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ABSTRACT

Data clustering has been studied intensively during the past decade. The K- 

means and C-means algorithms are the most popular of clustering 

techniques. The former algorithm is suitable for ‘crisp’ clustering and the 

latter, for ‘fuzzy’ clustering. Clustering using the K-means or C-means 

algorithms generally is fast and produces good results. Although these 

algorithms have been successfully implemented in several areas, they still 

have a number of limitations. The main aim of this work is to develop flexible 

data management strategies to address some of those limitations and 

improve the performance of the algorithms.

The first part of the thesis introduces improvements to the K-means algorithm. 

A flexible data structure was applied to help the algorithm to find stable results 

and to decrease the number of nearest neighbour queries needed to assign 

data points to clusters. The method has overcome most of the deficiencies of 

the K-means algorithm.

The second and third parts of the thesis present two new clustering algorithms 

that are capable of locating near optimal solutions efficiently. The proposed 

algorithms combine the simplicity of the K-means algorithm and the C-means 

algorithm with the capability of a new optimisation method called the Bees 

Algorithm to avoid local optima in crisp and fuzzy clustering, respectively.

Experimental results for different data sets have demonstrated that the new 

clustering algorithms produce better performances than those of other



algorithms based upon combining an evolutionary optimisation tool and the K- 

means and C-means clustering methods.

The fourth part of this thesis presents an improvement to the basic Bees 

Algorithm by applying the concept of recursion to reduce the randomness of 

its local search procedure.

The improved Bees Algorithm was applied to crisp and fuzzy data clustering 

of several data sets. The results obtained confirm the superior performance of 

the new algorithm.



In The Name of Allah,

The Most Gracious, The Most Merciful



ACKNOWLEDGMENTS

First of all I thank Allah (My Lord) the all high, the all great who made it 

possible for me to complete this work.

I am privileged to have Professor D. T. Pham as my supervisor. The high 

standard of his research has always been an inspiration and a goal to me. I 

am deeply grateful to him for his consistent encouragement, invaluable 

guidance and strong support during the course of this study. His thoughtful 

advice and constant support extended to me will always be remembered.

Grateful acknowledgement of my funding and support must be made to my 

home country Syria and the Syrian Ministry of Higher Education.

I am also very grateful to all the members of the Manufacturing Engineering 

Centre for their friendship and help.

My most sincere gratitude and appreciation go to my dear wife “H. Aldaqa” for 

her patience, continuous encouragement and support over the past difficult 

years. Thanks as well to Allah for his gifts; my beloved daughter “Hala” is truly 

one of them.

I am deeply indebted to my parents, my grandmother and all the members of 

my family who gave me continuous support and encouragement throughout 

my life.

v



CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS v

DECLARATIONS AND STATEMENTS vi

CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xvi

ABBREVIATIONS xvii

CHAPTER 1: Introduction

1.1 Background 1

1.2 Research Aim and Objectives 3

1.3 Research Methodology 3

1.4 Thesis Organisation 4

CHAPTER 2: Literature Review

2.1 Data Mining 6

2.2 Data Clustering 13

2.3 Data Clustering Algorithms 15

2.3.1 Partitioning Methods 15

2.3.1.1 The K-means Algorithm 17

2.3.1.2 The K-medoids Algorithm 19

2.3.1.3 Expectation Maximisation Algorithm (EM) 21

2.3.2 Hierarchical Methods 24

vii



2.3.3 Grid-based Methods 28

2.3.4 Density-based Methods 34

2.3.5 Other Methods 36

2.3.5.1 Artificial Neural Network Approaches 37

2.3.5.2 Genetic Algorithm Approaches 39

2.3.5.3 Fuzzy clustering 41

2.4 Approaches 44

2.4.1 Approaches to the K-means Algorithm 44

2.4.2 Approaches to the C-means algorithm 46

2.5 Proposed Solutions 48

2.6 Summary 49

CHAPTER 3: Improvements to the K-Means Algorithm based on the Kd-Tree

3.1 Preliminaries 50

3.2 Review 51

3.3 The Kd-tree and Data Clustering 56

3.4 The Proposed Algorithm 59

3.4.1 Conventions 59

3.4.2 The Improved Kd-tree 59

3.4.3 Algorithm Description 64

3.5 Experiments 66

3.6 The Algorithm Performance 79

3.7 Summary 81

CHAPTER 4: Improvements to the K-Means Algorithm based on the Bees

viii



Algorithm

4.1 Preliminaries 82

4.2 The Local Optima Problem 83

4.3 The Bees Algorithm 85

4.3.1 Motivation 85

4.3.2 Bees in Nature 86

4.3.3 The Bees Algorithm 87

4.4 The Proposed Algorithm 90

4.5 Experiments 91

4.6 The Algorithm Performance 104

4.7 Summary 104

CHAPTER 5: Improvements to C-Means Algorithm based on the Bees 

Algorithm

5.1 Preliminaries 106

5.2 Review 107

5.3 The Proposed Algorithm 110

5.4 Experiments 112

5.5 The Algorithm Performance 120

5.6 Summary 120

CHAPTER 6: Recursive Bees Algorithm

6.1 Preliminaries 122

6.2 Motivation 122

6.3 The Proposed Algorithm 123

ix



6.4 Experiments 126

6.5 The Algorithm Performance 143

6.6 Summary 145

CHAPTER 7: Conclusion

7.1 Contributions 146

7.2 Conclusions 147

7.3 Future Research Directions 148

APPENDIX A: Description of Datasets 

REFERENCES

x



7

9

16

18

20

23

25

25

27

27

29

30

32

33

35

38

38

40

42

42

43

61

63

LIST OF FIGURES

Data mining as a step in the process of KDD

The process model of DM

A classification of the main clustering techniques

Main steps of the K-means algorithm

Main steps of the K-medoids algorithm

Main steps of the EM algorithm

Agglomerative Clustering

Main steps of agglomerative clustering

Divisive Clustering

Main steps of divisive clustering

Hierarchical structure in STING

Main steps of the STING algorithm

Main steps of the WaveCluster algorithm

Main steps of the CLIQUE algorithm

Main steps of the DBSCAN algorithm

A typical SOM structure

Basic ART structure

Basic steps of the GA algorithm

Membership function in Crisp Clustering

Membership function in Fuzzy Clustering

Basic steps of the C-Means algorithm

The proposed new splitting method for a node

The mechanism of assigning a leaf to a cluster

xi



Figure 3.1c 

Figure 3.2

Figure 3.3a

Figure 3.3b

Figure 3.3c

Figure 3.3d

Figure 3.3e

Figure 3.3f

Figure 4.1 

Figure 4.2a

The basic steps of the proposed Kd-tree-based algorithm 65

Numerical and graphical representation of E in each level of 69 

the proposed algorithm as a function of the number of 

clusters

Numerical and graphical representation of E obtained by the 70 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for datal, when k=3

Numerical and graphical representation of E obtained by the 71 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for data2, when k=9

Numerical and graphical representation of E obtained by the 72 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for data3, when k=2

Numerical and graphical representation of E obtained by the 73 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for Iris, when k=3

Numerical and graphical representation of E obtained by the 74 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for Crude Oil, when k=3

Numerical and graphical representation of E obtained by the 75 

K-means and the proposed Algorithm (KDT-Means) for five 

runs for Vowel, when k=6

Basic steps of the Bees Algorithm 88

Numerical and graphical representation of E obtained by the 94

K-means, GA and the Bees-based Algorithms for five runs for

xii



Figure 4.2b

Figure 4.2c

Figure 4.2d

Figure 4.2e

Figure 4.2f

Figure 4.2g

Figure 4.2h

Figure 5.1 

Figure 5.3a

D ata l, when K= 3

Numerical and graphical representation of E obtained by the 95 

K-means, GA and the Bees-based Algorithms for five runs for 

Data2, when K= 9

Numerical and graphical representation of E obtained by the 96 

K-means, GA and the Bees-based Algorithms for five runs for 

Data3, when K- 3

Numerical and graphical representation of E obtained by the 97 

K-means, GA and the Bees-based Algorithms for five runs for 

Iris, when K- 3

Numerical and graphical representation of E obtained by the 98 

K-means, GA and the Bees-based Algorithms for five runs for 

Vowel, when K= 6

Numerical and graphical representation of E obtained by the 99 

K-means, GA and the Bees-based Algorithms for five runs for 

Crude Oil, when K= 3

Numerical and graphical representation of E obtained by the 100 

K-means, GA and the Bees-based Algorithms for five runs for 

Control Charts, when K=6

Numerical and graphical representation of E obtained by the 101 

K-means, GA and the Bees-based Algorithms for five runs for 

Wood Defects, when K~ 13

Basic steps of the proposed fuzzy clustering algorithm 111

Numerical and graphical representation of J obtained by the 114 

C-means, the GA and the Bees-based Algorithm for five runs

xiii



Figure 5.3b

Figure 5.3c

Figure 5.3d

Figure 5.3e

Figure 6.1 

Figure 6.2a

Figure 6.2b

Figure 6.2c

Figure 6.2d

for Iris, when K= 3

Numerical and graphical representation of J obtained by the 115 

C-means, the GA and the Bees-based Algorithm for five runs 

for Vowel, when K= 6

Numerical and graphical representation of J obtained by the 116 

C-means, the GA and the Bees-based Algorithm for five runs 

for Crude Oil, when K= 3

Numerical and graphical representation of J obtained by the 117 

C-means, the GA and the Bees-based Algorithm for five runs 

for Control Charts, when K= 6

Numerical and graphical representation of J obtained by the 118 

C-means, the GA and the Bees-based Algorithm for five runs 

for Wood Defects, when K-13

Basic steps of the Recursive Bees Algorithm 125

Numerical and graphical representation of E, J obtained by 129 

the Bees-based Algorithm, and the R-Bees for five runs for 

Iris, when K=3

Numerical and graphical representation of E, J obtained by 130 

the Bees-based Algorithm and the R-Bees for five runs for 

Vowel, when K=6

Numerical and graphical representation of E, J obtained by 131 

the Bees-based Algorithm and the R-Bees for five runs for 

Crude Oil, when K=3

Numerical and graphical representation of E, J obtained by 132 

the Bees-based Algorithm and the R-Bees for five runs for

xiv



Figure 6.2e

Figure 6.3a

Figure 6.3b

Figure 6.3c

Figure 6.3d

Figure 6.3e

Control Charts, when K=6

Numerical and graphical representation of E, J obtained by 133 

the Bees-based Algorithm, the R-Bees for five runs for Wood 

Defects, when K=13

Numerical and graphical representation of the time (seconds) 136 

required by the Bees-based Algorithm and the R-Bees for 

five runs for Iris, when K=3

Numerical and graphical representation of the time (seconds) 137 

required by the Bees-based Algorithm and the R-Bees for 

five runs for Vowel, when K=6

Numerical and graphical representation of the time (seconds) 138 

required by the Bees-based Algorithm and the R-Bees for 

five runs for Crude Oil, when K=3

Numerical and graphical representation of the time (seconds) 139 

required by the Bees-based Algorithm and the R-Bees for 

five runs for Control Charts, when K= 6

Numerical and graphical representation of the time (seconds) 140 

required by the Bees-based Algorithm and the R-Bees for 

five runs for Wood Defects, when K= 13

XV



68

76

77

78

78

93

102

103

113

119

128

134

135

141

142

152

LIST OF TABLES

Parameters used in the clustering experiments

Clustering results on the artificial datasets: datal, data2, and

data3

Clustering results on the real datasets: Iris, Crude Oil and 

Vowel

Number of nearest neighbour (ngh) queries in the clustering 

algorithms for the artificial datasets

Number of nearest neighbour (ngh) queries in the clustering 

algorithms for the real datasets

Initial parameters used in the crisp clustering experiments 

Summary of results for the values of E obtained for the three 

crisp clustering algorithms for artificial datasets 

Summary of results for the values of E obtained for the three 

crisp clustering algorithms for real datasets 

Initial parameters used in the fuzzy clustering experiments 

Comparative values of J obtained by the C-means, the GA 

and the Bees-based algorithms for five real datasets 

Parameters used in the clustering experiments 

Results obtained for E for the crisp clustering algorithms 

Results obtained for J for the fuzzy clustering algorithms 

Time (seconds) taken by each crisp clustering algorithm 

Time (seconds) taken by each fuzzy clustering algorithm 

Datasets used in the experiments

xvi



ABBREVIATIONS

ART Adaptive Resonance Theory

BS Binary Splitting

CCIA Cluster Centre Initialisation Algorithm

CLARA Clustering LARge Applications

CLARANS Clustering Large Applications based upon RANdomised Search

CLIQUE CLustering In QUEst

DBMSDC Density-Based Multi-Scale Data Condensation

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DENCLUE DENsity-based CLUstEring

DM Data Mining

DSBS Direct Search Binary Splitting

EM Expectation Maximisation

EPFCM Evolutionary Programming based FCM

FCM Fuzzy Clustering Method

FFCM Fast Fuzzy Clustering Method

GA Genetic Algorithm

IFCM Improved Fuzzy C-Means

KDD Knowledge Discovery in Databases

Kd-tree K-dimension tree

KKZ Katsavounidis, Kuo, and Zhang

MCAR Missing Completely At Random

MR-Kdtree Multiple Resolution K-dimension tree

NGH NeiGHbours

xvii



OPTICS Ordering Points To Identify the Clustering Structure

PAM Partitioning Around Medoids

PCA Principle Component Analysis

QPSO Quantum-behaved Particle Swarm Optimisation

R-Bees Recursive Bees

SCS Simple Cluster Seeking

SOM Self Organising Map

STING STatistical INformation Grid

xviii



CHAPTER 1

Introduction

1.1 Background

Large amounts of data are produced every day as a result of activities in such 

different areas as engineering, marketing, medicine, education, etc. Even in 

just one area, such as engineering, data can come from multiple sources, be 

of many different types and be in numerous formats.

Ten years ago the main challenge was how to save and handle these data 

and as a result data warehouses (Ponniah 2001) were introduced. A 

subsequent and important challenge was how to refine and analyse the data, 

to extract useful information and knowledge from it to support decision 

making. The amount of data to be analysed is greater than any human can 

cope with and this led to the development of data mining.

Data mining (Han and Kamber 2006) is a complex topic, and links with many 

other disciplines such as computer science, engineering and manufacturing. It 

adds value to computational techniques from statistics, machine learning and 

pattern recognition.
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Data clustering, which is the division of data into groups of similar objects 

(Zhijie et al. 2005), is a data mining and machine learning task. It is often used 

as a pre-processing technique in data mining. The clustering problem is 

difficult and has been addressed in many contexts and by researchers in 

many disciplines.

In general, data clustering is divided into crisp and fuzzy clustering. Here, the 

term “crisp clustering” is used to indicate a clustering process in which each 

data point belongs to one cluster, while “fuzzy clustering” indicates a 

clustering process in which each data point can belong to more than one 

cluster at the same time.

The K-means and C-means algorithms are the best known ones for crisp and 

fuzzy clustering, respectively. These methods suffer from a number of 

disadvantages, such as instability and, in the case of the K-means algorithm, 

the large numbers of neighbourhood searches required. There is also, 

trapping at local optima, which is a problem with both algorithms.

The main aim of this work is to improve the performance of the K-means and 

C-means clustering algorithms by introducing an improved data structure and 

other techniques to overcome some of the associated disadvantages.
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1.2 Research Aim and Objectives

The overall aim of this research was to test the hypothesis that a new efficient 

data structure and optimisation tool called the Bees Algorithm can be used to 

accelerate and enhance the process of clustering in both the K-means and C- 

means algorithms.

The main research objectives were as follows:

• To overcome the instability and improve the neighbourhood search in 

the K-means algorithm by using an improved Kd-tree as an efficient 

data structure for data clustering.

• To avoid the local optima problem of the K-means and C-means 

algorithms by combining a novel optimisation method called the Bees 

Algorithm with both of them.

• To improve the local search procedure of the Bees Algorithm by using 

the concept of recursion and applying the proposed method to crisp 

and fuzzy clustering.

1.3 Research Methodology

To reach the above objectives, the following methodology was adopted:

3



• Literature Review - where related papers for each topic were studied to 

identify research trends and potential solutions.

• Experimentation - where the performance of each of the proposed 

algorithms was tested and compared against that of other clustering 

methods to assess their effectiveness.

1.4 Thesis Organisation

This thesis is organised as follows:

Chapter 2 briefly reviews data mining and gives an introduction to data 

clustering. Clustering algorithms are described and their advantages and 

disadvantages are discussed.

Chapter 3 presents a new clustering algorithm using an improved data 

structure based on the Kd-tree to overcome a number of the K-means 

algorithm’s disadvantages.

Chapter 4 introduces the application of a novel optimisation technique called 

the Bees Algorithm to clustering. A new improved clustering method based on 

a combination of the Bees Algorithm and the K-means algorithm to solve the 

problem of local optima in crisp clustering is described.

The Bees Algorithm again is used with the C-means algorithm to solve the 

problem of local optima in fuzzy clustering. The combined algorithm is 

described in Chapter 5.

4



Chapter 6 describes an improvement to the local search procedure of the 

Bees Algorithm by using the concept of recursion. The chapter gives the 

results obtained in applying the algorithm to clustering.

Chapter 7 concludes the thesis and proposes directions for further research.

Appendix A describes all the datasets used in the research.
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CHAPTER 2

Literature Review

2.1 Data Mining

Data Mining (DM) is the extraction of knowledge from data (Han and Kamber 

2006) and it is considered as a step in the process of Knowledge Discovery in 

Databases (KDD) (Figure 2.1). It may also be defined as the process of 

automatically searching in large volumes of data for patterns to extract hidden 

facts and predictive information.

DM is used in companies and organisations to determine the relationships 

amongst internal and external factors. For example, DM can enable 

companies to determine the impact of customer satisfaction on sales by 

extracting useful information that help in decision making (Lejeune 2001).

There are many other applications of DM, such as: Fraud Detection (Kirkosa 

et al. 2007), Credit Risk Analysis (Kotsiantis 2007), Sky Survey Cataloguing 

(Fayyad et al. 1996a) and Text Mining (Feldman and Sanger 2006), etc.

6
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Figure 2.1 -  Data mining as a step in the process of KDD (Fayyad et al.

1996b)
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DM algorithms are used to perform difficult tasks associated with many 

challenges that vary between the nature, the size and the level of noise in the 

processed data. The DM stages are summarised in Figure 2.2.

In the first phase, business and data understanding, a thorough study of 

available data, knowledge structure, main requirements and existing systems 

in the target domain is performed. Then a number of techniques are used in 

the data preparation stage to transform and prepare the data for knowledge 

extraction in the next stage. That includes (Pyle 1999):

- Dealing with missing values in the data by replacing them with the most 

common value of the attribute or by using another technique such as 

imputation (Fay 1993), Expectation Maximisation imputation (McLachlan 

and Krishnan 1996), indicator variable (Garavaglia and Sharma 1998), full 

information maximum likelihood estimation (Waarts et al. 1991), listwise 

detection (Roth 1994), pairwise deletion (Marsh 1998), mean substitution 

(Roth 1994), MPIus (Kaplan 2002), MCAR (Missing Completely At 

Random) (Roth 1994) or censoring (Berthouex and Brown 2002).

- Avoiding redundancy which happens as a result of combining data from 

different sources. This can be detected by correlation analysis (Arnold and 

Wollenberg 2006).

- Applying a suitable noise handling technique to reduce the noise which 

might exist in the data (Teng 2001).

8
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Figure 2.2 - The process model of DM (Chapman et al. 2000)
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- Standardising or normalising the values of the attributes in the dataset 

according to the requirements of the next stage. This takes place by 

making the average value of the attribute equal to 0 and its standard 

deviation to 1 in the case of standardisation, or making its value in the 

range of 0 to 1 in the case of normalisation.

- Dividing continuous attributes into discrete, equal or variable intervals, if 

required.

- Extracting or constructing a number of features when there is a need to 

improve the overall performance of the DM process.

- Filtering or reducing the number of dimensions by keeping the attributes of 

rich information and eliminating useless ones. This can be performed by 

applying a feature selection technique (Liu and Motoda 2007).

- Filtering or reducing data instances to decrease the amount of data to be 

handled by using a data sampling method (Ardilly and Tille 2006) or other 

instance reduction technique (Fodor 2002).

In the data modelling stage, various mining functions are applied according 

to the main requirements which were defined in the first stage. This can be 

performed by applying one or more of DM tasks where each of these tasks 

can utilise a number of different techniques. The selection of the appropriate 

technique is important to achieve the main purpose and is reliant on the 

experience of the DM expert. DM tasks include (Fayyad et al. 1996b):

i. Classification is defined as a function that maps data items into a number

of pre-defined classes or groups. Classifiers have two stages (Nguyen 

2004): the training stage in which the classifier learns from a set of

10



examples forming the target dataset and the final stage in which the 

classifier is used to classify the rest of the data. This function has many 

applications in: medical image analysis (Kim et al. 2008), toxicogenomics 

(Hamadeh and Afshari 2004), Geostatistics, speech recognition (Miyajima 

et al. 2000), handwriting recognition (Biem 2006), biometric identification 

(Jain et al. 2004), spam filtering (Sahami et al. 1998), internet search 

engines (Yeh et al. 2008) and credit scoring (Baesens et al. 2002).

ii. Regression is the process of learning a function to map data items to real

valued prediction variables (Abonyi and Feil 2007). It starts with a dataset 

of known target values and develops a formula based on observed data to 

predict the required information. In other words, it is used to develop a 

mathematical formula which can predict future behaviour based on 

observed data. For example, a regression could be used to predict the 

value of a car based on its specifications, obtained from observed data for 

many other types of cars. Regression also has many applications in 

industrial organisational psychology (Bobko 2001) and household 

expenditure (Branscum et al. 2007).

iii. Clustering is a common descriptive task which seeks to identify a finite 

set of categories or clusters to describe the data so that similar data points 

belong to the same cluster (Han and Kamber 2006). In other words, the 

main aim of this function is to find groups of high quality where inter

clusters are similar while intra-clusters are dissimilar. Clustering, unlike 

classification, is used to segment data into groups which were not 

previously specified. More details about data clustering are mentioned in 

next section.
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iv. Association is a function that aims to discover the rules of relationships 

amongst co-occurring items (Han and Kamber 2006). In other words it 

finds a model that describes significant dependencies between variables 

which might exist at the structural or the quantitative level. The structural 

level provides information about the local dependence of variables on 

each other, while the quantitative level explains the strengths of the 

dependencies using a numerical scale. Association has many applications 

in market basket analysis (Berry and Linoff 2004) and in the discovery of 

business trends (Dong and Li 1999).

Modelling stage is often performed in a trial and error manner.

Post-processing and evaluation stage, in which a validation and refining of 

the proposed results is performed, is coupled with the modelling stage. Both 

of them can be repeated many times.

The final DM solution is deployed in the knowledge deployment stage. This 

can be made over the web or any local network based on the requirements of 

the solution owner.

Data clustering is one of the most important tasks of the data mining module, 

and this research focuses on improvements to its algorithms as a primary 

objective.

12



2.2 Data Clustering

The main goal of clustering is the determination of the intrinsic groupings in a 

set of unlabeled data, which makes the history of data clustering as old as the 

history of mankind. The clustering problem, which is also called grouping, 

occurs in many disciplines because of its broad appeal in manufacturing and 

its importance as a main discipline within DM tasks. Clustering has been 

defined in several ways:

- “Clustering is the unsupervised classification of patterns (observations, 

data items, or feature vectors) into groups (clusters)” (Jain et al. 1999).

- “Clustering is finding groups within a certain set of data in which each 

group contains objects similar to each other and different from those of 

other groups” (Han and Kamber 2006).

Data clustering is also known by a number of other names, including: 

clustering, cluster analysis, botryology, numerical taxonomy, typological 

analysis and automatic classification.

Although clustering has its main usage in DM, it also has an immense number 

of applications in many fields including: image analysis (Kersten et al. 2005), 

bioinformatics (Au et al. 2005) and market segmentation (Kuo et al. 2002). 

Data clustering also plays an important role in the field of information retrieval 

(Smith et al. 1997). It is also extremely useful in scientific and engineering 

analysis (Au et al. 2005; Fisher et al. 1993; Kersten et al. 2005; Kuo et al. 

2002; Xu 2005), as well as in many other applications such as: data cleaning,

13



exploratory analysis (Klosgen and Zytkow 2002) and in web mining (Xu 2005; 

Zamir et al. 1997).

Similarity of elements within the same cluster is the most important 

measurement in data clustering. It is often assessed according to a distance 

measure; a number of elements are assessed as similar depending on the 

distance between them. Because of its popularity, the Euclidean distance is 

adopted as a distance measurement parameter in this research. There are 

other possible metrics (Anderberg 1973; Diady and Simon 1976; Jain and 

Dubes 1988) which can be used in data clustering, including the Manhattan 

distance (Krause 1986), Mahalanobis distance (Mahalanobis 1936) and 

Hamming distance (Hamming 1950).

The sum of the square of the distance from each data point to the centre of 

the cluster to which it belongs is the most used criterion in cluster analysis 

(Aloise 2009; Merle et al. 2000). Clustering algorithms try to divide the dataset 

into ‘/c* clusters and minimise this sum (Equation 2.1). The less the value of 

this sum the better is the clustering.

j  = i / = i

Where:

\\x ( j)  _ c II2
II 1 J II is a chosen distance measure between a data point x, ®

in the cluster (/) and the cluster centre Cy.

E ( j )
2

Equation 2.1

n
j is the number of data points in the cluster c7.
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2.3 Data Clustering Algorithms

Many clustering algorithms have been developed. It is difficult to have a clear 

classification for them because of their similarities and the ways they overlap, 

but it is possible to divide them into five categories (Pham and Afify 2007), 

see Figure 2.3: Partitioning methods, Hierarchical methods, Density-based 

methods, Grid-based methods and other methods.

2.3.1 Partitioning Methods

The common idea of these algorithms is that they separate data points into ‘/c1 

disjoint clusters (Jain et al. 1999). First they create an initial set of 7c1 

partitions, where the parameter ‘/c* is the number of partitions to construct; 

then they use an iterative relocation technique that attempts to improve the 

partitioning by moving objects from one group to another. Typical partitioning 

methods include K-means (Jain and Dubes 1988; MacQueen 1967), K- 

medoids (Kaufman and Rousseeuw 2005), Expectation Maximisation 

(Dellaert 2002; McLachlan and Krishnan 1996) and their improvements.

The time required for these algorithms to give results is typically of the order: 

0(N  log N). This makes them very efficient clustering algorithms for small 

datasets. The main disadvantages of these methods are: the initialisation 

stage which can affect the results of the clustering, the need to specify the 

parameter 'K which is the number of clusters and that they can become 

trapped at local optima.
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Figure 2.3 -  A classification of the main clustering techniques (Pham and Afify 2007)



2.3.1.1 The K-means Algorithm

The K-means algorithm is used to group objects into ‘/c1 number of sets based 

on their attributes (features). This is achieved by minimising ‘E , which is 

defined by Equation 2.1. The main steps of the algorithm are listed in Figure 

2.4.

Advantages:

• With a large number of variables, the K-means algorithm is almost 

computationally faster than other clustering algorithms (if ‘/c* is small).

• It can produce tighter clusters compared to hierarchical clustering 

algorithms, especially if the clusters are globular.

Disadvantages:

• It is almost difficult to predict the value of 7c\ which is the only parameter 

needed for this algorithm.

• It does not work well with non-globular clusters.

• Different initial partitions for the data can lead to different final clusters.

More details about this algorithm and its improvements are discussed in 

Section 2.4.
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1. Place ‘/c1 points into the space represented by the 

objects that are being clustered. These points 

represent initial group centres.

2. Assign each object to the group that has the closest 

centre.

3. When all objects have been assigned, recalculate 

the positions of the ‘/c1 centres.

4. Repeat Steps 2 and 3 until the centres no longer 

move.

Figure 2.4 -  Main steps of the K-means algorithm (MacQueen 1967)
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2.3.1.2 The K-medoids Algorithm

The K-medoids algorithm (Kaufman and Rousseeuw 2005) is similar to the K- 

means algorithm. It chooses the most central ‘/c1 data points in each cluster to 

represent the clusters and calls them “medoids”. The algorithm then starts a 

loop of operations to form the best clusters. All of these steps are listed in 

Figure 2.5.

Advantages: It is very useful for small datasets.

Disadvantages: It is a time consuming method.

A number of different improvements have been developed for the K-medoids 

algorithm such as PAM (Partitioning Around Medoids) (Kaufman and 

Rousseeuw 2005), CLARA (Clustering LARge Applications) (Kaufman and 

Rousseeuw 2005), CLARANS (Clustering Large Applications based upon 

RANdomised Search) (Ng and Han 1994) and the improved CLARANS 

(Ester et al. 1995).

PAM starts by selecting random medoids and then repeatedly swaps each 

medoid with one of the other data points, to see if this can improve the 

clustering quality (Kaufman and Rousseeuw 2005). PAM has the drawback 

that it is inefficient with large datasets (Han et al. 2001). To overcome this 

disadvantage, CLARA was proposed in (Kaufman and Rousseeuw 2005). It 

applies PAM to samples of the dataset and then gives the best clustering of 

these samples. Another more efficient clustering algorithm, CLARANS, that 

uses random search was proposed in (Ng and Han 1994) and then improved 

in (Ester et al. 1995).
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Repeat

1. Assign each data point to the most similar (closest) 

medoid.

2. Select new medoids list candidates randomly.

3. Calculate the total cost of using the candidates as 

medoids.

4. If the cost of using new medoids is less than the 

cost of using current medoids then use the new set 

of medoids.

Until (There is no change in medoids)

Figure 2.5 -  Main steps of the K-medoids algorithm (Han and Kamber 2006)
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2.3.1.3 Expectation Maximisation Algorithm (EM)

EM (Dellaert 2002) is an iterative optimisation method used in statistics to 

maximise the posterior probability of the parameters 6 given the data U,

marginalising over the hidden variables J over the space T (Equation 2.2):

O' = argm axV p(0,J \ U)^  5 I '  Equation 2.2

The algorithm alternates between two major steps: the expectation step (E- 

step) in which it computes the probability of a data point ‘x1 belonging to a 

cluster (Equation 2.3) based on the estimated parameters; and the 

maximisation step (M-step) in which it computes the maximum likelihood 

estimations of the parameters (Equation 2.4) by maximising the expected 

likelihood found on the E-step.

The algorithm (Figure 2.6) starts by initialising the distribution parameters and 

then it repeats the two steps (E and M) by using the parameters found in the 

M-step to begin another E-step until convergence or the termination condition 

is met.

'  . / )  Equation 2.3

where '/? / is the mixture weight for cluster and ‘ p (x \ j ) ’ is the mixture 

model for cluster
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L = 2 > g /> (x J  = XlOg YjPjP^n \ J)
n=1 n=1 ^7=1 y

Equation 2.4

where ‘A/1 is the number of data points.

Advantages: The algorithm is applicable to both categorical and numerical 

attributes and at the same time it has a strong statistical basis (Pham and 

Afify 2007).

Disadvantages: This method can easily be trapped at local minima. To 

overcome this problem, the algorithm has to scan the dataset many times.

McLachlan and Krishnan discussed the convergence properties of the EM in 

(McLachlan and Krishnan 1996). A new scheme for the EM algorithm was 

proposed in (Bradley et al. 1998b), in which the authors applied the EM steps 

to samples of the dataset instead of dealing with the whole dataset. The data 

points in each sample are compressed to produce a number of representative 

statistics which are used to update the parameters when the next sampling is 

considered (Pham and Afify 2007).
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Initialise parameters.

Repeat

1. E-step: Compute 'p(x)’ for all ‘x* in the dataset using 

Equation 2.3.

2. M-step: Compute the maximum likelihood 

estimation of the parameters and update the 

Gaussian distributions for each cluster Tc* using 

Equation 2.4.

Until (Convergence)

Figure 2.6 -  Main steps of the EM algorithm (Pham and Afify 2007)
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2.3.2 Hierarchical Methods

Hierarchical methods refer to a technique in clustering which creates a 

hierarchical decomposition of the given set of data points’ clusters recursively. 

The methods can be classified as being either agglomerative (bottom-up) 

clustering or divisive (top-down) clustering.

In agglomerative clustering (Johnson 2006), Figure 2.7a, each data point is 

assigned to a single cluster, so that if there are ‘AF data points, then ‘A/1 

clusters will be created with one data point in each one.

Then a series of grouping processes takes place by finding the closest pair of 

clusters and mixing them together into one cluster until all data points are 

grouped in one single cluster or until a specific threshold is met. These steps 

are summarised in Figure 2.7b.
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/ -

Figure 2.7a - Agglomerative Clustering

Repeat:

1. Assigning each data point to a cluster

2. Mix the closest two clusters into one cluster

Until (there is one single cluster)

Figure 2.7b -  Main steps of agglomerative clustering (Jain et al. 1999)
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In divisive clustering (Jain et al. 1999), Figure 2.8a, all data points are 

assigned to one single cluster. Then a series of division processes takes 

place by finding the maximum distance between any two data points and 

taking these two data points as seeds for two new clusters which will be 

created by dividing the parent cluster into two. All other data points are placed 

into one of the new created clusters based on the closest seed point. The 

whole process is repeated until each data point belongs to only one cluster or 

until a specific threshold is met. These steps are summarised in Figure 2.8b.

Advantages: Hierarchical algorithms are useful and informative for data 

display by producing an ordering of the data points. At the same time they do 

not require the number of clusters to be set as a parameter and the algorithm 

can be stopped at any time.

Disadvantages: In spite of their simplicity, hierarchical algorithms need to 

perform a large number of "nearest-neighbours" queries for the points in the 

dataset. If the data has ‘of dimensions and there are ‘n’ points in the dataset, 

the cost of a single iteration is O(kdn) where ‘/c1 is the number of clusters. As 

one would have to run several iterations, it is generally not feasible to run the 

algorithm for a large number of data points. Apart from this, the hierarchical 

clustering algorithms can never undo what was done previously.
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Figure 2.8a - Divisive Clustering

Repeat:

1. Assigning all data point to a one cluster.

2. Find the farthest two points and take them as seeds 

for division.

3. Divide the cluster into two and assign other data 

points to clusters based on the closest seed point.

Until (each data point is in a single cluster)

Figure 2.8b -  Main steps of divisive clustering (Jain et al. 1999)
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2.3.3 Grid-based Methods

These methods form a grid structure and perform the clustering on it by 

quantising the attribute space into a specific number of cells (Han and 

Kamber 2006).

One of the most famous algorithms in this category is STING (STatistical 

INformation Grid) (Wang et al. 1997) which uses the grid cell, Figure 2.9a, to 

store a number of useful statistical information to be used in the clustering 

process. It starts (Figure 2.9b) by dividing the spatial area into rectangular 

cells, then partitioning each cell into a specific number of smaller cells 

according to the required level of resolution. It then calculates a set of 

parameters for each cell. Then for each layer, starting from the layer with the 

smallest number of cells and for each cell in the layer, the algorithm computes 

a confidence interval. It then removes the irrelevant cells in each layer.

Another two famous algorithms in this category are “WaveCluster” 

(Sheikholeslami et al. 1998) which uses the wavelet transform to perform the 

clustering and CLIQUE (CLustering In QUEst) (Agrawal et al. 2005) which is 

used for clustering in high-dimensional data spaces depending on a 

combination of grid and density-based approaches.
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1st level (top level) could 
have only one cell.

A cell of (/-l )th level 
corresponds to 4 cells of 
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Figure 2.9a -  Hierarchical structure in STING (Wang et al. 1997)
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1. Determine a layer to begin with.

2. For each cell of this layer

Calculate the confidence interval of probability that this cell is relevant.

3. From the interval calculated above, label the cell as relevant or not relevant.

4. If (this layer is the bottom layer) Then Go to Step 6. Else Go to Step 5.

5. Go down the hierarchy structure by one level.

Go to Step 2 for those cells that form the relevant cells of the Higher level 

layer.

6. If (the specification is met) Then Go to Step 8. Else go to Step 7.

7. Retrieve those data points falling into the relevant cells and do further 

processing.

Return the results that meet the requirement of the query. Go to Step 9.

8. Find the regions of relevant cells and return those regions that meet the 

requirement of the query. Go to Step 9.

9. Stop.

Figure 2.9b -  Main steps of the STING algorithm (Wang et al. 1997)
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In WaveCluster (Sheikholeslami et al. 1998), Figure 2.10a, clusters are 

formed by dealing with the data points as multi-dimensional signals 

representing the feature space using a single processing technique called the 

wavelet transform method. This method resolves each signal into different 

frequency sub-groups and finds the high and low frequency groups which 

represent clusters and outliers respectively.

The CLIQUE algorithm, Figure 2.10b, divides the data space into separate 

rectangular cells where each cell contains a set of data points. It determines 

the dense cells, which have a number of data points greater than a specified 

number and applies a depth-first search algorithm to find sets of connected 

high density cells to create the clusters.

Advantages: These methods take a short processing time and are able to 

handle outliers (Pham and Afify 2007). The complexity is 0{k) where ‘/c* is the 

number of cells in the lowest layer.

Disadvantages: They have the limitations that they are less effective when 

there is large number of dimensions and it is difficult to detect clusters of non

horizontal or vertical boundaries.
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1. Quantise feature space, and then assign objects to the 

units.

2. Apply wavelet transform on the feature space.

3. Find the connected components (clusters) in the sub

bands of transformed feature space, at different levels.

4. Assign label to the units.

5. Make the lookup table.

6. Map the objects to the clusters.

Figure 2.10a -  Main steps of the WaveCluster algorithm (Sheikholeslami et al.
1998)
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1. Identification of subsets that contain clusters.

2. Identification of clusters.

3. Generation of minimal description for the clusters.

Figure 2.10b -  Main steps of the CLIQUE algorithm (Agrawal et al. 2005)
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2.3.4 Density-based Methods

These methods define the clusters as an arbitrary shape or region of data 

points within the data space, where each cluster is separated from other 

clusters by noise data which are low density regions (Han and Kamber 2006).

The most famous algorithm in this category is DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) (Ester et al. 1996). In this 

algorithm, the neighbourhood within a specific ‘Eps’ radius of any data point in 

a cluster has at least a specific number ‘MinPts’ of data points. The algorithm 

(Figure 2.11) repeats in each iteration, selecting any random point ‘p’ that 

does not belong to any cluster and making it the core of a cluster. It then 

expands this cluster by finding any density-reachable point from ‘p’ (Ester et 

al. 1996).

Advantages: It is less sensitive to outliers and can deal with a large number of 

data points. It is not affected by the shape of the cluster. Another interesting 

advantage is that it does not require the number of clusters in the data as a 

priori parameter.

Disadvantages: The algorithm is sensitive to the parameters ‘Eps’ and 

‘MinPts' while it is very difficult to determine them. It does not perform well on 

datasets with varying densities or with large dimensions.
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1. C = 0

2. For each unvisited point P in dataset D

3. Mark P as visited

4. Find P Neighbours (A/) within Eps radius

5. If (Size of(A/) < MinPts) Then

mark P as NOISE 

Else

C = next cluster 

// Expanding the cluster 

add P to cluster C 

For each point PP in N

If PP is not visited Then 

Mark PP as visited

Find PP Neighbours (A/A/) within Eps 

radius 

If A/A/ >= MinPts Then

N = N joined with A/A/

If PP is not yet member of any cluster Then 

add PP to cluster C

Figure 2.11 -  Main steps of the DBSCAN algorithm (Ester et al. 1996)
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OPTICS (Ordering Points To Identify the Clustering Structure) is a method 

developed to overcome the weakness of DBSCAN in determining the Eps, 

and ‘MinPts' parameters (Ankerst et al. 1999). It produces an ordering of data 

points to visualise the clustering results of lower values of ‘Eps’ and ‘MinPts', 

so making it easier to compute them (Pham and Afify 2007).

Despite its simpler way of determining 'Eps' and 'MinPts', OPTICS suffers 

when dealing with datasets of large number of dimensions. To help overcome 

this, a new technique called DENCLUE (DENsity-based CLUstEring) has 

been introduced (Hinneburg and Keim 1998). This algorithm starts by defining 

the overall density of points as the sum of a set of mathematical functions 

called influence functions, which describe the impact of a data point on its 

neighbours. Then it defines the clusters mathematically by finding the local 

maxima of the overall density function. Although it requires pre-defined 

parameters to start its work, this algorithm has a number of powerful 

advantages, being fast and robust to noise (Pham and Afify 2007).

2.3.5 Other Methods

Other algorithms which do not belong to any of the above mentioned four 

categories have been developed to deal with data clustering problems. These 

include: artificial neural network approaches (Carpenter and Grossberg 1991; 

Carpenter et al. 1991; Kohonen 2001), Genetic Algorithm (GA)-based 

clustering (Krishna and Murty 1999; Maulik and Bandyopadhyay 2000) and 

Fuzzy clustering (Bezdek 1981; Dunn 1973; Jang et al. 1997).
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2.3.5.1 Artificial Neural Network Approaches

Several artificial neural networks have been used for clustering. One of them 

is the SOM (Self Organising Map) (Kohonen 2001), which consists of (Figure 

2.12) an input layer that has neurons connected to each neuron in the single 

output layer (called the Kohonen layer) via connections of variable weights. 

This network can preserve the distance between clusters in a dataset, so it 

can provide a two dimensional visualising of the data. In SOM, each neuron in 

the Kohonen layer represents one of the patterns which the network can 

recognise, so that similar patterns are represented by adjacent neurons while 

different patterns are represented by distant neurons.

Another widely applicable neural network-based algorithm is called the 

Adaptive Resonance Theory (ART) (Carpenter and Grossberg 1991). This 

network (Figure 2.13) uses unsupervised learning to perform the clustering by 

selecting a cluster unit for each presented pattern and adjusting the weights to 

let the cluster unit learn the pattern, so that the degree of similarity of similar 

patterns is controlled by a vigilance parameter reset mechanism.

Using this similarity criterion, the network adds the input to one cluster if it is 

similar to members of that cluster; otherwise it creates a new cluster. In 

general, beside the time required for the network training, another main 

disadvantage of these algorithms is the difficulty in finding the suitable 

learning parameters for the network.
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Figure 2.12 -  A typical SOM structure (Kohonen 2001)

Figure 2.13 -  Basic ART structure (Carpenter et al. 1991)
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2.3.5.2 Genetic Algorithm Approaches

The capability of the Genetic Algorithm (GA) (Davis 1991), which is a well- 

known evolutionary technique, was applied (Sheikh et al. 2008) to evolve the 

proper number of clusters (Bandyopadhyay and Maulik 2002; Kudova 2007; 

Song and Park 2006) and to provide appropriate clustering (Hall et al. 1999; 

Krishna and Murty 1999; Lin et al. 2005; Lu et al. 2004; Maulik and 

Bandyopadhyay 2000).

The centres of the clusters are represented by a string of bits (chromosome). 

A collection of such chromosomes is called a population. Each population 

represents different solutions in the search space. The solution is reached 

using the stochastic search which is the core of the GA.

GA-based clustering starts by generating an initial population. Then the 

algorithm (Figure 2.14) repeats the process of evaluating the solution for the 

current population and generating a new population based on improvements 

to the current population, using a number of operations such as random 

mutation and cross-over. More details about the usage of GA for clustering 

are given in Chapter 4.
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1. Choose an initial population

2. Evaluate the fitness of each individual in the population

3. Repeat

a. Select best-ranking individuals to reproduce.

b. Breed a new generation through cross-over 

and/or mutation (genetic operations) and give 

birth to offspring.

c. Evaluate the individual fitnesses of the offspring

d. Replace worst ranked part of population with 

offspring

4. until termination: (time limit or sufficient fitness 

achieved)

Figure 2.14 -  Basic steps of the GA algorithm (Maulik and Bandyopadhyay

2000)
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2.3.5.3 Fuzzy Clustering

The idea of fuzzy clustering was initially introduced in 1969 by Ruspini 

(Ruspini 1969). Most of the clustering algorithms produce crisp clusters, 

where each data point belongs to one cluster at a time. In fuzzy clustering, 

each data point can belong to more than one cluster at the same time. In 

other words, the value of the membership function for all data points in crisp 

clustering (Figure 2.15a) has the value T  (belong to the cluster) or ‘0’ 

(Doesn't belong), while in fuzzy clustering the value of the membership 

function (Figure 2.15b) could be any value less than ‘1’ and greater than ‘O’.

The most popular algorithm in fuzzy clustering is the fuzzy C-means (FCM). 

This algorithm was developed by Dunn in 1973 (Dunn 1973) and then 

improved by Bezdek in 1981 (Bezdek 1981). After determining the number of 

the clusters as a parameter to the algorithm, the FCM (Figure 2.16) tries to 

produce fuzzy clusters and generates the membership degree of each data 

point for each of these clusters. It starts by generating initial centres randomly 

and then repeatedly updates both the centres of clusters and the membership 

degree for each data point.
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Figure 2.15a -  Membership function in Crisp Clustering (Matteucci 2003)

m  (membership function)
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Figure 2.15b -  Membership function in Fuzzy Clustering (Matteucci 2003)
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Repeat

1. Initialise the membership values U = \utj \ matrix, U {

2. At k-step: Calculate the centres vectors C(k) = [cj] with U (k)

i  =  i

3. Update U w , U(*) r r (k+1)

U U =

k = 1

f \x t -  C j

X  ; -  C k
V I K y

m  -  1

Until (||t/(A:+l) - U (k) <cr)

Figure 2.16 -  Basic steps of the C-Means algorithm (Bezdek 1981)

Where:

K: is the iteration step

G : is a termination criterion between 0 and 1

U (k): is the value of U at the kth iteration 

m : is the fuzziness degree (any real number greater than 1). 

c : is the number of clusters.
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2.4 Approaches

Because of their simplicity and popularity, the K-means and C-means 

algorithms will be at the core of this research.

2.4.1 Approaches to the K-means Algorithm

As explained earlier (Figure 2.4), the K-means algorithm starts by generating 

a random set of centres based on the required number of clusters, one centre 

for each cluster. Each data point is assigned to the cluster of the nearest 

centre. The algorithm then represents each cluster by the mean value of the 

data points which belong to it and reassigns data points to these clusters. This 

process is repeated until a specified criterion is met or convergence occurs.

This algorithm is very efficient and simple. However, it has a number of 

disadvantages, which are summarised as follows (Jain et al. 1999; Pham and 

Afify 2007):

Sensitivity: It is sensitive to noise and outliers.

Choice of initial centres: A bad choice of initial centres can have a great 

impact on both the performance and the distortion (E in Equation 2.1).

Large number of nearest neighbours (ngh) queries: It needs to perform a 

large number of (ngh) queries for the points in the dataset. This means that it 

performs many distance calculations (between points and centres). The cost
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of each single iteration is O(kdn), where ‘/c1 is the number of clusters, ‘of is the 

number of dimensions and *ri is the number of data points in the dataset.

Instability: The K-means is an unstable algorithm and can give different 

clustering results for each run because of the random initial clustering.

Trapping into local optima: The performance of the K-means algorithm can 

be measured by calculating the distortion. The lower the value of the 

distortion, the better is the clustering. In other words, the algorithm aims to 

minimise the distortion but sometimes it gets trapped at a local optimum.

Slow movement in last iterations: In the last several iterations, the centres 

move very little but at the same time many calculations are taking place, so 

these last iterations are costly with a little outcome.

Dealing with large datasets: The performance of the clustering algorithm is 

related to the volume of the dataset. In most cases it takes a long time to 

obtain a good solution when dealing with large datasets because of the large 

number of ngh queries.

The number of clusters: The number of clusters should be initially defined, 

but when this number is wrong the algorithm is forced to give unexpected 

results.

Many developments for the K-means algorithm have been proposed (Babu 

and Murty 1993; Ball and Hall 1965; Bezdek 1981; Cheung 2003; Krishna and 

Murty 1999; Kuo et al. 2005; Zhang 2001). They vary in the estimation of the
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dissimilarity, the techniques used to calculate the mean and in the choice of 

the preliminary separation.

Also many improvements have been made to overcome the speed of the 

convergence (Al-Daoud et al. 1995; Bottou and Bengio 1995; Estivill-Castro 

and Yang 2004; Fritzke 1997; Kanungo et al. 2002; Patane and Russo 2001; 

Pelleg and Moore 1999, 2000). Other improvements have focused on the 

initialisation process (Al-Daoud and Roberts 1996; Bradley and Fayyad 1998; 

Epter and M. Krishnamoorthy 1999; Yang and Luo 2005), while other 

researchers have proposed an incremental version of the K-means (Pham et 

al. 2004a). Other extensions have been introduced to enable the algorithm to 

deal with categorical data (Al-Daoud et al. 1995; Bottou and Bengio 1995; 

Estivill-Castro and Yang 2004; Fritzke 1997; Huang 1998; Kanungo et al. 

2002; Patane and Russo 2001; Pelleg and Moore 1999, 2000); or large 

datasets (Bradley et al. 1998a; Chen et al. 2005; Farnstrom et al. 2000; Jinlan 

et al. 2005; Pham et al. 2004b).

2.4.2 Approaches to the C-means algorithm

As explained in Figure 2.16, the C-means algorithm repeats a number of 

operations to find the best fuzzy clusters. Or in other words, the algorithm tries 

to find the best membership degree of each data point in all clusters.
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This algorithm is very efficient and it has many applications in different areas. 

However, it has a number of disadvantages, which are summarised as 

follows:

Sensitivity: It is sensitive to outliers.

Choice of initial centres: A bad choice of initial centres can affect the 

performance of the algorithm.

Trapping into local optima: The algorithm aims to generate the best 

membership values of data points which give the best clustering but 

sometimes it gets trapped at a local optimum.

Large number of computations: It needs to perform a large number of 

calculations to obtain a solution.

Time cost: The algorithm takes a long time to converge.

The number of clusters: The number of clusters should be initially defined in 

the algorithm.

To increase its robustness to outliers, modifications to the FCM using Lp 

norm distances was proposed (Hathaway et al. 2000).

An Improved Fuzzy C-Means (IFCM) (Kaiqi et al. 2008) was proposed to 

solve the problem of the choice of initial cluster centres and to reduce the 

computational complexity of the FCM. This algorithm uses the Quick 

Subtractive Clustering (QSC) for getting initial cluster centres. And it uses the 

mapping from pixel space to eigenvector space for modifying the object 

function therefore reducing the computational complexity.
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Another algorithm, called the Modified Fast Fuzzy C-means Algorithm for 

Image Segmentation, was also proposed (Guo et al. 2009) to overcome the 

problem of initialising clusters centres. It uses the cluster centres obtained by 

the sample density as the initial centres.

To overcome the speed of convergence in the FCM, a new algorithm that 

decreases the number of distance calculations and called FFCM (Fast Fuzzy 

Clustering Method) (Al-Zoubi et al. 2007) was proposed.

In the purpose of increasing the accuracy of the segmentation in case of 

mixed noises and increasing the processing speed, the modified FCM 

algorithm was proposed (Szilagyil et al. 2007). This algorithm extracts a 

scalar feature value from the neighbourhoods of each pixel, using a filtering 

technique that deals with both spatial and gray level distances.

GA (Alata et al. 2008) was used to determine the optimum number of clusters. 

Another algorithm called EPFCM (Evolutionary Programming based FCM) 

(Donga et al. 2009) was also proposed to find the number of clusters 

dynamically.

2.5 Proposed Solutions

The main aim of this research is to accelerate and enhance the process of 

crisp and fuzzy clustering in the K-means and C-means algorithms. This will 

depend on using an efficient data structure called the Kd-tree (K-Dimension 

Tree) and a new optimisation tool called the Bees Algorithm (Pham et al. 

2006).
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Chapter 3 introduces a new version of the K-means algorithm, based on the 

Kd-tree, to overcome a number of the K-means limitations. The proposed 

algorithm produces good clustering results without randomness.

Chapter 4 and Chapter 5 present solutions for the local optima problem in 

both the K-means and C-means algorithms, based on a novel optimisation 

algorithm called the Bees Algorithm.

Chapter 6 introduces an improvement to the Bees-based clustering algorithms 

used in Chapters 4 and 5.

2.6 Summary

This chapter reviews the main aspects of DM and its main steps. The data 

clustering process is described and its main algorithms are discussed briefly. 

The K-means and C-means algorithms, which are the most common and well- 

known data clustering algorithms, are reviewed with their main advantages 

and disadvantages. Research directions to help overcome these 

disadvantages are given.
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CHAPTER 3

Improvements to the K-means 

Algorithm based on the Kd-tree

3.1 Preliminaries

The K-means algorithm (Jain and Dubes 1988; MacQueen 1967) is a well- 

known and attractive clustering algorithm because of its simplicity and 

convergence properties.

However, as mentioned in Chapter 2, one of the drawbacks of the algorithm is 

its instability. This means that it produces different results each time because 

of the randomness of the initialisation stage. This randomness affects both the 

number of iterations needed to find a solution and the final solution itself. As a 

good initialisation process of the centres usually leads to a good final solution.

Another drawback of the K-means algorithm is the large number of neighbour 

searches required to find the data points within one cluster (to find data points 

which are close to each centre).
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This chapter gives an overview of existing techniques to deal with these 

problems. It also proposes a new method based on the Kd-tree data structure 

to overcome these problems.

The chapter is organised as follows: Section 3.2 reviews the main methods 

used to improve the initialisation of the K-means algorithm. Section 3.3 

introduces the Kd-tree and summarises its usage in data clustering. Section 

3.4 describes the proposed algorithm in detail. Experimental results and the 

analysis of the proposed algorithm are presented in Section 3.5 and Section 

3.6 respectively. Section 3.7 summarises the chapter.

3.2 Review

Many methods have been suggested to overcome the drawback of the 

initialisation stage of the K-means algorithm. One of the earliest methods was 

proposed in (Anderberg 1973). The method chooses 'K instances randomly 

from the database to be used as seeds. This increases the likelihood of 

choosing a point near the centre of a cluster simply as that is where the 

highest density of points is located. However, there is no guarantee that the 

chosen seeds will be near the centre of the same cluster. Also, the repeated 

runs of this random generation to obtain a solution make it a time consuming 

method.

Another strategy was introduced in (MacQueen 1967). It depends on choosing 

the first ‘/c* points from a random sequence in the database as preliminary
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seeds. After choosing these seeds, the next data point in the database is 

assigned to the cluster which is represented by the nearest seed. An updating 

process moves the centre of that cluster to be the mean of all points assigned 

to it. This process is repeated for all other data points in the database. The 

main disadvantage of this strategy is that it takes a very long time with large 

databases, as the mean vector must be calculated every time a new instance 

is added.

The SCS (Simple Cluster Seeking) method (Redmond and Heneghan 2007; 

Tou and Gonzalez 1977) sets the first instance in the database as the first 

seed. If the distance to the next point in the database is greater than a defined 

threshold, then this next point will be selected as a second seed. The method 

then repeats the same steps with next point where the distance to the next 

seed will be calculated based on the last selected seed. This process will be 

repeated until all other ‘/c1 seeds are selected. The main weakness of this 

method is its dependence on the order of points in the database and the 

threshold value.

The Binary Splitting (BS) method was proposed in (Linde et al. 1980). It tends 

to be a greedy technique, finding the first centre as (k=1) and using the main 

steps of the K-means algorithm. It adds a small error ‘e’ to the centre ‘c’ and 

splits it into two (c+e) and (c-e). The K-means steps are then run again until 

convergence. The cycle of splitting and convergence is repeated until the 

required number of centres is reached or until each cluster contains only one 

point. The quality of this algorithm depends on the value of ‘e \ Moreover, the
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process of performing the steps of the K-means algorithm after each splitting 

increases the complexity of the algorithm.

In 1990, Kaufman and Rousseeuw introduced a new seeding method 

(Kaufman and Rousseeuw 2005). This method selects the first seed as the 

most central point and the next seed as the one which gives the greatest 

reduction in the distortion, which is the sum of all distances from each data 

point to the centre of its cluster. The computation cost for choosing each seed 

makes this algorithm unsuitable for large datasets.

The Near Optimal Seed Selection method, based on genetic programming, 

was suggested in (Babu and Murty 1993). This algorithm aims to optimise the 

seed selection by generating populations each of which consists of various 

seed selections. The fitness, which is the distortion of the population, is 

calculated by using the same steps as the K-means algorithm with the 

proposed seeding mechanism until convergence. The algorithm generates 

new populations based on the fittest parts of the current population. This 

process is repeated a pre-specified number of times. The main drawback of 

this method is that the results vary significantly with the choice of crossover 

and mutation probabilities (Jain et al. 1999). Also, the process of running the 

K-means steps every time to calculate the fitness of each generation makes 

this method infeasible with large datasets.

In 1993, Huang and Harris proposed the Direct Search Binary Splitting 

(DSBS) algorithm (Huang and Harris 1993). This algorithm was an enhanced 

form of the BS algorithm through the use of Principal Component Analysis
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(PCA), which improves the clustering quality by choosing the '£' vector of the 

BS deterministically.

The KKZ (Katsavounidis, Kuo, and Zhang) algorithm (Katsavounidis et al. 

1994) was proposed in 1994. It starts by choosing a point on the edge of the 

data as a seed. The furthest point from this seed is selected to be the second 

seed. The third seed is the point in the dataset whose total distance from the 

first two points is a maximum. The process of choosing the furthest point from 

its nearest seed is repeated until reaching to the required number of seeds. In 

addition to being costly in terms of time, any noise in the data can lead to 

unexpected initialisations.

A new method, which depends on dividing the data space into ‘A/f disjoint sub

spaces, was proposed in (Al-Daoud and Roberts 1996). In each sub-space, 

Kj seeds are generated randomly and placed where the number of data

points in the ' j  th ’ sub-space is ’ N } ’. This method was improved by dividing

the space into two disjoint volumes and placing seeds on a regular grid in 

each sub-space. The number of seeds in each sub-space is related to its 

density. Good results were presented for this method, but only for two- 

dimensional spaces.

In 1997, creating a cloud of ‘/c* seeds around the mean of all points was 

suggested (Thiesson et al. 1997) by disarranging the mean of the points ‘/c* 

times to generate ‘/c* seeds.

Another technique was introduced in 1998 (Bradley and Fayyad 1998). It 

splits the data into 10, or so, sub-sets and runs the K-means steps on each of
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them. The results of these 10 runs which are 10 ‘/c* centre points are used as 

an input to another instance of the K-means algorithm, which runs 10 times. 

Each of these runs is initialised using the ‘/c1 final centre locations from one of 

the 10 sub-sets runs. The resulting ‘/c1 centre locations from this run are used 

to initialise the K-means algorithm for the whole dataset.

In 2004, a new method called the Cluster Centre Initialisation Algorithm 

(CCIA) was introduced (Khan and Ahmad 2004). This method uses the 

DBMSDC (Density-Based Multi-Scale Data Condensation), which estimates 

the density of the data at a point and sorts points according to their densities. 

A point is chosen from the top of the list, and all points within a radius 

inversely proportional to the density at that point are pruned. Then a next point 

from non-pruned list is selected. The method repeats the same steps until the 

remaining points become equal to a pre-specified number.

A number of algorithms with an incremental approach to improve the K-means 

algorithm have been introduced. One of them was proposed in 2000 (Pelleg 

and Moore 2000). The algorithm starts with a small number of clusters and 

then it inserts new centres in suitable positions. Despite its efficiency, this 

algorithm does not guarantee that the distortion will be minimised after 

inserting a new centre.

Nguyen (Nguyen 2004) also suggested an improved mechanism for centre 

insertion by adding a small value to the current centre and inserting the new 

centre close to the one which we want to duplicate. This algorithm generates 

good clustering but it takes a long time to be applied to the whole dataset, so 

it is not suitable for large datasets.
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3.3 The Kd-tree and Data Clustering

The Kd-tree (Bentley 1980; Friedman et al. 1977) is a multi-dimensional 

binary tree used for organising data points in the k-dimensional space in order 

to decrease the time of the nearest neighbour search. It consists of a number 

of nodes and leaves where the root node contains all data points. Each node 

in the tree has two child nodes, while leaves are without child nodes. Data 

points, or references to them, are stored in leaves only.

The Kd-tree uses splitting planes that are perpendicular to one of the 

coordinate system axes, chosen so that it goes through one of the points in 

the tree. There are several variants of the Kd-tree according to the stopping 

criterion or the applied splitting plan.

The idea of using the Kd-tree for clustering was firstly introduced by Moore 

(Moore 1999). It was used for estimating the parameters of a mixture of 

Gaussian clusters to reduce the cost of the EM-based clustering.

To speed up the K-means algorithm and make it tractable for large datasets, 

the blacklisting algorithm (Pelleg and Moore 1999; Pelleg and Moore 2000) 

was presented. This algorithm updates data points in each cluster in bulk 

instead of updating each data point in each cluster separately. It is based on a 

variant of the Kd-tree called MRKd-tree (Multiple Resolution K-dimension tree) 

(Moore and Lee 1998).

In 2002, the filtering algorithm (Kanungo et al. 2002) was introduced, the 

algorithm is an efficient variant of the K-means using the Kd-tree. It uses the
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Kd-tree as a data structure for storing multi-dimensional data points. Each 

node of this tree is represented by a box containing a set of data points. The 

root node is the box which contains all of the points set, while a leaf is a node 

which contains one point. The splitting criterion used in this algorithm depends 

on hyper-planes splitting orthogonally to the longest side of the node through 

the median coordinate of the associated points.

The filtering algorithm starts by creating the Kd-tree for the given data points. 

For each node in the tree, the algorithm maintains a set of candidate centres. 

The candidate centres for the root consist of all ‘/c1 centres. The algorithm 

propagates for each node candidates which are the closest to the mid-point of 

this node. A filtering process then starts to select the nearest centre from 

these candidates by filtering (pruning) any centre which is not closer to any 

part of the node than any others. If there is no nearest centre for all points in 

the node, then this process will recur on its children.

To improve the filtering algorithm, the fast greedy algorithm and the restricted 

filtering algorithm were proposed in (Hussein 2002). The former modified the 

boundaries of the node and the latter added a new threshold for the direct 

computation of distance and for Kd-tree splitting.

Aiming to increase the number of seeds until Tc* seeds are found, the global K- 

means algorithm (Likas et al. 2003) was proposed. This algorithm employs the 

Kd-tree to use the centres of ‘/c1 created buckets as seeds for the K-means 

algorithm. It uses a variant of the Kd-tree of a splitting criterion that splits each 

bucket along the direction of the maximum variance.
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Recently, Redmond and Heneghan described their method for initialising the 

K-means algorithm (Redmond and Heneghan 2007). The Kd-tree is used to 

perform a density estimation of the data. The algorithm then chooses seeds 

for the K-means algorithm in the highest density nodes of the Kd-tree. This 

method uses a variation of the Kd-tree which splits data along the median.

In this chapter, improvements to the basic Kd-tree structure are reported. The 

improved Kd-tree is used as a data structure to improve the choice of initial 

centres and to reduce the number of the nearest neighbour searches. It was 

also combined with an efficient centre insertion technique to propose an 

incremental operation that overcomes the instability problem of K-means 

algorithm.
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3.4 The Proposed Algorithm

3.4.1 Conventions

For convenience, in this chapter, the information in a dataset is presented in 

tree leaves, where the leaf is a node without any children. Each cluster is 

presented in a set of leaves.

Each node is represented by <Node_id, Hmax, Hmin> where the ‘NodeJcF is 

just a sequential ID, ‘Hmax1 and 'Hmin' are the upper and lower bounds of the 

node dimensions.

3.4.2 The Improved Kd-tree

The proposed algorithm depends on the operation of an inline construction for 

an improved variant of the Kd-tree. In this variant, the region of each node is 

represented by a hyper-rectangle identified by two vectors ‘Hmax’ and ‘Hm/V?’.

When creating a new node, the algorithm calculates a number of attributes for 

the node and uses them in the next steps to decrease the mathematical 

calculations required in each step. The new suggested structure includes a 

number of additional attributes compared to those used in the filtering and fast 

greedy algorithms to make the computing process faster. Each node in the 

proposed structure has the following attributes:

• nodejd: a unique number for each node in the tree.

• cluster_id: the ID of the cluster to which the node belongs.

• density: the density of the node.
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• items_number: the number of items in the node.

• total_sum: the sum of all items in the node.

• HMax: the array of the upper bounds of the node dimensions.

• HMin: the array of the lower bounds of the node dimensions.

• items: a list of items’ indexes in the node.

• left_child: a pointer to the left child of the node.

• right_child: a pointer to the right child of the node.

These attributes of each node need to be computed just once when the node 

is created.

This tree is further improved by implementing a new splitting method that is 

suitable for clustering. The splitting point is selected to be the average of the 

farthest two neighbouring data points in that dimension (Figure 3.1a), and 

happens to the widest dimension every time the algorithm wants to split a leaf.

The mechanism of assigning a leaf lL’ to a cluster is simple (Figure 3.1b). This 

mechanism, is illustrated in detail in (Kanungo et al. 2002). It depends on the

extreme point ‘p’ in the direction v = c2 ~ ci of the leaf ‘L’ and the two clusters’ 

centres ‘c / and 'c i . By calculating the distance from ‘p’ to ‘Ci’ and ‘c i, it will 

be known which of ‘c i  and ‘02’ is closer to ‘U and whether all the data points 

in ‘U belong to the cluster of centre ‘c i  or ‘C2’.
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W idest dimension
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Figure 3.1a -  The proposed new splitting method for a node.
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The extreme point ‘p’ can be determined as the corner of the leaf, as follows:

Where:

p (d ) : is the coordinate ofp  in dimension (d). 

c,{d) : is the coordinate of Ct in dimension (d).

The proposed algorithm is an incremental method and it uses an efficient 

initialisation method. It was necessary to propose a new tree building method 

of a dynamic construction in runtime.

Unlike the filtering, restricted and fast greedy algorithms, the proposed 

algorithm does not create the whole tree starting from all data points in the 

root node and continuing until each node has one data point (e.g., the filtering 

algorithm), nor creating the whole tree with nodes until a pre-defined threshold 

(a specific number of items in each node) is met (e.g., the fast greedy 

algorithm). The proposed algorithm starts with one node that contains all data 

points. According to the required number of clusters, the algorithm decides 

whether to continue the splitting process for each node separately, or to stop.

Hma x(d)

Hmin(c/), Otherwise
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Y

Figure 3.1 b -  The mechanism of assigning a leaf to a cluster

The extreme point (p) in 

the direction v ~ c2 ~ c i
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3.4.3 Algorithm Description

The main steps of the proposed algorithm, see Figure 3.1c, are as follows:

Step 1: the procedure starts by adding references to all data points in one 

node which is the root of the tree. When creating any node in the tree, the 

algorithm calculates the density of the node ‘density, the number of items 

‘numbe^ofjtems’, the total sum of all items in each dimension ltotal_sum' 

and the upper and lower bounds of the node dimensions tHmax> and ‘Hmiri, 

respectively.

Step 2: the algorithm finds the widest dimension of the whole node and splits 

the node into two leaves. If the widest dimension is ‘of, the algorithm then 

finds the two data points furthest apart in this dimension, and calculates the 

mean of these two data points to be the splitting point of the node.

Step 3: while the required number of clusters is not yet met, and the current 

number of clusters is equal to, or more than, the current number of leaves, 

then the lowest density leaf is split in step 3.1.

Step 3.1: the algorithm splits the lowest density leaf to produce more leaves 

to insert the new centre in one of them.

Step 3.2: the algorithm inserts a new centre to be the mean of the highest 

density leaf of the tree.

Step 3.3: the main steps of the K-means algorithm are applied using the 

created tree.
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1. Construct the first node of the tree and add all data points to that node.

2. Split the tree according to the widest dimension.

3. while(current_clusters_number < required_clusters_number) do

3.1. if (current_clusters_number >= number_of_leaves) then 

Split the lowest density leaf once according to the widest 

dimension.

3.2. Insert a new centre in the highest density leaf.

3.3. Repeat

3.3.1. Assign leaves to centres.

3.3.2. Move centres to means.

Until (no more movement)

3.4. If (any centre has no leaves) then 

3.4.1. Eliminate this centre

4. End while

Figure 3.1c -  The basic steps of the proposed Kd-tree-based algorithm
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The algorithm assigns all leaves to an appropriate centre and then each 

centre is moved to be the mean of all points of the leaves which belong to it.

Step 3.4: If any centre is inserted with no leaves belonging to it, the algorithm 

eliminates that centre.

3.5 Experiments

The algorithm was applied to three artificial datasets: datal, data2 and data3. 

It was also applied to real datasets: Iris (Asuncion and Newman 2007), Crude 

Oil (Johnson and Wichern 2001) and Vowel (Grabmeier and Rudolph 2002). 

The main characteristics of these real datasets are summarised in Appendix 

A.

The results of the proposed algorithm were compared to those of the K-means 

algorithm. The clustering criterion ‘F  (Equation 2.1 in chapter 2) was used to 

evaluate the performance of the algorithms. The smaller the value of this 

metric, the better the clustering results. All algorithms were executed many 

times. The average, minimum and maximum values of ‘F  were noted.

Table 3.1 shows the values of the parameters used in this test for each 

algorithm. Figure 3.2 shows the value of the distortion ‘F  in each level of the 

proposed algorithm when applied to the datasets.

Figures 3.3a, b, c, d, e and f show the stability of the proposed algorithm 

compared to that of the K-means algorithm by giving the value of ‘F  obtained
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by the K-means and the proposed algorithm for five runs for datal, data2, 

data3, Iris, Crude Oil and Vowel datasets, respectively.

The value of the distortion of the proposed algorithm was compared to that of 

the K-means algorithm in Tables 3.2a and b.

As the proposed algorithm is also intended to reduce the number of nearest 

neighbour searches, Tables 3.3a and b list the number of distance 

calculations between data points and cluster centres in each dataset for both 

the K-means and the proposed algorithms:

All the tests were conducted on a Pentium-IV 2.40GHz machine with 1024MB 

RAM. Microsoft Visual Studio version 6 C compiler on Windows XP was used 

for the tests.
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Algorithm Parameters Value

The K-means 

Algorithm

Maximum number of iterations 1000

Number of clusters for each dataset
According to the 

dataset

The Proposed 

Algorithm
Number of clusters for each dataset

According to the 

dataset

Table 3.1 -  Parameters used in the clustering experiments
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Number
of

Clusters
Data 1 Data 2 Data 3 Iris Crude Oil Vowel

1 134.3 2053.3 899.8 291.4 608.6 2.537 x 106

2 70.36 1588 864.6 128.1 420.8 2.214 x106

3 47.61 1583 - 98.64 278.9 2.090 x105

4 - 1151 - - - 2.053 x105

5 - 1068 - - - 2.038 x105

6 - 989 - - - 1.519 x105

7 - 989 - - - -

8 - 975.9 - - - -

9 - 971.1 - - - -

2000

1500

co
■c5 1000i2a

500

0 -

0 2 4 6 8 10
Number Of Clusters

Figure 3.2 -  Numerical and graphical representation of E in each level of the 
proposed algorithm as a function of the number of clusters

♦— Data 1 
a ^ D a ta  2

 Data 3
 Iris

m— Crude Oil
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Run 1 2 3 4 5

The K-means 
Algorithm 62.00 51.01 67.17 63.98 54.81

The Proposed 
Algorithm

47.61 47.61 47.61 47.61 47.61

65 -

60 -

|
?  55to
Q

50 -

45 -

3 41 2 5

Run

■ K-means 

'KDT- Means

Figure 3.3a -  Numerical and graphical representation of £  obtained by the K-
means and the proposed Algorithm (KDT-Means) for five runs for da ta l, when
k=3.
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Run 1 2 3 4 5

The K-means 
Algorithm 917.4 950.6 908.9 1006 976.2

The Proposed 
Algorithm

971.2 971.2 971.2 971.2 971.2

1000 -

980 -

cot
o

960 -

<oQ
940 -

920 -

900
1 2 3 4 5

Run

- K-means 
KDT-Means

Figure 3.3b -  Numerical and graphical representation of E  obtained by the K-
means and the proposed Algorithm (KDT-Means) for five runs for data2, when
k=9.
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Run 1 2 3 4 5

The K-means 
Algorithm 1203 1105 1239 1224 1054

The Proposed 
Algorithm

864.6 864.6 864.6 864.6 864.6

1250

1200 -

1150 -

1100 -

§ 1050 -

1000 -

950 -

900 -

850 -

800
1 2 3 4 5

Run

■ K-means
■ KDT-Means

Figure 3.3c -  Numerical and graphical representation of E  obtained by the K-
means and the proposed Algorithm (KDT-Means) for five runs for data3, when
k=2.
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Run 1 2 3 4 5

The K-means 
Algorithm 97.22 97.20 122.9 124.0 97.20

The Proposed 
Algorithm 98.64 98.64 98.64 98.64 98.64

K-means
KDT-Means

Figure 3.3d -  Numerical and graphical representation of E obtained by the K- 
means and the proposed Algorithm (KDT-Means) for five runs for Iris, when 
k=3.
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Run 1 2 3 4 5

The K-means 
Algorithm 279.7 279.7 279.5 279.6 279.7

The Proposed 
Algorithm 278.9 278.9 278.9 278.9 278.9

280

279.8 -

279.6 -

279.4 -

279.2 - 

|  279 -
(0
<5 278.8

278.6 -

278.4 -

278.2 -

278
1 2 3 4 5

Run

> K-means 

■KDT-Means

Figure 3.3e -  Numerical and graphical representation of E  obtained by the K-
means and the proposed Algorithm (KDT-Means) for five runs for Crude Oil,
when k=3.
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Run 1 2 3 4 5

The K-means 
Algorithm 1.553 x 105 1.494 x105 1.600 x105 1.611 x 10s 1.594 x10s

The Proposed 
Algorithm 1.519 x106 1.519 x 10s 1.519 x10s 1.519 x 10s 1.519 x 10s

170000

165000 -

160000 -

co
t:o 155000 -
(AQ

150000 -

145000 -

140000
31 2 4 5

Run

K-means 

■ KDT-Means

Figure 3.3f -  Numerical and graphical representation of E obtained by the K- 
means and the proposed Algorithm (KDT-Means) for five runs for Vowel, 
when k=6.
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Dataset Algorithm Mean Min. Max.

Data 1

The K-means 
Algorithm 59.79 51.01 67.17

The Proposed 
Algorithm 47.61 47.61 47.61

Data 2

The K-means 
Algorithm 951.8 908.9 1006

The Proposed 
Algorithm 971.2 971.2 971.2

Data 3

The K-means 
Algorithm 1165 1054 1239

The Proposed 
Algorithm 864.6 864.6 864.6

Table 3.2a -  Clustering results on the artificial datasets: datal, data2, and
data3
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Dataset Algorithm Mean Min. Max.

Iris

The K-means 
Algorithm 107.7 97.20 124.0

The Proposed 
Algorithm 98.64 98.64 98.64

Crude Oil

The K-means 
Algorithm 279.6 279.5 279.7

The Proposed 
Algorithm 278.9 278.9 278.9

Vowel

The K-means 
Algorithm 1.538 x105 1.493 x 10s 1.611 x 10s

The Proposed 
Algorithm 1.519 x10s 1.519x10s 1.519 x 10s

Table 3.2b -  Clustering results on the real datasets: Iris, Crude Oil and Vowel
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Algorithm \ Dataset Datal Data2 Data3

K-means 1368 24300 6000

The proposed algorithm 228 9000 2000

Table 3.3a -  Number of nearest neighbour (ngh) queries in the clustering 
algorithms for the artificial datasets

Algorithm \ Dataset Iris Crude Oil Vowel

K-means 1800 1176 20904

The proposed algorithm 450 168 5226

Table 3.3b -  Number of nearest neighbour (ngh) queries in the clustering
algorithms for the real datasets
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3.6 The Algorithm Performance

As can be seen from the experiments, the proposed clustering algorithm 

outperforms the K-means algorithm in most cases and it gives stable results in 

all cases. It gives a lower value of the distortion ‘F , which means better 

clustering solutions. For example, for the Crude Oil dataset, it produced an 

optimum mean value that is better than the K-means algorithm in all runs.

The stability of the proposed algorithm can be seen in Figures 3.3a, b, c, d, e 

and f. The algorithm gives the same value of the distortion in 5 different runs, 

which means overcoming for the problem of instability.

The proposed algorithm suggests a significant improvement as the number of 

leaves is dynamic and related to the clustering process. This mechanism of 

tree construction reduces the space complexity drastically. It should be noted 

that if the average height of the Kd-tree reduces by just one, which happens 

because of the incremental mechanism of the algorithm, the number of nodes 

to be expanded is reduced to almost half. Also the ‘numberOfLeaves’ is 

invariably less than the 'numberOfPoints’, and only in the worst case they are 

equal to each other. As a result of that, it is clear that the usage of the 

proposed Kd-tree structure reduces the time needed to assign data points to 

clusters.

The complexity of the proposed algorithm is affected by the number of 

clusters. The higher the number of clusters, the greater is the time the 

algorithm takes. Another advantage of the proposed algorithm is that it can

79



deal with large datasets (large numbers of data points) because of its ability to 

deal with data points in bulks.

Compared to other Kd-tree-based clustering algorithms, the proposed Kd-tree 

structure has an inline building method. This reduces the complexity of the 

algorithm considerably by not running the splitting process and the K-means 

steps on all leaves of the pre-built tree (as in the blacklisting, filtering and fast 

greedy algorithms) but by running them on a limited number of leaves of the 

dynamic tree only. In other words, in the blacklisting and filtering algorithms a 

whole Kd-tree is built before running the main algorithm steps. This means a 

longer running time and higher complexity for the algorithm.

Also in the fast greedy algorithm, in spite of the improvement of the tree 

building process, by using a pre-defined threshold to stop the Kd-tree splitting, 

it is still not fully inline building. Also the tree must be built before running the 

main algorithm and it is difficult to specify the stopping threshold if there is no 

previous knowledge about the dataset.

The complexity is also reduced considerably by not having to find a set of 

points that could act as an appropriate set for the insertion of a new centre (as 

in the fast greedy algorithm) and then assigning leaves to centres. But by 

inserting the new centre directly to be the mean of the highest density leaf, 

where a better new centre can be added, as has already been proved in 

(Kanungo et al. 2002).
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At the same time, the quality of the solution is generally better. This is 

achieved by using the new proposed splitting method which increases the 

possibility of grouping similar data points together in the same leaf.

3.7 Summary

This chapter discusses a new Kd-tree-based clustering method. The proposed 

algorithm is used to overcome the instability and the large number of nearest 

neighbour searches of the K-means algorithm.

The results for the proposed algorithm have been compared with those 

obtained by the K-means algorithm. It has been experimentally demonstrated 

that the proposed algorithm gives better stable clustering solutions.

It was also shown that the proposed Kd-tree structure improved the process 

needed to assign data points to clusters so that the number of neighbourhood 

searches decreased.

81



CHAPTER 4

Improvements to the K-means 

Algorithm based on the Bees Algorithm

4.1 Preliminaries

As mentioned in Chapter 2, one of the most popular clustering methods is the 

K-means algorithm because of its simplicity and computational efficiency. The 

algorithm involves search and optimisation. One of the major disadvantages 

of this method is its tendency to converge to local optima.

This chapter proposes a clustering method to avoid local optima and find 

global solutions to the clustering problem. The algorithm integrates the 

simplicity of the K-means algorithm with the capability of the Bees Algorithm 

(Pham et al. 2006b) for locating near optimal solutions efficiently.

The Bees Algorithm performs a version of a neighbourhood search combined 

with a random search in a way that is reminiscent of the food foraging 

behaviour of swarms of honey bees. The algorithm has been successfully 

applied to different optimisation problems, including the training of neural 

networks for control charts pattern recognition (Pham et al. 2006a) and wood 

defects identification (Pham et al. 2006f).

8 2



The chapter is organised as follows: Section 4.2 reviews the problem of being 

trapped into a local optimum and different clustering methods used to 

overcome this problem. Section 4.3 describes the foraging behaviour of bees 

and the core ideas of the Bees Algorithm. The proposed clustering method is 

explained in detail in Section 4.4. Results of different clustering experiments 

are reported in Section 4.5. The performance of the algorithm is discussed in 

Section 4.6. Section 4.7 summarises and concludes the chapter.

4.2 The Local Optima Problem

Most clustering algorithms suffer from the well-known local optima problem 

that appears while the clustering algorithm is attempting to optimise a given 

metric. This problem also exists for the K-means algorithm which divides a 

dataset ‘S’ into ‘/c* clusters, then represents each cluster by the mean value of 

the data points within the cluster. It then attempts to minimise the sum of the 

Euclidean distances between data points and their closest cluster centres, E, 

(see Equation 2.1 in chapter 2).

It is known that the K-means algorithm may become trapped at local optimal 

solutions, depending on the choice of the initial cluster centres. To overcome 

this problem, the GA algorithm (Davis 1991) has been used with the K-means 

algorithm by introducing a GA-based clustering technique (Garai and 

Chaudhuri 2003; Maulik and Bandyopadhyay 2000; Murthy and Chowdhury 

1996). With this algorithm, solutions (typically, cluster centres) are 

represented by a population of bit strings.
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The search for an appropriate solution begins with a population, or collection, 

of initial solutions. Members of the current population are used to create the 

next-generation population by applying operations such as random mutation 

and crossover. At each step, the solutions in the current population are 

evaluated relative to some measure of fitness (which typically is inversely 

proportional to E), with the fittest solutions selected probabilistically as seeds 

for producing the next generation. The process performs a generate-and-test 

beam search of the solution space, in which variants of the best current 

solutions are most likely to be considered next.

This GA-based algorithm generates the initial population of the solution totally 

randomly, which can make the algorithm spend a couple of extra runs to 

reach a reasonably good solution and try to improve it. One other 

disadvantage of this algorithm is that sometimes using selection and 

crossover operators will tend to cause the algorithm to converge on a good 

but sub-optimal solution.

The main aim in this Chapter is to propose a clustering algorithm based on a 

new optimisation technique called the Bees Algorithm which improves the 

accuracy of the final clustering solution with significantly better global 

solutions to the clustering problem expressed as a minimum distortion (E).
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4.3 The Bees Algorithm

4.3.1 Motivation

The Bees Algorithm (Pham et al. 2006b), which was developed in the 

Manufacturing Engineering Centre in Cardiff University and proposed in 2006, 

is a very efficient optimisation technique. This algorithm was built on the 

foraging behaviour of bees.

It has many applications in wide areas, that includes: improving neural 

networks (Pham et al. 2006a; Pham et al. 2006c; Pham et al. 2006e; Pham 

and Sholedolu 2008; Pham et al. 2006f), cell formation (Pham et al. 2007a), 

preliminary design (Pham et al. 2007b), job scheduling (Pham et al. 2007d), 

feature selection (Pham et al. 2007e), engineering and manufacturing (Lee 

and Haj Darwish 2008; Pham et al. 2008a; Pham et al. 2008c; Pham et al. 

2009a; Pham et al. 2009b; Pham et al. 2008d; Pham et al. 2008f; Pham et al. 

2007h), robotics (Pham et al. 2008b; Pham et al. 2007c; Pham et al. 2006d) 

and solving many other optimisation problems (Pham and Ghanbarzadeh 

2007; Pham et al. 2007f; Pham et al. 2008e; Pham et al. 2007g).

The Bees Algorithm is used in this research to solve the problem of becoming 

trapped into a local optimum in the K-means algorithm.
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4.3.2 Bees in Nature

A colony of honey bees can extend itself over long distances in order to 

simultaneously exploit a large number of food sources (Frisch and Karl 1976; 

Seeley 1996). The foraging process begins in a colony by scout bees being 

sent to search for promising flower patches. Flower patches with large 

amounts of nectar or pollen that can be collected with less effort tend to be 

visited by more bees, whereas patches with less nectar or pollen receive 

fewer bees (Camazine et al. 2003).

During the harvesting season, a colony continues its exploration, keeping a 

percentage of the population as scout bees (Seeley 1996). When they return 

to the hive, those scout bees that found a patch rated above a certain quality 

threshold deposit their nectar or pollen and go to a “dance floor” at the 

entrance to the hive to perform a dance known as the “waggle dance” (Frisch 

and Karl 1976).

This mysterious dance is essential for colony communication, and contains 

three pieces of information regarding a flower patch: the direction in which it 

will be found, its distance from the hive and its quality rating (or fitness) 

(Camazine et al. 2003; Frisch and Karl 1976). This information helps the 

colony to send its bees to flower patches precisely. Each individual’s 

knowledge of the location of the patch in the outside environment is gleaned 

solely from the waggle dance. This dance enables the colony to evaluate the 

relative merit of different patches according to both the quality of the food they 

provide and the amount of energy needed to harvest it (Camazine et al.
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2003). After waggle dancing on the dance floor, the dancer (i.e. the scout bee) 

goes back to the flower patch with follower bees that were waiting inside the 

hive. A greater number of follower bees are sent to more promising patches. 

This allows the colony to gather more food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is 

necessary to decide upon the next waggle dance when they return to the hive 

(Camazine et al. 2003). If the patch is still good enough as a food source, then 

it will be advertised in the waggle dance and more bees will be recruited to 

that source.

4.3.3 The Bees Algorithm

The Bees Algorithm requires a number of parameters to be set, namely, the 

number of scout bees (n), the number of sites selected for neighbourhood 

search (m), the number of best “elite” sites out of ‘m' selected sites (e), the 

number of bees recruited for the best ‘e’ sites (nep), the number of bees 

recruited for the other ‘m-e’ selected sites (nsp) and a stopping criterion.
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1. Initialise the solution population.

2. Evaluate the fitness of the population.

3. While (the stopping criterion is not met)

// Forming a new population

a. Select sites for neighbourhood search.

b. Recruit bees for selected sites (more bees for the best ‘e’

sites) and evaluate fitnesses.

c. Select the fittest bee from each site.

d. Assign remaining bees to search randomly and evaluate

their fitnesses.

4. End While.

Figure 4.1 -  Basic steps of the Bees Algorithm
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The algorithm, see Figure 4.1, starts with an initial population of ln' scout bees 

(step 1). The fitnesses of the sites visited by the scout bees are evaluated in 

step 2.

In step 3.a, bees that have the highest fitnesses are designated as “selected 

bees” and sites visited by them are selected for neighbourhood search. Then, 

in steps 3.b, the algorithm conducts searches in the neighbourhood of the 

selected sites, assigning more bees to search near to the best ‘e‘ sites.

The bees can be chosen directly according to the fitnesses associated with 

the sites they are visiting. Alternatively, the fitness values are used to 

determine the probability of the bees being selected. Searches in the 

neighbourhood of the best ‘e’ sites which represent more promising solutions 

are made more detailed by recruiting more bees to follow them than other 

bees. In step 3.c, for each site only the bees with the highest fitness will be 

selected to form the next bee population.

In step 3.d, the remaining bees in the population are assigned randomly 

around the search space scouting for new potential solutions. At the end of 

each iteration, the colony will have two parts to its new population- 

representatives from each selected site and other scout bees assigned to 

conduct random searches.

Steps 3.a, b, c and d are repeated until either the best fitness value has

stabilised or the specified maximum number of iterations has been reached.
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4.4 The Proposed Algorithm

As mentioned before, the proposed new clustering method exploits the search 

capability of the Bees Algorithm to overcome the local optimum problem of the 

K-means algorithm. More specifically, the task is to search for appropriate 

cluster centres (ci, C2 , Ck) such that the clustering metric E is minimised. 

The basic steps of the proposed clustering operation are essentially similar to 

those of the Bees Algorithm and may be considered as being shown in Figure 

4.1. These steps are described in detail below.

In step 1, the algorithm starts by generating an initial population of 7?’ scout 

bees where each bee represents a set of ‘/c* cluster centres. Thus, initially, 

there are ‘/c* randomly selected data points.

In step 2, the fitness of the sites visited by the scout bees is evaluated. The 

fitness computation process consists of steps that are similar to the steps of 

the conventional K-means algorithm. First, the 'K clusters are formed based 

on the initial centres by allocating each data point to the cluster with the 

nearest centre to it.

Then, the current centres of the ‘/c* clusters are replaced by the centres of the 

newly formed clusters. Finally, the clustering metric E for the new centres is 

computed (the smaller the value of E, the higher the fitness).

In step 3, the rest of the algorithm steps are performed by repeating a loop of 

selecting sites for neighbourhood search and assigning more bees to search 

near to the best e sites so that for each site only the bee with the highest
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fitness will be selected to form the next bee population and the remaining 

bees in the population are assigned randomly around the search space 

scouting for new potential solutions.

Each time an evaluation of bees takes place, the algorithm assigns data 

points to the nearest centres of clusters which are represented by the bee and 

then it calculates the value of E which represents the fitness of that bee.

4.5 Experiments

This section presents the results of testing the proposed Bees-based 

clustering algorithm against the K-means and GA-clustering algorithms. The 

algorithms were applied to three artificial datasets (Datal, Data2, and Data3) 

and five real datasets (Iris, Vowel, Crude Oil, Control Charts and Wood 

Defects). The main characteristics of these datasets are summarised in 

Appendix A. The clustering criterion E was used to evaluate the performance 

of the tested algorithms: the smaller the value of this metric, the better the 

clustering results.

Table 4.1 shows the parameter values for each algorithm used in this test. 

Figures 4.2a, b, c, d, e, f, g and h show the values of the clustering criterion, E 

obtained by the K-means, GA and the proposed Algorithm for five different 

runs for Datal, Data2, Data3, Iris, Vowel, Crude Oil, Control Charts and Wood 

Defects datasets respectively, where ‘/c* is the number of clusters.
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The algorithms were executed many times and the average, minimum and 

maximum values of E are given. Tables 4.2a and b summarise the results 

obtained for each algorithm.

All tests were conducted on a Pentium 4 2.40GHz machine with 1022MB 

RAM. Microsoft Visual Studio version 6 C compiler on Windows XP was used 

for the tests.
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Algorithm Initial Parameters Value

K-means Maximum number of iterations 1000

Crossover probability, pc 0.8

GA Mutation probability, pm 0.001

Population size, P 100

Number of scout bees, n 21

Number of sites selected for neighbourhood search, m 8

Bees
Number of best “elite” sites out of m selected sites, e 2

Algorithm Number of bees recruited for best e sites, nep 

Number of bees recruited for the other (m-e) selected

5

sites, nsp 2

Number of iterations, R 300

Table 4.1 -  Initial parameters used in the crisp clustering experiments
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Run K-means GA Bees

1 51.013 51.013 47.536

2 64.647 51.013 47.534

3 67.167 51.013 47.644

4 51.013 51.013 47.565

5 64.725 51.013 47.531

65 -

60 -

55 -
22
b

50 -

45 -

40
43 52

Run

K-means

Figure 4.2a -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for D a ta l, when K= 3
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Run K-means GA Bees

1 976.24 966.35 739.56

2 976.38 966.38 749.78

3 976.38 966.35 747.04

4 976.56 966.31 744.26

5 976.38 966.35 747.24

980 -

930 -

880 -

830 -

780 -

730 -

680
3 42 51

Run

K-means

Figure 4.2b -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Data2, when K- 9



Run K-means GA Bees

1 1246.2 1246.2 864.97

2 1246.2 1246.2 864.97

3 1246.2 1246.2 863.18

4 1246.2 1246.2 863.76

5 1246.2 1246.2 862.15

1300

1250 -

1200 -

1150 -

1100 -

|  1050 - 
o
^  1000 -

950 -

900 -

850 -

800 -

750
43 5

Run

K-means 
«— GA

 Bees

Figure 4.2c -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Data3, when K-2
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Run K-means GA Bees

1 97.224 97.101 96.728

2 97.205 97.101 96.787

3 122.946 97.101 96.787

4 124.022 97.101 96.770

5 97.205 97.101 96.749

120 -

110 -

100 -

1 2 3 4 5

Run

i  K-means 
—■— GA
 Bees

Figure 4.2d -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Iris, when K- 3
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Run K-means GA Bees

1 157460 149350 149290

2 149390 149410 149110

3 161090 149350 149110

4 149370 149360 149110

5 151610 149360 149070

162000

160000 -

158000 -

156000 -

154000 -
.0O

152000 -

150000 -

148000 -

146000
1 2 3 4 5

Run

A K-means 
— GA 
 Bees

Figure 4.2e -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Vowel, when K= 6
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Run K-means GA Bees

1 279.74 278.97 277.31

2 279.74 278.97 277.30

3 279.48 278.97 277.32

4 279.60 278.97 277.31

5 279.74 278.97 277.52

280

279.5

279 -

278.5 -
.52O

278 -

277.5 -

277
3 4 52

Run

K-means

Figure 4.2f -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Crude Oil, when
K= 3
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Run K-means GA Bees

1 2474.5 2346.9 2318.8

2 2487.1 2316.6 2324.4

3 2528.7 2298.3 2213.6

4 2464.8 2303.3 2250.6

5 2496.2 2291.7 2318.8

2550

2500 -

2450 -

2400 -

2350 -
S2
b

2300 -

2250 -

2200 -

2150
1 2 3 4 5

Run

-A K-means 

— GA 

 Bees

Figure 4.2g -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Control Charts,
when K= 6
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Run K-means GA Bees

1 204780 170390 153870

2 202250 168860 159010

3 270580 166960 168040

4 199310 166960 156330

5 263710 165740 163120

270000 -

250000 -

230000 -
K-means
GA

se 210000 -  Bees

190000 -

170000 -

150000

Run

Figure 4.2h -  Numerical and graphical representation of E  obtained by the K-
means, GA and the Bees-based Algorithms for five runs for Wood Defects,
when K=13
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Dataset Algorithm Mean Min. Max.

Datal

K-means 59.713 51.013 67.167

GA 51.013 51.013 51.013

Bees Algorithm 47.562 47.531 47.644

Data2

K-means 976.39 976.24 976.56

GA 966.35 966.31 966.38

Bees Algorithm 745.57 739.56 749.78

Data3

K-means 1246.2 1246.2 1246.2

GA 1246.2 1246.2 1246.2

Bees Algorithm 863.81 862.15 864.97

Table 4.2a -  Summary of results for the values of E obtained for the three 
crisp clustering algorithms for artificial datasets
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Dataset Algorithm Mean Min. Max.

Iris

K-means 107.72 97.205 124.02

GA 97.101 97.101 97.101

Bees Algorithm 96.764 96.728 96.787

Vowel

K-means 153790 149370 161090

GA 149360 149350 149400

Bees Algorithm 149140 149070 149290

Crude Oil

K-means 279.66 279.49 279.74

GA 278.97 278.97 278.97

Bees Algorithm 277.35 277.30 277.52

Control Charts

K-means 2490.3 2464.8 2528.7

GA 2322.2 2291.70 2346.9

Bees Algorithm 2285.3 2213.6 2324.4

Wood Defects

K-means 228130 199306 270580

GA 167780 165740 170390

Bees Algorithm 160074 153870 168040

Table 4.2b -  Summary of results for the values of E obtained for the three 
crisp clustering algorithms for real datasets
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4.6 The Algorithm Performance

The evaluation function E was calculated for three artificial and five real 

datasets. As can be seen in Tables 4.2a and b, the proposed new clustering 

method outperforms the other two algorithms in all cases. In fact, in every test 

the mean value of the new algorithm is less than the minimum for the K- 

means and GA algorithms. For example, at one extreme, for the Wood 

Defects dataset, the Bees-based Algorithm gave 41% and 3% better results 

than K-means and GA-clustering algorithms respectively, and at the other 

extreme for the Crude Oil dataset, the Bees-based algorithm produced a 

mean value for E that was 0.8% and 0.6% better than the K-means and GA- 

clustering algorithms, respectively.

In general, all eight test results showed that a lower value of E was found 

when the Bees-based Algorithm was applied to the datasets. From these 

results, it is inferred that the smart search technique used in the Bees 

Algorithm finds a better solution than the GA-based clustering and the K- 

means algorithms.

4.7 Summary

This chapter has presented a new crisp clustering method based on the Bees 

Algorithm to overcome the problem of trapping into the local optima in the K- 

means algorithm. The new method employs the Bees Algorithm to search for 

the set of cluster centres that minimises a given clustering metric. The 

proposed method does not become trapped at locally optimal solutions. This
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is due to the ability of the Bees Algorithm to perform local and global search 

simultaneously.

Experimental results for eight different datasets have demonstrated that the 

proposed method produces better performances than those of the K-means 

algorithm and the GA-based clustering algorithm.
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CHAPTER 5

Improvements to the C-means 

Algorithm based on the Bees Algorithm

5.1 Preliminaries

Traditional data clustering, also called crisp clustering, uses hard thresholds to 

group data points into separate groups while fuzzy clustering uses fuzzy logic 

to create overlapped groups of data.

In fuzzy clustering, each data object can belong to more than one cluster at 

the same time with a different possibility degree or membership function 

value. The value of the membership function of a cluster varies between 0 and

1. Conversely, the membership function in crisp clustering is based on having 

only one of two values; 0 and 1. The value 1 indicates that the object belongs 

to the cluster, otherwise it is 0.

Fuzzy clustering algorithms produce more realistic results than other 

clustering techniques. They have been widely used, especially in pattern 

recognition (Bezdek et al. 2005) and medical applications (Wang et al. 2005).
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In this chapter, the Bees Algorithms, which has been already combined with 

the K-means algorithm to improve the crisp clustering results, is integrated 

with the FCM (Bezdek 1981), one of the most well-known fuzzy clustering 

algorithms, to solve the problem of trapping into local optima.

The rest of the chapter is organised as follows: section 5.2 reviews the FCM 

algorithm and its main improvements; section 5.3 describes the proposed 

fuzzy clustering algorithm; section 5.4 shows the experimental results 

obtained from testing the algorithm; the performance of the algorithm is 

discussed in section 5.5; finally, section 5.6 summarises the chapter.

5.2 Review

The FCM algorithm (Figure 2.16 in Chapter 2) is the most popular one in fuzzy 

clustering. It was introduced and developed by Dunn (Dunn 1973) and then 

improved by Bezdek (Bezdek et al. 2005). The algorithm is based on 

minimising an objective function (Equation 5.1) that indicates the sum of 

distances from each cluster centre to the data points in that cluster, so that the 

smaller the value of J, the better the clustering.

The total number of clusters is a required parameter. When performing fuzzy 

clustering, the FCM algorithm produces fuzzy clusters and it generates the 

membership degree of each data object to each cluster.
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* = 1  7 = 1 (Equation 5.1)

u ..y
w - 1

(Equation 5.2)

where:

m : is the fuzziness degree (any real number greater than 1). 

q : is the centre of the cluster j  

N : is the number of data objects 

Xj: is the fh d-dimensional measured data object.

Ujj: is the degree of membership of x, in the cluster j

||*|| : is any norm expressing the similarity between any measured data and 

the centre



The main problem of this iterative-based algorithm is that it can become 

trapped into local optima. To overcome this problem, the GA was combined 

with the FCM algorithm to obtain a better clustering performance in (Liu and 

Xie 1995). One disadvantage of this algorithm is that the usage of selection 

and crossover operators will sometimes tend to cause the algorithm to 

converge on a good but sub-optimal solution.

Another algorithm based on a combination of the FCM and the Quantum- 

behaved Particle Swarm Optimisation (QPSO) was proposed (Wang et al. 

2007). The algorithm was used to avoid the local minimum problem of the 

FCM. This algorithm was applied successfully on datasets with a small 

number of clusters and it focused on finding circle-type or sphere-type clusters 

only.

A solution that benefits from the global search strategy of the evolutionary 

programming, called EPFCM (Evolutionary Programming based FCM), was 

proposed in (Donga et al. 2009). It was used to improve the FCM algorithm 

and to change the number of cluster centres dynamically. This algorithm 

generates the initial population of the solution totally randomly, which can 

make the algorithm spend a couple of extra runs to reach a reasonably good 

solution and try to improve it.

The main aim in this Chapter is to propose a new FCM algorithm based on the 

Bees Algorithm to overcome the problem of local optima in the FCM and to 

improve the accuracy of the final clustering solution.
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5.3 The Proposed Algorithm

The proposed clustering method exploits the search capability of the Bees 

Algorithm to overcome the local optima problem of the FCM algorithm. 

Specifically, the task is to search for appropriate cluster centres such that the 

objective function J (Equation 5.1) is minimised. The basic steps of the 

proposed clustering operation are described in Figure 5.1.

In step 1, the algorithm starts by providing a random population of cluster 

centres.

In step 2, a calculation using the formula for Uij (Equation 5.2) in order to fill the 

array U of the membership function for all data objects is performed.

A repeated generation of a new population of solutions is performed in step 3. 

This is achieved by selecting the best sites of the former population in step

3.1 and sending more bees to these sites. In step 3.2, new values are 

assigned to the array U using the formula for t^for each bee.

In step 3.3, a selection of the fittest bees is chosen from each site. Assigning 

the remaining bees to search randomly and fill the array U is performed in 

step 3.4.
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1. Initialise the solution population.

2. Fill the array U and evaluate the fitness of the population using 

Equation (5.1).

3. While (stopping criterion is not met)

3.1.Select sites for neighbourhood search.

3.2. Recruit bees for selected sites (more bees for the best e 

sites), fill the array U and evaluate the fitness.

3.3. Select the fittest bee from each site.

3.4 . Assign remaining bees to search randomly then fill array 

U and evaluate the fitnesses.

4 . End While.

Figure 5.1 -  Basic steps of the proposed fuzzy clustering algorithm
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5.4 Experiments

This section presents the results for the Bees-based fuzzy clustering algorithm 

compared to the FCM and GA-based fuzzy clustering algorithms.

Table 5.1 shows the values of the initial parameters for each algorithm used in 

this test, where the value of the fuzziness degree 'm' was set to 2 in all 

algorithms. The algorithms were applied to the following real datasets: Iris, 

vowel, Crude Oil, Control Charts and Wood Defects. The main characteristics 

of these datasets are summarised in Appendix A.

The clustering criterion J (Equation 5.1) was used to evaluate the 

performance of the algorithms. The smaller the value of this metric, the better 

are the fuzzy clustering results. The algorithms were executed many times 

and the average, minimum and maximum values of J were collected, where Tc1 

is the number of clusters. The results obtained from five runs for each 

algorithm are listed in Figures 5.3a, b, c, d, and e and summarised in Table

5.2.
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Algorithm Initial Parameters Value

FCM Maximum number of iterations 1000

Crossover probability, p 0.8

GA Mutation probability, pm 0.001

Population size, P 100

Number of scout bees, n 21

Number of sites selected for neighbourhood search, m 8

Bees
Number of best “elite” sites out of m selected sites, e 2

Algorithm Number of bees recruited for best e sites, nep 5

Number of bees recruited for the other (m-e) selected
o

sites, nsp
Z

Number of iterations, R 300

Table 5.1 -  Initial parameters used in the fuzzy clustering experiments
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Run C-means GA Bees

1 63.511 69.238 60.589

2 61.223 66.175 60.587

3 65.368 66.143 60.588

4 65.810 63.347 60.585

5 61.918 63.901 60.588

Figure 5.3a -  Numerical and graphical representation of J obtained by the C- 
means, the GA and the Bees-based Algorithm for five runs for Iris, when K= 3
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Run C-means GA Bees

1 18233302 17909231 17137322

2 19102759 17871130 17160744

3 18037200 17504889 17142746

4 18440670 17325517 17146654

5 18957710 17211010 17134862

19500000

19000000 -

18500000 -
C-means
GA

 Bees
18000000 -

17500000 -

17000000

Run

Figure 5.3b -  Numerical and graphical representation of J obtained by the C- 
means, the GA and the Bees-based Algorithm for five runs for Vowel, when

K= 6
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Run C-means GA Bees

1 1560.6 1286.0 1236.2

2 1420.1 1238.3 1237.6

3 1242.3 1239.2 1235.8

4 1390.2 1266.0 1236.3

5 1293.7 1279.4 1235.7

1550 -

1500 -

1450 -

c
■| 1400 - 
o
CO5

1350 -

1300 -

1250 -

1200
1 2 3 4 5

Run

Figure 5.3c -  Numerical and graphical representation of J obtained by the C-
means, the GA and the Bees-based Algorithm for five runs for Crude Oil,

when K=3
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Run C-means GA Bees

1 530.99 803.48 549.74

2 530.99 819.29 546.88

3 530.99 791.23 547.36

4 530.99 801.47 552.15

5 530.99 794.23 549.96

850

800 -

750 -

g 700-
■Eow
5 650 -

600 -

550 -

500
43 52

Run

fc— C-Means 
*— GA
—  Bees

Figure 5.3d -  Numerical and graphical representation of J obtained by the C-
means, the GA and the Bees-based Algorithm for five runs for Control Charts,

when K- 6
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Run C-means GA Bees

1 66225010 174784 173523

2 62350148 157508 165236

3 63100483 162353 162999

4 59295094 166999 165946

5 60257719 166312 153866

70015000

60015000 -

50015000 -

g 40015000 -

5  30015000 -

20015000 -

10015000 -

15000
53 421

Run

C-means

 Bees

Figure 5.3e -  Numerical and graphical representation of J obtained by the C- 
means, the GA and the Bees-based Algorithm for five runs for Wood Defects,

when K=13
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Dataset Algorithm
Mean 

Value of J
Min. Value 
for J

Max. Value 
for J

Iris

C-means 63.566 61.223 65.810

GA 65.761 63.347 69.238

Bees Algorithm 60.587 60.585 60.589

Vowel

C-means 18554328 18037200 19102759

GA 17564355 17211010 17909231

Bees Algorithm 17144466 17134862 17160744

Crude Oil

C-means 1381.4 1242.3 1560.6

GA 1261.8 1238.3 1286.0

Bees Algorithm 1235.0 1235.7 1237.6

Control Charts

C-means 530.99 530.99 530.99

GA 801.94 791.23 819.29

Bees Algorithm 549.22 546.88 552.15

Wood Defects

C-means 62225690 59195094 66225010

GA 165591 157508 174784

Bees Algorithm 164314 153866 173523

Table 5.2 -  Comparative values of J obtained by the C-means, the GA and the 
Bees-based algorithms for five real datasets
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5.5 The Algorithm Performance

The results in Table 5.2 show that the GA and Bees-based algorithms 

outperform the traditional Fuzzy C-Means algorithm in most cases. The new 

proposed algorithm had a mean value for J which was less than the minimum 

for the other two algorithms for the Iris, Vowel and Crude Oil datasets. For the 

Control Charts the new Bees algorithm produced a mean value of J which 

was less than the minimum for GA, but was outperformed by the C-means 

algorithm. For the Wood Defects dataset, the mean value of J obtained by the 

Bees algorithm was less than mean values obtained by either of the other two 

algorithms. With the exception of the C-means algorithm with the Control 

Charts dataset the new Bees-based algorithm clearly outperformed the other 

two algorithms in the tests conducted here.

Combining the Bees Algorithm with the FCM algorithm improved the fuzzy 

clustering results compared to the traditional FCM algorithm in most cases. It 

is demonstrated that the new Bees-based algorithm produces better results 

than those of the GA combined with the FCM algorithm.

5.6 Summary

This chapter has presented a new fuzzy clustering method based on the Bees 

Algorithm to overcome the problem of trapping into the local optima in the 

fuzzy C-Means algorithm.
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The proposed method does not become trapped at locally optimal solutions 

and it improved the fuzzy clustering results compared to the traditional C- 

means algorithm in most cases. It also produces better results than those of 

the GA combined with the C-Means.
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CHAPTER 6 

Recursive Bees Algorithm

6.1 Preliminaries

The proposed Bees-based algorithms for crisp and fuzzy clustering in 

Chapters 4 and 5 gave very good results. However, they retain a number of 

disadvantages.

One of these deficiencies is the full randomness of the local search in the 

selected search areas. This drawback can be overcome by improving the 

local search procedure of the Bees Algorithm.

In this chapter, a new version of the Bees Algorithm, named the Recursive 

Bees Algorithm (R-Bees), is proposed to reduce the randomness of the local 

search. The algorithm is applied to both crisp and fuzzy clustering.

6.2 Motivation

As mentioned above, using the Bees Algorithm for data clustering suffers from 

the weakness of the full randomness of the local search in the selected sites. 

This makes the algorithm take long time in finding the final solution. To
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improve the performance of the algorithm, the recursion concept is applied to 

the local search procedure.

Solving a problem using recursion means that the solution depends on 

solutions to smaller instances of the same problem (Graham et al. 1994). In 

optimisation, the main problem is to find the optimum value over the whole 

search space. To do that using the recursion concept, the solution of the 

whole problem depends on finding solutions to local optima within smaller 

search spaces. The idea of recursion should reduce the randomness of the 

local search of the Bees Algorithm and its application to the fuzzy and crisp 

clustering.

6.3 The Proposed Algorithm

The proposed algorithm exploits the powerful search technique used by bees 

to improve the local search of the standard Bees Algorithm which was used 

for crisp and fuzzy clustering in chapters 4 and 5 respectively. More 

specifically, the proposed algorithm repeats the same steps of the Bees 

Algorithm to find the optimum solution within the local search area in the same 

way as the search within the whole search space. This reduces the 

randomness in the local search and makes it guided by the behaviour of the 

bees.

The pseudo code of the main steps of the proposed algorithm starts as 

follows (see Figure 6.1):
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Step 1: Initialise the solution population randomly of lri scout bees.

Step 2: Evaluate the fitness of each bee in the population and rank the 

fitnesses. Then bees that have the highest fitnesses are designated as 

“selected bees” and sites visited by them are selected for neighbourhood 

search.

Step 3: A recruitment loop for the bees around the selected sites, assigning 

more bees to search near to the best ‘e‘ sites, is performed until a pre

specified stopping criterion is met.

This loop starts in step 3.1 by selecting the sites visited by the bees of the 

highest fitnesses for neighbourhood search. These sites are classified into 

elite and non-elite sites according to their fitness.

In step 3.2, the algorithm assigns more bees to search near the best elite 

sites, ‘e \ The recruitment process for these bees is performed according to 

the same principles of the recruitment process of the basic Bees Algorithm. 

The same steps (steps 1 to 4) are applied recursively on the elite sites using 

the new neighbourhood search area boundaries and the specified number of 

bees which were already dedicated for neighbourhood search (ngh) around 

elite sites.

The same procedure also runs around the non-elite sites in step 3.3 but using 

the set of bees which are dedicated to run the local search for non-elite sites.
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1. Initialise the solution population.

2. Evaluate the fitness of the population.

3. While (the stopping criterion is not met)

3.1 .Select sites for neighbourhood search.

3.2. For each elite site (/)

3.2.1. Apply steps 1 to 4 to search around the i th site using (e) 

bees and new ngh area as search space

3.3. For each non-elite site (/)

3.3.1. Apply steps 1 to 4 to search around the j th site using (m-e) 

bees and new ngh area as search space

3.4. Select the fittest bee from each site.

3.5. Assign remaining bees to search randomly and evaluate their 

fitnesses.

4. End While.

Figure 6.1 -  Basic steps of the Recursive Bees Algorithm
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In step 3.4, for each site, only the position of the bee with the highest fitness 

is selected to recruit bees around it in the next bees’ population. In step 3.5, 

the remaining bees in the population are assigned randomly in the search 

space scouting for new solutions.

The recursive call which happens in steps 3.2 and 3.3 ends when the 

algorithm reaches the allowed number of running in depth.

6.4 Experiments

To demonstrate the reduction in the randomness, the proposed recursive 

algorithm was used for crisp and fuzzy clustering. Each bee represent a 

combination of centres and the fitness computation processes is performed 

for each bee by assigning each data point in the dataset to the nearest centre 

and computing the total distortion (E in Equation 2.1 in chapter 2 for crisp 

clustering and J in Equation 5.1 in Chapter 5 for fuzzy clustering).

The algorithm was applied to five real datasets (Iris, Vowel, Crude Oil, Control 

Charts and Wood Defects - see Appendix A for details). The results were 

compared to those of the Bees-based clustering algorithms for crisp and fuzzy 

clustering.

The algorithms were run five times. The E and J criteria were used to evaluate 

their relative fitness. The permitted recursive depth calls in these experiments 

were 2 only.
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Table 6.1 summarises the initial parameters used for each algorithm. Figures 

6.2a, b, c, d and e show the values of E (for crisp clustering) and J (for fuzzy 

clustering) obtained by the Bees and the recursive Bees Algorithms for five 

different runs for the Iris, Vowel, Crude Oil, Control Charts and Wood Defects 

datasets respectively where ‘/c1 is the number of clusters. Tables 6.2 and 6.3 

summarise these results for both crisp and fuzzy clustering.

The CPU time of both algorithms under crisp and fuzzy conditions for the five 

datasets (Iris, Vowel, Crude Oil, Control Charts and Wood Defects) was 

measured. The results presented in Figures 6.3a, b, c, d, and e show the time 

required by the Bees and the recursive Bees Algorithms. Tables 6.4 and 6.5 

summarise the times taken for crisp and fuzzy clustering respectively.

All the tests were conducted on a Pentium 4 2.40GHz machine with 1022MB 

RAM. Microsoft Visual Studio version 6 C compiler on Windows XP was used 

for all tests.
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Algorithm Initial Parameters Value

Number of scout bees, n 21

The Bees Number of sites selected for neighbourhood search, m 8

Algorithm

Number of best “elite” sites out of m selected sites, e 2

Number of bees recruited for best e sites, nep 5

Number of bees recruited for the other (ne=m-e) 

selected sites, nsp
2

Number of iterations, R 300

Number of scout bees, n 21

The Number of sites selected for neighbourhood search, m 8

Recursive

Bees Number of best “elite” sites out of m selected sites, e 2

Number of bees recruited for best e sites, nep n/(2*e)

Number of bees recruited for the other (m-e) selected

sites, nsp
n/(3*ne)

Number of iterations, R 10

Table 6.1 -  Parameters used in the clustering experiments
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Run
Crisp (E) Fuzzy (J)

Bees R-Bees Bees R-Bees

1 96.728 97.190 60.589 60.695

2 96.787 97.218 60.587 60.695

3 96.787 97.190 60.588 60.695

4 96.770 97.190 60.585 60.695

5 96.749 97.190 60.588 60.695

Crisp Clustering

97.3

97.2

97.1

969

O
</> 967

o  966 

965 

964

2 3 41 5

Fuzzy Clustering

60.68

60.66
C
o  60.64 

" E  60.62 

£  60.6 

.22 60.58 

Q  60.56

2 3 41 5

Figure 6.2a -  Numerical and graphical representation of E, J obtained by the 
Bees-based Algorithm, and the R-Bees for five runs for Iris, when K = 3
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Run
Crisp (E) Fuzzy (J)

Bees R-Bees Bees R-Bees

1 149290 149181 17137322 17138864

2 149110 149174 17160744 17149836

3 149110 149073 17142746 17138624

4 149110 149217 17146654 17144301

5 149070 149208 17134862 17134727

Crisp Clustering

Uj 149250

Q  149050 

149000

3 52 41

Fuzzy Clustering

17165000

17160000

17155000

17150000

17145000

17140000

Cn  17135000 

o  17130000 

17125000

17120000

1 2 3 4 5

R u n

Figure 6.2b -  Numerical and graphical representation of E, J obtained by the 
Bees-based Algorithm and the R-Bees for five runs for Vowel, when K=6
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Run
Crisp (E) Fuzzy (J)

Bees R-Bees Bees R-Bees

1 277.31 277.48 1236.2 1234.9

2 277.30 277.33 1237.6 1235.2

3 277.32 277.48 1235.8 1234.9

4 277.31 277.46 1236.3 1235.2

5 277.52 277.45 1235.7 1234.7

Crisp Clustering

277.55

277.5

UJ 277.45

277.4

277.35

277.3

Q  277.25 

277.2

277.15

52 31 4

Fuzzy Clustering

1238

1237.5

1237

1236.5

O  1236

t  1235.5 

1235 

.12 1234.5 

Q  1234

1233.5

1233

2 3 41 5

Figure 6.2c -  Numerical and graphical representation of E, J obtained by the 
Bees-based Algorithm and the R-Bees for five runs for Crude Oil, when K=3
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Run
Crisp (E) Fuzzy (J)

Bees R-Bees Bees R-Bees

1 2318.8 1827.4 549.74 689.84

2 2324.4 1825.6 546.88 693.67

3 2213.6 1825.5 547.36 692.61

4 2250.6 1824.1 552.15 692.81

5 2318.8 1828.7 549.96 692.61

Crisp Clustering

R-Bees

Fuzzy Clustering

Figure 6.2d -  Numerical and graphical representation of E, J obtained by the 
Bees-based Algorithm and the R-Bees for five runs for Control Charts, when

K=6
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Run
Crisp (E) Fuzzy (J)

Bees R-Bees Bees R-Bees

1 153870 158002 173523 169326

2 159010 154773 165236 161900

3 168040 158830 162999 159520

4 156330 151009 165946 160778

5 163120 167466 153866 160114

Crisp Clustering

170000

165000

155000

Q
150000

145000

4 51 2 3

Fuzzy Clustering

175000

170000

O  165000

160000

155000

150000

2 3 4 51

Figure 6.2e -  Numerical and graphical representation of E, J obtained by the 
Bees-based Algorithm, the R-Bees for five runs for Wood Defects, when K=13

133



Dataset Algorithm Mean Min. Max.

Iris
Bees Algorithm 96.764 96.728 96.787

Recursive Bees 97.195 97.190 97.218

Vowel
Bees Algorithm 149140 149070 149290

Recursive Bees 149170 149073 149217

Crude Oil
Bees Algorithm 277.35 277.30 277.52

Recursive Bees 277.44 277.33 277.48

Control Charts
Bees Algorithm 2285.3 2213.6 2324.4

Recursive Bees 1826.2 1824.1 1828.7

Wood Defects
Bees Algorithm 160074 153870 168040

Recursive Bees 158016 151009 167466

Table 6.2 -  Results obtained for £  for the crisp clustering algorithms
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Dataset Algorithm Mean Min. Max.

Iris
Bees Algorithm 60.587 60.585 60.589

Recursive Bees 60.695 60.695 60.695

Vowel
Bees Algorithm 17144466 17134862 17160744

Recursive Bees 17141270 17134727 17149836

Crude Oil
Bees Algorithm 1235.0 1235.7 1237.6

Recursive Bees 1234.9 1234.7 1235.2

Control Charts
Bees Algorithm 549.22 546.88 552.15

Recursive Bees 692.31 689.84 693.67

Wood Defects
Bees Algorithm 164314 153866 173523

Recursive Bees 162328 159520 169326

Table 6.3 -  Results obtained for J for the fuzzy clustering algorithms
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Run
Crisp Fuzzy

Bees R-Bees Bees R-Bees

1 22 3 192 33

2 22 3 156 31

3 22 3 142 32

4 22 3 177 32

5 22 3 149 34

Crisp Clustering

25

20

CD 15
E

l _  10

5

0
2 3 4 51

Run

Fuzzy Clustering

250

200

|—  100

50

0
2 3 41 5

Run

Figure 6.3a -  Numerical and graphical representation of the time (seconds)
required by the Bees-based Algorithm and the R-Bees for five runs for Iris,
when K=3
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Run
Crisp Fuzzy

Bees R-Bees Bees R-Bees

1 117 27 1786 517

2 128 27 1980 565

3 124 29 1616 494

4 147 28 1541 521

5 140 30 1811 492

Crisp Clustering

160

140

120

80

60

40

20

0
2 31 4 5

Run

Fuzzy Clustering

2500

2000

CD 1500

1000

500

0
2 31 4 5

Run

—  — Bees 

♦  R-Bees

Figure 6.3b -  Numerical and graphical representation of the time (seconds)
required by the Bees-based Algorithm and the R-Bees for five runs for Vowel,

when K=6
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Run
Crisp Fuzzy

Bees R-Bees Bees R-Bees

1 12 2 41 14

2 12 1 36 14

3 12 2 34 14

4 11 1 34 14

5 12 2 42 14

Crisp Clustering

14

12

10

E 8
6I—
4

2

0
52 3 41

Run

Fuzzy Clustering

45

40

35

30
05
E 25

20

15

10

5

0
1 2 3 4 5

Run

Figure 6.3c -  Numerical and graphical representation of the time (seconds)
required by the Bees-based Algorithm and the R-Bees for five runs for Crude

Oil, when K=3
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Run
Crisp Fuzzy

Bees R-Bees Bees R-Bees

1 6103 539 39906 12268

2 5902 528 37562 12778

3 6015 523 31263 13554

4 5824 572 33810 14459

5 6005 605 29488 12775

Crisp Clustering

6000

5000

®  4000

3000I—
2000

4 52 31

Run

Fuzzy Clustering

45000

35000

30000
CD
jz  25000

j Z  20000

15000

10000

5000

4 51 2 3

Run

Figure 6.3d -  Numerical and graphical representation of the time (seconds)
required by the Bees-based Algorithm and the R-Bees for five runs for Control

Charts, when K= 6
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Run
Crisp Fuzzy

Bees R-Bees Bees R-Bees

1 405 201 7482 2348

2 443 190 7441 2446

3 399 191 7853 2114

4 267 182 6855 2855

5 309 168 7012 2714

Crisp Clustering

500
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400

CD 350 

E 300 

250

200

150

100

52 3 41

Run

Fuzzy Clustering

9000
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Figure 6.3e -  Numerical and graphical representation of the time (seconds)
required by the Bees-based Algorithm and the R-Bees for five runs for Wood

Defects, when K= 13
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Dataset Algorithm Mean Min. Max.

Iris
Bees Algorithm 22 22 22

Recursive Bees 3 3 3

Vowel
Bees Algorithm 131.2 117 147

Recursive Bees 28.2 27 30

Crude Oil
Bees Algorithm 11.8 11 12

Recursive Bees 1.6 1 2

Control Charts
Bees Algorithm 5970 5824 6103

Recursive Bees 553.4 523 605

Wood Defects
Bees Algorithm 364.6 267 443

Recursive Bees 186.4 168 201

Table 6.4 -  Time (seconds) taken by each crisp clustering algorithm
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Dataset Algorithm Mean Min. Max.

Iris
Bees Algorithm 163.2 142 192

Recursive Bees 32.4 31 34

Vowel
Bees Algorithm 1747 1541 1980

Recursive Bees 517.8 492 565

Crude Oil
Bees Algorithm 37.4 34 42

Recursive Bees 14 14 14

Control Charts
Bees Algorithm 34406 29488 39906

Recursive Bees 13167 12268 14459

Wood Defects
Bees Algorithm 7329 6855 7853

Recursive Bees 2495 2114 2855

Table 6.5 -  Time (seconds) taken by each fuzzy clustering algorithm
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6.5 The Algorithm Performance

The complexity of each algorithm can be measured by calculating the number 

of evaluations which is the most costly operation in the algorithms. In the 

Bees Algorithm this can be calculated as follows:

Complexity = n + R * [(e * nep) + (ne* nsp)]

While, the complexity for the proposed recursive algorithm can be computed 

as follows:

Complexity = n + R * [(e * v1) + (ne* v2)]

where v1 and v2 are the complexity of the recursive call for the algorithm 

using a number of bees equal to lnep' for v1 and equal to 'nsp' for v2. This 

number is reduced from the total number of bees according to pre-specified 

percentage, in other words:

v1 = nep + R *  [(e * v11) + (ne* v12)] 

v2 = nsp + R * [(e *v11) + (ne*v12)]

where

V11 is the complexity of the second recursive call for search in elite sites.

V12 is the complexity of the second recursive call for search in other sites.
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Apparently, the complexity of the proposed recursive algorithm is greater than 

that of the Bees Algorithm and it is going to be increased exponentially 

whenever there is a recursive call for the bees’ steps for each local search. 

But, having a deeper view of the complexity, and by analysing the two 

algorithms, the proposed recursive algorithm (R-Bees) can get almost similar 

(in some cases better) results compared to those of the Bees Algorithm (See 

Figures 6.2a, b, c, d and e and Tables 6.2 and 6.3) using a set of parameters 

which are better than those of the Bees Algorithm and with significantly fewer 

iterations.

Although that the number of fitness calls used to run the recursive algorithm is 

greater than that of the Bees Algorithm, the number of iterations used in the 

Bees Algorithm for the tested datasets is 60 times greater than that of the 

proposed recursive algorithm. The number of evaluations applied by the basic 

Bees Algorithm is approximately three times greater than for the recursive 

algorithm, which means a higher evaluation number in the Bees Algorithm for 

all datasets.

The experiments (Figures 6.3a, b, c, d and e and tables 6.4 and 6.5) show 

this result clearly when comparing the time spent by the algorithms. The key 

feature of the proposed recursive Algorithm is that it can reach the optimum 

value within the local search area in better way compared to the basic Bees 

Algorithm.
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6.6 Summary

This chapter presented a new recursive algorithm used to improve the local 

search procedure of the Bees Algorithm. The proposed algorithm has the 

advantage that it reduces the randomness and spends a shorter computing 

time. This is due to the ability of the recursive algorithm to perform the local 

search recursively.

The algorithm was applied to crisp and fuzzy clustering. Experimental results 

for different datasets have demonstrated that the proposed recursive method 

produces a better performance compared to the basic Bees-based clustering 

algorithm in most cases.
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CHAPTER 7 

Conclusion

This chapter summarises the contributions and conclusions of this research 

and gives suggestions for future work.

7.1 Contributions

The main contributions of this research are:

1. An improved crisp clustering algorithm based on the Kd-tree structure 

to overcome the disadvantages of instability of the K-means algorithm 

and its large number of neighbourhood search operations.

2. New clustering algorithms combining the simplicity of the K-means 

algorithm and the C-means algorithm with the capability of the Bees 

Algorithm to avoid local optima in crisp and fuzzy clustering, 

respectively.
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3. Improvement to the standard Bees Algorithm and its application to 

crisp and fuzzy clustering to enhance the local search procedure and 

reduce its processing time.

7.2 Conclusions

In this thesis, the feasibility of using the Kd-tree and the Bees Algorithm to 

improve the data clustering process has been shown. The key conclusions for 

each topic analysed are:

• The adaptive capability of the Kd-tree-based algorithm gives better 

results compared to those of the K-means algorithm on its own. The 

improved Kd-tree structure improves the neighbourhood search and 

significantly decreases the time needed to allocate data points to 

clusters.

• The Bees Algorithm has demonstrated its effectiveness in a series 

of crisp and fuzzy clustering experiments using different data sets. 

These good results can be explained by the ability of the Bees 

Algorithm to perform local and global search simultaneously.

• The Recursive Bees Algorithm, which was used to find the optimum 

solution recursively, improves the local search procedure and gives 

similar results to the basic Bees Algorithm but with fewer 

evaluations.
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7.3 Future Research Directions

Despite their efficiency, there are aspects of the proposed algorithms which 

can be improved.

Research is needed to reduce the number of tuneable parameters of the Bees 

Algorithm without affecting its overall performance. Another improvement to 

this algorithm can be made by applying it in parallel so that the processing 

time of the algorithm can be decreased.

In crisp Bees-based clustering, the algorithm can exploit the idea of using the 

Kd-tree as a data structure to reduce the time for assigning data points to 

clusters and calculating the distortion in each evaluation in the algorithm.

The recursive method presented in chapter 6 needs further investigation to 

avoid having a very large number of recursive calls so that the stopping 

criteria of the algorithm can be estimated automatically. Furthermore, the 

algorithm can be improved by adding new criteria that can decide according to 

the size of the dataset whether to apply the recursive call.

The recursive algorithm also has difficulties dealing with data of high 

dimensions. It might be a good idea, as well, to exploit the capability of the 

Kd-tree or any other suitable data structure to overcome this drawback.

Having manually to determine the number of clusters is a well-known 

drawback when using the K-means algorithm and all of the proposed 

algorithms. This can be avoided by generating different clustering solutions
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with different numbers of clusters and exploiting the power of the Bees 

Algorithm to find the optimum number of clusters automatically.
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APPENDIX A 

Description of Datasets

Datal: This is a two-dimensional artificial data as described in (Maulik and 

Bandyopadhyay 2000). It consists of three clusters and has 76 objects.

Data2: This a two-dimensional triangular distribution artificial data (Maulik and 

Bandyopadhyay 2000). It consists of nine clusters and 900 objects.

Data3: This synthetic ten-dimensional data is generated using a triangular 

distribution (Maulik and Bandyopadhyay 2000). It consists of two clusters and 

1000 objects.

Iris: This dataset is from UCI Machine Learning Repository (Newman et al. 

1998). It contains four features represent the sepal length, sepal width, petal 

length, and the petal width. There are 3 clusters with 50 objects of each of 

these clusters.

Vowel: It consists of 871 objects of Indian Telegu vowel sounds (Maulik and 

Bandyopadhyay 2000). It has three features F1, F2, and F3, which represent
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first, second and third vowel formant frequencies respectively and it has 6 

clusters.

Crude Oil: This data contains 3 clusters of 56 objects with 5 features 

(Johnson and Wichern 2001).

Control Charts: It contains 6 clusters (normal, cyclic, increasing, decreasing, 

upward and downward pattern) of 1500 objects with 60 features. This dataset 

has been described in (Pham and Oztemel 1992).

Wood Defects: This wood data contains 13 clusters of 232 objects with 17 

features (Pham et al. 2006).
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Dataset Name #Features #Objects #Classes

Datal 2 76 3

Data2 2 900 9

Data3 10 1000 2

Vowel 3 871 6

Iris 4 150 3

Crude Oil 5 56 3

Control Charts 60 1500 6

Wood Defects 17 232 13

Table A.1 -  Datasets used in the experiments
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