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Abstract

This thesis explores how scientific applications, which are based upon short jobs (seconds and 
minutes) can capitalize upon the idle workstations of a Campus-Grid. These resources are donated 
on a voluntary basis, and consequently, the Campus-Grid is constantly adapting and the availability 
of workstations changes. Typically, to utilize these resources a Condor system or equivalent would 
be used. However, such systems are designed with different trade-offs and incentives in mind and 
therefore do not provide intrinsic support for short jobs. The motivation for creating a provisioning 
scenario for short jobs is that Image Processing, as well as other areas of scientific analysis, are 
typically composed of short running jobs, but still require parallel solutions.

Much of the literature in this area comments on the challenges of performing such analysis effi­
ciently and effectively; even when dedicated resources are in use. The main challenges are: latency 
and scheduling penalties, granularity and the potential for very short jobs. A volunteer Grid retains 
these challenges but also adds further challenges. These can be summarized as: unpredictable re­
source availability and longevity, multiple machine owners and administrators who directly affect 
the operating environment. Ultimately, this creates the requirement for well conceived and effective 
fault management strategies. However, these are tyically not in place to enable transparent fault-free 
job administration for the user.

This research demonstrates that these challenges are answerable, and that in doing so oppor­
tunistically sourced Campus-Grid resources can host disparate applications constituted of short run­
ning jobs, of as little as one second in length. This is demonstrated by the significant improvements 
in performance when the system presented here was compared to a well established Condor system. 
Here, improvements are increased job efficiency from 60-70% to 95%-100%, up to a 99% reduc­
tion in application makespan and up to a 13000% increase in the efficiency of resource utilization. 
The Condor pool in use is approximately 1,600 workstations distributed across 27 administrative 
domains of Cardiff University. The application domain of this research is Matlab-based image 
processing, and the application area used to demonstrate the approach is the analysis of Magnetic 
Resonance Imagery (MRI). However, the presented approach is generalizable to any application 
domain with similar characteristics.
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Chapter 1

Introduction

A strange paradox has emerged in scientific computing. Computers have become faster and cheaper,1 
but the computation models that researchers are developing now take longer to solve [1]. The in­
crease in capacity has enabled researchers’ computational models to become much larger and more 
complex. This results in increased execution times, despite an increase in computational capabil­
ities. In many cases, a single workstation quickly becomes inadequate and the success of an ap­
plication or piece of research becomes dependent upon the ability to perform the analysis quickly, 
accurately and cheaply. Simply using more computational resources is not as simple as it may 
sound.

Traditionally, dedicated parallel architectures were used to provide a source of computational 
power. However, accessing large quantities of dedicated compute power with low user effort is 
challenging and not always possible [2] for reasons of price, availability, accessibility, security 
restraints and portability. In addition, it is seldom the case that a single researcher or research 
group possess or have access to such resources. Over the last two decades much research has 
been conducted to try and ease the transition of migrating an application or workflow from one 
node to many, especially when existing resources can be leveraged. Despite much research, many 
challenges remain unanswered when the problem domain reaches beyond the general case.

The discussion in this Chapter will focus on the key characteristics that have made Campus- 
Grids and the associated paradigm of Opportunistic Computing so popular a source of resources. 
Here, two of the predominant reasons are presented in Section 1.1, namely, the cost of prior invest­
ment vs. the cost new investment, and the environmental costs of these approaches. The application 
context and scenarios that this research is motivated by will be introduced in Section 1.2. In addi­
tion, this Section will introduce that in these areas of research, definitions that are taken as common 
fact in distributed computing, are still very much used incorrectly to the detriment of the standard of 
the literature in these fields. In Section 1.3 the challenges of performing such analysis in a pragmatic 
and efficient manner will be introduced, and later serve as a means to evaluate to what extent the 
solutions this research has uncovered have been able to lessen the impact of these challenges. Sub­

,The performance o f a modem and reasonably priced desktop machine is comparable to a supercomputer that was in 
the list o f the top 500 most powerful supercomputers throughout the world in the early ‘90s.

1
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sequently, in Sections 1.4, 1.5 and 1.6 the research hypothesis, key research questions that will be 
used to support and test the hypothesis and the contributions of this research are presented. Lastly, 
in Section 1.7 an outline of this thesis is provided.

1.1 Opportunistic Computing and Campus-Grids

Opportunistic computing is essentially the leverage, or exploitation, of computational resources that 
would have otherwise been wasted. The principal resource is idle CPU cycles, but memory and 
disk space are other examples. The paradigm has a long history of success, primarily due to the 
availability of cheap or sometimes free resources. BOINC [3] powered projects, such as the well- 
known SETI@HOME [4] and other @HOME derivatives,2 are prime examples of the paradigm’s 
success and paramount to its legacy. The core philosophy behind these approaches is to encourage 
resource owners to donate their unused resources, in this case idle cycles of their CPU(s).3 They 
may then participate in, and contribute to, a large experiment or project. The use of league tables 
provides further incentives as participants can form teams to compete with others, which enables 
them to show off their computing resources. Resources can be a standard desktop PC or laptop, 
a beowulf cluster or even an HPC machine. The notion of donating resources is often referred to 
as volunteer computing, but it is important to note that this is not a philanthropic environment, i.e. 
resources are lost as well as gained over time.

There are varying statistics regarding the levels of a workstation’s utilization. Ranging from 5 
-  40% [5-7], In other words, as much as 95% of a workstation’s utility (CPU, memory etc.) is 
wasted, leaving workstations to sit around idle gathering dust, their value depreciating daily. Even 
when a workstation is in use, it normally has a large portion of idle resources and at night it is hardly 
used at all. This situation lives in contradiction with the large demand for computational resources 
in certain areas. The need for and waste of resources often coexist in the same institution [8]. This 
is a strange situation if the demand for computational resources is high, as the initial investment 
of purchasing computational resources has already occurred, but the utility of the resources is not 
being maximized.

Large institutions may soon come under pressure to reduce their environmental impact. There 
are rumours that the computing industry could soon become a larger polluter than the aeronautical 
industry,4 with large dedicated computing facilities and data centers being at the forefront. In con­
trast to the top500 list,5 an environmentally friendly equivalent has emerged: the Green500.6 Here, 
supercomputers are ranked according to the number of MFlops they can produce per Watt of power 
consumed. Even if the environmental impact of computing resources is put aside, the cost of basic

2Examples include: FightAIDS@HOME, Folding@HOME, ClimateModeling@HOME etc.
3This is achieved by downloading a worker daemon. Work is downloaded in units, when possible and required, and 

executed either as a screen saver or by detecting and consuming spare cycles.
4Announced by Dr. Pirahesh o f the IBM Almaden Research Center in San Jose, during his keynote at the CCGRID 

‘08: the Eighth IEEE International Symposium on Cluster Computing and the Grid.
5The list o f the 500 most powerful supercomputers across the world: http://www.top500.org
6 http //w w w . green500.org

http://www.top500.org
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utilities like gas, oil and electricity is a significant portion of the cost of computing capabilities. 
The cost of these utilities has also risen significantly in recent months. In general, dedicated infras- 
tructures demand a lot of physical space, a temperature-controlled environment, and measures to 
deal with the noise produced by cluster nodes [8]. This can not only be expensive, but is becoming 
increasingly environmentally controversial.

Supercomputers and other dedicated resources are not the only computing resources. General 
purpose workstations also contribute to utility bills and environmental impact. There are two basic 
options for these workstations: (1) switch them off, hibernate them or place them into a low power 
mode such as standby when they are not in use, or (2) use them more efficiently. A combination 
of the two is of course also possible. The benefits of powering down a workstation when it is not 
required are obvious, but it might not be worthwhile. Switching the workstation off and then back 
on again may consume more power than leaving it on in the first place. Chein et al. [9] highlighted 
that the exploitation of idle cycles on pervasive desktop systems provides the opportunity to increase 
ttie available computing power by orders of magnitude (lOx -  lOOOx). Osbourne and Hardisty [10] 
determined the average computational output when an average of 800 workstations were available 
(i.e. idle) to be 0.5 TFlops of computational power. To put this into context, a supercomputer 
near the bottom of the top500 list, at the same time, was measured at 2.03 TFlops. Considering 
that these workstations were up to four years old, this demonstration of computational ability is 
quite extraordinary. Chein et al. [9] noted that these computational resources can be as much as 
5 to 10 times more cost effective (in terms of capital spent to performance achievable) than the 
cheapest hardware equivalents.7 The rapid growth in Campus-Grids strongly reflects this processing 
capability and cost.

A Campus-Grid enables the collaboration of multiple departments, labs, and centers within an 
institution [11]. These groups are often in their own administrative domains but also share some 
common infrastructure. Existing security and administration procedures, for example, greatly ap­
pease the challenges of accessing and modifying resources, with the latter enabling a customisable 
computational environment. Campus-Grids provide the opportunity for researchers to utilize un­
used resources from anywhere on campus. Resources can include general purpose workstations 
available in a variety of open access, teaching and research computer labs, administration offices, 
lecture theaters and libraries, but can also include beowulf clusters, SMP and HPC machines as 
well as supercomputers. The Condor system [12,13] is perhaps the forerunner of this domain and 
can provide access to sources of untapped computational power. Osbourne and Hardisty [ 10] also 
conducted a study of the Cardiff University Condor Pool, which, at the time, was the third largest 
Windows-based pool in the UK. They concluded that a Condor pool (or equivalent) is a very cheap 
source of raw computational power. Approximately £0.005 per CPU hour. In other words, for £1 
a Condor user can consume more than a week of CPU time. This has lead to an architecture that 
allows Cardiff University to have the equivalent of a £500,000 supercomputer, but at a significantly

7Since this research. Graphical Processing Units (GPUs) have become a viable and cost effective option for HPC. 
GPU clusters are likely to reshape the HPC community sooner or later, even if it is only for specific application types. 
Their availability now contradicts this finding, although it is yet to be seen by how much.
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lower cost. It is also a much greener solution than the equivalent computing power sourced from 
dedicated resources. Unpublished findings by Osbourne also identify that computing power sourced 
from idle workstations is up to 5 times more environmentally friendly, than equivalent dedicated re­
sources. The saving comes from a reduced need for cooling, storage and the reuse of a previous 
investment. The Condor pool at Cardiff Univesity enables a saving of per year by not using 
dedicated computational resources [14].

Some examples of Campus-Grids include: Alchemi [ 15], Condor@Cardiff [14], GreenGrid [11], 
Harmony [16], OxGRID [17], UoBGrid [18] and UVaCG [19].

12 Application Context

Image processing is an important part of many applications, scenarios and workflows, which span 
a wide range of academic and industrial domains. As a discipline it continues to permeate into new 
areas of research, and in domains where it is already a critical component increase its indispens­
ability. It may be found in subject areas as disparate as manufacturing, engineering, medicine, site 
security and law enforcement, meteorology and robotics. Within these domains it performs a variety 
of roles as disparate as the domains themselves.

There is no shortage of example image processing applications that cannot be executed on a 
single workstation. Practically every medical imaging workflow requires higher performance than 
can be achieved with a desktop workstation at one or more stages of the computation. This is 
commonly the case during data visualization or the analytic processing of data. Todd-Pokropek 
[20] highlighted the need for high performance now that the analogue image capture processes for 
radiology have been largely replaced by digital equivalents. MRI (Magnetic Resonance Imaging) 
data is one such example, where studies frequently involve processing across several hundreds or 
thousands of relatively small (a few megabytes in size) images [21]. Bioimagery follows this same 
line, modem microscopes can produce images with resolutions of 40,000 by 40,000 pixels or higher 
and sizes range from several hundred megabytes to several tens of gigabytes [21]. Such images 
cannot even be held in the memory of a single workstation. Visualization of images of such a large 
scale is itself challenging. Typically, the image data is decomposed into tiles. Then sampling and 
montage techniques are employed to create a view of the data, which can be rendered on the user’s 
workstation.

Multi-perspective vision systems demonstrate that a single workstation can soon become over­
whelmed. Small scale systems (involving 3 cameras or less) can be handled by a modem desktop 
computer, but larger scale applications could be quite challenging even for HPC machines [22]. Ob­
ject recognition is another example. Consider the processing of surveillance data for event analysis 
or crime detection, recognition techniques may be adopted to identify items of interest or signifi­
cance. Such approaches are very computationally expensive.

The need for increased resource capabilities is not always related to computational capacity, 
memory restrictions can also elicit an increased need for resources. Image processing is a data
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intensive domain and thus the time required to manipulate and transfer data can be high in relation 
to the time required to process it. Applications with this requirement typically have a low flops 
to byte ratio. Consider comparative analysis of anatomical image data from a source such as an 
MRI scanner. Simple anatomical differences and variation in patient orientation during the image 
acquisition create a non-uniform space. For comparative analysis (e.g. comparing fibre bundles or 
identifying regions of interest based upon certain criteria or similarity) to be possible all data sets 
must be aligned (registered). This process may involve transformations in multiple dimensions and 
involve large data sets. Similarly, it may not be possible to hold the complete data set in memory, 
in such a case more resources are needed to distribute the memory requirements. Satellite and 
radar imagery provides another example where data sets can easily reach hundreds of gigabytes in 
size [23,24], and therefore require far more substantial amounts of memory than can be provided 
by a single workstation. The end result is that as contextual and conceptual models develop, the 
quantity of data and the computational complexity of the underlying image processing functionality 
also increases. Consequently, it is common for an application to reach beyond the capabilities of a 
single workstation. Such scenarios present many interesting challenges and research questions. For 
example how can the amount of data transferred be minimised, what transfer techniques should be 
employed, when should throttling be introduced, how many nodes should be used and what type of 
architecture should be used?

Many researchers have turned to Grid Computing [25] for an answer to their resource require­
ments, from many different disciplines. Plenty of approaches exist in the literature that have used 
Grid Computing for image processing too. Some have been much more successful than others, 
which gives rise to interesting observations within the literature for this domain. There is the clear 
disagreement of whether Grid Computing is suitable for image processing or not. Tackling and 
evaluating this objectively is very difficult, as the terminology is not consistent throughout the liter­
ature. Many approaches simply refer to Foster and Kesselman’s definition [25] and state that they 
use “The Grid”. In a similar way to the power grid and other large utility frameworks there is no 
one universal and global Grid, but many. In the UK alone there is more than one. Companies like 
HP and IBM have private Enterprise Grids, universities have Campus-Grids and the UK e-Science 
project provides the National Grid Service (NGS). In some cases the use of specific middleware 
is enough for a research paper to define its context as a Grid approach. For example, is using the 
Globus Toolkit [26] and Condor-G [27] enough to be considered a Grid approach, or do the re­
sources in use, their locations, the administrative policies and variability of quality of service that 
surround these resources define the context? The literature suggests both, but the original definitions 
of Grid only permit the second.

One of the things that has been lost in Grid Computing is the way in which resources are uti­
lized. Middleware provides the means to access resources, but middleware is not always as trans­
parent as it was intended to be. Researchers have commented on the complexities of middleware 
and how this inevitably stops the casual users (non-computer scientists) from accessing these re­
sources [2,16,19,28-31]. In addition, no two image processing applications are the same, there can
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be strict environmental setup requirements (see Section 1.3.7) and the terminology is, at times, used 
very loosely. It is not surprising that there are significant differences in opinion over the usefulness 
of Grid Computing for image processing. There are two identifiable subsets of image processing ap­
plications: (1) those which can execute in most execution environments,8 and (2) those which have 
specific environmental constraints, for example the requirement for specific libraries or software.

Any application within the first subset should fit nicely into a Grid context, such as custom 
applications that are written in one of the standard programming languages. However, those in the 
second subset are typically built upon and developed with specific libraries (e.g. R) and/or problem 
solving environments such as Matlab, Mathmatica and Lab VIEW. These applications cannot easily 
fit into the Grid Computing paradigm, as they can require software licenses (Matlab, Mathmatica 
and Lab VIEW). Even in the case of their open source counterparts, namely Octave, SciLab, etc. 
these applications need to be available to the compute nodes and correctly installed.9 In this second 
subset more local, and thus controllable and customisable, resources are required. The ability to 
use a Campus-Grid for image processing or other domains with similar attributes is therefore an 
attractive option.

1.2.1 Application Types

There are two kinds of application which are considered in this research: (1) distributed applica­
tions, and (2) scientific analysis which require or would benefit from parallelization. Distributed 
applications are ones in which the programmer is aware of the distributed nature of the compu­
tational platform when the application is written [32]. Such applications aim to utilize multiple 
resources to improve their productivity. Both distributed and scientific applications may have the 
ability or requirement to generate new work at runtime.

13 Challenges of Using Campus-Grids

The requirement for faster, more powerful image processing systems and environments capable of 
high performance, which can adapt autonomously and dynamically to suit the changing demands of 
applications [33] has been identified, yet remains insatiable. Much work and research from many 
different perspectives has been pursued toward this goal and is presented in Chapter 3. Yet, the 
challenges of this domain, as outlined below, have resulted in numerous partial solutions, many of 
which are application specific. The main challenge is finding a balance between many conflicting 
and sometimes paradoxical goals.

8This does not mean that they are platform-independent.
9It cannot be assumed that they are in fact correctly installed. Even when they are, the user may not have sufficient 

access to tune the installation to their specific job. This is a common problem in Matlab where environment variables like 
the search path and Java c l a s s p a t h  need changing, but the user cannot introduce persistent changes to do this.
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13.1 Resource Volatility

Resources within Campus-Grid infrastructures are volatile [9,34-36]. There are several sources 
of volatility, some context dependant and other architecturally dependent, and therefore not all at­
tributes of volatility are experienced in all Campus-Grids. The main attributes are: (1) the volunteer 
nature of resources, (2) resource autonomy, (3) network and resource failures, (4) multiple resource 
owners, (5) hostile environment, (6) multiple sources of administration, and (7) heterogeneity of 
hardware and software.

As resources are provided on a voluntary basis, they are only available haphazardly and for a 
finite time. The variability of resource availability makes creating a stable environment particu­
larly challenging [37], because workstations can freely establish and revoke their voluntary status 
without any constraints [35]. This can occur as a result of both active and passive decisions and 
events. Active decisions can be categorized through the autonomy of the owner (denoted as vol­
unteer autonomy in [35]). Owner autonomy encapsulates a few scenarios, but the most common 
is the reclaiming of their workstation for private use.10 The consequence of this is the suspension 
cmt termination of a remote job running on their workstation. The commonly adopted solution is to 
reschedule the job to another workstation, where it can be restarted from scratch or a previously 
saved state: called a checkpoint. The challenge here is in the retention of throughput, because as 
workstations are lost, throughput ultimately suffers. This is a consequence of losing the processing 
time, which occurred prior to the failure or eviction and the cost of rescheduling the job. This pro­
cess becomes more expensive toward the end of an application’s execution, as there are fewer other 
jobs executing concurrently and therefore reduces the efficiency of parallel execution.

The passive actions responsible for similar challenges are: failures, workstation autonomy and 
the unintentional reclaiming of a workstation.11 Failures can occur at three levels: (1) software, 
(2) hardware, and (3) network, whereas workstation autonomy is exercised by the operating system, 
and workstation management software. The events that have a negative impact upon a workstation 
are virus checks, software updates and other administrative actions. These actions are unlikely to 
cause a job to be suspended or terminated, which makes them much harder to detect. Instead, they 
can produce less desirable scenarios such as reduced performance, yet, more subtle scenarios may 
also occur. One such example is independent12 livelock, where workstations do not generate a 
result for a job even though they appear to be executing it [35,38] (see Section 2.3 for an example). 
Handling jobs in this state is exceptionally challenging, as without resubmission, there are little 
or no symptoms that can be used to identify whether the job is stuck13 or the workstation is at

10Oihers include powering down or rebooting the workstation and opting out as a provider o f volunteered resources.
"Typically workstations highlight that they are idle using a combination o f a lack o f mouse and keyboard activity and 

a low CPU activity. As the mouse becomes more sensitive and lighter, and therefore a lot easier to move it is becoming 
a lot easier to wake up a workstation accidently. Similarly, in open access or teaching labs, it is not uncommon to see 
groups o f workstations woken up by a user, so that they can use the first one to respond. This kind o f owner behaviour 
will cause jobs running on these workstations to be suspended. However, in some cases job suspension is not possible 
and therefore the job will be evicted or fail (see: Section 2.3).

12In many cases these errors do not affect other jobs, but only the application as a whole, which is hence independent 
[35], The only exception is when jobs intercommunicate; in such a case the traditional meaning o f  livelock would apply.

13For example an infinite loop, uncaught error or the user forgetting to terminate job.
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fault.14 For these reasons many existing scheduling mechanisms cannot detect failures stemming 
from workstation (and some volunteer) autonomy.

Campus-Grids have one core difference to other opportunistic approaches, namely, that each 
woikstation can have more than one owner. In theory there is only one physical owner, which is the 
university or institution that paid for the workstation. However, using the assumption that the owner 
is anyone that could use the workstation, a very different model is created. Here, a workstation 
can have thousands of owners. Some workstations can also have many orders of magnitude more 
owners than others. Multiple owners increase the impact of owner autonomy, but it also means that 
owners are not in direct control of the workstations they use.

As a Campus-Grid spans multiple administrative domains, administration comes mainly from 
teams of local (i.e. school or department) and central administrators (university administration). 
Two further classes of administrator exist that have an equal, if not greater, impact upon resource 
volatility. (1) Those that have rights but are not necessarily administrators, and (2) owners with ad­
ministrative access to their workstation. Consequently, this means that workstations can be upgraded 
haphazardly and from multiple sources. In addition, administrators in the different classes outlined 
here are unlikely to have strong communicative links, and possibly may not even be aware of each 
other. This occurs as each party has their own set of rules and agendas, which can be mutually ex­
clusive, contradicting, dynamic and unique. This is also true between administrative domains [17], 
i.e. departments, schools and research groups. Over time, it therefore cannot be guaranteed that 
any software dependencies remain persistent, and that workstation updates can induce anomalous 
behaviour, which may not be permanent, and only affect specific users and jobs. The four Condor 
admonitions [39] are a good set of guidelines for volunteer computing, as they have been compiled 
from tw'o decades of experience of the domain. In the context of multiple sources of administration 
the most fitting admonition is the assumption that a workstation’s state is not persistent or correct. 
However, it is the user who must inevitably determine why their job has failed. As mentioned above, 
few systems can provide a distinction between failures due to job error and errors which stem from 
the operating environment. The latter may even be unique to a specific workstation for a specific 
job or set of jobs. The possibility that workstations can be modified also impacts upon job execution 
in other less obvious and invasive ways. State switching,15 unanticipated background processing, 
changes in IP address or host name are all examples. These potential mutations in a workstation’s 
state only exacerbate an already hostile environment for a job to execute within. Hostility, typically, 
stems from a workstation’s finite availability, possible heterogeneity and that the job may only have 
a reduced set of access rights [39]. The final result is that job management challenges even the 
most capable of users, but in many cases it is nearly impossible to map and manage the execution 
of non-trivial applications by hand [2,32].

To demonstrate the impact that volatility has on the utility of Campus-Grids Chein et al. [34]

u For example a missing or corrupt library, data corrupted during transfer, insufficient space, or high background 
processing causing a reduction in a job’s performance.

15State switching is a change in software availability and/or integrity. It usually occurs as a consequence o f a software 
update, such that the software entity changes from being perfectly usable to unusable or vice versa.
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used Acharya et al.’s [7] cluster equivalence metric on a 220 node Entropia [9] system. The purpose 
of this research was to quantitatively identify what the performance of volunteered resources would 
be if they were actually a dedicated cluster. The system was determined to be the equivalent of 
a 209-node cluster on weekends, and a 160-node cluster on weekdays. An interesting result was 
the observation that the longer a job takes to complete the lower the cluster equivalence ratio. Ini­
tially this seems strange, as shorter jobs should have a higher scheduling overhead relative to their 
execution time, therefore reducing the efficiency of resource utilization. However, this is also the 
case on a cluster. The decrease in equivalence is reported to be because longer jobs are more likely 
to be affected by owner autonomy and failure. Resource management and application scheduling 
issues have been thoroughly studied, but most of this work considers a resource failure as a rare 
event [36]. In a Campus-Grid context resources do not necessarily fail more often, but resource re­
vocation leads to the same eventuality: the job must be rescheduled. For this reason, failure can be 
used synonymously with job eviction16 as the result of a workstation being reclaimed is the same as 
if the workstation would have failed. In this research they are not considered synonyms. The main 
reason for this is that a job can fail for many reasons other than being evicted from a workstation. 
This is demonstrated in Chapter 2.

13.2 Computational requirements are not static

The demand for computational resources is ad hoc and dynamic. This can occur at two levels: 
(1) the global level, and (2) the application level. The global level is where users and applications 
exist. Here, many simultaneous applications from one or more users can be executed. The central 
attributes that create dynamic demand are that no two applications are the same, and that users may 
run the same application several times as testing, preliminary runs or for result verification. The 
end effect is that over time resource requirements change, as applications complete and require less 
resources, which are released accordingly. However, an application may be causative and generate 
one or more other applications. Dynamic demand is also a consequence of how the execution of 
a job space must adapt given the nature of the resources in use. In other words, requirements can 
change with time, either as new or better resources become available [40], or as other resources are 
lost.

Dynamic resource requirements are also identifiable at the application level [41,42]. For ex­
ample during data transfers, computational requirements are lower than during the analysis phases. 
Even simple applications are composed of heterogenous, transient and finite functional entities, and 
therefore requirements may not only be variable, but also change spontaneously, which can give rise 
to dynamic job spaces.

Consider a surveillance system: should an event be detected, further processing is required to 
determine whether there is a risk associated with the event. This may involve views from other 
cameras and thus could create a large amount of additional computation to be completed as soon as 
possible. A similar example could arise in the analysis of MRI data or satellite data. If an anomalous

16This is the case in [36].
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object (a tumor for example) is discovered, in the first instance, further analysis would be required. 
There could also be the need for a resolution different to the current view or orientation, in order 
to give a physician a deeper understanding of the anomaly. A 3D model may also be generated, 
to aid a radiologist or other specialist in diagnosis. Should a specific cloud formation or region of 
interest be identified, in the second case, then the data may need to be resampled to provide a higher 
resolution.

Similar circumstances are also possible in an industrial context. Consider an industrial inspec­
tion system for a manufacturing line that produces engine components: if an artifact is located 
somewhere on the component, further analysis may be used to determine whether the build qual­
ity is affected by this anomaly. Similarly, if component alinement is incorrect, analysis may be 
introduced autonomously to detect how much the components are offset and the result fed into a 
decision making model to decide whether the fault can be rectified. As these applications grow and 
their complexity increases, so too does the necessity to use a significant number of resources to 
support their execution [2]. However, because these scenarios also exhibit dynamic job spaces (one 
which can change during runtime), they not only require additional resources, but furthermore the 
ability to autonomously tailor the quantity of resources available.

1 3 J  User ability

As distributed computing continues to permeate and extend into more research fields, the proportion 
of developers that are adept at distributed computing is inevitably decreasing. For image processing, 
developers are scientists and engineers (in disciplines such as: maths, physics, vision, medicine etc.) 
and not parallel and distributed computing experts [23,24,31,40,43]. Such users might not need, or 
desire, to always know or understand where the data or software they are using actually resides [23]. 
Their requirements will be more of the sort: “/  want to do this, to that ” and possibly within some 
time constraint.

The architecture and software solutions that the user chooses should enrich their research rather 
than introduce new constraints and challenges. For these reasons, developers place their preference 
with systems that are easy to use and have good performance over those with peak performance, but 
which are hard to use or program [44]. Any gain in performance from the latter is strongly negated 
by the additional time and effort required for development.

Resource volatility (Section 1.3.1) is another contributing factor, as it increases the complexities 
of job management for users. Research conducted by Pancake et al. [43] determined that users can 
spend in the order of 10% of their time performing job setup. The measured 10% entails simply 
describing their job properties for the architecture they wish to use and then getting the jobs to run. 
For large applications this is likely to be a significant period of time and for inexperienced users far 
greater than 10%. Accessing distributed and parallel resources has become easier in recent years, 
but in-depth knowledge of the particular system, front-end or middleware is still required and in 
many cases the learning curve is steep.
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13.4 Users’ typical working environment

Applications developers are, as would be expected, application-centric. Therefore, most users are 
concerned solely with what their application does, not how a given architecture services their re­
quests) or where resources are located [23]. Problem solving environments, such as Matlab, have 
thrived because of their simple user interfaces and the reduced development time this enables. En­
couraging users to step out of this comfort zone and into distributed computing, a paradigm full of 
unknowns and new challenges, is itself challenging [45]. There are several reasons for this difficulty, 
namely: (1) trust, (2) time and effort, (3) awareness, and as previously mentioned (4) ability.

Trust is a virtue that is very difficult to establish. In distributed computing trust is either as­
sumed or intrinsically certified through authentication. Users are, however, much more sceptical, 
and therefore less willing to send their applications and data to remote locations. In a Campus-Grid 
environment there are thousands of people from a myriad of disciplines and backgrounds. Each of 
whom use the workstations consituting the Campus-Grid on a day to day basis, and could theoreti­
cally steal or corrupt the user’s data and application.

In order to utilise distributed resources the user must spend time and effort. This can occur 
during the porting of code to a new environment. Examples include additional error handling, 
functionality decomposition,17 and pre- and post processing. Similarly, each approach requires 
some time to install and learn. This is time that could be spent doing research. Ultimately, users are 
more willing to wait hours, days and weeks for applications to complete rather than learn new tools 
and techniques, which could improve productivity.

Not all users are aware of what computing resources are available to them or what help they 
can receive in using them. However, approaches that enable researchers to treat large quantities of 
resources as a black box have been successful as this fits well into their development environment.

1 3 3  Determining resource requirements

The volatile nature of the resources in use means that the user needs to think carefully about the 
constitution of their jobs to minimize the time wasted as overhead. This can be easily achieved by 
increasing execution time, but if a job is too long the user runs the risk of the host workstation being 
revoked. Should this occur, jobs must be rescheduled and this may negate any gain in performance 
by increasing execution times. On the other hand, the user may receive more resources if a scheduler 
sees that they have more jobs. This brings forward questions that the user must answer, for example: 
how long should a job be, should job granularity be changed to reduce overhead, execution time or 
the risk of revocation, should jobs be clustered together to decrease overheads? There are many 
job/workflow management tools around but few can automate this process, placing performance in 
the hands of the user. In addition, clustering jobs means that should a workstation fail, a cluster of 
jobs may need rescheduling instead of just one job.

To answer even these simple questions, additional knowledge is required. Irrespective of user

17The breakdown o f functionality into work units for parallel execution.
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ability, this knowledge is not available prior to runtime, as no clairvoyant services are available 
and resource availability and allocation is difficult for the user to predict. The core point here is 
that whilst all these options and considerations can be made, a user is unlikely to either have the 
necessary information or expertise to correctly optimize their job space. Instead, the underlying 
architecture, which does in fact have most of the necessary information18 and potential ability, 
should take care of these intricacies. The quantity of resources to be used can then be considered.

The dynamic nature of resource demands and availability mean that determining the number of 
resources required can be difficult. The use of remote resources only makes this process yet more 
challenging, because their state and computing capabilities are not necessarily known prior to ex­
ecution. Estimates can be made using monitoring software to feed profiling tools and techniques, 
but ultimately changes in workstation state are difficult to predict. Similarly, judging the require­
ments for the set of jobs may be difficult. In many situations it can be impossible to determine 
their requirements prior to runtime (also noted by [41,46]). For example the size and quantities of 
input/output data, runtime errors like running out of memory or disk space and, as mentioned above, 
job sets are not necessarily static over an application’s runtime. In this sense the best indicator is 
the application itself [47].

Users' ability to identify their own requirements is a well known problem. Even with an un­
limited supply of resources available, the user would still try to use everything. During this time 
resources would be used very inefficiently and much of the applications’ runtime would be time 
wasted as latencies and overheads. A similar eventuality occurs when users are asked to estimate 
for how long they require a resource or set of resources, or for how long their application will run. 
This is also made more difficult by not knowing what workstations will be received in advance. 
Batch processing systems simplify this issue, but they cannot guarantee good performance, or an 
efficient utilisation of resources. The user is ultimately responsible for the latter. Given that the user 
has limited control over what resources are allocated or how many, expecting them to use resources 
efficiently is fundamentally flawed. This is reinforced by the possibility that users are domain ex­
perts rather than adept users of distributed computing infrastructures (Section 1.3.3). The resources 
themselves can also provide other challenges (see Chapter 2).

It is not unusual for vast amounts of compute power to be required at short notice, sporadically, 
temporarily, or for the requirements of an application to change with time. Such attributes make 
planning, resource reservation and fair allocation particularly difficult. Grid Computing sites built 
up of dedicated resources often require resources to be reserved (e.g. Grid5000 [48] and DAS- 
3 [49]) and plenty of toolkits and middleware facilitate this ability (e.g. the Globus toolkit [50]). 
Yet, this ability does not remove the challenge of determining how many resources should be used. 
Large computing sites such as Grid5000 are if anything more likely to encourage the user to use 
more resources than they require, simply because more are available. Similarly, online applications 
and those which require resources on-demand do not fit the model of reservation. It is more a case

l8For example: statistics on previous job executions such as: CPU time, memory, disk and network bandwidth required, 
current resource availability, user priority, resource contention etc.
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of using whatever is available at the time. In a dynamic application scenario, reservation may lead 
to under used resources or situations where more resources are needed, but cannot be used because 
they are reserved for another user. The benefits of reservation, however, is ensuring that resources 
are used consistently, and thus more efficiently. It can also be an easy metric to measure the demand 
for resources.

Research in Grid Computing answers the question of resource quantity by using one simple 
metric: cost. By allocating a budget to a set of jobs the execution time, and therefore the quantity 
of resources can be optimised according to cost. Buyya et al. [37] describe how this works in 
practice for Nimrod-G [51] and the Gridbus broker [52]. However, in the context of a Campus-Grid 
determining resource quantity based on cost is of little use. Firstly, resources are so cheap that the 
cost is almost negligible. Secondly, the volatility of resources and their dynamic availability makes 
planning very difficult. Finally, there are no service providers to instantiate agreements over quality 
of service and provide guarantees of resource availability, which accompany costing strategies.

As the complexity of an application grows, so too does the necessity to use a significant number 
of resources to support its execution [2]. However, the quantity of resources to be used becomes 
dependant on the user and how they partition their job space, which in turn lives in contradiction to 
a user’s ability.

13.6 Achieving parallelism

Given the typical user expertise (Section 1.3.3), it would also be unreasonable and unrealistic to 
expect users to adopt complex low-level parallel programming approaches, such as the use of MPI 
libraries [53] that are typically used to speed up applications [31]. If this were the case, the ability 
of the user to improve computational performance would be linked to their ability to implement a 
software solution, and identify where parallelism can be added to improve performance. In addi­
tion, MPI-based approaches cannot withstand the potentially high variance in resource availability 
that comes with the use of opportunistic computing. Approaches such as OpenMP [54] may not 
be as demanding, but the developer must still need to know where their application can be paral­
lelized. They would also require either a multicore workstation or access to shared memory parallel 
machine.

Aside from how speed up is achieved, many domains of scientific analysis are data intensive 
and therefore it is very difficult to maintain efficiency using a fine-grained abstraction. This is only 
made more difficult in the context of a Campus-Grid. Moler, [55] who here defends the decision 
to not create a parallel version of Matlab, reasons that if a data set fits into memory, little or no 
performance can be achieved with a fine-grained parallel model. In some cases partitioning and 
subsequently sending the data can take as long as processing it. Scalability can also present ad­
ditional challenges, as adding more worker nodes does not always mean a reduction in execution 
time. The literature presents cases where adding more worker nodes could increase rather than de­
crease execution time (e.g. [31,44,56]). These scenarios arise as a consequence of an increase in 
communication overhead from adding more nodes. As the number of nodes exceeds an application
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specific threshold, communication overheads begin to saturate the total wall clock execution time. 
If left unchecked this will eventually surpass the amount of time that is consumed by the execution 
of an application. At this point resources are being wasted. Friedman and Hadad [57] observed that 
the distributed computing research community frequently provide detailed breakdowns of latency 
costs and how this relates to the general approach. Yet, they do not consider the throughput limit­
ing factors. Some examples include: using too many nodes or scheduling without considering data 
dependencies or provenance.

In an image processing context a fine-grained parallel model can also limit the number of im­
age processing functions that can be facilitated. Tasks such as convolution, morphology and local 
operators can receive great improvements in performance from a fine-grained model. This has been 
thoroughly demonstrated by the parallel processing community. However, these same operations 
can be vastly improved in a serial context too, just by changing the execution strategy.19 Not all 
image processing operations can be simply performed using a fine grained model without the user 
writing specific parallel routines. In many cases it is possible to adopt a coarse-grained parallel 
approach quickly and easily, with minimal changes to application code. This was demonstrated 
in [59].

13.7 Operating environment

Image processing has the requirement for very specific environmental conditions. The need for 
commodity software and legacy systems such as Matlab, Octave [60], the GIMP [61] and Lab- 
VDEW [62] is needed to load, manipulate, interpret and process the image data. Such software can 
be stringently licensed as well as expensive. Moving the computational environment to a remote site 
would not normally have many issues other than portability. In an image processing context, how­
ever, licenses must also be in place to facilitate the application. Systems like Condor can describe 
the availability of local licenses (see [63]),20 but currently, no solutions are in place for transferring 
licenses between sites or subdomains [64,65].21 In this case a job that requires a software license 
must either be run within the licensing domain, or it must borrow a license at the remote site. Given 
the cost of licenses it it unlikely that the latter will be an acceptable solution.

Similarly, mechanisms for efficient and meaningful data manipulation and control are required. 
This need arises for the simple reason that if the infrastructure cannot adequately handle data, pro­
cessing it and extracting usable results will become a lot harder. Such requirements mean that high 
level control over the operating environment is essential. In this case, if licensing is not an issue, 
the required software libraries must still be available to the job. There are two realistic options here:
(1) the software is pre-installed and declarable as a job requirement, (2) the software is sent to the 
remote node with the job. The latter of course assumes that the software can be installed, either

19For example see Skipsm [58]; an execution model for improving the serial execution of morphological operators.
““ However, this approach cannot describe how many licenses there are or if any are currently available.
21 Recently, a 7th Framework European project SmartLM has begun to investigate how the licenses o f software products 

using license managers such as FlexLM (e.g. Matlab) can be transferred between sites. See: [66] or h t t p : / / w w w .  
sm a r t Im . e u  (last accessed April 2009), for further details.
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silently22 or that the job has sufficient access to install it for the session. Naturally, this is not always 
an option. The data requirements and security implications being the most obvious examples. A 
job’s requirement for software libraries is not unusual, but it is one that quickly reduces the number 
of potential sites where the job can be run.

The requirement for software libraries actually motivates the use of Campus-Grids. The ex­
isting administration mechanisms can be used to install any required software. The only issue is 
the unpredictable nature of a workstation, which comes with multiple sources of administration as 
mentioned in Section 1.3.1.

13.8 Latency and Overhead

The distributed computing research and development communities have provided a large repository 
of tools and techniques for users to access resources (e.g. clusters, supercomputers, networks of 
workstations) at one or more remote sites. However, sometimes there can be so much middleware 
and intermediary software components that latency and bottlenecks can become overwhelming. In 
fact, Bovenkamp et al. [67] highlighted that the image processing module and its control is often 
the most major bottleneck in (distributed) image processing.

The longevity of a job also impacts upon overheads. The shorter a job is, the more likely that 
scheduling overheads23 and data transfer overheads24 will limit performance. Different architectures 
have different recommendations25 for a minimum job length. Any less, and a good proportion of 
the turnaround time for a job can be attributed to scheduler overhead. When a user has jobs below 
this recommendation, they have only two options: (1) rethink, and tailor the job space to improve 
performance, or (2) leave things as they are, thereby ignoring any reduction in performance. In many 
cases users will opt for the second option, for reasons of convenience, insufficient information and 
expertise.

The overhead experienced by a user also increases as a result of the software requirements 
mentioned in Section 1.3.7. This impact upon performance is the time required for software to 
initialize. Initialization, which must occur before any execution can be performed, is wasted time. 
Typically, in job sets that need additional resources for computation, many jobs will share similar 
software requirements. However, each job will need to initialize this software, because for each job 
a new working session is created. This is a fundamental property of general distributed computing 
infrastructures, because they cannot control the software in use. Only in very specific architectures 
can this be alleviated, yet these approaches are commonly not portable. The problem here is that 
the node and software are being used for the duration of the job and not the duration of the node’s 
availability. Therefore, a node may initialize the same software multiple times. For short jobs this

" A  silent installation refers to the ability to make software available without using any specific administration tools. 
For example, a runtime environment just needs to be accessible, it does not matter where it is.

23Scheduling overhead is the time required to allocate a job to a node, transfer the required libraries and data and start 
execution.

24The time required to transfer data to the remote node.
25For example, the recommended minimum time for a Condor job is 10 minutes.
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can quickly become a large, and avoidable, proportion of a job’s makespan.

1.3.9 Job type

This research concentrates on a specific job type. However, this job type is in fact quite common. 
Whilst image processing is the primary application area of this research, it is interchangeable with 
any other area of scientific analysis, where a job’s constitution is compatible with the attributes 
listed below. This is possible, as many of the challenges presented above can be applied to many 
different domains. These challenges are mainly infrastructural and conceptual, but they stem from 
the type of jobs which constitute an application’s context (see: Section 1.2). Below are the key 
attributes which identify the type of job that is considered by this research. Note that a job does not 
need to have all these attributes, to benefit from this research.
Attribute(l): Jobs are short running, seconds to minutes in length.
Attribute(2): They use a coarse-grained abstraction as defined in Section 4.9.1.
Attribute(3): They can be causative and therefore instigate dynamic job spaces. In other words, the 
result(s) of one job may induce the need for the execution of additional jobs.
Attribute(4): Have rigid software requirements, such as the need for applications like Matlab to be 
installed and available.
Attribute(5): May require interactive use of resources, i.e. batch processing is not an option. For 
example, short running jobs may need interactive use of resources in order to avoid high overheads.

1.3.10 Summary

The challenges which have been outlined in this Section illustrate the complexity of using Campus- 
Grids. Their complexity largely stems from the volatility and variability of the resources themselves, 
which adds additional challenges. This means that applications which use Campus-Grids must be 
able to adapt within and respond to the environment they are using. They must also be capable of 
handling these challenges to produce effective methods for job management to control the potential 
for high overheads from the volatility and availability of resources and the potential for job failure. 
Users cannot be expected to do this, because they are domain experts rather than distributed com­
puting experts. For the same reason, users cannot be expected, and are unwilling, to significantly 
modify their models to use distributed resources. Their role is to further their research, not perfect 
their resource administration and parallel programming skills. Finally, determining the number of 
workstations to use raises many questions: about job constitution, the workstations that will be al­
located, whether those that are allocated will work correctly and whether the quantity allocated will 
be detrimental to performance due to over allocation.

These challenges are also self deprecating. The fact that they exist, makes it more challenging 
to convince users that Campus-Grids and distributed computing are useful assets to their research. 
Essentially, the grand challenge is to hide the complexities and bring forward a familiar environ­
ment, where they can conduct their research. For this reason the research conducted throughout this
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thesis is not based upon the results of simulators, but upon a real system implemented as a core part 
of this research. The implemented system can not only be used for research into this area, but also 
for the facilitation of external research.

In returning to the application context, even without using a Campus-Grid, distributed image 
processing is hard [29, 31, 32,45,68]. This is also true for many other areas of scientific com­
puting. However, as distributed infrastructures and [image processing] tools mature and become 
more readily available, merging the two into reliable, open and accessible systems is a challenging 
task [31].

1.4 Research Hypothesis

The volatility of a Campus-Grid places many hurdles in front of users, but the power and utility of 
such an architecture should not be discounted for such reasons. The hypothesis of this research is 
that a Campus-Grid can be made reliable, efficient and stable even for very short jobs (seconds), 
if the conceptual models of job and resource management are changed to directly consider the 
volatile nature of the resources in use. By changing these models, a virtual, but dedicated, cluster 
of workstations can be constructed. The workstations can therefore be used for as long as they are 
available, or needed, instead of the length of a single job.

The modification of the job and resource management models will enable other models to be 
changed and introduced. A key aspect of the hypothesis is the modification of the fault tolerance 
models. They must be sensitive toward the environment’s context rather than just identifying failed 
and successful jobs. Further motivations and real life examples of where the current models falter 
are presented in Chapter 2. These examples can only exist in real systems. Simulated environments 
cannot accurately model these scenarios because they can be so diverse that it is difficult to imagine 
to what extent they occur and then understand how, why and when they occur. Scheduling is another 
example where this time an application’s context can be considered. The aim here is that instead of 
packing potentially disparate jobs into a global plan over time, the scheduling decisions can be given 
to the application itself, to enable a more directed and application and context aware approach.

Once the conceptual models are in place to enable stability, reliability and efficiency, then the 
performance of an application can be increased without compromising on either the fiscal or tem­
poral costs of performing the analysis or the accuracy of the produced results. In the worst case, 
performance will be improved without increasing the number of workstations used. However, in 
the best case, performance will be improved with a reduction in the number of workstations used. 
This will occur thanks to a decrease in overheads, which occurs as a direct consequence of the 
existing conceptual models. The combination of the conceptual models that creates the idea of a 
Virtual Cluster will also enable support for applications that require resources spontaneously and 
interactively. Interactivity is possible because workstations are held on to, and therefore can be used 
interactively themselves. Finally, this is achievable with an increase in resource transparency to the 
user, i.e. a reduction in a job set’s administrative procedures such as the remapping or wrapping of
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code, job description and reusability of components.

1.5 Research Questions

From this hypothesis several core research questions are needed to evaluate the hypothesis. 
Question 1: What measures are needed to make a Campus-Grid feasible for the job definition given 
inSection 1.3.9?

Motivation: There are two questions here, the first is stated above. The second ques­
tion is: how do the current conceptual models (job and resource management) in place 
need to be extended? It is the adaptive and volatile environment, which makes using a 
Campus-Grid challenging. Therefore, fault tolerance and prevention is one of the key 
areas, as is dynamic and autonomous management to keep up with the ever changing 
environment. This variability of resources makes creating a stable and reliable environ­
ment particularly challenging [37]. It also makes it nearly impossible for a user to map 
and then manage the execution of non trivial applications by hand [2,32].

Relation to hypothesis: The creation of a stable environment for the execution of jobs 
demonstrates the feasibility of the hypothesis. Additionally, it also enables research 
questions 2, 3 and 4 to be answered.

Analysis required to answer question: The building and critical evaluation of a
working computational model will provide a solid platform to answer this question, 
and raise others.

Question 2: How can the number of resources to be used for the execution of a set of jobs be 
determined?

Motivation: This question relates back to the challenge outlined in Section 1.3.5,
which stated that it is difficult if not impossible to determine the resource requirements 
of an application. This process is only made harder by the volatility (Section 1.3.1) of 
the resources in use, and the opportunistic context in which resources are used.

The consequence of variations in availability and resource volatility mean that allocated 
resources are dynamically lost and gained over time, and those which are allocated are 
not guaranteed to function as expected. In addition, the changes in modelling create 
a different working scenario, where fewer workstations can potentially provide an im­
proved throughput. For these reasons a requirements model needs to be able to signal 
that if more workstations become available, then it would be possible for an application 
to consume these additional resources. Here, the idea is to provide a general indicator 
of the number of workstations for an autonomic system manager to aim for. Such an 
estimate may never be achieved, but even an ambitious estimate is a useful indicator.
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Relation to hypothesis: The models introduced by the hypothesis will impact upon 
performance, and a requirements model is needed to encapsulate this.

Analysis required to answer question: By monitoring the efficiency of resource uti­
lization as well as performance as a whole, it can be ascertained whether the resources 
that are supplied by the system are both sensible, i.e. not detrimental to performance, 
and adequate to yield an improvement in application makespan.

Question 3: What differences does the user experience as a result of introducing these models?

Motivation: In answering this question the proposed research can be validated and its 
usefulness demonstrated.

Relation to hypothesis: Answering this question will illustrate the applicability of
the approach by demonstrating the ways in which users are able to do something that 
was previously either not possible or feasible, or how they can improve upon previous 
methods.

Analysis required to answer question: The development and facilitation of a real life 
application, will be used to illustrate where gains in performance and useability can be 
achieved.

Question 4: What are the bounds of these models?

Motivation: This approach is primarily targeted at short running jobs and those which 
meet the criteria in Section 1.3.9. There are two aims of this question. Firstly, to iden­
tify how short a job can be to feasibly be executed within a Campus-Grid environment. 
Secondly, to determine the range of jobs which do not fit this criteria but can still work 
within this context. In other words, does this approach negatively impact the perfor­
mance of longer running jobs?

Relation to hypothesis: The outcome for this analysis will demonstrate the applica­
bility of the approach but also determine scenarios where more research is required to 
capitalize upon the utility of a Campus-Grid. Similarly it will enable the identification 
of other scenarios that simply do not fit this model.

Analysis required to answer question: The easiest way to evaluate this question is 
through application development and synthesized applications.26 Applications demon­
strate the feasibility of the approach within a realistic context. However, they are diffi­
cult to reproduce as the underlying workstations are inherently heterogeneous, making

26A synthesized application is one contrived to suit the purposes o f evaluation. It differs from a simulation in that real 
jobs are still performed on the Campus-Grid. A deeper explanation and motivation for such an application is given in 
Section 2.4.
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it difficult to create the same execution environment. A synthesized application, side­
steps this problem because it is controllable and can be made independent of work­
station performance. This ability means that an approach can be evaluated fairly and 
objectively.

These are only a few possible research questions that can be raised from the hypothesis. Some 
other questions which have not been attempted, but which would be useful future contributions are 
outlined in Sections 6.10 and 8.3.

1.6 Contributions of this Research

This research has demonstrated the feasibility of Campus-Grids for even very short running jobs 
(seconds). It has also documented how this can be achieved. An adaptive model has been developed 
and deployed within a real Campus-Grid environment. This model enables the creation of a stable 
environment despite the volatile context in which the workstations exist.

The result is an improved platform for users, allowing them to perfect the applications at the 
heart of their research and not their resource administration skills. This is achieved by isolating 
the user from the administrative, pragmatic and sometimes tedious roles of job and resource man­
agement. Users can harness the computational resources of the Campus-Grid without leaving their 
familiar operating environment. This has been demonstrated through the creation of a Matlab-based 
system for distributed image processing [33,38,59]. The utility provided by this approach can be 
leveraged directly from Matlab, with the result that the user can harness computational resources 
from their Matlab session transparently. This enables the user to directly integrate computational 
resources directly into an application’s context, and therefore consider application specific trade offs 
and agendas. Similarly, an application can dynamically change its resource requirements over time, 
causing resources to be acquired and relinquished transparently, based upon demand and availabil­
ity.

The final contribution of this research has been the demonstration that performance can increase 
without increasing cost(s) or reducing the accuracy of the results. The approach is evaluated along­
side a managed Condor system, showing significant improvements in performance over a standard 
Condor system, even when fewer workstations were used.

1.7 Overview of the Thesis

Chapter 2 presents an empirical study of Condor from a user’s perspective. This study has been 
performed to illustrate that the challenges presented in this introduction are not only real, but have 
significant impacts upon performance and raise further challenges in job administration. This Chap­
ter also sets the initial benchmarks for the system developed as a part of this research to be compared 
against, in order to quantify the improvements in performance that have been gained as a direct re­
sult of this research.
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Chapter 3 reviews existing techniques of creating a distributed image processing environment 
(not necessarily with Matlab) and aims to illustrate how this approach differs from other attempts. 
It also details other relevant work in the areas of volunteer, opportunistic and distributed computing, 
commenting on the areas within these domains that cannot support the type of applications presented 
earlier in this introduction.

Chapter 4 presents the methodology, philosophy and core assumptions that the approach adopts 
and commences the discussion on where the limitations, paradoxes and trade-offs exist in this ap­
proach. It also introduces the core aspects of the solutions to the answerable challenges of Chapters 
1 and 2 and how this research differs from what is presented and discussed in Chapter 3.

Chapter 5 presents how the system has been built, what components constitute the solutions to 
the presented challenges and w'here the limitations of this approach lie.

Chapter 6 documents the real-world application of the system documented in Chapter 5 on a 
medical image processing workflow, which has been developed and aided by using this approach. 
The aim of this Chapter is to show how the user can benefit from this research and what lessons 
have been learnt through this development.

In Chapter 7 the approach is evaluated using a series of experiments comprising of synthesized 
jobs are presented. The results are discussed and compared to the results of the same analysis 
performed using the current Campus-Grid middleware (Chapter 2).

Finally, in Chapter 8 the final results, contributions and lessons learnt from this research are 
presented as well as future work.
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Chapter 2

Analysing the limitations of Condor 
within a Campus-Grid

This Chapter aims to demonstrate in a real scenario the challenges that were identified in Section 1.3. 
Three studies are presented each to convey a different aspect of the use of such an infrastructure. 
The first demonstrates the challenges of job management and the importance of “sensible” strategies 
for job submission. The second introduces the impact of resource volatility upon job management. 
Here, emphasis is placed upon the scenario whereby the software requirements (Matlab in this case) 
are advertised by workstations but are either not available at all, or incorrectly installed. Both of 
these studies present challenges that the user must face in job and resource administration and also 
in application steering. Ultimately they demonstrate the volatility of the resources in use. The 
third study captures Condor’s performance when short jobs are to be performed. Here, Matlab jobs 
with predefined runtimes of as little as one second are executed, and the performance of the system 
analysed.

These three studies are not a criticism of Condor, but rather intend to motivate the need for 
research to improve the performance for applications that require further resources from infrastruc­
tures such as a Campus-Grid, and especially when the jobs are quite short in length. The motivation 
for this work is therefore, firstly, to demonstrate that there is room for improvement and, secondly, 
where improvement is needed.

The structure of this Chapter is as follows: in Section 2.1, the method for the extraction of ex­
perimental data from Condor logs is presented. In Section 2.2, the first study: the overhead related 
to job queue size, is presented and the results discussed. In Section 2.3, the second study: the diffi­
culty in successfully executing Matlab jobs, is presented and the results discussed. In Section 2.4.1 
the methodology behind the analysis which constitutes the third study is presented, as it forms the 
benchmark for the performance-related comparison of this research (Chapter 7). In Section 2.4.2 
an Autonomic Job Manager is defined, as it is needed to run and steer the experiments for the third 
study. In Section 2.4.3, the third study: application-centric performance for short jobs, is presented 
and the results discussed. Finally, in Section 2.5 a summary of the Chapter is presented and its

23



Chapter 2. Analysing the limitations of Condor within a Cam pus-Grid 24

findings discussed.

2.1 Acquisition and M anipulation o f Experim ental Data

In order to discuss the results and implications of the execution of Condor-based experimental anal­
ysis, data describing the behaviour of job execution is paramount. The primary source of data 
detailing job execution are the Condor job logs, which are stored on the user’s submit machine.1 
Condor uses these log files to record changes in state of jobs and also to provide some additional 
information of what happened during the execution of each job. However, for intuitive job analysis 
of large numbers of jobs (in the order of thousands) this data is fairly difficult to use by hand. Es­
sentially, it is a record of all state transitions (Figure 2.1 shows the basic state transitions) of all jobs 
with a date/time stamp. Entries are made chronologically and therefore events for specific jobs are 
not necessarily near each other in the log file.

Figure 2.1: Most Command State Transitions of a Condor Job. Note: that here failed is a sub-state 
of finished. Such jobs may or may not be rescheduled automatically by Condor, depending on the 
the cause of their failure.________________________________________________________________

fFinishedJ---------

r \   (Suspended
-f Preempted W------------------------------ 1 v v

To obtain usable data from the Condor logs they must be parsed to extract the state transitions of 
each job. This data can then be used to build an object model representing each job and its associated 
state transitions. By converting the data of job space in this manner, a normalized representation 
of the state of the job space as time series data can be generated. This is achieved by sampling 
the state of each job for the duration of the execution of the job space. Once the job space has 
been represented in this manner it can be formatted to suit any persistent medium like a database, 
where it can be searched and graphically represented. Similarly, characteristic metrics such as 
the average job runtime or the number of concurrently executing jobs at a specific time, can be 
easily calculated. Such metrics are not normally available to the user, although Condor Quill [69] 
can provide this information to a certain extent. However, these services are not standard Condor 
features, but optional additions and are not always available.

This data can be extracted both during and after runtime, and can have uses other than just 
retrospective analysis. For example, in application steering, monitoring and error handling. This

'Other sources would be the condorJiistory utility, Quill [69] and Hawkeye [70].



22. Job Overheads 25

information can also be used by autonomous processes, for example Section 2.4.2 describes an 
Autonomic Job Manager which is used to steer the third study performed in this Chapter.

22 Job Overheads

Whenever a Condor job is started on a remote workstation it is subject to overhead. This stems from 
two primary sources: (1) pre-staging: the initialisation routines, for example environment setup 
(setting the path, mirroring the user’s environment, starting external applications etc.), input file 
transfers or modification prior to execution (unextracting compressed archives etc.) and any Condor 
and architecture specific behaviours that are required to physically start job execution. (2) post­
staging: the cleaning up after the job has finished, the preparation to vacate the workstation and 
transfer of results.

It is clear that this overhead is related to application complexity and context. Yet, even the 
simplest of jobs are subject to Condor and architecture specific overheads. If additional factors such 
as input and output file transfers and job-specific pre- and post-staging are removed it is possible to 
measure the time required for a job to start. To measure this time a Dummy Job can be used, as can a 
job with a predetermined execution time that is independent of workstation performance. A Dummy 
Job in this instance is one that calls the Windows command e x i t  and thus terminates the job session 
as soon as it begins. Condor should record this as a job that requires 0 seconds to execute, as the 
minimum time unit used in the Condor log files is one second. In addition, because there are minimal 
input and output files to transfer, no overhead should occur due to file I/O. Instead, overheads will be 
due to Condor’s job start procedure, as well as other external factors stemming from the operating 
system of the host workstation and strain on the submit node. Detrimental operations on the host 
workstation can include: Windows updates, anti-virus checks, the applications of the workstation’s 
owner and any other background processing that the workstation is currently undertaking.

The questions that this experimental analysis is trying to answer are listed below. The aims 
of this analysis are to demonstrate the administrative aspects of job management that a user must 
undertake, and furthermore, to demonstrate that Condor, when left unchecked, can waste large 
quantities of resources unnecessarily.
Question: Is the overhead a significant factor in a job’s execution time?

Motivation: The identification of the overhead for a job is an important factor in ac­
cessing the performance of any distributed system. For short jobs overhead can be a 
large proportion of its makespan, thus making resource utilization inefficient. If over­
head was static its impact upon performance would be inversely proportional to the 
job’s execution time. Unfortunately, overhead is not static, but dynamic. How dynamic 
is dependant on many factors, but the variance in the overhead is a good indicator 
of how resources change over time and also demonstrates their volatility. This over­
head, when combined with an estimate of the scheduling overhead, can also be used 
in predictive models to determine minimum job lengths for a given resource utilization
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efficiency target.

The Dummy Job being used is sufficiently light weight so that workstation performance 
is not a factor in determining its execution time. Only external workstation specific 
conditions and Condor overheads can impact upon its execution time. The greater the 
influence of these factors, the higher job execution time will be.

Question: Does overhead increase in relation to the number of concurrent jobs?

Motivation: In theory this should be an inconsequential factor for starting remote
execution. The number of jobs waiting in the queue for a specific user should only 
influence the scheduling overhead, i.e. the time to match a job to a workstation. The 
co n d o r_ sh ad o w  daemon is used to represent the user on the remote workstation 
[39]. Casual observation of submit nodes over time has hinted toward the hypothesis 
that if the number of jobs increases so too does the load on the submit node. Therefore 
the performance on the remote workstation is reduced. If this is the case, increasing 
the size of the local queue should impact upon execution times. Such an eventuality 
would be significant, because without local regulation of submissions, resources are 
being unnecessarily wasted.

Question: How often do jobs runaway and how expensive is a runaway job?

Motivation: A runaway job is one that requires an unexplainably large amount of
time to complete (with respect to its anticipated runtime). One important and distin­
guishing attribute of a runaway job is that is does not fail, as given the opportunity it 
will eventually complete. Therefore, a job that requires a long time to run, but then fails 
is not classified as a runaway job. By quantifying this and determining the variance in 
the results, the volatility of the resources in use can be demonstrated. This is due to the 
difficulty in detecting the cause of a runaway job, as a number of potential contributing 
factors exist. The problem here is that many fault tolerance approaches assume that the 
job is at fault, and will monitor the job in future (rescheduled) executions when the host 
workstation may in fact be at fault.

If a Dummy Job becomes a runaway job, it is not possible for it to be at fault if a signif­
icant proportion of other runs complete as expected. Thus, runaway jobs could only be 
symptomatic of external workstation specific factors and/or Condor faults. Analysis of 
the frequency of runaway jobs will further demonstrate the administrative challenges 
faced by users. In this case the job is not representative of normal job complexity, but it 
is clear that the job cannot be at fault. Outside of these controlled conditions it becomes 
increasingly more difficult to determine where the fault lies, especially considering the 
methods employed to describe failures.
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2.2.1 Experimental Analysis

The number of jobs per experiment is varied to 100, 200, 300, 400, 500, 750, 1000 and 2000 
concurrently submitted jobs2 and each experiment has been repeated ten times at different times of 
day, resulting in 52,500 submissions of identical Dummy Job. Figure 2.1 showed the state changes 
possible for a job. However, should a job be preempted, the job model will reset its execution 
time so that any additional time spent in the queue does not contribute to the monitored execution 
time. Each experiment is monitored by an autonomous manager, which monitors the Condor log to 
determine when an experiment has finished3 to enable back to back experiment runs. This ensures 
that the Condor pool is as consistent as possible.

These experiments are not concerned with fault detection and autonomic correction: if a job 
fails the manager will leave Condor to reschedule the job. Changes in idle time due to an increased 
local queue are not taken into account. Similarly, the total runtime is also not considered here. 
However, should an experiment of a larger number of jobs take significantly longer to execute than 
the equivalent number of sequentially executed smaller experiments, then this will be presented. 
Such an eventuality would demonstrate that the size of the local queue is an influential factor on the 
total makespan of an application if a similar number of workstations were used.

2.2.2 Results

Figures 2.2 and 2.3 depict the execution times of all jobs that constituted this analysis. As expected 
the vast majority of jobs are recorded as requiring 0 seconds or less than 10 seconds (approximately 
70%). One very noticeable characteristic is that as the queue size increases the number of jobs 
requiring 0 seconds decreases and the number requiring 1-10 seconds and 11 - 25 seconds increase. 
This would suggest that the overhead caused by starting a job increases, as the size of the local queue 
increases. This is an interesting development because, typically, users submit all their jobs at the 
same time. Yet, these results suggest that this is not a good idea. Instead, to improve efficiency 
an equilibrium between the number of jobs in queue, to ensure workstations are allocated, and the 
effect that the queue size has on overhead must be retained. This becomes even more important 
when jobs are short. One other factor that must be considered is the time required to allocate a 
workstation to a specific job. As the number of jobs waiting to be assigned a workstation increases 
the demands placed upon the scheduler also increase and therefore allocation requires more time 
per job. Figure 2.4 shows how the average execution time of jobs and the standard deviation also 
increases with an increase in the size of the job queue.

One simple answer to this problem is in job clustering, where small jobs are grouped into a 
single job cluster. A job cluster is then submitted to Condor as a single job, which returns one or 
more results. Clustering has challenges associated with it and the main challenges are: determining 
cluster size, recognizing affinity in jobs to cluster similar jobs together and thus reduce data transfers

2In other words, the Condor queue size is varied for each experiment.
3The manager has read only access to the Condor logs to ensure that the Condor Shadow daemon has priority access 

to the job logs. Thus, preventing bottlenecked access to the log file.
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Figure 2.2: Frequency of execution categories for a varied number of concurrently submitted zero 
length jobs
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and failure recovery. This analysis has identified a new problem that must be considered if clustering 
were put into action. This is manifested by the moderate amount (approximately 13%) of jobs that 
required more than 200 seconds to complete and a very small percentage (0.22%) that required over 
400 seconds. These may seem marginal quantities, but when the amount of time required by these 
jobs to complete is taken into account a very different picture emerges. Figure 2.5 illustrates the 
total CPU time that each of the runtime categories consumed. The detrimental effect of the jobs that 
required between 201 and 400 seconds is significant (nearly 500 CPU hours), as they represent 78% 
of the total recorded CPU time for all jobs (disregarding the time jobs spent in the queue). Note that 
very few of these jobs failed. In total, 9 jobs (0.0017%) failed and of these only three required more 
than 400 seconds.

Given that most jobs required between 0 and 10 seconds, normal behaviour is within these 
bounds. A further 13% required between 11 and 50 seconds, and 4% between 51 and 200 seconds. 
The jobs above 200 seconds can be classified as runaway jobs because there is no information in 
the logs to suggest that these jobs encountered problems. This would suggest that such jobs are 
the effect of factors that are independent from the job itself. In other words, the fact that these 
jobs runaway is not related to their complexity or to some environment precondition not being 
met. Instead, it can only stem from either Condor, the submit node or the host workstation. The 
connotations this has for job clustering are troublesome, on the one hand clustering jobs improves 
efficiency as overheads become less influential upon performance. One the other, given the number 
of jobs that have runaway and their effect upon makespan, what indicators are there to distinguish 

between an uncaught failure and a runaway job?
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Figure 2.3: Execution time categories of all zero length jobs
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To answer this question, a little more information on the most extreme jobs is needed. Of 
52,500 jobs, 118 jobs required more than 400 seconds, 19,982 required between 1 and 10 seconds, 
but the latter used less CPU time. The job w ith the highest recorded runtime was 3,493 seconds, or 
approximately 58 minutes. There is no information available in the Condor log to explain why this 
occurred. It is possible the remote workstation’s log could have given some indication, but this is 
neither easily acquired4 nor likely to retain the information long enough to be of use.5 Throughout 
this analysis the worst recorded runtime was 7,205 seconds, approximately 2 hours. This job also 
failed, as Condor lost contact with the host workstation, the likely cause being a power down of the 
workstation. In brief, there are little or no indicators to identify a runaway job, unless some estimate 
of the execution time of the job is known. Even in this case the user must then write a manager to 
monitor all jobs, provide estimates and define rules or behaviours which can be mounted against 

such jobs.
This does still leave one problem: Condor logs are not updated in real time, so this kind of 

reactive analysis and steering can create unfortunate situations. For example, a job can be killed 
even if it has finished.6 When a workstation finishes a job, it cannot start the next until the Condor

4There are three ways of acquiring this data: (1) Logging into the workstation manually, however note that worksta­
tions are not co-located with the submit machines. (2) Remote access to the workstation. However, having the access to 
do this even for an administrator is unlikely and may not be possible at all. (3) Use a Condor job to access the log and 
transfer it to another workstation.

5Workstation logs have a predefined size limit, when a log gets too large older data is deleted.
6In such a case no results would be returned.
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Figure 2.4: Category Statistics
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shadow daemon has vacated the workstation, transferred any output and updated the user’s logs. 
At this point, discrepancies between what the logs say and what is actually occurring are possible, 
sometimes significantly. What this means is that a job may take X time units to complete, but the 
log may not reflect this for X + k time units, where k is the delay in updating the log. Hence, using 
real time analysis of job state using only the Condor logs can lead to reactive measures that do not 
consider this delay, and thus kill a job which has already finished, but not yet checked in its results.

If real time diagnostics cannot be used reliably, then the next natural option is retrospective 
profiling. Figures 2.6, 2.7 and 2.8 illustrate an execution cycle of experiments with 100, 500 and 
1000 jobs respectively. What is especially interesting in these graphs is the repetitive cycle of 
poorly performing (runaway) jobs, indicated by the blue line (average runtime of all jobs currently 
running). This has occurred in every experiment, but with varied frequency and amplitude.

The first question that is raised by these graphs is whether the same workstations are in use. If 
so, then do these workstations consistently perform badly, and therefore cause their jobs to consis­
tently runaway and detriment performance. Surprisingly, this is not the case. If this had been the 
case, workstation profiling could have been used to instruct Condor not to use poorly performing 
workstations. In Figure 2.6 61 different workstations were used, and 32 jobs (32%) required more 
than 200 seconds to complete. The maximum number of jobs that a single workstation completed 
was 5. This particular workstation had 3 jobs that took over 200 seconds to complete but also one 
that took only 1 second. In Figure 2.7 62 jobs (12%) required more than 200 seconds to complete. 
The workstation with the highest number of >200 second jobs, in this case 3, also performed 6 
jobs with a recorded runtime of 0 seconds. In Figure 2.8 158 jobs (16%) required more than 200 
seconds to complete. The most >200 second jobs performed by a single workstation was 6, the
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Figure 2.5: Total time required for each of the empty job categories
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same workstation also performed 10 jobs requiring 2 seconds or less.

The next question that arises is: do runaway jobs occur sequentially on a workstation? In other 
words, if a job runs away, is it likely that the next job will do the same? Again, surprisingly, 
the answer is no. 787 workstations were used during this experimental analysis and of these 725 
performed more than one job. Of the 6,935 jobs that required over 200 seconds, 1,278 (18%) 
were sequential occurrences when the time between occurrences is not considered. The time is not 
considered because it is difficult to know at what point the gap is too large. However, note that 
during this time a job from another Condor user could run and the workstation could be reclaimed 
or restarted, which may affect the state of the workstation. Without a monitoring system such as 
Hawkeye or Quill in place it is difficult to ascertain whether this be the case. There are only two 
possible other sources capable of providing this information: (1) the log files of all other Condor 
users, and (2) the log file of the Condor workstation. Both are difficult to acquire, but as previously 

mentioned the latter is also transient.

Of these two options the latter was employed, as it may provide some insight as to why some 
jobs runaway. To obtain the relevant log file a Condor job is used to initialize an FTP session 
from the workstation and then transfer the log to a central point for analysis. Not all logs could be
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Figure 2.6: Execution Profile of 100 Empty Jobs
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Figure 2.7: Execution Profile of 500 Empty Jobs

collected, and there are two reasons for this: (1) workstation identification7 and (2) availability.8 
In total 50% were obtained, but this relates to a small representation of the total number of jobs 
(approximately 9,500 or 18%)9 that this analysis involved. Whilst this is not representative of all 
jobs, no better solution is possible with the current architecture, without administrative access to all 
workstations. Nevertheless, enough evidence10 is present to determine that another user’s job be-

T he difficulty here is the method by which workstations are identified. A workstation has 4 identifiers, (1) a MAC 
address. (2) an IP address, (3) a DNS name, and (4) a NetBIOS name. The first three are self explanatory, but the 
last is not. It is the name assigned to a workstation by the network management software and it is typically, the MAC 
address prefixed by an X. For some reason not all schools and departments follow this naming scheme, giving rise to 
an inconsistent naming schema, where repetitions can occur. This name is also presented when the windows command 
h o stn a m e  is executed. Condor uses this command to identify a workstation, and uses its results in the workstation’s 
ClassAd under machine name. When a user wishes a job to run on a specific workstation they must provide this name. In 
itself this would not be a problem, but when Condor assigns a job to a workstation it identifies that workstation in log files 
with its IP address. The University does make the database which provides the map between IP addresses and NetBIOS 
names available to users, but only to network administrators. In order to acquire this information the user must extract it 
from the workstation’s ClassAd, which is only available when the workstation is connected to Condor.

®Not all workstations were available within a week of the experiments completing. It was assumed that after this time 
little or no useful information would be contained in the log.

9Note that even with 100% representation of workstations it is very unlikely to achieve 100% of the job records. This 
is primarily because of the amount of jobs some machines have performed, the time span for this analysis and because 
old data is removed from the logs periodically.

l0The log in use is the StarterLog, which details all jobs that have been started, within the monitored time frame. The 
documented data of interest is: when a job was submitted, which submit node was in use, when the job finished and what
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Figure 2.8: Execution Profile of 1000 Empty Jobs

300

ISO

300

500 tsoo 3000 2500 3000 3500 8000

tween two jobs in this analysis cannot be linked to runaway jobs. All possible combinations of jobs 
are present i.e. 0 second and up to 468 second runtimes are present. Both normal and runaway jobs 
have been preceded by jobs from other users that have been long running, short running, successful 
and unsuccessful.

One resounding questions remains: why do some jobs runaway in a seemingly random fashion? 
Many possible explanations have been explored above, yet no concrete reason can be determined. 
One remaining possible reason is that the Condor worker daemon on the host workstation updates 
the shadow, on the user’s workstation, every' 300 seconds. It is possible that prior to the first update 
the job is waiting for further information or that the update is used as a synchronization point. The 
average time of all jobs, that fell into the category of 201 - 400 seconds is 270 seconds with a 
standard deviation of 35.9. Within these bounds this is a possible explanation. Figure 2.9 shows the 
frequency of each runtime between the values of 100 and 400 seconds. If the daemon updates were 
a direct cause of runaway jobs a peak should be visible around 300 seconds. Yet, this is not the case, 
as peaks are present around 220 and 270 seconds. Other possible reasons beyond startup overheads 
and variations in workstation load are difficult to conceive.

Figure 2.9: Frequency of Job runtimes between 100 and 400 seconds.
b«t» t«n  100 and 400 seconds

100

exit code the job generated. This data is in a very different format to the logs generated by a submit node, but the same 
approach for generating a job model can still be used.



Chapter 2. Analysing the limitations of Condor within a Cam pus-Grid 34

An interesting result came from the workstation logs with regard to a job’s execution time. When 
the execution time recorded in the submit node’s log is compared to the execution time recorded 
in the workstation’s log, some contradictions become apparent. Figure 2.1011 demonstrates the 
contradiction between the two log files. The most notable feature of this data is the number of 
overlaps between the difference in recorded time and the time recorded in the submit node’s log 
(16% of the available data). In these cases the difference between the two logs is more than one 
standard deviation of the runtime for all jobs (see: Figure 2.11). In many cases the workstation’s 
log reports that the job required between 0 and 10 seconds to complete when the submit node’s log 
records a job that qualifies as a runaway job. Of the data available 22% of all jobs do not have a 
consistently recorded runtime12 in both logs. One final observation can be made from this data. In 
rare cases (1%) the workstation’s log has recorded a significantly longer runtime than that of the 
submit node. This eventuality gives reason to the disagreement between the realtime job runtime 
and that which is recorded in the Submit node’s logs. Why this happens, however, is beyond the 
scope of this analysis and would require further and more detailed investigation into the Condor 
monitoring systems.

Figure 2.10: Contradiction in recorded execution time between a submit node’s log and condor 
node’s job log.
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2.2.3 Concluding Rem arks

This analysis has identified that jobs have a startup overhead of around 6.5 seconds and a standard 
deviation of 12.5,13 which for longer running jobs is insignificant, but for shorter jobs (seconds) 
will play a critical part in a job’s execution time. It has also been found that as the size of the local 
queue increases, so too does overhead. Increases were also seen in the average execution time and 
the standard deviation of runtime as the queue size increased. This work has also identified that

“ Note the logarithm scale of the y-axis
12 A tolerance o f 10 seconds is used to determine consistency.
13These values are calculated incorporating only jobs which required less than 100 seconds to complete.
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Figure 2.11: Differences from Figure 2.10 whose value is greater than 1 standard deviation of 
runtime.
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Condor jobs can runaway for reasons that are independent of job complexity and when this occurs 
it can be very expensive. There is also an increased chance that a job will runaway if the local queue 
is larger.

Clustering would not necessarily be of benefit in such a situation thanks to the penalties of 
runaway jobs and the difficulty of identifying them; remember that of 52,500 jobs only 2 failed. 
What would be beneficial is to ascertain stability prior to commencing a cluster of jobs, but this is 
not possible with the current Condor system.

In this analysis job complexity is superficially simple. When more realistic job complexities are 
considered, one question really stands out from the results of this analysis: If overhead increases 
with the size of the job space, even with the simplest of jobs, how can a runaway job be distinguished 
from a faulty workstation or an uncaught error?

2.3 Job Administration for M atlab Applications

As mentioned in Section 1.3 licensed software such as Matlab does not always fit the model of 
Campus-Grids. In the case of Matlab, licensing issues are the problem, but this can be alleviated us­
ing the Matlab Compiler to create license-free stand-alone applications. This not only removes the 
need for multiple costly software licenses,14 but also means that workstations in other Campus-Grid 
domains can be utilized without the need to transfer and manage software licenses. A compiled 
Matlab application has only one software requirement, which is the availability of the Matlab Com­
ponent Runtime (MCR), which does not require a license. The MCR installation is not complex, 
as it does not need to write to the Windows Registry or require a specific installer. Installation is 
simply the extraction of a z ip  archive and additions to the search path. The latter can be done

u For example, at the time of writing, the educational cost of a single Matlab license is 375. In addition, each toolbox 
costs 150 (there are 35 of them). The exceptions here are the Matlab compiler, the Calibration Toolbox and SimBiology 
each of which costs 375. Therefore a single instance of Matlab costs between 525 and 6300.
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during a Condor job’s pre-staging, if more than one version is available.
The problem is the way in which a workstation’s state changes with time. For Condor users, this 

means that if a workstation’s ClassAd states MCR availability this is not necessarily the case. The 
problem here is that if a job is submitted to a workstation stating MCR availability, and this is in 
fact not true, the job will fail. In such a case Condor will not reschedule the job because it has failed 
for reasons which Condor cannot associate with the workstation. Similarly, Condor will use this 
workstation again in the future, and possibly immediately, even for an exact copy of the previous 
job. Hence, Condor assumes that the job is at fault, which is not the case. The consequence of this 
assumption, as will be demonstrated in this Section, is that job blackholes emerge.

23.1 Operating Environment and Context

Availability of a service or software entity can change or be incorrectly announced for two main 
reasons. (1) An error occurred during installation, but the ClassAd was still updated to reflect avail­
ability. Examples include file corruption, mishandled transfer error, incorrect directory structure, 
installation termination/restart, users interrupting the installation process by logging in and/or out.
(2) The state of the workstation has changed since the ClassAd was last updated. This can occur 
from multiple sources but it is most likely that another installation process has corrupted or unin­
tentionally changed the initial installation, or an administrator has modified the workstation.

On Windows workstations there are many methods of software distribution such as Peer-to-Peer 
and BitTorrent, customization of the Windows installer, which can include networks transfers, re­
source virtualization (e.g. Xen [71] and VMWare [72]), where a virtual machine is transferred with 
the software already present and correctly installed, and Network administration tools (e.g. Novell’s 
ConsoleOne) that push software out onto workstations. However, regardless of the method of distri­
bution it cannot be expected that campus wide software distributions be error free and uninvasive on 
software already present. It is also common place that there be no single authoritative administrator 
for a given workstation, but many, all of whom can update a workstation without notifying the oth­
ers. The result is that no persistent list of software is upheld, making it very difficult to identify the 
provenance of a software failure. Similarly, no fault tolerant procedures to ensure that an installation 
has been correctly performed are in place, unless an administrator includes customized functionality 
explicitly for this reason. On Linux, however, the installation of software, even on a large scale, is 
by comparison almost effortless. This is primarily due to the software and dependency database 
which is unheld by the operating system. Here, simple system tools such as apt-get are of great 
utility for the distribution of software.

Novell’s ConsoleOne is used to install software on Windows workstations of Cardiff Univer­
sity’s network. The process to install software involves the creation of an application object, which 
relates to a customized Windows batch script or an automatically generated script built using some 
other administrative software tool. This script is then flagged with meta-data to describe its actions, 
when these actions are to be undertaken and any other application object dependencies. Typically, 
application objects run only once, unless an error is detected by ConsoleOne. The accuracy of
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detection, however, is dependent on the manner in which the software installation process reports 
errors. For example a custom Windows batch script can complete with a satisfactory exit code of 
zero even when an error has occurred, if it is not correctly handled. The use of ConsoleOne enables 
entire domains and subdomains of workstations to receive software updates remotely. However, as 
previously mentioned ConsoleOne provides no inherent support for the analysis of whether previ­
ously installed applications have been damaged, overwritten or if the installation process was itself 
successful. This is unfortunate, as in the hands of an expert ConsoleOne is very powerful and useful. 
Yet, this is not always the case, as the level of training received by administrators is inconsistent. 
In some cases the training provided is insufficient for the background and adeptness of the recipient 
and the consequences of this are demonstrated by this analysis.

When a lack of intuitive fault tolerance is combined with an environment which changes dy­
namically from multiple semi-independent sources, often without warning, workstation consistency 
cannot be assumed. A similar idea is presented in the four Condor admonitions [39], but this pro­
vides no solace to the user, who must inevitably administrate their jobs. In addition, Condor provides 
no distinction between a job that has failed due to user error such as a programming fault and one 
which has failed due to workstation error such as a change in software availability or incorrectly 
configured software. Instead, an exit code is provided in the Condor log, which, without a detailed 
understanding of the application in question, is relatively uninformative.

The MCR was pushed out by ConsoleOne onto several domains of the Condor pool, and of the
2,500 Condor workstations. At the time of this analysis, approximately 20% announce the avail­
ability of the MCR in their ClassAds. This analysis will demonstrate the challenges facing users in 
administrating their Compiled Matlab jobs. These challenges stem from incorrect ClassAds, where 
in fact no installation is in place and those where the installation is incomplete or faulty. Such 
scenarios will result in a failed job. This analysis will also build upon the previous analysis by high­
lighting the increase in startup overhead from initialising the compiled Matlab engine (MCR) for a 
non-trivial application. However, instead of performing any analysis the application will terminate 
the MCR upon startup. This will enable Condor to record the time required only to start a job, ini­
tialise the environment, start and then shutdown the MCR and vacate the workstation. The effect of 
this action is to be able to determine the overhead incurred by Condor to launch a compiled Matlab 
job.

A compiled Matlab application is an executable and an archive of compiled Matlab code pack­
aged into a CTF, which is comparable to a z i p  archive. It may also be accompanied with data and 
other application-specific libraries. The executable initialises the MCR and begins execution. The 
CTF contains an application’s (compiled) Matlab code and some other deployment and application 
specific Matlab functionality, which are created by the Matlab compiler. The time that is being 
measured includes the time to extract the CTF archive, so that job execution can commence. There­
fore, job time in this analysis is based upon a certain amount of workstation performance as well as 
external Condor factors.
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23.2 Experimental Analysis

The aim of this analysis is to use as many different MCR-enabled Condor workstations as possible, 
by replicating an application with a large number of jobs: 5,000 in this case. To do this the appli­
cation manager from the previous analysis has been modified to take into account the results from 
the previous analysis. Instead of submitting a large quantity of jobs at once it will aim to retain 
between 100 and 200 jobs in the queue until all jobs are completed. As yet, it will not try to identify 
poorly performing workstations or help Condor in steering the application, by killing and resubmit­
ting jobs which have obviously runaway i.e. run for hours or days. There are two reasons for this 
choice. Firstly, by not aiding Condor, with application specific knowledge such as expected runtime 
or monitored performance leading to the same knowledge, the true extent of the challenges can be 
demonstrated. Secondly, because of the likelihood of not having real time job information, deci­
sions based upon unreliable data are, at this stage, themselves not reliable. Instead, some pre-staging 
functionality has been incorporated into the job to identify inaccuracies in the ClassAds.

To ensure that a workstation has a valid installation of the MCR a simple check can be per­
formed; if it fails the job can be forced to fail, with a specific exit code, which can be captured by 
the log readers. The employed test verifies the MCR installation by checking the size of the MCR 
directory, where it is located and the number of files within the directory. This is a simple yet ef­
fective way to test the MCR’s integrity. In all tests of this type there is a common trade off between 
accuracy and cost. This test will not permit the use of any installation which does not contain the 
correct number of files or have the correct data size. Whilst this provides some assurance it cannot 
guarantee that the contents of the directory hierarchy are in fact correct, only that they have adequate 
size and that there are enough of them. In this sense, the only real test that can provide a concrete 
answer is the job itself. However, this test is a quick and effective way to catch workstations where 
the MCR installation is incomplete.

It goes without saying that this analysis will use a much reduced proportion of the Condor pool, 
as only 20% are available for Matlab-related jobs. Considering that the pool consists of around
2,500 workstations and that in the previous study only around 31 % were used, it will be difficult to 
obtain representative results of the whole MCR-ready portion of the pool. However, this is likely 
to be more representative of user experience. A job space of 5,000 requires a few days to complete 
giving an increased potential to use a larger variety of workstations. It has been repeated 5 times 
(making 25,000 jobs), to try and provide as rich a representation as possible.

2 3 3  Results

The first attribute of this analysis and quite possibly the most important, is the ratio of failed jobs 
to successful ones. In total 45% of all jobs failed the MCR integrity test, performed during the pre­
staging of the job. Note that no job, which passed the pre-staging test failed, giving an incorrectly 
configured MCR as the reason. However, all the jobs which did fail this test, were run on only 
11 % of the workstations used in this analysis. This means, that Condor ran the exact same job
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on a small subset of workstations over and over again, where each one consistently failed, without 
Condor realizing or reacting in any way. Whilst, as a user, this is not a difficult problem to fix in 
the short term,15 it is, however, challenging to administrate over time. The challenge comes from 
the dynamic nature of network where workstation identifiers such as IP addresses, DNS names 
and NetBIOS workstation names can change spontaneously and often without notification as can 
configurations and installed software.

During this analysis some interesting changes in workstation performance occurred, which 
demonstrate the challenge of job administration. Two workstations, both of which had a track 
record of consistent jobs failures, 524 and 161 consecutive occurrences, suddenly changed. Within 
a space of a day and half, for the first and less than a day for the second, the workstations’ con­
figuration changed sufficiently to enable them to pass the MCR integration test and complete all 
subsequent jobs successfully. Note that both these workstations are in the same IP range and pos­
sibly in the same computer lab and that both changes occurred between similar dates. Contrary to 
these two workstations at the same time a third workstation experienced the opposite, going from 
142 consecutive successful jobs to 103 consecutive failures. It was also in the same IP range. This 
is a clear demonstration of how workstations can change dramatically over time. However, had the 
user used persistent exclusion (such as static blacklisting) the two workstations which changed for 
the better would have gone unnoticed, and therefore not capitalised upon for future jobs. Had this 
been the case an ever shrinking pool of available resources would develop over time.

On average failed jobs ran for 6 seconds, but in line with the last analysis some required a 
similarly lengthy period of time. In fact, the minimum runtime for one of these jobs was 0 seconds, 
illustrating the unobtrusive nature of the pre-staging MCR test, the maximum was 1100 seconds 
and the standard deviation was 21. Of course, there were also some anomalies, which were not used 
to calculate these values. One job in particular, which eventually failed as a consequence of being 
unsuspended,16 ran for over 28 hours. It was not rescheduled by Condor.

The successful jobs ran on average for 130 seconds, with a minimum of 45, a maximum of 2782, 
and a standard deviation of 56. Here similarly expensive runaway jobs were experienced. These jobs 
are several orders of magnitude greater than in the previous analysis, the maximum time required 
for a job to complete was 4 days and 5 hours. There is one other attribute of this analysis, which 
was not seen in the previous. It stems from the number of times Condor needed to schedule a job 
before it successfully completed or failed. The maximum number of times this occurred for a single 
job was 5, the average is 1. Essentially, what happens is that a job would runaway, be suspended, 
then evicted and rescheduled. This process could then be repeated several times. What this means 
is that some workstations have not managed to run a job to completion regardless of whether their 
jobs fail or not. Such a job will be referred to as a terminated job, to provide a distinction from a 
failed job.

In total, 47 workstations have been allocated jobs but have not managed to steer one to either

15The Condor submit script can contain a blacklist.
16Unsuspension occurs when the user logs out of, or otherwise releases, the workstation within 10 minutes o f inter­

rupting (suspending) a job.
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a failed or successful MCR initialisation. This relates to 76 jobs (<<1% ) and nearly 11 days of 
CPU time. Some of these workstations are, however, unfortunate in that there is a high probability 
that they have been used only once and that their job was terminated during either the pre-staging 
check or during MCR initialisation. To eliminate such a scenario, any terminated job that required 
less than 20 minutes has been removed from the set of terminated jobs. This reduces the number 
of workstations to 24 and the number of jobs to 38, but it does not significantly impact upon the 
total CPU time used; now 10 and a half days. Of these workstations, 8 have recorded two or more 
occurrences.

Two clear possibilities can explain why terminated jobs occur. The first, is that the job simply 
mns away. The second possibility, is that the MCR integration test is succeeding, but that an under­
lying error in the MCR installation remains, but, which has not been detected by the test. When this 
occurs within an interactive context the MCR will alert the user with a message box detailing the 
problem. On Condor, however, a message box will either be displayed to the Condor virtual desk­
top, where it shall never be seen, or to the desktop of an idle workstation. In the second case only 
the next user of the workstation shall be aware of a problem with a software component they have 
probably never heard of, and the fault will go unreported. The problem with the use of message box 
signalling is that the MCR will not shutdown until this message box is closed, or the job is forcibly 
terminated by Condor. This means that the job cannot complete normally without user interaction, 
which is likely to not be received. Hence, the job is eventually evicted.

There is a distinct possibility that both of these scenarios are represented in the set of terminated 
jobs. For the 38 jobs in question the minimum runtime is 25 minutes, the average is 9.5 hours, with 
a standard deviation of 6.5 hours, and the maximum is 2 days. Without physically observing the 
workstations in question it is not possible to determine which of the two eventualities a workstation 
is experiencing. Even the workstation logs cannot provide adequate information to differentiate 
between the two possibilities. Thus, the line between a job which is stuck, and one which has 
runaway, is blurred.

23.4  Concluding Remarks

This analysis has quantified the overhead of initialising the MCR for a large Matlab application, 
which is, on average, 130 seconds. Realistically this overhead should not increase, it would take a 
great deal of Matlab code to do so. The application used in this analysis contains over 1,500 user 
functions, to say nothing of the Matlab code that is required for these functions to operate. Given the 
time required to initialise the MCR, how can short jobs fit into this context, especially considering 
the number of failures and the unpredictable nature of the resources? One of the challenges, that 
must first be answered, is the need for a clearer differentiation of the distorted and ambiguous 
characteristics which separate runaway jobs and uncaught failures. Only in solving this can job 
management strategies be put into force to enable shorter jobs.

One factor that has, still, not been considered in this analysis is job complexity. Again, the test 
job in this analysis was superficially simple. What this means is that errors that stem from program­
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mer error, or other code faults have not been taken into account. Put simply, these attributes of jobs 
make management more complex. This is because not only are workstations volatile and dynamic, 
but programmer error can add new reasons for job failure. One scenario that is not inconceivable is 
the user forgetting to terminate their job, using the Matlab q u i t  command. The Matlab Engine can 
be kept alive even after execution has finished, if a figure or some other visual output remains open. 
In such a case the job would appear to have runaway, and would eventually be evicted by Condor. 
Such possibilities make job management even more complex.

2.4 Performance Analysis for Matlab Jobs of Various Lengths

In this last study the performance of the Campus-Grid will be examined for jobs of a known length, 
so that it can be clearly demonstrated where the performance of the Campus-Grid is inadequate and 
so that a benchmark can be created for current performance of the Campus-Grid. The latter will be 
used again in Chapter 7 to compare the Campus-Grid’s performance to the approach and prototype 
documented in Chapters 4 - 5 .

The previous two studies have highlighted that in the context of a Campus-Grid it is impossi­
ble to create the same execution environment twice; this has also been noted in [37]. Therefore, 
due to the heterogeneity of context, some control conditions are required to enable meaningful and 
objective analysis. In the literature this is typically achieved through the use of simulators e.g. 
GridSim [73]. However, for analysis such as that performed in this Chapter, simulators would be 
inadequate, as they require a depth of knowledge of the environment that cannot be expected. In 
order to retain an objective and accurate perspective toward the heterogeneity and volatility of the 
execution environment the evaluation of a distributed system needs to be run in the real environ­
mental context. Therefore, to present the performance of the Campus-Grid for later comparison 
synthesized applications are employed.

A synthesized application is one which has been contrived to suit the purposes of the experiment 
being performed. This is achieved through a strictly controlled domain to enable fairer (compar­
ative) analysis. The number of workstations available varies with time and of the workstations 
available, some are more powerful, have more memory, faster network connections, hard disks 
etc. The controlled domain of a synthesized application means that many of these factors are in­
consequential. The job space for a synthesized application is a collection of dummy jobs with a 
pre-defined execution time and data.17 In other words, jobs are homogeneous and made indepen­
dent of workstation performance. To achieve this a job’s execution time is defined using the Matlab 
p a u se  function, which causes the Matlab engine to sleep for a specified period of time.

Predefining the job space in this manner means that the identification of the overhead the job 
receives is easier and more accurate. For example if a job has a known length of 60 seconds and its 
makespan is 100 seconds, it is clear how much time is required for the administration of this job’s

17Data can be easily be fabricated, for example using a lossless and uncompressed image format to enable precise data 
quantities.
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execution. A synthesized application therefore ensures that the implementation of the job does not 
cloud the performance data. It is subject only to heterogeneity during the initialization process of 
Matlab that a workstation must undergo before a job can be executed. The reduce the impact of 
this process to performance synthesized applications are run multiple times to ensure a diversity in 
workstation performance and enable a general picture to be drawn. With this generalization and the 
isolation of the effect of heterogeneity, only the resource management model directly affects a job’s 
makespan. Resource volatility is experienced by both approaches and can be generalized through 
the repetition of applications.

The consequence of the lack of environment consistency means that each application cannot 
realistically be expected to acquire the same number of workstations. This is even the case when 
applications are run sequentially. In addition, the time of day, week, month and term also impact 
upon the performance of the Campus-Grid. The effect of these conditions means that making direct 
comparisons between the Campus-Grid and other approaches is difficult. However, repetition en­
ables a global picture to be produced and also provides a gain in statistical power. Ultimately there is 
no way of knowing if every comer case of the Campus-Grid has been captured and realistically, this 
is unlikely. However, a good range of behaviour has been captured in this study to demonstrate both 
the volatility of the Campus-Grid and cases when performance is good. This general picture will in 
Chapter 7 be compared to the performance of prototype documented in this thesis to demonstrate 
its feasibility and improvement in performance.

The analysis in this study has two goals and builds upon the previous two studies. Firstly, it 
aims to illustrate that for short running jobs, the traditional Campus-Grid model does not work. 
Secondly, it demonstrates the effort required to steer a job set to completion i.e. 100% completion. 
In order to achieve 100% job completion an Autonomic Job Manager has been implemented to steer 
the Condor system. It is defined in Section 2.4.2.

2.4.1 Experimental Analysis

The synthesized applications have predefined job times of: 1, 60, 600 and 1800 seconds. Each 
of these times has been chosen to reflect a specific set of attributes. The 1 and 60 second jobs 
have been chosen to capture the performance of the quickest jobs that a user could feasibly wish 
to have. In Chapter 6, an application scenario is presented where the average job time is between 
4 and 7 seconds in length. The 600 second jobs have been chosen as 600 seconds is the minimum 
recommended job time for a Condor job. The 1800 second jobs have been chosen to validate 
that the approach is fair as Condor should perform well with jobs of this length. All jobs are 
independent and are not associated with any data. The reason for this choice is to simplify the 
functionality of the Autonomic Job Manager. If data is considered as an intrinsic part of the job 
the Autonomic Job Manager must act at the data level and not the job level. This differentiation is 
important because when resubmitting jobs that have failed, the Autonomic Job Manager must be 
aware of the associated data to ensure that all jobs are completed. If data is not considered then 
the Autonomic Job Manager can be orientated toward the single goal of completing a pre-defined
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number of jobs. The aim of the synthesized experiments is to demonstrate the factors that cannot be 
controlled and their effect upon performance. Namely: the initialization time of Matlab, the number 
of workstations available and their volatility, data handling can cloud these metrics. In addition, the 
Autonomic Job Manager must be more sophisticated, but this extra functionality has little, if any, 
significant benefit with regard to the results.

To evaluate the performance four metrics are used: (1) Job Efficiency, (2) Job Runtime, (3) Ap­
plication Makespan, and (4) Efficiency of Resource Utilization. The metrics used here are are 
commonplace in distributed, Grid and parallel computing, therefore enabling comparisons to other 
approaches. Below the motivation for each metric is presented and, if required, the means to deter­
mine its value.

Job Efficiency

The job efficiency captures the ability of a resource management approach to execute jobs success­
fully. This is measured by the number of attempts needed to complete the job space in relation to 
the target number of jobs. This metric characterizes the dependability of an approach, and 100% is 
the ideal target for an approach to achieve. However, a clear separation is needed between failures 
due to typical opportunistic events, such as user and workstation autonomy and those which are a 
consequence of resource volatility (see: Section 1.3.1). The first category are not failures as such 
but transient events which are symptomatic of the paradigm, whereas the second category are prob­
lematic and frequent failures of the Campus-Grid and directly affect the job efficiency to a much 
greater extent. This separation means that the cause of job inefficiency can be categorized into two 
classes failures due to volatility (unreliability) of the workstations and workstation autonomy (nor­
mal behaviour). The purpose of classifying failures in this way is to reinforce that most failures 
are due to workstation volatility and not workstation autonomy. However, note that longer running 
jobs will be subject to an increased probability of preemption due to workstation autonomy. Job 
efficiency is calculated as shown in 2.1.

E ffic ie n c y  =  _______________Jobs Success fu ll_______________ + ^  ^
Jobs Subm itted — Autonomy-related Failures

Job Runtime

Job Runtime is the time required by an approach to complete a job, but it should not be confused 
with the predefined job time. It is the time from when the job commences execution to the time that 
a result is received. To deduce this value the times as recorded in the Condor log file are used.18 
Only the execution times of successful jobs contribute toward this metric.

The motivation for the use of this metric is that it is a good demonstration of the effectiveness 
of an approach in running a job. It specifically identifies the overhead incurred by the scheduling 
strategy of the resource model, as the runtime of a synthesized job is predetermined. Here, overhead

I8Note that it has been observed in Section 2.2.2 that the time recorded by Condor may not always be an accurate 
representation o f the actual time needed for a job to run. However, no better alternative is available.
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is the combination of the costs to executing the job, staging in and out of data and software executa­
bles from the remote workstation, and if required job initialization and/or post-execution clean up. 
Therefore, it illustrates the feasibility of the Campus-Grid for short jobs.

Application Makespan

The application makespan (denoted as AM) is the time from when the very first job was submitted, 
to the time that any results of the very last job were received. This metric gives an indication of 
whether the use of multiple resources actually provided some benefit. Here, the results can be 
compared to the time required to execute the job space on one workstation to identify if there was 
any utility in the use of a parallel approach for the specified application. This metric could also be 
compared to the number of workstations in use to calculate the speed up received by parallelizing the 
application. However, where speed up shows the direct improvement of using multiple workstations 
it does not illustrate whether the resources were used effectively, this is captured by the Efficiency 
of Resource Utilization (described below).

Efficiency of Resource Utilization

The efficiency of resource utilization (denoted as ERU) characterizes how well the resource man­
agement model has used the resources that were available. It is important to characterize efficiency 
due to the initial problem statement presented in Chapter 1, which specified that the current solutions 
for Campus-Grids and Grid Computing in general cannot adequately cater for short jobs. Therefore, 
through this metric the feasibility of an approach can be identified. In addition, the benefit of the 
approach in comparison to a traditional model can be presented. The ERU is calculated using 2.2, 
the expected application makespan (denoted as EAM) calculation is shown in 2.3.

EA M
ERU = — ---------  \ -----— ----------* 100% (2.2)

Observed Application Makespan

„  , . ,  No o f jobs * Predetermined Runtime
E AM  =  ------ ------------------ ——— — - .----------  (2.3)Average I\ o o f  vv orkstations

Due to the variability in workstation allocation over the experiment runtime the average number 
of workstations is used instead of the total number of workstations. This is calculated by building 
a time series representation of all jobs submitted to the Campus-Grid from the Condor logs, as 
described in Section 2.1. Then the time series data is sampled at one second intervals to determine 
the total number of Campus-Grid jobs running at that time. The average number of workstations is 
then the average number of Campus-Grid jobs running throughout the application’s execution.

2.4.2 Autonomic Campus-Grid Job Manager

To enable a fair analysis of a regular Campus-Grid approach using Condor, an Autonomic Job 
Manager has been created. The motivation behind its development is that over time a user would
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develop some knowledge of the Campus-Grid and modify their submission behaviour to reflect these 
observations. Therefore, the Autonomic Job Manager models a “competent” user who is aware of 
the issues surrounding job management and is proactive with respect to these issues. Naturally there 
is also some utility in developing an autonomic Autonomic Job Manager, namely the ability to run 
experiments without the need for supervision.

To make the Autonomic Job Manager self-governing (autonomic) several key abilities are in­
corporated. Log monitors permit job monitoring and the creation of a job model, as described in 
Section 2.1. This model enables jobs to be (re)scheduled, terminated (for example if it runs away) 
and monitored for completion. Similarly, post execution this information can be used to construct a 
graphical representation of the execution and extract other statistics to demonstrate certain aspects 
of the execution life-cycle. The Condor pool is also monitored to identify how many workstations 
are available in relation to how many are in use and how many other jobs were in the pool at the time. 
This information enables the identification of the Campus-Grid resource management software i.e. 
Condor’s ability to provide resources.

The features that have been incorporated into the Autonomic Job Manager are: (1) automated 
job submission, taking into consideration the nature of the synthesized jobs to be performed by 
the Campus-Grid, (2) log monitoring, (3) reactive job resubmission upon failure, (4) proactive job 
termination upon the identification of anomalous (runaway jobs) or unwanted (suspended or held 
jobs) behaviour,19 (5) post execution log dissemination to identify key performance information and 
generate a graphical representation of the execution life-cycle, and (6) automated post-experiment 
cleanup and repetition to gain statistical accuracy. Note that autonomous workstation blacklisting is 
not incorporated at this stage.

Implementation of the Autonomic Job Manager

To perform an experiment the Autonomic Job Manager is passed as input arguments: (1) the number 
of jobs that need to be performed, (2) the length of the jobs, (3) the number of repetitions that should 
be performed, and (4) a naming standard for the Condor log files. Upon startup it checks to see if 
any previous progress has been made with respect to the input arguments, for example if any logs 
with the same naming standard have been used in the past it will check for progress in relation to the 
passed parameters. This enables the Autonomic Job Manager to be restarted without upsetting the 
progress of an experiment. Once the Autonomic Job Manager has identified the current experiment 
to manage it will inspect its progress, and then take the necessary action to steer the experiment to 
completion.

When a new experiment is started the first task that the Autonomic Job Manager undertakes is 
to create the Matlab job template file; an example is shown in Listing 2.1. The template file contains 
the Matlab code to describe the tasks to be performed on all remote workstations.

Then the Autonomic Job Manager can create and execute the Condor submission script for all 
jobs. Here, it must identify and handle all Matlab-related dependencies of the job, establish the

l9Details of how this is performed will be presented in Chapters 4  and 5.
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Listing 2.1: An example Matlab job template for a synthesized job of 600 seconds to be executed 
by the Campus-Grid
p a u s e ( 6 0 0 ) :  A s l e e p  f o r  600 s e co nds
q u i t :  ^ sh u td o w n  the MCR wi th  the  d e f a u l t  e x i t  code  — 0

correct initialization routine for a Matlab-based batch job and highlight the specific requirements of 
the job with respect to the Campus-Grid workstations that should be used for the matching process. 
The submission script is then executed using the c o n d o r_ su b m it command.

The processes that the job performs are, firstly, check that the allocated workstation is capable 
of running a Matlab job, through a pilot test of the workstation, as performed in Section 2.3. If this 
is successful, the second action is to initialise the MCR and invoke a predefined function, which 
acts as a entry point into the compiled application. Thirdly, the entry function searches for any job 
descriptor files, extracts the contents and passes the Matlab code to be executed to a meta-interpreter 
(meta-interpreters will be described in Section 5.1.2) specifically created for this batch mode. The 
meta-interpreter enables batch jobs to be executed in a uniform manner include the result gathering 
phases. Fourthly, results are saved into a .m a t file with a random name and error messages are 
piped to the standard error stream. Should an error arise Matlab will be terminated using a specific 
exit code to identify that the meta-interpreter caught an error, this error code can then be picked up 
the the Autonomic Job Manager for analysis. Finally, the entry function terminates Matlab allowing 
Condor to return the results file or highlight an error.

After the experiment’s jobs have been submitted to the Campus-Grid the Autonomic Job Man­
ager begins to monitor all corresponding jobs and the Campus-Grid as a whole. The code and li­
braries needed for these processes are borrowed from one of the prototype components (the Condor 
Resource Manager, which will be presented in Section 5.3). In comparison to a regular Campus- 
Grid user, the Autonomic Job Manager has one useful extra ability: namely the ability to proactively 
identify anomalous job behaviour. Here, an anomalous job is one, which is either running away or 
otherwise become non-responsive or stuck in a state transition. To identify such jobs the Autonomic 
Job Manager employs the termination heuristic shown in Figure 2.12. This can be easily extended 
for other applications to consider a maximum permitted execution time rather than a known or 
expected execution time. Extending the Autonomic Job Manager in this way would enable other 
Campus-Grid users to manage their experiments and benefit from the functionality of the Auto­
nomic Job Manager. The reasoning behind this heuristic will be presented in Section 4.4, but, in 
short, such a heuristic would have been capable of accurately terminating 100% of all runaway 
jobs and incorrectly terminated 0.03% of normal jobs for the Campus-Grid study presented in Sec­
tion 2.3. A 10 minute minimum runtime is used here to prevent the heuristic, in its early stages, from 
terminating jobs too eagerly. This can occur, for example, when only more powerful workstations 
have been used and consequently the average runtime is low.

The monitoring process continues until the required number of jobs have been successfully 
completed. After this point any remaining jobs e.g. those which were submitted through mistake,
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Figure 2.12: The Autonomic Job Manager’s job termination heuristic
IF
Runtime > Nfax(lOminutes,avg(M atlabInitialisationTime)+bStandardDeviations) +
predefined jobruntime
THEN
terminate and resubmit

possibly as a consequence of the Condor logs not being up to date, a fault in the parsing of the 
log or those which were resubmitted by Condor in response to an eviction, are terminated. The 
Autonomic Job Manager then waits for ten minutes to allow the Condor negotiator (whose cycle 
periodicity is typically five minutes on the Cardiff University Campus-Grid) to identify that the 
workstations previously in use are now available again. Then if more experiments are to be per­
formed the Autonomic Job Manager will begin the next experiment and the cycle presented in this 
Section restarts. A summary of the functionality of the Autonomic Job Manager is presented in 
Figure 2.13.

Figure 2.13: The Autonomic Autonomic Job Manager for the Campus-Grid experiments presented 
in this Chapter

Experiment Factory Monitoring Decision Making
Start Monrionng
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In some cases the log readers cannot detect all jobs from the logs during runtime, typically this is
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due to the condor shadow daemon not being able to write to the log. When this scenario arises there 
is little that the Autonomic Job Manager can do other than wait for the situation to resolve itself, 
which it will eventually. This is the one comer case when the Autonomic Job Manager cannot 
perform to its best with regard to the steering of an experiment.

2.43 Results

In this Section the results of the Campus-Grid’s typical behaviour and performance are presented as 
the base case for all synthesized experiments. The results presented here are intended as a bench­
mark of the Campus-Grid’s performance for short jobs and will be used to show the benefit and 
improve in performance through the use of the prototype presented in Chapter 5.

In Table 2.1 the results of ten runs of each experiment are presented, and it can be seen that 
the Autonomic Job Manager’s primary responsibility is to ensure that all one hundred jobs are 
completed through the identification of failures and subsequent resubmission.

Table 2.1: Table of the performance of 100 synthesized jobs using the Autonomic Job Manager of 
the Campus-Grid.

■ '
’ ;

j  Predefined Job Time in Seconds
1

t
60 600 1800 u

Min Jobs Submitted ;! 120 104 1 157 117
! Avg Jobs Submitted ! 133 137.7 384.4 246.222

Max Jobs Submitted 157 186 690 880
Min Efficiency 63.694 % 53.763 % 14.638% 11.364%
Avg Efficiency 75.898 % 76.496 % 34.459 % 62.504 %

i Max Efficiency 83.333 % 100% 63.694 % 85.47 %
Volatility Failures 91.496% 95.798 % 98.101 % 97.186%

Autonomy Failures | 8.504% 4.202 % 1.899% 2.814%
No. of Jobs Failed 1 341 % 357 % 2843 % 1315 %
Min Job Runtime j 32 94 633 1838
Avg Job Runtime 100.903 154.109 718.752 1926.931
Max Job Runtime ! 574 583 1164 2219

j  Standard Deviation 67.309 57.263 72.871 74.106
1 Min AM 642 946 2560 5896
! Avg AM 2220.909 1865.5 3961 8187.889
:

! Max AM 12830 7345 7741 14868
AM 1 workstation 100 6000 60000 180000

Min ERU 0.676 % 27.95 % 70.388 % 57.06 %
Avg ERU 0.898 % 35.581 % 77.058 % 87.757 %
Max ERU 1.172% 39.976 % 80.107% 93.98 %
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Job Efficiency

The performance for the Campus-Grid for the job efficiency is on the whole what would be ex­
pected, only a few of the experimental runs were stricken by one or more job blackholes. However, 
what is clear is that most failures were due to resource volatility and not workstation autonomy, 
which illustrates that some improvement in the resource model is necessary. Something that should 
be mentioned is that for one experiment an efficiency of 100% was achieved, which should be com­
mended.20 Table 2.1 also shows that as the job length increases the efficiency generally decreases, 
which also is to be expected. The main issue here is that when the Campus-Grid is left to its own 
devices it cannot provide many (if any) guarantees on performance, therefore making it somewhat 
unreliable in terms of performance. Such an outcome is to be expected in opportunistic and vol­
unteer computing with respect to workstation availability. However, Table 2.1 identifies that most 
job failures are a consequence of resource volatility and not autonomy. The latter of which would 
normally be expected to be detrimental to performance, which for the Campus-Grid is indicative of 
resource unreliability (volatility).

Job Runtime

The period of time required for the Campus-Grid to complete a job is quite poor for the shorter jobs. 
This is primarily due to the necessity to initialize Matlab for each job, and consequently increase 
execution time. The overhead experienced by each job ranges from 31 to 573 seconds, which shows 
that the time required for initialization is not consistent, but can be expensive, especially if the job 
runtime is low. In addition, the standard deviation for the 1 and 60 second jobs is greater than or 
near to their predefined run times. For these two job lengths their predefined runtime is a percentage 
of their overhead rather than the overhead being a percentage of their runtime, which is not a good 
sign. This also further motivates for improvements in the conceptual model if short jobs are to be 
executed in a Campus-Grid context. It is also interesting to note that the maximum runtime of these 
two jobs is similar. For the longer running jobs performance is improved and the impact of the 
overhead is reduced, which is to be expected. This also validates the fairness of the experiments in 
use.

Application Makespan

The first and most obvious point to be made about the observations in AM is that the one second jobs 
actually required longer in all experiments on the Campus-Grid than they would normally require 
under sequential execution on a single workstation. The same is also hue in a small number of 
the sixty second job experiments. For all remaining job times the AM is an improvement upon the 
sequential execution on one workstation illustrating the utility of the Campus-Grid for these job 
times. The second point to be raised is the variability in the AM, but this is normal behaviour for

20The Autonomic Job Manager did not report 100 submitted jobs here, due to a peculiarity in the Condor log, which 
caused it to submit an additional 4 jobs. These jobs are not considered in the job efficiency, but were nevertheless 
submitted.
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the Campus-Grid. However, what it does show is that there can be no guarantees for when a job 
set completes regardless of a job’s runtime; compare the Max AM values for the 1 and 1800 second 
jobs, and also for the 60 and 600 second jobs.

Efficiency of Resource Utilization

It is clear from the ERU measurements that the Campus-Grid is not suitable for short jobs of less 
than or equal to 60 seconds. For the longer jobs the performance is satisfactory, which is to be 
expected. What is surprising, however, is just how bad the performance is for the shorter two job 
times. The poor results stem primarily from the need to initialize Matlab for every job, which for 
the shorter jobs is particularity expensive. Job clustering would be beneficial here, but the results of 
the first study highlighted that this may not be a viable option. Instead it would be more beneficial 
to be able to test the workstation prior to submitting jobs to it. Therefore, alleaviating the risk of 
submitting an entire cluster to a faulty workstation. However, job clustering in this manner does 
not remove the need to initialize the workstation for every cluster, and therefore a trade off between 
cluster size verses the risk of preemption will emerge.

Summary

These results have shown shown that the Campus-Grid is not a good platform for short running 
jobs, and that an improved model is required. The results also show that the performance in most 
metrics improves as job length increases, which verifies that they fairly and accurately reflect the 
performance of the Campus-Grid. In addition, these results also show the basic abilities of the 
Autonomic Job Manager, to react to the Campus-Grid and the intricacies of job management in 
order to execute Matlab-based jobs, are both useful and valid, as in all experiments 100% were 
successfully completed without user intervention. This is despite the number of failures due to 
inaccuracies in workstation classAds and Matlab installations.

In Figures 2.14 -  2.17 a selected graphical representation for each of the experiments is pre­
sented. Note the variability with which the jobs start (time 0 is when the job submission took place), 
which further highlights the unpredictability in resource acquisition. In Figures 2.14 and 2.15 the 
time required by the Campus-Grid to acquire resources is significantly longer than the experiments 
depicted in Figures 2.16 and 2.17.

2.5 Discussion

This analysis has demonstrated the complexities of using real Campus-Grid resources. Scenarios 
like this cannot be simulated and are always presenting new, sometimes perplexing, situations for 
users to handle. Having presented these three empirical studies into the complexities and challenges 
job of management and the many scenarios which make this difficult, one question presents itself: 
Given the difficulties that users must face, is the the Campus-Grid worth the effort for short jobs?
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Figure 2.14: Graphical representation of the runtime for 100 synthesized jobs of one second in 
length. In this experiment the average number of workstations used was: 7.141 and the average job 
execution time was: 83.19 seconds.
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Figure 2.15: Graphical representation of the runtime for 100 synthesized jobs of sixty seconds in 
length. In this experiment the average number of workstations used was: 16.408 and the average 
job execution time was: 152.53 seconds.
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Figure 2.16: Graphical representation of the runtime for 100 synthesized jobs of six hundred sec­
onds in length. In this experiment the average number of workstations used was: 28.49 and the 
average job execution time was: 703.19 seconds.

no
TOO

850

800
550
sac
450

400
350
X »

250
200
150
100
50

/



Chapter 2. Analysing the limitations of Condor within a Campus-Grid 52

Figure 2.17: Graphical representation of the runtime for 100 synthesized jobs of one thousand eight 
hundred seconds in length. In this experiment the average number of workstations used was: 31.76 
and the average job execution time was: 1912.86 seconds.
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The Condor pool provides a wealth of computational power, which would otherwise may not 
be available to the users at all. To sum up the contribution to research projects that the Condor 
pool provides can be put in monetary terms. The existence of the pool allows the university to save 
a third of a million pounds a year compared to if dedicated resources of equivalent computational 
resources were used [ 10]. Few, if any research projects can afford to replace it. In addition, to deploy 
a job onto Condor requires minimal (application) development effort on the user’s part. Many 
applications do not require alteration to run on Condor nodes, as they are effectively workstations 
of other university staff and students. This means that they all share a common operating system 
and similar base installations. So in short, yes it is worth the effort.

The challenge is to improve the management of jobs and how the user interacts with the system. 
The first study illustrated that up to 78% of job runtime is unnecessary and just how much time this 
relates to, for even a simple job. The findings were that jobs can runaway for reasons independent 
of their complexity. The time that is lost when this occurs could have been used for other jobs and is 
lost unnecessarily. No concrete evidence could be found to explain why jobs runaway. The second 
study took this further and presented what happens in a more realistic context, without increasing 
job complexity, but by increasing the basic job requirements. The findings were that, not only 
do users have to contend with runaway jobs, but also noticeable changes in workstation state, and 
installations that can be overwritten, interrupted and modified without warning. The consequence of 
which is a series of knock on effects that detriment job completion rates. Condor does not provide 
any support on this front, other than logging the exit code of a job. In many cases Condor will 
allocate the same job again and again and thus job blackholes emerge. This leaves the user to 
determine what error has occurred and why. In some cases jobs ran for days, with no information 
available to explain why this occured. The third study empricially quantified the effect of these 
difficulties on the performance of the Campus-Grid to the extent that even if the issues of volatility 
were removed the resource model is ill-equipped to enable short jobs to run effectively, as only 
successful jobs were used to measure performance. The overall conclusion is that job management
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in a large Campus-Grid is challenging and beyond the ability of non-computer scientists.
During these three studies autonomous job managers were used to steer experiments. Their 

extension can provide many additional features and provide new opportunities to the user. There 
are two abilities that are needed to address the challenges raised in these three studies: (1) the 
ability to verify that a workstation is suitable for job deployment prior to execution, and once this 
been ascertained, (2) the ability manage jobs and resources separately. Therefore, enabling the 
introduction of new job management models which can resolve the trade offs of job clustering and 
management.
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Chapter 3

Related Work

This Chapter discusses the literature related to the current state of the art, and is divided into two 
main Sections. First, distributed image processing approaches will be presented, with an orientation 
toward approaches which include Campus-Grids, Matlab, or forms of distributed computing. Sec­
ond, a review of more general work in the scope of resource management will be presented. The 
aim of the second section will be to relate the current research to the challenges outlined by the three 
empirical studies performed in Chapter 2.

3.1 The Facilitation of Distributed Image Processing

In this Section an overview of work, which has an emphasis on image processing in a distributed 
or parallel context is presented and discussed. Due to the orientation toward a Matlab-based ap­
proach, special attention is given to approaches that also provide a Matlab solution for distributed 
computing.

3.1.1 Matlab-based Approaches

The choice of Matlab as an application container and platform is due to several different achieve­
ments of the Matlab system. Matlab is one of the forerunners in the domain of scientific computing 
and analysis, thanks to the ease of use and the ability to rapidly develop analytic tools and solu­
tions. Since the original inception in the 1970s [44] of an interactive interface to EISPACK [74] 
and LINPACK [75], Matlab has been extended to include a vast repository of toolboxes for many 
different disciplines. The importance of these features is expressed by the user base (well exceeding 
500,000 [76]) Matlab has built up over the years, and the number of books published (over 400) 
about it.

Another reason for the choice of Matlab is its competitiveness in the domain of scientific com­
puting. There are other license free and open source equivalents, with SciLab [77] and Octave [60] 
being the most well known. Wilkinson [78] reported that for those who wish to avoid the expense 
of Matlab licenses and the challenge of compilation, the conversion from Matlab to Octave is quite

55
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straightforward, as is its use on systems such as Condor. However, no evaluation or empirical study 
was performed to document the cost in performance of this migration. Steinhaus [79], however, 
performed several comparative studies of the mainstream scientific computing products, which in­
clude: Matlab, Mathematica, Octave, Scilab and some lesser known others. His analysis covers a 
wide spectrum of features that includes: the range of functionality, performance and the return on 
investment each product gives. His results identify that Matlab is far superior to its open source and 
(license free) equivalents in all areas of analysis. He also observed that the two industry forerunners 
are Matlab and Mathematica and that there is little that can be used to separate the two.

Matlab’s popularity and capability has enabled it to entrench itself into a wide range of domains 
and therefore soon became a staple of scientific computing. The question of a parallel version of 
Matlab was soon raised, as applications stretched beyond a single workstation. In 1995, the Math- 
works released a statement [55] expressing that they had no intention of producing such a toolbox, 
as it did not make good business sense. One of the reasons for this is that Matlab is an interpreted 
language, and its performance does not scale with problem size [30,80]. Instead, Matlab spends 
much more time in places like the parser, the interpreter, and graphics routines, which are harder 
to parallelize. The first (commonly accepted) parallel approach for Matlab, MultiMatlab [81], was 
published by the scientific community in 1997 and since then many other approaches (approxi­
mately 40) have followed. Their emergence demonstrates that this was a missed opportunity for 
The Mathworks.

In this Section an overview of the approaches for distributed and parallel Matlab, which are rel­
evant to this research is presented. Efforts in this area generally attempt to either provide MPI-like 
message passing to Matlab, built in methods that will partition work among multiple sessions, or 
automatically convert Matlab scripts into parallel programs [82]. Strangely, very few approaches 
attempt to extend or utilize the Matlab compiler in order to create a license free option, prefer­
ring instead to perform simple compilations. Therefore the approach is either to compile often, 
simply accept that more licenses are required, or perform very elaborate customized compilation 
procedures.

Matlab Distributed Computing Toolbox

The Mathworks eventually released a toolbox for parallel computing: The Matlab Distributed Com­
puting Toolbox, which enables Matlab users to distribute and control a set of computational tasks 
across several nodes. In this context a node corresponds to a stripped down version of the Matlab 
interpreter and is denoted as a distributed computing engine. In more recent versions, the engines 
are simply MPI processes, and the toolbox provides a limited MPI implementation, which consists 
of commands to perform nonblocking sends, blocking receives, broadcasts, and global reductions. 
The toolbox also contains additional job-control functions, with plug-ins to many different queue 
and resource management systems, including Condor. However, each node must hold a valid license 
and as previously mentioned, the management of licenses across a Campus-Grid environment is not 
always possible [64,65]. Newer versions of the toolbox have removed the need for an MPI-like pro­



3.1. The Facilitation of Distributed Image Processing 57

gramming style, but it is not possible to simply map code to the toolbox, as explicit modifications 
to the code are required to signal where parallelization should be performed.

An advantage of the distributed computing toolbox/engine combination is that it lets users utilize 
existing Matlab and Simulink toolboxes, provided the data is available locally. In its current form 
(without support for existing parallel numerical linear algebra libraries), this tool is most useful for 
embarrassingly parallel problems, despite the design being orientated toward MPI-like parallelism. 
A key disadvantage of this toolbox is that the nodes hosting the distributed compute engines require 
access to a licensing server. Thus, even though the toolbox supports back end systems like Condor, a 
workstation in many Campus-Grid scenarios cannot, currently, be used. This is due to the outstand­
ing issues of license locality and the scope of a license server. For example, even if licenses were 
available either locally at the head node or remotely at the compute node, but both the head node 
and compute node fall under the scope of different licensing servers, it is not possible to run the job. 
In such scenarios, the job could only be run when the compute nodes are in the same domain as the 
head node. This therefore dramatically reduces the usability of the toolbox. The performance of the 
toolbox has also been questioned in [1]. Another key limitation with the toolbox is that it does not 
allow for the dynamic distribution of the user’s code [30].

SmartLM

SmartLM1 is a framework 7 European project driven by the challenges in license management for 
applications such as Matlab. The main aim of the project is to enable the establishment of Service 
Level Agreements (SLA), which provide the basis for license migration between sites. Matlab 
and many other commercial software packages are managed using the FlexLM license manager 
software, where license servers hold a specific number of license tickets. When a user requests 
a license they check out the required number of tickets for their application context,2 when the 
available tickets reaches zero, a user can no longer launch the application. The core idea of SmartLM 
is to provide the means to transfer licenses between sites, which would mean that when a user wishes 
to run an application remotely they can transfer their own licenses with the request. Here, the SLA 
can provide a legal foundation to govern how this transfer is undertaken. There are two main goals 
here, firstly to protect the license owner from illicit or malicious activities, and secondly to define 
how the transfer is to be undertaken, for example the physical actions needed to transfer the license 
ticket securely.

The SmartLM project is still in its infancy at the time of writing, and hence cannot be harnessed 
for this research, however when the software is ready there is no doubt that it will be very useful and 
popular; especially in Campus-Grid contexts. For instance it would alleviate the need for central 
license servers, which are always surrounded by inter-department politics concerning usage and 
funding. In addition, it would provide the means for university departments to sell spare license

'SmartLM project website: http: / / w w w . smart lm. eu (last accessed April 2009)
2Matlab for example, has two modes of operation in this respect depending on the license type: student license, which 

permits the user to use any installed toolbox, and regular license, where two types of ticket are in place; one for the 
session as a whole, and one for each toolbox in use. In the latter case a user will check out multiple licenses.
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capacity, here the SLA would also contain the necessary economic data required for trading, and 
its protocol stack the necessary methodology for negotiating its constitutional aspects such as price, 
usage allowances and quality of service. Further details on the SmartLM prototype and its use and 
definition of SLAs can be found in Ref [66].

A Survey of Parallel Matlab approaches

Choy and Edelman [44] present a thorough survey of parallel Matlab approaches. The main contri­
bution of this work is the definition and discussion of what constitutes a good parallel Matlab. They 
also present an example of what they consider could be a good parallel Matlab approach: Matlab*P, 
later becoming the commercial product Star-P (both of which are discussed below). They define 
that a good parallel Matlab should address at least one of these areas well:

1. A lot of small problems that require no communication.
2. A lot of small problems that require some communication.
3. Large problems.
One of the most interesting observations of this survey is the number of approaches that have 

been documented (27 reported), as well as how many are now defunct and exist only in Google’s 
cache. Those which are not defunct and relevant to this research will be further discussed in this 
Section. Choy and Edelman identified four main areas of parallel Matlab, which are: (1) Embar­
rassingly Parallel, (2) MPI, (3) Compiled, and (4) Back-end support. The first two categories are 
self explanatory, but the latter two are perhaps not.

The compiled category refers to two types of approaches, firstly, those which use the Matlab 
Compiler to displace the requirement for multiple Matlab licenses, and secondly, those which use 
or have created additional tools to convert the Matlab code into a form of parallel code. The idea of 
back-end support is to connect a version of Matlab to a parallel computation engine, which utilizes 
optimized parallel numerical computation libraries such as ScaLAPACK [83]. This approach is a 
means to remove the need for multiple Matlab licenses and prevent the need for compilation. Typi­
cally, an HPC machine is used, and those discussed in the survey all utilize this approach. However, 
more recent efforts in this category have utilized both cluster and Grid Computing approaches.

The survey discusses only fine-grained approaches, and illustrates that fine-grained parallelism 
is a difficult task to perform for Matlab-based applications. This again is because Matlab is an 
interpreted language, but also because the difference between the time required for execution and 
communication can be negligible. The result is that it is very difficult to retain an effective use of 
resources, especially if large numbers of resources are in use or available. Although compilation 
can improve the interpretation phases of Matlab, this improvement is only minor.

Choy and Edelman present what could be a good approach for parallel Matlab, however, their 
performance analysis illustrates that in some cases speed up was only achievable when the number 
of machines used was a small factor of the number of jobs to be performed. This is perhaps a conse­
quence of granularity from the fine-grained model adopted, which Moler [55] also raised concerns 
over when defending the Mathworks’ decision not to produce a parallel Matlab. This would suggest
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that Matlab may be better suited to a coarse-grained parallel model, using the granularity definition 
given in Section 4.9.1.

Matlab* P

Matlab*P [56, 84]3 is a transparent environment built on top of Matlab. The motivation behind 
this work is that many widely used algorithms can be described as matrix operations, which on 
small data sets have satisfactory performance, but do not always scale for larger data sets which 
can dramatically increase computation time. Therefore, the identification of the need to perform 
analysis on large data sets interactively (to test new ideas) was made. Their philosophy is that the 
client should not have to be concerned with the administrative aspects of data handling and that the 
client’s machine does not need to be used for computations.

The architecture of Matlab*P is a client/server model, where an instance of Matlab transparently 
communicates with a Parallel Problems Server (PPServer) [80]. The PPServer is essentially an MPI- 
based collection of linear algebra algorithms for large dense and sparse matrices. It runs on any high 
performance machine (e.g. one of SGI origin) with a *nix operating system that supports an MPI 
implementation. Communication is performed by standard Unix sockets and parallelism is achieved 
through the polymorphic overloading of Matlab functions and operators. A Matlab la y o u t  object 
*p4 is used to specify that a variable is to be used in a distributed context (see Listing 3.1 for use).5 
It is reported that when Matlab*P was integrated with the Matrix Computation Toolbox (developed 
for [85]), 70% of the toolbox could be integrated without any modification to the underlying code, 
which is commendable.

Listing 3.1: Matlab*P of adding two random matrices.
jA = r a n d ( 1 0 * p .  10) :  Crea t e  a 10 by 10 random m a t r i x
IB = r a n d ( 1 0 * p .  10) :  9E- The *p s p e c i f y i n g  t h a t  A & B are d i s t r i b u t e d  v a r i a b l e s  
(C = A + B; Per form  A p l u s  B ( i n  p a r a l l e l )  C w i l l  a l s o  be a d i s t r i b u t e d  v a r i a b l e

The main advantages of Matlab*P are: (1) That all data is held and created on the server. This 
means that data transfers only occur between processors and upon client request. (2) The leverage of 
established high performance parallel numerical libraries e.g. ScaLAPACK, SuperLU, PARPACK 
etc. and the transparent hooks from Matlab to the back end PPServer allow the user to benefit from 
a reduced computation time. This is also the case if only processor of the HPC machine is used.
(3) The user doesn’t require any knowledge of parallel computing, provided that they stay within

3The reference [84] is the commonly used reference for Matlab*P, however, no such paper exists. The paper that 
should be referenced is: [56], To be consistent with other published works, both references are supplied and the name 
Matlab*P is used throughout this thesis instead o f the original name: MITMatlab. MITMatlab contains the same func­
tionality and basic theory as Matlab*P.

4The Matlab documentation is unclear about how such objects work or if  they are even supported in the newer versions 
of Matlab. In fact, no documentation o f such objects exists in the documentation of more recent versions of Matlab. It is 
possible, however, that this concept has been renamed since it was first described in 1999.

5This also enables the propagation o f parallelism; if  a distributed variable is used in a calculation, the result will also 
be treated a distributed variable.
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die scope of Matlab*P. (4) Data is created on the server and remains there (unless requested by the 
client), allowing for no data transfer between client and server. Data communication and transfer 
only occurs between processors.

The main disadvantages are: (1) The numerical libraries are not portable. (2) There are no 
administrative tools, making installation difficult. (3) If the libraries are not already installed on 
die HPC architecture the user must do this. Note that there may well be bugs in the installation 
libraries, the administrators of these machines may not be willing to add additional libraries or if 
die user is the administrator they may be unfamiliar with the nuances of the administration of the 
libraries. (4) The capabilities and applications that the approach can serve is limited by the available 
libraries. Hence, not all Matlab functionality can simply be mapped to this approach. If no library 
exists, the user must implement a parallel approach (with an MPI implementation) to suit their 
algorithm. (5) Only two-dimensional and single precision matrices are supported. Here, there are 
ambiguities in the literature, as Husbands [56] states that double precision and complex numbers 
are not supported. Choy [86], however, says that they are. Points (4) and (5) greatly limit the range 
of applications which can be adopted by this approach. However, for the applications which can be 
simply mapped to Matlab*P the improvement performance is good.

The use case of Matlab*P does not fit into a Campus-Grid context due to the reliance on ded­
icated and (homogeneous) high performance hardware. In addition, its basis of MPI may struggle 
in a volatile and opportunistic resource context, where resource availability and consistency cannot 
be guaranteed. Finally, moving away from the fine-grained parallel model would require significant 
architectural changes.

Star-P

Star-P [1] is a commercial implementation of Matlab*P by Interactive Supercomputing. Much 
of Star-P is taken from Matlab*P, but the exact architecture of Star-P is difficult to present, as a 
commercial solution there are no papers describing Star-P in full for obvious reasons. However, 
there are papers which describe small facets of the system and some describing user experiences.

The basic structure of Star-P is quite simple: an instance of Matlab transparently communicates 
with a server front end of a high-performance machine in the same way as Matlab*P. Many pa­
pers which refer to Star-P, refer to it as a package which sits on top of a Matlab instance, where it 
transparently handles all parallelism for the user. However, Star-P still assumes that the user has a 
HPC machine to host its back end PPServers. Wong et al. [87] used Star-P to perform a compu­
tational chemistry application using Molpro [88]. However, only one part of their experiment was 
parallelized using Star-P. The experiment consisted of two parts, the first part of the experiment was 
not executed using Star-P, but on a custom built machine. The second part, which was executed on 
Star-P, required Wong et al. to borrow computational resources (an HPC machine from interactive 
supercomputing), despite having local HPC resource. The questions that immediately arise here are: 
firstly, why was separate hardware needed to run Star-P when existing resources were in place, and 
secondly, why could the first part of the experiment not be run on Star-P? [89] is another example
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which used Star-P; here the application was parallelized with help from interactive super computing 
staff to make the application Star-P compliant.

Star-P is documented as achieving sub-linear speed-up (see the Star-P demonstration video6), 
which is due to the optimized parallel libraries run on the back-end. This enables Star-P to achieve 
die performance of many commonly used mathematical operations in Matlab to match the perfor­
mance of programs written in low-level languages transparently [90]. However, the analysis does 
not accurately demonstrate the capabilities or scalability of Star-P. In addition, Ref [80] documents 
experiments performed using Matlab*P where adding further nodes increased execution time. A 
Star-P user does not specify the number of nodes/cores to use and therefore it is unclear from the 
literature how Star-P determines the number of nodes to use when a large numbers of processors are 
available.

The concluding remarks for Star-P are the same as Matlab*P: it will not fit the Campus-Grid 
context for the same reasons. It is, however, still a useful and interesting approach for the paral- 
lelization of Matlab and also demonstrates that parallel solutions for Matlab are in high demand.

On-demand and Interactive Matlab Using Condor

In [76] Reuther et al. describe an approach for parallel applications which require Matlab instances. 
Their approach can be used on a variety of resource managers, but they are currently bound to 
Condor. The resources in this work are a rack of dedicated servers consisting of approximately 
160 cores. This infrastructure is called the LLGrid, but it is in fact just a cluster at MIT. In order to 
facilitate parallel Matlab, two toolboxes both from MIT, pMatlab [91] and MatlabMPI [92] are com­
bined to adopt polymorphic implicit parallelism and provide an MPI-like communications protocol 
respectively. There are also possible cross overs between pMatlab and Matlab*P. This amalgama­
tion is called the gridMatlab toolbox. It interfaces with the underlying resource manager (Condor) 
to provide three core abilities: cluster status monitoring (how many processors are available), job 
launching, and job termination. Or in other words, it provides the ability to call condo r _ s t a t u s ,  
c o n d o r_ su b m it and co n d o r_ rm  for each of the respective tasks from a Matlab session. Each 
job then initializes a (licensed) version of Matlab with the two toolkits running and providing a front 
end for interactive use.

The gridMatlab toolkit determines (using c o n d o r _ s ta tu s )  whether enough resources are 
available to satisfy a user’s request, and if a sufficient number of resources are available the jobs are 
submitted. However, it is up to the user to identify their resource requirements. If an insufficient 
number is available, the toolbox queries the user whether their application can be run on fewer pro­
cessors or whether the job should be resubmitted when a sufficient number is available. The system 
mostly provides transparent access to the resources, however, despite a reported implicit paralleliza- 
tion model users must still manually parallelize their code. No information is given about what this 
entails. The typical applications that are performed in this system are long running applications, 
where individual jobs are on average 31 minutes in length. However, some support is given for

6Available at http://www.interactivesupercomputing.com -  last accessed June 2008.

http://www.interactivesupercomputing.com
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shorter jobs, but this is not discussed in any detail.

The main achievement of this work is that Matlab sessions could be launched from Matlab using 
Condor, which were then interactively used for MPI applications, where the user’s workstation is 
node 0. However, firstly, this was performed on dedicated resources, and therefore failure rates 
are minimal, and not even mentioned in the work. This limits the ability to map this work onto 
a Campus-Grid, even though this approach is based upon Condor. This is potentially the most 
limiting factor of this approach, because MPI applications cannot normally tolerate loosing one or 
more nodes. The authors’ suggestion for ensuring dedicated access to a set of resources (so that job 
eviction does not occur), is to place Condor into its execute always job model. Here, jobs cannot 
be preempted even if another user or even the owner wishes to use the resource. In the context of a 
Campus-Grid, such an approach is usually frowned upon. Secondly, application run times are long, 
potentially enabling low overheads relative to execution times. Again, no performance data in this 
respect is provided, and therefore it cannot be ascertained whether this approach would be feasible 
in the context of short running jobs. Thirdly, licensed Matlab sessions are used, and consequently 
the approach will be limited to the number of available Matlab licenses. No discussion is given 
concerning what happens if resources are available, but licenses are not, and how this affects the 
resource inspection process, which is performed to test whether the facilitation of on-demand access 
to Matlab instances is possible for a given request.

Matlab*G

Matlab*G [93] is a fine grained explicitly parallel Matlab approach for the ALiCE Grid [94]. Here, 
licensed Matlab sessions are transparently launched as ALiCE jobs to provide image processing 
capabilities. The number launched is in response to explicit user requests, i.e. the user must know in 
advance how many Matlab sessions they require. Each session supports multiple user tasks and can 
be used interactively, just like regular Matlab. Therefore, only one initialisation phase is required 
per session. However, the approach is limited by the available number of Matlab licenses and 
enforces static allocation, which relates to the original user request. This suggests that should the 
user request an inappropriate number of Matlab sessions, they must either rerun their application 
or wait for it to complete. The user must also know in advance what resources are required for 
their specific application. No information is given about what would happen should this number 
of sessions not be available. However, the parallelization of Matlab code is very intuitive. Parallel 
calls are explicitly included by the user, however, the user requires no knowledge of how the call is 
serviced.

The idea behind Matlab*G is good, but it is not thoroughly thought through, and, ultimately, 
if there are no Matlab licenses available, the system cannot serve the user. It is also an expensive 
approach to support when large numbers of nodes are required. In a Campus-Grid context this 
approach cannot work, because Matlab licenses are not in abundance, and are potentially tightly 
bound to the workstation owners.
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JavaPorts

JavaPorts [82] is an approach for distributing Matlab applications to a network of workstations. The 
Matlab compiler is used at distribution time to compile a user’s application, which is then distributed 
transparently onto the network. This is a great idea in theory, as license requirements are removed, 
and an opportunistic context is intrinsically included in the model. However, in practice this is not 
a practical solution. It will work very well for simple applications, as users can simply submit their 
Matlab source code to the central daemon, and wait for the results. The problem with this approach 
is that as applications become more complicated several issues and complications will arise during 
the compilation process.

Firstly, as the dependencies of the application increase the user or some manager application 
must identify what needs to be transferred to the central daemon, so that all dependencies can be 
resolved and the compilation begun. When compilation is performed in a local context, Matlab 
performs this process transparently. Therefore, the JavaPorts approach must either assume that all 
functionality is available on the central daemon, or that the user or some autonomic manager can 
identify and transfer all dependencies. This will be exacerbated significantly if third party tools are 
in use, or if the application is large.

Secondly, many third party toolboxes are built using external operating system-specific libraries, 
which are subsequently integrated into Matlab using wrapper scripts. This is a transparent process 
in the regular Matlab context to the user and each toolbox invariably contains the necessary OS- 
specific scripts for all platforms. To integrate such toolboxes into compiled Matlab code, external 
tools are often required. This will be discussed in more detail in Section 5.2.1, and will include a 
method of transparently handling such scenarios.

Thirdly, for large or complex applications, compilation is non-trivial, as a myriad of disparate 
conditions can cause the compiler to fail. The most common examples, from direct experience in 
complex Matlab compilation, include (but are not limited to): (1) unbalanced parenthesis, (2) an 
m-file being a script and not a function, (3) an external library that cannot be included without ad­
ditional administration, (4) the code contains uncompilable Matlab functionality,7 (5) two functions 
that exist with the same name but are not polymorphic, and (6) the scope of a variable modified 
in a nested function or through an implicit call of either the lo a d  and e v a l  functions causing 
compiler failures when parsing a function to be complied. In these cases compilation is invariably 
an interactive process which requires both autonomy and supervision. This again will be discussed 
in more detail in Section 5.2.1.

Finally, the consequence of compiling and then distributing each submission successfully is an 
increase in an application’s makespan and each compiled instance cannot be extended beyond the 
scope of its original conception and intention, i.e. its reusability is limited. A much better solution 
than the Javaports approach would be to perform the compilation on the user’s workstation and 
generate a general application container which contains one or more entire toolboxes to increase

7see: http: //www.mathworks . com/products/compiler/compiler_support. html for a detailed 
list of what this includes

http://www.mathworks
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reusability. The output of this process can then be transferred to the central daemon and propagated 
from there to the worker nodes. Such a process could be performed in a similar manner to how the 
code was distributed for the third study in Section 2.4 was performed.

Grid-enabled Hyperspectral Image Analysis Toolbox

Rivera et al. [95] present a Hyperspectral Image Analysis Matlab toolbox, which is accessed through 
a portal interface. This approach claims to be a Grid approach, but this is debatable. In either case 
Rivera et al. report that they use a Grid portal,8 but no information is given concerning resource 
discovery or acquisition, how the Matlab Toolbox is controlled and no experimental or performance 
data is provided.

The key advantage of this approach is that from a users’ perspective it is both operating system 
independent and programming language independent. There are, however, two conceptual limi­
tations of this approach. The first limitation is the use and reliance upon Matlab licenses. The 
approach aims to provide public access to the Matlab functionality, which is a legal grey area in 
relation to the terms of licensing. It is also questionable whether the license holder would allow 
such an approach. Here, compiling the toolbox would result in a much more feasible solution. The 
second limitation is that the portal interface uses Java servlets hosted within a Tomcat servlet con­
tainer. The performance of this front end can be questionable, depending on the implementation 
chosen and upon the performance of the server upon which it resides. If implemented correctly, 
this will work nicely as a form of resource broker (see [97,98] for examples). However, if not, the 
overheads of the approach will be excessive. In addition, the portal acts as a single point of failure 
for the system and a performance bottleneck.

A Parallel Matlab for Grid-based Telescience

Lather et al. [65] describe an infrastructure to create parallel Grid-based telescience applications, 
which originate from a Matlab development environment. Using the Pegasus planner [99-101] with 
Condor, they were able to launch the Matlab M-files on a number of heterogeneous systems and 
achieve an increase of approximately six times in throughput, from 12+ days to just under 2 days. 
All their programs and function libraries were developed and implemented solely as Matlab M-files. 
Yet, they question the applicability of compiling their Matlab code, which would ultimately have 
yielded a more cost efficient approach. Their concern revolves around the additional effort required 
to compile their code, and that compilation comes at the cost of refining the algorithm itself. Here, 
(they say) that the application developer is no longer refining the algorithm but rather spending time 
on programmatic language conversions. These concerns are inaccurate, granted Matlab compilation 
is not a trivial undertaking for an approach such as their’s, but nevertheless, it would not have 
required significant effort or time. Perhaps the key reason for Lather et al. to not investigate this

8A Web-based user interface that provides seamless access to Grid heterogeneous computing resources. The goal of 
using a Web portal is to allow scientists to focus completely on the science by making the Grid a transparent extension of 
the user’s desktop computing environment [96].
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possibility is the fortunate procedure for license administration at their institution. Their Matlab 
licenses are issued as part of a campus wide license management system, which means that all 
campus workstations can check out licenses. However, had this not been the case, the logistics of 
rights to their licenses between Virtual Organizations (they give TeraGrid as an example) would 
have had to be examined (or at least negotiated). They also identified that this is an issue that 
remains a challenge facing the Grid community.

Network performance also provided a critical hurdle. They used 128 processors and the com­
putation time alone was approximately 2 hours. This does not include any queue wait times, which 
they identify as a considerable limiting factor on the application makespan. They required nearly 
1.5 hours to transfer their input data set to the computational end point and 3 hours to return the 
output data. This translates to over 50% of the application’s makespan solely due to data transfers. 
The problem, however, is that this data transfer overhead would be conserved even if the level of 
parallelism were increased. In other words, even if the entire application could be computed in­
stantaneously the data transfer overhead (approximately 4.5 hours) would remain unchanged. The 
time necessary to transfer this amount of data is unwieldy and partially or totally negates any gains 
in computational times attained by using additional resources. Like many other approaches in this 
Section this approach is limited by the number of available Matlab licenses, and is only successful 
in this respect due to the fortuitous use of a Campus-wide license server, which is not the case for 
many institutions. In [102] Dobson reports that the GreenGrid [11] also runs Matlab as batch jobs 
using Sun’s Grid Engine [103] and a campus-wide license server.

MultlMatlab

MultiMatlab [81 ] is an MPI based approach for parallel Matlab. To permit parallel/remote execution 
of a function seamlessly, an overloaded e v a l  function is used. Matlab-based RPC calls are used 
to load new Matlab instances, which can then be initialised as a MultiMatlab daemon. Worksta­
tions are sourced either from a predefined list or are defined by the user at the point of the request, 
i.e. static resource binding. The user is therefore responsible for initialising the required number 
of sessions and terminating them when no longer required. Parallel routines can be integrated into 
Matlab by using MPI-based MultiMatlab implementations. This is generally facilitated through the 
writing or rewriting of routines as parallel MEX routines. Matlab’s MEX interface allows C and 
Fortran programs to be called directly from Matlab. For simple or common routines this is fine, 
as such functions are likely to be built into MultiMatlab or are accessible online. However, should 
users wish to define new custom functionality, they must write their own C or Fortran code with 
MPI calls. Despite this, good performance was observed, albeit dependant on the competency of 
the user, which cannot be assumed. This approach is also dependent on the availability of Matlab li­
censes, and assumes the user has access to and knowledge of resources upon which the MultiMatlab 
daemons can be launched.
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Users-Grid

Users-Grid [30, 104] is a framework built on Globus [26] and Condor-G [27]. Jobs are created 
on the fly in response to a custom monitoring system that detects and reacts to heavy load on the 
user’s workstation. The system then identifies which application currently running can be stopped; 
the state is then caught and one or more jobs submitted using Condor-G. In order to evaluate an 
application in this way and to disseminate the required information for job creation, a customized 
plug-in must first be integrated for the application. For Matlab the current command, workspace 
variables and toolboxes in use are identified and represented in XML, so that the migration can be 
performed. A Condor job is then submitted to perform the migration, where the job is an instance of 
the application and will be started using the captured runtime information as a form of checkpoint.

The benefit of Users-Grid is that the user does have to be concerned with job submission. How­
ever, the complexity of job generation and submission means that the approach is slower than regular 
Condor. This may also be due to the use of Condor-G. Users-Grid was tested on a dedicated local 
4-node Condor pool, and therefore has no demonstration of scalability, the effect of resource con­
tention or “normal” Condor operation. The use of a local Condor pool is important because it means 
that Matlab licenses could be easily transferred between nodes, and, as already mentioned in this 
Section, outside of these conditions this may not be possible and licenses may also not be available. 
In addition, this approach does not actually perform any form of parallel execution, but rather re­
leaves a wokstation of a demanding application by migrating the application to another workstation 
accessed through Condor and Globus.

The Matlab Compiler for Heterogeneous Computing Systems

The objective of the MATlab Compiler for Heterogeneous computing systems [105] (MATCH) is to 
make it easier for the users to develop efficient code for distributed, heterogeneous, reconfigurable 
computing systems, specifically DSPs (digital signal processors) and FGPAs (field-programmable 
gate arrays). To achieve this, the compiler translates Matlab code into C code for each of the target 
systems. As Matlab is an interpreted language and performs just in time compilation, it is not 
strictly bound to specific data types. This complicates the compilation, and, consequently, the user 
must insert a series of directives to enable the compiler to identify the data types in use. During 
compilation the user indicates whether the code should be parallelized or not, as this affects the 
compilation process, specifically for loops. It also means that output from the compilation process 
is not as reusable and less general. Parallel support is provided by embedding MPI-like calls, which 
invoke communication routines in order to pass instructions to the hardware. The compiler offers 
two modes of compilation, an automated approach and a user driven approach, where the latter is 
intended to enable experienced programmers to fine tune and optimize the produced programs.

The cost of the optimization process is a further reduction in generality, whereby the exact 
usage of the code is defined as well as what the typical input will be. The demonstrated effect 
of this process is a significant improvement in performance, but even a slight modification to the
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application or its context require the compilation process to be performed again. There are no 
studies in this work which compare the total cost of recompilation against the performance of a 
more general program. Here, a sub-optimal program could reduce the overall job latency because it 
does not require the program to be recompiled for changes in program logic, the data or data types 
in use. Whilst this work is orientated toward DSPs and FGPAs, it could potentially be employed 
upon Campus-Grid resources, but there are no details of whether any benefit would be achieved 
in this approach over the built-in Matlab compiler. Similarly, this approach is intended to target 
systems such as inspection components in a machine vision system rather than for the facilitation 
of research applications.

Grid Enabled Optimisation and Design Search for Engineering -  GEODISE

The GEODISE [106] project has a collection of toolboxes for engineering and physical sciences, 
which can be exposed to scripting environments such as Jython and Matlab. Of particular rele­
vance is the compute toolbox, which enables users to submit jobs to back-end resources or run 
packages that are available as services. The philosophy behind the use of environments such as 
Matlab is that they are familiar to the end-user and therefore ease the transition from sequential and 
local computing to parallel and distributed computing [107]. There are different options for job 
submission, however, the most relevant is the ability to harness Condor reported in [108]. In this 
work the functionality and utility of Condor is exposed through the definition of Matlab functions. 
This approach also enables the use of Condor programmatically, and, interactively, directly from 
the Matlab environment. The introduced functions are not necessarily Condor-specific and could 
therefore be mapped to other middlewares. Condor is exposed to Matlab through the definition of 
a web service, which provides the abilities of language independence, streamlined access and the 
verification of access credentials. However, the web service also acts as a single point of failure and 
as was demonstrated in the first study conducted in Chapter 2 also becomes a serious performance 
bottleneck and instigator for erroneous job behaviour.

Condor and Compiled Matlab

There are many research papers published that report the ability to run compiled Matlab jobs on 
Condor and other systems, but there is little that can be said about these approaches, other than their 
basic functionality. This is because very little time is spent discussing the performance of Condor 
outside of the general observation that the experiment runs faster using Condor. In these approaches, 
a developer must compile the Matlab application, prepare the submission script and submit the jobs. 
These approaches are also inherently application-dependent and specific, i.e. when the application 
context changes the Matlab stand-alone application must be recompiled.

Many approaches also hard code job clusters, in order to increase the time needed by Condor to 
execute a job, which therefore improves efficiency; [109-111] are examples. However, when the job 
size is increased in this manner, the user must simply hope that their jobs are not interrupted by the 
workstation owner. If they are, then it is likely that the job will fail, as compiled Matlab jobs cannot
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be successfully suspended by Condor on Windows platforms unless they are in an idle state, which 
for approaches in this area is uncommon and rare. Therefore, if suspension occurs and the job fails 
upon unsuspension, the job must be restarted either from scratch or a manually programmed check 
point. These jobs are also subject to all of the issues raised in Chapter 2, most notably with respect 
to the efficiency of resource utilization.

In [112], Zhorin and Stef-Praun describe their experience running compiled Matlab applications 
in a Grid Computing context (they use Condor-G) and the set up of the MCR on the remote ma­
chines. They report that the process of initializing the workstations to be Matlab-ready is a one 
time effort, which may be true in their environment. However, Chapter 2 demonstrated otherwise. 
One interesting observation relates to the minimum ( 3 - 5  minutes) and maximum (up to 2 hours) 
periods of the time that is recommended for the length of a job in such a scenario in order to avoid 
“excessive” overheads from the middleware. The authors provide no performance data to demon­
strate their approach or experiences in a real context or define the computational environment in 
which they run their applications, which is unfortunate.

Compiled Matlab with other Resource Managers

In [113] Teodoro et al. describe an extension to the Anthill system [114] for the management of 
workflows where the processing units are performed by compiled Matlab scripts. They present 
an approach which is not commonly seen in this area, where each Matlab script is individually 
compiled into a single stand-alone executable and is described using a custom XML schema. In this 
respect the compilation is relatively simple, and therefore the potential issues raised in the discussion 
of JavaPorts are not applicable, as there is only ever one function and its Matlab dependencies which 
must be evaluated by the compiler. The idea is to be able to provide Matlab functionality to external 
applications, which may not be Matlab-based. The performance of this approach is also good: near 
linear speed up in the presented experiments. However, they do not compare their analysis to a 
single machine executing the entire workflow, and therefore the overhead involved in invoking each 
compiled function, deserializing and serializing the input and output parameters is not presented. It 
is also not clear what the costs of the compilation and XML definition processes are. This approach 
seems to be overly complicated for what is intrinsically a simple idea. The work unit descriptions 
must contain which Matlab filter produces the inputs, and which filter the output must be directed 
to. Furthermore, the definition of the input/output parameters is quite elaborate, as the means to 
define the value or source/destination of parameters is also unclear. In addition, each description 
may contain one or more Matlab scripts to be evaluated and the workflow is defined using multiple 
description files. It is not clear why libraries of functionality are not created instead.

Summary of Matlab-based Approaches

There are several key desirable attributes that are needed based upon the analysis performed in 
Chapter 2 and outlined in Section 1.3, which are simply not considered by many of the approaches 
discussed in this Section. Instead, many approaches include an orientation toward a fine-grained
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parallel model, a dependency on Matlab licenses, a setup which is often coupled with the assumption 
that Matlab licenses will be available at the time of the request, the expectation that the user can and 
will administrate the resources in use or the assumption that resources are reliable and persistent, 
and the expectation that the user will modify their code (for example to a MPI-like implementation) 
in order to use an approach. The approaches discussed in this Section are summarized in Table 3.1 
according to the following criteria:

C l: Ability to run an engine on a Campus-Grid workstation
C2: License requirements
C3: Can handle user defined Matlab code
C4: Transparency of code distribution
C5: Ability/orientation to run short jobs
C6: Granularity
C7: Resource utilization model
C8: Node acquisition model

It is evident that there is no single approach discussed in this section that meets the minimum 
criteria needed for a volatile Campus-Grid environment. However, JavaPorts meets many of the 
criteria, but lacks a sensible model for compilation, and the ability to run jobs interactively.

3.1.2 Approaches for Parallel and Distributed Image Processing 

The Distributed Image Processing Shell - DIPS

The Distributed Image Processing Shell (DIPS) [115] and its successor CDEP, Concurrent and Dis­
tributed Image Processing [23,47,116] (discussed below), used the NetSolve system [28] to create 
a distributed image processing system. These two approaches are similar to the work presented in 
this thesis and provide several significant contributions that should be considered when conceiving 
distributed image processing systems.

DIPS comprises of three software elements: (1) Image Vision [117], which could only be run 
on SGI machines, and for this reason making it remotely available was of particular interest. (2) Im- 
age/J [118], which was chosen because it contained a plug-in for Image Vision. (3) NetSolve, which 
enabled access to remote resources from multiple programming languages and was considered to 
be the best approach at the time. NetSolve also permitted dynamic applications without additional 
compilation, provided load balancing and best choice machine allocation.

In a similar vain to the results presented in Chapter 2 NetSolve proved to be an inhibitor of 
progress. There were many different reasons for this but the key reason, which is also apparent

9No volatility-related awareness or tolerance.
10Extension through the inclusion o f new parallel numerical libraries, either written by the user or provided by a third 

party.
11 Only when recompiled.
12User defined quantity.
131 per job.
14Tolerance for resource volatility
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Table 3.1: A summary of the attributes of each approach, which are important for the application 
context of this research. Acronyms: Y - Yes, N - No, Y? - Unclear from publications, but is likely, 
N? - Unclear from publications, but is unlikely, B - Batch, I - Interactive, A - Automatic, S - Static, 
D - Dynamic, U - Performed by user._____________________________________________

Approach Criteria
Name Cl C2 C3 C4 C5 C6 C7 C8

Matlab DCT Y9 n+1 Y Poor Y Fine I AS/D12
SmartLM Y^ n Y n/a n/a n/a n/a n/a
Matlab*P N 1 N10 Good Y Fine I AS/D

Star-P N 1 N10 Good Y Fine I AS/D
Rether et al. Y^ n+1 Y Poor N Fine I AD13
Matlab*G Y^ n+1 Y Good Y? Fine I ' AS1213
JavaPorts Y^ 1 Y Good Y? Coarse B AD13

Rivera et al. Y^ n Y N? N? Any B u 14
Lather et al. Y9 n Y Poor N Any B u

Matlab on GreenGrid Y9 n Y Poor N Any B AD13
MultiMatlab N n+1 N10 Poor Y Fine I U
Users-Grid Y^ 1 Y Poor N n/a B AD
MATCH N 1 Y n Poor Y Fine I U
Geodise Y^ 1 n/a Fair Y Any B AD

Condor+Compiled Matlab Y^ 1 Y 11 Poor N Coarse B AD13
Teodoro et al. Y^ 1 Y ll Poor N Coarse B AD13

Ideal Y U [0.1] Y Good Y Coarse I AD
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in many other middleware solutions is that NetSolve mandated that each functional request be a 
self-contained entity, i.e., a single job and consequently, data sets and the relevant application data 
(for example program code) were frequently transferred multiple times to the same nodes. For 
applications such as parameter sweeps this is an expensive requirement. Oberhuber accounts that 
most of the problems with DIPS were NetSolve-related, other issues of relevance were with regard 
to flexibility, and reliability. The issue of flexibility relates to the complexity of generating (even 
automatically) the calls to the NetSolve infrastructure. For example data sizes must be known in 
advance for both input and output. In addition, NetSolve’s resource descriptor language was too 
limited for image processing applications. In terms of reliability, NetSolve would loose without 
documentation 3% of all jobs.

Oberhuber identified that in order to achieve better performance, schedulers need to have access 
to application specific information e.g. workload and available bandwidth, and that good perfor­
mance can only be obtained when scheduling is explicitly integrated within the application. Here, 
crossovers with other approaches can be identified such as AppLeS [119] and DIANE [120,121]. 
Hence, monitoring is an important facility, but, horizontal tools like NWS [122] and Ganglia [123] 
can only provide an overview of the scenario, for deep analysis of the current situation or state, 
custom monitoring tools are required to augment the off-the-shelf equivalents. Essentially, the idea 
here is to include application level information into the scheduling strategies, and make the sched­
uler application-driven/aware.

However, there is a clear challenge with this observation that Oberhuber has not considered. 
Many platforms such as NetSolve, Condor and the others presented in Section 3.2 use generic 
scheduling routines, such as LSF [124], LoadLeveler [125] and PBS [126], or custom scheduling 
routines to fulfil the agendas and intentions of the middleware. In order to perform application level 
scheduling these generic schedulers need to be: side-stepped, replaced, or used only for resource al­
location. This would enable the application to steer the resources allocated to it based upon its own 
agendas and integrated scheduling routines. The first two solutions are out of the question without 
upsetting other users of the resource management tools. Therefore, a change in job model and the 
isolation of control is the only remaining option. Adding monitoring systems at this point is rela­
tively simple, as they can be intrinsically integrated into the application itself, or hosted externally 
as required.

This is also closely related to the descriptor or interface definition language for the resource 
management software. In many cases they are either too limited for image processing applications 
or enforce unrealistic requirements on the application developer. Here, Oberhuber hints toward (but 
does not explicitly state) the need to separate the methods of acquiring computational resources 
from the job description. It is in the aim of generality that work description languages15 become 
problematic, especially for numerical data. Consider this example, when Matlab is called from the

15Examples include: the XML-based JSDL [127] specification, from the Open Grid Forum, gLite’s [128] Job Defini­
tion Language, which describes resource and job preferences using the GLUE-Schema [129], the Common Information 
Model [130], Globus’s Resource Specification Language as well as its XML-based Job Description Document, and Con­
dor’s submission scripts and schema-free ClassAd methodology.
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command line, and passed numerical input, the input is read as a number. However, if the same call 
is made for a compiled application, Matlab will use the ASCII values for the parameters to construct 
the input. Many other application engines would fail at this point, but as Matlab binds its variable 
types at runtime, it will assume that the input is a one-dimensional matrix. There is no solution to 
this problem using a general work description language, without transferring the data as a flat file 
and reading it from within the application itself.

The most detrimental issue of DIPS was NetSolve starting a new transfer and image processing 
session for every request. This would have even been the case when the same job was performed 
on the same data and on the same node. No implementable solution is given on how this can be 
avoided. This issue is not specific only to NetSolve; Condor too enforces that each request be self 
contained. Even when Condor is used in conjunction with systems such as Pegasus [99-101] and 
Condor DAGMan such issues are not necessarily resolved. Nimrod imposes the same restriction, as 
do many of the other systems presented in Section 3.2. The issue here is that a workstation or node 
is being used for the life of a job and not for the time that it is available or needed. The develop­
ment of DIPS was carried out such that it became tightly coupled to, and therefore dependent on, 
NetSolve, with the consequence that to replace NetSolve with another resource manager, significant 
changes to the DIPS implementation would be necessary. This also highlights the importance of 
the implementation to be able to swap the underlying resource managers with minimal effort. Here, 
GridSAM [131] could be a useful option for production systems. However, the use of GridSAM 
means adopting a general job description language, which is less desirable.

Multi-institutional networks also provided a problem, inter-site communication overheads made 
DIPS unfeasible. Oberhuber acknowledges that DIPS and other similar approaches are best suited 
to LANs and single site networks. He also accounts that clusters are too tightly coupled, at the time 
metacomputing was not yet mature enough and loosely coupled architectures could not usually 
achieve good performance for fine grained parallelism. Some of these points are debatable today, 
however, Grid Computing as well as wide area distributed systems are still not well suited to image 
processing unless the job granularity is coarse, using the definition of granularity in Section 4.9.1, 
and a runtime of reasonable length, i.e. tens of minutes or greater.

The outcome of this research was the demonstration of the potential for seamless access to 
distributed image processing capabilities, using Campus-Grid like infrastructures. However, the 
concluding remarks were that more research is required in order to maximize their benefits and on 
how this should be achieved. Many publications, including the NetSolve website, often reference 
DIPS as a success, which was not the case. DIPS was by no means a failure, as much was learnt 
from the project.

Concurrent Distributed Image Processing - CDIP

Following DIPS, CDIP was developed to learn how to support the user with remotely located data 
and remotely available image processing methods running on parallel computers, thereby exploit­
ing the possibility of concurrent execution of algorithms [23]. CDIP was constructed using Java,
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CORBA and NetSolve. It used a variety of image processing packages, but kept the original DIPS 
Image/J front end. Its applications revolve around the processing of large SAR (satellite imagery) 
data sets, which exhibited the requirement for a fine-grained parallel model.

Multiple Image Processing packages were amalgamated in order to overcome a lack of image 
processing algorithms and to provide a highly optimised parallel method repository [116]. However, 
the interleaving of several IP packages did not drastically improve the cohesion of a system as a 
whole. Instead, many challenges, some which CDIP could not answer, stemmed from this aim. A 
detailed knowledge of the procedures was essential, particularly which algorithms are available on 
which machines and also how to map between them. This meant that the scheduler required a large 
repository of data in order to convert a request into a scheduleable entity [47]. This was a similar 
idea to other approaches such as Condor’s ClassAd scheme, but differs in that where a ClassAd 
typically publicises the availability of an application in general, CDIP was trying to publicise the 
functional availability within an application platform. Scheduling complexity was intransigently 
increased due to the need to consider algorithm locality and ensuring that deadlock was avoided. 
Inevitably, adding new functionality was a timely and complicated process, as metadata for each 
new function needed to be generated.

Despite the added complexity of scheduling tasks for multiple image processing libraries and 
operating systems, a simple but effective scheduling and allocation mechanism was implemented. 
Decisions were based upon estimates sourced from past experiences and interactions. Oberhuber’s 
suggestion of application level scheduling was also worked on to some extent. Here, application 
level data was used to classify a machine’s performance. Then based upon this data their scheduler 
would identify the “best” match for a job, rather than to improve the management of the application 
as a whole, as Oberhuber intended. This, however, required a deep prior knowledge of the applica­
tion, which included: (1) execution time of the whole job, (2) cost, accumulated by network traffic, 
processor hours, and potentially algorithm/software license fees, and (3) some user-level metrics 
such as job priority and whether the use of special hardware is permitted, which may reduce the 
number of possible configurations.

This approach is documented in [47], but not validated through experimentation. Yet, the ef­
fectiveness of the approach is demonstrated in [23]. However, in these experiments HPC machines 
were used and not clusters of workstations, which was the initial aim. In this case the scheduling 
requirements could be pruned, but it is not mentioned how this was done, or the effect. For example 
the scheduler no longer needs to know if special hardware can be used as only one HPC machine 
was available. This also reduced the number of potential candidate machines to run jobs on, again 
simplifying the scheduling strategy. Details about a method’s implementation are also not required 
at the same level, as resources are now homogeneous in terms of hardware, available software and 
image processing functionality. However, the use of dynamic scheduling and nodes requesting more 
work as they start to run out enabled good performance to be achieved. This, however, only occurred 
when the following was considered: speedup increased linearly as more processors were added un­
til the number of processors exceeded \  of the number of jobs. Past this point the load balancing
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strategies started to loose track and become too opportunistic, with the consequence that the speed 
up began to flatten out and eventually decrease [23,116]. What this means is that the scheduling 
strategy would permit too many machines to be used, which in turn could decrease performance and 
efficiency and increase the application makespan.

The conclusion of the CDEP project was that more research is necessary to prove that this simple 
approach satisfies more generic application, or to find more elaborate strategies. In addition, it was 
concluded that Java and Netsolve could indeed achieve an ease of access and a gain in efficiency 
and throughput in distributed image processing. Remember that this work is based on an HPC 
environment and was not actually evaluated using the clusters of workstations it was intended for. 
Such an environment is much more volatile than an HPC environment, most notably due to the 
change from dedicated to voluntarily provided resources. One of the limiting factors of the approach 
was the need for very high bandwidth connections [116] and running a fine-grained approach with 
the huge amounts of data used in SAR processing16 may draw out the requirement for a different 
approach to load balancing. In such a case it is not unlikely for the retransfer of data to be more 
expensive (timely) than choosing not to reallocate a job. The CDIP publications also report no 
improvements or differences with respect to the use and practicality of the NetSolve backend.

Virtual Resource Browser

The Virtual Resource Browser (VBrowser) [132] is a part of the Virtual Laboratory for e-Science 
(VL-e) [ 133] project and acts as a front end to Grid resources for a variety of medically-based ap­
plications. The resources in question are several dedicated clusters of Linux nodes, where resource 
management is performed by a single administration entity, and every node is a carbon copy of a 
single master machine image. Here, faults such as those shown in Section 2.4 are not apparent and 
therefore the scheduling strategies and resource management software does not need to consider the 
challenges of resource volatility and owner or workstation autonomy.

The use case of the VBrowser is to provide a simple and transparent point of access to resources 
for use by medical researchers. Typically, this is performed in batches of independent jobs or by 
workflow engines when dependencies exist [134]. The current implementation adopts the use of 
the Moteur [135] system. Many of the applications are Matlab-based, where one example is the 
processing of Magnetic Resonance Imaging (MRI) data using a variety of third party and in-house 
toolboxes. The VBrowser uses the gLite [ 128] middleware to access the resource fabrics and, as 
with most middlewares of this type, cannot perform job submission outside of the batch processing 
paradigm. This is also the case for Matlab applications, which until recently17 have been through 
the use of licensed instances of Matlab.

A significant attribute of the VBrowser stems from its graphical user interface, which has the 
look and feel of the native operating system. Jobs are submitted through a drag and drop approach,

I6In: [116] each task is associated to 0.5Gb of data.
17A s part o f the research for this thesis some collaboration was performed, which enabled the submission of com­

piled Matlab applications using the vBrowser. These applications can be compiled using approaches such as the semi- 
autonomic compiler presented in Section 5.2.1.
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where the user drops in their job definition, which in most cases is a Moteur workflow description 
and any required data or executables. The VBrowser then handles the intricacies of job submis­
sion and result gathering for the user, delivering results as required. The future challenges for the 
VBrowser include the capitialization and harnessing of spare workstations on campus, however, as 
the VBrowser and the associated software has had no prior need for the fault management techniques 
needed to side step the idiosyncrasies of campus-based resources, it is currently not in a position 
to be simply mapped to such an infrastructure. In addition, the current approach does not permit 
an interactive use of resources and therefore the performance guarantees in terms of efficiency for 
short jobs cannot be made.

PIMA(GE)2

dementis et al. [136] present an approach to transparently access a distributed image process­
ing architecture realized through a parallel CORBA front-end for an MPI-based image processing 
back-end. Henning reported in [ 137] the many problems associated with CORBA, both in terms of 
application development and the significant problems with CORBA’s component model. It is not 
surprising that this approach to distributed image processing is hampered by high communications 
overhead, which based upon their experimental results reaches 38% of the total wall clock computa­
tion time when using just 8 machines. This may arise from the fact that CORBA was never intended 
for the development of parallel applications [136] or that the CORBA is architecturally flawed on 
many levels [137]. This is further accentuated by Goller [116] who identified the need for a reliable 
version of CORBA. This paper also shows the importance of feedback-orientated scheduling and 
resource allocation: if left unchecked this system would allow the user to create a scenario where 
adding more nodes would start to increase computation time rather than reduce it.

Remote Sensing Information Modelling with Condor

Cai et al. [138] describe a simplistic approach to the processing of satellite data by using a small 
Condor pool. The authors unintentionally present a key concept which confirms the observations 
made in Chapter 2. Namely, the challenge of running short jobs on a Condor pool efficiently. They 
performed comparative analysis on a range of data sets with different sizes on one workstation and 
compared this to a 5 node Condor pool. The experimental set up uses Condor as a scheduler for a set 
of dedicated resources, rather than in its typical cycle stealing context. This makes for quite a useful 
comparison, because there is no excuse for Condor to perform badly. In fact, this situation should 
favour the performance results, as no resource volatility or autonomy can hamper the performance 
of the Condor system.

Cai et al’s jobs are each of 180 seconds or less in length when run on a single workstation, 
which is one of the workstations used in the pool. In addition, all workstations are of a very similar 
nature and set up, making the pool largely homogeneous. In each of their application scenarios 
their Condor pool required more time to complete the job space than a single machine, when the 
entire application makespan is considered. This was primarily due to the overhead in scheduling,
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where between 60 and 70% of the application makespan was spent in Condor’s administration of 
the job space. If, however, only the time Condor spent executing the jobs is considered, then their 
application received a good speed up factor. What this shows is that even in a clean and practically 
dedicated context Condor cannot service short jobs efficiently, but that the potential is there if the 
right solution can be identified.

ProteomeG RID

ProteomeGRID [139] uses a combination of Condor and CORBA to perform parallel image pro­
cessing. The constitution of the Condor pool is 200 heterogeneous workstations within the same 
computer lab, and therefore same administrative domain. The approach is to distribute a CORBA- 
based worker daemon as a regular Condor job onto host workstations. Once initialized, a worker 
daemon calls back to a specified point to request image processing functions to execute. Here, each 
image processing function is a CORBA ORB with an e x e c u te  method, provided by the appli­
cation developer. This means that in order to use the system, existing code must be mapped to or 
encapsulated by an ORB. It also assumes that the image processing function does not have depen­
dencies on other ORBs or third party libraries. However, the benefit is that no underlying libraries 
need to be installed on the Condor workstations. Therefore, there is no need for mechanisms to 
provide stability in response to workstation volatility.

The system is deployed using the standard Condor model where one Condor job relates to one 
worker instance. Workers are distributed with all the necessary libraries needed to initialize the basic 
daemon instance, capable of accepting and executing ORBs. All other program code and data to be 
processed is transferred to the host workstation at runtime, using an external scheduler. The ability 
to transfer all application dependencies at runtime also translates into another benefit: namely, that 
the Condor scheduler does not need to match, as many resource requirements for job execution and 
therefore the time required for matchmaking is reduced.

The resource utilization efficiency of this approach is reported to be up to 81%. However, it is 
not clear how this value was calculated or what the runtime of a single job is. What is clear, how­
ever, is that the time required to acquire idle workstations and then initialize the worker daemon is 
not included in the calculation. By using the provided performance data and the brief experimental 
description, it was not possible to achieve the same values presented in the paper, using the equa­
tion for calculating the efficiency of resource utilization (Equation 2.2 in Section 2.4). Instead, an 
efficiency of 65% was determined, which is a sizable difference to the reported efficiency. When 
the time required to acquire the necessary resources (135 seconds) was also included, this further 
reduced to 54%. However, even with this consideration the general performance of the approach is 
good. This is due to the capability to schedule jobs directly to a workstation without the need to 
invoke the Condor scheduler. It also means that the workstations are used for as long as they are 
needed or available rather than for the runtime of a job, which may be short.

This approach cannot be simply mapped into the application scenario of this work, as there are 
three critical incompatibilities: (1) no mechanisms for the management of workstation volatility
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are included. They are not needed, as workstations reside in a single administrative domain and 
no software libraries other than Condor need to be installed for the application to run. (2) Matlab 
functions have deep dependencies not only within the MCR, but also other with user defined code 
and other third party functions, as Matlab employs a functional programming model. Therefore, 
identifying and transferring the necessary functionality could be quite challenging to perform effi­
ciently, especially if the code must also be compiled, which, as discussed in the review of JavaPorts, 
is not a trivial process to perform in an automated manner. The increase in communications over­
head experienced as a consequence of the transfer of functionality could also be significant. (3) The 
Matlab MCR cannot be transferred at runtime in the same manner as the CORBA libraries, as it 
is many orders of magnitude larger and would generate a sizable networking bottleneck, even with 
replicas on the network. It would also be prone to file transfer errors and significantly increase the 
initialization time of a job.

Image Processing for Grid (IP4G)

Image Processing for Grid (IP4G) [21] is a toolkit for developing Grid-enabled medical image 
processing applications. In this approach jobs are represented using an XML-based description 
language. Consequently, the job description file is somewhat complex even in the simple example 
presented. In fact, defining the job requires more lines of XML than image processing function 
provided as an example. Here, it seems an XML representation is complicating the approach, but 
not aiding it in any way. In addition, processing time will be increased in the generation and parsing 
of the description.

Three toolkits are used in this approach, DataCutter [140], VTK [141] and ITK [142], which are 
used for representing image processing filters, data visulisation and algorithms for image segmenta­
tion and registration respectively. The experimental results presented indicate that overhead in this 
approach is a minimum of 25%, as this was the overhead experienced when the system was run on a 
single machine. The high overhead is reportedly due to data serialization and copying, which stems 
from the splitting of processing into separate filters, which is imposed by the DataCutter model. 
Bovenkamp et al. [67] observed that the control of image processing models is the most common 
major bottleneck in distributed and parallel image processing systems. Here, this illustrates the im­
portance of choosing an application container that will not impose unrealistic conceptual models. 
As the number of nodes increases, it can be expected that the overhead will also increase. However, 
the authors report that this can be reduced if transparent copies of the data are placed on cluster 
nodes prior to execution, which, they suggest, could be performed manually by the user. When such 
a scenario is in place the system schedulers can then attempt, but not guarantee, to map jobs to nodes 
where image data is already located. This assumes, firstly, that the user knows in advance where 
their jobs are going to run, which is based upon the scheduling model and availability. Secondly, it 
assumes that the users have sufficient access to pre-stage the data manually.
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Image Processing Grid Platform (IPGP)

Image Processing Grid Platform (IPGP) [143] is a middleware, which is built on the existing web 
services technology and targets image analysis and visualization applications on a Grid. It is a 
layered framework and uses service-oriented components and workflow techniques to specify a 
model of Grid applications. Here, an application is described as a Grid workflow composing of 
component activities, where each activity has one or more resources satisfying the service. For this 
reason, resource selection is a scheduling process.

The performance results of IPGP raises questions about the suitability of Grid Computing for 
image processing. The analysis of the characteristics of Grid environments and image processing 
applications found some inconsistencies. Grid resources are widely distributed with low band­
width, high latency and non-stable performance. Image-processing applications, however, are data- 
intensive and consequently, this leads to an abundance of data transfers between interconnected 
components of an application workflow, which causes performance to be inhibited by infrastruc­
tural limitations. The IPGP authors concluded that in order to optimize performance, the conjoint 
activities should be scheduled to single or low-price Grid nodes, if possible. Here, a single node 
could be a cluster or physical machine depending on application requirements or context. If the first 
alternative were employed, this can significantly increase the scheduling complexity and directly 
impact upon any economic attributes that may be associated to the submission. Should the latter 
case be adopted it does raise the question of why the job should be distributed, as any improve­
ments in performance are likely to be negated by data transfer costs. Given the challenge of image 
transfer in distributed image processing, is Grid Computing really suited to image processing? In 
situations where costs are based on time rather than load it seems apparent that distributed image 
processing approaches are not well suited to commercial Grids. Facilities like the NGS,18 however, 
provide a very cost effective solution, but do not address the specific scheduling challenges that are 
resounding challenges in distributed image processing.

Grid Services with the GIMP

Petcu and Iordan [24] used the GIMP in combination with the Globus Toolkit [50] to create a 
completely license free distributed image processing system. The Globus toolkit is used to launch 
GIMP daemons onto remote machines to serve a client’s request. A GIMP command is sent to the 
remote GIMP server, which contains a GIMP operation or script to be applied on specified remote 
image file(s). In the case of a script, this must lie on the remote computing node. It is not clear how 
scripts are transferred or if the system is limited solely to preinstalled functionality. The approach 
also assumes that any required data is accessible or already available at the remote site.

The inherent GIMP functionality provides the means to be run as an interactive daemon, and 
therefore enables users to have interactive sessions with a remote server. The reported initialization 
times are very good, a matter of seconds, which demonstrates the effectiveness of the GIMP for

18National Grid Service: http://www.ngs.ac.uk

http://www.ngs.ac.uk
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use in such a context. The authors specify that consecutive operations can be performed, but only 
in reference to the previous operation. This immediately questions whether the services can be 
used for heterogeneous jobs, and how reusable the services are. The main issue with this work is 
that it appears to be a system which provides remote access to a single image processing resource, 
rather than to multiple image processing resources. This question arises for two reasons, firstly, due 
to the briefly discussed application, which is indicative of a sequential programming model, and, 
secondly, because the paper reports no experimental evaluation. Similarly, there is no methodology 
which describes how resources are chosen.

Parallel Image Processing over a Cluster using the GIMP

Czamul et al. [31] document an approach that utilizes a cluster of workstations in order to setup 
a pipelined architecture for processing sequences of image processing calls. A load monitoring 
system is used to select the least loaded nodes to launch GIMP daemons upon. Here, the system 
aims to optimize the application makespan and minimize wait times. This is apparent in their 
results, as significant speedup through the selection of least loaded nodes has been observed. In 
the pipelined architecture they note that even small amounts of additional background processing 
can create bottlenecks in performance. The problem here is that jobs cannot progress to the next 
stage of pipeline until the job currently in the next stage has finished. This raises the question 
of why a pipeline is used, especially considering that each processing node is running the same 
application container; the GIMP. In addition, the communications model can be either MPI or PVM, 
which do not really fit into a pipelined architecture. Consequently, performance is degraded by high 
communication and synchronization overheads stemming from the pipelined approach. This is 
culminated in the high overheads experienced from data transfer and retransfer down the pipeline.

Resource-Aware Visualization Environment

The Resource-Aware Visualization Environment (RAVE) [144-148] project (Cardiff University) 
aims to facilitate the visualization of graphical environments, specifically for the support of teaching 
medical students of posthumous human anatomy. The specific use cases and applications which 
RAVE has explored are in the areas of visualizing medical imagery on lite devices such as PDAs 
and other portable devices. RAVE is introspective in that is can identify whether a device is capable 
of rendering the required viewpoint(s) or not, in the case of the latter it adopts a fine-grained parallel 
model and farms out the processing to available resources. The architecture of RAVE is a built 
upon web services, and resources are discovered through the use of UDDI registries. RAVE also 
detects when a rendering engine struggles to meet the demands placed upon it and will perform 
load balancing as required. Typical use of the RAVE system is to render a scene in response to 
user steering in real time, and therefore can place high demands upon the resources it uses. What 
is not clear, however, is how the service directories are instantiated, i.e. manually or dynamically 
in response to an observed demand. From the literature it appears that the latter is not the case, 
and therefore the assumption of RAVE is that the necessary resources will always be available to
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meet the demands placed upon it. This is perhaps not the best of solutions and therefore limits 
the reusability of the RAVE software in other scenarios. Research to reduce the need for statically 
bound resources is a current research aim of the RAVE project. Similarly, is the aim to move away 
from the currently adopted dedicated resources (for example HPC machines of a SGI origin), toward 
more opportunistic sources such as a Condor pool.

Recent work in RAVE of the most relevance is presented in [148], where processing engines 
are deployed over a collection of open access Linux workstations. Here, the processing engines 
are pseudo-manually initialized through the establishment of multiple SSH sessions (one for each 
workstation). However, there is the incentive to automate this process using Cardiff’s Condor pool. 
Yet there are challenges in preparing the processing engine for such a scenario aside from those 
presented in Chapter 2. Namely that the processing engine is built upon Trolltech’s Qt, which under 
*nix operating systems is freeware. Under Windows, however, this is not the case and the cost of 
individual licenses is comparable to the cost of Matlab licenses. There is only really one feasible 
solution to this problem, which is the use of Condor’s vm (virtual machine) universe, however this 
is currently not an option for reasons that will be explained in Section 3.2.5.

Myriad

Myriad [ 149] is a proof of concept framework for building networked Machine Vision systems [ 150] 
and is orientated around the question: What happens when different sections of Machine Vision 
systems are networked together, possibly over large distances? A Myriad network consists of one 
or more components, e.g. a cameras, device controllers, databases etc. The only requirement of 
these components is that they can accept HTTP requests and output HTTP responses. Should this 
not be possible, a Myriad plug-in can be used. The model of Myriad is that every component 
acts autonomously in response to a request on the premise that components will interact if needed, 
e.g. if component A receives a request it may in turn become a client of component B , who may 
then become a client of C  etc. In this way large command chains can be established. However, 
should one of these components fail, it would be difficult to determine where this failure occurred. 
Similarly, fault tolerance in such an approach would be difficult. An important feature of a Myriad 
network is that it is decentralised allowing for a potentially powerful approach, but one that is 
difficult to program effectively [150].

There are several benefits of Myriad: (1) Its communication is HTTP-based, which is very 
firewall friendly. It also means that other forms of security e.g. SSH tunnels, encryption and PKI 
are easily adopted. (2) It is possible to have a front end to the system in practically any programming 
language. This was demonstrated with an interface to prolog [151].

The disadvantages of Myriad stem mainly from its proof of concept nature. (1) Myriad is based 
on the idea of zero config networks, but there is no method currently available to advertise or dis­
cover Myriad components, the user/programmer must know their locations when developing an ap­
plication. (2) Dependency chains can be long and therefore fault tolerance is difficult to implement. 
(3) To include a new component for which no Myriad plug-in exists one must be written. (4) As
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said above, Myriad is difficult to program effectively. (5) No method to automate the initialisation 
process of a Myriad network exists.

There are also a few unknowns in Myriad which would need further research in order to move 
from a proof of concept implementation to a usable software solution: (1) No performance testing 
has been done to determine where the capabilities of a Myriad network lie. (2) No experiments have 
been performed to test the scalability of the system.

Summary

In this Section a discussion of several approaches for distributed image processing which are not 
based upon Matlab have been presented. The primary difference between these approaches and the 
Matlab-based approaches is that they are not confined by licensing restrictions, and therefore should 
be able to define more flexible models and invocations of image processing libraries. However, for 
these approaches to be useful in the context of Matlab-based applications, they would need to be 
capable of consuming Matlab resources, either in a licensed or preferably a license free context. In 
addition, they also need to be able to answer the general challenges of the Matlab-based approaches. 
In Table 3.2 they are assessed and summarized using the following criteria:

C l: Could potentially run an engine on a Campus-Grid workstation
C2: Could potentially use Matlab
C3: Could potentially use compiled Matlab
C4: Transparency of code distribution
C5: Ability to include new user-defined functionality
C6: Ability/orientation to run short jobs
C7: Granularity
C8: Resource utilization model
C9: Node acquistion model

It is very difficult to always ascertain exactly whether an approach could facilitate Matlab di­
rectly or not. In some cases it is simply a case of swapping one or more libraries for Matlab. 
However, for the approaches that use an interactive resource utilization model it is also a case of 
providing an interface to Matlab, which could be provided by something such as JMatLink [152]. It 
is even less straightforward to ascertain whether these approaches could support compiled Matlab, 
as there are no documented approaches in the literature that report the ability to interactively control 
a compiled instance of Matlab. For this reason the approaches with an interactive model are noted
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as not being capable of executing compiled Matlab jobs.

Table 3.2: A summary of the attibutes of each approach, which are important for the application 
context of this research. Acronyms: Y - Yes, N - No, Y? - Unclear from publications, but is likely, 
N? - Unclear from publications, but is unlikely, ??? not determinable from available literature, B - 
Batch, I - Interactive, A - Automatic, S - Static, D - Dynamic, U - Performed by user.

Approach
Name

Criteria
Cl C2 C3 C4 C5 C6 C7 C8 C9

DIPS N yl9 N Fair Poor Fair Coarse B AD20
CDIP N?2* y l 9 N? Poor Poor Fair Fine B AD

vBrowser Y?22 Y Y V. Good Good Fair Coarse B AD23
PIMA(GE)2 N Y? N? ??? ??? Fair Fine I AS24

Cai et al. y 22 Y? Y? Poor Fair Fair Coarse B AD23
ProteomeGRID Y n Y? N? Good V. Good Good Coarse I AD24

IP4G N Y? Y? Poor Fair Poor Coarse B AD
IPGP N Y? Y? Good Fair Poor Coarse B AD

Petcu & Iordan Y?22 Y? Y? Fair Poor Good Coarse I AD23
Czamul et al. Y22 N N Good Fair Poor Coarse I U

RAVE Y22 Y? N? Good Fair Good Any B/l25 AD
Myriad N26 Y N Fair Poor n/a n/a I U
Ideal y27 Y Y Good Good Y Coarse I AD

It is evident that there is no single approach discussed in this section that meets the minimum 
criteria needed for running compiled Matlab jobs in a volatile Campus-Grid environment. Pro- 
teomeGRID, however, provides much of the basic functionality, but connecting its CORBA-based 
communication model to an interactively used compiled Matlab instance would be challenging and 
may prove to be too much of an architectural change to be feasible. The vBrowser also caters on 
many fronts, however, it has not yet been experimented within a Campus-Grid context and the shift 
to an interactive utilization model would require large architectural and middleware changes.

3.1.3 Summary

The foremost observation is that performing distributed image processing well is a significant chal­
lenge [29,31,32,45,68]. This is made all the more challenging through the implications of the 
analysis presented in Chapter 2. No approach covered thus far would be able to cope in these

19Due to NetSolve’s ability to run Matlab jobs.
201 per job.
21 Intented to use Campus-Grid-like resources, but the approach was never employed in this context, and there are 

issues whether it is possible.
22No volatility-related awareness or tolerance.
231 per job.
24User defined quantity.
25Later work has enabled an interactive resource utilization model.
“ No means of resource discovery or automated deployment.
27Tolerance for resource volatility.
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conditions, many would not even be able to handle the general opportunistic environment. Two 
approaches, however, stand out above the rest: JavaPorts and ProteomeGrid. The abilities of these 
two approaches compliment each other, but even when combined do not offer a complete solution. 
Neither can tolerate a volatile resource context, as both have been deployed in domains where ad­
ministration is centralized and therefore do not need to be concerned with such issues. In addition, 
neither architectural model could support the efficient use of short running compiled Matlab jobs; 
JavaPorts due to its compilation strategy, and ProteomeGrid due to its approach of transferring func­
tionality at runtime. Currently, the literature presents no implemented solution for the interactive 
control of a compiled instance of Matlab, which would yield a much more effective and efficient use 
of resources. This would be made possible by avoiding the potentially lengthy initialization process 
(relative to a short job’s runtime) being repeated for each job. If a solution to the interactive control 
of a compiled Matlab instance were developed, it is still questionable whether it could be simply 
included in either approach, without significant architectural changes: firstly, JavaPorts uses a batch 
programming model, and secondly, due to ProteomeGRID’s encapsulation of functionality in the 
job object.

3.2 Efforts in Volunteer, Opportunistic and Distributed Computing

In this Section a discussion of the approaches for the facilitation of general applications is presented. 
Here, approaches do not cater directly for image processing, but scientific computing in general. 
Whilst this means that approaches are more general, this leaves more room for custom approaches 
to build upon a basic infrastructure. In Section 3.2.1 approaches that offer the ability to use remote 
resources in an opportunistic context are presented. In addition, approaches that are less orientated 
around opportunistic computing but have similar goals are also presented. Section 3.2.2 presents a 
brief overview of some of the efforts in Condor-related Campus-Grids. Section 3.2.4 presents a few 
choice approaches to customized scheduling routines specifically for application-level scheduling. 
Finally, in Section 3.2.5 a discussion of why resource virtualization is not a feasible option for the 
context of this research is presented.

3.2.1 Resource Management 

Condor

The Condor project [12,13] started at the University of Wisconsin in 1984. Since then development 
has continued and Condor is probably the most widely used (and supported) system for the leverage 
of idle workstations. Many clones of Condor exist and are still being created, however, typically 
they fall short of Condor in terms of ability, performance and flexibility.

Workstations become resources in Condor when a set of pre-defined and customizable condi­
tions are true, and, similarly, cease to be a resources when these conditions no longer hold. The 
core idea behind Condor is that workstation owners voluntarily provide their resources when they
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are not needed, i.e. idle. The primary indicator utilised by Condor to determine the idleness of a 
workstation is mouse and keyboard movement. The administrator(s) of the workstations can also 
impose other metrics, but the default set also considers CPU activity and memory utilization. Clas- 
sAds [153], a schema free abstraction for the representation of state and attributes, enable custom 
user-defined attributes that can be used for workstation selection and indicators of state.

Jobs in Condor are defined using submit scripts, which encapsulate the necessary information 
to run a job on a remote workstation and also provide the scheduler with metrics for workstation 
selection. Examples include job specific requirements, which can also be unique to only a few 
workstations, such as the availability of the MCR as used in Chapter 2. Alternatively, more general 
attributes such as the amount of memory or CPU speed can be elicited as preferences. However, as 
the complexity of job requirements increases, so too does the time needed by the scheduler to per­
form the matchmaking required for workstation allocation. Once a job has started on a workstation, 
it will either run to completion, fail or be evicted. Should a better workstation become available in 
the future, a job cannot choose to migrate to it.

The clear advantage of Condor is that users do not need to significantly modify their applica­
tion to run it on Condor. However, when an application consists of many sub-jobs, the process of 
generating multiple submit scripts by hand is tedious. For this reason many Condor administrators 
write customized applications for their users to automate script generation (this process is carried 
out at both Cardiff and Oxford [17] Universities). In addition, other approaches such as Pegasus 
add to the Condor model by further abstracting the job submission procedures. Other systems, such 
as NetSolve [28] and Nimrod [154] can use Condor for a back-end source of computational power. 
Condor-G [27] is the amalgamation of technologies from the Condor and Globus [50] projects. 
From Globus: the use of protocols for secure inter-domain communications and standardized ac­
cess to a variety of remote batch systems. From Condor: the user concerns of job submission, job 
allocation and error recovery [39].

There are several different modes, defined as universes, for job execution. The most relevant 
universe to this work is the vanilla universe, which is the most commonly used universe on Windows 
workstations. As Condor was initially designed for Linux, many of the advanced, and most useful, 
features, which are part of the standard universe do not work under Windows; checkpointing and 
job preemption28 as well as migration being the foremost examples. These abilities are incorporated 
by recompiling the application code against Linux-specific Condor libraries. Given the ubiquity of 
Windows, this is rather inconvenient. Should a user wish to utilise checkpointing (and the other 
features), they must manually alter their application code and use a custom job manager to reflect 
their additions. As with many other systems (for example XtremWeb [155,156], Entropia and 
BOINC), Condor has no explicit support for short [36] or interactive [157] jobs.

There are some issues in fault tolerance for Condor, as the fault tolerant mechanisms of Condor 
are relatively simple. Condor works on the assumption that workstations are inherently unreliable

^Preemption is the removal o f a remote job from a workstation. If migration is available, the job will be checkpointed 
and moved to another workstation, if  not it will be aborted [5].
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[39], and uses a monitoring process (named a shadow) to monitor changes in workstation state. 
One of the core failings of this approach is the implicit assumption that if a job fails for reasons 
other than a change in workstation state - such as preemption - it is the fault of the job and not the 
workstation. In such cases Condor would not reschedule the job because it has reached a complete 
state, leaving the user to remedy the situation. The Condor job monitoring system provides little 
additional information and will only resubmit a job if it has been evicted or failed because of an 
observed workstation fault, such as connectivity failure. In all other cases the user must determine 
the cause and decide what to do.

DAGMan and Pegasus can be used to remedy such an eventuality, to some extent, in two ways: 
(1) by allowing a user to specify a predetermined number of retries and (2) executing a job specific 
(i.e. user defined) pre and post execution script. Here, the user can identify whether the workstation 
is correctly initialised and if the job has successfully completed. Yet these two systems are not 
always available to the user,29 and there is no built-in mechanism to prevent the job from being 
submitted to the same workstation again. The post mortum analysis of a job also becomes more 
difficult when other middleware is in use. If a job is executed using Condor-G, but through a 
foreign batch system (such as PBS), detail beyond “job failed” may not be available, and the job 
will appear to have failed of its own accord [39]. The Java universe utilises a wrapper program to 
execute a Java job and performs post execution analysis to determine the meaning of any error in the 
execution of the job [158]. However, this assumes the knowledge and understanding of the possible 
outcomes, which is quite a significant assumption.

However, despite Condor’s issues and the observations of Chapter 2 there are no serious short 
comings in Condor for simple applications and in tightly administrated scenarios. Condor also runs 
on most operating systems. Even when the observations of Chapter 2 are considered, Condor is still 
one of the most widely used (if not the most widely used) resource managers for the leverage of idle 
workstations and other computational resources.

Netsolve

NetSolve [28], or as has been called more recently GridSolve [159] aims to create a middleware 
that provides a seamless bridge between standard programming interfaces and desktop workstations 
that are used by many researchers and scientists and the rich supply of services provided by a Grid 
architecture [160]. NetSolve is built on NetLib and provides access to numerical software (e.g. 
Matlab) from various client systems. Like Condor resources are benchmarked when included in the 
system and a monitoring daemon is started as a background process. The benchmark results are 
then used in order to identify the best available match for a given resource request.

A major advantage of NetSolve is the number of different client interfaces available, making it 
accessible from many different programming languages. NetSolve also enables the use of resources 
on-demand directly from within an application. The system essentially allows the user (or an appli­
cation) to create jobs at runtime and use the results at an application layer. The NetSolve scheduler

29Neither are available on the Cardiff University Condor pool.
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can also directly access a Condor pool as a source of resources. Oberhuber [115] highlighted many 
practical limitations with the NetSolve job representation and scheduling model, which were dis­
cussed in Section 3.1.2. It is also unfortunate that, according to the NetSolve developers in [160], 
it is difficult to integrate third party code and libraries into the main infrastructure. This is a fairly 
restrictive issue, and when combined with the observations of Oberhuber the feasibility of NetSolve 
is questionable.

Entropia

Entropia [9], is essentially another version of Condor, but with subtle differences. Both use a form 
of matchmaking, harvest idle cycles, use node managers, and use job suspension and eviction/mi­
gration. They differ in that whilst Condor uses one unified scheduling strategy, Entropia can use 
many, and where Condor uses code modification to facilitate checkpointing, Entropia uses it for 
sandboxing an application. The use of sandboxing is really where Entropia and Condor differ. 
Entropia uses a virtual machine to run an application: code is modified to ensure that all basic Win­
dows functionality is redirected to protect both the host workstation from malicious applications 
and applications from malicious hosts and owners. In this sense Entropia is better than Condor, 
but Entropia supports a smaller application range than Condor. Applications in Entropia have no 
dependences between tasks, i.e. embarrassing parallel. The only requirement for Entropia is that an 
application is a Window executable.

An advantage that Entropia has over Condor is that its scheduling overhead is lower, approxi­
mately 40 seconds per job [36] (this does not include the time for data transfer). Realistically this 
means that a job should not be less than 5 minutes. The main limitation with Entropia is that it is 
not Condor, and for this reason it is not as widely supported or deployed. Outside of Entropia’s 
home University (Berkeley) there are very few Entropia installations. Entropia is also much more 
focused on a specific application area, whereas the Condor universes cover a much wider range of 
applications, for example the vm universe for virtual machines, a parallel universe specifically for 
MPI-based jobs and a globus universe specifically for the submission of Globus-based jobs and the 
Java universe specifically for Java-based applications. It is likely that this flexibility of Condor is 
another reason for its more widespread adoption.

Alchemi

Alchemi [15] is a .NET-based framework that provides the capability and programming environ­
ment to develop and distribute applications in a Grid scenario. Resources in Alchemi are either 
Linux or Windows based and harnessed opportunistically from an volunteered pool of resources. It 
also adopts a coarse grained abstraction and has support for the inclusion of legacy systems. Jobs are 
described using a bespoke XML representation, or through the definition of a job object. Any exter­
nal application dependencies must be manually highlighted in the description, and are later encoded 
fully into the description, on receipt of a description a worker node decodes the dependencies and 
writes them to disk. Consequently, such dependencies may be issued to a resource multiple times.
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One of the aims of the Alchemi project is to demonstrate that Windows resources can be integrated 
with other resource managers and Grid middleware, such as Globus and Nimrod-G. However, there 
is little documentation in the literature of what fault tolerance is supplied to counter the challenges 
of the volunteer nature of the resources in use. Similarly, there is no performance data relating to 
the efficiency of the approach.

Ninf

Ninf [161]30 is a client-server information library for high performance computing. Its aim is to ex­
ploit high performance in networked parallel computing and provide high quality numerical compu­
tation services. Ninf is an RPC implementation for Grid Computing similar to NetSolve [37]. Ninf 
servers are used interactively by an application and when a Ninf job is created, the underlying ar­
chitecture (a metaserver) can choose an appropriate server and delegate the request transparently.31 
Load balancing is employed in a similar manner.

Ninf remote libraries are implemented as executable programs containing a network stub as the 
main routine, and are managed at the server level. When the library is called by a client program, a 
Ninf server searches its known libraries and executes the request if the necessary library is available. 
Appropriate communication with the client is also set up at this point. If the library is not available, 
the server propagates the request to the local metaservers. Libraries can be written in any existing 
scientific languages, provided that the host can execute it. Interfaces to libraries are defined using an 
IDL, which also describes how to compile and link the library. Unfortunately, Ninf does not allow 
a user to export their program or library to a server. Instead, Ninf remote libraries are installed and 
registered only by a responsible library provider. In this sense Ninf is more a index of remotely 
available software libraries, rather than a platform for facilitating computation and this limits its 
usability in a wider context.

Nimrod

Nimrod [154] is a tool for performing parametised simulations over networks of loosely coupled 
workstations. Using Nimrod the user can interactively generate a parametised experiment and leave 
Nimrod to control the distribution of jobs to machines and the collection of results. A commercial 
version of Nimrod is also available see: [162]. Nimrod is similar to Condor in many respects [37] 
most notably in that a user doesn’t have to change code in order to run it as part of a Nimrod 
application and in the use of idle or under used resources. The application code is treated as a stand 
alone program that is executed via a remote execution server [32]. At the heart of Nimrod is a 
scripting language, which is used to define an experiment and input arguments. Note the potential 
issues given in the discussion of DIPS in Section 3.1.2, which raised concerns about how arguments 
are passed to applications. Assuming the resolution of such issues, Nimrod’s scripting language 
shields the user from the intricacies of the system allowing them to concentrate on their application

^See: http: //phase. et 1. go . jp/Ninf /  -  last accessed 2007.
31 The user can alternatively do this manually.
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[154], rather than job administration. In a similar fashion to Condor, Nimrod also has a Globus add­
on: Nimrod/G. There are, however, concerns over the ease of administrating Nimrod. Olabarriaga 
et al. [163] noted that Nimrod can intuitively facilitate the management of experiments, but, that 
it requires a significant amount of time and expertise to successfully set-up the environment to 
run the experiments. The preparations included: (1) parametrising the application, (2) adapting 
the application code to run on Grid nodes (with remote data resources), (3) manual discovery and 
configuration of Grid resources, and (4) error handling. Nimrod is also strongly orientated toward 
parameter sweeps, and therefore not capable of servicing applications of other paradigms.

Distributed Analysis Environment (DIANE)

The Distributed ANalysis Environment (DIANE) [120,121,164—167] is a framework based on a 
master-worker processing model, which is used on top of regular Grid middleware and resource 
managers such as LSF, PBS and Condor in a transparent way. In addition, DIANE enables the in­
terchanging of the underlying middleware without significant impact upon its implementation. The 
DIANE framework is implemented in a variety of programming languages to enable greater support 
for legacy applications. However, this introduces the requirement for inter-language support, which 
is provided by a communications transport mechanism implemented using CORBA ORBs, the mes­
saging protocols in use are then either SOAP messages or XDR streams. This approach increases 
the overhead for message transfer, as the encoding and decoding of messages must be performed at 
least twice between components; firstly, in the representation of the message content, and, secondly, 
the functional calls between the CORBA transport layer and the components’ native implementa­
tion. DIANE performs these processes transparently, however, application developers must define 
the interfaces for in and out going messages. The trade off which DIANE must consider occurs 
between the conflicting aims of generality and performance. The need for a CORBA transport layer 
is symptomatic of the first aim, but can significantly detriment the latter aim.

DIANE’s execution model is significantly different to all the other approaches presented so 
far in this Chapter, with the exception of ProteomeGRID. Worker agents are sent to the underlying 
resources as regular jobs, but by opening a TCP/IP connection, they register to a master agent, which 
runs on the user’s desktop computer and acts as the coordination point for the virtual worker pool. 
Workers are then given work through the use of a pull scheduling model in which workers request 
work units when they have depleted their current tasks. This has lead to efficiency of resource 
utilization values of between 75 and 84%, which is impressive considering the use of CORBA as a 
transport layer and multiple programming languages in DIANE’s implementation.

Workers may dynamically join and leave the resource pool, without disrupting the processing 
as a whole, as typically the units of computation are a large number of short tasks. Work is dis­
tributed by the master to workers directly, therefore bypassing the middleware-scheduling layer. 
This enables the application makespan to be reduced, but also leads to faster job processing times, 
reaction to errors and improvements in the resource utilization efficiency. In terms of error identifi­
cation, DIANE does not consider the full spectrum of errors that were demonstrated in Chapter 2,
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and only considers a more traditional set of job-related errors, i.e. revoked/crashed workers, and 
job-related failures such as programmer error. It does, however, enable the developer to introduce 
new job-based error handling mechanisms, but the error model is applied during runtime, i.e. after 
the worker has started. Capturing the volatility-related errors of the Campus-Grid may therefore not 
be possible.

DIANE typically runs in a single-user mode where a worker represents a single user and ap­
plication. The master schedules jobs in an application-driven and interactive manner, therefore the 
resources are used for as long as they are available or needed. This is the reason that DIANE can 
achieve efficiencies between 75 and 84%. The agents do not live indefinitely, but terminate when the 
user has completed the current processing requests, as issues such as authentication and accounting 
policies dictate that another user cannot reuse an agent session. However, note that these values 
do not include any overhead involved in the authentication process, as these experiements were run 
in scenarios where authentication was not required. System performance when authentication is 
switched on is not presented in the DIANE literature.

The worker execution model is outside of the application engine itself, the system is application- 
neutral in this sense. Instead, the worker interacts with the application (Matlab for example) via an 
external API, provided that one is available. The applications presented in [164] and [165] used 
a python-based API for this process. However, it cannot be assumed that all legacy applications 
provide a python-based API for external communication. Matlab for example provides only a FOR­
TRAN and C API for external control, and a Java API for internal control. However, correspondence 
with the DIANE authors has revealed that in more advanced cases a C or C++ API (for instance via 
a shared library) can be used, which it then exposed to a python script. However, as the worker 
is external to the application engine, it is not clear whether the engine remains alive in periods of 
idleness such as the time between one job completing and the next starting. For compiled Matlab 
applications this would be problematic, as when an application enters an idle state it shuts down. 
In regard to the capture of results, external control and a CORBA-based transport layer presents 
another issue, namely how to represent and transport the results back to the master or head node. 
To provide DIANE with the necessary information, the user must write a description which defines 
how to construct and represent results for transportation back to their workstation. The problem 
here is that such definitions may be application and user specific. In addition, they may require an 
intimate knowledge of DIANE, the resources used or the application environment.

Whilst DIANE does not provide explicit support for short jobs, performance results presented in 
[167], illustrate that the DIANE model is well equipped to provide good performance for short jobs 
(10s of seconds). This stems from the application-level scheduling model and the interactive use 
of workers. DIANE is the most relevant approach in literature to the work presented in this thesis. 
However, it is not a complete solution for the challenges and application areas presented in the 
first two Chapters of this thesis. Firstly, because it focuses mainly on dedicated Grid resources and 
not volunteer resources, which is a significant difference providing different challenges. Secondly, 
there is no intrinsic support for the management of software licenses across the different sites, or the
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ability to identify application-level requirements such as the availability of software, as all software 
libraries needed are transferred with the worker. Transfer of libraries such as a MCR installation 
would be cumbersome prone to error and inefficient, as transfer bottlenecks would quickly emerge. 
However, as a similar approach DIANE provides an additional benchmark in terms of performance 
of resource utilization efficiency to which this reseach can be compared.

Ibis

Ibis [168] is a Java-based Grid programing environment with several specific aims. Firstly, to 
optimize communication channels between potentially unreliable, heterogeneous and dynamically 
changing sites, and, secondly, to provide a streamlined approach for job management across multi­
ple sites, each of which may use different resource managers and middlewares.

Communication in Ibis is provided by the Ibis Portability Layer (IPL), which encapsulates many 
different communication protocols for different application- and hardware-based scenarios. For 
example MPI-based communication may be best performed on tightly coupled resources, whereas 
a TCP/IP connection is preferable between remote sites. The mechanisms which cater for protocol 
selection are based upon user preferences and monitoring systems that identify various hardware 
configurations. Message encoding is performed using an optimized version of Java serialization, 
which enables noticeably higher data throughput. Ibis also uses a SmartSockets [169] system, which 
enables message routing through firewalls, NATs, private/non-routed networks and to multi-homed 
machines.

To execute jobs, Ibis defines the Java Grid Application Toolkit (JavaGAT) [170]. The JavaGAT 
is a streamlined toolkit which incorporates many different middlewares into a single system to im­
prove transparency, fault tolerance and portability. In order to submit a job, the JavaGAT chooses 
for the user which middleware is needed in order to submit, steer and monitor the job. Should 
a middleware-related error occur, another middleware option (if available) will be employed un­
til all options have been exhausted. In addition, errors are interpreted by the system to determine 
what options are available to resolve the situation. The fault tolerance systems are capable of han­
dling software unavailability and implementation-specific failures, which means that potentially the 
toolkit could handle the scenario in Chapter 2 where Matlab capability is announced but not actually 
available. This stems from an assumption in the toolkit’s implementation that things can and will go 
wrong in a complex distributed system. However, there are two aspects of the JavaGAT function­
ality which prevent it from being able to answer the challenges outlined by Chapter 2. Firstly, that 
it is dependent on the information provided by the middleware. Therefore if the middleware cannot 
identify why a failure occurred neither can JavaGAT. Secondly, JavaGAT assumes that all errors and 
failures occur within a reasonable period of time and that libraries do not hang indefinitely. Whilst 
the experiments in Chapter 2 did not exhibit indefinite hanging of libraries, libraries did hang for 
inexorable periods of time, which from the user’s perspective is comparable. In this respect Ibis 
would not be able to steer the synthesized applications (third study) used to benchmark the Condor 
installation in Chapter 2 to completion.
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InteGrade

InteGrade [8] is another cycle stealing infrastructure. However, the main difference between In­
teGrade and systems such as Entropia and Condor is that it performs cycle stealing on dedicated 
clusters rather than workstations within an institution. For this reason it cannot be adopted for 
this research. However, there are some interesting features of InteGrade. Firstly, is the intention 
to provide the ability to use a natural language job definition for submission to InteGrade. Sec­
ondly, InteGrade performs predictive modelling to determine when a resource is likely to revoke 
its voluntary status and therefore chooses resources based upon estimates of availability rather than 
their current status. Finally, is the ability of resource owners to rigidly define when their resources 
should not be considered for havesting even when they are idle. This therefore enables InteGrade to 
be sensitive to the advance reservations made by other users for resources.

MOSIX

MOSIX [171, 172]32 is a system for the management of Linux-based nodes. The main aim of 
MOSIX is to provide access to multiple resources, but give the impression that only a single node 
is in use. MOSIX achieves this by providing a runtime environment identical to that provided by 
standard Unix, and therefore application developers do not need to change their applications in 
any way, recompile against, or link to any specific libraries in order to run their applications over 
MOSIX. MOSIX is process-orientated, where a job has one or more processes that can be run on 
one or more nodes, and migrated if required. The adoption of a single system image means that 
processes are either transparently migrated from one node to another. When system load is high, 
a better node becomes available, or in response to user request. The runtime environment also 
captures any system calls and redirects them back to the host workstation. This also means that any 
files or software libraries needed by a job are not needed on the remote workstation and can be sent 
when needed. However, a consequence of this is an increased communication overhead. As MOSIX 
uses many remote nodes transparently, the system does in effect establish a virtual cluster for the 
user, which gives the impression of being locally available. The general drawback of MOSIX is 
that it is bound to Linux and cannot run natively on Windows. However, MOSIX can be run on 
virtualization tools, but as will be explained in Section 3.2.5, this is not an option on the Cardiff 
Campus-Grid.

The Globus Toolkit

The Globus Toolkit [50,173] is a collection of software components designed to support the devel­
opment of applications for high-performance distributed computing environments, or Grids [26]. 
The aim of the Globus Toolkit is not to provide application developers with a monolithic system, 
but rather a collection of standardised and standalone services. Each service provides a basic func­

32http: //www.mosix . org - last accessed June 2009.

http://www.mosix
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tion such as authentication, resource allocation, information, communication, fault detection,33 and 
remote data access. The toolkit forms the heart of many approaches, but it is not a silver bullet. 
In [157] Lu et al. discuss the shortcomings and inefficiencies of Globus. Here, inefficiency comes 
on many levels, but stem mainly from the GRAM protocol. (1) File transfer is inefficient, as jobs 
cannot share file instances, which are subsequently transferred multiple times. (2) Authentication 
must be performed for each submission and file transfer, even when the same action is repeated 
multiple times. (3) Job descriptions must be modified for use with Globus. Condor-G for example 
requires a significant amount of extra meta-data in comparison to a standard job submission. This 
description is then translated into RSL, which regularly shaves off semantic information encapsu­
lated within the submit script. The script may later be translated back into the original description 
language, and the translation process is not lossless. Attributes such as rank and surprisingly job 
requirements from Condor submit scripts are lost. (4) Once the job is submitted to Globus it may 
then also be converted into a multi-request RSL, e.g. if in a Condor submit script queue = 10 
(submit 10 instances of this job) this will create 10 Globus jobs rather than a job with an arity of 
10. (5) As there is no resource broker, there are no means to perform load balancing. (6) Submit 
machines become performance bottlenecks because of the file replication process. (7) All clusters 
are seen as homogeneous. The Globus implementation is ever driving forward, and improving, 
however, new versions are commonly not backward compatible and require significant changes to 
the core implementation of an adopting approach. From the perspective of running very domain 
specific jobs with well defined and rigid requirements of the operating environment, Globus is not 
a good candidate.

Summary

In this Section a discussion of several distributed computing resource managers and associated 
systems has been presented. Here, the key attributes which are addressed is the ability to provide 
access to remote resources, which are predominantly provided on a voluntary basis, but in some 
cases are also more general Grid-based approaches. The challenge for these approaches is to provide 
access to resources to the general application, which, typically, is not short running. Therefore, very 
few of these approaches explicitly cater for short running jobs. In addition, as these system spread 
across multiple administrative domains, it is increasingly important for them to be able cater for a 
compiled Matlab approach due to the challenges of license administration. These approaches are 
summarized in Table 3.3, using the following criteria:

C l: Can be deployed in a Campus-Grid environment 
C2: Could support a compiled Matlab application 
C3: Transparency of code distribution 
C4: Ability/orientation to run short jobs 
C5: Granularity

33Note: not tolerance
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C6: Resource utilization model
Cl: Job fault management
C8: Workstation fault management

Table 3.3: A summary of the attributes of each approach, which are important for the application 
context of this research. Acronyms: Y - Yes, N - No, Y? - Unclear from publications, but is likely, 
N? - Unclear from publications, ??? not determinable from reviewed literature, ns - not specified, 
but is unlikely, S - Some, B - Batch, I - Interactive, L - Limited.___________________

Approach
Name

Criteria
Cl C2 C3 C4 C5 C6 C7 C8

Condor Y Y Poor N Any B L34 N
NetSolve Y N35 V. Poor N Any B L N
Entropia Y Y Poor S36 Coarse B L N
Alchemi Y ??? Fair ??? Fine B N N

Ninf N N35 Fair s Any I N N
Nimrod Y Y? Good Good Coarse B S N
DIANE Y? jq3738 Y Good Coarse I S N

IBIS N39 Y Y Fair Any B N N
InteGrade Y Y? ns Fair Coarse B N N
MOSIX N40 N38 Excellent Y Any I ??? n/a

Ideal Y Y Y Good Coarse I Y Y

It is evident that there is no single approach discussed in this section that meets the minimum 
criteria needed for running compiled Matlab jobs in a volatile Campus-Grid environment. DIANE, 
however, is suitable on many fronts, and should an interface and strategy for the execution of com­
piled Matlab jobs be made available, the only challenge would be how the MCR is made available 
on the remote nodes.

3.2.2 Cam pus-Grids

A Campus-Grid enables the collaboration of multiple departments, labs, and centres within an in­
stitution. These groups are often in their own administrative domains but can share some common 
infrastructure [11].

In [174] BLAST (Basic Logic Alignment Search Tool) is run over the UABGrid41 (a Campus- 
Grid at the University of Alabama) to execute parallel queries. Here, some resources are provided

34 A job is rescheduled if it fails due to a monitorable resource event, for example power down.
35It is very difficult/impossible to add new functionality and libraries to a NetSolve/Ninf server.
^Shortest recommended job length is 5 minutes.
37Requires a plug-in for the control of a compiled Matlab session, however, as previously mentioned, none are pre­

sented in the current literature.
38Could be supported in a batch utilization model.
39Ibis uses only dedicated resources such as DAS-3 and relies on the stability this provides.
^Cannot run on Windows without virtualization tools which are not supported on the Cardiff Campus-Grid.
41 http://uabgrid.uab.edu/ -  last visited May 2009

http://uabgrid.uab.edu/
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by a Condor pool. However, the assumption that software on the nodes is persistently and accurately 
installed is made. They also assume that the databases are preinstalled on the nodes. In [175] the 
“m y _ co n d o r_ su b m it” system is presented, which is essentially a wrapper for the submission 
of Condor-G jobs using a Storage Resource Broker onto the CamGrid [176] and NGS. Here, the 
emphasis is on the discovery and utilization of resources, for example dedicated clusters for speed­
ing up applications rather than havesting idle cycles of campus resources. There is however, one 
substantial Condor pool in place, but little information is given of how this is utilized and managed. 
The same can be said for Dartmouth’s GreenGrid [11]. The Campus-Grids at the University of 
Bristol (UoBGrid [18] and Oxford University (OxGrid [17]), are also based on Condor, but again 
provide little information concerning how the challenges of Chapter 2 are or could be handled. One 
common theme does emerge in that many approaches utilize a Grid Information System such as the 
Globus MDS [177]. The flaw in such an adoption is that the information in use is still based upon 
what the workstations or other entities in the Campus-Grid believe to be true about themselves, 
which is not necessarily up to date or accurate.

Harmony [16] is a system used to harvest idle desktop resources in an enterprise environment, 
and is perhaps one of the most advanced Campus-Grid-like system reported in the literature. Its ba­
sis in the enterprise realm incites the requirement for guarantees related to performance and qualities 
of service, and therefore SLAs are introduced. The details of what constitutes the SLA are unclear, 
and therefore the aspects of the mechanisms employed to ensure adherence are also unclear. Es­
sentially, the approach is to launch VMs onto the Windows workstations, in a similar manner to 
Condor’s VM universe. Predictive models are then employed to identify when a state of unavail­
ability may be enterred, the VM can then be simply paused and migrated. Through this approach 
many of the problems outlined in Chapter 2 can be avoided, however, employing this approach on 
the Cardiff Campus-Grid is, as will be discussed in Section 3.2.5, not an option.

3.2*3 Fault Tolerance

It is not possible for an approach to be completely fault free given the context and volatility of 
resources in a Campus-Grid domain. Typically, there are four main strategies employed for fault 
tolerance and management which are discussed below.

Workstation monitoring -  Here workstations are monitored to detect any changes in avail­
ability. The most simple monitoring mechanism is the heart-beat monitor, where a service ping or 
equivalent is sent to verify that the worker daemon is still residing and operational at its known 
endpoint. In [46] progress certificates (checkpoints) are used to indicate to a central server that a 
worker daemon is still active. Should a workstation not check in its checkpoint within a certain 
period of time it is assumed that this workstation has failed or revoked it voluntary status. Lost 
work units are then restarted from the last checkpoint held by the server. Other examples include 
the Condor shadow process which monitors workstation activity to detect periods of idleness. Many 
other approaches such as NetSolve, Entropia and InteGrade also employ similar strategies. Should 
a workstation fail any of these tests the job is rescheduled. All distributed systems have to perform
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this process to some extent. Examples of available software include: Hawkeye [70], Ganglia [123], 
NWS [178] and GridRM [179]. The challenge with some of these approaches is in their setup and 
administration. For example Hawkeye as a part of the Condor family typically runs under Linux, 
and has stability issues under Windows. Ganglia must be installed on all nodes creating similar 
issues to the installation of the MCR. NWS is also predominately Linux-based and mainly monitors 
network stability rather than workstation stability. GridRM on the other hand, is quite powerful as 
it is capable of combining and utilizing the information of many different monitoring systems. It 
can also be hot deployed, which makes it extremely useful. However, many of these tools deal with 
monitoring at the hardware and process level, rather than at the software level. Ibis’ [168] Java­
GAT [170] can disseminate and interpret software-related failures, but it relies on the information 
provided at the resource management layer, and assumes that failures will occur in a timely manner, 
neither of which can be guaranteed. In this sense monitoring needs to be performed at the job level 
rather than in the resource fabrics.

Checkpointing is the saving of program state so that a job can be restarted without loosing 
previous computational effort or time. Checkpointing essentially reduces the probability of wasting 
computational time and resources as a consequence of failure or the revocation of voluntary status. 
Checkpointing can also be used as a tool for migrating one or more processes to another workstation. 
However, it is most useful for long running jobs and therefore is not useful for this research.

Predictive modelling -  Here the aim is to predict either changes in workstation state which 
affect the ability of a job to run to completion, the time required for a job to complete, or provide a 
probabilistic indicator of job/workstation failure. The predictive models presented in the literature 
are commonly based upon key assumptions of the state of the resource pool and how it changes 
over time. The key factor in many approaches is the process by which workstations join and leave 
the network. Deng et al. [180] described the process through which resources enter and leave the 
system as an independent stochastic process. In contrast, Naik et al. [16] modelled availability as a 
Markov chain to predict changes in state, and therefore availability. The InteGrade system [8] col­
lects and analyses usage patterns to construct behavioural categories of use. At scheduling time this 
information is used to try and avoid checkpointing situations. Mutka [5] also noted that resource 
managers can predict workstation availability with considerable accuracy. Whilst the consideration 
of the process by which workstations change is useful, it does not capture the bigger picture of work­
station reliability. Here, actions such as maintenance, failures and administration by technicians are 
perhaps more detrimental to performance than the transience of workstation availability.

Persistent Job Storage -  Here job descriptions are kept in persistent storage so that if head 
node failure occurs or other systems fail, the application or workflow execution can continue rather 
than be restarted. Kim et al. highlighted in [181] that robustness and reliability come from the 
retention of state of all jobs running on potentially unreliable resources. Traditionally, a centralised 
server holds this state in a relational database or equivalent. However, should this point fail, not 
only can new jobs not be entered into the system, but those that are currently being executed are 
susceptible to loss.
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Self-*: specifically self-healing autonomic systems are in many scenarios the key to the chal­
lenge of workstation reliability. It would also be quite straightforward to fix many of the issues 
presented in Chapter 2, as the pilot part of the job setup quickly identified whether a workstation is 
capable of executing the job or not. An XOR of available files can then be performed to identify 
those that are missing and checksum analysis could identify any that are corrupt. Then a reinstalla­
tion process or simple file transfer could be performed. However, unfortunately it is not that simple, 
as administrative access is required to modify the configuration of a workstation. Typically in auto­
nomic systems, administrative rights are given to the manager application, but the political barriers 
that would have to be crossed in a University context to reach such a point are significant. This 
is exacerbated, as scenarios such as those presented in Chapter 2 are not commonly published or 
appreciatively received.

It is not possible for an approach to be completely fault free, given the context and volatility 
of jobs in a Campus-Grid domain. For this reason much of the work in this area concentrates 
on prediction of state changes and the reaction to changes in worker state, but do not necessarily 
consider inaccuracies in the descriptive meta-data of a resource. The core goal of the former is to 
try and prevent job failure as a consequence of preemption and eviction or that a job needs to be 
checkpointed. Other approaches attempt to determine when checkpointing is most effective based 
upon similar prediction models. The latter defines what should happen when such events arise, but 
these measures are not as necessary for the execution of short jobs, as the overhead of checkpointing 
and migrating of a job may be less effective than simply restarting it.

There are two primary types of fault tolerance discussed in this Section. Firstly, proactive fault 
tolerance, which tries to minimise loss. This occurs either as time lost when a job rescheduling 
scenario occurs (checkpointing), or in the reduction of the risk/probability that a negative runtime 
state change occurs. Secondly, reactive fault tolerance, which defines the means with which to 
identify this outcome (monitoring) and determines what happens should this situation arise (recov­
ery). Yet, these solutions often blur the causative entity responsible for this eventuality to arise, 
which ultimately yields an incomplete solution. Not all failures are caused by the job itself or 
changes in runtime state, but can also occur from other less obvious background and independent 
processes. The monitoring solutions are generic and hardware-orientated and are thus not able to 
detect the provenance of all failures. Similarly, not all job abortions are a consequence of preemp­
tion or changes in state. In this sense there is a requirement for fault management rather than fault 
tolerance, which can be a proactive process.

3.2.4 Application Level and Campus-Grid Scheduling 

AppLeS

The AppLeS project [119,182,183] focuses on the design and development of application-level 
schedulers for distributed applications, specifically parameter sweeps. There are three aims of Ap­
pLeS: (1) to enable the user to tune the scheduling strategy to meet their requirements, (2) for the
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scheduling algorithm to adapt and tune its own parameters in order to minimize an application’s 
makespan, and (3) to perform automatic and dynamic scheduling algorithm selection without user 
intervention. The scheduling model is event-driven and therefore the scheduling plan can be tuned 
autonomously to reflect changes in context and resource availability. The AppLeS approach does 
also have one major assumption: it assumes that all knowledge of the resources available is present 
and correct. It is also specifically orientated for parameter sweeps and therefore cannot be used for 
other job models.

MARS

The Michigan Advanced Resource Scheduler (MARS) [184] is a meta-scheduler for distributed 
resources on Campus-Grids. MARS aims to offer efficient scheduling of tasks within a Grid envi­
ronment, as resource managers such as Globus provide utilities such as resource discovery, security 
and authentication, but not resource selection, load balancing and fault tolerance. Therefore meta­
schedulers in general are fundamentally different to batch resource-level schedulers such as Condor 
in their capabilities. As the intended application scope of MARS is widespread it allows different 
scheduling algorithms to be incorporated based upon user preferences and application requirements.

MARS maintains a resources table, which is used to identify viable resources for job execu­
tion and implemented using a series of Globus components and Condor’s ClassAd representation. 
Resource forecasting is also performed to identify resource-level metrics such as CPU utilization 
and queue length. These metrics can then be used to rank candidate resources for job submission. 
However, the resources table does not consider any metrics which are related to the volatility of a 
resource. In this sense the main aim of MARS is to move toward an optimal schedule for a set of 
jobs, but a core resource attribute: reliability is not included in the resource model, which, given the 
potential for volatile resources in a Campus-Grid context is a significant factor that is missing from 
the scheduling strategy.

3.2.5 Resource Virtualization

Resource virtualization is steadily becoming a widely adopted option for scientific analysis and Grid 
Computing in general, and there are two core reasons for this. Firstly, it enables a fully customizable 
operating environment, but in a secure and sand boxed way. This enables the consumer of the 
resources to get exactly what they require and have administrative access to the resource [185]. 
On the other hand, the resource owner is protected against any malicious actions performed by 
the consumer, as the virtual machine acts as a sand box and therefore protects the physical resource 
[186,187]. Secondly, it enables any resource regardless of operating system to be used, and therefore 
removes any issues of resource and, more specifically, heterogeneity with respect to the operating 
system and application environment.

On the outset the use of virtual machines (VMs) looks (and is) extremely attractive. In [71] 
Barham et al. identify that the direct effect of resource virtualization upon the performance of an
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application is minimal; around 5% slowdown, which is in fact very good. The challenge in this 
domain is not in developing resource containers to host the VM, this has already been achieved 
(see: VMWare [72], Virtual Box [188] and Xen [71]). Instead, the challenge is in the creation and 
distribution of the VMs themselves. In many approaches (e.g. [185,187,189,190]) it is assumed 
that a generic all purpose VM already exists and can be simply distributed onto physical resources, 
where any additional customization can be performed at runtime. Such an approach increases the 
physical size of the VM and therefore increases the cost of transferring it. This would appear to be 
a limiting factor in the paradigm, and it was, but there are some operating system choices that can 
be made to reduce this problem significantly. One example here is Damn Small Linux [191], which 
offers a Linux implementation reportedly for as little as 6Mb. In a similar fashion regular Linux 
implementations can be dramatically reduced to only what is needed for the application to run. This 
is the approach taken by Nishimura et al. [192], who create virtualized clusters on the fly in a rapid 
fashion (as little as 39 seconds for a VM image). Note, however, that this approach was not applied 
to libraries of a significant size such as Matlab, and it is therefore not clear how the addition of a 
500MB (compiled Matlab, the normal Matlab installation is in the order of 1.5GB) library would 
affect their reported performance. This is also true for the paradigm in general.

This paradigm is very well suited to high throughput computing, and consequently the VM 
universe was added to Condor. There are many research papers published that report the issues and 
effectiveness of this universe. However, the big challenge and limiting factor of this approach is that 
for Condor-based approaches each VM needs to have a reachable endpoint to enable the relevant 
Condor daemons to intercommunicate. There are two options for this, however: note that some 
institutions, Cardiff University for example, support neither and can therefore not use this universe 
at all. The first option is to register the VM on the network as a new “workstation”. The challenge 
here is that in order to deploy many instances of a VM, the management software must be able to 
instruct the VM which MAC address it must have, but this is quite simple. The bigger challenge 
is deciding how many to register on the network and also the means to keep track of which MAC 
addresses are currently in use, which is further complicated when multiple submission points exist. 
The second option is to deploy the VM as an “application” and NAT a specific port range from the 
host machine to the VM. This is a perfectly adequate solution, but the consequence of this action 
is that the Network Management teams cannot differentiate between an operation performed by a 
VM, and one performed by the host workstation. This is specifically important for the detection of 
malicious software or viruses. For this reason, VMs must typically be registered on the network.

The concluding remarks for this paradigm in regard to the challenges outlined in Sections 1.3 
and 2, is that it would remove many of the challenges surrounding the inaccuracies of ClassAds and 
would also enable a fully customizable workstation image. However, there are currently too many 
questions surrounding how the Campus-Grid infrastructure would respond to the presence of a VM 
and what the impact upon job execution times would be as a consequence of transferring a VM to 
a Campus-Grid workstation. It is very likely that a solution to the first issue could be found, so it 
can be ignored presently for this discussion. However, the issue of overheads with respect to the
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transfer of the VM to the remote workstation would still remain. Even when compressed and with a 
minimal operating system installation, the transfer costs for Matlab jobs would be significant. Opti­
mization on the VM image would be the key to a successful implementation in this area. However, 
performing this optimization in a way that does not affect the performance and heterogeneity of the 
jobs would be challenging and may in fact not yield any improvements. When physical resources 
are in use, the impact of software dependencies to job submission can be largely avoided through 
the use of network management tools. These can install the necessary software on the workstations 
and therefore make it available to Campus-Grid users. This is also currently adopted by many insti­
tutions, including Cardiff University, and is arguably the better approach, even when the accuracy 
(or lack) of these procedures is considered.

33 Summary and Outstanding Issues

In this Chapter a review of the current research in the areas of distributed and parallel Matlab 
(Section 3.1.1) and image processing (Section 3.1.2) has been conducted. Here, research is based 
upon either making toolkits available in a distributed or parallel context, making multiple resources 
available to an application developer transparently or handling licensing issues. All approaches in 
these two areas are based on scenarios where no consideration is needed of the resource stability 
and reliability. Therefore, all would need extension in order to run in a volatile and opportunistic 
environment. Two approaches (JavaPorts and ProteomeGRID) stood out as the best candidates, but 
both would require significant changes in their conceptual and architectural models to be able to 
handle the requirements the necessary changes would place upon them. The review then focused on 
approaches that are more general. Here, DIANE and to some extent Ibis provide the most promising 
results and conceptual models. However, both lack the necessary fault management capabilities to 
enable the steering of even a simple application to completion.

In summary the following areas are not adequately addressed in the literature:
1. Interactive control of compiled Matlab applications. JMatLink [152] is the forerunner in this 

area for licensed Matlab, but it is not reported whether it can be used in a compiled context. It is 
also only able to control single instances and not multiple instances. Interactive use is needed to 
enable efficient resource utilization for short running jobs.

2. The ability to compile a general Matlab application instance such that it can cater for hetero­
geneous applications without recompilation. Current approaches in Matlab compilation typically 
compile small and specific applications. Then should a change in focus be required simply compile 
again. Such a compilation strategy prevents the adoption of interactive use and dramatically reduces 
reusability.

3. The necessary techniques to manage faults and inaccuracies in a workstation’s descriptive 
meta-data. Such scenarios often occur in a dynamic and rapidly changing environment, which was 
characterized in Section 2.3, by a workstations’s Matlab ability changing from consistently working 
to consistently not working and back again within 18 hours. The means to proactively respond to
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the associated consequences of such actions are also needed.
4. Description languages are in many cases too general, with the consequence that representing 

a simple sequence of image processing commands requires an entire XML schema to be defined. 
Applications such as Matlab already have their own functional languages that can contain all of the 
necessary information needed to describe a job. Moving away from such languages creates new 
problems and challenges unnecessarily. The incentives behind many of the general term languages 
are to provide language independence. However, in consequence they often introduce definition 
problems, mapping errors, and lack the constraints of the inherent domain-specific semantics and 
syntax. In other words, by attempting to hide complexity they incite a lack of understanding and 
precision [193]. They also increase overhead through the additional effort needed in parsing and 
conceptual mapping.

The prototype that has been developed for the research conducted in this thesis addresses each 
of these areas. Interactive control of compiled applications is made made possible in two ways. 
Firstly, through the creation and compilation of a general compiled Matlab applications, which is 
performed using an autonomic Matlab compiler (Section 5.2.1). This also addresses the second area. 
Secondly, through the insertion of a worker daemon into the compiled Matlab application that has 
direct access to the Matlab engine (Section 5.2). The management of inaccurate resource meta-data 
is approached through the establishment of an adaptive performance model and the differentiation 
between resource allocation and job scheduling. This will be introduced in Chapter 4. The final 
area of work description is straightforward. Due to the insertion of a worker daemon directly within 
the Matlab session, and the differentation of resource allocation and job scheduling, units of work 
can be described using regular Matlab code.



Chapter 4

Methodology

The approaches evaluated in Chapter 3 lacked the necessary levels of fault tolerance and manage­
ment to enable the successful steering of jobs with strong requirements with respect to their oper­
ating enviroment. In addition, many lacked the ability to efficiently run short jobs which constitute 
of and cater for user defined Matlab code in a license free context. The approaches evaluated in 
Section 3.2 are also predominately designed with different intentions and trade offs in mind to the 
applications considered in this research (Sections 1.2 and 1.3.9). These differences are with respect 
to application generality, neutrality and orientated toward longer job execution times, where over­
heads are much easier to control. This has meant that in order to improve performance, feasibility 
and stability these approaches need additional help to become usable. In contrast, many of the ap­
proaches evaluated in Section 3.1 are very focused on this particular application type, but ironically 
are not general enough and lack the abilities to answer the challenges introduced in Chapters 1 and 
2 .

A traditional approach to utilizing Campus-Grids is to supply a set of input data and one or more 
executables to perform some analysis on one or more workstations, as illustrated in Section 3.2.2. 
The potential consequences and some short comings of a traditional approach were highlighted 
in Chapter 2. The approach introduced in this Chapter, however, remodels these ideas, through 
the deployment of infinitely running, but steerable (pilot) jobs. This execution strategy allows a 
workstation to be used for as long as it is available, rather than for the, potentially, short life of 
a job. Therefore, a workstation can be used for: (1) a much greater period of continuous time,
and (2) more efficiently. It also means that multiple and potentially disparate jobs can be executed 
with only one initialization phase, which for short jobs relates to the opportunity to significantly 
reduce overheads and therefore turnaround time. This is a significant improvement over a traditional 
approach where a new working session is required for every job. During each working session a job 
must go through the scheduling process, retransfer any data (even if the same workstation and data 
are used) and any initialization procedures. As, Chapter 2 demonstrated this can be a significant 
period of time. The potential improvement this enables was demonstrated by both ProteomeGRID 
and DIANE.

A pilot job scheme on the other hand enables the proactive use of reactive fault tolerance mea­

101
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sures. At the heart of this is one core assumption: a pilot job will not fail unless the workstation is 
itself the cause of the failure. Failure in this sense is every eventuality other than observable success. 
For example, a job that has runaway is deemed a failure. Such a job is unequivocally within a long 
and drawn out state transition, where there are no attributes that can be used to indicate success. In 
addition, it cannot (quickly) reach a specific state. Whether this state (should it ever be reached) is 
indicative of success or failure is inconsequential. The proactive measure is that the pilot job’s pri­
mary purpose is to determine the capability of its host workstation. Once this has been achieved it 
will then serve as a platform for the execution of a user’s jobs. The reactive measure is the avoidance 
of workstations that have not been able to consistently bring the pilot job to a state that is indicative 
of success within the constraints of the models presented in this Chapter. These workstations, there­
fore, are avoided because they have been unable to prove their capability and utility. This is one of 
the core differences to all other approaches in the last Chapter, as none provided any means of fault 
management such as this. Instead, they either used dedicated resources, which are not prone to such 
errors or assumed that are uncommon/non-existent. This was even the case for other approaches 
working with Condor pools. However, typically the Condor pools were not of the magnitude as that 
used throughout this thesis.

This approach produces a novel, autonomous, but transient distributed environment for scien­
tific analysis. Despite an obvious leaning toward image processing applications, any Matlab-based 
application can be used and Matlab itself can be replaced. This system is layered on top of Condor, 
but the philosophy behind the approach is in no means Condor specific and can be applied to any 
other Campus-Grid architecture or middleware. Therefore, Condor is interchangeable with other 
resource managers with little conceptual modification. A discussion of how this can be achieved 
is presented in Section 5.7.1. The novelty in this approach stems from the way in which the appli­
cation environment in controlled and interacted with and built (this will be presented in Chapter 5) 
and the strategies for fault and resource management.

4.1 Abstract Model

The abstract model that has been developed to answer the challenges of the previous Chapters and 
to facilitate the application domain has four main areas: (1) the separation of resource allocation 
and job scheduling, (2) a new resource management model, (3) a modified, but isolated job model, 
and (4) a modified users’ model.

In Section 4.2 the motives behind the separation of resource allocation and job scheduling are 
presented. In doing this three core abilities are extracted: (1) the ability to isolate the control of job 
management, (2) the ability to enable workstations to be used more productively, and (3) to provide 
the opportunity to control more explicitly what resources of those available are used, and how.

In Section 4.3 the modifications to the traditional Job Model are presented. The traditional 
models are abstracted and replaced by a split model of two tiers. The first, is an infinitely running 
pilot job that relates to a general steerable worker daemon (Section 4.3.1). The second, is a Task
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Model (Section 4.3.2), where a Task is a control sequence that represents a single unit of work, 
which is passed to worker daemons for evaluation.

In Sections 4.4, 4.5, 4.6, 4.7 and 4.8 the new resource management model is presented. These 
models describe the core of the approach by defining how resources are acquired and utilized. They 
are also responsible for the performance of an implemented solution, as they provide the means 
for fault tolerance, management and prevention. Finally, they detail the benefits which are now 
achievable. In Section 4.4 the methodology for the acquisition of workstations is presented, and 
how the volatility of the workstations in use is addressed. In Section 4.5 the methodology for 
encapsulating the user’s requirements is described. Users will not have to specify their resource 
requirements, this model will represent their requirements on their behalf. In Section 4.6 the method 
for allocating resources is described. In Section 4.7 the approach for scheduling is described and 
how other scheduling algorithms can be incorporated into the model. In Section 4.8 the means to 
provide runtime fault tolerance is presented.

In Section 4.9 the discussion of how users can interact with a system built using these models is 
presented. It also contains the definitions of granularity used throughout this research.

4.2 Separation of Resource Allocation and Job Scheduling

In Chapter 2 two final conclusions were drawn: (1) the need to clarify a workstation’s abilities 
and state prior to job execution, and (2) the need to instigate a higher level of control over what 
workstations do. Only once this has been achieved can other research questions be attempted. 
In essence, these two requirements are similar, but have different motives. Both relate to the first 
research question presented in Section 1.5: What measures are needed to retain (or achieve) stability 
in a volatile and adaptive environment?

Verifying workstation state and ability is trivial when using superficial test jobs, like those used 
in Chapter 2. In a realistic job space such a strategy cannot work, as any previous success cannot 
guarantee future success. Firstly, a job can runaway or fail, even immediately after a successful job. 
Secondly, in other situations, testing strategies cannot always determine if a workstation is usable 
or not, leaving the workstation in a hung state until it is interrupted. Each of these scenarios was 
demonstrated in the empirical studies undertaken in Chapter 2. Therefore, when a workstation is 
identified as capable, it is essential that it is retained for future jobs to prevent any changes in the 
state of the operational environment to occur. Currently, it is not possible to instantiate an interactive 
session with a workstation when a job succeeds. Instead, the best case that many resource manage­
ment middlewares can offer is back-to-back scheduling.1 However, the consequences of such an 
approach is that a new working session is typically created for each job. There are three points 
of concern with this approach: (1) there is no guarantee of the workstation remaining available to 
the user. The resource management software may identify another user with a higher (discemable)

1 Back-to-back scheduling is when a resource is allocated to a scheduler. Then the scheduler can schedule jobs one 
after the other to this resource, without needing to have the resource reallocated.
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priority or one whose requirements specifically identify this workstation. In this case the worksta­
tion will be reallocated. (2) The overhead involved in this process, a significantly limiting factor on 
performance and throughput, is repeated for every job, regardless of length and affinity.2 Short jobs 
only exacerbate the detrimental effect on performance this evokes. (3) If a workstation does not 
function correctly, it can, and as Chapter 2 demonstrated often does, become a black hole and de­
vour jobs greatly distorting the job space. In these last two points, resources are being unnecessarily 
wasted and no answers in the literature for the last point were presented.

To combat this, a new approach is needed. Only by isolating (and therefore separating) the con­
trol mechanisms which differentiate between scheduling and resource allocation can improvement 
be achieved. This separation introduces a conceptual limitation of the terminology in use. Tradi­
tionally, allocation and scheduling go hand-in-hand to produce an abstract plan for the execution of 
a job space. By removing the ability of the resource manager to schedule the user’s jobs, a third term 
must be introduced. This term is needed to differentiate between a resource manager providing a 
resource (running a daemon) and that resource being used to evaluate a user’s jobs. When a resource 
is provided by the resource manager to run a pilot daemon job it will be termed as acquisition. This 
process is described by the acquisition model (Section 4.4). When an acquired resource success­
fully initializes a daemon and is therefore capable of executing a user’s jobs it will be allocated to 
a user. This will be performed by the allocation model (Section 4.6) in response to their resource 
requirements.

The hypothesis behind this separation is: if the ability to designate (i.e. schedule) work units 
is isolated from the local resource manager, then performance, reliability and stability can be in­
creased. In addition, resource reusability, and therefore efficiency, is greatly increased. The control 
mechanisms are a cause of, and a partial solution to, the poor performance of the system. By es­
tablishing a vertical model, and building upon their current abilities, many of the challenges of job 
administration can be answered. For the user, this means improvements in job turnaround, and there­
fore research progress. For the resource administrator it means that improvements in performance 
can be achieved without increasing the number of resources made available. For the computer sci­
entist, new areas of research are opened, because limitations on performance that obstruct other 
interesting models from being conceived and researched have been removed.

43 Job Model

The job model consists of two semi-independent sub-models: (1) the Daemon Model (Section 4.3.1), 
which represents a steerable worker daemon residing on a Campus-Grid workstation and is capable 
of performing multiple users’ Tasks, and (2) the Task Model (Section 4.3.2), which encapsulate all 
the necessary information to describe a single unit of work that a user wishes to perform. To avoid 
confusion, from now on, Job and Task will not be used synonymously. A Job refers to an instance 
of a worker daemon (a pilot job) to execute upon a Campus-Grid workstation. A Task on the other

2See definition in Section 4.7.2
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hand refers to a user’s control sequence, which acts upon one or more data sets to perform some 
analysis.

43.1 Daemon Model

A daemon is the primary component of the pilot job. It initializes to stress test the workstation 
and demonstrate that the workstation is capable of executing the user’s Tasks. It attempts to run 
infinitely, only terminating either when forced to by the Campus-Grid resource manager or upon 
explicit instruction from a system controller. A daemon is fully steerable, which means that it has 
no predefined Tasks or role before it initializes. All Tasks that a daemon performs are given to it 
during runtime. In addition, it is not application specific, but general, which means that it serves 
heterogeneous application contexts.

The crucial difference between this model and the equivalent model of other approaches is the 
integration into an application environment, such as Matlab, R, Octave, Mathematica, LabVIEW, 
etc. The two closest approaches in the literature (ProteomeGRID and DIANE) both sit outside 
of the application environment. The steerable nature of this model means that it is inherently an 
interactive service. To facilitate interactive use, a daemon does not shut the application environment 
down, but keeps it alive until it is instructed otherwise or the host workstation is revoked. In practice 
this can be extremely challenging to implement it is also not clear whether the approach untaken 
in DIANE actually manages to keep the engine alive or if it must reinvoke it for each request. The 
advantage of such an approach is that an application environment would be infinitely available, if 
the workstation was not reclaimed by its owner, or if the daemon was not instructed to shutdown. 
The daemons’ aspiration for self preservation completely rewrites the assumptions of regular job 
models. A job is no longer a finite entity executing on a workstation, but a perpetual entity that 
can serve multiple, independent users without (job) resubmission. This is the case because one 
daemon instance can evaluate multiple distinct Tasks with only one initialisation phase. These two 
abilities reduce the impact on performance of unpredictable queueing times, which in a Campus- 
Grid context are naturally hereditary. It also minimizes setup time, and, ultimately yields higher 
Task throughput. In addition, all external libraries remain active in memory, further improving 
performance. Furthermore, because the daemon has direct access to the processing engine there is 
no need to use external term languages for the expression and description of work units. Instead, the 
application programming language can be used as it is perfectly suited for this purpose. This also 
means that in order to change the application environment only the means to control the application 
engine requires modification, as the term language is already inherently linked to the user’s code.

This approach permits a far more powerful paradigm than a batch processing equivalent. Firstly, 
there is only one initialisation penalty per workstation rather than per Task. This penalty includes 
the time to create and schedule a job, transfer data to the workstation, job pre-staging, and startup 
overheads. This of course assumes that the job is successful and does not fail or runaway. Once a 
daemon has started, it is capable of executing a user’s Tasks, and can be allocated to a scheduler 
by the allocation model (Section 4.6). Secondly, the workstation is used for the time that it is
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available, not just the Task’s lifetime. Thirdly, because one session is used for multiple Tasks, 
future Tasks will run faster.3 Finally, system stability is created and fault tolerance is provided 
transparently. Stability is provided by the reduced need to consider failure at the scheduling level. 
This is because most workstation failures will occur prior to a scheduler becoming aware of a 
workstation. Those that do not, are significantly easier to accommodate and rectify. They are either 
a consequence of a Campus-Grid event (such as suspension or revocation), programmer error or 
some other runtime error. Similarly, workstations are in use for the duration of their availability, 
therefore only revocation and intermittent failure can disrupt the system. Fault tolerance is provided 
through the pilot scheme. The user does not have to be concerned with how this approach works or 
what constraints are implemented to identify either success or failure. As a result, the complexity 
of Task management is reduced. In addition, the approach can guarantee that any Task related error 
can be differentiated from a workstation related error. This is an important advantage, as without 
this ability, deep and potentially tedious and time consuming, retrospective analysis is required due 
to the indistinct and varied nature that failures are identified (see Chapter 2). This final ability is 
another core difference to the work documented in the literature, as none of the approaches reviewed 
could make this differentiation so easily.

A distinct advantage of the external control of jobs and the differentiation of acquisition, allo­
cation and scheduling, is that the job model can represent a new, and very useful state: Initialized. 
When a job reaches this state, it signifies that it has achieved daemon initialization, can be steered, 
and therefore be given Tasks to perform. It also demonstrates the stability of the workstation as any 
contributing factors to jobs failing or running away have not prevented the daemon from initializing. 
Figure 4.1 depicts the job model. In this Figure (and any following Figures in this Chapter) blue 
arrows denote input and red arrows denote output.

idle
Running

Initialized

Suspended

Dead

The initialization of daemons that are directly available for interaction, gives a new view of 
the resources in use. Instead of workstations being invoked in an ad hoc manner for each Task, a 
resource is acquired, then held on to until it is no longer needed or available. This can be modelled

3The first execution of any software entity is the slowest because the operating system must load the required binaries 
into memory or cache. Future calls o f these binaries are faster because they are already present in cache and do not need 
to be loaded into memory again.

Figure 4.1: Job Model
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as a Virtual Cluster of dedicated resources, which is built at runtime for the duration of an applica­
tion’s execution, but is a direct consequence of its modelled requirements in relation to workstation 
availability (see: Section 4.5). The workstations are likely to be in several different sub-domains of 
the network, but for a scheduler they appear as a single cohesive unit.

The concept of infinitely running jobs does not necessarily sit well with a resource provider or 
administrator. In a sense it breaks the unwritten rules of Campus-Grid and opportunistic computing 
etiquette.4 When new Tasks are not put into the system, a daemon could be running, but at the 
same time be idle. In this state, the workstation is potentially blocked, preventing other users from 
using it. Naturally, an autonomic manager could simply terminate any daemon in this state, but 
such scenarios present interesting questions. For example, how long should a manager wait before 
terminating a daemon in this state, given that it does not know when new users or Tasks will arrive? 
What if the previous user is waiting for a synchronization point, or is currently calculating previous 
results before new Tasks can be added to the system. The benefit of keeping the daemon alive as 
opposed to terminating it is obvious in a clairvoyant system or when resources can be reserved in 
advance. Neither of these privileges are in place in the current context, but keeping a daemon alive, 
even when there is no obvious gain, does have its benefits. The environment in which a daemon 
exists is unpredictable and defined by external, and uncontrollable, factors. Namely, the retraction of 
the volunteered resources, either through workstation reclamation, shutdown or other miscellaneous 
failures.

Having spare capacity provides on three fronts. Firstly, when fault management is required to 
remedy the consequences of resource transience. In this case, when a workstation is lost, all Tasks 
should be rescheduled to another daemon. If some spare capacity (idle daemons) is available, the 
cost of rescheduling a Task set is reduced, in comparison to initialising a new daemon instance. 
Secondly, in the context of a Campus-Grid, workstation heterogeneity is an inherent property and 
therefore load balancing strategies are often required to take this into account. Here, daemons 
residing on the most capable workstations, which complete Tasks quicker, can consume work from 
daemons on less capable workstations to balance workload. Finally, spare capacity is inseparable 
from the need to accommodate large fluctuations in work load. Whilst this may seem wasteful 
of resources, this ability is the raison d’etre of Grid Computing [194]. In other words, the value 
of the system is not necessarily in being able to simply supply compute resources over time, but 
to have that supply readily available on short notice. In this last case, by keeping a few daemons 
running, users can always access resources with no forewarning, even if resource contention within 
the Campus-Grid as a whole is high.

The daemon model is presented in Figure 4.2. On the outset it looks just like any other approach. 
Condor, Entropia, NetSolve as well as many others use a daemon model for job execution, however, 
the daemon in these approaches is a general worker daemon which simply mns an executable within

4Note that it could also potentially raise security issues, as intrinsically it is nothing more than a service permanently 
listening to a specific port from where it receives instructions. Whilst it is unlikely that this could enable malicious 
activity, it must nevertheless be noted. However, the application of security mechanisms and what would be required in a 
production system is beyond the scope o f this thesis.
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some potentially virtualized or sandboxed environment for one working session. Approaches such 
as ProteomeGRID and DIANE have a less general model but nonetheless they reside outside of the 
application environment and therefore cannot guarantee either that previously used functionality is 
usable again without retransmission (ProteomeGRID) or that the system remains available when 
performing other processes such as staging data (DIANE). The difference in the approach presented 
in this Chapter is the direct integration of the daemon within the application environment. This 
allows it to the keep the application’s engine running, which facilitates interactive use and provides 
a platform to improve performance. In addition, if a specific data set is in needed for every Task, it 
may need to be reloaded for every request, which is not the case if the application environment is 
kept alive, as the data set remains in memory.

An additional measure to accommodate shorter Tasks is the daemon’s Task queue. Creating

executing. This is not a novel concept, as it stems from paired gang scheduling [195], also known 
as co-allocation, but it provides schedulers with the ability to perform dynamic Task clustering 
(Section 4.7.1), and thus reduce the impact of data transfers and other inhibitors of performance.

with the additional advantage of changing its plans, should it need to. The principles of the queue 
are simple. When a Task is received, its data requirements are analyzed to ascertain what data is 
already available (transferred in the past) and what is not, therefore requiring a new transfer session.

Figure 4.2: Daemon Model
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a queue enables a daemon to transfer any data needed for pending Tasks while another Task is

The advantage of a Task queue is that a scheduler has all the advantages of Task clustering, but

If the latter is true, the Task is placed into a held state, until all data is available.5 At this point, or if

5No data is transferred twice, so even if a Task has two data requirements and one is already available, only the second 
will be transferred.



4.3. Job Model 109

the data was already available, it is placed into the queue, ready for execution. There are questions 
relating to the size of a daemon’s queue. For example: what is the optimal size of a daemon queue? 
When is a daemon’s queue too large? What performance impacts does queue size have? These 
questions are, in part, application dependent, but also dependent on the assumptions and objectives 
of the scheduler. This discussion is presented in Section 4.7 (Scheduling Model) and an application 
specific discussion is presented in Section 6.10.4. Also note that the other approaches reviewed in 
Chapter 3 do not make this consideration.

In order to create a general execution environment a daemon should not be restricted to only one 
application or context. The difficulty in achieving this state is dependent upon the execution envi­
ronment. For example applications built with tools such as R can achieve this state much easier than 
for example an application built using Matlab. Firstly, R is license free and its method of including 
functionality is similar to a unix-like installation. On the other hand, Matlab is licensed, and it is 
therefore beneficial to use Matlab’s compilation tools to compile the code to make it license free. 
However, compilation evokes an explicit exclusion mechanism, where the user must decide what 
functionality should be included in the compiled version. Creating a general compiled application 
with Matlab is not straightforward, but it is nonetheless possible (for this implementation see: Sec­
tion 5.2.1). The motivation behind creating a general daemon is that the underlying functionality 
can remain relatively static, while the physical application can be quite heterogeneous. Therefore, 
the daemon does not need to be updated for every slight change in the application. This means that 
one daemon instance can serve multiple heterogeneous applications without being rebuilt, but more 
importantly without job resubmission.

43.2 Task Model

The Task model is much less complex than the Daemon Model for the simple reason that users 
must directly experience the Task model. In addition, all complexity and administration is handled 
transparently by the daemon model. They should never have to interact with the Job model, except 
during the selection of daemon functionality (see Section 5.2.1).

The information that a Task encapsulates is: (1) the function, function sequence or script that is 
to be evaluated, (2) the data to be processed, and (3) an identifier for the result (optional).6 This is 
a very simple approach to Task definition, however, with this simplicity comes substantial descrip­
tive power. Descriptive prowess is captured by the existing programming language in use, such as 
Matlab’s m-code. It also removes the need for more heavyweight description languages such as the 
OGF’s JSDL, Condor’s ClassAds, Globus’ RSL, the GLUE schema etc., which are themselves both 
ineffective with respect to the description required, and inefficient in that they introduce the need for 
parsing between a general language and one which may be very precise and contain many semantic 
synonyms, which cannot be accurately represented by a general specification. This approach also 
enables native programming approaches such as RMI and Java Serialization to be introduced. These 
three pieces of information are sufficient to create an entity that can be scheduled to a workstation

6 An identifier can also be provided by an Application Manager (see: Section 4.9) and is therefore optional.
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where it is (later) evaluated to create a useable result. A usable result is one that any application, 
which may require interactive use of the resources provided by the Campus-Grid, can use explicitly. 
Useable in this context therefore means that the result’s format is sufficient to be directly incorpo­
rated into the user’s application or algorithm. Figure 4.3 illustrates the Task Model and also shows 
how Task performance data is captured and used.

 Fjgure 43: Task Model
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4.3.3 Discussion

By employing these two models and separating acquisition, allocation and scheduling job granular­
ity is decreased and abstracted. Whereas before the user provided an executable, data and the means 
to begin execution (i.e. arguments or a control sequence), now only an executable is provided with 
a generic control sequence to initialize it. This is only a subtle difference, an executable is still pro­
vided, as is some initialization sequence or pre-staging, but such a job will not actually do anything 
without steering. By initializing a general worker daemon, and therefore isolating any scheduling 
strategies, it is possible to guarantee workstation stability whilst the daemon is available. There 
are several reasons for this. Firstly, a job cannot runaway, because the factors that cause runaway 
jobs to occur have not prevented the daemon from initializing. Thus, once the daemon is available, 
it demonstrates that a workstation can be used. If the workstation’s voluntary status changes, the 
daemon will either shutdown, or the resource management software will employ its rules, with the 
most likely outcome being eviction. In both cases any Tasks can be rescheduled to another daemon. 
Secondly, scenarios like incorrectly configured workstations cannot interfere with Task execution. 
If a workstation is not correctly configured, the daemon will simply not start, and therefore cannot 
receive Tasks, which prevents the Task blackholes experienced during the empirical study of Matlab 
jobs on the Campus-Grid in Section 2.3 from emerging. Finally, once the daemon has been initial­
ized, tracing failure becomes a lot easier. Either an event which can be captured by the Campus-Grid 
resource management software caused termination or failure of the daemon, or the Task itself caused 
the failure, for example through programmer error. In the first case the fault would be documented
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in the relevant logs and can be collected by autonomic managers. In the second, the scheduler can 
be interrogated to determine what was sent to the daemon, and this can be presented to the user. 
This means that external factors, which provide significant challenges can be side-stepped. The 
method of job abstraction and the inherent isolation of control from the resource management soft­
ware are the sources of this ability. The acquisition model (Section 4.4) defines how a software 
entity that can replace the user and perform job administration on their behalf. Therefore, the user is 
left to perform and perfect their analysis rather than debug and administrate a volatile and complex 
distributed system.

There are also other benefits of this model. Startup overheads can be significantly reduced as a 
result of each worker daemon being controlled externally. This occurs because a Task does not need 
to go through the same initialization routines as it would do normally. Instead, it can be given to 
a worker daemon, which has already progressed through the typical initialization routines, leaving 
only data and the Task itself to be transferred. Similarly, research by Cai et al. [138] showed that 
queuing overheads could consume significant proportions (60%-70%) of the application makespan 
for short jobs of around three minutes in length. Using the models presented in this Chapter such 
overheads will occur only once per daemon initialization as opposed to once per Task.

Much work has been undertaken on scheduling routines for a myriad of different scenarios 
and contexts. It is a shame that little (if any) of this knowledge can be put into action across a 
vast collection of resources such as a Campus-Grid, which typically uses a centralized and general 
scheduling model. Using the daemon model, scheduling strategies can be chosen to fit the context 
of the Task space, as opposed to a generic scheduling strategy. The latter must consider the different 
priorities and agendas within the Campus-Grid, but also for the myriad of applications that the 
Campus-Grid facilitates. A further discussion of scheduling strategies is presented in Section 4.7. 
The resource pool, modelled under the analogy of a Virtual Dedicated Cluster, enables scheduling 
strategies normally used for dedicated clusters to be adopted. In addition, any scheduling strategy 
which fits into the cluster model can be brought forward into this context, provided that it considers 
the assumptions of the scheduling model (Section 4.7), both conceptually and in its implementation.

Execution times can also be closer to their expected values, because the workstation must only 
initialize once for many Tasks, instead of once per Task. Considering the results of Section 2.3, a 
removal of the startup overhead would lead to an average reduction of 2 minutes per Task. This 
may not sound considerable, but a job space of only 720 Tasks could be completed 24 CPU hours7 
earlier with this reduction. In Section 2.3 5,000 Tasks were executed, through this simple approach 
would have yielded an improvement of almost 167 CPU hours (almost 7 CPU days). Note that this 
does not include any time that can be saved through a reduction in the scheduling overhead, which 
occurs due to the interactive and infinite nature of the worker daemons.

7CPU time is not conceptually the same as standard wall clock time. In fact, its exact definition is somewhat difficult 
to timelessly provide. In this context it is a sum of wall clock times provided by one or more CPUs. In this manner a unit 
of CPU time can be delivered in much less time than that which it relates to. For instance, a CPU day can be delivered in 
a wall clock hour, if 24 nodes each deliver one hour of CPU concurrently.
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4.4 Resource Acquisition

The representation of a resource still remains the same. A resource is a single Campus-Grid work­
station, acquired on the behalf of the user, using the available resource management mechanisms. It 
is also still subject to normal rule set and restrictions i.e. sandboxing, suspension and eviction. The 
difference is that the control over what the workstation does has been isolated from the Campus- 
Grid resource manager. This means that the original resource management software is simply used 
as a source of raw computational power and only has limited control over the resources it has pro­
vided.

4.4.1 Resource Model

Before a detailed definition of an acquisition model is presented, the data which such a model uses 
must be defined. The definition above, which whilst true, does not contain sufficient detail to enable 
an acquisition model to consider the volatility of the resources it attempts to acquire.

An unequivocal attribute that must be considered is past performance over time. This is because 
intermittent resource testing cannot verify stability, but can create a general picture over time. For 
example, if a workstation has experienced 100 consecutive job failures, it is more likely that its next 
job will fail, as opposed to a workstation which has experienced one or two intermittent failures. 
Given the difficulty in differentiating between a runaway job and an incorrectly configured software 
installation, it must be assumed that workstations which experience large quantities of runaway jobs 
are also more likely to experience malfunctioning jobs in the future. For these reasons the resource 
model considers only past performance.

Figure 4.4 shows the resource model which physically identifies workstations and their key at­
tributes. The key attributes that are an intrinsic part of the model are environment specific, and can 
include: (1) claims of software availability, (2) the owner(s) of the resource, (3) benchmark scores 
of capability, and (4) physical workstation attributes such as memory, processor speed etc. The key 
attributes are necessary because the construction of a model, which encapsulates the anticipated 
performance of both Task execution and a workstation, is defined by these attributes. For example 
if an attribute denotes a specific capability it is expected that this is true. Therefore, the inclusion, 
and monitoring, of these key attributes is important for the system as a whole, as any inaccuracies 
directly affect stability and performance. The results and discussion in Chapter 2 also act as an 
additional motivational force for their inclusion. In this case workstations reported specific abilities, 
namely the ability to execute compiled Matlab jobs, but when jobs were scheduled to these work­
stations they failed, due to incomplete or missing libraries. By capturing these key attributes and 
monitoring and reassessing in the future whether they are in fact true, will reduce the number of 
failed jobs, which will inevitably reduce resource waste.

Figure 4.5 shows the performance model which is used to identify workstations that are not 
fulfilling the expectations placed upon them. This information can then be fed back into the resource 
acquisition process, which effectively prunes the set of possible workstations upon which a job can
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The performance model captures information about how jobs perform, e.g. how long a job 
ran, how long it needed to reach a specific state, the time between state transitions etc. One of the 
advantages of the job model is the ability to determine when a daemon’s initialisation phase has 
completed. This data can also be used in real-time to help diagnose runaway jobs. Furthermore, 
it enables decisions to be made using data specific to an individual workstation when previous 
usage statistics exist. Therefore, a performance model can be built over time for each available 
workstation. The information that this model contains can be fed back into an autonomous manager, 
to enable decision making processes for job termination when anomalous behaviour is identified. It 
also permits the ability to prevent the use of specific workstations if they fall below threshold values.
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4.4.2 Resource Acquisition Model

Figure 4.6 shows the acquisition model8 and how the performance model can be used in practice. 
Firstly, it provides additional information for the job submission process. Here, it highlights which 
workstations, based upon previous poor performance, are to be explicitly removed from the set of 
available workstations. Secondly, when jobs are running it provides the information to determine 
when a job should reach the initialized state and where the bounds are that identify runaway jobs. 
Information from the job model is also used here to identify a job’s current state, its state transitions 
and the time for each of these transitions. When put together, this information provides an upper 
bound and if a job’s runtime exceeds this bound before the initialization state is reached, it is ter­
minated. All eventualities are then fed back into the performance model for future decision making 
processes. An element of evolution is assumed in this approach. Over time the profiles of worksta­
tions develop and threshold values derived from this data set change. This means that the criteria 
for identifying anomalous job behaviours is not static and therefore captures the dynamic nature of 
the resources in use. For example this approach could easily catch the changes in a workstation’s 
announced capabilities which were noted in Section 2.3.

Figure 4.6: Resource Acquisition Model
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The approach for terminating jobs suspected of running away can make mistakes. The results 
presented in Section 2.3 demonstrated the variable nature in a workstation’s execution even for 
identical jobs. However, despite this variability and occasional dramatic changes in performance, 
such eventualities should be only seldom occurrences. For example 99 - 100% of successful Matlab 
test jobs in the analysis carried out in Section 2.3 were within four or five standard deviations of

8Note that states which can occur after daemon initialization (for example: executing Task, suspended, evicted) are 
not shown.
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the average runtime at the workstation level.9 In contrast, 95% of all jobs which ran away either 
as a result of incorrectly configured software or architecture-related overheads could have been 
identified, terminated and resubmitted using the same threshold values. By using historical data in 
the way illustrated in Figure 4.6, some mistakes in prediction will occur and cause daemon jobs to be 
both incorrectly terminated and allowed to continue for longer than necessary. However, this should 
not be a frequent occurrence. Using such an approach the prediction of runaway jobs should not 
only be accurate but also prevent a workstation with an incorrectly configured software component 
from being blocked any longer than is necessary to identify a fault.

This model describes only how resources are acquired and what happens when anomalies are 
detected or predicted to occur. How successfully initialized resources are later used is inconse­
quential for this model. It aims only to initialize daemons, and does not specify how they should 
be used after this point. Yet, one piece of information is missing from Figure 4.6: the number of 
daemons that should (ideally) be in the initialized state. The overall aim of the acquisition model is 
to reach a requested minimum number of available (initialized) daemons, which can be given to one 
or more schedulers (see Section 4.6). There are a number of different factors which influence the 
model’s ability to achieve its goal. (1) the number of available workstations, (2) the rate of change 
in workstation availability, (3) the ratio of failures and runaway jobs to successful jobs, (4) the ef­
fective priority of the model enactor, i.e. a job manager or user on the Campus-Grid, (5) resource 
contention and competition, i.e. the number of (queued) jobs from other users, and (6) the number 
of active jobs,10 as some resource management systems permit or recommend a finite number of 
concurrently active or running jobs. In this last case the number of submission points can also be 
considered, and the model enactor replicated at multiple points.

Figure 4.7 depicts how the quantity of daemon jobs is determined. Essentially there are three 
key contributing sources, which determine how many daemon jobs are in effect, at any given time. 
Firstly, physical availability is considered. Here, the performance and resource models are used in 
unison along with real-time monitoring data of the available resources to determine if further jobs 
can be supported. In other words, are the answers to the following two questions yes: (1) of the set 
of workstations available, are there workstations that do not have a history of failures? (2) are 
workstations available that advertise the necessary capabilities to host a daemon? If neither is 
the case then submitting further jobs may not serve any practical purpose. For this reason the 
acquisition model is always (re)checking what resources are available, to try and acquire more 
resources. Secondly, the number of running jobs is also considered, as this is an indicator of how 
many daemons are likely to materialize. Prediction of the likelihood of successful initialization 
could also be performed here to provide a more accurate estimation. Finally, the requirements 
model (Section 4.5), which encapsulates a user’s demand for Campus-Grid resources, provides an 
abstract numerical target of workstations that the acquisition model should aim to initialize.

9Using the data of all successful jobs, instead of at the workstation level, an upper boundary derived from five standard 
deviations of the average runtime would include 99.7% of all successful jobs.

10Active here, refers to all jobs that are not dead.



C hapter 4. Methodology 116

Figure 4.7: Flow of Information for the Resource Acquisition Model
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4.5 Requirem ents M odel

The requirements model (Figure 4.8) has two tiers: (1) a user’s resources requirements, and (2) the 
global resource requirements. Even if there is only one active user these two tiers will not produce 
the same output, as their aims and objectives are significantly different.

Figure 4.8: Requirements Model
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The user’s requirements model is not in place to identify an exact or static numerical estimation 
of resources needed to (optimally) execute a Task space. Such an approach would be ill-conceived 
as the probability that this number of resources could be delivered for the duration of the execution
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is low. There are several reasons for this: (1) daemons do not initialize synchronously, (2) daemons 
attempt to run infinitely, but the context of their existence makes them inherently transient entities, 
whose lifetimes are defined by several external processes. These processes are either independent, 
stochastic or both. (3) workstation availability and acquisition are based upon similar external 
processes and preconditions, (4) workstation performance is highly heterogeneous and may even 
be inconsistent within a single daemon’s working session. Two identical workstations can exhibit 
different performance within a Campus-Grid context, due to different levels of background work 
that they may be undertaking. For these reasons the requirements model should be reactive and 
dynamic initially, because workstation performance and Task demands are very difficult to predict 
in advance under these conditions.

Instead, this tier defines the ability to consume resources by providing an abstract range. Data 
can come from three sources to aid this definition: (1) Task monitoring data, for example average 
Task execution time, Task affinity, data transfer times and failure/error rates. (2) the Task Model 
itself, for example, the number of Tasks still awaiting execution, have finished or are currently exe­
cuting. (3) scheduler specific metrics, for example the minimum and maximum number of daemons 
that are required or can be realistically used given previous Tasks and the current sizes of daemon 
queues. In addition, reactive measures to current performance can be employed. This information 
is provided by the scheduling model (see: Section 4.7). The simplest implementation of this model 
is the identification of the minimum and maximum number of daemons that could be used, given 
this input data. Other implementations could identify “ideal' ranges or rank values within the ab­
stract range to aid in resource sharing or to prevent over allocation of resources provided that the 
scheduling strategies presented in Section 4.7 remain intact and that this estimation is dynamic, for 
the reasons stated above.

Dynamism is an important feature in the requirements model as the underlying resources in use 
are themselves dynamic. The retention of dynamism enables a user to represent (dynamic) demands 
for resources over time. This can occur, for example, by changes in the Task space, or through the 
invocation of semantic requirements such as completion time, throughput etc. The philosophies 
surrounding this model are heavily dependent on context and can be modified and extended to suit 
many different scenarios. The approaches defined in Chapter 3 only provide very general and static 
means of defining requirements, if they actually provide a means at all. Approaches which use a 
batch processing paradigm are the biggest culprits, as they employ greedy algorithms and then es­
tablish a new working session for each job. Other approaches use static resource acquisition which 
may be based upon user request. In many cases users do not know their exact requirements and 
for this reason in many cases the over allocation of resources can occur, which potentially have 
detrimental effects on performance, example approaches are: Matlab*G, Matlab*P/Star-P and Pro­
teomeGRID. Using the model presented in this Section a user, intelligent or autonomic controller 
can create flexible and dynamic or feedback orientated requirements during runtime. Ultimately, 
these requirements may not be met, given the context of the execution environment. The number of 
daemons that a scheduler will receive is inevitably dependent on the number of available worksta­
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tions, which successfully initialize a worker daemon. However, the intrinsic idea of illustrating the 
ability to consume resources, fits well into the paradigm of opportunistic computing. For the reason 
that as new resources become available, the requirements model captures the necessary information 
to inform the acquisition model whether these additional resources would be useful. This idea is 
depicted in Figure 4.9.

Figure 4.9: An illustration of the dynamic nature of the requirements model and its ability to capture 
a scheduler’s ability to consume resources, rather than pin down an exact numerical representation 
of the resource requirements.
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The global requirements model is an aggregation of all the users’ requirements models, but with 
an additional buffer. This buffer represents the intention to acquire spare capacity, which, in turn, 
relates to the ability to provide additional resources on short or no notice. The provision of a concrete 
numerical target for the acquisition model is of little use. In doing so, the requirements model would 
ignore the dynamic nature of the resources it asks the acquisition model to acquire. Instead, the 
global requirements model provides a dynamic horizon for the acquisition model to aim for, but 
which may not be reached. The horizon represents the maximum number of consumable resource 
plus an additional buffer (for spare capacity acquisition). Only when the announced capability to 
consume resources begins to reduce could this horizon ever be reached. The most likely scenario 
where this would occur is during the final stages of an application’s execution, where the number of 
outstanding Tasks is beginning to approach zero. Whilst users are online the horizon is constantly 
reevaluated, as users’ requirements models are explicitly linked to their execution contexts and are 
therefore dynamic. Any additional resources which become available but cannot be consumed are 
put aside as spare capacity.

4.6 Requirem ents-based Allocation M odel

Once the requirements model has illustrated the ability of a user to consume resources and some 
resources have materialized into daemons ready to execute users’ Tasks, they must then be allocated 
to the user. In a single user context, whatever resources are made available through the acquisition
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model is what will be allocated, as illustrated in Figure 4.10. This will continue until the require­
ments model prevents any further resource allocation, i.e. the upper bound has been reached. At 
this point the acquisition model can begin to acquire spare capacity.

Should another user materialize, a redistribution of resources can be employed, with spare ca­
pacity allocated first. Here, the requirements model will also facilitate resource sharing in multiuser 
contexts. In such scenarios the juxtaposition of users’ requirements models can be used to quantify 
the need that a user has for resources. Comparative analysis can then be performed to determine the 
share of the available resources each user receives. Here, the assumption is that as users progress 
through their Task spaces, their needs for resources change.

Resource requirements can change either as a result of Task spaces decreasing or increasing 
in size, but also as the heterogeneity of users’ Task spaces will become more apparent over time. 
The same is true for the workstations they have been allocated. The philosophy behind this method 
shares similar motives with the requirements model as a whole, where the ability to consume re­
sources is captured. In a multiuser context this ability can be modelled in parallel with need, because 
the metrics provided by a scheduler are also intrinsically indicative of need. Therefore, the require­
ments model can also be used to describe a user’s need for resources and in turn facilitate decisions 
concerning the number of resources that are allocated to different users.

This is a natural progression of the requirements model, which is built upon retrospective event 
analysis, to try and model future requirements. The need of a user will also change over time, and 
thus the allocation of resources should change as well. Through this approach users can gain and 
loose resources over time, as their requirements models balance resource distribution. Similarly, as 
new daemons become available, the requirements models provide the ability to decide who receives

Figure 4.10: Allocation Model
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additional resources. The result is a dynamic allocation model, which is based upon feedback from 

localized schedulers, Task monitoring and a representation of the ability to consume resources. The 

question which occurs at this point is: what methods can be used to choose which workstations 

are given up by a user to be allocated to another? This research is not orientated to answer such a 

question, but its answer could come from the scheduling model itself. The benefit of a workstation 

to a scheduler can be modelled heuristically, but a meaningful approach must contain application 

specific knowledge. However, because this approach enables a scheduler to be application specific, 

a scheduler can use its application knowledge to build such a model.

4.7 Scheduling Model

The scheduling model that has been adopted differs from many approaches in that all scheduling 

is performed directly from within a user’s application. The major exception to this statement is the 

AppLeS extension to Nimrod. Oberhuber suggested this during the final discussion of DIPS. It is 

also employed by DIANE and ProteomeGRID, as well as elsewhere in the literature (for example 

AppLeS [119]). Oberhuber stressed the motivations for explicitly integrating scheduling into the 

user’s application. His main incentive for this is to give schedulers access to application specific 

metrics. He gave workstation workload and available bandwidth as examples. Other examples 

could be: data available on workstation, previous performance data of certain Tasks, and previous 

experiences with a workstation such as the duration of its availability.

The models which are defined in this Chapter are capable of enriching this idea with a sig­

nificantly increased level o f detail. However, the volatility of the resources in use means that the 

scheduling model is significantly different from the one Oberhuber suggested. The primary reason 

for this is context in which DIPS was designed: dedicated (stable) clusters of resources at different 

computational sites, as is DIANE, rather than volunteer (volatile) resources of a Campus-Grid. Pro­

teomeGRID is potentially the only approach where this could be considered, however, it is not. This 

makes an entirely different context and therefore leads to a very different approach, but nevertheless 

has similar motives.

There are two primary categories of scheduler that can be defined: (1) a global scheduler, which 

serves multiple users/applications, for example: Condor, PBS [126], and other queuing/batch sched­

ulers, and (2) a localized scheduler, which is specific to one application/user for example: AppLeS. 

Oberhuber only touched upon the motives for an integrated scheduling model. Many additional rea­

sons can be raised to further motivate this approach: (1) A local scheduler can be written specifically 

for an application domain or context. (2) A localized scheduler has direct access to real-time infor­

mation of the Task space, allowing it to schedule Tasks considering attributes such as Task affinity, 

requirements, and previous performance of similar Tasks. A global scheduler must consider many 

different scenarios, making it a general approach bound by potentially incompatible assumptions 

and agendas. It cannot guarantee any levels of quality in relation to its scheduling strategy to the 

disparate application scenarios it is trying to serve. Inevitably, it becomes a performance bottleneck.
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(3) If all Tasks do not share the same requirements set and, specifically, if custom requirements are 

in place a localized scheduler can handle such scenarios more intuitively than a global scheduler.

(4) Feedback loops, such as those illustrated in the Task-Model (Figure 4.3), are easier to instantiate 

and can consider an application’s context. For example, a local scheduler can consider the question: 

given some previous analysis, what is the minimum number of workstations needed to perform 

some new (but similar) analysis in time T? (5) Localized scheduling can accommodate changes in 

an applications context, agenda, requirements and Task space more easily because it can consider 

semantic and application specific information. (6) Localized scheduling permits advanced users to 

create their own scheduling rules and decision making processes. It also permits users or application 

managers to choose between different scheduling strategies, should multiple options be available. 

This was demonstrated by the AppLeS project.

Scheduling is not a primary focus of this research, and therefore the scheduling model has been 

conceived in a way that it enables the adoption of many different scheduling strategies, which can 

either be sourced from the literature or specifically designed for an application. The novelty of this 

approach is the ability to draw upon a wide range o f scheduling algorithms developed for domains 

other than those of opportunistic and volunteer computing. This ability stems from the model of 

a virtual (dedicated) cluster of workstations. Instead of providing an implementable framework, a 

series of assumptions and guidelines are presented in Section 4.7.3 and should be considered before 

any scheduling strategy is integrated into the system presented in Chapter 5.

4.7.1 Dynamic Task Clustering

As mentioned in the daemon model (Section 4.3.1) and above, worker daemons have local queues 

to help accommodate short jobs and reduce the impact of data transfers. Yet, a daemon’s queue 

does not need to have a finite or static size. Therefore, a scheduler can vary the number of Tasks a 

daemon has in its remote queue. It can base this decision upon three input sources, each of which 

are shown in Figure 4.11: (1) the Task Model, (2) the data from Task monitoring, and (3) the number 

of workstations currently available to the scheduler.

The main contribution of the Task Model is the number of Tasks which are still held locally, i.e. 

unscheduled. As this number reduces toward zero, queue sizes should in turn tend toward one.11 

If this were not the case, the user’s requirements model (Section 4.5) could not describe the user’s 

ability to consume resources as accurately. This is because fewer Tasks would be held locally and 

additional (new) workstations would have less work to do and eventually evoke the need for load 

balancing. This, in turn, reduces the demonstrable ability to consume resources and would make 

it less likely for additional workstations to be allocated. In addition, if the daemon queues are 

too large, adding additional resources would force Task reorganization, which is also undesirable. 

Consider this example: if the user has 100 homogeneous Tasks and 10 homogenous workstations 

(for simplicity), a scheduler should not use a queue size of 10 (the maximum value in this case). If

"Queue sizes are defined by the number of queued and executing Tasks i.e. 0 queued and 1 executing is a queue of 
size one as is 1 queued and 0 executing.



Chapter 4. Methodology 122

Figure 4.11: Scheduling Model
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an eleventh daemon became available and the queue size across all daemons was 10, up to nine Task 
reallocations would occur initially. This would occur because the maximum queue size that could 
be supported (assuming all workstations have the same queue size) for eleven workstations and 100 
Tasks is nine. However, had the scheduler adopted a queue size of five, for example, the addition 
of an eleventh workstation would not have evoked any Task reallocations upon receipt of the new 
workstation, as no more than 50 Tasks could be buffered at any time. Therefore, a scheduler should 
autonomously decrease the size of daemon queues as the number of unscheduled Tasks decreases, 
so that the allocation of any new workstations does not cause unnecessary rescheduling.

Load balancing (or Task reallocation) is the rescheduling of Task(s) from one or more daemons 
to another. It occurs when either of the following is true: (1) a new daemon becomes available and 
no Tasks are currently unscheduled, or (2) a daemon has completed all Tasks scheduled to it, and 
no other Tasks remain unscheduled. This can occur toward the end of an application’s execution 
cycle as a consequence of the heterogeneity of workstations, previous Tasks (which can benefit 
from caching), Task heterogeneity and the number of Tasks not being a factor of the number of 
workstations. Ultimately, this means some daemons run out of Tasks before others and so load 
balancing is required. When either of these scenarios arises, the scheduler must decide firstly, from 
which daemon(s) to take Tasks and then, how many should be taken. Some solace is preserved in 
that such scenarios do not occur often, and usually only as the size of a Task space approaches zero.

There are several ways to decide which Task should be taken from which workstation. The 
actual strategy which will facilitate this decision is specific to the scheduler, and therefore the ap­
plication. Yet, there is one basic heuristic that can be used and built upon:

w  =  Vu; G W m in {A v g E xe c u tio n T im e (T Sim) — R u n n in g T im e{T e)) (4.1)

Where w' is the selected workstation, W  is the set of all workstations, Te is the currently execut­

T ask (s)
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ing Task for a given workstation, and T Sim is a sim ilar12 Task which has been observed in the past 

by the Task Model. Using this approach it is possible to identify the Tasks of a workstation that are 

most likely to require the most time to complete. Then the scheduler can take the Task scheduled 

most recently for rescheduling. If no affinity-related monitoring has been performed the average 

execution time of all Tasks can be used instead.

The dynamic management of remote queues in this way, is, in effect, dynamic Task clustering, 

where each daemon’s queue is modelled as a Task cluster. The dynamism stems from the resizing 

of the cluster, but also from the top up approach available to the scheduler. As each Task completes, 

another is scheduled to the daemon, if and only if the queue size has not been reduced. This means 

that daemons only run out o f Tasks when no Tasks remain unscheduled, increasing utilization and 

reducing scheduling overhead. W hen no Tasks remain unscheduled, load balancing strategies can 

be employed. It also means that the workload given to a workstation can be related to its current 

ability to consume Tasks.

The contribution of the data from Task monitoring is the ability to increase or decrease the 

maximum queue size, based upon past performance. For example, if Tasks have a low average 

execution time it may be beneficial to increase the queue size. In doing this, the requirements model 

would highlight a reduced capability to consume resources and the granularity of Task clusters 

decreases (i.e. it becomes coarser). The result of increasing queue size is that more time is allocated 

to perform any data transfers, which is needed due to a low execution time. The obvious penalty 

that could be paid is the relatively high cost that a workstation revocation could have.

The queue size does present a definite trade off (illustrated in Figure 4.12). As queue size 

increases the potential to reduce the effective overhead also increases as data transfers can begin 

earlier, have more time to complete and run in parallel. However, as queue size increases, so too 

does the probability that newly acquired daemons will cause Tasks to be rescheduled. In addition, 

workstation revocations will become more expensive. Such a scenario can make any reductions in 

overhead from a larger queue completely redundant, as data may need to be retransferred.

4.7.2 Task Affinity

Affinity is a measure of similarity, between two or more Tasks. Similarity has two main sources, 

each coming from the Task Model: (1) input data, and (2) Task Sequence. The impact of the latter 

is less significant and more challenging to quantify.13 However, Task affinity derived from similar 

data input yields a much greater benefit. This stems from the common input data, as scheduling 

such Tasks to the same daemon results in a reduction in data transfers. Scheduling of this type is 

only possible (with the exception of traditional clustering) due to the interactive nature of daemons, 

as a new working session would mean any data already held by a workstation is lost.

12For similarity see definition of Task affinity in Section 4.7.2.
13It is less significant because only caching benefits will be received. It is harder to quantify because of the need for 

detailed knowledge of what execution will occur in relation to input arguments and data.
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Figure 4.12: The Daemon’s Queue Size Trade Off

Probability of rescheduling upon 
the receipt of ad ditional daem ons

Increasing Queue Size
1 - " l  -  -  ~

Concentration of Overhead

4.7.3 Scheduler Considerations and Assumptions

Figure 4.11 depicts the abstract scheduling model and shows how information flows between the 
different components. Essentially, the idea is that the Task model provides all the necessary infor­
mation to enable a scheduler to schedule a Task to a workstation on the Campus-Grid. The scheduler 
and therefore the scheduling plan will be updated every time that either: (1) a Task finishes, or (2) a 
workstation is revoked/allocated, i.e. it is event driven. The challenge of scheduling within this 
context is not knowing how workstation availability will change with time. On the one hand, more 
resources may suddenly become available, but on the other hand many could be revoked. For this 
reason the following considerations and assumptions are provided.

Consideration 1:
The scheduler must be conscious of the potential for change in its Virtual Cluster of workstations. 
Therefore, it cannot plan too far ahead, but must, instead, be opportunistic and when planning, 
consider the implications of having to change its plans. This can occur either as a result of Task 
failure or increases/decreases in a scheduler’s cluster of resources.

Consideration 2:
The model assumes that Tasks will be buffered in the remote queues of daemons. It is at the sched­
uler’s discretion what size these queues are. Their size is related to how the requirements model 
will view the scheduler’s ability to consume resources. However, note that queueing Tasks in this 
manner is, for all intents and purposes planning and, therefore, the larger a queue, the further ahead 
the scheduler is planning. On the other hand, not queuing Tasks adequately can increase the con­
centration of over data overheads (see Figure 4.12). Further discussion of Task buffering is given in 

Section 4.7.1.

Consideration 3:
Monitoring data is made available to the scheduler in order to aid the scheduling algorithms. It is 
assumed that the scheduling strategy will use this data, but it is not essential.

Consideration 4:
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It is assumed that the scheduling strategy will capture the historical data it needs if this data is not 

available from either the Task model or from Task monitoring.

Consideration 5:
A scheduling strategy is expected to provide the data needed by the requirements model. 

Consideration 6:
It is assumed that the scheduling strategy will provide the means to balance load between worksta­

tions as required.

4.8 Fault Tolerance and Recovery

The combination of the acquisition (Section 4.4) and job/daemon (Sections 4.3/4.3.1) models pro­

vides the methods for fault management needed for this approach, as they provide the capability to 

identify workstations that cannot contribute their resources. To facilitate fault tolerance at runtime 

and after the allocation of resources, both proactive and reactive measures are employed. These 

guarantee that once a workstation is part of the virtual cluster of resources, its contribution is sub­

ject only to the rules of the Campus-Grid architecture,14 intermittent faults15 and user error.16 It also 

means that the additional fault tolerance mechanisms required for this approach are quite ordinary 

and can be classified into two domains: (1) infrastructural, and (2) Task-orientated fault tolerance.

4.8.1 Infrastructural Fault Tolerance

Infrastructural faults are events which affect the stability of the running system (daemons). Of the 

three categories given above, infrastructural faults relate to the rules of the Campus-Grid architecture 

and intermittent failures. Here, the predominant aim is to identify daemon failures. In this case 

failure is defined as the end of, or a pause in ,17 a daemon’s life, regardless of its cause. The reason 

for this choice is that the acquisition model will catch any untoward architectural faults of interest, 
and that the primary objective is to alert the scheduling model of the loss as quickly as possible, so 

that any affected Tasks can be rescheduled.
Identifying daemon failure can be performed using a combination of two standard approaches:

(1) heart beat monitoring, which is effectively a periodic ping to ensure that a daemon is still avail­

able at its endpoint, but also able to respond, and (2) state awareness, which is collected from the 

Job Model and enhances the information provided by the heartbeat monitoring. For example, if the 

job model detected that the daemon’s job had been terminated, suspended or experienced other state 

transitions, but the daemon was itself still alive according to its heartbeat, this knowledge can be 

used to instruct the scheduler that this daemon may soon fail.18 On the other hand, if the daemon’s

u For example revocation, suspension and workstation failure or power down.
15For example lapses in network connectivity, insufficient memory on a workstation and other runtime errors.
16 For example programmer error.
17For example through suspension.
18Such a scenario was demonstrated in Section 2.3, where the reported job runtime in the host workstation’s log was 

significantly longer than in the job log on the submit (user’s) workstation. If such a scenario arose during the execution 
of a daemon, it would mean that the daemon itself would remain alive, even though the job model reports it as dead.
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heartbeat ceases, state information can be used to diagnose the cause of the failure. For example a 

temporary network fault or a few dropped heartbeat messages would indicate that the daemon had 

failed, but using the Job Model, the daem on’s current state may not have changed, therefore other 

means of communication can be used to restart the daemon’s heartbeat. These two fronts enable a 

tight monitoring approach, as both can be used together to ensure that a daemon has in fact shut­

down/failed or is still active and capable of executing Tasks. Neither of these ideas is novel, but 

together they provide a strong foundation for failure identification.

4.8.2 Task-orientated Fault Tolerance

Task-orientated fault tolerance is concerned solely with the handling of Tasks and the implications 

that other faults have upon the execution o f the Task space. There are two sides to Task-orientated 

fault tolerance: (1) the recovery from daemon failure and the identification of potential causes, for 

example a Task causing the daemon to terminate. (2) The recovery from user-based Task errors, for 

example calling non existent functions, using too many/few input parameters, and miscellaneous 

runtime errors such as class loader error.

Typically, recovering from daemon failure is the resubmission of the Tasks that the daemon 

had in its queue. However, it may also be useful to identify which Task was running and flag that 

it was being executed when the daemon failed. If the job model cannot identify a reason for the 

failure, this Task can be observed in future submissions, in order to try and identify it as one which 

compromises the stability of the system so that the user can be notified.

Task errors are, however, much more difficult to react to. The simplest approach is to prompt the 

user for a decision. Alternatives can be to attempt the Task a specific number of times before report­

ing it as inexecutable. Ultimately, this is an implementation issue, rather than a research question. 

Yet it is important to note that because of the other fault tolerance mechanisms in place, handling 

strategies for Task errors are now possible. In addition, they are now also clearly distinguishable 

from a workstation failure. These are two abilities that are not possible with the traditional Campus- 

Grid software used in the analysis o f Chapter 2, or in any of the approaches in Chapter 3 with the 

possible exception of Ibis’ JavaGAT.

4.9 Application Integration -  The User’s Model

Figure 4.13 depicts how the user’s model relates to, and interacts with, the other models presented 

in this Chapter. The main idea in the user’s model is the use of an Application Manager to reduce 

the effort of the user where the Application M anager transparently handles the intercommunication 

between the different models. This is slightly different to the interactions depicted in the Task Model 

(Figure 4.3). Here, an Application M anager represents the user in the system. An Application 

Manager could be anything from a simple application, where the user specifies their Tasks, to an 

instance of a PSE or an intelligent application or agent, which is capable of producing Tasks for 

execution. To the user it is simply an application where they describe their Task space. It can
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be made as complex as the user wishes, as it is a client front-end to the system. Two example 
Application Managers are documented in Chapter 6, which show the use of this model in practice.

From a development perspective the Task and Scheduling Models are to be considered as com­
modity components, which an Application Manager uses. In Section 5.5 the Client Interface (Cl) 
is presented along with a default scheduler, which is used transparently by an Application Man­
ager. However, new scheduling algorithms may be desirable, therefore, the Cl defines a scheduling 
interface (Section 5.5.3) to enable new scheduling algorithms to be incorporated into the system.

Figure 4.13: User’s Model
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4.9.1 G ranularity

Task granularity can have many different tiers each relating to fuzzy, overlapping and context- and 
domain-specific definitions. Therefore, to provide some perspective to this approach a definition of 
this term is provided to highlight the targeted application domain. In principal, there are two classes 
of granularity: (1) fine-grained, and (2) coarse-grained. Moreover, these two classes can be further 
categorized into two domains: (1) data granularity, and (2) execution granularity.

Data Granularity

In some cases fine-grained is working on a single cell of a matrix [56], it can be acting upon a 
single row or column of a matrix, as is the case with MPI-based approaches. It can be one slice 
of a three-dimensional matrix, such as in the study of MRI data etc. Whereas coarse grained pre­
dominately encapsulates data sets which have not been broken down into smaller units. When it 
comes to definitions of granularity, the border between fine and coarse grained is difficult to define, 
as many different and overlapping definitions of the two classes exist. In many cases, definitions 

of granularity are built upon comparative premises and in relative contexts, which are usually ex­
pressed through the use of adjectives. These definitions are sometimes also implicit in the context. 
For example: A has a coarser abstraction than B. For these reasons the following two definitions
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are presented for use throughout this thesis and the continuum of granularity abstractions for data is 
presented in Figure 4.14. The type of granularity that the user’s model facilitates is also shown.

Definition of Fine-grained Data Parallelism

Fine-grained parallelism is any Task which acts upon one or more sections of a single image or data 
set i.e. the left side of Figure 4.14.

Definition of Coarse-grained Data Parallelism

Coarse-grained parallelism is any Task which acts upon one or more complete images or data sets 
i.e. the right side of Figure 4.14

%

Figure 4.14: Continuum of Data Granularity
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Due to a more intuitive scale, definitions of execution granularity are often less difficult to pin down. 
For all intents and purposes, regular execution of an application on one workstation is normal exe­
cution and should therefore be in the middle of a continuum of granularity. In a similar manner to 
data granularity, execution granularity is often also expressed relatively. Fine-grained parallelism 
is generally when code is broken down into smaller pieces, loops and independent units of compu­
tation are the predominant examples for this. Increasing the granularity of an application is when 
functional units are combined to create larger units of work. However, a unit of work is much more 
difficult to define as its definition is application dependent and also developer dependent. For this 
research a definition of work is provided along with definitions of fine- and coarse-grained execution 
granularity. The continuum of granularity abstractions for execution is presented in Figure 4.15.
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Definition of a Unit of Work

Scientific analysis is typically organized using functional components, where the lowest form of 
component is a base component, as most (but not all) data can be reduced to a matrix representation 
it is: a single matrix transformation, calculation or manipulation. Therefore, a functional component 
is a collection of base components combined in order to perform a specific piece of data analysis. 
A work unit is one or more functional components specifically combined to perform a piece of 
scientific analysis. Therefore, a unit of work can be one iteration of a loop as well as the entire loop, 
but this level of definition is application dependent.

Definition of Fine-grained Execution Parallelism

Fine-grained parallelism is any Task which represents less than a single unit of work i.e. the left 
side of Figure 4.15.

Definition of Coarse-grained Execution Parallelism

Coarse-grained parallelism is any Task which represents more than one unit of work i.e. the right 
side of Figure 4.15

Figure 4.15: Continuum of Execution GranularitySB D ecom position
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The approach adopted throughout this research and for the application of the software solutions 
it serves, is a coarse-grained data abstraction, as indicated in Figure 4.14. Execution granularity 
can be facilitated across the entire continuum, but the middle and right side (coarse-grained) of the 
continuum will be handled transparently for the user through dynamic clustering of the daemon 
queues (see Section 4.7.1). The user’s model does not intend to provide the ability to generate a fine 
grained approach transparently. Here, granularity is orientated around a data set, where one Task 
relates to one or more data sets.

Even in a fine-grained execution approach the data granularity will remain coarse. The cost 
of decomposing the data set into subcomponents is assumed to be either more expensive than pro­
cessing it whole, or provide no real benefits in terms of performance. This coincides with Moler’s 
observations in [55]. For users this is a beneficial system attribute, as it means that their original

Clusterii
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code does not need major revisions in order to use the system. In addition, it is possible to cater 
for rapid application development and deployment, which is facilitated by the user’s model and its 
enactor, the Client Interface (Section 5.5). This model takes many of the intricacies of distributed 
computing and handles them transparently for the user. Operating at this level allows the user to 
work in the application domain, rather than in distributed or parallel computing. Ultimately, this 
enables the user to concentrate on what their application does and how it carries out their research 
objectives, instead of venturing into the administration of distributed resources and tools.

4.10 Summary of Approach

Figure 4.16 shows an overview of all the models described in this Chapter, along with the main 
interactions and flows of information. It is clear that there are two distinct sections in this illustra­
tion, the top and bottom, which represent the separation of resource acquisition (top) and alloca­
tion/scheduling (bottom). The summary of this approach will start bottom-up as this is how a user 
would perceive the approach. Incidently, as the distance19 of a model from the user increases, the 
ability of the user to perceive it decreases exponentially toward zero.

The only mandatory action that a user must take is to create a new, or use an existing, Appli­
cation Manager to describe their Task space. Here, they use three pieces of information to define 
each Task: (1) some control sequence which describes the analysis to be done to the data, (2) the 
data to act upon, and (3) an identifer for the result (optional). This data is then fed into the Task 
Model (Section 4.3.2) to create the Task space. A scheduler will use this information to execute 
the Task space on one or more Campus-Grid workstations. This information, along with additional 
(scheduler specific) information from the scheduling model (Section 4.7), is given to the user’s re­
quirements model (Section 4.5). The user’s requirement model then generates an abstract number 
or range of workstations to represent the ability of the user’s application to consume resources. This 
representation is then passed to the global requirements model (Section 4.5), which aggregates all 
user’s models to define the ability of all users to consume resources. It also adds an additional buffer 
so that the system can acquire spare capacity if possible. This information is also passed to the allo­
cation model (Section 4.6). The acquisition model uses the global ability to consume resources as a 
dynamic horizon relating to the number of workstations which it should acquire. However, several 
factors influence its ability to do this: (1) the number of available workstations, (2) the rate of change 
in workstation availability, (3) resource contention and competition, i.e. the number of queued jobs 
from other Campus-Grid users. This information is provided by the resource model (Section 4.4.1) 
and real time monitoring data. Yet, one other significant factor remains: the ratio of failures and 
runaway jobs to successful ones. This information, provided by the job and performance models 
(Sections 4.3 and 4.4.1), governs whether the acquisition model (Section 4.4) will choose to reject 
an available workstation or not. If it deems that there are only unreliable workstations available no

19Here, distance is the minimum number of hops from the user to a model. For example the user is 5 hops from the 
Acquisition Model. An inherent property of this concept is that a blue hop is significantly closer than a red one.
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Figure 4.16: Summary of Models
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daemon jobs will be submitted to the Campus-Grid.

When jobs are submitted to the Campus-Grid, they are different in that they are not normal jobs, 
but pilot jobs. This means that they are testing the stability of a workstation prior to Task execution. 
The ability to check a workstation is an hereditary property of the job, as it should never fail. There­
fore, if the job fails it can only be the fault of the workstation. This information is then relayed to the 
performance model for future workstation-based decisions by the acquisition model regarding job 
submission. Should a job succeed, and therefore demonstrate a workstation’s capability, it becomes 
a resource which can be given to a user by the allocation model. The allocation model determines 
whether a workstation is given to a user by using their requirements model. The autonomic nature 
of resource acquisition permits many desirable system attributes. In scenarios that exhibit dynamic 
resource requirements, demand-orientated acquisition and allocation is possible, as the acquisition 
model can change the number of resources in accordance to the reported demand. In other words, 
when workstations fail, are revoked or demand increases, new daemon jobs can be generated. Sim­
ilarly, when daemons are not being used, they can be terminated. The result is that autonomic and 
dynamic growth, in respect to the resources owned by the system, is possible.

Disregarding the pilot functionality of a daemon job (Section 4.3.1), the difference between 
a daemon job and a regular Campus-Grid job, is that a daemon job will intentionally try to run 
infinitively. It is treated as a regular job by the Campus-Grid resource management software, but 
this is not the case. The main attribute of the job that differentiates it from a regular job is that 
it is fully steerable. This means it can be told what to do and when to do it; for example: to 
shutdown, to download a data file, to service HTTP requests and send result(s) of a Task to a given 
endpoint. In addition, none of these actions require any interaction from the Campus-Grid software. 
Therefore, the Campus-Grid has only a superficial level of control over a system compromised of 
daemon instances. In this sense the Campus-Grid is simply a source of raw computational power, as 
most management processes have been isolated and given to the models shown in Figure 4.16 and 
introduced throughout this Chapter. The exception being that a daemon is still subject to the same 
rule set as any other job, i.e. it can be suspended, evicted, sand boxed and its host workstation can 
fail.

The aim of a daemon to run infinitely means that a user can have the workstation for as long 
as it is available, rather than for the length of a Task. This duration may be significantly different, 
especially if a Task is short running or runs at night when workstations are under a substantially 
reduced demand. The steerable nature of the job also becomes beneficial, as a scheduler can sub­
mit Tasks directly to a workstation and sidestep the initialization routines that a regular job must 
forego (the daemon has already been through this process). The result is that a higher throughput 
can be achieved, without using more workstations. This also means that the requirements model 
can begin to tailor its requests for resources to the current context, and that the other models can 
try to autonomously adapt the number of workstations a user is allocated. The collection of work­
stations that a user amasses over time can be modelled as a virtual voluntary cluster of dedicated 
resources. The voluntary is self-evident in the nature of the Campus-Grid, but it must be noted that
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the architecture is not philanthropic: workstations can, and will eventually, be revoked. However, 
until such a time the workstations are dedicated to the system, and therefore its user(s). More tradi­
tional Campus-Grid approaches can employ a back-to-back scheduling strategy in a similar manner 
to the scheduling model, but they cannot side-step the initialization routines in the same way as 
this approach can. Other appraches which perform an interactive use of resources through similar 
means cannot do so in such a way that would enable the simple experiments run in Chapter 2 to be 
sucessfully completed. They also do not have the same control over the application environment 
and require more complex and inefficient communication strategies.

The autonomy of the resource pool provides a platform to address the challenges of having 
library dependencies, which were highlighted in (Section 2.3). Autonomy in this respect provides 
a stable platform, using fault identification and management to enable error handling models to 
counter undesirable workstation behaviour(s). This is achieved by the monitoring processes (Job 
Model), which relays information back to acquisition and performance models. These models then 
generate a global picture of the Campus-Grid as it is was and is currently. Here, workstation errors, 
such as faulty or non existent installations and other infrastructural faults can be detected both 
reactively and proactively. Reactive detection stems from the monitoring of a job’s state transitions 
(Job Model). Proactive detection is the identification of faults early in a job’s execution in order 
to minimize the number of wasted cycles, which could be used by another Campus-Grid user. The 
result is the ability to guarantee that, save for any runtime errors, once a workstation has initialized a 
daemon it will provide computation resources for the entire duration of its availability. In addition, 
none of these tasks must be performed by the user, enabling them to focus on their research and not 
how their research is facilitated.
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Chapter 5

Implementation

In this Chapter the implementation of the models introduced in Chapter 4 is presented, along with 
a discussion of the intricacies needed to create a practical software solution for distributed image 
processing within a volatile Campus-Grid architecture. Four key components will be introduced, 
each of which enacts one or more of the models which constitute this research. In addition, one 
utility component, which was conceived only to ease the management of distributed components, 
will also be presented. Figure 5.1 illustrates these components and also depicts how they interrelate.

Figure 5.1: Conceptual model, showing the system components. The grey box illustrates the realm 
of the user’s awareness and the blue boxes signifies the user’s concept of IAS instances as a single 
computational unit.

The key components shown in Figure 5.1 are: (1) the CRM (Condor Resource Manager, Sec­
tion 5.3), which represents the Job, Acquisition, Resource and Performance Models (Sections 4.3 
-  4.4), (2) the CSM (Central Service Manager, Section 5.4), which represents the Global Require­
ments and Allocation Models (Sections 4.5 and 4.6), (3) the IAS (Image Analysis Service, Sec­
tion 5.2), which represents the Daemon Model (Section 4.3.1), and (4) the Cl (Client Interface,
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Section 5.5), which represents the Task, (User’s) Requirements, Scheduling and User’s Models 
(Sections 4.3.2, 4.5, 4.7 and 4.9). The utility component, the LS (Lookup Service, Section 5.6), is 
also shown. Its sole purpose is to withhold a database to enable the key components to locate each 
other, and system communications to be restored upon failure. However, before introducing these 
components, an overview of how Matlab is controlled and fulfills the requirements for a daemon 
back end will be given in Section 5.1.

Many different implementation models could be used to build this system: client-server, peer- 
to-peer, web services and mobile agents are perhaps the main stream possibilities. There is no real 
reason for choosing one over another, apart perhaps for familiarity of paradigm or a specific advan­
tage with respect to the application domain or research objectives. The implementation documented 
here has adopted a version of the client-server model with some slight changes to the traditional 
model, which will become apparent later in this Chapter. In [196] a simplified version of the im­
plementation documented here was demonstrated as a JADE [197] multi-agent system, where user 
agents could interact and collaborate with Matlab agents to perform image analysis. A web service 
topology is also possible if a tool such as WS-Peer [198] is used as a container to host the services. 
Cooper et al. [199] also demonstrated a distributed system for MPI using Web Services; here the 
only challenge would be to make a servlet container available on the Campus-Grid workstations to 
host the services.

5.1 Controlling Matlab

Matlab is built upon a foundation of C and C++ libraries, which are packaged into operating system 
specific binaries. The Matlab graphical user interface is, however, written in Java, and therefore 
it requires a specific bridge to access the native Matlab engine. This means that all the necessary 
functionality to control Matlab externally is an intrinsic part of Matlab, it only needs to be harnessed 
correctly. The Matlab UI components interact with the Matlab engine using the JMI (Java to Matlab 
Interface) package. The architectural aspects of Java and the JMI mean that all of the foundational 
building blocks are in place for a complete software solution. Therefore this API can be harnessed 
by exploiting the hereditary properties of the Java object model to control Matlab from a custom or 
third party application.

The design of Matlab does, however, elicit one requirement: any Java application that wishes 
to control Matlab must run on Matlab’s JVM. There is also one implementation challenge: the JMI 
is neither consistent across various operating systems (it is not platform independent) nor through 
different Matlab versions (it is not backward or forward compatible). This means that every time 
Matlab is upgraded, any Java-based controller may also need updating. The JMI is also mostly 
undocumented, which adds to the challenge of harnessing it. Figure 5.2 shows the basic structure 
and flow of information within the JMI architecture. This is not a complete representation, but 
aims to give an overview of what occurs. Essentially, the key class is the M a t l a b  class (com.  

m a t h w o r k s  . j m i  . M a t l a b ) .  The three method calls shown in Figure 5.2 are the methods that
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have been used and worked for Windows and/or Linux versions of the JMI. To physically pass 
Matlab an instruction, a user defined Java application should create an instance of the M a t l a b  

class and call either one of the methods shown in Figure 5.2 or any of the many other relevant 
methods.

Figure 5.2: The structure of the Matlab JMI Interface.
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To get a result back from Matlab is more challenging. Remember that the JMI is written for 
graphical output. Therefore results are not needed in a useable format, as they are held within 
Matlab’s memory, enabling the UI to access data by reference (variable name). For this reason 
results are returned as Strings in the format that they are displayed in the Matlab workspace. When 
using Matlab from a Java application, such a result format is undesirable, impractical and would 
require unnecessary parsing and String manipulation to be made useable. Here, the interpreted 
functional language of Matlab is very useful, as a Task Sequence can also be executed from within
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Matlab using an interpreter. Matlab provides several interpreters, but the most common is e v a l, 
which simply executes a Matlab expression.1 A Task Sequence can come from a text file, which can 
be either local or accessed via a URL. Otherwise regular Matlab code can call an interpreter, passing 
a Task Sequence as an argument. These two basic abilities mean that it is possible to use Matlab 
to control itself. It also means that an interpreter can be used programmatically, and therefore the 
output from Matlab can also be controlled and tailored into a useable format.

In summary, there are two key areas that need to be addressed when controlling Matlab, and 
any other application environment: (1) A general approach for the income of Tasks and how they 
transpire into a call to the application environment’s engine. In Section 5.1.1 a control application 
is defined for this purpose. (2) A general but still customisable approach for result generation and 
error handling within the application environment. Meta-Interpreters (Section 5.1.2) are used to 
define how a Task is executed once the engine itself has been invoked.

5.1.1 M atlab Control Application

A control application is a means to bridge the gap between the user and Matlab; its main purpose to 
the make the interaction with Matlab as transparent as possible by displacing the idiosyncracies of 
Matlab interaction. For all intensive purposes it is a front end to Matlab just like the Matlab desktop 
and command line. There are very few restrictions to what a control application can be or do, but it 
must be run on Matlab’s internal JVM. Here, it can exploit the open nature of the JMI, and facilitate 
external calls to the Matlab engine upon request. There is no restriction on the number of control 
applications that can run in parallel within a single Matlab session. However, only one can have 
access to the Matlab engine at any given time, as Matlab is a single threaded environment. Failure 
to adhere to this implementation constraint will result in Matlab throwing a fatal error, which will 
result in an inelegant thread dump and termination of the working session.

Figure 5.3: Architecture of a Control Application 
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Figure 5.3 illustrates the architecture of a control application. The actions defined in this Figure 
are: (1) The user calls the control application, passing one or more Task Sequences as input. This 
action can occur at any time during the execution of a Task Sequence. (2) If the user has passed more 
than one Task Sequence, or if the control application is currently executing another Task Sequence,

‘it can however, instantiate and assign values to variables as part of a sequence.
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the new Task Sequence(s) are placed into a queue. (3) When Matlab is available, a Task Sequence 
is passed to the JMI front end for execution. (4) The Task Sequence call is generated (this process 
is explained below) and the engine is invoked using the JMI. (5) The Task Sequence is executed 
by a Meta-Interpreter and the result generated (see Section 5.1.2). (6) The result from the Meta- 
Interpreter is returned to the control application. (7) The Task handler is informed that execution has 
completed, it now checks the queue to determine if another Task Sequence is available for execution. 
(8) The result is returned to the user.

Generating the JMI call is the most error prone aspect of implementing this interface. This is 
due to the difficulty in determining the correct route of invocation, which is a consequence of the 
undocumented and inconsistent nature of the JMI. The easiest way to determine what options are 
available is to use the Java Reflection API, or other reverse engineering tools. Essentially, if the 
wrong method or input arguments are used Matlab will crash. Once the correct route through the 
JMI has been determined, Matlab control is very intuitive.

The control application calls a Meta-Interpreter (MI) (a means to standardize Task Sequence 
execution; Meta-Interpreters will be discussed in greater detail in Section 5.1.2) directly and the 
Task Sequence is passed as an argument. At this point the means for the MI to return the result is 
also specified, because the basic JMI functionality is inadequate. The simplest method to use is an 
event queue within the control application, passing the means to invoke and create an event to the 
MI as input. This approach also fits nicely into the distributed computing context, because if more 
than just the control application require the result multiple event handlers could be provided at this 
point. In addition, the differences in the JMI do not interfere with this approach, which means that 
this approach improves the platform independence of the interface.

5.1.2 Meta-Interpreters

For an interface such as this, it is desirable that every interaction is treated in the same fashion. This 
makes results more usable and accessible further on in an application pipeline. It also means that a 
user does not have to be concerned with how interaction with Matlab is achieved. A meta-interpreter 
(MI) is a means to standardize how a Task Sequence is executed. In the scope of this interface, it 
is defined as a Matlab function that takes a function or function sequence (Task Sequence) as an 
argument, executes it, generates a result in a pre-defined and standard format and, if necessary, 
performs error handling. Should an error occur, the MI also needs to capture the source and context 
of the error event, so that it can be presented to the user or used elsewhere within the application 
pipeline for error handling.

The meta-interpreter is one of the most customizable components of the interface and this cus- 
tomisability stems from its two main roles. Namely, how the Task Sequence is executed and how 
results are extracted and represented. Such customisability can arise from different sources, e.g. 
different application scenarios may require results in different formats, others may produce Task 
Sequences in varied formats etc. However, all meta-interpreters follow the same basic structure and 
data flow, which is shown in Figure 5.4. There are two important aspects of an MI that are required
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to enable it to handle a wide range of Task Sequences: (1) the MI is given the necessary means to re­
lay the result back to the control application, (2) the Task Sequence is a correct representation of the 
analysis to be performed. This may be obvious, but aside from standard lexicographical mistakes, 
which all users can make, there is another area where more significant mistakes can occur: data 
handling. How access to data is represented is very important, for example, passing a URL to an MI 
that is unreachable is an unnecessary error. This is especially important in a distributed computing 
context, when data may be staged in, and possibly renamed, before the MI is invoked. In such cases 
the Task Sequence itself would need to be updated prior to an MI invocation. Such eventualities 
should, in the simple case, be handled by the control application (Section 5.1.1), however, in this 
approach it is handled by the implementation of the Task Model as a part of the Client Interface 
(Section 5.5).

Figure 5.4: Overview of a Meta-Interpreter. This Figure is actually a more detailed version of the 
right side of Figure 4.2, illustrating its connection to the daemon model (Section 4.3.1).
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A core assumption of an MI is that regardless of the outcome of a Task Sequence, a result or error 
will be produced. The reason for this is due to Matlab’s single threaded execution environment.2 If 
a control application has more than one Task to evaluate, it needs to know when it can perform the 
next engine invocation. By always returning a result, even an empty one, the control application is 
made aware that Matlab is ready to execute the next Task. This approach also lets the user know 
that the Task has executed without error.

Once an MI is invoked, it can begin to execute the Task Sequence, as shown in Figure 5.4. 
Ideally, this would be a single Matlab function call, but it is unrealistic to assume that this will be 
the case. Application context is also an issue that must be considered, as different Matlab toolboxes 
and third party libraries evoke different styles of programming. Similarly, different applications 
have different levels of execution granularity (Section 4.9.1), which can evoke porting large sec­
tions of Matlab code to an MI. QT3 for example, uses three letter mnemonics to represent an image 
processing function, where an algorithm consists of a chain of interchangeable function calls. En­
capsulated within these functions is all the necessary functionality to render any necessary graphical 
output. Other approaches require more effort on the user’s part for non critical aspects of Matlab, 
such as graphical rendering and algorithm backtracking. Therefore, the execution strategy that an 
MI needs to be applicable to the different styles of Matlab programming.

A general approach to Task Sequence execution does pose a low-level challenge in the capture of 
results. When a single function is called it is obvious what variables should be captured to generate 
a result. It is however, less obvious what graphical output should be captured. Here, QT provides a 
useful methodology for graphical output. All functions store the algorithm’s image state in the same 
two Matlab variables,4 making the capture of graphical output much easier. This is also persistent 
when multiple functions are called. However, for numerical output this is not the case when multiple 
functions are called within one Task Sequence. Listing 5.1 shows an example QT Task Sequence, 
which performs the following steps: (1) load one of QT’s example images, (2) calculate the average 
intensity of the image and instantiate variable a to store the result, (3) threshold the image at the 
average, a, to convert it to a binary image rather than a grey scale or colour image, (4) isolate the 
largest white region, and (5) count the number of white pixels to calculate the area of the white 
region. In this sequence it is not clear if only the calculated area is required as output, or if the 
average intensity, a, should also be returned. This is also only a trivial example; in Chapter 6 much 
more complicated Tasks will be executed, where many more than one variable can be instantiated.

2 At the time of implementation a multi-threaded version of Matlab was not available. Even now in the multi-threaded 
versions of Matlab the number of threads is limited to one per core.

3QT [200] is an augmented version of Matlab’s image processing toolkit. The image processing paradigm o f QT al­
lows the user to side step many o f Matlab’s image processing idiosyncrasies and concentrate on application development. 
Algorithms are constructed by using interchangeable sequences of function calls in Matlab’s functional programming 
language, and derived from three letter mnemonics. The main focus o f QT is to intuitively support interactive image 
processing and to assist in the development processes for the prototyping of Machine Vision systems. In doing this, QT 
allows rapid selection and testing of image processing algorithms and provides a large repertoire of easily executable 
image processing functions.

4T w o  variables are used to capture algorithm progression and enable a certain amount of backtracking. When one 
function is called, the current image (the result of the last function) is placed into a scratch variable, and the function to 
be called will write its output to the current image. Newer versions o f QT have also implemented an image stack.
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If this Task Sequence was entered at the Matlab command line exactly as it is displayed, only 
the results of cwp would be displayed. However, if the semi-colons were replaced by commas, 
the value of a would also be presented to the user. Basing the decision over what is returned 
cannot be orientated around the use of separators. There are many different ways of writing this 
Task Sequence, using different combinations of commas, semi-colons, carriage returns and even 
embedding functions as arguments of other functions. Therefore, an MI will use the assumption 
that only the final functional entity in a Task Sequence will generate results that should be returned 
to the user.

Listing 5.1: Example QT Task Sequence
r n i ( 3 ) ;  a = a v g : t h r ( a ) ;  b i g :  cwp

Listing 5.2: Ideal code for getting results for a Matlab command sequence
r e s u l t  = e v a l ( ' r n i ( 3 ) ;  a = avg;  t h r ( a ) ;  b i g ;  c w p ’ ) ;

In order to execute and collect the result from this Task Sequence it is passed through the e v a l  

interpreter. Ideally this would be performed as shown in Listing 5.2. Yet this is not possible, for the 
same reason as mentioned above: Matlab does not known what output value to instantiate r e s u l t s  

with. The solution to this problem is straightforward with the assumption that only the last function 
will be used to generate a result. Simple string manipulation can be used to identify the last func­
tional entity of a Task Sequence to enable a split execution model, as shown in Listing 5.3. The work 
around here is that the Task Sequence is executed in two parts, and the result correctly returned, in 
the second part. However, there is also a limitation with this approach: the MI would need to know 
the cardinality of the output prior to execution or all functions would need to have the same output 
cardinality. Such a requirement would make creating a general approach very difficult. Listing 5.4 
shows a conceptually identical solution, with the exception that variable instantiation is performed 
within the e v a l  call. This is a useful ability, as the contents of the e v a l  call are string-based, 
which means that they can be created on the fly and at runtime. Therefore, it is possible to generate 
an e v a l  call which can be tailored specifically to the cardinality of a function’s output. Matlab also 
provides the functionality to do this.5 Yet the basic approach provided by Matlab does not work 
for all functions6 and is inadequate in some situations.7 The simplest way to side step this problem 
is to inspect the function’s declaration, which explicitly states the number of output arguments and 
their names. It also identifies if a function uses a variable number of output arguments. It is then

5 See Matlab function: nargout.
6Functions which produce a variable number of output arguments cannot be inspected in this manner, as the number 

of arguments is not determined until the function is executed.
7When the results o f a function are to be saved to disk in Matlab’s . mat format the variable names are important for 

two reasons: (1) when the results are saved, Matlab does not retain their order, and (2) when the results are loaded back 
into Matlab, they are assigned the names given to them when they were saved. Therefore generating random variable 
names or names with no clear re-mapping are of little use.
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just a matter of keeping track of previously read function declarations, which can be facilitated by 
a lookup table. The benefit of this approach is that the necessary variables can be created on the fly 
at runtime, and that by concatenating the Task Sequence with the necessary code to capture its out­
put, the right cardinality can also be ensured. The consequence of this approach is that the Matlab 
interpreter is called twice. Nevertheless, significant performance degradation is not experienced. 
Listing 5.4 shows only a hard-coded example for one output variable, Listing 5.5 shows (with some 
pseudo code for ease of presentation) a dynamic programming solution which considers the output 
cardinality and could also adopt the correct variable name space if this was required.

Listing 5.3: The work around for Listing 5.2
e v a l ( ‘ r n i ( 3 ) :  a = avg:  t h r ( a ) :  b i g ’ ) ;  
r e s u l t  = e v a l ( ‘c wp ’ ) :

Listing 5.4: Syntactically the same as Listing 5.3 but enabling a far more powerful approach
e v a l ( ’ r n i ( 3 ) :  a = a vg;  t h r ( a ) :  b i g ;  r = c w p ’ ) ;  
r e s u l t  = e v a l ( ’ r ' ) :

Listing 5.5: An example of extracting multiple result variables by applying a general dynamic 
programming approach
[ f s - s t a r t  . f s . e n d ]  = s p 1 i t ( f u n c t i o n  . s e q u e n c e  ) ; % i d e n t i f y  the l a s t  f u n c t i o n a l  e n t i t y  
args  = o u t p u t V a r i a b l e s  ( f s _end  ) ; 7cre t urns  an a r r ay  o f  v a r i a b l e  names

i f  ( s i z e ( a r gs  ) == 0)
%t her e  are no r e s u l t s
eva l  ([ f s . s t a r t  . f s . e n d ] ) ;
r e s u l t  = ’n o _ r e s u 1t s ’ :

el se
r e s u l t S t r  = ge n e ra t e R e s u 11S t ri n g ( a r gs  ) %o u t p u t  f o r m a t  — [ a , b , c ]
e va l  ([ fs . s t a r t  . r e s u l t S t r .  ' = ’ . f s . e n d ) ) ;  %c o n c a t e n a t e  a l l  component s  and e x e c u t e
r e s u l t  = eva l  ( re  s u 11 S t r ) ; %i n s t a n t i a t e  r e s u l t  as an ar r ay  o f  the v a r i a b l e s  g e n e r a t e d

by the eva l  i n v o c a t i o n .
end

c r e a t e R e s u l t O b j e c t (  r e s u l t  ) ;

To capture visual output, QT’s methodology is adopted. If the programmer wishes to return an 
image as a result, they must store it in either of QT’s image variables. The MI will then save these 
images to disk, using a unique name8 and return a file handle.

Once the results have been gathered, they must then be represented in a standard format. Matlab 
transparently assigns types to its variables, but when they are to be converted into Java objects, all 
transparency is lost. Instead, the Java type to be used must be explicitly constructed, however, this 
is a straightforward procedure. There are only two types which any application can be concerned

8The rand function cannot be used here, as it is a seeded random function, which will always produce the same 
output sequence. Instead, all output files names are based upon the current time in nanoseconds and the function which 
created the result(s).
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with: strings and numbers, both of which are easily identifiable. When it is necessary to return mul­
tidimensional data sets it is simply a case of creating a multidimensional array, which is elementary. 
The output data is then placed into an Object wrapper, along with the relevant file handles for saved 
images, and returned to the control application, by using the provided means.

When Matlab throws an error, it does so in a very pragmatic manner, by showing the cause of the 
error, which function was called and where specifically the error was generated (a line number). It 
then builds an execution stack to illustrate how this function was called. To capture this information, 
an MI firstly needs to ensure that an error can be caught, and secondly, to represent the error in a 
useable format. This is achieved through a similar representation to that of regular Java exceptions, 
a stack trace is created from the Matlab error, and this is then sent back to the control application as 
the result.

5.1.3 Controlling Compiled Matlab

Compiled Matlab is a very different kettle of fish to regular Matlab. Firstly, and most importantly, 
it is license free; the licensing agreement even allows compiled Matlab products to be sold without 
reparation to TheMathworks, with some terms and conditions. Secondly, controlling a compiled 
Matlab application is not trivial. There are two key reasons for this: (1) When a compiled Matlab 
application runs out of things to do it shuts down, unlike regular Matlab. This is a very undesirable 
feature, as it would mean that if the application was deployed as a service or as a job on a distributed 
infrastructure such as a Campus-Grid, it would have to be restarted for each invocation. (2) The JMI 
for compiled applications is even harder to interact with than for regular Matlab. An approach that 
works for regular Matlab may not work when Matlab is compiled.

Keeping the Matlab engine alive is actually quite trivial, albeit somewhat mischievous. To 
ensure that the Matlab Component Runtime (MCR) does not shutdown, the initialization routine 
should open a Matlab figure. When a figure is open, the engine can be left idle indefinitely, solving 
what could have been a critical flaw in an implementation of the daemon model (Section 4.3.1).

Solving the challenge of the JMI interaction is less straightforward. The cause of this complica­
tion is that few of the Matlab components which use the JMI are needed by compiled applications. 
Nevertheless, the MCR still retains the JMI package, and therefore the functionality is available 
and operational. The only implementation challenge is to determine which route through the JMI 
is operational within a compiled context. Windows implementations of the JMI are a lot easier 
to interact with than those for Linux derivatives and Macintoshes, even for compiled applications. 
However, in many cases a Windows version of the JMI will work on other platforms, due to the 
JMI’s foundational base of Sun’s JNI.

5.1.4 Summary

This interface uses the Java to Matlab Interface (JMI), which is a core part of the Matlab package, to 
control Matlab. Control is facilitated through two key components: (1) a control application, which
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regulates the invocation of the Matlab engine and provides the bridge for the transportation of results 
out of the Matlab engine, and (2) a Meta-Interpreter, which provides a standardized approach for 
the execution of Task Sequences, result generation and error handling. This interface provides the 
foundation basis for the exposition of Matlab as a computational service. The Image Analysis 
Service (IAS) presented in Section 5.2 will introduce how this interface can be used to create a 
remote service capable of interactive Matlab capability, but within a compiled, and therefore license 
free context.

There are other approaches for controlling Matlab from Java in the literature and the most pop­
ular is JMatLink [152]. However it is not known whether JMatLink can control compiled applica­
tions. In fact, no other solution has been found throughout the literature that has documented this 
ability. JMatLink has lessened the difficulty of extracting useable results from Matlab, but it is not 
yet perfected.

This interface was built for Matlab R2006a for Windows XP and a basic overview has been pre­
sented to detail how this interface could be recreated. It cannot be guaranteed that newer versions of 
Matlab will be controllable with the specification provided here. As mentioned previously, Matlab 
is neither backward compatible nor platform independent with respect to its JMI architecture. Every 
effort has been made to side-step this questionable implementation detail of Matlab, but ultimately 
every new version of Matlab provides new challenges in regard to its control from Java. Typically, 
the point of failure in a Matlab interface is the choice of method called in the M a t l a b  class as 
shown in Figure 5.2. Once the correct call has been established, the remainder of the implementa­
tion is intrinsic. It is also worth noting that older versions of the JMI may work with newer versions 
of Matlab.

5.2 The Image Analysis Service -  IAS

The Image Analysis Service (IAS) is the implementation of the daemon model (Section 4.3.1). 
The main aim of a daemon, apart from its pilot nature to determine workstation capability, is to 
be a general computational service for heterogeneous applications. In addition, because software 
licenses (in this case Matlab) are expensive, it should also be license free. In the context of Matlab, 
satisfying these two requirements in one software solution is not trivial. This is because typical 
compiled Matlab applications can only cater for one or few homogeneous application scenarios, 
can only be used in batch mode and must consequently be initialized for every Task as a new job.

An implementation of the daemon model differs in several ways. Firstly, it caters for many 
disparate application scenarios, by including entire toolkits and not just the snippets of typical ap­
proaches. Secondly, one instance serves multiple distinct Tasks with only one initialization phase. 
In other words, a control application front end enables interactive steering at runtime. This reduces 
the impact on performance of unpredictable queueing times within the Campus-Grid and also min­
imizes Task setup time. It therefore results in a higher job throughput and more consistent Task 
execution times.
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The IAS will be described in two sections, each of which present two different areas of func­
tionality. Firstly, in Section 5.2.1 the process of incorporating Matlab functionality into the IAS and 
the novelty of this approach is described. In Section 5.2.2 the functionality required to make the 
control application (Section 5.1.1) capable of running in a remote context is presented.

5.2.1 Incorporating Matlab Functionality

The key to facilitating heterogeneous applications is the inclusion of functionality. The obvious 
solution in a Matlab context is to include entire toolboxes to increase the range of available func­
tionality. However, compiling entire Matlab toolkits requires a very different approach to compiling 
a typical application. Normally the compiler only needs to be told which function to compile and in 
the majority of cases all dependencies are handled transparently by Matlab for the user. The result 
is a very intuitive and useable interface to the Matlab compiler; Listing 5.6 shows an example. The 
compiler cannot handle all dependencies transparently: if a function relies on precompiled Windows 
Dynamic Loading Libraries (DLL), a static library (LIB) must be available to enable the compiler 
to create the necessary bindings. If one is not available it must be generated before compilation is 
performed.

Listing 5.6: Example call to compiler for the compilation of a typical Matlab application
mcc —m myFunct i on

Compiling an entire toolbox or multiple toolboxes is not as straightforward, as a “head” function 
to pass to the compiler, functions such as “m y F u n c t io n ” in Listing 5.6 seldom exist.9 Without 
such a function the compiler cannot build the list of dependencies needed to compile the toolbox. 
Consequently, the list of functions to include must be determined prior to the compiler call. The 
compiler will handle most dependencies beyond this point. In addition, a head function must be 
generated to: (1) initialize the control application, and (2) open a Matlab figure to keep the engine 
alive in idle periods.

The consequence of compiling entire toolboxes to create a general daemon is that the length 
of the compiler call soon becomes too long to be managed by hand. For example, in Chapter 6 
QT [200] is combined with PRTools [201] and DIPLib [202] to support the neurological analysis of 
Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data. The call to the compiler for such a 
daemon is in excess of 60,000 characters in length. In addition, the compilation also required over 
120 LIB files to be created, for the compiler to build the necessary bindings for the DLLs of DIPLib. 
Naturally, the generation of the compiler call cannot be performed by hand. In addition, manually 
performing the LIB generation is tedious and is therefore automated using a freely available tool 
DLL to Lib is available from Binary Soft.10 This is achieved by creating a project file and calling

9Even when a head function does exist for a toolbox, it cannot be guaranteed that it will encapsulate the sufficient 
dependencies to identify the complete toolbox functionality.

I0h t t p  : / / www. b i n a r y - s o f t . c o m / d ! 1 2 1 i b / d l l 2 1 i b  . h tm last accessed May, 2008

http://www.binary-soft
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DLL to LIB from the command line, using the project file as input. Essentially, the project file con­
tains a standard HEX header, followed by the length of the filename, two default startup arguments, 
the name of the file to produce (which must be the same as the input DLL only with a different 
extension) and finally a standard footer. The same process is then repeated for each DLL where a 
LIB is not yet available. Once a LIB is available, the compiler can then use it to link against the 
DLL it represents at compile-time; the LIB is not needed after compilation.

The solution for the compilation process has been to create an Autonomic Compiler (AC), which 
can be implemented in any language that Matlab can run. The AC in this instance has been written 
in Java with a Matlab wrapper function to call it. Essentially, the user supplies a list of directories 
which contain the toolboxes they wish to incorporate into the daemon. They also indicate whether 
the directory tree should be recursed or not, provide a list of functions to exclude and finally the 
name of their head function. Exclusions can be represented in different formats, for example, a 
regular expression, canonical path name or simply the name of the function to exclude.11 Finally, 
the AC will then traverse all directories and search for Matlab functions, which pass the exclusion 
rules. It will also identify any DLLs and create a list of those which do not have an associated LIB. 
The AC will then generate any required LIBs using the above method and generate the compiler 
call. The e v a l  interpreter is used to execute the compiler call, which is structured as shown in 
Listing 5.7.

Listing 5.7: Structure of the automatically generated compiler call
mcc — mv h e a d F u n c t i o n  l i s t  of  f u n c t i o n s  and DLLs

When dealing with this magnitude of functions, it is not uncommon to encounter functions, 
which are synonyms and could confuse the compiler. To combat such events all functions are 
referred to explicitly using their absolute path. Similarly, the AC will discover functions which 
contain erroneous functionality, illegal characters or that do not have valid function descriptions, 
all of which cause the compiler to fail. These are typically test scripts, which are not required 
within the IAS. For this reason compilation inevitably requires some supervision. When multiple 
functions cause the compiler to fail supervision can become tedious, as Matlab only reports one 
error per compilation attempt. The compilation process is also time consuming and for an LAS of 
the magnitude described in Chapter 6 requires about five minutes per attempt. To prevent the user 
from having to upgrade their exclusion list by hand after each attempt, the AC employs a dynamic 
exclusion list (self configuration) based upon faults it has experienced whilst trying to execute the 
compiler call.12 This list represents every function that has caused the compiler to fail, so that

11 Note that if only a function name is supplied for exclusion, all functions with this name will be excluded.
12To pin down the cause of a compilation error is not as straightforward as it would be expected. The output error from 

the compiler defines only that it has failed and the source of originating call, but not which function caused the failure. 
This is displayed on the Matlab command line as an error message, but it is not encapsulated into the error event. To 
capture this information, the AC uses the compilation flag v  (verbose) in conjunction with the Matlab diary function, 
which records all output displayed at the command line in a text file. Regular expressions are then used to identify the 
most recent compiler error and its cause. The cause is stored to inform the user o f the reason for the failure and enable
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it can regenerate the compiler call after each failure to remove the problematic function. It also 
means, the AC can continue trying to perform the compilation and present all faults to the user at 
once, who can then make the necessary corrections to all functions, or simply delete the function 
if it is superfluous. The AC will stop the compilation process to present the code faults to the user 
either: if a successful compilation has occurred, or if a function cannot be excluded, for instance if 
another function is dependent on it.13 After a successful (or failed) compilation the AC will update 
the Matlab wrapper function which called it14 to include the exclusions it needed to perform the 
compilation. By employing this approach, compilation can become a background process enabling 
the user to perform other tasks either until the compilation process has completed, or until the AC 
requires user support. Thereafter they can perform all the necessary editions to important functions 
and invoke the AC again for the final compilation. Using this approach even the most challenging 
toolboxes have been compiled with little or no user effort.15

Other useful tasks can also be performed during the generation of the compiler call. During the 
introduction of the MI architecture (Section 5.1.2) the importance of knowing both the cardinality 
of a function’s input and output as well as the names ascribed to the output variables was presented. 
The compiler call is built by identifying every function of a toolbox that the user could conceivably 
call. Therefore, by inspecting the function declaration of each function, a complete database of 
function cardinality and mapping of output argument names can be generated for use by the Mis. 
After the compilation process has been completed the AC can also be instructed to upload the 
generated application, with all the required daemon code, to the Campus-Grid submission node 
(CRM Section 5.3) for transparent distribution across the Campus-Grid.

5.2.2 Daemon Functionality

Once the necessary functionality has been selected by the user and incorporated into a compiled 
stand-alone Matlab application, a front end is required, so that at runtime Tasks can be received, 
executed on the Matlab engine and the result returned. For this purpose the general control appli­
cation introduced in Section 5.1.1 needs to be extended, so that when it resides on a Campus-Grid 
workstation the core components can interact with it. To achieve this the basic control application is 
extended to encapsulate the necessary daemon characteristics: (1) a heart beat for monitoring, (2) a 
front end for remote steering, (3) the ability to disseminate Tasks to identify data dependencies, and
(4) the ability to host result data.

Figure 5.5 shows an overview of the constitutional IAS modules and the basic flow of informa­
tion for Task execution. The sequence of events are as follows: (1) A Task is received by the IAS.
(2) The Task is passed to the Task handler (control application) where it is analyzed for data de­
pendencies. (3) Data (if necessary) is downloaded and the Task is placed into the daemon’s queue.

them to suitably modify the function in question.
13 In this case the AC will open the function in the Matlab editor and inform the user of the cause of the failure. At this 

point all other functions causing the compiler to fail can also be displayed.
l4This is detected by accessing Matlab’s function invocation history.
15This also includes the SPM [2031 toolbox, which the end user believed to be uncompilable.
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Figure 5.5: The architecture and information flow of the IAS, the left side of Figure 4.2
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(4) When the Matlab engine is available the Task handler generates the Matlab call and invokes the 
engine through the JMI (as described in Section 5.1.1). After execution the result is received and 
modified to include the endpoint of the HTTP server so that result data can be downloaded. (5) The 
result is returned to the Cl, which may then interact with the HTTP module directly to download 
results. There are two basic result formats provided by the IAS: (1) an array (as defined by the 
control application in Section 5.1.1), and (2) a Matlab .m at  format of results. Here, the lookup 
table of output cardinality and variable names generated by the AC is used by an IAS MI to define 
the result representation for the . mat file, as shown in Listing 5.5. In the latter case the result is a 
URL to the . mat file, hosted by the IAS instance’s HTTP server.

The daemon front end is a basic server implementation, which uses a singleton Task handler 
to process and queue received Tasks. In a regular client-server model the client retains an active 
connection until a response is received. This is not the case in this implementation, due to the 
potential that multiple communication channels (one for each Task in the daemon’s queue) be open 
for long periods of time. Such an implementation could lead to high communications overhead and 
the daemon front end can become a performance bottleneck. Similarly, on the client workstation, if 
multiple communication channels are open to all IAS instances bandwidth is wasted unnecessarily, 
and will limit performance as the number of IAS instances “owned” by a scheduler increases. In 
addition, having more open sockets relates to a higher memory consumption (from the required 
buffer space). It is also more difficult for the operating system to identify a free port number for the 
communicative action. For this reason, the Task model was extended to encapsulate the necessary 
information to enable a daemon to reestablish the connection with the Cl to return the result once it 
is available (see: the Cl’s results server in Section 5.5.2).

Perhaps the key area of functionality for a daemon is its pilot routine. A daemon job needs to 
demonstrate the capability of a workstation to perform Matlab jobs. The issues of resource volatility 
are the cause of this necessity and were identified in Section 1.3.1 and Chapter 2. In order to run 
a Matlab job, the MCR needs to be correctly installed. In a large number of cases all or part of 
this library was missing. Therefore, the quickest way to (initially) test a workstation is to quantify 
the size of the MCR directory. All MCR-ready workstations share the same installation process. 
Consequently, the MCR should always be in the same place, save for unannounced changes to the
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Campus-Grid installation structure, which are not always seldom occurrences. If the measured size 
of the MCR directory is below the known size, the daemon’s pilot routine will not even permit the 
workstation the chance to attempt to run the IAS initialization routine.

If the pilot routine deems that the MCR installation could be correct, it performs any other 
necessary pre-initialization checks. The Cardiff Campus-Grid is incapable of running Java jobs 
under the default settings, in fact workstations as a whole can struggle to run Java applications. This 
inability stems from perpetual changes to the Java run time environment installation, and therefore 
the Condor installation cannot be pointed at a persistent Java runtime. As a fallback a spare daemon 
initialization routine is written in Java, which can be a problematic. Typically the initialization 
routine uses a pre-installed utility to unpack (unzip) the IAS, yet sometimes this tool is not available 
and a backup approach is needed, which is written in Java. The lack of a trusted Java availability also 
prevents the daemon pilot routine and initialization from being written in Java, and the result is a 200 
line windows batch script. To alleviate the unpredictable nature of Java’s availability, the daemon’s 
pilot routine locates a version of the Java runtime environment and adds its location to its session 
Windows path. To locate a Java installation, the pilot routine first searches the Windows Registry 
for the latest installation of Java. If one is not found, it then probes the most likely locations (C 

: \  J a v a  and C : \ P r o g r a m  F i l e s  \  J a v a  for example) of the workstation’s hard drive for Java 
installations. Finally, if it still cannot find an installation it will use the MCR’s Java installation. The 
selection of the MCR runtime is not made first because it is likely to be older than those available 
on the workstation and specifically modified for Matlab. The LAS can now be unpacked and the 
Matlab stand-alone executable invoked regardless of the state of the workstation.

The startup process of the daemon involves instantiating the server front end (and a HTTP 
server) and then the discovery of the CSM (Section 5.4) by using the LS (Section 5.6). As soon 
as an IAS registers its presence on the system (i.e. it achieves the initialized state) it demonstrates 
a workstation’s ability to perform Compiled Matlab jobs. If this state is not reached, the CRM 
management strategies (Section 5.3.3) will terminate the IAS job. To announce its successful ini­
tialization the IAS daemon, after it has located the CSM (using the LS Section 5.6), will also inform 
the CRM that it has successfully initialized (again using the LS). When such a request is received, 
the CRM updates the job model (Section 5.3.1) and records the Job ID, workstation ID and elapsed 
time in the performance model’s database (Section 5.3.3).

When an IAS is allocated to a user by the CSM (Section 5.4.2), it commences internal monitor­
ing of activity, to identify when it is not being used sufficiently. The idea behind such an approach 
is to inform the CSM of improper use of its services, which may stem from too many IAS instances 
for the user’s scheduler to handle or some error may have occurred causing the Cl or its scheduler 
(Section 5.5.3) to crash. Currently, this process is orientated around idle time, where if an IAS 
is idle (has no Tasks), but is allocated, it will inform the CSM after a predefined period of “idle­
ness” has elapsed. The CSM will then retract the allocation of the IAS and the user’s scheduler 
is informed. This process is in place primarily for two reasons. Firstly, to identify discrepan­
cies between the claims of a scheduler in its ability to consume resources (the user’s requirements
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model: Section 4.5) and secondly, in future work where multi-user scenarios are considered (see: 
Section 5.4.2). If such cases were to arise the IAS instance could be allocated to another user.

5.2.3 Summary

The IAS is a remotely steerable interactive computational service, capable of servicing heteroge­
neous Matlab applications through the incorporation of one or more entire toolboxes. It is the only 
known implementation of an interactive compiled Matlab-based service which is built from Matlab 
itself and not a third party or open source foundational context. As a result a user can retain much of 
their “normaF operational context and therefore reduce the challenge of portability (Section 1.3.7). 
Similarly, due to its context within the Campus-Grid environment and architecture, the user does not 
need to be concerned about how it is controlled or communicated with (see: Section 5.5). Therefore, 
virtual clusters of IAS instances can be modelled as a black box.

5.3 Condor Resource Manager -  CRM

The CRM is an implementation of the Acquisition, Job and Resource Models (Sections 4.4, 4.3, and 
4.4.1) or the top half of Figure 4.16. Its key roles are: (1) the submission of the IAS daemons intro­
duced in Section 5.2 (the Acquisition Model: Section 4.4) to construct a virtual cluster of dedicated, 
but voluntarily supplied Matlab-enabled resources. This process is presented in: Section 5.3.5, and 
involves the monitoring of the Campus-Grid as a whole (Section 5.3.2) to determine whether more 
IAS jobs could be supported. (2) The management and monitoring of IAS jobs (the Job Model: Sec­
tion 4.3). This process is presented in: Section 5.3.1. (3) Workstation profiling based upon previous 
performance (the Resource and Performance Models: Section 4.4.1). This process is presented in: 
Section 5.3.3.

53.1 Job Model

To build the Job model the CRM uses the Condor logs as a primary source of input. The logs en­
compass which events occurred in a job’s life and when. For example when the job was submitted, 
started running, changed its memory consumption, if it was suspended or if Condor lost communica­
tion with the host workstation and if it terminated what the exit code was. This is the same approach 
as that used in Chapter 2, however, for the CRM the Condor logs by themselves are insufficient, as 
they cannot identify the new states introduced for the IAS and therefore this additional information 
is stored externally. This information is stored in a MySQL database for speed, but could be any 
other suitable format. The combination of the CRM custom monitoring and the logs enables the 
CRM to construct a state space for every job that has been submitted to the Campus-Grid by the 
CRM. Figure 5.6 shows the possible states for an LAS and their transitions.

The job model is a primary source of input for the performance model (Performance Model: 
Sections 4.4.1 and 5.3.2), where it provides real time information concerning the time consumed
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Figure 5.6: Possible state transitions of an IAS job

/
Initialized

Running Suspended (OR}

Dead
Idle

for the state transitions of an IAS instance for each workstation acquired by the CRM. Naturally as 
a state space, data mining tools can also be employed to establish how long on average a job needs 
to commence execution once submitted, the average job life time and the time required to progress 
from running to initialized, all of which are possible at both an individual workstation and global 
level. Therefore, the CRM can estimate how long state transitions should take, and terminate jobs 
(as specified in Section 4.4.1) when these expectations are not met. Similarly, more complicated 
statistical models could be employed.

To extract data from the Condor logs, the first three characters of each line are processed to 
identify a Condor state transition. If a line begins with a three digit number a new state transition 
is documented, where the number identifies the type of transition. For each transition the Job ID16 
and event time are recorded, in some cases other additional information is also recorded. Regular 
expressions are used to extract the exact contents of the event.

5.3.2 Resource Model

In order to prevent the CRM from submitting too many jobs it monitors the Campus-Grid as a 
whole, which enables it to build up a general picture of the current state of resource utilization and 
availability.

Campus-Grid Monitoring

Campus-Grid monitoring identifies the current state of the Condor pool in real time. For example 
how many jobs (from all users) are idle or running, how many workstations are in use, how many are 
idle and of those which are idle how many are reliable MCR-enabled workstations. This monitoring 
information allows the CRM to determine how many IAS jobs can currently be supported by the 
Campus-Grid. The data for this analysis is collected by parsing the command line output from 
c o n d o r_ s ta tu s .  Listing 5.8 shows an example of compiling a list of workstations that are both 
unclaimed17 and MCR-enabled, suppressing the output to only the name of the workstation and its 
RAM. Listing 5.9 shows example output of this. Note the use of different naming standards in this

16In other implementations the programmer should consider that a Job ID is not globally unique and is also repeatable. 
The Condor command c o n d o r _ c le a n  will reset the ID counter.

17A workstation which is both idle (a Condor node) and available for a Condor user to use.
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Listing, preventing the construction of an intuitive workstation name space for the CRM.

Listing 5.8: Retrieve a list of unclaimed idle MCR-enabled workstations
c o n d o r . s t a t u s  —c o n s t r a i n t  HASJvlATLABJV74==TRUE —c o n s t r a i n t  S t a t e  == \  ‘ ‘ U n c l a i m e d \ ’ ’ —form at 

‘ '%s , Name —f o r m a t  “ % s \ n ’ ’ Memory

Listing 5.9: Example output from Listing 5.8

j ENROL20,2038 
| ENROL22.2038 

ENROL25.2038 
; ENROL28,2038 
j X0007E9DED939.1022  
! XOOOCF1FD5B85.494  
j  XOOOCF1FD5BEF.494 

X000CF1FD5CD5.494  
1 X000CF1FD5D4C . 494 

X000CF1FD5DF0.494

By simply counting the number of lines, the CRM can determine the number of available work­
stations. However, by itself this information is quite meaningless due to potential mistakes in a 
workstation’s Class Ad. Therefore, the CRM can query the performance model for each available 
workstation to ascertain the number of workstations that could realistically host an LAS job. By 
employing the performance model in this way, the CRM can enrich the information provided by 
Condor through the use of past experiences at the workstation level. This ability enables the CRM 
to decide if there is any purpose in submitting new LAS jobs, based upon its analysis of whether one 
or more workstations are available that have a history of successfully hosting an LAS job.

W orkstation D atabase

The CRM maintains an active database of every workstation to have ever connected to the Condor 
pool during a CRM status poll, or to have run an LAS job. Given the transient nature of a worksta­
tion’s membership to the Condor pool, the size of this database does not adhere to the actual size of 
the Condor pool. It, in fact, contains between two and three times the number of entries than the of­
ficial Cardiff University figures concerning the size of the Condor pool. Essentially, this shows how 
much the day to day administration of the Campus-Grid affects each workstation’s status within the 
Campus-Grid creating the dynamic and volatile environment which was outlined in Chapters 1 and 
2 .

To build the base of the resource model, the ClassAd for each encountered workstation is parsed 
to extract the necessary data and key attributes outlined in Section 4.4.1. Namely, the workstation 
identifiers: IP address and DNS name and the NetBIOS name map, which is provided by output 
such as that shown in Listing 5.9. When the CRM discovers a NetBIOS name that is not present 
in its database, it attempts to acquire the ClassAd for this workstation. It is not always possible
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to receive the ClassAd upon request due to the workstation leaving the pool, or simply refusing to 
transfer it. Therefore, gaps in the CRM’s Campus-Grid knowledge are always present. The database 
can encompass any number of the ClassAd attributes, but currently nothing more than the worksta­
tion owner18 and identifiers are necessary.19 The database does not retain whether the workstation 
announces MCR capability or not, as this feature is too dynamic and unreliable. Instead the perfor­
mance model captures all successful Matlab jobs and failures,20 in order to depict a workstation’s 
current state (or at least its last known state). It also shows a workstation’s stability with respect 
to state switching. This is a much more powerful approach, as a profile of each workstation can 
develop over time. In addition, the last recorded interaction can be modelled as a measure of confi­
dence with respect to the accuracy of the CRM’s knowledge of each workstation. For example if a 
workstation has a solid history of success or failure it only needs a pilot job once a day to confirm 
its capability. However, other workstations will require many more pilot jobs for the performance 
model to capture their state and its variability. In this respect the performance model provides the 
foundation for (simple) learning techniques, which aid the decision making processes of the CRM.

The CRM polls the Campus-Grid hourly, to ensure that any unknown workstations are recorded. 
The basic individual workstation record is updated daily, in order to confirm that the current infor­
mation is correct.21 This process for adding and confirming a workstation’s base record is the 
same, with the exception that where a new record is added, an existing one is updated if a dis­
crepancy or change is detected. This process is shown in Figure 5.7 and can be summarized as 
follows: firstly, the CRM identifies all machines currently connected to the Condor System (using a 
c o n d o r _ s t a t u s  call like that shown in Listing 5.8) this returns a list formatted like that shown in 
Listing 5.9. Secondly, for each workstation the CRM downloads the ClassAd to local disk. This is 
performed by directing the output of c o n d o r _ s t a t u s  - l o n g  WORKSTATlON_NAME to atext 
file. The naming standard for the output is in accordance to the NetBIOS name of the workstation, 
as this provides a basis for identification and ClassAd validation. Finally, each attribute needed for 
the database is extracted from the ClassAd and the database is updated accordingly. Remember that 
the NetBIOS name is needed as Condor identifies a workstation for blacklisting using this name, 
but identifies a workstation in the job logs using its IP address.

l8E.g. COMSC: School o f Computer Science, OAWS: Open Access Workstations, which are typically in libraries 
and open computer suites. OAWS can be suffixed with extensions relating to which building the workstations are in. 
OAWS-CARBS, for example, are workstations in the Cardiff School of Business, BIOSC: School of Biosciences etc.

19In future work this could be extended to encapsulate all or larger portions o f the ClassAd and other observed be­
haviours, so that the CRM could act as a Campus-Grid Information Service [177], The benefit of this would be that when 
no other service such as Condor’s Quill or HawkEye is present, the CRM can take their place. The benefit of a GIS is that 
it can supply schedulers with additional information when they are in the planning stages. It could for example indicate, 
how long on average a given workstation is available, its last benchmark scores etc.

20For example the data from Section 2.3 could be used as a training set for the performance model.
2'Workstations can change on a daily basis, as observed in Chapter 2, with respect to their state and performance 

benchmarks. However, it is also not uncommon for IP addresses to be reassigned and therefore the CRM must capture 
this information for consistency. For example the analysis performed in Chapter 7 was interrupted by an overhaul of the 
network topology as the as the network was migrated to a layer three network. Here, the IP address of most workstations 
where migrated from a 131.251.*.* address to a 10.*.*.* address. Consequently, the CRM’s database was overnight 
drastically inaccurate as the NetBIOS name to IP address map was made redundant. It required three months for the 
CRM to rebuild the map to same level of extent.
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Figure 5.7: The process of extracting workstation information
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53.3 Performance Model

The necessity for strong fault management in the domain of this research has been motivated for 
in Chapters 1 and 2. The aim of the performance model (Section 4.4.1) is to provide a foundation 
for the CRM to avoid and identify the different scenarios where resource volatility affects job man­
agement. The Job and Resource Models (above and defined in Sections 4.3 and 4.4.1) provide a 
foundational basis for adaptive and dynamic fault management and self-configuration of the system 
as a whole. These two models provide all the necessary information to construct a model of a work­
station’s performance over time. For example, analysis of previous IAS jobs can indicate firstly, if 
the workstation has a history of job failures and which type of failure has occurred. Secondly, if 
the workstation is capable of successfully running an IAS job, a prediction of the maximum time 
required for a workstation to initialize an IAS can be created.

The decision making process employed by the CRM is based on the data from over 5,000 suc­
cessful IAS initializations for 600 different workstations. Based upon this data an IAS job will 
be terminated, if the heuristic shown in Figure 5.8 returns true. Five standard deviations has been 
chosen based upon the results of the second study in Section 2.3, where 99.7% of the successful 
Dummy Matlab Jobs initialized within these bounds. There are two possible reasons for an IAS job 
to require an excessive amount of time to initialize. Firstly, if the workstation has poor performance 
or is heavily loaded, in which case it is not a suitable choice of workstation. This can occur as a 
consequence of workstation autonomy. The anti-virus software is also a likely cause of slow initial­
ization. The Network Administrative Teams are, quite rightly, very protective of each workstation, 
but consequently this means that when a job such as an IAS is launched onto a workstation this 
causes a reactive anti-virus scan. An IAS job is approximately 3,000 files embedded within 100 di­
rectories and consumes in the order of 20 MB of disk space (when unpacked, when compressed an 
IAS is around 7MB in size).22 The anti-virus software scans all of the IAS code before allowing the 
initialization phase of the IAS to commence. Secondly, an MCR related error may have occurred. 
Unfortunately, a myriad of disparate conditions and events can cause the MCR to fail and some are 
a lot more tractable than others. During this work four categories of failure have been identified and 
are explained below.

Figure 5.8: Heuristic used to determine if an IAS job is portraying anomalous behaviour, where W S  
is workstation name and SD s  is standard deviations. If the CRM does have enough information 
about a specific workstation, it will use the global average for all workstations.

JobRuntime > avg iW S , initTime) +  5SDs

Straight MCR failure

Straight MCR failure is the easiest to diagnose and detect. The name is derived from the nature of 
the failure; the effect is instantaneous and happens as soon as initialization commences. Straight

22These o f course increase as the range o f Matlab functionality increases. In this is the IAS instance that is used in 
Chapter 6.
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failure occurs when a critical MCR component is missing or corrupt (typically m c l m c r r t 7  4 . 

d l l ) ,  the MCR has not been installed (ClassAd error) or the Windows search path is incorrect. 
The effect of such an error is that a compiled Matlab application will terminate with the exit code: 
- 1 0 7 3 7 4 1 5 1 5 .  This exit code along with any others is caught by the CRM’s Job Model.

Discrete MCR failure

Discrete MCR failure is more difficult to diagnose; here failure occurs because a subsidiary MCR 
component is missing or corrupt. In this case an error message is displayed as a Windows dialog. 
This is not a good situation for a job running on a remote virtual desktop, as the job will not naturally 
terminate until a user clicks ok. Until this occurs the CRM has no indication that the job has failed, 
only that the initialization state has not been reached. To identify such a failure the heuristic shown 
in Figure 5.8 is used to decide when to terminate the job.

These first two scenarios are mostly captured and prevented by the pilot routine of the IAS 
(Section 5.2.2), which performs an MCR integrity check to identify straight and discrete MCR 
failure prior to the launch of the compiled application. This is typically a more efficient approach 
than allowing the MCR to fail and reduces the number of wasted cycles on a faulty workstation. The 
integrity check requires between 2 and 222 seconds (as will be shown in Section 7.6), depending 
on workstation load, but on average requires 20 seconds. When the pilot routine fails, the job 
will terminate with the same exit code as above. The worst case scenario is that the MCR check 
succeeds, but the installation is faulty or corrupt. In such scenarios the failure heuristic (Figure 5.8) 
identifies a discrete failure. In such a case the workstation would be blocked unnecessarily most 
five standard deviations, which is seldom more than eleven minutes. This can occur as the pilot 
routine only identifies variations in size of the MCR as a whole and a corrupt MCR installation does 
not necessarily have a different total size or number of components. This is effectively a trade off 
between the time required to analyze the MCR and the accuracy of the analysis.

If the job model discovers this or another an unexpected error code, the performance model 
assigns 1 fail point to the workstation. If a workstation receives more than a predefined number of 
consecutive fail points it is blacklisted for 24 hours for every subsequent point. During this period 
of time it is assumed that the workstation will be restarted in accordance to Cardiff University’s 
green computing initiative. Upon restart the network management software will have the chance 
to remedy any software abnormalities, but in reality it may not. Therefore the CRM will give the 
workstation the chance to demonstrate a change in state, but only once per day, when it has a history 
of failure. When a workstation is blacklisted, the IAS submission script generator (Section 5.3.5) 
will signal that the Condor matchmaker should not consider it for IAS jobs. Listing 5.10 shows an 
example of this.

Abstract/Feigned MCR failure

Abstract or feigned MCR failure derives its name from its cloudy nature. Currently, no definite 
reason or cause has been identified for the errors encapsulated by this category. Here, the MCR
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Listing 5.10: An example of a black listed machine
r e q u i r e m e n t s  = $ ( o wn e r s )  && $ ( b l a c k l i s t )  && $( I AS)

j  owners = IS_OWNED_BY == OAWS | | . . .
b l a c k l i s t  = machine != ENROL20 && machi ne  != X000CF1FD5DF0 . . .
IAS = HAS_MATLAB_VXX==TRUE

initializes for inexorable amounts of time. In Chapter 2 this failure type was identified as a runaway 
job, and the longest recorded time for a runaway IAS job required to reach the initialized state was 
over 3 days.23 Errors in this category have the symptoms of discrete failure, but the key difference is 
that the MCR has not terminated. During extensive testing it was not possible to recreate a runaway 
job within a controlled environment. Such failures are dealt with in the same way as discrete failures, 
i.e. through the application of the termination heuristic (Figure 5.8).

Post suspension failure

Post suspension failure is a reasonably well documented issue with compiled Matlab jobs on Con­
dor. When Condor suspends a Matlab job the Matlab engine is interrupted and paused, which is fine. 
The issue, however, is that when Condor u n s u s p e n d s  the job, one of two things will happen. Ei­
ther the Matlab engine will experience a critical thread dump and crash silently or it will terminate 
cleanly, providing a stack trace for debugging. Regardless of which route is taken the same job 
exit code is returned: -143. The exact same error will occur if a control application (Section 5.1.1) 
attempts to multithread Matlab.

During the design and implementation of this system another eventuality has presented itself, 
and only occurs under exceptionally specific conditions. The nature of this system is that LAS 
instances are initialized preemptively and this means that IAS jobs can be idle. If an IAS is in 
the initialized state, but has no Tasks to perform and is suspended, it can (sometimes) be success­
fully u n s u s p e n d e d .  It is believed that this is because the Matlab engine is not reinvoked upon 
u n s u s p e n s i o n .  During this time the LAS heart beat thread is usually halted, but not always, and 
it falls out of communication with the CSM. When the LAS is u n s u s p e n d e d ,  its heart beat restarts 
and it can rejoin the cluster. No additional functionality was built into the LAS to facilitate this, it 
happened as a matter of chance.

The Job Model enables the CRM to identify when a job enters the suspended state. When this 
occurs the CRM questions the CSM in regard to whether the LAS is in use. If it is, the CRM will 
terminate it because it is assumed that the IAS is active and executing a Task. Therefore, upon 
u n s u s p e n s i o n  it will fail anyway and to remove the chance that a failed u n s u s p e n s i o n  has a 
knock on effect to the workstation owner or Condor, the CRM requests that the job is terminated. If 
the IAS is not allocated (it is assumed to also be idle) the CRM will monitor the job until it is either 
evicted or been u n s u s p e n d e d  and the CSM will not allocate the LAS to a user. Figure 5.9 shows 
this process. This is also the reason for the two logical ORs in Figure 5.6, as it is conceivable that

23However, remember that in Section 2.3 a time of 16 days was reached.
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the CRM may not be able to determine if the job has been suspended before Condor evicts the IAS 
job.

Figure 5.9: The interactions between the CRM and CSM to identify the course of action for a 
suspended IAS
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The adaptive nature of the performance model stems from the monitoring data, which is reflected 
in the termination heuristic (Figure 5.8) for workstations which experience difficulty in guiding an 
IAS to the initialization state. Similarly, jobs are suspended in an ad hoc manner and the way 
in which this is addressed is dependent on the current context. By employing these dynamic and 
context-based identification measures, it is possible to guarantee that by the time an LAS becomes 
available it will function correctly. In Chapter 2 an overview of the issues surrounding the man­
agement of compiled Matlab jobs on the Condor Pool was given. In response to these challenges 
the Job, Resource and Performance models (Sections 4.3 and 4.4.1) were defined and the Condor 
Resource Manager (CRM) was developed to enact these models.
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5.3.4 Acquisition Model

The Acquisition Model (Section 4.4 and illustrated in Figure 4.6) takes input from three sources:
(1) real time Campus-Grid monitoring and the Resource Model, (2) the Performance Model, and
(3) the CSM’s Global Requirements Model (Section 5.4.3) in order to determine whether action 
should be taken. The first two inputs define the potential to gain resources (physical availability), 
and the latter the current demand.

The actual implementation of the Acquisition Model is quite simple, as most of the foundations 
for decision making are provided by the three input sources. The acquisition model has only to 
answer the questions: (1) are more resources needed (initialized IAS count is less than demand) 
and if so: (2) are workstations available which are either likely to produce an initialized IAS, i.e. of 
those available which are not guaranteed to fail24 or currently have an unknown state (for example 
a previously unknown workstation)? Then if necessary and possible, the CRM will inject new IAS 
jobs using its automated job submission module (Section 5.3.5).

The main consideration that the CRM must take when decided whether to inject new IAS jobs or 
not, is in regard to the number of IAS jobs running but not yet initialized. The CRM could predict 
the outcome of a running job, but because of the myriad of known scenarios and unpredictable 
events which govern job success, this is a very difficult process. Currently, the CRM considers only 
jobs that have started recently (for example those running for less then 2 standard deviations of the 
average initialization time) as those likely to succeed and builds its projected resource count around 
this assumption. The CRM must also consider the current number of IAS jobs residing in its job 
queue, as presented in Chapter 2, because as the number of jobs increased beyond a specific point 
undesirable behaviour was observed. This is also the case for the CRM, however, the threshold is 
lower. Once the number of concurrently running LAS jobs approaches 80 issues with socket buffer 
space arise and communication between the CRM and CSM can become unreliable. This issue 
arises due to Condor opening multiple sockets for each job in the execution state, and consequently 
consuming a large portion of the available buffer space for communication.

In future work a more concrete mathematical model could be implemented to improve the ac­
curacy of the CRM’s estimation. In real terms a poor estimation does not have serious ramifications 
upon the system’s performance as a whole in the current Cardiff University Campus-Grid context, 
where the impact of workstation volatility is significant. However, in porting this approach to other 
contexts and environments this may not be the case and more established methods of estimating the 
projected resource count should be considered. Some relevant examples of other work within this 
domain were given in Section 3.2.

24This is an important distinction, as the CRM will consider submitting an IAS to a workstation which may in fact fail. 
The point is that the CRM provides the workstation the chance to demonstrate either its ability to initialize a job if  it is 
not sure of the outcome.
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5.3.5 Automated IAS Submission

An IAS is a single executable, which is accompanied by a small number of code archives and does 
not require any special considerations for submission to a Campus-Grid workstation. Therefore, 
the normal submission procedures supplied by Condor are more than adequate for the submission 
of an LAS. It is the limitations of Condor’s management processes that are the unequivocal causes 
of the complexities of job management. When submitting IAS jobs the CRM automatically gener­
ates a Condor submission script, which contains all of the necessary definitions for an IAS to run 
on a Campus-Grid workstation25 and the log file for Condor, which is used to report on progress 
and events. The most important advantage of an automated submission facility is that this process 
enables the CRM to define which Campus-Grid workstations should not be considered as a can­
didate workstation in the matchmaking process. This decision is based upon the juxtaposition of 
the CRM’s job and performance models (Section 5.3.1 and 5.3.3 respectively) and available in real 
time. The generated submit script is then executed using the supplied Condor command line tools.

A consequence of the volatility of resources is that large numbers of jobs are launched by the 
CRM. This means that over time the job log becomes too large and difficult to manage. Therefore, 
the CRM limits the scope of a log to one day. The purpose of this approach is to reduce the size 
of individual logs, but also to enable multi-threaded approaches for the log parsing required by the 
CRM monitoring processes.

5.4 Central Service Manager -  CSM

The Central Service Manager (CSM) is the enactment of the Global Requirements and Allocation 
Models (Sections 4.5 and 4.6). Put simply, it is the component with which IAS instances (Sec­
tion 5.2) register their availability and where the Cl (Section 5.5) places the user’s demand for 
resources. The role of the CSM is to aggregate the requirements of one or more users, and along 
with an additional buffer for spare capacity, to inform the CRM of the current demand for resources. 
This is presented in Section 5.4.3. Once IAS instances have registered with the CSM they are al­
located to a user for Task execution. The mechanisms that the CRM adopts for this process are 
presented in: Section 5.4.2. The CSM also performs some IAS monitoring, which is presented in 
Section 5.4.1.

However, first a discussion with regard to the motivation for another component, as all func­
tionality of the CSM could conceivable be carried out by the CRM. The distinction is in fact based 
upon a set of simple premises. (1) There is no need for the Client Interface (Section 5.5) to be 
aware of the CRM. If a GIS was integrated into a future version of this implementation it would be 
a new component in the Cl, which directly interacts with the CRM database, but not the CRM itself.
(2) There may in fact be more than one CRM (one for each access point to or submission node 
for the Campus-Grid), which would increase the maximum number of IAS instances the system

25For example: the IAS components, which are stored in a configuration file, the number of jobs to submit, and the 
workstation requirements for an IAS, i.e. MCR availability
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could run concurrently, and prevent the CRM becoming a single point of failure. (3) The conceptual 
spaces and responsibilities of the CRM and CSM are logically distinct. This also means that the 
CSM can run as a Campus-Grid job and therefore be managed by the CRM. (4) The CSM can fail 
and be restarted with negligible detriment to the performance of the system as a whole, whereas the 
CRM cannot.

5.4.1 Resource Monitoring

During the life time of an IAS it is monitored by the CRM’s job model (Section 5.3.1) to identify 
state transitions, but the CSM also performs some additional heart beat monitoring. The reasons for 
this distinction were given in Section 4.8, but this process could also be carried out by the CRM as 
a part of the Campus-Grid monitoring process (Section 5.3.2). The reason why this is not the case, 
is due to the awareness of the CRM. Only the CSM has knowledge of both users and IAS instances, 
and is therefore best placed to inform a user’s Cl (Section 5.5) when an IAS failure is detected. In 
addition, if a user leaves the system, the CSM can inform an IAS to empty its queue of that user’s 
Tasks.

To perform heart beat monitoring is trivial, however, when an IAS is performing Tasks which 
place the workstation under heavy load, its heart beat can sometimes fail. The difficulty here, is 
in identifying whether a stopped heartbeat is in fact an indicator of failure or if the IAS is just 
experiencing a high load. The CSM deals with a failed heartbeat by immediately messaging the 
IAS front end to inform it that its heartbeat has ceased. If the communication succeeds, the IAS can 
reinitialize its heartbeat thread, and the CSM knows that an intermittent error occurred, but that the 
IAS is in fact still alive. If the communication fails, the CSM can expect that the IAS has in fact 
terminated. It can then question the CRM, which can in turn check its job model (Section 5.3.1) to 
provide a response.

It is possible that the LAS has in fact failed but that the CRM is unaware that the termination has 
occurred, as the log is not always updated in real time. Such a scenario opens a debate concerning 
what action should be taken. Ultimately, the CSM strikes the IAS from it allocatable resources and 
informs the user of a failure. However, if the workstation has for example lost network temporarily, 
the IAS job will sit idle until Condor terminates the job as part of a job’s natural life cycle. During 
the time that an IAS is perceived to have failed, it may still be executing user’s Tasks. Therefore, if 
the CRM were to terminate the IAS in response to the CSM’s query, useful work may be lost. Note 
that an IAS does not need the CSM or CRM to communicate with a user, once it has been allocated. 
Consequently, if an IAS falls out of communication with the CSM, it does not lose the connection 
with its user. For this reason the CRM will not terminate the job. If the job has failed Condor is 
likely to be in the process of handling the event. On the other hand, if the IAS is still alive and 
returns a result to its user, the Cl (Section 5.5) will inform the IAS that the CSM believes it to have 
died and the IAS can reregister with the CSM.
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5.4.2 Allocation Model

IAS allocation is based entirely upon the data that the user’s requirements model produces, and the 
number of IAS instances currently available to the CSM. The user’s requirements model is enacted 
by the scheduling interface (Section 5.5.3), and the level of detail provided is dependent upon the 
implementation of the scheduler. The bare minimum that the scheduler should supply is some notion 
of the maximum number of IAS instances it can feasibly use. If no minimum is supplied the CSM 
will assume that a minimum of one IAS is required. Additional information is only required when 
the CSM must balance the allocation of IAS instances between two or more users.

The allocation model has three possible states: (1) No or too few IAS instances are available to 
meet the requirements of the users connected to the system. (2) Neither too few nor too many IAS 
instances are available for allocation. (3) The CSM has spare LAS instances available, which can 
be used if demand changes. Naturally, the first scenario is not a desirable one, and is most difficult 
for the CSM and scheduler to resolve. There are essentially two options: (1) do nothing and wait 
for more IAS instances to become available, or (2) use the IAS resources that are available on the 
assumption that further IAS instances will become available. Neither option is guaranteed to resolve 
the problem, which is due to an inherent attribute of opportunistic computing in general: there can 
be no guarantees with respect to resource availability. Therefore, it is ultimately the scheduler that 
must decide which action should be taken. If IAS instances are available, the scheduler can reduce 
its minimum requirement to enable the CSM provide some computational resources. On the other 
hand if no IAS instances are available or the scheduler cannot reduce its minimum requirements, 
there is little that the scheduler can do other than wait, or terminate and try again later. Some solace 
is provided due to the observation that for the CRM to be unable to initialize a single IAS is quite 
uncommon. The CSM could also query the CRM to provide the scheduler with some indication 
of the state of the Campus-Grid, but currently this facility is not available to the CSM. In addition, 
what combination of information the CRM can use to build a model that can answer this query is a 
research question in its own right, and beyond the current scope of this research, as it would require 
the adoption of predictive and statistical models which are already present (to some extent) in the 
literature, some examples were given in Section 3.2.3.

There are of course some simple indicators available to the CRM that can be used to identify 
when it is unlikely for resources to be available in the near future: (1) when the number of idle jobs 
waiting for resources is several orders of magnitude greater than the number of available worksta­
tions. (2) When no workstations are currently available which meet the requirements to run IAS 
or have a history of success. (3) When the average time for a job to experience the state transition 
from idle to running is high. However, each of these scenarios could only be indicative of a neg­
ative outcome, where the user may wish to run their application at a later date. Identifying when 
it is a “good” idea for a scheduler to wait requires a much deeper appreciation of the current state 
of the Campus-Grid. For example learning or pattern recognition frameworks have been used in 
the literature to identify common traits in order to model volunteer computing environments and 
Campus-Grids.
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The second allocation scenario is the most common for the allocation model and an acceptable 
position to be in. However, any changes in IAS availability could lead to an insufficient number of 
IAS instances being available, and therefore result in the issues discussed above.

When IAS instances are available, the CSM will allocate either as many as are available or the 
maximum number requested for by the scheduler. When an IAS is allocated, the Cl (Section 5.5) 
receives the endpoint of the IAS’s front end and the LAS is informed of the user that it has been 
allocated to. The CSM also logs the allocation so that it can update either party if one falls out of 
communication with the CSM. All communication between the two parties (Cl and IAS) is then 
direct point to point communication in which the CSM plays no part. In this respect the CSM is 
only the means for the Cl to discover resources, but has no control over what an IAS does. For this 
reason if the CSM fails users can still use their allocated resources, but not discover (be allocated) 
new resources until a new instance of the CSM is spawned.

Currently, the CSM can only reliably handle one active user at any given time. However, the 
allocation model was conceived to cater for multiple active users and the foundations for such an 
approach are in place. The approach for IAS allocation within a multiple user context is associative 
averaging, where the need of each user is compared relative to all others based upon the data gath­
ered by the scheduler to determine the allocation given to a user. Here, the sets of attributes can be 
used to iteratively quantify the relative need for all connected users for the duration of their runtime. 
The aim of quantifying need relative to other users is to perform reactive fair share allocation, based 
upon the observations of the scheduler and Task model. However, as many aspects of the Cl are 
fully customizable the question of trust is soon raised: Can the CSM trust the values supplied to 
it by a user? Ultimately such an issue is beyond the scope of this research, but it nevertheless is 
an important issue. Similarly, a scheduler can overwrite the monitoring framework of the Cl (Sec­
tion 5.5.2) and consequently, may no longer produce accurate data. Both of which are concerns that 
any future work on this particular feature of the CSM should consider. This feature is currently not 
actively supported in the CSM prototype. However, some initial work was presented in [33].

5.4.3 Global Requirements Model

When the CSM initializes, one of its first actions is to contact the CRM and request a predefined 
number of resources, which denote the CSM’s initial spare capacity. These resources will be allo­
cated once a user materializes, based upon the user’s demand and will start the cycle of the CSM 
and CRM communication for setting a dynamic target horizon for the CRM to aim for.

When a user does materialize, the CSM’s implementation of the Global Requirements Model 
(Section 4.5) analyzes the estimation for the ability to consume resources from the Cl (Section 5.5) 
and compares it to the current number of resources provided by the CRM. The CSM will initially 
allocate what resources it has increasing its request to the CRM to gain spare capacity. However, 
should the estimate from the user be higher than the CSM’s current request, the CSM will incremen­
tally increase its request to the CRM, until the two begin to converge. Note that full convergence 
will not occur due to the CSM’s ambition to acquire spare capacity. The reason for an incremental
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approach is that the CSM initially assumes that the user’s estimation is inaccurate, but improves 
over time. Improvements will stem from the generated performance data of Tasks as they begin to 
complete giving the Cl’s implementation of the user’s requirements model (Section 5.5.3) real data 
upon which it can build its estimate.

5.5 The Client Interface

The Client Interface (Cl) is enactment of the Task, (User’s) Requirements, Scheduling and User’s 
Models (Sections 4.3.2,4.5, 4.7 and 4.9). It provides a generic toolkit for interacting with two of the 
other three core system components, namely the CSM (Section 5.4) and IAS instances (Section 5.2). 
In addition, it also provides the necessary functionality for the interaction with an instance of the 
LS (Section 5.6). Using the Cl users can build autonomous applications, simply describe a Task 
space or farm out Tasks to one or more IAS instances from some application environment in a 
transparent and interactive manner. For most users the Cl will simply be a transparent platform 
upon which to build their applications, however, it is fully customizable and can cater for many 
disparate application scenarios.

The Cl has three key aims: (1) To isolate the administrative procedures involved in distributed 
image processing from the developer. Thus, providing a pragmatic approach and allowing the user 
to stay within their application domain. (2) To enable the developer to specify no more than what 
they want to do, on what data it should be performed and some way of identifying the result(s).
(3) To support applications for which batch processing is not an option.

The Cl is a multi-layered component and consists of three layers: (1) communications, (2) re­
sources, and (3) Tasks. Figure 5.10 shows each of these layers, their basic modules and what 
functionality a user’s application inherits from the Cl API. Each layer is incorporated into an Appli­
cation Manager, which manages the execution of a Task space on behalf of the user (Section 5.5.1). 
After the outline of the Application Manager, the layers depicted in Figure 5.10 will be presented 
bottom up. In Section 5.5.2 the Task Layer will be presented, this will by followed in Section 5.5.3 
by the Resource Layer and in Section 5.5.4 by the Communication Layer. Note that aspects of fault 
tolerance are integrated into all layers.

5.5.1 The Application Manager

An Application Manager is written in Java and by default inherits the necessary functionality for 
each layer transparently, as illustrated in Figure 5.10. Should a developer wish to alter the way in 
which a layer is implemented they can simply overload the default implementation either through 
polymorphism or by using the provided API to define new modules. This enables them to include 
new behaviours specific to their application or to create other customized front ends to the system 
as a whole. Throughout this work several different front ends have been created and are reported in 
the literature. A web-based front end was presented in [150], which was in fact the first version of 
the Application Manager and a much simpler version of the system that is presented in this Chapter.
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Figure 5.10: General structure of an Application Manager
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During the conference it was also presented as a live demonstration, where the speaker in Boston 
interacted with workstations on the Cardiff University Campus-Grid. In parallel a Prolog-based 
front end was also created and is documented in [151]. In Chapter 6, a Matlab-based front end is 
presented for parallel image processing from within a Matlab session.

An Application Manager is self regulating and configuring and therefore capable of autonomic 
behaviour, which stems from the three layers of the CL There are many areas where the Application 
Manager can be extended either to improve the basic functionality and robustness of the Cl or to 
consider new research questions (see: Section 8.3).

5.5.2 The Task Layer

The Task Layer is responsible for the client side execution cycle of a user’s Tasks, which includes 
definition (the Task Model), data management and the receipt of results.

The Task Model and Mapping of Data

In accordance with the Task Model defined in Section 4.3.2, the user supplies only the following 
information: (1) A Matlab Task Sequence, which describes what is to be done. (2) Zero or more 
data sets, i.e. what to act upon (3) An ID Tag, which is a method to identify the result(s) or an error, 
should one occur. It is not always necessary for a user to supply an ED Tag, as an Application Man­
ager can also automatically generate one. However, if a user uses a general Application Manager, 
rather than the specific Application Managers mentioned elsewhere in this thesis, then they are often
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required to supply an ID Tag. A Task is encapsulated by a Java Object, which handles many of the 
tedious Task administrative actions transparently.

The first administrative action that is undertaken stems from the background procedures that 
transform the three pieces of information above into an schedulable entity. This begins with the ver­
ification of the syntactical structure of the Task Sequence, to ensure that parenthesizes are balanced 
and that all functions constituting the Task Sequence are actually included in the IAS. Remember 
that when the IAS is created (Section 5.2.1), the Autonomic Compiler also generates a complete list 
of the included functions, which is polled by the Task Model to verify that a function is in fact in­
cluded within the IAS.26 This process also decomposes the Task Sequence into functional particles, 
where each particle relates to one Matlab function call, for example the Task Sequence shown in 
Listing 5.11 contains 5 particles 27 This decomposition is performed to identify the last functional 
entity of a Task Sequence which is needed by an MI (Section 5.1.2) to correctly generate a result.

Listing 5.11: An example Task Sequence with 5 functional particles
r n i ( 3 ) , a  = a v g . t h r ( a )  , big , cwp

The decomposition of a Task Sequence into functional particles also enables the Task Model to 
identify data dependencies. There are two ways in which to identify a data dependency: (1) The 
particle is a data load function e.g. l o a d ,  g w i 28 and r n i , 29 or (2) A particle’s argument is a 
subordinate data load e.g. m y F u n c t i o n  ( l o a d  ( ' c  : \ m y D a t a  . m a t '  ) ). The identification of 
data dependencies in this manner means that the user can specify their code without significant 
modification.30 In both of the presented cases some data needs to be transferred to the remote node. 
To accommodate this need the Task Model will signal to the Cl that a HTTP Server (Section 5.5.3) 
is required for data hosting. The reason to transfer the data in this way is because it allows an IAS 
to decide when and if it requires the data, and therefore creates a pull rather than a push model.

All data sets that are identified within functional particles are copied into the root directory of 
the HTTP server.31 During this process each data set is renamed to ensure that two data sets with 
the same name do not overwrite each other. The name is also globally unique; a one way hash 
of the absolute file name and canonical host name of the HTTP server’s endpoint. This ensures 
that an IAS does not download the same data set twice. The particle is then edited to reflect this 
by converting the local data load into the remote equivalent. The Task is then flagged with a data 
dependency to enable the IAS’s Task Handler (Section 5.2.2) to identify data dependencies and 
whether it needs to perform a transfer. The Task Handler will always download data to the same

26There are many other checks which could be performed at this point. For example: (1) the identification of Matlab 
functions that could be used maliciously e.g. delete, cd, quit, which would provide some basic levels of security, 
and (2) further syntactical analysis to ensure that the correct number o f input parameters are used.

27The five particles are: (1) rni (3), (2) a = avg, (3) thr (a), (4) big, and (5) cwp.
28 QT Command Get Web Image
29QT Command Read Numbered Image
30The main modification is the need for absolute path names rather than the use of relative path names typically used 

in Matlab. However, some Matlab functions exist which can perform this task for the user.
31 An alternative would be to generate a map within the HTTP server to identify the local copy.
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relative location on the Campus-Grid workstation. Therefore, the Task Model can edit the data load 
to reflect where the data will be on the Campus-Grid workstation. Similarly, because the name of 
the data set is determined by the Cl, a complete particle transformation is possible. For example 
l o a d  ( ' c  : \ a _ f o l d e r \ a _ s u b _ f o l d e r \ d a t a \ i m a g e  . p n g '  ) would be changed to l o a d  

( ' D o w n l o a d e d _ F i l e s / s o m e _ h a s h . p n g ' ).

By default an IAS will not transfer the same file twice. Therefore, if live data is in use (for 
example a webcam feed), the Task Model provides a flag to indicate that this data should always 
overwrite any copy that an IAS has transferred in the past. Currently, there is no mechanism for 
issuing a time to live for a Task or for deciding when data should ideally be downloaded. However, 
the output from a live fed can be captured by the Task Model for later processing, whenever this is 
necessary.

Receipt of Results

The Result Handler is the solution to the potential problem of the client-server model when multiple 
IAS instances are “ow/ieJ” by an application, which was outlined in Section 5.2.2. Essentially, it 
allows the IAS to close a connection to the Cl once a Task has been received, as the implementation 
of the Task model adds an endpoint of a results server to each Task. Typically, this is running on the 
same physical machine as the Application Manager, and is therefore initialized transparently by the 
Cl. However, it could also be a different physical machine, for instance a database front end or result 
consumer within a workflow management system.32 The process which then occurs is illustrated in 
Figure 5.11 and is as follows: (1) the IAS produces a result, extracts the endpoint from the Task, 
reestablishes connection with the Application Manager and sends it to the results server, (2) the 
results server forwards the result to the main Cl thread using an event queue. Here performance 
data is extracted by the scheduling interface (see Section 5.5.3). (3) The raw result is then passed 
on to the user’s application through an event queue. (4) Depending on the implementation of the 
application and a user’s preferences the download manager can be invoked to download any data 
still in the possession of the IAS, for example graphical output or . mat files. (5) The download 
manager contacts the IAS’s HTTP server and downloads the results using the ID Tag as an prefix 
for the file names. (6) The download manager informs the user’s application that the download 
is complete and of the file names attributed to the downloaded result files, using a callback event 
queue. The download manager can also be replaced by a customized user module to perform similar 
actions.

5.5.3 The Resource Layer

The resource layer is responsible for all interactions between a user and the IAS instances which 
have been allocated to a user, which includes: scheduling, requirements modelling and the hosting 
of Task data for the transfer to IAS instances.

32 Note that in these cases the Application Manager would also have to be informed so that it can invoke the scheduler.
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Figure 5.11: Result Stack
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Scheduling Interface

The scheduling considerations outlined in Section 4.7 provide the template for all schedulers to ad­
here to. In order to turn these considerations into a practical template for programmers, the schedul­
ing interface provides a superclass template for all scheduling algorithms to follow. Whether an 
algorithm is taken from the literature or written specifically for an application, it must still follow 
the conceptual template prescribed by the scheduling interface. In line with other scheduling ap­
proaches in the literature (Section 3.2.4), the scheduling interface encourages an iterative algorithm 
where the scheduling plan is reevaluated in response to events, i.e. it is event-driven. All events 
come from one of two sources namely: (1) changes in resources (IAS events), and (2) changes to 
the state of a Task (Task events). The scheduler API propagates each event through its abstract 
skeleton for a scheduler implementation to handle.

An IAS event is either the gain or loss of an LAS. When a scheduler receives a new IAS instance 
to interact with, it can begin scheduling Tasks to that IAS immediately and therefore must readdress 
its scheduling plan. Similarly, when a scheduler loses an LAS, for reasons other than LAS idleness 
(see: Section 5.2.2) it must also readdress its current scheduling plan. When a scheduler loses an 
IAS, it is told the reason for the loss, to enable it to determine the action required. For example, if 
an IAS has failed the Tasks in its queue need to be placed back into the unscheduled state. However, 
this does not mean that the scheduler should not immediately strike the LAS from its registry, as the 
failure may only be intermittent (see: Section 5.4.1).

Figure 5.12: Possible Task States. The transition to and from the queued state are not visible to a 
scheduler, as this is a process specific to an LAS instance. A scheduler can only observe a transition 
from scheduled to executing.
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Task events relate to changes in a Task’s state (shown in Figure 5.12). The action that the sched­
uler needs to take is strongly dependent upon the state transition that has occurred. For example, 
a scheduler does not need to perform any action when a Task transfers from the scheduled to the 
queued state, and unless the LAS inform mechanisms are updated, this information will not be avail­
able to the scheduler. However, it is useful for a scheduler to know when a Task has moved to the 
executing state. Naturally, the most useful updates stem from the completed and two failure states. 
The distinction between the states finished and completed is that in the finished state results may still 
need to be collected. In the completed state, however, any results that need to have been explicitly
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downloaded (as described in Section 5.5.2 and Figure 5.11) and are fully available to the user. This 
distinction is necessary because an IAS can be lost at any time in the life cycle of a Task, and there­
fore a scheduler may even need to reschedule a Task after its execution has finished successfully, if 
the results have not yet been accessed.

The areas of core functionality that the scheduling interface provides are: (1) event listening and 
delivery to the abstract methods shown in Listings 5.12 -  5.14, (2) Task dispatch using the Com­
munication Layer (Section 5.5.4), (3) basic Task performance monitoring for example: average 
queuing and executing time, (4) basic IAS monitoring for example: average and maximum count,
(5) basic requirements modelling for example: determining minimum and maximum IAS alloca­
tion, based upon current state of all Tasks, (6) basic prediction for example: estimated completion 
time with the current allocation, average Task execution and queue times, (7) data collation for the 
requirements model, (8) autonomous handling of LAS queue sizes, and (9) user preference elicita­
tion with respect to runtime attributes such as: the minimum and maximum queue size or number 
of IAS instances. Note that subclasses of the scheduling interface are free to overload any of these 
areas of functionality.

These areas of functionality are catered for through the definition of an abstract scheduler su­
perclass, which all other schedulers must extend. Here, the method signatures required are defined, 
and the necessary event queues and message handlers established. Listings 5.12 -  5.14 shows a 
breif outline of the key methods.

Listing 5.12: Task Methods for a scheduler
; / / Ad d  new Task ( e n c a p s u l a t e d  by t he  Command O b j e c t )  to group o f  un s c h e d u l e d  Tasks  

p r o t e c t e d  a b s t r a c t  vo id  . add (Command c ) ;

/ / Changes  in command s t a t e
p r o t e c t e d  a b s t r a c t  vo id  f a i  1 ed  (Command c ,  E r r o r R e s u l t  r ) ;  
p r o t e c t e d  a b s t r a c t  vo id  f i n i s h e d  (Command c .  Date d .  IAS i as  ) ; 
p r o t e c t e d  a b s t r a c t  vo id  r e s u b mi t  ( Ob j e c t  t a g ) :  
p r o t e c t e d  a b s t r a c t  vo id  r e s u l t D o w n l o a d F a i l e d  ( Ob j e c t  Ta g ) ;  
p r o t e c t e d  a b s t r a c t  vo id  s t a r t e d  (Command c . Date d,  IAS i a s ) ;

j / / A c c e s s  a l l  Tasks  in each s t a t e  , here b u f f  e r e d  is queue at  an IAS 
/ / q u e u e d  is a Task which has not  been s c h e d u l e d  
p r o t e c t e d  a b s t r a c t  CommandCol l ec t i on  g e t B u f f e r e d  () ; 
p r o t e c t e d  a b s t r a c t  CommandCol l ec t i on  g e t C o mp l e t e  () ; 
p r o t e c t e d  a b s t r a c t  CommandCol l ec t i on  g e t E r r o r ( ) ;  
p r o t e c t e d  a b s t r a c t  CommandCol l ec t i on  g e t E x e c u t i n g  () ;

| p r o t e c t e d  a b s t r a c t  Comma nd Co l l e c t i o n  g e t Q u e u e d ( ) ;
\ / / G e t  a Task r e g a r d l e s s  o f  s t a t e
| p r o t e c t e d  a b s t r a c t  Command getCom mand( R e s u l t  r ) ;

/ / De t e r m i n e  is a Task is in a s p e c i f i c  s t a t e  based  upon i t s  ID Tag 
I p r o t e c t e d  a b s t r a c t  b oo l e a n  i s B u f f e r e d  ( Ob j e c t  t a g ) ;
| p r o t e c t e d  a b s t r a c t  bo o l ea n  i s C o mp l e t e  ( Ob j e c t  t a g ) ;
| p r o t e c t e d  a b s t r a c t  bo o l ea n  i s E r r o r  ( Ob j e c t  t a g ) ;

p r o t e c t e d  a b s t r a c t  bo o l ea n  i s E x e c u t i n g  ( Ob j e c t  t a g ) ;  
i p r o t e c t e d  a b s t r a c t  bo o l ean  i s Queued  ( Ob j e c t  t a g ) ;

The scheduler superclass does not provide any support for load balancing as this is a scheduler 
dependent issue.
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Listing 5.13: IAS Methods to be defined a scheduler implementation
j
! / / Mo d i f y  plan due to l os s  

p r o t e c t e d  a b s t r a c t  vo i d  l o s t I AS ( I AS  i a s ) ;  
/ / S c h e d u l e  a Task to t h i s  IAS 
p r o t e c t e d  a b s t r a c t  voi d  s c h e d u l e ( I A S  i a s ) ;  
/ / C r e a t e  i n i t i a l  s c h e d u l i n g  p l an  
p r o t e c t e d  a b s t r a c t  vo i d  s c h e d u l e ( ) ;

Listing 5.14: Administration methods for the all schedulers provided by the abstract scheduler 
superclass
/ / A d d  new T a s k ( s )  to s c h e d u l i n g  p l a n ,  a l s o  c he c k s  here f o r  d u p l i c i t y  in ID Tags 
p u b l i c  void add(Command c ) ;
p u b l i c  void add ( CommandCol l ec t i on  commands) :

/ / G e t  key va l ue s  e i t h e r  f o r  r e q u i r e m e n t s  model  o f  p o s t  e x e c u t i o n  a n a l y s i s  
p u b l i c  Value g e t V a l u e ( i n t  t y p e ) ;
/ / S e t  key va l ue s  such as maximum queue s i ze  , number  o f  IAS i n s t a n c e s  e t c .  
p u b l i c  void set  Val ue  ( Value v ) ;

/ / I n i t i a l  s c h e d u l e r  p l an is ready  
p u b l i c  boo l ean  i s R e a d y O ;
/ / Wh e t h e r  the s c h e d u l e r  is c u r r e n t l y  a c t i v e  

i p u b l i c  boo l ean  i s R u n n i n g O ;

/ / S e t  IAS c o l l e c t i o n  o b j e c t  
\ p u b l i c  void set l  ASPool  ( C l i e n t l ASP o o l  I ASs ) ;

/ / Se t  the l i s t e n e r  o f  the u s e r ’s A p p l i c a t i o n  Manager  
p u b l i c  void s e t R e s u l t L i s t e n e r  ( R e s u l t L i s t e n e r  r L i s t e n e r ) ;
/ / R e c e i v e  an e ven t  which may a f f e c t  t he s c h e d u l i n g  p l an  
p u b l i c  void r ece i  v e l n f o r m a t i o n  ( I n f o r mEve n t  e v e n t ) ;

/ / S e n d  a Task to the p r o v i d e d  IAS
p r o t e c t e d  void send (Command command, IAS i a s ) ;
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The Default Scheduler

The default implementation of a scheduler is a simple FCFS33 opportunistic scheduler and an 
overview of its structure is shown in Figure 5.13. Its opportunistic status (a consideration required 
by the scheduling model) stems from its ability to consume new IAS instances in an ad hoc manner 
provided that Tasks remain that are neither in the complete nor failed states.

Figure 5.13: Structure of the default scheduler
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Every Task event and therefore state transition is captured by a migration of a Task from one 
state array to another in accordance with the possible state transitions illustrated in Figure 5.12. 
Here, the failed state array contains Tasks which will not be rescheduled, the decision making 
processes which determine whether a Task will be rescheduled or not are presented in Section 5.5.5. 
The key values for the requirements analysis are mostly implemented as part of the scheduling 
superclass, or extracted through abstract method invocations.

Figure 5.14 shows a sequence diagram of an example runtime for the default scheduler. Notice 
that there are several actions which can occur in an ad hoc manner during runtime, which other 
scheduler implementations need to consider. The scheduler is essentially an asynchronous and 
event driven multi-threaded scheduling module. This means that it is not possible to draw a single 
sequence diagram for all scenarios, which will be both readable and complete. Note also that 
Figure 5.14 shows only one IAS instance. The focus of this research is not on scheduling and 
therefore no significant effort has been made within this domain. Therefore, much of this approach’s 
runtime potential is yet to be achieved. In Chapters 6 and 7 this approach is evaluated using both 
real world and synthetic applications, the performance of which can be improved through the use of 
better scheduling algorithms to the default scheduler presented here.

33 First Come First Served
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CSM

Figure 5.14: Example sequence diagram for the default scheduler
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As mentioned above Tasks are scheduling in a FCFS order, however, this does not mean that 
they are scheduled in the order in which they are defined. Instead, they are scheduled in the order 
in which they became a fully schedulable entity. Here, the requirements are that any data has been 
placed into the web root of the HTTP module and that the syntactic checks of the Task Sequence 
(Section 5.5.2) have been completed. When a Task is rescheduled for any reason, it is placed at 
the end of the queue. The scheduler also provides some simple load balancing and redistribution. 
Here, a redistribution of the IAS queues will occur when no Tasks remain in the unscheduled state. 
In order to determine which Task should be taken for redistibution the scheduler uses the heuristic 
presented in Section 4.7:

IAS\\iass =  Max(QueueSizejAs)i (5-1)

forall(iass)

Taskt =  lastSubmitted(Min(AvgExecutionTime — iasS{(Rt)))

In other words, it firstly identifies the IAS instances with the largest queue sizes to create a list of 
potential candidates. Secondly, it identifies which IAS has the most work remaining on its current 
Task, and takes the last Task submitted to that IAS for redistribution. This Task is then flagged 
as one which has been redistributed to prevent it from being redistributed again for the k times the
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average Task execution time, where k is the current queue size for all IAS instances. Load balancing 
is performed when a call to the v o i d  s c h e d u l e  ( IAS i a s ) method cannot identify a Task to 
schedule due to the depletion of Tasks in the unscheduled state.

To determine the current queue size the following heuristic is used:

M in{Qmax, M ax{Qmin, \NoTasksUnscheduled +  N oTasksInl AS Queues x 0.05])) (5.2)

In other words, 5% of the total number of Tasks which have not yet been scheduled, provided 
that this value falls between the bounds of the predefined minimum and maximum values for queue 
size. Where, the default values are 2 and 10 respectively. These values can also be modified by 
the user if they so wish. 5% is used, as in preliminary tests it was most likely to result in the 
desired behaviour; namely the reaction of the queue size to the number of unscheduled Tasks. This 
heuristic is employed after every scheduling event, and therefore changes dynamically over time or 
in response to new Tasks being given to the scheduler for execution. In addition, it also decreases 
toward the minimum value over time. In this way it reduces any negative impact from the scheduler 
receiving new IAS instances near the end of the execution of the Task space.

The implementation does not perform any form of redundency scheduling, where toward the 
end of the Task space’s execution Tasks are replicated across IAS instances. This is an area which 
could improve the performance of the system as a whole. The reason for not adding this feature is 
to prevent the scheduling algorithm from getting overly complicated.

The Requirements Model

The Requirements Model (Section 4.5) is implemented as a collection of monitored metrics and cap­
tures three different categories for the CSM to consider: (1) Task-orientated metrics, which describe 
the Task space of the application. Examples include: average execution time, the average time spent 
in an IAS’ queue, the number of Tasks in each possible state, i.e. unscheduled, executing, completed 
and failed, and an estimated completion time based upon the current allocation and the previously 
mentioned Task metrics. (2) Resource-orientated metrics, which describe the demand for resources 
in relation to the current Task space. Examples include: the number of IAS instances available to 
the scheduler, the average number “owned”, excluding any time when no IAS instances were avail­
able, the current queue size used by the scheduler, and the minimum and maximum number of IAS 
instances requested and allocated. (3) Usage-orientated metrics, which describe how a scheduler is 
using the IAS instances allocated to it. They can also be used to report back to the user to illustrate 
how the system performed when executing their application. Examples include: the number of load 
balances due to new IAS instances becoming available, the number of resubmissions due to IAS 
and Task errors and the number of times that an IAS was left idle. In a multi-user context (see 
Section 5.4.2) this category could be used for tie breaking, when determining IAS allocation.

To capture the Task-orientated metrics, the scheduling interface provides some basic function­
ality and a mandatory skeleton, which all schedulers must implement. This skeleton enables the
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scheduling interface to capture the number of Tasks presently in each of the Task states (Figure 5.12) 
without any knowledge of a scheduler’s implementation. For other metrics such as the average time 
spent in the scheduled and executing states, the scheduling interface flags when a Task is sent to 
an IAS. Then when an IAS begins Task execution, it informs the Results Server identified in the 
Task as the endpoint for result consumption. A result server will propagate this information as a 
Task event to the scheduling interface, where the total time spent in queue is recorded. Naturally, 
this is subject to network latency, but in the grand scheme of things this is not necessarily a neg­
ative attribute. The time spent in an LAS queue is part of the time a Task is in a pending state. 
Therefore, the time required to transfer a Task object is not that semantically different, as the Task’s 
state remains the same during this time. To calculate the estimated remaining time (as described in 
Figure 5.15) is useful for the CSM, because it identifies whether there is any purpose in requesting 
further resources from the CRM. This estimate does not consider Tasks that are currently running 
for the simple reason that this level of accuracy in the estimate is not needed. In addition, the host 
workstation that the Task is running may be revoked during its execution.

Figure 5.15: Heuristic for estimating the remaining runtime of an application, where N  is the current 
number of workstations, Texe is Task execution time, Sau is Tasks in all states and Scomp and Sfau 
are all Tasks in the completed and failed states respectively.

a v e r a g e { T e x e ) * { c o u n t { S a i i ) —c o u n t { S Co m p ) —c o u n t { S  f an) )
N

To capture resource- and usage-orientated metrics some internal house keeping is performed, as 
many are simple observations. For example the current queue size and maximum number of IAS 
instances “owned” and the number of failures or load balancing occurrences. However to calculate 
the average number of LAS instances, the total number available is sampled once per second to 
generate an average. The minimum number that the scheduler requests is always set to one, but 
scheduler implementations are given the scope to determine this value for themselves. On the 
other hand, the maximum allocation is calculated by considering the number of unscheduled and 
scheduled Tasks (but not those currently executing) divided by the minimum queue size. Again 
scheduling implementations are free to modify and build upon this functionality, users can also set 
a finite limit.

The scheduling interface provides the data collation mechanisms which then transparently pro­
vide the necessary information to the Cl upon request, as shown in Figure 5.13.

HTTP Server

The HTTP server is a Java implementation of an HTTP server for data distribution using a pull 
model. Despite its documentation as a part of the Cl, all other components have the option of 
integrating an HTTP server into their core infrastructure. The exception here is the LAS (Section 5.2) 
for which under the current implementation it is a mandatory prerequisite. In addition, as a fully 
customized implementation, it can also feature other useful pieces of functionality other than data 
transfer. For instance it is exceptionally useful for hosting debugging messages and the current
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state of an component should it run on a Campus-Grid workstation. As, the HTTP server is an 
implementation specific and customized for this work it has no software dependencies and is very 
concise: less than 8KB of compiled code.

5.5.4 The Communications Layer

All components have access to this foundational layer of functionality. The adopted approach to 
enable components to communicate with each other is message-based, where a message is a single 
serialized Java Object. The reason for this choice is the lightweight nature of the protocol, as even 
a large message (a Task for example) is typically less than a kilobyte in size. In addition, extending 
a protocol based upon messages is straightforward.

To receive a message, all components have a server front end, which is discoverable by all 
other components. However, the location and discovery of a component’s endpoint is based upon 
the components initiating and receiving the communication. The CRM and LS are in static and 
known locations and therefore, their endpoints are placed into a configuration file. The CSM has 
no fixed location or port to use for communication, and therefore must register with the LS to be 
discoverable (see Section 5.6). Similarly, IAS instances are not fixed to specific locations or port 
numbers. They discover the CSM using the LS, and their CSM registration process divulges their 
service endpoint. Finally, a user has no locality requirements only that they are able to communicate 
with other components on the Campus-Grid. They also use the LS to discover the CSM and divulge 
their messaging server endpoint during their CSM registration. The Cl discovers IAS instances as a 
result of the CSM’s allocation of an LAS.

When a message is received, internal logic disseminates the message context and initializes a 
suitable handler (if necessary) for the required action to produce a response. In most cases the 
communication model is a standard client-server approach. However, as previously mentioned (see 
Sections 5.2.2 and 5.5.2) this is not the case for Task execution where the message (a Task) contains 
an endpoint for a result server (Section 5.5.2).

The natural alternative to a message-based approach would have been the use of Java’s Remote 
Method Invocation (RMI) API. However, this is a developer dependent implementation issue that 
does not need discussion here.

5.5.5 Fault Tolerance

The Cl needs fault tolerance in two key areas in order to retain stability. Namely, in the communica­
tion layer, especially in regard to IAS instances, and at the scheduling level in regard to Task errors 
and IAS failures.

When communication failures occur there is little that the Cl can do other than inform another 
component of the failure. If the CSM has failed, it will inform the LS, as will LAS instances if they 
detect that the CM is unreachable. An LS can then start a local instance of the CSM or make a 
request to the CRM to schedule one on the Campus-Grid. This is a simple implementation issue
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and is therefore not documented in this thesis. If an IAS becomes unreachable, the IAS communi­
cation module will fire an LAS event representing the failure to be consumed and dealt with by the 
scheduling interface. This event will also be propagated to the CSM.

There are two types of Task failure: (1) IAS failure, where an IAS fails, and (2) Matlab failure, 
where the Task failed during its execution. The decision making process for deciding whether a Task 
should be rescheduled after an LAS failure is firstly, dependent upon the state in which the Task was 
at the time of the failure. If the Task was in any state other than executing it is safe to assume that the 
Task was not responsible for the failure and it is placed back into the unscheduled state. However, 
if the Task was executing when the failure occurred the scheduling interface will flag the Task as 
a potential cause of the LAS’s failure, and place it back into the unscheduled state for observation. 
If a flagged Task is identified as a possible cause for further IAS failures the scheduler will place 
the Task into the failed state and alert the user. The number of failures which a Task must cause 
before it is assumed to be a cause of failure is a subjective issue. However, the default scheduler 
(Section 5.5.3) will place a Task into the failed state after it is identified as a potential cause three 
times. Matlab failures are runtime failures of a Task and are therefore treated differently. Simply, 
placing the Task into the failed state immediately makes sense for most failures of this type. Yet, 
some failures are not the fault of the Task such as a class loader error. Therefore, the scheduler will 
prompt the user for a decision concerning what action should be taken for such failures and others 
with the same Matlab error message. This approach enables a scheduler to build an exclusion list 
over time to decide when to reschedule specific Matlab failures. Future implementations could also 
consider providing the user with the ability to modify the Task or create more elaborate rules to 
define what action should be taken for a given scenario.

5.5.6 Summary

Ultimately the aim of the Cl is to remove as many of the administrative issues of Campus-Grid uti­
lization as possible from the user. This is achieved by providing a layered architecture which handles 
many of these issues transparently. The key features of the Cl that enable this are: (1) simple Task 
specification: a Task Sequence, data and (sometimes) an identifier, (2) automated resource utiliza­
tion and acquisition through Task remapping, opportunistic dynamic scheduling and autonomous 
requirements modelling, and (3) intuitive fault handling, which enables the identification of Task- 
related errors and the autonomic and context-related handling of Task errors; a feat that was previ­
ously not possible.

The Cl (Section 5.5) has only two requirements for a user: (1) A Java Virtual Machine (JVM) 
is required to run an Application Manager (Section 5.5.1), and (2) A suitable Internet or Network 
connection in order to communicate with the LS (Section 5.6), CSM (Section 5.4) and any allocated 
IAS instances (Section 5.2). This first requirement can also be alleviated through the use of a 
customized Application Manager such as those presented in [151] (an SWI-Prolog based front end), 
[150] a web based front end and Chapter 6 a Matlab based front end will be presented.



5.6. The Lookup Service -  LS

5.6 The Lookup Service -  LS

The nature of the CSM (Section 5.4) means that it can be submitted as a Campus-Grid job, and 
therefore it has no fixed location. Similarly, it means that it can be evicted and resubmitted elsewhere 
on the Campus-Grid during the runtime of a component. A consequence of this ability is that when 
new components join the system they need a point of reference through which they can locate the 
CSM. In addition, when a new CSM instance joins the system all components need to be informed 
of the new CSM’s location. A Lookup Service (LS) is a static point in the system, whose role is 
specifically to act as the point through which all components in the system can discover the CSM, 
and be informed of a new CSM location when a new CSM instance joins the system. This process 
is illustrated in Figure 5.16. There is no novelty in the use of a lookup service, it is purely a utility 
to ease the administration of transient and nomadic system entities.

Figure 5.16: The data flow of a Lookup Service.
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5.7 Summary

In this Chapter the implementation and enaction of the models introduced in Chapter 4 was pre­
sented. This began with how Matlab is controlled (Section 5.1) and fulfills the requirements for the 
IAS (Image Analysis Service, Section 5.2) daemon back end. Here, Matlab is controlled interac­
tively and in a compiled context, something which is not presented anywhere else in the literature. 
In addition, the IAS daemon’s Matlab functionality can be made fully heterogeneous with respect to 
its application context. This is achievable through the Autonomic Compiler (Section 5.2.1), which 
can capture and compile entire toolboxes at the request of the user. It can also tune the compilation
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and identify multiple errors to enable the user to supervise the compilation and correct the errors that 
the AC identified. Using this approach even the most complicated toolboxes can be compiled with 
little user effort. This translates into a compiled Matlab stand-alone application which can serve 
completely different applications, without recompilation or resubmission to the Campus-Grid.

In Section 5.3 the Condor Resource Manager was presented, which represents the Job, Acquisi­
tion, Resource and Performance Models (Section 4.3 -  4.4). It acquires Campus-Grid workstations 
transparently for the user, and absorbs all of the effort required to manage resources in a volatile 
and dynamic context. The CRM captures the capabilities of a workstation through the retention of 
observed performance data with respect to the pilot job aspects of an IAS. Here, the IAS initializa­
tion routine tests a workstation before attempting to launch the Matlab Component Runtime (MCR) 
and join the pool of other IAS daemons which have been initialized in response to a user’s request. 
Should this test pass, but the LAS still not be able to start, the CRM employs a termination heuristic 
which is orientated around observed performance data. The end result is that users can concentrate 
on their research and not on the debugging and administration of a complex distributed system. In 
addition, to a scheduler the initialized LAS instances appear as a single cluster of dedicated, but 
transient, resources.

In Section 5.4 CSM (Central Service Manager), which represents the Global Requirements and 
Allocation Models (Chapters 4.5 and 4.6) was presented. The role of the CSM is simple: it is a 
single point of resource (LAS) discovery. However, as a single point it may be prone to failure and 
thus cause the entire system to fail. To combat such eventualities, the CSM has been designed so 
that it could be run as a job on a Campus-Grid workstation and therefore, if necessary, managed 
by the CRM. The LS (Lookup Service, Section 5.6) was also introduced to act as a static point in 
the system. It retains a database of all components which have requested the location of the CSM. 
Then when a new CSM instance informs the LS of its location, the LS propagates this information 
to all components so that they can reregister with the CSM and update it of their current state. This 
process enables the CSM to fail and the system state to be completely restored when a new instance 
is initialized. Note that should the CSM fail, the system as a whole does not fail with it. LAS 
instances previously allocated remain available for use. However, until a new instance of the CSM 
is spawned new IAS instances cannot be allocated.

Finally, in Section 5.5 the Cl (Client Interface) was presented. The Cl aims to make the defi­
nition and management of Tasks in a distributed system as transparent as possible. From the user’s 
perspective the minimum requirement is only the definition of a Task, which captures all of the 
information necessary to create a schedulable entity. An example of the Java code needed to create 
a Task and capture its result, is given in Listing 5.15 to illustrate the ease with which this can be 
defined. In the next Chapter this will be presented in a real application scenario.

5.7.1 Modifying the Implementation for Other Infrastructures

This implementation has been designed around the aim to not be explicitly linked to only one spe­
cific resource management middleware. There are two areas of this implementation which in the
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Listing 5.15: A sample Task definition and result collection
i mp or t  code . command . Command; 
i mpor t  code . C l i e n t l n t e r f a c e  . * ; 
i mpor t  code . even t  . * ;

p u b l i c  c l a s s  myCl i en t  e x t e n d s  C l i e n t A p p l i c a t i o n  {

p u b l i c  my C l i e n t ( )  { 
s u p e r ( ) :

}
p u b l i c  voi d i n i t ( )  {

/ / F i r s t ,  d e f i n e  the data s e t :
Fi l e  da t a  = new F i l e  ( ‘ ‘ c : \ \ D a t a \ \ i n p u t  . mat  ’ ’ ) ;
/ / S e c o n d l y  , d e f i n e  the Task
Command command = new Command( dat a  , ‘ ‘ Mat l ab s e q u e n c e ’ ’ , ‘ ‘ id t a g ’ ’ ) ;  
/ / T h i r d l y  g i ve  the Task to the s c h e d u l e r  
sendCommand(command)  ;

}

p u b l i c  voi d  r e c e i  v e R e s u l t  ( Re s u l t  r )  {
/ / wh e n  r e s u l t  i s r e c e i v e d  downl oad i t
new R e s u l t D o w n l o a d e r ( r  . g e t R e s u l t  () . t o S t r i n g  () , r  . Tag.  t o S t r i n g  () , r  . Tag,  t h i s  ) ; 
/ / o r  e x t r a c t  n u me r i c a l  r e s u l t s  
Vec t or  v = r . g e t R e s u l t s  () ;

}
p u b l i c  void r e c e i v e E r r o r  (Command c)  {

/ / i f  an e r r o r  is r e c e i v e d  d i s p l a y  i t  
Syst em,  e r r  . p r i n t l n  ( c )  ;

}
p u b l i c  void r e c e i v e l n f o r m a t i o n  ( I n f o r mEve n t  e v e n t )  {

/ / T h i s  method is c a l l e d  when the r e s u l t  downl oader  is f i n i s h e d  
/ / A l l o w  the s upe r  c l a s s  to handl e  t he e v e n t  f i r s t  
s u p e r ,  r e c e i v e l n f o r m a t i o n  ( e v e n t )  ;
/ / The n  p r o c e s s  i t
swi t ch  ( e ven t  . ge t Type  () ) {

case  I n f o r mEven t  . FINISHED:
/ / G e t  f i l e  data

Fi l e  [] r e s u l t F i l e s  = ( F i l e  [ ] )  e vent  . g e t S o u r c e  () ; 
b r e a k ;

}
}

}
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event of a migration to another infrastructure would need to be modified. Firstly, when no Condor 
installation is in place, the CRM would require a new method to disseminate job information to con­
struct its job model (Section 5.3.1) and the infrastructure as a whole (Section 5.3.2). In addition, it 
would require a new IAS submission module (Section 5.3.5). Secondly, regardless of infrastructure 
the IAS’s Matlab Control Daemon (Sections 5.1.1, 5.1.3 and 5.2.2) may need revision if the Matlab 
version is altered. Similarly, if the move involves a change in operating system from Windows to 
Linux or Macintosh the same updates are required. In addition, the Autonomic Matlab Compiler 
(Section 5.2.1) will need to consider different library types when performing compilation, however, 
this is not a significant challenge.



Chapter 6

Analysis of Neurological Diffusion 
Tensor Images

This Chapter documents some collaborative work with the Academic Medical Centre (AMC),1 The 
University of Amsterdam,2 and Delft University of Technology3 and is an extension of the following 
paper: Ref [59]. Many of the domain-specific topics covered in this Chapter are summarized from 
Caan et al.’s work: Ref [204], and for further information the reader is referred to this article.

The purpose of this Chapter is to demonstrate that the approach presented in Chapters 4 and 5 
can be employed in a real application scenario. Here, the application scenario is a specific form of 
medical image processing: the analysis of neurological images to determine and identify neurolog­
ical characteristics that can be indicative of neurodegenerative diseases.

This Chapter is organized as follows: in Section 6.1 a high-level introduction into the applica­
tion area is presented. In Section 6.2 the analytical context of this Chapter is presented: a study 
into the classification of Schizophrenia. Section 6.3 will show how this analysis was previously per­
formed to provide additional motivation for this work. In Section 6.4 the general challenges that are 
faced by researchers in this domain are presented. In Section 6.5 a discussion of how the research 
undertaken in this thesis is applicable in this domain, and the specific benefits that can be realized 
to research scientists through the construction of a Matlab-enabled Virtual Cluster of Campus-Grid 
workstations. In Section 6.6 a new approach for this analysis using the Virtual Cluster is presented. 
In Sections 6.7, 6.8 and 6.9 the new approach is performance tested and discussed. Finally, in 
Section 6.10 the future work of this collaboration is presented and the outstanding challenges are 
discussed.

'http : /  / www. amc . nl - last accessed August 2009.
2http : /  /www .uva . nl - last accessed August 2009.
3http: /  /www. tudelft .nl /  -  last accessed August 2009.
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6.1 Introduction to MR-DTI Analysis

Magnetic Resonance Imaging (MRI) enables digital measurements to be taken of internal body 
structures, and generate multi-dimensional visualizations of areas of specific interest. Specifically, 
it is the hydrogen atoms from the human body’s abundant supply of water that are identified. The use 
and availability of MRI technology enables clinicians to perform in vivo examination upon a patient. 
For the patient, this means they can avoid inquisitive and diagnostic surgery, and surgeons can 
create more detailed surgical plans and identify potential complications before the operation begins. 
The availability of a digital representation also allows research scientists to develop computational 
algorithms for the comparative analysis of specific regions within the body between patient and 
control groups.

There are several different flavours of MRI data, each of which are orientated toward the type 
of analysis or diagnosis to be performed. In this Chapter MR-DTI (Magnetic Resonance Diffusion 
Tensor Imaging) is used, which over the past few years has provided important insights into the 
orientation and structure of the brain’s white matter (see Figure 6.1).4 This is reflected in a growing 
number of studies adopting DTI to determine changes in brain structure and to measure the diffu- 
sional motion of water molecules [205], Typically, the properties derived from the DTI data are 
harnessed to analyse the differences between diseased and healthy subjects. One such property is 
the Fractional Anisotropy (FA) value [206], which quantifies the local tissue integrity in proportion 
to the degree that nerve fiber bundles are aligned. The FA is used because it is sensitive to subtle 
neurological differences in the white matter. However, note that any changes in the observed FA- 
value of a patient can only be interpreted in comparison to a healthy control. The control must also 
match to the patient with regard to age, education level and handedness, as each of these attributes 
influence the FA value. A more detailed overview of the criteria needed for subject selection can be 
found in [204]. Changes in the white matter are important to identify, as they are typically indicative 
of neurodegenerative diseases, such as Alzheimer’s, Schizophrenia and Multiple Sclerosis.

There are many areas for data analysis within a neurological context; in this Chapter, however, 
the main focus is on the developement of analytical models for comparative analysis. Here, example 
application scenarios are: the calcualtion of the risk of developing a disease or the identification of 
a region of the brain that could be indicative of a disease. These analytical tools and techniques can 
also be used across a range of conditions such as the affects of drug use (see: [205]) or the analysis 
of diseases such as dementia (see: [207]) or Alzheimer’s (see: [208]). This means that many of the 
tools and techniques that are presented in this Chapter can be generalized to facilitate other areas of 
research in medical image processing.

4 White matter is one of the three main components constituting the brain. In short, it is composed of bundles of 
fibres (axons), which facilitate the transfer of messages between areas of grey matter within the central nervous system. 
Grey matter on the other hand, are (in board terms) the processors of sensory messages in order to create a response to a 
stimulus.
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Figure 6.1: Anatomy of the brain, depicted using an axial cross section and created by a visualization 
of the FA. White matter fibers are highly aligned, and have a bright intensity. Grey matter is more 
randomly oriented, and therefore has a lower intensity (FA is nearly zero). Cerebral spinal fluid has 
no structure at all and therefore appears black.__________

^  White Matter

^ G rey  Matter

Cerebral Spinal 
Fluid

6.2 Analytical Context: The C lassification of Schizophrenia

In this Chapter the main focus is in the classification of Schizophrenia, which is a cognitive disorder 
occurring in about 1% of the world’s population. The first symptoms usually occur in early ado­
lescence, with signs of abnormal social behaviour and hallucinations. Research into Schizophrenia 
is interested in determining firstly, whether the disease affects the brain tissue, and secondly, if so, 
which regions are affected. It is generally assumed that Schizophrenia affects the white matter struc­
ture in the brain [209]. The main medical findings have identified specific regions of the brain which 
are suspected to deteriorate or change anatomically as a result of the disease and are measured as 
reductions in the observed FA-value [210-217]. Currently, exactly which regions are most relevant 
is still unknown.

Computerized image processing of brain imagery has led to improvements in the understanding 
of many neurodegenerative diseases such as Schizophrenia. However, disseminating this informa­
tion into usable data is a complex process, because the brain’s structure is highly inter-connected 
and interacting. Typically, image processing approaches that investigate Schizophrenia use region 
of interest (ROI)-analysis or voxel-based analysis (VBA) [214] on data which has been annotated 
by an expert. These methods treat regions of the brain independently and thus disregard the con­
nectivity of the brain. Research by Caan et al. [204] has resulted in an algorithm that models 
correlations between different brain regions using a pattern recognition approach. In the adopted 
pattern recognition framework, a classification error is computed, which indicates the ability to dis­
tinguish between the schizophrenics and healthy controls. A robust estimate of the classification 
error is computed in a series of independent Tasks that can run in parallel. In this research, paral­
lel execution was hindered by the high costs of Matlab licenses and the unavailability of dedicated
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resources that are capable of running licensed Matlab sessions. Therefore, computational analysis 
had to be performed sequentially, which resulted in long running times.

The goal of this analysis is to locate regions of the brain that clearly differentiate between 
schizophrenic patients and healthy controls. In the case of affected brain tissue, signal changes in 
DTI scans are to be expected. As these changes are subtle, patient and control groups are compared 
to gain statistical power. Imaging artifacts, noise and heterogeneity within the patient and control 
groups hamper the detection of pathological processes in the data. Caan et al.’s method adopts a 
pattern classification approach using supervised techniques. The approach is designed to robustly 
answer the questions if and where a significant change in the scans of the patient and control group 
exist. Note that the relevance of the results obtained with the proposed method resides in analyzing 
the given population for clinical research purposes, and not (yet) to classify new incoming patients.

The classification process consists of two steps: (1) Principal Component Analysis (PCA) and 
(2) Linear Discriminant Analysis (LDA). PCA is used to extract representative features, known as 
Principal Components (PCs), from the data. Here, the number of principal components (nPCs) to 
be used needs to be optimized. If too few are selected, relevant information, i.e. specific anatomical 
regions of interest (those indicative of the disease) will be lost, and a biased estimation will be 
produced. On the other hand, should too many be used, then small variations (for example, noise in 
the data) will be over emphasized and therefore incorrect regions will be highlighted as significant. 
LDA is then used as a cost function to minimize classification error by assessing whether, and if so 
where, a significant difference can be found between the patients and controls.

To perform the analysis, a training set of a subseries of DTI-volumes with known class-labelling 
is used to train the LDA-classifier. This classifier is subsequently applied to samples in an unseen 
test set. The classification error is defined as the relative part of the test set that is incorrectly 
classified. Random classification would yield an error of 50%. Based on the group sizes, an upper 
boundary on the error of 35% is concluded to indicate a significant difference between patients 
and healthy controls. The estimated classification error should be independent of the composition 
of training and test sets, therefore a cross-validation strategy is adopted. Essentially, this involves 
splitting the total dataset (all DTI-volumes) into different groups that are partially used as test set, 
and the remainder of the volumes as the training set. Different compositions of groups lead to 
repeated cross-validation, and the computed classification errors are averaged for all. Typically, 
a ten-times repeated five-fold cross-validation is performed. Such an approach creates multiple 
coarse-grained Tasks that can be executed independently. In addition, data sets are required for each 
cross-validation step. Figure 6.2 illustrates the entire workflow from image acquisition through to 
the evaluation of the results. Here step c is where the classification is performed and is also the part 
of the workflow which is to be parallelized. In fact, many MRI analytical workflows have a similar 
structure: acquire images, spatially normalize the data, process and interpret the results. Therefore, 
the common use case is also captured in this Figure, and consequently, the applied implementation 
discussed in this Chapter is applicable to any other area of analysis with a similar use case. A 
discussion of the parallelization of step b is presented in Section 6.10.
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Figure 6.2: Workflow of the analysis indicating the parallelized steps.

6.3 Previous Approach

The previous approach for this work was sequential execution within a licensed Matlab session. 
Only one parameter needs to be tuned: nPCs, which gives rise to a parameter sweep. This means 
that the cross-validation step has to be performed repetitively for a range of parameter values. The 
execution of the analysis is CPU intensive, and therefore the user’s workstation is blocked for the 
duration of the analysis, preventing them from performing any other work during this time. Nor­
mally, a high-performance infrastructure such as that provided by the VL-e project [133], which is 
available at the AMC, could be used to run the computations. However, running (licensed) Matlab 
sessions is not possible within this infrastructure, which holds for public Grids in general.

There were challenges in the compilation of the two third party Matlab toolboxes (PRTools: 
Pattern Recognition Tools [201] and DipLib: the Delft Image Processing Library [202]) that are 
used for this analysis, as neither enables a simple compilation. Both have initialization scripts, 
which must be called to prepare and setup the toolbox. In addition, DipLib uses approximately 
120 dynamic loading libraries, which must be converted to statically bound libraries in order for 
the compiler to incorporate them. The complexity of the compilation was sufficient to mean that a 
compiled version was too difficult to produce.

When executed sequentially, this analysis required 90 minutes on an Intel Centrino Duo 1,83GHz, 
with 1GB of RAM and Windows XP Pro SP3. The version of Matlab in use was R2006a. Note that 
as an inherently single threaded environment the Matlab could only make use of one of the two 
available cores. However, despite this Matlab itself was unusable for this period of time.
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6.4 Domain Challenges

There are three core challenges to researchers that wish to develop analytical algorithms for neuro­

logical data: (1) It is difficult to recreate the expertise of the highly skilled clinicians within image 

processing software.5 (2) The validation of image processing algorithms requires a substantial effort 

due to the rigid requirement for reliability. Inherent variations in anatomy and a lack of, or limited, 

ground truths only exacerbate this situation. Consequently, to evaluate an algorithm, extensive data 

sets must be used resulting in a large consumption of, and therefore requirement for, computation 

capabilities. (3) Integrating a new tool into a clinical environment may be impossible without third 

party or vendor support, and even then it may obstruct the operator. These challenges are discussed 

in much greater detail in [218], where Olabarriaga et al. stated that some of these challenges can be 

appeased when an adequate computational infrastructure is available. Of these three core challenges 

the first is inherent to the domain, however, the remaining two overlap considerably to those dis­

cussed in Section 1.3. The overlap is in regard to issues of user ability (discussed in Section 1.3.3), 

achieving parallelism (discussed Section 1.3.6), determining the resource requirements of an appli­

cation Section 1.3.5) and the restrictions and requirements placed upon the operating environment 

(Section 1.3.7).

The challenge of user ability is perhaps one of the more complex issues to resolve, as the back­

ground of users and researchers is largely clinical as opposed to computer science or informatics. 

Therefore, a critical component within this domain is the collaboration between many scientific 

areas, for example Radiology, Neurology, Psychology, Physics and Computing [219]. Even when 
these collaborations are formally defined, it does not guarantee that co-workers are adequately com­
petent with the necessary distributed computing tools to perform the analysis. It is here that the 
challenge of how parallelism is achieved comes to the fore and is also coupled with several trade 

offs. Firstly, a fine grained abstraction is likely to inhibit progress, as the user cannot be expected to 
use the techniques needed to achieve smooth execution. In addition, a fine-grained architecture may 

not be available. Secondly, a computer scientist cannot be expected to understand and break down 
the computational models into units of work that can be executed in parallel. Here, a coarse-grained 

approach is much easier to facilitate, but can lead to an inefficient use of resources, as demonstrated 
in Chapter 2. Finally, medical researchers are not always willing to, or, more often than not, cannot 

allow their data to leave their work place because of patient confidentiality and the sensitive na­

ture that the data can have. This can even be the case after the data has been anonymized. Such a 

requirement quickly reduces the options for sources of computational power for a parallel solution.

Once these almost administrative challenges have been addressed, the identification of resource 

requirements of the application as a whole must be addressed. All too often in the literature ap­

proaches document scenarios where adding more resources actually reduces performance. Anecdo­

tally, end users are known to have a biased or inaccurate estimation of their resource requirements, 

which could therefore lead to a wasteful utilization of resources. This scenario is made yet more dif­

5Note that this is after the image data has been rendered, as image processing techniques are essential to the rendering 
of the raw data generated by the MRI scanners.
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ficult by the size and quantities of data that are in use. In addition, the amount of time the data needs 
to be processed in relation to the time needed to transfer it can be strongly unbalanced. Furthermore, 

and as mentioned above, data can seldom be transferred to a remote location.

The requirement for in-house processing raises the challenge of performing the analysis within 

the confines of the researchers’ normal working environment. Here, software licensing also has a 

large part to play in the adopted application solution. Many researchers rely on Matlab due to its 

abilities in rapid prototyping and the wide availability of relevant third party toolkits. For exam­

ple, SPM (Statistical Parameter Modelling) [203], which is one of the more popular toolkits for the 

analysis of functional MRI (fMRI), is made freely available by the University College London to 

the [neuro] imaging community, to promote collaboration and a common basis for analysis across 

laboratories. DIPLib and PRTools are provided free of charge for academic institutions for the same 

reasons. The problem is that whilst these toolboxes are license free, they are built upon and there­

fore dependent upon a Matlab foundation. Consequently, a Matlab license must be available for 

each node that partakes in the execution of an application, which quickly increases the costs of par­

allelizing existing applications. An individual license costs, as previously mentioned in Section 2.3, 

between £525 and £6300, but cluster licenses can be several orders of magnitude higher. Here, Mat­

lab compilation is the solution, however, as discussed in the critique of JavaPorts in Section 3.1.1, 

this is not a straightforward process to perform well.

There is also the question of application steering and how Tasks are to be injected into the 

system. There is no direct requirement for Matlab to act as the head application in this particular 

scenario, but it would be a desirable attribute. In addition, the ability to steer the Virtual Cluster di­

rectly from Matlab would have a high utility for other applications, specifically the application that 

will be presented in Section 6.10. On the outset such a requirement does not appear that difficult, but 
experience in the use of Matlab, an in-depth knowledge of its architecture and the potential require­

ment for low response times from Matlab (to prevent bottlenecking) present additional challenges. 
Firstly, Matlab is built upon an interpreted language, which slows it down considerably. Secondly, 

its graphical and console output is inefficient; Matlab can perform most simple image processing 
functions several orders of magnitude quicker than it can display their results. Finally, Matlab’s 
memory management and Java handling can be abhorrent, and if an application pushes Matlab too 

hard it will lock up, crash and file a useless thread dump.

6.5 Relevance of this Research to the Neuroimaging Domain

The research documented in this thesis and the implemented software solution -  the transparent 

construction of a Virtual Cluster of Matlab-enabled workstations (Chapter 5) -  are significantly 

beneficial to neuroimaging domain. Below is a discussion to support this claim in relation to the 

challenges introduced in the previous Section.

The Cl (Client Interface Section 5.5) enables a user to specify no more than what analysis they 

wish to perform and upon what data it should be performed. The Cl will take this information and
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generate a set of schedulable Tasks for the user (see: Section 5.5.2) and execute it transparently. 

The Cl can even be incorporated into a Matlab session (see: Section 6.6.1) for added transparency. 

Ultimately, this means that the user’s knowledge of what resources they are using or how they are 

used is minimal. In addition, the granularity that this research encourages is a coarse-grained data 

abstraction (see: Section 4.9.1). This means that complex and low level approaches for parallelizing 

existing code are not required. Instead, users can work at the function level, i.e. one Task relates 

to a chain or sequence of function calls upon the specified data (see: Section 5.5.2). As a result, 

the call for remote execution can be made almost6 identical to what would be entered within a local 

Matlab session.

On a similar note, one of the limiting factors mentioned in Section 6.4 is in regard to software 
licensing, specifically Matlab, and the complexities of creating a license free (compiled) solution. 

The Virtual Cluster as a whole, has no reliance upon Matlab licenses, despite one hundred percent 

of an IAS’s (Section 5.2) functionality stemming from Matlab. In fact, should it be necessary even 

an Application Manager based within Matlab could be compiled to remove all licensing restrictions. 

The IAS is also a general and extensible software component that caters for diverse and heteroge­

neous applications through its novel Autonomic Matlab Compiler, which captures entire Matlab 

toolboxes (see: Section 5.2.1). This ability completely alleviates the high costs of running a parallel 
software solution and most of the effort needed to perform the compilation. In addition, by remov­

ing the prerequisite for licenses, the number of processing nodes is no longer dependent upon the 

number of licenses.

To determine the number of resources that should be used is also not an issue for the user. Many 

approaches in the literature place this requirement upon the user. However, the User’s Requirements 
Model (Section 4.5) models the ability of the user’s application to consume resources. This abstract 

estimation is then turned into a acquisition of resources based upon the current resource availability 
and a fault-aware acquisition model (Sections 4.4, 4.4.1 and 5.3.3) on the user’s behalf.

When the system does acquire resources for the user, it does so using the daemon model (Sec­
tion 4.3.1), which facilitates the construction of a Virtual Cluster and its interactive use. In short, 
this means that a Task experiences a much reduced overhead as a consequence of remote execution. 

Therefore, a Task can be minutes or even seconds in length and its makespan near its actual runtime 
and not be distorted by the disproportionate overhead traditional approaches can apply.7 In addition, 

all fault management, which is the consequence of resource volatility (Section 1.3.1 and Chapter 2), 

is handled transparently for the user by the CRM (Section 5.3). This provides the user with two key 

abilities: (1) the ability to concentrate on their research and not administrate a potentially complex 

and volatile distributed system, and (2) the ability to differentiate between a fault in their code and 

workstation error. Note that the current Campus-Grid infrastructure could not guarantee this dis­

tinction (see: Section 2.3). The result is a strong orientation toward resource reliability as once an 

IAS instance becomes available, it is guaranteed to function correctly for its lifetime. If, due to its

6It is almost identical because a small modification to the way in which data is presented is necessary. This will be 
further explained in Section 6.6.

7 This will be demonstrated in Chapter 7.
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volunteer nature, an IAS’s host workstation is revoked and the IAS is terminated, the system will 

autonomously reconfigure and leave the user unaware of the failure.

Many clinical researchers are bound by laws governing the transfer of data, and are therefore 

either unwilling or prevented from using external sources of computational power. This approach 

enables them to utilize their local resources by building upon the traditional model of opportunistic 

computing.

6.6 Implementation of a New Approach

In order to port any application into a parallel context it is inevitable that some changes to its code 

are required. This was also true for this analysis, albeit only slight. All data loads were sepa­

rated from the execution code8 and all console and visual output was also suppressed for improved 

performance. No further modifications were required. To capture results the MI (Section 5.1.2) 

encapsulates results in Matlab’s . m at format so that they can be easily imported into a Matlab 

session for analysis. When results are being generated, the MI uses variable names ascribed by 

the function’s output declaration, using the lookup table generated during compilation (see: Sec­

tion 5.2.1) and therefore remains consistent with the original code. This approach also provides a 

naming standard that is both predictable and intuitive.

The two external toolboxes used in this analysis also present their own individual challenges. 

However, in order to create a general solution, the entire toolboxes have been added to the IAS. 
This means that a single instance of the IAS can accommodate Tasks, which use any combination 

of both these toolboxes without recompilation. No other compiled Matlab approach in the literature 

has documented this ability.

PRTools

Compiling the entire PRTools toolbox was relatively simple, the IAS’s Autonomic Compiler (Sec­
tion 5.2.1) was directed toward the PRTools directory. Consequently, it identified several problem­

atic Matlab scripts containing illegal characters and unbalanced parenthesis. However, once these 

were removed or corrected9 PRTools was available.

One other accommodation was required, as PRTools contains a setup script which is called 

transparently in regular Matlab. However, when PRTools is compiled, this process is not performed, 

and therefore PRTools was modified to take this into account. To determine if the setup process has 

occurred, PRTools uses a g l o b a l  boolean variable. In a compiled version of Matlab the workspace 

containing this variable is reset for every call to the engine. To accommodate this, the variable was,

8Data loads need to be separated because an explicit data load within the application’s code may fail. In order to 
guarantee that data dependencies are retained and that the same file is not transferred twice, filenames are converted into 
unique identifiers. Therefore, any explicit data load that the Client Interface (Section 5.5) could not identify, for example 
a function which is called by the user’s code and expects a specific name, would fail.

9 Approximately 30 of the 500 PRTools functions were diagnosed with errors and remedied as a result of the compila­
tion process.
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firstly, made p e r s i s t e n t ,  and secondly, its scope was changed so it can be controlled by an ML 

DIPLib

The addition of DEPLib was just as straightforward as that of PRTools. DIPLib uses 120 precompiled 
dynamic loading libraries (DLLs), which increase speed and enables some of the package to be used 
outside of Matlab. Regular Matlab accesses these libraries transparently, but the Matlab compiler 
requires a static library (LIB) in order to link against the DLL. Therefore the Autonomic Compiler 
generated all the necessary LIB files and then proceeded to compile DIPLib.

In a similar fashion to PRTools, DIPLib also requires setup to function correctly. However, 
unlike PRTools this process is not transparent. The function d i p _ i n i t i a l i s e  must be called 
prior to the use of any DIPLib functionality. It is not possible to predict what an IAS will do or 
when during its life time. Similarly, checking each Task Sequence involves unnecessary string 
manipulation. For these reasons d i p _ i n i t  i a l i s e  is called the first time that the MI is invoked. 
Once these two steps were taken, DIPLib had been incorporated into the IAS.

6.6.1 Interacting with the Virtual Cluster

This application is essentially a coarse-grained embarrassingly parallel problem. Once the necessary 
Matlab functionality had been made available to the IAS, no core extensions to the architecture were 
required to run it, with the exception of an Application Manager. Here, there are two options: (1) a 
simple Java program that defines the Tasks needed for execution and invokes the Cl (Section 5.5) 
and inherits all the necessary functionality to do so, or (2) a Matlab-based Application Manager, 
which hides most of the administration of initializing the Cl and passing Tasks to it for execution.

A Java-based Application Manager

In [59] the first scenario was used to perform the analysis. To demonstrate the simplicity of interact­
ing with the system, Listing 6.1 shows the Application Manager developed for this analysis. Note 
that the Application Manager actually uses less lines of Java than the number of lines required to 
define the same application using a Condor submit script. It also has the benefits provided by the 
use of the Virtual Cluster (which will be discussed in Section 8.1.3) rather than the challenges of 
administration as outlined in Chapter 2.

Matlab Integration

In order to integrate an Application Manager into Matlab, a slightly different conceptual model (see 
Figure 6.3) to that presented in Chapter 4 is created. In this case Matlab is in control of when Tasks 
are created and given to the system for execution as opposed to a user.

The Java-based Application Manager fell under the category of explicit parallelism, which is 
characterized by the presence of explicit constructs in the architecture to define parallel calls [93, 
220]. In this case the Matlab Application Manager describes the way in which parallel computation
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Listing 6.1: Java Application Manager
/ /  impor t  s t a t e m e n t s  removed f o r  p r e s e n t a t i o n

\ p ub l i c  c l a s s  MRICl i ent  e x t e n ds  C l i e n t  A p p l i c a t i o n  {
! pubic MRICl i ent  () { 

s u p e r ( ) ;
}

p u b l i c  void i n i t ()  {
/ /  Def ine  the data set  and sequence  to p e r f o r m:
St r i ng  dat a  = ‘ ‘ c : \ \ D a t a \ \ s c h i z _ s t u d y _ f a _ r e g  1 m m . i n t  1 6 . mat ’ ’ ;
S t r i ng  sequence = ‘ ‘ p c a l d a c r o s s v a l _ c a r d i f f ( l o  ad ( ’ ’ + d at  a + ‘ ‘) , i t e r a t i o n s ) ’ ’ ;

/ / C r e a t e  a parame t e r  sweep us i ng the Task s equence  
Va r i a b l e S e q u e n c e r  vs = new V a r i a b l e S e q u e n c e r  ( s equence  ) ;

/ / I d e n t i f y  the sweepi ng par ame t e r :  i t e r a t i o n s
Var i ab l e  i t e r a t i o n s  = new Va r i a b l e  ( i t e r a t i o n s  ) ;

/ / s e t  paramet er  value  range f r om 1 to 20 ( i n c l u s i v e  ) wi th a s t ep  o f  1
i t e r a t i o n s  . add Value Range (1 , 2 0 , 1 ) ;

/ / a d d  sweep v a r i a b l e  and compute the c o m b i n a t i o n s  
vs . a d d Va r i a b l e (  ‘ ‘ i t e r a t i o n s  ’ ' ) ;

/ / s c h e d u l e  a l l  c o mbi na t i ons  as new Tasks  de n o t e d  here as a MRICommand 
whi l e ( v s . hasNext  () ) { 

sendCommand(new MRICommand( vs . g e t C u r r e n t S e q u e n c e  () , vs . getTag () ) )  ;
/ / n o t e  an aut omat ed Task i d e n t i f i e r  d e no t e d  here as Tag 
v s . n e x t () ;

}
}

pu b l i c  void r e c e i v e R e s u l t  ( Resul t  r )  {
/ / when r e s u l t  is r e c e i v e d  download i t
new Re s u l t Do wn l o a d e r ( r  . g e t Re s u l t  () . t o S t r i n g  () , r  . Tag.  t o S t r i n g  () , r  .Tag,  t h i s )  ;

}
pu b l i c  void r e c e i v e E r r o r  (Command c) {

/ / i f  an e r r o r  is r e c e i v e d  d i s p l a y  i t  
System . er r  . p r i n t l n  ( c )  ;

}
p u b l i c  s t a t i c  void main(  St r i ng  [] a r g s ) { 

i new MRI Cl i ent ( )  ;
}
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Figure 6.3: New conceptual model. Here, the user is no longer aware of the core components 
outlined in Chapter 5
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takes place, and therefore provides the basis for flexibility in the approach. However, the cost of 
flexibility is the additional work required to parallelize the code and write the Application Manager 
itself. Writing an Application Manager is not considerable effort, it is arguably easier than writing 
the equivalent Task description as a collection of submit scripts, and then managing the application. 
However, it could be seen as an unnecessary administrative task for the user to perform. For this 
reason, the Matlab-based Application Manager was created.

Implicit parallelism allows programmers to write their applications without any concern for 
how the parallelism is achieved or the parallel calls made. Exploitation of parallelism is, instead, 
automatically performed by a compiler or the runtime system. The latter is the case here. The 
advantage is that the parallelism is transparent to the programmer. However, extracting parallelism 
implicitly requires a great effort by the system developer and it is very difficult to create a general 
approach. This becomes all the more challenging when multiple data dependencies exist.

The Matlab-based Application Manager adopts a hybrid of the two models and aims to find 
a balance between the two. There are three factors that prevent this approach from having a tme 
implicitly parallel model. (1) The user flags a function as one which should be executed on the 
Campus-Grid. (2) A handle for a result is returned instead of a result. (3) Data loads need to be 
converted to strings and have full file paths. This enables the underpinning architecture to handle 
explicit data dependencies. For example ' l o a d  ( c :  \m y D a t a .  d a t ) '  instead of l o a d  (myData  

. d a t ). Ultimately, this means that users must change their code to use this approach; however, 
changes are only minor. A hybrid approach was chosen over one or the other because it enables a 
generalizable solution much more easily than an implicitly parallel approach, whilst retaining some 
of its benefits. By drawing on an implicitly parallel approach, it also makes parallelism easier to



6.6. Implementation of a New Approach 195

achieve for the user than an explicitly parallel equivalent.
In order to flag a Matlab function as one which should be executed on the Campus-Grid instead 

of locally, the Matlab function p a r a l l e l i z e  was created specifically for this purpose. An ex­
ample call is: p a r a l l e l i z e  m y F u n c t i o n .  When this is performed, all the necessary hooks to 
the underlying architecture are built transparently. This process turns all future calls of the user’s 
function into a Task to be executed on the Virtual Cluster with immediate effect. In order to achieve 
this, the following processes are undertaken: (1) start the Matlab Application Manager if it is not 
already running. (2) Create a polymorphic equivalent of the user’s function, which is higher in the 
Matlab search path, and therefore executed instead of the user’s function for all future calls. (3) Ex­
tract the input arguments of the function for the new overloaded version, using the hashtable built 
by the AC (Section 5.2.1),10 and build a map, which translates input arguments into an output file 
in preparation for their transfer to a remote workstation. This only applies to numerical arguments, 
as they require more complicated means of storage than String-based arguments; the argument type 
is determined at runtime. (4) Add the functionality to create a Task object and give it to the Appli­
cation Manager. (5) Include the functionality to query the Application Manager for the handle and 
return it as the function’s result.

Results are collected using a different approach to regular Matlab, which occurs as a conse­
quence of using remote resources. When a parallelized function is called and a Task is created to 
reflect this, a handle to the result is returned instead of the result itself. If the result was returned at 
this point, the call would be a blocking call, therefore making the use of multiple remote resources 
redundant. By returning a handle, further Tasks can be injected, making parallel execution more 
feasible and beneficial. From a programming perspective the only difference is that results are col­
lected when they are needed, but not necessarily when they are available. The idea here is to enable 
Matlab to give the scheduler (via the Application Manager) all Tasks for a processing block in bulk 
and then later collect the results only when they are needed for generating new Tasks. A blocking 
call is only generated when a result is requested, as it is assumed that without the result the appli­
cation cannot progress. This also presents the potential for future development work to enable an 
application to move on without a result if it is either no longer required, or if without it the applica­
tion as a whole is not largely affected. The latter could be true in optimisation problems, where one 
dropped iteration is not largely detrimental to the performance of the algorithm as a whole. Another 
example would be in genetic algorithms or parameter sweeps, where a solution is presented that 
makes others redundant.

When a result is requested, the handle is used to access the result file transparently, which will 
have been downloaded from the IAS by the Application Manager when the result was received. 
At this point the function that was executed, and therefore created the result, is identified. It is 
necessary to know exactly which function was called in order to determine the output arguments, 
and, more importantly, their order. Once this has been identified the . mat results file is loaded,

10If the function has not previously been incorporated into the IAS, the user is alerted. The compilation process can be 
performed at a later date. In such cases the function is inspected by the AC so that the process of generating a polymorphic 
equivalent of the user’s function can continue.
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the necessary variables are created, instantiated and returned. The process of calling a parallelized 
function and receiving a result is summarized in Figure 6.4.

The Application Manager extends the basic structure of that used by the Java-based Application 
Manager to enable the functionality presented above. There are two additions to the basic Applica­
tion Manager required to achieve this: (1) a method to create a unique handle for a result. (2) The 
means to map the handle to a result, or if an error occurred, to inform Matlab so that the necessary 
action can be taken.

The key difference between the Java-based Application Manager and the Matlab-based Appli­
cation Manager is in how the user describes their application. To use the Matlab-based Application 
Manager the user would perform steps similar to that shown in Listing 6.2. For a comparison, the 
code required to perform the analysis sequentially within the local Matlab session, i.e. the previous 
approach, is presented in Listing 6.3.

6.7 Evaluation Methodology

The PCA/LDA analysis constitutes of 20 independent iterations (one per Task) and the same data 
set is used for each iteration. The data set contains the 58 DTI scans, which have been compressed 
to reduce transfer costs and is 20MB in size. The results of the analysis are not needed immediately 
after completion and were later aggregated and analyzed offline to the determine their accuracy. 
During this work three scenarios are examined for the analysis of the DTI data. Each scenario has 
been chosen to illustrate a specific set of qualities of the Virtual Cluster and the improvement in the 
AM that was achievable through its use. The three scenarios are: (SI) The Virtual Cluster is built 
from scratch, i.e. no IAS jobs have been submitted by the CRM before the Application Manager 
began. This scenario will demonstrate the rate at which the system can be initialized, and that 
despite using significantly older and lower specification workstations, a considerable improvement 
in performance can be achieved with little effort on the user’s part. (S2) Some IAS instances have 
been previously used and are still available. Here, the value of being able to recycle previously used 
resources, as well as the adaptive qualities of the approach, will be demonstrated. This could occur 
as a result of either previously undertaken work where the system had not been shutdown, or through 
the preinitialization if IAS instances to enable spare capacity on demand. (S3) More than enough 
LAS instances are available for use by the application. When enough Campus-Grid workstations are 
available, this scenario occurs naturally after a few runs of the analysis. This occurs as the CRM 
(Section 5.3) responds to the demand placed upon it and also attempts to acquire spare capacity 
for the CSM (Section 5.4). This final scenario will demonstrate the maximum reduction in AM 
achievable and serve as a reminder to the heterogeneity of the workstations in use.

In this analysis the two performance metrics of interest are: (1) the accuracy of the analysis 
in comparison to the previous approach, and (2) the improvement in application makespan as a 
consequence of using the Virtual Cluster. Ensuring the accuracy of the results is very important 
because a different execution model and result representation is in use. Similarly, as this is a medical
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Figure 6.4: Activity Diagram for calls of parallelized functions and the use of their results
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Listing 6.2: Matlab calls required to perform the application on the Virtual Cluster
Recreate a po l y mor ph i c  e q u i v a l e n t  o f  the p e a  Id ac ros  sv a l - C a r d i f f  f u n c t i o n  ,
%al l  f u t u r e  c a l l s  w i l l  now be e x e c u t e d  on the V i r t u a l  Cl u s t e r  as a Task 
p a r a l l e l i z e  ( ’ p c a l d a c r o s s v a l . c a r d i f f ’ ) ;  
f o r  i = 1:20
%get  r e s u l t  handle  f o r  each c a l l
h a n d l e [ i ]  = p c a l d a c r o s s  v a l - C a r d i f f  ( ‘ load ( c : / D a t a / s c h i z - s t u d y  _ f a _ r e g  1 m m . i n t  16 . m a t ) ’ , i ) ;  

end

f o r  i = 1:20 
%g et r e s u l t s
[ r e s u l t s ]  = g e t R e s u l t s  ( handl e  [ i ]) ;

| %process  r e s u l t s . . .

\ end

Listing 6.3: Matlab calls required to perform the application sequentially

end

application, the ramifications of inaccuracies in the generated results could be significant were this 
approach ever to be employed in an diagnostic scenario as opposed to a research scenario. To ensure 
that the use of the Matlab compiler and the IAS have not negatively impacted upon the application 
as a whole, the results of the analysis being performed are already known. The second performance 
metric is the Application makespan (AM) is calculated in the exact same manner as in Section 2.4.1, 
i.e. it is the time from when the Application Manager submits the first Task to the time that the final 
result is received.

In Section 6.3 it was highlighted that on a single workstation, the analysis requires 90 minutes 
to produce usable results. At the time that this work was performed, the workstation in question was 
quite new (less than six months old) and top of the range when purchased. In contrast, the Campus- 
Grid workstations in use can be up to four years old, as the University replaces workstations in 
rotations of three to four years, depending on departmental policies and funding. The end result 
is that the Campus-Grid workstations used in this analysis had a considerably lower specification. 
Here, workstations could be Intel Pentium 3s with between 256 and 512 MB of RAM, have either 
a 10 or lOOMbit/s Ethernet connection with the standard Cardiff University Windows XP Pro SP2 
image. However, it was possible to also acquire workstations in the order of a Intel Pentium 4, 
1.8-2.4Ghz and between 512 and 1024 MB of RAM, with the same Ethernet and operating system 
composition, but this was not common. Therefore, there is a considerable difference between the 
specification of the workstation used for the sequential benchmarking and the workerstations that 
hosted an IAS instance. The reason for using the user’s workstation to determine the benchmark 
for performance as opposed to an “average” Campus-Grid workstation, is firstly, because the only
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way to accurately demonstrate any improvement and therefore benefit of the approach, is to make 
this comparison relative to the user’s normal working environment. Secondly, determining what the 
“average” Campus-Grid workstation is relates to a significant research challenge in itself.

Estimating an accurate speed up value for this analysis is difficult to estimate objectively (and 
fairly), as there are too many complexities to consider. For example, the heterogeneity of Tasks and 
workstations, workstations’ previous work (giving rise to the potential for caching) and background 
processing all make quantifying speed up quite challenging and potentially subjective. For these 
reasons reductions in application makespan are considered as opposed to speed up values.

6.8 Results

Figure 6.5 shows the mean classification error plotted against the number of principal components 
for the ten-times repeated five-fold cross-validation (yielding 50 runs in total). For this particular 
analysis with 58 subjects, an error below 35% was considered significant. Mean errors decrease 
from 28% for 1 PC to 22% for 15 PC’s, after which it stays approximately constant; for larger nPCs, 
error reduction is not significant, so 15 PCs can be regarded as optimal for further classification. The 
corresponding thresholded map is overlaid to the FA volume and displayed in Figure 6.6, which 
is what would be presented to a radiologist for interpretation. These results are consistent with 
Caan et al.’s previous findings in [204], which demonstrates that despite changing the execution 
model, the result representation and moving to a compiled version of Matlab, accuracy has not been 
compromised.
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Figure 6.5: Mean classification error as function of nPCs, with error bars denoting the standard 
deviation respective to the mean.

significant difference

Figure 6.7 shows a visualization of this analysis for execution scenario one (SI), where no
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Figure 6.6: The thresholded map for nPCs= 15, displayed as white and black regions for increased 
and decreased FA for patients, respectively, with the FA on the background. Slices are displayed 
from top to bottom.

IAS instances were available when execution began. In this scenario the system, and by extension 
the user, must wait for the CRM to schedule some IAS jobs and then for these IAS instances to 
successfully initialize before Task execution can begin. Figure 6.7 shows that two IAS instances 
were initialized, and therefore useable, within the first 60 seconds of the experiment’s runtime, and 
further instances became available in the following 120 seconds. This demonstrates the speed with 
which the construction of a Virtual Cluster of Matlab-enabled workstations can begin, despite the 
difficulties in running compiled Matlab jobs that was documented in Section 2.3. It is also clear from 
the visualization that IAS instances are acquired sporadically, which emphasizes the heterogeneity 
of the workstations upon which they are running, the variability in which workstations are available 
and the nonuniform distribution of jobs by Condor. As the number of IAS instances reaches 10, 
the scheduler employs Task reallocation (or load balancing) to take advantage of the new resources, 
as no Tasks remain unscheduled, but are either complete, executing or waiting in an IAS queue 
(denoted as buffered in Figure 6.7).

The user waited 15 minutes and 35 seconds for their analysis to complete. Considering that a 
maximum of 13 IAS instances were used (the 14th, acquired around 480 seconds, was not used), this 
does not initially show good performance. However, consider the following: (1) that number of IAS 
instances was not a factor of the number of Tasks, (2) that during runtime new resources were gained 
(an average 8 IAS instances were used)11 (3) that the workstations had to be allocated by Condor and 
then successfully initialized before servicing a Task, (4) that no optimised allocation strategy was in 
place during this work, (5) the heterogeneity of the Tasks and workstations in use: the average Task

11 To determine the average number of resources, the underlying monitoring framework samples the number of IAS 
instances in use once per second while Tasks are still to be executed and the number of IAS instances is not zero.
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Figure 6.7: Plot of application execution when no resources were available when the application 
began.

completion time was in the order of 4 minutes, but minimum and maximum execution times are: 3 
and 7 minutes respectively, and (6) that the 90 minute benchmark for sequential computation was 
performed using a workstation that was potentially far more than the average Condor node. Given 
these conditions, an 83% reduction in the AM, with marginal effort on the user’s part, is respectable.

Figure 6.8 shows the analysis for scenario two (S2), where 11 IAS instances were available prior 
to execution and could therefore be recycled. The scheduler initially queues Tasks, but consequently 
reallocation occurred once to accommodate the eleventh IAS. Between 300 and 330 seconds of the 
runtime two further IAS instances became available. Here, the requirements model (Section 4.5) 
had illustrated the potential for yet further resources and the combination of the CSM (Section 5.4) 
and CRM (Section 5.3) yielded further IAS instances. This caused further load balancing to provide 
work for the new IAS instances. However, reallocation occurred three times, which indicates that 
one of the original eleven LAS instances had also run out of work, and was therefore provided with 
additional work from a slower IAS. On average 8 IAS instances were used, as in the first scenario, 
but the overall execution time has now dropped to 12 minutes and 45 seconds. This reduction 
illustrates the additional benefit of spare capacity within the system, and how the recycling of a 
set of resources established some time in the past (either from previous runs of an experiment or 
simply through instructing the CRM to have some resources always available) can further improve 
performance. This scenario reduced the overall application makespan by 86% and has improved 
upon scenario one by 18%.

Figure 6.9 shows analysis for scenario three (S3), where more than 20 IAS instances were 
available prior to execution. In this case, Task reallocation also occurs 10 times as the scheduler 
does not expect to receive such a quantity of resources. However, this time enough IAS instances 
are available to service one Task each; the reallocation occurred within the first 30 seconds of
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Figure 6.8: Plot of application execution when some resources were available when the application
began.
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Figure 6.9: Plot of application execution when enough resources were available to cover all Tasks 
when the application began.
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execution. Note that the data set was also transferred in this time. The effects of Task and resource 

heterogeneity are also most apparent in this scenario. Homogeneity at both levels would result in a 

more consistent and uniform Task completion rate. Instead, Figure 6.9 shows a large gap between 

230 seconds and 340 seconds where no Tasks were completed. Here, the difference between the 

fastest workstations,12 and the remaining workstations is most apparent. This gap is followed by a 

quick burst of Task completions over the next 60 seconds, as the middle of the range workstations 

finish. The slowest workstations finish off their Tasks over the last few minutes, and are the main 

cause of a less efficient utilization of resources. It is clear that here load balancing was not employed 

to duplicate the Tasks of the slowest workstations. The current load balancing strategy is not geared 

toward redundancy scheduling of a Task which has already started execution. Instead, it opts to 

balance the sizes of the daemons’ queues. This scenario, therefore, shows a potential limitation of 

the load balancing strategy for smaller Task spaces. This is also manifested in the average number 

of IAS instances in use: 14. Therefore, better scheduling strategies could significantly improve 

performance in the third execution scenario, and potentially also in scenarios one and two. However, 

in the third scenario the user’s wait time has now been reduced to 9 minutes and 50 seconds, a overall 

application makespan reduction of 89%, an improvement of 37% and 23% against scenarios one and 

two respectively.

Table 6.1 shows a juxtaposition of the completion times for the three scenarios in comparison 
to the benchmark application makespan for sequential execution.

Scenario AM Reduction in AM Initial IAS Count Avg No. of IASs
Benchmark 90:00 N/A 1 1

SI 15:35 83% 0 8
S2 12:45 86% 11 8
S3 09:50 89% >  20 14

Table 6.1: A comparison of the three execution scenarios for the classification of schizophrenia in 
diffusion tensor images, where AM stands for application makespan.

6.9 Discussion

This application has demonstrated that the construction and use of a Virtual Cluster of Matlab- 

enabled workstations within a Campus-Grid environment can be applied to real world problems and 
not just to simulated or carefully contrived applications. It has also shown that real improvements 

in performance are achievable with minimal effort on the user’s part. This began with the method 

for capturing Matlab functionality that was previously too complicated a process for the end user 

to perform. The use of the Autonomic (Matlab) Compiler (Section 5.2.1) not only facilitated this 

process and made it possible for the toolboxes PRTools and DipLib to be compiled, but did so in 

a general manner by capturing and compiling the entire toolbox. The end result is that all future

12Those most likely with a history of performing a similar Task as a result of a previous experimental run.
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applications which need either of these toolboxes can be supported by the IAS without recompila­
tion. In addition, the AC also highlighted areas of the toolboxes which contained errors. These were 

promptly relayed back to the developers for future improvements in the toolbox. In this scenario the 

user’s function was also added to the IAS for convenience. However, this process is not essential to 

the use of an IAS, as any Matlab sequence that can be entered at the Matlab command line can be 

transferred to an IAS and executed.

The analysis performed in this Chapter and the three execution scenarios were used demonstrate 

two key aspects of the models discussed in Chapter 4 and implemented in Chapter 5; namely: that 

this approach does not compromise the accuracy of the algorithms in use, despite a different execu­

tion model, the use of the Matlab compiler and a different result representation. It also demonstrated 
that the Virtual Cluster can provide significant improvements in application makespan even when 

the workstations in use are of a much lower specification to the workstation used to benchmark the 

application for sequential execution. The reason for this difference was because improvements can 
only be measured relative to the user’s normal execution scenario to accurately illustrate the bene­

fit to the user of the approach documented in this thesis. In addition, significant improvements in 

performance were achieved despite the challenges of the Campus-Grid environment documented in 

Chapter 2. Note also that the best application makespan observed, using execution scenario three, 
enabled the entire analysis to be completed in less time than the recommended minimum job length 
for the Condor system.

The three execution scenarios also demonstrated some key aspects of the approach that are note­
worthy. The first scenario, where no IAS instances were available when the Application Manager 
was started, the speed with which the system can be set up was demonstrated. Ordinarily, this 

time would be lost as scheduling overhead, but because each IAS instance can consume multiple 
Tasks, by scheduling in a just-in-time fashion, this time can be modelled as an investment or down 
payment on the resource itself. This “investment” will yield a reduction in the runtime of Tasks 
submitted to that IAS following this initialization period. An impression of the speed with which an 
LAS initializes was also demonstrated in this scenario; the first IAS instance that was ready for Task 
consumption and execution appeared after just 30 seconds.

In the second scenario, 11 IAS instances were available before the Application Manager was 
started. This demonstrated firstly, the utility of the ability to recycle previously initialized IAS in­

stances, which was seen as a further reduction in application makespan. It also demonstrated the 

adaptive nature of the approach as a whole. The DTI analysis consists of 20 Tasks in total, but 11 
workstations are available, which is not a factor of 20. The adaptive nature of the opportunistic 

scheduler capitalized upon the workstation heterogeneity by scheduling the fastest workstations, 
with more Tasks balancing load from the slower workstations. Essentially, when the fastest work­

stations finished and had no remaining work, Tasks were removed from the queues of other, slower, 

workstations to improve throughput. The adaptive nature of the system was also demonstrated in 

that during runtime the CRM (Section 5.3) managed to initialize a further three IAS instances. This 

occurred as a consequence of the global requirements model (Section 4.5), identifying that further
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IAS instances could be consumed. Consequently, the CSM’s (Section 5.4) demand upon the CRM 

was increased, with the effect that further IAS jobs were injected into the Campus-Grid.

In the third scenario, more than 20 IAS instances were available before the Application Man­

ager began. This scenario demonstrated the variability of the Campus-Grid workstations. 20 IAS 

instances were available and used, but the total wall clock execution time did not drop to 4.5 min­

utes. Why? There are several answers to this question. Firstly, the workstation used to generate 

the performance benchmark was far more powerful than a large portion of the Campus-Grid work­

stations. Secondly, each Task is not homogeneous even on the same workstation, which is due to 

subtle differences in the way in which each Task acts upon the data set. Finally, IAS instances that 

have performed work in the past for other applications or previous runs of this analysis benefit from 

operating system caching of the libraries used by Matlab and thus can perform Tasks with a reduced 

runtime. This last reason further demonstrates the utility of being able to reuse LAS instances for 

subsequent and even disparate Tasks, as all Tasks share the same base Matlab functionality.

The ultimate goal of this analysis is to help a clinical researcher identify regions of the brain 

that are indicative of a neurodegenerative disease, enabling evidence-based decisions. By using the 

prototype documented in Chapter 5, the Matlab-based application was ported to a Campus-Grid 

infrastructure with minor modification. The application workload, consisting basically of indepen­

dent Tasks, was transparently distributed among the Campus-Grid workstations. By using a general 

pre-compiled Matlab daemon, Matlab licenses are no longer required to run the application in par­
allel, which yields a saving of £1,500 per workstation in use. From the user’s perspective this is 

very important since it enables the running of any Matlab application on similar Grid systems with­
out the high cost of cluster licenses. In addition, the approach was generalized to facilitate any 

other combination of the tools used without requiring the user to recompile the Matlab-based tool­
boxes PRTools and DIPLib. The Campus-Grid implementation provided a reduction in application 

makespan from 90 minutes to less than 10 minutes, enabling the realization of complex and time 
consuming analysis within a reasonable time. The reduction in application makespan was obtained 
through: (1) the compilation of Matlab code, as licensed sessions cannot be supported, (2) parallel 
execution, and (3) an improved Task submission and management scheme.

Had this analysis been performed on the Condor system without the use of the Virtual Cluster it 

would not have been possible to complete this analysis as quickly. This claim can be substantiated 

with the following observations. Firstly, the average runtime for a Task was in the order of four 

minutes, where the minimum and maximum runtimes were three and seven minutes respectively. 
Secondly, the average initialization time for the IAS was approximately three minutes. Remember 

that in Section 4.4.2 it was identified that 95% of all runaway Matlab jobs could be identified using 

five standard deviations of the the average initialization time of a Matlab job, and therefore also 

of the IAS, which corresponds to approximately eleven minutes. In order to identify that a job 

had in fact runaway, a Job Manager like that defined in Section 2.4.2 would not be able to identify a 

runaway job before 18 minutes (11 for runaway classification plus maximum recorded Task runtime 

of 7 minutes). Thirdly, in Section 7.6 it will be demonstrated that a Campus-Grid job waits in the
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Condor queue for nearly three minutes on average before being matched to a workstation, and a 

minimum of nine seconds. When these times are put together, they identify that the Campus-Grid 

would perform one Task in a minimum of 3:39 minutes. However, in Section 2.4 it was identified 

that 45% of all Matlab jobs fail and therefore nine Tasks would statistically need to be submitted 

at least twice before completing successfully. In reality it is more likely that between three and 

five rounds of submissions would be required in order to complete all twenty Tasks. This was 

determined by identifying the number of iterations, n, needed to make Com pleten — T asks .  To 

determine how many Tasks were completed in each iteration the following function was used:

Com pleten = T a s k s  — R O U N D (F a i lu r e R a te  * (T a s k s  — Com pleten- 1)) (6.1)

where

C om ple te  o =  0 (6.2)

Here, Tasks = 20 and FailureRate = 45%. This translates into a best Task completion time 
of between 3:39 and 4:23 minutes. However, they may need to be submitted up to five times,13 

therefore this is the best case scenario, where Tasks are submitted to the most powerful workstations 

in the Campus-Grid and do not fail, which is unlikely. Note also that the application makespan is 

defined by the last, i.e. slowest, Task to complete and not the first. A summary of the projected Task 

completion times for the best, average and worst case scenarios for Task runtime are presented in 
Table 6.2 with a variety of scheduling attempts required to complete a Task in each category. The 

best case is calculated using the shortest observed time required for: Task execution (3 minutes), IAS 

initialization (30 seconds), a job to be matched to a workstation by Condor (9 seconds) and the pilot 

test to complete (2 seconds).14 The average case is calculated using the average values observed for 
these four aspects of a job: 4 minutes, 3 minutes, 177 seconds, and 22 seconds respectively. The 
worst case is calculated using the maximum observed time required for: Task execution (7 minutes), 

5 standard deviations of the IAS initialization plus the average initialization time (11 minutes), the 
pilot test to complete (222 seconds). However, the time spent in the Condor queue is the average 

time to retain a more realistic spectrum of runtimes.

Table 6.2: Projected completion times of a single Task (in minutes) on the Campus-Grid using a 
traditional approach.

Submission Attempts
1 2 3 4 5

Best Case 3:39 3:50 4:01 4:12 4:23
Average Case 9:57 13:14 16:30 19:48 23:05
Worst Case 20:57 27:36 34:15 40:54 54:12

13The number of Tasks completed in each iteration are: (1) 11, (2) 16, (3) 18, (4) 19, (5) 20 
14See Section 7.6.
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Using the projected runtimes in Table 6.2, it would require only one Task with average perfor­

mance to fail once to prevent the application makespan being comparable to that demonstrated in 
Section 6.8. Also consider that failures are commonly experienced consecutively due to the emer­

gence of job blackholes. Therefore, this is not an unlikely scenario to occur and would make it 

very difficult for a traditional use of Condor to outperform the Virtual Cluster. In addition, the ef­

fort required to create an autonomic job manager capable of managing the application would be a 
considerable effort.

6.10 Future Work: Spatial Registration of Data

Prior to a group-wise comparison of feature values, such as the Schizophrenia analysis, spatial 

registration (also known as normalization) of the data is required (step b in the workflow illus­

trated in Figure 6.2). The registration process is the transformation of three-dimensional data, so 
that anatomical variations can be accounted for. Without this process the heterogeneity inherent in 

anatomical structures makes comparative analysis impossible. Registration of this type is not only 
used in neurological analysis but in any comparative study on anatomical structure(s). There are 

two approaches for the registration of neurological data. It is dependent upon the analytical context 

which is adopted. The two approaches are: (1) The use of the FA-value. This is adopted when no 
hypothesis of the disease exists and therefore analysis is performed on the entire brain.15 (2) Cor­
respondence between specific fibre tracts is identified. Conventionally this process is performed by 

using a predefined set of features from the data set [221]. This is adopted when a specific region of 
interest exists.

The future work of this collaboration is a parallel solution for the second approach. However, 

there are many challenges involved in performing this process both seqentially on a local work­
station and in parallel. In Section 6.10.1 a high-level overview of the analytical process will be 

presented, before a discussion of the challenges and the current approach are presented in Sec­
tions 6.10.3 and 6.10.2 respectively. Finally, in Section 6.10.4 the partial solution currently devel­
oped is presented along with a discussion that outlines why this solution could not be completed, 
and the new research required in order to create a working solution. The analytical content of this 

Section is a high-level summary of the following article: [221] and for further information the reader 

is directed to this article.

6.10.1 Registration Process

Registration is performed using an iterative pipeline, which is shown in Figure 6.10. The analyti­

cal scenario which is given as an example in this Section to illustrate the challenges and example 

computation times is adopted from a study into Amyotrophic Lateral Sclerosis (ALS).16 It is hy-

15This was the case for the analysis of the Schizophrenia data.
16ALS is a progressive motor neuron disease, which is usually fatal. It affects the nerve cells in the central nervous 

system that control voluntary muscle movement, which over time degenerate and waste away.
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pothesized that mainly the corticospinal tract (CST)17 is affected by the disease, and therefore this is 
the target region of the brain for spatial alignment and matching. There are sixty subjects included 
in the study. Fibre tracking is performed by using, DTIStudio [222],18 which uses regions of interest 
that when combined by logical operators, define the CST. This requires some new Matlab function­
ality to be incorporated into the IAS: namely DTIStudio, however, this is facilitated completely by 
the Autonomic (Matlab) Compiler (Section 5.2.1).

Essentially, the registration process brings the nerve fibres of the CST into spatial correspon­
dence. Here a point set representation of the white matter fibre tracts is used for point set match­
ing [223]. A combination of clustering and matching of the data is also employed to enable both 
representative and corresponding features to be obtained. This allows fibre tracts to be incorporated 
into the clustering process to enable an adequate definition. The result is a common frame of refer­
ence, denoted as an atlas, to which all data sets can be matched. To perform this three key steps are 
undertaken: (1) the points in each point set are clustered, (2) a transformation is estimated to warp 
the cluster centre points, and (3) an atlas is determined, (the average for each of the cluster centre 
points in all the data sets), which is a common frame of reference representing the mean shape of 
the point sets. These steps are then repeated in an iterative manner where the cluster size is reduced 
in a step wise manner. In other words, the algorithm is progressively moving from global matching 
to local matching, and therefore refining the matching process with each iteration, until the cluster 
size reaches a predefined minimum.

t . . *

; x

«  <3 »

Figure 6.10: Pipeline of the registration process indicating the parallelizable steps, (a) Fibre tracts 
are sampled and atlas points are randomly initialised, (b-c) Each data set is clustered and cluster 
centre points are repositioned, (d) Atlas points are updated, (e) A (regularised) transformation is 
computed from the atlas point to the subsequent cluster centre point sets, (f) The cluster size is 
reduced and the next iteration begins, (g) When the minimum cluster size is reached, the individual 
data sets are warped to the atlas frame. Practically, steps b, c and e can be computed in parallel and 
d on a head node, which can be the user’s Matlab session.

17 The CST is a large bundle of nerve fibres located between the cerebral cortex and the top of the spinal cord. Its main 
function is the delivery of signals that enable voluntary movements throughout the body.

18 Specifically the FACT algorithm, which enables a full brain tractography to be performed.
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6.10.2 Current Approach and Motivation for a Parallel Solution

Computationally, this process is not demanding, but the memory requirements can quickly over­
whelm the capacity of a standard workstation. In this particular case only 60 data sets are to be 

registered, but in future studies there could be a far greater number of data sets. Note also that this 

data set only contains one bundle of fibres. If other studies such as the Schizophrenia analysis were 

to be analyzed on a tract basis, multiple bundles would be involved. Consequently, the memory 

required to register the same number of data sets could increase dramatically. The effect this has on 

the researcher is that their algorithm cannot keep all data sets resident in memory simultaneously. 

Swapping data sets back and forth to disk would not be a solution, as it would significantly increase 

the execution time. Currently, this type of analysis is performed using a dedicated server with 8GB 
of RAM. However, this type of machine has a finite availability and capacity. The 60 data sets used 

in this analysis require approximately 5GBs of memory, making this approach infeasible if the data 

set was doubled in size. For this reason a parallel approach is desirable. In addition, because the 

computation time is so low batch processing is also not an option because the overhead involved 
in job submission is too excessive. Therefore, it was proposed to attempt this analysis using the 

Virtual Cluster due to the success of the previous study.

6.10.3 Challenges in Parallelizing Data Registration

Performing the registration process in parallel is not trivial due to the very short execution times (3 
-  7 seconds for the registration of the CST) in relation to the size of a data set (25MB). Here, one 
Task is one iteration upon a data set, i.e. for 60 data sets there are 60 Tasks per iteration. This means 
that 1.46GB of data could need to be transferred per iteration,19 if a new session was established 
for each Task. Here, clustering techniques, for example in a batch processing scenario, cannot 

be performed upon the entire Task space, because each iteration is dependent upon the combined 
results from the previous iteration. If an approach was used that established a new session for each 
job (a typical Campus-Grid approach), this would result in 75GB of data transfers.20 The local 
network currently provides a peak of 100Mbps, therefore the theoretical minimum time that would 

be required to transfer the data for all iterations is 1 hour and 42 minutes.21 On the other hand, 
because the IAS (Section 5.2) is used interactively, it means that a data set need to be transferred 
only once per workstation. With the incorporation of a new and data-aware scheduling routine it is 

possible to attempt to try and optimise data transfers by always sending Tasks relating to the same 
data set to the same IAS instance. This enables a best case data transfer rate of 1.46GB, which over 

a 100Mbps LAN would require 120 seconds.22

Unfortunately, this is an unlikely scenario, as few workstations will achieve peak performance 

and not all will share the same connection speeds. Some may, for example, have only a 10Mbps

]9̂ ^ ^ T a6GB
20There are around 51 iterations in this registration process, giving rise data of: 51 x 60 x 25AI B  =  74.7GB.
21 7 1 7 x 1^ 4 x 8  =  6 U 9  4 2 4  seconds =  1 : 41 : 59.424
22 60 x 2 5 A p 3 x 8  1 2 0  SeCO n d S.
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connection. The head node is also likely to become a performance bottleneck. The variability in 

connection speeds presents an additional challenge, as the system allocates work based upon the 

perceived speed of a workstation. However, for the first iteration the fastest workstations will be 

those with the fastest network connections, and not the fastest CPUs. This means that in the second 

iteration the fastest CPUs will compute their Tasks much quicker and therefore run out of work. 

This can potentially result in a large load imbalance, which will have significant ramifications upon 

performance as the analysis progresses. Identifying a workstation’s connection speed is also difficult 

to determine without prior interaction, and this data may also not be reliable over time. Some simple 

performance testing of the registration algorithm has identified that a Task will require on average 

between 323 and 2724 seconds to execute, depending upon a workstation’s LAN and CPU speeds 

as well as its previous data transfers. The registration analysis consists of 3060 Tasks25 so any 

discrepancies in load will cause long tail scheduling scenarios at the end of each iteration, which 

will drastically detriment the application makespan.

One further challenge remains: for this pipeline to run it needs to be controlled from a Mat­

lab instance to enable steps d  and /  in Figure 6.10. This was addressed in Section 6.6.1 through 
the development of a Matlab-based Application Manager. However, it also means that the input 

parameters and output data for each Task must be transferred to an IAS. There is approximately 

1.3MB of unique input and output data corresponding to 7.8GB of data,26 which further motivates 

the requirement for minimizing the transfer of the CST data.

An application of this type would normally need dedicated and stable resources in order to retain 
throughput, which is demonstrated in the current approach (Section 6.10.2). A Campus-Grid cannot 
guarantee that either of these attributes are withheld, making an already difficult problem even more 
challenging. Yet, it can provide the computational power and (distributed) memory required. In 

addition, it may also be able to provide a much greater capacity than a dedicated machine. Here, 
the challenge is not having enough resources for the execution, but harnessing them with adequate 

accuracy and performance.

A parallel solution to this process is not only beneficial in other neurological studies, but also 
within other areas of anatomical study and image registration in general. Similarly, the reliance on 

Matlab at the head of the computational steering is relevant to many other areas of scientific analysis 
with similar requirements. Therefore, the benefit of a solution, even a partial one, is clear.

6.10.4 Core Components for a New Approach

There are two key components that determine the success of an approach to facilitate a registration 

pipeline: (1) Matlab integration, which was presented in Section 6.6.1, and (2) an adequate schedul­

ing strategy. Both of these areas have their challenges, which were discussed above, but they are not

23The minimum observed execution time of a Task without data transfer.
24The maximum observed execution time of 7 seconds plus the theoretical minimum time to transfer a data set over a 

10Mbps LAN connection.
2560 datasets  x 51 i terations =  3060.
26 3 0 6 0 X  1 . 3 x 2    y  ^TG B
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mutually exclusive and must both work together to create a solution. The integration into Matlab 

needs to be unobtrusive and familiar to the user, but also reliable and intricately balanced to ensure 

a smooth integration between Matlab and the underlying software solution. The scheduling strategy 

must be considerate of the data requirements of the domain and consider the possibility that work­

stations are heterogeneous in both performance and network connectivity. In addition, they are also 

dynamic with respect to their availability.

This specific scheduling problem has many similarities to challenges which have been re­

searched in the past, most notably in approaches for data Grids [224]. Here, the general challenge is 

to create scheduling strategies to include resources that are both computationally capable but also do 

not generate high transfer costs. More specifically, it is the consideration of a variety of additional 
metrics and constraints that make developing such scheduling strategies challenging [225,226]. 

Therefore, a solution that separates data and Task scheduling is likely to be inefficient [225,226]. 
A common approach is to explicitly address both data and Task requirements in the scheduling 

strategy, which is the case in: [119,225-228].

Several data-aware scheduling strategies are presented in [225] and [226], along with a discus­
sion and identification of two distinct strategies, which in theory should work very well. However, 

when interpreting the presented results, it is imperative to consider that their results are based upon 
simulations. The results of this work was criticized by Park and Kim in [227] because one of 

their primary observations was that network bandwidth is the ultimate factor which will determine 
firstly, which scheduling strategy should be used and secondly, how effective it will be. Simulated 
environments therefore, cannot fully capture the nuances of real deployment. Park and Kim [227] 
undertook similar analysis but within a real context, however, their resource scenario is significantly 

more reliable than the conditions of a Campus-Grid. The forerunner of this domain is probably the 
AppLeS scheduler [119] (an extension of Nimrod) for parameter sweeps within a computational 

Grid environment. AppLeS focuses on data reuse in order to minimize the cost associated to the 
(re)transfer of data. In [228] a data-aware scheduler that was integrated in the Gridbus [97] broker 
is described. Here, as in many other approaches in the literature and those mentioned above, it is the 
identification of resource information prior to scheduling that is paramount to the accuracy, cost and 

performance of the scheduling strategy. To facilitate this, Grid Information Services (GIS) [177] 
or some monitoring system such as NWS [178], Ganglia [123], Hawkeye [70] or GridRM [179] is 

used to provide all the necessary data to aid the resource allocation process within the scheduling 
strategy.

Many approaches simply assume that such a service is available, maintained and accurate. Ap­

pLeS, for example, assumes that full knowledge of the system, i.e. computational loads, network 
conditions and topologies are available to the scheduler. In the context of a Campus-Grid this is 

simply not the case: consider the results of Section 2.3 for the accuracy of Campus-Grid meta­

data. Therefore, scheduling strategies in a Campus-Grid environment have to overcome a signifi­

cant hurdle. For example, a Campus-Grid managed by Condor can be integrated with many different 

monitoring systems which could provide this information. Monitoring information can be directly
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encapsulated into a workstation’s Class Ad, which can then be used by the Condor matchmaking 
processes to select resources based upon more detailed information than the general Condor Clas- 

sAd provides. NWS, Ganglia and GridRM are the primary examples here, as to some extent is 

Hawkeye. The experiences gained through the work for this thesis gives rise to the opinion that the 

necessary information being available is a utopian and unrealistic expectation in the general case 

of Campus-Grids. This is not to say that no Campus-Grids will have such a service, they should, 

as this would improve many aspects of their performance. It is more a question of whether the 

administration will have the necessary foresight to introduce and manage such a service, and then 

enrich the depth of the elicitation of technical preferences to enable its use. The Cardiff University 

Campus-Grid does not enable such a depth of technical preferences, and it is unlikely that it will do 
so in the near future.

Scheduling is paramount for a successful approach to parallelizing the registration of anatomical 

data. Essentially, there is a trade off between the number of workstations that can act upon a data set 

and the time required for these workstations to receive a data set. Ideally, more than one workstation 
should be able to act upon a given data set, as this would make load balancing much easier and re­

duce the effect of workstation revocation. However, replicating the data set unnecessarily is a waste 

of bandwidth. Finding a solution to this trade off is not too taxing when resources are static, de­
pendable and when the necessary information is available to accurately cherry pick resources based 
upon a set of constraints. In a Campus-Grid context none of these states are guaranteed as explained 
in Section 1.3.1, Chapter 2 and above. This means that when a change in workstation availability 
occurs, not only must the balancing of workload be performed, but also of data allocation. The latter 
is more detrimental to performance. In addition, new workstations may not meet the requirements 
needed, such as good network performance, as these preferences cannot be considered by the Con­
dor matchmaker. Therefore, when a new workstation becomes available, its utility may not become 

apparent immediately due to the penalty of data reallocation. The use of an IAS’s local queue ap­
peases any data penalty somewhat, as multiple transfers can run concurrently. IAS instances could 
also be instructed by the scheduler to acquire replicas of data as background processes when they 
have no other Tasks to perform. In addition, an opportunistic scheduling scenario could be derived 
to accommodate these challenges.

However, there is one core question that arises due to the inability to instruct Condor to select a 
workstation based upon the requirement for network connectivity: can a workstation that is compu­

tational inferior, but has a 100Mbps Ethernet connection be more beneficial than a computationally 
superior workstation with lOMpbs Ethernet connection? Unfortunately, but perhaps not surpris­

ingly, the bandwidth is by far the dominating factor, which can be validated by the observations 

in [225-227], Figure 6.11 depicts this comparison graphically, using two projected and estimated 

scenarios. Here, an optimal scheduling strategy with all workstations having a 10Mbps Ethernet 

connection is projected against a worst case random allocation scenario, where all workstations 

have a 100Mbps Ethernet connection. To make this comparison more interesting and competitive, 

the optimal scenario has also been enhanced by using the minimum observed Task runtimes, i.e. in
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other words, all workstations are very high specification with respect to computational performance. 
Therefore, this scenario is best case for computational resources and optimal in terms of schedul­

ing. In contrast, the random scheduling scenario has been coupled with the longest observed Task 

completion time, i.e. the slowest workstations. In addition, it has been tweaked to ensure that data 
is transferred as much as possible, i.e. each data set is transferred N  times, where N  is the number 

of IAS instances.
It can be clearly seen that a Virtual Cluster formed from workstations with higher network band­

width and lower processing power, even with a worst case data scheduling algorithm possible, will 

always yield a more timely execution, even though it can clearly be seen that as N  increases so too 

does execution time.27 This means that, in terms of developing a solution for a registration pipeline, 
there is little purpose in pursuing an optimal or even good scheduling strategy. At least until there 

is the ability to either: (1) enable Condor to consider this requirement, or (2) introduce a new com­

ponent into the system that can performance test network connectivity, and produce the necessary 

meta-data for consideration by a scheduler or to enable a whitelist of preferential workstations for 

use by the CRM (Section 5.3). It is for this reason that this work remains a future persuit, as follow­
ing this route would be straying from the core research questions posed in Section 1.5. The Virtual 

Cluster has been used to perform the analysis on a reduced scale using the scheduler presented in 
Section 5.5.3 with promising results. However, the level of variability with respect to networking 
performance does not enable an adequate solution when all data sets are included without either of 

the necessary aforementioned extensions. Therefore, the lesson that has been learnt from this study 
is that not only are the sources of resource meta-data typically inaccurate (Section 2.4), but they are 
also inadequate with respect to the range of resource metrics that they consider. For this reason the 
full application scope that could be utilized by a Campus-Grid is not yet fully exploited.

27This occurs because the time to transfer data begins to outweigh the time needed to process it, and also because the 
head node reaches peak performance and its network connection becomes saturated.
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An estimated performance comparison of optimum scheduling at 10Mbps against random
scheduling at 100Mbps
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Figure 6.11: A comparison of the minimum predicted execution with optimum scheduling at 
10Mbps against the maximum predicted execution with random scheduling at 100Mbps. The min­
imum estimations are calculated using the minimum daemon setup time and Task time recorded 
and an optimal data-aware scheduler (no data set is transferred more than once). The maximum 
estimations are calculated using the highest permitted daemon start time of 10 minutes (see Sec­
tion 5.3), the longest recorded Task time and the worst case for random scheduling (every data set 
is transferred to every workstation).



Chapter 7 

Evaluation

The previous Chapter demonstrated the application of the research undertaken for this thesis in a 
real application scenario. In Chapter 2 the performance of the Campus-Grid was evaluated in order 
to motivate the need for more research. In this Chapter a rerun of the experiments presented in 
Chapter 2 will be performed using the Virtual Cluster. This will enable a direct comparison with the 
performance of Campus-Grid as quantified in Chapter 2 and other approaches presented in Chapter 3 
to validate this research and illustrate where improvements have been made.

The structure of this Chapter is as follows: In Section 7.1 the methodology behind the exper­
iments documented in this Chapter is presented. In Sections 7.2 and 7.3, the same synthesized 
applications that were performed in Section 2.4 are presented using two different execution scenar­
ios. In Section 7.4 an overview of some of the experimental runs undertaken in Sections 7.2 and 
7.3, which experienced significant workstation failures during runtime are discussed. Here, special 
attention is paid to scenarios such as the CRM (Section 5.3) loosing all workstations and how the 
system dealt with such scenarios, i.e. the system’s fault tolerance. In Section 7.5 the experiment 
undertaken in Section 2.2 is repeated in a Matlab context to quantify and compare the overhead 
involved in the use of the Virtual Cluster. In Section 7.6 the data held in the Condor logs that 
were generated by IAS jobs submitted through the CRM is analyzed to illustrate what the system 
was doing behind the scenes when the experiments run in this Chapter were performed. Finally, in 
Section 7.7 the results are summarised and discussed.

7.1 Evaluation Methodology

There are three primary incentives behind the experiments conducted in this Chapter. Firstly, to il­
lustrate that performance has been improved upon through the introduction of the models described 
in Chapter 4. Secondly, that Tasks of even the shortest runtimes can feasibly be executed in an op­
portunistic and volatile environment. Finally, they are to provide a foundation upon which answers 
to the research questions posed in Section 1.5 can be built. This discussion will be addressed in 
Chapter 8.

There are three topics discussed in this Section, which are: how each of the experiments covered
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in this Chapter fulfil the above incentives, what data is captured in order to illustrate the results of an 
experiment, and the way in which the experiments are orchestrated. These three topics are discussed 
in Sections 7.1.1 -  7.1.3 respectively.

7.1.1 Philosophy of Experimentation

The experiments undertaken in this Chapter are based around those performed in Chapter 2. The 
reason for this is that it enables a direct comparison with the performance of the Campus-Grid mid­
dleware (Condor) to the prototype documented in Chapter 5 by using the same Task definitions and 
(synthesized) applications. The motivation for the use of synthesized applications and the definition 
of what constitutes a synthesized application was given in Section 2.4.1. However, the two main 
points to remember are: firstly, that they create a fairer platform for experimentation, as they are not 
affected by the prolific resource heterogeneity of a Campus-Grid infrastructure, and secondly, that 
the Task runtime can be explicitly and stringently controlled to enable the performance of a system 
to be studied for a variety of different Task runtimes.

Sections 7.2 and 7.3 present a rerun of the analysis conducted in Section 2.4.3. However, in­
stead of Condor scheduling the Tasks of the synthesized application, this time Condor will be used 
to build a Virtual Cluster of Matlab-enabled nodes (IAS instances see: Section 5.2), which are 
steered interactively at runtime. Here, each workstation is initialized only once by the CRM (see: 
Section 5.3) in response to the demand modelled by the Cl (see: Section 5.5) and established by the 
CSM (see: Section 5.4). Each IAS performs Tasks in a back-to-back manner where the Cl submits 
each Task directly to the IAS in a custom fashion and not through the normal Condor means, as 
described in Section 5.5.2. The end result is that the initialization penalty, which was high in the 
traditional Campus-Grid approach (Section 2.4.3) is experienced only once per workstation and not 
once per Task. In addition, the challenges of managing resource volatility are answered by the CRM 
and therefore do not need to be considered in the scheduler’s plan.

The difference between this analysis and that conducted in Section 2.4.3 is that in Sections 7.2 
and 7.3 the focus is on Tasks with short runtimes rather than a larger range of runtimes. This is 
because the main application focus of this research is the ability to provision resources specifically 
for short Tasks. In Section 2.4.3 longer Task runtimes were included to validate the experimental 
methodology. The synthesized applications executed in Sections 7.2 and 7.3 are: 100 Tasks with a 
predefined runtime of: 1,5, 10, 15, 30, 45 and 60 seconds. An upper bound of sixty seconds was 
chosen because once Task runtime goes beyond this point only negligible improvements in perfor­
mance are achievable. This will be discussed in further detail and demonstrated in Section 7.3. The 
results of these experiments will be discussed using the same performance metrics as those pre­
sented in Section 2.4.1; namely, Job Efficiency (now denoted as Task Efficiency: TE), Job Runtime 
(now denoted as Task Runtime: TR), Application Makespan (AM) and the Efficiency of Resource 
Utilization (ERU). The means to determine the values of each metric also remains the same.

The single difference between the experimental analysis presented in Sections 7.2 and 7.3 is 
that in Section 7.2 the Virtual Cluster is restarted manually after each experimental run. Conse-
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quentally, the aims of this experiment are to demonstrate several improvements in performance over 
the traditional Campus-Grid approaches, which include: speed of set up, reduced application make 
span, Task runtimes nearer to their expected runtimes, improved efficiency of resource utilization, 
and transparency with respect to the management of resource volatility issues, which were experi­
enced in Chapter 2. In this case, all performance values include the time required to initialize and 
build the Virtual Cluster, thereby capturing all the potential aspects that have a negative impact on 
performance, such as: Campus-Grid queue times, no available workstations etc.

In contrast, the experimental analysis presented in Section 7.3 differs in that the Virtual Clus­
ter will not be shutdown between experimental runs, but instead be recycled.1 This is a direct 
consequence of the Autonomic Compiler (Section 5.2.1) and its ability to compile entire Matlab 
toolboxes into a single stand-alone application. In addition, the produced code can be used, steered 
and controlled interactively through the IAS daemon. Therefore, this will demonstrate the further 
improvements in performance which can be achieved due to the heterogeneity in application scope 
of the LAS daemon. The results presented in this Section demonstrate the further improvements 
in performance that can be realized even for the shortest of Tasks of 1 second in duration, by not 
shutting the system down between experimental runs.

The approach of not shutting down the Virtual Cluster is much more feasible in a real context. 
From a theoretical perspective it is perfectly acceptable behaviour to restart the Virtual Cluster after 
every experimental run. However, it is not a behaviour that would be employed in practice, as it is 
wasteful of both time and resources. For this reason, Section 7.3 aims to quantify the benefits of 
not shutting down the Virtual Cluster between experiments. In practice this would occur between 
runs of an application, analysis of different data sets, or after the tuning of an algorithm or research 
hypothesis. Here, the time needed to acquire and initialize the Campus-Grid workstations that 
constitute the Virtual Cluster is not experienced by the user, as it is in Section 7.2. This is achieved 
by using a Virtual Cluster that was initialized at some point in the past. The benefit of this action 
is that the potentially time consuming initialization period can be avoided and execution can begin 
immediately, even if only one workstation is available. In this context the CRM still acts as it would 
normally, the only difference is that it will attempt to increase the number of IAS instances already 
available rather than attempt to build the Virtual Cluster from scratch.

In Section 7.5 the experiment undertaken in Section 2.2 is repeated, but in a Matlab context. This 
is a study of the impact that queue length and communications overhead has on the performance of 
the system. The key difference to the analysis undertaken in Section 2.2 is that instead of running 
the Task directly on the workstation and then allowing Condor to clean up afterwards, the Task is 
executed by an LAS instance. Here, the overheads experienced by the Task relates to the costs of 
scheduling and transferring the Task to the LAS, invoking the Matlab engine, generating a result 
and transferring the results back. The Task is p a u se  (0) ,  which pauses the Matlab engine for 
zero seconds. This is comparable to the Dummy Job used in Section 2.2 (the issuing of the e x i t  
command), and will be referred to as a Dummy Task. By performing such a Task the overall mntime

'Here, recycling relates to the reuse of a Virtual Cluster that has been created at some point in the past.
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of the Task is:
k + R (7.1)

Where k is the overhead of submitting a Task and R the predetermined runtime. By making R 
as close to zero as possible it is possible to measure k more accurately, k is the time required 
to schedule a Task and also for the IAS to execute it, gather any results and return the result. The 
generated results for the Dummy Task are: the string “[no results]” and two 256 x 256 binary images 
of a few kilobytes in size. The aim of this experiment is to demonstrate firstly, that the number of 
Tasks in the scheduler’s queue is no longer detrimental to the achieved performance, as observed 
in Section 2.2, and secondly, that the communication implementation is sufficiently light weight 
and unobtrusive that the overhead in executing a Task is negligible. It will also demonstrate that 
load balancing techniques could be employed with out high communication costs, when the Task 
message is retransferred.

The third study undertaken in Section 2.3 is not explicitly repeated here, as the solutions to 
these challenges are transparently handled by the CRM and therefore inherent in the results of 
Sections 7.2, 7.3 and 7.5. These results and how they answer the challenges of supporting compiled 
Matlab jobs on the Campus-Grid are discussed in Section 7.6.

7.1.2 Capture of Experimental Data

All performance data captured in these experiments is provided by the introspective monitoring of 
the Cl (Section 5.5) across its three layers (Task, Resource and Communication). The data which is 
captured is done so in order to determine the values of the four performance metrics, as defined in 
Section 2.4.1. In addition, in order to visualize the performance of the system during its execution 
of a synthesized application, several performance indicators are captured at one second intervals to 
provide a snapshot of current progress. The snapshots are then ordered chronologically to visualize 
the experimental run.

The data captured for the visualization process is:
1. The current number of resources (IAS instances)1 that contribute towards the Virtual Cluster, 

which will show how the provisioning of resources changes over time, but also the rate at which 
resources are gained and lost over time. In addition, this will illustrate how the scheduler releases 
unnecessary resources as the number of unscheduled Tasks approaches zero.

2. The number of Tasks complete, which will show the progress of Task completion over time 
so that this can be related to the other performance indicators mentioned here.

3. The number of Tasks in remote IAS queues, which will show how the scheduler utilizes the 
IAS queues and dynamically modifies the queue size over time with respect to the number of IAS 
instances and Tasks remaining.

4. The number of Tasks rescheduled as a consequence of workstation autonomy,2 which will 
outline the number of failures due to workstation autonomy.

5. The number of Tasks that have been rescheduled due to a balance in work load,2 which will
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demonstrate the opportunistic nature of the scheduler when changes to its scheduling plan become 
necessary. This can happen through the receipt of new resources or the identification of workstations 
by the CRM that have been suspended.

6. The average completion time of all Tasks,3 which will give an indication of consistency with 
respect to Task execution times.

This data will be used to visualize the system’s performance and handling of the Task space as 
well as the autonomy of the Campus-Grid. This data is inserted into a MySQL database for persis­
tent storage. In order to minimise the cost of data entry into the database, the MySQL server is lo­
cated on the same physical machine as the testing Application Manager (described in Section 7.1.3). 
Once an experimental run has completed some general performance data is also collected and sub­
mitted to the database to provide the summary values needed for the calculation and analysis of the 
performance metrics. These are as follows:

1. The total number of Tasks submitted by the scheduler, which is needed for the calculation of 
the TE performance metric.

2. The number of Tasks which were rescheduled due to autonomy failures and balancing actions, 
again needed for the TE performance metric.

3. The TE value for the experiment is then calculated using the above data and entered into the 
database.

4. The minimum, average and maximum execution times for a Task, which is needed for the TR 
metric.

5. The AM of the experiment, which is needed for the AM and ERU metrics.

6. The average and maximum number of IAS instances used in the experiment, as the former 
is needed for the ERU metric. The latter is also collected for discussion purposes later in the Sec­
tions 7.2.3.

The data gathering process is not greatly obtrusive on the system’s performance due to the mul­
tithreaded nature of the Cl. The gathering process is a thread which accesses the above values and 
inserts them into the database in the background. It is rare for an error to occur in the data gathering 
process which has either a detrimental or beneficial effect on the performance data collected. In 
cases where an error is detected the results are thrown away. Should an error occur, it is most likely 
to be because the Task runtime was very short and this is specifically the case for the p au se  (0) 
Tasks, which constitute the experiments conducted in Section 7.5. If a more serious error occurs, 
the system is intentionally halted automatically by the Application Manager (Section 7.1.3), the 
database cleaned and the experimental run restarted.

'This contributes toward the calculation of the average number of IAS instances used, which is needed for the ERU 
performance metric.

2 The differentiation between Tasks resubmitted due to autonomy failures and balancing actions is needed for the TE 
performance metric.

3The average Task completion time is needed for the TR performance metric.
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7.1.3 Experiment Orchestration

The experiments performed in this Chapter were performed using a specially designed and built 
Application Manager (Section 5.5.1). The reasoning for this was threefold. Firstly, running these 
experiments multiple times is tedious and therefore the probability of human error increases. The 
definition and use of an Application Manager means that all experiments are treated in a uniform 
manner and decreases the likelihood of human error. One example, is ensuring that a minimum of 
five minutes pass between each experimental run. A period of five minutes was chosen, as this is 
the time required by Condor to perform a negotiation cycle and place any released Campus-Grid 
workstations back into the list of available workstations. Secondly, the Application Manager is used 
to create the necessary tables in the database for each experiment and also access the necessary 
data from the Cl and insert it into the database. It is also introspective of the results it collects and 
is used to validate the results with respect to the potential errors that can occur, as mentioned in 
Section 7.1.2. Finally, this Application Manager is used to illustrate the capabilities that can be 
injected into an Application Manager by a user.

The administrative tasks that the Application Manager performs are (in this order): (1) probe 
the database to identify which experiment is to be run next, based upon the provided Task runtimes 
and number of repetitions for each Task runtime, (2) create a table in the database for the snapshot 
entries, using a supplied naming standard, (3) create 100 Tasks of the current predefined runtime, 
(4) invoke the Cl for the discovery of and connection to the CSM, (5) start and perform the snapshot 
monitoring, (6) pass the Tasks to the scheduler, (7) wait for all 100 Tasks to complete, (8) calculate 
and insert the summary values into an “overview” table in the database, (9) shutdown the Cl, and 
disconnect from the system as a whole, (10) alert the user that the experiment has finished, so that 
any system administration can be performed, for example in Section 7.2 all components need to be 
restarted, (11) wait for five minutes, (12) display a message box to allow the user to indicate that 
the system is ready for the next experiment to start, and finally (13) start the next experiment, until 
all experiments have been performed.

All of the experiments presented in this Chapter were run during “normal working hours, i.e. 
between 8am and 6pm, on weekdays during the teaching semester. This relates to the time when 
resource autonomy is highest, but not necessarily when resource contention is highest, as many 
Condor users submit their jobs to run overnight. Ironically, this is when the fewest resources are 
available. Every combination of the experiments (of which there are 20) performed in this Chapter 
have been executed at least five times. However, many have been run ten times, to enable variation 
with respect to the workstations in use and the context in which they are used. In total over 31,000 
Tasks were executed by the Virtual Cluster, consuming approximately 65 CPU hours.

7.1.4 Resources Used in the Evaluation

To ensure as fair a comparison as possible, the CRM (Section 5.3) resides on the same submit node 
that was used in Chapter 2, which is an Intel Pentium 4, 3GHz Dual Core, with 1GB of RAM and
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a 100Mbit Ethernet connection on the Condor subdomain of the Cardiff University network. The 
OS is the “Standard Image” Windows XP SP2 used for all workstations managed by the Novell 
network management software. The LS (Section 5.6) and CSM (Section 5.4) are co-located on the 
same physical machine for convenience, which is a 2.6GHz Intel Pentium 4 with 512MB RAM, 
and a 100Mbit Ethernet connection on the School of Computer Science subdomain of the Cardiff 
University network and the OS is Windows XP Home SP2. The Application Manager and MySQL 
server are run on an Intel Centrino Duo 1.83GHz, with 1GB of RAM and a 100Mbit Ethernet 
connection on the School of Computer Science subdomain of the Cardiff University network, the 
OS is Windows XP Pro SP3. The IAS instance used in the evaluation is the same as the one used 
in Chapters 2 and 6 to remain as fair as possible with respect to the produced performance data, but 
also to be representative of a real application scenario with respect to IAS initialization times. It is 
7MB in size when compressed, and 20MB after it has been uncompressed by the Matlab Component 
Runtime.

7.2 Building and Using a Virtual Cluster

In this Section the experiments performed are the execution of synthesized applications comprising 
of 100 identical Tasks of 1, 5, 10, 15, 30, 45 and 60 seconds in length. The execution scenario used 
here is to build a Virtual Cluster of Matlab-enabled nodes (IAS instances see: Section 5.2) as an 
intrinsic part of the execution of the synthesized application. Therefore after each experimental run 
all system components: i.e. the CRM (Section 5.3), CSM (Section 5.4), Cl (Section 5.5), and LS 
(Section 5.6) are shutdown and restarted, and all IAS jobs are terminated manually. As previously 
mentioned in Section 7.1, a period of at least 5 minutes has elapsed before any system component 
is restarted. They are started in the following order:

1. LS, as it is needed by all other components to locate the CSM and by the CSM to register its 
location.

2. CSM, to then register with the LS
3. Cl (started by the Application Manager, see Section 7.1.3) and CRM are started at the same 

time, to ensure that LAS jobs are not submitted to the Campus-Grid before the Application Manager 
commences.

4. IAS instances are submitted by the CRM in response to the demand for resources provided 
by the CSM.

Table 7.1 shows the performance of the Virtual Cluster for this part of the evaluation and the 
four performance metrics are discussed below using the results illustrated in Table 7.1.

7.2.1 TE Performance

The TE performance is largely improved and mostly around 100% for the simple reason that au­
tonomy related failures (i.e. the revocation of a workstation’s voluntary status) are not included
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Table 7.1: Table of the performance of 100 synthesized Tasks using the approach documented in 
this thesis. Here IAS jobs were started by the CRM after the client joined the system. Key: AMI - 
AM for one workstation when run locally, VF - Volatility Failures, AF - Autonomy Failures, BA - 
Balancing Actions.

Job Time in Seconds
1 5 10 15 30 45 60

Min Tasks 100 100 100 100 100 100 100
Avg Tasks 100.6 100.4 100.4 100.4 107.2 100.6 110.6
Max Tasks 102 101 102 101 127 102 134
Min Tasks 100 100 100 100 100 100 100
Avg Tasks 100.6 100.4 100.4 100.4 107.2 100.6 110.6

, Max Tasks 102 101 102 101 127 102 134
Min TE 98.04% 99.01% 99.01% 99.01% 98.04% 100% 99.01%
Avg TE 99.41% 99.6% 99.8% 99.6% 99.41% 100% 99.9%
Max TE 100% 100% 100% 100% 100% 100% 100%

VF 0% 0% 0% 0% 0% 0% 0%
AF 0% 0% 50% 0% 91.67% 100% 99.06%
BA 100% 100% 50% 100% 8.33% 0% 0.94%

Min TR 1.02 5.01 10.02 15.03 30.04 45.03 60.1
Avg TR 1.02 5.03 10.03 15.04 30.1 45.09 60.48
Max TR 1.03 5.04 10.04 15.05 30.26 45.23 60.99
TR STD 0.01 0.01 0.01 0.01 0.08 0.07 0.33
Min AM 132 193 210 256 359 506 454
Avg AM 170.2 224.8 261.2 295.6 483.8 552 996.5
Max AM 240 260 349 345 892 595 2043

AMI 100 500 1000 1500 3000 4500 6000
Min ERU 7.01 % 34.95 % 43.66 % 49.82 % 28.43 % 68.01 % 33.17 %
Avg ERU 13.8 % 39.9 % 50.77 % 54.47 % 59.96 % 75.05 % 74.68 %
Max ERU 18.6% 47.37 % 56.31 % 58.26 % 71.34% 80.94 % 91.51 %
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in the calculation, as they are beyond the control of the system and inherent in the nature of op­
portunistic computing. The same consideration was made in Section 2.4. In addition, volatility 
related failures are not experienced by the scheduler, but absorbed and managed by the CRM. What 
this ultimately relates to will be discussed in Section 7.6. The removal of volatility related failures 
means that the only time that a scheduler needs to reschedule a Task is when the workstation’s pe­
riod of availability ends (an autonomy related failure). Note that additional Tasks may be submitted 
by the scheduler in an attempt to reduce the overall AM, through the balancing of IAS queues or 
balancing actions. However, balancing actions have a much reduced impact upon performance in 
comparison to autonomy failures. The reason is that a balancing action is performed with the inten­
tion to reduce the AM, whereas, an autonomy failure requires the Task to be resubmitted with the 
consequence that any previous computing time or data transferred is lost. The main factor in the 
results of this performance metric is the improvement due to the removal of volatility related fail­
ures (Section 1.3.1), for example inaccurate resource meta-data. For this reason the improvement 
from 60-70% in Section 2.4 to averages in the high 90%’s in Table 7.1 is experienced, which is a 
considerable improvement. Table 7.2 juxtaposes the values of this performance metric as delivered 
by the traditional Campus-Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using 
the execution scenario presented in this Section. It mainly illustrates the benefit to the scheduler in 
that Tasks are only rescheduled when a balancing action is required, or when the volunteer status 
of a workstation is revoked. This is because none of the volatility-related issues that hampered per­
formance in Section 2.4, are experienced by the scheduler, as they are handled transparently by the 
CRM. Consequently, the Virtual Cluster executes Tasks much more efficiently.

Table 7.2: Comparison of the TE performance between the traditional Campus-Grid approach (Con­
dor) from Section 2.4 and the Virtual Cluster, for 1 and 60 second Task Runtimes._____

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
Minimum TE 63.694% 98.039% 53.763% 99.010%
Average TE 75.898% 99.410% 76.500% 99.901%

Maximum TE 83.333% 100% 100% 100%

7.2.2 TR Performance

The TR of all Tasks is much nearer to the predefined times and much more consistent. Consistency is 
signified by the low standard deviation, which is calculated using all Task runtimes in all repetitions 
for experimental runs relating to the given Task runtime. This is due to the performance no longer 
being linked to any workstation related heterogeneity, which is experienced through variations in 
the time required for the initialization of the IAS. This occurs because the workstation is initialized 
and its capability validated before a Task is submitted to the workstation, which on average is in 
the order of 140 seconds; this will be discussed in Section 7.6. Therefore, when the Task arrives
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at the workstation it could be executed immediately. The overheads (Task generation, submission, 
execution, result generation and result transmission) for this approach are also very low; never more 
than one second and typically a matter of milliseconds (this will be shown in Section 7.5). This 
again is due to direct point to point communication, using small messages and the ability to queue 
Tasks at the remote workstation, which further decreases the Task runtime.

Table 7.3 juxtaposes the values of this performance metric as delivered by the traditional Campus- 
Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using the execution scenario pre­
sented in this Section. Here it can be seen that improvement is significant, even in the minimum 
observed TR values. In all cases, this relates to a reduction in the TR value of between 99.99% and 
99.9999%. A reduction of 100% would occur if no overhead was experienced.

Table 7.3: Comparison of the TR performance between the traditional Campus-Grid approach (Con­
dor) from Section 2.4 and the Virtual Cluster, for 1 and 60 second Task Runtimes._______

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
Minimum TR 32 1.02 94 60.1
Average TR 100.9 1.02 154.1 60.48

Maximum TR 574 1.03 946 60.99
TR Standard Deviation 67.3 0.01 57.3 0.33

7.2.3 AM Performance

The AM performance is largely improved, but for the one second Tasks it is still not good enough to 
merit parallel execution, as the required time is greater than that of local and sequential execution. 
This is largely due to the time required to build a Virtual Cluster before Tasks can begin execution. 
Tasks of 5 seconds or greater in length, however, do experience a significant improvement in the 
AM to demonstrate that this approach can provide a good reduction in the AM for a set of Tasks of 
as little as 5 seconds in length. Compared to the AM performance presented in Section 2.4, where 
little difference was experienced between the AM performance of 1 second and 60 second Tasks, 
the results presented in Table 7.1 demonstrate that a significant improvement has been achieved. 
The AM for 60 second Tasks has also noticeably improved. However, in order to fully quantify 
this improvement, the number of workstations in use must also be considered. In Section 2.4 the 
best AM for a set of 60 second Tasks was 946 seconds, of all the experiments run in this Section, 
the nearest AM was 973 seconds. To execute this Task space, Condor used 16.4 workstations on 
average and a maximum of 31. The Virtual Cluster, on the other hand, was comprised of an average 
of 6.7 IAS instances and a maximum of 8, which quite clearly shows that despite the AMs being 
similar, the way in which these two experimental runs were performed is quite different. This is 
summarized in Table 7.4.

This is also not a one off occurrence, as in general the Virtual Cluster out performs Condor. In
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Table 7.4: Comparison of two experimental runs for a synthesized application of 100 sixty sec­
ond Tasks, one using Condor in its traditional manner, the second using the Virtual Cluster. Both 
approaches had a similar AM.__________________________________ _

Performance Metric
Performance of

Condor Virtual Cluster
TE 70% 100%

Avg TR (in seconds) 108.5 60.9
AM (in seconds) 946 973

ERU 38.7% 91.5%
Av No. of Workstations 16.408 6.738

Figure 7.1 on average 3.786 workstations were used and the AM was 142 seconds. When compared 
to Figure 2.14 where on average nearly double (7.141) the number of workstations were used, but 
the AM was almost a factor of ten times longer at 1195 seconds. Similarly, in Figure 7.2, an average 
of 15.596 workstations were used, for comparison in Figure 2.15, 16.408 workstations were used. 
Here the Campus-Grid is performing better due to the longer Task length, however, its AM is almost 
double the AM for the Virtual Cluster, even when using a comparable number of workstations. In 
this case the traditional Campus-Grid approach needed 946 seconds whereas the Virtual Cluster 
needed 492 seconds for the same Task space. Table 7.5 summarizes these two comparisons.

Table 7.5: Further comparison between the traditional Condor usage and the Virtual Cluster, based 
upon the average number of workstations in use.

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
TE 82% 100% 70% 100%

Avg TR (in seconds) 69.9 1.01 108.5 60.1
AM (in seconds) 1195 142 946 492

ERU 1.17% 18.6% 38.7% 78.2%
Av No. of Workstations 7.140 3.785 16.408 15.600

Even if the Task runtime is increased to 600 seconds, the Virtual Cluster still outperforms Con­
dor. Figure 7.35 graphically juxtaposes two experimental runs of 100 synthesized Tasks of 10 min­
utes in length. Here, an earlier version of the Virtual Cluster was deployed, the main difference 
being that the CRM did not yet inform the CSM when a workstation was suspended. The conse­
quences of this can be seen around the 3000 second point of the execution, where the productivity 
of the Virtual Cluster flatlines. The scheduler in use was also not an eager scheduler which makes 
use of redundancy scheduling. Despite this the completion time of the Virtual Cluster far surpasses 
that of Condor. There is also one other point which can be raised from the result illustrated in 
this Figure, namely, the difference in consistency of Task completion. This occurs because when

"’Presented in Ref [38],
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the number of unscheduled Tasks (X) approaches zero, Condor can only allocate a maximum of T 
workstations, which are not guaranteed to function correctly. For this reason, the final Tasks take 
much longer to complete. This is not the case using the Virtual Cluster, as the workstations have 
already been allocated. Therefore as T  approaches zero, the scheduler simply reduces the number 
of IAS instances in use and continues executing the remaining Tasks.

Table 7.6 juxtaposes the values of this performance metric as delivered by the traditional Campus- 
Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using the execution scenario pre­
sented in this Section. This shows that for the average case the Virtual Cluster offers a reduction in 
AM over Condor by 92% and 47% for one and sixty second Tasks, respectively.

Figure 7.1: Graphical representation of the runtime of 100 synthesized Tasks of one second in 
length. In this experiment the average number of workstations used was 3.786 and the resource 
utilization efficiency was 18.60%.__________________________________________________
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Figure 7.2: Graphical representation of the runtime of 100 synthesized Tasks of sixty seconds in 
length. In this experiment the average number of workstations used was 15.596 and the resource 
utilization efficiency was 78.19%.
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7.2.4 ERU Performance

The ERU is again largely improved, but is not yet good enough for the one second Tasks. In 
Section 2.4 the best reported ERU was 1.172% for one second Tasks and 39.976% for sixty second
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Figure 7.3: Graphical comparison of 100 synthesized ten minute Tasks with a regular Condor ap­
proach and a earlier version of the Virtual Cluster. In both cases an average number of workstations 
used is comparable and approximately 17.

Table 7.6: Comparison of the AM performance between the traditional Campus-Grid approach 
(Condor) from Section 2.4 and the Virtual Cluster, for 1 and 60 second Task Runtimes.

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
Minimum AM 642 132 946 454
Average AM 2220.9 170.2 1865.5 996.5

Maximum AM 12830 240 7345 2043
AM on 1 local workstation 100 100 6000 6000
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Tasks. However, for the Virtual Cluster the minimum ERU for one second Tasks is 7% and the 
average and maximum are 13.8% and 18.6% respectively, which are significant improvements over 
the traditional Campus-Grid approach. It can also be seen that the maximum efficiency achieved for 
sixty second Tasks is over 90%, which by any standard is a considerable achievement, especially 
when the time required to build the Virtual Cluster is included in the measurement. In fact, the ERU 
steadily increases as the predefined Task runtime increases, which is to be expected. Figure 7.4 
shows this graphically, it especially highlights the occasions where performance is not too good, 
which demonstrates the dynamic nature of the resources in use and their availability. Ultimately, 
the experimental runs with the lowest efficiencies are those where resource autonomy failures were 
highest.

Table 7.7 juxtaposes the values of this performance metric as delivered by the traditional Campus- 
Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using the execution scenario pre­
sented in this Section. If the percentage improvement of the ERU value is considered: an increase 
of between 498% and 2652% for one second Tasks and an increase of between -17% and 227% 
for sixty second Tasks, a number of observations can be made.6 Firstly, for the shortest of Tasks 
the Virtual Cluster is significantly outperforming Condor. However, for longer Task runtimes it is 
not guaranteed to be more efficient, as workstation autonomy can have a serious detrimental effect 
when examples such as those in Section 7.4 are considered. Note that in these scenarios, Condor 
too is negatively affected. Secondly, that the average case of the Virtual Cluster yields consistently 
a significant improvement over Condor. Finally, as Task runtime decreases the benefit of using the 
Virtual Cluster increases in regard to the ERU value.

Table 7.7: Comparison of the ERU performance between the traditional Campus-Grid approach 
(Condor) from Section 2.4 and the Virtual Cluster, for 1 and 60 second Task Runtimes.

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
Minimum ERU 0.676% 7.010% 27.950% 33.169%
Average ERU 0.898% 13.8% 35.581% 74.684%

Maximum ERU 1.172% 18.602% 39.977% 91.512%

7.2.5 Summary

This set of experiments has shown that the use of a Virtual Cluster provides improvements over the 
standard Campus-Grid approach in each of the four performance metrics. This is achieved through 
two core abilities: firstly, the ability of the CRM to absorb and manage issues related to workstation 
volatility, and secondly, the ability to reuse a workstation for multiple Tasks without the need to 
reinitialize the workstation for subsequent Tasks. This also means that a scheduler can schedule

6The values are calculated by the following two functions: (1) m in =  Mi^ v ir£ ™ cZ a t£ UERu ~  1 m ax =
M i n  C o n d o r  E R U    i

A l a x  V  i r t u a l C  l u s t e r  E R U
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Figure 7.4: Efficiency of Resource Utilization against Task Runtime for 100 synthesized Tasks of a
mown runtime.

Resource Utilization Efficiency Againt Task Runtime

100

40

Task Runtime in seconds

— Min ERU — Avg ERU Max ERU

additional Tasks to a workstation at any time and as many times as required, thereby building a 
queue on the workstation, which further decreases overhead. The results presented in this Section 
have shown that a volatile and dynamic Campus-Grid can in fact support short jobs of as little as 
5 seconds in length. Furthermore, it can perform this analysis faster than sequential execution of 
the Task space on a single local workstation. The consequence of an improvement in the TE, TR 
and ERU performance metrics was that the overall AM of an application could be significantly 
improved, even when fewer workstations were in use. In some cases the AM and the average 
number of workstations used were both significantly decreased in the same experimental run.

Using the setup presented in this Section, it is not yet practical to execute a Task space where the 
Task length is in the order of 1 second. This is due to the unpredictable nature of the Campus-Grid 
to provide one or more workstations and time required to initialize the workstations provided. Here, 
the time spent to acquire and initialize the workstations strongly outweighs the time spent executing 
the Tasks, which is the primary reason for the poor performance of the Virtual Cluster for Tasks of 
this length. However, note that if the number of Tasks was increased, the ERU value would also 
increase, and the AM decrease relative to the number of Tasks performed, as the Virtual Cluster 
would be in use for a longer period of time. Therefore, the penalty of initializing the Virtual Cluster 
would be more closely related to the time it was in use, making the build time less detrimental to 
performance.
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Figures 7.1, 7.2 and 7.5 -  7.9 show example graphical representations of the experimental runs 
conducted in this Section when a Virtual Cluster is built and then used, to give an impression of how 
the system performs for different Task runtimes. In these graphical representations it is possible to 
see how the IAS queues are managed; they are larger at the beginning of the run and slowly decrease 
over time in order to enable the scheduler to quickly rebalance load should a new IAS become 
available. It is also clear that the time required by the CRM to acquire resources is quite significant 
and is often a major part of the AM for an experimental run. Another common feature in each of 
the Figures is the consistency with which Tasks are completed, denoted by the average execution 
time being a straight line, and also the linear rate with which Tasks complete. Note also that at the 
end of each experiment the scheduler releases IAS instances as the final Tasks are completed.

Figure 7.5: Graphical representation of the runtime of 100 synthesized Tasks of five seconds in 
length.
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Figure 7.6: Graphical representation of the runtime of 100 synthesized Tasks of ten seconds in 
length. In this experiment the average number of workstations used was 9.658 and the resource 
utilization efficiency was 49.31%.

Job  Executioo Over Time

100 110 130 150 170 180



7.2. Building and Using a Virtual C luster 231

Figure 7.7: Graphical representation of the runtime of 100 synthesized Tasks of fifteen seconds in 
length. In this experiment the average number of workstations used was 9.331 and the resource
utilization efficiency was 54.12%.
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Figure 7.8: Graphical representation of the runtime of 100 synthesized Tasks of thirty seconds in 
length. In this experiment the average number of workstations used was 11.070 and the resource
utilization efficiency was 64.53%.

Figure 7.9: Graphical representation of the runtime of 100 synthesized Tasks of forty-five seconds 
in length. In this experiment the average number of workstations used was 10.732 and the resource
utilization efficiency was 77.36%.
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7.3 Recycling the Virtual Cluster

In the previous Section, the system was shut down and restarted after each experimental run. In 

this Section the benefit of the ability to recycle the Virtual Cluster will be presented. Therefore, in 

these experiments only the CSM (Section 5.4) and the Cl (Section 5.5) will be restarted between 

experimental runs. Any previously initialized IAS instances (Section 5.2), the CRM (Section 5.3) 
and LS (Section 5.6) will be left untouched. The reasoning behind restarting the CSM is to flush 

the system as this will ensure that all IAS instances were released by the Cl after the previous 

experiment. The Cl has to be restarted, as each experiment is modelled as a new application.

In order to enable a range of workstations to be used during this analysis, the Virtual Cluster was 
also restarted every 10 to 15 experimental runs and left for between 10 and 30 minutes before the 

testing Application Manager was permitted to commence the next experiment. This period of time 
reflects that needed to ensure both that different workstations were in use, and that a reasonable 

number of workstations were acquired prior to the commencement of the next experiment. The 
results of recycling the Virtual Cluster are presented in Table 7.8, and the performance metrics 

discussed below.

Table 7.8: Table of the performance of 100 synthesized Tasks using the approach documented in this 
thesis. Here IAS jobs were preinitialized and therefore running before the client joined the system. 
Key: AMI - AM for one workstation when run locally, VF - Volatility Failures, AF - Autonomy 
Failures, BA - Balancing Actions.

Job Time in Seconds
1 5 10 15 30 45 60

Min Tasks 100 100 100 100 100 100 100
Avg Tasks 100.4 100.4 100 100.2 103.4 103.6 102.6
Max Tasks 104 102 100 101 109 112 112

Min TE 100% 98.04% 100% 99.01% 95.24% 91.74% 100%
Avg TE 100% 99.61% 100% 99.8% 97.87% 98.15% 100%
Max TE 100% 100% 100% 100% 100% 100% 100%

VF 0% 0% 0% 0% 0% 0% 0%
AF 100% 0% 0% 0% 35.29% 44.44% 100%
BA 0% 100% 0% 100% 64.71% 55.56% 0%

Min TR 1.01 5.02 10.01 15.02 30.02 45.04 60.03
Avg TR 1.05 5.04 10.05 15.03 30.05 45.22 60.14
Max TR 1.13 5.07 10.11 15.04 30.11 45.92 60.31
TR STD 0.01 0.01 0.01 0.01 0.08 0.07 0.33
Min AM 7 29 73 108 123 273 182
Avg AM 11.5 42.4 104.8 123 170.8 340.6 295
Max AM 25 54 153 138 213 610 482

AMI 100 500 1000 1500 3000 4500 6000
Min ERU 28.94 % 83.2 % 90.35 % 87.11 % 81.01 % 71.96% 75.16%
Avg ERU 73.73 % 87.36 % 93.15 % 92.28 % 91.71 % 92.25 % 94.2 %
Max ERU 88.14% 90.15 % 94.71 % 95.32 % 98.11 % 98.6 % 99.55 %



7.3. Recycling the Virtual Cluster 233

7.3.1 TE Performance

No improvements in TE performance are possible through the recycling of the Virtual Cluster.

7.3.2 TR Performance

No improvements in TR performance are possible through the recycling of the Virtual Cluster.

7.3.3 AM Performance

There is yet another significant improvement in the AM due to the ability to recycle previously 
initialized IAS instances. The main reason being that the cost of building the Virtual Cluster can 

be greater than the time required to execute the set of Tasks, as was the case for the one and to 
some extent the five second Tasks in the previous Section. These results also demonstrate that the 

use of the Virtual Cluster is beneficial in regard to result latency, even for Tasks of one second in 

length. In the previous Section the minimum AM for 100 one second Tasks was 132 seconds, 32 
seconds longer than the AM of a single workstation, which suggested that the Virtual Cluster is not 
feasible for Tasks of 1 second in length. However, in Table 7.8 the maximum recorded AM is 25 

seconds, well below the AM for one workstation and therefore demonstrating that even Tasks of one 
second in length can feasibly be supported in an opportunistic, dynamic and volatile environment. 

These results show that a large collection of Tasks of very short runtimes can benefit from parallel 
execution, even in such a computational environment.

Table 7.9 juxtaposes the values of this performance metric as delivered by the traditional Campus- 
Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using the execution scenario pre­

sented in Section 7.2 and this Section. Here the utility of being able to recycle the Virtual Cluster 
is clearly demonstrated. In comparison to when the Virtual Cluster had to also be constructed, the 
decrease in the AM is on average 93% for one second Tasks and 70% for sixty second Tasks. If 
this is compared to the use of Condor, then the decrease in AM is on average 99% for one second 
Tasks and 84% for sixty second Tasks. Here a decrease of 100% would be if the application was 

completed instantaneously.

Table 7.9: Comparison of the AM performance between the traditional Campus-Grid approach 
(Condor) from Section 2.4 and the Virtual Cluster, in both the execution scenarios: when built from 
scratch (Section 7.2) and recycled (this Section) for 1 and 60 second Task Runtimes.

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
built recycled built recycled

Minimum AM 642 132 7 946 454 182
Average AM 2220.9 170.2 11.5 1865.5 996.5 295

Maximum AM 12830 240 25 7345 2043 482
AM on 1 local workstation 100 100 100 6000 6000 6000
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7.3.4 ERU Performance

The ERU demonstrates another significant improvement for all Task runtimes, and efficiencies of 
88.141% and 99.554% were recorded for Tasks of one and sixty seconds in length respectively. 

This clearly demonstrates the potential of a Virtual Cluster of resources, even for the very shortest 
of Tasks. The improvement in the ERU is due to one new key attribute of the Virtual Cluster. 
Namely that Tasks complete in distinguishable blocks, which is characterized by the rising peaks in 

Figures 7.12 -  7.17. This is a direct consequence of the scheduler receiving multiple IAS instances 

simultaneously at the very beginning of the execution of the Task space. When the Virtual Cluster 

is built, IAS instances are allocated to the Application Manager in an ad hoc manner, because this 
is the nature in which each workstation initializes. This translates into a less effective scheduling 

scenario, as Tasks are scheduled in “micro-clusters” and only one cluster is scheduled at any given 

moment in time. When the Virtual Cluster is recycled, multiple clusters are scheduled at the same 

time, which means they will also finish at or around the same time in this case. The effect is 
that the scheduling strategy is greatly simplified, because the number of scheduling steps becomes 
a function of: where T  is the number of Tasks and N  the initial number of workstations.

Generally, this will not occur as uniformly, as resource performance is not homogeneous. This does 
not mean that it will not happen, only that it is less likely. In addition, the scheduler has the option 
to choose how many resources it receives. In these experiments the scheduler tries to maximize 
its resource pool (see: Section 5.5.3), rather than optimize its performance by identifying a “good” 
number of resources from those currently available to use. The direct consequence of the scheduler 
used in these experiments is that the average number of resources used is generally higher than 
the experiments conducted in Section 7.2. However, the ERU is not negatively affected, and the 
improvement in performance is so significant that 100 sixty second Tasks can be completed with 
a lower AM, when recycling resources, than 100 one second Tasks when the Virtual Cluster must 
also be built.

Table 7.10 juxtaposes the values of this performance metric as delivered by the traditional 
Campus-Grid approach (Condor) from Section 2.4 and the Virtual Cluster, using the execution sce­
nario presented in Section 7.2 and this Section. By recycling the Virtual Cluster it is clear that the 
ERU has increased. However, if these values are compared relatively to those of the Condor sys­
tem, then the significance of the improvement that has been achieved becomes clearer. For the one 
second Tasks, the improvement in the ERU is between 2369% and 12939% and for the sixty second 
Tasks, between 88% and 256%. In comparison to when the Virtual Cluster must also be built, the 
improvement in ERU for one second Tasks is between 56% and 1157%, and for the sixty second 

Tasks, between -18% and 200%. This also shows that recycling the Virtual Cluster for longer run­

ning Tasks is not guaranteed to improve efficiency, but in the average case an improvement of 26% 
is experienced.

In comparison to the similar approaches presented in the literature, namely: ProteomeGRID 
and DIANE (both discussed in Section 3.2.1), which reported ERUs of up to 81% and 84% re­

spectively then the use of the Virtual Cluster has outperformed both approaches with a monitored
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Table 7.10: Comparison of the ERU performance between the traditional Campus-Grid approach 
(Condor) from Section 2.4 and the Virtual Cluster, in both the execution scenarios: when built from 
scratch (Section 7.2) and recycled (this Section) for 1 and 60 second Task Runtimes.

Performance
Metric

Task Runtime
1 second 60 seconds

Condor Virtual Cluster Condor Virtual Cluster
built recycled built recycled

Minimum ERU 0.676% 7.010% 28.939% 27.950 33.169% 75.159%
Average ERU 0.898% 13.8% 73.729% 35.581% 74.684% 94.205%

Maximum ERU 1.172% 18.602% 88.141% 39.977% 91.512% 99.554%

ERU of 88.1% even for a 1 second Task. Note that the experiments do not include data transfer 

and are therefore best case scenarios. However, an application such as a parameter sweep requires 

data to be sent only once to each IAS instance. Similarly, if Tasks share some similarity in data 

requirements, data-aware scheduling strategies can be introduced to attempt to schedule Tasks to 
IAS instances which have already downloaded some or all of a Task’s data dependencies. Finally, 
the IAS instances’ queues permit schedulers to increase the time that an IAS has to transfer data, as 
the IAS can download any data requirements whilst executing other Tasks.

In Figure 7.10 the ERU results are presented graphically to illustrate that Tasks above 60 seconds 
in length will be difficult to run more efficiently, as the ERU values are approaching 100%. This 
does not mean that longer running Tasks will be less efficient, only that the benefit of using the 
Virtual Cluster over a more traditional approach will diminish as Task length increases. In this 
sense the benefit received using the Virtual Cluster is inversely proportional to Task length. In other 
words, as Task length approaches zero, the benefit of using the Virtual Cluster increases. This can be 
substantiated by the observations in was improvements of the AM and ERU metrics. In both cases 
the improvement in these values relative to the performance of the Condor system, was significantly 
higher for one second Tasks than for sixty second Tasks.

7.3.5 Summary

The purpose of this Section is to demonstrate the significance of being able to recycle previously 
initialized IAS instances. This ability is only possible because the IAS is intrinsically and inherently 

orientated toward the support for heterogeneous Tasks. Therefore, it is feasible that this ability can 
dramatically increase the ERU and reduce the AM for a given Task space for real applications. 
In Section 6.8 the effect of recycling resources was shown for a real application as a reduction in 

result latency. Ultimately, the ability to recycle resources leads to an improved performance for the 

shortest Tasks and for small Task sets. This occurs as the time required to build the Virtual Cluster 

can be predominantly avoided. It cannot be completely avoided, as even in this execution scenario 
the CRM will initialize new IAS instances if the CSM identifies that more IAS instances could be 

consumed. Figures 7.11 -  7.17 graphically represent example experimental runs and illustrate how
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Figure 7.10: Comparison of the ERU performance between the traditional Campus-Grid approach
Condor) from Section 2.3 and the Virtual Cluster, for 1 and 60 second Task Runtimes.
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the execution of a Task space differs when the Virtual Cluster is recycled.

7.4 Fault Tolerance

Figure 7.18 illustrates an example of the autonomy of the Campus-Grid and how the CRM reacted 
to correct this scenario. However, to fully understand the context of this experimental run, some 
background information is required. Firstly, the time of day that this experiment was carried out 
is of great significance. The experiment was started at 10:58 am on a weekday during one of the 
teaching semesters. At this time of day the students have a 20 minute break from lectures between 
10:50 and 11:10, as the lecture timetable shifts from starting on the hour to starting at ten past the 
hour. It is always exceptionally hard to predict what will occur within the Campus-Grid during this 
time. Sometimes there are no workstations available, as students check their email, surf the web 
etc., on other occasions workstations are in abundance, as students take a break. On this occasion 
there were between 200 and 230 workstations available for use by Condor users, which, considering 
the maximum recorded value of 808, demonstrates that many of the workstations were in use. Of 
the available workstations between 18 and 33 were reported as being Matlab enabled.

Initially, the CRM managed to initialize a maximum of 15 IAS instances. Yet it can be seen 
that all IAS instances were lost for a period of time (approximately 6 minutes). The point to be 
made here is that this occurred at 11:07, just before the next teaching session started. During this
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Figure 7.11: Graphical representation of the runtime of 100 synthesized Tasks of one second in 
length. In this experiment the average number of workstations used was 11.6, the experiment effi­
ciency was 78.37% and the experiment runtime was 11 seconds.
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Figure 7.12: Graphical representation of the runtime of 100 synthesized Tasks of five seconds in 
length. In this experiment the average number of workstations used was 19.592, the experiment 
efficiency was 88.0% and the experiment runtime was 29 seconds.
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Figure 7.13: Graphical representation of the runtime of 100 synthesized Tasks of ten seconds in 
length. In this experiment the average number of workstations used was 14.486, the experiment 
efficiency was 94.56% and the experiment runtime was 73 seconds._______________
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Figure 7.14: Graphical representation of the runtime of 100 synthesized Tasks of fifteen second in 
length. In this experiment the average number of workstations used was 12.983, the experiment 
efficiency was 93.93% and the experiment runtime was 123 seconds._______________ _________
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Figure 7.15: Graphical representation of the runtime of 100 synthesized Tasks of thirty seconds in 
length. In this experiment the average number of workstations used was 16.709, the experiment 
efficiency was 98.11% and the experiment runtime was 183 seconds.
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Figure 7.16: Graphical representation of the runtime of 100 synthesized Tasks of forty-five seconds 
in length. In this experiment the average number of workstations used was 16.717, the experiment 
efficiency was 98.60% and the experiment runtime was 273 seconds.
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Figure 7.17: Graphical representation of the runtime of 100 synthesized Tasks of sixty seconds in 
length. In this experiment the average number of workstations used was 32.766, the experiment
efficiency was 98.45% and the experiment runtime was 186 seconds.
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time the CSM informed the scheduler that the IAS instances had failed and the scheduler identified 
which Tasks needed to rejoin the queue due to the workstation revocations. Meanwhile, the CRM 
commenced the process of acquiring new resources for the user and the first IAS instance to (re)join 
the system was at 11:13. This IAS was allocated to the Application Manager by the CSM, and 
Task execution continued despite the interruption, and the scheduler continued the execution of 
the application. Over time more IAS instances were gathered and the Task space was promptly 
completed.

A similar interruption occurred during the execution of the experiment illustrated in Figure 7.19, 
however, in this case the only reason for the loss in resources that can be identified is that work­
stations were being shutdown, as the experiment was run toward the end of the working day. In 
fact, after around 1220 seconds only one workstation is in use. These examples demonstrate the 
system’s ability to react to dynamic changes in the Campus-Grid and its ability to handle such 
situations transparently to the user, even when only one workstation remains.

Figure 7.18: Graphical representation of the runtime for 100 synthesized Tasks of sixty seconds in 
length. In this experiment the average number of workstations used was 12.357 and the experiment 
efficiency was 41.93%. However, during this experiment it can be seen that at one point all IAS 
instances were lost.
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Figure 7.19: Graphical representation of the runtime for 100 synthesized Tasks of sixty seconds in 
length. In this experiment the average number of workstations used was 11.030 and the experiment 
efficiency was 33.17%. However, during this experiment it can be seen that at several points all IAS 
instances were lost. __
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7.5 Analysis o f Queue Length and O verheads

In this Section an evaluation of the impact queue length and communications overhead have on the 
performance of the system is presented. The analysis undertaken is a replica of that undertaken 
in Section 2.2, with the only exception that instead of running the Dummy Task directly on the 
workstation and then allowing Condor to clean up afterwards, the Dummy Task is executed by an 
IAS instance. Here, the overheads experienced by the Dummy Task relate to the costs of scheduling 
and transferring it to the IAS, invoking the Matlab engine, generating a result and transferring the 
results back.

In order to provide a comparison to Section 2.2, the same queue lengths are in use (100, 200, 
300, 400, 500, 750, 1000, 2000). It is of particular interest whether the increase in queue size im­
pacts upon the performance of the system as was observed in Section 2.2. Each experimental run 
was repeated multiple times and the execution scenario is that of Section 7.3. The motivation behind 
this choice is that no significant differences were observed between the two execution strategies with 
respect to Task runtime. In addition, using this execution scenario enables a certain level of control 
over the number of workstations that are used, and therefore the impact of the number of worksta­
tions on performance can also be observed. To ensure that a variety of workstations were acquired 
by the CRM, the Virtual Cluster was manually restarted periodically. Figure 7.20 shows the average 
runtime of all Dummy Tasks for the different queue lengths that were investigated. Figure 7.21 
shows the comparison of average execution time against the average number of workstations that 
were used to execute the Dummy Tasks. Table 7.11 juxtaposes the observed average Task runtimes 
for the traditional Campus-Grid approach (Condor) and the Virtual Cluster. There are three key 
points that can be brought forward from the results of these experiments. Firstly, that the average 
execution time is on average a matter of 10’s of milliseconds, which is a considerable improvement 
over the experiments undertaken in Section 2.2, where the average execution time ranged between 
9 and 67 seconds depending on queue size. This indicates that performance has been improved
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considerably. Secondly, there is no clear observation that as queue length increases, runtime also 
increases. Although Figure 7.20 gives the indication that smaller queue lengths are more expensive, 
the actual difference is quite negligible and could easily be accounted for through inaccuracies in 
the time keeping abilities of Java, or subtle differences in the load of the workstations in use. Fi­
nally, Figure 7.21 illustrates that as the number of workstations increases, the overhead experienced 
is also more likely to increase, as opposed to increasing when the queue length increases, which is 
more “normal” behaviour.

Figure 7.20: The average runtimes of the Dummy Tasks for a variety of queue lengths.
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Table 7.11: Comparison of average Dummy Task runtimes using the traditional Campus-Grid (Con­
dor) in Section 2.2 and the Virtual Cluster.

Average Task Runtime
Queue Size (in seconds)

Condor Virtual Cluster
100 25.3 0.0454
200 9.8 0.0716
300 22.0 0.0667
400 32.5 0.0395
500 33.4 0.0239
750 40.5 0.0335
1000 66.9 0.0335
2000 48.9 0.0311
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Figure 7.21: The maximum runtimes of the Dummy Tasks for a variety of queue lengths.
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7.6 Analysis o f CRM  Perform ance

The experiments undertaken in this Chapter have shown that the performance of the Campus-Grid 
can be greatly improved through the use of a Virtual Cluster. However, they have not illustrated 
what the system, specifically the CRM (Section 5.3), was doing behind the scenes. In this Section 
the analysis of the Condor logs is presented to demonstrate how the CRM acts on the behalf of the 
user in order to acquire resources and add stability to the volatile environment of the Campus-Grid.

The experiments documented in this Chapter relate to over 31,000 Tasks executed by the Virtual 
Cluster. In contrast, only 1741 IAS jobs were submitted by the CRM. However, note that after 
each experiment undertaken in Section 7.2 all Condor jobs were manually terminated when each 
experiment was complete. Note also that even in the second execution scenario (Section 7.3), all 
IAS jobs were eventually terminated, and were also periodically terminated to enable a variation in 
the workstations in use. In addition, this number also captures experimental results which are not 
presented in this Chapter. Such examples include: scenarios where errors in the implementation of 
the Virtual Cluster were discovered and where glitches in the monitoring data7 or database access 
occurred. In these scenarios the results were thrown away, and it is therefore impossible to determine 
exactly how many Tasks were performed in relation to the number of Condor jobs mentioned above. 
However, it would not be unrealistic to be at least 10,000 -  20,000 additional Tasks.

The autonomic aspects of the CRM in respect to the monitoring of and reaction to the pilot 
status of the IAS jobs meant that during these experiments 39 workstations of 112 used were black­
listed and 636 IAS instances were created and consumed by the testing Application Manager (Sec-

7This frequently occurred in the experiments undertaken in Section 7.5, as the Task space completed too quickly for 
enough accurate monitoring data to be acquired.
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tion 7.1.3). In contrast, 1 of the workstations blacklisted later successfully ran an IAS job, and of 
those blacklisted 5 had previously initialized an IAS instance successfully. An IAS instance took 
on average 142 seconds to initialize, a minimum of 24 seconds, and the maximum value permitted 
by the CRM was in the order of 11 minutes. On average an IAS job waiting for 171 seconds in the 
Condor queue before being matched to a workstation by Condor, where the minimum and maximum 
values were 9 and 10714 seconds respectively.

A breakdown of all IAS jobs submitted to Condor and the cause of their termination or failure 
is presented in Table 7.12. The different reasons for job termination or failure that occurred are: 
(1) Pilot: the workstation failed the LAS pilot test, (2) Manual: the job was manually terminated 
after the completion of an experimental run, (3) Suspended: the job was suspended by Condor, and 
terminated in response by the CRM, (4) Runaway: the job was terminated by the CRM in response 
to the CRM’s termination heuristic (Section 5.3.3) classifying it as a runaway job, (5) Unsuspended: 
the job was unsuspended by Condor and failed as a consequence; in these cases the unsuspension 
occurred either before the CRM could identify the suspension event because the IAS job had not 
yet initialized as an IAS, or the IAS was idle at the time, which would occur between experimental 
runs, and (6) Lost Contact: Condor lost contact with the workstation, the most likely causes being a 
power down, failure of the Condor sched daemon, or a networking issue.

Reason for job 
termination or failure

Occurrences CPU Time (in hours)
Frequency Percentage Quantity Percentage

Pilot 817 47% 4:30 2.6%
Manual 797 46% 120:38 68%

Suspended 58s 3% 25:36 14.4%
Runaway 53 3% 9:52 5.6%

Unsuspended 8 0.5% 6:12 3.5%
Lost Contact 8 0.5% 10:24 5.9%

Total 1741 100% 177:24 100%

Table 7.12: Summary of the causes of IAS Job Termination.

From Table 7.12, several conclusions can be drawn. Firstly, that the total CPU Time observed 
(177:24 CPU Hours) is much greater than the CPU Time consumed for all experiments (approxi­
mately 65 CPU Hours). This occurs primarily because between every experimental run there is a 
gap of at least five minutes. However at times this was be as much as 30 minutes, and in Sections 7.3 
and 7.5 all IAS instances were left running during this time. At times there were up to 30 or 40 IAS 
instances running concurrently, and consequently a short five minute pause can quickly consume 
almost one CPU hour. When repeated between all experiments, this relates to a significant period of 
time, which is actually quite difficult to quantify. An estimation of this period is in the order of be­

8In fact 105 IAS jobs were suspended in total. However, the CRM will only terminate a suspended IAS job if it is in 
use, as it is guaranteed to fail should it be unsuspended. This is not always the case if it is idle. The remaining 47 jobs can 
be accounted for as follows: 40 were terminated manually when an experimental run was complete or the Virtual Cluster 
reset, 3 were later unsuspended, but failed the pilot test. Condor lost contact with the workstations of the another 3 and 1 
was later unsuspended and consequently failed.
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tween 16 and 23 CPU hours as a lower bound and between 30 and 37 CPU hours as an upper bound. 
In addition, it was not uncommon for the experiments in Section 7.5 to be repeated five or six times 
before a useable result was captured. This was typically due to the fact that the application would 
complete in less time than the monitoring periodicity. Therefore, it was not possible for the testing 
Application Manager to calculate the required performance metrics, as it had no data. In addition, 
the IAS termination process for the experiments conducted in Section 7.2 was not automated and 
therefore, a period of time could arise between the completion of an experiment and the termination 
of all IAS jobs, which is difficult to quantify accurately.

Secondly, the pilot testing process of the IAS job is very quick at identifying workstations that 
are incorrectly configured. On average this process required 20 seconds, the minimum and maxi­
mum times recorded were 2 and 222 seconds respectively. It is also quite successful at identifying 
faulty workstations, as only 3% of all IAS jobs were classified as runaway jobs and consequently 
terminated by the CRM.

Thirdly, the amount of time consumed by the runaway jobs appears, on the outset, to be quite 
high for only 53 jobs. However, the average runtime of a runaway job was in fact 11 minutes and 9 
seconds, which is actually what the expected result should be.9 The problem, however, is that there 
are 4 jobs which the CRM had difficulty in terminating. Here, difficulty in terminating relates to 
the CRM executing condo r_rm  to terminate the job, but the job not responding. These four jobs 
collectively consumed 6:44 CPU hours (68% of the total time consumed by runaway jobs), and this 
is why the total time consumed by the runaway jobs is so high. Why this occurs is difficult to say 
without access to the logs of the specific workstations in question. However, as this analysis was 
performed retrospectively, it was no longer possible to access the required log data.

Finally, the period of time that was consumed by the jobs that were terminated because they 
were suspended or failed, either because they were unsuspended or Condor lost contact with the 
workstation is perhaps surprisingly high. The main point which needs to be outlined is that these 
jobs also include any time that was potentially spent as an IAS. In addition, the Condor logs contain 
only one suspension event for the jobs that failed due to being unsuspended, which means that the 
CRM had no means to identify that they had in fact been suspended. The one job which was flagged 
as suspended by Condor was not suspended during an experimental run, therefore it would have 
been idle at the time and consequently not terminated by the CRM. The jobs which Condor lost 
contact with cannot be dealt with by the CRM. It is likely that the CRM attempted to terminate 
them, but this process would have failed due to Condor not being able to contact the workstation, 
and therefore any attempts made by the CRM are not recorded in the logs. It is not possible to 
reliably quantify the time that the job spent doing something useful, such as being an IAS, running 
the pilot test etc., because, as already mentioned with the unsuspended failures, the log data does 
not always identify when the event first occurred.

The key results that should be outlined through the use of the Virtual Cluster and specifically the

9The standard deviation of all IAS initialization times is 113.6971. If this value is inserted into the CRM’s termi­
nation heuristic using only the average initialization time for all recorded IAS instances (approximately 8000) then the 
recommended time at which an IAS job should be terminated is after 11 minutes and 50 seconds.
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CRM are: firstly, that the number of jobs submitted to the Campus-Grid is significantly lower than 
the number of Tasks performed, secondly, that the issues surrounding resource volatility and the 
negative impact this has on performance, as demonstrated in Chapter 2, are managed autonomously 
and transparently to the user and scheduler by the CRM. Consequently, neither the user nor the 
scheduler need to be made aware that they are using resources in a volatile and unreliable environ­
ment. Finally, it is clear from Table 7.12 that workstations are being invoked and utilized for as long 
as they are needed rather than for the length of a potentially short Task.

It must be noted that there is the potential for inaccuracies in the data presented in this Section, 
which stems from three sources. Firstly, is the observation made in Section 2.2, that the accuracy of 
the data stored in the Condor logs is questionable with respect to when a job was actually terminated. 
Secondly, the data for all experiments is stored in daily Condor logs, rather than one log for each 
experimental run. The latter would not be possible for the experiments conducted in Sections 7.3 and 
7.5, as IAS jobs submitted in previous experiments are recycled. Therefore in order to collate data, 
the time stamps used in experiment database are used to identify which IAS jobs were submitted or 
running during the same time frame as an experiment. The potential for inaccuracies here is because 
there are three different clocks in use: (1) the clock of the workstation hosting the Application 
Manager and the experiment database, (2) the clock of the workstation hosting the CRM, which 
defines the times recorded in the Condor logs and (3) the clock of the server hosting the CRM’s 
database, which defines when events such as the CRM terminating a job are recorded. Each of these 
clocks cannot be guaranteed to be perfectly synchronized, however, all are regulated by an Internet 
time server. Finally, all timestamps are defined by when the data was enterred into the database or 
log, rather than when the event occurred. Therefore, if there was a delay in enterring the data some 
timing inaccuracies may occur. However, the impact of any inaccuracy from these three sources 
should not affect the general trend that these results portray.

7.7 Summary of Results

The key aim of this Chapter has been to demonstrate that the conceptual models discussed in Chap­
ter 4 and the prototype implementation presented in Chapter 5 provide a significant improvement in 
performance and stability in comparison to the middleware currently available to the Campus-Grid 
user, i.e. Condor. It also intended to show that Tasks with a runtime of as little as one second can be 
efficiently and feasibly supported in an opportunistic and volatile environment.

The management of issues relating to the volatile and dynamic nature of the workstations in 
use have been made much more transparent through the introduction of the CRM. The end effect 
of this is that the user can focus on what they are trying to achieve, i.e. their research, rather 
than expend unnecessary effort in the administration of the resource infrastructure that they are 
using. In addition, the number of Campus-Grid jobs needed to execute a user’s application has 
been significantly reduced ((Section 7.6). Furthermore, the system is able to capture and adapt to 
changes in workstation status making it resilient to the adaptive context incited by multiple tiers of
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administration. The performance model (Section 4.4.1) enables the system to identify and react to 
inconsistencies in workstation configuration more quickly, but also differentiate between resource 
errors and Task errors. This means that once an IAS has joined the Virtual Cluster, it is guaranteed 
to function correctly until the host workstation revokes its voluntary status from the Campus-Grid.10 
When an intermittent failure occurs, any Tasks can be simply rescheduled to another mnning IAS 
instance.

The effect of the management strategies put into effect by the CRM is that the overall relia­
bility of the Campus-Grid is increased from the user’s perspective. Here, reliability relates to the 
recorded Task efficiency values in Sections 7.2 and 7.3, where 100% values were not uncommon. 
The resource utilisation model exercised through the IAS enables the workstations in use, and by 
extension an instance of compiled Matlab, to be remotely steered in an interactive manner by a 
scheduler, which can be application specific. This translates into a Task runtime much closer to that 
which the Task would receive if executed locally, and also enables data transfers to be issued only 
once per workstation as opposed to once per Task. The impact of this ability relates to the significant 
improvements in application makespan observed in Sections 7.2 and 7.3.

The ability to create a compiled Matlab container capable of heterogeneous Tasks enables IAS 
instances to be recycled for disparate application scenarios, which in turn means that the initializa­
tion cost of the system can be avoided for subsequent applications. This ultimately meant that Tasks 
as short as one second in length could receive noticeable reductions in application makespan, as ob­
served in Section 7.3. Furthermore, this ability relates to a more efficient use of resources observed 
in Sections 7.2 and 7.3, to the extent that overall application makespan was improved, even though 
the number of resources in use was sometimes decreased significantly.

The dynamic scheduling and allocation model implicitly elicits dynamic Task clustering or gran­
ularity. This again occurs due to the interactive nature of the IAS. By using the IAS interactively, 
Task granularity is not a significant factor on performance. In the Condor experiments (Chapter 2) 
performance could be radically improved by packaging more Tasks into each job. The overhead 
incurred for issuing an LAS with a new task is a matter of milliseconds, as observed in Section 7.5. 
This enables schedulers to simply issue new Tasks as a workstation completes previous Tasks, or 
to cheaply perform redundancy scheduling. In addition, by buffering Tasks in remote IAS queues, 
this cost is largely absorbed, as the IAS is already executing another Task. The user can also benefit 
from co-allocation when data is also transferred, which further reduces overhead. Outside of these 
controlled conditions it means that the system can utilise faster workstations more effectively.

The findings from these experiments were presented at CCGrid ’07: the Seventh IEEE Interna­
tional Symposium on Cluster Computing and the Grid, where it was a best paper finalist and in the 
Journal of Concurrency and Computation: Practice and Experience. See Refs [33] and [38].

The experimentation and results that have been observed in this Chapter have been focused en­
tirely on the comparative analysis to a campus-wide Condor pool. However, the improvements that

10This of course assumes that users correctly use the IAS and do not issue it with Tasks that could cause the IAS to 
shutdown or fail.
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have been made possible by the construction, use and possible recycling of the Virtual Cluster are 
not unique to only a Condor pool. Many of the causes of poor performance are general issues and 
not specific only to Condor pools and Campus-Grids. Therefore, any infrastructure that has simi­
lar attributes to the Cardiff University Condor pool, will benefit from the adoption of this system. 
Many of these attributes were outlined in Section 1.3, but in summary the main characteristics are: 
(1) where multiple tiers of decentralized administration exist, but which incite a volatile resource 
environment, (2) a general purpose cycle stealing or batch processing infrastructure, as these are not 
orientated toward the facilitation of short running Tasks, and (3) an infrastructure where resource 
matching is based upon meta-data that is not linked to a management system. If a given infrastruc­
ture has one or more of these attributes, then the improvements in performance documented in this 
Chapter are attainable, by deploying either the implementation presented in Chapter 5, considering 
the requirements for porting to another infrastructure presented in Section 5.7.1, or one of a similar 
nature.
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Chapter 8

Conclusions & Future Work

In this final Chapter, the focus will return to the research questions and hypothesis posed in Sec­
tions 1.5 and 1.4 respectively. Section 8.1 will present the new knowledge that can be put forward 
toward answers to these questions. Following this discussion, Section 8.2 will present a crictical 
analysis of the hypothesis and the research undertaken in this thesis to address it. Finally, in Sec­
tion 8.3 a new research direction is presented which could capitalize upon this research.

8.1 Answers to the Research Questions

In this Section the four research questions posed in Section 1.5 will be discussed in relation to the 
research undertaken in this thesis in Sections 8.1.1 -  8.1.4. In each Section, the research question 
will be repeated, and the relevant models which have been implemented will be discussed. In 
addition, the analysis performed to demonstrate the added capabilities will also be discussed, along 
with the new knowledge that has consequently been delivered. Finally, any areas of work which 
could be performed as further research to augment this thesis will also be highlighted.

8.1.1 F easib ility

Question 1: What measures are needed to make a Campus-Grid feasible for the Task1 definition 
given in Section 1.3.9?

In order to answer this question, another one had to be raised first: how do the current conceptual 
models (job and resource management) need to be extended? This ultimately related not only to the 
provisioning of Tasks using the definition given in Section 1.3.9, but also to how stability was to be 
established within the volatile context of the Campus-Grid, as was demonstrated in Chapter 2.

In order to approach these questions, the traditional job model was split into two parts to enable 
the differentiation between resource acquisition and the scheduling of work units/Tasks. This meant 
that the process of managing dynamically changing resources, i.e. those which exhibit volatile

'The original question in Section 1.5 used the word ‘job’ here, however, to remain consistent to the terminology 
introduced in Chapter 4 it has been replaced with Task.

249
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behaviour (see Section 1.3.1), became a challenge for the system as a whole, rather than the user - 
therefore increasing transparency. On the other hand, it provided the means to allow the user or an 
Application Manager (Section 5.5.1), acting on their behalf, to be concerned with the definition and 
scheduling of work units and not the management of a complex and volatile distributed system.

Stability was added through this division, and it became possible to identify when a worksta­
tion was not exhibiting “normal” behaviour, by submitting a verified pilot job. The pilot job was 
guaranteed to be successful if and only if the operating environment of the host workstation was 
correctly set up. Therefore, if the pilot job failed for any reason, this was a clear indication that the 
workstation’s environment was inadequate and incorrectly advertised. In some cases, the pilot job 
did not simply fail, but became stuck in a state transition, which was termed as a runaway job. In 
Chapter 2 the potential runtime for a runaway job was demonstrated to reach excessive periods of 
time, a maximum recorded value was sixteen days. A termination heuristic was defined and intro­
duced (Section 5.3.3) in order to identify when this is likely to have occurred based upon a training 
set of 5000 Matlab test jobs and all other IAS (Section 5.2) jobs that had successfully initialized 
in the past, which is approximately 8000 additional jobs. In this sense, the heuristic itself became 
sensitive to changes in the Campus-Grid. Once the pilot job completed, a worker daemon was ini­
tialized to identify that its host workstation was fully capable of accepting work units. This enabled 
a new state to be introduced in the traditional state space: initialized. When a workstation achieved 
this state, it could be guaranteed that it would function correctly.

The only exception to this statement was if the job (daemon) was suspended. In this scenario, 
regardless of whether the daemon job was unsuspended or not, the job would fail unless it was idle 
when the suspension occurred. If the daemon was idle it is likely, but not guaranteed, that it would 
fail upon unsuspension.2 Due to the splitting of the job model, determining whether a daemon was 
idle or not was straightforward. Consequently, if the daemon was not idle at the time of suspension, 
it was terminated and any Tasks rescheduled. If instead, it was idle, the daemon could be flagged as 
suspended, and not given any further work to do until it was either evicted, unsuspended or failed.

The way in which stability has been added to the volatile nature of the Campus-Grid was to 
differentiate between resource acquisition, the allocation of these resources and the scheduling of 
work units. This is quite strongly reflected in the architecture presented in Chapter 5 where the 
CRM (Section 5.3), CSM (Section 5.4) and Cl (Section 5.5) components respectively address these 
areas. The outcome from the introduction of these components and the research undertaken in this 
thesis was that a Task would fail only when the availability of the workstation in use was revoked 
(termed as an autonomy failure), which, in an opportunistic computing scenario, is to be expected. 
If a Task were to fail during execution for reasons other than workstation autonomy, it was possible 
to identify exactly why this occurred, as the daemon executing the Task (the IAS Section 5.2) has 
error handling mechanisms built into it specifically to capture application specific error messages, 
and relay these back to the user. The ability to differentiate between a failure due to unreliable 
resources and those due to programmer or application error was not possible prior to this work.

2The reasoning for why this could occur was presented in Section 5.3.3
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Once stability, and by extension reliability, was achieved, focus could turn to the provisioning 
of Tasks with the attributes outlined in Section 1.3.9. The key concept that has enabled efficient 
provisioning even for Tasks of as little as one second in length has been the daemon model (Sec­
tion 4.3.1), and its enactor the IAS (Section 5.2). Other approaches in the literature have used 
daemon models that are similar, but the uniqueness of this work is the way in which its functionality 
is gathered and the placement of the daemon itself within the application container, Matlab in this 
case. Other approaches typically sit outside the application container, and therefore must rely on less 
effective means of application control and steering. There are no other known approaches that can 
even compete with the way in which the IAS gathers functionality through the use of the Autonomic 
(Matlab) Compiler (Section 5.2.1), and the impact on performance that this has was demonstrated in 
Section 7.3. The reason is that the IAS enables a completely heterogeneous application scope, and 
therefore previously initialized LAS daemons can be recycled without being reinitialized to perform 
analysis for mutually exclusive and disparate applications. In theory the LAS could be made into a 
fully functioning, but license free, version of Matlab, by using the Autonomic (Matlab) Compiler 
presented in Section 5.2.1. However, this would violate the licensing conditions of Matlab and the 
Matlab compiler.

The functional gathering abilities of the Autonomic Compiler, plus the aim of the LAS to mn 
infinitely, mean that workstations that are correctly configured can be used for as long as they are 
available rather than for the length of a single Task or cluster of Tasks. The outcome was the ability 
to see noticeable improvements in the application make span of even 100 Tasks of only one second 
in length. The other abilities of the LAS that have contributed to this achievement were: (1) The 
ability to build a queue of multiple Tasks on the workstation itself, so that data acquisition and other 
administrative tasks could be performed whilst another Task was executing. This is essentially 
dynamic Task clustering and co-allocation. (2) A direct connection to and manipulation of the 
native Matlab engine meant that Tasks could be passed to the engine using exactly the same API as 
the Matlab workspace does when being used by a real user. This meant that the overhead involved in 
invoking the engine was negligible and comparable to “normal” use. An additional ability that this 
creates is the capture of errors as they occur, which translates into the ability to provide the user with 
a meaningful error event and trace of the error’s provenance. (3) The LAS Meta-Interpreters (Mis: 
Section 5.1.2) make the means to gather results much more intuitive, as they are orientated to the 
use case of typical Matlab applications and, if required, can be tailored to new application scenarios 
quite easily. This means that the results contain only data that is relevant to the Task performed. 
Middleware, where Condor is one example, generally returns all data that has been created into 
the working directory of the workstation, or changed during execution. Such an approach is ill- 
equipped to identify what is actually required without additional explicit instructions included in 
the Task description. The LAS doesn’t need this information, as all data is made available through 
its internal HTTP server. Therefore, if something is needed but was not provided by the MI, the user 
or an Application Manager can pull this data from the LAS.

In summary, the research and analysis performed to answer this question lies in the adoption of:
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a new job model, adaptive blacklisting and pilot testing of workstations coupled with a proactive 
strategy for the termination of jobs exhibiting anomalous behaviour, the abstraction of jobs to an 
infinitely running daemon that controls the computational software (e.g. Matlab) using the internal 
APIs, the consolidation of entire toolboxes or packages to increase reusability and the displacement 
of Task scheduling from the Campus-Grid middleware to the application itself.

The research presented in this thesis has been centred around inaccuracies in the advertised 
capabilities of a workstation. However, only one of the two possible scenarios were considered. 
Namely, when a resource advertises a capability that it does not actually have. In contrast, some 
small scale experiments, which will not be discussed here, have hinted toward a scenario where 
some workstations do not advertise a Matlab capability, but can in fact successfully run Matlab 
jobs. Such a scenario can occur just as easily as an inaccurate advertisement discussed throughout 
this thesis. For example, the installation is successful, but interrupted before the workstation’s 
ClassAd can be updated. Currently, there are no means within the defined models to discover such 
workstations.

8.1.2 Resource requirements

Question 2: How can the number of resources to be used for the execution of a set of Tasks3 be 
determined?

This question was approached through the definition of the requirements model (Section 4.5), 
where an abstract target for the number of resources to be acquired is generated. This target is 
generated based upon three sources of information: (1) Task data, which describes the remaining 
work (Tasks) to be performed. (2) Resource data, which describes the current demand for resources 
in relation to the resources that have already been allocated, and, in addition, to the Task data. 
(3) Usage data, which describes how the scheduler is using the resources that have thus far been 
allocated to it. When combined together this information was used to identify an abstract horizon 
value for the CRM to aim for. Even in a simple form, where consideration is made only by utilizing 
the maximum number of IAS instances that a scheduler highlights can such a horizon be created. 
The whole philosophy behind this approach is not to identify an “ideal” number of resources; this 
could never be the case for reasons such as workstation heterogeneity and autonomy. Instead, it 
is to provide an indicator, which can be used to model the current demand for resources that one 
or more users have relative to the current supply. Or in other words, if more workstations were to 
become available, to enable the CRM to answer the question: Assuming that these workstations are 
correctly configured, would they be useful? The demand for resources is expected to be dynamic 
and change with time as Tasks are completed or new ones supplied to the scheduler. Therefore, the 
CRM’s target is constantly adapting.

The actual number of workstations that CRM acquires through its aim to reach this target is 
based upon several key factors: (1) The current supply of idle workstations in the Campus-Grid 
that advertise the necessary capabilities. (2) The CRM’s current knowledge of the available work­

3Again the original question in Section 1.5 used the word ‘job’ here.
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stations in relation to previously observed performance, i.e. the current blacklist. (3) The number 
of available workstations that are incorrectly configured, but not yet blacklisted. (4) The effective 
priority of the user that the CRM represents within the Campus-Grid. (5) The number of other 
Campus-Grid users who also have jobs awaiting resources. Therefore, the CRM was made sensitive 
to the state of the Campus-Grid as a whole. For example, if it has already managed to acquire some 
workstations, but is incapable of acquiring further workstations, it will not increase the number of 
IAS jobs it has in the queue. The reason for this is that if there are currently jobs in the queue which 
are idle and some workstations have already been acquired, adding further jobs will not make a 
considerable difference. However, on the other hand, if the CRM has no registered IAS instances, 
and Condor is reporting no available workstations, it must place jobs into the queue to encourage 
the Condor matchmaker to provide one or more workstations. In the latter case, the CRM attempts 
to capitalize upon Condor’s fair share allocation and effective priority strategies. These, in simple 
terms, define that a user with no or few workstations will be given a higher priority over a user 
with many workstations in future matchmaking decisions. Therefore, by submitting IAS jobs even 
though no workstations are available, the CRM is encouraging the Condor matchmaker to provide 
it with resources as soon as they become available.

To return to the original question, the number of resources (IAS instances) which are allocated 
to a scheduler is determined based upon two observations. Firstly, the number of IAS instances that 
the CRM is physically able to acquire based upon the five constraints mentioned above. Secondly, 
the demand quantified by the requirements model, using the data extracted from the scheduler and 
Task Model (Section 4.3.2). Here, if the CRM manages to acquire more IAS instances than the 
requirements model defines, the actual number that will be allocated is based upon the demand 
quantified by the requirements model. There are several reasons why the CRM can acquire too many 
IAS instances. However, this commonly occurs either when the application is nearing completion 
and therefore the scheduler releases IAS instances that are no longer required, or because the global 
requirements model (Section 4.5) has achieved its aim of acquiring spare capacity. Remember that 
the global requirements model aggregates the total demand from all users and increases it in order 
to instruct the CRM to acquire spare capacity. The acquisition of spare capacity is undertaken to 
enable the CSM to provide additional resources should a sudden change in demand occur.

The core idea that has been implemented is to generate a collection of resources based upon 
some modelled demand, which was termed a Virtual Cluster of Matlab-enabled workstations, and 
allocate them to a scheduler as soon as they become available. Due to the way in which this has been 
realized, the actual number of workstations that are used has become less influential on performance 
in comparison to other factors of the system as a whole. For example, in Chapter 2 using more 
workstations had little influence over the completion time of the set of Tasks. Instead, it was the 
volatility of the workstations in use that defined when the set of Tasks would complete. In the 
research conducted in this thesis, creating the much needed stability has enabled better performance, 
even when less workstations are in use. In addition, the interactive nature of how each workstation 
is utilized through the IAS has enabled the scheduling of the Task set to be performed dynamically,
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opportunistically and in a just-in-time manner, which enables a scheduler to adapt its scheduling 
plan and harness new workstations when they become available. The advantage of this approach 
is that the user does not need to be concerned either with what resources are available, how many 
should be used or how they can package their set of Tasks together into larger units of work in an 
attempt to avoid costly scheduling overheads.

8.1.3 Benefit to User

Question 3: What differences does the user experience as a result of introducing these models?
The first benefit that a user can receive, based upon the research undertaken for this thesis, is a 

significant increase in transparency. Transparency comes at many levels, each of which have dif­
ferent levels of utility in different application scenarios. The areas in which transparency has been 
increased are: (1) The management of volatile and adaptive resources within a dynamic environ­
ment. This is provided by the CRM (Section 5.3). Here, the user no longer needs to be concerned 
with how resources are acquired, or the way in which issues of volatility are managed. (2) The gath­
ering of functionality, and the general administration and creation of compiled Matlab instances. 
This is provided by the Autonomic (Matlab) Compiler (AC) (Section 5.2.1). Here, entire Matlab 
toolboxes can be captured using a small number of inclusion statements. Any errors within the 
Matlab functions are highlighted by the AC in batches, which enables the user to perform compila­
tion predominately as a background process. (3) The process of Task submission, preparation and 
administration. This is provided by the Cl’s (Section 5.5) Task Layer (Section 5.5.2). (4) The elic­
itation of preference with respect to the quantity of resources needed. This is provided by the Cl’s 
(Section 5.5) requirements model, which is constructed using the Task and Resource Layers (Sec­
tions 5.5.2 and 5.5.3). Here the user specifies only what processing they wish to perform, and upon 
what data. The Cl then handles everything from the creation of a schedulable entity to the receipt 
of results. This process can also be further abstracted by hiding this definition stage, for exam­
ple behind approaches such as polymorphic overloading of Matlab functions (see: Section 6.10.4). 
(5) The integration within an application environment, as demonstrated in Chapter 6. (6) The pro­
cesses required for Task-based fault tolerance, i.e. the ability to differentiate between faults that 
occur due to errors in application code and those which occur due to an inconsistency in the op­
erating environment. This is provided by the distinction between resource acquisition, allocation 
and scheduling, i.e. the CRM (Section 5.3), CSM (Section 5.4) and Cl (Section 5.5) respectively. 
In addition, the provisioning of a daemon (the IAS: Section 5.2) within an application environment 
enables the capture of such faults in a more useful fashion.

The second benefit is a much improved application latency, as demonstrated in Chapters 6 and 
7. This reduction is caused by several key attributes of this approach. Firstly, that workstations are 
initialized only once per session, as opposed to once per Task, which was made possible through 
the introduction of the CRM (Section 5.3) and LAS (Section 5.2). This meant that each workstation 
could be used interactively for as long as it was needed, rather than for the potentially short runtime 
of a single Task. Consequently, it also meant that Tasks could be executed much nearer to what
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their normal execution time on a local workstation would be. Furthermore, it also contributed to 
workstations being used very efficiently, for example in Chapter 7 an efficiency of resource utiliza­
tion of 88% was observed for one hundred Tasks with a runtime of only one second. This was an 
improvement of almost 13000% over the traditional Campus-Grid approach. Secondly, the genera­
tion of adaptive workstation profiles by the CRM (Section 5.3) prevented faulty workstations from 
becoming job blackholes, which, as demonstrated in Section 2.2 could significantly increase the 
number of job submissions needed for an application to complete. Finally, because the functionality 
captured by the Autonomic (Matlab) Compiler (Section 5.2.1) enables completely disparate appli­
cation scenarios to be catered for, the Virtual Cluster does not need to be restarted or recompiled in 
order to facilitate a change in application scope.

The third benefit, which is actually a consequence of the second benefit discussed above, is that 
performance could be improved whilst at the same time the number of workstations in use could be 
reduced. The reasons for this are the same as those presented for the second benefit: namely, Task 
runtimes being comparable to local execution, efficiency of resource utilization being very good, 
workstations used for as long as they are needed in an interactive fashion and job blackholes being 
avoided through the use of proactive pilot tests and adaptive blacklisting. This therefore benefits not 
only the direct user of the Campus-Grid, but other users too, as more resources remain available for 
them to use.

When these three benefits are combined together, the final outcome is that the user is able to 
rapidly deploy their applications into a parallel execution scenario, and receive their results in a 
timely manner. This can be achieved regardless of whether their Task granularity relates to Task 
runtimes of a few seconds in length or several minutes. Ultimately, this means that new research 
hypotheses can be rapidly tested and developed by non computer scientists, which is exactly what 
infrastructures such as Campus-Grids are intended for. This can be achieved despite the challenges 
outlined in Section 1.3 and the poor performance observed in Chapter 2.

8.1.4 Continuum of Capability

Question 4: What are the bounds of these models?
The target Tasks for this research are those with very short runtimes (seconds). For this reason, 

the experiments conducted in Chapter 7 were orientated toward determining when a Task is too 
short to feasibly be executed using the system documented in Chapter 5. It was found that when the 
Virtual Cluster must also be constructed, the lower limit of feasibility is in the order of five seconds 
in length. However, note that this was also for a small set of Tasks -  100. Therefore, if the number of 
Tasks was increased, the lower limit will decrease proportionally, as the cost of building the Virtual 
Cluster will have a reduced effect on performance. For this reason, further analysis could determine 
a more precise value between one and five seconds, for various application sizes. However, this is 
not a critical issue. The key point instead, is that even for Tasks of as little as five seconds in length, 
and when the number of Tasks to be performed was small, significant reductions in application 
makespan were observed. If multiple sets of Tasks are to be executed, then the approach can easily
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cater for Tasks of as little as one second in length, simply because the Virtual Cluster can be recycled 
without being redeployed or reinitialized. In Section 7.2 an example of running longer Tasks was 
also given. Here, even ten minute Tasks received an improved performance.

What this means in relation to the continuum of capability that this approach has, is that it can 
facilitate very short Tasks of as little as one second in length and still provide real improvements 
in application makespan. For longer running Tasks the Virtual Cluster is bound by the same condi­
tions as regular Campus-Grid middleware, i.e. workstation autonomy, or, in other words, the conse­
quences of volunteered resources. However, it will never give reduced performance compared to a 
more traditional Campus-Grid middleware, and further experimentation would demonstrate this, but 
it will be bound to the general trends of availability that are experienced within the Campus-Grid as 
a whole. In fact, as Task runtime increased, the performance of both systems would converge. The 
reason for this is that as Task runtime increases, the probability that each workstation in the Virtual 
Cluster can perform more than one Task before its voluntary status is revoked will tend toward zero.

Further experimentation would give a deeper answer to this question. Of particular interest 
would be an investigation with data intensive applications. Here, some new models or modifica­
tions to those presented in this thesis would need to be introduced, as already discussed in Sec­
tion 6.10.4.

8.2 Critical Evaluation of the Research Hypothesis

In Section 1.4 the research hypothesis for this thesis was presented. The core part of the hypothesis 
is repeated below, to remind the reader of what it entailed:

The hypothesis of this research is that a Campus-Grid can be made reliable, efficient 
and stable even for very short Tasks4 (seconds), if the conceptual models of job and re­
source management are changed to directly consider the volatile nature of the resources 
in use.

The research conducted in this thesis and the approach documented in Chapters 4 and 5 have 
tested this hypothesis to the point where it is possible to say that it does indeed hold. The four 
research questions posed in Section 1.5 have enabled the ability to make this statement by focusing 
on three areas in which the hypothesis could be tested; namely: feasibility, benefit to the user and 
the continuum of capability (research questions 1, 3 and 4 respectively).

The first reseach question (discussed in Section 8.1.1) encapsulated the main crux of how an 
evaluation of the hypothesis could be approached. Therefore, it identified the core and minimum 
requirements needed by an approach in order to establish a useable prototype implementation, which 
could be evaluated and experimented with to test the hypothesis. The outcome of this research 
question demonstrated that a Campus-Grid infrastructure can be made both stable and reliable. This 
was despite the questions relating to reliability and performance that were raised in Chapter 2.

4Originally, in Section 1.4 the word ‘job’ was used here, but to remain consistent with the terminology introduced in 
Chapter 4, it has been replaced with ‘Task’.
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As a single research entity, this would not have been sufficient to enable an informed discussion 
of the hypothesis and what it entails. For this reason the third and fourth questions were also 
raised and were discussed in Sections 8.1.3 and 8.1.4. The research needed to answer these two 
questions required that the solution created for the first question could be employed within a range 
of application scenarios. This was performed for the simple reason that a system which is both 
reliable and stable, but with no utility has no purpose. In order to demonstrate utility, these two 
questions were posed to quantify utility. The performance metrics in use were: (1) the benefit to the 
user of the approach, and, (2) the continuum of capability that the approach has.

Using these two high level performance metrics, it could be identified that the benefit of the 
approach to the user is threefold: a significant increase in transparency, a significant reduction in 
application latency, and significant improvements in the efficiency of resource utilization, which 
translated into the ability to reduce the number of resources and still receive significant improve­
ments in performance. However, benefit did not remain only with the direct user, but also transpires, 
unbeknown to them, to other Campus-Grid users. This occurs because fewer resources are now 
needed to accomplish better performance, which leaves more resources available to other Campus- 
Grid users. The analysis to determine where the borders on capability lie demonstrated that the 
approach can indeed cater for Tasks which are very short in length, where short relates to seconds 
in length. In addition, it also identified that this can be achieved feasibly and in an efficient manner.

The second research question, which has not yet been discussed in this Section, was not wholly 
focused on the hypothesis in an explicit manner. Instead, it looked at an underlying and implicit 
concept, which, rather than being essential to the evaluation of the hypothesis, fulfils a more aux- 
illery purpose. Here, the question revolves around how a “number” of resources to be used for a 
given application can be determined. The idea here is that by attempting to make this process trans­
parent, the approach can be, as a whole, more opportunistic in its core functionality. Therefore this 
question was really looking at how the application itself can be made opportunistic, and therefore 
capture, and react to, the dynamic nature of the resources in use. By making the necessary abstrac­
tions in the conceptual model to facilitate this ability, the approach as a whole also became more 
transparent and autonomic, which enables non computer scientists to focus on their research rather 
than on administration that would inhibit their research.

It is due to the answers of these four research questions as well as the work and research under­
taken in order discuss their answers, that the evaluation of the hypothesis has led to the following 
informed opinion: When the changes to the job and resource conceptual models of a Campus-Grid, 
as defined in Chapter 4 are made, and this is performed with respect to the issues of volatility and 
unreliability that were outlined in Section 1.3 and Chapter 2, it is possible to receive excellent per­
formance even for Tasks which are very short in length (seconds). Such Tasks may also have one or 
more of the other attributes identified in Section 1.3.9.

Naturally, there are questions that can be raised against the research conducted in this thesis. 
Perhaps the most obvious question is: Is the infinite agenda of the daemon model (Section 4.3.1) 
breaking the etiquette of Campus-Grids, opportunistic and volunteer computing and the general
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use case of systems such as Condor? The short answer to this question is “yes, but”, where the 
“but” is crucially important to shaking off such concerns. It captures issues such as the measured 
improvement in the four performance metrics (introduced in Section 2.4.1 and used to evaluate 
the system in Chapter 7) being so significant that 100 sixty second Tasks can now be completed 
faster than 100 one second Tasks using a pure Campus-Grid approach. A counter argument here 
would be that the IAS daemons can sit idle for undisclosed periods of time. However, whilst this 
is true, the daemon is still subject to the same rule set and constraints as a normal Campus-Grid 
job, i.e. it can be suspended and evicted from the workstation when the voluntary status of the 
workstation is revoked. The key difference is that where a normal Campus-Grid job experienced 
terrible performance, the daemon model enables excellent performance. Workstations in use to were 
performing useful work for up to 88% of the time an application uses them, for Tasks of as little as 
one second in length. When compared to a normal use case, Condor for example, the time spent 
performing useful work was less than 1% for exactly the same set of Tasks. Therefore, in answer to 
this question, it is possible to raise the following question: which of these two approaches is more 
wasteful of resources? The work conducted in this thesis provides the informed basis to state that 
it is the traditional Campus-Grid approach which is far more wasteful of resources. For this reason, 
it is hard to justify that the application of the daemon model goes against the common use case 
etiquette, as it actively benefits the direct user of the Virtual Cluster as well as other users of the 
Campus-Grid by requiring fewer resources for the same analysis.

A similar question which can be raised is: why should a researcher wish to perform short Tasks, 
as by their very definition, they are short running? This question is actually quite simple to answer, 
and it can also be answered with a question: what if they have thousands of Tasks, and not hundreds 
as have been experimented with here in this thesis? In such a scenario, the utility of this work 
soon becomes appealing. Firstly, as the user need not be concerned with how they partition their 
Tasks into larger clusters. This is handled transparently by the Cl (Section 5.5), and will remove 
the need for the user to consider what a sensible cluster size is. Secondly, how and when the Tasks 
are submitted to the Campus-Grid will not become an issue. This is because the Tasks are held in 
memory by the Cl, rather than be enterred into the Campus-Grid as entities that need to be matched 
to workstations. In Section 2.2 the consequences of such an action was demonstrated. Finally, 
short Tasks require a quick turnaround, and this approach has been specifically conceived for such a 
purpose. The benefit that the use of a Virtual Cluster has for interactively produced Tasks is that the 
overhead experienced from the batch queue is only a one off cost because once resources have been 
allocated they are dedicated to that user for the full duration that they are available or required.

8.3 Future Work

The models and prototype that have been studied in this thesis have been possible for only one 
reason: namely, that the resources were sourced in-house, i.e. the Campus-Grid workstations fall 
within the accessible domain. Therefore, the question that will be discussed in this Section is:
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what protective measures would be in place if the performance observed in Chapter 2 had been 
delivered when such resources were outsourced? This will lead into a discussion concerning how 
a Campus-Grid could be used to provision Cloud services at the lowest level, i.e. Task submission 
and management.

8.3.1 Current Industry Approach

Naturally, the first place to look for consumable computational resources is to identify what Industry 
services are available. Here, Amazon’s Elastic Compute Cloud (EC2)5 is probably the forerunner 
in this domain. In order to provide some “peace of mind” to the consumer many providers offer 
a Service Level Agreement (SLA), which, under their conceptual model, can be viewed as a legal 
contract or terms of service. The purpose of the SLA is to define the: what, how, cost, guarantees 
and conditions of the service provision (execution of Tasks in this case). Typically, the SLA is 
simple in definition, human readable, and contains little legal jargon to aid in its understanding and 
readability.

The problems with the industry options soon arise when the contents of the agreement are re­
viewed, as well as the way in which they are negotiated. The primary example here is that the 
pricing mechanisms are static, and therefore not negotiable. Typically, different price tiers relate 
to a better quality of service and more stringent guarantees. The levels of quality of service and 
the guarantees that the SLA contain are commonly quite sensible; example terms are: percentage 
uptime, maximum response time for a request etc. In addition, should any of the terms be violated 
a “compensation” will be given to the consumer, which can be modelled as a provider penalty. For 
example Amazon offer up to 25% off the next bill, Google offer up to 15 days free usage after 
the billing period has ended. Note that these guarantees are also static and not negotiable. On the 
outset, the guarantees look very attractive, until the exclusion list is considered. Here, providers list 
a set of conditions that are acceptable conditions under which the guarantees are not applicable; for 
example: scheduled maintenance, network/power outages, hardware failures and software trouble. 
The problem here is that once this list is considered in its entirety, it becomes very difficult for the 
provider to violate the SLA. In addition, it is also common to see a limited liability clause, which 
will prevent the consumer making legally grounded claims for loss of earnings or other damages 
should the SLA be violated. If one of the few scenarios should arise where the SLA is violated, 
there are no active enforcement measures to capture the violation. Instead, it is the consumer that 
must take reactive action. However, this may not be a straightforward procedure, consider this 
extract from the Amazon SLA:

[...] you must submit a request by sending an e-mail message [...] include, in the body 
of the e-mail, the dates and times of each incident of non-zero Error Rates that you 
claim to have experienced [...] received by us within ten (10) business days after the 
end of the billing cycle in which the errors occurred [...] Your failure to provide the

5http : //aws . amazon . com/ec2/ -  last accessed August 2009



Chapter 8. Conclusions & Future Work 260

request and other information as required above will disqualify you [...]

Note that this is not uncommon in other industry SLAs, Google for example have a very similar 
clause. Ultimately, it means that there is little or no introspective regulation performed by the 
provider to ensure that the promises made in the SLA are adhered to. In addition, most providers, 
when a violation is reported in this way, offer no more than service credits (free time). The problem 
here is that what if the consumer: (1) No longer wishes to use this provider? (2) Has reached the 
end of the contractual period? (3) Has lost profit through the violation of greater value than that of 
the service credits? (4) Does not receive enough credits to rectify the loss in useable results? In 
these cases service credits have no utility, as the consumer is still loosing out.

8.3.2 What Could be Different?

There are several ways in which this could be different, and this is portrayed in the research projects 
currently investigating this area. Essentially, there are four key areas of investigation: (1) Infrastruc­
tures that enable automated discovery of consumer/provider couplets. (2) The automated definition 
of machine readable SLAs, using “well formed” term languages. (3) Matchmaking or negotiation 
strategies that enable the contents of the SLA to be more customizable and tailored to what the 
provider can offer, and what the consumer actually wants. (4) The necessary mechanisms for SLA 
enforcement, i.e. automated violation detection, with the potential to also apply a “penalty”.

There are two common trends for the discovery of both consumers and providers: (1) auction- 
based market mechanisms, and (2) brokering systems. Market mechanisms encourage competition, 
provide choice, enable preference elicitation, and can also increase the transparency and flexibility 
of discovery. Brokerage systems enable a consumer or provider to outsource the effort required to 
find a participant to trade with. Some example EU projects in both of these areas are: SORMA,6 
BREIN,7 AssessGrid8 and SLA@SOI.9

There are many approaches for the definition of SLAs in the literature. One example is the 
Contract Net Protocol [229,230], which was one of the first protocols for negotiating electronic 
service contracts. Other languages for specifying SLAs include: WSLA [231], SLAng [232], WS- 
Agreement [233] and RBSLA [234]. In addition, many of these approaches define a form of ne­
gotiation protocol. However, note that such protocols are often not full bi-lateral protocols, i.e. 
propose/contra-propose, and at best are uni-lateral strategies where instead of an outright reject an 
invitation to treat is offered.10 Of these approaches WS-Agreement is the most commonly adopted

6SORMA - Self-Organizing ICT Resource Management, http: / /www. sorma-pro ject. org - last accessed 
August 2009.

7BREIN - Business objective driven reliable and intelligent grids for real business, http: / / w w w. eu-brein. com 
-  last accessed August 2009.

8Advanced Risk Assessment & Management for Trustable Grids, http: / /w w w . assessgrid. eu - last accessed 
August 2009.

Empowering the service industry with SLA-aware infrastructures, http://sla-at-soi.eu -  last accessed 
August 2009.

10Here, an invitation to treat relates not to a full contra-propose, but a more loose concept such as: were an offer of X 
be made, it is possible that it would be accepted.

http://sla-at-soi.eu
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in current FP6 and 7 EU projects, as well as the research community as a whole. A discussion of 
SLA-related work in some of these projects can be found in [235], and a good general overview 
of the work in this area can be found in [236]. The research undertaken in matchmaking is well 
established; Condor, for example utilizes matchmaking algorithms. In relation to specific match­
making strategies for SLAs, SWAPS [237] is perhaps one of the most interesting, as it considers 
the semantic meaning behind the concepts captured in the SLA itself. One aspect in the research 
of SLAs that is somewhat sparse is in the area of economic term languages for negotiation or eco­
nomic matchmaking, where EJSDL (Economic JSDL) [238] is the only known example. This is 
specifically true in the area of penalty definition.

The research in SLA Enforcement raises many difficult questions and is associated with many 
outstanding challenges. These include: legal issues surrounding what constitutes enforcement and 
what actions can legally be undertaken, gathering unbiased and accurate data for violation detec­
tion, defining the needed protocols for the transfer of enforcement data and the associated actions, 
and conflict resolution, for example when none of the constitutional terms of the SLA have been 
violated, but one or more Tasks have failed. Many of these challenges can also be related to, and are 
symptomatic of, the term languages that are used to express the contents of the SLA. Some areas 
which are enforcement-related but yet to be pursued include: concepts around insurance against the 
consequences of violation, term languages that can be used to express legal issues and constraints 
that define when or how a SLA can be terminated or considered void.

There are essentially four different approaches which can be taken to SLA Enforcement: (1) An 
enforcement component is run on the provider’s resources, which is trusted by the consumer. (2) An 
enforcement component is run on the consumer’s resource, which is trusted by the provider. (3) An 
enforcement component is run by a third party, which is trusted by both the consumer and the 
provider. (4) A hybrid of the previous three, as impartiality has its benefits but it is not universal in 
scope, and therefore requires data from both participants of the SLA. In this case, all three entities,
i.e. the consumer, the provider and the third party must trust each other. Trust is a difficult concept to 
fully capture here, but must be an underlying assumption in such systems, as there are no means to 
ensure that all the provided data is accurate. It is yet to be seen whether the need for this assumption 
undermines research in this area. Some possible solutions to this problem could lie in the use of 
pilot applications11 and reputation systems. However, both can be easily compromised.

The objective of this Section has been to illustrate that there is a lot of work in this area already 
underway, and that the area is one that is attracting interest. In the next Section the discussion will 
move to how the research discussed in this Section can be brought together for a new application 
area using the research reported in this thesis.

11 Here, a pilot application relates to a similar concept that surrounds the IAS (Section 5.2) pilot test. An example 
pilot application could be the deployment of a standalone monitoring system by an enforcement component to validate 
whether the enforcement data it is receiving from a provider is accurate. In contrast, it could also be the local execution 
of a consumer’s Task or set of Tasks, by an enforcement component. Such an approach could be employed to determine 
whether a consumer’s Tasks are in fact correctly compiled or error prone.
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8.3.3 Campus-Grid Cloud Provisioning

Given that research into SLA-aware architectures are emerging but still in their infancy, and the re­
cent advent of Cloud Computing where “services” are provided, typically for some economic gain, 
there is plenty of scope for Universities and other research institutions to sell spare capacity within a 
Cloud scenario. Campus-Grids are well established and typically contain the necessary accounting 
and security infrastructures. Therefore the main body of work required to enter into this area is the 
adoption of the necessary technologies that were briefly introduced in the previous Section. There­
fore, the question arises: Can a Campus-Grid be used in Cloud provisioning? Whilst this question 
actually relates to many different strands of provisioning such as “Software as a Service”, “Platform 
as a Service” and the many other “as a Service” derivatives, the main focus in this discussion will 
consider only the lowest level of provisioning, i.e. Job Provisioning, as this is the most closely 
related area to the research conducted in this thesis.

Figure 8.1: An example infrastructure for Campus-Grid-based Cloud Provisioning.
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The general approach which could be taken to achieve such a provisioning scenario is depicted 
in Figure 8.1. Here, there are several additional components to a typical Campus-Grid infrastruc­
ture. Firstly, there are some components defined as a part of the prototype documented in Chapter 5, 
which have been simply renamed. For example the Monitoring of Performance and Meta-Data, 
could be performed in a similar way in which the CRM (Section 5.3) acted when considering ad-
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vertisements of Matlab capability. In addition, a component similar to the CRM can be placed on 
the submit nodes and can orchestrate the provisioning through a means similar to the construction 
of the Virtual Cluster. Here, because of the SLA context, issues which affect performance are of 
great importance, as poor performance can lead to the application of penalties and/or a reduction in 
reputation. It is here that the research undertaken in this thesis is of the greatest benefit. This is the 
case because issues such as reliability, instability and poor performance were directly addressed. 
In addition, many of the solutions presented in this thesis can be simply mapped to a wider scope 
of Tasks and application scenarios. Multiple submit nodes are present in Figure 8.1 to counter the 
problems observed with respect to queue size in Section 2.2.

The second new addition to the Campus-Grid infrastructure is a SLA Manager component. 
Here, the current portfolio of SLAs that are currently active are managed. Management of a SLA 
portfolio, relates to more than just the monitoring of the currently active SLAs to avoid and minimize 
any violation-based penalties. Here aspects such as risk, capacity planning in relation to the current 
portfolio and future SLAs, as well as the identification of spare capacity all need to be performed 
as well. In this context risk can relate to several different concepts, for example the risk of: one 
or more violations should a new SLA be accepted, autonomy-related failures, malicious consumers 
or elicit conduct. Here, the main focus is on whether new SLAs can or should be accepted. This 
decision will be based on the demand from the current SLA portfolio, and the observed status of 
the Campus-Grid from the monitoring component. This could also be augmented using some of the 
research on state prediction that was discussed in Section 3.2.3.

The third new addition to the Campus-Grid infrastructure is an Economic Resource Manager, 
here issues such as negotiation and bid injection (for auctions) are managed, based upon the current 
obligations and other management issues provided by the SLA Manager. Examples of an economic 
resource manager already exist in the literature, where just one example is the Economically En­
hanced Resource Manager from the SORMA project [98]. The key aspects that such a component 
must address are issues such as: strategic planning, competition management and revenue genera­
tion etc., i.e. the consideration of economic and business constraints, in addition to job requirements.

The key areas that would need to be addressed and investigated in order to begin cloud provi­
sioning using a Campus-Grid are:

1. The classification of, and proactive action toward, changes in: reliability, software availability, 
stability, performance, and workstation autonomy. Many of these characteristics are very dynamic 
in the resource environment as a whole, and are prolific within the Campus-Grid domain, as was 
demonstrated in Chapter 2. The research presented in this thesis has, however, already addressed 
many of these challenges. This work could therefore be taken forward and extended for a Cloud 
provisioning scenario.

2. The inclusion of a legal context into the SLA. However, it is most likely that such a legal 
foundation will be instigated through the use of a pre-existent paper contract, upon which the SLA 
can be based. Issues of legal directives and other issues in contract law can then be handled in a 
more formal and familiar manner.
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3. The identification and dissemination of risk alongside SLA-aware risk assessment and man­
agement. This risk may also be associated to some legal context of the SLA.

4. Either the methodology for the injection of offers into a market mechanism, or for the ne­
gotiation of the constitutional terms of the SLA. Here there are many challenges, not only in the 
scope of the representation of the offers made by potential participants, but also in the negotiation 
and matchmaking strategies in use. For example, should semantics be included, as in [237], should 
participant couplets be identified using functional means, as in [236], do matches need to be fully in­
clusive or can partial matches also be considered? These are just a few scenarios, and the challenges 
in these areas are significant. For example, the ontologies needed for semantic matchmaking must 
consider many different possibilities, which can be computationally expensive. Similarly, functional 
approaches can also be expensive should the use high order polynomial functions be adopted. In 
addition, they may also not be a one-way function or in fact ever resolve. The challenge in par­
tial matchmaking is enabling this level of decision making autonomously, but also to capture the 
preferences of the participants accurately enough for these decisions to be made. In addition, it is 
common that neither participant knows their exact preferences. However, they may have beliefs of 
baseline estimations, which can be iteratively improved using selected methodologies of preference 
elicitation [239].

5. The SLA term language could prove to be an issue. SLA specification languages such as 
WS-Agreement and WSLA envelope one or more other term languages such as JSDL [127] in 
order to describe the service to be provided. However, when using general specifications for service 
description, especially job description, some of the inherent content of the original specification 
can be semantically lost, as was previously mentioned in the discussion of the Globus Toolkit in 
Section 3.2.1. In addition, general specification languages cannot always capture the type of an 
input parameter which can have other side-effects, as previously mentioned in the discussion of 
DIPS in Section 3.1.2.

6. The methodology for the enforcement of the SLAs will also need to be considered. However, 
this is more of a higher level architectural question rather than one specific only to an approach for 
the provisioning of Cloud services using a Campus-Grid. Here, issues such as data acquisition and 
validation are key. In addition, the challenge of trust remains outstanding. There are also currently 
no documented enforcement protocols in the literature.

In conclusion, it is likely that a Campus-Grid can be used in Cloud provisioning, however, 
first there are many interesting and challenging research questions to be addressed. It has been the 
intention of this discussion to introduce some of these questions in relation to, and based upon, the 
work which has been conducted in this thesis to illustrate a new research direction that could be 
developed in the future.
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Appendix A

Summary of Heuristics and Formulae 
Employed in this Research

In this Appendix a summary of the heuristics and formulae used in this thesis is provided to provide 
an overview of the mathematical model implemented in this thesis.

A.l Terminating Misbehaving Jobs

A termination heuristic was first mentioned in Section 2.4.2, and derived in Section 4.4, as a means 
of identifying runaway jobs.1 The impact of runaway jobs on performance was empirically demon­
strated in two different contexts in Chapter 2. By observing the tendencies of runaway jobs it was 
discovered that if the current runtime of a job was compared to the average it was possible to ac­
curately2 identify runaway jobs, and consequently terminate them to reduce their negative impact 
upon performance and efficiency of resource utilisation.

The heuristic has been presented twice in the thesis. It was first presented in Section 2.4.2 (see: 
Figure A.l), here it was used during the steering of Matlab-based empirical experiments to perfor­
mance test the Condor pool and identify when jobs are running away, and consequently terminated. 
Its second occurrence (see: Figure A.2) was in Section 5.3.3 where it was used by the CRM (Sec­
tion 5.3) to identify when LAS (Section 5.2) jobs were running away. With the exception of the 
difference in how the threshold is computed,3 there are two distinct differences between these two 
versions. Firstly, that in Figure A.2 the learning process of the CRM is included. This inclusion 
is made so that the computed termination threshold can be based on the historical observations of 
the workstation in question, i.e. its average initialization time. Secondly, a 10 minute minimum 
threshold is included in Figure A.l. The motivation for this is to prevent the termination heuristic

'A runaway job is one which runs for an inexorable period of time, but does not consequently fail. Instead, it is stuck 
in a state transition or blocked by the operating system.

299.7% correctly classified normal jobs and 95% runaway jobs, based upon the test data from Section 2.3
3In Figure A .l the job runtime is also considered: “predefined runtime”, as in this experimental analysis jobs with a 

known and predefined runtime where used.

285



Chapter A. Summary of Heuristics and Formulae Employed in this Research 286

from being too aggressive during the learning process, as the nature of workstations used cannot 
be determined in advance. For example, if only workstations with good performance were initially 
acquired the heuristic could behave inappropriately when a less powerful workstation was acquired. 
The minimum runtime was also originally included in early versions of Figure A.2, for the same rea­
son. However, as the historical basis of the CRM’s performance model developed such a minimum 
was no longer required.

Figure A.l: The Autonomic Job Manager’s job termination heuristic
I F
R u n tim e  > M ax(10  m inu tes ,  avg(M atlab  In i t ia l is a t io n  T im e)+ 5S tandardD ev ia tions)  +
predefined  jobruntime
T H E N
term ina te  and resubm it

Figure A.2: Heuristic used to determine if an IAS job is portraying anomalous behaviour, where W S  
is workstation name and S D s  is standard deviations. If the CRM does have enough information 
about a specific workstation, it will use the global average for all workstations.

JobR un tim e  > avg{W S , i n i tT im e )  +  b S D s

A.2 Rescheduling Tasks as a Consequence of New Resources

Due to the nature of the resources in use, i.e. they are provided on a voluntary basis, it is often the 
case that extra resources become available stochastically. In addition, as resources (IAS instances) 
are used interactively, Tasks are scheduled so that a queue can be established on the compute node, 
enabling data dependencies to be transferred as other Tasks are being executed. This approach was 
referred to as Dynamic Task Clustering, further details on the scheduling model employed can be 
found in Section 4.7. The consequence of stochastic behaviour at the resource level is that when 
a new resource is acquired by the CRM and allocated to an application, all incomplete Tasks may 
have already been scheduled to one or more IAS instances, and therefore load balancing is required 
to capitalize on the new IAS instance. In order to achieve this, a load balancing heuristic was 
introduced in Section 4.7.1 (see: Figure A.3) to enable the application scheduler to decide from 
which IAS instance(s) to take one or more Tasks to schedule to the newly acquired IAS instance. 
Note that this heuristic is also employed when one IAS completes all Tasks in its local queue and 
no Tasks remain unscheduled by the scheduler.

As a precursor to the application of this heuristic, IAS instances are ranked according to the 
size of their Task queues, i.e. a Task is taken from the IAS with the most Tasks in its queue. The 
heuristic is then employed as a tiebreaker to choose the IAS instance with the highest projected 
execution time. In other words, it selects an IAS that has the most remaining execution time for its 
current Task. This is performed by comparing the current Task’s runtime to a ‘similar’ one that has 
been observed in the past. See Section 4.7.2 for a definition of Task similarity (affinity).
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Figure A.3: Heuristic used to determine from which IAS instance to take a Task for load balancing, 
where w is a Workstation in the set of workstations W, Te is the currently executing Task, and TSim 
is a Task that is ‘similar’ to Te.

w' =  Vw; G Wmin(AvgExecutionTime{TSim) — RunningTime(Te))

A.3 Calculating Application Makespan for Traditional Condor Ap­
proach

The final mathematical expression (see: Figure A.4) employed in this thesis was used from a purely 
theoretical perspective, namely to determine whether it was possible for a traditional Condor ap­
proach to outperform the Virtual Cluster implementation within the application scenario presented 
in Chapter 6. As a precursor to the application of this formula several runs of the application were 
performed by the Virtual Cluster in order to determine the runtime of an average Task, as well as 
the minimum and maximum runtimes. These statistics were then combined with the historical data 
of Matlab initialization times from Chapters 2 and 7. When these two pieces of information are 
combined the formula can be employed to estimate the number of scheduling iterations that would 
be required to complete a given application, and therefore the best case, average case and worst case 
time frames needed by Condor to execute all jobs. See Section 6.9, for how this was performed.

Figure A.4: Formulae to compute the number of iterations required to execute an application using 
a traditional Condor approach, where n is the current iteration.
Completen = Tasks — ROUND{FailureRate * (Tasks — Completen- 1)) 
where
Complete^ — 0


