <.0001
TPNN -0.60006 0.05787 107.51 <.0001

SDCODE41 -0.61393 0.24777 6.14 0.0133
HAEMCAN -0.70235 0.18878 13.84 0.0002
SDCODE22 -0.70991 0.10223 48.22 <.0001

TISS064 -1.08599 0.16485 43.4 <.0001
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The majority of the parameters in Table 4.4 are significant at the 95% level. 

Those which are not have been included as they contribute sufficiently to R . The 

scale variables were standardised in order to make their interpretation simpler. 

Appendix 4.1 contains definitions for each of these variables.

It is important to remember that the dependent variable in this case is the log of 

length of stay rather than the length of stay itself. Therefore, when interpreting 

the parameter estimates it is important to bear in mind that the Exponential of the 

parameter estimate is the factor that the independent variable should be 

multiplied with, rather than the parameter value itself, that is if

log (L O S ) = p0 + p xX x + P2X 2 +...++PkX k + e ,

then

L O S  =  e P o+P \x i +P ix i + ~ ++P kx k +e 

= eP ^e^ePlX\..ePkXke£

Therefore, if all variables are kept constant, but Xi increases by 1 unit, 

log (Z OS') will increase by J3X and L O S  will increase by a factor of e p

Referring back to Table 4.4, the variables in the model have been included in the 

table in descending order of parameter estimate value. Therefore, it is clear that 

the variables which contribute the most to log length of stay are PRECIP08 and 

DIALYSED 1. The prefix PRECIP refers to the precipitating factor. This is 

simply the factor that precipitated the primary system failure or insufficiency. A 

PRECIP value of 08 refers to those who have neuromuscular failure. The other 

important variable, DIALYSED 1 refers to patients who require Kidney Dialysis 

in the Critical Care Unit.

Conversely, the variable TISS064 contributes negatively to log length of stay 

(thus reducing the predicted length of stay of a patient). This TISS score refers to 

patients who have suffered a cardiac arrest or been defibrillated within the past
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24 hours. This seems counter-intuitive; however, on closer inspection; over 70% 

of non-elective patients who have TISS064 on the first day of admission onto the 

CCU do not survive their stay in the CCU. Since the parameter estimate for this 

variable is negative, this implies that the patients who experience 

arrest/defibrillation are likely to die quickly after arriving at the CCU.

The R2 value for this model is 0.3614. This suggests that approximately 36% of 

the variation in the log of the original data is accounted for by the model. Ideally, 

a higher R value would be helpful but even with this value it is possible to get 

some information from the model.

The final model can then be written as:

log (LOS) = 3.8 +1.2 (PRECIP08)+1.1 (DIALYSEDl) + 0.7 (PRECIP29)

+0.6(SDCODE12) + 0.5(VENT1) + 0.5(SDCODE18) + 0.5(TISS071)

+0.5 (SDCODE29) + 0.4(PRECIP20) + 0.4 (PHSCORE3)+ 0.4(SDCODE7)

+0.3 (PHSCOREl) + 0.3 (TISS039) + 0.3 (EYESCORE3)+ 0.3(PHSCORE2)

+0.2 (TEMPSCORE3) + 0.2 (RESPSCORE3) + 0.2(MBPSCORE2) + 0.1 (TISS063) 

+0.1 (RESPSCORE1) + 0.1 (TEMPSCOREl) + 0.1 (HC03)+0.1 (VSYSBP)

-0.1 (ORGSCORE) -  0.2 (ALBUMIN) -  0.2 (PO) -  0.3 (PRECIP24)

-0.3 (SDCODE14) -  0.3(SDCODE27) -  0.4(SDCODE19)- 0.4(PRECIP05)

-0.5 (PRECIP06) -  0.5 (TISS065) -  0.5 (TISS068) -  0.6(TPNN)

-0.6 (SDCODE41) -  0.7 (HAEMCAN) -  0.7 (SDCODE22) -1.1 (TISS064)
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Therefore

> 3.8+1.2(PRECIP08)+l.l(DIALYSEDl)+0.7(PRECIP29) 
+0.6(SDCODE12)+0.5(VENT1)+0.5(SDCODE18)+0.5(TISS071) 
+0.5(SDCODE29)+0.4(PRECIP20)+0.4(PHSCORE3)+0.4(SDCODE7) 
+0.3(PHSCORE1)+0.3(TISS039)+0.3(EYESCORE3)+0.3(PHSCORE2) 
+0.2(TEMPSCORE3)+0.2(RESPSCORE3)+0.2(MBPSCORE2)+0.1(TISS063) 
+0. l(RESPSCORE l)+0. l(TEMPSCOREl)+0. l(HCO3)+0. l( VSYSBP)

T O S  =  £ ______________________________________________________________
0.1(ORGSCORE)+0.2(ALBUMIN)+0.2(PO)+0.3(PRECIP24)
+0.3(SDCODE14)+0.3(SDCODE27)+0.4(SDCODE19)+0.4(PRECIP05)
+0.5(PRECIP06)+0.5(TISS065)+0.5(TISS068)+0.6(TPNN)
+0.6(SDCODE41)+0.7(HAEMCAN)+0.7(SDCODE22)+1.1(TISS064)

The above expression for length of stay, as was previously mentioned, has an R2 

value of 0.3614. This is achieved by including 39 variables. From a practical 

perspective, this large number of variables in the regression equation could prove 

impractical for clinicians to use. Also, at this stage, it is important to 

acknowledge the dangers of overfitting. It may be that some of the variables in 

this model are included to describe noise rather than a true relationship between 

the variables.

Therefore, an alternative model was constructed with a maximum of 12 

variables, and these variables were selected based upon their significance in the 

previous model. The parameter estimates are indicated in Table 4.5.
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Table 4.5: Parameter estimates for the reduced variable model

Variable Parameter Estimate Standard Error t Value Pr> M

INTERCEPT 4.04132 0.09731 41.53 <.0001

DIALYSED 1 1.03821 0.09753 10.64 <.0001

VENT1 0.58408 0.08124 7.19 <.0001

PHSCORE3 0.25911 0.06906 3.75 0.0002

SDCODE7 0.37488 0.07143 5.25 <.0001

PHSCORE2 0.20434 0.06222 3.28 0.0010

MBPSCORE2 0.17002 0.05149 3.30 0.0010

ALBUMIN -0.13744 0.02720 -5.05 <.0001

PO -0.25245 0.03413 -7.40 <.0001

TISS068 -0.66345 0.12268 -5.41 <.0001

TPNN -0.70106 0.05820 -12.05 <.0001

SDCODE22 -0.59908 0.10081 -5.94 <.0001

TISS064 -1.33234 0.16501 -8.07 <.0001

The above model yields an/?2 value of 0.2955. Therefore, the reduction in 

variables causes a decrease in R2, or a decrease in the proportion of variation 

accounted for by the regression model. Thus, for the sake of this Chapter, the 

first model, using all 39 variables will be compared to the CART analysis.

4.4. Comparison between CART analysis and Regression analysis

Given that both the CART and regression analyses are valid methods for 

predicting factors which are likely to affect LoS, it was considered important to 

compare the outcomes of these analyses.
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All variables from the CART analysis are included in the regression analysis 

apart from one, NWERBAL. NWERBAL is the verbal response in intubated 

patients. Several variables which appear in the linear regression do not appear in 

the CART analysis. Many of these are all physiological scoring variables such as 

temperature, respiratory rate and blood pressure. The other variable included is 

HAEMCAN which is a binary variable referring to whether the patient has a 

history of haematological cancer.

It emerges that there are 11 variables which are influential in both analyses. 

These are:

• Albumin -  concentration of Albumin in plasma

• Dialysed -  was the patient dialysed?

• HC03 -  Plasma bicarbonate

• ORGSCORE -  Knauss’s organ failure score

• PO -  Pa02 -  measurement of arterial partial pressure of oxygen

• PRECIP -  Precipitating Factor

• SDCODE -  Specific Diagnostic Code

• Source of admission

• TISS score -  Daily TISS score

• TPN -  Total Parenteral Nutrition

• Ventilated -  was the patient ventilated?

Each of these variables will be considered in more detail in the following section.
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4.4.1. Albumin

The variable Albumin, which is essentially the concentration of Albumin in 

plasma, appears twice on the tree diagram, once to create nodes 27 and 28 and 

once to create nodes 33 and 34. To create node 27, an Albumin level of less than 

2.35 is required. If the Albumin level is greater than 2.35 then node 28 is created. 

The mean LoS in 27 is greater than in 28, thus an inverse relationship. A similar 

pattern is evident in nodes 33 and 34. This inverse relationship implies that 

patients with a lower albumin score have a longer length of stay. The regression 

parameter (p = -0.2) agrees with the conclusions drawn from the CART analysis.

4.4.2. Dialysed

The next variable which appears in both regression and CART analyses is kidney 

dialysis. Approximately ten percent of Critical Care admissions are dialysed at 

some point during their stay. The following table presents the summary statistics 

for length of stay of patients dialysed compared to those who are not dialysed:

Table 4.6: Summary statistics of length of stay for patients who were 

dialysed during their stay

Dialysed Percentage Mean SD Median

No 89.56% 109 301.64 45

Yes 10.44% 297.23 323.40 191

The length of stay distributions are significantly different (p < 0.0001) and 

Figure 4.4 highlights this difference:
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D i o I y s e d

Figure 4.4: length of stay distribution of patients who are dialysed

The CART analysis tree indicates that nodes 31 and 32 are created in order to 

differentiate between the patients who are dialysed compared to those who are 

not. It is clear that node 31 has a lower mean length of stay, thus emphasising 

that if a patient is dialysed in the CCU then expected length of stay is longer.

The regression parameter of 1.04 strengthens this argument.

4.4.3. HC03

The plasma bicarbonate variable (HC03) has a positive parameter in the 

regression and thus has a positive contribution to length of stay; the higher the 

HC03 level, the longer the length of stay. Also, looking at the CART analysis 

tree it is clear to see that the construction of nodes 7, 8, 37 and 38 rely upon the 

value of HC03 registered. Nodes 7 and 37 have a lower mean length of stay than 

nodes 37 and 38 respectively, thus confirming the findings from the regression 

analysis.
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4.4.4. ORGSCORE

This variable refers to the Knauss’s organ failure score and is a measurement of 

organ failure. To calculate this daily score, the number of organs failed on the 

day in question is counted, and is then multiplied by the number of days that 

these organs have failed for. In this analysis, since all data considered is on day 1 

alone, Knauss’s organ failure score is simply the number of organ’s failed on day 

1. In the CART analysis tree diagram, ORGSCORE appears once, to create 

nodes 9 and 10. Node 9 is reserved for patients with fewer than 10.1 organ 

failures on day 1, whereas node 10 includes patients with more than 10.1 organ 

failures on day 1. Patients in node 9 have a shorter length of stay than patients in 

node 10. The linear regression coefficient for this variable is -0.0997. The 

negative sign indicates that length of stay is inversely linked to the number of 

organ failures. Note that for the linear regression, ORGSCORE was standardised 

to have a mean of zero and a standard deviation of 1. Therefore, patients with an 

ORGSCORE larger than the average will have a shorter length of stay than 

patients with an ORGSCORE smaller than the average.

4.4.5. Pa02

Pa02 (PO) is a measurement of arterial partial pressure of oxygen. Further 

investigation of both CART tree and regression parameters indicates that Pa(>2 is 

inversely related to length of stay. For example, when looking at the decision 

used to create nodes 13 and 14, patients with Pa(>2 levels less than 81.4 go to 

node 13, whereas patients with Pa02 values higher than this cut-off go to node 14. 

Node 14 has the shortest mean length of stay. The regression parameter being 

negative (P = -0.2) also confirms this to be the case.
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4.4.6. Precipitating factor

The precipitating factor is simply the factor that precipitated the primary system 

failure or insufficiency. Figure 4.5 illustrates the length of stay distribution for 

each of the factors:
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Figure 4.5: Length of stay distribution by precipitating factor

LoS is very much influenced by the specific nature o f the factors. For example, 

precipitating factors 04 (Self-intoxication) and 37 (planned post-operative 

monitoring) have a fairly consistent length of stay profile without long whiskers. 

By contrast factors 01 (infection), 03 (trauma), 20 (septic shock) and 22 

(haemorrhagic shock) have a much more varied length of stay profile.

After consultation with the clinicians at the CCU, they confirmed that this pattern 

in length of stay distribution was to be expected. For example, patients with a 

precipitating factor of 37 tend to be elective surgery patients who are sent to the
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CCU for interventions such as ventilation but are then discharged to the ward 

quickly provided that there are no complications. Also patients with precipitating 

factor 04 tend to undergo a rapid cleansing procedure and are then very quickly 

fully recovered and able to be discharged to a ward.

Similarly, it is not surprising that patients with the precipitating factors 01, 03,20 

and 22, which are critical illnesses and notoriously difficult to control, have a 

more variable length of stay.

Precipitating factor appears three times in the CART analysis tree diagram. Rules 

referring to the precipitating factor are used to construct nodes 11,12,21,22,23 

and 24. Since there are 37 distinct precipitating factors, this section will not 

discuss these individually. Rather, Table 4.7 summarises where each 

precipitating factor appears in the splitting rules. Also, Table 4.7 highlights 

whether each precipitating factor contributes to a node with a longer or shorter 

length of stay.
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Table 4.7: the num ber of times the precipitating factor contributes to nodes 
with short or long LoS________________________________________________

PRECIP DEFINITION

NO. OF TIMES 
THE FACTOR 

CONTRIBUTES 
TO SHORT 

LOS

NO. OF TIMES 
THE FACTOR 

CONTRIBUTES 
TO LONG LOS

4 Self-intoxication (overdose) 3 0
5 Intracerebral haemorrhage 3 0

27 Coma/mental derangement 
(metabolic) 3 0

10 Myocardial infarction 
(documented) 2 0

12 Peripheral vascular disease 2 0
13 Embolus (localised) 2 0
29 Diabetic ketoacidosis 2 0

32 Haematologic
insufficiency/crisis 2 0

2 Neoplasm 1 0
8 Neuromuscular failure 1 0
9 Coronary artery disease 1 0
16 Hypertension 1 0
25 Allergic reaction 1 0
36 Toxic/chemical poisoning 1 0
1 Infection 2 1

6
Extracerebral

(Subdural/arachnoid
haemorrhage)

2 1

7 Seizures 2 1

15 Congestive heart 
failure/pulmonary edema 2 1

22 Haemorrhagic/hypovolaemic
shock 2 1

23 Bleeding (significant but not 
shocked) 2 1

24 Post arrest (cardiac and/or 
respiratory) 2 1

26 Obstruction/perforation 2 1

34 Unplanned post-op 
ventilation 2 1

37 Planned post operative 
monitoring 2 1

35 Acute-on-chronic end stage 
disease 1 2

19 Cardiogenic 1 1
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shock/myocardiopathy
17 Rhythm disturbance 0 1
30 Endocrine emergency 0 1

28 Electrolyte/Acid-base
disturbance 0 2

3 Trauma 0 3
20 Septic shock/sepsis 0 3

The remaining precipitating factors were not used in the formation of any nodes. 

Comparing the green shaded section of the table, i.e. the factors which create 

nodes with a short length of stay, with the regression analysis variables shows 

that the precipitating factor 05 creates nodes with short lengths of stay, 3 times, 

and appears with a negative regression coefficient (-0.40645). Looking at the red 

shaded section o f the table, a precipitating factor of 20 creates nodes with a long 

length of stay, in each of the three instances which it appears and has a positive 

regression coefficient (0.39159). Precipitating factors 24 and 06 appear in the 

yellow shaded section o f Table 4.7 as they create nodes with a short length of 

stay twice and a long length of stay once. The regression coefficients for these 

nodes are -0.27334 and -0.45656 respectively. These regression coefficients 

imply that these precipitating factors contribute negatively to length of stay, but 

in one instance, the CART analysis implies that they contribute positively to 

length of stay (in the creation of nodes 12 and 24). This can be explained, since 

both of these nodes appear some way down the tree and thus do not include the 

entire data set in their creation.

Finally, precipitating factors of 08 and 29 appear to have positive regression 

coefficients (1.18453 and 0.72251 respectively) but create nodes with 

comparatively short lengths of stay. Again, the explanation is the same as for the 

previous precipitating factors.
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4.4.7. SDCODE

The next variable which appears both in the CART analysis and the regression 

analysis is the specific diagnostic code. Figure 4.6 demonstrates the length of 

stay distribution for the different specific diagnostic codes. The definitions 

corresponding to these codes can be found in Appendix 4.2 and 4.3.
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Figure 4.6: length of stay distribution by Specific Diagnostic code

There are a number of points to note here. Firstly, codes 35 (Post-op Renal 

surgery for Neoplasm) and 50 (Post-op Metabolic/Renal) have the least varied 

length of stay distributions. By contrast the most varied distribution corresponds 

to code 04, which is Non-Op Post respiratory arrest.
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Table 4.8: the number of times the specific diagnostic code contributes to

nodes with short or long LoS

SDCODE Definition

No. of times 
the code 

contributes to 
Short LoS

No. of times 
the code 

contributes to 
Long LoS

16 Non-Op CVS F Cardiogenic 
shock 3 0

19 Non-Op Head Trauma 3 0
22 Non-Op Drug Overdose 3 0
25 Non-Op Metabolic/Renal 3 0

34 Post-op Craniotomy for 
Neoplasm 3 0

41 Post-op Haemorrhagic shock 3 0

31 Post-op Chronic cardiovascular 
disease 2 0

36 Post-op Renal transplant 2 0
47 Post-op Cardiovascular 2 0
50 Post-op Metabolic/Renal 2 0
52 Post-op Cardiac Arrest 2 0

9 Non-Op CVS failure from 
Hypertension 1 0

15 Non-Op CVS F Post cardiac 
arrest 2 1

24 Non-Op Gastrointestinal bleeding 2 1
42 Post-op Gastrointestinal bleeding 2 1
48 Post-op Respiratory 2 1
1 Non-Op Asthma/Allergy 1 1

13 Non-Op CVS F from Coronary 
artery disease 1 1

23 Non-Op Diabetic ketoacidosis 1 1
44 Post-op Respiratory insufficiency 1 1
46 Post-op Neurologic 1 1

20 Non-Op Neurologic Seizure 
disorder 1 2

21 Non-Op Neurologic 
ICH/SDH/SAH 1 2

28 Non-Op Cardiovascular 1 2
30 Post-op Multiple Trauma 1 2
43 Post-op GI surgery for Neoplasm 1 2
49 Post-op Gastrointestinal 1 2

2 Non-Op Chronic Obstructive 
Pulmonary Disease 0 1

3 Non-Op Pulmonary oedema (non 
cardiogenic) 0 1
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4 Non-Op Post respiratory arrest 0 1

5 Non-Op
Aspiration/poisoning/toxic 0 1

6 Non-Op Pulmonary embolus 0 1

7 Non-Op Respiratory failure from 
Infection 0 1

8 Non-Op Respiratory failure from 
Neoplasm 0 1

10 Non-Op CVS F from Rhythm 
disturbance 0 1

11 Non-Op Congestive heart failure 0 1

12
Non-Op CVS F 

Haemorrhagic/hypovolaemic 
shock

0 1

14 Non-Op CVS F from Sepsis 0 1
18 Non-Op Multiple Trauma 0 1
26 Non-Op Respiratory 0 1
27 Non-Op Neurologic 0 1
29 Non-Op Gastrointestinal 0 1

32 Post-op Peripheral vascular 
surgery 0 1

37 Post-op Head Trauma 0 1

38 Post-op Thoracic surgery for 
Neoplasm 0 1

39 Post-op Craniotomy for 
ICH/SDH/SAH 0 1

45 Post-op GI 
Perforation/Obstruction 0 1

51 Post-op Sepsis 0 1

Again comparing the CART results in Table 4.8 with the regression coefficients 

indicates a level o f consistency between the two sets o f analyses. For example, in 

regression and CART analysis, the specific diagnostic codes 7, 12, 18 and 29 all 

produce long lengths of stay. Whereas, the specific diagnostic codes 19, 22 and 

41 always produce short lengths of stay. The only discrepancy occurs with the 

specific diagnostic codes of 14 and 27. In the CART analysis, they appear once 

and aid in the construction of nodes with long lengths of stay, whereas they have 

a negative regression coefficient (-0.292 and -0.3083 respectively).
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4.4.8. Source of admission

This variable categorises patients from their source of arrival onto the critical 

care unit and takes the following values: Accident and Emergency, the Wards, X- 

Ray, Elective Surgery, Emergency Surgery and Other Hospitals. Note the 

numbers in the Table 4.9 differ from those found in previous tables since the 

source of admission data was complete for almost all admissions.

Table 4.9: Summary statistics for length of stay in hours by source of 

admission

Source of 

admission
N Mean

Std

Dev
Minimum Median Maximum

A+E 1134 123.59 304.40 0 56 7971

Elective 1182 57.34 99.78 0 23 1318

Emergency 715 153.45 396.48 1 65 8973

Other Hosp 235 210.13 431.48 2 88 4746

Ward 916 189.63 362.80 0 92 7378

X-Ray 44 91.27 124.33 1 49 622

The Kruskal-Wallis test was performed to ascertain whether there were 

significant differences between the distributions of the above groups. It emerged 

that there were some significant differences between the groups (see Table 4.10).
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Table 4.10: Significant differences in length of stay, between sources of 

admission
A+E ELECTIVE EMERGENCY OTHER HOSP WARD X-RAY

A+E p < 0.05 p < 0.05 p < 0.05 p < 0.05 p = 0.6820

ELECTIVE p < 0.05 ------- p < 0.05 p < 0.05 p < 0.05 p < 0.05 1

EMERGENCY p < 0.05 p < 0.05 -------- p < 0.05 p < 0.05 p = 0.2052

OTHER HOSP p < 0.05 p < 0.05 p < 0.05 p = 0.6378 p < 0.05

WARD p < 0.05 p < 0.05 P  <  0.05 p = 0.6378 p < 0.05

X-RAY p = 0.6820 p < 0.05 p = 0.2052 p < 0.05 p < 0.05
-------  1
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Figure 4.7: Box-plot showing length of stay by source of admission

Figure 4.7 shows the extent of the variation in the length of stay of patients. 

Patients arriving from Elective Surgery have a small amount of variation 

between their lengths of stay. The patients from Accident and Emergency have a 

moderate variation but less that those arriving from Emergency Surgery, Other
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Hospitals or the Ward. There are too few observations in the X-Ray category to 

conclude anything from these. Figure 4.7 seems intuitively correct since, if 

patients arrive from Elective Surgery, generally it is because they need 

ventilation or other forms of life support while they recover and are thus present 

in the CCU for a short period of time until the life-support interventions are not 

required any longer. Also, patients from Emergency Surgery have been rushed 

into Hospital and are probably very sick thus needing to spend a long time in the 

CCU. The same logic applies to patients who have arrived from the Wards; their 

condition will have deteriorated resulting in their need for Critical Care. It is also 

intuitive that patients from Other Hospitals have a varied length of stay. Since the 

Critical Care Unit at the University Hospital of Wales is the largest Unit in Wales 

and also treats many serious cases each year, very often patients are transferred 

from other Critical Care Units around the country either when other Units are full 

or when the patient has a condition that is better suited to treatment in a larger 

specialist Unit.

Referring back to Figure 4.1, it is clear that an Elective admission has a shorter 

length of stay than a non-elective admission. A regression analysis of the entire 

data set was not conducted so that the interesting variables in the CART analysis 

for non-elective patients could be compared with the interesting variables found 

in the non-elective regression model.

Chapter 6 continues to investigate the source of admission factor on length of 

stay and thus no more discussion will ensue here.

4.4.9. Therapeutic Intervention Scoring System (TISS score)

In 1974 Cullen and colleagues (Cullen et al. 1974) developed the Therapeutic 

Intervention Scoring System (TISS score). This scoring system sought to 

compare levels of patient care within an Intensive Care Unit. This TISS score is 

based on 57 interventions that a patient could experience in the Intensive Care
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Unit. In 1983, Keene and Cullen (Keene and Cullen 1983) updated this scoring 

system to include new techniques, thus increasing the number of interventions to 

76. Guidelines for the use of the TISS score suggest that data should be collected 

at the same time each day and by the same observer. A TISS item should be 

checked if the intervention has been administered within the previous twenty 

four hours. The therapies are sub-classified into 4 categories and each category 

has a score 1 to 4 associated with it. The more severe or invasive the therapy, the 

higher the category score. For example, ECG monitoring has a score of 1 

whereas intracranial pressure monitoring has a score of 4. The number of 

interventions checked in each category should be counted and the weighted sum 

should be computed. This final weighted sum, known as the TISS score, can then 

be used to classify a patient according to the level of care required. The 

following table summarises the nurse provision required for patients with various 

TISS scores:

Table 4.11: Nurse Provision required for a patient according to TISS score

CLASS NURSE: PATIENT TISS SCORE

1 1:4 or greater <10

2 1 experienced nurse, 1 nursing aide : 4 patients 10-19

3 1:2 20-39

4 1:1 >40

In the Critical Care Unit at UHW, they classify patients according to their 

professional judgement rather than strictly applying the above rules. There are 

eleven interventions that cause a patient to have a 1:1 nurse ratio and they are 

listed in Table 4.12 below along with the score associated with them:
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Table 4.12: Therapies making 1:1 nursing care a requirement

TISS code Definition Score

064 Arrest/defibrillation (24h) 4

046 Cardioversion 3

049 Cardiac output measurement 3

073 Intra-aortic balloon pump 4

068 CAVHD/CWHD 2/4

071 Intracranial pressure monitor 4

065 Pulmonary artery (SG) catheter 4

063 Controlled ventilation CMV 4

038 IMV or assisted ventilation 3

039 CPAP 3

077 >1 vasoactive infusions 4

Note CAVHD/CWHD has a score of 2 or 4 depending upon whether the patient 

is in a stable condition or not respectively.

TISS point appears once on the CART analysis tree diagram (Figure 4.1). It 

simply states that if the TISS point on the day of admission is less than 56.5 then 

a shorter length of stay is expected. A Mann-Whitney test was conducted on the 

data using the grouping variable TISS point less than 56.5 or TISS point greater 

than 56.5.The result was significant (p < 0.0001) implying that there is a 

significant difference in length of stay depending upon TISS point.

TISS features 6 times in the regression model, but not as a total score. Rather, it 

appears as 6 distinct variables which reflect the therapies which require 1:1 

nursing care. Table 4.13 contains summary statistics for the length of stay of 

patients who have received the intervention compared to those who have not.
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Also, a Mann-Whitney test was undertaken to see whether this difference was 

significant at the 95% level, and the final column contains this result:

Table 4.13: Summary statistics for length of stay by TISS code

Variable
Regression
Parameter

Intervention
received?

N
Mean
(hrs)

Std Median
Sig.
diff?

TISS071
No 1982 191.34 426.84 76

Yes
0.46907 Yes 103 173.34 150.71 127

TISS039
No 2011 187.77 408.14 77

No
0.30995 Yes 79 258.34 608.73 90

TISS063
No 922 162.09 382.86 64

Yes
0.12208 Yes 1168 212.84 441.84 95

TISS065
No 2026 191.18 422.14 78.5

No
-0.47285 Yes 59 165.12 202.28 65

TISS068
No 1878 187.08 430.92 76

Yes
-0.47809 Yes 207 221.00 265.54 129

TISS064
No 2034 190.98 417.40 80

Yes
-1.08599 Yes 56 171.21 424.78 12

The regression parameter column has been ordered by the size of the parameter. 

The positive regression coefficients should result in the patient group having a 

longer length of stay. For TISS071 (Intracranial pressure monitor), the mean 

length of stay for patients who receive the intervention is shorter than those who 

do not, whereas the median length of stay for the intervention group is much 

longer. The difference in median is significant at the 95% level. The effect is 

different for the TISS039 (CPAP) intervention; both mean and median for the 

intervention group are longer than the non-intervention group. The difference in 

median is not significant at the 95% level. Considering the TISS063 (Controlled 

ventilation CMV) intervention, again, both mean and median length of stay for 

the intervention group are higher than the non-intervention group (the difference 

in median is significant at the 95% level).

179



The negative regression coefficients should result in the intervention group 

having a shorter length of stay. This is true in two cases, although not for the 

CAVHD/CW HD intervention (TISS068). The difference is not significant for 

the Pulmonary artery (SG) catheter intervention (TISS065).

4.4.10. TPN (Total Parenteral Nutrition)
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Figure 4.8: Length of stay distribution by TPN

TPN is simply a medical term for intravenous feeding. The value T indicates that 

the patient is receiving Total Parenteral Nutrition. This type of intervention can 

cause dangerous side effects and is thus only used when necessary. The value E 

stands for enteral nutrition, which is simply when a patient is fed directly through 

a tube into the stomach. N stands for no feeding and this is generally not a long 

term option. If a patient arrives and received no feeding initially, they will 

progress onto E or T when it becomes apparent that they will remain in the unit 

for more than a few days. Patients who receive total parenteral nutrition are 

usually fairly sick and have gastrointestinal problems which tend to result in 

many operations and hence long lengths of stay.
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TPN appears once in Figure 4.1 and rules concerning it are used to create nodes 

35 and 36. If TPN is N or T then the patient is categorised as node 35, else if 

TPN in E the patient is classified as node 36. Node 35 has a significantly shorter 

length of stay than node 36 (p < 0.0001).

The linear regression model features TPN once, and more specifically where 

TPN = N (the name of the variable is TPNN). The regression coefficient is -0.60 

which implies that patients with a TPN of N have a shorter length of stay than 

those who do not. This conclusion agrees with Figure 4.8 since the difference in 

distribution between TPN = N and the others is significant at the 95% level.

4.4.11. Ventilation

A patient requiring ventilation is always sent to the CCU for this intervention. 

Over half of the patients on admitted onto the Critical Care Unit will be 

ventilated at some stage of their stay; however the percentage of non-elective 

patients who are ventilated is 88%. The Mann-Whitney test was performed on 

the length of stay data, by ventilation and the difference was found to be 

statistically significant at the 95% level.

Table 4.14: Summary statistics of length of stay for patients who were 

ventilated during their stay -  non-elective patients

Ventilated Percentage Mean SD Median

No 11.77 58.29 28.31 39

Yes 88.23 208.04 440.97 89
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Figure 4.9: length of stay distribution of patients who are ventilated

Figure 4.9 indicates that as well as having a vastly different median length of 

stay the ventilated patients also have a far more variable length of stay.

Ventilation appears in Figure 4.1 once to create nodes 19 (if the patient is not 

ventilated) and 20 (if the patient is ventilated). Node 19 has a significantly 

shorter length of stay than node 20 (p<0.0001). This agrees with the evidence 

found in the above graph.

Finally, considering the regression coefficient o f 0.53383, it is clear that 

ventilation causes an increase in length of stay.
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4.5. Conclusion

This Chapter has begun to address the second objective found in section 1.2, to 

understand the factors which affect length of stay at the Critical Care Unit. It is 

clear from this Chapter that length of stay is a difficult and complex quantity to 

model. The CART analysis demonstrated that a total of 12 distinct variables were 

required to create 20 groups of patients with a similar length of stay profile. 

Treating the data as 20 distinct groups caused the variation to be reduced by 

12%. The linear regression analysis indicated that a total of 39 variables were 

required to model length of stay which yielded anR2 value of 0.3614. However, 

length of stay could be modelled with an R2 value of 0.2955 with only 12 

variables. Finally, the concordant variables from both pieces of statistical 

analysis were analysed in more depth and it was found that in the majority of 

cases the CART analysis and the linear regression analysis gave similar results.

The following table indicates the direction of the relationship between the 

concordant variables and length of stay.

Table 4.15: Contribution of variables to length of stay

HIGH LOS LOW LOS

Higher than average HC03 Higher than average Albumin

Dialysed Higher than average Po 1

Ventilated TPN = N

The remaining variables, Precipitating factors, Specific diagnostic codes, TISS 

codes and ORGSCORE have differing effects, depending on the values taken.

The nodes constructed from the CART analysis could be utilised as Arrival 

sources for a simulation model. Alternatively, the regression model could be 

utilised, also in a simulation model, to determine a patient’s length of stay in the 

Critical Care Unit.
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Chapter 5: Mortality analysis

5.1. Introduction

In this Chapter, the findings of an investigation of the factors that affect the 

mortality of a patient in the Critical Care Unit are presented and thus address the 

final points in objective 2. A patient’s stay in the Critical Care Unit can be 

traumatic for family and friends; therefore an indication of survival could serve 

the purpose of preparing the family for a possible death.

The analysis, similar to that considered in Chapter 4, takes several forms. Firstly, 

a CART analysis is undertaken and the variables which contribute to the splitting 

rules are highlighted. Secondly, a logistic regression analysis is undertaken 

which seeks to develop an equation to predict the mortality outcome of a patient. 

The significant variables in the logistic regression are also highlighted. Next, the 

variables of note from both analyses will be investigated more thoroughly using 

statistical methods such as the chi-square contingency tables, odds ratios and 

relative risks.

Finally, a novel use of logistic regression is considered. Five logistic regression 

equations were formulated to predict the probability that a patient would be 

present in the Unit on the next day, given their current physiological state. This 

tool would be very useful for clinicians and managers at the CCU, since it would 

allow for planning future admissions to the Unit.

5.2. CART analysis

In the context of continuous dependent variables, such as length of stay in the 

previous Chapter, the aim of CART analysis is to reduce the overall variation in 

a data set by creating homogeneous nodes. When the dependent variable is 

binary as in the case of “outcome”, the theory of CART analysis seeks to reduce
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the overall impurity in a data set by creating homogeneous nodes of data. To 

create homogeneous nodes in this case, a procedure called the Gini Index was 

used. Again, more information about this can be found in Harper & Evandro Jr. 

(2008).

The termination rules for this CART analysis were slightly different from the 

case in Chapter 4. The minimum number of observations in each node was 

reduced to 30 to attempt to capture as much detail from the model as possible. 

The learning sample that was used was 70% of the original data leaving 30% 

available for testing the validity of the tree. In addition only variables which are 

possible to generalise were used in the model. For example, variables referring to 

which consultant the patient was seen by were not included as these results 

would not be transferrable across hospitals and could be corrupted, for example, 

by a consultant retiring.
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Figure 5.1 displays the CART analysis tree diagram where the dependent 

variable is “Outcome”, referring to whether a patient survives their stay in the 

Critical Care Unit or not. The rules used to create these nodes are in Table 5.1.

Table 5.1: Split specifications with final nodes shaded

NODE ID SPLIT VARIABLE SPLIT SPECIFICATION

0

1 ORGSCORE <= 12.15

2 ORGSCORE > 12.15

3 AGE <= 62.5

4 AGE >62.5

5 PCV <= 30.95

6 PCV >30.95

7 TISSPOINT <=40.5

8 TISSPOINT >40.5

9 WBC <= 12.5

10 WBC > 12.5

11 WBC <= 12.25

12 WBC > 12.25

13 PLATELET <= 190.5

14 PLATELET > 190.5

15 URINE <= 1095

16 URINE > 1095

17 WBC <= 9.25

18 WBC >9.25

19 ORGSCORE <=23.3

20 ORGSCORE >23.3

21 AGE <= 70.5

22 AGE >70.5

23 TISSPOINT <= 43.5
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24 TISSPOINT >43.5

25 BILIRUBIN <=1.19

26 BILIRUBIN > 1.19

27 GLUCOSE <= 176.88

28 GLUCOSE > 176.88

29 URINE <= 3735

30 URINE >3735

31 ADO <=331

32 ADO >331

33 URINE <=535

34 URINE >535

39 PH <= 7.08

40 PH >7.08

41 PCO <= 49.9

42 PCO >49.9

43 CR <=2.19

44 CR >2.19

45 GLUCOSE <= 183.92

46 GLUCOSE > 183.92

47 SYSBP <= 144.5

48 SYSBP > 144.5

49 CR <= 1.12

50 CR > 1.12

There are 24 final nodes present in the tree. These nodes reduce the overall 

impurity of the data by over 25%. The “Valid” row of each node represents the 

percentage from the test sample which were correctly classified as dead or alive 

using the splitting rules. Sixteen out of the 24 nodes correctly classified over 

75% of the test sample. From the remaining 8 nodes, three classified less than 

50% of the test sample accurately (nodes 44, 47 and 49).
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Nodes 5, 9, 10, 13, 14, 17,18 and 27 correctly classify at least 90% of the test 

sample. Node 5, which correctly classifies 96% of the test sample, consists of 

only those patients who survive their stay. Therefore, with 96% confidence, if a 

patient presents at the CCU with an ORGSCORE of less than or equal to 12.15, 

is younger than 62.5 years old and has a PCV level of no more than 30.95, they 

will survive their stay.

Very few nodes have a higher proportion dying than surviving (6 nodes in total). 

Also, the percentage of the test sample which are correctly classified in these 

cases is fairly low in comparison with the other nodes. For example, only 19% of 

patients in node 42 survive their stay in the CCU, but having said this, only 73% 

of the test sample were classified correctly. This implies that far more 

uncertainty is present when considering the factors which contribute to the death 

of a patient.

The most important variables when attempting to create homogeneous nodes of 

data are listed below. Note all variables were measured on day 1 of a patients 

stay.

• ORGSCORE -  Knauss’s organ failure score

• Age -  the age of a patient

• Pcv -  packed cell volume (volume of packed red cells in ml per 100ml of 

blood)

• Tisspoint -  Therapeutic intervention scoring system (TISS) score

• Wbc -  white blood cell count (healthy range 3,000 -  14,900 cu.mm)

• Platelet -  platelet count

• Urine -  urine level

• Bilirubin -  a pigment produced when the liver processes waste products

• Glucose -  the end product of carbohydrate metabolism

• Ado - Arterial-Alveolar oxygen difference
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• pH -  pH level

• pco -  Arterial partial pressure of carbon dioxide (mmHg)

• cr -  creatinine -  a waste product of protein metabolism, found in urine 

(can be used as a measure of kidney failure) healthy range 0.6-1.4 mg/dl

• sysbp -  systolic blood pressure

5.3. Logistic regression

Logistic regression is a useful tool to use when predicting the outcome of a 

binary response from a set of explanatory variables. These explanatory variables 

need not be continuous and many of the variables used in this analysis will be 

categorical in nature.

The logistic model in its simplest form is

where the Pi are the parameter estimates, a  is the intercept and Xj are the 

explanatory variables. In this case, n  corresponds to the probability of a patient 

dying in the CCU. There are no assumptions associated with logistic regression 

unlike linear regression, other than the explanatory variables should be 

independent. The logit can then be calculated from a given set of values for the 

explanatory variables, x*.
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Figure 5.2 illustrates that the value of logit(7i) is strictly monotonic increasing as 

7i varies between zero and one. It is clear that for values of n less than 0.5, logit is 

negative and for values of % greater than 0.5, logit is positive. Also

lim (logit (;r)) = oo and lim (logit ( tt))  = -o o . Note that n = probability of a 

patient dying in the CCU.

Therefore, it is clear that any parameter which decreases the value of logitfa) will 

cause 7t to decrease and when logit(7c) = 0 we have n = 0.5.

It is useful to consider the logistic equation in a slightly different way. The logit 

model can be modified to calculate the odds of dying by manipulating (5.1).

n
—  -  (5.2)

Therefore, if all explanatory variables are kept constant apart from Xj, then for a 

unit increase in xj, the odds of dying is Pi times higher.
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All continuous explanatory variables have been standardised to have a mean of 

zero and a standard deviation of 1, and all categorical variables have a value of 0 

(negative) or 1 (positive).

5.3.1. Analysis

The first step is to consider the Akaike Information Criterion (AIC), where 

AIC = -2  log (Z) + 2&(s + l ) . In this equation, Z is the likelihood function, k is

the number of levels of the dependent variable (2 in this model) and s is the 

number of predictors in the model. Note a stepwise regression procedure was 

used to develop the model and therefore s is not fixed at the beginning of the 

analysis. AIC is useful for comparing different models and, generally, the model 

with the lowest AIC is considered to be the best model. The logistic regression 

procedure in SAS calculates the AIC for a model in two ways: firstly using 

intercept alone and then using the other covariates. In this case the AIC is lower 

when the covariates are included; thus, the remainder of the output generated by 

SAS can be considered (2065.187 compared with 2743.778). The likelihood ratio 

test tests the hypothesis that 0 = 0, where 0 is the vector of parameters. This 

hypothesis is rejected at the 95% level (p < 0.0001) and therefore indicates that 

the model parameters are worth considering.

Table 5.2 highlights the parameter estimates that are significant. The final 

column indicates the effect on the odds of dying. Note that the numbers in the 

final column represent the multiplying factor for the odds if all other variables 

are kept constant and the variable in the row is increased by 1 unit. See Appendix 

4.1 for definitions of these variables.
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Table 5.2: Parameter estimates for the logistic regression model to predict

patient survival

Parameter Estimate Standard Error Pr > ChiSq Odds Multiplier

INTERCEPT -2.7554 0.2498 < .0 0 0 1

TISS064 1.4285 0.3627 < .0 0 0 1 4.17

HAEMCAN 1.3005 0.3836 0.0007 3.67

VENT1 1.2026 0.2611 < .0 0 0 1 3.33

EYESCORE1 0.8782 0.183 < .0 0 0 1 2.41

PRECIP26 0.712 0.3555 0.0452 2.04

TISS049 0.5905 0.1494 < .0 0 0 1 1.80

AGE 0.5053 0.069 < .0 0 0 1 1 .6 6

ADMSOURCE4 0.4835 0.1997 0.0155 1.62

ORGSCORE 0.4577 0.078 < 0 0 0 1 1.58

ADO 0.3191 0.0566 < 0 0 0 1 1.38

TISS063 0.2583 0.124 0.0373 1.29

GLUCOSE 0.1506 0.0596 0.0115 1.16

PO 0.1175 0.0521 0.0242 1 .1 2

SYSBP -0.1309 0.0575 0.0229 0 .8 8

HC03 -0.2514 0.0564 < 0 0 0 1 0.78

PRECIP34 -0.3539 0.157 0.0242 0.70

ADMSOURCE1 -0.4693 0.2176 0.031 0.63

SDCODE43 -1.1771 0.3648 0.0013 0.31

SDCODE20 -1.5318 0.5394 0.0045 0 .2 2

PRECIP04 -2.0136 0.4666 < 0 0 0 1 0.13

PRECIP27 -2.1891 0.9088 0.016 0 .1 1

There are 21 variables included in the model. The odds ratio estimates 

highlighted in Table 5.2 quantify the effect of the independent variables on the 

dependent variable. They have been sorted by the value of the odds ratio estimate 

for ease of interpretation.
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The logistic regression equation is therefore

logit (;r) = -2.8 + 1.4(7755064)+1.3(HAEMCAN)+1.2 (VENTl)+ Q.9(EYESCORE\) 

+0.7 (PRECIP26) + 0.6(7755069) + 0.5 (AGE) + 0.5 (ADMSOURCE4)

+0.5 (ORGSCORE)+0.3 (ADO)+0.3 (77SS063)+0.2 (GLUCOSE) + 0.1 (PO) 

-0.1 (SYSBP) -  0.3 (HC03) -  OA(PRECIPM) -  0.5(ADMSOURCEl)

-1.2 (SDCODE43) - 1 .6(SDCODE20) -  2.0(PRECIP04) -  2.2(PRECIP2S)

Table 5.3 has the R2 and the maximum rescaled R2 value. The maximum 

rescaled R2 is the best measure to use with logistic regression. The usual measure

of variation explained by a model is the R2 value. However, the maximum value
2

of R2 achieved by a discrete model is 1 - (z (0 ) )w where L(0) is the likelihood of 

the intercept-only model and n is the sample size. For this model, the 

maximum R2 achievable is 0.6671.

The maximum R2 value takes the maximum achievable R2 into account and 

scales the actual R2 value using the following equation:

R2
Max-rescaled R2 = ----- 7—-r-, (Nagelkerke 1991)

MaxyR j

Table 5.3: R-Square and Max-Rescaled R-Square for the logistic regression 

model

R-Square 0.2511 Max-rescaled R-Square 0.3764

Another useful measure of the fit of the model is the percentage of concordant 

observations. More specifically, a pair of observations is concordant if the 

observation with the lower value has a lower predicted mean logit(7c) score than 

the higher observed value. This value ranges from zero to 100, with 100 as the 

best possible model. The percentage of concordant pairs for this model is 83.8.
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The Somers’D statistic simply determines the direction and strength of a 

relationship between pairs of observations. A value of 1 indicates that all pairs 

agree and a value of -1 indicates that all pairs disagree. Somers’D is equal to 

0.677 for the above logistic regression model.

The logistic regression procedure also outputs c, the rank correlation of ordinal 

variables. It has a value between zero (no association) and 1 (perfect association). 

For the above regression model, c = 0.838.

Finally, the lack of fit statistic, Hosmer and Lemeshow simply identifies how 

good the fit is to the data. The above model displays no evidence of lack of fit (p 

= 0.1768).

The following classification table summarises the predictive power of the model.

Prob
Level

C orrect Incorrect Percentages

Event Non-
Event Event Non-

Event C orrec t Sensitivity Specificity False
POS

False
NEG

0.0 596 0 1896 0 23.9 100.0 0.0 76.1

0.1 562 903 993 34 58.8 94.3 47.6 63.9 3.6

0.2 496 1287 609 100 71.5 83.2 67.9 55.1 7.2

0.3 404 1520 376 192 77.2 67.8 80.2 48.2 11.2

0.4 307 1658 238 289 78.9 51.5 87.4 43.7 14.8

0.5 229 1765 131 367 80.0 38.4 93.1 36.4 17.2

0.6 157 1824 72 439 79.5 26.3 96.2 31.4 19.4

0.7 105 1861 35 491 78.9 17.6 98.2 25.0 20.9

0.8 61 1879 17 535 77.8 10.2 99.1 21.8 22.2

0.9 28 1889 7 568 76.9 4.7 99.6 20.0 23.1

1.0 0 1896 0 596 76.1 0.0 100.0 23.9

For higher probability levels, the models predictive power is far better and 

correctly classifies a large proportion of the data. With lower probabilities, the 

predictive power is not as good and incorrectly classifies many patients.
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5.3.2. Two example cases.

For the sake of illustration, two patients will be considered and the predicted 

probability of dying will be calculated. The measurements for the significant 

variables for the logistic regression are outlined in the Table 5.4 below:

Table 5.4: Two example patients with values for each significant variable

PARAMETER ESTIMATE
PATIENT 

1, xt

PATIENT 

2, xt

J31X1 FOR 

PATIENT 1

P txt FOR 

PATIENT 2

ADMSOURCE1 -0.4693 0.00 0.00 0.00 0.00

ADMSOURCE4 0.4835 0.00 0.00 0.00 0.00

ADO 0.3191 -0.64 2.62 -0.21 0.84

AGE 0.5053 1.42 -0.34 0.72 -0.17

EYESCORE1 0.8782 0.00 1.00 0.00 0.88

GLUCOSE 0.1506 0.34 6.68 0.05 1.01

HAEMCAN 1.3005 0.00 0.00 0.00 0.00

HC03 -0.2514 -0.70 -2.45 0.18 0.62

ORGSCORE 0.4577 -0.67 2.67 -0.31 1.22

PO 0.1175 -0.09 -0.44 -0.01 -0.05

PRECIP04 -2.0136 0.00 0.00 0.00 0.00

PRECIP26 0.712 0.00 0.00 0.00 0.00

PRECIP27 -2.1891 0.00 0.00 0.00 0.00

PRECIP34 -0.3539 0.00 0.00 0.00 0.00

SDCODE20 -1.5318 1.00 0.00 -1.53 0.00

SDCODE43 -1.1771 0.00 0.00 0.00 0.00

SYSBP -0.1309 0.51 -1.59 -0.07 0.21

TISS049 0.5905 0.00 1.00 0.00 0.59

TISS063 0.2583 0.00 1.00 0.00 0.26

TISS064 1.4285 0.00 1.00 0.00 1.43

VENT1 1.2026 0.00 1.00 0.00 1.20
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Addition of the intercept -2.7554 and rearranging, gives the probability of dying 

for patient 1 to be 0.01 and for patient 2 to be 0.97. Reference to the original data 

set shows that in fact patient 1 survives and patient 2  does not.

5.4. Comparison between CART analysis and Regression analysis

There are many differences in the variables proved significant from the CART 

analysis and the logistic regression analysis for the mortality variable. For 

example, specific diagnostic codes and Precipitating factors prove significant 

according to the regression analysis, whereas physiological variables such as 

Bilirubin and platelet counts prove significant in the CART analysis. Five 

variables appear in both the CART analysis splitting rules and the logistic 

regression implying that they can be judged as important influencers of mortality. 

They are as follows:

• ADO - Arterial-alveolar oxygen difference

• AGE -  the age of a patient

• GLUCOSE -  the end product of carbohydrate metabolism

• ORGSCORE -  Knauss’s organ failure score

• SYSBP -  systolic blood pressure

This next section investigates these variables in more depth to ascertain the 

relationship between these variables and mortality.

5.4.1. ADO

The arterial-alveloar difference (ADO) is simply the difference between the 

partial pressure of oxygen in the alveolus and the mean arterial pressure of 

oxygen. The efficiency of gaseous exchange in the lungs is measured by this 

quantity. It is known that ADO can effect mortality in patients with acute health
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conditions such as pulmonary embolism (Te et al. 2006). The ADO variable is a 

continuous variable measured on a scale from zero to 650. Table 5.5 below 

contains summary statistics for the ADO variable by outcome:

Table 5.5: Summary statistics for ADO by CCU outcome

Outcome N Mean Std Dev Minimum Median Maximum

Alive 1897 94.59 167.97 0 0 643

Dead 596 207.80 224.72 0 221 648

The patients who survived their stay in the CCU have a significantly shorter 

median ADO value compared to those who do not survive their stay. Note that 

the median value for the patients who survive their time in the CCU is zero, thus 

indicating the fact that over half the sample have zero values for ADO.

Before considering the CART analysis output, it is sensible to decide which 

measurements will be useful for analysing discrete data.

Chi-square contingency tables

Chi-square contingency tables are widely used to examine whether the frequency 

of a certain condition is different between several groups. The assumptions of 

chi-square tests are that the observations must be independent, each observation 

should only appear in the table once and the expected value of each cell should 

be greater than five. The chi-square test statistic is given by the following 

formula:

i

The software program SAS (version 9.1.3) will calculate the chi-square value for 

the data and produce the corresponding p-value. This p-value will indicate 

whether there the variables in question are independent
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Odds ratios

Simply, the odds of an event is the ratio of the probability of the event occurring 

to the probability of the event not occurring. The odds ratio is then calculated by 

comparing the odds of the exposure group with the odds of the non-exposed 

group. The assumptions for odds ratios are the same as with the chi-square test. 

Using the following general table, the odds ratio is calculated as follows:

Dead Alive Total

Exposure present A b a + b

Exposure absent C d c + d

Total a + c b + d a + b + c + d

a

OR = i -
C

d

To interpret this value, some thought is required. The odds ratio is the odds of a 

patient not surviving their stay in the Critical Care Unit given that they have been 

exposed to the disease/treatment.

Relative Risk (also known as mortality risk)

Next, the final categorical data analysis, relative risk, will be considered. 

Although very similar to odds ratio, relative risk is calculated in a different 

manner. Relative risk compares the conditional probability of the event occurring 

in the exposed and non-exposed groups. Again, the assumptions for relative risks 

are the same as with the chi-square test. The above table (defining events a, b, c 

and d) will be used for defining relative risk:
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a
R R = a ± b _

c
c + d

The interpretation of relative risk is much simpler. A relative risk of X suggests 

that the mortality in the patients who has been exposed to the disease/treatment is 

X times as high as the mortality in patients who have not been exposed.

Chi-square vs. Odds ratio vs. Relative risk

The chi-square test, as previously mentioned, is limited in its use as it only 

indicates an association between variables rather than the degree of association 

present. Odds ratios are always greater than relative risks and therefore often 

over-estimate the true association between variables. Also the interpretation of 

relative risk is much simpler than that of odds ratios. Therefore, taking these 

factors into consideration, the relative risk (or mortality risk) will be considered 

in this Chapter.

Following the result of the splitting rules of the CART analysis a new variable 

was constructed, ADO_less_than_331. Table 5.6 below contains information 

regarding the mortality of patients with an ADO level less than and greater than 

331:

Table 5.6: Frequency of ADO < 331 and > 331 by CCU outcome

Frequency
Outcome

Total
Alive Dead

ADO >331 198 165 363

ADO <331 1699 431 2130

Total 1897 596 2493
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The chi-square contingency test on the above table indicates that the variables are 

not independent (p < 0.0001). The mortality risk calculated for the above data is 

2.25 (95% Cl: 1.95, 2.59) indicates that there is a significant increase in mortality 

of patients with an ADO level greater than 331 compared to those with an ADO 

level less than 331. The odds ratio is 3.29 (95% Cl: 2.60, 4.14).

The ADO variable is used to create nodes 31 and 32. Node 31 consists of patients 

with an ADO level less than 331 and has a higher proportion of surviving 

patients. This result confirms what was found in the mortality risk above. As can 

be seen in Table 5.2 the regression coefficient for ADO is 0.3191, giving an odds 

ratio for mortality of 1.38 times.

5.4.2. Age

The following graph illustrates the age distribution by CCU outcome:

n
18 2 2  2 6  3 0  3 4  3 B 4 2 4 8  5 0  5 4  5B 6 2  6 6  7 0  7 4  7 8  8 2  8 6  9 0  9 4  18  2 2 2 6 3 0 3 4 3 8 4 2 4 6 5 0 5 4 5 8 6 2  6 6  7 0  7 4  7 0 8 2 0 6 9 0 9 4  Am

Figure 5.3: Frequency distribution for Age by CCU outcome
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Table 5.7 outlines the summary statistics for age by outcome: 

Table 5.7: Summary statistics for Age by CCU outcome

Outcome N Mean Std Dev Minimum Median Maximum

Alive 1897 53.08 17.97 16 56 95

Dead 596 61.79 17.08 16 66 93

The Mann-Whitney test establishes that there is a significant difference (p < 

0.0001) in median for these two groups of patients (the above graph strengthens 

this point).

The age variable appears twice in the CART analysis tree diagram, once to create 

nodes 3 and 4 and once to create nodes 21 and 22. Patients younger than 62.5 are 

selected for node 3 whilst the others are sent to node 4, and patients younger than 

70.5 are selected for node 21 whilst the others are sent to node 22. Nodes 3 and 

21 have a higher proportion of survivors than nodes 4 and 22. Each splitting 

criteria will be investigated separately.

Age <=62.5

The following contingency table classifies patients by outcome and whether they 

are younger or older than 62.5
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Table 5.8: Frequency of Age < 62.5 and > 62.5 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Older than 62.5 655 338 993

Younger than 62.5 1242 258 1500

Total 1897 596 2493

The chi-square contingency test indicates that the variables age and outcome are 

not independent at the 95% level.

The mortality risk for patients over 62.5 years old is 1.98 times higher than those 

under 62.5 (95% Cl: 1.72, 2.28) and the odds ratio is 2.48 (95% Cl: 2.06, 3.00) 

and both are significant.

Age <= 70.5

The same analysis is presented here for patients less than 70.5 years old 

compared with those older than 70.5 years old:

Table 5.9: Frequency of Age < 70.5 and > 70.5 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Older than 70.5 361 231 592

Younger than 70.5 1536 365 1901

Total 1897 596 2493
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Again, the chi-square test indicates that these variables are independent at the 

95% level. In this case, the mortality risk (2.03, 95% Cl: 1.77, 2.33) and the odds 

ratio (2.69, 95% Cl: 2.20, 3.29) are higher indicating that the older the patient, 

the higher the mortality risk.

The above analysis strengthens the argument presented by the CART analysis, 

that the younger patients have a lower mortality risk than the older patients.

The regression coefficient for age (which has been standardised) is 0.5053. 

Therefore for a unit increase in age, provided that all other variables are kept 

constant, n will be 1.66 times higher.

5.4.3. Glucose

400 

300

0

XX)

0

Figure 5.4: Boxplot of Glucose level by CCU outcome

Figure 5.4 demonstrates the distribution of glucose level in patients who survived 

their stay in the CCU compared with those who do not survive. The median

A D

Outcome
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value of glucose is lower for patients who survive compared with those who do 

not. The tails of the distribution are longer for the patients who do not live. Table 

5.10 below illustrates the summary statistics for glucose for the patients who live 

compared with those who do not live.

Table 5.10: Summary statistics for Glucose level by CCU outcome

Outcome N Mean Std Dev Minimum Median Maximum

Alive 1897 149.77 74.32 0 140.80 1232

Dead 596 181.65 161.35 0 157.52 2464

A Mann-Whitney test was performed on the above data and the difference in 

median glucose level was significant (p < 0.0001).

Referring back to Figure 5.1, the CART analysis tree diagram, Glucose appears 

twice in the diagram, once to create nodes 27 and 28, and once to create nodes 45 

and 46.

Glucose <176.88

Node 27 is created by selecting patients with a glucose level less than 176.88, the 

others are sent to node 28. The survival rate for patients in node 27 is lower than 

those in node 28 but the validity of node 28 is much lower than node 27 (62% 

and 90% respectively). The conclusions drawn from Figure 5.4 and Table 5.7 

contradict this rule obtained in the CART analysis. This contradiction could 

simply be a consequence of the lack of validity of node 28.

Table 5.11 summarises the number of patients with a glucose level less than 

176.88 and their survival status.
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Table 5.11: Frequency of Glucose < 176.88 and > 176.88 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Glucose level greater than 176.88 478 225 703

Glucose level less than 176.88 1419 371 1790

Total 1897 596 2493

The chi-square contingency test affirms that the variables Glucose level and 

Outcome are not independent (p < 0.0001) and the mortality risk for a patient 

with a glucose level higher than 176.88 is 1.544 times higher (95% Cl: 1.3414, 

17776) than a patient with a lower glucose level. The odds of death is 1.80 times 

higher (95% Cl: 1.48, 2.19) for patients with a higher glucose level.

Glucose < 183.92

Nodes 45 and 46 are also created using a splitting rule concerning glucose. 

Patients with a glucose level less than 183.92 are sent to node 45, whereas 

patients with a glucose level greater than this are sent to node 46. The survival 

rate for patients in node 45 are higher than those in node 46, but both nodes have 

questionable validity. Despite this fact, the conclusions drawn from nodes 45 and 

46 agree with the overall conclusions drawn from Figure 5.4 and Table 5.7 thus 

strengthening the argument that lower rates of glucose imply a higher survival 

rate.

Table 5.12 below indicates the frequencies of patients who survive and those 

who do not survive classified by their glucose level.
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Table 5.12: Frequency of Glucose < 183.92 and > 183.92 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Glucose level greater than 183.92 4199 215 634

Glucose level less than 183.92 1478 381 1859

Total 1897 596 2493

Again, at the 95% level, the variables Glucose < 183.92 and Outcome are not 

independent. The mortality risk for patients with a glucose level greater than 

183.92 is 1.65 times higher (95% Cl: 1.44,1.90) than those with a glucose level 

less than 183.92, and the odds of death are 1.99 times higher (95% Cl: 1.63,

2.43)

Finally, the regression coefficient for glucose is 0.1506 which translates to an 

odds multiplier of 1.16. This suggests that for a unit increase in glucose level 

(note that glucose was standardised for the regression analysis), the odds of death 

increases by 1.16 times thus concurring with the evidence above.
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5.4.4. ORGSCORE

The next variable for consideration is ORGSCORE. This is a measure which 

refers to the organ failure score of a patient. The higher the ORGSCORE, the 

more severe the organ failure. Figure 5.5 illustrates the distribution of 

ORGSCORE by the CCU outcome;
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Figure 5.5: Boxplot of Organ Score by CCU outcome

It is clear from Figure 5.5 that the patients who survive their stay at the CCU 

have a lower organ score compared with those patients who do not survive. The 

tails of both distributions are fairly similar in length and both distributions are 

very symmetrical. Table 5.13 contains summary statistics for organ score by 

outcome
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Table 5.13: Summary statistics for Organ score by CCU outcome

Outcome N Mean Std Dev Minimum Median Maximum

Alive 1897 14.61 7.24 0 14 48.6

Dead 596 22.12 7.73 5 21.5 52.9

The Mann-Whitney test indicates that the median value of ORGSCORE for 

patients who do not survive is significantly higher than those who do survive (p < 

0.0001). Comparing mean and median for both outcomes, it is clear that the 

distributions are in fact fairly symmetrical.

Organ score appears twice in the CART diagram (Figure 5.1). Both occurrences 

are very near to the top of the tree indicating that ORGSCORE is a key variable 

in deducing homogeneous nodes. Firstly, ORGSCORE is used to create nodes 1 

and 2, where patients with an ORGSCORE < 12.15 are sent to node 1, and the 

others are sent to node 2. The second occurrence is to create nodes 19 and 20 by 

splitting ORGSCORE < 23.3 (to create node 19) and ORGSCORE > 23.3 (to 

create node 20).

ORGSCORE <12.15

Again, referring to Figure 5.1, it is clear that of the two primary nodes created 

using the above splitting rule; node 1 has the higher survival rate which 

corresponds to patients with an organ score less than 12.15 units. Table 5.14 

indicates the survival distribution of patients with organ score less than and 

greater than 12.15 units.
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Table 5.14: Frequency of Organ score < 12.15 and > 12.15 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Organ score > 12.15 1115 546 1661

Organ score < 12.15 782 50 832

Total 1897 596 2493

At the 95% level, these variables are not independent and the mortality risk for 

patients with an organ score greater than 12.15 is 5.47 times higher (95% Cl: 

4.14, 7.22) than those with an organ score less than this. Affirming this, the odds 

of death are 7.66 times higher (95% Cl: 5.65, 10.37) for patients with an organ 

score greater than 12.15.

ORGSCORE <23.3

Comparing nodes 19 and 20, node 19 (which has patients with an ORGSCORE < 

23.3) has the higher survival rate. Table 5.15 below contains the frequencies of 

survivors versus non-survivors.

Table 5.15: Frequency of Organ score < 23.3 and > 23.3 by CCU outcome

Frequency
Outcome

Total
Alive Dead

Organ score > 23.3 240 247 487

Organ score < 23.3 1657 349 2006

Total 1897 596 2493

Again, the variables in the above table are not independent (p < 0.0001). The 

mortality risk for patients with an organ score > 23.3 is 2.915 times higher (95%
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Cl: 2.56, 3.32) than those with a lower organ score, and the odds of death are 

raised by 4.89 times (95% Cl: 3.95, 6.04).

Finally, considering the regression coefficient, it is clear to see that for a unit 

increase in ORGSCORE (once again, it has been standardised), the odds of dying 

will increase by 1.58 units, which concurs with the evidence above.

5.4.5. SYSBP

The final variable which appears in both the CART analysis tree diagram and the 

logistic regression is Systolic blood pressure. In a healthy adult, the systolic 

blood pressure level should be approximately 120 mm Hg. Figure 5.6 illustrates 

the systolic blood pressure levels for patients who survive their stay in CCU 

compared to those who do not.
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Figure 5.6: Boxplot of Systolic blood pressure by CCU outcome
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It is clear from Figure 5.6 that the median value of SYSBP for patients who live 

is higher than those who do not live. Apart from this, the distributions are fairly 

similar. However, patients who do not survive their stay have a longer lower tail. 

Table 5.16 contains summary statistics for systolic blood pressure by outcome:

Table 5.16: Summary statistics for Systolic blood pressure by CCU outcome

Outcome N Mean Std Dev Minimum Median Maximum

Alive 1897 131.74 39.82 45 133 311

Dead 596 119.72 45.51 30 111 263

The Mann-Whitney test found significant differences between the median 

systolic blood pressure for the patients who survived compared to those who did 

not survive.
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Figure 5.7: Frequency distribution of Systolic blood pressure by CCU 

outcome

Figure 5.7 displays the distribution of systolic pressure in a different way. Each 

bar represents a range of 15 points of blood pressure, and the set of bars 

corresponding to each outcome sum to 100%. It is clear from Figure 5.7 that over 

20% of the patients who do not survive their stay at the CCU have a systolic 

blood pressure of between 76 mm Hg and 90 mm Hg (midpoint = 83 mm Hg).

Considering the CART analysis tree diagram (Figure 5.1), Systolic blood 

pressure appears once to create nodes 47 and 48. If a patient has a systolic blood 

pressure of less than 144.5 then they are sent to node 47, otherwise they are sent 

to node 48. The survival percentages for nodes 47 and 48 are 48% and 69% 

respectively. This implies that patients with a lower value of systolic blood 

pressure are less likely to survive their stay in the CCU.
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Table 5.17 summarises the frequencies of patients who survive and patients who 

do not survive by their systolic blood pressure (less than or greater than 144.5).

Table 5.17: Frequency of Systolic blood pressure < 144.5 and > 144.5 by 

CCU outcome

Frequency
Outcome

Total
Alive Dead

Systolic blood pressure < 144.5 1104 413 1517

Systolic blood pressure > 144.5 793 183 976

Total 1897 596 2493

Again, the variables are not independent (p < 0.0001). If a patient has a systolic 

blood pressure < 144.5 then their mortality risk is 1.45 times higher (95% Cl:

1.24,1.69) than a patients who does not. Also, the odds of death are raised 1.62 

times (95% Cl: 1.33,1.97).

The logistic regression coefficient found for systolic blood pressure is -0.1309. 

This translates to an odds ratio estimate of 0.88 which implies that for a unit 

increase in standardised systolic blood pressure, the odds of survival will be 0.88 

times of the previous value. The relationship between survival and systolic blood 

pressure is inverse in this case. Therefore, if the value of systolic blood pressure 

of a patient is less than the average for the entire data set, the survival chances of 

that person will be lower.
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5.5. Other factors which contribute to mortality risk

To complete this Chapter, an investigation into other factors which affect 

mortality risk follows. Firstly, various chronic diseases are investigated and their 

affect on mortality is documented. Following this, variables relating to the type 

of surgery (if any) that a patient undergoes, and whether there are any 

complications with the surgery, are discussed and the mortality risk is recorded.

5.5.1. Patients with a history of chronic disease

To complete this section of analysis, since the variables relating to a history of 

chronic disease and also CCU outcome are fairly complete, the data set used 

consists o f4205 patients. To ascertain the relationship between these chronic 

diseases and mortality, statistical techniques such as chi-square contingency 

tables, odds ratios and relative risks were used. Note, that unless stated, the chi- 

square contingency table test (using the continuity correction) yielded a 

significant p-value at the 95% level thus rejecting the hypothesis of 

independence. Discussion will be based on the relative risks calculated in each 

case rather than the odds ratio to aid ease of interpretation.
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Table 5.18: Odds ratios and Mortality risk associated with various chronic 

diseases

DISEASE
FREQUENCY 

(%) OF SAMPLE

MORTALITY 

RISK 

(95% Cl)

ODDS RATIO 

(95%CI)

Liver disease 36 (0.86%) 2.17(1.40,3.37) 2.84 (1.43,5.62)

Haematological

cancer
50(1.19%) 2.80 (2.06, 3.81) 4.33 (2.47, 7.60)

Lymphoma 66 (1.57%) 1.92(1.34, 2.75) 2.35(1.39,3.98)

Cardiovascular

disease
127 (3.02%) 1.73 (1.30, 2.29) 2.01 (1.36, 2.99)

Renal failure 181 (4.3%) 1.77(1.39, 2.25) 2.08(1.49, 2.90).

Respiratory failure 190 (4.52%) 1.37(1.04, 1.80) 1.48 (1.04, 2.10)

Immunological

disease
226 (5.37%) 1.76(1.41,2.19) 2.05 (1.52, 2.78)

Table 5.18 has been ordered by disease incidence in the CCU sample. Note that 

information on two chronic diseases have not been included in the above table 

(HIV and other forms of cancer). The reason for this is the low frequency of HIV 

sufferers in the sample (only 7 in total) and the chi-square test for independence 

of Cancer and Mortality was not rejected at the 95% level (p = 0.2366).

Less than 1 percent (0.86%) of patients admitted onto the CCU has a history of 

liver disease. This rare condition significantly affects the survival outcome of a 

patient, since the mortality risk of 2.17 is significantly higher than 1.

The condition with the highest associated mortality is Haematological cancer 

which affects 1.19% if the sample. This condition increases the mortality risk of 

a patient 2.8 times. This variable also appears in the Logistic Regression analysis 

with a coefficient of 1.30 which further confirms the importance of this variable.
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The condition which affects mortality least is Respiratory failure. This condition 

is not so rare and affects 4.52% of the CCU sample.

5.5.2. Variables relating to surgery

The final set of variables under consideration are those relating to the surgery 

experienced by a patient. In this section, only patients who have entered the CCU 

from either the Elective surgery source or the Emergency surgery source are 

included, reducing the sample size to 1892.

Table 5.19: Odds ratios and Mortality risk associated with surgical variables

1........................................
VARIABLE

FREQUENCY 

(%) OF SAMPLE

MORTALITY 

RISK 

(95% Cl)

ODDS RATIO 

(95%CI)

Emergency 

surgery (compared 

with Elective 

surgery)

711 (37.58%) 5.02 (3.59, 7.03) 5.90(4.10, 8.48)

Complications in 

surgery
222 (11.73%) 2.57(1.87,3.52) 2.94(2.01,4.30)

Of the patients who experience some form of surgery before entering the CCU, 

62% have undergone elective surgery and the remaining 38% have undergone 

Emergency surgery. Concentrating on the Elective patients alone, 3.6% of these 

do not survive their stay on the CCU whereas the corresponding percentage of 

emergency patients is as much as 17.9%. Table 5.19 demonstrates the mortality 

risk associated with Emergency surgery (compared with Elective surgery). This 

mortality risk indicates that a patient who undergoes Emergency surgery is 5.02 

times more likely to die than an Elective patient.

217



Another interesting variable relating to surgery is whether the surgeons 

experienced any complications during the operation. Almost 12% of patients 

admitted onto the CCU from a surgical source (Elective or Emergency) 

experience complications in their surgery. The mortality risk of 2.57 implies that 

patients who experience complications in their operations are 2.57 times more 

likely to die in the CCU.

As an aside, it is also interesting to determine whether there is a link with surgery 

type and complications in surgery. Almost 5% of patients who undergo elective 

surgery experience complications in their surgery, whereas the corresponding 

percentage for Emergency patients is 18.6%. The relative risk is 2.42 (95%CI: 

1.88, 3.10) suggesting that a patient who undergoes Emergency surgery is 2.42 

times more likely to experience complications in their surgery compared to the 

Elective patients.
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5.6. Five logistic regression equations

Consultants at the Critical Care Unit desire a tool which will predict whether a 

patient will stay in the Unit until the next day. The following section of analysis 

creates a set of predictive equations to estimate the probability that a patient is 

present in the Unit on day n + 1 given that a patient is present at the Unit on day 

n.

Initially, seven equations were constructed but two equations showed a 

significant lack of fit according to the Hosmer and Lemeshow statistic. The 

remaining five equations, correspond to the first five days of a patient’s stay at 

the CCU. Note, only data from day n will be used to construct the probabilistic 

equation for day n + 1.

To construct these equations, a stepwise logistic regression procedure was 

adopted. The outcome variable is simply, was the patient present in the system 

on day n+  1 given that they were present on day n. Note, no distinction is made 

between a patient being discharged from the CCU and a patient dying. The 

results displayed in the section are kept to a minimum since there are 5 equations 

to analyse. Note that 7in is the probability that a patient will remain in the Unit 

until day n + 1 given that they are present on day n.

Day 1

The first step was to develop an equation for logit(7Ci) where tci is the probability 

that a patient will remain in the Unit until day 2 given that they are present on 

day 1.

Table 5.20 highlights the parameter estimates that are significant. The final 

column indicates the effect on the odds of remaining in the system until day 2 

given that the patient is present in the system on day 1. Note that the numbers in
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the final column represent the multiplying factor for the odds if all other 

variables are kept constant and the variable in the row is increased by 1 unit.

Table 5.20: Parameter estimates for the logistic regression equation for 

survival until day 2

P a ra m e te r E stim ate S ta n d a rd  E r ro r P r  >  C hiSq O dds m ultip lier

INTERCEPT 2.5061 0.2366 <.0001

DIALYSED1 4.009 1.1121 0.0003 55.09

TPNT 2.5473 1.0313 0.0135 12.77

VENT1 1.6754 0.2378 <.0001 5.34

TISSPOINT 0.3129 0.0792 <.0001 1.37

H C 03 0.3046 0.0731 <.0001 1.36

URINE 0.1991 0.0757 0.0085 1.22

ALBUM IN -0.1322 0.054 0.0145 0.88

PO -0.2313 0.0632 0.0003 0.79

ADO -0.3052 0.0549 <.0001 0.74

RESPSCOREO -0.5015 0.1506 0.0009 0.61

PRECIP37 -0.5506 0.1745 0.0016 0.58

MBPSCOREO -0.5854 0.129 <.0001 0.56

PHSCOREO -0.6507 0.138 <.0001 0.52

TISSCODE63 -0.6851 0.218 0.0017 0.50

PHSCORE4 -0.7216 0.2139 0.0007 0.49

N W E R B A L O -0.7721 0.1437 <.0001 0.46

ADM ISSION5 -0.848 0.3467 0.0144 0.43

| M BPSCORE4 -0.8828 0.262 0.0008 0.41

TISSCODE38 -0.8932 0.2166 <.0001 0.41

SDCODE19 -1.1249 0.2877 <.0001 0.32

TISSCODE65 -1.2835 0.354 0.0003 0.28

SDCODE40 -1.3634 0.3348 <.0001 0.26

PRECIP04 -1.3758 0.2162 <.0001 0.25

TISSCODE64 -1.4147 0.385 0.0002 0.24

TISSCODE68 -2.681 1.1432 0.019 0.068

The above table has been ordered by parameter estimate, beginning with the 

largest.
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The logistic regression equation for the probability of a patient remaining in the 

system until day 2 given that they are present on day 1 is therefore:

logit (;r,) = 2.51 + 4.00 (DIALYSED)+2.55 (TPNT) + l. 68 (VENTl)

+0.31 (TISSPOINT)+0.30 (HC03) + 0.20(URINE)

-0.13 ( ALBUMIN) -  0.23 (PO) -  0.31 (ADO)
-0.50(RESPSCORE0) -  0.55 (PRECIP31) -  0.59(MBPSCOREO) 

-0.65 (PHSCOREO) -  0.69 (TISSCODE63) -  012(PHSCOREA)

-0.77 (NWERBALO) -  0.85 (ADMISSION 5) -  OM(MBPSCOREA) 

-0.89 ( TISSCODE3 8 ) -1  A2(SDCODE\ 9) - 1 .2S(TISSCODE65) 

-\36(SDCODEA0) - 1 3%(PRECIP0A) -1  A\(TISSCODE6A)

-2.68 (TISSCODE6S)

Referring back to Table 5.20, the variables DIALYSED1, TPNT and VENTl 

which are most influential on outcome will now be considered in greater detail. 

If a patient is dialysed on day 1 (thus giving DIALYSED1 a value of 1), n\ will 

be 55.09 times higher, which indicates that the odds of remaining in the system 

until day 2 will be 55.09 times higher compared to a patient who is not dialysed. 

Also, if a patient is given Total Parenteral nutrition (TPNT), n\ will be 12.77 

times higher and if a patient is ventilated, their odds of remaining in the system 

until day 2 will be 5.34 times higher. The remaining variables, although they are 

significant in terms of the model do not affect 7Ei in such a dramatic way.

The most noteworthy variable in decreasing the value of 7ti is TISSCODE68 

(which simply indicates that a patient has had the CAVHD/CVVHD intervention 

on day 1). When a patient has received this intervention, their odds of survival is 

0.068 times that of a patient who has not received this intervention. Considering 

the odds in a slightly different manner, if a patient has not received the 

intervention CAVHD/CVVHD, they are have an odds of remaining in the system 

until day 2 14.60 times higher than patients who have received this intervention.
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The variables TISSCODE64 (Arrest/defibrillation (24h)), PRECIP04 (Self­

intoxication), SDCODE40 (Post-op Laminectomy and other Spinal cord surgery) 

and TISSCODE65 (Pulmonary artery (SG) catheter) all cause a large decrease in 

the value of n\. For example, a patient who has arrested or been defibrillated 

within the previous 24 hours has a value of n\ which is 0.24 times that of a 

patient who has not undergone such an episode (which corresponds to n\ being 

3.96 times higher for a patient who has not had an arrest or been defibrillated 

within the past 24 hours).

One final interesting point is the inclusion of the variable PRECIP37 in the 

regression model. This precipitating factor represents patients who receive 

Planned post operative monitoring, and are thus usually Elective surgery patients 

(83% are Elective surgery patients, the remaining 17% are Emergency surgery 

patients). Patients who enter the CCU from Elective surgery are very often short 

stay patients, thus the regression parameter of -0.55 (or the odds multiplier of 

0.576604) suggests that a patient who has a precipitating factor of 37 has a lower 

value of n (0.58 times) than those patients who do not have this precipitating 

factor.

The maximum-rescaled R2 value, which is 0.3542 for this model.

The percentage of concordant pairs of observed responses and predicted 

probabilities, is 82.2% for this model. More specifically, a pair of observations is 

concordant if the observation with the lower value has a lower predicted mean 

logit(7ii) score than the higher observed value. This value ranges from zero to 1, 

with 1 as the best possible model. The percentage discordant and the percentage 

tied which are 17.6 and 0.2 respectively.

Recalling that the Somers’D statistic simply determines the direction and 

strength of a relationship between pairs of observations. Somers’D is equal to 

0.646 for the above logistic regression model.
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For the above regression model, c, the rank correlation of ordinal variables is 

0.823.

The above model displays no evidence of lack of fit (p = 0.2710).

Two example patients:

Once the logistic equation has been derived, it is possible to calculate the value 

of 7ii for a given patient. Table 5.21 contains two example patients for which the 

value of 7t\ has been calculated. Note that patient 1 remained in the system until 

day 2, and patient 2 did not.
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Table 5.21: Parameter estimates for the logistic regression equation for

survival until day 2

PARAMETER ESTIMATE
PATIENT 

1, xt

PATIENT 

2, xf

fix , FOR 

PATIENT 1

J31X1 FOR 

PATIENT 2

DIALYSED 1 4.009 1 0 4.009 0
TPNT 2.5473 1 0 2.5473 0

VENTl 1.6754 1 0 1.6754 0
TISSPOINT 0.3129 0 -2 0 -0.6258

HC03 0.3046 -1.4 -0.2 -0.42644 -0.06092

URINE 0.1991 -2 0 -0.3982 0
ALBUMIN -0.1322 -2 1.8 0.2644 -0.23796

PO -0.2313 0.2 0.4 -0.04626 -0.09252

ADO -0.3052 -1 1 0.3052 -0.3052

RESPSCOREO -0.5015 0 1 0 -0.5015

PRECIP37 -0.5506 0 0 0 0
MBPSCOREO -0.5854 0 1 0 -0.5854

PHSCOREO -0.6507 0 1 0 -0.6507

TISSCODE63 -0.6851 0 0 0 0
PHSCORE4 -0.7216 0 0 0 0

NW ERBALO -0.7721 0 0 0 0
ADMISSION5 -0.848 0 0 0 0
MBPSCORE4 -0.8828 0 0 0 0
TISSCODE38 -0.8932 1 0 -0.8932 0
SDCODE19 -1.1249 0 0 0 0

TISSCODE65 -1.2835 0 0 0 0
SDCODE40 -1.3634 0 0 0 0
PRECIP04 -1.3758 0 0 0 0

TISSCODE64 -1.4147 0 0 0 0
TISSCODE68 -2.681 0 0 0 0

INDICATH -3.8643 0 1 0 -3.8643

Intercept 2.5061 2.5061

L0git(7C!) 9.5433 -4.4182

TCl 0.9999 0.0119
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Here it is clear to see that the probability of patient 1 remaining in the system 

until day 2 is 0.9999. As was previously mentioned, this patient does in fact 

remain in the system until day 2. However, patient 2 has a probability of 

remaining in the system until day 2 of 0.0119 and this patient is discharged at the 

end of day 1.

Day 2

Note the day 2 equation seeks to estimate the probability that a person is still in 

the Unit on day 3 given that they are there on day 2, denoted by 1Z2. Another way 

of expressing this is the probability that a person has a length of stay greater than 

or equal to three days given that they have a length of stay of at least 2 days. The 

model parameters are listed in Table 5.22:
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Table 5.22: Parameter estimates for the logistic regression equation for

survival until day 3

P aram eters Estim ate E rro r P r  >  ChiSq O dds m ultiplier

INTERCEPT 3.0599 0.2948 <.0001

DIALYSED 1 2.483 0.485 <.0001 11.98

SDCODE20 1.1109 0.4214 0.0084 3.04

PRECIP03 1.068 0.2957 0.0003 2.91

VENTl 0.6724 0.2071 0.0012 1.96

TISSPOINT 0.433 0.0734 <.0001 1.54

GLUCOSE 0.3923 0.1487 0.0083 1.48

SYSBP 0.2963 0.0754 <.0001 1.34

URINE 0.2738 0.0827 0.0009 1.31

ADO -0.1502 0.0654 0.0217 0.86
CR -0.1606 0.0687 0.0194 0.85

PCV -0.208 0.0653 0.0015 0.81

MBPSCOREO -0.3116 0.1366 0.0225 0.73

PO -0.4533 0.1176 0.0001 0.64

EYESCORE1 -0.6681 0.2379 0.005 0.51

TEMPSCOREO -0.6761 0.1523 <.0001 0.51

SPEC3 -0.7917 0.3529 0.0249 0.45

RESPSCOREO -0.8404 0.1485 <.0001 0.43

SPEC1 -0.9142 0.3482 0.0086 0.40

RENALT -1.023 0.3389 0.0025 0.36

SPEC7 -1.0765 0.4335 0.013 0.34

TPNN -1.2789 0.1429 <.0001 0.28

SDCODE48 -1.3181 0.4273 0.002 0.27

INDICATN -1.5479 0.1983 <.0001 0.21
PHSCORE4 -1.592 0.2607 <.0001 0.20
SDCODE43 -1.6484 0.2155 <.0001 0.19

TEMPSCORE2 -1.7589 0.6563 0.0074 0.17

TISSCODE68 -1.8047 0.4965 0.0003 0.16

SDCODE40 -2.6956 0.4554 <.0001 0.07

Observing Table 5.22, it is clear that whether a patient receives kidney dialysis 

on day 2, whether the patient’s specific diagnostic code (SDCODE20) is Non-
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Operative Neurologic Seizure disorder, whether the factor precipitating 

admission is (PRECIP03) Trauma or whether a patient is ventilated on day 2, 

affect log it^ ) considerably. For example, once again, if a patient is dialysed on 

day 2, their odds of remaining in the system until day 3 is increased by almost 12 

times.

Many variables cause a decrease in the value of 712 as Table 5.22 clearly shows. 

For example, a patient with SDCODE40 (which represents people who have the 

specific diagnostic code Post-op Laminectomy and other Spinal cord surgery) 

have a much decreased chance of remaining in the system until day 3 compared 

with those who do not receive this diagnosis (in fact patients who are not 

diagnosed with this condition have a 14.29 times higher odds of remaining in the 

system until day 3).

Three medical specialty variables now appear in the regression equation: Cardiac 

(SPEC1), Intensivist (SPEC3) and Obstetrics and gynaecology (SPEC7). Each of 

these medical specialties decrease the odds of remaining in the system until day 

3. Also, the intervention CAVHD/CWHD (TISSCODE68) causes the value of 

Ji2 to decrease.

One final variable is worthy of comment. TPNN (which indicates patients who 

have not received any intravenous feeding) has a regression parameter of -1.28 

which indicates that a patient who has not received intravenous feeding on day 2 

is more likely to leave the system on day 2 than to remain in the system. This is 

intuitively sensible since patients who are likely to remain in the system for more 

than a few days are fed intravenously (TPNT) or enterally (TPNE).

The Maximum rescaled R value is 0.4884 for this model and the percentage of 

concordant pairs is 87% with 12.8% discordant (0.2% tied). The Somers’D 

statistic is 0.742 and c = 0.871. These all indicate that there fit is adequate. 

Finally, the Hosmer and Lemeshow lack of fit p-value is 0.1389.
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Day 3

Table 5.23 contains the parameter estimates for the logistic regression model. 

Note 7t3 is the probability that a patient will be present in the CCU on day 4 given 

that they are present on day 3:

Table 5.23: Parameter estimates for the logistic regression equation for 

survival until day 4

P aram ete r Estim ate S tan d ard  e r ro r P r  > C hiSq O dds m ultiplier

INTERCEPT 1.2077 0.6831 0.0771

DIALYSED 1 2.5474 0.5522 <.0001 12.77

TISSCODE39 1.3294 0.3602 0.0002 3.78

SDCODE20 1.2068 0.5605 0.0313 3.34

TPNE 1.1829 0.1696 <.0001 3.26

GLUCOSE 0.9001 0.247 0.0003 2.46

CHPOINTSO 0.6178 0.2195 0.0049 1.85

TISSCODE38 0.573 0.2078 0.0058 1.77

TISSPOINT 0.389 0.0887 <.0001 1.48

SYSBP 0.3402 0.09 0.0002 1.41

URINE 0.2371 0.0925 0.0104 1.27

PHSCOREO -0.4186 0.1851 0.0238 0.66
MBPSCOREO -0.4513 0.1627 0.0055 0.64

ADMISSION 1 -0.5823 0.1861 0.0018 0.56

PO -0.6408 0.1441 <.0001 0.53

SPEC3 -0.9406 0.4084 0.0213 0.39

SDCODE15 -1.1805 0.3614 0.0011 0.31

SDCODE43 -1.2262 0.2868 <.0001 0.29

INDICATN -1.2525 0.2286 <.0001 0.29

PHSCORE4 -1.34 0.3294 <.0001 0.26

SDCODE46 -1.4474 0.6464 0.0251 0.24

INDICATK -1.7298 0.6149 0.0049 0.18

PRECIP13 -2.0334 1.0327 0.0489 0.13

TISSCODE64 -2.0459 0.8992 0.0229 0.13

TISSCODE68 -2.2186 0.5722 0.0001 0.11
TEMPSCORE4 -2.4523 0.8532 0.004 0.09

PRECIP10 -3.0095 1.3652 0.0275 0.05
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Once again, kidney dialysis is the most significant factor in determining the 

probability that a patient will remain in the system until day 4 given that they are 

present on day 3. This factor will cause 713 to increase by a factor of 12.77. Other 

variables also cause an increase in 713, such as whether a patient has received the 

intervention CPAP (TISS039) on day 3, whether the specific diagnostic code for 

a patient is Non-Op Neurologic Seizure disorder (SDCODE20) or whether the 

patient has been fed enterally (TPNE).

The most significant factor in reducing 713 is PRECIP10 (which refers to a patient 

who has had a Myocardial infarction). An identical patient who has not had a 

myocardial infarction is 20 times more likely to remain in the system until day 4. 

Again, TISSCODE6 8  proves an important factor which causes 713 to decrease in 

this case, a patient who has not received this intervention has odds of remaining 

in the system increased by a factor of approximately 9.

The Maximum rescaled R value is 0.4132 for this model which is slightly lower 

than the model for day 2. The percentage of concordant pairs is 85.2% with 

14.6% discordant (0.2% tied). The Somers’D statistic is 0.706 and c = 0.853. 

Finally, the Hosmer and Lemeshow lack of fit p-value is 0.5558.
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Day 4

This next piece of analysis seeks to model the probability of patient remaining in 

the CCU until day 5 given that they are present in the Unit on day 4 (714). Table 

5.24 outlines the parameter estimates for this model:

Table 5.24: Parameter estimates for the logistic regression equation for 

survival until day 5

P a ra m e te r E stim ate S ta n d a rd  e r r o r P r  >  C hiSq O dds m ultip lier

INTERCEPT 1.6185 0.236 <.0001
DIALYSED 1 2.7015 0.6362 <.0001 14.90

TPNE 1.2144 0.2149 <.0001 3.37

URINE 0.4668 0.1261 0.0002 1.59

H C 03 0.4196 0.1505 0.0053 1.52

TISSPOINT 0.3273 0.1195 0.0062 1.39

ADO -0.318 0.1017 0.0018 0.73

INDICATN -0.6364 0.2868 0.0265 0.53

PO -0.7088 0.2149 0.001 0.49

EYESCORE1 -1.1153 0.359 0.0019 0.33

PHSCORE4 -1.1244 0.526 0.0325 0.32

CHPOINTS2 -1.4173 0.5641 0.012 0.24

VPCO -1.4408 0.7313 0.0488 0.24

RESPDO -1.4854 0.2662 <.0001 0.23

NVVERBAL5 -1.5296 0.7554 0.0429 0.22
PRECIP24 -1.5864 0.3629 <.0001 0.20

TISSCODE68 -1.839 0.6743 0.0064 0.16

SDCODE49 -2.2683 0.8726 0.0093 0.11
SDCODE16 -2.4157 0.759 0.0015 0.09

TEM PSCORE4
L— ---------------------

-3.9226 1.3232 0.003 0.02

Nineteen parameters are deemed significant in this model at the 95% level. Two 

parameters, DIALYSED 1 and TPNE, contribute a large amount to 714- If all other 

parameters are kept constant then the odds of remaining in the Unit until day 5 

given that a patient is present on day 4 is increased by 14.9 times if the patient is
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dialysed on day 4, whereas the odds is increased by 3.37 times if a patient 

receives Entered feeding (TPNE).

Conversely, specific diagnostic codes 49 (Post-op Gastrointestinal) and 16 (Non- 

Op CVS F Cardiogenic shock) contribute negatively to 7L*. This implies that if all 

other parameters are kept constant, then the odds of remaining in the Unit until 

day 5 given that a patient is present on day 4 is decreased by 9.09 times if the 

patient is given SDCODE49, whereas the odds is decreased by 11.11 times if a 

patient is given SDCODE16.

Also, here the factor TEMPSCORE4 has a large affect on lo g it^ ). In fact, if a 

patient does not have TEMPSCORE4, their odds of remaining in the system until 

day 5 is approximately 50 times higher than a patient who has a TEMPSCORE 

of 4.

The Maximum rescaled R value of 0.4456 indicates that this model is fairly 

useful at predicting the outcome probability from the variables in the model.

Over 87 percent of pairs are concordant with 12.6% discordant (0.2% tied). 

Somers’D and c have values greater than 0.5 (0.745 and 0.873 respectively) thus 

indicating a reasonable fit. Finally, the Hosmer and Lemeshow goodness of fit 

test indicates that at the 95% level there is no evidence for lack of fit (p = 

0.2389).
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Day 5

The final model for consideration is logit(7Cs). Here, 715 denotes the probability of 

remaining in the Unit until day 6  given that the patient is present in the Unit until 

day 5. Table 5.25 holds information concerning the parameter estimates:

Table 5.25: Parameter estimates for the logistic regression equation for 

survival until day 6

P a ra m e te r E stim a te S ta n d a rd  e r ro r P r  >  C hiSq O dds m ultip lier

INTERCEPT 2.1025 0.1853 <.0001
D IALYSED 1 1.1839 0.3157 0.0002 3.27

H C 03 0.5805 0.1478 <.0001 1.79

TISSPO IN T 0.3607 0.1239 0.0036 1.43

SYSBP 0.324 0.1168 0.0055 1.38

BILIRUBIN -0.1056 0.0474 0.0258 0.90

ADO -0.253 0.1033 0.0143 0.78

SDCODE18 -1.0081 0.4423 0.0226 0.36

SDCODE39 -1.1152 0.5043 0.027 0.33

PRECIP06 -1.2627 0.4621 0.0063 0.28

RESPD0 -1.341 0.2678 <.0001 0.26

PRECIP15 -1.4054 0.5631 0.0126 0.25

CHPOINTS2 -1.7449 0.7126 0.0143 0.17

VPCO -3.2294 1.3032 0.0132 0.04

There are 13 variables present in the model. Once again, DIALYSED 1 is the 

variable which contributes the most to logit(7c5).Three other variables cause an 

increase in 715; HC03, TISSPOINT and SYSBP.

The remaining variables contribute negatively to 7i5, the most influential being 

VPCO. This variable has a dramatic influence on n5, causing it to decrease by a 

factor of 25 for each unit increase in standardised VPCO.

The diagnostic tests all provide satisfactory findings, with 80% concordant, 

19.7% discordant and values of Somers’D and c of 0.603 and 0.801 respectively.
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The Hosmer and Lemeshow test has a p-value of 0.5678 indicating no evidence 

for lack of fit and the maximum rescaled R2 value is 0.2842.

Summary

To summarise, two variables appeared in all models, DIALYSED 1 and 

TISSPOINT and on each occasion both had a positive valued parameter. Since 

both variables have positive valued parameters, if  a patient is dialysed on days 1 

to 5 or has a higher than average TISSPOINT on these days, they are very likely 

to remain in the CUU until day 6. Several variables appeared in four of the 

models, the most interesting being TISSCODE68, and each appearance yielded a 

negative value for the parameter. Four variables appeared in three regression 

equations, including HC03 which appeared on days 1,4 and 5, and SYSBP 

which appeared on days 2, 3 and 5. Both variables had positive regression 

coefficients each time.

5.7. Conclusion

The second objective of this thesis, to identify the factors which affect length of 

stay and mortality in the CCU has been addressed in this Chapter. The evidence 

in this Chapter suggests that mortality risk is very complicated factor which 

depends upon many variables. Fourteen variables were included in the splitting 

rules for the CART and this reduced the impurity of the data by over 25%. 

Twenty one variables appeared in the logistic regression analysis and yielded a 

maximum rescaled R2 value of 0.3764. Only five variables were concordant 

between the two pieces of analysis, namely ADO, Age, Glucose, ORGSCORE 

and SYSBP. Both pieces of analysis gave similar results for ADO, Age and 

ORGSCORE but some discrepancies were found for Glucose and SYSBP. A 

reason for this discrepancy may be that both Glucose and SYSBP appear at the 

bottom of the CART analysis tree.
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The following graph summarises the Mortality risks associated with all variables 

in this section:
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Figure 5.8: Mortality risk confidence intervals for chronic diseases and 

surgical variables.

It is clear that the variable which affects mortality risk the most is Emergency 

surgery. Respiratory failure is the variable which affects mortality risk least but it 

still has a significant effect.

When considering the five logistic regression equations, two variables appeared 

in all models, DIALYSED 1 and TISSPOINT and on each occasion both had a 

positive valued parameter. Several variables appeared in four o f the models, the 

most interesting being TISSCODE68, and each appearance yielded a negative 

value for the parameter.

An alternative regression model could have been utilised here, namely ordinal 

regression. This regression technique is similar to logistic regression but it allows 

the possibility having more than two outcomes. In this application, the outcomes 

could be; survive until the next day, discharge or death. This is an interesting 

area for future research.
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Chapter 6: Bed occupancy modelling of a Critical Care Unit.

6.1. Introduction

In this Chapter, the insight gained from previous Chapters regarding the 

operation of the CCU and also some new analysis, is utilised to build a 

simulation model of the CCU. The discrete event simulation model, built in VBA 

for Excel, is discussed in some depth and it is then utilised to test several what-if 

scenarios. This Chapter addresses the fined two objectives of the thesis, namely to 

use the insight gained from the previous objectives to build a simulation model 

of the Critical Care Unit and to analyse the results from the simulation model to 

show how varying some parameters will affect cancellations and cost.

As has been previously mentioned, a Critical Care Unit with insufficient beds to 

facilitate demand is not satisfactory as Elective surgeries may require 

cancellation which results in the extension of some waiting times.

This Chapter will focus on ensuring that there are an optimal number of beds 

available in CCU to minimise cancellations of Elective surgery.

6.1.1. The Critical Care Unit

The CCU is the sector of the hospital where, as the name suggests, critically ill 

patients receive treatment. More importantly, a significant proportion of patients 

who have an operation will be admitted to the CCU for post-operative care. For 

example, all patients who are ventilated need to be cared for in the CCU. This 

study is based on patients admitted to the CCU in the University Hospital of 

Wales (UHW) which was formed in 2003. Previous to this there were two Units, 

the Intensive Care Unit and the High Dependency Unit.
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One of the main factors that differentiates the CCU from other high dependency 

wards is the level of nursing care needed -  the majority of patients in the CCU 

require one-to-one nursing care. The nurses who care for these patients are 

specially trained, in short supply and expensive. Another important factor is the 

cost of beds in CCU. In 2005-2006 it was estimated by the Department of Health 

(DOH 2006) that each CCU bed costs the NHS £1,716 per day. However, in 

2006-2007 the Department of Health (DOH 2007) changed their policy on 

costing and now calculate the cost per patient in CCU according to the number 

of organ failures they have rather than the average cost of a bed.

Since the hospital has no control over the number of emergency patients admitted 

onto the CCU, the focus of this study is Elective patients only. Preliminary data 

analysis shows that the mean number of organ failures an Elective patient has is 

0.36 (SD = 0.73). In order to capture as much of the variation as possible (and to 

have a “worst case” cost), for this study the cost of an Elective patient in the 

CCU is taken to be £990 per day which corresponds to the cost of one organ 

failure.

6.1.2. Data

The data set, which is routinely collected, has complete records between April 

2004 and May 2007. As has been previously noted, it contains a vast amount of 

information about each patient who is admitted into the CCU. For the sake of this 

Chapter, the important variables which are considered are arrival time and date, 

discharge time and date, and source of arrival.

The CCU at UHW has 24 beds with 5 additional beds available for use at times 

of peak demand. Initial analysis revealed that on 9% of occasions there were 

more than 24 beds occupied; that is, one or more of the extra five beds stored for
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peak demand use were utilised. Taking account of the length of stay of patients, 

this amounts to over 7% of the available CCU time.

6.2. Methods

To construct a simulation model, the first factor to ascertain is the arrival 

sources. The CART analysis nodes developed in Chapter 4 could be utilised as 

arrival sources for a simulation model (as was mentioned in Chapter 4), however, 

it would be difficult for staff to pick which node a patient belonged to in a 

pressure situation due to the many rules required to form the nodes. Therefore, 

since arrival source appeared to be a significant factor in length of stay (again, 

see Chapter 4 and subsequent analysis), the arrival sources would simply be 

A&E, Elective surgery, Emergency surgery, other hospitals, the wards and X- 

Ray.

Several analytical techniques are presented in this Chapter to investigate the 

length of stay distribution of patients from different arrival sources. The 

techniques include survival analysis, optimisation and simulation.

6.2.1. Survival analysis

In Chapter 4, there is a thorough investigation of variables which affect length of 

stay. Before beginning with the simulation model, it is important to ensure that 

the source of admission is in fact a good indicator of length of stay. This 

preliminary section seeks to do this by utilising the statistical technique survival 

analysis. Simply, survival analysis is a method which seeks to investigate the 

nature and duration of survival. It can be used in many different fields in real life, 

but commonly it is used in the medical field. Very often it is used to investigate 

the effectiveness of a drug on survival. For example, earlier this year, Wang et al 

(Wang et al. 2008) considered the efficacy of treatment schedules for 

hepatocellular carcinoma. They compared Kaplan-Meier survival curves for
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different treatments during different stages in the cancer. Also Vasilakis and 

Marshall (Vasilakis and Marshall 2005) used survival analysis to model hospital 

length of stay of stoke patients.

In this section, rather than considering treatments, comparison will be made 

according to which source the patient arrived from.

The analysis was undertaken in SAS 9.1.3. There are several assumptions 

associated with survival analysis and these need to be met before commencement 

of the analysis.

Firstly, a clear event must be defined in order for us to measure the time to that 

event. In this case, the event will simply be discharge from the Critical Care 

Unit. For the sake of this work, the departure destination is not considered (for 

example, we will consider patients who died, patients who were discharged onto 

a different ward, and patients who were sent home in the same manner).

Secondly, the time to event must be measured in a precise way, avoiding errors. 

All erroneous data was excluded prior to this analysis, and therefore we consider 

the remaining data to be valid and precise.

Thirdly, each subject within the study must only appear once in the dataset. This 

is true for the CCU data; any repeat admissions during the study period were 

omitted for the sake of independence.

The survival function is defined as S  (/) = Probability (T > t) where T is the life 

time of a randomly selected observation. Other factors which are noteworthy are

the CDF, defined as F(t )  = l - S ( t )and the PDF / (f) = • The hazard

function is then defined as h(t) = • The simplest (and most common)
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survival distribution is the single Exponential distribution, which is characterised 

by a constant hazard function X. To test whether this is an appropriate 

distribution function, the plot of the negative log of the survival function must be 

inspected. If the distribution function is appropriate, the plot will be close to a 

straight line through the origin. Figure 6.1 demonstrates this plot for each 

different arrival source:
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Figure 6.1: plot of negative log (survival distribution function) against 

length of stay

It is clear from the Figure 6.1 that the sources Elective and X-Ray do not produce 

straight line plots. Figure 6.2, is simply the same as above but this time excluding 

the Elective and X-Ray patients:
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Figure 6.2: plot of negative log (survival distribution function) against 

length of stay, for all sources other than Elective and X-Ray

The above plot demonstrates that the Exponential survival distribution is a fairly 

good approximation for the data, since each o f the lines above are approximately 

straight.

As was previously mentioned, the event o f note is simply discharge from the 

CCU. Figure 6.3 demonstrates the survival function for patients from different 

arrival sources:
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Figure 6.3: Survival curve for patients from different sources

Note that patients admitted from the ward and Other Hospitals have the highest 

probability for staying in the Critical Care Unit (surviving) for a long time. 

Patients admitted from Elective surgery have the highest probability of a quick 

discharge, and a far smaller probability o f staying within the unit for a long time. 

This conclusion is intuitive, considering that the mean length of stay for patients 

from Elective Surgery is significantly lower than the length of stay of patients 

admitted from other sources. Even though patients from Elective Surgery and X- 

Ray do not conform to the assumptions o f the survival model fitted, the survival 

curves above do accord with the expected pattern for length of stay for patients 

from these groups.

Thus, it is clear that source o f admission is a factor which affects length of stay 

in the Critical Care Unit and will thus be used to distinguish between groups of 

patients in the simulation model.
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6.2.2. Summary of the model

A simulation model was built using Visual Basic for Applications for Excel 

(VBA). VBA was chosen as the tool for building the model for many reasons. 

Firstly, VBA offers the modeller flexibility in the model design. For example, the 

time-dependency of Elective admissions can be modelled in a novel way using 

VBA, whereas with many discrete event simulation packages the Elective 

arrivals would need to be sampled directly from the data. Secondly, the model 

can be run (and indeed modified) by any Microsoft Excel user. This is very 

useful since stakeholders will not encounter any licensing issues.

The model seeks to simulate the bed-occupancy of the CCU as well as 

monitoring any cancellations of Elective surgery, or any instances where a 

patient experienced a delay before admission to the CCU.

The model was constructed to allow patients to arrive at the CCU from 6 

different sources, namely Accident and Emergency, Wards, Elective surgery, 

Emergency surgery, other hospitals, or the X-Ray department. Each source had a 

different inter-arrival time distribution, which was ascertained using the 

statistical distribution fitting software Stat::Fit utilising the Chi-square goodness 

of fit test.

In the model it is assumed that once a patient is booked for admission to the 

CCU, (s)he is classified as either a ‘planned admission’ (Elective patients only) 

or as an ‘unplanned admission’ (all other patients) If an arriving patient finds 

that all beds are occupied, they are sent to a queue. There are two queues built 

into the model, the “Unplanned Admissions” queue and the “Planned 

Admissions” queue. The patients in the “Planned Admissions” queue - that is the 

Elective surgery patients - have their surgery cancelled and are then sent home. 

The patients in the “Unplanned Admissions” queue wait until a bed becomes 

available. They are then served and leave the system once their service is 

complete.
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If a patient arrives at a time where there are unoccupied beds, they are admitted 

into the CCU and are then treated (i.e. they are served). The service time 

distributions were linked with the source of arrival.

The model has a user friendly front-end whereby parameters can be changed 

readily. For example, the mean and standard deviation for each arrival 

distribution can be changed corresponding to the arrival source. The results from 

the model are then output to an Excel spreadsheet where they can be analysed 

further.

6.3. Results

As was previously mentioned, the model was constructed so that patients would 

arrive from six different arrival sources and would be served according to a 

statistical distribution based upon their arrival source. The following sections 

describe the inter-arrival time and service time distributions for each of the six 

arrival sources. Verification of the model and a brief outline of results are also 

presented.
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6.3.1. Inter-arrival time distributions

Each arrival source will be considered independently and the results will be 

collated in a table to finish this section.

Accident and Emergency 

50

0 24  48 72 96 120 144 168
Inter-arrival time (hours)

Figure 6.4: Inter-arrival time for A&E patients with Negative Exponential 

fit (mean = 24.7 hours)

Figure 6.4 encapsulates the inter-arrival distribution for patients arriving onto the 

Critical Care Unit from the A&E department. Visually, the fit in Figure 6.4 is

192
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very good. 1,134 were in this group. The chi-square goodness of fit test suggests 

that the Negative Exponential distribution does fit the data well. From the data, 

the mean and standard deviation of the inter-arrival distribution for a patient in 

the Critical Care Unit who was admitted from the A&E department are 24.7 and

25.1 hours respectively which compares favourably with the theoretical mean 

and standard deviation of inter-arrival times which are both 24.7 hours. Also, 

having a coefficient of variation near to 1 is also indicative since the coefficient 

of the Negative Exponential distribution is exactly 1.

Emergency Surgery

715 patients were admitted onto the CCU as a result of having Emergency 

surgery (see Figure 6.5 in Appendix 6.1 for the PDF). Again, the chi-square 

goodness of fit test implies that the Negative Exponential distribution does fit the 

data well. From the data, the mean and standard deviation of the inter-arrival 

distribution for a patient in the Critical Care Unit who was operated upon as an 

Emergency are 39.1 and 40.6 hours respectively which compares favourably with 

the theoretical mean and standard deviation of inter-arrival time which are both

39.1 hours. Once more, the coefficient of variation from the data is near to 1 

indicating a close resemblance to the Negative Exponential distribution.

Other hospitals

235 patients were admitted from this source during the study period. Graphically, 

the fit in is fairly good (see Figure 6.6 in Appendix 6.1 for the PDF). Again, the 

chi-square goodness of fit test implies that the Negative Exponential distribution 

does fit the data well. From the data, the mean and standard deviation of the 

inter-arrival distribution of this group of patients are 118.0 and 108.2 hours 

respectively which compares favourably with the theoretical mean and standard 

deviation of length of stay which are both 118 hours. Once more, the coefficient 

of variation from the data is near to 1 indicating a close resemblance to the 

Negative Exponential distribution.
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Ward

There were 916 patients fitting into this category (see Figure 6.7 in Appendix 6.1 

for the PDF). Again, visually, the fit is good and the null Hypothesis for the chi- 

square test cannot be rejected. The mean inter-arrival time from the data is 30.5 

hours and the standard deviation is 31.4 hours. The Negative Exponential 

distribution gives both mean and standard deviation to be 30.5 hours.

X-Ray

The final unplanned admission source is the X-Ray department. Only 44 patients 

were admitted onto the CCU from this source during the study period; thus the 

graph does not demonstrate such a good fit (see Figure 6.8 in Appendix 6.1 for 

the PDF). However, the data does fit the distribution according to the Chi-square 

test and the mean and standard deviation from the data (604.2 and 638.0 hours 

respectively) are not vastly different from the theoretical mean and standard 

deviation (604 hours).

Arrival distributions for unplanned patients are often found to be Negative 

Exponential (Coats and Michalis 2001, Moore 2003) due to the random nature of 

emergency events. Next, consideration will be given to the only source where 

admissions are planned in nature, Elective surgery.
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Elective Surgery
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Figure 6.9: Inter-arrival time for Elective Surgery patients

The inter-arrival time of Elective patients is time-dependent in nature (see Figure 

6.9). This graph shows that for many arrivals the inter-arrival time is between 0 

and 4 hours. Another peak occurs between 22 and 26 hours, and then other 

smaller peaks at approximately 24 hour intervals. These observations are 

consistent with the practice o f Elective surgery being performed at specific 

sessions spaced at 24 hour intervals.
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Figure 6.10 highlights the precise time of day of these elective arrivals. The 

graph shows that the majority of arrivals occur in the early evening with very few 

in the early hours of the morning.
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Figure 6.10: Arrival times of Elective surgery patients

The fitted normal distribution has a mean value of 17.91 and a standard deviation 

of 3.16. Unfortunately, the chi-square goodness of fit test yields a p-value which 

is significant, but gives a good indication of the pattern of arrival times.
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Another interesting factor when considering Elective surgery admissions is the 

day of the week. Table 6.1 indicates the number of arrivals on each day of the 

week during the study period (note the study period is 165 weeks):

Table 6.1: the number of Elective Surgery admissions on each day of the 

week

1 Day of the week Frequency Percent

Sunday 16 1.35

Monday 159 13.45

Tuesday 237 20.05

Wednesday 226 19.12

Thursday 339 28.68

Friday 179 15.14

Saturday 26 2.20

On the weekend, the number of Elective admissions drops substantially. This is 

of course intuitive since surgeons would be required to work very antisocial 

hours to operate on these patients. Also, from Tuesday through to Friday, on 

average more than 1 arrival occurs each day (e.g. over 2 arrivals occur each 

Thursday on average). Table 6.2 gives the number of arrivals that occurred on 

each day of the week:
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Table 6.2: The number of admissions on each day of the week

Number of admissions

1 2 3 4 5 6 Total

Sunday 16 0 0 0 0 0 16

Monday 56 26 10 4 1 0 97

Tuesday 57 41 22 8 0 0 128

Wednesday 64 45 20 3 0 0 132

Thursday 38 48 30 16 9 1 142

Friday 63 35 11 2 1 0 112

Saturday 26 0 0 0 0 0 26

Total 320 195 93 33 11 1 653

The simulation model gathers information from the above table to generate inter­

arrival times for the elective surgery patients. For each day of the week, the 

simulation model samples a random number between 0 and 1. It then uses this 

random number to decide how many arrivals should occur, if any. For example, 

each Sunday, if the random number is less than 16/165 then an arrival occurs, 

otherwise, no patients arrive that day. Each Monday, if the random number is 

less than 159/165 then at least one arrival occurs. If the random number is less 

than 159/165 but greater than 103/165, one arrival will occur. If the random 

number is less than 103/165 but greater than 51/165, two arrivals will occur. If 

the random number is less than 51/165 and greater than 21/165, three arrivals 

will occur. If the random number is less than 21/165and greater than 5/165, four 

arrivals will occur. Finally, if the random number is less than 5/165, five arrivals 

will occur.

Once the number of arrivals has been calculated, the arrival times are generated 

by sampling from the normal distribution with p = 17.91 and a = 3.16 (see
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Figure 6.10), then simply converting the given number into the hour of the day 

represented.

Table 6.3 summarises the inter-arrival times for each of the arrival sources that 

are used to populate the model.

Table 6.3: Summary of Inter-arrival distributions in hours

Source N
Theoretical Mean 

and Standard Deviation

Actual

Mean

Actual Standard 

Deviation

A&E 1134 24.7 24.7 25.1

Ward 916 30.5 30.5 31.4

Emergency 715 39.1 39.1 40.6

Other hospital 235 118.0 118.0 108.2

X-Ray 44 604.0 604.2 638.0

Elective 1182 23.7 30.4

6.3.2. Service time distributions

There are six different service time distributions, each of which relates to a 

specific arrival source. This may not be intuitive but the data indicates significant 

differences between the length of stay distributions (or service time) recorded in 

hours for each of the arrival sources (p < 0.0001).

Chi-square goodness of fit tests were performed using Stat::Fit and it was found 

that the lognormal distribution was a good fit for each of the groups of patients, 

other than Elective surgery. The lognormal distribution is commonly fitted to 

length of stay data (Litvak et al. 2008, Lowery 1993) due to its long tails. Also, 

Hyperexponential distributions were fitted to the data to ensure that a phase-type 

distribution would not improve results. Up to five phases were used. Phase-type 

distributions have been utilised in the field of healthcare since, very often, they
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can adequately model length of stay data. In 2008, Fackrell (Fackrell 2008) 

conducted a literature review of the use of phase-type distributions in health care 

modelling.

Accident and Emergency

Using Stat::Fit, the best fit for the A&E patients was the lognormal distribution 

with a shape parameter of 1.25 and a scale parameter of 4.

The fitted lognormal distribution yields a theoretical mean of 119.25 hours 

(compared with the actual mean of 123.59 hours) and a theoretical standard 

deviation of 231.57 hours (compared with 304.40 hours). Therefore the mean 

compares favourably with the theoretical approximation but the theoretical 

standard deviation is rather higher than the actual standard deviation.

A different set of distributions was then considered, namely the 

Hyperexponential distribution with a various number of phases.

Stat::Fit will not fit the Hyperexponential distribution; therefore a different 

method was sought. Many different fitting procedures were used, beginning with 

Least Squares Estimators and finishing with Maximum Likelihood Estimators.

Recalling that the probability density function of the Hyperexponential 

distribution with four phases is:

/ ( r )  = cr ( 4/icre-4^  ) + co (4  /u(oe~A,m) + v  (^ n v e ~Af,vt)

+ (l-< r-fi?-v )^4 //(l-< T -tf> -v ) j

The method of least squares was used to estimate the values of the 

parameters ju, <j, co and v . For the Accident and Emergency
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arrivals, ju = 0.007764874 per hour, o  = 0.052587058, 6? = 0.447428003, 

v = 0.052541675 and 1 - g - c o -v  -  0.4474433.

Looking at these parameters closely, it is clear to see that c r» v and 

6)& l-cr - c o - v  . I f  these were in fact identically equal, the 4 phase 

Hyperexponential distribution would collapse to the two stage Hyperexponential 

distribution. To ensure that these values do in fact yield the minimum value, the 

value of p and v were fixed ( / /  = 0.007764874 and v = 0.052541675) and the 

objective function was plotted for different values of a  and omega.

0.00510

0.00133 *  

0.710

0.477
0.477

SIGMA
0.243

0.010 0.010

Figure 6.11: 3D plot of objective function, p and v fixed
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Figure 6.11 above shows that we are indeed finding minimum values of our 

function and they are the global minima in the feasible region. Having said this, 

the graph does not clearly show the values of o and omega which yield the 

minimum, thus, Figure 6.12, a contour plot is also included:

10

0.6

3Ui

§

0.4

O.o 02

0.0

0.60.0 0.8 1.0

SIGMA

Figure 6.12: A contour plot of the objective function, p and v fixed, minima 

= small circles

Figure 6.12 clearly demonstrates that the minima occur at (0.44725, 0.052574), 

(0.052574, 0.44725) and (0.44725, 0.44725). For each minimum, the parameters 

of the four phase Hyperexponential distribution will be as was stated above.
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Using these parameters, the mean length of stay is 128.79 hours with a standard 

deviation of 267.41 hours compared with a mean and standard deviation of 

123.59 and 304.40 hours respectively from the data.

0.3

0.25

I Actual data — Hyperexponential fit |

0.15

0.05

0 72 144 216 288 360 432 504 576 648 720 792 864 936 1008 1080 1152

Length of stay (hours)

Figure 6.13: length of stay distribution with fitted 4-stage Hyperexponential 

distribution - A&E

Figure 6.13 illustrates the fitted distribution compared with the actual length of 

stay data. The graph shows that initially the Hyperexponential distribution 

overestimates the probability then it oscillates about overestimating and 

underestimating the probabilities. Having said this, the fit is fairly good, 

especially when comparing the mean and standard deviation.
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Emergency Surgery

On closer inspection, an outlier was found at 8973 hours, this outlier was 

excluded from the statistical analysis. Again, the lognormal distribution gave a 

significant fit. The parameter estimates for shift, shape and scale were 1,1.29 

and 4.16 respectively. This gave a theoretical mean of 148.24 hours (compared 

with 141.02 hours) and a theoretical standard deviation of 304.64 hours 

(compared with 218.07 hours). Again, the theoretical standard deviation is higher 

than the actual standard deviation, but the means compare favourably.

To try to model the variation more accurately, the Hyperexponential distribution 

was fitted once again to the data, from 2 to 4 phases.

This time, three phases proved sufficient for a good fit. The three phase 

Hyperexponential distribution has the PDF:

/  (/) = cr (3//cre_3i'“” ) + co {2>fi(oe~ltm ) + (l -  cr -  o  ) ̂ 3// (l -  cr -  e_3̂ 1_£r~a,)f j

The method of least squares was used to estimate the values of the 

parameters//, a  and co. For the Emergency Surgery arrivals,// = 0.007135078, 

<7 = 0.177996263 and /» = 0.702212231.

Figure 6.14 shows the data with the corresponding Hyperexponential fit. Once 

again, the fit is fairly good with a few deviant points.
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Figure 6.14: length of stay distribution with fitted 3-phase Hyperexponential 

distribution - Emergency Surgery

Ward

916 patients arrived at the Critical Care Unit from the Wards. Of these, four had 

missing values for their length of stay and four had an arrival time later than their 

discharge time. One patient had a length of stay of 7378 hours and was thus 

excluded from the analysis. The remaining 907 patients had a mean length of 

stay of 181.73 hours with a standard deviation of 273.61 hours. Using Stat::Fit, a 

lognormal distribution, with shift, shape and scale parameters of 1, 1.39 and 4.41 

respectively, gave a significant fit. This distribution has a mean value of 217.17 

hours and a standard deviation of 525.24. Therefore it is clearly not a very good 

fit, even though the null hypothesis of chi-square goodness of fit test cannot be 

rejected.

Since the lognormal proves to be an inadequate fit, it is certainly worth looking 

at the Hyperexponential class of distributions.



It was found that the four-phase Hyperexponential distribution yielded the best 

fit with parameters// = 0.005621738, o  = 0.089008872, co = 0.410957655 and 

v = 0.089042901. This yields a mean and standard deviation of 177.89 and 

276.54 hours respectively. The comparison between data and theoretical fit is 

shown in Figure 6.15.
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Actual data —O— HypcrexponcnUal fit |

Figure 6.15: length of stay distribution with fitted 4-phase Hyperexponential 

distribution - Ward

Other Hospital

The Other Hospital data proved to be very clean. There were 233 observations in 

the data set and all were valid. No outliers were found. Once again, the 

appropriate distribution according to Stat::Fit was the lognormal distribution with 

shift, shape and scale parameters o f 2, 1.32 and 4.48 respectively. This gave the 

theoretical mean to be 212.86 hours and the theoretical standard deviation to be 

457.67 hours. The actual mean and standard deviation were 210.13 and 431.48 

hours respectively. The lognormal distribution fits the data well in this instance. 

The fit is shown in Figure 6.16.
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Figure 6.16: length of stay distribution with fitted lognormal distribution - 

Other Hospitals

Graphically, the lognormal fit does not look very good. It vastly overestimates 

the probability o f a patient having a length of stay from zero to 24 hours but 

underestimates virtually every other category.

The Hyperexponential class of distributions did not effectively fit the data. 

X-Ray

Arrivals from X-Ray are very rare in the CCU. Only 44 occurred between the 1st 

of April 2004 and the 31st of May 2007. Thus distribution fitting is not entirely 

sensible with such a small sample. However, the data was entered into Stat::Fit 

and again, the lognormal distribution proved to fit the data well with shape, scale 

and threshold parameters of 0.97, 3.99 and 1 respectively. This gave a theoretical 

mean and standard deviation of 87.53 and 108.15 hours respectively comparing 

with the actual mean of 91.27 hours and the actual standard deviation of 124.33 

hours. The fit is shown in Figure 6.17.
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Figure 6.17: length of stay distribution with fitted lognormal distribution -  

X-Ray

It does not seem sensible to fit the two or three phase Hyperexponential to the X- 

Ray data due to the small sample size. Thus the lognormal distribution, as it’s a 

fairly adequate fit, will be used.

260



Elective

15.0

12.5

10.0

7.5
Cl

5.0

2.5

0 12 2 4  36  48  60  72 84 96 108 120 132 144 156
Length of stay (hours)

Figure 6.18: length o f  stay distribution with fitted lognormal distribution -  

Elective surgery

Once again, the E le c tiv e  patients have a time-dependent length of stay 

distribution. The m a jo rity  o f patients stay in the CCU between 16 and 26 hours. 

The next group o f  p a tie n ts  have a length of stay roughly 24 hours longer than the 

first group. This is a  re su lt o f  the time of day at which the clinicians make their 

ward rounds and p a tie n ts  cannot be referred for discharge until the ward round 

has been completed. R ath er than trying to find a distribution which adequately
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models this data, the lengths of stay of arrivals from Elective surgery were 

sampled directly from the data.

Summary

Table 6.4 below summarises the length of stay distributions for each arrival 

source. Comparing the theoretical summary statistics with the summary statistics 

calculated from the data, it is clear to see that the fitted distributions are a good 

representation of the data itself.

Table 6.4: Length of stay distributions for arrivals from different sources

Source N Distribution
Theoretical

Mean

Theoretical

Standard

deviation

Actual

Mean

Actual

Standard

deviation

A&E 1133
Hyperexponential

(4-phase)
128.79 267.51 123.59 304.40

Ward 907
Hyperexponential

(4-phase)
177.89 276.54 181.73* 273.61*

Emergency 711
Hyperexponential 

(3-phase)
140.15 218.02 141.02* 218.07*

Other

hospital
233 Lognormal 212.86 457.67 210.13 431.48

X-Ray 44 Lognormal 87.53 108.15 91.27 124.33

* Outliers have been removed from these groups, one from Ward (length of stay 

= 7,378 hours) and one from Emergency surgery (length of stay = 8,973 hours).

After consultation with hospital managers and consultants at UHW, it was clear 

that the actual length of stay of a patient was not a true reflection of the amount 

of time a bed was used. After each discharge, the bed and the surrounding area 

require intensive cleaning. This can take anything between two and eight hours.
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Since no data is collected on this issue, it was assumed that a changeover time of 

5 hours was required after discharge.

6.3.3. Verification and Validation

To allow the model to enter steady state conditions, a warm up period equivalent 

to 1 month was included. The model was subsequently run to represent one year 

and then replicated 100,000 times.

Validation of the model consisted of comparing the actual data with the output 

from the model. The model was run with 24 beds available -  i.e. the number of 

beds currently present in the CCU. This resulted in 57 cancellations per year and 

an 82% bed-occupancy rate, compared with observed rates of 57 cancellations 

and 87% bed occupancy. However, in reality, no cancellations can occur here as 

the data only includes patients who have actually entered the CCU and hence had 

not had their operations cancelled. By looking at the data, it was clear that on 

occasions more than 24 beds were occupied in the CCU at any one time. In fact, 

twenty nine beds were occupied at one stage. Initial analysis revealed that on 9% 

of occasions there were more than 24 beds occupied; that is, one or more of the 

extra five beds stored for peak demand use were utilised. Taking account of the 

length of stay of patients, this amounts to over 7% of the available CCU time.

The reason for this could be that patients are allowed to queue on trolleys if the 

hospital staff know there will be a bed available shortly. After consultation with 

staff, it was suggested that when a patient dies it takes time for the nurses to 

prepare that bed for the next patient which means that patients would feasibly be 

waiting on a trolley for a period of time. In order to avoid the situation where the 

model predicted cancellations occurring, it was run with 50 beds available.
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Figure 6.19: Actual bed occupancy profile for study period

The number of admissions in an average year, according to the data, was 1359, 

and the simulation recorded 1341 admissions. The mean number of beds 

occupied at any time during the year, as shown in Figure 6.19, was 20.10 

according to the data, compared with 20.23 according to the simulation. This 

different was found not to be significant at the 95% level

Sensitivity analysis

A sensitivity analysis was performed on the inter-arrival times of the simulation 

model to ascertain how sensitive the results were to the mean inter-arrival times. 

The mean inter-arrival times were increased by 10% and then decreased by 10%. 

Note, this was only done for the unplanned admissions. The new mean inter­

arrival times are given in Table 6.5 below:



Table 6.5: Sensitivity analysis arrival rates

Source
Original mean 

inter-arrival time

Mean inter­

arrival time + 

10%

Mean inter­

arrival time -  

10%

A&E 24.7 27.17 22.23

Ward 30.5 33.55 27.45

Emergency 39.1 43.01 35.19

Other hospital 118.0 129.8 106.2

X-Ray 604.0 664.4 543.6

Number of 

cancellations
57 9 102

The affect of the increase and decrease by 10% in parameter estimates is highly 

influential. For example, the number of cancellations given 24 beds and the 

original arrival rates is 57 (see Table 6.6), whereas when the mean inter-arrival 

time is increased by 10% the number of cancellations decreases to 9, and if the 

mean inter-arrival time is decreased by 10%, the number of cancellations 

increases to 102. But, since the original mean inter-arrival times above have been 

derived from a relatively large data set, there is no need to be overly concerned 

by the substantial effect of the sensitivity analysis.

6.3.4. “What-if” scenarios

The model was run for several “what-if” scenarios. Firstly, bed numbers were 

increased incrementally from 22 (which are fewer than the current number in the 

CCU) to 29 (this is the maximum number which can be accommodated), and the 

results produced are recorded in Table 6.6. As the number of beds increases, the 

mean number of occupied beds also increases. Although the mean number of 

occupied beds increases, the percentage of occupied beds decreases. 

Unsurprisingly, the number of cancellations in a year decreases as the number of 

beds increases.

265



Table 6.6 Summary measures using simulation model

Number of 

beds

Mean number of 

occupied beds

%

occupied

Number of 

cancellations

22 19.15 87% 146

23 19.40 84% 101

24 19.76 82% 57

25 20.05 80% 20

26 20.18 78% 3

27 20.20 75% 0

28 20.20 72% 0

29 20.20 70% 0

There are two main interesting outcomes to this model and the various scenarios 

tested, namely the number of cancellations of Elective surgery annually, and bed- 

occupancy levels.

Firstly, the number of cancellations of Elective surgery which occur is of 

particular interest to the hospital. The cancellations recorded in this model occur 

on the day of admission. Such cancellations can be most traumatic for patients 

and will also result in lengthening of the hospital waiting lists, because 

cancellations often imply re-admissions at a later date.

The current formation of the Unit, with 24 beds, was taken to be the baseline.

This formation resulted in 57 Elective cancellations with a bed-occupancy level 

of 82%. This cancellation level translates to roughly 5 cancellations per month 

which is very high considering that there are only approximately 30 Elective 

admissions scheduled each month. Also, the bed-occupancy level of 82% is 

considerable higher than the 60-70% occupancy guidelines given by the 

Intensive Care Society (ICS 1997).
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With 25 beds in the CCU, the model showed that the number of cancellations 

would drop to approximately 20 per year with 80% bed-occupancy. The cost of 

the extra bed is around £361,350 per annum (assuming only one organ failure per 

Elective patient); therefore the resulting reduction of 37 cancellations implies 

that the cost per avoided cancellation is £9,747.

The main aim of this study was to investigate the number of Elective 

cancellations that could be avoided by having more bed resources, but if a new 

bed is to be added, emergency patients will also be able to use it. This is also a 

worthwhile use of NHS funding as the emergency patients could be seen more 

quickly, and trolley waits could be reduced. To calculate this additional benefit, 

the number of bed days generated by the addition of a bed was calculated and 

then appropriately scaled by the bed occupancy rate of the Unit. The number of 

bed days for elective and non-elective patients generated from the additional bed 

was calculated as follows. Using the mean length of stay of Elective patients and 

the number of additional Elective patients that could be seen given the additional 

bed, the number of bed days generated by an additional bed was decremented by 

the number of bed days the Elective patients would use. The average length of 

stay of emergency patients was then used to determine the average number of 

emergency patients that could utilise the remaining bed days so that this new bed 

would be full.

Table 6.6 shows that the number of cancellations and bed-occupancy levels 

continues to drop as additional beds are provided. Table 6.7 summarises the 

incremental cost of each cancellation avoided and also the “free” unplanned 

patients that would be seen as a result of adding a bed. As the number of 

additional beds increases, the cost of each avoided cancellation increases 

dramatically. Twenty nine beds, which is the maximum number which could be 

physically accommodated, results in no cancellations and a bed-occupancy level 

of 70%. Clearly, the bed-occupancy level of 70% is desirable and meets the ICS 

guidelines. The important question to consider is whether adherence to the ICS 

guidelines warrants the extra investment required for the additional CCU beds.
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This is a matter for stakeholders to discuss. Turning to the issue of cancellations, 

with only 27 beds no Elective cancellations occur, implying that the investment 

in these extra beds, in terms of Elective cancellations avoided, is wasted.

Table 6.7: Costing for each additional bed and number of additional 

Emergency patients admitted to the new bed

Number 

of beds

Number of 

cancellations 

avoided

Cost per avoided 

cancellation

Number of additional 

emergency patients 

admitted

22 0 0

23 45 £8,030 2

24 89 £8,213 6

25 126 £9,747 14

26 143 £21,750 26

27 146 £115,525 38

28 146 50

29 146 62

Another scenario tested was the creation of two separate CCUs, one for Elective 

(or planned) patients and one for “Unplanned” patients. Focussing on the ring- 

fenced bed situation, to achieve the 60-70% target recommended by the Intensive 

Care Society, 25 Emergency beds (Table 6.8) would be required and 1 Elective 

bed (Table 6.9). This would result in 295 cancellations each year. Clearly this is 

not an acceptable number of cancellations. If four Elective beds were funded, no 

Elective cancellations would occur, but these beds would only be utilised 65% of 

the time. Comparison of this “ring-fenced beds” scenario with the CCUs current 

formation, indicates that to achieve the ICS bed-occupancy target and to achieve 

a low number of cancellations, 29 beds are required, which suggests that ring- 

fencing is not beneficial.
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Table 6.8 Summary measures using simulation model - Emergency patients 

only

Number of beds Mean number of occupied beds %  occupied

22 17.58 80%

23 17.58 76%

24 17.58 73%

25 17.58 70%

26 17.58 68%

27 17.58 65%

28 17.58 63%

29 17.58 61%

Table 6.9 Summary measures using simulation model - Elective patients 

only

Number of 

beds

Mean number of 

occupied beds

%

occupied

Number of 1 

cancellations

1 0.68 68% 295

2 1.73 87% 133

3 2.47 82% 19

4 2.60 65% 0

5 2.60 52% 0

6 2.39 40% 0

Additional data referring to the delay experienced by a patient prior to discharge 

was available but only for the period of time from the 1st of April 2004 to the 31st
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of December 2005. From this data it was evident that 57% of patients who were 

admitted onto the CCU during this time period experienced a delayed discharge, 

and the mean delay experienced by a patient who was delayed was 33.64 hours. 

Investigation into the delay data found considerable time dependencies; therefore 

to account for this delay, a delay value was sampled from the original delayed 

discharge data and this value was subtracted from the calculated length of stay. 

Again, the model with this decreased length of stay was run for several different 

bed numbers.

Table 6.10 Summary measures using simulation model - removing delayed 

discharge

Number of 

beds

Mean number of 

occupied beds

%

occupied

Number of 

cancellations

20 16.64 83% 110

21 16.94 81% 56

22 17.15 78% 16

23 17.23 75% 2

24 17.24 72% 0

25 17.25 69% 0

Table 6.10 addresses the issue of delayed discharge. As was previously 

mentioned, if the length of stay of each patient was decreased by the delay before 

discharge many of the cancellation issues are avoided. With 24 beds, no Elective 

cancellations would occur. In fact, the current formation of 24 beds yielded a 

72% bed-occupancy level also. The addition of 1 bed causes the bed-occupancy 

rate to drop to 69% thus complying with the ICS guideline.

Finally, it is clear from the CCU admissions data that the majority of Elective 

surgery (around 83%) is performed from Tuesday until Friday. The remaining 

17% is mostly on Monday, with 3% spread over the weekend. It is of interest to
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discover whether a more uniform distribution of Elective admissions is beneficial 

to the overall running of the Unit given that the average number of Elective 

surgeries is approximately 365 per year. Two final scenarios, relating to the 

scheduling of Elective surgery were considered. The first being that Elective 

surgery would take place daily, with one operation each day (for seven days).

The second being that either one or two surgeries are performed each day during 

the five days, Monday to Friday. For this scenario to be implemented, a 

significant change to working practice of surgeons would need to be agreed. The 

results follow in Figure 6.20.
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Figure 6.20 Number of Elective cancellations per year, for current practice, 

Electives spread over 5 days and Electives spread over 7 days

Figure 6.20 gives the number of cancellations which occur in one year when 

certain changes in practice occur. For example, when Elective surgery is 

performed over 5 days with either one or two surgeries performed daily, it is 

clear that the number of annual cancellations drops accordingly. If Elective 

surgery took place over 7 days, a larger affect is seen. The bed-occupancy levels 

for each of these scenarios are similar to those of the current formation and are 

therefore not included graphically. It is therefore clearly beneficial to schedule
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the Elective surgery over at least 5 days and up to 7 days but the latter would 

require major changes in surgeons’ working conditions which may result in 

clinician opposition.

It seems clear that the CCU under study is only able to achieve the high level of 

bed-occupancy by utilisation of the 5 additional beds when circumstances 

demanded this extra capacity. If the main 24 beds alone were used, the bed 

occupancy would have been 82%. But there are ways to use fewer beds if the 

circumstances outlined in the what-if scenarios exist.

6.4. Conclusion

The CCU, under its current formation, does not adhere to ICS bed-occupancy 

guidelines. Also, the waiting lists associated with Elective surgery patients who 

require a period of care in the CCU will also increase due to the number of 

cancellations which occur at the Unit. This study has highlighted several 

different configurations of the management of the CCU including resolving the 

issue of bed-blocking, ring-fencing beds for Elective and unplanned admissions 

and changing the working practice of theatre staff.

The most beneficial action for reducing bed-occupancy levels and cancellation 

rates is to resolve the issue of bed-blocking. If this were possible, the CCU would 

only require one additional bed to meet the ICS bed-occupancy guidelines.

If this were not possible, the next best option is to change the working practice of 

theatre staff. If Elective surgery was performed daily, the number of annual 

cancellations would drop considerably. This option would require the backing of 

clinicians and may be difficult to administer. However, if Elective surgery was 

performed on 5 days per week, in a more regular fashion, cancellation rates 

would also drop. This second option is much simpler to implement, with minimal 

disruption to theatre staff.
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Chapter 7: Conclusions and further work

7.1. Introduction

This study was carried out to analyse data provided by the Critical Care Unit at 

the University Hospital of Wales. The theoretical work developed and extended 

in Chapters 2 and 3 was chosen due to its obvious application in medical 

research. The statistical analysis and Operational Research techniques utilised in 

Chapters 4 and 5 highlighted the important factors which influence bed 

occupancy and patient flow, such as length of stay and mortality. The simulation 

model developed in Chapter 6 can be used as an aid to decision making in the 

CCU regarding bed-numbers for example. This concluding Chapter addresses the 

initial objectives of the thesis and how these have been met. Also, it summarises 

some of the interesting and important findings of this study, including an 

indication of further research where appropriate.

7.2. Objective 1

To identify and investigate appropriate queueing systems which can model 

activities at the Critical Care Unit

In Chapter 2, batch service queueing theory was investigated. Once the steady 

state probability equations were derived, solving these required use of Laplace 

transforms and generating functions. The final solution required a transcendental 

equation to be solved which involved the use of iterative procedures.

As p and s (the batch size) increase, the mean number of customers in the 

system, L, will also increase. Several different service time distributions were 

considered including the Erlangian family and Hyperexponential with k phases.
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When considering the distributions from the Erlangian family (the Negative 

Exponential, E2, E10 and the Constant) we see that as k increases, L decreases.

The values of zj, when plotted on an Argand diagram, are nearer to the unit circle 

when p is small. Also, when s is large and p is small, these roots tend quickly 

towards the unit circle. Although, for larger values of k, p must be very small to 

have the roots approach the unit circle. When k is large, the roots are much 

nearer to the origin than when k is small.

Considering the Hyperexponential distribution, it is clear to see that when a is 

small, the value of L is larger. The values of z* are further away from the origin 

and closer together when a is small.

It would be very interesting to apply this theoretical work to a practical real-life 

situation. For example, in a healthcare context, it would be interesting to 

investigate the benefit of parallel operating theatres. Specifically, if two 

operating theatres were set up in parallel to one another, and if two patients 

arrive singly, both requiring use of the operating theatre, would it be beneficial to 

use both operating theatres in parallel at the same time, using one surgical team, 

or would it be more beneficial to treat one patient at a time? Questions of this 

nature can be answered by applying the theory of batch service.

Also, queueing theory is not utilised as much as other Operational Research 

techniques, such as simulation, in real-life applications. One of the reasons for 

this may be the complicated nature of some of the solution methods which are 

used (for example the iterative technique to find the Zj in this case). The 

statistical analysis package SAS has an Operational Research module which has 

a simulation branch and an optimisation branch, but has no queueing theory. One 

possible avenue for future work would be to develop a queueing theory add-on 

for SAS which was user- friendly in nature. The user would select a queue of 

their choice and the program would then generate summary measures and 

probabilities automatically.
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Chapter 3 began with the derivation of the steady state equations and summary 

measures for the M(b)/M/1 queue. Then, the work was extended to investigate the 

Hyperexponential service time distribution, with one server. Finally, the steady 

state queueing equations of the M(b)/He/c queue.

The steady state for the M^/He/c queueing system were solved using an iterative 

method. Parameters derived from the CCU data were then utilised to populate 

this queueing system and to obtain results for the mean number of customers in 

the system. The queueing system proved to be a good approximation to the CCU 

but it is possible that further improvements can be made in future.

Several improvements could be made to this queueing system. Some of these 

will be discussed here. Firstly, the service time distribution could be extended 

from the two-phase Hyperexponential distribution to the four-phase 

Hyperexponential distribution. The length of stay data follows the four-phase 

distribution more closely thus making the queueing system more reflective of 

reality. To do this, a new solution method would be required. The method 

utilised in Chapter 3 to find the steady-state equations would be difficult to use in 

this extension since the notation would be complicated and the number of 

equations requiring consideration would be very large and cumbersome. Rather, 

the generating function method would need to be applied.

Secondly, priority queueing could be utilised here. As has been mentioned in this 

thesis several times, unplanned admissions have priority over planned admissions 

and will cause planned admissions to be cancelled if there are no available beds.

The final area for further work considered would be to change the time between 

arrivals to be Deterministic rather than Markovian.
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D/M/c

Arrival Arrival

T
A

Regeneration point

Let Pn (R) be the probability of n customers in the system at regeneration point 

R, n = 0 ,1 ,2 ,...

Let kj (i)be the probability that j  customers will depart in the inter-arrival time

when there are i customers present in the system at the beginning of the interval, 

y' = 0, 1,2,..., i = 0, 1,... j  < i

Then

Px (5 ) = Px {A)K (1)+P2 (A )k2 (2) + P3 (A )k , (3) + ...

P2 (B) = Px {A)K  ( l)+ ^2 (A)k, (2) + P3 (A)k2 (3)+...

P3(B)= P2(A)k0(2) + P,(A)k3(3) + ...

Pr(B) = Pr_l (A)k0(r -l)+ P ,(A )k ,(2 ) + P,+1(A )k2(r + l)+...

= X  Pj(A)kM_r(i)
j= r -1

Now, kj (/)takes on two different forms, depending on if i< c  or i > c.

i< c

kj (/) =  lC j P Jq ‘~j  where p  = 1 -  e~M
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i> c

Now, there are some customers waiting for service, so if a server finishes with 

one of the initial customers, another would enter service immediately:

It is clear from the above description that this queueing system is difficult to 

solve and that the solution is not trivial, thus providing an obvious avenue for 

future research.

7.3. Objective 2

Understand the factors which affect length o f stay and outcome at the Critical

Care Unit

Chapter 4 used both CART analysis and linear regression analysis to attempt to 

model CCU length of stay. It is clear from the analysis undertaken in Chapter 4 

that length of stay is a difficult and complex entity to model.

The CART analysis demonstrated that a total of 12 distinct variables were 

required to create 20 groups of patients with a similar length of stay profile. This 

caused a reduction in variance of 12%. The linear regression analysis indicated 

that a total of 39 variables were required to model length of stay which yielded 

an R2 value of 0.3614. However, length of stay could be modelled with 

an R2 value of 0.2955 with only 12 variables.

cCj_,^p(1 - q (1 - t ) " Jd twhere p(t )  = 1-e
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Many of the variables which appeared in the CART analysis also appeared in 

both regression models. In the majority of cases the conclusions drawn about the 

variables in both pieces of analysis were in agreement thus strengthening the data 

analysis.

The nodes constructed from the CART analysis could be utilised as arrival 

sources for a simulation model. This model would have 20 arrival sources 

(corresponding to the final nodes) with different length of stay distributions.

Also, the regression model could be utilised in a simulation to determine a 

patient’s length of stay in the Critical Care Unit.

In Chapter 5, an investigation into the factors which affected mortality was 

presented. Clearly the likelihood of survival is of fundamental importance to the 

patients and their relatives, so this work sought to summarise the most important 

factors influencing mortality risk. The analysis undertaken was similar to that of 

Chapter 4, beginning with CART analysis and then moving onto Logistic 

regression.

The evidence in Chapter 5 suggests that mortality risk is again very complex and 

fourteen variables were included in the splitting rules for the CART analysis 

thereby reducing the impurity of the data by over 25%. Twenty one variables 

appeared in the logistic regression analysis and yielded a maximum rescaled R 

value of 0.3764. Only five variables were concordant between the two pieces of 

analysis, namely ADO, Age, Glucose, ORGSCORE and SYSBP. Both pieces of 

analysis gave similar results for ADO, Age and ORGSCORE but some 

discrepancies were found for Glucose and SYSBP. A reason for this discrepancy 

may be that both Glucose and SYSBP appear at the bottom of the CART analysis 

tree.

Other significant factors which contribute to mortality risk, such as chronic 

disease and operative complications, were also considered. Haematological
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cancer and emergency surgery were found to have a large effect on mortality 

risk.

When considering the five logistic regression equations, two variables appeared 

in all models, DIALYSED1 and TISSPOINT and on each occasion both had a 

positive valued parameter. Several variables appeared in four of the models, the 

most interesting being TISSCODE68, and each appearance yielded a negative 

value for the parameter.

Apart from using the CART analysis nodes to classify patients in terms of their 

mortality risk in real life, and using the Logistic regression equation to give 

family and friends an indication of the risk of mortality of their loved one, the 

analysis could be used, once more, to populate a simulation model. The research 

undertaken in Chapters 4 and 5 could be combined and a model could be built 

which would incorporate both length of stay and mortality.

Also, it would be very interesting to investigate which variables affect both 

length of stay and mortality. For example, the vairable ORGSCORE appeared in 

the CART analysis and regression analysis for both Chapters 4 and 5. This 

indicates that this variable is crucial in determining both of these factors and thus 

warrants further investigation.
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7.4. Objectives 3 and 4

Use the insight gained from the previous objectives to build a simulation model

o f the Critical Care Unit.

Analyse the results from the simulation model to show how varying some 

parameters will affect cancellations and cost.

Finally, in Chapter 6, a discrete event simulation model was built in VBA for 

Excel, to model bed-occupancy in the CCU. This model was used to test various 

what-if scenarios and the results were presented and discussed.

Currently, the CCU does not adhere to Intensive Care Society bed-occupancy 

guidelines (maximum of 60-70% occupancy). Since the bed-occupancy level is 

high, elective cancellations inevitably follow resulting in the extension of waiting 

lists.

Bed-occupancy levels can be controlled in a number of ways. Firstly, additional 

beds can be funded. For each additional bed, the number of cancellations will 

drop and the bed-occupancy percentage also drops. Unfortunately, the cost of 

each additional bed is approximately £361,350 and it is therefore not always cost 

effective to add beds.

The most sensible option for reducing bed occupancy is to deal with the problem 

of delayed discharge. If delayed discharge were eradicated, the CCU would 

require only one additional bed to meet the ICS bed-occupancy guidelines.

Less dramatic improvements can be made by changing the working practices of 

the surgeons. If elective surgery were scheduled in a uniform way each day, the 

number of cancellations could be greatly reduced.
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An interesting avenue for future research would be to incorporate the research 

undertaken in Chapters 4, 5 and 6 to create a new simulation model which would 

act as diary planner. Each morning, before any elective surgery is undertaken, 

information regarding elective patients who are near the top of the waiting list 

and are due to undergo surgery within the next few days, could be input into the 

model to obtain an estimated length of stay and mortality risk. This information 

could be utilised to schedule the appropriate elective patients who are near the 

top of the list given the current bed-occupancy level of the CCU. Of course, the 

model would also indicate the probability of an unplanned admission and if one 

did occur then an estimate of length of stay and mortality risk could also be 

calculated for this patient.

7.5. Final conclusion

This study has considered many aspects of theoretical and practical application 

of mathematical modelling in the CCU setting. The analyses have shown that by 

developing and applying novel queuing theory, improvements can be made in the 

management and efficiency of the CCU at UHW.
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A ppendix  

Appendix 3.1

Rearrangement of steady state queueing equations for the M(b)/He/c queueing 

system.
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Appendix 3.2

Pseudo-code for the M(b)/He/c queueing system 

sumPP = 0

sumPP is the sum of the newly calculated probabilities before they are 

normalised

Sum = 0

Sum us the sum of the probabilities that are output on the last iteration

For i = 0 To 2000

batchprob(i) = Cells(i + 2, 2)

Next i

Reads in the batch distribution from the Excel sheet 

For ml = 0 To probno

For m2 = 0 To Application.WorksheetFunction.Min(ml, c)

Pnew(ml, m2) = 0 

Pold(ml, m2) = 0 

Next m2 

Next ml

Set initial probabilities 

startingval = 0.5 

Pold(0, 0) = startingval

For ml = 1 To probno 

For m2 = 1 To Min(ml, c)
Pold(ml, 0) = startingval * Pold(ml - 1, Min(ml -1, c)) 

Pold(ml, m2) = startingval * Pold(ml, m2 -1)

Next m2
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Next ml

Pnew(0, 0) = startingval

For ml = 1 To probno 

For m2 = 1 To Min(ml, c)

Pnew(ml, 0) = startingval * Pnew(ml -1, Min(ml -1 , c))

Pnew(m 1, m2) = startingval * Pnew(ml, m2 -1)

Next m2 

Next ml

x = 0

Do x = x + 1

For j = 1 To c - 1

Equation 3.18 

Arrivals 1 = 0 

For i = 1 To j

Arrivals 1 = (lambda * batchprob(i) * (1 - sigma) A i * Pnew(j - i, 0)) + 

Arrivals 1

Next i

Pnew(j, 0) = (Arrivalsl + (2 * mu * sigma * Pold (j + 1, 1)) + (2 * mu * 

(1 - sigma) * (j + 1) * Pold(j + 1, 0))) / (lambda + (2 * mu * (1 - sigma) *

j))

Equation 3.19 

For m = 1 To (j - 1)

Arrivals2 = 0
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For i = 1 To (j - m)

Arrivals2 = (lambda * (1 - sigma) A i * batchprob(i) * Pnew(j - i, m)) +

Arrivals2

Next i

Arrivals 3 = 0 

For i = 1 To m

Arrivals3 = (lambda * (sigma) A i * batchprob(i) * Pnew(j - i, m - i)) + 

Arrivals3

Next i

Arrival s4 = 0 

For n = 1 To m 

For i = 1 To (j - m)

Arrivals4 = (lambda * (1 - sigma) A i * (sigma) A n * batchprob(i + n) * 

Pnew(j - n - i, m - n)) + Arrivals4

Next i 

Next n

Pnew(j, m) = (Arrivals2 + Arrivals3 + Arrivals4 + ((j + l - m ) * 2 *  mu * 

(1 - sigma) * Pold(j + 1, m)) + ((m + 1) * 2 * mu * sigma * Pold(j + 1, m 

+ 1))) / (lambda + ((j - m) * 2 * mu * (1 - sigma)) + (2 * m * mu * 

sigma))

Next m 

Equation 3.16
Pnew(0, 0) = ((2 * mu * sigma * Pnew(l, 1)) + (2 * mu * (1 - sigma) * 

Pnew(l, 0))) / (lambda)

Equation 3.17 

Arrivals 5 = 0
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For i = 1 To j

Arrivals5 = (lambda * batchprob(i) * sigma A i * Pnew(j - i, j - i)) +

Arrivals5

Next i

Pnew(j, j) = (Arrivals5 + ((j + 1) * 2 * mu * sigma * Pold(j + 1, j + 1)) + 

(2 * mu * (1 - sigma) * Pold(j + 1, j))) / (lambda + (2 * mu * sigma * j))

Next j

Equation 3.21 

Arrivals6 = 0 

For i = 1 To c

Arrivals6 = (lambda * (1 - sigma) A i * batchprob(i) * Pnew(c - i, 0)) + 

Arrivals6

Next i

Pnew(c, 0) = (Arrivals6 + (2 * mu * sigma * (1 - sigma) * Pold(c +1,1))  

+ (c * 2 * mu * (1 - sigma) A 2 * Pold(c + 1, 0))) / (lambda + (2 * mu * (1 

- sigma) * c))

Equation 3.22 

For m = 1 To (c - 1)

Arrivals? = 0

For i = 1 To (c - m)

Arrivals7 = (lambda * batchprob(i) * (1 - sigma) A i * Pnew(c - i, m)) + 

Arrivals7

Next i

Arrivals 8 = 0 

For i = 1 To m

314



Arrivals8 = (lambda * batchprob(i) * sigma A i * Pnew(c - i, m - i)) + 

Arrivals8

Next i

Arrivals9 = 0 

For n = 1 To m 

For i = 1 To (c - m)

Arrivals9 = (lambda * batchprob(i + n) * sigma A n * (1 - sigma) A i * 

Pnew(c - n - i, m - n)) + Arrivals9

Next i 

Next n

Pnew(c, m) = (Arrivals7 + Arrivals8 + Arrivals9 + (2 * (c - m) * mu * (1 

- sigma) A 2 + (2 * m * mu * sigma A 2)) * Pold(c + 1, m) + ((m + 1) * 2

* mu * sigma * (1 - sigma) * Pold(c + 1, m + 1)) + ((c - m + 1) * 2 * mu

* sigma * (1 - sigma) * Pold(c + 1, m - 1))) / (lambda + (2 * mu * sigma

* m) + (2 * mu * (1 - sigma) * (c - m)))

Next m

Equation 3.20 

Arrivals 10 = 0

For i = 1 To c

Arrivals 10 = (lambda * sigma A i * batchprob(i) * Pnew(c - i, c - i)) + 

Arrivals 10

Next i

Pnew(c, c) = (Arrivals 10 + (2 * mu * sigma A 2 * c * Pold(c + 1, c)) + (2

* mu * sigma * (1 - sigma) * Pold(c + 1, c -1))) / (lambda + (2 * mu * 

sigma * c))
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Equation 3.24

For j = (c + 1) To probno

Arrivals 1 1 = 0

For i = 1 To (j - c)

Arrivals 11 = (lambda * batchprob(i) * Pnew(j - i, 0)) + Arrivals 11

Next i

Arrivals 12 = 0 

For i = 1 To c

Arrivalsl2 = (lambda * batchprob(i + j - c) * (1 - sigma) A i * Pnew(c - i,

0)) + Arrivals 12

Next i

Pnew(j, 0) = (Arrivals 11 + Arrivals 12 + (2 * mu * sigma * (1 - sigma) * 

Pold(j + 1,1)) + (c * 2 * mu * (1 - sigma) A 2 * Pold(j + 1, 0))) / (lambda 

+ (2 * c * mu * (1 - sigma)))

Equation 3.25 

For m = 1 To (c - 1)

Arrivals 13 = 0

For i = 1 To (j - c)
Arrivals 13 = (lambda * batchprob(i) * Pnew(j - i, m)) + Arrivals 13

Next i

Arrivals 14 = 0 

For i = 1 To (c - m)
Arrivals 14 = (lambda * batchprob(i + j - c ) * ( l -  sigma) A i * Pnew(c - i, 

m)) + Arrivals 14

Next i
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Arrivals 15 = 0 

For i = 1 To m

Arrivals 15 = (lambda * batchprob(i + j - c) * sigma A i * Pnew(c - i, m -

i)) + Arrivals 15

Next i

Arrivals 16 = 0 

For n = 1 To m 

For i = 1 To (c - m)

Arrivals 16 = (lambda * batchprob(j - c + i + n) * sigma A n * (1 - sigma)

A i * Pnew(c - n - i, m - n)) + Arrivalsl6

Next i 

Nextn

Pnew(j, m) = (Arrivals 13 + Arrivals 14 + Arrivals 15 + Arrivals 16 + ((c - 

m + 1) * 2 * mu * sigma * (1 - sigma) * Pold(j + 1, m -1)) + ((2 * mu * 

sigma A 2 * m) + (2 * mu * (1 - sigma) A 2) * (c - m)) * Pold(j + 1, m) + 

((m + 1) * 2 * mu * sigma * (1 - sigma) * Pold(j + 1, m + 1))) / (lambda + 

(2 * mu * sigma * m) + (2 * mu * (1 - sigma) * (c - m)))

Next m

Equation 3.23 

Arrivals 17 = 0

For i = 1 To (j - c)

Arrivals 17 = (lambda * batchprob(i) * Pnew(j - i, c)) + Arrivals 17

Next i

Arrivals 18 = 0
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For i = 1 To c

Arrivals 18 = (lambda * batchprob(i + j - c) * sigma A i * Pnew(c - i, c - i))

+ Arrivals 18

Next i

Pnew(j, c) = (Arrivals 17 + Arrivals 18 + (2 * mu * sigma A 2 * c * Pold(j 

+ 1, c)) + (2 * mu * sigma * (1 - sigma) * Pold(j + 1, c -1))) / (lambda + 

(2 * mu * sigma * c))

Next j 

sumPP = 0

For ml = 0 To probno - 1 

For m2 = 0 To Min(ml, c)

sumPP = Pnew(ml, m2) + sumPP 

Next m2 

Next ml

For ml = 0 To probno 

For m2 = 0 To Min(ml, c)

Pnew(ml, m2) = Pnew(ml, m2) / sumPP 

Next m2 

Next ml

For ml = 0 To probno 

For m2 = 0 To Min(ml, c)

Pold(ml, m2) = Pnew(ml, m2)

Next m2 

Next ml

Loop Until x > limit
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Appendix 4.1

The table below contains a list of all variables used in the analysis.

Variable Description
TIMEIN Time into ICU
TIMEOUT ICU discharge time
TPN Did the patient have TPN? (Y/N)
OUTCOME ICU outcome Alive/Dead (A/D)
HOUTCOME Hospital outcome Alive/Dead (A/D)
AGE (adate - dob)/365
SEX (M/F)
RACE (W)hite (B)lack (A)sian
ADSOURCE (l)theatre (2)A&E (3)Ward (4)other hosp (5)Recovery (6)HDU 

(7)X-Ray
SURTYPE (l)elective (2)emergency
OPCOM Operative complications present (Y/N)
WARD Name of Ward admitted from.
INDICAT Apache admission indication: Resp Cardiovasc Neuro Gastro 

Kidney Metabolic Haem
PRECIP Apache Factor precipitating the primary system failure
CHE Chronic (ie long-standing) ill-health present (Y/N)
LIVER If CHE is true, is there liver failure? (Y/N)
CVS If CHE is true, is there cardiac failure? (Y/N)
RESP If CHE is true, is there respiratory failure? (Y/N)
RENAL If CHE is true, is there renal failure? (Y/N)
IMMUNE If CHE is true, is there immune deficiency? (Y/N)
HIV Does the patient have AIDS (Y/N)
LYMPHOMA Does the patient have Lymphoma (Y/N)
CANCER Does the patient have cancer with metastases (Y/N)
HAEMCAN Does the patient have a haematological malignancy (Y/N)
PREDICT RIP prediction. (D)ie/(U)nknown. Is D if apasco.predict is D in 

any line with this icuid
SDCODE Specific Diagnostic Code
SPEC Specialty patient admitted to ICU under
DOCTOR Consultant patient admitted to ICU under
TOTTISS Total TISS point accumulated for patient during ICU stay
VENT Was the patient ventilated during ICU stay (Y/N)
DIALYSED Did the patient have haemodialysis or haemofiltration during 

ICU stay (Y/N)
AGEPTS APACHE points awarded for age
CHPOINTS APACHE points awarded for Chronic Health probs
TEMP Core body temp Deg Centigrade
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TEMPSCORE APACHE points awarded for temp
VMBP mean BP
MBP Most abnormal Mean (averaged over one beat) Arterial Blood 

Pressure
MBPSCORE APACHE points awarded for MBP
VSYSBP systolic BP
SYSBP Most abnormal Systolic Blood Pressure
HR Heart Rate (beats per minute)
HRSCORE APACHE points awarded for HR
RESPR Most abnormal Respiratory Rate (breaths per minute)
RESPSCORE APACHE points awarded for RESPR
VFIO inspired oxygen (modem units)
FIO Inspired oxygen concentration (%)
VPO Arterial po2 (modem units)
PO Arterial partial pressure of oxygen (mmHg)
VPCO carbon dioxide (modem units)
PCO Arterial partial pressure of carbon dioxide (mmHg)
ADO Arterial-Alveolar oxygen difference ((FIO*760)-PO)
OXYSCORE APACHE points awarded for ADO
PH Arterial pH
PHSCORE APACHE points awarded for pH
HC03 Plasma Bicarbonate in mmol
SOD Plasma Sodium (mmol)
SODSCORE APACHE points awarded for SOD
POT Plasma Sodium (mmol)
POTSCORE APACHE points awarded for POT
VCR creatinine (modem units)
CR Plasma Creatinine (old units; multiply by 90.9 for micromol/L)
CRSCORE APACHE points awarded for CR
UREA Plasma Urea Concentration (old units; divide by 6 to get 

mmol/L)
VUREA urea (modem units)
URINE Urine Output (ml/day)
VPCV Haematocrit (modem units)
PCV Packed Cell Volume (% of blood which is red cells)
PCVSCORE APACHE points awarded for Packed Cell Volume
WBC No. of White Blood Cells per cubic mm in thousands
WBCSCORE APACHE points awarded for WBC
PLATELET No. of Platelets in Blood per cubic mm in thousands
PROTIME Ratio of Prothrombin Time to Control
SGOT Aspartate Transaminase Concentration
VBILIRUBIN bilibubin (modem units)
BILIRUBIN Plasma Bilimbin (old units; mutiply by 17.24 for mmol/L)
VALBUMIN albumin (modem units)
ALBUMIN Plasma Albumin concentration (mg/ 100ml)
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VGLUCOSE glucose (modem units)
GLUCOSE Plasma glucose (mmol)
TPN Is the patient having TPN today?
EYES Menu choice for eyes movements 1 = good, 4 = bad
EYESCORE Glasgow Coma Score (GCS) points for EYES (75-EYES)
MOTOR Menu choice for motor (ie muscle) function 1 = good, 6 = bad
MOTORSCORE Glasgow Coma Score (GCS) points for MOTOR (77-MOTOR )
NWERBAL Menu choice for "verbal" responses in intubated patients
NWERBSCO Glasgow Coma Score (GCS) points for NVVERBAL
VVERBAL Menu choice for verbal responses in non-intubated patients
WERBSCO Glasgow Coma Score (GCS) points for VVERBAL
SEDATION Is the patient sedated today (Y/N)
GCS Glasgow Coma Score SUM(EYESCORE,MOTORSCORE, 

NorWERBSCO
GCSSCORE APACHE points awarded for GCS
APSCORE APACHE score
APS APACHE score before Age CHE and Diagnostic Category 

points added
PRODEATH Percentage Risk Of Death in Hospital (%risk that HOUTCOME 

= D)
ARF Acute Renal Failure ie Urine < 400 ml/day and Creatinine > 

200 (Y/N)
CARF Clinical Diagnosis of Acute Renal Failure ie. doctor says there 

is.
NEUF Neurological Failure today? (Y/N)
CVSF Cardiovascular Failure today? (Y/N)
RESPF Respiratory Failure today? (Y/N)
HAEMF Haematological Failure today? (Y/N)
HEPF HepaticFailure today? (Y/N)
GIF Gastrointestinal Failure today? (Y/N)
FIB Ventricular Fibrillation today? (Y/N)
ENCEP Encephalopathy today? (Y/N)
PREDICT Today's prediction to survive the illness (U)nknown/(D)ie
ORGF No. of failed organs today
ORGFD No. of days that ORGF has been at that score
ORGSCORE Knauss's Organ failure coefficient for (ORGF*ORGFD)
DVENT Ventilated today? Y/N
VENTD Days continuously on ventilator so far
CVSD No of days of continuous CVS failure so far
RESPD No of days of continuous Resp failure so far
NEUD No of days of continuous Neurological failure so far
HEPD No of days of continuous Hepaticfailure so far
GID No of days of continuous Gastrointestinal failure so far
ARFD No of days of continuous Acute Renal failure so far
HAEMD No of days of continuous Haematological failure so far
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SUR Surgery today? Y/N
COMP Complications occur with today's surgery? Y/N
TISSPOINT TISS points for today
TISSCODE List of tisscodes which were present today. Lookup table = 

aptiss.dbf
TOTSAPS SAPS total for today
SAPSRISK % Risk Of Death for todays SAPS Score
SAPSAGE SAPS points for age (?duplicated each day)
SAPSHR SAPS points for heart rate
SAPSSYS SAPS points for Systolic BP
SAPSTEMP SAPS points for Temperature
SAPSPF SAPS points for ??
SAPSURINE SAPS points for Urine ?volume per 24 hrs
SAPSUREA SAPS points for plasma urea
SAPSWBC SAPS points for White Blood Cell count
SAPSPOT SAPS points for Plasma Potassium
SAPSSOD SAPS points for Plasma Sodium
SAPSHC03 SAPS points for Plasma Bicarbonate
SAPSBIL SAPS points for Plasma Bilirubin
SAPSGCS SAPS points for Glasgow Coma Score
SAPSCHPT SAPS points for Chronic Health (?duplicated each day)
AP3AGE Apache 3 points for age (?duplicated each day)
AP3CH Apache 3 points for Chronic health (?duplicated each day)
AP3HR Apache 3 points for HR
AP3MBP Apache 3 points for Mean BP
AP3TEMP Apache 3 points for Temp
AP3RESPR Apache 3 points for Resp rate
AP3PO Apache 3 points for Arterial Oxygen Tension
AP3PCV Apache 3 points for Packed cell volume (Haematocrit)
AP3WBC Apache 3 points for White Blood Cell count
AP3CR Apache 3 points for Plasma Creatinine
AP3URINE Apache 3 points for Urine ?volume per 24 hrs
AP3BUN Apache 3 points for Blood Urea Nitrogen
AP3SOD Apache 3 points for Plasma Sodium
AP3ALB Apache 3 points for Plasma Albumin
AP3BIL Apache 3 points for Plasma Bilirubin
AP3GLU Apache 3 points for Plasma Glucose
AP3PH Apache 3 points for Plasma pH
AP3NEURO Apache 3 points for Neurological Status
AP3 SCORE Total Apache 3 points for today
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Appendix 4.2
The table below contains each SDCODE as well as a description of the condition 

experienced by the patient.

SDCODE Description
01 Non-Op Asthma/Allergy
02 Non-Op Chronic Obstructive Pulmonary Disease
03 Non-Op Pulmonary oedema (non cardiogenic)
04 Non-Op Post respiratory arrest
05 Non-Op Aspiration/poisoning/toxic
06 Non-Op Pulmonary embolus
07 Non-Op Respiratory failure from Infection
08 Non-Op Respiratory failure from Neoplasm
09 Non-Op CVS failure from Hypertension
10 Non-Op CVS F from Rhythm disturbance
11 Non-Op Congestive heart failure
12 Non-Op CVS F Haemorrhagic/hypovolaemic shock
13 Non-Op CVS F from Coronary artery disease
14 Non-Op CVS F from Sepsis
15 Non-Op CVS F Post cardiac arrest
16 Non-Op CVS F Cardiogenic shock
17 Non-Op CVS F Dissecting Abdo/Thoracic Aneurysm
18 Non-Op Multiple Trauma
19 Non-Op Head Trauma
20 Non-Op Neurologic Seizure disorder
21 Non-Op Neurologic ICH/SDH/SAH
22 Non-Op Drug Overdose
23 Non-Op Diabetic ketoacidosis
24 Non-Op Gastrointestinal bleeding
25 Non-Op Metabolic/Renal
26 Non-Op Respiratory
27 Non-Op Neurologic
28 Non-Op Cardiovascular
29 Non-Op Gastrointestinal
30 Post-op Multiple Trauma
31 Post-op Chronic cardiovascular disease
32 Post-op Peripheral vascular surgery
33 Post-op Heart valve surgery
34 Post-op Craniotomy for Neoplasm
35 Post-op Renal surgery for Neoplasm
36 Post-op Renal transplant
37 Post-op Head Trauma
38 Post-op Thoracic surgery for Neoplasm
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39 Post-op Craniotomy for ICH/SDH/SAH
40 Post-op Laminectomy and other Spinal cord surgery
41 Post-op Haemorrhagic shock
42 Post-op Gastrointestinal bleeding
43 Post-op GI surgery for Neoplasm
44 Post-op Respiratory insufficiency
45 Post-op GI Perforation/Obstruction
46 Post-op Neurologic
47 Post-op Cardiovascular
48 Post-op Respiratory
49 Post-op Gastrointestinal
50 Post-op Metabolic/Renal
51 Post-op Sepsis
52 Post-op Cardiac Arrest
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Appendix 4.3

The table below contains each Precipitating factor as well as a description of the

condition experienced by the patient.

Precip Description
01 Infection
02 Neoplasm
03 Trauma
04 Self-intoxication (overdose)
05 Intracerebral haemorrhage
06 Extracerebral (Subdural/arachnoid haemorrhage)
07 Seizures
08 Neuromuscular failure
09 Coronary artery disease
10 Myocardial infarction (documented)
11 Valvular heart disease
12 Peripheral vascular disease
13 Embolus (localised)
14 Congenital anomaly/anatomic defect
15 Congestive heart failure/pulmonary edema
16 Hypertension
17 Rhythm disturbance
18 Pericardial disease
19 Cardiogenic shock/myocardiopathy
20 Septic shock/sepsis
21 Anaphylactic/drug induced shock
22 Haemorrhagic/hypovolaemic shock
23 Bleeding (significant but not shocked)
24 Post arrest (cardiac and/or respiratory)
25 Allergic reaction
26 Obstruction/perforation
27 Coma/mental derangement (metabolic)
28 Electrolyte/Acid-base disturbance
29 Diabetic ketoacidosis
30 Endocrine emergency
31 Hypo/hyperthermia
32 Haematologic insufficiency/crisis
33 Post-transplant surgery
34 Unplanned post-op ventilation
35 Acute-on-chronic end stage disease
36 Toxic/chemical poisoning
37 Planned post operative monitoring
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Appendix 6.1

Inter-arrival time graphs for the simulation model
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Figure 6.5: Inter-arrival time for Emergency Surgery patients with Negative 

Exponential fit (mean = 39.1 hours)
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Figure 6.6: Inter-arrival time for patients from other hospitals with 

Negative Exponential fit (mean = 118 hours)
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Figure 6.7: Inter-arrival time for Ward patients with Negative Exponential 

fit (mean = 30.5 hours)
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Figure 6.8: Inter-arrival time for X-Ray patients with Negative Exponential 

fit (mean = 604.0 hours)
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