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Abstract
The overall aim of this study was to determine factors and mechanisms that 
underlie the regulation of epithelial patterning and homeostasis during corneal 
development.

Histological staining was performed in chick corneas, embryonic day (ED) 4 to 
21, to evaluate changes in the overall epithelial cell morphology, in particular 
cell shape, cell size and the number of epithelial cell layers. Epithelial 
differentiation patterns were identified in frozen sections of chicken corneas 
after immunolocalisation of pan-cytokeratins (Pan-CK) and cytokeratin 3 (CK3). 
Proliferating Cell Nuclear Antigen (PCNA) and caspase 3 (active) 
immunolocalisation studies, as well as, TUNEL-labelling (Terminal 
deoxynucleotidyl transferase dUTP-biotin nick-end labelling) were performed to 
assess temporal and spatial localisation of cell proliferation and death in the 
developing comeal epithelium respectively. The expression of PCNA and CK3 
were later confirmed by immunoblotting. Total RNA was isolated from epithelia 
at selected developmental time points and collected for microarray analysis. 
Gene expression profiles were analysed by appropriate mathematical methods. 
The sensitivity of arrays in producing data trends was validated by quantitative 
RT-PCR.

Histological findings included changes in stratification; an increase in the 
number of cell layers, change in cell morphology. In this study it was 
demonstrated that after becoming two layered by ED4, the epithelium 
underwent further stratification to form intermediate cell layers at about ED14. 
These changes were accompanied by changes in cell shape commencing at 
ED10. Cell proliferation appeared high throughout corneal development, with 
peak proliferation between ED12 and ED14 in the limbal, peripheral and central 
epithelium, respectively, thereafter the level of proliferation decreased. The 
above coincided with changes in epithelial morphology (stratification) and 
changes in expression of cytokeratin (CK) epithelial markers. The appearance 
of pan-CK labelling was first observed at ED10 and the presence of CK3 
immunolabelling appeared in epithelial cells at ED12. TUNEL-labelling and 
caspase 3 (active) immunolocalisation demonstrated only few TUNEL-positive 
cells, mostly restricted in the limbal region of the corneal epithelium, in the mid 
and later developmental stages. Microarray analyses identified gene families 
and their members (including these involved in stem cell biology) likely to be 
relevant in the regulation of homeostasis during corneal epithelial development, 
as well as, differentially expressed genes that reveal changes in biological 
processes due to the change in time. RT-qPCR confirmed the differential 
expression patterns of seven genes of interest following analysis of microarray 
data.

Patterns of cell proliferation and differentiation showed changes during the 
development of the corneal epithelium that reflect the interaction of a complex 
network of mitogenic, apoptotic and differentiation agents. The changes in gene 
expression profiles, detected by the microarray analyses, were consistent with 
the phenotypic changes in the developing chick corneal epithelium. The 
microarray data provided the first study to present a good overall picture of 
genes expression in the developing chick corneal epithelium.
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CHAPTER ONE

Introduction



1.1 The cornea

1.1.1 Introduction to the cornea

The ocular surface is a complex biological continuum, which comprises lids, 

conjunctival and corneal nonkeratinised epithelium bathed by the precorneal 

tear film (Thoft and Friend, 1983). Interactions between these components 

contribute to maintenance of corneal clarity and protection of the eye against 

microbial and mechanical insults.

The cornea is a part of the fibrous tunic that forms the tough, coat of the outer 

ocular surface of the eye. The position of the cornea assigns it a protective role 

as an effective barrier protecting the eye from outside environment and 

maintaining internal ocular pressure.

Transparency is another important feature of the cornea and is conferred by 

regularity in spatial arrangement of the collagen fibrils as well as their regular 

packing (Maurice, 1957; Meek et al., 2003). This trait, as well as smooth 

surface and regular curvature, provide the refractive function of the cornea and 

make it essential for good vision. Being transparent, only 1% of incoming light is 

reflected, with the remaining being transmitted onto the crystalline lens and 

further refocused onto the retina.

1.1.2 Structure of adult cornea
The cornea is composed of five layers (from the outer layer): corneal 

epithelium, Bowman's layer, stroma, Descemet's membrane and the corneal 

endothelium (Gartner and Hiatt, 2001) (Figure 1.1). A detailed description of 

each layer is given in the following paragraphs.
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Figure 1.1 A cross- section of human cornea, depicting the epithelial layer (EP), Bowman's 
layer (BL), stromal substantia propia (SP), Descemet's membrane (DM) and endothelium (EN). 
(Adapted from http://education. vetmed. vt.edu/CurriculumA/M8054/EYE/CRNSCLRA.HTM).

1.1.2.1 Epithelium

The epithelium is located in the anterior of the corneal structure; its thickness 

has been estimated to be around 50.7pm (Reinstein et al., 1994). The adult 

human corneal epithelium is composed of four to five layers that form stratified, 

squamous and nonkeratinised features. A schematic view and cross section of 

the human corneal epithelium are shown in Figure 1.2.

Precorneal 
tear film

Squamous-
cells

Wing cells

Basal cells-----------

Basement
membrane

Bowmans
layer

Figure 1.2 A schematic view and cross-section of human corneal epithelium showing 
different cell layers. (Adapted from Millodot, 2009; cross section image available online 
http://cmdi. medicine, dal. ca/Human_Histology/Lab2/101_LH_ CORNEA.JPG.
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The deepest layer of epithelial cells, the basal cells, rest on the underlying 

basement membrane (basal lamina). They are cuboidal or cylindrical in form 

with flat bases and rounded tops. Basal cells constitute the germinative layer of 

epithelium and have a higher metabolic and proliferative capacity (Davanger 

and Evensen, 1971).

The next two to three cell layers are constituted of polyhedral wings cells with 

oval nuclei. The layers near the anterior surface of the cornea consist of 

progressively flattened, squamous cells. The top layer is comprised of cells with 

the maximum surface area, flattened nuclei and projecting peculiar microvilli 

that secrete highly hydrophilic mucin glycocalyx (Gipson et al., 1997), important 

in retention of the precorneal tear film.

The corneal epithelial cells tightly adhere to one another and form specialised 

intercellular structures, including tonofibrils (intermediate filaments), 

desmosomes, hemidesmosomes (between basal cells and basement 

membrane), tight junctions (mainly in lateral membranes of squamous cells), 

adherens junctions (zonula adherens, mainly in lateral membranes of basal 

cells) and gap junction, responsible for its barrier function against fluid loss and 

pathogen entrance (Fawcett, 1966; Kenyon, 1969; Gipson, 1994; Lu et al., 

2001). Different types of epithelial cell junctions are shown in Figure 1.3.

Tonofibrils, that converge and insert at the desmosomes, provide a connective 

system between neighbouring cells and extracellular matrix (ECM), as well as 

great tensile strength. Desmosomes provide intercellular attachment of the 

basal cells, keeping the membrane of contiguous cells in close proximity (by 

interaction between cadherin proteins), whereas, hemidesmosomes attach 

these cells to their underlying basal lamina (by integrins linkage) (Khodadoust 

et al., 1968). Gap junctions are preset throughout the corneal epithelium, but 

different connexins were reported in different layers; connexin 43 (43 kDa) was 

found in basal cells, connexin 50 (50 kDa) were present in all epithelial cell 

types (Dong e ta l., 1994).
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a) --rids• i .
Tight junctions

Adherens
junctions

smosomes

Figure 1.3 Types of intracellular (a) and communicating (b) junctions present in corneal 
epithelium (adapted from Young etal., 2006).

Although, the comeal epithelium is considered as avascular, Hamrah et al. 

(2002) reported that the corneal epithelium contains major histocompatibility 

complex (MHC) class ll-negative Langerhans’ cells and at least three dendritic 

cells (DCs) phenotypes (Yamagami et al., 2005). In human corneal epithelium, 

DCs have been detected mainly in the basal cell layer of the corneal epithelium 

and partly in the wing/surface layers. The number of CD45-positive cells 

(mature DCs with capacity to capture antigens) was shown to be significantly 

higher in the periphery than in the centre of the cornea (Yamagami etal., 2005).

1.1.2.2 Bowman's layer

Bowman's layer is a characteristic, of human, primate, avian and reptile 

corneas, while absent in other mammals. It is an approximately 10pm thick, 

modified acelullar zone of the anterior stroma, also called the anterior limiting 

lamina, and is resistant to both mechanical and infectious trauma. The layer is
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composed of randomly interplexed collagen fibrils and proteoglycans. Collagen 

type VII fibrils that extend from anchoring filaments of the hemidesmosomes of 

epithelial basal lamina, are interwoven with the type I collagen fibrils which run 

in various directions through the layer after having separated from the anterior- 

most stromal lamella (Linsenmayer eta!., 1998).

Sensory nerve fibres pass through this structure and reach out to the layers of 

epithelial squamous cells. It is hypothesised that Bowman's layer forms as a 

result of cytokine-mediated interactions between corneal epithelial cells and 

keratocytes (in the stroma) in early development and this process continues 

into adulthood (Wilson, 2000).

1.1.2.3 Substantia propia (stroma)

The stroma, a transparent fibrous structure, is located under Bowman's layer 

and is the thickest (500pm) layer that constitutes 90% of the corneal thickness. 

It is composed of 200 to 250 layers of collagenous connective tissue (mainly 

collagen type I and type V fibrils, with some type III and VI), arranged in 

lamellae (2pm thickness) (Meek and Boote, 2004). Thick flattened collagenous 

lamellae, embedded in a ground substance of proteoglycans, are oriented 

parallel to the corneal surface and continous with the sclera at the limbus. Their 

arrangement is more regular towards the posterior surface. Such a structure 

has consequences for the mechanical properties of the cornea and its 

resistance to intraocular pressure (Newsome ef a/., 1981; Maurice, 1984).

Between lamellae, there is a low density population of fibroblasts (keratocytes) 

scattered parallel to the surface. The cell bodies of keratocytes are stellate in 

shape with thin cytoplasmic extensions and secrete the collagen and ECM of 

the stroma. Keratocytes have growth factors receptors that are activated in 

response to wound healing. This results in migration, transformation into 

myofiboblasts and formation of scar tissue. Over time the scar tissue undergoes 

remodelling, resulting in thinning and an increase in transparency (Cintron and 

Kublin, 1977).
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Corneal transparency is a unique physical property that results from the regular 

spacing of collagen fibrils with remarkably uniform diameter and interfibrillar 

space (Michelacci, 2003). The latter is maintained by ECM that consists of 

glycosaminoglycans (GAGs) and proteoglycans forming bridges between 

collagen fibrils. The GAGs in the human cornea are predominantly keratan 

sulphate and chondroitin (dermatan) sulphates, being more concentrated in the 

central and peripheral stroma respectively (Michelacci, 2003).

1.1.2.4 Descemet's membrane

Descemet's membrane, is a basal lamina that separates the stroma from the 

endothelium. The function of the membrane is mostly structural, forming a 

tough, resistant barrier.

Its thickness ranges from 3pm at birth to 8-10pm in adults (Johnson et al., 

1982). This membrane comprises two layers; an anterior banded layer which 

appears first before birth and a homogenous/non-banded posterior which 

develops later. It is highly elastic, which results from collagen architecture and 

composition. The major protein is collagen in the anterior banded region; 

reported to contain the hexagonal array of type VIII collagen (Sawada et al., 

1990). Types V and VI collagens are dominant in the posterior zone. Other 

basal laminar components, such as fibronectin, have also been identified 

(Newsome e ta l., 1981).

Electron microscopy studies revealed attachment sites and short fibrils 

extending from the stroma into Descemet's membrane. The surface of the 

membrane next to the endothelium was smooth without any anchoring 

structures for the endothelium (Binder et al., 1991). As mentioned above, 

uniform increase in Descemet's membrane thickness occurs with age.

1.1.2.5 Endothelium
The corneal endothelium lines the posterior surface of the cornea and 

is responsible for synthesis of proteins that are necessary for secreting and 

maintaining Descemet's membrane. Acting as a fluid pump, it has a critical role
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in maintaining corneal hydration, and thus transparency (Gartner and Hiatt, 

2001). It also serves as a barrier, protecting the cornea from oedema and 

allowing the passage of salts and metabolites.

The endothelium is a single layer of cells that are 4 to 6pm in height and 18- 

20pm in diameter. Their lateral surfaces of cells are interdigitated and 

neighbouring cells are bound together by apical junctional complexes (Barry et 

al., 1995). The anterior surface of the endothelium comes in contact with 

Descemet's membrane and form regular and uninterrupted polygonal or 

hexagonal mosaic. The posterior surface is coated with a viscous substance 

(Sperling and Jaobsen, 1980).

In the normal human cornea, the endothelium has low regenerative capacity. 

The cell loss can be overcome by the spreading and enlarging of adjacent cells 

that replace lost cells. However, in order to maintain its integrity and 

compensate for missing cells, a minimum level of 400 cells/mm2 has to be 

sustained (normal average in mid-age is 2500 cells/mm2). With 

age, endothelium has decreased cell density and increased cell irregularity. 

This is an effect of cell migration, which occurs in the aftermath of cell loss (Yee 

et al., 1985), since the adult human endothelium is considered as non­

proliferative.

1.1.3 Corneal innervation
The cornea is one of the most densely innervated tissues in the body and is 

richly supplied by sensory and autonomic nerve fibres, which do not 

compromise its transparency. The corneal innervation density differs in 

particular areas of the cornea, the highest density being observed in the corneal 

epithelium (Muller etal., 2003).

Nerve bundles enter the cornea at the periphery in a radial fashion parallel to 

the cornea surface. Subsequently, in humans, nerves from middle and anterior 

stroma penetrate Bowman's layer throughout the peripheral and central cornea. 

At the base of epithelial layer, only beaded fibres bifurcate from the bundle, turn
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upwards into the epithelium and terminate in the superficial epithelial cell layer 

(Muller etal., 2003) (Figure 1.4).

The correct nerve distribution (Figure 1.5) and morphology is considered to be 

very important for proper corneal activity, especially due to the fact that in 

recent years neuropeptides, naturally synthesized by corneal nerve fibres, have 

been used to promote corneal wound healing (Muller etal., 2003).

Figure 1.4 Schematic drawing of the architecture of nerve bundles in the subbasal plexus 
(arrow). Nerve bundles contain a mixed population of straight and beaded fibres. From this 
population only beaded fibres bifurcate from the bundle and turn upwards into the epithelium 
(adapted from Muller etal., 2003).

Neurotransmitters and neuropeptides released by trigeminal neurons stimulate 

corneal epithelial cell growth, proliferation (i.e. substance P), differentiation, 

production of type VII collagen (Baker etal, 1993) and migration of cells (i.e. the 

synergistic effect of substance P and Insulin-like Growth Factor 1 (IGF-1) 

and/or Epidermal Growth Factor (EGF), norepinephrine and acetylcholine) 

(Nakamura et al., 1997a,b,c). Corneal epithelial cells also release factors that 

promote neurite extension and survival (Emoto and Beuerman 1987), important 

for cornea wound healing after the laser-assisted in situ keratomileusis (LASIK) 

procedure, in which most stromal nerves are cut and ablated.

Figure 1.5 Schematic distribution of nerves in the stroma and subbasal plexus in human corneas 
(a) (adapted from Maurice,1984, Muller et al., 2003) and schematic organisation of the subbasal 
plexus (b) (Muller et al., 1996). The nerve bundles are orientated in the superior-inferior direction 
in the apex, and in the nasal-temporal direction in the surrounding area.

a) b)
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1.2 Corneal development

1.2.1 Early embryonic corneal development

The development of the vertebrate cornea is the last of the major inductive 

events in eye formation (Forrester et al., 2002). Although there are differences 

in the structure of the cornea between species, it is believed that embryonic 

ocular development has been evolutionarily conserved (Oliver and Gruss,

1997). The series of events that take place during early corneal formation are 

described below.

In early embryogenesis, as a result of gastrulation, three germ layers are 

formed; the ectoderm, the mesoderm and the endoderm. The ectoderm (upper 

layer), gives rise to the nervous system, the epidermis and other epithelial 

layers. The corneal epithelium differentiates from the surface ectoderm that is 

rebuilt above the lens vesicle (by 4 days of gestation in chick, 6th gestational 

week in human). The steps of eye development are shown in Figures 1.6 and

Figure 1.6 The progressive steps in eye development (adapted from Essential Developmental 
Biology www.abdn.ac.uk/sms/ugradteaching/PY4302/PY4302_24112004_10.doc). During 
gastrulation, from the single eye field that is located in the centre of the developing head, two 
lateral optic vesicles separate to reach placode stage (at 28 day gestation in human, 33 hours 
gestation in chick) (a) and subsequently the lens pit stage (b). As a result of interactions 
between the optic vesicles and the lens placode (part of the overlying ectoderm) the 
neuroectoderm begins to fold inwards (c). Finally, the lens placode detaches from the surface 
ectoderm forming firstly the lens cup, then the lens vesicle (at about 33 days gestation in 
human, 40 hours in chick (d).

1.7
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Figure 1.7 Schematic view of the developing cornea. The figure illustrates the progressive 
steps in cornea development. The cornea begins to develop when the surface ectoderm 
closes after the formation of the lens vesicle and its detachment from the surface ectoderm. 
Two waves of mesenchymal cells (neural crest cells) invade the cornea and form the corneal 
stroma after condensation (from Graw, 2003).

The lens vesicle stimulates the basal ectodermal cells to form a multilayered 

structure. Basal ectodermal cells increase in height and start to secrete 

collagen (types I, II, IV) and GAGs to form the primary stroma (a characteristic 

feature of lower vertebrates and avian corneas) (Meier and Hay, 1973; Graw, 

2003; Jean et al., 1998), which becomes a template for the activity of neural 

crest-derived mesenchymal cells (presumptive keratocytes). Primary stroma 

reaches its maximum thickness by day 6 in chicks, as a result of GAGs and 

hyaluronic acid deposition.

The above changes are accompanied by two waves of centripetal neural crest 

cell migration. In the first wave, (47-56 days gestation in human, 4 days in 

chick), mesenchymal cells form the endothelium, while in the second wave the 

corneal stroma is formed (embryonic day, ED7 in chick) (Lyngholm et al., 2008; 

Graw, 2003). In contrast, in rodents, cats and cattle only 1 wave of 

mesenchymal cell migration results in the formation of the corneal endothelium 

and stroma (Dublin, 1970).

The mesenchymal cells then differentiate into fibroblasts secreting more 

collagen type I and hyaluronidase (ED10 onwards in chicks). The latter breaks
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down hyaluronic acid, and releases its bound water into the stroma, resulting in 

primary stroma shrinkage and the formation of secondary/mature stroma (Bard 

and Higginson, 1977; Toole and Trelstad, 1971).

While the secondary stroma looses thickness due to dehydration, keratocytes 

become quiescent. Compaction of stroma (at about ED14 in chicks) influenced 

by thyroxine secretion from the developing thyroid gland is associated with 

changes in synthesis of sulphated components of the interfibrillar matrix and the 

activity of the bicarbonate pump (Hay and Revel, 1969; Quantock and Young, 

2008). In avian cornea, the stroma reaches approximately 50% of its earlier 

thickness and becomes transparent. This stage also coincides with the 

formation of epithelial and endothelial tight junctions, hemidesmosomes, and 

the appearance of the conjunctiva (Graw, 2003).

1.2.2 Development of corneal epithelium

As described in section 1.2.1, the comeal epithelium is formed about 6 weeks 

into gestation in human and 4 days of gestation in chick. The newly formed 

epithelium is subject to intense proliferation and expansion of existing cells, 

which results in morphological changes of the structure.

Stratification of the corneal epithelium was previously extensively studied in 

chicken by various authors (Trelstad et al., 1974; Meier, 1977; Waggoner, 

1978; Nuttall, 1976; Ozanics et al., 1977; Hay, 1979). Stratification was shown 

to coincide with different events occurring during epithelial development such 

as: stroma compaction, changes in the pattern of GAGs synthesis, the 

appearance of non-myelinated nerve bundles, distribution of dividing cells and 

orientation of mitotic spindles and other cellular changes. The latter involved 

changes in cytoplasm, an increase in microvilli and the apperarance of 

glycogen and tonofilaments. The appearance of tonofilaments suggested 

ongoing differentiation, since the presence of tonofilaments, keratin 

intermediate filaments that constitute cytoplasmic protein structures in epithelial 

tissue (tonofibrils), in the cytoskeleton is considered a characteristic of 

differentiated epithelia.
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It is, however, still unknown when exactly the cell commitment to a 

differentiated state takes place in corneal development. The corneal epithelium 

could be considered as developmental^ differentiated when it begins to 

produce collagen and GAGs, which in case of avian corneal epithelium occurs 

about ED5 of incubation. This idea was first suggested by Coulombre and 

Coulombre (1971), since ED5 chick epithelium could transform into epidermis 

even when the developing chick lens was replaced with a mesenchymal graft, 

suggesting that inductive signals (from surrounding tissues and/or ECM) 

reached the corneal epithelium earlier than ED5. Also, as documented by 

Chaloin-Dufau and coauthors (1990), in the avian corneal epithelium, 

expression of cytokeratin 3 (CK3) (considered as a marker for differentiated 

state non-keratinised corneal epithelia), at ED12 preceeded expression of 

cytokeratin 12 (CK12) (the corneas were collected from ED11).

In human epithelia, CK3 expression was first detected in the superficial cells in 

the 12-13th week of gestation, with superficial cells positively labelled, providing 

the earliest sign of overt epithelial differentiation (Rodrigues et al., 1986). At 36 

weeks, the epithelium appeared morphologically mature (four to six layers), with 

CK3 expressed suprabasally, in contrast to the postnatal adult epithelium which 

exhibits uniform staining (Rodrigues etal., 1986).

1.2.3 Molecular control of corneal development

Development of the eye can be divided into three phases: formation of the 

major structures of the eye, maturation of these structures to form the functional 

eye and formation of neuronal connections (Jean et al., 1998). These events 

are strictly ordered during development via molecular signals, and mutations in 

the genes involved can cause numerous different disorders (Graw, 2003).

Over the past decade, several master control genes that direct distinct 

pathways of development and differentiation have been identified (Graw, 2003). 

Most of the genes code for transcription factors (i.e. retinal homeobox (RX), 

pituitary homeobox 3 (Pitx3), forkhead box C1 (Foxcl), Msh homeobox 2 

(Msx2), musculoaponeurotic fibrosarcoma oncogene homolog (Maf), involved in 

ocular genesis of anterior segmentj, although a few code for signalling
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molecules (i.e. sonic hedgehog (Shh), bone morphogenetic protein 4 and 7 

(Bmp4, Bmp7) (Graw, 2003).

The paired box gene 6 (Pax6) is localised to human chromosome 11 in human 

and plays a master control role for eye formation. Pax6 is a member of the Pax 

gene family, members of which encode transcription factors essential for 

correct spatial and temporal expression of their downstream targets (Graw,

2003). Pax6 contains two DNA-binding domains, a paired domain and a 

homodomain (Oliver and Gruss, 1997). Targets of Pax6 include structural 

proteins of the lens (crystallins) and cornea (CK1-12) (Van Heyningen and 

Willamson, 2002; Ashery-Padan and Gruss, 2001) and other transcription 

factors (forkhead box P3 (Foxe3), V-maf musculoaponeurotic fibrosarcoma 

oncogene homolog (avian) (Maf), microphthalmia-associated transcription 

factor (Mitf), prospero homeobox 1 (Proxl), LIM homeobox protein 2 (Lhx2)) 

that regulate cornea and lens formation. Pax6, indispensable during the 

formation of chick lens placode, is expressed in the anterior neural plate, optic 

vesicles, lens and nasal placodes (Walther et al., 1991) and may function to 

maintain the undifferentiated lens epithelium during later stages of lens 

development (Reza et al., 2002). The correct Pax6 dosage is necessary for 

normal clonal growth during corneal development, and correct corneal epithelial 

cell migration (Collinson et al., 2004). The lack of, or mutations, in the Pax6 

gene leads, amongst others, to corneal changes, such as corneal stem cell 

deficiency and corneal opacities (Thaung et al., 2002; Glaser et al., 1994). As 

Pax6 initiates the cascade of signals, loss of its functions leads to the eyeless 

phenotype in Drosophila and also causes severe ocular defects in many others 

animals (Ghering, 2002). Experiments on the chick embryo indicate that if the 

function of Pax6 is lost, no lens structure can be detected (Reza etal, 2002).

One of the essential genes for anterior head formation in early development, 

is the orthodenticle gene (Otx2), identified in human, mouse and chicken. The 

phenotype in mutant mice is associated with microphthalmia (protruding eyes, 

hyperplastic retina, presence of one eye, usually without lens and cornea) 

(Matsuo etal., 1995).
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Another example is the visual system homeobox 1 homologue ( Vsx1) gene 

which is localised to chromosome 20 in humans. However, although Vsx1 is 

expressed by the retina, disturbances in its expression may result in corneal 

dystrophy (Heon et al., 2002). The mammalian gene Six3 (a member of sine 

oculis gene family,) is expressed in the anterior neural plate, optic stalk, optic 

vesicles, lens and nasal placode (Oliver et al., 1995). Overexpression of Six3 in 

chicken embryos prevents lens placode invagination and leads to the loss of a- 

crystallin expression from the lens placode (Zhu etal., 2002), which presumably 

can affect further cornea development. Six3 is activated by Pax6 (Lenger and 

Graw, 2001) and experiments on transgenic mouse show that Pax6 and Six3 

regulate the transcription of one another (Goudreau etal., 2002).

Medina-Martinez and coauthors (2005) reported that absence of the Foxe3, 

(crucial for lens development) in homozygous mice may lead to abnormal 

features of the cornea, such as lack of the endothelial layer or a change 

in cornea epithelium thickness. Several mutations that result in loss or increase 

of transactivating activity in Pituitary homeobox 2 (Pitx2) are associated with 

Axenfeld-Reiger syndrome (defined by a white ring at the back of cornea) 

(Priston et al, 2001). Mf1, which encodes a winged-helix/forkhead transcription 

factor, is the murine homolog of human FKHL7/FREAC3 (Kume et al., 1998; 

Kidson et al., 1999). Mouse embryos homozygous for null mutations in Mf1 

showed severely abnormal development of the anterior segment; the cornea 

failed to separate from the lens, resulting in the complete absence of an 

anterior chamber (Kidson etal., 1999).

The differentiation of the anterior part of the eye during development proceeds 

through a series of inductive interactions between different tissues and must be 

precisely coordinated by intrinsic and extracellular factors that control various 

signalling cascades (Fokina and Frolova, 2006; Adler and Canto-Soler, 2007). 

The role of morphogens secreted by the lens in corneal development has been 

demonstrated in several studies and is likely to indicate the cooperative action 

of three different signaling pathways; FGF (Fibroblast Growth Factor), BMP 

(Bone Morphogenetic Protein) and Wnt (wingless) (Zinn, 1970; Beebe and 

Coats, 2000). For instance, Wnt signals are involved in the earliest specification
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of the lens placode and their interaction with BMPs and FGFs are key in this 

role (Litsiou et al., 2005). Recently, Smith et al., (2005) have shown that forced 

activation of Wnt/(3-catenin signalling in ocular surface ectoderm abolishes lens 

placode development, suggestive that one of the functions of Wnts in the ocular 

ectoderm could be to set boundaries between lens placode and the 

presumptive corneal epithelium (Smith et al., 2005). In chick and mouse, Wnt 

genes were found to be expressed in the ocular surface ectoderm, including 

comeal epithelium, which implies an importance of Wnts in corneal epithelial 

morphogenesis (Liu etal., 2003; Fokina and Frolova 2006).

Since, the number of genes and factors involved in signalling pathways in 

particular phases of development seems to be enormous, a complete 

description can not be included in this chapter. Some additional examples are 

presented in Table 1.1.

1.3 Limbal Stem Cells

To maintain the functional properties of the corneal epithelium various 

mechanisms had been developed. One of them, the apical membrane covering 

the surface cells, constitutes the first boundary between the environment and 

the eye (Wolosin et al., 2000). This fully polarised membrane along with high- 

resistant tight junctions prevents intercellular diffusion of polar solutes and is 

part of the volume regulatory system aimed at maintaining cells in close 

apposition. This control facilitates the shaping of the smooth ocular surface, 

thereby minimising diffraction of incoming light (Wolosin etal., 2000).

However, throughout adult life, superficial corneal cells undergo a constant 

shedding orapoptosis (Kruse, 1994; Ren and Wilson, 1996) and thus the 

epithelium needs to undergo adjustments of growth and be constantly recreated 

through differentiation. At the beginning of postnatal life, there are two sources 

for epithelial layer maintenance: proliferating cells in the basal corneal 

epithelium (Tseng, 1989) and the population of slow-cycling limbal stem cells 

(LSCs) that proliferate rapidly after injury (Davanger and Evensen, 1971; 

Cotsarelis etal. 1989).
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Table 1.1 Examples of various genes and factors involved in signalling pathways in different 
phases of eye development (adapted from Oliver and Gruss, 1997; Jean et al., 1998)

Gene Place o f 
expression

Organisms with 
homologue gene

Mutation
effect

References

FORMATION OF THE OPTIC VESICLE

Eya/eye absent 
(Eya1, Eya2)

ET
(T-box family 

gene for 
transcription 

factors)

anterior to the Fruitfly, human, mouse, 
furrow nematode

Anterior neural Chicken, Xenopus 
plate, optic vesicle

FORMATION OF THE LENS VESICLE

Eyeless 
(Drospohila) 

branchi-oto-renal 
syndrome (mouse) 
Not characterised 

functionally

AND OPTIC CUP

Xu etal., 1997; 
Bonini and Choi, 1995; 
Abdelhak etal., 1997

U etal., 1997

Lhx2
(homeobox
transcription

factor)

Optic vesicle mouse Fail to develop the 
lens placode

Porter etal., 1997

003
(Gli family zinc 

finger 3)

Optic vesicle Mouse

1

Fail to develop the 
lens placode, optic 

veisicle do not 
involute to form 

optic cup

Hui and Joyner, 1993; 
Franz and Besecke, 1991

Pax2
(Paired box gene

2)

Cells in optic 
vesicle that 

contribute to the 
optic stalk

Mouse, human, zebra 
fish

Optic nerve 
coloboma, aniridia 

(human)

Sanyanusin etal., 1995; 
Oliver etal., 1997; 
Krauss etal., 1991

Chx10
(Vsx2, visual 

system 
homeobox 2)

optic vesicle, 
neuroretina

mouse, goldfish, 
C.elegans

ocular retardation 
(reduced cell 

proliferation in 
neural retina)

Liu etal., 1994; 
Svendsen and McGhee, 

1995;
Burmeister etal., 1996

ProxVprospeo Lens secreting 
cone cells 

(Drosophila), lens 
fibres (murine)

Chicken, frog, fruitfly, 
human, mouse, 

nematode

Axonal outgrowth 
(Drosophila)

Burglin, 1994; 
Tomarev etal., 1996; 
Zinovieva et al., 1996

MATURATION OF DEVELOPING CORNEA

TGFRa
(Transforming 
Growth Factor 
Receptor Alpha)

Lens, lens rudiment mouse Accumulation of 
mesenchymal cells

Decsi etal., 1994; 
Luetteke etal., 1994; 
Reneker etal., 1995

PDGFRa
(Platelet-derived 
Growth Factor 

Receptor Alpha)

non-neuronal 
derivatives of the 

cranial neural crest

mouse Fail to develop the 
neural crest- 

derived structures 
of the eye

Morrison-Graham etal., 
1992

1.3.1. Definition and characteristic of adult stem cells

Despite the unquestioned totipotency of embryonic stem cells, defined by their 

origin and ability to indefinitely expand, self-renew, and give rise to more 

specialised progeny cells, there are numerous unanswered biological questions 

as to the regulation of their growth and differentiation (Sylvester and Longaker,
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2004). In response to biological, but also political barriers, scientists have 

sought other possible sources of pluripotent cells.

Adult stem cells (SCs), or in newer terminology, the tissue-derived/resident 

stem cell population are undifferentiated (unspecialised) cells that reside 

in differentiated tissues and function as lineage-committed progenitors to cells 

able to maintain and regenerate the given tissue for a lifetime. SCs renew 

themselves and generate specialised progeny depending on the type of tissue 

from which they originate.

There are common criteria that define the phenomenon of SCs and these are 

described below.

• Capacity for unlimited self-renewal: it remains unknown whether

stem cells have limited or unlimited division potential. Renewal of 

stem cells is based on their capacity to divide and give rise to a 

progeny, with at least one of the daughter cells remaining a stem cell.

• Undifferentiated state: Although SCs can be characterised by their

undifferentiated state, they sustain high differentiation potential with a 

primitive phenotype -  implying the ability to differentiate into all cell 

types of their home tissue and possibly into other cell types as well, 

when experimental circumstances are provided (Takacs etal., 2009)

• Slow cell cycle: Most of the time, cells are in a growth arrested state

and enter cell cycle on demand (i.e. tissue injury, environmental 

conditions) and give rise to highly proliferative and differentiating 

progenitor cells (Cotsarelis etal., 1989).

• High proliferative potential: SCs in the mouse epidermal proliferative

unit divide approximately about 1000 times, 5000-6000 times in 

humans (Marsham et al., 2002; Potten, 2004). However, it is not yet 

documented how many times the LSCs in the cornea undergo 

division.

• Niche residency: It has been established that stem cells reside in the

niche, which provides an environment critical in mainteining stem
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cells properties (referred to as ‘sternness’) and defining stem cell 

destiny (Leblond, 1981; Schofield, 1983).

• Plasiticity: The potential for stem cells to undergo reprogramming 

under the influence of a new environment (new niche) was shown by 

a number of studies, providing evidence that early lineage 

commitments, as it is for differentiated stem cells derivates, may be 

reversible (Ferraris et al., 2000; Pearton et al., 2004). However, the 

underlying mechanisms of the above changes remain unidentified.

Two main strategies by which stem cells generate differentiated descendants 

were proposed (Hall and Watt, 1989; Morrison et al., 1997). These considered: 

invariant asymmetry and populational asymmetry (most mammalian self- 

renewing tissues). The first mechanism is based on stem cell asymmetric 

division resulting in a population of progenitor cells with restricted proliferation 

potential that differentiate in response to extrinsic cues. SCs that fall into the 

second category give rise to daughter cells that can be either stem cells or 

progenitors that differentiate along different pathways, influenced by the 

combinations of extrinsic factors.

After division of the maternal cell, progeny could enter the differentiation 

pathway where a number of new genes are sequentially expressed or 

previously expressed genes are suppressed It is hypothesised that adult stem 

cells are maintained and controlled by intrinsic (i.e. proteins responsible for 

setting up the asymmetric cell division of precursor cells, nuclear factors 

controlling gene expression and chromosomal modifications) and extrinsic 

factors that are expressed in their microenvironment (niche) (Schofield, 1983; 

Watt and Hogan, 2000; Potten, 1997; Hall etal., 1989; Morrison etal., 1997).

A few environmental factors are known to regulate gene expression and 

maintain sternness of stem cells (Watt and Hogan, 2000):

1. Cytokines and growth factors- Secreted by neighbouring cells, these 

factors support stem cells and their progeny in proliferation, differentiation 

and survival. In the epithelial and stromal wound healing, cytokines
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modulate those processes through a number of mesenchymal-epithelial 

interactions. There is a wide range of factors that regulate stem cell 

proliferation and fate i.e. TGFp (Transforming Growth Factor Beta), FGF, 

KGF (Keratinocyte Growth Factor), NGF (Nerve Growth Factor) and Wnt (Li 

and Tseng, 1995; Watt and Hogan, 2000). The effect of factors on a target 

cell depends on cell type and state of development. Wnt is responsible for 

asymmetric division and requires an inductive signal from its sister cell that 

controls spindle orientation and ectoderm specification (Jan and Jan, 1998; 

Xie and Spradling, 1998), while members of the TGFp family are crucial in 

regulating differentiation (Peifer, 1999). T G Fp i, -P2, -p3 were shown to 

inhibit proliferation of limbal stem cells, thus serve to influence stem cell 

maintenance in the limbus (Li etal., 1999, Boulton etal., 2007).

2. Cell-matrix contact -  Cell-matrix contacts are of major importance not only 

in the development of the embryo. For example, distinct collagen type IV 

components within the corneal and limbal basement membrane suggest that 

membrane composition may be responsible for the different phenotypes and 

proliferative capacity (Ljubimov etal., 1995) of limbal stem cells. Cell 

adhesion to ECM is mediated by integrins that regulate differentiation of 

many cell types through Mitogen-Activated Protein kinases signaling 

(MAPKs) (Jensen et al., 1999; Zhu et al., 1999; Jones et al., 1995) and 

also contribute to the activation of growth factor receptors (Moro etal.,

1998).

3. Cell-cell interactions mediated by integral membrane proteins -  some 

signals that control the fate of stem cells require direct contact between 

cells. One of the examples, that require cell-cell contact for its activity, is the 

Notch transmembrane protein, important during sensory organ precursor 

cell division (Artavanis-Tsakonas et al., 1999; Lewis, 1998) and 

differentiation of limbal stem cell progenitors (Ma etal., 2007).

1.3.2 Limbal Stem Cells in corneal epithelial homeostasis

The phenomenon was explained by the XYZ hypothesis’ of corneal 

maintenance, proposed by Thoft and Friend in 1983. Stem cells from the limbal 

epithelium undergo division and give rise to a daughter cell. Progeny of LSCs 

(transient amplifying cells; TACs) migrate towards the epithelium and continue
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to divide, subsequently, lose contact with the basal epithelium and become 

terminally differentiated in the upper layers of the central cornea before being 

shed from the epithelial surface (Figure 1.8).

LIMBUS CORNEA

t

stem cells —> TACs —> postm itotic ► terminal 
differentiation

•  superficial cells 
o wing cells
q columnar cells
•  stem cells

Figure 1.8 Model for the maintenance of the adult corneal epithelium. Limbal stem cells (LSCs) 
reside in the basal limbal epithelium at the angle between the corneal and conjunctival epithelia. 
They cycle slowly to produce transient amplifying cells (TACs) that migrate centripetally along 
the basal layer of the corneal epithelium and move apically until they reach the surface layer 
and are desquamated (right-hand panel) (from Boulton etal., 2007).

A number of studies have tried to establish the limbal genesis during embryonic 

development and link these observations with the activity of limbal stem cells in 

adults. The beginning of limbal genesis is estimated after the formation of a 

distinct ectodermal zone of lens placode, which gives rise to the corneal and 

conjunctival epithelia (Koroma et al., 1997; Williams et al., 1998; Wolosin et al., 

2000). It is not determined precisely when in development LSCs act to 

replenish the population of epithelial cells. In the murine cornea, the activity of 

LSCs was demonstrated at the 5th postnatal week (Collinson etal., 2004).

In response to tissue growth in embryonic development and later, tissue 

renewal of adult epithelia, constant adjustments and coordination of gene- 

expression and intracellular mobilisation are required. Collinson and co-authors 

(2004), based on their own research and previous reports, suggested that it is 

possible to assign two stages to the development of the corneal epithelium in 

mice. First is an embryonic and early postnatal phase in which epithelial cells
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proliferate by randomly orientated cell division. In the second stage, directional 

clonal growth occurs, as well as, proliferation of LSCs (Cotsarelis et al., 1989; 

Lehrer etal., 1998).

After a stem cell division (stimulated by various factors, as described in the 

previous section), daughter cells either remain in the limbal basal layer, where 

they may undergo additional rounds of cell divison, or differentiate 

synchronously (Beebe et al., 1996). The TACs undergo centripetal migration, 

as a consequence, they replenish the population of basal cells in the central 

section of corneal epithelium. This process, apart from the molecular signals, is 

caused also by the difference in compaction between limbal and corneal 

epithelium, resulting from sialylation of glycoconjugates in proteins and lipids) 

(Wolosin etal., 2000).

There is a doubt as to whether the proliferative pressure in the limbus account 

for centripetal migration, but the increased proliferation in the periphery may 

play a role in this process (Lavker et al., 1991; Wolosin et al, 2000). Following 

wounding, LSCs proliferation rate can be up-regulated as much as eight to nine 

fold within 12 hours, compared to a two-fold increase in TACs following central 

epithelial injury (Cotsarelis et al., 1989; Lehrer etal., 1998; Chung et al., 1992; 

Boulton etal., 2007).

The slow cycling limbal stem cells, responsible for long term maintenance of the 

tissue, can be activated by wounding or by in vitro culture conditions to 

proliferate and regenerate the tissue (Davanger and Evensen, 1971). In normal 

tissue, stem cells cycle infrequently with relatively long cell cycle time and their 

progeny, TACs, have multiple division capacity (if residing in the peripheral 

epithelium) or little division capacity (if residing in the centre) (Agrawal and Tsai, 

2003). After stimulation by injury three different scenarios may take place: 1) 

more stem cells can be recruited to divide and the cell cycle time is more rapid,

2) TACs from the peripheral region are encouraged to use their full replicative 

potential, and 3) efficiency of TAC replication is increased by shortening the cell 

cycle time. When there is a need to increase a number of cells and maintain the 

tissue structure, as it is likely to happen during development or in wound
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healing, one or all of the described mechanisms are activated. However, which 

of them plays a crucial role remains unknown.

Separation of a cell from its basement membrane indicates the loss of 

proliferative capacity, and initiates features unique in the later intra-stratal 

stage. It was suggested that stratification in the central cornea may follow a 

different path plan than stratification within the limbus (Wolosin etal., 2000).

With regard to inductive methods of terminal differentiation, opinion prevails that 

a gradient of base to apex and base to lateral factors exist inside the limbal 

epithelium, which is responsible for the diverse state of maturity between cells 

of the limbus and those of the cornea. This confirms diverse functionality of the 

compartmentalisation that is observed progressing from SC to TAC to 

terminally differentiated cell (Revoltella etal., 2007).

1.3.3 The localisation and identification of Limbal Stem Cells

The activity of LSCs located in the basal epithelium of the corneoscleral limbus 

(Davanger and Evensen, 1971; Schermer et al., 1986; Tseng, 1989) 

is a prerequisite for corneal epithelial cell homeostasis as described in the 

above section. SC, interspersed throughout the basal cell layer most likely 

in small clusters (Schlotzer-Schrehardt and Kruse, 2005), represent less than 

10% of the total limbal basal cell population (Lavker etal., 1991).

Putative limbal stem niches (crypts) have been identified as solid cords of cells 

that extend from the peripheral end of the Palisades of Vogt into the underlying 

stroma (Dua et al., 2005). The undulations of the Palisades of Vogt ensure that 

stem cells are hidden and protected from the environment, while nearby blood 

vessels provide nourishment (Boulton etal., 2007).

Apart from the general criteria described in section 1.3.1, LSCs can 

be distinguished from other cells by morphology. They are smaller, compared to 

cells of the basal corneal epithelium (Romano et al., 2003), and show peculiar 

pigmentation that confirm the notion of representation of quiescent stem cells
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with high levels of melanin (protects against ultraviolet light and reactive oxygen 

species), that is lost with cell proliferation (Wolosin etal., 2000).

A demonstration of the concept of the limbus as the germinal site for the 

comeal epithelium became possible following the recognition of the tissue 

specificity of cytokeratin (CK) pairs and their differentiation-dependent 

expression (Moll et al., 1982). From the pattern of the CK pair K5/K14 (present 

in the basal cells covering the limbal rim and observed in most stratified 

epithelia) and CK3 expression (absent from basal epithelial cells in the limbal 

epithelium), it was concluded that the undifferentiated stem cells may reside 

within the limbal zone (Schermer et al., 1986). The presence of slow-cycling 

cells within limbus and peak proliferative activity in the adjacent corneal 

periphery was later demonstrated by number of studies (Cotsarelis et al., 1989; 

Lavker etal., 1991).

For identification of LSC and their progenitors, various markers have been 

proposed. However, their use is still controversial. Marker-proteins are 

expressed depending on the type of epithelium and its state of differentiation 

and are not exclusive to limbal basal stem cells, therefore, the definitive marker 

for SC identification has yet to be found. Also, it has to be underlined, that 

general term ‘limbal basal cells’ refers not only to stem cells in a basal layer, but 

also to the population of TACs that reside in this zone. This fact hampers the 

pursuit for determination of definite LSC markers.

Candidate markers in development that are likely to identify critical stages of 

adult LSC maturation and/or differentiation will be determined through further 

study. Considering the countless studies on possible markers that could define 

stem cell phenotype, conviction prevails that it is not possible to identify 

expression of a single marker but rather that coexpression of a series of 

molecules by whose presence or absence identifies the characteristics of 

sternness (Revoltella et al., 2006). Overall, the proposed markers can be 

divided into negative (a lack of labelling indicates undifferentiated state of cells) 

and positive (the presence of labelling suggests putative stem cell).
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The current classification of potential stem cell markers is shown in Table 1.2.

Table 1.2 Localisation of putative stem cell 
Kruse, 2005) (continued overleaf)

markers (adapted from Schlotzer-Schrehardt and

Marker Limbal epithelium Corneal epithelium References
basal suprabasal basal suprabasal

(+)

Cytoskeletal proteins

Keratins K3/K12

Keratin 19 

Keratins K5/K14

Vimentin 

Cytosolic proteins

a-enolase

Involucrin

Aldehyde
dehydrogenase

(ALDH)

Transketolase (TKT)

gamma-PKC 
(kinase C)

Nuclear proteins

ANp63

p63

KGFRbek 
Sugar-binding proteins

Peanut-ft#p,$pNA)

Agglutinin (MAA)
TGFRIp 

Cell surface proteins
a) ceHn9*to 9¥l^atrix

Connexin 43

P-cadherin (CDH3) (+)/-

Integrin a6, a2, 04 -/++

Integrin a9 +

b) growth factor receptors
EGFR ♦+

(+)

++

(+)

(+y-

w

(+)

(+)

(+)

(+)

(+)/-

(+)

+ + .

-/(+)

-/(+>

(+)

(+)

(+)

+
++

(+)

+

Rodrigues etal., 1987; Kasper etal., 
1988; Liu et al., 1993; Schermer et. 
al., 1986

Chen etal., 2004

Kurpakus etal., 1994; Barnard etal., 
2001; Hsueh et al., 2004; Schldtzer- 
Schrehardt and Kruse, 2005

Schldtzer- Schrehardt and Kruse, 
2005

Pancholi, 2001; Zieske et al., 
1992a,b; Zieske 1994; Chen et al., 
2004

Adhikary etal., 2004 

Kays and Piatigorsky, 1997

Guo etal., 1997 

Tseng etal., 1996

Chen et al., 2004; Koster et al.,
2004

Pellegrini et al., 2001; Chen et al., 
2004; Dua etal., 2003 
Schlotzer- Schrehardt and Kruse,
2005

M ^ 'w a ^ ^ ^ ^ f e i s c o t t o  and 
Griffith, 2006 

Wolosin and Wang, 1995
Joyce and Zieske, 1997

Lambiase et al., 1998; Touhami et 
al., 2002
Dong etal., 1994; Matic etal., 1997; 
Wolosin et al., 2000; Chen et al., 
2004

Figueira etal., 2007

Chen et al., 2004, Schlotzer- 
Schrehardt and Kruse, 2005

Chen et al., 2004; Pajoohesh-Ganji 
etal., 2004

Lauweryns et al., 1993a; Liu et al., 
2001; Chen etal., 2004
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c) transporter molecules
ABCG2 ++

Neuronal markers
c-Kit

Nestin

Hematopoietic markers
CD133-2 +

CD44 +

CD34 +

Key:

- undetectable 

(+) weak positivity

(+)/- - (+)/-

+ +

+ + +

(+v-

+  -  -

+ moderate positivity 

++ strong positivity

Chen et al., 2004; Watanabe et al., 
2004; Wolosin etal., 2004

Das et al., 2004; Vascotto and 
Griffith, 2006

Chen etal., 2004

Silvestri etal., 1992; Yin et al., 1997; 
Dua et al., 2003

Zhu et al., 1997; Vascotto and 
Griffith, 2006

Silvestri et al., 1992; Yin et al., 1997; 
Dua et al., 2003

1.4 Implications of Limbal Stem Cell in therapeutic intervention

The eye is a highly organised complex organ. Disturbances in genetic 

programming during development can lead to disorders that become apparent 

at birth or shortly after (Graw, 2003). For instance, aniridia-related keratopathy 

(ARK, corneal surface degeneration, opacity) is correlated with vascularisation 

and epithelial fragility (Ramaesh et al., 2003). ARK relates to both a deficiency 

within the LSC niche and nonautonomous diversion of corneal epithelial cell 

migration (Collinson etal., 2004).

Presently, a main issue that focusses the attention of corneal scientists is 

ocular surface rehabilitation after grafts. Although, allogenic corneal 

transplantation (keratoplasty) is widely used to repair a damaged corneal 

stroma, in some corneal pathologies with extensive destruction of the limbus 

(e.g. caused by chemical/thermal burns, Steven Johnson syndrome, contact 

lens-induced keratopathy) the keratoplasty is unsuccessful and proper vision 

can not be restored (Wagoner, 1997; Pellegrini et al., 2009; Boulton et al., 

2007). In such cases, the only way to prevent corneal conjunctivalisation is to 

restore the limbus.

The first suggestion, to transplant corneal epithelial stem cells to reconstruct 

an ocular surface, was proposed by Kenyon and Tseng (1989). This was 

carried out by grafting large limbal fragments from the uninjured eye onto the
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diseased eye of patients with unilateral limbal-corneal destruction. Currently, 

the techniques of transplantation involve auto- or allografts that, apart from 

being undoubtedly an advantageous, can also have some drawbacks. The 

main limitations for auto- and allografting from living related donors, is the 

amount of limbal tissue and risk of tissue rejection (Kolli et al., 2008). 

Autografting is possible only if the limbal defects are localised unilaterally. The 

survival of limbal allografts, from both related and cadaveric donors, requires 

aggressive systemic immunosuppression, which increases a risk of morbidity 

(Holland etal., 2003; Kolli etal., 2008).

Further studies provided a variety of new techniques that enabled 

reconstruction of the corneal epithelium by using stem cells' potential. Small 

limbal explants were cultured to generate limbal cells that were found to include 

stem cells detectable as holoclones (Pellegrini et al., 1999). These can be 

successfully used to restore corneal integrity and improve visual acuity in 

patients whose comeal stroma was not destroyed, otherwise, the underlying 

stroma has to be resurface first (Pellegrini etal., 2009).

Currently, the methods that allow ex vivo expansion of LSCs followed by LSCs 

transplantation are used in corneal epithelial reconstruction. Well established 

techniques are based on co-culture of limbal epithelial cells (derived from limbal 

explants or cell suspensions) with mitotically inactivated 3T3 mouse fibroblasts 

as a feeder cell, or an amniotic membrane, or a combination of those two 

(Koizumi et al., 2000; Gruetrich et al., 2003; Kinoshita et al., 2004; Boulton et 

al., 2007; Kolli etal., 2008).
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1.4.1 Alternative sources of cells used to resurface corneal epithelium

As described in section 1.4, there are various sources of limbal epithelial cells 

to be used for transplantation purposes; auto- and allografts, ex vivo cultures of 

tissues or cells obtained from live cadaver donors. Alternative sources of cells 

that could potentially used to resurface the corneal epithelium are derived from:

Conjunctival epithelium

The conjunctival epithelium, like most of the epithelial tissues, undergoes 

constant renewal with rapid cell turnover (Nagasaki and Zhao, 2005). It was 

suggested that the fornix and/or palpebral region (Pellegrini et al., 1999; Chen 

et al. 2003) may contain conjunctival stem cell niche, due to the fact that slow- 

cycling cells with higher proliferative capacity have been detected in these 

areas (Wei et al., 1995; Wirtschafter et al., 1999). Although, it has been 

reported that limbal basal cells are the only population expressing the protein 

ANp63 in the ocular surface (Pellegrini et al., 2001), results presented by 

Espana etal., (2004) showed that the expression of ANp63 in conjunctiva- 

derived epithelium in eyes with total limbal SC deficiency was detected. The 

role of conjunctival epithelium in the restoration of corneal epithelial deficits 

requires further investigations, as it also had been shown that even small pools 

of slowly cycling cells within the limbus are able to regenerate the tissue on 

their own.

Bone-marrow derived stem cells

Bone marrow-derived stem cells (BMSCs) are an example of stem cells 

capacity to transdifferentiate. Nakamura et al., (2005), in their experiment with 

bone-marrow and hematopoietic stem/progenitor cells transplantation in mice, 

hypothesised that bone marrow-derived cells continuously migrate into the 

corneal tissue and contribute to the corneal integrity. They also suggested that 

bone marrow-derived cells may transdifferentiate into corneal cell phenotypes 

or neurons. The presence of hematopoietic markers; CD34 and CD133-2 

observed in the limbal epithelial zone may suggest broader interactions 

between BMSCs and LSCs and requires further studies.
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Oral mucosa

Another source to be mentioned is the possibility of using oral mucosal 

epithelium as a source of cells to treat bilateral corneal limbal stem cells 

deficiency. The potential advantage of such an approach is no risk of immune 

mediated rejection, thus no need for immunosupression (Nakamura et al., 

2004; Inatomi etal., 2006).

Long-term follow-up and experience with a large series of patients are needed 

to assess further the benefits and risks of the methods, which offer the potential 

to treat severe ocular diseases (Nishida etal., 2004).

1.5 The chick as a model system to study corneal epithelial 
developmental biology

The chicken as a model system in biology has a long history. However, 

although the chicken has been a traditional model for studying embryonic 

development, the lack of genomic resources decreased the potential value of 

this system for advanced molecular research until now (Brown et al., 2003). 

The first step to sequence chicken genome was made in 2003 when 500,000 

chick ESTs (expressed sequence tags) were released. Further research 

resulted in compilation of a genetic map for the chicken genome, and finally, 

genome sequencing was accomplished in 2004 (International Chicken Genome 

Sequencing Consortium, 2004).

Presently, scientists are using two experimental systems: the chicken DT40 cell 

line and the embryos (Brown et al., 2003). The DT40 cell line is derived from a 

chicken bursal lymphoma that has been transformed by an avian leucosis virus 

(ALV) (Baba etal., 1985) and is used, amongst other things, to investigate gene 

functions, to study the mechanisms of immunoglobulin gene diversification 

(Sale etal., 2001) and to engineer mammalian chromosomes.

Chick embryos are accessible from pre-gastrulation stages and throughout 

organogenesis. Furthermore, embryos can be manipulated in ovo for up to 

several days (Brown et al., 2003). Although, chick embryos can be easily 

separated, the developmental studies of various organs cause difficulties, as
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most of the later complex morphogenetic events take place in an opaque 

embryo which makes it difficult to disentangle. Chick cornea, however, is a 

unique exception to the above principle; it is accessible, geometrically simple 

and many events taking place during its formation are temporally and spatially 

separated from one another.

The availability of a chick genome database and combination of well- 

established embryological manipulations (e.g. “cut-and-paste” experiments, fate 

mapping) with recently developed techniques for gene missexpression (using 

electroporation, lipofection or viral transfection combined with RNA interference 

or morpholino oligonucleotides) provide promising perspectives for exploitation 

of chicken embryos in further developmental investigations. Despite various 

advantageous of using the chick as a model organism, there are some 

difficulties in carrying out classical whole-animal genetics and transgenesis. For 

example experiments based on the entire development of the fertilised egg 

require a shell-less culture environment (Brown etal., 2003).

Discoveries in the field of chicken research could be related in the future 

to mammalian and/or human biology. Although, chickens are evolutionarily 

distinct, the coding genes show high similarity to human genes and only two 

chicken family proteins are absent from the human genome (Stem, 2005).
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1.6 Hypothesis and aims

It is hypothesised that the genes involved in differentiation and cell 

patterning in the developing corneal epithelium will be important for the 

maintenance of adult corneal epithelium by limbal stem cells. These studies 

pave the way to understand the mechanisms that underlie the regulation of 

corneal epithelial homeostasis during development, as well as, in adult life.

The hypothesis put forward in this study is based on the presumption that 

development and maintenance of the corneal epithelial cell population is regulated 

by various morphogenetic mechanisms. The vast amounts of knowledge regarding 

molecular mechanisms that regulate progressive events in patterning of the 

corneal stem cell lineage are poorly understood. Previous studies in other body 

systems have suggested that adult and embryonic stem cells might share common 

pathways that are critical to stem cell survival and the maintenance of tissue they 

supply. Determination of the stages of development at which corneal epithelial 

cells proliferate, change morphology and differentiate will allow for the selection of 

critical time points for further investigation of gene expression profiles in the 

developing chick corneal epithelium. Further, microarray analyses at a global level 

will facilitate identification of potential specific corneal epithelial stem cell markers.

The overall objective of this study is to identify target genes that are likely to 

be involved in the regulation of corneal epithelial homeostasis at different 

stages of development, and thus, could potentially serve as markers for the 

generation of corneal epithelial stem cells.

Therefore, the aims of this study are:

1) To characterise spatiotemporal changes in morphology and differentiation in 

the developing chick corneal epithelium

2) To characterise spatiotemporal changes in cell death and proliferation during 

chick corneal epithelial development.

3) To examine the global gene expression during chick corneal epithelial 

development and identify candidate regulatory genes involved in epithelial cell
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maturation and/or differentiation, thus important in corneal epithelial 

homeostasis.

3) To determine genes selectively expressed all along the developmental time- 

course of corneal epithelium and relate the findings to initial embryonic time 

point and posthatched epithelia

4) Identify candidate stem cell-related genes.
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CHAPTER TWO

Materials and methods



2.1 Experimental animals
Fertilised white leghorn eggs, obtained from a commercial hatchery (Henry 

Stewart & Co, Lincolnshire, UK), were incubated broad side-up in a tray at 

37.5±0.5 °C in a humidified (40% relative humidity) incubator (Octagon 100 

Incubator, Brinsea, Standford, UK). Eggs were turned automatically 

approximately 20 times in a 24 hour period. The date and time at the start 

of incubation were recorded. The level of double distilled water (ddH20 )  was 

checked daily to ensure that the required relative humidity was maintained. 

Eggs were incubated until the required developmental embryonic day (ED).

2.2 Sample collection and preparation for histochemistry and 

immunolocalisation

2.2.1 Tissue dissection

Eggs at different time points during development, every two days (from ED4 to 

ED18), were removed from the incubator and stored at 4°C for 15 minutes 

before dissection to reduce blood pressure. Embryos were removed from the 

egg by cracking the shell on the broad side, or upper side of the egg using the 

pointed reverse end of forceps. While removing the embryo from the top of the 

albumen, the head was excised from the remaining embryo using dissection 

scissors and placed in cold phosphate buffered saline (PBS) pH 7.4 on a petri- 

dish (Sigma, Dorset, UK). Eyes of postnatal chick embryos (<12 hours 

posthatching, ED21) were collected within 30 minutes of anaesthesia (Euthatal 

injection, 150 mg/kg bodyweight, Merial, UK). The tissue was washed in cold 

PBS to remove blood and redundant tissues/membranes, and placed in fresh 

PBS under a dissecting microscope.

The isolated embryo (for ED4 and ED6) or anterior chamber of the right eye 

of each pair (for stages ED8 onwards) was fixed in 10% neutral buffered 

fomalin (NBF) or 4% paraformaldehyde (PFA) in PBS (see Appendix II for 

composition of solution). One of each pair of eyes (left eye) was processed for 

cryosectioning as described in section 2.3.3.4.
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2.3 The principles and protocols of histology techniques

The basic techniques in histological procedures include fixation and tissue 

processing for further sectioning and staining. The objective of fixation is to 

preserve cell and tissue components in as near as identical state to in vivo and 

to ensure that this state is retained during subsequent procedures. Fixation 

should also provide for the preservation of tissue substances and proteins 

(Leong, 2000). Then stabilised tissues undergo tissue processing in order to 

impregnate them with a solid medium to facilitate the production of sections for 

microscopy. Tissue processing involves the diffusion of various substances in 

and out of the stabilised porous tissue.

To optimise the protocol for wax embedding of chick corneas, different 

approaches were tested. In order to develop the method, not only whole eyes 

were dissected, but also anterior chambers. Subsequently, they were fixed in 

4% PFA or 10% NBF and processed for xylene- or chloroform-based technique, 

in different combinations.

2.3.1 Tissue fixation

2.3.1.1 PFA fixation
4% PFA (pH 7.4) was used as a non-protein coagulant fixative. After dissection, 

whole embryos were immersed in 4% PFA for 24 hours at 4°C. The next day, 

tissue was washed twice in PBS for 30 minutes then placed in a new tube and 

immersed in PBS for the next 30 minutes and subsequently left overnight in 

new 1XPBS. Alternatively, tissue was left in PBS containing 0.1% sodium 

azide (Appendix II) at 4°C for a longer period of time in preparation for the 

xylene-based method of tissue processing (see below).

2.3.1.2 NBF fixation
Dissected anterior chambers were immersed in 10% NBF (pH 7.2) (see 

Appendix II) for 48 hours at 4°C in preparation for the chloroform-based 

processing technique (see below) and subsequent wax-embedding.
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2.3.2 Tissue processing

The most common embedding medium for routine histology use is paraffin wax. 

Infiltrating and embedding media must fill all spaces within tissue to support 

cellular components adequately during microtomy. The first step in processing 

is dehydration (with alcohols increasing in concentration) followed by clearing, 

which is the transition step between dehydration and infiltration with the 

embedding medium.

2.3.2.1 Paraffin wax processing- xylene based method

PFA-fixed tissue was dehydrated through a series of graded industrial 

methylated spirits (IMS) as follows:

• 50% IMS for 30 minutes

• 70% IMS for 30 minutes

•  70% IMS for 30 minutes

• 90% IMS for 30 minutes

• 90% IMS for 30 minutes

• 100% IMS for 30 minutes

• 100% IMS for 30 minutes

In order to clear the tissue, it was immersed in 50% xylene in IMS for 30 

minutes in glass vials and then in 100% xylene for a further 30 minutes. Excess 

xylene was removed and tissue was warmed by placing the glass vials on the 

top of a wax oven for 10 minutes. The eyes was blotted on a filter paper and 

placed into clean glass pots containing molten wax at 56°C for 30 minutes. Hot 

wax was exchanged for new hot wax and samples were left overnight in the 

oven (Gallenkamp, Thermo LI, UK). Next, samples were removed from the 

wax, dabbed on filter paper and placed in correct orientation (i.e cutting side 

down) in a plastic mould containing new molten wax. Blocks were left on a cold 

(-12°C) plate (Raymond A Lamb, UK) for 30 minutes to solidify, and then stored 

at 4°C.
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2.3.2.2 Paraffin wax processing - chloroform based method

Tissue fixed in 10% NBF was immersed in increasing concentrations of IMS, as 

indicated below:

• 50% IMS for 30 minutes

• 70% IMS for 30 minutes

• 90% IMS for 30 minutes or overnight

• 100% IMS for 30 minutes

• 100% IMS for 30 minutes

For removal of dehydrating agents, tissue was first immersed in a 50%  

volume/volume mixture of IMS/chloroform for 30 minutes and then two 

immersions in 100% chloroform (each time for 30 minutes). Most of the 

chloroform was poured from the glass pot and the tissue was warmed on top of 

the wax oven for 10 minutes. The tissue was then dabbed on filter paper, 

placed into clean, molten wax in the oven (at 56°C) and left for 1 hour to 

remove chloroform. After 1 hour, samples were transferred to clean pots 

containing wax and left for a further 30 minutes to ensure wax had fully 

impregnated the tissue. Finally, tissue was embedded in wax in moulds and left 

on a refrigerated base (-12°C) for 30 minutes to harden. Solidified blocks were 

stored at 4°C overnight and then subsequently at room temperature.

2.3.2.3 Optimised method of wax tissue processing for embryonic chick 

eyes
Two methods for fixation and further paraffin wax processing were optimised. 

The optimised method selected was dependent on the developmental stage as 

shown in a Table 2.1, in order to eliminate tissue crushing during sectioning.
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Table 2.1. Optimised tissue fixation for wax embedding
Embryonic day Embryo/Eye Fixative Clearing agent

4 Whole embryo 4% PFA Xylene

6 Whole embryo 4% PFA Xylene

8 Anterior half 10% NBF Chloroform

10 Anterior half 10% NBF Chloroform

12 Anterior half 10% NBF Chloroform

13 Anterior half 10% NBF Chloroform

14 Anterior half 10% NBF Chloroform

16 Anterior half 10% NBF Chloroform

18 Anterior half 10% NBF Chloroform

21 Anterior half 10% NBF Chloroform

2.3.2.4 Paraffin blocks sectioning

Once hardened, the blocks were removed from the mould. Wax sections (7|jm 

thick) were cut using a microtome (Microm HM325, Germany). Wax sections 

were floated in a cold water bath and then in a hot (40°C) water bath 

(containing Mayer's albumin) (Raymond A Lamb, UK), and then transferred 

onto microscope slides with an adhesive coating (HistoBond, UK). Sections 

were dried on a hot (36°C) plate (Diswasher 2, Photax, UK) and incubated in 

an oven (Genlab, UK) at 56°C for 1 hour. Sections were stored at room 

temperature until day of use.

2.3.2.5 Tissue processing for cryoembedding

After dissection, the embryo (ED4 and ED6) or the whole eye (from ED8 to 

ED21 posthatch) was placed in a moist chamber (i.e. paper towel soaked in 

PBS inside a bijoux) at 4°C. A plastic beaker containing iso-pentane (BDH, UK) 

was cooled by partial immersion in liquid nitrogen. The tissue was submerged 

into the liquid nitrogen cooled iso-pentane. The frozen sample was then placed 

in an aluminium mould, containing OCT embedding media (Tissue-Tek, Agar 

Scientific, UK), with the cutting surface at the bottom of the mould. The sample 

in the aluminium mould was then immersed into the liquid nitrogen cooled iso- 

pentane until the embedding media had solidified. Frozen blocks were stored 

at -20°C, or for longer term storage at -80°C.
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2.3.2.6 Cryosectioning

For sectioning of frozen tissue a Leica cryostat (Leica CM3050S) was used. 

Frozen blocks were attached to cryostat chucks via a small amount of OCT 

compound. The main cryostat chamber was set at -20°C. Sections were cut 

(10pm) and transferred onto Superfrost Plus electrostatically charged glass 

slides (Menzel-Glaser, UK), 2 sections per slide. Sections were allowed to dry 

at room temperature for at least 30 minutes and then stored in a freezer at - 

20°C for 1 week or at -80°C for longer periods of time.

2.4 Histochemistry

For the detailed examination of corneal tissue morphology Haematoxylin and 

Eosin (H&E) staining was employed. Cell nuclei were localised with 

haematoxylin and sections were counter-stained with eosin to provide overall 

background.

2.4.1 H&E staining of paraffin sections
Paraffin wax, being impermeable to stains, was removed by immersion in two 

baths of xylene each for 5 minutes and rehydrated by one-minute washes 

in descending grades of alcohol: 100%, 100% 90%, 70%, 50% IMS prior to 

10 minutes washing in cold running tap water.

De-waxed and rehydrated sections were immersed in Harris's Haematoxylin 

(BDH, UK) for 3 minutes, then rinsed in tap water for 10 minutes before 

counter-staining in Eosin (BDH, UK) for 3 minutes. Sections were washed for 

10 minutes in tap water then dehydrated by 1-minute immersions through a 

series of graded alcohols (50%, 70%, 90%, 100% and 100% IMS). Clearing of 

sections was achieved by using two changes of xylene for 1 minute each. In a 

final step, sections were mounted in a xylene-based mountant, DPX (BDH, UK) 

and left to dry.

2.4.2 H&E staining of frozen sections
Frozen sections were warmed to room temperature, immersed in PBS, twice, 

for 10 minutes each and then stained with Harris's Haematoxylin and Eosin as
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described in section 2.4.1. After rinsing in tap water, sections were mounted in 

an aqueous mountant, Hydromount (BDH, UK).

2.5 Immunohistochemistry

2.5.1 Definition of immunohistochemistry

Immunohistochemistry is defined as a technique, which allows identification 

of an antigen in its tissue or cellular location by using labelled antibodies 

as specific reagents for localisation of tissue constituents (antigens) (Polak et 

al., 1997). The site of antibody binding is identified either by direct labelling 

of the antibody, or by use of a secondary labelling method.

2.5.2 Antibodies used in immunolabelling procedures

The range of antibodies used for immunolocalisation in this study is presented 

in Table 2.2 below. Protocols were optimised following a number of different 

treatments to both wax and frozen sections. These included different antibody 

dilutions, with or without blocking agents (5%, 10% donkey serum) at different 

times of incubation. Final antibody dilutions are shown in Table 2.2. Optimised 

protocols are detailed below.

2.5.3 Immunolabelling protocols for frozen sections
Frozen sections of chick embryo eyes in triplicate for each stage (from ED 4 to 

ED21), were allowed to warm to room temperature for 15 minutes. All sections 

were carefully circled using a pap pen (Vector Laboratories, Inc, UK), fixed in 

cold (previously cooled at -20°C for 10 minutes) 100% acetone for 10 minutes 

and then washed in PBS, three times for 5 minutes.
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Table 2.2 Antibodies used for immunohistochemistry

Antigen Clone Host Raised

against

Dilution Company Marker:

Primary antibodies

Cytokeratin 3 AE5 
(1 mg/ml)

mouse human 1:50 MP Biomedicals, 
LLC, UK

epithelial
differentiation

panCK AE1/AE3 
(1 mg/ml)

mouse human 1:100 DakoCytomation
UK

epithelial
differentiation

Ki67 B126.1 
(0.15 mg/ml)

mouse human 1:100 Abeam, UK proliferation

PCNA Pc10 
(0.7 mg/ml)

mouse human 1:500 Abeam, UK proliferation

Caspase -3 
(Active)

(n/a) 
(0.2 mg/ml)

rabbit human 1:10 Millipore Upstate, 
UK

apoptosis

GFP 3E6
(n/a)

mouse jellyfish 1:50
1:100

Molecular 
Probes, UK

negative
control

Secondary antibody

Biotinylated anti-IgG goat rabbit 1:200 Vector 
Laboratories, UK

Alexa Fluor 488 donkey mouse 1:500
1:1000

Molecular 
Probes, UK

2.5.3.1 Determination of corneal epithelial cell differentiation

Immunolocalisation for cytokeratins AE1/AE3 antibody

Following fixation (see section 2.5.3), frozen sections were rinsed in three 5- 

minute washes in PBS. Before overnight incubation in primary antibody (diluted 

in PBS, as indicated in Table 2.2) in a humidified chamber at 4°C, blocking 

agent (5% donkey serum in PBS) was applied for 20 minutes.

The next day, sections were washed 3 times in PBS, 5 minutes each. Then 

sections were incubated in donkey anti-mouse Alexa Fluor 488 (Invitrogen, 

Molecular Probes, UK) secondary antibody (diluted 1:1000 in PBS, final 

concentration 0.01 mg/ml) for 2 hours in the dark. In order to label cell nuclei, 

3pl of Hoechst 33342 (bisbenzamide, Sigma, UK) stock solution (1 mg/ml 

bisbenzamide in ddH20 )  per 1ml of diluted secondary antibody was included in 

the final antibody solution. In the final step, sections were washed with PBS,
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three times for 5 minutes and mounted in Hydromount (National Diagnostics, 

UK). Stained slides were air dried and stored at -20°C. As a negative control, 

mouse anti-GFP and mouse IgG (final concentration 0.01 mg/ml) were 

substituted for the primary antibody.

Immunolocalisation of cytokeratin 3 (CK3)

Sections were air dried after 10 minutes acetone treatment (see 2.5.3) and 

rinsed three times for 5 minutes in PBS. For permeabilisation of membranes, 

sections were incubated with 0.1% Triton-X-100 (Sigma, UK) for 5 minutes, and 

once again washed in PBS for 15 minutes. Overnight incubation at 4°C in anti- 

CK3 primary antibody (final concentration 0.02mg/ml) (Table 2.2) was preceded 

by a 20 minute incubation in 10% donkey serum. After 24 hours, sections were 

rinsed for 15 minutes in PBS. Secondary antibody (Alexa Fluor 488, 1:1000 in 

PBS) containing Hoechst 33342 (as described above) was applied for 2 hours 

and after that time, PBS washing was repeated (three times for 5 minutes 

each). Finally, sections were mounted with Hydromount (National Diagnostics, 

UK) and stored at -20°C. As a negative control, mouse anti-GFP and mouse 

IgG (final concentration 0.02mg/ml) were substituted for the primary antibody.

2.5.4 Immunolabelling protocols for paraffin sections

Paraffin-embedded corneal embryonic corneal sections (in triplicate for each 

stage) from different time points (ED4 to ED21) were dewaxed in xylene (twice, 

5 minutes each), rehydrated through graded alcohols (100%, 100%, 90%,70%, 

50%), 5 minutes each and washed in ddH20 for 5 minutes.

2.5.4.1 Determination of corneal epithelial cell proliferation

Immunolocalisation for PCNA

Paraffin sections, processed as described in section 2.5.4, were placed in 1600 

ml of boiling dH20  containing 15ml of antigen retrieval solution (Vector 

Laboratories, Inc, UK), for 2 minutes in a pressure cooker. Sections were then 

washed in PBS for 5 minutes and incubated with 0.2% of Tween-20 in PBS for 

30 minutes. Subsequently, sections were blocked with 10% BSA (bovine serum 

albumin) and Tween-20 in PBS for 1 hour at room temperature and then
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incubated for one hour in PCNA (Proliferating Cell Nuclear Antigen) primary 

antibody (diluted 1:500 in 1.5% BSA and 0.2% Tween-20 in PBS, final conc.

0.0014mg/ml). As negative controls, mouse anti-GFP (diluted as primary 

antibody) and mouse IgG (final concentration 0.0014mg/ml) replaced the 

primary antibody.

Sections were then washed three times in PBS and incubated with anti-mouse 

Alexa Fluor 488 diluted 1:500 in PBS containing 1.5% BSA and 0.2% Tween- 

20, for 2 hours at room temperature. Hoechst 33342 was added to secondary 

antibody solution as described above. After a lapse of 2 hours, sections were 

washed with PBS ( 3 x 5  minutes), mounted in Gelvatol (Appendix II) and stored 

at -4°C.

2.6 Analysis of epithelial cell death
Protocols for analyses of epithelial cell death were performed on at least 

triplicate sections from three different eyes at developmental time points ED4 to 

ED21.

2.6.1 TUNEL technique
Apoptosis was detected using terminal dUTP nick-end labeling (TUNEL) assay 

with ApopTag Peroxidase in situ Apoptosis Detection Kit (Chemicon 

International, USA). Sections were deparaffinised through xylene (three 

changes, 5 minutes each), rehydrated through graded alcohols (twice in 100% 

for 5 minutes, then 95% and 70% for 3 minutes each wash) and washed in 

1XPBS. Then sections were incubated in proteinase K (20pg/ml, 60pl/5 cm2) 

(Chemicon International, UK) for 15 minutes at room temperature, following 

incubation in 3% hydrogen peroxide (Sigma, UK) for 5 minutes and a 5-minute 

wash in PBS. Subsequently equilibration buffer was applied for 30 seconds, 

and then sections were incubated in TdT enzyme (37°C for 1 hour). 

Subsequently, working strength stop/wash buffer was applied for 10 minutes at 

room temperature.

In the next step, sections were washed in three changes of PBS for 1 minute 

each wash and treated with anti-digoxigenin conjugate in a humidified chamber
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for 30 minutes at room temperature. Then sections were washed in PBS (four 

changes, for 2 minutes per wash) and peroxidase substrate (SigmaFast DAB 

solution, Sigma, UK) was applied for 13 minutes (Appendix II). Rat mammary 

gland sections (Chemicon International, UK), and DNase I (Ambion, UK) 

digestion of chick sections (Appendix II) acted as positive controls. Sections 

were incubated with DNase I (2U/pl) for 2 hours at room temperature. 

A negative control was performed by substitution of equilibration buffer in place 

of the volume of TdT enzyme reagent.

Sections were washed in 3 changes of dH20  and counterstained in 0.5%  

methyl green (Vector Laboratories, UK) for 10 minutes at room temperature. 

Sections were rinsed with water (30 seconds) and dehydrated in n-Butanol 

(Fisher Scientific, UK) for 10 seconds twice, and then for 30 seconds. Finally, 

sections were incubated in three 2 minute changes of xylene. Subsequently, 

sections were mounted in DPX (BDH, UK).

2.6.2 Immunolocalisation of caspase 3 (active)

Paraffin sections, deparaffinised as described above (see section 2.6.1), were 

placed in 1600 ml of boiling dH20  with 15ml of antigen retrieval solution for 2 

minutes, in a pressure cooker. Sections were then washed in PBS for 5 

minutes and incubated in 3% H20 2 for 15 minutes.

Subsequently, sections were washed in PBS three times for 5 minutes and 

incubated in 0.1% Triton-X-100 (Sigma, UK) for 10 minutes before three 5- 

minute washes in PBS. Sections were then blocked with 4%  goat serum for 1 

hour at room temperature and incubated for 2 hours in anti-caspase 3 (active) 

primary antibody, diluted 1:10 in PBS containing 4% goat serum (final 

concentration 0.002mg/ml). For negative and positive controls primary antibody 

was substituted with rabbit IgG (final concentration 0.002mg/ml) and sections 

were incubated with DNase I (2U/pl) for 2 hours at room temperature, 

respectively. Sections were then washed three times in PBS and incubated in 

biotinylated secondary goat anti-rabbit antibody (50pl in 10ml of PBS containing 

1% goat serum, VECTASTAIN® Elite® ABC KIT, Vector Laboratories, UK) for 1 

hour.
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After 1 hour, sections were washed in PBS ( 3 x 5  minutes), and VECTASTAIN® 

ABC Reagent was applied. VECTASTAIN® ABC Reagent containing Reagent A 

(Avidin) and Reagent B (biotynylated enzyme) was prepared 30 minutes before 

application: 100pl of reagent A and reagent B was added to 5ml of PBS. After 1 

hour, sections were washed with PBS ( 3 x 5  minutes) before incubation in 

peroxidase substrate (SigmaFast DAB solution, Sigma, UK) for 15 minutes 

(Appendix II). Sections were then washed in three one-minute changes and a 

final 5-minute wash in dH20  before counterstaining in methyl green (Vector 

Laboratories, UK) for 5-minute at room temperature. In the final step, sections 

were washed with dH20  for 30 seconds and dehydrated in two one-minute 

changes of 95% and 100% alcohol and three 2-minute changes of xylene. 

Sections were mounted in DPX (BDH, UK).

2.7 Image capture

All Haematoxylin and Eosin stained sections were observed via bright field 

microscopy using a DMRA2 microscope (Leica, UK) and images were capture 

using QWin v3 software (Leica, UK). Immunofluorescence was visualised by 

DM5500B microscopy (FW 4000 software, Leica, UK) using filters for 

bisbenzamide (excitation 359 nm, emission 461 nm) and Alexa Fluor 488 

(excitation 494 nm, emission 518 nm). Images were captured using FW4000 

image analysis software (Leica, UK). For quantification of cell proliferation and 

TUNEL-labelled cells, sections were observed under immersion using x100 

objective. At least triplicate sections of three different eyes at each 

developmental stage were observed in captured images for all localisation 

protocols. In each section three fields of view in three different comeal regions 

(centre, periphery and limbus) were examined.

2.8 Statistical analysis
In all experiments, at least triplicate sections of three different samples for each 

developmental stage were observed. In each section three fields of view in 

three corneal regions (limbus, periphery, centre) were investigated. 

Quantification of epithelial cell proliferation and apoptosis was performed by 

calculating the labelling index (LI), according to the equation:
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LI = (num ber o f  labelled ce lls /to ta l num ber o f cells) x  100%.

Statistical analysis was carried out using parametric One-way ANOVA (SPSS 

v.12), followed by post-hoc Dunnett T3 test (SPSS v.12) for data with Gaussian 

distribution. Pearson correlation was performed in order to depict an 

association between two variables. A p value less than 0.05 (p<0.05) was 

considered statistically significant.

2.9 Western Blotting

Western blotting is a method for detecting a specific antigen in a sample of 

tissue/cell homogenate. T h e  method is dependent on the use of a high-quality 

antibody directed against a desired protein and visualisation of immobilised 

antigens directly or indirectly with horseradish peroxidase (HRP) labelled 

antibodies.

2.9.1 Sample preparation

Eyes were isolated from chick embryos at developmental stages (ED4-ED21) 

as described in section 2 .2 .1 . After dissection in PBS, corneas were incubated 

in Dispase II (2.4U/ml) (Roche Diagnostics Ltd, UK) at 37°C. The number of 

corneas dissected at each stage was established experimentally in order to 

obtain the required protein concentration for further experiments (Table 2.3). 

Time of incubation in Dispase II was optimised for ease of epithelial removal 

and differed depending on the developmental time point as shown in Table 2.3.

Table 2.3 Number of eyes used in sample preparation and time of incubation in Dispase II for 
each developmental time point

Embryonic day 6 8 10 12 13 14 16 18 21

No. o f eyes 120 120 100 100 80 80 60 40 30

Time [hours] 7/60 0.25 0.5 1 1.15 1.25 1.35 1.45 3
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2.9.2 Protein extraction

The epithelia, after incubation in Dispase II, were dissected away from 

the stroma (Fig. 2.1) and placed into 250pl of protein extraction buffer on ice. 

Protein extraction buffer contained 1XRIPA buffer (0.5M Tris-HCI pH 7.4, 1.5M 

NaCI, 2.5% deoxycholic acid, 10% NP-40, 10mM EDTA) (Upstate, UK) with the 

addition of 2.5pl of protease inhibitor cocktail (Sigma-Aldrich, UK). Tissue was 

homogenised using a rotor (Kimble Kontes LLC, Belgium) for 30-45 seconds 

and placed on a rotator (Benley Spiramix, UK) for 30 minutes at 4°C. The 

sample was then centrifuged at 10,000g for 15 minutes at 4°C. Subsequently, 

supernatant was removed and aliquoted (10pl) into new ependorff tubes before 

storage at -20°C. Pellets were resuspended and checked for protein 

concentration as described below in 2.9.3.

2.9.3 Protein quantification

The protein samples collected were quantified using BCA Protein Assay Kit 

(Pierce, UK). The BCA™ Protein Assay is a detergent-compatible formulation 

based on bicinchoninic acid (BCA) for the colorimetric detection and 

quantification of total protein. The method combines reduction of Cu+2 to Cu+1 

by protein in an alkaline medium (the biuret reaction) with the highly sensitive 

and selective colorimetric detection of the cuprous cation (Cu+1) using a reagent 

containing bicinchoninic acid (Smith etal., 1985). A series BSA standards were 

prepared from a 2pg/ml stock solution, as described in Table 2.4.

Table 2.4 The dilution series of the BSA standard for BCA protein assay

Vial Diluent H20  (yi) BSA (gl) Final BCA concentration fag/ml)

A 0 300 of stock 2,000

B 125 375 of stock 1,500

C 325 325 of stock 1,000

D 175 175 of vial B 750

E 325 325 of vial C 500

F 325 325 of vial E 250

G 325 325 of vial F 125

H 400 100 of vial G 25

I 400 0 0
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Figure 2.1 Isolation of chicken corneal epithelium from adjacent stroma, a) The cornea of 
posthatched chicken after incubation in Dispase II, b) the epithelium was dissected out using 
forceps, c) the removed corneal epithelial sheet. Scale bar 1mm. x 10.
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The volume of BCA working reagent (WR) was calculated using the following 

equation:

Total volume of WR = (no. of samples + no. standards) x number of replicates (2)

x volume required per sample (200pl)

The WR was prepared by adding 1 volume of BCA reagent B to 50 volumes of 

reagent A (50:1, Reagent A:B) in the volume required to run each sample (plus 

BSA standards) in duplicate.

25pl of each standard and sample was added to a 96 well microplate, then, 

200pl of the W R was added to each well. The microplate was covered with 

aluminium foil and incubated at 37°C for 30 minutes. Following incubation, the 

absorbance was measured at 570nm on a plate reader (Multiscan Ascent® 

Labsystems, UK). The absorbance readings were exported to Excel (Microsoft) 

and standard curves were created by plotting the average measurement of 

each dilution of BSA standard into a regression of linear fit. The concentration 

of total protein in each sample was calculated by reference to the standard 

curve.

2.9.4 Preparation of protein samples

The supernatants from ED6 to posthatch epithelia were diluted to obtain the 

same concentration (2.4pg/10pl and 7pg/10 pi, for PCNA and CK3 respectively) 

by addition of the lysis buffer (RIPA buffer, Upstate, UK). Equal volumes (10pl) 

of the diluted protein sample and working sample loading buffer Laemmli (Bio- 

Rad, UK) were added to an eppendorf (Appendix II). These samples were then 

boiled at 100°C for 5 minutes on a heating block (Grant QBT2, UK) to 

denaturate proteins. Following boiling, the protein samples (10pl), for PCNA 

and CK3 respectively were loaded on the gel, prepared as described below.

2.9.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS- 

PAGE)
SDS-PAGE is a technique to separate proteins according to their 

electrophoretic mobility. The anionic detergent SDS dissociates and unfolds 

oligomeric proteins into its subunits. The SDS binds to the polypeptides to form 

complexes with fairly constant negative charge to mass ratios. The
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electrophoretic migration rate through a gel is therefore determined only by the 

size of the complexes. SDS-PAGE is used to estimate a molecular mass of a 

protein, as well as the degree of sample purity (Shapiro etal., 1967).

To run SDS-PAGE the Bio-Rad Mini-Protean® system was used. The resolving 

and stacking gels were made up as described in Table 2.5 (Appendix II). The 

percentage of the resolving gel was altered depending on the molecular weight 

of protein. For PCNA and CK3 - 1 0 %  and 12% gel was used respectively.

Table 2.5 Components of the resolving and stacking gels for SDS-PAGE

Final % 
Range (MW)

Resolving gel (10 ml)
10%

21-100
12%

10-70

Stacking gel (10ml) 

5%

Acrylamide 30% 3.3 ml 4.0 ml 1.67 ml

Distilled H20 4.0 ml 3.3 ml 5.83 ml

1.5 M Tris/HCI 2.5 ml 2.5 ml -

0.5 M Tris/HCI - - 2.5 ml

10% SDS 0.1 ml 0.1 ml 0.1 ml

10% APS 0.1 ml 0.1 ml 0.5 ml

TEMED 0.02 ml 0.02 ml 0.01 ml

The resolving gel (covered with dH20 )  was allowed to set for 10 minutes, before 

the stacking gel mixture was layered on the top of the resolving gel. The gel 

was left to set for an hour, and humidity was maintained to prevent the gel from 

drying out. After an hour, the glass plates with the gel were removed from 

casting frames and placed into the electrode assembly (Bio-Rad, UK), short 

plates inward, to create an inner buffer chamber. The electrode assembly was 

then locked into the clamping frame and placed into the mini tank. The inner 

chamber was filled with approximately 125ml of Running Buffer (see Appendix 

II) and 200ml was added to the outer chamber.

Samples were loaded with equal amount of protein; 10pl of protein/loading 

buffer mix was added to each well (-2 .4  or 7pg of protein). 5pl of molecular 

weight marker (Precision Plus Kaleidoscope Protein Standard, range 10-250
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kDa, Bio-Rad, UK) was added to the outermost lanes. The gel was run at 120V, 

300mA for 10 minutes and thereafter the power was increased to 150V for the 

next 50 minutes.

2.9.6 Transfer of proteins onto the nitrocellulose membrane

After completion of electrophoresis, the gel, nitrocellulose membranes 

(Hybond™ -ECL™, Amersham Bioscences, UK), filter paper and fibre pads 

were placed in Transfer Buffer (Appendix II) for 15 minutes on a rocker. The 

cassette with gel sandwiched between filter paper and membrane was then 

placed in a tank with 600ml of transfer buffer and a frozen cooling unit. Proteins 

were transferred from the gel to a nitrocellulose membrane at 100V, 350mA for 

45 minutes. Subsequently, the nitrocellulose membrane was washed overnight 

with TBS/Tween20 (0.1% Tween20 in TBS washing buffer) (Appendix II) at 4°C.

2.9.7 Blocking non-specific binding

To check the efficiency of the transfer, membranes were stained with Ponceau 

S staining buffer (Sigma, UK) for 3 minutes, and then washed 3 times for 5 

minutes in TBS/Tween20 prior to blocking. To minimise non-specific binding 

approximately 20ml of 5% milk in TBS/Tween20 was applied for 1 hour at room 

temperature. After blocking membranes were washed six times with 

TBS/Tween20 for 5 minutes each time.

2.9.8 Incubation with the primary antibody

The membranes were incubated in 5ml of primary antibodies, diluted in 

TBS/Tween20 containing 1% milk, for 1 hour at room temperature. The 

optimised dilutions were used as shown in Table 2.6. Following incubation with 

the primary antibody, the membranes were washed in six 5-minute changes of 

1x TBS/Tween20.
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Table 2.6 Antibodies used for Western Boltting

Antigen Clone Host Raised
against

Dilution Company Marker

Primary antibodies

Cytokeratin 3 AE5 mouse human 1:2000 MP Biomedicals, 
LLC, UK

epithelial
differentiation

PCNA Pc10 mouse human 1:1000 Abeam, UK proliferation

3-actin 1-19 goat rabbit 1:2000 Santa-Cruz, UK loading
control

Secondary antibody

IgG-HRP goat rabbit 1:10000 Santa-Cruz, UK

IgG-HRP donkey goat 1:10000 Santa-Cruz, UK

2.9.9 Incubation with the secondary antibody

After washing, the membranes were exposed to a secondary antibody 

conjugated with HRP (Santa-Cruz, UK) for 1 hour at room temperature. The 

secondary antibodies were diluted in 1x TBS/Tween20 with 1% milk at 

optimised dilutions (see Table 2.6). Membranes were then washed with the 

TBS/Tween20 for 30 minutes with 6 changes.

2.9.10 Controls
To check specificity of the Western Blotting, one positive control sample (ED6 

developing chicken brain) was used for PCNA western blotting. Negative 

controls included omission of the primary antibody and the use of mouse IgG 

instead of the primary antibody.

2.9.11 Visualisation of the specific protein antigens using ECL+™

For the detection of antibody-antigen complexes, the ECL Plus solution (ECL 

Plus Western Blotting Detection Reagents, Amersham Biosciences, UK) was 

used (Fig. 2.2). The ECL Plus Western Blotting provide a non-radioactive 

method for the detection of immobilised specific antigens conjugated to HRP 

labelled antibodies.

53



CHAPTER TWO Materials and methods

Oxidized 
prod ict

S<co&AaryAJ>-XKP

L _XV
MyVoxd Z C I 

xitroe<Uu lo * «
Detection 
Xyperfilm  EC L

membrane

Figure 2.2 Chemiluminescent detection of protein using ECL Plus (from Amersham ECL Plus 
Western Blotting Detection Reaction product booklet).

The reaction is based on the peroxidase-catalyzed reaction of luminol and 

subsequently enhanced chemiluminescence, where HRP-labelled protein is 

bound to the antigen on the membrane. The resulting light is detected on 

Hyperfilm.

Working solution (adjusted to room temperature for 30 minutes prior to use) 

was prepared by mixing 50 parts of reagent A and 1 part of reagent B and then 

1 ml of the solution was added to each membrane. After 5 minutes incubation, 

excess reagent was removed and membranes were sealed in individual plastic 

pockets and placed in an X-ray film cassette (Amersham, UK). A sheet of film 

(Hyperfilm™, Amersham Biosciences, UK) was placed on top of the plastic 

wallet in a dark room. A number of different exposure times were used in an 

attempt to obtain the best blot, ranging from 0.5 to 10 minutes. Optimised 

exposure times are shown in Table 2.7. Following exposure, film was incubated 

with developer solution (Photosol Ltd, UK) for 30 seconds and transferred to 

fixer solution (Photosol Ltd, UK) for the next 30 seconds. In the final step, the 

films were rinsed in water and air dried.

Table 2.7 Optimised protocols for detection of protein bands

PCNA AE5 B-Actin

Optimal exposure time to ECL+ [min] 1 15 0.5

Developing [min] 0.5 3 0.5

Fixing [mini] 1 3 1

Washingjmin^^ 3 3 3
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2.9.12 Stripping the membranes

In order to normalise the band detected, the next day after overnight incubation 

in TBS/Tween20 at 4°C, membrane was stripped and re-probed with an 

antibody specific to the house-keeping protein, (3-actin.

Stripping buffer (~20ml) (Appendix II) was added to each membrane for 10 

minutes, twice. Following removal of stripping buffer, membranes were 

incubated in two changes of 1XPBS for 10 minutes each. Membranes were 

then placed into 1XTBS/Tween20 for 5 minutes before they were ready for the 

blocking stage. Blocking and incubating with antibodies were performed as 

described in sections 2.9.7-2.9.9, before detection of bands with ECL Plus 

(2.9.11).

2.9.13 Analysis of the Western Blotting results

The films with detected bands were scanned (Epson Expression 1680 Pro). 

Bands were then semi-quantified by densitometry using Labworks™ software 

(Media Cybernetics, UK).The optical density was measured for each band and 

results were imported to Microsoft® Excel. Data were collected from three 

experiments and normalised with (3-actin level. Mean normalised band intensity 

along with the standard error of the mean was calculated for each protein at 

each time point. Comparisons between the nine time points (embryonic days) 

were performed using the parametric analysis of the variance test (One-way 

ANOVA) followed by the appropriate post-hoc test (Dunnett T3) for the data log 

transformed when necessary and with normal distribution (SPSS v.12). 

Significance was taken at p<0.05.

2.10 Preparation of samples for microarray analysis

2.10.1 Isolation of corneal epithelium and RNA stabilisation

Chick embryos corneas were dissected from eyes isolated from different 

embryonic stages (ED 6, 10,12,14,16,18, posthatch) and separated into right 

and left eyes. After dissection in PBS (RNase, DNase -  free), corneas were 

incubated with Dispase II (2.4U/ml) in 37°C. Time of incubation was optimised 

and differed depending on the developmental time-point as detailed in Table
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2.3 and the number of epithelia in each sample set is shown in Table 2.8. 

Following incubation, the epithelium was peeled off in two drops of RNA/ater® 

(Sigma-Aldrich, UK). RNA was stabilised in tissue by preservation in RNA/ate/®. 

Tissue was stored at 4°C for up to a month or at -80°C for archiving.

Table 2.8 Number of epithelia isolated for each time point

ED 6 10 12 14 16 18 21

Set I 25 13 12 13 14 15 11

Set II 28 13 16 16 16 16 9

Set III 29 14 15 14 16 17 5

2.10.2 RNA extraction from tissue
In order to obtain high yield and pure RNA from the tissue, RNeasy® Micro Kit 

from Qiagen (UK) was used. The RNeasy® Micro technology combines the 

selective binding properties of a silica-gel-based membrane with the speed of 

microspin technology. The procedure allows purification of total RNA (maximum 

45pg) from small amount of tissues (maximum 5mg). The maximum amount 

that can be used is limited by the volume of Buffer RLT required for efficient 

lysis and the maximum loading volume of the RNeasy MinElute Spin Column 

(~700pl). Guanidine-isothicyanate-containing lysis buffer and ethanol are 

added to the sample to create conditions that promote selective binding of RNA 

to the RNeasy MinElute membrane. DNase and any contaminants are washed 

away, and high-quality total RNA is eluted in RNase-free water (RNeasy® Micro 

Kit Handbook, Qiagen).

RNA was isolated from chick corneal epithelia using Qiagen Micro Kit (Qiagen, 

UK) according to the protocol described below. The excess RNA/ate/®from the 

Eppendorf tube was removed and replaced with 350pl of working buffer RLT 

(provided with kit, see Appendix II). Tissue was homogenised immediately 

using a conventional rotor homogeniser (Kontes Gerresheimer, UK) and the 

tissue lysate was then centrifuged at 10,000g for 3 minutes at maximum speed 

in a microcentrifuge (Jencons-PIc, UK). Subsequently, the supernatant was
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carefully transferred to a new tube by pipetting. In the next step, 350pl of 70%  

ethanol was added to the homogenised lysate, and mixed by pipetting.

The sample (including precipitate) was applied to an RNeasy MinElute Spin 

Column (Qiagen, UK), and centrifuged for 15 seconds at >8,000g. Next, 700pl 

Buffer RW1 (provided with kit) was added and the column was centrifuged for 

15 seconds at>8,000g. Following centrifugation, the column was transferred 

into a new collection tube and 500pl of Buffer RPE (diluted in 4 volumes of 

100% ethanol) was added. The column was then centrifuged for another 15 

seconds at >8,000g to wash the column. Subsequently, 500 pi of 80% ethanol 

was added, before centrifugation for 2 minutes at >8,000 g. In the final step, 

the columns were centrifuged with open caps at full speed for 5 minutes. Then, 

10pl per sample of RNase-free water was added directly onto the centre of the 

silica-gel membrane and columns were centrifuged for 1 minute at 10,000g. To 

ensure a complete RNA elution, the eluent was added again onto the column 

and centrifugation was repeated.

2.10.3 Optimisation of the protocol for RNA extraction

During optimisation of the protocol for RNA isolation, another approach was 

tested involving DNAse I (Qiagen, UK) digestion on the column to remove 

traces of DNA that may copurify. DNase I stock solution was prepared by 

dissolving lyophilised DNase I (1500 Kunitz units) in 550pl of RNase-free water. 

To prepare a working solution, 10pl of DNase I stock solution was added to 

70pl of Buffer RDD (provided with kit). The working mix was then applied onto 

the RNeasy MinElute silica-gel membrane for 15 minutes at room temperature 

following first application of RW1 Buffer (see 2.10.2). After 15 minutes, a further 

350pl of Buffer RW1 was added and the column was centrifuged for 15 

seconds at 8,000g. The remaining protocol was performed as described in 

section 2.10.2.

2.10.4 RNA quantitative and qualitative analysis

To determine integrity and measure the concentration of total RNA, samples 

were obtained from chicken corneal epithelia at different developmental stages. 

The 3pl total RNA from each sample was checked for purity, using a PicoDrop
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spectrophotometer (Genetic Research Instrumentation Ltd, UK), by measuring 

absorbance at 260nm and 280nm wavelength and computing the ratio.

RNA integrity and quantity of small amounts of total RNA was determined using 

the Agilent System (Agilent Technologies, UK). The Agilent RNA kit contains 

chips and reagents designed for analysis of RNA fragments. Each RNA chip 

contains an interconnected set of microchannels that is used for separation of 

nucleic acid fragments based on their size as they are driven through it 

electrophoretically. Workflow chart is shown in Figure 2.3. The limitation of the 

quantitative range of the assay is 25-500ng/pl total RNA and 5-5000ng/pl for 

the qualitative range.

Gal dya mix 

1 |tl dye
65 pi filtered gel

o o o o
o o o e

1 |il ladder5 |il markerpressurize

Figure 2.3 Principles of Agilent System for analysis of total RNA (from Agilent RNA 6000 Nano 
Kit Guide).

Ge 1-Dye Mix preparation

All reagents were allowed to equilibrate to room temperature for 30 minutes 

before use. Firstly, 200pl of gel matrix was filtered with a 0.2pm filter by 

centrifuging at 1,500g for 10 minutes at room temperature. Subsequently, 1pl of 

RNA 6000 Nano dye concentrate (Agilent Technologies, UK) was added to a 

65pl of filtered RNA 6000 Nano gel (Agilent Technologies, UK) and the tube 

was centrifuged for 10 minutes at 13,000g.
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Loading the Gel-Mix onto chip

To prepare the capillary electrophoresis chip, 9pl of the gel-dye was added to 

the dedicated well on the chip and dispensed using a syringe with priming 

station (Agilent Technologies, UK).

Loading the RNA 6000 Nano Marker and molecuiar weight marker

Next, 5pl of RNA 6000 Nano marker were pipetted into the molecular weight 

marker (WM) and sample wells, prior to the addition of 1pl of WM into the 

ladder well.

Sample preparation

To eliminate secondary structure formation of RNA, samples were heated at 

70°C for 2 minutes before being loaded to the chip.

Loading of sample

In the final step, 1pl of each sample was loaded into each of the 12 sample 

wells. The chip was shaken on top of the IKA vortexer for 60 seconds at 1,000g 

and then run in the Agilent 2100 Bioanalyzer.

Chip processing

The chip was run in the Agilent 2100 Bioanalyzer within 5 minutes after addition 

of samples. Results were analysed by the integrated Agilent software.

2.11 Microarrays preparation

GeneChip® probe arrays are manufactured using technology that combines 

photolithography and combinational chemistry. Up to 1.3 million different 

oligonucleotide probes are synthesized on each array. Each oligonucleotide is 

located in a specific area on the array called a probe cell. Each probe cell 

contains hundreds of thousands to millions of copies of a given oligonucleotide. 

During the laboratory procedure, labelled with fluorescent markers, RNA (or 

DNA) fragments (referred to as the “target”) are hybridised to the probe array. 

The amount of signal, emitted after excitation by laser at a characteristic 

wavelength, is directly in proportion to the amount of dye at the spot on
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microarray. These values are obtained and quantified on the scanner. The 

following major steps include:

1. Target preparation

2. Target hybridisation

3. Fluidics station setup

4. Probe array washing and staining

5. Probe array scan

6. Data analysis

2.11.1 Preparation of Spike-in Controls and T7-Oligo (dT) Primer/Poly-A 

Controls Mix

Reagents for this step were supplied with the GeneChip® Eukaryotic Poly-A 

RNA Control Kit and in a GeneChip® One-Cycle cDNA Synthesis Kit 

(Affymetrix).

Preparation of Spike-in Controls

In order to monitor the amplification and labelling process, the same volume 

(2pl) of four controls (lys, phe, thr, dap) were spiked directly into RNA samples 

prior to amplification and labelling. The spike-in controls were diluted in Poly-A 

Control Dil Buffer to the final concentrations (referred to as ratio of copy 

number) as shown in Table 2.9.

Table 2.9 Final concentrations of Poly-A RNA controls in samples

Poly-A RNA Spike Final concentration 
(ratio of copy number)

lys 1:100,000

phe 1:50,000

thr 1:25,000

dap 1:7,500
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Preparation of T7-Oligo (dT) Primer/Poly A Controls Mix

2pl of diluted Poly-A controls were mixed with 2|jl of 50 pM T7-Oligo(dT) Primer 

and were brought to the total volume of 10pl with RNase-free water (Ambion, 

UK).

2.11.2 First round RNA amplification

For the first round of amplification, reagents from GeneChip® One-Cycle cDNA 

Synthesis Kit (Affymetrix, UK) were used for cDNA synthesis.

First strand cDNA synthesis

Single strand cDNA was synthesised using an oligonucleotide that incorporated 

the T7 promoter at 3 ’ end mRNA of 10 pi total RNA-control spike mixture.

Firstly, 1pg of total RNA of each sample were added to the T7-Oligo (dT) 

Primer/Poly A Controls Mix (1:1) with RNase-free water (final volume 12 pi). 

The mixture was centrifuged for approximately 5 seconds heated at 70°C for 10 

minutes to reduce secondary structure formation and the sample was left to 

anneal at 4°C for at least 2 minutes.

Then, reverse transcriptase reaction mixture was prepared (buffer and reverse 

transcriptase premixes were provided in First-Strand Master Mix (Affymetrix) 

(Table 2.10), and 7pl was added to the RNA template (RNA sample/T7- 

Oligo(dT) Primer/Poly-A Controls Mix) and incubated at 42°C for 2 minutes.

Table 2.10 Preparation of First - Strand Master Mix

Component Volume [pi]

5X 1st Strand Reaction Mix 4

DTT, 0.1 M 2

dNTP, 10 mM 1

Total volume 7
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Following incubation, 1[il of Superscript™ II (Invitrogen, UK) (Appendix II) was 

added to each RNA sample for a final volume of 20pl. The RT reaction was 

performed at 42°C for 1 hour, and then samples were cooled for at least 2 

minutes at 4°C in order to maintain RT enzyme activity.

Second strand cDNA synthesis

The second strand of cDNA was synthesised by adding 130pl of the Second- 

Strand Master Mix (Affymetrix) (Table 2.11) to each first-strand synthesis 

sample for a total volume of 150 pi. Samples were centrifuged for 5 seconds 

and then incubated for 2 hours at 16°C. Next, 2pl of T4 DNA polymerase were 

mixed with the samples and left for 5 minutes at 16°C. In the final step, 10pl of 

0.5M EDTA was added.

Table 2.11 Preparation of Second - Strand Master Mix

Component Volume [pi]

RNase-free water 91

5X 2nd Strand Reaction Mix 30

dNTP, 10 mM 3

E. coli DNA ligase 1

E. coli DNA Polymerase I 4

RNase H 1

Total volume 130

Cleanup of double-stranded cDNA

All components needed for this step were supplied with the GeneChip® Sample 

Cleanup Module (Qiagen, UK).

600pl of cDNA Binding Buffer were added to the double-stranded cDNA and 

500pl was applied to the cDNA Cleanup Spin Column following centrifugation 

for 1 minute at 8,000g. Then columns were washed with 750pl of the cDNA 

Wash Buffer and centrifuged for the same time and speed. Columns were then

62



centrifuged with open caps for 5 minutes at maximum speed, before elution 

with 14pl of cDNA Elution Buffer (1 minute, at maximum speed).

2.11.3 IVT labelling reaction

For the synthesis of biotin-labelled cRNA, GeneChip® IVT (in vitro transcription) 

Labelling kit was used (Table 2.12).

Reagents were mixed with 12pl of double-stranded cDNA template and RNase- 

free water was added to a final volume of 40pl. The IVT labelling reaction was 

performed in a thermal cycler for 16 hours at 37°C.

Table 2.12 IVT Reaction Mix

Component Volume [pi]

10X IVT Labelling Bufer 4

IVT Labelling NTP Mix 12

IVT Labelling Enzyme Mix 4

Total volume 20

2.11.4 Cleanup of biotin-labelled cRNA
RNA generated from the IVT labelling reaction was purified using reagents 

supplied with the GeneChip® Sample Cleanup Module. Each sample was 

mixed with 350pl of IVT cRNA Binding Buffer and then with 250pl of absolute 

ethanol, before being applied to the cRNA Cleanup Spin Column and 

centrifuged for 15 seconds at 8,000g. Subsequently, 500pl of IVT cRNA Wash 

Buffer was pipetted onto the spin column and centrifuged for 5 minutes at 

maximum speed. Before elution with 11 pi of RNase-free water, 500pl of 80%  

ethanol was added onto the spin column and centrifuged for 15 seconds at 

8,000g.
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2.11.5 Fragmentation of cRNA

Fragmentation was performed using the Affymetrix Fragmentation Kit 

(Affymetrix, UK). 20pg of biotin-labelled cRNA (final concentration 0.5pg/pl) was 

mixed with 8pl of 5X fragmentation buffer, and RNase-free water was added to 

make a final volume of 40pl. The reaction mixture was incubated at 94°C for 35 

minutes in the thermal cycler. The reaction was terminated at 4°C. 1pl of 

cRNA was used to check the fragmentation.

2.11.6 GeneChip® hybridisation

All components were provided by Affymterix Hybridisation Kit (Table 2.13, 

Appendix II).

Table 2.13 Hybridisation Cocktail for Single Probe Array

Component Volume [pi] Final concentration

Control Biotin Labelled 
oligo B2, 3 nM

5 50 pM

20X Eukaryotic 
Hybridisation Controls 
(bioB, bioC, bioD, ere)

15 1.5, 5, 25, 100 pM 
respectively

Herring Sperm DNA 
(10 mg/ml blocking agent)

3 0.1 mg/ml

Acetylated BSA
(50 mg.ml blocking agent)

3 0.5 mg/ml

2X MES Hybridisation 
Buffer

150 1X

DMSO 30 10%

h 2o to final volume of 300

Final volume 300

Components of Hybridisation Cocktail were mixed with 15pg of fragmented 

cRNA to give a total volume of 300pl. The reaction mixture was denatured at 

99°C for 5 minutes prior to applying to the GeneChip®.

Chicken GeneChip® Arrays (Affymterix) were prehybridised using 200pl of 1X 

hybridisation buffer at 45°C for 10 minutes with rotation (60 rpm). Then, 200pl
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denaturated hybridisation cocktail was applied onto the chip. The GeneChip® 

was hybridised for 16 hours at 45°C and 60rpm in a GeneChip® Hybridisation 

Oven 640.

2.11.7 Probe array wash and stain

After 16 hours of hybridisation arrays were washed and stained in an 

automated process using the GeneChip® Fluidics Station 400. Detailed reagent 

preparation protocols are shown in Appendix II. The following wash and 

staining steps included:

• Post Hybridisation Wash #1: 10 cycles of 2 mixes/cycle with wash Buffer A 

(non-stringent, 6x SSPE, 0.01% Tween-20) at 25°C,

• Post Hybridisation Wash # 2 : 4 cycles of 15 mixes/cycle with wash Buffer B 

at 50°C (stringent, 100 mM MES, 0.1M [Na+], 0.01%  Tween-20),

• 1st Stain: 10 minutes at 25°C in SAPE solution,

• Post Stain Wash: 10 cycles of 4 mixes/cycle with Wash Buffer A at 25°C,

• 2nd Stain: 10 minutes in antibody solution at 25°C,

•  3rd Stain: 10 minutes in SAPE solution at 25°C,

•  Final Wash: 15 cycles of 4 mixes/cycle with Wash Buffer A at 30°C

2.11.8 Scanning of GeneChip®

GeneChips® were scanned using an Affymterix GeneChip® Scanner 3000 

system. Two scans were conducted using the following settings: pixel value = 

3pm, wavelength = 570nm. Absolute comparison analysis was performed using 

the following setting for scalling:

• All Probe Sets: Target Signal = 500,

• Normalisation: Scale factor = 1.

2.12 Standard and semiquantitative Real-Time PCR

2.12.1 cDNA synthesis
QuantiTect® Reverse Transcription System (Qiagen) was used for reverse 

transcription of total RNA templates. All reagents were provided with the kit. All 

reaction components were centrifuged before use and handled on ice.
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Total RNA samples were diluted to the final concentration of 10ng/|il in RNase 

free water. Subsequently, 0.5pl of RNA template was mixed with components 

for genomic DNA elimination reaction, according to Table 2.14. Each sample 

was incubated for 2 minutes at 42°C.

Table 2.14 Genomic DNA elimination reaction components (per sample)

Component Volume/reaction [pi] Final concentration

gDNA Wipeout Buffer, 7X 2 1 X

Template RNA 0.5 0.25 ng/ pi

RNase-free water 11.5

Final volume 14

Then, the following components of master mix were combined in RNase-free 

tube: 1pl of Reverse Transcriptase, 4pl RT Buffer, 5X (final concentration 1X), 

1pl of RT Primer Mix (includes Mg2+ and dNTPs). Master mix was added to the 

14pl template RNA after gDNA elimination reaction and incubated for 15 

minutes at 42°. The cDNA synthesis reaction was terminated at 95°C for 3 

minutes. Reaction tubes were chilled on ice and used directly for PCR reaction 

or stored at -20°C.

2.12.2 Primers
Primers used for standard and real-time PCR of housekeeping genes were 

taken from the publications. For selected targets, primers were designed using 

Primer3 (http://frodo.wi.mit.edu/) or Primer-Blast

(www.ncbi. nim. nih.gov/tools/primerblast/index. cgi?LINK_LOC=BlastHome) 

based on transcript sequences used to design the probes on the Affymetrix 

chicken array. All primers were checked for secondary structure using the 

Dl N AMelt Server (http://www. bioinfo. rpi. edu/applications/hybrid/twostate- 

foid.php) and their specificity was verified using NCBI nucleotide blast tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The sequences of primers are shown in 

Table 2.15.

66

http://frodo.wi.mit.edu/
http://www.ncbi
http://www
http://blast.ncbi.nlm.nih.gov/Blast.cgi


Table 2.15 Houskeeping genes and primer sequences used for semiquantitative RT-PCR of chick corneal epithelial cDNA

Gene Site on 
sequence

Sequence ( 5 - 3 ) Amplicon size 
(bp)

Primer Annealing 
temperature

Accesion number 
in GeneBank

Reference

GAPDH FW (338) 
RV (501)

GGTGGTGCT AAGCGT GTT A 
CCCT CCACAAT GCCAA

179 58 X01578 Li etal., 2007

B-Actin FW (973) 
RV (1106)

G AG AAATT GTGCGT G ACAT C A 
CCT G AACCT CT CATT GCC A

152 58 L08165 Li etal., 2007

G6PDH FW
RV

CGGG AACCAAAT GCACTT CGT 
CGCT GCCGT AGAGGT AGGGA

122 58 AI981686 De Boever et at., 2008

UB FW
RV

GGG AT GCAG AT CTT CGT G AAA 
CTT GCCAGCAAAGAT CAACCTT

147 58 M11100 De Boever et al., .2008

Atoh7 FW (218) 
RV (452)

T CGTTT G AGG AAGGT GGTT C 
TCGCTGTGCATAAGGATCAC

235 58 AJ001178

Psca FW (369) 
RV (559)

AACAGAGCTCCCATGACCAC 
GT GG ATTGCACACACACACA

191 58 XM_418414

Sh3bgr FW (273) 
RV (426)

AAT G AGG AGCGGT ATT GTGG 
T GT GTT CTGTGTGTGCCT C A

154 58 BX934008

Kcnj2 FW (1210) 
RV (1441)

TTT AGAGGGCATGGT GGAAG 
AAAGG AGTTT GCGTT CG AG A

232 58 U20216

Sfrp2 FW (268) 
RV (415)

AAGCAGT GT CACCCCGATAC 
AGCCGAAAGCAGACAT CACT

148 58 AF218056

Aqp3 FW (196) 
RV (401)

GGAGCTGGCATAGTCTTTGG 
TT G AAGGGAT CCACGAT AGC

206 58 AB358970

H2afy2 FW (955) 
RW (1173)

GCTT AAC AGCCGC AG AAG AC 
CT AGCTT GGCCATTT CTT GC

219 58 CR385118

67



Lyophilised primers were dissolved in 1XTE buffer (pH 8.0) to a final 

concentration of 100pM and stored at -20°C.

2.12.3 Standard PCR

Standard PCR was carried out in order to check for primer specificity and to 

optimise annealing temperatures. All reactions were carried out using 

MegaMix-Blue kit (Cambio Ltd, UK) in 20pl reaction volume in PCR tubes 

(Axygen Scientific, UK). The detailed protocol and list of reagents is shown in 

Table 2.16.

Table 2.16 Standard PCR reaction components (per sample)

Component Volume/reaction [pi] Final concentration

MegaMix-Blue 17

Forward primer (10 pM) 1

Reverse primer (10 pM) 1

Template cDNA 1 0.25 ng/pl

Final volume 20

cDNA from different samples (embryonic day in which expression of target 

gene was the highest according to microarray data) were amplified in a DNA 

thermal cycler (MJ Research, UK) with the following programme in 30 cycles:

• Initial denaturation: 95°C for 3 minutes, 1 cycle,

•  Denaturation: 95°C for 3 minutes,

• Annealing: gradient from 50°C to 70°C for 30 seconds,

• Extension: 72°C for 1 minute,

• Hold: at 72°C for 7 minutes and overnight incubation at 4°C
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2.12.4 Quantitative PCR

Quantitative reverse transcription PCR (RT-qPCR) reactions were carried out in 

0.1ml tubes (Corbett Research, UK) using a RotorGene 6000 (Corbett 

Research, UK). cDNA for all reactions was generated from the same amount of 

total RNA, with the same RT protocol (2.12.1). 2pl of cDNA was used in each 

reaction (individual tube). Samples from three separate RNA pools were run in 

triplicates for each primer set.

The 25pl reaction mixtures contained: 12.5pl of SYBR® Green JumpStart™ Taq 

Ready Mix™ (Sigma, UK) (20 mM Tris-HCI pH 8.3, 100mM KCI, 7mM MgCI2, 

0.05ng/pl Taq DNA Polymerase, 0.4mM of each dNTP; dATP, dCTP, dGTP, 

dTTP), 0.5pl of forward primer (final concentration 0.2pM), 0.5|il of reverse 

primer (final concentration 0.2pM), 9.5pl H20  and 2pl of cDNA template.

Samples for standard curve were prepared as serial dilutions of cDNA sample 

to the final concentration 0.5ng/pl reaction, 0.25ng/pl reaction, 0.125ng/pl 

reaction. Amplification of a number of housekeeping genes was performed as 

the internal control. For negative controls similar amounts of total RNA of each 

sample were subjected to the cDNA synthesis protocol without reverse 

transcriptase. Standards, negative controls and NTC (no template control, 

reverse transcriptase substituted with RNase-free water) were run 

simultaneously with samples in all experiments.

The RT-qPCR was initiated with 3 minutes denaturation step at 95°C. Initial 

denaturation was followed by 40 cycles at 95°C for 30 seconds, annealing at 

58°C for 30 seconds, and a 1-minute extension at 72°C. Cycling was followed 

by a 7 minutes hold at 72°C. The specificity of the amplified RT-PCR products 

was verified by melting peak analysis (30-95°C) after 40 cycles and confirmed 

on 2% agarose gel (2.14.5).

2.12.5 DNA agarose gel electrophoresis

PCR and real-time PCR products were run on 2% agarose gel prepared with 

RNase-free 1XTAE buffer (40mM Tris acetate pH 8.5 and 1mM EDTA). The gel 

was prepared by dissolving 2g of agarose (Sigma-Aldrich, UK) in 100 ml of
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1XTAE buffer and heated in a microwave. 4|il ethidium bromide solution 

(10mg/ml) was added to the gel. Gels were cast and left to cool at room 

temperature. 2.5pl of 5X loading buffer (Qiagen, UK) was added to 10pl of each 

sample before loading on the gel. The gel was then run on a BioRad gel 

electrophoresis apparatus at 80V for 1 hour in 1XTAE buffer. Subsequently, the 

gel was visualised by placing on a UV transilluminator (UVP, UK) and and 

image of the gel was captured using a VisiDoc-lt System (UVP, UK) equipped 

with a thermal printer (Sony, Japan).

2.12.6 Analysis of RT-qPCR

The threshold cycles (Ct) were calculated using RotorGene 6000 Series 

software (Corbett Research, UK). Ct values were transformed to quantities 

using the comparative cycle threshold (Ct) method (delta Ct). Normalisation 

was performed against the two most stable housekeeping genes; G6PDH (6- 

phosphate dehydrogenase) and UB (ubiquitin). Housekeeping genes stability 

was evaluated using the software programmes; NormFinder 

(www.wzw.tum.de/gene-quantification/), geNorm v.3.5

(http://medgen.ugent.be/~jvdesomp/genorm/) and BestKeeper v.1 

(http://medgen.ugent.be/~jvdesomp/genorm/).

Statistical analysis was performed using SPSS package (v.12). Data was 

checked for normality (Shapiro-Wilk test) and homogeneity of variances 

(Lavene test). One-way ANOVA with an appropriate post-hoc test (Tukey or 

Dunnett T3) was performed for data with normal distribution. Otherwise, 

Kruskal-Wallis with post-hoc test was used to identify significant differences 

within the data set.
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MORPHOLOGY AND EPITHELIAL CELL DIFFERENTIATION IN THE 

DEVELOPING CHICKEN CORNEAL EPITHELIUM

3.1 Introduction

The cornea, being the primary refractive element of the eye, is transparent and 

forms the avascular anterior part of the eye globe. It consists of epithelial, 

stromal and endothelial layers, with each layer separated by a specialised 

basement membrane. The epithelium, a non-keratinised outermost multilayer, 

rests on a basement membrane adjacent to Bowman’s layer (characteristic 

feature of primate and avian corneas). It has unique properties that prevent the 

entry of harmful substances into the intraocular tissue (Pajoohesh-Ganji and 

Stepp, 2005).

The development of avian cornea has been studied extensively by various 

authors (Hay, 1979; Hay and Revel, 1969; Coulombre and Coulombre, 1958; 

Coulombre and Coulombre, 1964; Trelstad, 1970) using light and electron 

microscopy for the investigation of ultrastructure and morphology. Despite 

detailed insight into components of the corneal epithelium at the molecular 

level, few quantitative analyses have been performed with respect to 

morphological changes during development.

In this chapter, the Hamburger-Hamilton (HH) stages description is used. 

Hamburger and Hamilton staged chicken embryo development in 1951 and 

aimed to provide a detailed description of developmental events in 

chronological order, starting from laying of the egg and ending with a newly 

hatched chick. A complete register of HH stage series in comparison to the 

days of incubation (embryonic days, ED) is shown in Appendix I.

3.2 Aim
The aim was to understand the pattern of changes in epithelial cell morphology 

and differentiation during corneal development in order to identify critical 

developmental time-points.
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3.3 Experimental design

To evaluate changes in overall morphology of the developing chick corneal 

epithelium, in particular cell shape and number of cell layers, standard 

procedures for Haematoxylin and Eosin staining on paraffin sections of chick 

corneal epithelia from ED4 to ED21 (<12 hours posthatch) were performed as 

described in section 2.3. As described, corneas were dissected every second 

day, except for ED20, which is just prior to hatching.

To determine epithelial differentiation, frozen sections of chicken corneas (n=3 

per stage) at different developmental stages (from ED4 to posthatching) were 

immunolabelled using antibodies raised against pan-CK (AE1/AE3) and CK3 

(CK3, clone AE5) as described in section 2.5.3.1. AE1/AE3 antibody has 

previously been shown to recognise two mutually exclusive families of keratins 

(Tseng etal., 1982) which includes subfamily A (acidic keratins: 10, 13, 14, 15, 

16, 19, of molecular weights 56.5, 54, 50, 48, 40 kDa, respectively) and 

subfamily B (basic keratins: 1 , 2 , 3 ,  4, 5, 6, 7, 8 of molecular weights 65, 67, 64, 

59, 58, 56, 54 52 kDa, respectively).

The corneal epithelium was examined by dividing it into three regions: the 

centre, periphery and limbus (Figs. 3.1a, b). The number of cell layers was 

quantified at each time-point in triplicate from three different specimens. Three 

fields of view for each region were analysed.

Finally, Western blotting was completed to quantitatively examine the levels of 

expression of CK3, as a measure of chick corneal epithelial differentiation 

during development, as described in section 2.9. For this purpose collection of 

samples started from ED6 onwards, excluding ED4, which did not provided 

efficient amount of protein sample.

Statistical analysis between embryonic day independent groups were 

performed using parametric analysis (One-way ANOVA) followed by the 

appropriate post-hoc test (Dunnett T3 test), since data was normally distributed 

(as determined by Saphiro-Wilk test) and showed unequal variances between 

samples (Lavene's test) (see Appendix III). Pearson correlation was used to
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a)

Figure 3.1 A schematic picture (a) and image (b) of the corneal epithelium showing 
the three regions examined: limbus (1), periphery (2), centre (3). x 5.



test tendency of values Y (i.e. number of cell layers) towards value X 

(developmental stage) (section 2.8 and 2.9.13).

RESULTS

3.4 Histological study of chicken corneal epithelial development

3.4.1 Optimisation of the protocol for H&E

The quality of staining was dependent upon fixation agents and the tissue 

processing method. Thus, appropriate fixation methods were selected 

according to the developmental time points and intended usage of sections. 

Formalin-based fixatives were found to be free of the histologic problems (ie. 

poor structural preservation, weak stainability) and were used along with 

clearing agent (xylene, chloroform). Tissue treatment with 4% PFA and xylene 

gave better results for eyes collected at earlier stages (ED4, ED6), whereas, for 

older eyes (from ED8), better sections were obtained after processing with 10% 

NBF and chloroform. The above combinations of fixatives and clearing agents 

ensured non-wrinkled, flat sections without, crushing tissue structure. Shorter 

fixations with additional washing in PBS and subsequent clearing with xylene 

worked better for specimens with newly developed structures (as described in 

chapter 2.3.1). Xylene, is considered to be used to clear small samples in a 

rapid schedule and is easily and quickly replaced by paraffin, therefore, 

ensuring that soft tissue is not overexposed to reagents. The number of steps 

and time of immersion in alcohols involved in the dehydration process was 

optimised to prepare the tissue for embedding.

As mentioned above, 10% NBF was used for fixation of eyes from ED8 to 

ED21. Using this solution ensures that the pH of the fixative remains constant 

before and during fixation. The 48 hours immersion with optimally buffered 

solution (pH 7.2) allows exchange with tissue fluid during the fixation process 

and thorough penetration of the tissue structure. Additionally, chloroform, being 

gentle on tissue with little hardening did not appear to affect structural integrity 

of the tissue.
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For studies of tissue morphology, paraffin sections were chosen, as the tissue 

structure was better maintained than in frozen sections, and intense colour 

staining with H&E was observed (Fig. 3.2). Counterstaining with eosin (acidic 

dye), allowed visualisation of the basic parts of the cells, in the cytoplasm, 

haematoxylin stained cell nuclei, as a result of binding to lysine residues of 

nuclear histones in acidic conditions.

3.4.2 Morphology of the developing corneal epithelium

Changes in epithelial morphology throughout development were observed in 

cross-sections of H&E stained chicken corneas (Fig. 3.3). These changes 

included alterations in the number of cell layers and the morphology of cells in 

the different layers of the epithelium. One-way ANOVA demonstrated significant 

differences (p<0.05) in the number of cell layers between 10 independent 

groups (ED4 to ED21) within each region, and also between regions within 

each group, except for ED4, ED10, ED12. Test results are shown in Appendix 

III. Values of the average number of cell layers at different developmental 

stages are shown in Table 3.1.

Table 3.1 Average number of cell layers at different developmental age

ED 4 6 8 10 12 14 16 18 21

_  E
8 ^  ■2 q> Mean 2.0 2.2 2.4 2.5 2.8 3.4 4.7 5.0 6.4

- 1 ?•
±SD ±0 ±0.4 ±0.5 ±0.5 ±0.5 ±0.5 ±0.4 ±0.5 ±0.6

Mean 1.8 2.0 2.1 2.2 2.5 3.4 3.9 4.9 5.5
±SD ±0.3 ±0.1 ±0.3 ±0.4 ±0.5 ±0.5 ±0.5 ±0.6 ±0.6

_  E

£  » Mean 1.8 2.0 2.1 2.3 2.8 3.8 4.6 5.3 5.7

Q>
±SD ±0.3 ±0.1 ±0.1 ±0.4 ±0.5 ±0.4 ±0.4 ±0.4 ±0.4
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Figure 3.2 Frozen (a) and paraffin (b) cross-sections of the developing chick corneal 
epithelium at ED16 stained with H&E. Haematoxylin strongly stained frozen sections allowing 
morphological observations. Eosin stained frozen sections very weakly in comparison to 
paraffin. Scale bar = 100pm. x 100.
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Figure 3.3 H&E staining of cross-sections of the developing chick corneal epithelium.
Panels show different regions in the corneal epithelium (limbus, centre, periphery) at ED4-ED21. 
Between ED4 (a-c) and ED10 (j-l) the epithelium was two cells thick. Epithelial stratification began 
at ED10 (g-i) and was clearly seen at ED14 (p-r). By ED18 (v-x), the epithelium consisted of 5 to 
6 cell layers. At ED21, the posthatched epithelium was composed of 6 to 7 cell layers (y-a). Arrows 
indicate Bowmans layer in the central and peripheral epithelium. Scale bar = 100pm. x 100.



An increase in the number of cell layers in the corneal epithelium was 

demonstrated with increasing developmental age (Figs. 3.4, 3.5). The increase 

in number of cell layers in the corneal epithelium was significant in all regions 

from 2 cell layers at ED4 up to 7 in later development; ED18 and ED21 

(Pearson correlation r=0.891, p<0.01, n=3) (Figs. 3.3, 3.5) (Appendix III).

1
*

8 12 14 16 18 202 4 6 10

Developmental days (ED)

Figure 3.5 Number of cell layers in chick corneal epithelium throughout development. The 
number of cell layers increased significantly with increasing developmental age (correlation 
coefficient r=0.891 p<0.01, n=3).

The entire corneal epithelium, was two cells thick from ED4 (HH23) (Figs. 3.3a- 

c) to ED8 (HH34) (Figs. 3.3g-i), consisting of one round basal and one 

superficial cell layer throughout the entire epithelium. By ED10 (HH36) two cell 

layers remained in the central epithelium (Fig. 3.3k,I), but an additional layer 

was observed in the limbus (Fig. 3.3j). Differences in the number of cell layers 

between ED4, ED6 and ED8 were not statistically significant for central and 

peripheral regions, whereas, in the limbal epithelium significant differences 

were demonstrated between ED4 and ED8 (p<0.05).
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Figure 3.4 Changes in the number of epithelial cell layers throughout chick corneal 
development. Results obtained from three experiments were combined to give the average 
number of cell layers for each developmental stage. Error bars displayed represent the 
standard deviation from the mean, (a) Limbus: epithelial cell layers increased from 2 at ED4 to 
6-7 by ED21, (b) Periphery: increased from 2 at ED4 to 5-6 layers by ED21, (c) Centre: from 
two at ED4 to 5-6 by ED21 (n=27).



From ED10 onwards, the outermost cell layer showed signs of early 

stratification with the appearance of flattened superficial cells in all epithelial 

regions but the number of epithelial cell layers was not significantly different 

between central, peripheral and limbal epithelium at this time point (Figs. 3.4, 

3.5).

In earlier developmental stages (up to ED10) the limbal epithelium was 

distinguished from peripheral epithelium by its irregular, pleated form. In later 

stages (ED12 onwards), the junction region was delineated by the termination 

of Bowman’s layer. Although, Bowman's layer was clearly identified in the chick 

cornea at ED16 (Figs. 3.3t,u), the beginning of its formation was observed in 

the central epithelium at ED12 (Fig. 3.3o).

From ED12 (HH38) onwards, the number of cell layers increased from three to 

four layers in all epithelial regions (Figs. 3.3m-o, 3.4). All regions demonstrated 

the beginning of epithelial stratification at this stage with definitive flattening of 

the superficial cells in the outermost cell layer (Figs. 3.3m-o). Also, the number 

of cell layers in the central epithelium at ED12 was significantly different from all 

embryonic days (p<0.05).

The shape of basal cells in central and peripheral epithelium progressed from 

an oval shape (from ED4 to ED13) to columnar in the later stages (from ED14 

to ED21) (Fig. 3.3). The exception was the limbal region, in which the shape of 

basal cells remained elliptical until ED10 (Figs. 3.3a-j), and thereafter columnar 

in shape. The appearance of wing-like cells between basal and superficial cell 

layer was also evident at ED10 (Figs. 3.3j-l). However, up to ED12, the wing 

cells were oval (Figs. 3.3a-j), thereafter (E D M  onwards), the wing cells had a 

more irregular shape (Fig 3.3p-a).

At E D M  (HH40), compared to ED12, one or two additional layers of suprabasal 

cells were observed throughout the epithelium (Figs. 3.3m-r, 3.4). The number 

of cell layers in the central and limbal region at E D M  was significantly different 

from other embryonic days, but not from ED13 (p<0.05). These changes

82



coincided with the appearance of Bowman’s layer, which appeared to be fully 

formed by ED16 (HH42), where it clearly separated the stroma and epithelium 

(Figs. 3.3t-u). The latter consisted of four to five epithelial cell layers at this 

stage (Figs. 3.3s-u) and showed significant differences in all regions when 

compared to earlier and later time points (p<0.05), with exception of the limbal 

epithelia at ED18.

By ED18 (HH44), the epithelium, from its superficial aspect, included one-to- 

two flattened superficial cell layers, three to five suprabasal wing-like cells 

and a single layer of columnar shaped basal cells (Figs. 3.3v-x). All cells 

appeared to be in close proximity to each other. The morphology of the 

epithelium at ED18 was similar to that observed posthatch ED21, except that 

posthatched epithelium had one or two additional suprabasal wing cell layers 

observed in all epithelial regions (Figs. 3.3y-a). Both ED18 and posthatch ED21 

were statistically different in epithelial cell layer number to each other and the 

earlier stages within epithelial regions except for central epithelium (p<0.05).

3.5 Epithelial cell differentiation in corneal chick development

3.5.1 Optimisation of the protocol for markers of epithelial differentiation
In order to optimise the protocol for immunofluorescent labelling with 

monoclonal antibodies AE1/AE3 and AE5, a number of different pretreatments 

were used. Immunolabelling with antibodies on both paraffin and frozen 

sections was carried out to determine which provided optimal labelling. An 

example is shown in Figure 3.6. It was observed that frozen sections provided 

better immunofluorescent labelling with background staining greatly reduced, 

when compared to that in wax sections. Although, wax is the most widely used 

embedding medium in routine histology, and paraffin sections produce 

satisfactory results for the demonstration of the majority of tissue antigens, in 

some cases in this study a high background was observed. Additionally, 

aldehyde fixation might be harmful for some antigens, and under this condition, 

much better results are obtained when tissue is rapidly fresh frozen in liquid 

nitrogen and cut with a cryostat without infiltrating with sucrose. Cryostat
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Figure 3.6 Comparison of immunolabelling for mAb AE1/AE3 (green) in paraffin (left panel) 
and frozen (right panel) sections of chicken cornea at ED16. mAb AE1/AE3 binding sites were 
labelled green (Alexa Fluor 488 conjugated secondary antibody) and cell nuclei was stained 
blue by Hoechst 33342. Labelling in frozen sections provided a signal of better quality with 
reduced background staining. Scale bars = 20pm. x 20.



sections are not processed through organic solvents or high heat, which can 

destroy the antigenicity.

Further modifications of the protocol included: different dilutions of primary 

antibodies, different concentrations of both blocking serum and Triton-X-100, 

presence or absence of one/both of them. Examples of immunolabelling with 

different parameters for AE1/AE3 and AE5 are shown in Figure 3.7.

The lack of immunofluoresence was observed in sections incubated with 5% 

donkey serum (blocking agent) for 20 minutes, in the presence of Triton-X-100 

(Fig. 3.7a-c) as well as, in sections incubated with 10% donkey serum for 20 

minutes and Triton-X-100 (Fig. 3.7d-f). Sections treated with 0.1% Triton-X-100 

for 5 minutes and with 5 %  blocking agent for 20 minutes revealed staining in 

the central and peripheral epithelium, with the reduced background compared 

to other incubations (Fig. 3.7g-i). Similarly, different optimisation protocols for 

AE5, including incubation with or without blocking agent and 0.1% Triton-X-100 

did not result in appearance of AE5-positive cells (Fig. 3.7j-r). Therefore, the 

final pretreament protocol for AE1/AE3 immunolabelling included the following 

parameters: 5% blocking agent for 20 minutes, with the exclusion of the Triton- 

X-100 treatment (section 2.5.3.1, Fig. 3.8). For AE5, optimal labelling was 

obtained after pre-treatment with a 10% blocking agent for 20 minutes and 

0.1% Triton-X-100 for 5 minutes (section 2.5.3.1, Fig. 3.9).

3.5.2 Immunolocalisation of a broad spectrum of cytokeratins (pan-CK, 

AE1/AE3 clone)
Immunolocalisation of pan-CKs was performed to evaluate cytokeratin 

distribution during chick corneal development, from ED4 to ED18 and ED21 

(posthach <12 hours) epithelium. Frozen sections of chick cornea were labelled 

with mAb AE1/AE3, according to the protocol described in section 2.5.3.1.
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limbus periphery centre

5% blocking agent 20 minutes, with 0.1% Triton-X-100 10 minutes

wmwm
10% blocking agent 20 minutes, with 0.1% Triton-X-100 10 minutes

5 % blocking agent 20 minutes, with 0.1% Triton-X-100 for 5 minutes

5 % blocking agent 20 minutes, without 0.1% Triton-X-100

without blocking agent, with 0.1% Triton-X-100 for 10 minutes

without blocking agent, without Triton-X-100 for 10 minutes

Figure 3.7 Comparison of the effects of different parameters on immunofluorescent labelling 
by mAb AE1/AE3 (1:100) (in ED12) and AE5(1:50) (in ED16) in different regions of chick 
corneal epithelium, on frozen sections. Columns represent three epithelial regions 
(limbus, periphery, centre), (a-i) sections labelled with AE1/AE3, (j-r) sections labelled with 
AE5. As blocking agent donkey serum was used in different concentrations. Scale bars = 
20pm. x 20.
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Figure 3.8 Pan-CK (AE1/AE3) immunolabelling of the developing chick corneal epithelium.
Panels show different regions in the corneal epithelium (limbus, centre, periphery).
Immunolabelling was absent in the epithelium from ED4 to ED8 (a-i). At ED10 (j-l) and ED12 (m,n)
staining was restricted to the superficial layers in the limbus and periphery. From ED16 onwards 
(s-a ), the entire corneal epithelium was labelled, with the exception of the limbal basal cells 
(indicated by arrows). Cell nuclei were stained blue by Hoechst 33342. Negative controls (ED12); 
mouse anti-GFP (c1-c3) and mouse IgG (c4-c6) show no staining in all regions (c1-c3). Part of the
eyelid is visible in figure (o). Scale bars = 20pm. x 40 , c4-c6 x 20.



Immunofluorescent labelling was not observed between ED4 and ED8 (Figs. 

3.8a-i). Pan-CK immuno-positive labelling was first observed at ED10, in the 

superficial cell layer throughout the corneal epithelium (Figs. 3.8j-l). By ED12, 

immunolabelling was present in the superficial layer in the limbal epithelium, in 

the peripheral epithelial basal cell layer, and throughout the whole thickness of 

the central epithelium (Figs. 3.8m-o). At ED16, the labelling pattern was similar 

to that observed at ED12 and ED M , except that, staining was also present in 

the subrabasal cell layers in the limbal epithelial region (Figs. 3.8s,u). By ED18 

and in ED21 posthatch corneal epithelium, immunolabelling was restricted to 

suprabasal layers in the limbus, but observed throughout the central and 

peripheral corneal epithelium (Figs. 3.8p-a). Labelling was not observed in 

negative controls, mAb anti-GFP and mouse IgG applied in place of the primary 

antibody (Figs. 3.8c1-c6).

3.5.3 Immunolocalisation of cytokeratin 3 (CK3, AE5 clone)
CK3 expression in the developing chick epithelium was examined 

by immunostaining with mouse anti-human monoclonal antibody AE5 at 

different time-points (Fig. 3.9). CK3-positive cells were first observed at ED12 in 

the superficial cell layer of the limbal and peripheral epithelium, whereas, 

uniform labelling throughout the entire thickness of the central epithelium was 

noted (Figs. 3.9m-o). By ED M , additional labelling was observed in the basal 

cell layer of central and peripheral epithelium (Figs. 3.9q, r).

By ED16, immunolabelling was demonstrated in throughout the corneal 

epithelium with the exclusion of the limbal basal cells (Fig 3.9s-u). This labelling 

pattern remained constant in the ED18 (Fig. 3.9v-x) and posthatch ED21 

corneal epithelia (Figs. 3.9y-a). Labelling was not observed in any corneal 

epithelial regions in negative control sections (Figs. 3.9c1-c6).
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Figure 3.9 CK3 (AE5 clone) immunolabelling of chick corneal epithelium.
Panels show selected regions of corneal epithelium (limbal, peripheral, central), at ED6 to 
posthatch. CK3 expression in superficial cell layers of limbus and peripheral epithelium commenced 
at ED12 (m, n) and was maintained in the limbus by ED14 (p). By ED14 staining was observed 
throughout epithelium in the peripheral (q) and central region (m), AE5 positive cells were absent 
in basal cells of limbal epithelium at ED12 to ED18 (left panel, indicated by arrows). Cell nuclei 
were stained blue by Hoechst 33342 Negative controls (ED18); mouse anti-GFP (c1-c3 ) and 
mouse IgG (c4-c6) show no staining in all regions. Part of the eyelid is visible in figure (o). Scale 
bars = 20nm. x 40.



3.5.3.1 Immunoblotting for CK3
Western blotting was performed to examine the expression of CK3 protein in 

the chick corneal epithelium during development. Eight developmental stages 

were evaluated: ED6, ED8, ED10, ED12, E D M , ED16, ED18 and ED21 

(posthatch <12 hours). CK3 protein expression was confirmed in the corneal 

epithelium from ED10 onwards by immunodetection of 70 kDa bands (Figure 

3.10a).

The specificity of the CK3 bands was monitored by enclosed negative controls, 

such as without primary antibody, or with the mouse IgG. CK3 protein was not 

detected in control lanes.

Densitometric analysis was carried out to identify differences in protein 

expression throughout epithelial development. An increase in the CK3 

expression in the corneal epithelium was demonstrated with increasing 

developmental age (Pearson correlation r=0.891, p<0.01, n=3) as shown in 

Figure 3.11.
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Figure 3.11 Normalised optical density of CK3 bands in developmental time points of chick 
corneal epithelium, ED6 to ED21. The expression level of CK3 protein increased significantly 
with increasing developmental age (correlation coefficient r=0.951 p<0.01, n=3).
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Figure 3.10 Western blot detection of CK3 protein in developing chick corneal epithelium. 
10pg of protein per sample were loaded to each well electrophoresed, transferred to 
nitrocellulose membrane and incubated with anti-CK3 antibody, (a) A specific band of 
approximately 70 kDa was observed for CK3 from ED10, onwards. p-Actin (used as 
housekeeping protein) was detected as a band of 40 kDa. Negative controls (omission of the 
primary antibody and mouse IgG substitution for primary antibody) did not detect CK3 specific 
bands, b) Densitometric analysis of immunoblots. Results are representative of three data 
sets. Data were normalised to p-Actin and presented as mean ± SEM, *p<0.05.



Low, but significant (p<0.05) levels of CK3 expression were observed at ED10 

(Fig 3.10a,b). Thereafter, levels of protein expression increased, reaching the 

highest level at ED21 in posthatched corneal epithelium. Statistically significant 

differences in protein expression were identified between ED10 and later 

developmental days (p<0.05) (Fig. 3.10b). Also, significance in expression was 

revealed between the three middle (ED12, ED13, E D M ) and final stages 

(ED18, ED21) (p<0.05). Statistical analysis and significance of findings are 

presented in Appendix III and indicated with asterisk in Figure 3.10b (p<0.05).

3.6 Discussion

3.6.1 Morphological profile of developing chick corneal epithelium

The chick cornea develops rapidly during embryogenesis (Revel and Hay, 

1965; Hay and Revel, 1969). In this study, histologic analysis confirmed that 

morphology of the developing embryonic corneal epithelium follows a strict 

temporal and spatial pattern.

In this study, during the epithelial phase of corneal development, it was 

observed that the corneal epithelium transformed from ED4 to ED6; cells were 

reorganised and compacted. Although, the epithelium remained two cells thick; 

two additional layers in the cornea (the stroma and the endothelium) were 

formed. Previously, it has been postulated, that the basal cells become 

columnar in shape around ED4 (HH22) because of the accumulation of 

cytoplasmic secretory organelles (Hay and Revel, 1969; Trelstad 1970). 

However, in our studies, at these time points, basal cells shape appeared oval 

until ED10 in the limbal region, and basal columnar cells were not observed 

until E D M  in the peripheral and central regions. To precisely answer the 

question about shape of basal cells, measurements of cells diameters, along 

with confocal and/or electron microscopy studies to observe the three 

dimensional cell would be beneficial, as cells shape observed could also 

affected by sectioning angle.

The next major event evident during corneal epithelial development was the 

formation of Bowman's layer and the beginning of epithelial stratification. In
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avian embryos, Bowman's layer derives from the outermost part of the primary 

stroma that remains as an acellular ECM after completion of invasion by the 

fibroblasts (by ED5.5-6) (Hay et al., 1979) and in this form was observed by 

ED 14. Presumptive Bowman's layer formation was noted at ED 12, and from 

ED14, onwards could be clearly distinguished between the epithelium and 

stroma, terminating at the border of the peripheral and limbal epithelium. Also, 

an increase in its thickness was observed from E D M  onwards.

Some controversies exist with respect to the presence or lack of Bowman's 

layer in the corneas of lower (rodents) and higher mammals (i.e. canine, cattle). 

While it had been shown that Bowman's layer is absent in rat (Jakus, 1954), 

bovine (Tanimura, 1977), cat and dog (Kafarnik et al., 2007), other studies 

reported the existence of non-distinct, thin (approximately 1 to 3pm) and 

homogenous postepithelial layer that separates substantia propia from basal 

surface of epithelium in these species (Hayashi e ta l,  2002).

Stratification (appearance of wing-like cells in the middle layers and flattening of 

the superficial cells) began in the limbus and was observed in all epithelial 

regions from ED12 (in limbus from ED10). Earlier studies, consistent with this 

observation, demonstrated that the period in which the avian corneal epithelium 

begins the process of stratification and maturation coincides with the time when 

the primary stroma reaches its narrowest width (between ED10 and ED M ) 

(Hay and Revel, 1969; Chaloin-Dufau et al., 1990). The processes of epithelial 

stratification and maturation result from complicated interactions between 

corneal structures and their internal components, which involve changes in the 

cytoplasm of epithelial cells; microvilli appear and reorganise, desmosomes 

multiply, and the pattern of GAGs changes (Meier, 1977; Dodson and Hay, 

1971; Coulombre and Coulombre, 1964; Hay and Revel, 1969; Waggoner, 

1978).

The corneal epithelium appeared to be fully formed by ED18 with no significant 

changes at ED21 in the posthatched cornea, in which the corneal epithelium 

contained five to seven cell layers. Montiani-Ferreira and coauthors (2004) 

showed that the cornea continues to undergo maturation in newly hatched
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chick. Posthatching, an initial decrease in corneal thickness was observed until 

12 days of age, which thereafter increased until 70 days, when a plateau was 

reached (Montiani-Ferreira et al., 2004). The initial decrease in corneal 

thickness was possibly related to the maturation of the corneal endothelial cell 

function and/or rearrangements in composition in the fine structure of keratan 

sulphate GAGs chains in the stroma, whereas, the later increase was likely due 

to the general growth of the eye (Dunlevy etal., 2000). The same initial pattern 

of corneal thickness development was observed in humans and dogs, but the 

unique feature of the development of the central corneal thickness in chicks 

was that after reaching plateau it did not significantly changed for the remainder 

of the study period (450 days of life) (Autzen and Bjornstorm, 1989; Portellinha 

and Belfort, 1991; Montiani-Ferreira etal., 2003; Montiani-Ferreira et al., 2004). 

Despite postnatal maturation processes in the cornea, it was suggested that the 

epithelium, being the first developed component of the cornea, did not undergo 

additional changes in the number of cell layers and type of cells after hatching. 

However, scanning electron microscopy studies demonstrated changes in the 

anterior epithelial surface in newborn chicks; the cell textures ranged from 

occasional surface microvilli to smooth surfaces (Waggoner, 1978). This was in 

contrast to the embryonic stages when all the surface cells had the same 

appearance and demonstrated abundant microvilli. Different surface textures 

resulted from changes in the cell membrane as a reflection of the state of 

differentiation or senescence and desquamation.

In this study, it has been observed that the avian limbal epithelium consisted of 

an additional one to two cell layers when compared to other regions (centre and 

periphery). Similarly, in human corneas at the limbal zone, the corneal structure 

changes. The epithelium thickens and forms epithelial pegs made up of 

approximately ten cell layers instead of the five to six layers observed in the 

central cornea (Takacs etal., 2009). The increase in number of cell layers (thus 

thickness) in limbal epithelium is a result of its anatomical properties. The 

basement membrane of the limbus is undulating with ‘pegs’ of stroma extending 

upwards and fenestrated, forming Palisades of Vogt; the stem cell niche 

(Gipson, 1989; Li etal., 2007; Dua etal., 2005; Shanmuganathan etal., 2007).
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As mentioned earlier, the cornea is composed of several layers from the 

epithelium through to the endothelium i.e. epithelium, epithelial basement 

membrane, Bowman's layer, substantia propria, Decemet's membrane, and 

endothelium (Hayashi et al., 2002). Previous studies have revealed 

morphological differences in corneas amongst species (Jakus, 1954; Pfister, 

1973; Hayashi etal., 2002; Collin and Collin, 2006; Zhao etal., 2006; Kafarnik 

et al., 2007). Undoubtedly, the avian corneal morphology shows high similarity 

to human. Similarities include the process of corneal formation in development 

(i.e. two waves of mesenchymal cell migration to form a primary stroma). Most 

importantly the avian corneas reflect similarities in corneal structure. The 

number of epithelial cell layers in both adult species is comparable in the 

central corneal epithelium; five to seven layers in chick epithelium, six to eight 

in human. Additionally, Bowman's layer in the chick cornea presented as an 

acellular layer with homogenous reflectivity and structure is similar to those of 

primates (Kafarnik etal., 2007).

In comparison to mammals, the avian group features some structural 

differences. One apparent difference is corneal thickness. The chicken cornea 

in its mature state is approximately 200pm thick (with approximately 30pm 

epithelium) (Hay et al., 1979; Montiani-Ferreira et al., 2004), which amounts to 

approximately one third of the human cornea's thickness (approximately 600 

pm, thickness of epithelium approximately 50pm) (Gipson, 1994). Another 

noticeable difference was the morphology of epithelial wing cells which were 

much larger, with cell nuclei irregularly shaped (Kafarnik et al., 2007) when 

compared to human.

The above studies confirmed previous findings in respect to the changes in 

chick corneal epithelium that undergoes stratification and maturation during 

development. Additionally, quantification studies provided new insight into 

changes in number of cell layers and cell shape and allowed selection of time 

points which showed critical changes in the development of the corneal 

epithelium, important for future experiments.



3.6.2 Differentiation profile in the embryonic chick corneal epithelium

Cytokeratins form a complex family of fibrous cytoskeletal proteins that are 

among the major differentiation-specific proteins of epithelial cells (Fuchs, 

1988). The 8nm keratin filaments, being one of the components of cytoskeletal 

architecture, are compromised of keratin polypeptides, which vary not only with 

cell type, but also with stage of differentiation and development (Fuchs, 1988; 

Kivela and Uusitalo, 1998; Magin et al., 2007). Thus, the expression patterns of 

cytokeratins were investigated as a measure of cell commitment to 

differentiation.

Previous immunoblot analysis suggested that AE1 and AE3 antibodies react 

with two different groups of keratins. In combination, AE1 and AE3 recognise 

most known keratins, expressed by various in vivo epithelial tissues (Tseng et 

al., 1982; Nelson and Sun, 1983; Woodcock-Mitchell etal., 1982; Eichner etal., 

1984). These are: acidic keratins 10, 13, 14, 15, 16, 19 and basic keratins 1, 2, 

3, 4, 5, 6, 7. Using this antibody, expression of specific keratins can be 

correlated with different types of epithelial differentiation (e.g. simple vs. 

stratified, keratinised versus nonkeratinised) (Eichner et al., 1984; Moll et al., 

1982; Tseng etal., 1982). Not all cytokeratins detected by AE1/AE3 are present 

in the corneal epithelium. To date the expression of the following cytokeratin 

pairs have been reported in corneal epithelium: K3/K12, K5/K14, K1/K10, 

K6/K16, K4/K19 (Kurpakus et al., 1994; Chaloin-Dufau et al., 1990; Schermer 

etal., 1986, Schermer etal., 1989; Yen etal., 1992; Kasper etal., 1992; Kasper 

etal., 1988; Lauweryns etal., 1993a).

The earliest expression of AE1/AE3 immunolabelled cells was observed at 

ED10 in the superficial layers of the corneal epithelium. This finding was 

surprising, as it has been reported that some low molecular weight cytokeratins, 

such as CK7, 8 and 18-20 characterise early embryogenesis and primordial 

simple epithelial cells (Moll etal., 1982). This would presume the appearance of 

immuno-positive cells in earlier embryonic days. However, it has not been 

definitively determined whether keratin pair K8/K18 (52/53 kDa) is expressed in 

the corneal epithelium, since it has not been possible to document protein 

expression by gel electrophoresis or immunoblotting, and immunohistochemical 

labelling in the cornea has been inconsistent (Kivela and Uusitalo, 1998;
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Kasper et al., 1988; Kasper et al., 1992). In contrast, high molecular weight 

cytokeratin types (CK1-6, 9-17) appear with epithelial differentiation and 

maturation and are characteristic of complex epithelia (Moll etal., 1982; Cooper 

et al., 1985, Kivela and Uusitalo, 1998). Terminal differentiation of suprabasal 

cells that had lost contact with basement membrane was found to be 

associated with synthesis of other cytokeratin pairs; epidermal-type K1/K10 and 

hyperproliferation K6/K16 (Klymkowsky et al., 1989). Mitotically active basal 

cells of stratified epithelia usually express the keratin pair 5/14 (58/50 kDa) 

(Kivela and Uusitalo, 1998; Nelson and Sun, 1983; Moll et al., 1982; Cooper et 

al., 1985; Purkis et al., 1990). Other immunohistochemical and molecular 

genetic studies suggested that the human cornea contains low levels of CK14 

in the basal cell layer (Kasper et al., 1988; Nishida et al., 1996). CK19, simple 

epithelia type, is another protein identified in corneal epithelium and its 

expression was observed in the entire limbal epithelium on the conjunctival 

border and in the peripheral suprabasal layers (Kasper et al., 1988; Kasper et 

al., 1992; Lauweryns et al., 1993a). Cornea-type epithelial differentiation is 

signified by the expression of the K3/K12 keratin pair of intermediate filaments 

essential for corneal epithelial integrity (Sun et al., 1985; Liu etal., 1994; Wu et 

al., 1994). CK3 and CK12 are present in large quantities in the corneal 

epithelium, comprising about 30% of total protein (Rodrigues etal., 1986).

In our immunolocalisation studies, the expression of CK3 was absent from the 

chick corneal epithelium until ED12. In subsequent stages (from ED12 

onwards), CK3 labelling of epithelial cells appeared uniform throughout all cell 

layers, except for basal cells in the limbal region. Using AE5 monoclonal 

antibody, which is highly specific for the 64 kDa corneal keratin (70 kDa for the 

chick) (Schermer et al., 1986; Chaloin-Dufau et al., 1990), other investigators 

have demonstrated that this keratin is localised to all corneal epithelial cell 

layers in the rabbit, but only the suprabasal layers of the limbal epithelium. 

Similar CK3 labelling patterns have been observed in the macaque (Zhao etal., 

2006), rabbit (Schermer et al., 1986; Chaloin-Dufau et al., 1990) and adult 

human corneas (Rodrigues et al., 1987). At 8 weeks of gestation, the 

presumptive human corneal epithelium was composed of a single layer of
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cuboidal cells and neither of these cell layers was AE5 positive. At 12-13 weeks 

of gestation, some superficial cells of the three to four-layered epithelium 

appeared AE5 positive. At 36 weeks, the epithelium was morphologically 

mature (four to six layers) and AE5 labelling was observed suprabasally, in 

contrast to the adult central epithelium which demonstrated uniform staining.

The appearance of AE1/AE3 labelling at ED10 and the presence of AE5 

immunolabelling in cells at ED12 suggests that these time points are critical for 

the onset of epithelial differentiation during corneal development. The 

appearance of AE1/AE3 labelling at an earlier embryonic day than was 

observed for AE5 suggests that CK3 is expressed later than other keratins 

recognised by AE1/AE3 (i.e. CK5 and CK14, expressed in mitotically active 

basal cells of stratified epithelia). Immunolocalisation studies also demonstrated 

that later developmental stages (ED16, 18) showed similar epithelial 

differentiation patterns to that observed in posthatch chick epithelium. The 

appearance of pan-CK-positive cells at ED10 in the superficial cell layer may 

suggest the beginning of epithelial differentiation and might be related to the 

detection of cells with different antigen determinants recognised by antibodies 

from the cocktail AE1/AE3 (as described above). Differentiation of human and 

rabbit cultured corneal and limbal epithelial cells was investigated and 

evaluated by changes in keratin profiles by Kiritoshi and coauthors (1991). After 

two weeks in culture, the human limbal epithelial cells did not react with AE5 

but did react strongly with AE1. Later (third week in culture), only suprabasal 

cells exhibited a moderate reactivity with AE5, whereas AE1 binding was seen 

in all of the cells. After fifth to sixth weeks in culture, all of the cells reacted 

moderately with AE5 and AE1. The expression of CK3 in cells derived from 

central cornea was lost once these cells were cultured, but they expressed 

keratins recognised by AE1. It may be explained by the fact that cultured cells 

were already in an advanced stage of differentiation and had lost ability to 

transcribe and translate messages for CK3 synthesis. Thus, CK3 expression 

was associated with maturation or a later stage of differentiation.

Our observations highlighted similarities in staining pattern between pan-CK 

and CK3 at ED12. In the central epithelium, CK3-labelling was observed
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throughout the epithelium, whereas, in the limbal and peripheral region, C IO - 

positive cells were present only in the superficial cell layer. Although pan-CK 

labelled cells were observed ED10, at ED12, the pattern of labelling was 

expanded to all cell layers in the central epithelium. The above suggests that 

epithelial differentiation may vary (suprabasal versus uniform) in different parts 

of the cornea and is earlier in the central corneal epithelium. It has been 

postulated that differentiation of suprabasal cells is associated with synthesis of 

cytokeratin pairs such as K3 and 12 and the hyperproliferative K6 and 16 

(Kivela and Uusitalo, 1998). Our observations, especially the appearance of 

AE1/AE3-positive cells earlier than AE5-positive labelling support the above 

assumptions.

Immunoblotting confirmed the increase in protein expression level of CK3 

throughout corneal epithelial development in the avian eye. Chaloin-Dufau and 

coauthors (1990) reported that CK3 expression was first observed in the 

developing chick corneal epithelium from ED12, and postulated that CK3 might 

be expressed at least from ED11. By contrast this study shows that CK3 protein 

is expressed as early as ED10. The lower levels of CK3 protein identified in the 

epithelia from ED10 to E D M , and subsequent increase to their highest in 

epithelia of samples ED16, ED18 and posthatched corneas suggests that CK3 

expression plays an important role in the differentiation and maturation of the 

developing avian corneal epithelium. The presence of the CK3 band at ED10 

was observed on a blot in a small amount, whereas, immunolocalisation studies 

did not show CK3-positive cells at this time-point. The most likely explanation is 

the increased sensitivity of immunoblotting for the detection of protein as when 

compared to less sensitive immunolabelling allowed for the detection of CK3 at 

ED10.

Future work should be aimed to testing a number of antibodies to the same 

antigen in the tissue under study, to exclude epitope masking caused by 

postranslational modifications and to exclude detection of isoforms that are 

antigenically distinct or shared epitopes. An identification of individual 

cytokeratins (CK1, 4, 6, 8, 16, 18, 19) in the developing chick corneal 

epithelium, both by immunolabelling and immunoblotting, requires further
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investigation, as this would allow us to determine which cytokeratins were 

responsible for AE1/AE3 labelling in the epithelium at ED10, as well as later 

time points. In our studies mAb CK14 (Santa Cruz Biotechnology Inc, UK) was 

tested on chicken sections, but despite high homology in amino acid sequence 

to human CK14 (73% identities, 88% positives), positive immunolabelling was 

not detected. Currently, the main limitation of using chick tissue for large scale 

immunolocalisation studies is the poor availability of reliable antibodies.

In conclusion, the above studies indicated that the chick epithelium undergoes 

rapid embryonic development, accompanied by steady and continual 

differentiation and maturation. The most significant morphological changes in 

chick corneal epithelium were seen to occur between ED10, ED12 and ED14, 

with the increasing number of cell layers and appearance of stratified epithelial 

cells in all regions and changes in cell shape. Appearance of pan-CK and CK3 

expression at ED10 and 12 suggested those time points might be critical for the 

beginning of differentiation of corneal epithelium. Pan-CK and CK3 labelling 

throughout the entire central corneal epithelium earlier than in the peripheral 

suprabasal layer, indicates that those cells might have already entered the 

termination pathway.

The similarities of expression patterns in avian and mammals suggest that 

corneas of all vertebrates share structural and molecular characteristics (Collin 

and Collin, 2006). It also supports the idea that avian corneas can be used as a 

valuable model for the study of epithelial development.
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CHAPTER FOUR

Epithelial cell proliferation and death



EPITHELIAL CELL PROLIFERATION AND DEATH

4.1 Introduction

Development and maintenance of tissues is achieved by a dynamic balance 

between cell proliferation, differentiation and programmed cell death (Wyllie et 

al., 1980; Ellis etal., 1991; Kojima etal., 1998).

The structural integrity of the corneal epithelium must be maintained in order to 

preserve its essential barrier function and transparency. The corneal epithelium 

constantly renews its cell population with cells added through mitosis in the 

basal cell layer and lost by shedding from the surface (Hanna and O'Brien, 

1960; Ren and Wilson, 1996) and consists of cells with different proliferative 

capacities. Central corneal epithelial cells were shown to contain rapidly 

proliferating cells in the compartment adjacent to basal cell layer, which help to 

maintain the thickness of epithelium by replacing lost cells from the surface and 

suprabasal cells that excited the cell cycle (Joyce et al., 1996; Lavker et al., 

1991; Cotsarelis etal., 1989).

The contribution of LSCs for the regulation of cell proliferation and loss has 

been elucidated (Thoft, 1989; Tseng, 1989; Lavker et al., 1991; Cotsarelis et 

al., 1989; Chung et al., 1995). Cell proliferation in the limbus contributes new 

cells until adequate cell density is reached. The undifferentiated progeny 

(TACs) interspersed amongst LSCs in the limbal basal rapidly proliferate on 

appropriate stimulation and migrate centripetaly to re-establish a multilayered, 

stratified epithelium. TACs have been also shown to have greater proliferative 

capacity to peripheral and central epithelium when studied in human tissue 

culture (Ebato etal., 1987; Lindberg etal., 1993, Joyce etal., 1996).

Recently, in vitro studies of the healing response after corneal injuries, 

demonstrated, that after wounding, cell proliferation and migration in the centre 

of the cornea was just as vigorous as in cells proliferating and migrating from 

the limbus and periphery (Chang et al., 2008). Thus, it was concluded that 

central human corneal epithelium cells appeared to be fully capable of corneal 

epithelial regeneration suggesting a role for other mechanisms in epithelial
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proliferation during the first hours after acute corneal injury, before the response 

from LSCs takes place (Chang etal., 2008).

Homeostasis in continually renewing tissues is maintained by a tightly regulated 

balance between cell proliferation, cell differentiation, and cell death. Naturally 

occurring cell death is considered distinct from pathologically induced cell death 

(necrosis), and the criteria (both morphological and biochemical) which 

distinguish between these two processes has been precisely defined (Kerr et 

al., 1972; Ren and Wilson, 1996). Apoptosis has been identified in association 

with normal cell turnover in several types of mammalian epithelia (Ren and 

Wilson, 1996; McCall and Cohan, 1991; Gavrieli et al., 1992; Haake and 

Polakowska, 1993) Although corneal epithelial cell death has been studied in a 

number of species, including human (Ren and Wilson, 1996; Yew et al., 2001, 

Svoboda et al., 2004; Ramaesh et al., 2006), the scale of cell death in avian 

corneal epithelium during later development has not been yet investigated in 

vivo.

4.2 Aim

The aim was to examine and quantify the spatial distribution of cell proliferation 

and cell death during the embryonic development of the chick corneal 

epithelium.

4.3 Experimental design
The present study was undertaken to compare the rate of proliferation and cell 

death at different time points in the developing chick corneal epithelium. 

Transverse wax sections of chick cornea were prepared as described in section 

2.3. A monoclonal anti-PCNA antibody was used to assess the proliferation 

pattern of the epithelium during development, as described in section 2.5.4. The 

PCNA protein (29 kDa) also known as cyclin or DNA polymerase 5 auxiliary 

factor, is expressed in the nuclei during DNA synthesis (phase S or early G1 of 

cell cycle) (Morris and Mathews, 1989; Takasaki et al., 1984). Its rate of 

synthesis is directly correlated with the proliferative rate of cells, therefore it is 

considered as a reliable marker for epithelial proliferative activity (Cell's et al., 

1987; Gan etal., 1995, Yew etal., 2001).

103



In order to analyse the cell death profile in the corneal epithelium during chick 

development, the TUNEL technique and caspase 3 (active) immunolocalisation 

were performed (section 2.6). TUNEL, being one of the most common methods 

used for detection of apoptotic cells (Gavrieli et al., 1992), is based on the 

detection of DNA fragments -  a typical characteristic of apoptosis. Caspase 3, 

one of the key executioners of apoptosis, is responsible either partially or totally 

for the proteolytic cleavage of many key proteins involved in DNA replication, 

transcription and translation; cytoskeletal proteins, kinases, phosphatases and 

other caspases (Cohen, 1997; Stroh and Schulze-Osthoff, 1998; Umpierre et 

al., 2001).

Three regions of cornea were examined: the central, peripheral and limbal. 

Each experiment was carried out at least three times. The quantitative analysis 

of proliferation and apoptotic cell death were carried out by counting PCNA- 

positive and TUNEL-positive cells at each time point in triplicate sections of 

three different specimens for each time point. Three fields of microscope view 

of each region were examined.

The labelling index (LI) was defined as the number of PCNA-positive cells 

divided by total number of cells and multiplied by 100% (Fig. 4.1) or as the 

number of TUNEL-positive cells divided by total number of cells and multiplied 

by 100%. Evaluation was performed under oil immersion using a x100 

objective lens

In order to confirm expression of PCNA during development, Western blot 

analyses were performed on protein samples from embryonic chick epithelia 

(as described in section 2.9). For this purpose collection of samples started 

from ED6 onwards, excluding ED4, which did not provided efficient amount of 

protein sample.
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Figure 4.1 Representative images used to calculate proliferation labelling index (LI) in 
developing chick corneal epithelium. (A) central epithelium at ED16 stained with Hoechst 
33342 (blue). (B) central epithelium immunolabelled for PCNA (green) with secondary anti­
mouse antibody Alexa Fluor 488. (C) combined image; PCNA: green, Hoechst 33342: blue. 
Scale bar = 50pm. x 100.



Statistical analyses were then performed using (SPSS v12). Data was checked 

for distribution (Shapiro-Wilk test) and homogeneity of variances (Lavene test). 

Data was log transformed when necessary. One-way ANOVA and appropriate 

post-hoc (Dunnett T3) tests were performed (SPSS v.12) for the data showing 

Gaussian distribution with significance at p<0.05. Non-parametric data was 

processed for interaction plots (MiniTab v.14).

RESULTS
4.4 Epithelial cell proliferation in chick corneal development

4.4.1 Optimisation of the protocols for Ki67 immunolabelling
In order to assess the proliferative activity of epithelial cells using anti-Ki67 in 

the developing chick cornea, numerous protocols were performed. Different 

combinations of individual steps (including different dilutions of primary 

antibody, concentrations of Triton-X-100 and blocking agent, length of 

incubation) both on paraffin and frozen sections were subsequently 

investigated. Examples are shown in Figure 4.2. A weak signal together with a 

high background was observed in all sections. However, no specific staining for 

Ki67 was achieved. Positive control sections of human corneal epithelium 

showed specific nuclear labelling for Ki67 (Fig. 4.2). Therefore, anti-PCNA 

labelling was used to characterise epithelial cell proliferation during 

development, as described in section 4.4.2.

4.4.2 Immunolocalisation of proliferating epithelial cells using PCNA 

monoclonal antibody
The results observed from PCNA immunolocalisation studies showed temporal 

and spatial regulation of proliferation during chick corneal epithelial 

development (Fig. 4.3). PCNA immunolocalisation in the chick corneal 

epithelium demonstrated positive labelling in all regions from ED4 to ED21 

(posthatched epithelia) with regional variation dependent on developmental 

time point (Fig. 4.3). Negative control sections showed no staining (Figs. 4.3c1- 

6).
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limbus periphery centre

Dilution 1:50, 0.2% Triton-X-100 10 minutes, without blocking agent

Dilution 1:100, 0.2% Triton-X-100 10 minutes, without blocking agent

Dilution 1:100, without Triton-X-100, 5% blocking agent

Dilution 1:100, without Triton-X-100, without blocking agent

+ve control

Figure 4.2 Comparison of the effects of different parameters on immunofluorescent labelling 
by mAb Ki67 in different regions of chick corneal epithelium at ED16, on frozen sections. 
Dilutions of primary antibody varied (a-c: 1:50, d-l: 1:100). Donkey serum was used as a 
blocking agent. Non specific staining pattern for Ki67 was observed after individual treatments. 
In contrast, labelling for Ki67 in human cornea, used as a positive control, is shown (m, n, o). 
Scale bars = 20pm. x 20.
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Figure 4.3 Immunolocalisation of PCNA in the developing chick corneal epithelium (ED4-ED21). 
PCNA-positive cells were observed in all developmental stages. From ED4 to ED12 
immunolabelling was observed in cells distributed throughout the whole thickness of 
central, peripheral and limbal epithelium (a-o). Cell proliferation appeared to peak at ED14, with 
PCNA-positive cells dispersed throughout the thickness of central and peripheral epithelium (q, r). 
At ED16 PCNA labelling disappeared from suprabasal cell layers in the limbal epithelium (m, p, s). 
PCNA-positive labelling was decreased in all regions by ED21 (y-a). mAb anti-PCNA binding sites 
are labelled with green fluorescence and cell nuclei are stained blue by Hoechst 33342. Control 
sections (ED12); mouse anti-GFP (c1-c3) and mouse IgG (c4-c6), show no staining in all regions 
(c1-c3). Scale bars = 50pm. x 100, c1-c6 x 20.

limbus periphery centre



The proliferative activity of cells in the developing chick epithelium was 

assessed throughout epithelial thickness by means of immunohistochemical 

detection of PCNA-positive cells. Percentage of PCNA-positive cells (LI) was 

calculated for each developmental time point and significant differences 

(p<0.05) were found between the three regions of corneal epithelium (Appendix 

III). Table 4.1 summarises results obtained from the quantification of 

proliferating cells in each epithelial region.

Table 4.1 Percentage of proliferation (LI) in three regions of corneal epithelium

ED 4 6 8 10 12 14 16 18 21

_  E
CQ
E "5 Mean 54.8 57.1 66.1 74.1 74.4 79.4 68.9 52.8 31.3
• i s

q>
SD ±7.09 ±7.5 ±9.53 ±2.9 ±5.5 ±4.4 ±7.1 ±4.09 ±6.0

Mean 60.3 65.8 74.0 77.8 80.8 86.5 77.4 68.3 49.9
SD ±10.9 ±6.6 ±8.5 ±6.1 ±6.1 ±6.8 ±4.5 ±3.5 ±5.9

_  E
s  q̂> Mean 61.5 62.7 73.5 75.6 78.3 82.7 76.4 63.2 45.7
0) £  

Q>
SD ±10.5 ±10.2 ±9.1 ±5.3 ±5.5 ±3.5 ±7.6 ±4.2 ±4.9

Data were plotted as a percentage of PCNA-positive cells in the three regions 

of the cornea (Fig. 4.4). Percentage cell proliferation was high throughout 

development (Ll>67.7± 12.8%). Mean percentage proliferating cells in the 

limbal, peripheral and central epithelium was 63.0±15.6%, 71.2±11.3% and 

68.8±11.5%, respectively. Differences between these three regions were 

statistically significant (p<0.05) (Appendix III).

From ED4 to ED8, labelled cells were observed in two cell layers of the 

epithelium in the centre, periphery and limbus, in both basal and suprabasal cell 

layers (Figs. 4.3a-i). The percentage of proliferating cells at ED4 was the
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highest in the central epithelium (61.5±10.5%), and increased to 73.5±9.1% by 

ED8. At ED8, in the peripheral corneal epithelium, the number of PCNA nuclei 

was higher than in the limbal epithelium, but lower than the central region with 

74.0±8.5%, 66.1 ±9.5% and 73.5±9.1% labelled cells, respectively. Statistically 

significant differences in percentage proliferating cells were found between 

central and limbal regions at ED4 and ED8, and between peripheral and limbal 

regions at ED6 (p<0.05). Additionally, no statistically significant differences in 

the percentage of PCNA-positive cells were demonstrated between ED4 and 

ED6 in any of three epithelial regions.

From ED10 to ED12 PCNA-positive cells were identified in all cell layers 

throughout the corneal epithelium (Figs. 4.3j-o). At ED14, immunolabelled cells 

were observed throughout the entire central and peripheral epithelium whereas, 

in the limbus, more positive cells were detected towards the peripheral side of 

the limbal region (Figs. 4.3p-r). From ED10 to ED M , the percentage of 

proliferating cells increased from 74.1 ±2.9%, 77.8±6.1% and 75.6±5.3% to 

79.4±4.4%, 86.5±6.8% and 82.7±3.5% in the limbal, peripheral and central 

epithelium, respectively (Fig. 4.4). The peak proliferation rate was observed 

from ED12 (74.4±5.5%, 80.8±6.1% and 78.3±5.5%, in limbal, peripheral and 

central epithelium respectively) to E D M  in all epithelial regions (Fig. 4.4). 

Significant differences in percentage proliferation were found between ED10 

and E D M  as well as between ED12 and E D M  in all epithelial regions (p<0.05), 

but not between ED10 and 12.

By ED16, fewer PCNA immunopositive cells were observed. They appeared to 

be restricted mainly in the basal cell layer (Fig. 4.3s) of the limbus (LI: 

68.9±7.1%), although, present throughout all epithelial layers in the peripheral 

and central epithelium (LI: 77.4±4.5% and 76.4±7.6%) (Figs. 4.3 t,u and 4.4). 

Labelling of PCNA-positive cells appeared to be reduced in all cell layers at 

ED18 and ED21 (posthatch), particularly noticeable in the central and 

peripheral epithelium with mostly suprabasal localisation (Figs. 4.3w-a).
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Figure 4.4 Percentage proliferation (LI) in developing chick corneal epithelium. PCNA- 
positive cells were quantified in three epithelial regions; limbus (a), periphery (b), centre 
(a). Results obtained from three experiments were combined to give the average LI for 
each developmental stage. Error bars displayed represent the standard deviation from 
the mean. The highest LI was demonstrated in the middle time-points (ED12 to 
ED14), and than gradually decreased.



As quantified, in the peripheral epithelium, the percentage of PCNA-positive 

cells decayed from 68.3±3.5% at ED18, to 49.9±5.9% at ED21 posthatch (Fig. 

4.4b). Similarly, the decrease was observed in the limbal (from 52.8±4.09% to 

31.37±6%) and central (from 63.2±4.2% to 45.7±4.9%) regions. Multiple 

comparisons revealed significant differences in percentage PCNA-positive cells 

between posthatch epithelium and the earlier stages in all corneal regions 

(p<0.05).

The highest LI was demonstrated in the peripheral epithelium and was 

significantly different (p<0.05) to limbal epithelium in all timepoints from ED6 to 

ED21.

4.4.3 Immunoblotting for PCNA
Western blot analyses were performed on protein samples from chick corneas 

from ED6 to ED21 (posthatch). Bands of approximately 30 kDa were detected 

by anti-PCNA antibody in all developmental stages. These bands were not 

detected in controls where the primary antibody was omitted or primary was 

replaced by the mouse immunoglobulins (Fig. 4.5).

Densitometric analysis revealed differences in expression between time points. 

Relatively constant levels of PCNA protein expression observed in earlier 

developmental stages (ED6, ED8), increased at ED10, and thereafter from 

ED12, PCNA expression decayed abruptly. Statistically significant differences 

were found between the expression levels of PCNA at ED6/ED8 and ED10, 

ED10 and ED18, as well as, between ED6 and ED12 (p<0.05). Differences in 

the levels of PCNA expression between any other comparisons, including ED21
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Figure 4.5 Western blot detection of PCNA in developing chick corneal epithelium. 10pg of protein 
per sample were loaded to the electrophoresis gel, transferred to nitrocellulose membrane and 
incubated with antibody raised against PCNA protein, (a) A specific band of approximately 30 kDa 
was observed for PCNA in all developmental stages. As a positive control protein sample from 
chick developing brain (ED6) was used. p-Actin (used as housekeeping protein) was detected as a 
band of 40 kDa, Negative controls (omission of the primary antibody and mouse IgG substitution for 
primary antibody) did not tetect PCNA specific bands, (b) Densitometric analysis of immunoblots. 
Results are representative of the three sets. Data were normalised to p-Actin and presented as 
mean ± SEM, *p<0.05.



(posthatched) epithelia, were not statistically significant. Detailed statistical 

analyses of the PCNA expression are given in Appendix III.

4.5 Epithelial cell death in chick corneal development

4.5.1 TUNEL

Epithelial cell death was observed throughout chick corneal development and 

quantified as a measure of percentage TUNEL-positive cells in the corneal 

epithelium. Representative images are shown in Figure 4.6.

TUNEL-positive cells were absent in all regions examined in the earliest 

developmental time points; from ED4 by ED8 (Figs. 4.6a-i). Single cells with 

fragmented DNA were firstly observed in the limbal region of epithelium at 

ED10 (Fig. 4.6j). As shown, TUNEL positive labelling was observed mostly in 

the limbal region of corneal epithelium, in middle and later developmental 

stages (Fig. 4.6 left panel j-a).

In the central epithelial region, TUNEL-positive cells were observed at ED12 

and ED21 (posthatch) (Figs. 4.6o,a). The peripheral region appeared devoid of 

labelled cells (Figs. 4.6 middle panel b-c2). In the positive controls, rat 

mammary gland and artificially induced DNA fragmentation (with DNase I) cell 

nuclei were stained brown (Figs. 4.6c2,c1). No TUNEL-positive cells were 

observed in the negative control, in which TdT was replaced with equilibration 

buffer (Fig. 4.6c3).

The highest rate of TUNEL-positivity was observed at ED18 in the limbal 

region, with an apoptotic index 5.7±0.7%. From ED12, TUNEL labelling was 

observed in the limbal epithelium in all developmental time points, with TUNEL- 

positivity below 5%, except for ED18.
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Figure 4.6 TUNEL labelling of developing chick corneal epithelium. Panels show TUNEL labelling in 
limbal (a-y), peripheral (b-z) and central (c-a) regions of the corneal epithelium, ED4 to ED21. 
TUNEL-positive cells, indicated by arrows, were absent from all regions at earlier time points (ED4 - 
ED8) (a-i). In the later stages, from ED10 onwards, TUNEL-labelling was observed in the limbal 
epithelium (left panel, j-y) and also, in the central region at ED12 (a). Positive controls; DNase I 
digestion (c1) and rat mammary gland (c2) showed labelled cells. TUNEL-positive cells were not 
observed in negative control sections (substitution of equilibration buffer for TdT enzyme) (c3). Scale 
bars = 100nm. x 100.
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4.5.2 Caspase 3 activation

In order to confirm that TUNEL labelling results that suggest epithelial cell death 

by apoptosis during corneal development, additional immunolabelling for anti- 

Caspase 3 (active) was performed for all developmental time points.

Immunolocalisation of the active form of caspase 3 in chick corneal epithelium 

from ED4 to ED21 (posthatched) (Fig 4.7) demonstrated a lack of labelling in all 

regions investigated, with the exception of the limbal epithelium at ED16 (Fig. 

4.7s), the central epithelium at ED18 (Fig. 4.7x) and ED21 (Fig. 4.7a). In the 

negative controls, in which rabbit IgG was substituted for mAb anti-Caspase 3 

(active), apoptotic cells were not observed (Figs. 4.7c1,c2). In the positive 

controls (rat mammary gland, DNase I digestion), Caspase 3 (active) 

immunolabelling, characteristic of apoptotic cells, was present (Fig. 4.7c3).

4.6 Discussion

4.6.1 Cell proliferation in the developing chick corneal epithelium
The formation of corneal epithelium depends on the control of proliferation and 

differentiation. Although, those processes are under constant investigation, 

many aspects underlying those processes remain unknown. Thus, to answer 

some of the questions regarding molecular targets required for the regulation of 

signal transduction cascades, it is necessary to gain the knowledge and 

understanding of the changes in the pattern of proliferation in development.

In this study, despite performing various modifications to the protocol, Ki-67 did 

not label epithelial cells in chick cornea sections, although, Ki-67-positive cells 

were observed in human controls. It was revealed that Ki-67 monoclonal 

antibodies show little cross reactivity between species limiting their application 

in basic research (Endl and Gerdes, 2000; Brown and Gatter, 2002). In support 

of this, a BLAST search demonstrated that the Ki-67 protein is not highly 

conserved with only 23% homology in amino-acid sequences between human 

and chick.
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Figure 4.7 Caspase 3 immunolabelling in the developing chick corneal epithelium. Caspase 3 
positive cells (indicated by arrows) were observed in the limbal epithelium at ED16 (s), and central 
epithelial regions at ED18 (x) and ED21 (posthatch) (a). Negative controls, rabbit IgG (c l) 
demonstrated no immunolabelling. Positive controls; Dnase I treatment (c2) and rat mammary gland 
(c3) showed positive labelling for caspase 3. Scale bars = 100 pm. x 100.



However, PCNA immunolocalisation studies demonstrated that this antibody 

successfully labelled proliferating cells in the developing chick corneal 

epithelium and the LI demonstrated temporal changes in the number of PCNA- 

positive cells.

An increase in proliferation rates in the developing chick corneal epithelium was 

evident from ED6 to ED12, followed by a peak, and finally a decrease of PCNA- 

positive cells between ED16 to ED21 in the posthatched epithelia. The 

proliferative rate in the peripheral epithelium was higher when compared to 

limbal and central epithelium at all developmental time points.

The peak proliferation rate occurs at the same time that the epithelium was 

observed to undergo initial stratification and maturation (ED12 and ED M ). This 

observation also coincides with the appearance of CK3 expression and 

distribution of pan-CK labelling, discussed in Chapter 3.

The use of immunofluorescence allowed the study of the spatial distribution of 

PCNA expression in the epithelium during chick corneal development. It was 

observed that basal and suprabasal cells were PCNA-positive in earlier 

developmental time points (ED4 to E D M ) in the central and peripheral 

epithelium. In the limbus, the fewer proliferating cells were observed. From 

ED16 onwards, an abundance of proliferating cells was observed mainly in 

suprabasal layers in all regions and basally in limbus.

The expression of PCNA in the corneal epithelium detected by 

immunofluorescence was confirmed by Western Blotting, PCNA protein was 

identified in all stages from ED6 to posthatching. The levels of protein 

increased from ED6, peaking at ED10 to ED12, before gradually decreasing. 

Although, the observed protein expression for ED21 posthatch epithelium 

appeared to be greater then other bands, after normalisation and analysis, the 

amount of protein expressed in this sample was not statistically different (Fig 

4.5e, Appendix III). Opposite tendency (decrease of PCNA-positive cells when 

compared to embryonic time-points) was visualised by PCNA immunolabelling,
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this dissagreement could be explained by different sensitivity of these two 

techniques.

The observed profile of proliferating cells in the epithelium during avian corneal 

development was different to that observed in humans. Yew and coauthors 

(2001) reported that before the 17th gestational week, PCNA-positive cells were 

not identified, although, the cornea is developed by 7-8 week of gestation 

(Rodrigues et al., 1987). The appearance of PCNA labelling at ED4 in chick 

corneal epithelium and an increase in the number of proliferating cells 

suggested that abundant cell proliferation in earlier development is fundamental 

for tissue formation during development.

Additionally, in the chick epithelium the increase in proliferation was 

accompanied by the appearance of CK3 and pan-CK labelling, unlike in 

humans, where expression of CK3 was observed at 12-13 week of gestation 

(Rodrigues etal., 1987). It has been recently reported, that mouse genetics and 

human diseases have provided strong support for the idea that changes in 

expression of certain cytokeratins (CK6, 8, 16, 18, 17, 14-3-3o isoform) have a 

profound impact on cell size and cell proliferation in skin epithelium (Magin et 

al., 2007; Pallari and Eriksson, 2006; Gu and Coulombe, 2007).

As demonstrated, in chicken corneal epithelium the peak of proliferation was 

followed by a steady decline from ED16 onwards in all epithelial regions. 

Similarly, in humans after the twentieth week of gestation, intense PCNA- 

labelling was observed throughout the corneal epithelium, but after twenty eight 

weeks, anti-PCNA labelling gradually disappeared from the central and 

peripheral corneal epithelium (Yew etal., 2001).

In developing chick corneal epithelium, proliferating cells were observed in the 

limbus in both basal and suprabasal layers from earlier stages to ED16. Later, 

at ED18 and in posthatched epithelium, occasional basal cells showed positive 

nuclear labelling in all three epithelial regions with more positively labelled cells 

in suprabasal layers. It was similar to the results demonstrated in the postnatal 

human corneal epithelia after immunolabelling for Ki67. Within the corneal
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epithelium, only a few basal cells were labelled, but the nuclei of cells in the 

above layers were more abundant. In the limbal epithelium, individual Ki-67- 

positive cells were located basally and more positively labelled cells were 

demonstrated in one or two layers above the basal layer (Joyce et al., 1996). 

Other studies in rabbit and SENCAR mouse corneal epithelia showed that 

majority of the cells that incorporated 3H-thymidine appeared to be suprabasally 

located in the central cornea (Lavker et al., 1991). Those cells were shown to 

be basal cells that were expelled into the suprabasal layer, still connected to 

basement membrane via a thin stalk of cytoplasm (Lavker etal., 1991). Another 

study, carried out by Francesconi and co-authors (2000), in developing corneal 

epithelium in rats after birth showed that at age 1-3 days, proliferation was 

maximal with Ki67-positive cells localised in the basal layers of corneal and 

limbal epithelium, but Ki-67 labelling was not identified in suprabasal layers. 

Similarly, in mouse corneas, Ki-67-positive cells were exclusively distributed 

through the basal cell layer in all epithelial regions (Fabiani et al., 2009). In this 

study the percentage of PCNA-labelled cells was higher in the central than 

limbal epithelium both in pre- and posthatch corneas which is consistent with 

observations made in rat epithelia (Francesconi etal., 2000).

It has been postulated, that the limbal epithelium contains a mixture of slow- 

cycling stem cells and more rapidly cycling transient amplifying cells, the central 

corneal epithelium contains rapidly proliferating basal cells and that the 

suprabasal cells have excited the cell cycle and become terminally 

differentiated (Francesconi et al., 2000; Cotsarelis et al., 1989; Lavker et al., 

1991). This study however, also showed PCNA-labelled cells in the suprabasal 

layers. Whether those labelled cells were basal cells expelled to above layers 

or undifferentiated suprabasal cells undergoing proliferation, requires further 

investigation.

The observation that peripheral epithelium in developing chick cornea had a 

higher percentage of proliferating cells than central and limbal region is in 

agreement with previous reports and may support the hypothesis about the role 

of populational pressure in the periphery that forces cells to migrate towards the 

central cornea (Lavker et al., 1991; Fabiani etal., 2009).
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It is likely that in the earlier developmental stages and later, when corneal 

epithelium reorganises, the mechanisms of cell proliferation and differentiation 

are similar to that which occurs during the wound healing. Studies of epithelial 

wound-healing response in culture, demonstrated that as cells migrate, 

proliferation is suppressed in the migrating cell front, allowing these cells to 

maintain their cell-to-cell contacts and form a continuous advancing front in 

order to maintain structural integrity (Zelenka and Arpitha, 2008). Similarly, 

during normal homeostasis continuous centripetal movement of the peripheral 

corneal epithelium towards the visual axis maintains corneal epithelial mass, 

and balances the cellular loss resulting from anterior movement of the basal 

epithelial cells to the surface (Sharma and Coles, 1989; Agrawal and Tsai, 

2003).

The role of different key regulatory mechanisms of the cell cycle has been 

studied intensively at both protein and gene levels. For instance, it has been 

shown that proto-oncogenes i.e c-Fos c-Jun, and Fra-2 are expressed in 

normal ocular surface epithelia (Saika et al., 1999; Bourcier et al., 2000) and 

may play an important role in modulating epithelial cell functions (i.e. 

proliferation, migration, and differentiation) during epithelial wound healing. An 

immediate expression of nucleoprotein encoding proto-oncogenes could 

represent the molecular response that initiates the healing process (Thompson 

et al., 1989; Bourcier et al., 2000). Moreover, proto-oncogenes of the Fos/Jun 

family have been shown to be upregulated in many basal cell layers of the 

corneal epithelium after UV exposure (Wickert et al., 1999; Bourcier et al.,

2000).

The retinoblastoma gene product (pRb) and E2F (Eukaryotic transcription factor 

family) appeared to regulate entrance and exit from the cell cycle by activating 

the transcription of genes necessary for DNA synthesis (Francesconi et al., 

2000, Ikeda et al., 1996 ) and were shown to exhibit differential localisation 

depending primarily on the d ifferentiate  state of the corneal cells (Francesconi 

et al., 2000). The mechanism of their activity, thus cell cycle regulation, is likely 

to be dependent on their translocation from the cytoplasm to the nucleus 

(Francesconi et al., 2000).
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Also, members of Notch genes family have been shown to modulate cell 

proliferation in the corneal epithelium (Ma et al., 2007; Djalilian et al., 2008). 

Notch signalling is initiated by the interaction between the ligand on one cell 

and the receptor on a neighbouring cell, which triggers the proteolytic cleavage 

of the Notch receptor (Djalilian et al., 2008; Schroeter et al., 1998). 

Transactivation of protein targets such as Hairy/Enhancer of Split (Hes) and 

Hairy/Enhancer of Split-related genes, which in turn affect numerous pathways 

involving cell-fate determination, requires translocation of Notch intracellular 

domain to the nucleus (Lai, 2002; Djalilian etal., 2008).

Other examples of recently reported factors involved in proliferation in corneal 

epithelium include DeltaNp63 isoforms (Robertson et al., 2008), Kruppel-like 

factor 4 (Klf4) (Swamynathan et al., 2008), Rho-associated serine/threonine 

kinase (ROCK) (Chen etal., 2008) and epiregulin (Morita etal., 2007).

The modulators of cell proliferation and differentiation are under investigation 

and still many questions regarding the exact mechanisms and pathways of their 

actions need to be answered.

In conclusion, the above results demonstrated that proliferation in the 

developing chick corneal epithelium, although vigorous throughout 

development, was particularly increased at mid time points, ED10 to ED14. The 

increase in percentage proliferating cells was preceded by synthesis of PCNA 

protein. Decrease in number of PCNA-positive cells in later developmental time 

points and differences in regional localisation of PCNA-positive cells with the 

restriction to the suprabasal cell layers in the peripheral and central epithelium 

of neonates, suggested that by the time of hatching corneal epithelial 

proliferation acts as mechanism of control responsible for the maintenance of 

epithelial homeostasis.

PCNA as a marker of proliferation
In this study PCNA (PC10) antibody was used as a marker of cell proliferation 

due to its wide use in different species, the possibility of using it with fixed
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tissue and its correlation with BrdU labelling (Hall et al., 1990; Katsuda et al., 

1993).

Previously, techniques used for assessing cell proliferation in developing 

tissues included measurements of the incorporation of thymidine analogues, 

such as BrdU (Bromodeoxyuridine) or tritiated thymidine (Yu et al., 1992). 

Although, both techniques were effective for evaluating cell proliferation rates, 

some disadvantages derived from each of those methods were indicated. The 

main limitation of BrdU incorporation is the fact that it can only be performed in 

viable cells, which requires additional animal handling and precise timing and 

dosage. Finally, BrdU is incorporated to cells in S phase and is a mutagen, 

which limits its usage (Muskhelishvili etal., 2003).

The Ki-67 protein is considered to be proliferation marker in cycling cells (G1, 

S, G2, M phases) (Gerdes et al., 1984). Ki-67 acted as a marker of actively 

cycling cells, as it is synthesised in the mid-G1-phase and then enters the 

nucleus where it is present throughout the cell cycle (Joyce etal., 1996; Gerdes 

et al., 1984). Although Ki-67 is widely used, some doubts have been reported 

with regards to Ki-67 protein half life, expression during the cell cycle and 

between cell types (Louis et al., 1998; Zuber et al., 1988). Other studies using 

anti-Ki-67 antibodies have also demonstrated an inability to obtain specific 

labelling in tissues other than human, including avian (Rodriguez-Burford et al.,

2001).

In contrast to Ki-67, PCNA, as an auxiliary protein for DNA polymerase gamma 

is an evolutionarily conserved molecule, that may be detected in human and 

animal frozen or paraffin-embedded tissues (Moriuchi et al., 1986; Matsumato 

et al., 1987; Waseem and Lane, 1990), avian (94% homology in aminoacid 

sequence between human and chick) and plant cells (Suzuka etal., 1989).

Some controversy exists, whether PCNA can be defined as a specific indicator 

of proliferation. It has been reported that PCNA is expressed in some 

replicating pathological cells, and is engaged in DNA repair (Shivji et al., 1992;
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Hall et al., 1990). In spite of the fact that anti-PCNA immunohistochemistry may 

also weakly stain non-proliferating cells (Mokry and Nemecek, 1995), PCNA is 

the most frequently detected proliferation marker and appeared to be an 

excellent alternative for an evaluation of proliferating cells in the physiological 

tissue.

4.6.2 Epithelial cell death profile during chick corneal development
Programmed cell death (apoptosis) is a selective process of physiological cell 

deletion and its execution plays a major role in the control of shape and size in 

normal and abnormal processes (Kerr et al., 1972; Wyllie etal., 1980; Gavrieli 

et al., 1992). Apoptotic death is characterised by DNA fragmentation, chromatin 

condensation, membrane blebbing, cell shrinkage and apoptotic bodies and a 

number of techniques have been developed to identify and quantify cell 

apoptosis (Duan et al., 2003). Detection of apoptosis in tissue sections includes 

microscopic techniques for morphology assessment, analysis of DNA 

degradation (TUNEL assay, in situ hybridisation for DNA strand-breaks) and 

immunohistochemistry for apoptosis-associated proteins (Gavrieli et al., 1992; 

Hall, 1999; Save etal., 2001; Willingham, 1999; Duan etal., 2003).

To examine in more detail the condensation and fragmentation state of 

chromatin during corneal epithelial differentiation, TUNEL and counterstaining 

with methyl green were performed. In situ TUNEL labelling is a method for 

examination of apoptosis via DNA fragmentation (Gavrieli et al., 1992). The 

DNA strand breaks are detected by enzymatic labelling of the free 3’-OH termini 

with modified nucleotides. The new DNA ends are typically localised in 

morphologically identifiable nuclei and apoptotic bodies. The technique is highly 

specific; normal or proliferative nuclei (low abundant in DNA 3 ’-OH ends) are 

not stained, and it allows detection of an apoptotic cells in the early stage 

(where strand breaks are fewer, before the nucleus undergoes major 

morphological changes) (Migheli et al. 1995).

In our studies the mean percentage of TUNEL-positive cells was between 

2.5±0.6 and 5.7±0.7 throughout epithelial development. Individually labelled 

cells were observed mostly in the limbal epithelium. In most cases the value
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was equal to zero (i.e. no TUNEL-positive cells were observed), thus statistical 

analysis was impossible. It has been reported, that apoptotic cell appearance 

is limited to only a few minutes (Russell et al., 1972; Sanderson, 1976; Kerr et 

al., 1987) and apoptotic bodies in diverse forms are seen for only a few hours 

before they are phagocytosed (Wyllie etal., 1980; Brusch etal., 1990). A rate of 

tissue regression, as rapid as 25% per day, can result from apparent apoptosis 

in only 2-3% of the cells at any one time (Brusch et al., 1990). In other words, 

when within a hundred cells three TUNEL-positive cells are detected at a time, 

it might be predicted that the actual number of cells undergoing cell death 

would be actually twenty five.

Previous studies, where the TUNEL technique was applied to flatmounts and 

frozen sections of the normal rat corneal epithelium, demonstrated very few 

TUNEL-positive cells in the flatmounts, with a lack of labelling in wing and basal 

cell layers (Ren and Wilson, 1996). The TUNEL-positive cells were found only 

on the epithelial surface and not in deeper layers (Ren and Wilson, 1996). 

Similarly a limited number of apoptotic cells on the surface of the rabbit corneal 

epithelium was reported by Gao and coauthors (1997). Despite the fact that the 

TUNEL-positive cells were detected on the surface of the cornea, it is still 

unknown, whether they represented a population of classically apoptotic cells or 

were terminally differentiated cells that can form blebs. Apoptotic bodies have 

not been yet found on the surface of the normal human corneal epithelium, but 

structures described as blebs have been reported in keratoconic corneas 

examined by scanning electron microscopy (Ren and Wilson, 1994; Pfister and 

Burstein, 1977). Also, TUNEL-positive cells were absent in the developing 

human cornea (Yew et al., 2001). Labelled cells were first observed postnatally 

in the epithelium.

Although the TUNEL assay is quite sensitive and widely used, it is prone to 

some pitfalls; it can label non-apoptotic nuclei showing signs of active gene 

transcription (Kockx et al., 1998). Additionally, necrosis and autolysis may 

generate a sufficiently high number of DNA ends that can be positively labelled 

under certain conditions (Grasl-Kraupp et al., 1995; Duan et al., 2003). The 

ApopTag® Kit, used for TUNEL labelling in this study, distinguishes apoptosis
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from necrosis, by specifically detecting DNA cleavage and chromatin 

condensation associated with apoptosis, nevertheless, there may be some 

instances where cells exhibiting necrotic morphology may stain lightly (Gold, 

1994; Perry et al., 1997), and thus the evaluation of the method is crucial. 

TUNEL assay is also associated with a number of technical problems, mostly 

related to DNA strand-breaks associated with excessive levels of proteinase 

digestion, with fixation and processing procedures, or with the action of section 

cutting or other pretreatments (Baron etal., 2000, Duan etal., 2003). Although, 

care was undertaken and all steps in the procedure were monitored (i.e. time of 

proteinase digestion), the possibility of such negative effect of the factors 

mentioned above can not be excluded. In order to minimise effect of fixation 

and processing procedure it might be useful to perform similar studies using 

cryostat sections, but yet again, the effect of cutting can not be eliminated.

To confirm that TUNEL labelling represented apoptotic cell death, 

immunohistochemistry against caspase 3 (active) was performed. Of the 14 

identified caspases in mammals, caspase 3 is known to play a key role in the 

apoptotic pathway as an effector caspase (Bozanic et al., 2003; Reed, 2000; 

Kuan et al., 2000; Mirkes et al., 2001). In response to various apoptotic stimuli, 

inactive pro-caspase-3 is cleaved by other activated caspases, primarily 

caspase 8 (Tewari et al., 1995; Boldin et al., 1995) and caspase 9 (Li et al., 

1997), to form two subunits (17 and 12 kDa) (Mirkes et al., 2001). Once 

activated, caspase 3 cleaves a variety of substrates involved in DNA 

replication, transcription, and indirectly activates a nuclease responsible for 

internucleosomal DNA fragmentation (Mirkes et al., 2001; Nagata, 2000). To 

date, there are many reports available regarding examination of apoptosis with 

anti-caspase 3 antibodies in early eye development in various species (Bozanic 

etal., 2003; Laemle eta l., 1999; Lang, 1997; Zhang etal., 1997; Wride etal., 

1999), but none have investigated later corneal epithelial development in detail.

The pattern of caspase 3 (active) localisation did not entirely mimic the 

distribution of TUNEL labelling in the developing chick corneal epithelium, 

although some similarities were noticed. Apoptotic cell death was identified in 

the limbal epithelium at ED16 and in the centre at ED18 and in posthatched
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epithelia. TUNEL labelling was confirmed by caspase 3 (active) 

immunodetection. The fewer number of cells visualised by caspase 3 

immunolabelling, in comparison to TUNEL, may result from the fact that 

activated caspase 3 allows identification of apoptotic cells in tissue sections, 

even before all the morphological features of apoptosis occur.

The lack of caspase-3 immunolabelling at earlier developmental stages of chick 

corneal epithelium is consistent with observations in the developing human eye 

(Bozanic etal., 2003). The morphological patterns in the corneal epithelium of 7 

week-old human embryos, corresponds to changes observed at ED4 of chicken 

development: the surface ectoderm becomes the corneal epithelium, while 

mesenchyme underlying this epithelium gives rise to the substantia propia of 

the cornea. During this period of eye development, apoptotic cells were 

observed throughout the whole width of the neural retina and in the anterior 

lens epithelium, but were absent from the corneal epithelium (Bozanic et al., 

2003).

To definitively answer questions about the scale of cell apoptosis in the 

developing chick corneal epithelium, it would be beneficial to perform further 

immunohistochemistry experiments; including dual labelling (TUNEL, active 

caspase 3) in a number of sections, immunolocalisation of cleaved cytokeratin 

18, Annexin V labelling, or in situ hybridisation for DNA strand-breaks. 

However, the use of latter method is controversial, as it has been shown, that 

not only apoptotic, but also necrotic cells can incorporate the label (Wijsman et 

al., 1993).

The cytokeratin 18 (CK18) has been identified as a substrate for caspases 3, 6 

and 7 (Caulin et al., 1997), which during apoptosis undergoes dramatic 

reorganisation and is cleaved, generating the apoptotic cascade before Annexin 

V reactivity or positive DNA nick-end labelling (Caulin et al., 1997; Leers et al., 

1999). Several studies have suggested that the detection of cleaved CK18 

could be a promising specific assay for apoptosis identification (Leers et al., 

1999; Huppertz et al., 1999; Duan et al., 2003) and CK18 was reported to be 

present in the corneal epithelium. The detection of cleaved CK18 was
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successfully used to investigate apoptotic response of HSV-1 infection in 

human corneal epithelial cells (Miles etal., 2007).

In situ end-labelling technique relies on the presence of DNA strand breaks in 

apoptotic cells, caused by the activation of endogenous nuclease activity during 

the process of cell death. These strands are labelled with a non-isotopic 

reporter molecule in the presence of a DNA polymerase, and labelled DNA is 

identified immunohistochemically. It has been shown that in situ end-labelling 

stains cells with the morphological characteristics of apoptosis, but also necrotic 

cells that can incorporate the label (Wijsman et al., 1993). Nevertheless, this 

method in combination with other histological techniques (H&E staining) can 

greatly simplify the identification of apoptotic events (Ansari etal., 2005).

In conclusions, it seems likely, that after the formation of the corneal epithelium 

(at ED4, HH 23-24), cell mitosis is involved in morphogenesis, whereas in later 

development might be associated with tissue differentiation and homeostasis. 

Cell proliferation appeared high throughout corneal development, with peak 

proliferation at ED14. The level of proliferation decreased throughout the 

corneal epithelium in posthatch tissue. The above coincides with changes in 

epithelial morphology (stratification) and changes in expression of epithelial 

markers described in Chapter 3. The level of proliferation decreased throughout 

the corneal epithelium from ED16 onwards, and more apoptotic events were 

observed in epithelia posthatching, suggestive that proliferation and apoptosis 

seems to play a minor role in corneal epithelial development as a regulatory 

mechanism in maintaining homeostasis of the epithelial cell population in later 

developmental time points.

The patterns of proliferation and differentiation showed changes during the 

development of the corneal epithelium which reflect interaction of a complex 

network of mitogenic, apoptotic and differentiation agents. It has been 

postulated that apoptosis shares a molecular pathway with the normal cell cycle 

and as such is regulated by the same molecular mechanism that control cell 

growth and proliferation and is sensitive to the same environmental factors 

(Haake et al., 1993; Sen, 1992). Despite the knowledge already gained in the
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field, the molecular mechanisms of apoptosis, the nature of cell signalling and 

the intrinsic factors that promote and regulate cell death are still largely 

unknown. Further analysis of potential agents involved in these processes, are 

performed at the gene level in the next chapters of this thesis.
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CHAPTER FIVE
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Gene expression profiles in chick corneal 
epithelium during development



GENE EXPRESSION PROFILES IN CHICK CORNEAL EPITHELIUM
DURING DEVELOPMENT

5.1 Introduction

Vertebrate corneal development is the result of coordination of three basic 

events: cell proliferation, differentiation and cell death. The regulation of these 

events, in order to maintain tissue homeostasis and ensure normal 

development, is under strict molecular control. Programmes of gene expression 

are believed to be instituted early in embryogenesis and sequentially altered as 

development proceeds (Jan and Jan, 1993; Sorrentino et al., 1990). Genes 

expressed by a particular cell depend on its embryonic lineage, the 

developmental stage of the organism/tissue, cellular environment and the 

functions that the cell must fulfil (Andreeff etal., 2000).

Since cellular states are largely determined by the coordinated expression of 

thousands of genes, they must be tightly regulated by complex mechanisms 

which involve the sequential action of cell lineage-specific or cell type-specific 

factors that repress or activate the gene-specific response. These mechanisms 

can be divided into several categories such as changes in DNA sequence, 

changes in DNA structure/conformation, DNA methylation, chromatin protein 

alterations (histone modification/exchange, non-histone protein), non-coding 

RNA molecules regulating transcription, transcription regulatory factors, 

posttranscriptional control and translational control (Roloff and Nuber, 2005).

Throughout development, and in adult organisms, the ability of a cell to 

proliferate is intimately connected to its state of differentiation. A variety of 

factors act to maintain both proliferation and the differentiation status of the cell; 

these include secreted molecules, transmembrane receptors, intracellular 

signalling molecules and transcription factors (Andreeff et al. 2000). In the 

cornea, epithelial cell proliferation and differentiation were mostly studied in the 

context of wound healing. The importance of growth factors (i.e. TGF(3, EGF, 

HGF, FGF2), their receptors and downstream signalling components (e.g. 

smads, ras/raf/MEK/MAP, phosphoinositide 3-kinases (PI3K), protein kinase C 

(PKC), src family kinase pathways) in regulation of gene transcription, was
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demonstrated in a number of studies (Zhang and Akhtar, 1998; Chandrasekher 

etal., 2001; Xu etal., 2007; Zelenka etal., 2008).

The role of programmed cell death as a necessary mechanism complementary 

to proliferation is well documented during early stages of eye development 

(Wilson, 1999). In corneal epithelial system apoptosis is mostly reported as an 

in vitro induced event (Lu, 2006; Chang et al., 2008; Kim et al., 2008). Three 

major pathways which result in activation of caspase 3 have been elucidated: 

the mitochondrial/cytochrome C pathway (mediated through Bcl-2 family 

members), ligation of members of the TNF-receptor family or Fas (CD95), and 

granzyme B (Ashkenazi and Dixit, 1998; Hengartner, 2000; Nagata and 

Golstein, 1997). The role of a number of natural inhibitors (lAPs) and substrates 

(BH3-domain molecules) of caspases, Fas/Fas ligands (i.e. p53, FADD) and 

TRAIL receptors (i.e.DcR1/DcR2, DR4/DR5) was shown to be relevant at 

different levels of the programmed cell death cascade (Duckett etal., 1996; Wei 

et al., 2001; Owen-Schaub et al., 1995; Chinnaiyan et al., 1995; Pan et al., 

1997a).

The molecular mechanisms behind the function and regulation of corneal 

epithelial homeostasis require further investigation. It is also not clear when and 

how during embryonic development the limbal stem cell becomes committed to 

become an adult stem cell and crucial to the maintenance of epithelial tissue in 

postnatal life. Previous studies in other body systems have shown that adult 

and embryonic stem cells might share common pathways that are critical to 

stem cell survival and maintenance of the tissue they supply. For instance, 

Notch signalling was shown to be an evolutionary conserved mechanism for 

controlling cell fate through local intercellular interactions in adult and 

embryonic tissues (i.e. corneal and mammary epithelium) and also 

demonstrated to influence stem-cell fate in human epidermis, mouse intestinal 

epithelium (Lewis, 1996; Bray, 1998; Artavanis-Tsakonas etal., 1999; Lowell et 

al., 2000; Nicolas etal., 2003; Hu etal., 2006; Schroder and Gossler, 2002; Ma 

etal. 2007; Djalilian et al., 2008).
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The roles of other signalling pathways, in epithelial stem cell biology are less 

clear. Lack of sonic hedgehog (Shh) signalling, for instance, resulted in a 

severely impaired hair-follicle morphogenesis, whereas the development of the 

intestine and mammary gland are relatively normal, suggestive that hedgehog 

signalling may promote proliferation in some epithelial cells types whereas in 

other epithelial cells it inhibits proliferation or has no effect (Blanpain et al., 

2006).

5.2 Aims

• To reveal the gene expression profile during chick corneal epithelium 

development and identify main biological functions

• To identify genes involved in the processes of differentiation, proliferation 

and apoptosis during development

• To determine genes differentially expressed in the developing embryonic 

corneal epithelium compared to posthatched epithelial tissue

• To identify candidate genes involved in stem cell biology/regulation.

5.3 Experimental design
The specific methods involving sample preparation and chip processing are 

described in detail in Chapter 2, section 2.11. The experimental design 

described in this chapter refers to microarray data analysis (Step 9 in Figure 

6.1) following initial preprocessing of data and validation to confirm quality of 

data obtained for further analysis.

Sample collection

Briefly, seven developmental time points (ED6, 10, 12, 14, 16, 18 and ED21 

posthatch) were selected for gene expression studies. These were selected 

based on earlier morphological and immunolocalisation studies discussed in 

Chapter 3 (sections 3.6.1, 3.6.2) and Chapter 4 (sections 4.6.1, 4.6.2).
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Step 4
RNA extraction
RNA quality and quantity assessment

Step 5
cDNA synthesis * 
cRNA labelling * 
cRNA fragmentation

Step 6
Hybridisation * 
Washing/staining

Step 7
Scanning

StepS
Data pre-processing

Step 9
Data analysis (Chapter V)

Step 10
Post- analysis data validation (Chapter VI)

5.5.1 Total RNA integrity

5.5.1 Total RNA yield and purity

WORKFLOW OF MICROARRAY 
EXPERIMENT

5.5.4 Houskeeping genes

5.5.5 Linearity of amplification
5.5.2 cRNA amplification and 

fragmentation________

5.5.3 Hybridisation controls

S ' Chip level: \
• Spike in controls (5.5.5)
• Houskeeping probes (5.5.4)
Experiment level:
• QC plots(5.5.6)
• Diagnostic plots:

- Correlation matrix (5.5.7)
- NUSE/RLE (5.5.8)

Step 1 Microarray fabrication

Step 2

Step 3
Biological sample preparation (Chapter II)

Probe design

Figure 5.1 Workflow of procedures for gene expression profiling. Left panel shows 
successive steps, right side panels denotes controls/validation techniques involved in each of 
experimental step; white background: controls used to validate quality control during 
experimental procedures, grey background: validation carried out post-experimentally.



To minimise the influence of potential individual differences between animals 

and technical variation introduced by tissue preparation and dissection, total 

RNA, isolated from corneal epithelia of a number of animals at each 

developmental time point, was pooled. Three replicates of pooled RNA (derived 

according to RNA content) were obtained for each developmental time-point.

RNA quantity and quality assessment

The amount and quality of RNA was determined using the Agilent 2100 

Bioanalyser system (Chapter 2, section 2.10). Only high quality RNA 

preparations, as judged by the clarity of the ribosomal bands, were processed 

for microarray experiments. RNA quality is a critical factor which determines 

the quality of hybridisation to a chip.

Microarrays

Each pool of total RNA was converted do cRNA, labelled by in vitro 

transcription and hybridised to a short oligo-target sequence on a single 

microarray chip (Gene Chip® Chicken Genome Array, see Chapter 2, section 

2.11). Raw data after scanning were represented as an image, generated by 

measuring signals in defined areas (pixels) across the entire hybridised area. 

The main objective of this image analysis was to calculate a single intensity 

value for each probe on the scanned array. These intensities represent how 

much hybridisation has occurred for each oligonucleotide probe. After image 

scanning and quantification, raw intensity data was further processed to correct 

systematic variations and prevent artefacts before data analysis. This included 

background correction, summarisation, normalisation and transformation (see 

section 5.4.1).

5.4 Microarray Data Analysis 

5.4.1 Pre-processing of data

Data pre-processing was performed using software tools that have been 

developed under the Bioconductor v.1.6. project (Gentleman etal., 2004). Pre­

processing GeneChip® expression data involved generation of 3 types of files; 

.DAT, .CEL and .CHP with Affymetrix GCOS software. Each .CEL file
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corresponds to a single hybridisation and contains the intensities for each probe 

on the chip. Statistical software tools like R (lhaka and Gentleman, 1996) in 

conjunction with Bioconductor allowed investigation of different quality 

parameters using .CEL data after background correction and normalisation (see 

section 5.4.2). Bioconductor uses the best known algorithms for preprocessing 

microarray data, such as MAS5.0, Robust Microarray Average (RMA) and GC- 

RMA for single channel arrays, and LOESS normalisation for two-channel 

arrays (Irizarry etal., 2003, Yang etal., 2001, Tarca etal., 2006).

5.4.2 RMA normalisation

Robust Multiarray Average (RMA) was used to analyse microarray data as 

described by Bolstad and coauthors (2003) for vast data sets. RMA method 

handles background adjusted, log-transformed and normalised Perfect Match 

(PM) values in order to produce an expression value that is exhibiting reduced 

bias and non biological variability. RMA estimates are based upon robust 

average of log2 (B (PM)), where B (PM) are background corrected PM 

intensities. RMA method was performed to increase the sensitivity and 

specificity of the final measure of expression and to be more powerful at lower 

sample sizes when compared to other methods (i.e. MAS5.0).

5.4.3 Identifying differentially expressed genes 

Limma analysis
To identify differentially expressed genes Limma analysis was used (part of 

Bioconductor package). Limma is a package for differential expression analysis 

of microarray data and its central idea is to fit a linear model to the expression 

data (log-expression values) for each gene (Smyth, 2005). With one-channel 

data (Affymetrix GeneChip®) linear modelling is equivalent to ANOVA or 

multiple regression. It provides functions which summarise the results of the 

linear model, performs hypothesis tests and adjusts the p-values for multiple 

testing (p-values are multiplied by the number of comparisons) (Smyth, 2005). 

The p-values for each gene resulting from Limma were corrected for multiple 

testing using the False Discovery Rate (FDR) method (Benjamini and 

Hochberg, 1995) with a p-value cut off of 0.000000001. The FDR is defined as
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the expected proportion of false positives (incorrectly rejected null hypotheses, 

type I errors) amongst all significant tests, and the p-value of an individual test 

is the minimum FDR at which the test may be called significant.

Fold change calculation

The fold changes (fc) calculation is another technique to identify differentially 

expressed genes. Although, it is commonly used in static experiments, this 

method is not directly applicable for time course experiments, where differential 

expression has to be calculated globally in the temporal space and not just 

between corresponding time points (Storey et al., 2005; Jonnalagadda and 

Srinivasan, 2008). For the purpose of this study to identify genes relevant at a 

particular time point and select candidates for validation of microarray 

experiment (see Chapter 6), fc were calculated on log normalised RMA data 

between particular time points according to the formula: log(A/B) = log(A) - 

log(B).

5.4.4 Principal Component Analysis
Principal Component Analysis (PCA) was used to identify differentially 

expressed genes and reveal fundamental patterns within the microarray data. A 

statistical test (ANOVA) was used on RMA data to find the significance of 

differences in expression values between time points for each gene, thus 

identify differentially expressed genes and their p-values. PCA was applied on 

the data found as significant by the ANOVA at a significance of 0.05. The set of 

vectors (a linear transformation of the expression values of all genes) obtained 

from the analysis was applied back to the data in order to identify most variable 

elements (probe sets) that show the highest correlation (R2>0.9) to defined 

vectors (components). Since only the dominant components (the first two that 

capture the highest variance) are used for analysis, the effect of noise in data is 

alleviated.

5.4.5 Gene Ontology clustering
Probe sets identified by RMA analysis were uploaded into MADRAS 

(www.madras.uwcm.cf.ac.uk, Microarray Bioinformatic Group, Cardiff

University) where gene expression profiles could be visualised using heatmaps.
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The tools for data mining used in this study included the Database for 

Annotation, Visualisation and Integration Discovery (DAVID) 2.1 v.6 

(http://david.abcc.ncifcrf.gov/)  and NetAffx (Affymetrix Analysis Centre, 

http://affymetrix.com/analysis/index.affx). All softwares incorporated the Gene 

Ontology (GO) approach, which compares the number of genes found in each 

GO category of interest with the number of genes expected to be found in the 

same category just by chance. If the observed number is substantially different 

from the one expected to be found just by chance, the category is reported as 

significant (Tarca etal., 2006).

DAVID 2.1 software suite integrates functional genomic annotations with 

intuitive graphical summaries. The Classification Tool uses a novel clustering 

algorithm that allows the classification of highly related genes into functionally 

related groups based on similar biological terms between them. The Functional 

Annotation Tool was used to cluster related terms/annotations (gene functions) 

based on a gene list.

A novel heuristic partitioning procedure, applied to create clustering, allowed an 

object (gene) to participate in more than one cluster, when using the 

Classification Tool. The use of this method, in grouping related genes, better 

reflects the nature of biology. The same genes can be classified to several 

clusters, but genes that significantly fall under a specific term (function) will 

cause the separation of these clusters. The DAVID system calculation in 

Functional Classification Tool is based on the assumption that a gene group is 

more important if a majority of its gene members are associated with highly 

enriched annotation terms, as found in the traditional enrichment analysis of the 

total gene list (the whole genome, so called background) (Huang et al., 2007). 

Clusters were ranked according to enrichment scores, which were calculated as 

a geometric mean of EASE scores (more conservative Fisher Exact p-value) of 

terms involved in each gene group, following minus log transformation. Since 

the geometric mean is a relative score instead of an absolute p value, the group 

enrichment scores are intended to order the relative importance of the gene 

groups instead of as absolute decision values (Huang etal., 2007).
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The detailed fuzzy heat map view available in DAVID software allowed 

examination of similarities and differences of annotation across the group gene 

members, as well as between different gene families, since genes and 

terms/annotations appear multiple times within the heatmap. An interesting 

area (cluster) can be then selected and viewed in detail. However, this is one of 

the exploratory tools available online, thus only introduced in this chapter

On the other hand, the Functional Clustering Tool clusters similar biological 

terms (functions). However, genes that bring each cluster together belong to 

different gene families. Additional advancements included in this algorithm are: 

the automatic determination of the optimal number of clusters, and the 

exclusion of members (genes) that have weak relationships. The DAVID 

Classification and Functional Clustering Tools were run using default 

parameters (medium stringency, similarity threshold at 0.35 level) for most 

analyses, unless stated otherwise.

The NetAffx is an online resource which was used to correlate GeneChip® array 

results with array design and annotations. NetAffx provides access to integrated 

biological annotations from a broad range of both public (GenBank, RefSeq, 

Ensembl, UniGene, Entrez Gene, UniProt, UCSC) and Affymetrix-specific 

databases through a streamlined interface. The NetAffx was used to search 

through lists of significant probe sets for terms of interest and to identify 

genes/ESTs that were recognised as ‘not annotated’, due to less frequent 

updates of other softwares’ databases.

All tables presented in this chapter and Appendix V contain the Affymetrix 

probe set IDs, gene names, symbols, as well as, Unigene reference numbers.
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RESULTS

5.5. Validation of techniques to ensure quality and reproducibility of 
microarray data

Generating gene expression measures by using a microarray platform like 

Affymetrix GeneChip® is a sophisticated and time consuming process with 

many potential sources of variation (Heber and Sick, 2006). Sources of 

variation that could compromise gene expression data and analysis results 

include biological variation, sample preparation (total RNA isolation, labelling) 

and the system used (instruments and arrays). Speculations about biological 

variability require earlier identification of other non-biological sources of 

variation. Experimental variations come from undesirable systematic error 

introduced during the many technical steps (Imbeaud and Auffray, 2005), 

involving tissue processing, labelling and hybridisation. The standardised 

procedure to assess the quality of individual chips within experiments involves 

the collection, visualisation and interpretation of a defined set of quality 

measurements.

5.5.1 RNA quality and quantification 

Total RNA integrity
The sharp definition of the 28S and 18S ribosomal RNA species in all lines 

demonstrated the integrity of samples (Figure 5.2). Distinct double intensity of 

the 28S in relation to 18S rRNA band and non-smeared appearance of major 

bands indicated high quality, non-degraded RNA in all samples to be processed 

for microarray analysis.

Total RNA yield and purity
Yield, purity and integrity measurements for all total RNA samples are listed in 

the table below (Table 5.1). Samples of high quality typically had a ratio of 

28S/18S close to 2 and RNA Integrity Number (RIN) close to 10. RNA purity 

was determined by optical density (OD) measurements at wavelengths of 260 

and 280nm. Samples of high quality had a 260/280 ratio within the range 1.8- 

2.29.
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Figure 5.2 Image file output of total RNA isolated from chick corneal epithelia at different 
developmental time points (n=3) obtained from Lab-on-a-chip system from Agilent. When 
viewed as a virtual gel, the 28S, 18S are easily identifiable, and all lanes contain good quality 
RNA.

Table 5.1 Total RNA yield, 260/280 absorbance ratios, integrity parameters of samples used in 
array experiments

Sample RNA 260/280 rRNA ratio RNA integrity
ng/ul ratio 28s/18s number

ED6.1 173 1.97 2.7 10
ED6.2 348 2.01 1.8 9
ED6.3 267 2.03 2.7 10
ED10.1 482 2.07 2.2 9.8
ED10.2 441 2.1 2.4 10
ED10.3 410 2.05 2.5 10
ED12.1 410 2.09 2.1 9.8
ED12.2 362 2.01 2.3 10
ED12.3 564 2.04 2.4 10
ED14.1 399 2.05 2.1 9.7
ED14.2 347 2.04 2.5 10
ED14.3 471 2.03 2.5 10
ED16.1 355 2.03 2.1 9.7
ED16.2 347 2.02 2.6 10
ED16.3 383 2.03 2.3 10
ED18.1 396 2.00 2.1 9.7
ED18.2 447 2.03 2.3 9.8
ED18.3 317 2.02 2.5 10
ED21.1 344 2.07 2.0 9.6
ED21.2 290 2.05 2.3 10
ED21.3 597 2.01 2.7 10
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5.5.2 cRNA amplification and fragmentation
Before fragmentation, purity and yield of amplified cRNA was determined by 

OD measurements at wavelengths of 260nm and 280nm. All samples met 

criteria for further processing i.e. minimum concentration 1.7|ig/pl, OD ratio; 

1.8-2.29 (see Table 5.2). The fragmentation reaction was monitored using 

Agilent software for product cRNA quality and confirmed by capillary 

electrophoresis, prior to staining and hybridisation to array chips. All fragmented 

cRNA samples had an average size of approximately 100 nucleotides, which is 

a good indicator of successful fragmentation (Figure 5.3).

Table 5.2 cRNA yield and 260/280 absorbance ratios of all samples used

Sample RNA
pg/pi

260/280
ratio

ED6.1 1.78 2.08
ED6.2 1.81 2.07
ED6.3 2.04 2.07
ED10.1 3.09 2.00
ED10.2 2.96 2.02
ED10.3 2.67 2.03
ED12.1 3.07 2.00
ED12.2 2.58 2.03
ED12.3 2.73 2.02
ED14.1 2.36 2.05
ED14.2 2.27 2.05
ED14.3 2.91 2.00
ED16.1 2.75 2.03
ED16.2 2.84 2.01
ED16.3 2.24 2.05
ED18.1 2.62 2.04
ED18.2 2.82 2.03
ED18.3 2.34 2.05
ED21.1 1.79 2.07
ED21.2 2.00 2.07
ED21.3 2.43 2.04
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Figure 5.3 Image file output of fragmented cRNA from different samples of developmental 
time points (ED6-ED21, n=3) used for hybridisation to arrays.

5.5.3 Hybridisation controls

External controls (mixture of biotin-labelled cRNA transcripts of BioB, BioC, 

BioD and Cre prepared in staggered concentrations, section 2.11.6) gave 

increasing signal values (the fourth being the highest), reflecting their relative 

concentrations and the level of signal intensity was maintained across the 

arrays (Fig. 5.4). The series of quality control parameters associated with this 

assay and hybridisation performance are listed in Appendix IV.

5.5.4 Housekeeping genes

In addition to conventional probe sets, which are designated to be 

complementary to the region within 600bp of the 3’ end of the transcripts, the 

internal controls (GAPDH, glyceraldehyde 3-phosphate dehydrogenase and p- 

Actin) also have 5’ and middle (M) probe sets included on the array. These are 

intended to give an indication of the integrity of the RNA sample, and efficiency 

of 1st strand cDNA synthesis. As indicated in Figure 5.5, signal intensity values 

are consistent across the data set, suggesting minimal quality variation 

between samples hybridised to different chips.
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Figure 5.4 Log2 signal intensity of external spiked controls for each array. Controls (BioB, BioC 
BioD and ere) increase in quantity, which is reflected in the signal intensity.
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Figure 5.5 Log2 signal intensity of internal controls for each array. Controls (GAPDH and p-actin) 
increase in a quantity, which is reflected in the signal intensity.
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The signal for the 3 ’, M, and 5’ probe sets (3’ signal higher than for the M’ and 

5’ probe sets, due to the direction of synthesis) and the ratio for the 375’ signal 

values (<3) confirmed the high quality of the samples (Appendix IV).

5.5.5 Linearity of amplification

Pre-synthesised mixture of four poly-adenylated prokaryotic RNA controls (lys, 

phe, thr, dap in increasing ratios of copy number 0.000001, 0.00002, 0.00004, 

0.0001 respectively) were spiked into each RNA sample in staggered 

concentrations prior to RNA amplification and labelling (see section 2.11.1) to 

monitor the entire GeneChip® eukaryotic target labelling process.

All polyA+ controls showed increasing raw signal values in the following order: 

dap>thr>phe>lys and the consistency of signal was maintained between arrays 

(Fig. 5.6, Appendix IV). The values of the log transformed signal intensities of 

control transcripts were calculated for each array to check for correlation with 

their predetermined relative abundance ratios (Table 5.3). R2 showed high 

correlation (R2>0.95) between concentrations of transcripts and raw signal 

value, with the exception of array ED12.1 (R2 = 0.9195) and ED16.1 (R2 = 

0.9488). However, these values are within the acceptable range and may be a 

result of different sample handling.

12

Developm ental tim e points (days)

Figure 5.6 Log2 signal intensity of internal polyA+ controls for each array. The signal intensity 
was highest for the most abundant transcript {dap), and lowest for the least abundant {lys). 
Consistency of signal for each control was maintained for all chips.
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Correlation between ratios of copy numbers for each control and mean signal 

intensities was 0.9835, indicating that 98.35%  of the variance in ratios of control 

transcripts before and after amplification, was related. The reaction of 

amplification did not change these ratios, therefore, confirming the lack of 

experimentally induced variance.

Table 5.3 R2 correlation values of log2 transcript relative concentration (ratio of copy number) 
versus log2 signal (fluorescence units) for each sample

Sample R2

ED6.1 0.9930
ED6.2 0.9949
ED6.3 0.9923

ED10.1 0.9594
ED10.2 0.9659
ED10.3 0.9564
ED12.1 0.9195
ED12.2 0.9706
ED12.3 0.9711
ED14.1 0.9732
ED14.2 0.9959
ED14.3 0.9769
ED16.1 0.9488
ED16.2 0.9722
ED16.3 0.9838
ED18.1 0.9784
ED18.2 0.9811
ED18.3 0.9816
ED21.1 0.9892
ED21.2 0.9949
ED21.3 0.9932

5.5.6 Quality control plots
Residual images visualised physical artefacts on arrays that could pose 

potential quality problems and allow evaluation of both within-group variability 

and effect-size between experimental groups for each probe set on the array. 

Quality control (QC) plots show false colour images for residuals, with yellow 

intensities corresponding to positive residuals, and blue to negative residuals 

(Fig. 5.7). A few hybridisation effects for samples ED14.3, ED18.1, ED16.3 

were observed, however, as probes for genes are scattered across the array, 

these localised effects had negligible effect on the expression levels of the 

genes. Plots for other samples showed high similarity between the data.
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5.5.7 Correlation matrix

The reproducibility of the results is underlined by the high correlation 

coefficients (R2) of the replicate samples. These had a range of 0.9 to 0.99. 

Figure 5.8 illustrates the correlation coefficients of the experimental repetitions. 

Correlation was visualised using a customised colour selection. Light yellow 

indicated the highest correlation coefficient values and red, the lowest. As it 

was shown, even the lowest correlation (R2 value of 0.9) indicated that 90% of 

the variance between experiments was related, confirming that the results 

exhibited a high degree of reproducibility and lack of experimentally induced 

variance.

5.5.8 Normalised Unsealed Standard Errors (NUSE) and Relative Log 

Expression (RLE).

To assess the variability in gene expression between arrays and the quality of 

arrays, specific Affymetrix boxplots were obtained; Normalised Unsealed 

Standard Errors (NUSE) and Relative Log Expression (RLE).

NUSE provides a measure of relative chip quality derived from residuals from 

the Robust Multiarray Analysis (RMA) and helps to identify any arrays which 

have elevated standard errors relative to other arrays in the data set. RLE is the 

absolute metric that gauges variability of expression measures by summarising 

the log2 scale estimate of expression value on each array against the median 

expression value for that probe set across all arrays. Assuming that most genes 

are not changing in expression across arrays, ideally most of these RLE values 

will be near 0.

The NUSE plot shown in Figure 5.9a showed the arrays reasonably centred 

around the median NUSE=1, with approximately equal box sizes. They did not 

appear to present any quality control problems. As shown in Figure 5.9b, all 

arrays were centred near 0 and approximately equal box sizes and therefore 

presented no quality control problems. In all cases a median RLE was lower 

than 0.1 which confirmed a lack of outlier arrays allowing their cross 

comparisons.
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Figure 5.8 Correlation matrix for all pairwise comparisons between individual chips hybridised 
with different samples. The colour scale is shown in the panel, and it is proportional to the 
ranks. Light yellow coloured cells indicate very high correlation.
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5.6 Gene expression analyses

5.6.1 Functional families of genes involved in biological processes during 

corneal epithelial development

The following sections include outputs of gene families identified, which are 

involved in the regulation of differentiation, proliferation and cell death 

throughout the development of the chick comeal epithelium. Data obtained from 

RMA analysis was used to search for GO terms; differentiation, proliferation, 

apoptosis/cell death, and probe sets that matched any of the three areas of 

interest were grouped. Subsequently, probe lists were uploaded into DAVID 2.1 

software and classified using the Gene Classification Tool, which allowed 

organisation of a large list of genes into functionally related groups and 

revealed the biological context of each family (see section 5.4.5).

Functional groups were organised in descending order according to the 

enrichment score, which ranked the biological importance of each gene groups 

based on overall EASE scores (modified Fisher Exact p-value), as described in

5.4.5. A higher enrichment score is an indicator of a more interesting gene 

family in terms of biology related to the uploaded gene list. Overrepresented 

GO terms were found at p<0.01 level Fisher Exact test.

The representative fuzzy heat maps of genes involved in regulation different 

biological processes are shown in the following figures 5.10, 5.11 and 5.12. The 

organisation of a fuzzy heat map allows gene-to-term comparison (members 

within each functional gene group can be compared according to their 

annotation/function), as well as, cluster-to-cluster comparisons (members of 

different functional gene group/clusters can be compared according to their 

annotations/functions). Horizontal grey lines separate genes, while vertical grey 

lines separate annotation terms belonging to each functional gene group. The 

heatmap patterns in diagonal (blue) are the functional gene clusters identified 

within uploaded gene lists; the number of diagonal squares is equal to the 

number of functional gene groups. The heatmap patterns above and below 

each blue square show relationship/similarity between different functional gene 

families. Green patterns indicate a match between gene and term/annotation.
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5.6.1.1 Functional gene families involved in regulation of differentiation

From the list of genes identified following RMA analysis, 242 probe sets (159 

genes) were identified as those which match ‘differentiation’ gene ontology 

(G0:0030154). From the uploaded probe list, 10 functional gene groups and 

135 non-clustered probe sets (88 genes) were identified. Functional gene 

families involved in differentiation of chick corneal epithelium during 

development included: Nerve Growth Factor Receptors, Bone Morphogenetic 

Proteins, Transcription regulators, Semaphorins, Growth Factors, Frizzled- 

Related Protein, Epidermal Growth Factors-like, Transforming Growth Factors 

(3-like, Kinases, G-protein coupled receptors. The genes that constitute the 

functional group and their functional role in biological processes are 

summarised in Table V.1 (Appendix V). A list of unclustered genes (genes not 

mapped to any of the functional groups, but potentially biologically relevant) is 

presented in Table V.2 (Appendix V).

A global view of these 10 functional clusters derived from 71 genes involved in 

the regulation of differentiation during development of the chick corneal 

epithelium is shown in Figure 5.10.
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Figure 5.10 The global view of fuzzy heat map of 10 functional genes groups derived from 71 genes involved in regulation of differentiation during 
development of chick corneal epithelium. Horizontal grey lines separate genes belonging to each functional group, vertical grey lines separate 
annotation terms belonging to each functional group. The heat map patterns in diagonal (blue) are the 10 functional groups and show gene-to-term 
relationship within each gene family. The heat map patterns above and below (green) show cluster-to-cluster relationship between different functional 
gene families. Green and blue patterns visualise a match between gene and term/annotation. Numbers correspond to numbers of functional cluster in 
text.



5.6.1.2 Functional gene families involved in regulation of proliferation

RMA analysis and GO clustering identified 98 probe sets (64 genes) involved in 

cell proliferation (G0:0008283) during chick corneal epithelial development. 

DAVID Classification Tool clustered transcripts from uploaded probe list into 3 

functional groups; Growth Factors activity (6 genes), Transcription Regulators 

(8 genes), Growth Factors activity (6 genes). The Classification Tool clustered 

genes into two gene families of Growth Factors. As described in section 5.4.5, 

classification in DAVID system is generates functional gene cluster, based on 

the terms (function) shared by the genes in the clusters; the more enriched 

term, the higher probability of forming separate cluster. The general terms 

Regulation of progression through cell cycle' and 'Regulation of cell cycle' are 

more enriched for several gene members that constitute the family showing the 

highest enrichment score (first functional group). Genes from the third gene 

family (Growth Factors) are grouped based on their more specialised 

annotations. Similarities and differences between members of all three 

functional gene clusters are visualised by the fuzzy heatmap shown in Figure

5.11 (see section 5.6.1). It appeared that members of first and third cluster 

share some common annotation, but also several genes matched more 

specialised terms, thus were classified to separate groups.

Table V.3 summarises identified functional gene families grouped according to 

the enrichment score and their functional roles (Appendix V). A list of 67 probe 

sets (44 genes) which were determined as unclustered is shown in Table V.4 

(Appendix V).
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Figure 5.11 The global view of fuzzy heat map of 3 functional genes groups derived from 20 genes involved in regulation of proliferation during 
development of chick corneal epithelium. Horizontal grey lines separate genes belonging to each functional group, vertical grey lines separate annotation 
terms belonging to each functional group. The heat map patterns in diagonal (blue) are the 3 functional groups and show gene-to-term relationship within 
each gene family. The heat map patterns above and below (green) show cluster-to-cluster relationship between different functional gene families. Green 
and blue patterns visualise a match between gene and term/annotation. Numbers correspond to numbers of functional clusters in text.



5.6.1.3 Functional gene families involved in regulation of cell death

A probe list of 215 probe sets (140 genes), that match gene ontology term 

‘apoptosis' (G0:0006915), was used to identify functional families involved in 

these process during corneal epithelial development. Three relevant gene 

families and 45 non-clustered genes were identified using default settings. 72 

genes constituted the first functional gene family. Therefore, in order to obtain 

more specific and cohesive clustering within this functional group, the settings 

were further optimised (similarity threshold at 0.5 level). This resulted in 

additional 7 subclusters and 16 non-clustered genes. The first class, in this 

ontological category, was Bcl-2-related Apoptosis Regulators family, which 

claimed 19 of the genes involved in programmed cell death processes. 

Subsequent groups, ordered according to enrichment score, included: Inhibitor 

Apoptosis Proteins (10 genes), Bcl-2-related Apoptosis Agonists (4 genes), 

Phosphotransferases (7 genes), Tumor Necrosis Factor Receptors family (4 

genes), Caspase Apoptosis Regulators (10 genes), Kinases (7 genes), 

Transcription regulators (10 genes) and Neurotrophin family (4 genes).

The genes and names of families they belonged to are summarised in Table 

V.5 and unclustered transcripts are presented in Table V.6 (Appendix V). Figure

5.12 shows a fuzzy map of functional gene groups, including 7 subclusters 

derived from the first functional group (see section 5.6.1).
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Figure 5.12 The global view of fuzzy heat map of 9 
functional genes groups derived from 75 genes involved in 
regulation of apoptosis during development of chick 
corneal epithelium. Horizontal grey lines separate genes 
belonging to each functional group; vertical grey lines 
separate annotation terms belonging to each functional 
group. The heat map patterns in diagonal (blue) are the 10 
functional groups and show gene-to-term relationship 
within each gene family. The heat map patterns above and 
below (green) show cluster-to-cluster relationship between 
different functional gene families. Green and blue patterns 
visualise a match between gene and term/annotation. 
Numbers correspond to numbers of functional clusters in 
text; I: denotes for big cluster that was subdivided.
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5.6.2 Genes sharing common annotation for gene ontology differentiation, 

proliferation and apoptosis

RMA data was searched for annotation containing, ‘differentiation’, 

‘proliferation’ and ‘apoptosis, cell death’ terms. 7 genes (12 probe sets) were 

found to be involved in regulation of all three biological processes. 16 genes (19 

probe sets) shared common annotation for ‘differentiation’, and ‘proliferation’, 6 

(8 probe sets) genes were involved both in regulation of differentiation and 

apoptosis, and 3 (5 probe sets) in proliferation and apoptosis (Fig. 5.13). The 

list of genes sharing different annotation terms, in each comparison, is 

presented in Table 5.4.

D IF F E R E N T IA T IO N  PROLIFERATION

19 |

203 | 62 |

12

_8j _5j

190

A PO PTO SIS

Figure 5.13 Venn diagram shows numbers of probe sets in each comparison between 
subgroups of genes involved in three biological processes: differentiation, proliferation 
and apoptosis.
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Table 5.4 List of genes sharing GO annotation for more than one biological process

Affy Probe ID Gene name Gene Symbol Unigene

Differentiation/Proliferation/Apoptosis

GgaAffx.22982.1 ,S1 _at Transforming Growth Factor, Beta 2 Tgfp2 GGA. 12932

Gga.16413.3.S1 at 
Gga.16413.1 A1 a at 
Gga.16413.1.A1_at

Fibroblast Growth Factor Receptor 3 (achondroplasia, 
thanatophoric dwarfism) Fgfr3 GGA.16413

Gga.2396.1.S1_at B-cell Translocation Gene 1, Anti-proliferative Btg1 GGA.2396

Gga.696.1.S1_at
Gga.696.1.A1_at Brain-derived Neurotrophic Factor Bdnf GGA.696

Gga.345.1.S1_at Sonic Hedgehog Homolog (Drosophila) Shh GGA.345

Gga.1095.1.S1_at Signal Transducer And Activator Of Transcription 5B Stat5b GGA. 1095

Gga.961.2.S1_a_at 
Gga.961.2.S1_at 
Gga.961.1.S1_at

T-box 5 Tbx5 GGA.961

Differentiation/Proliferation

GgaAffx.5710.2.S 1 _s at 
GgaAffx.5710.2.S1_at 
GgaAffx.5710.1 .S1 _at

Neural Proliferation, Differentiation And Control, 1 Npdcl GGA.31961

Gga.5002.1.Sl_at Midkine (Neurite Growth-promoting Factor 2) Mdk GGA.5002

Gga. 17040.2.S 1 _a_at Fibroblast Growth Factor 2 (basic) Fgf2 GGA. 17040

Gga.648.1.S2_at Fibroblast Growth Factor 1 (acidic) Fgf1 GGA.648

Gga.570.1.S1_at Neurogenic Differentiation 4 Neurod4 GGA.570

GgaAffx.7399.1 .S1 _at 
Gga.4969.1.Sl_at GLI-Kruppel Family Member GLI2 Gli2 GGA.4969

Gga.537.2.S1_a_at Vascular Endothelial Growth Factor A Vegfa GGA.537

Gga.511.1.S1_at T-cell Leukemia Homeobox 1 Tlx1 GGA.511

Gga.473.1.S1_at Indian Hedgehog Homolog (Drosophila) Ihh GGA.473

Gga.3754.2.S1 at 
Gga.3754.1 .S1 _a_at Hairy And Enhancer Of Split 1, (Drosophila) Hes1 GGA.3754

Gga.4349.2.S1_s_at 
Gga.4349.1 .S1 _s_at

SWI/SNF Related, Matrix Associated, 
Actin Dependent Regulator Of Chromatin, 
Subfamily B, Member 1

Smarcbl GGA.8558

Gga.3126.1.S1_at 
Gga.11892.1.S1_s_at

Platelet-activating Factor Acetylhydrolase, 
Isoform lb, Alpha Subunit 45kDa

Pafah1b1 GGA.3126

Gga.3689.2. S1 _a_at Histone Deacetylase 4 Hdac4 GGA.3689

Proliferation/Apoptosis

Gga.122.2.S1_a_at 
Gga.6790.1.A1_at Craniofacial Development Protein 1 Cfdpl GGA. 122

Gga.723.1 .S1_a_at CD28 Molecule Cd28 GGA.723

GgaAffx.23500.1 .S1_at 
GgaAffx.23500.1 ,S1 _s_at Inhibin, Alpha Inha GGA.6881

Differntiation/Apoptosis

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein (C/EBP), Beta Cebpb GGA.4285

Gga.3982.1.S1_at
Gga.3982.1.S2_at

Inhibin, Beta A Inhba GGA.3982

Gga.11320.1.S1_s_at Tyrosine Protein Kinase P56lck GGA. 11320

GgaAffx. 11482.1 .S1 _s_at 
GgaAffx.20273.1 .S1_s_at

Jumonji Domain Containing 6 Jmjd6 GGA.21114

GgaAffx.7932.1 .S1_at
Nerve Growth Factor Receptor (TNFR Superfamily, Member 
16)

Ngfr GGA.39799

GgaAffx. 11073.1 .S1 _at Neurotrophin 3 Ntf3 GGA.41617
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5.6.3 Principal Component Analysis (PCA)

PCA is a statistical technique commonly used in microarray research, which 

identifies patterns in data and magnifies trends (Raychaudhuri et aL, 2000; 

Konradi, 2005). PCA applies vectors (a linear transformation of the expression 

values of all genes) to the data and identifies meaningful underlying variables 

(key variance in the data) by separating poorly correlated elements and 

bringing highly correlated elements together. The number of components 

(vectors) is equal to the number of observed variables, but only the first few are 

considered as ones with the highest (meaningful) variance, as they account for 

over 90% of the variance allowing most of the information to be visualised in 

two dimensions.

PCA was applied to the expression data, where gene expression 

measurements were the variables, and the developmental time series was the 

observation. PCA demonstrated, within component one (direction along which 

samples show the highest variation) 2 genes involved in regulation of 

differentiation, whereas within component two (direction uncorrelated to the first 

component), it revealed 6, 4 and 8 genes involved in apoptosis, proliferation 

and differentiation, respectively. List of genes identified by PCA is shown in 

Table 5.5. In two cases (genes involved in proliferation and cell death), only 

genes detected by the second component are demonstrated, this is due to the 

fact the genes correlation to the first component (first PCA vector) was lower 

than R2 < 0.9 (Spearman's test, see section 5.4.4).
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Table 5.5 Genes identified by PCA

Affy Probe ID Gene name Gene Symbol Unigene

Component 1 Gga.540.1 .S1_at
Differentiation

Matrix Gla Protein Mgp GGA.504

Gga.4285.1.Sl_at Ccaat/enhancer binding protein 
(c/ebp), beta

Cebpb GGA.706

Component 2 Gga.17397.1.S1_at 
GgaAffx.3703.1 .S1 _at

Myeloid Differentiation Primary 
Response Gene (88)

Myd88 GGA. 17397

Gga.6399.1.Sl_at Mai, T-cell Differentiation Protein-like Mall GGA.6399

Gga.135.2. Sl_a_at Neuregulin 1 Nrg1 GGA. 135

Gga.665.1.S1_at Cysteine And Glycine-rich Protein 2 Csrp2 GGA.665

Gga.651.1.S1_at
Gga.651.1.S2_at
Gga.651.1.S2_s_at

Ephrin-A5 Efna5 GGA.651

Gga.13269.1.S1_at Sphingosine-1 -phosphate Receptor 1 S1pr1 GGA. 13269

Gga.853.1.Sl_at Ciliary Neurotrophic Factor Cntf GGA.835

Component 2

Gga.16413.3.S1_at 
Gga.16413.1.A1_at 
Gga.16413.1.A1_a_at

Gga.4349.1 .S1_s_at 
Gga.4349.2.Sl_s_at

Fibroblast Growth Factor Receptor 3

Proliferation
SWI/SNF related, matrix associated, 
actin dependent regulator of 
chromatin, subfamily b, member 1

Fgfr3

Smarcbl

GGA.16413 

GGA.4349

GgaAffx.8915.1.Sl_at xylosylprotein beta 1,4- 
galactosyltransferase, polypeptide 7 
(galactosyltransferase I)

B4galt7 GGA.33756

Gga.3219.1.Sl_at c-fos induced growth factor (vascular 
endothelial growth factor d)

Figf GGA.3219

Component 2

Gga.1479.1.Sl_at 
Gga. 1479.2.S 1 _a_at

Gga. 122.2.S1 _a_at 
Gga.6790.1.A1_at

Pleiotrophin

Cell death
craniofacial development protein 1

Ptn

Cfdpl

GGA.39450 

GGA. 122

GgaAffx.6171.1.Sl_at 
GgaAffx. 6171.2.S1 _s_at

similar to hypothetical protein 
flj21901

Fastkdl GGA.22679

Gga.4960.1 .S1_at defender against cell death 1 Dad1 GGA.4960

Gga.1234.1.Sl_s_at bh3 interacting domain death agonist Bid GGA. 1234

GgaAffx.22169.2.S1 _at 

GgaAffx.6512.1 .S1 _at

Optic Atrophy 1 (autosomal 
Dominant)
PRKC, apoptosis, WT1, regulator

Opal

Pawr GGA.24903
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5.6.4 Up- and downregulated genes during corneal epithelial development

Several genes involved in regulation of differentiation, proliferation and cell 

death were found to show a continuum (gradual increase/decrease) of up- or 

downregulation throughout epithelial development. Identified genes are 

summarised in Tables 5.6 and 5.7 including both clustered and non-clustered 

probe sets, as demonstrated by DAVID Classification Tool (see section 5.6.1). 

Changes in genes expression levels at different time points were visualised on 

a heatmap in Figure 5.14. As shown, the change in gene expression pattern of 

these genes occurred at EDM.

Table 5.6 Genes involved in regulation of biological process showing continuum of upregulation

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.17397.1.Sl_at
Differentiation

myeloid differentiation primary response gene (88) Myd88 GGA. 17397

Gga.6399.1.Sl_at mal, T-cell differentiation protein-like Mall GGA.6399

Gga.895.1.S1_at
Proliferation

S100 calcium binding protein A6 S100a6 GGA.22951

GgaAffx.6863.1 .S1 _at epithelial mitogen homolog (mouse) Epgn GGA.22922

Gga.4390.2.S1 _a_at ferritin, heavy polypeptide 1 Fth1 GGA.4390

GgaAffx. 11653.1 .S1 _s_at
Cell death

serine/threonine kinase 17b Stk17b GGA.22951

Gga.5708.2.S1_a_at chromosome 9 open reading frame 89 C9orf89 GGA.22922

Gga.4846.1.S2_at
Gga.4846.1.S1_at

anti-apoptotic NR 13 LOC395193 GGA.43428

Gga.10204.1.S1_s_at caspase 1, apoptosis-related cysteine Caspl GGA. 10204

GgaAffx. 11935.1 ,S1 _s_at apoptosis, caspase activation inhibitor Aven GGA. 9342

GgaAffx.5618.1 ,S1 _at caspase 7, apoptosis-related cysteine peptidase Casp7 GGA.39052

Gga.5708.2.Sl_a_at Similar To RIKEN CDNA 1110007C0 LOC415987 GGA.5708

Gga.104.1.S1_at X-linked inhibitor of apoptosis Xiap GGA. 104

Gga.17104.1.S1_at BCL2-like 15 BCI2I15 GGA. 17104

162



CHAPTER FIVE Gene expression profiles

Table 5.7 Genes involved in regulation of biological process 
downregulation

showing continuum of

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.5002.1.S1_at
Differentiation

midkine (neurite growth-promoting factor 2) Mdk GGA.5002

GgaAffx. 12403.1.S1_s_at PDZ and LIM domain 7 (enigma) Pdlim7 GGA.7667

Gga.4032.1.Sl_at neuropilin 1 Nrp1 GGA.4032

Gga.4349.1.S1 s at 
Gga.4349.2.S1 _s_at

SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily b, 
member 1

Smarcbl GGA.4349

GgaAffx.20498.1 .S1_s_at monocyte to macrophage differentiation-associated Mmd GGA.5197

GgaAffx. 11995.1.Sl_s_at 
GgaAffx. 11995.1.S1_at

basic leucine zipper and W2 domains 2 Bzw2 GGA.7693

Gga.4345.1.S1_at secreted frizzled-related protein 2 Sfrp2 GGA.4345

Gga.909.1.S1_at slit homolog 2 (Drosophila) Slit2 GGA.39631

Gga.5002.1.S1_at
Proliferation

midkine (neurite growth-promoting factor 2) Mdk GGA.5002

Gga.18937.1.S1_s_at 
GgaAffx. 13116.1.S1_at

RAP1B, member of RAS oncogene family Raplb GGA. 18937

Gga.4349.1 .S1 _s_at 
Gga.4349.2.S1_s_at

SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily b, 
member 1

Smarcbl GGA.4349

Gga.3219.1.S1_at c-fos induced growth factor (vascular endothelial 
growth factor D)

Figf GGA.3219

GgaAffx.8915.1 .S1 _at xylosylprotein beta 1,4-galactosyltransferase, 
polypeptide 7 (galactosyltransferase I)

B4galt7 GGA.33756

Gga. 1234.1 .S1 _s_at
Cell death

BH3 interacting domain Bid GGA. 1234

GgaAffx. 13220.1 .S1 _s_ at apoptosis-inducing factor, mitochondrion- 
associated, 1

Aifml GGA.4923

Gga.4960.1.S1_at defender against cell death 1 Dad1 GGA.4960

GgaAffx. 6512.1 .S1 _at PRKC, apoptosis, W T1, regulator Pawr GGA.24903
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Figure 5.14 Heatmap of genes showing continuum of up- or down regulation during corneal 
epithelial development. Genes were selected from probe lists involved in three major biological 
processes (differentiation, proliferation and apoptosis). Colour rank refers to changes in 
expression, with red being characteristic of gene upregulation and green for down regulation.



5.6.5 Genes differentially expressed in development

To identify differentially expressed genes in corneal epithelia throughout the 

development, the Limma analysis was applied to RMA normalised microarray 

data, as described in section 5.4.3. In time course experiments the choice of 

analysis depends on the comparison of interest. However in this kind of 

investigation, reference design is commonly used since it provides the 

advantage of easy analysis and interpretation (Chu eta!., 1998; Spellman etal., 

1998; Sekiya etal., 2002; Yang etal., 2002).

5.6.5.1 Functional clustering of genes differentially expressed in 

comparison to ED6 baseline
Limma analysis with ED6 (intital time point) used as a reference identified 

differentially expressed genes at each time point. The number of probe sets for 

each comparison is given below:

ED6 vs ED10 300

ED6 vs ED12 757

ED6 vs ED14 1217

ED6 vs ED16 1863

ED6 vs ED18 2486

ED6 vs ED21 3714

The list of identified probe sets was uploaded into the Functional Annotation 

Clustering Tool in DAVID, which clusters genes based on their function 

according to gene ontology terms. Analysis was performed with default 

parameters which provided high specificity for detection of enriched terms. 

Clusters were ranked according to their enrichment score (the geometric mean 

in log scale of member's p-values in a corresponding annotation cluster). From 

the demonstrated annotation clusters overrepresented GO terms found 

significant at p<0.01 level Fisher Exact test are presented in Table 5.8.

Due to the restriction in data loading (less than 3000 probe sets in an uploaded 

list) there was a need to reduce the number of differentially expressed probe 

sets demonstrated for the ED21, the posthatching time point. Venns analysis 

demonstrated 2275 probe sets common for ED18 and ED21, 211 differentially
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expressed probe sets between ED6 and ED18, and 1439 between ED6 and 

ED21. The latter was then uploaded into the Functional Annotation Clustering 

Tool and analysed separately.

Table 5.8 Over-represented functional classes of genes amongst differentially expressed 
transcripts between ED6 baseline and developmental time points (continued overleaf)

ED6 versus ED10
GO Category GO Term p-value Number of genes

Annotation cluster 1 (enrichment score 2.26)
Molecular function Cell-comunication

Structural molecule activity 
Cellular component Intermediate filament cytoskeleton

3.7E-6 
5.1 E-3 
1.3E-2

9
11
12

Annotation cluster 2 (enrichment score 1.27)
Biological process Gas transport 
Molecular function Oxygen transporter activity 
Cellular component Hemoglobin complex

1.0E-2
8.2E-3
3.9E-3

3
3
3

Annotation cluster 3 (enrichment score 1.25)
Biological process Multicellular organismal development

Regulation of cell differentiation
7.7E-3
1.0E-21

13
4

ED6 versus ED12
GO Category GO Term p-value Number of genes

Annotation cluster 1 (enrichment score 2.48)
Molecular function Cell communication 7.7E-6 12

Cellular component Intermediate filament
Keratin type I

5.3E-4
2.2E-3

6
4

Annotation cluster 2 (enrichment score 1.59)
Molecular function EGF-like calcium binding 8.2E-3 6

Annotation cluster 3 (enrichment score 1.25)
Biological process Multicellular organismal development 4.4E-3

Neurogenesis 3.4E-3 
Anatomical structure development 9.2E-3 
Nervous system development 5.3E-3

30
7
18
10

Annotation cluster 3 (enrichment score 1.2)
Cellular component Extracellular matrix

Extracellular region part
4.8E-3 
7.1 E-3

12
14

Annotation cluster 4 (enrichment score 1.2)
Cellular component Cytoskeleton constituent 2.0E-3 22

Annotation cluster 5 (enrichment score 1.15)
Biological process Cell proliferation

Negative regulation of transcription from 
RNA polymerase II promoter

3.2E-3 
1 .OE-2

9
4

Annotation cluster 6 (enrichment score 1.11)
Biological process Gas transport 6.3E-3 4

Annotation cluster 7 (enrichment score 0.91)
Molecular function Transcription regulator activity

Sequence-specific DNA binding 
Cellular component Intracellular part

4.4E-3
9.2E-3
3.5E-3

31
19

102
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ED6 versus ED14
GO Category GO Term p-value Number of genes

Annotation cluster 1 (enrichment score 2.57)
Biological process Multicellular organismal development

Developmental process 
Anatomical structure development 
Nervous system development 
Anatomical structure morphogenesis

1.2E-4 
1.3E-4 
5.2E-4 
1.7E-3 
3.8E-3

44
54
31
48
20

Molecular function Developmental protein 6.3E-3 24

Annotation cluster 2 (enrichment score 1.91)
Cellular component Cytoskeleton

Cytoskeletal part
4.7E-5
1.5E-3

36
24

Annotation cluster 3 (enrichment score 1.74)
Molecular function EGF

EGF-like calcium binding
6.1 E-3 
3.5E-4

10
9

Annotation cluster 4 (enrichment score 1.7)
Cellular component Intermediate filament

Keratin type I
5.8E-5
8.3E-4

8
5

Annotation cluster 5 (enrichment score 1.53)
Cellular component Intracellular part 1.5E-4 167

Annotation cluster 6 (enrichment score 1.25)
Biological process Proteinaceous extracellular matrix 6.6E-3 15

Annotation cluster 7 (enrichment score 1.08)
Biological process Alcohol metabolic process 5.9E-3 12

Molecular function Oxidoreductase activity, acting on CH-OH
group of donors

7.9E-3 8

Annotation cluster 8 (enrichment score 0.99)
Molecular function Lipid metabolism 6.7E-3 5

Annotation cluster9 (enrichment score 0.97)
Molecular function Iron ion binding 2.4E-3 17

Annotation clusterlO (enrichment score 0.53)
Biological process Glycine metabolic process 4.4E-3 4

ED6 versus ED16
GO Category GO Term p-value Number of genes

Annotation cluster 1 (enrichment score 3.37)
Biological process Multicellular organismal development

Developmental process 
Anatomical structure development

8.6E-5
3.8E-5
2.3E-3

60
76
39

Annotation cluster 2 (enrichment score 2.69)
Molecular function EGF

EGF-like type 3 
EGF-like calcium binding

3.4E-4 
6.6E-4 
1.1 E-3

15
14
10

Annotation cluster 3 (enrichment score 2.38)
Cellular component Cytoplasm

Intracellular organelle
7.0E-7
5.7E-3

139
184

Annotation cluster 4 (enrichment score 2.12)
Biological process Neurogenesis 6.8E-3 8

Molecular function Semaphorin/CD100 antigen 3.7E-3 5

Annotation cluster 5 (enrichment score 1.98)
Molecular function Oxidoreductase activity, acting on CH-OH

group of donors, NAD or NADP as aceptor
2.9E-3 10
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Annotation cluster 6 (enrichment score 1.67)
Cellular component Extracellular matrix

Proteinaceous extracellular matrix
7.6E-3
6.6E-3

20
19

Annotation cluster 7 (enrichment score 1.5)
Biological process Cell adhesion 9.4E-3 31

Annotation cluster 8 (enrichment score 1.48)
Biological process Phenol metabolic process 8.3E-3 4

Annotation cluster 9 (enrichment score 1.35)
Molecular function Zinc-finger LIM domain 7.6E-3 8

Annotation cluster 10 (enrichment score 1.29)
Cellular component Intermediate filament

Keratin type I
7.1 E-4 
3.7E.3

8
5

Annotation cluster 11 (enrichment score 1.28)
Biological process Anterior/posterior pattern formation 4.7E-3 6

Annotation cluster 12 (enrichment score 1.07)
Biological process Cell proliferation 4.7E-3 15

ED6 versus ED18
GO Category GO Term p-value Number of genes

Annotation cluster 1 (enrichment score 3.69)
Cellular component Intracellular part

Intracellular membrane-bound organelle
2.4E-8
9.6E-4

324
207

Annotation cluster 2 (enrichment score 2.88)
Biological process Cell differentiation

Multicellular organismal development 
Developmental process

2.2E-5
1.8E-3
8.3E-5

56
69
94

Annotation cluster 3 (enrichment score 2.46)
Cellular component Cytoskeleton

Microtubule cytoskeleton
4.3E-4
9.4E-3

54
20

Annotation cluster 4 (enrichment score 2.27)
Biological process Cell cycle process

Mitosis
Regulation of progression through cell cycle

2.3E-4
1.8E-3
2.0E-3

27
12
18

Annotation cluster 5 (enrichment score 1.9)
Molecular function EGF

EGF-like type 3 
EGF-like calcium binding

6.9E-3 
1.7E-3 
3.1 E-3

15
16 
11

Annotation cluster 6 (enrichment score 1.88)
Biological process Differentiation 4.2E-3 16

Annotation cluster 7 (enrichment score 1.87)
Cellular component Proteinaceous extracellular matrix

Extracellular matrix
1.8E-3
2.9E-3

25
26

Annotation cluster 8 (enrichment score 1.72)
Biological process Neurogenesis 8.7E-3 9

Molecular function Semaphorin/CD100 antigen 2.0E-3 5

Annotation cluster 9 (enrichment score 1.71)
Cellular component Intermediate filament 9.5E-4 9

Annotation cluster 10 (enrichment score 1.57)
Biological process Zinc-finger LIM domain 8.7E-4 11

Annotation cluster 12 (enrichment score 1.42)
Biological process Intracellular transport 5.2E-3 32
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Annotation cluster 13 (enrichment score 1.17)
Biological process Cytoskeleton organisation and biogenesis 3.1 E-3 22

Cellular component Microtubule
Microtubule cytoskeleton

1.5E-3
9.4E-3

14
20

ED6 versus ED21
GO Category GO Term p-value Number of genes

Annotation cluster
Cellular component

1 (enrichment score 2.7)
Intracellular part
Intracellular membrane-bound organelle 
Nucleus

1.7E-4 
7.1 E-4 
3.0E-3

194
128
100

Annotation cluster
Biological process

2 (enrichment score 2.16)
Protein modification 2.8E-3 64

Molecular function Nucleotide binding 1.7E-4 105

Annotation cluster
Cellular component

3 (enrichment score 1.86)
Intracellular non-membrane-bound 
organelle

4.8E-3 52

Annotation cluster
Biological process

4 (enrichment score 1.75)
Biopolymer metabolic process 
Primary metabolic process

3.4E-4
4.4E-3

145
214

Annotation cluster
Cellular component

5 (enrichment score 1.55)
Nuclear envelope 2.8E-3 9

Annotation cluster
Biological process

Molecular function

6 (enrichment score 1.49)
Antigen processing and presentation of 
peptide or polysaccharide antigen via MHC 
class II
MHC class II protein complex

2.7E-4

4.5E-4

11

11

Annotation cluster
Biological process

7 (enrichment score 1.39)
Establishment of cellular localisation 1.6E-3 26

Annotation cluster
Biological process

8 (enrichment score 1.27)
Cell cycle process 7.8E-3 16

Annotation cluster
Cellular component

9 (enrichment score 1.01)
Endoplasmic reticulum lumen 8.3E-3 5
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5.6.5.2 Genes differentially expressed in comparison to ED6 baseline 

involved in regulation of differentiation, proliferation and cell death

Probe lists of differentially expressed transcripts in comparison to ED6 obtained 

from Limma analysis (see section 5.4.3) were searched for genes involved in 

regulation of differentiation, proliferation and cell death (according to gene 

ontology), described in section 5.6.1 and showing at least 1.6 fold expression 

between time points. This approach allowed identification of genes differentially 

expressed at each time point from genes involved in regulation of these three 

biological processes, thus likely to be relevant for spatiotemporal changes in 

the corneal epithelium at particular developmental time points. Identified genes 

from each comparison are presented in Table V.7 (Appendix V).

5.6.5.3 Genes differentially expressed in development in comparison to 

ED21 baseline
42 genes were found to be common for all comparisons between ED21 and 

each of the embryonic time points. The list of identified probe sets was 

uploaded into the Functional Annotation Clustering Tool in DAVID, and 

clustered into functional annotation groups, as described in section 5.4.5.

Analysis of the biological function of genes whose expression differed between 

embryonic and posthatch (ED21) time points revealed over-representation of 

those related to cell membrane constitution (10 genes), cytoplasmic and 

cytoskeleton composition (19 genes), ion transport (5 genes) and ribonucleoide 

binding (4 genes). Candidate genes with potential involvement cellular 

metabolic processes, including protein modification were found among genes 

clustered to over-represented groups linked to transferase and kinase activity 

(16 genes). Furthermore molecular function of 4 other gene was linked to ion 

binding. Identified annotation clusters are shown in Table 5.9.
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Table 5.9 Functional clusters of genes differentially expressed between embryonic and 
posthatch time points

GO Category GO Term p-value Gene symbol

Annotation cluster 1 (enrichment score 0.47)
Cellular Membrane 4.0E-1 Lgals3, Scarbl, Gjd3,
component Integral to membrane 5.6E-1 Ephb6, Moxdl, Fcgbp,

Cyp3a37, Kcna5, Rhoc,
St6gal1

Annotation cluster 2 (enrichment score 0.44)
Cellular Cell part 3.2E-1 Mx1, Scarbl, Col11a1, Gjd3,
component Intracellular part 5.5E-1 RCJMB04_24f23, Ephb6,

Cytoplasmic part 2.3E-1 Tmsb4x, Kcna5, Rhoc, Hic2,
Cytoskeleton part 1.8E-1 Col1a2, Caldl, Lgals3,
Non-membrane bound organelle 5.9E-1 Moxdl, Fcgbp, LOC408038,

Cyp3a37, LOC396479,
St6gal1

Annotation cluster 3 (enrichment score 0.32)
Biological Ion transport 3.0E-1 Col11a1, RCJMB04_24f23,
process Establishment of localisation 5.7E-1 Tmsb4x, Kcna5, Col1a2

Annotation cluster 4 (enrichment score 0.29)
Molecular Ribonucleotide binding 4.6E-1 Mx1, Rps6ka2, Ephb6, Rhoc
function

Annotation cluster 5 (enrichment score 0.21)
Molecular Transferase activity 1.8E-1 Mx1, Scarbl, Gjd3, Col11a1,
function Kinase activity 3.3E-1 Ephb6, RCJMB04_24f23,

Catalytic activity 3.8E-1 RCJMB04_8a2, Tmsb4x,
Rhoc, Gk5, Rps6ka2,

Biological Cellular process 9.3E-1 Moxdl, Fcgbp, Ugtla,
process Metabolic process 9.7E-1 Cyp3a37, St6gal1

Protein modification process 6.2E-1

Annotation cluster 6 (enrichment score 0.11)
Molecular Ion binding 7.9E-1 Moxdl, Kcna5, Cyp3a37,
function Hic2

Amongst the 42 differentially genes, 30 and 12 were demonstrated to be up- or 

downregulated, respectively. Genes are listed in Table 5.10 and visualised 

using heatmaps (Fig. 5.15).
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Table 5.10 Genes differentially expressed between embryonic and posthatch 
showing up- or downregulation (continued overleaf)

time points,

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.6289.1.Sl_at
Upregulated

Calcium binding protein 39-like Cab39l GGA.44652

Gga.8190.1.S1 at 
Gga.17775.1.S1 s at 
GgaAffx.23468.7.Sl_s_at

calpain 9 Capn9 GGA.8190

GgaAffx.4382.2.S1_s_at cartilage acidic protein 1 Crtacl GGA.34442

Gga.1163.1.Sl_at 
GgaAffx.21825.1 .S1 _s_at

cytochrome P450 A 37 Cyp3a37 GGA. 1163

GgaAffx.3047.2.S1_s_at Family with sequence similarity 101, member B Fam101b GGA.43287

GgaAffx.4504.1.S1_at Fc fragment of IgG binding protein Fcgbp GGA. 18502

GgaAffx. 1780.1.Sl_s_at 
Gga.9082.1.S1_at

Gga.155.1.S1_s_at 
Gga.844.1.S1_at 
Gga.5589.1.Sl_at 
Gga.12861.1.S1_at

Glycerol kinase 5 (putative)
potassium voltage-gated channel, shaker-related
subfamily, member 5
lectin, galactoside-binding, soluble, 3
Keratin
beta-keratin
similar to Hypothetical protein CBG04537

Gk5
Kcna5

Lgals3
LOC396479
LOC408038
LOC415708

GGA.22519 
GGA.9082

GGA.667 
GGA.844 

GGA.5589 
GGA. 12861

Gga.10351.2.S1_x_at 
Gga.17984.1.Sl_at 
GgaAffx.2182.4.S1_at 
Gga.10746.1.S1_at 
Gga. 1660.2.S1 _s_at

similar to RIKEN cDNA 1600014C10 
Similar to multidrug resistance protein 1a 
similar to ALDH7 
Hypothetical protein LOC769486 
Hypothetical protein LOC770534

LOC415755
LOC420606
LOC428812
LOC769486
LOC770534

GGA.10351 
GGA. 17984 
GGA.35434 
GGA. 10746 
GGA.30168

Gga.7197.1.S1_at similar to Cytochrome P450 4A2 precursor 
(CYPIVA2) (Laurie acid omega-hydroxylase) (P450- 
LA-omega 2) (P450 K-5) (P-450 K-2)

LOC771974 GGA.47408

Gga.8243.1.S1_at
Gga.131.1.S1_at

GgaAffx.24960.1 .S1_at 
GgaAffx.2035.2.S1_s_at

Hypothetical Gene Supported By CR390716 
myxovirus (influenza virus) resistance 1, interferon- 
inducible protein p78 (mouse)
PQ loop repeat containing 3
RAB11 family interacting protein 4 (class II)

LOC425623
Mx1

Pqlc3 
Rab11fip4

Gga.37213 
GGA. 131

GGA.41231
GGA.27810

GgaAffx. 12005.1 .S1 _s_at Epidermal Retinal Dehydrogenase 2 RCJMB04 8a2 
(RDHE2)

GGA.4788

Gga.17535.1.S1_at Ras homolog gene family, member C Rhoc GGA. 17535

GgaAffx.7275.1 .S1_at ribosomal protein S6 kinase, 90kDa, polypeptide 2 Rps6ka2 GGA.30233

Gga.9027.1.S1_at 
Gga.1148.1.S1_at 
Gga.1148.1.S2_at

scavenger receptor class B, member 1 
ST6 beta-galactosamide alpha-2,6-sialyltranferase 
1

Scarbl
St6gal1

GGA.9027 
GGA.1148

Gga.10343.1.S1_a_at 
GgaAffx.26133.1 .S1 _s_at

tubulin polymerization promoting protein
UDP glucuronosyltransferase 1 family, polypeptide
A1
similar to UDP-glucuronosyltransferase

TPPP
Ugt1a1

GGA. 10343 
GGA.30083

GgaAffx.8298.1 .S1_at uridine phosphorylase 1 Upp1 GGA.20540
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CHAPTER FIVE Gene expression profiles

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.4988.1 .Sl_at 
Gga.4988.2.S1_a_at

Downregulated
Caldesmon 1 Caldl GGA.4988

GgaAffx.22999.1 .S1 _s_at collagen, type I, alpha 2 Col1a2 GGA.42179

Gga.16392.1.S1_at 
GgaAffx.26432.1 .Sl_s_at

Collagen, type XI, alpha 1 Col11a1 GGA. 16392

Gga.13980.1.S1_at chemokine (C-X-C motif) receptor 7 Cxcr7 GGA. 13980

Gga.633.1.S1_at EPH receptor B6 Ephb6 GGA.633

Gga.16710.2.S1_a_at Family with sequence similarity 132, member A Fam132a GGA. 16710

Gga.7018.1.S1_s_at FYVE, RhoGEF and PH domain containing 3 Fgd3 GGA.7018

Gga.862.1.S1_at Gap junction protein, alpha 7, 45kDa (connexin45) Gjd3 GGA.862

Gga.5574.1.Sl_at hypermethylated in cancer 2 Hic2 GGA.25061

Gga.969.1.S1_at monooxygenase, DBH-like 1 Moxdl GGA.969

GgaAffx.20726.1 .Sl_s_at Endoplasmic reticulum protein 29 RCJMB04 24f23 
(C12orf8,ERP29)

GGA.4806

Gga.4472.2.S 1 _x_at Thymosin Beta 4, X-linked Tmsb4x GGA.42171
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CAPN9_Gga 8190 1 s T jT ]  
CYP3A37_GgaAf»x 21825 j  
CAPN9_GgaAf1x 23468 7 S 
LOC769486_Gga 10746 1.S 
CAPN9_Gga 177751 S1 _s 
RAB11 FP4_OgaAftx .2035 J 
LOC415708_Gga 12861.1 S 
LOC425623_Oga 8243 1 SI 
LOC428812_GgaAffx2182 
LOC770S34_Gga 1660.2.S1 
RPS6KA2_GgaAftx 72751. 
MX1_Gga~1311S1_al 
FCG8P_GgaAf1x.4504.1 S1 
CRTAC1 .GgaAffx 4382 2.S 
PQLC3_Og»ATtx 249601 S 
LOC420606_Og« 17984.1 .S 
UOT1A1_OgaAf1x261331. 
LOC396479_Gga 844.1 .SI. 
CYP3A37.dBa1163.1S1j 
FAMI 01 B.OaaAtfx 3047 2 
RHOC.Gfla.17535.1 S1_«t 
SCARB1.Oga90271.S1_9 
LOALS3_Oga 155.1 SI _sj 
0KS_0g«AI*x.1780.1 S1 _s 
ST6GAL1 _Oga 1148.1 ,S2j 
ST8GAL1 _Oga 1148.1 S1 _< 
RCJMB04_8a2_OgaAf*x 12 
TPPP.Gga.10343.1 S1 _a_a 
LOC408038_Ggo 5589 1 SI 
KCNA5_Oga.90821 S1.at 
LOC771974_Oga.7197.1.S1 
UPP1 _Og«A11x 8298.1 S1J 
LOC4is755_Gga 103512.S 
CAB39L.Gga.6289
RCJMB04.24f23.OgaA tlx; 
CXCR7_Oga 139801 S1_a( 
FAM132A Gga .16710.2 S1 
EPFB6.Oga.6331 S1_at 
COL1 A2_GgaAf f x 229991. 
F003_GgaAttx 264551 A1 
FIC2_Oga.S574.1 S1 .at 
TMSB4X.Gga44722.S1_x. 
MOXD1 _Oga 969.1 S1 .at 
OJD3_Oga 8621 S1_at 
COL11A1 .OgaAttx 26432 
C0L11A1_0ga 16392.1 .SI. 
CALD1 .Gga 4968 2.S1 _a_« 
CALD1 _Oga 4988 1 ,S1 _al

Developmental time points (days)

Figure 5.15 Heatmap showing expression levels of 43 differentially expressed genes between 
embryonic and posthatch chick corneal epithelium. Colour rank refers to changes in expression, 
with red being characteristic of gene upregulation and green for downregulation.



5.6.6 Genes involved in stem cell biology
Genes from uploaded probe lists were searched for the ‘stem cell’ annotation 

term using NetAffx application. Eleven genes were found to be involved in the 

regulation of differentiation and stem cell biology. Included genes were DII1, 

Tgf/32, Gata2, Notchl, Cebpb (CCAAT/enhancer binding protein (C/EBP), 

beta), Fgf2 (fibroblast growth factor 2 basic), Myod 1 (myogenic differentiation 

1), Bmp4 (bone morphogenetic protein 4), Sox3 (SRY sex determining region 

Y-box 3), Vegfa (vascular endothelial growth factor A), Nog (noggin).

From the genes involved in the regulation of proliferation, six genes were 

identified to have an ontology related to stem cell biology; Tgff52, Tgff$3, Nfkbia 

("nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

Alpha), Vsx2 (visual system homeobox 2), Vegfa and Fgf2.

Amongst the genes involved in of cell death regulation, 10 genes were 

established to share this ontology term. These included: Bcl2a1 (Bcl2-related 

protein A1), Psen2 (presenilin 2, Alzheimer disease 4), Mcl1 (myeloid cell 

leukemia sequence 1), Loc396098 (B6.1), Psenl (presenilin 1, Alzheimer 

disease 3), Loc395193 (anti-apoptotic NR13), Pax7 (paired box 7), Cebpb and 

Tgf/32.

Genes related to stem cell biology were demonstrated within probe lists of 

transcripts differentially expressed between developmental time points and ED6 

and ED21 baselines, except for the probe lists ED18 versus ED21 comparison, 

in which stem cell-related genes were not identified. Genes obtained from all 

comparisons are listed in Table V.8 and all stem cell-related genes and their 

ontology description are summarised in Table V.9 (Appendix V).
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5.7 Discussion

5.7.1 Experimental and post-experimental quality assessment

Sample collection and handling can adversely affect results; therefore, quality 

metrics are required to detect and assess the potential errors induced by these 

factors. The major aspect of experimental validation is the assessment of the 

hybridisation step, which is determined by several conditions such as 

temperature, humidity, time, buffering conditions and washing protocol 

(Ehrenreich, 2006). Although, automated hybridisation stations are often used 

to run programmed protocols to ensure reproducibility of the experiments, non­

specific hybridisation is one of the common causes of poor quality microarray 

data (Draghici etal., 2006).

Hybridisation quality controls were examined by internal and external spike-in 

RNA controls (ERCs), which are synthetic or naturally occurring RNA species. 

ERCs enable quality control for different steps of the assay including sample 

labelling and hybridisation. All internal and externals controls, along with 

standard quality metrics, such as GAPDH and Actin 375' ratio, background and 

scaling factor, met criteria to allow further processing of microarray data.

Many of the quality assessment techniques for microarray experiments are 

available as post-experiment measurements of signal intensity data (Sauer et 

a i, 2005) and provide an insight into overall data quality. In practice, this type of 

quality assessment is highly dependent on the experimental context. Therefore, 

the general consistency between samples in an experiment is often more 

important than absolute parameter values themselves (Heber and Sick, 2006).

Various types of graphical displays were used in this study to determine the 

overall quality of an experiment based on signal intensities. At the chip level 

these were: log transformation of intensities from RMA model fit, correlation 

matrix plot, NUSE and RLE. All of these confirmed the good quality of the 

hybridised arrays and the high reproducibility of the data.
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Brettschneider et al., (2008) laid out concepts for microarray quality 

assessment data by introducing numerical measures (NUSE, RLE). The 

approach was derived based on the RMA model for microarray gene 

expression value estimation by Irizarry etal., (2003).

NUSE and RLE have been previously shown to be able to detect systematic 

variation within certain participant sets that were not detectable using the 

standard Affymetrix quality metrics only. In the developmental time series 

experiments, application of these methods only, is likely not to be sufficient, as 

biological variation may often be misinterpreted as technologically-caused 

noise. Especially, since NUSE and RLE quality assessment is based on the 

assumption that the majority of genes are not differentially expressed. 

Developmental microarray data differs in this aspect from most other kinds of 

microarray data: the fraction of non-differentially expressed genes is much 

higher and is inhomogeneous over time. This explains the need for using 

additional visualisation tools and a combination of different assessment 

methods. Each array was checked for a number of quality controls, and was 

required to pass the majority of these. Failure to pass would lead to exclusion 

from further analyses as this would be a potential source of error.

The techniques used for sample preparation and GeneChip® processing were 

validated. A high quality of starting material was demonstrated and maintained 

throughout the experiment. Post-experimental quality controls eliminated the 

risk of including flawed arrays in further statistical processing of the data which 

could affect the outcome of differential gene expression analysis.

5.7.2 Gene expression analyses
In this study, the gene expression profile of chick corneal epithelium was 

evaluated throughout development, using microarray technology. Identification 

of these profiles is an essential prerequisite for future functional studies aimed 

at gaining insights into the role of these genes in corneal development, 

maturation and physiology. For the purpose of this thesis, particular emphasis 

was given on the mechanisms that are relevant to corneal epithelial 

homeostasis i.e. differentiation, proliferation and apoptosis and differentially

177



expressed genes that are likely to be relevant for morphological changes in 

different developmental time points.

For the studies of gene expression using the microarray approach, a number of 

platforms are available; both commercial (i.e. Illumina, Operon Technologies, 

NimbleGen Systems, Inc) and those designed for individual use (i.e. Clonetech 

Laboratories, BioRobotics, Ltd, Agilent Technologies etc.). The primary 

advantage of selecting a commercial platform is the elimination of the 

manufacturing expertise required and quality uncertainties, thus permitting the 

user to obtain robust, reproducible results and focus solely on the biology of 

interest. One of the reasons for choosing the Affymetrix system was the 

possibility to perform infinite data comparisons amongst other Affymetrix chips, 

since labelling and hybridisation protocols have been standardised. A high 

degree of Affymetrix data concordance even when run by different groups has 

been documented emphasising intra-platform reproducibility (Dobbin et a!., 

2005). Another advantage of this platform is the number of programs that are 

built based on Affymterix chip design (Hipp and Atala, 2007). An incorporation 

of various global data bases into softwares for data mining and linking it with 

Affymetrix platform is essential in deriving biological meaning from microarray 

data. However, despite the availability of various applications, their main 

limitation is a restriction in regard to the type of input file. The majority of free 

online softwares preferentially allows analysis of data obtained from human, rat 

or mice, with only a few application available for chick data analysis (i.e. 

DAVID, Onto-Express).

The DAVID software, used in this study, collects and integrate diverse gene 

identifiers (including Affymetrix IDs from Chicken Arrays) as well as, available 

annotation categories from more than 40 well-known public databases, which 

are then centralised by internal DAVID identifiers (Huang etal., 2009). The core 

strategy is to systematically map a large number of interesting genes in a list to 

the associated biological annotations (i.e. gene ontology terms) and then 

statistically highlight the most over-represented (enriched) biological 

annotations. This increases the likelihood of identifying biological processes 

most pertinent to the biological phenomena under study (Huang etal., 2009)
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Clustering of genes into groups involved in the regulation of differentiation, 

proliferation and apoptosis according to gene ontology, allowed the 

identification of functional gene families that might be relevant for 

understanding the developmental changes observed in the morphology of 

corneal epithelium. This procedure provided the possibility of exploring and 

viewing functionally related genes and to concentrate on the larger biological 

networks. The output of gene lists presented in this chapter was a result of an 

exploratory, computational procedure rather than a purely statistical solution.

Analysis of probe lists associated with ‘differentiation’ identified a number of 

genes that play a role in blood vessel morphogenesis and immune system 

development, neurogenesis, epidermal cell differentiation and somitogenesis. 

Most of these genes belonged to different families of growth factors and their 

receptors, which are known as inducers of signal transmissions to the 

cytoplasm through activation of the kinase (i.e. Vegfa, Fgfs), or involved in 

TGFp signaling pathway (i.e. growth and differentiation factors, Gdfs). A 

number of genes involved in bone morphogenetic proteins (BMP), Wnt, G- 

protein coupled receptor and Notch signalling pathways were also revealed by 

this study. Several genes were linked to negative regulation of transcription 

DNA-dependent and from RNA polymerase II promoter and Kinase activity.

The roles of BMPs, multi-functional growth factors that belong to the TGFp 

superfamily, in embryonic development and cellular functions in postnatal and 

adult animals have been extensively studied in recent years. BMP signalling 

appeared to influence the activation of multiple different types of epithelial stem 

cells (Blanpain et al., 2006); it was documented in early development to direct 

epidermal fate (Wilson et al., 2001). Inhibition of BMP signalling by 

overexpression of Nog resulted in induction of hair placode formation as well as 

de novo formation of the intestinal crypt (Botchkarev etal., 2001; Haramis etal., 

2004; He et al., 2004). Bmp4 and Bmprlb  were previously detected to be 

expressed ex vivo and in cultured human corneal epithelia. The Lectl 

(Chondromodulin 1) gene, relevant for chondrocyte growth and inhibition of 

angiogenesis, was demonstrated in the epithelial layer of rat cornea (You etal., 

1999; Fukushima etal., 2003).
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Wnt/p-catenin signalling pathways have been shown to control the 

specification, maintenance, and activation of stem cells. The deregulation of 

this pathway often resulted in the development of familial and/or sporadic 

epithelial cancers (Reya and Clevers, 2005). In this study, several genes that 

belong to frizzled- related protein family were identified, i.e. Sfrp2, Sfrpl, Frzb. 

The first two contain a cysteine-rich domain homologous to the putative Wnt- 

binding site of Frizzled proteins and act as extracellular signalling ligands 

(Rattner et al., 1997). Sfrpl gene (an antagonist of the Wnt signalling patway) 

was earlier identified as the evolutionarily conserved target of the Hedgehog-Gli 

signalling pathway (Katoh and Katoh, 2006). Gli genes were identified in this 

study among transcripts involved in the regulation of proliferation (described 

below).

G protein-coupled receptors, also known as seven-transmembrane domain 

receptors, comprise a large protein family of transmembrane receptors that 

activate inside signal transduction pathways and, ultimately, cellular response 

(Bjarnadottir et al., 2006). In this study, several members of this gene family 

were demonstrated to be involved in the regulation of differentiation. The 

majority of these were classified as the endothelial differentiation G-protein 

coupled receptors (Edg). Edg1, Edg2 and Edg6 elicit responses after binding 

sphingosine 1-phosphate (S1P) extracellular mediator, whereas Edg3 binds 

lysophosphatidic acid (LPA) ligand (Svetlov et al., 2002). This evokes a number 

of responses, depending on the cell type including activation of MAP kinase 

pathways, alterations in the cytoskeleton, antiapoptotic effects and mitogenesis 

(Zhang etal., 1999; Liu eta l., 2000; Wang etal., 2002).

Gene classification clustered four genes (Slit2, Slit3, D ill, Notch 1) to a 

functional family involved in the Notch signalling pathway. Physiological 

function of Notch signalling within different self-renewing tissues is very diverse, 

ranging from gate-keeper functions for progenitor and/or stem cells in the brain 

and the gut to lineage specification of lymphoid progenitor cells in the 

hematopoietic system (Wison and Radke, 2006). In the epidermis, a structure 

which is morphologically similar to the corneal epithelium, Notch signalling 

functions as a commitment switch signal for the epithelial cells to leave the
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basal layer and begin terminal differentiation (Blanpain etal., 2006; Lefort etal., 

2007). In the mouse and human corneal epithelium Notch 1 was primarly 

expressed in the basal and early suprabasal cells, which further supports the 

involvement of Notch in the commitment of a cell to proliferate or differentiate 

(Vauclair et al., 2007; Djalilian et al., 2008). Slit proteins have emerged as 

essential developmental molecules, potentially controlling multiple phases of 

neural development in both invertebrates and vertebrates. However, the 

expression of the Slit genes in a broad array of tissues outside the central 

neural system suggests that the Slit family may play a wider role during 

embryonic development and adult life (Piper and Little, 2002). The expression 

of the Slit family encompasses a diverse array of morphological events, 

including development of tooth primordia, and limb formation (Loes et al., 2001; 

Vargesson et al., 2001). In chick corneal epithelium, expression of Slit2 was 

previously demonstrated at ED5 (HH27) (Holmes and Niswander, 2001).

One group of genes identified within genes involved in differentiation includes 

members of the Semaphorin/CD100 antigen family. Semaphorins are a large 

and diverse family of widely expressed secreted and membrane-associated 

proteins, which are conserved both structurally and functionally across 

divergent animal (Yazdani and Terman, 2006). The expression patterns of the 

individual semaphorins are best characterised in the nervous system, 

particularly during development, where most, or perhaps all, semaphorins are 

widely expressed by neuronal and nonneuronal cells (Fiore and Puschel, 2003). 

The signal transduction cascades used by semaphorins are poorly understood. 

It is known that semaphorins exert the majority of their effects by serving as a 

ligand and binding to members of the plexin family of transmembrane receptors 

(Negishi et al., 2000). The activitvation of Sema4d/PlexB1 complex enhances 

the activity of Rho GEFs (guanine-nucleotide exchange factors) and leads to 

cytoskeletal rearrangement and axon guidance (Fiore and Puschel, 2003). 

Sema3a was postulated to be involved in cell death, proliferation, cell adhesion 

and aggregation, cell migration and patterning and cytoskeletal organisation in 

different tissues, including epithelia (Giger et al., 1996; Gagliardini and 

Fankhauser, 1999; Osborne etal., 2005; Catalano etal., 2004; Kashiwagi etal.,
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2005). Sema3c and Sema3d  play role in cell survival and neural connectivity 

(Halloran et al., 1999; Moreno-Flores et al., 2003)

Genes from the gene ontology ‘proliferation’ category were grouped into 

functional clusters, which contained genes showing growth factors activity and 

genes involved in regulation of DNA-dependent transcription. These groups 

included members of the following gene families: fibroblast, platelet derived, 

vascular endothelial and heparin-binding growth factors. Additionally, gene 

clustering based on similarity in function was performed on the probe list from 

this category (including non-clustered probe sets). This allowed further 

exploration of gene functionality involved in cell proliferation. As mentioned 

earlier, functional clustering is based on grouping similar biological terms 

(functions of genes) together, but members that bring the cluster together 

belong to different families (described further below). The procedure revealed 

several genes linked to MAPKKK signalling cascades (Fgfr3, Epgn, Stat5b, 

Cer1, Fgf8), signal transduction (i.e. Epgn, Ihh, Tgf/32, GH2, Fzd10), zinc ion 

binding and epithelial morphogenesis (i.e. s100a6, GH2, Pgi) or intracellular 

signalling cascade and GTP-binding (i.e. Epgn, Ihh, Cd3e).

This example shows that, even though, a gene may be excluded from created 

functional groups (e.g. Epgn, GH2), it may actually play an interesting (multiple) 

role in cell/tissue biology, potentially being a gene of interest for further 

analysis. This is discussed further below.

In a category of genes involved in the regulation of cell death, the first detected 

functional group was enriched by genes related biologically to zinc-ion binding 

and Bcl-2 activity. This group contained most pro-apoptotic genes (i.e. Bok, 

Faim, Fadd, Pdcd2), whereas, the second (Inhibitor Apoptosis Proteins) and 

third (Bcl-2 related Apoptosis Agonists) ranked functional gene families were 

constituted by genes recognised as anti-apoptotic (i.e. Bid, Bnip3, Birc2, Birc4, 

Api5). All products of Bcl-2 family members’ gene expression contain at least 

one of four conserved motifs, termed Bcl-2 Homology (BH) domains (Reed, 

1998). Bcl-2 subfamily proteins, which contain a BH1 and BH2 (i.e Bid), 

promote cell survival by displacing the adapters, thus inhibiting, adapters
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needed for the activation of caspases (Kirkin et al., 2004; Adams and Cory, 

1998). The caspase gene family, demonstrated by gene ontology clustering, 

contained a diverse set of genes, including initiator caspases (Casp8, Casp9, 

CaspIO), effector caspases (Casp3, Casp6, Casp9) and Casp2 which play a 

pivotal role in DNA damaged induced-cell death (Lassus et al., 2002). Several 

genes were demonstrated to be members of Kinase and Phosphotransferases 

functional families which act as modulators of the apoptotic pathway by either 

inhibiting (i.e. Raf1) or promoting (i.e. Apafl,) apoptotic factors (von Giese et 

al., 2001; Chu et al., 2001), whereas others were classified as Neurotrophins. 

From the latter group of genes, Ntf3 and Bdnf', which act via tyrosine kinase 

receptors, were shown to promote the survival and/or differentiation of cells 

from different populations of the peripheral and central nervous system 

(Maisonpierre et al., 1990; Kalcheim et al., 1992; Liu and Jaenisch, 2000). The 

above suggests, that the balance between agonist and antagonistic members 

of the Bcl-2 family, caspase gene family and kinases and phosphotransferase 

modulators is likely to play a role in determining cell fate during corneal 

epithelial development.

This study demonstrated a number of genes within each biological category 

that were excluded from a functional classification. Some of these genes (i.e. 

bcl2l15, Fzd10, Notch homolog 2) were assigned to the unclustered group, 

even though their name would suggest an affiliation to a functional gene family. 

The possible reasons for this are that: 1) the gene does not have a relationship 

with any of other genes above the similarity threshold, 2) the gene has a 

relationship with a few other genes, but there are not enough members to form 

a functional group based on a minimum of final cluster members and 3) the 

gene might be a false negative, as the current algorithm used for gene 

clustering might have up to a 2% false negative rate. Although such genes were 

not mapped to any of the functional groups (as it was in the case of genes 

involved in the regulation of proliferation) they might still be biologically relevant 

(i.e. Epgn, GH2).

PCA provided a way to identify predominant gene expression patterns across 

the data. Although, PCA is commonly used to summarise microarray data, it is
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a statistical tool, thus may not always reflect the biological importance of genes 

detected. PCA identified within the first discrete distribution; two genes involved 

in differentiation; Mgp and Cebpb. The first gene was classified to unclustered 

genes, but showed a high change in expression between the earliest and mid- 

developmental time points and between embryonic and posthatch stages. 

Cebpb also showed a similar expression pattern to Mgp throughout 

development and was identified as a gene involved in all three major biological 

processes (proliferation, differentiation and apoptosis). PCA also showed a 

population of genes (except for Fgfr3, Myd88 and Mali) that were not classified 

to any of the functional gene families, and additionally their expression 

throughout the development appeared to be stable. This was also observed for 

the apoptosis-related O p al gene. Thus, in future studies, it would be interesting 

to investigate the role of the above genes in the corneal epithelium as well as 

their interaction network.

The functional annotation clustering approach was used for differentially 

expressed genes between posthatching (ED21) and embryonic time points. 

This procedure uses a similar concept as functional classification by measuring 

the relationship amongst the annotation terms on the basis of the degree of 

their coassociation with genes within the probe list to cluster heterogenous, yet 

highly similar annotation into functional annotation groups (Huang et al., 2009). 

This type of grouping provides a more insightful view of the relationships 

between annotation categories allowing the biological interpretation to be more 

focusses at the ‘biological module’ level.

Functional annotation clustering was performed for genes differentially 

expressed genes between each embryonic time point when compared to ED6 

(initial time point) baseline. From reported overrepresented biological terms 

(significant at p<0.01 level) annotation clusters with the highest rank for each 

comparison were shown in this chapter. Analysis revealed the importance of 

particular biological processes at different time points throughout development. 

For instance, it was demonstrated that the activity of genes in the two earliest 

embryonic days (ED10, ED12) in reference to ED6 basline, was oriented 

towards the formation of cell communication and constitution of intermediate
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filaments in cytoskeleton. Annotation clustering at ED12 revealed additionally a 

role of differentially expressed genes in constitution of ECM and importance of 

genes involved in multicellular development as well as cell proliferation. In the 

middle developmental time-points (E D M , ED16) gene activity is likely to be 

primarily directed at further multicellular and anatomical structure development, 

reorganisation of cytoskeleton and acceleration of metabolic processes. Also, 

analyses identified a number of genes that contain EGF-like domain motif, thus 

they are likely to act in similar way to EGF (e.g. participation in various 

signalling patwhays). A number of genes differentially expressed at ED16 and 

ED18 were shown to be involved in neurogenesis and further formation of 

cytoskeletal/intracellular componets. Analysis of intitial time point versus ED21 

posthatch, revealed additional clusters of differentially expressed genes that 

play a role in primary metabolic processes and post-translational protein 

modification, immunoresponse and the establishment of cellular localisation. 

Interestingly, it was observed that some clusters are shared by different time 

points, but their order (and thus biological importance) is changed. Above 

results from increasing number of differentially expressed genes that constitute 

each cluster, and share similar annotation terms; the more enriched term, the 

higher significance (p-value) and final enrichment score. Individual genes that 

constitute each cluster should be investigated further in order to answer more 

detailed questions regarding their role and relationship to other members of the 

cluster they belong to.

Within differentially expressed genes between ED6 and other developmental 

time points were those involved in different biological processes, as described 

in section 5.6.1. Some of them might be of particular interest, as they were 

identified also in PCA analysis and are stem cell-related. For instance Cebpb 

was shown in this study to be upregulated in the mid-developmental time- 

points, differentially expressed between ED6 and EDs 10, 12, 14, 16. It was 

also identified as a stem cell related gene. Cebpb is a nuclear factor that binds 

to SRE (serum response element), a promoter element essential for 

transcriptional activation of immediate early genes, such as c-fos and early 

growth response-1, by mitogenic signals. The interaction of the Cebpb with Ras 

GTPases and role of Cepb proteins in regulating the balance between cell
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growth and differentiation were suggested (Umek et al., 1991; Hanlon and 

Sealy, 1999).

Also, genes which belong to Semaphorin/CD100 antigen, Myd88 (Myeloid 

Differentiation Primary Response Gene (88)), Mall (Mai, T-cell Differentiation 

Protein-like) appeared to be relevant in regulation of differentiation during 

corneal epithelial development. Myd88 and Mall were identified in PCA, and 

also shown to be upregulated continuously throughout the development and 

diferrentially expressed in later developmental time points (from ED16 onwards) 

(Fig. 5.14). While previous study demonstrated role of Myd88 in positive 

regulation of NF-kappaB transcription factor activity, little is known about Mall 

(Jefferies et al., 2001). It might participte in signal transcduction through Toll-like 

receptor (TLRs) (similarily to Myd88) as regulator of NF-kappaB transcription 

factor and MAP kinase signalling, which give rise to increased expression of a 

multitude of pro-inflammatory proteins (O ’Neill etal., 2003).

In this study, genes differentially expressed in embryonic development when 

compared to posntal corneal were demonstrated. 43 genes, either up- or 

downregulated were clustered into 6 functinal groups. While downregulation of 

several genes (i.e Caldl, Gjd3, Co!1a2, Col11a1, Tmsb4x, Fgd3) might be 

related to processes occurring during epithelial development such as collagen 

reorganisation, constitution of ECM and formation of actin filaments and gap 

junction or cell migration, role of transcripts identified as upregulated in 

posthatched epithelium is not clear and requires further investigation.

Finally, this study demonstrated genes that were involved in stem cell biology 

within uploaded probe lists of genes from the main biological categories 

(differentiation, proliferation and cell deah), and differentially expressed 

between embryonic time points when compared to ED6 and posthatch epithelia 

as a baseline. Mechanisms that some of these genes control, are likely to be 

important also in limbal stem cell and/or transient amplifying cell fate 

determination and maintenance (e.g. Cebpb, Atoh7, Ly6e, Psca). This however 

requires further investigation and confirmation.
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In summary, the analysis of gene expression using high density oligonucleotide 

arrays delivered a complete gene expression profile of the developing chick 

corneal epithelium and allowed identification of control mechanisms and factors 

involved in major processes that potentially may regulate important biological 

functions in corneal epithelial homeostasis. Additionally, several genes were 

selected for further experiments to validate the microarray data. However, this 

study was performed using the whole corneal epithelium, thus, one must be are 

aware of the fact there is potentially difference in expression of individual gene 

between different epithelial regions and/or cell layers as well as between 

different cell types. This will be investigated in the future experiments.
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CONFIRMATION AND CHARACTERISATION OF MICROARRAY TARGETS

6.1 Introduction

To investigate local tissue-specific expression even in tissues with low 

abundances, very sensitive methods are required which allow reliable RNA 

quantification (Pfaffl, 2003). Different techniques have been developed for 

analysis and quantification of gene expression. These include: Northern 

Blotting, RNAse protection assay and in situ hybridisation. However, reverse 

transcription combined with real-time (quantitative) Polymerase Chain Reaction 

(RT-qPCR) has been proven to be the most specific and sensitive for 

quantitative analysis of gene expression (Murphy et al., 1990; Horikoshi et al., 

1992; Livak and Schmittgen, 2001).

In conventional PCR, the amplified product (amplicon) is detected by end-point 

analysis and running the PCR product on an agarose gel after the reaction has 

finished. In contrast, qPCR allows the accumulation of amplified product to be 

detected and measured as the reaction progresses (real time). Quantitative 

data is collected at a point in which every sample is in the exponential phase of 

amplification, as its most reproducible, before the reaction enters the plateau 

phase (when one or more of the reaction components becomes limiting) (Fig 

6 .1).

Additionally, qPCR data can be evaluated without gel electrophoresis once the 

reaction is optimised, resulting in reduced experiment time and increased 

throughput. Another advantage is that reactions are run and data are evaluated 

in a closed-tube system, thereby reducing the risk of contamination and 

eliminating the need for postamplification manipulation.

Different types of qPCR use different approaches to detect the new products 

synthesised at each new PCR cycle. The chemistry used depends mainly on 

the application and cost consideration. The two basic chemistries, along with 

highly specific primers and optimised reagents, decide technique sensitivity.

189



: ' .  ; t  S i i f ■> ' ■!1 t ' '  • ' ?HC!OHI ! f ) \  t i i ! 0 0  tS

60

50
4th phase

40 3rd phase

30

2nd phase20

background level
10

1st phase
o

o 10 20 30 40

real-time PCR cycle

Figure 6.1 The four characteristic phases of real-time PCR evaluated by fluorescence 
acquisition. 1st phase: hidden under background fluorescence, where an exponential 
amplification is expected, 2nd phase: exponential amplification that can be detected above 
the background, 3rd phase linear amplification and a steep increase in fluorescence, 4rd 
phase (plateau) (Tichopad et al. 2003; Pfaffl, 2003).

The first one, used in high-throughput experiments is based on fluorescent 

primer- or probe-based assays (singleplex or multiplex reaction). For low- 

throughput, singleplex experiments intercalating dyes are preferable. DNA- 

binding dyes fluoresce only when bound to double-stranded products generated 

by PCR.

In this study SYBR Green I, the most commonly used DNA-binding dye for 

qPCR and was used. Since SYBR Green I exhibits little fluorescence when it is 

free in solution, at early stages of the qPCR reaction the emitted fluorescence is 

too low to be registered by the machine, but it increases up to 1000-fold when 

binding to double-stranded DNA (dsDNA) during the exponential phase of the 

reaction. The overall fluorescent signal from the reaction is proportional to the 

amount of dsDNA present, and will increase as the target is amplified.

Although, microarray technology is a powerful technique used to analyse the 

expression of thousands of genes in a short time and high quality arrays are
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available from several manufacturers, problems encountered include high 

variability and sensitivity not sufficient for low abundant expressed genes (i.e. 

growth factors and their receptors) (Pfaffl, 2003). Also, discrepancy in fold- 

change calculation and lack of specificity for different isoforms or differentially 

expressed genes has been suggested. Therefore, additional confirmation check 

of array results is required (Schena et al., 1995; Harrington et al., 2000; Bustin, 

2002).

The microarray based screening of tissue specific gene expression and 

confirmation of putative candidate target genes by kinetic qPCR represents a 

powerful and optimal combination (Rajeevan et al., 2001, Pfaffl, 2003). The 

advantages of both quantification systems can be added -  the high throughput 

capacity of the microarray platform, as well as sensitivity and specificity of real­

time RT-PCR (Schena etal., 1995, Pfaffl, 2003).

6.2 Aims

• To identify suitable housekeeping genes as an internal control for 

normalisation of RT-qPCR results

• To validate the reproducibility of the microarray results

• To analyse and quantify the expression of genes of interest during the 

development of chick corneal epithelium.

6.3 Experimental design
The details of primer design and protocols for conventional and RT-qPCR are 

described in section 2.12.

Briefly, three sets of chick corneal epithelia RNA obtained from separate 

sample isolations (previously subjected to microarray experiments) were used 

for relative quantification of genes of interests. The three pools of RNA at each 

developmental time point (ED6, 10, 12, 14, 16, 18, ED21 posthatch), were 

transcribed to cDNA and processed for real-time RT-PCRs. Specificity of 

primers and products was confirmed by electrophoresis and melting peak 

analysis (Chapter 2, sections 2.12.4, 2.12.5).
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All reactions were replicated thrice with cDNA samples collected from different 

sets of pooled chick corneal epithelia. Amplification of housekeeping genes; 

G6PDH and UB, was performed as an internal control. For negative controls, 

similar amounts of total RNA of each sample were subjected to the same cDNA 

synthesis protocol without the reverse transcriptase. Both negative controls 

(exclusion of reverse transcriptase) and NTC were run simultaneously in all 

experiments to ensure a specificity of the assay and detection of carryover 

contamination (Chapter 2, section 2.12.4).

Average threshold cycle (Ct) values obtained form triplicates after qPCR 

reactions, were transformed to linear scale expression quantities using the 

comparative delta-Ct method. The sample with the highest expression (lowest 

Ct) for each gene was used as a calibrator and set to 1 and subsequently raw 

expression values of remaining samples were calculated according to the 

formula as follows:
Q - ( 1 +  E x )  (cal'*3rator Ct -  sample Ct)

where Ex was the efficiency of qPCR reaction (0.95-1.10 range), Q was 

quantity.

Several houskeeping genes; GAPDH, p-Actin, G6PDH and UB, were checked 

for stability throughout development allowing selection of the most stable pair 

after pairwise comparison. All softwares programmes used for the calculations 

are free accessible and it is recommended to evaluate candidate genes using 

at least two of them.

The NormFinder applies an algorithm for identifying the optimal normalisation 

gene among set of candidates. It ranks the set of candidate normalisation 

genes according to their expression stability in a given sample set and given 

experimental design. NormFinder calculates a gene-stability value with a 

mathematical model based on separate analysis of the sample subgroups and 

estimation of both intra- and intergroup variation in expression levels (Andersen 

etal., 2004)
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geNorm is a software developed by Vandesompele and coauthors (2002). Its 

approach relies on the principle, that the expression ratio of two perfect 

reference genes would be identical in all samples in all experimental conditions 

or cell types (Ishii et al., 2006). geNorm calculates the individual stability of a 

gene within pool of genes, and calculates stability (M  value) according to the 

similarity of their expression profile by pairwise comparison, using the 

geometric means as a normalising factor.

The third software used, BestKeeper, developed by Pfaffl and coauthors 

(2004), calculates the gene expression variation for all individual housekeeping 

genes based on Ct. The best suited candidates are determined and combined 

into an index. Gene stability was deducted from the calculated SD (standard 

deviation) and coefficient of variance. To estimate gene relations, pairwise 

correlation analyses were performed by calculating the Pearson correlation 

coefficient.

After evaluation of the most stable housekeeping genes, the normalisation 

factor (NF) was calculated as a geometric mean of the expression of the pair of 

the most stable housekeeping genes. NF is reported to be more accurate as an 

internal control than one housekeeping gene (Vandesompele et al., 2002). By 

dividing the relative quantities (raw expression) for each gene of interest and 

time point (sample) by the appropriate NF, the relative expression levels of all 

target genes and time points were calculated. The standard errors for 

normalisation factors and normalised expression of each sample were 

calculated and data was shown as a mean of results from three independent 

experiments. In order to make data comparable between runs, a dilution series 

of the same standard was used.

Statistical analysis on normalised RT-qPCR data (after log transformation when 

necessary) was performed One-way ANOVA with appropriate post-hoc test 

(Tukey or Dunnett T3) and/or Kruskal-Wallis with post-hoc test (Appendix VI). 

Fold changes were calculated on log normalised microarray and RT-qPCR 

data, based on the formula: log(A/B) = log(A) - log(B).

193



<\' i !  i ' ’ ; /  i ' / u i ! i  <! CtO1 i>i1! u ’  ( .>/  :ci! Ul \ hi ' (H

6.4 Optimisation for the RT-qPCR

The optimum annealing temperature (Ta) was established, using standard PCR, 

by trying a range of Ta above and below the calculated melting temperature 

(Tm) of the primers. Samples from developmental time points where the relative 

expression of each gene was the highest, according to microarray data, were 

chosen to check for optimal Ta of each pair of primers. The temperatures varied 

between 50 and 72°C (Figure 6.2). Optimum Ta was determined by the 

temperature that offered a single, sharply defined band when visualised: set at 

58°C for all primer sets. In most cases, the Ta was 5°C below the lowest Tm of 

one of the primers from a pair, as suggested by Innis and Gelfand (1990). 

Although, for some primer pairs, the difference between Tm and Ta was higher 

(i.e. G6PDH, UB) or slightly lower (i.e. GAPDH) than 5°C, in all cases a distinct 

band was observed at 58°C.

The efficiency, reproducibility and dynamic range of SYBR Green I assay was 

determined by constructing a standard curve using serial dilutions of a known 

template. The range of template concentrations used for standard curve 

encompassed the concentration of the test samples; results from test samples 

were within the linear dynamic range of the assay. In all assays the efficiency 

estimated by the software was between 90% and 105%, the coefficient of 

determination (R2) of was >0.97 and Pearson's correlation coefficient (r)>0.98 

as estimated by the software, indicating good reproducibility across assays.

During optimisation of qPCR conditions, primers were checked for their 

specificity and melting peak analysis was used to confirm that the observed 

fluorescence was derived from the target product, rather than from non-specific 

amplification. Results were confirmed by running qPCR products on an agarose 

gel.

As shown in Figure 6.3, each primer set generated one amplified band using 

chick corneal epithelia cDNA. An additional peak observed in early Tm resulted 

from primer-dimer formation but not contamination. This was confirmed by 

agarose gel analysis which did not showed the presence of additional peaks.
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Figure 6.3b Melt-curve and gel analysis of qPCR products of genes of interest. The 
change in fluorescence is plotted as a function of temperature (denaturation of dsDNA in 
degrees). For standard curve analysis serial dilutions of known sample were used. The 
higher melt peaks represent the specific product, and correspond to the lanes with bands 
on gel. Additional peaks at low Tm indicate the formation of primer-dimers. Lane 1, 50- 
500bp molecular ruler (intense band indicates 250bp), 5-13 for represent bands from 
triplicate dilutions for standard curve. NTC: no template control.
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6.5 Selection of microarray targets for RT-qPCR analysis

In order to confirm the levels of gene expression found by microarray analyses, 

selected gene targets were chosen for further RT-qPCR analysis. The targets 

were identified by RMA analysis as up- or down-regulated throughout 

development and showed greater then 1.6-fold regulated expression between 

at least two developmental time points, according to microarray data.

In addition, the following criteria of selection of genes were applied:

• Targets spanned from very low to very high raw intensity values, thus 

could confirm array sensitivity,

•  Targets were represented in a variety of roles, including; nuclear 

factors, structural proteins, transporting proteins, involved in different 

biological processes and had the potential to participate in stem cell 

biology.

The genes commonly selected for microarray validation are those exhibiting 

large degrees of change, which are those of biological interest because of their 

response to some challenge or change in condition (Morey et al., 2006). Target 

genes of interest, selected for validation of microarray data, are listed in Table 

6.1. Of the target genes of interest selected, Psca and Atoh7 were annotated 

for stem cells related by gene ontology. Sh3bgr, Kcnj2, H2afy2, Sfrp2, Aqp3 

were clustered in 1000 most variable genes and some of them additionally 

showed continuum of raising (Psca) or falling (H2afy2, Sfrp2) throughout 

development.

Table 6.1 List of selected targets for confirmation of microarray sensitivity

Target Gene Raw Intensity value

Atoh7 15

Sh3bgr 150

Kcnj2 155

H2afy2 287

Sfrp2 712

Aqp3 1337

Psca >6000
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Average expression stability values of control genes

CT)

0.4 ---------

B-Actin UBGAPDH
G6PDH

Least stable genes Most stable genes 4

Figure 6.4 Avarage expression stability values of control genes. The UB and G6PDH were 
identified as the most accurate reference genes in the chick corneal epithelial model using 
geNorm.

BestKeeper analysis confirmed that UB and G6PDH were the best 

housekeeping gene combination. Descriptive statistics of the derived Ct were 

computed for each housekeeping gene is presented in Table 6.3

Table 6.3 Descriptive statistic of four candidate housekeeping genes based on their Ct values. 
Abbreviations: N: number of samples; GM: geometric mean; AM: arithmetic mean; Min and 
Max: the extreme values of Ct; SD: standard deviation; CV (%): coefficient of variance 
expressed as a percentage on the Ct level.

GAPDH (3 -Actin UB G6PDH BestKeeper
n 7 7 7 7 7

GM [Ct] 11.24 14.76 27.49 16.15 16.47
AM [Ct] 11.25 14.77 27.51 16.20 16.49
min [Ct] 11.01 13.93 25.84 14.61 15.64
max [Ct] 12.08 15.45 28.81 18.11 17.60
SD [± Ct] 0.24 0.42 | ■ ■ ■ ■ ■ |  0.51
CV [% Ct] 2.12 2.87 3.75 7.02 3.10

Subsequently, the individual housekeeping genes levels were calculated and 

genes were ordered from the most (showing lowest variation) to the least stably 

expressed (showing the highest variation). In agreement with analyses, GAPDH 

showed the highest stability (CV= 2.12, SD=0.24). Although, UB and G6PDH

200



CHAPTER SIX Confirmation and characterisation of microarray targets

showed a high Ct variation (as shown in Table 6.3) and could be considered as 

inconsistent, they were shown to have best correlation after pairwise correlation 

analysis (Table 6.4). p-Actin and UB showed the lowest correlation among all 

pairs and p-Actin showed the lowest correlation with the BestKeeper index.

After exclusion of p-Actin, the calculation was repeated, and the correlation 

between G6PDH, UB and BestKeeper index increased (0.951 <r<0.990), 

whereas, between GAPDH and BestKeeper index decreased to 0.783.

Table 6.4 Repeated pairwise correlation analysis of candidate housekeeping genes (Pearson 
correlation, r). (A) genes pairwise correlated one with another; (B) genes pairwise correlation 
with BestKeeper index (n=4).

(A)
GAPDH p -Actin UB G6PDH

vs. p -Actin 0.290
p-value 0.527 - - -

vs. UB 0.582 0.073 . -

p-value 0.170 0.879 - -

vs. G6PDH 0.708 0.146 0.955 _

p-value 0.075 0.755 0.001 -

B)

BestKeeper vs. GAPDH P -Actin UB G6PDH

Corr. coeff. (/) 0.808 0.343 0.883 0.970
p-value 0.028 0.450 0.008 0.001
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6.6.2 Validation of m icroarray data of differentially expressed genes

6.6.2.1 Genes upregulated during chick corneal epithelial development 

Aquaporin 3 (G ill B lood Group)

Quantitative analysis showed that the Aquaporin 3 (Gill Blood Group) transcript 

{Aqp3) was upregulated throughout development in relation to the earliest 

developmental time point ED6 studied. Figure 6.5 shows the log normalised 

relative expression of Agp3 between time points determined by RT-qPCR and 

microarray. As shown by RT-qPCR, the Aqp3 transcript was expressed at a 

detectable level from ED12 onwards (Appendix VI, Table V I.1). Statistically 

significant differences in expression of Aqp3 were demonstrated between ED6 

and two latest developmental time points, and also between ED10 and ED18, 

and between ED12 and ED18 (p<0.05, see Appendix VI, Table VI.5).

The fold change differences between ED6 (used as a calibrator) and the rest of 

the developmental time points, as estimated by RT-qPCR and microarray 

analysis are detailed in Table 6.5.

Table 6.5 Fold changes in abundance of Aqp3 transcript between developmental time points

Symbol Functional
group

Fold change 
EDs 6 10 12 14 16 18 21

Aqp3
T ransporter 

activity, water 
and glycerol 

channel 
activity

Microarray

RT-qPCR

1

1

1.8

2.3

4.9

2.8

6.6

2.9

7.6

3.1

7.9

3.3

7.8

3.2

Prostate Stem Cell Antigen

Microarray and RT-qPCR demonstrated the lowest expression levels of 

Prostate Stem Cell Antigen (Psca) at ED6 with a gradual upregulation 

thereafter to the highest levels in posthatched corneal epithelia. This is 

illustrated in Figure 6.6, where the log normalised relative expression of Psca 

transcript throughout the development is indicated. By quantitative RT-PCR, 

Psca transcript appeared to be expressed at low detectable level up to ED 10 

(Appendix VI, Table V I.1). Statistically significant differences in expression 

were identified between ED6 and ED18, posthatched (ED21) epithelia, as well
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as, between ED10 and ED21 (K>8.46, p=0.05) (Appendix VI, Table VI.25). Fold 

changes calculated from microarray and quantitative RT-PCR using ED6 as a 

reference time are shown in Table 6.6.

Table 6.6 Fold changes in abundance of Psca transcript between developmental time points

S y m b o l F u n c t io n a l
g r o u p

F o ld  c h a n g e  

EDs 6 1 0 1 2 1 4 1 6 1 8 2 1

Psca Kinase and Microarray 1 4 . 7 5 . 9 6 . 9 7 . 2 7 . 4 7 . 7

TGFP
receptor
activity

RT-qPCR 1 1 . 7 . 2 .2 2 .2 2 . 4 2 . 6 2 . 9

6.6.2.2 Genes downregulated during chick corneal epithelial development 

Atonal Hom o log 7 (Drosophila)

Atonal Homolog 7 (Drosophila) (Atoh7) also called Math5 is a homologue of the 

Drosophila gene. Microarray analysis as well as real-time RT-PCR showed that 

the Atoh7 transcript was significantly downregulated in development (ED10 to 

ED21), compared to the highest expression levels at ED6 (Figs. 6.7a,b).

Significant differences in Atoh7  gene expression were also demonstrated 

between ED10 and other embryonic days, with exception of ED12, and 

between ED14 and ED6, ED10 (p<0.05, Appendix VI). The fold change 

differences in expression of the Atoh7 transcript between developmental stages 

are shown in Table 6.7.

Table 6.7 Fold changes in abundance of Atoh7 transcript between developmental time points

Symbol Functional
group

Fold change 
EDs 6 1 0 1 2 1 4 1 6 1 8 2 1

Atoh7 T ranscription Microarray 1 - 3 . 7 - 3 . 6 - 3 . 8 - 3 . 6 - 3 . 6 - 3 . 5

regulator
activity RT-qPCR 1 - 1 . 7 . - 2 . 0 - 2 . 3 - 2 . 6 - 2 . 5 - 2 . 7
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SH3 Domain Binding Glutamic Acid-rich Protein

Quantitative analysis showed that SH3 Domain Binding Glutamic Acid-rich 

Protein (Sh3bgr) gene is downregulated throughout chick corneal development 

(Appendix VI, Table VI. 1). Differential expression demonstrated by microarray 

analysis between ED6 and later developmental stages was confirmed by RT- 

qPCR (Figs. 6.10a,b). 2-fold change in expression level in relation to ED6 was 

demonstrated by RT-qPCR in later time point (from EDM), then it was 

estimated by microarray (Table 6.10). Statistical analysis of RT-qPCR results 

demonstrated significant differences in expression levels of Sh3bgr between 

ED6 and other time points, with exception of ED10 (p<0.05, Appendix VI, Table 

VI.17).

Table 6.10 Fold changes in abundance of Sh3bgrtranscript between developmental time points

S y m b o l F u n c t io n a l
g r o u p

F o ld  c h a n g e  

EDs 6 10 1 2 14 16 18 2 1

Sh3bgr Protein
complex
assembly

Microarray

RT-qPCR

1

1

- 5 . 4

-1 .2

- 5 . 7

- 1 . 3

- 5 .9

-2.1

- 5 . 7

-2.1

- 5 . 4

-2.1

- 5 . 2

-1 .8

6.6.2.3 Gene downregulated in mid time points during chick corneal 

epithelial development

Potassium Inwardly-rectifying Channel, Subfamily J, Member 2

Microarray analysis showed downregulation of Potassium Inwardly-rectifying 

Channel, Subfamily J, Member 2 transcript (Kcnj2) from ED6 to EDM, with later 

upregulation until posthatched (ED21) time point (Fig. 6.11a). The pattern of 

Kcnj2 expression throughout development was confirmed by quantitative RT- 

PCR analysis, however, lowest expression level was demonstrated at ED16 

(Fig. 6.11b). Statistically significant differences were demonstrated between 

ED6 and the rest of developmental time points, with the exception of ED18 and 

other statistically significant variations in gene expression are shown in Table 

VI. 13. Fold changes estimates from microarray and RT-qPCR data are listed in 

Table 6.11.
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CHAPTER SIX Confirmation and characterisation of microarray targets

Table 6.11 Fold changes in abundance of Kcnj2 transcript between developmental time points

S y m b o l F u n c t io n a l
g r o u p

F o ld  c h a n g e  

E D s 6 10 12 14 16 18 21

Kcnj2 P o ta s s iu m  io n Microarray 1 - 3 . 5 - 5 . 2 - 5 . 7 - 4 .5 - 3 . 5 - 1 . 7

tra n s p o r t
R T - q P C R 1 -1 .1 - 1 . 5 - 1 . 9 - 2 - 1 .2 - 0 . 6

6.7 Discussion

6.7.1 Selection of housekeeping genes

qPCR combines accuracy, sensitivity, dynamic range and reproducibility with 

speed and potential for high throughput (Bustin, 2002). In addition to careful 

reaction setup and optimisation, accurate and reliable normalisation is required 

to control for experimental error induced during the successive steps of RNA 

extraction and processing (Bustin, 2002; Huggett et al., 2005; De Boever et al., 

2008).

Since the transcription of any gene in living cells is not resistant to cell 

fluctuations, it is important to identify genes that are at least minimally regulated 

and may serve as reference genes allowing the accuracy of RNA transcription 

analysis that RT-qPCR offers (Radonic et al., 2004). It was postulated that the 

expression levels of commonly used housekeeping genes may vary in different 

cell types, tissues and disease states (Thellin et al., 1999; Warrington et al., 

2000, Bustin, 2000, Ishii et al., 2006). It also has been reported that some of the 

housekeeping genes with assumed stable expression can exhibit either up- or 

downregulation under some experimental conditions (Foss et al., 1998; 

Schmittgen and Zakrajsek, 2000). Because, the result of qPCR experiment is 

expressed as a target/reference ratio, thus, it is important that the expression 

level of housekeeping genes remains constant under different experimental 

conditions (Ishii etaI., 2006).
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The possibility of large variability (biological or experimentally induced) may 

lead to large errors, and needs to be taken into account particularly in the 

developmental experiments. Normalisation by multiple control genes instead of 

a single gene is recommended to measure expression levels accurately (De 

Boever et al., 2008). The validity of the approach is related to the number of 

samples and candidates analysed, i.e. the more samples and candidates, the 

better estimates (Andersen et al., 2004). The sample set should contain at least 

6 samples per group and the number of candidates should be at least 3 for 

technical reasons. Validation of housekeeping genes is highly specific for a 

particular experimental model and is crucial in assessing a new model (Dheda 

etal., 2004; De Boever etal., 2008).

Two out of four candidate reference genes; GAPDH and p-Actin had been 

previously used in various gene expression studies. In chickens, the p-Actin 

gene (encoding for cytoskeletal protein) was commonly used as an internal 

control for normalisation in several experimental designs. In our studies it was 

observed that p-Actin was the least stable throughout development. Pairwise 

comparisons also excluded GAPDH as a housekeeping gene in time course 

experiment, although, it was demonstrated to be most stable analysis when 

used as a single reference gene. These findings are consistent with a number 

of studies which reported that GAPDH and p-Actin genes, and alternatives (18S 

and 28S rRNA genes), are unsuitable references, because their transcription is 

significantly regulated in various experimental settings and variable in different 

tissues, as well as between individuals and between samples from the same 

individual (Selvey eta l., 2001; Goidin etal., 2001; Glare etal., 2002; Radonic et 

al., 2004).

In this study G6PDH and UB were shown to be the most stable genes in 

pairwise comparison, which was confirmed by three independent software 

packages. These genes also appear to be stable in chickens after virus 

infection (Xing and Schat, 2000; Hong et al., 2006; Li et al., 2007; De Boever et 

al., 2008). Li and coauthors (2007) tested the stability of 28 cellular genes in 

chicken embryo cell cultures. In their experimental setup, the expression of
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G6PDH and UB also proved to be stable. In addition, proteins of the selected 

genes belong to different functional classes, thus reducing the chance of their 

coregulation.

6.7.2 Validation of differentially expressed genes by RT-qPCR

The differences in gene expression found by microarray analyses were 

validated by using quantitative RT-PCR. The selected genes of interest, used to 

carry out this validation were Aqp3, Psca, Atoh7, H2afy2. Sfrp2, Sh3bgr and 

Kcnj2.

In this study, all genes showed a differential expression of at least 1.6 fold in at 

least one time point, which is a major criterion for the selection of genes in 

order to validate time course microarray experiment (Wurmbach et al., 2003; 

Ryan et al., 2005, Morey et al., 2006). Although, variation concerning the 

degree of regulation was observed, the data obtained with microarray analysis 

were substantially confirmed for all genes of interest by RT-qPCR.

Several studies attempted to determine factors which contribute to the variation 

in results obtained by microarray versus qPCR (Rajeevan et al., 2001; Etienne 

et al., 2004; Wurmbach et al. 2003; Beckman et al., 2004; Morey et al., 2006). 

Lower correlations were reported for genes exhibiting small degrees of change 

(less than 2-fold), as compared to those showing greater than 2-fold change. 

Differences in calculated fold changes between microarray and RT-qPCR data 

may result from various sources of pitfalls in long methodologies; these include 

different efficiencies of reverse transcriptase used in both qPCR and RNA 

amplification procedures for microarray labelling (Freeman etal., 1999).

Previous reports showed that, the effects of dye biases, non-specific and/or 

cross hybridisations of labelled targets to array probes, may have an impact on 

microarray procedures (Freeman et al., 1999; Yang et al., 2002). In addition, 

potential sources of error in qPCR include, among others, amplification biases, 

mispriming or the formation of primer dimers, and the changing efficiency of 

qPCR at later cycles, finally, analysis of images (Chuaqui et al., 2002; Bustin, 

2002; Freeman etal., 1999).

215



- I ' "  ! v-- C c ' i i t a  n \ - u  < v )  c ! \ i i < i c t p ! i ± L i t : o n  o f  m u  r o d i ’ ^ A '

Although the selection and application of normalisation criteria was performed 

with care, it must be mentioned that normalisation procedures differ between 

microarray and qPCR analysis; the former requires global normalisation, while 

the latter generally utilizes the expression of one or more reference genes 

against which all other gene expression is calibrated (Morey etal., 2006).

6.7.3 Selected genes and their potential roles in corneal development 
Upregulated genes

Upregulation of two out of seven genes of interest was demonstrated; included 

Aqp3  and Psca. Aqp3 gene coding for member of the homologous water 

channels protein family. A product of Aqp3 gene is expressed in many cell 

types in the eye, where its primary function is to facilitate transmembrane flow 

of solute-free water in response to osmotic gradients (Verkman, 2003; Verkman 

et al., 2008). The expression of water and glycerol-transporting 

aquaglyceroporin Aqp3 was demonstrated in stratified corneal epithelia of 

mouse, rat, and human (Patil et al., 1997; Hamann et al., 1998; Levin and 

Verkman, 2004). Recently, Aqp3-dependent cell migration was shown to be 

involved in epithelial cell proliferation indicating a potential role in corneal 

epithelial wound healing (Levin and Verkman, 2006). The proposed mechanism 

of Aqp3-facilitated cell proliferation in epidermis involved increase of cellular 

glycerol metabolism and biosynthesis, therefore increased ATP content and 

altered MAP kinase signalling (Verkman et al., 2008; Hara-Chikuma and 

Verkman, 2008). Its role in similar mechanisms within corneal epithelium 

requires further investigation.

It is likely, that the increase in levels of Aqp3 gene expression in development 

of the chick corneal epithelium is associated with structural and functional 

changes in cornea. As shown by microarrays and RT-qPCR, the level of Aqp3 

expression gradually increased from ED6 to ED14, and then plateaued. 

Changes in Aqp3 expression pattern in mid time points coincide with 

dehydration of secondary stroma and beginning of epithelial stratification, which 

were postulated to begin around ED12 (Hay, 1979). The role of Aquaporins in 

maintenance of corneal stromal transparency was studied and their 

involvement in stromal dehydration processes has been suggested

216



t e i ' s a t ' O n  i  <f n i i c t o a t r a v  t a r g e t s

(Thiagarajah and Verkman, 2002; Verkman et al., 2008). Recent studies by 

Swamynathan and coauthors (2008) demonstrated that the Aqp3 promoter is 

regulated by Klf4 (Kruppel-like factor 4) which plays a crucial role in the 

development and maintenance of the mouse cornea. Aqp3, as a potential 

member of genetic network regulating embryonic morphogenesis and 

maturation, may be a regulating factor in maintenance in chick corneal epithelial 

homeostasis. However, further study needs be undertaken to confirm this.

Psca also appeared to be upregulated in corneal epithelia development. Psca 

was expressed at the lowest level at ED6, with 1.7 fold change expression 

relative ED10, as shown by RT-qPCR. The increase in expression level of Psca 

transcripts coincides with the beginning of epithelial stratification during chick 

comeal development. Psca is so-named for its strong homology to the 

thymocyte marker stem cell antigen 2 (LOC420301) and is a member of the 

Thy-1/Ly-6 family of glycosylphosphatidylinositol (GPI)-anchored cell surface 

antigens (Reiter et al., 1998). Both LOC420301 and Ly6y (paralog for Psca) 

were identified in this studies by RMA (see Chapter 6). In situ hybridisation 

analysis localised Psca expression in normal prostate, with predominant 

restriction to a subset of basal cell epithelium, the putative stem cell 

compartment of the prostate (Reiter et al., 1998). A murine homologue of Psca 

shows a similar pattern of expression (Dubey et al., 2001). Psca was suggested 

to be a unique marker of an intermediate subpopulation of prostate epithelial 

cells in transition from a basal to terminally differentiated secretory phenotype 

(Tran et al., 2002). To date, one study has reported Psca expression in Gallus 

Gallus, in the shell gland of both juvenile and laying hens (Dunn et al., 2009). 

However, to the best of our knowledge, this thesis is the first to report Psca 

expression in the corneal epithelium.

Downregulated genes
Four out of seven genes used in RT-qPCR analysis were downregulated during 

chick corneal epithelial development. Atoh7 gene expression in the chicken 

corneal epithelium was shown to be highest at ED6. When other time points 

were compared to ED6, Atoh7 exhibited greater than 2 and 3 fold change in 

relative expression by RT-qPCR and microarray, respectively.
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Atoh7, also known as Math5/Ath5 (mouse), or Ath5/Cath5 (chicken) is a 

transcription factor involved in the differentiation of retinal ganglion cells. Atoh7 

was shown to be crucial for cell cycle progression and differentiation of 

embryonic retinal progenitor cells from several species (i.e. mouse, frog, 

zebrafish and chicken) (Le et al., 2006; Kanekar et al., 1997; Kay et al., 2001; 

Liu et al., 2001). In situ hybridisation studies in developing chicken retina (from 

ED2 to ED18) demonstrated that the intense expression of Atoh7 continues 

until ED9.5, and thereafter appears to be downregulated (Liu et al., 2001). The 

dynamic pattern of Atoh7  expression was correlated with the genesis of 

ganglion cells, which were previously shown to exit cell cycle between ED2 and 

ED9 during chick retinogenesis (Liu etal., 2001; Prada etal., 1991). Although, it 

is postulated that activation of Atoh7  is a key initiating event in the mammalian 

eye, the regulation of this process has not been well characterised (Riesenberg 

etal., 2009).

H2afy2 in the developing chick corneal epithelium was also confirmed by RT- 

qPCR. From ED6 to hatching a decrease in H2afy2 relative expression by more 

than 2.5-fold was indicated. The expression pattern was similarly demonstrated 

by microarray data, however, the fold change difference was higher (discussed 

above). macroH2a is a conserved family of replication-dependant core histone 

proteins with expression restricted to the S phase of cell cycle (Costanzi and 

Pehrson, 2001; Chadwick and Willard, 2001). H2afy2, a subtype of macroH2a, 

is non-allelic gene located on human chromosome 10 or chicken chromosome 

6. In mouse the H2afy2 protein is concentrated in the inactive X chromosome 

suggestive that H2afy2 is involved in establishing and/or maintaining 

transcriptionally silent chromatin domains (Costanzi and Pehrson, 1998, 2001). 

Accessibility of DNA sequences for transcription regulatory factors depends on 

chromatin state, which is regulated, among others, by histone variants and 

covalent modifications of histones (i.e. phosphorylation, acetylation, 

methylation) throughout the cell cycle (Van Leeuven and Gottschling, 2003; 

Cheung et al., 2000; Roloff and Nuber, 2005). Several studies have linked 

histone modification phenomenon with undifferentiated stem or progenitor cells 

and their differentiated progeny (Fajas et at., 2002; Lee et al., 2004b, Milhem et 

al., 2004). Combination of certain histone variants and their dynamic
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interactions with chromatin-associated proteins may play important role in gene 

expression patterns associated with maintenance of embryonic stem (ES) cell 

line pluripotency and during cell differentiation (Shukla et al., 2008, Roloff and 

Nuber, 2005). For instance, H 2a.z  (a subtype of H2a2 gene), which in human 

shows 56% identity in amino acid sequence to H2afy2 protein, is highly 

expressed in embryonic stem cells, with much lower expression in differentiated 

cells (Hatch and Bonner, 1996).

Sfrp2, also known as Secreted apoptosis-related protein 1, as shown by both 

microarray and RT-qPCR was downregulated from E D M . This gene encodes a 

member of the SFRP family that contains a cysteine-rich domain homologous 

to the putative Wnt-binding site of Frizzled proteins and acts as an antagonist of 

Wnt signalling (Rattner eta l., 1997, Ladher etal., 2000). The Wnt genes have a 

number of different roles during development varying from controlling patterning 

to proliferation, cell adhesion and differentiation (Wodarz and Nusse, 1998). 

Studies in chicken embryo suggested that Sfrp2 may play an active role in 

embryogenesis, especially in development of the neural system, eyes, muscles 

and limbs (Terry et al., 2000, Lin et al., 2007). Previous studies have identified 

Sfrp2 expression at stages 4 (18-19 hours) to 32 (ED7.5) in chick mesodermal 

and ectodermal derivatives (Terry eta l., 2000). As shown by Lin and coauthors 

(2007), the developing chick eye contains an intracellular distribution of Sfrp2 in 

the pigmented layer of the retina and photoreceptors until ED10. However, 

Sfrp2 expression in developing chick corneal epithelium has not been reported 

previously.

Sh3bgr downregulation occured over the time course of chick cornel epithelial 

development as confirmed by microarray data analysis and RT-qPCR. 

However, expression fold changes differed with a greater than 5 fold change 

beginning in early developmental stages following microarray data analysis and 

a 2 fold difference by RT-qPCR. In the latter, downregulation of Sh3bgr 

appeared later, from E D M  onwards. The Sh3bgr gene is differentially 

expressed in heart and skeletal muscle and was cloned in an effort to identify 

genes mapping to human chromosome 21 (chicken chromosome 1), which 

could be involved in pathogenesis of congenital heart disease associated with
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Down syndrome (Scartezzini et al., 1997; Mazzocco et al., 2002). Sh3bgr 

encodes for a protein with proline-rich middle region containing a Sh3 binding 

motif and a proline-rich peptide sequences, which were shown to be relevant 

for protein interactions involved in signal transduction pathways (Scartezzini et 

al., 1997; Egeo et al., 1998). So far, the expression and role of Sh3bgr has not 

been reported in the eye and biological functions of this gene need to be 

elucidated further.

Kcnj2, also known as Kir2.1 and Hhbirkl, was shown to be downregulated in 

the developing chick corneal epithelium from ED6 to ED16, and then 

upregulated from ED16 to posthatch. Kcnj2 is a member of Kir2 gene family 

and encodes for integral membrane protein (inward-rectifier type potassium 

channel protein) (Doupnik et al., 1995). Inwardly rectifying potassium channels 

play a key role in stabilising the resting membrane potential in both excitable 

and non-excitable cells (Giovannardi et al., 2002). Kcnj2, originally cloned by 

Kubo and co-authors (1993) from a mouse macrophage cell line, was shown to 

be highly expressed in mouse forebrain, heart ventricle, and skeletal muscle in 

mouse and chicken (Morishige et al., 1933; Ishihara and Hiraoka, 1994; 

Navaratnam et al., 1995). Ras and MAP kinase pathways, which play a pivotal 

role in cell proliferation, survival, and differentiation, were demonstrated to 

modulate inward rectifying potassium current by reducing the cell surface 

channel availability (Giovannardi et al., 2002; Fakler et al., 1994). Modulation of 

electrophysiological response may represent one of the events that control the 

electrical activity of the cell, a mechanism likely to be important for the cell fate 

determination (cell assignment for either proliferation or differentiation) 

(Giovannardi et al., 2002; Johns et al., 1999; Bianchi et al., 1998). Recently, 

Kcnj2 was demonstrated to be involved in differentiation of myoblasts (Hinard et 

al., 2008). The earliest event in this process requires hyperpolarisation, which 

occurs via an increased activity of Kcnj2 K+ channels due to dephosphotylation 

of tyrosine (Liu et al., 1998; Fischer-Lougheed et al., 2001; Hinard et al., 2008). 

In proliferating myoblast Kcnj2 channels were found to be localised at the cell 

surface in silent state (Hinard etal., 2008).
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Ion channels play central roles in maintaining electrophysiological stabilisation 

and fluid balance in order to dehydrate the cornea and to prevent corneal 

swelling (Lu, 2006). Recent reports demonstrated that of K+ channels activity is 

linked to proliferation and activation of stress-related signalling pathways in 

comeal epithelium (Lu, 2006; Wang et al., 2003; Roderick et al., 2003). 

Changes in K+ channel activity in corneal epithelial cells and other cell types 

can be modulated by a variety of growth factors (i.e. EGF, NGF), and cytokines 

(i.e. TNFa), and when affected in short term, may play the major role in 

regulation of proliferation and apoptosis (Lu, 2006; Minami et al., 2002). For 

instance, as suggested by Lu (2006), TNFa-induced stimulation of K+channel is 

required for NtyB nuclear translocation and DNA binding activity, which in turn 

promotes cell survival.

6.8 Conclusions
The objective of RT-qPCR studies described in this chapter was to confirm the 

array sensitivity. There was a general conformity between the microarray and 

RT-qPCR results, indicating that the microarray results demonstrated the extent 

of changes in gene expression. The analysis of gene expression using high 

density oligonucleotide arrays and performing RMA analysis delivered genes of 

interest that reflected true differences in gene expression levels throughout 

development of chick corneal epithelium.

Further studies to evaluate gene distribution and protein expression are 

required to determine the role of these selected genes in corneal epithelial 

development and homeostasis. These will include immunohistochemical 

localisation of proteins and the spatial localisation and distribution of mRNA 

transcripts using in situ hybridisation.

221



CHAPTER SEVEN 
 •

General discussion and future work



7.1 General Discussion

The overall aim of this study was to determine factors and mechanisms that 

underlie the regulation of epithelial patterning and homeostasis during corneal 

development. This was achieved firstly by examination of spatiotemporal 

changes in morphology, cell differentiation, proliferation and apoptosis of the 

developing chick corneal epithelium using histological staining, 

immunohistochemistry and cytochemical techniques, and secondly by an 

investigation of the gene expression profiles by microarray. For the purpose of 

this study, chicken corneas were used, which provided an excellent model due 

to the ease of eye collection, short time of embryonic development and 

similarity to human comeal epithelium.

Embryonic corneas from early stages of development ED4 (HH28-29) to ED18 

(HH44) and lastly corneas of chicks <12 hours after hatching (labelled as ED21 

throughout the thesis) were isolated and processed for the studies mentioned 

above. Procedures for Haematoxylin and Eosin staining were optimised in order 

to evaluate changes in the overall morphology, in particular cell shape, cell size 

and the number of epithelial cell layers. Epithelial differentiation patterns were 

identified in frozen sections of chicken corneas after immunolocalisation of pan- 

CK (acidic: 10, 13, 14, 15, 16, 19 and basic: 1, 2, 3, 4, 5, 6, 7) and CK3 

(Chapter 3). PCNA and caspase 3 (active) immunolocalisation studies, as well 

as, TUNEL-labelling were performed to assess temporal and spatial localisation 

of cell proliferation and death in the developing corneal epithelium (Chapter 4). 

The expression of PCNA and CK3 were later confirmed by immunoblotting.

Subsequently, techniques to isolate corneal epithelia at different developmental 

time points, in a manner that would not compromise the quality of RNA were 

optimised and developed. RNA samples of high purity and integrity, were 

amplified, labelled and hybridised to high density oligonucleotide arrays. All 

experimental steps were monitored, using a number of validation processes, to 

ensure accurate microarray data for gene expression analysis. The 

performance of microarrays and appropriate mathematical methods, such as 

Robust Multiarray Avarage and Limma provided a vast amount of data. To 

reduce the complexity of these results, and reveal biological implications of
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gene profiles in the developing corneal epithelium, data were further analysed 

using probabilistic clustering according to gene ontology and principal 

component analysis (Chapter 5). The sensitivity of arrays in producing data 

trends was validated in a small number of selected genes by quantitative RT- 

PCR (Chapter 6).

A summary of the results of this thesis, determined following morphological, 

immunohistochemical and cytochemical examination of the developing chick 

corneal epithelium, as well as, from microarray studies is provided below. The 

following discussion offers general observations as to the importance of 

differentially expressed genes and gene families identified in this study and 

underlines their potential role in the regulation of corneal epithelial homeostasis 

during development and following hatching.

7.2 Evaluation of changes in morphology, differentiation, proliferation and 

cell death during chick corneal epithelial development
Results demonstrating changes in epithelial cell morphology, differentiation, 

proliferation and cell death during chick corneal development, described in 

Chapters 3 and 4, are summarised below and presented in Table 7.1.

Corneal epithelial morphogenesis is a dynamic process involving the formation 

of new layers and horizontal expansion in the developing eye. Highlights of 

corneal epithelial development include stratification; an increase in the number 

of cell layers, change in cell morphology, and terminal differentiation of newly 

formed cells. The chick fetal corneal epithelium is derived from a single layer of 

ectoderm overlying the lens vesicle. In this study it was demonstrated that after 

becoming two layered by ED4, the epithelium underwent further stratification to 

form intermediate cell layers at about E D M . As demonstrated, these changes 

are accompanied by changes in cell shape commencing at ED10. This was in 

agreement with earlier studies of Hay and Revel (1969), which revealed that the 

early developed epithelium was two cells thick with basal cuboidal cells and 

became three-layered between ED10 and EDM .
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Table 7.1 Summary of the findings of histological, immunohistochemical and cytochemical studies

L P C  L P C  L P C  L P C  L P C  L P C  L P C  L P C  L P C
ED4 ED6 ED8 ED10 ED12 ED14 ED16 ED18 ED21

Histological observation
Stratification:
No. of cell layers 2 2 2 2 2 2 2 2 2 3 2 2 3 3 3 4 3 3 5 4 5 6 5 5 7 6 6
basal-ovoid + + + + + + + + + + + + +
basal-columnar + + + + + + + + + + + + + +
wing-like ± ± ± + + + + + + + + + + + + + + +

no. of layers 1 1 1 2 1 1 3 2 3 4 3 3 5 4 4

superficial-not flat + + + + + + + + +
superficial-flattened + + + + + + + + + + + + + + + + + +

Immunolocalisation studies
Epithelial differentiation:
Pan-CK basal + + + + + + + + + + + +

suprabasal + + + + + + + + + + + + +
superficial + + + + + + + + + + + + + + + + + +

CK3 basal + + + + + + + + +
suprabasal + + + + + + + + + + + +
superficial + + + + + + + + + + + + + + +

Proliferation:
PCNA basal + + + + + + + + + + + + + + + + + + + + + ± ± ± ± ± ±

suprabasal + + + + + + + + + + + + + + + + + + + + + + + + ± + +
superficial + + + + + + + + + + + + + + + + + + ± + + ± ± ± ± ± ±

Cell death:
Caspase 3 basal

suprabasal + +
superficial

Cytochemical analysis of cell death
TUNEL basal + + + + + + +

suprabasal + + + + + + +
superficial +

Legend: L: limbus, P: periphery, C: centre; +: present, ±: sparsely present, +: greater activity, +: peak activity, blank: absent
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Survival, proliferation and differentiation of an epithelium, depends on a 

complex system of interactions between its cells, the external environment and 

the underlying mesenychme (Revoltella et al., 2006). The newly formed 

epithelium is a subject to intense proliferation and expansion of existing cells. 

PCNA immunolocalisation studies suggested that after the formation of the 

corneal epithelium (at ED4), cell mitosis is involved in morphogenesis, whereas 

in later development its decrease might be associated with ongoing tissue 

differentiation. Cell proliferation appeared high throughout corneal 

development, with peak proliferation between ED12 (limbal epithelium: 

74.4±5.5%, periphery: 80.8±6.1%  and centre: 78.3±5.5%) and E D M  (79.4±4.4, 

86.5±6.8%, 82.7±3.5%  in the limbal, peripheral and central epithelium, 

respectively), thereafter the level of proliferation decreased. The above 

coincided with changes in epithelial morphology (stratification) and changes in 

expression of epithelial markers (described below). It is likely that by E D M  cells 

divide rapidly to increase the population of epithelial cells. Some of those cells 

differentiate and are designated for stratification before the epithelium is fully 

formed. Once the epithelium is fully formed and stratified, less cells divide, and 

the newly developed epithelium undergoes maturation. While the level of 

proliferation decreased throughout the corneal epithelium from ED16 onwards, 

more apoptotic events were observed in neonate epithelia, suggesting that 

proliferation and apoptosis play a regulatory role in maintaining homeostasis 

during development.

Earlier studies conducted by Nuttall (1976) established the distribution of 

dividing cells during epithelial stratification in the avian cornea using electron 

microscopy. Study revealed that at about day 9 of incubation 70% of mitotic 

spindles in the basal layer were oriented parallel to the basement membrane, 

whereas, in mid-developmental time points (ED12-ED16) the mitotic spindles 

change orientation to vertical (with 80% of basal cells showing this 

characteristic). Once the epithelium is fully stratified, the high level of 

perpendicularly orientated mitotic spindles falls off and mitosis was rarely 

observed in the flattened superficial layers of the corneal epithelium (Nuttall, 

1976; Hay, 1979). It was therefore postulated that the changing orientation of
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the spindles may initiate stratification, but stratification was not considered to 

result from an increase in local cell division.

It is still unknown when exactly the cell commitment to a given line in 

differentiation takes place in corneal development. The hypothesis of early 

differentiation of corneal epithelial cells was first put forward by Coulombre and 

Coulombre (1971). The experiments, based on the replacement of a developing 

chick lens with mesenchymal graft in vivo and in vitro led to the conclusion that 

the avian epithelium at day 5 of incubation was capable of transformation into 

epidermis, suggesting that inductive signals (from surrounding tissues and/or 

ECM) reach the corneal epithelium earlier than the 5th day of development.

The appearance of desmosmes and tonofilaments following stratification may 

suggested ongoing differentiation of corneal epithelia (Hay and Revel, 1969). A 

presence of tonofilaments, keratin intermediate filaments that constitute 

cytoplasmic protein structures (tonofibrils), in the cytoskeleton is considered a 

hallmark of differentiated epithelia. A pattern of expression of cytokeratins of 

epithelial cells provides a simple and reliable method for determination of 

epithelial differentiation state (Wolosin et al., 2000). The present study used the 

advantage of the co-expression of different cytokeratins and CK3 as 

differentiation markers signifying the commitment of corneal-type epithelial 

cells. The appearance of pan-CK labelling was first observed at ED10 and the 

presence of CK3 immunolabelling appeared in epithelial cells at ED12. 

However, low levels of CK3 protein expression were noted at ED10 by 

immunoblotting. The results indicated that during chick corneal development, 

the ED10 and ED12 appeared to be critical for the onset of epithelial 

differentiation during corneal development.

Identified differences in staining pattern between pan-CK and CK3 at ED12; 

pan-CK-positive cells in basal layer of peripheral epithelium, and lack of such 

labelling for CK3; suggested that differentiation may vary (suprabasal versus 

uniform) in different parts of the cornea and is most advanced in the central 

corneal epithelium. In later developmental time points, immunolabelling showed 

similar characteristics for both pan-CK and CK3, with positive cells present
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throughout the thickness of central and peripheral epithelium, and restriction to 

suprabasal layer in the limbal region.

Similar labelling patterns have been observed in the zebrafish (Zhao et al., 

2006) and rabbit corneas (Schermer etal., 1986; Chaloin-Dufau etal., 1990). In 

the developing human corneal epithelium, CK3 was firstly detected at the 12- 

13th week of gestation, with superficial cells positively labeled (Rodrigues et al, 

1987). By the time the epithelium was morphologically matured (four to six 

layers at 36 weeks). CK3 was expressed suprabasally, in contrast to adult 

epithelium which exhibited uniform staining.

The terminal differentiation process of keratocytes in human epidermis was 

suggested to utilise members of the apoptotic pathway and the fragmented 

DNA, as seen during classical apoptosis, and the activation of caspase 3 have 

both been demonstrated in differentiating keratinocytes (Polakowska et al., 

1994; Weil et al., 1999). This supported an idea of apoptosis being a 

specialised form of terminal differentiation in epidermal keratinocytes, which in 

the final stage leads to tissue keratinisation (Yamanishi et al., 2005). Since, 

corneal epithelium is stratified, non-keratinising tissue, the role of apoptosis in 

process of differentiation is not clear, however, apoptosis signalling might also 

have a more direct role in differentiation independent of apoptosis itself.

In this study, TUNEL-labelling demonstrated the presence of positive cells 

mostly in the limbal region of the corneal epithelium, in the mid and later 

developmental stages. However, immunolocalisation of the active form of 

caspase 3 revealed a lack of labelling in all regions investigated, with the 

exception of the limbal epithelium at ED16 and the central epithelium at ED18. 

Thus, it appeared that apoptosis in the developing chick corneal epithelium 

plays a minor role, which is in agreement with studies of cell death in 

developing human corneal epithelium (Yew et al., 2001), in which TUNEL- 

labelled cells were first observed postnatally.

It has been postulated that apoptosis shares a molecular pathway with the 

normal cell cycle and as such is regulated by the same molecular mechanism
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that control cell growth and proliferation and is sensitive to the same 

environmental factors in tissues of ectodermal origin (Haake and Polakowska, 

1993; Sen, 1992). A number of protooncogenes/anti-oncogenes (e.g. p53, c- 

Myc), growth factors (e.g. TGFp, retinoic acid) and hormones, which initiate or 

suppress the self destruction program under experimental conditions, are 

known to affect cell proliferation (Haake and Polakowska, 1993; Lane, 1992; 

Evans et al., 1995). In the presence of survival factors (cytokines), a normal cell 

could proliferate and in the absence the cell would either differentiate or turn on 

the death pathway (Haake and Polakowska, 1993). Extracellular inducers, such 

as Ca2+ ionophores, EGF, TNFa are also known to trigger either cell death or 

division, dependent on activation of appropriate second signals that execute 

further cell response (McConkey etal., 1990; Lu etal., 2001).

The patterns of cell proliferation and differentiation showed changes 

during the development of the corneal epithelium. These changes reflect 
the interaction of a complex network of mitogenic, apoptotic and 

differentiation agents, many of which remain to be identified.
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7.3 Regulatory mechanisms of epithelial cell patterning during corneal 
development and their implications

The aim of the microarray time course experiment was to identify gene families 

and their members likely to be relevant in the regulation of homeostasis during 

corneal epithelial development. Additionally, the study demonstrated 

differentially expressed genes that reveal changes in biological processes due 

to the change in time, which is essential to understand differences in the 

dynamics during development.

Functional studies in developing organs and cell lines of different species, have 

shown that Wnt/p-catenin, Nfi^P, Notch, Shh and TGF-b/BMP pathway 

signalling are crucial in the control of several cellular processes, including 

proliferation, cell transformation/fate and cell adhesion (Fig. 7.1). Mutual 

regulations between different signalling pathways and their ligands are 

important both during early development and in adult tissues (Guo and Wang, 

2009). The above mechanisms were also extensively studied in order to 

understand their roles in the niche control of different types of stem cells, which 

are crucial in the genesis and maintenance of adult tissue (Li and Xie, 2005).

The microarrays provided a vast amount of data and revealed genes that 

participated in different regulatory pathways and are likely to be crucial in the 

regulation of biological processes throughout development and/or in life 

following hatching. Some of the genes are of particular interest and might be 

proposed as critical for maintenance of epithelial homeostasis. These putative 

genes involved in epithelial cell patterning during corneal development are 

described below and presented in diagram (Fig. 7.2).

7.3.1 H2Afy2 in chromatin remodelling and switching between active and 

inactive gene programs
Expression of H2afy2 gene was downregulated throughout development of the 

corneal epithelium, with the lowest level of expression observed posthatching.
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Amongst all histone variants, macroH2A differs most from its canonical 

counterparts, but its function is poorly understood (Sarma and Reinberg, 2005; 

Buschbeck et al., 2009). Buschbeck and coauthors (2009) showed that its 

presence is not a strict indicator for transcriptional inactivity. MacroH2A was 

postulated to regulate a number of developmental genes (i.e. members of HOX, 

DLX, LHX families) that need to be maintained in a chromatin state that is 

repressed but sensitive to signal-mediated activation.

Chromatin remodelling and switching between transcriptionally active and 

inactive gene programmes has been postulated to be one of the mechanisms of 

cell fate regulation (Roloff and Nuber, 2005). A combination of functionally 

diverse chromatin remodelling (i.e. acetylation, methylation, phosphorylation 

and ubiquitination of nucleosmal histones) and ATP (adenosine triphosphate) 

modifying complexes acts to regulate gene activity through nucleosome mobility 

and specialisation (Kaeser and Emerson, 2006; Lin and Dent, 2006). Identified 

distinct classes of functionally diverse chromatin-remodelling complexes share 

a SWI-SNF2-related ATPase catalytic subunit that forms unique multi-subunit 

enzymes by associating with other subunits that direct gene targeting or 

specific regulatory functions (Cairns, 2005).

It has been suggested that Brg1 (Brahama-related gene) containing SWI-SNF 

complexes regulates neuronal differentiation by induction of appropriate 

transcriptional pathways through basic helix-loop-helix (bHLH) transcription 

factors targeted at chromatin remodelling (Seo et al., 2005). Another factor, 

Geminin, by interaction with Brg1, antagonise function of the latter, thereby 

preventing premature differentiation of neural progenitors (Kaeser and 

Emerson, 2006). Also, the link between SWI-SNF-Brg1 chromatin remodelling 

complex, p38 mitogen-activated protein kinase (MAPK) and MyoD was 

revealed in study of skeletal muscle differentiation (Simone etal., 2004).

Whether similar mechanisms exist in epithelial cell lineage is not yet 

determined, however it is likely, since the role of SWI-SNF-Brg1 was also 

demonstrated during lymphogenesis and in regulation of response to niche
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BMP signals that control the self-renewal of different stem cell types (Chi et al., 

2002; Xi and Xie, 2005).

7.3.2 Role of Atoh7 in cell cycle progression and differentiation
Atonal homolog 7 (Drosophila) (Atoh7) gene expression in the chicken corneal 

epithelium was shown to be highest at ED6, thereafter expression was 

downregulated and remained on constant level.

As described in section 7.7.2, Atoh7 was previously recognised as a 

transcription factor involved in the differentiation of retinal ganglion cells. Atoh7 

was postulated to be one of the first genes of bHLH transcription regulators, 

targeted by Pax6  during retinogenesis (Brown et al., 1998; Marquardt et al., 

2001; Vetter and Brown, 2001; Riesenberg et al., 2009). Studies of Lee and 

coauthors (2005) in mouse showed that Hes1 is an upstream regulator for 

Atoh7 during retinal ganglion cell genesis independent of Pax6.

Hes1 is known to code for a bHLH transcription factor functioning downstream 

of the Notch receptor (Jarriault et al., 1998) and after transactivation affects 

numerous pathways involving cell-fate determination (Lai, 2002). Recently 

Djalilian and coauthors (2008) demonstrated higher expression of Notch 1 and 

Jaggedl in the human limbal epithelium while the expression of Hes1 was 

higher in the central cornea, and their expression was found predominantly in 

the basal and immediate suprabasal cells. Notch activity in the mouse corneal 

epithelial wound healing model was inversely proportional to the degree of 

proliferation, confirming its role in control of proliferation and promotion of 

differentiation (Djalilian etal., 2008).

Atoh7-expressing cells were described as “transitional” (Dyer et al., 2005), 

since they are nonmitotic, migratory cells that are undifferentiated but 

committed to particular fates (Le et al., 2006). Ath5 cells appeared 

evolutionarily conserved since Drosophila atonal is found in Gi-arrested retinal 

cells and chick and zebrafish Atoh7 are excluded from S phase (Ma et al., 

2004; Masai et al., 2005). In situ hybridisation studies in developing chicken 

retina (from ED2 to ED18) demonstrated that the intense expression of Atoh7
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continues until ED9.5, and thereafter appears to be downregulated (Liu et al.,

2001). The dynamic pattern of Atoh7 expression was correlated with the 

genesis of ganglion cells, which were previously shown to exit the cell cycle 

between ED2 and ED9 during chick retinogenesis (Liu etal., 2001; Prada etal., 

1991).

The above suggests that Atoh7 may play a similar role in morphogenesis and 

cell progression in the developing chick corneal epithelium. In the early phase 

of epithelial morphogenesis, its action may be directed at suppression of cell 

proliferation and initiation of differentiation.

7.3.3 Sfrp2 involvement in epithelial cell survival during development
In this study, expression of Sfrp2 in chick corneal epithelium was shown to be 

downregulated throughout development; a constant level of expression was 

observed from ED6 to ED14, with a decrease from ED16.

Secreted-frizzled-related proteins are thought to bind and regulate Wnt activity 

through a cysteine rich-domain (CRD), preventing Wnt from interacting with 

Frizzleds (Lin et al., 1997; Rattner et al., 1997). SFRPs are also able to 

downregulate Wnt signaling by the formation of an inhibitory complex with the 

Frizzled receptors (Chim et al., 2007). The mechanisms mediating Sfrp2's 

cellular survival effect have not been precisely elucidated. Recently it has been 

postulated that Sfrp2, through interaction with Frizzled receptor, could 

potentially influence cell fate and survival by antagonising Writs with pro- 

apoptotic properties. Evidence supporting this hypothesis was derived from a 

Wnt signalling study in rat embryonic heart-derived myoblasts (Zhang et al., 

2009).

Although, it is likely that Sfrp2 plays a similar role in the corneal epithelial 

system, its role in cell survival during chick corneal epithelium development 

requires further investigation. Sfrp2 was previously demonstrated to block pro- 

apoptotic signalling of Wnt in neural crest cells of chick embryos (Ellies et al., 

2000), whereas another study demonstrated that Wnt3a expression in the 

ocular ectoderm starts later at ED4 and coincides with the onset of the
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secondary corneal stroma development (Fokina and Forlova, 2006). Ellies and 

coauthors (2000) also indicated an important role for Wnt signalling, 

coordinated by Bmp4 signalling, in the induction of programmed cell death in 

developing chicken hindbrain. Interestingly, Sfrp2 was not detected by in situ 

hybridisation analysis in the developing murine corneal epithelium (E12.5-18.5, 

postnatal E7 and adult), although an expression of several Wnts, including Wnt- 

3, was demonstrated (Liu eta!., 2003).

7.3.4 Role of Cebpb in epithelial cell proliferation and commitment to 

terminal differentiation

Microarray analysis identified Cebpb (Ccaat/enhancer binding protein c/ebp, 

beta) in the development of corneal epithelium. The highest expression of 

Cebpb was observed from ED10 to ED16, and was thereafter down regulated.

The evidence for the proposed role of Cebpb, a member of the basic leucine 

zipper family of transcription factors, in growth arrest and terminal cell 

differentiation has come from studies of adipogenesis and adipose-specific 

genes that are expressed only upon terminal differentiation (Kaestner et al., 

1990, Umek etal., 1991).

The involvement of Cebpb in Ras/Raf/MAPK-dependent signalling pathway was 

demonstrated by Hanlon and Sealy (1999). Initiation of Ras signalling leads to 

activation of downstream serum response factor (SRF), which binds to SRE in 

a promoter region of c-fos gene. C-fos proto-oncogene is a member of the set 

of ‘immediate early’ genes whose transcription is rapidly activated in the 

absence of protein synthesis by mitogenic signals (Cohen and Curran, 1989). 

Cebpb gives rise to three translation products that bind to the SRE region; p38, 

p35 and p20 (murine and rat). The N-terminal half of the first two proteins 

contains strong transactivation domains, whereas p20 lacks this domain and 

acts as an inhibitor of transcription (Hanlon and Sealy, 1999).

More recently, Yuan and coauthors (2004) suggested a role for Cebpb in the 

regulation of fiigh3 gene transcription (GF-p-induced gene-human, clone 3), 

which was considered as an essential constituent of the ECM responsible for
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cell adhesion and cell-matrix interactions. The temporal expression of (3igh3 

mRNA during corneal healing and development indicated that it plays a role in 

the synthesis and regulation of new tissue (Rawe et a/., 1997). pigh3 gene, 

which codes for keratoepithelin protein, was shown to be upregulated by 

TGFpl in corneal epithelial cells in a cell density-dependent way (Wang et al.,

2002).

Cebpb has been implicated in differentiation and tumor development of several 

epithelial cells including mammary epithelial cells and keratinocytes (Johnson, 

2005). In epidermis, Cebpb  induced expression of early keratinocyte 

differentiation markers keratin-1 and 10 through the transcription factor, 

activator protein 2 (Ap2) (Maytin etal., 1999).

Above suggested, that Cebpb may act as an auxiliary factor that, at the 

appropriate time, assists in the regulation of cell cycle and execution of the 

predetermined differentiation programs in developing corneal epithelium.

7.3.5 Role of Aqp3 in regulation of epithelial barrier formation
The corneal epithelium, outermost component of the cornea, is a primary 

barrier that protects the eye from mechanical trauma and microbial insults. The 

protective function of the chick corneal epithelium is established during 

embryonic development, in the final step of epithelial stratification, as a result of 

a complex and precisely coordinated program of morphogenesis.

As described in section 6.6.2.1, Aqp3 was upregulated at the transcriptional 

level during the development of chick corneal epithelium, showing the lowest 

expression between ED6 and ED12, and an increase from E D M . The proposed 

mechanism of /4gp3-facilitated cell proliferation in the epidermis involved 

increased of cellular glycerol metabolism and biosynthesis, therefore increase 

ATP content and altered MAP kinase signalling (Verkman et al., 2008; Hara- 

Chikuma and Verkman, 2008). In contrast to the epidermal epithelium, in which 

differentiated cells began to express proteins that generate the external 

cornified layer, the differentiation of external layers of corneal epithelia was
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accompanied by the expression of proteins delegated for metabolites, and ion 

transport (Revoltella etal., 2006).

Recent studies by Swamynathan and coauthors (2008) demonstrated that the 

Aqp3 promoter is regulated by Klf4 which plays a crucial role in the 

development and maintenance of the mouse cornea. In the epidermal system 

Klf4 is one of the best-studied transcription factors in respect to regulation of 

epidermal barrier formation (Koster and Roop, 2007). It was also shown that the 

CK12 promoter was bound and upregulated by Klf4 and that the 

downregulation of keratin CK12 may be responsible for /<//4-conditional null 

corneal epithelial fragility in mice (Swamynathan etal., 2007).

Above suggests that Aqp3 may be a downstream target for Klf4, and act 

similarly to Klf4; by upregulating inhibitors of cell division, and downregulating 

activators of the cell cycle, reported in earlier studies (Whitney et al., 2006; 

Swamynathan et al., 2008). It remains to be established whether Aqp3 plays a 

direct role in coordinating the regulation of the groups of genes whose 

expression is affected by the Klf4 in the cornea.

In conclusion, the changes in gene expression profiles, detected by the 

microarray analyses in this investigation, are consistent with the 

phenotypic changes in the developing chick corneal epithelium. The 

microarray data provided a good overall picture of gene expression in the 

developing chick corneal epithelium, although further exploration to 

ascertain exact roles and functions of differentially expressed genes and 

their proteins in corneal epithelial cell homeostasis is required.
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7.4 Future work

The present study is a first step in order to shed light on how corneal epithelial 

development is regulated and how the structure is maintained during 

embryonic development and posthatched life.

The results presented in this study show expression profiles of several genes 

of interests at developmental time points, however, it can not be determined 

from this study in which subcompartment of the developing corneal epithelium 

the identified genes are expressed. Thus future work on selective genes and 

regulatory mechanisms will involve cellular localisation of gene transcripts of 

interest by mRNA in situ hybridisation

Further studies could be completed to demonstrate protein expression of 

genes and post translational modifications of the proteins of interest by 

Western blotting and additional immunohistochemistry experiments. Above 

experiments should be complemented by analyses of adult chick tissue, as 

well as tissues of other species, in steady state homeostasis, during wound 

healing and/or in tissues with pathological characteristics.

Several methods might be applied in order to examine the gene of interest 

functions. RNAi (i.e. siRNA) or Cre/LoxP system under the control of 

promoters of genes might be utilised to knock-down target genes in vivo. An 

alternative method could be in ovo electroporation of iRNA (miRNA such as 

morpholinos) to silence endogenous gene products.
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APPENDICES Appendix I

APPENDIX I

Table 1.1 Hamburger Hamilton Stages

(adapted from http://embryology.med.unsw.edu.au/OtherEmb/chick1.htm, UNSW Embryology, 
accessed 19.07.2006) (continued overleaf)

Hamburger Hamilton .
Stages A9e Identification of Stages

Before laying

Early cleavage 3.5-4.5 hr Shell membrane of egg formed in isthmus of
oviduct

During cleavage Germ wall formed from marginal periblast

Late cleavage 4.5-24.0 hr Shell of egg formed in uterus

After laying

1 Preprimitive streak (embryonic shield)

2 6-7 hr Initial primitive streak, 0.3-0.5 mm long

3 12-13 hr Intermediate primitive streak

4 18-19 hr Definitive primitive streak, ±1.88 mm long

5 19-22 hr Head process (notochord)

6 23-25 hr Head fold

7 23-26 hr 1 somite; neural folds

7 to 8 ca. 23-26 hr 1 -3 somites; coelom

8 26-29 hr 4 somites; blood islands

9 29-33 hr 7 somites; primary optic vesicles

9+ to 10+ ca. 33 hr 8-9 somites; anterior amniotic fold

10 33-38 hr 10 somites; 3 primary brain vesicles

11 40-45 hr 13 somites; 5 neuromeres of hindbrain

12 45-49 hr 16 somites; telencephalon

13 48-52 hr 19 somites; atrioventricular canal

13+ to 14- ca. 50-52 hr 20-21 somites; tail bud

14 50-53 hr 22  somites; trunk flexure; visceral arches I and II,
clefts 1 and 2

14+to 15- ca. 50-54 hr 23 somites; premandibular head cavities

15 50-55 hr 24-27 somites; visceral arch III, cleft 3

16 51 -56 hr 26-28 somites; wing bud; posterior amniotic fold

17 52-64 hr 29-32 somites; leg bud; epiphysis

18 3 da 30-36 somites extending beyond level of leg bud;
allantois

19 3 .0 -3.5 da 37-40 somites extending into tail; maxillary process

20 3.0-3.5 da 40-43 somites; rotation completed; eye pigment

21 3.5  da 43-44 somites; visceral arch IV, cleft 4

22 3.5-4.0 da Somites extend to tip of tail
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23 4 da Dorsal contour from hindbrain to tail is a curved line

24 4.5 da Dorsal contour from hindbrain to tail is a curved line

25 4.5-5.0 da Elbow and knee joints

26 5 da 1 st 3 toes

27 5.0-5.5 da Beak

28 5.5-6.0 da 3 digits, 4 toes

29 6 .0-6.5 da Rudiment of 5th toe

30 6 .5-7.0 da Feather germs; scleral papillae; egg tooth

31 7.0-7.5 da Web between 1st and 2nd digits

32 7.5 da Anterior tip of mandible has reached beak

33 7.5-8.0 da Web on radial margin of wing and 1st digit

34 8 da Nictitating membrane

35 8 .5-9.0 da Phalanges in toes

36 10 da Length of 3rd toe from tip to middle of metatarsal
joint = 5.4±0.3mm; length of beak from anterior 
angle of nostril to tip of

37 11 da Length of 3rd toe = 7.4±0.3mm; length of beak =
3.0 mm

38 12 da Length of 3rd toe = 8 .4±0.3 mm; length of beak =
3.1 mm

39 13 da Length of 3rd toe = 9.8±0.3 mm; length of beak =
3.5 mm

40 14 da Length of beak = 4.0 mm; length of 3rd toe =
12.7±0.5 mm

41 15 da Length of beak from anterior angle of nostril to tip of
upper bill = 4.5 mm; length of 3rd toe = 14.9±0.8 
mm

42 16 da Length of beak = 4.8 mm; length of 3rd toe =
16.7±0.8 mm

43 17 da Length of beak = 5.0 mm; length of 3rd toe =
18.6±0.8 mm

44 18 da Length of beak = 5.7 mm; length of 3rd toe =
20.4±0.8 mm

45 19-20 da Yolk sac half enclosed in body cavity; chorio­
allantoic membrane contains less blood and is 
"sticky" in living embryo

46 20-21 da Newly-hatched chick
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APPENDIX II

List of reagents and composition of kits used in the study.

HISTOLOGY/HISTOCHEMISTRY 

10X PBS ML1
NaCI 80g
KCI 2 g
Na2P04 14.4g
KH2PO4 2.4g
HCI to pH 7.4
dH20  1000 ml

Gelvatol Mounting Medium
Double distilled water 40ml
Na2HP04 0.08g
KH2P04 0.03g
NaCI 0.327g
Sodium azide 0.024g
1,4 -  Diazabicyclo -  [2.2.2] octane 0.6g
Gelvatol 10g
Glycerol 20ml

10% Neutral Buffered Formalin ML1
NaH2P04 4g
Na2HP04 6.4ml
dH20  900ml
36% Formaldehyde 100ml

4% Paraformaldehyde HOOrnl!
1XPBS 90ml
PFA 4g
1M NaOH 1ml

0.1% Sodium Azide flOOmll
Sodium azide 0.1 g
1XPBS 100ml

Peroxidase substrate TSmll
DAB/Cobalt [0.5 mg/ml] 1 tablet
Urea Hydrogen Peroxide/ Tris Buiffer 1 tablet
dH20  5ml

DNAsel fper slidel
1 x Reaction Buffer 1OOpI
DNasel stock 100pl

WESTERN BLOTTING

1.5 M Tris/HCI p H 8.8 ri50mll
Tris base 27.23g
dH20  150ml
HCL to pH 8.8
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0.5 M Tris/HCI p H 6.8 nOOmll
Tris base 6g
dH20  100ml
HCL to pH 6.8

10% APS
Ammonium persulphat e 1g
dH20  10ml

10% SDS
SDS 10g
dH20  100ml

10x TBS ML1
10 mM Tris base 12.1 g
150 mM NaCI 87g
dH20  1000ml

1x TBS/Tween20
10x TBS 100ml
dH20  900ml
Tween20 1ml
pH 7.4

Working sample buffer HOOull
Laemlli Buffer 95pl
p-mercapthoethanol 5pl

Running Buffer f1L1
10x T ris/glycine/SDS 100ml
dH20  900ml

Transfer Buffer HL1
Tris/glycine 100ml
Methanol 200ml
dH20  700ml

Stripping BufferHLI
Glycine 15g
SDS 19
Tween20 10ml
HCI to pH 2.2
dH20  1000ml

RNA ISOLATION

Working RLT
(3-Mercaptoethanol 10pl
Buffer RLT 1ml
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MICROARRAYS

12X MES Stock Buffer. 1.22M Mes. 0.89M TNa+1 ML!
MES hydrate 64.61ml
MES Sodium Salt 193.3g
Molecular Biology Grade water 800ml
dH20  to 1L 
Adjust pH to 6.5-6.7

2X Hybridisation Buffer TSOmll
12X MES Stock Buffer 8.3ml
5M NaCI 17.7ml
0.5M EDTA 4.0ml
10%Tween20 0.1ml
dH20  19.9ml

Final 1X concentration is 100mM MES, 1M [Na+], 20mM EDTA, 0.01% Tween20.

Wash Buffer AM  LI
20X SSPE 
10% Tween-20 
dH20
Filter through a 0.2pm f

Wash Buffer Bf1 LI
12 X MES Stock Buffer 
5M NaCI 
10% Tween-20 
dH20

SAPE
2X Stain Buffer 300pl
50mg/mL BSA 24pl
1 mg/mL Streptavidin Phycoerythrin 6pl
RNase-free H20 270pl

Antibody solution mix
2X MES Stain Buffer 300pl
50mg/mL BSA 24pl
10mg/mL Normal Goat IgG 6pl
0.5mg/mL Anti-streptavidin 
Antibody, biotinylated 3.6pl
Nuclease-free H20 266.4pl

Streptavidin Stock H mg/mll
Stretpavidin Stock 5mg
1XPBS 5ml

Goat IgG Stock M0mq/mU
Goat IgG 50mg
150mM NaCI 5ml

300ml
1.0ml

699ml
filter.

83.3ml 
5.2ml 
1.0ml 

910.5ml
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COMPOSITIONS OF SOLUTIONS PROVIDED WITH KITS 

VECTASTAIN® Elite® ABC KIT, Vector Laboratories

Reagent A: avidin
Reagent B: biotinylated enzyme

BCA™ Protein Assay, Pierce

Reagent A: sodium carbonate, sodium bicarbonate, bicinchonic acid and sodium tartrate in 
0.1 M sodium hydroxide 
Reagent B: 4% cupric sulphate
Albumin Standard Ampules 2 mg/ml: bovine serum albumin at 2.0mg/ml in 0.9% saine and 
0.05% sodium azide.

ECL Plus, Amersham

Solution A: ECL Plus substrate solution containing tris buffer 
Solution B: Stock Acridam solution in Dioxane and Ethanol

RNeasy® Micro Kit, Qiagen

RLT Buffer: containing guanidinium thicyanate 
RW1 Buffer: guanidinium thicyanate, ethanol

ApopTag® Peroxidase in situ Apoptosis Detection Kit, Chemicon

Equlibration Buffer: contains potassium cacodylate (dimethylarsinic acid)
Reaction Buffer: contains potassium cacodylate (dimethylarsinic acid)

Superscript™ II, Invitrogen

Primer: Pd(N) oligos 
DEPC water 
Random primers 
First-Strand Buffer 
RNase Inhibitor

GeneChip® Sample Cleaup Module

cDNA Binding Buffer: containing guanidine hydrochloride and isopropanol 
IVT cRNA Binding Buffer: guanidine thiocyanate

Affymetrix Fragmentation Kit

5X Fragmentation Buffer: 200mM Tris-Acetate (pH 8.1), 500mM potassium acetate, 150mM 
magnesium acetate.
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APPENDIX III

STATISTICAL ANALYSIS OUTPUTS 

Chapter 3, section 3.4.2 Morphology of the developing corneal epithelium

One-way AN O VA with D unnett T3 post-hoc test were perform ed in SPSS v.12 to compare data 

obtained after quantifica tion  of num ber of cell layers in developing chick corneal epithelium.

Table 111.1 Shap iro -W ilk  results fo r test of normality. The mean difference is significant at the 
0.05 level.

Shapiro-Wilk
Statistic df Siq.

number .869 729 .135

Table III.2 O ne-w ay AN O VA results obta ined from  analysis of the number of epithelial cell 
layers, (a) com parisons betw een groups (ED4-ED21), (b) comparisons between EDs within 
regions (centre, periphery, lim bus), (c) com parisons between regions within EDs. The mean 
difference is sign ificant at the 0.05 level.

a) A N O V A

Sum of 
Squares df Mean Square F Siq.

Between Groups 1388.149 8 154.239 568.202 .000
Within Groups 217.160 700 .271
Total 1605.310 709

b)
A N O VA

region
Sum of 

Squares df Mean Square F Siq.
centre Between

Groups 498.519 8 55.391 273.449 .000

Within Groups 52.667 260 .203
Total 551.185 269

periphery Between 396.478 8 44.053 194.499 .000
Groups
Within Groups 58.889 260 .226
Total 455.367 269

limbus Between 514.800 8 57.200 229.979 .000
Groups
Within Groups 64.667 260 .249
Total 579.467 269
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c) A N O VA

Appendix III

Sum of
cjroup Squares df Mean Square F Siq.
day 4 Between

Groups
Within
Groups
Total

.469

6.741

7.210

2

78

80

.235

.086

2.714 .073

day 6 Between
Groups
Within
Groups
Total

1.210

7.556

8.765

2

78

80

.605

.097

6.245 .003

day 8 Between
Groups
Within
Groups
Total

1.580

13.852

15.432

2

78

80

.790

.178

4.449 .015

day 10 Between
Groups
Within
Groups
Total

1.284

17.852

19.136

2

78

80

.642

.229

2.805 .067

day 12 Between
Groups
Within
Groups
Total

1.407

22.148

23.556

2

78

80

.704

.284

2.478 .090

day 14 Between
Groups
Within
Groups
Total

2.543

21.333

23.877

2

78

80

1.272

.274

4.649 .012

day 16 Between
Groups
Within
Groups
Total

10.543 2 5.272 23.324 .000

17.630

28.173

78

80

.226

day 18 Between
Groups
Within
Groups
Total

2.543

25.852

28.395

2

78

80

1.272

.331

3.837 .026

day 21 Between
Groups
Within
Groups
Total

13.728 2 6.864 20.078 .000

26.667

40.395

78

80

.342

Table 111.3 Levene’s test of homogeneity of variances

number

Levene
Statistic df 1 df2 Siq.

13.577 8 700 .000
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Table 111.4 Post-hoc Dunnett T3 test results obtained from analysis of the number of epithelial 
cell layers, (a) comparisons between EDs within regions (centre, periphery, limbus), (b) 
comparisons between regions within EDs. The mean difference is significant at the 0.05 level.

a) M u l t i p l e  C o m p a r i s o n s

Dependent Variable: number 
Dunnett T3

region (I) cjroup (J) group

Mean
Difference

(l-J) Std. Error Sig.
95% Confidence 

Interval

Lower
Bound

Upper
Bound

centre day 4 day 6 -.222 .085 .378 -.52 .07
day 8 -.296 .098 .151 -.63 .04
day 10 -.5 1 9 0 .120 .003 -.93 -.11
day 12 -1 .0370 .128 .000 -1.48 -.60
day 14 -2 .0 00 0 .120 .000 -2.41 -1.59
day 16 -2 .8520 .120 .000 -3.26 -2.44
day 18 -3 .5190 .131 .000 -3.97 -3.07
day 21 -3 .9 26 0 .115 .000 -4.32 -3.53

day 6 day 4 .222 .085 .378 -.07 .52
day 8 -.074 .072 1.000 -.32 .18
day 10 -.296 .100 .189 -.65 .05
day 12 -.8 1 5 0 .109 .000 -1.20 -.43
day 14 -1 .7780 .100 .000 -2.13 -1.42
day 16 -2 .6300 .100 .000 -2.98 -2.28
day 18 -3 .2 96 0 .113 .000 -3.70 -2.90
day 21 -3 .7 04 0 .094 .000 -4.03 -3.37

day 8 day 4 .296 .098 .151 -.04 .63
day 6 .074 .072 1.000 -.18 .32
day 10 -.222 .111 .850 -.61 .16
day 12 -.7 4 1 0 .120 .000 -1.16 -.33
day 14 -1.704(*) .112 .000 -2.09 -1.32
day 16 -2 .5 56 0 .111 .000 -2.94 -2.17
day 18 -3 .2220 .123 .000 -3.65 -2.79
day 21 -3.630(*) .106 .000 -3.99 -3.27

day 10 day 4 .5 1 9 0 .120 .003 .11 .93
day 6 .296 .100 .189 -.05 .65
day 8 .222 .111 .850 -.16 .61
day 12 -.5 1 9 0 .138 .019 -.99 -.04
day 14 -1 .4810 .131 .000 -1.93 -1.03
day 16 -2 .3330 .131 .000 -2.78 -1.88
day 18 -3 .0000 .141 .000 -3.48 -2.52
day 21 -3 .4070 .126 .000 -3.84 -2.97

day 12 day 4 1.037(*) .128 .000 .60 1.48
day 6 .8 1 5 0 .109 .000 .43 1.20

day 8 .7 4 1 0 .120 .000 .33 1.16
day 10 .5 1 9 0 .138 .019 .04 .99
day 14 -.963(*) .139 .000 -1.44 -.49
day 16 -1 .8150 .138 .000 -2.29 -1.34

day 18 -2 .4810 .148 .000 -2.99 -1.97

day 21 -2 .8890 .134 .000 -3.35 -2.43
day 14 day 4 2.000(*) .120 .000 1.59 2.41

day 6 1.778(*) .100 .000 1.42 2.13
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day 10

day 12

day 14

day 16

day 18

day 21

limbus day 4

Appendix III

day 21 -3.4070 .138 .000 -3.89 -2.92
day 4 .3 70 0 .106 .043 .01 .73
day 6 .222 .094 .567 -.11 .55
day 8 .148 .106 .998 -.22 .51
day 12 -.296 .130 .643 -.74 .15
day 14 -1.1480 .140 .000 -1.63 -.67
day 16 -1.7040 .132 .000 -2.16 -1.25
day 18 -2.6670 .146 .000 -3.17 -2.16
day 21 -3.2590 .151 .000 -3.78 -2.74
day 4 .6 67 0 .115 .000 .27 1.07
day 6 .5190 .104 .001 .15 .89
day 8 .4440 .115 .016 .05 .84
day 10 .296 .130 .643 -.15 .74
day 14 -.8520 .147 .000 -1.36 -.35
day 16 -1.4070 .139 .000 -1.89 -.93
day 18 -2 .3700 .153 .000 -2.90 -1.84
day 21 -2.9630 .157 .000 -3.50 -2.42
day 4 1.5190 .126 .000 1.08 1.96
day 6 1.3700 .116 .000 .96 1.78
day 8 1.2960 .126 .000 .86 1.74
day 10 1 .1480 .140 .000 .67 1.63
day 12 .8 52 0 .147 .000 .35 1.36
day 16 -.55 60 .149 .020 -1.07 -.05
day 18 -1 .5190 .162 .000 -2.07 -.96
day 21 -2 .1110 .166 .000 -2.68 -1.54
day 4 2 .0740 .117 .000 1.67 2.48
day 6 1.9260 .106 .000 1.55 2.30
day 8 1.8520 .117 .000 1.45 2.26
day 10 1.7040 .132 .000 1.25 2.16
day 12 1.4070 .139 .000 .93 1.89
day 14 .5 56 0 .149 .020 .05 1.07
day 18 -.96 30 .155 .000 -1.49 -.43
day 21 -1 .5560 .159 .000 -2.10 -1.01
day 4 3 .03 70 .134 .000 2.57 3.50
day 6 2 .8890 .124 .000 2.45 3.33
day 8 2 .81 50 .134 .000 2.35 3.28
day 10 2 .66 70 .146 .000 2.16 3.17
day 12 2 .3700 .153 .000 1.84 2.90
day 14 1.5190 .162 .000 .96 2.07
day 16 .9630 .155 .000 .43 1.49
day 21 -.5930 .171 .046 -1.18 -.01
day 4 3 .6300 .138 .000 3.15 4.11
day 6 3 .4810 .129 .000 3.02 3.94
day 8 3 .4070 .138 .000 2.92 3.89
day 10 3 .2590 .151 .000 2.74 3.78
day 12 2 .9630 .157 .000 2.42 3.50
day 14 2 .1110 .166 .000 1.54 2.68
day 16 1.5560 .159 .000 1.01 2.10
day 18 .5930 .171 .046 .01 1.18
day 6 -.296 .090 .101 -.62 .03
day 8 -.4070 .110 .040 -.81 -.01
day 10 -.5560 .097 .000 -.91 -.20
day 12 -.8150 .107 .000 -1.20 -.43
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day 6 2.704(*) .139 .000 2.23 3.18
day 8 2 .5930 .153 .000 2.07 3.12
day 10 2 .4440 .145 .000 1.95 2.94
day 12 2 .1850 .151 .000 1.67 2.70
day 14 1 .5190 .145 .000 1.02 2.02
day 16 .222 .134 .980 -.24 .68
day 21 -1 .4810 .163 .000 -2.04 -.92

day 21 day 4 4 .4810 .124 .000 4.03 4.93
day 6 4 .1850 .153 .000 3.66 4.71
day 8 4 .0740 .166 .000 3.51 4.64
day 10 3 .9260 .157 .000 3.38 4.47
day 12 3 .6670 .164 .000 3.10 4.23
day 14 3 .00 00 .158 .000 2.46 3.54
day 16 1 .7040 .148 .000 1.19 2.22
day 18 1 .4810 .163 .000 .92 2.04

* The mean difference is significant at the .05 level.

b )  M u l t i p l e  C o m p a r i s o n s

Dependent Variable: number 
Dunnett T3

group (I) region (J) region

Mean
Difference

Std. Error Sig.
95% Confidence 

Interval

Lower Upper
Bound Bound

day 4 centre periphery -.074 .098 .833 -.32 .17
limbus -.185 .076 .064 -.38 .01

periphery centre .074 .098 .833 -.17 .32
limbus -.111 .062 .224 -.27 .05

limbus centre .185 .076 .064 -.01 .38
periphery .111 .062 .224 -.05 .27

day 6 centre periphery .000 .052 1.000 -.13 .13
limbus -.2 5 9 0 .097 .033 -.50 -.02

periphery centre .000 .052 1.000 -.13 .13
limbus -.259(*) .097 .033 -.50 -.02

limbus centre .2 5 9 0 .097 .033 .02 .50
periphery .2 5 9 0 .097 .033 .02 .50

day 8 centre periphery .000 .087 1.000 -.21 .21
limbus -.296 .126 .069 -.61 .02

periphery centre .000 .087 1.000 -.21 .21
limbus -.296 .126 .069 -.61 .02

limbus centre .296 .126 .069 -.02 .61
periphery .296 .126 .069 -.02 .61

day 10 centre periphery .074 .126 .913 -.24 .39
limbus -.222 .134 .278 -.55 .11

periphery centre -.074 .126 .913 -.39 .24
limbus -.296 .130 .078 -.62 .02

limbus centre .222 .134 .278 -.11 .55
periphery .296 .130 .078 -.02 .62

day 12 centre periphery .296 .142 .118 -.05 .65
limbus .037 .149 .992 -.33 .40

periphery centre -.296 .142 .118 -.65 .05
limbus -.259 .145 .218 -.62 .10
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limbus centre -.037 .149 .992 -.40 .33
periphery .259 .145 .218 -.10 .62

day 14 centre periphery .407(*) .144 .020 .05 .76
limbus .333(*) .135 .050 .00 .67

periphery centre -.4070 .144 .020 -.76 -.05
limbus -.074 .147 .943 -.44 .29

limbus centre -.333(*) .135 .050 -.67 .00
periphery .074 .147 .943 -.29 .44

day 16 centre periphery .704(*) .136 .000 .37 1.04
limbus -.111 .123 .748 -.41 .19

periphery centre -.704(*) .136 .000 -1.04 -.37
limbus -.8150 .129 .000 -1.13 -.50

limbus centre .111 .123 .748 -.19 .41
periphery .8 15 0 .129 .000 .50 1.13

day 18 centre periphery .407(*) .159 .040 .01 .80
limbus .333 .151 .091 -.04 .71

periphery centre -.407(*) .159 .040 -.80 -.01
limbus -.074 .159 .954 -.47 .32

limbus centre -.333 .151 .091 -.71 .04
periphery .074 .159 .954 -.32 .47

day 21 centre periphery .222 .151 .375 -.15 .59
limbus -.7 4 1 0 .151 .000 -1.11 -.37

periphery centre -.222 .151 .375 -.59 .15
limbus -.963(*) .175 .000 -1.39 -.53

limbus centre .7 4 1 0 .151 .000 .37 1.11
periphery •963(*) .175 .000 .53 1.39

*  The mean difference is significant at the .05 level.

Table 111.5 Pearson correlation of num ber of cell layers in chick corneal epithelium  and 
developmental tim e point. Correlation is significant at the 0.01 level (2-tailed).

Descriptive Statistics

Mean Std. Deviation N
number 3.35 1.409 729
ED 12.20 5.079 729

Correlations

number ED
number Pearson

Correlation 
Sig. (2-tailed)
N

ED Pearson
Correlation 
Sig. (2-tailed)
N

1

729

.891 (**)

.000
729

.891 (**)

.000
729

1

729

Chapter 3, section 3.5.3.1 Im m unoblotting for cytokeratin 3

One-way ANOVA with Dunnett T3 post-hoc test were performed in SPSS v.12 to compare the 

normalised band intensities across time points in an attempt to identify significant changes in 

expression.
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Table 111.6 Shapiro Wilk results for test of normality. The mean difference is significant at the 
0.05 level.

__ _________Shapiro-Wilk
Statistic df Sip.

| normdata .907 21 .067

Table 111.7 One-way ANOVA results obtained from analysis of the chicken cytokeratin 3 
Western blot. The mean difference is significant at the 0.05 level.

A N O V A

normdata

Sum of 
Squares df Mean Square F Sig.

Between Groups .938 6 .156 59.985 .000
Within Groups .036 14 .003
Total .975 20

Table 111.8 Levene’s test of homogeneity of variances

normdata

Levene
Statistic df 1 df2 Sig.

3.614 5 12 .022

Table 111.9 Post-hoc test results obtained from analysis of the chicken cytokeratin 3 Western 
blot. The mean difference is significant at the 0.05 level.

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: normdata 
Dunnett T3 ___________

(I) ed (J) ed

Mean
Difference

(l-J)

95% Confidence Interval

Std. Error Sig. Lower Bound Upper Bound

10.00 12.00 -.323350 .01881 .001 -.4261 -.2207
14.00 -.387270 .04248 .036 -.7219 -.0526

16.00 -.578010 .05620 .034 -1.0619 -.0942

18.00 -.580170 .02980 .002 -.7776 -.3828

21.00 -.684580 .02036 .000 -.7961 -.5731

12.00 10.00 .323350 .01881 .001 .2207 .4261

14.00 -.06391 .04224 .848 -.4033 .2755

16.00 -.25466 .05602 .189 -.7433 .2340

18.00 -.256820 .02945 .025 -.4571 -.0565

21.00 -.361230 .01985 .001 -.4709 -.2516

14.00 10.00 .387270 .04248 .036 .0526 .7219

12.00 .06391 .04224 .848 -.2755 .4033

16.00 -.19075 .06774 .359 -.5790 .1975

18.00 -.19290 .04815 .158 -.4803 .0945

21.00 -.29732 .04295 .063 -.6238 .0292
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16.00 10.00 .578010 .05620 .034 .0942 1.0619
12.00 .25466 .05602 .189 -.2340 .7433
14.00 .19075 .06774 .359 -.1975 .5790
18.00 -.00216 .06060 1.000 -.4149 .4106
21.00 -.10657 .05656 .711 -.5817 .3685

18.00 10.00 .580170 .02980 .002 .3828 .7776
12.00 ■25682(*) .02945 .025 .0565 .4571
14.00 .19290 .04815 .158 -.0945 .4803
16.00 .00216 .06060 1.000 -.4106 .4149
21.00 -.10441 .03047 .251 -.2976 .0888

21.00 10.00 .684580 .02036 .000 .5731 .7961
12.00 .36123(*) .01985 .001 .2516 .4709
14.00 .29732 .04295 .063 -.0292 .6238
16.00 .10657 .05656 .711 -.3685 .5817
18.00 .10441 .03047 .251 -.0888 .2976

* The mean difference is significant at the .05 level.

Chapter 4, section 4.4.2 Immunolocalisation of proliferating epithelial cells using PCNA 

monoclonal antibody

One-way ANOVA with Dunnett T3 post-hoc test was performed in SPSS v.12 to percentage of 

PCNA-positive cells across the time points and corneal epithelial regions in an attempt to 

identify significant changes.

Table 111.10 Shapiro-Wilk results for test of normality (n=27). The mean difference is significant 
at the 0.05 level.

Shapiro-Wilk

Statistic df Sig.
number .973 729 .214

Table 111.11 One-way ANOVA results obtained from quantification of proliferating cells, (a) 
comparisons between groups (ED4 -  ED21), (b) comparisons between EDs within regions 
(centre, periphery, limbus), (c) comparisons between regions within EDs. The mean difference 
is significant at the 0.05 level.

a)
A N O V A

Sum of 
Squares df Mean Square F Sig.

Between Groups 11814.416 2 5907.208 31.151 .000
Within Groups 153033.535 807 189.633
Total 164847.951 809
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b)
A N O V A

Sum of
region Squares df Mean Square F Siq.
centre Between

Groups 32816.714 8 3646.302 72.829 .000

Within Groups 13017.352 260 50.067
Total 45834.066 269

periphery Between
Groups 32601.349 8 3622.372 79.449 .000

Within Groups 11854.376 260 45.594
Total 44455.724 269

limbus Between
Groups 52960.055 8 5884.451 156.378 .000

Within Groups 9783.689 260 37.630
Total 62743.744 269

c)
A N O V A

group
Sum of 

Squares df Mean Square F Siq.
day 4 Between

Groups
Within
Groups
Total

695.952 2 347.976 3.706 .029

7322.949

8018.901

78

80

93.884

day 6 Between
Groups
Within
Groups
Total

1053.748 2 526.874 7.652 .001

5370.313

6424.061

78

80

68.850

day 8 Between
Groups
Within
Groups
Total

1077.874 2 538.937 6.528 .002

6439.459

7517.333

78

80

82.557

day 10 Between
Groups
Within
Groups
Total

190.849 2 95.424 3.825 .026

1946.156

2137.005

78

80

24.951

day 12 Between
Groups
Within
Groups
Total

555.793 2 277.896 8.433 .000

2570.456

3126.249

78

80

32.955

day 14 Between
Groups
Within
Groups
Total

692.314

2059.916

2752.230

2

78

80

346.157

26.409

13.107 .000

day 16 Between
Groups
Within
Groups
Total

1165.474

3403.831

4569.305

2

78

80

582.737

43.639

13.354 .000

day 18 Between
Groups 3350.595 2 1675.297 105.192 .000
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day 21

Within
Groups 1242.240 78 15.926

Total 4592.834 80
Between
Groups
Within

5125.065 2 2562.533

Groups 2493.346 78 31.966

Total 7618.411 80

80.164 .000

T a b le  111.12 Levene's test of homogeneity of variance 

number

Levene
Statistic df 1 df2 Sig.

4.406 2 807 .012

Table 111.13 Post-hoc test results obtained from quantification of proliferating cells, (a) 
comparisons between EDs within regions (centre, periphery, limbus), (b) comparisons between 
regions within EDs. The mean difference is significant at the 0.05 level.

a)
M u l t i p l e  C o m p a r i s o n s

Dependent Variable: number 
Dunnett T3 ______

region (I) group (J) group

Mean
Difference

(l-J) Std. Error Sig.
95% Confidence 

Interval

Lower
Bound

Upper
Bound

centre day 4 day 6 -1.14519 2.83118 1.000 -10.854 8.5643
day 8 -12.033330 2.68745 .002 -21.259 -2.8074
day 10 -14.058150 2.27617 .000 -22.007 -6.1085
day 12 -16.774440 2.29623 .000 -24.780 -8.7680
day 14 -21.201850 2.14535 .000 -28.802 -13.6011
day 16 -14.92667(*) 2.51135 .000 -23.581 -6.2715
day 18 -1.67889 2.19101 1.000 -9.3968 6.0391
day 21 15.76889(*) 2.24093 .000 7.9170 23.6208

day 6 day 4 1.14519 2.83118 1.000 -8.5643 10.8547
day 8 -10.888150 2.64221 .006 -19.955 -1.8211
day 10 -12.91296(*) 2.22256 .000 -20.666 -5.1598
day 12 -15.629260 2.24310 .000 -23.441 -7.8174
day 14 -20.056670 2.08839 .000 -27.448 -12.6645
day 16 -13.781480 2.46287 .000 -22.262 -5.3006
day 18 -.53370 2.13527 1.000 -8.0472 6.9797
day 21 16.914070 2.18646 .000 9.2620 24.5661

day 8 day 4 12.03333(*) 2.68745 .002 2.8074 21.2593

day 6 10.888150 2.64221 .006 1.8211 19.9552
day 10 -2.02481 2.03632 1.000 -9.0965 5.0468
day 12 -4.74111 2.05872 .624 -11.879 2.3969
day 14 -9.168520 1.88897 .001 -15.829 -2.5074

day 16 -2.89333 2.29621 1.000 -10.780 4.9935

day 18 10.35444(*) 1.94067 .000 3.5551 17.1538

day 21 27.802220 1.99686 .000 20.8453 34.7592
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day 10 day 4 14.05815(*)
day 6 12.91296(*)
day 8 2.02481
day 12 -2.71630
day 14 -7.143700
day 16 -.86852
day 18 12.379260
day 21 29.827040

day 12 day 4 16.774440
day 6 15.629260
day 8 4.74111
day 10 2.71630
day 14 -4 .427410
day 16 1.84778
day 18 15.095560
day 21 32.543330

day 14 day 4 21.201850
day 6 20.056670
day 8 9 .168520
day 10 7 .143700
day 12 4 .427410
day 16 6 .275190
day 18 19.522960
day 21 36.970740

day 16 day 4 14.926670
day 6 13.781480
day 8 2.89333
day 10 .86852
day 12 -1.84778
day 14 -6 .275190
day 18 13.247780
day 21 30.695560

day 18 day 4 1.67889
day 6 .53370
day 8 -10 .354440
day 10 -12 .379260
day 12 -15 .095560
day 14 -19 .522960
day 16 -13 .247780
day 21 17.447780

day 21 day 4 -15 .768890
day 6 -16 .914070
day 8 -27 .802220
day 10 -29.827040
day 12 -32 .543330
day 14 -36.970740
day 16 -30.695560
day 18 -17.447780

periphery day 4 day 6 -5.52333
day 8 -13.754070
day 10 -17.528520
day 12 -20.538520

2.27617 .000 6.1085 22.0078
2.22256 .000 5.1598 20.6662
2.03632 1.000 -5.0468 9.0965
1.48218 .934 -7.7996 2.3670
1.23561 .000 -11.412 -2.8747
1.79752 1.000 -7.0718 5.3348
1.31328 .000 7.8642 16.8943
1.39498 .000 25.0416 34.6125
2.29623 .000 8.7680 24.7809
2.24310 .000 7.8174 23.4411
2.05872 .624 -2.3969 11.8792
1.48218 .934 -2.3670 7.7996
1.27218 .047 -8.8292 -.0257
1.82286 1.000 -4.4350 8.1305
1.34775 .000 10.4574 19.7337
1.42747 .000 27.6442 37.4425
2.14535 .000 13.6011 28.8026
2.08839 .000 12.6645 27.4488
1.88897 .001 2.5074 15.8296
1.23561 .000 2.8747 11.4127
1.27218 .047 .0257 8.8292
1.62870 .019 .5691 11.9813
1.07065 .000 15.8457 23.2003
1.16942 .000 32.9408 41.0007
2.51135 .000 6.2715 23.5818
2.46287 .000 5.3006 22.2624
2.29621 1.000 -4.9935 10.7801
1.79752 1.000 -5.3348 7.0718
1.82286 1.000 -8.1305 4.4350
1.62870 .019 -11.981 -.5691
1.68839 .000 7.3732 19.1223
1.75269 .000 24.6301 36.7610
2.19101 1.000 -6.0391 9.3968
2.13527 1.000 -6.9797 8.0472
1.94067 .000 -17.153 -3.5551
1.31328 .000 -16.894 -7.8642
1.34775 .000 -19.733 -10.4574
1.07065 .000 -23.200 -15.8457
1.68839 .000 -19.122 -7.3732
1.25121 .000 13.152 21.7430
2.24093 .000 -23.620 -7.9170
2.18646 .000 -24.566 -9.2620
1.99686 .000 -34.759 -20.8453
1.39498 .000 -34.612 -25.0416
1.42747 .000 -37.442 -27.6442
1.16942 .000 -41.000 -32.9408
1.75269 .000 -36.761 -24.6301
1.25121 .000 -21.743 -13.1525
2.46224 .673 -14.062 3.0154
2.67395 .000 -22.951 -4.5564
2.41564 .000 -25.930 -9.1270
2.41315 .000 -28.932 -12.1442
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day 6 2.51111
day 8 -5.71963
day 10 -9.494070
day 12 -12.504070
day 14 -18.228890
day 16 -9.102960
day 21 18.400740

day 21 day 4 -10.366300
day 6 -15.889630
day 8 -24.120370
day 10 -27.89481 (*)
day 12 -30.904810
day 14 -36.629630
day 16 -27.503700
day 18 -18.400740

limbus day 4 day 6 -2.30370
day 8 -11.290000
day 10 -19.291850
day 12 -19.669260
day 14 -24.608150
day 16 -14.152590
day 18 1.92556
day 21 23.429260

day 6 day 4 2.30370
day 8 -8.986300
day 10 -16.988150
day 12 -17.365560
day 14 -22.304440
day 16 -11.848890
day 18 4.22926
day 21 25.732960

day 8 day 4 11.290000
day 6 8 .986300
day 10 -8.001850
day 12 -8.379260
day 14 -13.318150
day 16 -2.86259
day 18 13.215560
day 21 34.719260

day 10 day 4 19.291850
day 6 16.988150
day 8 8 .001850
day 12 -.37741
day 14 -5.316300
day 16 5.13926
day 18 21.217410
day 21 42.721110

day 12 day 4 19.669260
day 6 17.365560
day 8 8 .379260
day 10 .37741
day 14 -4.938890
day 16 5.51667

1.44978 .961 -2.5382 7.5604
1.78585 .111 -12.001 .5624
1.36915 .000 -14.248 -4.7396
1.36476 .000 -17.242 -7.7657
1.48710 .000 -23.414 -13.0428
1.11471 .000 -12.936 -5.2695
1.34109 .000 13.7487 23.0528
2.39985 .004 -18.722 -2.0105
1.71657 .000 -21.779 -9.9997
2.00849 .000 -31.050 -17.1899
1.64903 .000 -33.550 -22.2395
1.64539 .000 -36.547 -25.2621
1.74821 .000 -42.630 -30.6288
1.44476 .000 -32.476 -22.5309
1.34109 .000 -23.052 -13.7487
2.00084 1.000 -9.1669 4.5595
2.28739 .000 -19.167 -3.4122
1.47906 .000 -24.496 -14.0873
1.73125 .000 -25.62 -13.7137
1.60971 .000 -30.184 -19.0321
1.94168 .000 -20.811 -7.4939
1.57674 1.000 -3.5524 7.4036
1.78950 .000 17.2838 29.5747
2.00084 1.000 -4.5595 9.1669
2.34615 .016 -17.052 -.9197
1.56840 .000 -22.520 -11.4558
1.80817 .000 -23.597 -11.1342
1.69217 .000 -28.181 -16.4277
2.01056 .000 -18.744 -4.9528
1.66083 .431 -1.5564 10.0149
1.86402 .000 19.3230 32.1430
2.28739 .000 3.4122 19.1678
2.34615 .016 .9197 17.0529
1.92059 .010 -14.824 -1.1797
2.12091 .013 -15.746 -1.0122
2.02292 .000 -20.406 -6.2296
2.29590 1.000 -10.767 5.0423
1.99678 .000 6.1977 20.2334
2.16872 .000 27.2097 42.2288
1.47906 .000 14.0873 24.4964
1.56840 .000 11.4558 22.5205
1.92059 .010 1.1797 14.8240
1.20570 1.000 -4.5792 3.8244
1.02356 .000 -8.8536 -1.7790
1.49218 .061 -.1135 10.3920

.97088 .000 17.8706 24.5643
1.28794 .000 38.2178 47.2244
1.73125 .000 13.7137 25.6248
1.80817 .000 11.1342 23.5970
2.12091 .013 1.0122 15.7463
1.20570 1.000 -3.8244 4.5792
1.36282 .029 -9.6241 -.2537
1.74247 .106 -.4790 11.5123
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day 14

day 16

day 18

day 21

day 18 21.59481O 1.32371 .000 17.0353 26.1544
day 21 43.098520 1.57111 .000 37.7087 48.4883
day 4 24.608150 1.60971 .000 19.0321 30.1841
day 6 22.304440 1.69217 .000 16.4277 28.1812
day 8 13.318150 2.02292 .000 6.2296 20.4067
day 10 5.316300 1.02356 .000 1.7790 8.8536
day 12 4.938890 1.36282 .029 .2537 9.6241
day 16 10.455560 1.62178 .000 4.8356 16.0755
day 18 26.533700 1.16024 .000 22.5536 30.5138
day 21 48.037410 1.43609 .000 43.0901 52.9848
day 4 14.152590 1.94168 .000 7.4939 20.8113
day 6 11.848890 2.01056 .000 4.9528 18.7449
day 8 2.86259 2.29590 1.000 -5.0423 10.7675
day 10 -5.13926 1.49218 .061 -10.392 .1135
day 12 -5.51667 1.74247 .106 -11.512 .4790
day 14 -10.455560 1.62178 .000 -16.075 -4.8356
day 18 16.078150 1.58906 .000 10.5551 21.6012
day 21 37.581850 1.80036 .000 31.3980 43.7657
day 4 -1.92556 1.57674 1.000 -7.4036 3.5524
day 6 -4.22926 1.66083 .431 -10.014 1.5564
day 8 -13.215560 1.99678 .000 -20.233 -6.1977
day 10 -21.217410 .97088 .000 -24.564 -17.8706
day 12 -21.594810 1.32371 .000 -26.154 -17.0353
day 14 -26.533700 1.16024 .000 -30.513 -22.5536
day 16 -16.078150 1.58906 .000 -21.601 -10.5551
day 21 21.503700 1.39903 .000 16.6725 26.3349
day 4 -23.429260 1.78950 .000 -29.574 -17.2838
day 6 -25.732960 1.86402 .000 -32.143 -19.3230
day 8 -34.719260 2.16872 .000 -42.228 -27.2097
day 10 -42.721110 1.28794 .000 -47.224 -38.2178
day 12 -43.098520 1.57111 .000 -48.488 -37.7087
day 14 -48.037410 1.43609 .000 -52.984 -43.0901
day 16 -37.581850 1.80036 .000 -43.765 -31.3980
day 18 -21.503700 1.39903 .000 -26.334 -16.6725

b) M u l t i p l e  C o m p a r is o n s

Dependent Variable: number 
Dunnett T3

group (I) region (J) region

Mean
Difference

Std. Error Sig.
95% Confidence 

Interval

Lower Upper
Bound Bound

day 4 centre periphery 1.24593 2.92677 .964 -5.9659 8.4577
limbus 6.746670 2.44825 .025 .6869 12.8065

periphery centre -1.24593 2.92677 .964 -8.4577 5.9659
limbus 5.50074 2.51061 .097 -.7182 11.7197

limbus centre -6.746670 2.44825 .025 -12.8065 -.6869
periphery -5.50074 2.51061 .097 -11.7197 .7182

day 6 centre periphery -3.13222 2.34781 .461 -8.9482 2.6838
limbus 5.58815 2.45460 .079 -.4761 11.6524

periphery centre 3.13222 2.34781 .461 -2.6838 8.9482
limbus 8.720370 1.93979 .000 3.9379 13.5028
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limbus centre -5.58815
periphery -8.720370

day 8 centre periphery -.47481
limbus 7.490000

periphery centre .47481
limbus 7.964810

limbus centre -7.490000
periphery -7 .964810

day 10 centre periphery -2.22444
limbus 1.51296

periphery centre 2.22444
limbus 3.737410

limbus centre -1.51296
periphery -3.73741 (*)

day 12 centre periphery -2.51815
limbus 3 .851850

periphery centre 2.51815
limbus 6 .370000

limbus centre -3.85185(*)
periphery -6 .370000

day 14 centre periphery -3 .815560
limbus 3 .340370

periphery centre 3 .815560
limbus 7 .155930

limbus centre -3 .340370
periphery -7 .155930

day 16 centre periphery -.96481
limbus 7 .520740

periphery centre .96481
limbus 8 .485560

limbus centre -7 .520740
periphery -8 .485560

day 18 centre periphery -5 .109630
limbus 10.351110

periphery centre 5 .109630
limbus 15.460740

limbus centre -10 .351110
periphery -15 .460740

day 21 centre periphery -4 .156670
limbus 14.407040

periphery centre 4 .156670
limbus 18.563700

limbus centre -14 .407040
periphery -18 .563700

* The mean difference is significant at the .05 level.

2.45460 .079 -11.6524 .4761
1.93979 .000 -13.5028 -3.9379
2.40965 .996 -6.4130 5.4633
2.54178 .014 1.2268 13.7532
2.40965 .996 -5.4633 6.4130
2.46556 .006 1.8875 14.0421
2.54178 .014 -13.7532 -1.2268
2.46556 .006 -14.0421 -1.8875
1.56533 .406 -6.0838 1.6349
1.17244 .490 -1.4020 4.4279
1.56533 .406 -1.6349 6.0838
1.31139 .021 .4657 7.0091
1.17244 .490 -4.4279 1.4020
1.31139 .021 -7.0091 -.4657
1.59059 .314 -6.4385 1.4022
1.50862 .040 .1346 7.5691
1.59059 .314 -1.4022 6.4385
1.58661 .001 2.4594 10.2806
1.50862 .040 -7.5691 -.1346
1.58661 .001 -10.2806 -2.4594
1.48618 .042 -7.5156 -.1155
1.09534 .011 .6377 6.0430
1.48618 .042 .1155 7.5156
1.56850 .000 3.2705 11.0414
1.09534 .011 -6.0430 -.6377
1.56850 .000 -11.0414 -3.2705
1.71587 .922 -5.2237 3.2941
2.02066 .001 2.5412 12.5003
1.71587 .922 -3.2941 5.2237
1.63409 .000 4.4359 12.5353
2.02066 .001 -12.5003 -2.5412
1.63409 .000 -12.5353 -4.4359
1.07193 .000 -7.7533 -2.4660
1.13696 .000 7.5495 13.1527
1.07193 .000 2.4660 7.7533
1.04758 .000 12.8781 18.0434
1.13696 .000 -13.1527 -7.5495
1.04758 .000 -18.0434 -12.8781
1.48830 .022 -7.8282 -.4852
1.49336 .000 10.7228 18.0913
1.48830 .022 .4852 7.8282
1.63045 .000 14.5463 22.5811
1.49336 .000 -18.0913 -10.7228
1.63045 .000 -22.5811 -14.5463

Chapter 4, section 4.4.3 Immunoblotting for PCNA

One-way ANOVA and Dunnett post-hoc test of log transformed data were performed in SPSS 

v.12 to compare the normalised band intensities across time points in an attempt to identify 

significant changes in expression.
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Table 111.14 Shapiro Wilk results for test of normality of log transformed data (n=3). The mean 
difference is significant at the 0.05 level.

_______Shapiro-Wilk
Statistic df Sig.

| transformed .951 27 .230

Table 111.15 One-way ANOVA results obtained from analysis of the PCNA Western blot. The 
mean difference is significant at the 0.05 level.

A N O V A

transformed ___

Sum of 
Squares df Mean Square F Sig.

Between Groups .548 7 .068 4.605 .003
Within Groups .268 16 .015
Total .815 23

Table 111.16 Levene's test of homogeneity of variances

transformed

Levene
Statistic df 1 df2 Sig.

4.868 7 16 .003

Table 111.17 Post-hoc test results obtained from analysis of the chicken PCNA Western blot. The 
mean difference is significant at the 0.05 level.

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: transformed 
Dunnett T3___________________

(I) ed (J) ed
Mean Difference 

(l-J) Std. Error Sig.
95% Confidence 

Interval

Lower
Bound

Upper
Bound

6 8 .04063 .03028 .956 -.1617 .2429
10 -.181790 .02629 .035 -.3443 -.0193

12 -.158570 .02097 .021 -.2832 -.0340

14 .10712 .04149 .540 -.2234 .4376

16 .20349 .13062 .881 -1.1484 1.5553

18 .28184 .05507 .167 -.2104 .7741

21 -.00571 .13677 1.000 -1.4255 1.4141

8 6 -.04063 .03028 .956 -.2429 .1617

10 -.222430 .03339 .036 -.4239 -.0210

12 -.19920 .02938 .056 -.4065 .0081
14 .06648 .04631 .938 -.2299 .3629

16 .16286 .13223 .961 -1.1325 1.4582

18 .24120 .05879 .216 -.1911 .6735

21 -.04634 .13831 1.000 -1.4114 1.3187

10 6 .181790 .02629 .035 .0193 .3443
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8 .222430
12 .02323
14 .28891
16 .38528
18 .463630
21 .17608

12 6 .158570
8 .19920
10 -.02323
14 .26568
16 .36206
18 .44040
21 .15285

14 6 -.10712
8 -.06648
10 -.28891
12 -.26568
16 .09637
18 .17472
21 -.11283

16 6 -.20349
8 -.16286
10 -.38528
12 -.36206
14 -.09637
18 .07835
21 -.20920

18 6 -.28184
8 -.24120
10 -.46363
12 ..44040
14 -.17472
16 -.07835
21 -.28755

21 6 .00571
8 .04634
10 -.17608
12 -.15285
14 .11283
16 .20920
18 .28755

*  The mean difference is significant at the .05 level.

.03339 .036 .0210 .4239

.02525 .998 -.1398 .1862

.04381 .059 -.0171 .5949

.13138 .474 -.9390 1.7096

.05684 .048 .0064 .9209

.13749 .951 -1.2171 1.5693

.02097 .021 .0340 .2832

.02938 .056 -.0081 .4065

.02525 .998 -.1862 .1398

.04084 .090 -.0759 .6073

.13042 .515 -.9977 1.7218

.05458 .067 -.0644 .9452

.13658 .977 -1.2745 1.5802

.04149 .540 -.4376 .2234

.04631 .938 -.3629 .2299

.04381 .059 -.5949 .0171

.04084 .090 -.6073 .0759

.13524 1.000 -1.1143 1.3071

.06527 .478 -.2318 .5812

.14119 .999 -1.3941 1.1684

.13062 .881 -1.5553 1.1484

.13223 .961 -1.4582 1.1325

.13138 .474 -1.7096 .9390

.13042 .515 -1.7218 .9977

.13524 1.000 -1.3071 1.1143

.14000 1.000 -1.0391 1.1958

.18782 .991 -1.3166 .8982

.05507 .167 -.7741 .2104

.05879 .216 -.6735 .1911

.05684 .048 -.9209 -.0064

.05458 .067 -.9452 .0644

.06527 .478 -.5812 .2318

.14000 1.000 -1.1958 1.0391

.14576 .748 -1.4735 .8984

.13677 1.000 -1.4141 1.4255

.13831 1.000 -1.3187 1.4114

.13749 .951 -1.5693 1.2171

.13658 .977 -1.5802 1.2745

.14119 .999 -1.1684 1.3941

.18782 .991 -.8982 1.3166

.14576 .748 -.8984 1.4735
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Table IV.1 Output of microarray controls

Samples: 6.1 6.2 6.3 10.1 10.2 10.3 12.1 12.2 12.3

AFFX-BioB-5_at 123.7[P] 194.2[P] 217.1 [P] 142.2[P] 238.3[P] 238.1 [P] 133.3[P] 235.7[P] 205.1 [P]
AFFX-BioB-3_at 159.6[P] 190[P] 219.3[P] 135.5[P] 244.9[P] 211 -9[P] 142.5[P] 218.9[P] 201,7[P]
AFFX-BioC-5_at 383.8[P] 512.5[P] 566.9[P] 359.3[P] 704[P] 609.8[P] 358.1[P] 663.1[P] 623.1[P]
AFFX-BioC-3_at 498.1[P] 648.4[P] 733.6[P] 407.3[P] 861.5[P] 775[P] 428.5[P] 900.3[P] 782.9[P]
AFFX-BioDn-5_at 922.7[P] 1140.7[P] 1353.6[P] 810.5[P] 1597.9[P] 1437.6[P] 831.2[P] 1580.7[P] 1442.3[P]
AFFX-BioDn-3_at 1494.5[P] 2002.1 [P] 2304.2[P] 1315.1 [P] 2553.5[P] 2190.1 [P] 1357.1 [P] 2598.4[P] 2398[P]
AFFX-CreX-5_at 4383.2[P] 6170.2[P] 7107.9[P] 4087.1 [P] 8084.2[P] 7134.3[P] 4163.2[P] 7791.1[P] 7062[P]
AFFX-CreX-3_at 4896.9[P] 6351,3[P] 7784.2[P] 4812[P] 9021 [P] 8169.9[P] 4847.4[P] 9163.1 [P] 8111.2[P]

AFFX-Gga-gapdh-5_a_at 6121.6 9944.9 11533.6 6582.4 10897.9 10710 6265.6 11264 10670.2
AFFX-Gga-gapdh-M_a_at 5842.9 8961.5 10740.5 6288.8 10659.7 10388 6710.1 11106 10433.1
AFFX-Gga-gapdh-3_a_at 6282.1 10467.7 12262.3 7230.3 11659.1 12026 7070.1 12125.5 10765.9
AFFX-Gga-actin-5_a_at 3590.2 5717.2 6469 2664.8 4287.1 3850.9 2535.1 3852.2 3348
AFFX-Gga-actin-M_at 3985.4 7284.4 7498 3113.9 5467.8 4913.4 3025.9 4943.3 4295.4
AFFX-Gga-actin-3_at 5854.1 10716.4 10407.9 4990.5 8940.3 7882.6 4417.6 7987.8 6907.3

Gapdh 375' 1.02622 1.05257 1.063181 1.09843 1.06985 1.1229 1.1284 1.07648 1.00897
Actin 375' 1.630578 1.874414 1.6088885 1.872748 2.085396 2.04695 1.74257 2.073568 2.063112

AFFX-LysX-M at 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8
AFFX-PheX-M at 72.8 61.2 60.2 56 45.9 61.9 57.8 46.2 51.4
AFFX-ThrX-M at 93.6 86.1 89 58.3 62.8 58.9 46 66.9 65.9
AFFX-DapX-M at 520.5 353.6 456.1 336.3 319.3 389 324.3 346.2 386.3
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A t ' l ' p n d i x  V

APPENDIX V

Table V.1 Functional groups of genes involved in the regulation of differentiation. Genes may 
appear in more than one group if they have more than one term associated with them 
(continued overleaf)

Functional group 1 Nerve Growth Factor Receptor (NGF-R)

Enrichment score 21.79 

Biological process

Molecular function 

Cell component

GO term

Nervous system development 

Neurogenesis 

Axonogenesis 

Neurite development 

Neuron differentiation 

Receptor binding 

Cytoplasmic membrane

p-value

9.7E-15

3.0E-20

4.3E-20

1.2E-19

1.7E-18

2.2E-6

4.8E-2

Affymetrix ID Gene name Gene symbol Unigene ID

GgaAffx.7932.1 ,S1_at nerve growth factor receptor (tnfr superfamily, 
member 16)

Ngfr GGA.39799

Gga.696.1.A1_at,
Gga.696.1.Sl_at

brain-derived neurotrophic factor Bdnf GGA.696

GgaAffx.11073.1 .Sl_at neurotrophin 3 Ntf3 Gga.41617

Gga.4032.1 ,S1_at neuropilin 1 Nrp1 GGA.4032

Gga.5163.1 ,S1_at nerve growth factor, beta polypeptide Ngfb GGA.5163

Gga.651.1.Sl_at ephrin-a5 Efna5 GGA.651

Gga.766.1.S1_at

Gga.2142.1 ,S1_at 

Gga.487.1.Sl_at

sema domain, immunoglobulin domain (ig), 
transmembrane domain (tm) and short 
cytoplasmic domain, (semaphorin) 4d

ephrin-b1

sema domain, immunoglobulin domain (ig), short 
basic domain, secreted, (semaphorin) 3a

Sema4d

Efnbl

Sema3a

GGA.766

GGA.2142

GGA.487
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Functional group 2 Bone Morphogenetic Proteins (BMP)

Enrichment score 19.83

GO term p-value

Biological process Skeletal development 

Cartilage development 

Negative regulation of signal transduction 

Cell surface receptor linked signal transduction 

BMP signalling pathway

1 .OE-9 

1.9E-5 

4.3E-7 

1.2E-4 

1.5E-5
Molecular function Receptor activity 4.3E-2

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.449.1.S1_at noggin Nog GGA.449

Gga.4723.1 .S1_at leukocyte cell derived chemotaxin 1 Lectl GGA.4723

Gga.4213.1.S1_at
Gga.4213.1.S2_at

twisted gastrulation homolog 1 (drosophila) Twsgl GGA.4213

Gga. 10863.1 .S1_s_at 
Gga.686.1 .S1_at

bone morphogenetic protein 4 Bmp4 GGA.686

Gga.607.1.S1_at bone morphogenetic protein receptor, type ib Bmprlb GGA.607

Gga.4955.1 ,S1_at frizzled-related protein Frzb GGA.4955

Functional group 3 Transcription Regulators

Enrichment score 17.41
GO term p-value

Biological process Regulation of transcription DNA-dependi

RNA biosynthetic process 

Regulation of cellular metabolic process 

Regulation of nucleobase, nucleoside, 

nucleotide and nucleic acid metabolic 

process

Molecular function DNA binding

Cell component Nucleus
Intracellular membrane-bound organelle

Affymetrix ID Gene name

Gga.961.2.S1_a_at t-box 5

Gga.3754.2.S1_at hairy and enhancer of split 1, (drosophila)

ant 7.2E-22 

1.0E-21 

6.6E-20 

2.4E-20

7.3E-22

1.2E-14

1.3E-11

Gene symbol Unigene ID 

Tbx5 GGA.961

Hes1 GGA.3754
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Gga.281.1.S1__at v-maf m usculoaponeu rotic fibrosarcoma 
oncogene homolog f (avian)

Maff GGA.281

Gga.750.1.S1_at myogenic differentiation 1 Myodl GGA.750

Gga.8.1 .S1_at myogenin (myogenic factor 4) Myog GGA.8

Gga.379.1 S1_at myogenic factor 5 Myf5 GGA.379

Gga.608.1 .S1_at myogenic factor 6 (herculin) Myf6 GGA.608

Gga.4285.1.S1_at ccaat/enhancer binding protein (c/ebp), beta Cepbp GGA.4285

Gga.4418.1 .S1_at interferon regulatory factor 8 Irf8 GGA.4418

Gga.570.1.S1_at neurogenic differentiation 4 Neurod4 GGA.570

Gga.6758.1 .S1_s_at 
Gga.752.1.S1_at

t-cell acute lymphocytic leukemia 1 Tall GGA.752

Gga.3795.1 .S1_at sry (sex determining region y)-box 3 Sox3 GGA.3795

GgaAffx.11738.1 .S1_s_at early growth response 1 Egr1 GGA.4922

Gga.511.1.S1_at t-cell leukemia homeobox 1 Tlx1 GGA.511

GgaAffx.20591.2.S1_s_at sry (sex determining region y)-box 10 Sox10 GGA.4428

Gga.11154.1. S1_s_at 
Gga.8567.1 ,S1_at 
GgaAffx.20135.1 .S1 _s_at 
GgaAffx.20135.1 .S1_at

Signal transducer and activator of transcription 3 
(acute-phase response factor)

Stat3 GGA.32114

Gga.1840.1.S1_at neurogenic differentiation 1 Neurodl GGA. 1840

GgaAffx.11567.1 .S1_at 
GgaAffx. 11567.1 .S1 _s_at

endothelial differentiation-related factor 1 Edf1 GGA.4585

Gga.745.1.S1_at gata binding protein 2 Gata2 GGA.745

Gga.614.1 ,S1_at gli protein Glil GGA.614

Gga. 13567.1.S1_at 
Gga. 13567.1.S1_s_at

t-cell leukemia homeobox 3 Tlx3 GGA.21135

GgaAffx.6770.1 .S1_at similar to dmrt-like family b with proline-rich c- 
terminal, 1

Dmrtbl GGA.30315

Gga.260.1.S1_a_at ankyrin repeat domain 15 Ankrd15 GGA.260
Gga.260.5.S1_a_at 
Gga.260.6.A1_at 
Gga.260.6.S1_at 
Gga.260.7.S1_x_at 
GgaAffx.6391.2.S1_s_at 
Gga.260.7.A1 _a_at 
Gga.260.6.S1_a_at 
Gga.260.2.S1_a_at

Functional group 4 Semaphorin/CD100 antigen

Enrichment score 16.01 
GO term

Biological process Nervous system development
Regulation of neurogenesis 

Develomental protein 

Molecular function Receptor activity

p-value

1.1 E-7 

5.4E-21 

1.1E-5 

3.1E-2
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Affymetrix ID

Gga.766.1 .S1_at

Gga.1846.1 ,S1_at 
Gga.1846.1.S2_at

Gga.487.1 ,S1_at

Gga.3972.1 .S1_at 
Gga.3972.1 ,S2_at

Gga.136.1.S1_at

Functional group 5

Enrichment score 15.46

Biological process 

Molecular function

Affymetrix ID

Gga.5002.1 .S1_at

Gga.648.1 .S2_at

Gga.537.2.S1_a_at

Gga.17040.2.S1_a_at

Gene name Gene symbol

sema domain, immunoglobulin domain (ig), Sema4d
transmembrane domain (tm) and short cytoplasmic 
domain, (semaphorin) 4d

sema domain, immunoglobulin domain (ig), short Sema3c
basic domain, secreted, (semaphorin) 3c

sema domain, immunoglobulin domain (ig), short Sema3a
basic domain, secreted, (semaphorin) 3a

sema domain, immunoglobulin domain (ig), short Sema3d
basic domain, secreted, (semaphorin) 3d

sema domain, immunoglobulin domain (ig), short Sema3e
basic domain, secreted, (semaphorin) 3e

Unigene ID

GGA.766

GGA. 1846 

GGA.487 

GGA.3972 

GGA. 136

Growth Factors

GO term p-value

Angiogenesis 4.0E-5

Blood vessel morphogenesis 8.5E-5

Regulation of cellular metabolic process 6.6E-20

Regulation of progression through cell cycle 4.9E-4 

Heparin binding 5.5E-9

Glycosaminoglycan binding 3.5E-8

Polisaccharide binding 4.9E-8

Unigene ID

GGA.5002

GGA.648 

GGA.537 

GGA. 17040

Gene name Gene symbol

midkine (neurite growth-promoting factor 2) Mdk

fibroblast growth factor 1 (acidic) Fgf1

vascular endothelial growth factor Vegfa

fibroblast growth factor 2 (basic) Fgf2
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Functional group 6 Frizzled-Related Protein (sFRP)

Enrichment score 13.5
GO term p-value

Biological process Wnt receptor signalling pathway 2.4E-4

Somitogenesis 2.5E-3

Segmentation 3.6E-3

Anterior/posterior pattern formation 7.6E-3

Embryonic development ending in birth or 1.2E-2

egg hatching

Cell surface receptor linked signal 3.0E-2

transduction

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.4345.1.S1_at secreted frizzled-related protein 2 Sfrp2 GGA.4345

Gga.4830.1.S1_at 
Gga.4830.1 ,S2_at secreted frizzled-related protein 1 Sfrpl GGA.4830

Gga. 136.1 ,S1_at sema domain, immunoglobulin domain (ig), short basic 
domain, secreted, (semaphorin) 3e

Sema3e GGA. 136

Gga.4955.1 .S1_at frizzled-related protein Frzb GGA.4955

Functional group 7 Epidermal Growth Factors-like (EGFs-like)

Enrichment score 7.52

Biological process

Molecular function

GO term

Cell differentiation 

Noch signalling pathway 

Calcium ion binding

p-value

1.3E-4 

6.1E-3 

1.6E-4

Affymetrix ID

Gga.2000.1.S1_at 
GgaAffx.20384.1 ,S1_at

Gga.909.1 ,S1__at

Gene name

slit homolog 3 (drosophila) 

slit homolog 2 (drosophila)

Gene symbol Unigene ID 

Slit3 GGA.2000

Slit2 GGA. 909

Gga.2283.1 .S1_at delta-like 1 (drosophila) dim GGA.2283

Gga.182.1.S1_at 
Gga.9548.1.S1_at 
GgaAffx.1586.1.S1_at 
Gga.3837.1 ,S1_at 
Gga. 16356.1.S1_at

Notch homolog 1, translocation-associated (drosophila) Notch 1 GGA.9548



Functional group 8 Transforming Growth Factors Beta-like 
(TGFp-like)

Enrichment score 6.86
GO term p-value

Molecular function Growth factor activity 1.3E-6
Receptor biinding 3.8E-5

Affymetrix ID Gene name Gene symbol

Gga.3403.1.S1_at 
Gga.3403.1 .S2_at

growth differentiation factor 5 (cartilage-derived 
morphogenetic protein-1)

Gdf5

Gga.811.1.S1_at growth differentiation factor 2 Gdf2

Gga.13143.1.Sl_at 
GgaAffx.20103.1 ,S1 _s_at

growth differentiation factor 9 Gdf9

Gga.4324.2.S1_a_at growth differentiation factor 3 Gdf3

Functional group 9 Kinase type family

Enrichment score 4.93
GO term p-value

Biological process Enzyme linked receptor protein signalling 2.7E-9

pathway

Protein amino acid phosphorylation 5.7E-8

Ribonucleotide binding 6.8E-6

Eye development 1.8E-2

Blood vessel development 3.2E-2

Molecular function Protein kinase activity 1.6E-8

Phosphotransferase activity, alcohol group 4.0E-8

as acceptor
. T D k . .. 2.1 E-6ATP binding

Cellular component Intristic to membrane 1.6E-8

Affymetrix ID

Gga.2833.1.S1_at

Gga.509.1 .S1_at

Gga.150.1.S1_at 
Gga.150.2.S1_a_at 
Gga. 150.2.S2_at

Gga.681.1.S1_at
Gga.681.2.S1_a_at

Gene name

salt-inducible kinase 1

neurotrophic tyrosine kinase, receptor, type 3

fms-related tyrosine kinase 1 (vascular endothelial 
growth factor/vascular permeability factor receptor)

neurotrophic tyrosine kinase, receptor, type 2

Gene symbol 

Sikl 

Ntrkd 

Fltl

Ntrk2

Gga.607.1.S1_at bone morphogenetic protein receptor, type ib BmpMb

Unigene ID

GGA.3403

GGA.811 

GGA. 13143 

GGA.4324

Unigene ID

GGA.2833 

GGA.509 

GGA. 150

GGA.681 

GGA.607
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Gga.5483.1 .Sl_s_at 
GgaAffx.2058.2.S1_at 
GgaAffx.2058.1 .Sl_s_at 
GgaAffx.2058.1. S 1 _at

Gga. 16413.1. A1 _a_at 
Gga.16413.3.S1_at 
Gga.16413.1 ,A1_at

conserved helix-loop-helix ubiquitous kinase

fibroblast growth factor receptor 3 (achondroplasia, 
thanatophoric dwarfism)

RCJMB04 19H23 GGA.5483

Fgfr3 GGA.16413

Functional group 10 G-protein Coupled Receptor Family (GPCRs)

Enrichment score 1.6

Biological process

Molecular function

Cellular component

GO term p-value

G-protein coupled receptor protein signalling 1.4E-4

pathway

Cell surface receptor inked signal 5.3E-4

transduction

Transmembrane receptor activity 

G-protein coupled receptor activity 

Rhodopsin-like receptor activity 

Intristic to membrane

2.2E-6

3.5E-5

2.1 E-5 
1.5E-3

Affymetrix ID

GgaAffx.8514.1 ,S1 _at

GgaAffx.6752.1 .S1 _at

Gga.9756.1.S1_at 

Gga. 13269.1.S1_at

GgaAffx.5710.1 .S1_at 
GgaAffx.5710.2.S1 _s_at 
GgaAffx.5710.2.S1_at

Gga. 17397.1.S1_at 
GgaAffx.3703.1 .S1_at

Gene name

similar to sphingosine 1-phosphate receptor edg-6 
(sip  receptor edg-6) (endothelial differentiation g- 
protein coupled receptor 6)

similar to endothelial differentiation, sphingolipid g- 
protein-coupled receptor, 3; s ip  receptor edg3; g 
protein-coupled receptor, endothelial differentiation 
gene-3; sphingosine 1 -phosphate receptor 3; 
chromosome 9 open reading frame 47 ...

endothelial differentiation, lysophosphatidic acid g- 
protein-coupled receptor, 2

endothelial differentiation, sphingolipid g-protein- 
coupled receptor, 1

similar to olfactory receptor olr461; similar to olfactory 
receptor mor260-5

myeloid differentiation primary response gene (88)

Gene symbol 

Edg6

Edg3

Edg2

Edg1

LOC417291

Unigene ID

GGA.41534

GGA.26638

GGA.9756 

GGA. 13269 

GGA.31961

RCJMB04_14H3 GGA. 17397
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Table V.2 Unclustered genes involved in regulation of differentiation. Gene name, symbol and 
Unigene database reference ID are listed.

Affymetrix ID

GgaAffx 8847.1.S1_at

GgaAffx. 7399.1.S1_at

GgaAffx.20135.1 S1_at 
Gga 11154 1 S l_s_at 
GgaAffx. 20135.1. S 1 _s_ at

Gga 13567.1.S1_s_at

Gga 3982.1 S2_at

GgaAffx.11073.1.S1_at

Gga.4349.l.S l_ s_ a t 
Gga 4349 2.S1_s_at

Gga.3689.2 S1_a_at

Gga. 3707. l.S l_ a _ a t 
Gga.3707.2.A1_at

Gga.1057.1.S l_a t

GgaAffx. 21048.1. S 1 _s_at 
GgaAffx. 24927 1. S 1 _s_at

GgaAffx. 12873.1.S1_at

Gga. 1960.2. S1 _a_at

Gga.135.2 S1_a_at
G ga.l35.2.S l_at
Gga.135.3.S1_a_at

Gga 6399.1 S1_at

Gga.3615.1 S1_at 
Gga 3615.1 S2_at

Gga. 7667 1.S1_at 
GgaAffx.12403.1 S1_s_at

Gga.473.1.Sl_at

Gga.4783.1.S2_at 
GgaAffx.20356.1. S 1 _s_at

Gga.3168.1.S1_a_at 
Gga.3168.2.S2_at

Gga.2396.1.S l_at

Gga.3311.1.S1_at 
Gga. 12322 1.S1_at 
GgaAffx.3505.1 S1_at 
GgaAffx. 3520.1. S 1 _at 
GgaAffx. 3517.1. S 1 _at 
GgaAffx. 3551.1. S 1 _at

Gga.1962.2.S1_a_at 
GgaAffx.8715.1 S1_s_at 
GgaAffx.8716.1 S1_s_at 
GgaAffx.24252.1 S1_s_at 
GgaAffx 24252.1.S1_at

Gga.16196.1 S1_at

Gga. 11892.1 S1_s_at 
Gga 3126.1 S1_at

Gga.2396.1.S1_at

Gene name

similar to histone-lysine n-methyltransferase, h3 lysine-9 specific 2 (histone h3-k9 
methyltransferase 2) (h3-k9-hmtase 2) (suppressor of variegation 3-9 homolog 2) 
(su(var)3-9 homolog 2)

gli-kruppel family member gli2

signal transducer and activator of transcription 3 (acute-phase response factor)

ribosomal protein 117

inhibin, beta a (activin a, activin ab alpha polypeptide)

neurotrophin 3 swi/snf related, matrix associated, actin dependent regulator of 
chromatin, subfamily b, member 1

swi/snf related, matrix associated, actin dependent regulator of chromatin, subfamily 
b, member 1

histone deacetylase 4

ccaat/enhancer binding protein (c/ebp), gamma

nuclear factor of kappa light polypeptide gene enhancer in b-cells 2 (p49/p100) 

development and differentiation enhancing factor 1

spermatid perinuclear rna binding protein

myoglobin

neuregulin 1

mal, t-cell differentiation protein-like 

follistatin

pdz and lim domain 7

indian hedgehog homolog (drosophila) 

radical fringe

quaking homolog, kh domain rna binding (mouse) 

b-cell translocation gene 1, anti-proliferative

neurofibromin 1 (neurofibromatosis, von recklinghausen disease, watson disease)

Gene symbol Unigene ID

RCJMB04_5F7 GGA. 13450

similar to erythroid differentiation-related factor 1

keratin 14 (epidermolysis bullosa simplex, dowling-meara, koebner) 

platelet-activating factor acetylhydrolase, isoform ib, alpha subunit

b-cell translocation gene 1, anti-proliferative

Gli2

RCJMB04_38L20

Tlx3

Inhba

Ntf3

RC JMB04_13F19

Hdac4

Cepbg

Nfkb2

Ddefl

RCJMB04J25E3

Mb

Nrg1

Mall

Fst

Pdlim7

Ihh

Rfng

Qki

Btg1

Nf1

LOC430674

Krt14

Pafah1b1

Btg1

GGA.4969 

GGA.32114

GGA.4385 

GGA.3982 

GGA.41617

GGA.8558

GGA.3689

GGA.3707

GGA. 1057 

GGA.20746

GGA.22384 

GGA. 1960 

GGA. 135

GGA.6399

GGA.3615

GGA.7667

GGA. 473 

GGA.4783

GGA.3168

GGA.2396 

GGA. 3311

GGA.31156

GGA.16196

GGA.3126

GGA.2396

Gga. 16469.1.S1_at 
GgaAffx.9985.1. S 1 _s_at 
GgaAffx.20531.1. S1 _s_at

Gga. 13567.1.S1_s_at

Gga.9093.1 S1_a_at 
Gga.9093.3.S1 _a_at 
Gga.239.1.S1_at

Gga.651.1.S2_at
Gga.651.1.S2_s_at

similar to regulator of differentiation (in s. pombe) 1

ribosomal protein 117 

drebrin 1 

tolloid-like 1 

ephrin-A5

Rod1

Tlx3

Dbn1

TII1

Efna5

GGA.20566

GGA.21135 

GGA.9093 

GGA.239 

GGA. 651
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Gga.3147.l.S l_ a t

Gga 2458.1 S1_at 
GgaAffx 21710.1.S l_s_at

Gga 3039.1 S l_a t 
GgaAffx.22277.1 S l_s_a t

Gga 377 1 S l_a t

Gga.8015 1 S l_a t

Gga.12231 l.S l_ a t 
Gga 12231 2 S1_s_at 
Gga.12231.2.S1_at

GgaAffx.3720.1 S l_a t

Gga 15179.1. S1_at

Gga.540.1.Sl_at

Gga.10980 2.S1_at 
Gga 10980.1. S1_at 
Gga. 10980.2 S1_s_at 
GgaAffx.22148 2. S 1 _s_at

Gga 3136.1.S l_a f

Gga 701.1 S l_s_at

G ga.70 l.l.S l_s_a t 
Gga.703.1 S1_at

Gga.9529.1 S1_s_at 
GgaAffx. 2474 l.1 .S l_ a t

Gga.9831.1 S1_at

Gga.853 1.S1_at

GgaAffx. 22982 1 .S i _at

Gga. 10652.1 S1_at 
Gga.14211.1 S l_a t

Gga.4462.1 S l_at 
GgaAffx. 23937.1 S l_s_at

Gga.18916 1 S1_at 
GgaAffx.20944.1 S l_a t

GgaAffx. 8715.2. S 1 _at

Gga. 16564.1 S1_a_at 
Gga.16564.2.S1_s_at 
Gga. 16564.3. S1 _s_at

Gga.2494.l.S l_ a t 
Gga.2494.1.S2_at

Gga. 11320.1. S1_s_at

GgaAffx.21489.1. S 1 _s_at 
GgaAffx.8793.1 S1_s_at

Gga.6665.1.A1_at 
GgaAffx.5387.1 S1_at

Gga. 17936.1.S1_at

GgaAff x.20498.1 S i _s_at

GgaAffx 24252.1.S1 _s_at

GgaAffx.26163.1 S l_a t

GgaAffx 2775 1 S1 _s_at

GgaAffx 5498.1. S l_a t

Gga.3569.1.S1_a_at

GgaAffx. 11482.1 S i _s_at 
GgaAffx. 20273 1 S 1 _s_at

GgaAffx.3230.1 S1_at

Gga 5769.1.S1_al

GgaAffx. 20430.1. S 1 _at

G ga .l84 .l.S l_a_a t

m y°sin vi Myo6

interferon-related developmental regulator 1 |frcj-|

cyd in  d l Ccnd1

neural src interacting protein, long form Ldb1

development and differentiation enhancing factor Ddef2

similar to differentiation-associated na-dependent inorganic phosphate cotr; LOC422972
differentiation-associated na-dependent inorganic phosphate cotransporter

similar to prepro bone inducing protein Gdf10

development and differentiation enhancing factor 2 Ddef2

matrix gla protein Mgp

similar to bm426j14.1 (pregnancy-associated plasma protein a) Pappa

syndecan 3 (n-syndecan) Sdc3

similar to rsfr LOC396194

ribonuclease a/angiogenin RSf r

ganglioside-induced differentiation-associated protein 1 Gdapl

Ganglioside-induced differentiation-associated protein 1-like 1 G daplH

ciliary neurotrophic factor Cntf

transform ing growth factor, beta 2 Tgfb2

similar to neurogenic locus notch homolog protein 2 precursor (notch 2) (hn2) LOC424378

myosin, heavy polypeptide 9, non-muscle Myh9

notch homolog 2 (drosophila) Notch2

similar to erythroid differentiation-related factor 1 LOC430674

ribosomal protein sa Rpsa

xanthine dehydrogenase Xdh

tyrosine protein kinase p56lck

transducin (beta)-like 1x-linked receptor 1 RCJMB04 8J10

mal, T-cell differentiation protein Mai

sema domain, immunoglobulin domain (Ig), short basic domain, secreted, Sema3d
(semaphorin) 3D

monocyte to macrophage differentiation-associated RCJMB04_11O17

similar to erythroid differentiation-related factor 1 LOC430674

ganglioside-induced differentiation-associated protein 1-like 1 Gdap1l1

pappalysin 2 Pappa2

endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 7 Edg7

dihydropyrim idinase-like 2 Dpysl2

phosphatidylserine receptor RCJMB04_1M8

cell cycle exit and neuronal differentiation 1 Cendl

y ip l domain family, member 3 Yipf3

Ephrin-A5 Efna5

chondroitin sulfate proteoglycan 5 (neuroglycan c) CspgS

GGA.3147

GGA.2458

GGA.3039

GGA.377 

GGA.35857 

GGA. 12231

GGA.12231

GGA.35857

GGA.540

GGA.10980

GGA.3136

GGA.703

GGA.701

GGA.9529

GGA.30627 

GGA.853 

GGA. 12932 

GGA. 10652

GGA.4462

GGA.18916

GGA.31156 

GGA. 16564

GGA. 2494

GGA. 11320 

GGA.20641

GGA.29846

GGA.3972

GGA.5197 

GGA.31156 

GGA 30627 

429071 

GGA.47476 

GGA.3569 

GGA.21114

GGA.30146 

GGA.5769 

GGA.651 

GGA. 184
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G ga.665,i.S i_at

Gga.19170.l.S1_s_at 
GgaAffx.21764.1 S1_at 
GgaAffx.21764.1 S1_s_at

Gga.1095 1 ,S1_at

Gga 7938 2 S l_a_a t

GgaAffx 8850 1 S 1 _s_at

GgaAffx 24331 1 S l_s_a t

Gga 9906.1 ,S1_at

Gga 12707 l.S l_ s_ a t 
Gga 14179.1 S l_a t

Gga.345 , l.S l_ a t

Gga 5133 1 S1_at

Gga. 12508.1 S l_a t

GgaAffx.9584 1 ,S1_at

GgaAffx. 7753.1.S1_at

Gga.13269.1.S1_at

GgaAffx.11995 1 S i _at 
GgaAffx. 11995.1. S 1 _s_at

GgaAffx.5026.1 S1_at

Gga.3768.1 S1_s_at 
G ga.5610.l.A l_at 
GgaAffx. 12327.1 S1_at 
GgaAffx.20199.1. S 1 _s_at 
Gga.3768.2.Sl_at

Gga.8737 1 S l_at

cysteine and glycine-rich protein 2 

zinc finger protein 403

Csrp2

Ggnbp2

GGA.665 

GGA. 19170

signal transducer and activator of transcription 5b 

similar to progestin and adipoq receptor fam ily member x 

dna cross-link repair 1c (pso2 homolog, s. cerevisiae) 

ndrg fam ily protein m ember 3 

meteorin, glial cell differentiation regulator-like 

development and differentiation enhancing factor 1

sonic hedgehog hom olog (drosophila) 

deleted in azoosperm ia-like

similar to ganglioside-induced differentiation-associated-protein 2 

adipose d ifferentiation-related protein

neurogenic differentiation factor 6 (neurod6) (my051 protein) 

Sphingosine-1-phosphate Receptor 1 

basic leucine zipper and w2 dom ains 2

leukemia inhibito ry factor (cholinergic differentiation factor) 

rcd l required for cell differentiation 1 hom olog (s. pombe)

Stat5b

Mmd2

Dclrelc

Ndrg3

Metrln

Ddefl

Shh 

Dazl 

Gdap2 

RCJMB04 4D23 

Neurod6 

S1pr1 

Bzw2

Lif

Rqcdl

GGA.1095

GGA.7938

GGA.22874

GGA.39122

GGA.9906

GGA.35879

GGA.345 

GGA.5133 

GGA. 12508 

GGA.22793 

GGA.26741 

GGA. 13269 

GGA.7693

GGA.427718

GGA.3768

mal, t-cell differentiation protein 2 GGA.8737
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Table V.3 Functional groups of genes involved in regulation of proliferation. Genes may appear 
in more than one group if they have more than one term associated with them (continued 
overleaf)

Functional group 1 Growth Factors

Enrichment score 13.64
GO term p-value

Biological process Regulation of progression through cell 3.1 E-10 
cycle

Regulation of cell cycle 3.3E-10
Molecular function Receptor binding 4.3E-8 

Growth factor activity 1.4E-10

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.1907.1 ,S1_at platelet derived growth factor c Pdgfc GGA. 1907

GgaAffx.4716.1 .S1 _at fibroblast growth factor 4 (heparin secretory 
transforming protein 1, kaposi sarcoma oncogene)

Fgf4 GGA.32086

Gga.71.1.S1_at platelet-derived growth factor beta polypeptide (simian 
sarcoma viral (v-sis) oncogene homolog)

Pdgfb GGA.71

Gga.2701.1 .S1_at 
Gga.2701.1 .S2_at

fibroblast growth factor 3 (murine mammary tumor 
virus integration site (v-int-2) oncogene homolog)

Fgf3 GGA.2701

Gga.3219.1.S1_at c-fos induced growth factor (vascular endothelial 
growth factor d)

Figf GGA.3219

Gga.3899.1 .S1 _a_at 
Gga.3899.3.S1 _a_at

platelet-derived growth factor alpha polypeptide Pdgfa GGA.3899

Functional group 2 Transcription Regulators

Enrichment score 9.94
GO term p-value

Biological process Regulation of transcription, DNA- 2.0E-7 

dependant
RNA biosynthetic process 2.2E-7 

Regulation of nucleobase, nucleoside, 6.1 E-7 

nucleotide and nucleic acid metabolic 

process
System development 2.3E-6 

Biopolymer metabolic process 2.4E-4

Molecular function DNA binding 1.2E-5

Cell component Intracellular membrane-bound organelle 3.5E-4 

Nucleus 3.8E-5
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Affymetrix ID

Gga. 17307.1 ,S1_at 
Gga.6791.1 .A1_s_at 
Gga.709.2.S1_a_at

Gga.289.1 .S1_at

Gga.961.1.S1_at 
Gga.961.2.S1_at 
Gga.961,2.S1_a_at

Gga.4349.1 .S1_s_at 
Gga.4349.2.S1_s_at

Gga.3689.2.S1_a_at

Gga.4131.1.S1_at

Gga.570.1.S1_at

Gga.511.1 ,S1_at

Gene name Gene symbol Unigene ID

nuclear factor i/b Nfib GGA.709

ceh-10 homeodomain containing homolog (c. Vsx2 GGA.289
elegans)

t-box 5 Tbx5 GGA.961

swi/snf related, matrix associated, actin dependent RCJMB04_13F19 GGA.8558
regulator of chromatin, subfamily b, member 1

histone deacetylase 4 Hdac4 GGA.3689

homeobox protein hoxd 13 Hoxg13 GGA.4131

neurogenic differentiation 4 Neurod4 GGA.570

t-cell leukemia homeobox 1 Tlx1 GGA.511

Functional group 3 Growth Factors

Enrichment score 9.42

Biological process

Molecular function

GO term

Regulation of cell cycle 

Organ morphogenesis 

Angiogenesis
Specification of organ identity

p-value

1.3E-7
1.5E-7
4.5E-7
1.7E-6

Cell-cell signalling during cell fate commitment 1.7E-6 

Sensory organ development 3.1 E-2

Glycosaminoglycan binding 3.4E-7
Heparin binding 5.5E-8
Growth factor activity 1.4E-10
Receptor binding 4.3E-8

Affymetrix ID

Gga.661.1.S1_at

Gga.2701.1.S1_at 
Gga.2701.1.S2_at

Gga.5002.1 .S1„at 

Gga.648.1 .S2_at 

Gga.537.2.S1_a_at 

Gga. 17040.2.S1_a_at

Gene name

fibroblast growth factor 8

fibroblast growth factor 3 (murine mammary tumor 
virus integration site (v-int-2) oncogene homolog)

midkine (neurite growth-promoting factor 2) 

fibroblast growth factor 1 (acidic) 

vascular endothelial growth factor 

fibroblast growth factor 2 (basic)

Gene symbol Unigene ID

Fgf8

Fgf3

Mdk

Fgf1

Vegfa

Fgf2

GGA.661 

GGA.2701

GGA.5002

GGA.648

GGA.537

GGA.39646
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Table V.4 Unclustered genes involved in regulation of proliferation. Gene name, symbol and 
Unigene database reference ID are listed.

Affymetrix ID

GgaAffx.6863.1 S1_at

Gga.3027.1 S l_a t

Gga.122.2 S1_a_at 
Gga.6790.1.A1_at

Gga.4969.1.S l_at 
GgaAffx. 7399.1 .S i _at

Gga. 106.1 S1_at

Gga 1065.1.S1_at

Gga. 473.1. S1_at

GgaAffx.26679.1 S1_at

GgaAffx.11558.1.S1_s_at

Gga.8771 1.S1_at

Gga.3754 1.S1_a_at 
Gga.3754.2.S1_at

Gga.2396.1.S1_at

GgaAffx.1.1.S1_s_at

Gga. 15747 1.S1_at 
GgaAffx.20937.1 ,S1 _at 
Gga. 15747.2.S1 _s_at

GgaAffx.23500.1. S 1 _s_at 
GgaAffx.23500.1 .SI _at

Gga,723.1.S1_a_at

Gga. 11892.1.S1_s_at 
Gga.3126.1.S1_at

Gga. 12097.1.S1_s_at 
GgaAffx. 24932.3. S 1 _s_at

Gga.l250.1.S1_at 
Gga.1250.1.S2_at

GgaAffx. 8915.1. S 1 _at

Gga, 1095.1.S1_at

GgaAffx. 23427.1. S 1 _s_at 
GgaAffx.23427.1 ,S1_at 
Gga.15420.1.S1_at

Gga.4970.1.S1_at

Gga. 12636.1.A1_at 
Gga.4847. l.S1_x_at 
Gga.4847.3.S1_a_at

Gga.4390.2.S1_a_at
Gga.4390.4.S1_s_at
Gga.4390.4.S1_a_at

Gga 15420.1.S1_at 
GgaAffx.23427.2.S1_at 
GgaAffx.23427.2. S1 _s_at 
Gga 20062.1.S1_s_at

Gga 6791.1. A1_at

Gga 109.1.S1_at

Gga.696.1.A1__at 
Gga.696 1,S1„at

Gga.1479.l.S l_ a t 
Gga.1479.2.S1_a_at

Gga.345.1.S1_at

Gga 1861.1.S1_at

Gga.895.1.S1_at

Gga Affx. 22982.1. S 1 _at

Gga.7066.1.S1_at

Gene name

epigen

cd40 ligand (tnf superfamily, member 5, hyper-igm syndrome) 

craniofacial development protein 1

gli-kruppel family member gli2

nibrin

guanine nucleotide binding protein (g protein), alpha inhibiting activity polypeptide 2

indian hedgehog homolog (drosophila

sim ilar to proliferation-associated protein 1

nude nuclear distribution gene e homolog 1 (a. nidulans)

fibroblast growth factor receptor-like 1

hairy and enhancer of split 1, (drosophila)

b-cell translocation gene 1, anti-proliferative

nuclear factor of kappa light polypeptide gene enhancer in b-cells inhibitor, alpha

similar to androgen-induced prostate proliferative shutoff associated protein; 
androgen-induced shutoff 3

inhibin, alpha

cd28 antigen (tp44)

platelet-activating factor acetylhydrolase, isoform ib, alpha subunit 45kda 

polymerase (dna directed), alpha

protein phosphatase 1, catalytic subunit, beta isoform

xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7 

signal transducer and activator of transcription 5b 

signal-induced proliferation-associated 1 like 2

cd3e antigen, epsilon polypeptide (tit3 complex) 

nucleophosmin

ferritin, heavy polypeptide 1

signal-induced proliferation-associated 1 like 2

nuclear factor l/B

frizzled homolog 10 (drosophila)

brain-derived neurotrophic factor

pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1)

sonic hedgehog homolog (drosophila) 

mago-nashi homolog, proliferation-associated (drosophila) 

s100 calcium binding protein a6 (calcyclin) 

transform ing growth factor, beta 2 

signal-induced proliferation-associated 1 like 1

Gene symbol

Epgn

Cd40lg

Cfdpl

Gli2

Nbn

Gnai2

Ihh

Pa2g4

Nde1

Fgfrh

Hes1

Btg1 

Nfkbia 

RCJMB04_6G19

Inha

Cd28 

Pafahl b1

Polal

Ppplcb

B4galt7

Stat5b

Sipa1l2

Sipa1l2

Nfib

Fzd10

Bdnf

R n

Shh

Magoh

S100a6

Tgfb2

Sipalh

Unigene ID

GGA.22922 

GGA.3027 

GGA. 122

GGA.4969

GGA. 196 

GGA. 1065

GGA.473

GGA.22352

GGA.8771

GGA.3754

GGA.2396 

GGA.2937 

GGA. 15747

GGA.6881

GGA.723 

GGA.3126

GGA. 12097

GGA. 1250

GGA.33756 

GGA.1095 

GGA.20062

Cd3e GGA.4970

Npm1 GGA.4847

GGA.4390

GGA.20062

GGA.709 

GGA. 109 

GGA. 696

GGA.39450

GGA.345 

GGA. 1861 

GGA.22951 

GGA. 12932 

GGA.29067
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Gga.6276.3.S1_at 
GgaAffx. 22359.1. S 1 _at 
GgaAffx.22359.1 S1_s_at 
Gga.6276.3.S1_s_at

Gga.705 1.S1_at

GgaAffx. 13116.1. S1 _at

Gga.355.1 S1 _at

Gga 3849.1.S1_at

Gga 1686.1. S1_s_at 
GgaAffx. 21450.2. S1_s_at

GgaAffx 21801.1.S1_at

Gga 1479.1. S1_at 
Gga.1479.2.S1_a_al 
Gga 16413.1. A1_a_at 
Gga 16413.1.A1_at 
Gga.16413.3 S1_at

pescadillo homolog 1, containing BRCT domain (zebrafish)

progesterone receptor

rap1 b, member of ras oncogene family

cerberus 1, cysteine knot superfamily, homolog (xenopus laevis)

v-ha-ras harvey rat sarcoma viral oncogene homolog

transforming growth factor, beta 3

thrombopoietin

Pleiotrophin

fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)

Gal3st1

Pgr

Raplb

Cer1

Hras

Tgfb3

Thpo

Ptn

Fgfr3

GGA.6276

GGA.705 

GGA. 18937 

GGA.355 

GGA.3849 

GGA. 1686

GGA.21063

GGA.39450

GGA.16413
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Table V.5 Genes that belong to the gene ontology clusters related to regulation of apoptosis. 
Genes may appear in more than one group if they have more than one term associated with 
them (continued overleaf)

Functional group 1 Bcl-2 Related Apotosis Regulators

Enrichment score 100.73
GO term p-value

Biological process Programmed cell death 2.6E-38

Regulation of apoptosis 5.4E-28
Molecular function Zinc ion binding 2.2E-2

Transition metal ion binding 4.5E-2

Affymetrix ID

Gga.4846.1.S1_at 
Gga.4846.1.S2_at

Gga.3811.1.S1_at 
Gga.3811.1 .S2_at

GgaAffx.11795.1 .S1_s_at

Gga. 1234.1 .S1 _s_at

Gga.5164.1.S1_at

Gga.16560.1 .S1_at 
Gga. 16560.2.S1 _a_at 
Gga. 16560.2.S1 _s_at

GgaAffx.3610.1 .S1 _at 
GgaAffx.3610.4.S1_s_at 
GgaAffx.3610.4.S1_at 
GgaAffx.3610.2.S1 _s_at

Gga. 10125.1 .S1 _a_at 
GgaAffx.23776.1 .S1 _at

Gga. 12655.1.S1_at 
Gga.12655.2.S1_at

GgaAffx.7095.1 ,S1 _at 
GgaAffx.7095.2.S1_at 
GgaAffx.7095.1 .S1_s_at

Gga.16457.1.S1_s_at 
GgaAffx.23449.1 .S1_at

GgaAffx.23578.1 .S1 _at

Gga.1729.1 .S1_at

Gga.11428.1.S1_at 
Gga.2796.1 .S1_ at

Gene name

anti-apoptotic nr13

bcl2-related ovarian killer

apafl interacting protein

bh3 interacting domain death agonist

bcl2-related protein a1

myeloid cell leukemia sequence 1 (bcl2-related)

Gene symbol Unigene ID 

LOC395193 GGA.4846

Bok GGA.3811

RCJMB04_5F12 GGA.22458 

Bid GGA. 1234

Bcl2a1 GGA.5164

Mcl1 GGA. 16560

similar to baculoviral iap repeat-containing protein 4 LOC419239 GGA.23967
(inhibitor of apoptosis protein 3) (x-linked inhibitor of 
apoptosis protein) (x-linked iap) (iap-like protein) (hilp)

similar to fas apoptotic inhibitory molecule 1 (rfaim) 

tnf receptor-associated factor 3 

programmed cell death 2

interferon induced with helicase c domain 1

similar to apoptotic protease activating factor 1 (apaf-1] 

bcl2-like 13 (apoptosis facilitator)

b-cell cll/lymphoma 10

Faim

Traf3

Pdcd2

Ifihl

Apafl

Bcl2l13

Bciio

GGA.39768 

GGA. 12655 

GGA.21558

GGA. 16457

GGA.34905 

GGA. 1729 

GGA. 11428

GgaAffx.7894.1 ,S1 _at 
GgaAffx.7894.2.S1_at

similar to caspase recruitment domain protein 10; card- 
containing maguk 3 protein; bcMO binding protein and 
activator of nfkb

Card 10 GGA.25961
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Gga.7057.1 .Sl_at 
GgaAffx. 13169.1 ,S1 _s_at 
GgaAffx.26202.1 .Sl_at

Gga. 10782.1.S1_at

Gga. 12955.1.S1_at 
GgaAffx.25775.1 .S1 _at

Gga.5708.2.S1_a_at

GgaAffx. 12782.1 .S1 _s_at

caspase recruitment domain family, member 11 Cardl 1

similar to mortl Fadd

bcl2-antagonist/killer RCJMB04_3P2

similar to riken cdna 1110007c09 LOC415987

programmed cell death 10 PdcdIO

Gga.4304.1.Sl_at 

GgaAffx. 1822.1 .S1_at

dna fragmentation factor, 40kda, beta polypeptide 
(caspase-activated dnase)

similar to dna fragmentation factor alpha subunit 
(dna fragmentation factor 45 kda subunit) (dff-45) 
(inhibitor of cad) (icad)

Dffb

Dffa

Gga. 16931.1.S1_at bcl2-associated athanogene 4 Bag4

Functional group 2 Inhibitor Apoptosis Proteins (IAP)

Enrichment score 43.77
GO term p-value

Biological process Negative regulation of apoptosis 4.9E-14
Anti-apoptosis 3.3E-11

Molecular function Zinc ion binding 4.2E-4
Transition metal ion binding 1.1E-3

Cellular component Cytoplasm 1.4E-2

Affymetrix ID

Gga.4384.1.S1_at 
Gga.4384.1 .S2_at 
Gga.4384.1 .S2_s_at

Gga.104.1.S1_at

Gga.122.2.Sl_a_at 
Gga.6790.1.A1_at

GgaAffx.11795.1.S1_s_at

Gga.5127.1.S1_s_at 
GgaAffx.12475.1.S1_at

GgaAffx.13009.1.S1_at 
G gaAff x. 13009.1. S1 _s_at

Gga.5885.1.S1_s_at 
GgaAffx.11374.1.S1_at

Gene name

baculoviral iap repeat-containing 2

baculoviral iap repeat-containing 4 

craniofacial development protein 1

apafl interacting protein 

tnf receptor-associated factor 5

tumor necrosis factor, alpha-induced protein 8

apoptosis inhibitor 5

Gene symbol 

Birc2 

Birc4 

Cfdpl 

RCJMB04_5F12 

Traf5 

RCJMB04 29H8 

Api5

V

GGA.7057

GGA. 10782 

GGA. 12955

GGA.5708 

GGA.6335

GGA.4304

GGA.41944

GGA. 16931

Unigene ID

GGA.4384

GGA.104 

GGA. 122

GGA.22458

GGA.5127

GGA. 11736

GGA.5885
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GgaAffx.3610.1.S1_at similar to baculoviral iap repeat-containing protein 4 LOC419239
GgaAffx.3610.4.S1_at (inhibitor of apoptosis protein 3) (x-linked inhibitor of
GgaAffx.3610.4.S1_s_at apoptosis protein) (x-linked iap) (iap-like protein) (hilp)
GgaAffx.3610.2.S1 _s_at

Gga.10125.1.S1_a_at similar to fas apoptotic inhibitory molecule 1 (rfaim) Faim
GgaAffx.23776.1 .S1 _at

Gga. 12655.1 ,S1 _at tnf receptor-associated factor 3 Traf3
Gga.12655.2.S1_at

Functional group 3 Bcl-2 Related Apoptosis Agonists

Enrichment score 36.9
GO term p-value

Biological process Positive regulation of apoptosis 1.4E-7

Cellular component Mitochondrial envelope 3.8E-2

Affymetrix ID Gene name Gene symbol

Gga.2008.1 ,S1_at bcl2/adenovirus e1b 19kda interacting protein 3 Bnip3
Gga.2008.2.S1_a_at

Gga. 1234.1 ,S1_s_at bh3 interacting domain death agonist Bid

GgaAffx.11837.1.S1_s_at bcl2/adenovirus e1b 19kda interacting protein 3-like Bnip3l

Gga.9467.1.S1_at integral membrane protein 2b Itm2b

Functional group 4 Phosphotransferase activity

Enrichment score 36.22
GO term p-value

Biological process 

Molecular function

Regulation of apoptosis 3.2E-3

ATP binding 2.1E-6
Ribonucleotide binding 6.8E-6

Protein kinase activity 2.5E-4
Transferase activity, alcohol group as 1.6E-4
acceptor
Transferase activity, transferring 4.4E-4
phosphorus-containing groups

GGA.23967

GGA.39768 

GGA. 12655

Unigene ID

GGA.2008

GGA. 1234 

GGA.22016 

GGA.9467
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Affymetrix ID

GgaAffx.23578.1 ,S1_at

Gga. 16457.1.S1_s_at 
GgaAffx.23449.1 .S1 _at

GgaAffx. 10124.2.S1_at 
GgaAffx. 12451.1 .S1 _s_at 
GgaAffx. 10124.2.S1_s_at

GgaAffx.4315.1 .S1 _at

Gga.7702.1.S1_at

Gga.11617.1.S1_at

GgaAffx.6171.1 .S1 _at 
GgaAffx. 6171.2. S1 _s_at

Functional group 5 Tumor Necrosis Factor Receptor (TNF-R)

Enrichment score 35.59
GO term p-value

Biological process Cell death 1.1 E-5
Signal transduction 8.4E-3

Molecular function Transmembrane receptor activity 4.0E-4

Affymetrix ID Gene name Gene symbol

Gga. 100.1 ,S1_a_at fas (tnf receptor superfamily, member 6) Fas

Gga.5148.1 .S1_at tumor necrosis factor receptor superfamily, member 1b Tnfrsflb
Gga.5148.1 .S1_s_at 
GgaAffx. 12029.1 ,S1_at 
Gga.5148.1.S2_s_at

Gga. 197.1 .S1_at cd40 antigen (tnf receptor superfamily member 5) Cd40

Gga.8546.1 .S1_a_at death domain-containing tumor necrosis factor receptor LOC378902
Gga.8546.2.S1_at superfamily member 23

Gene name

apoptotic protease activating factor 1 (apaf-1) 

interferon induced with helicase c domain 1

Gene symbol 

Apafl 

Ifihl

receptor-interacting serine-threonine kinase 2 RCJMB04 15N4

similar to apoptosis-associated tyrosine kinase 

similar to cell cycle progression 2 protein 

similar to hypothetical protein mgc5297 

similar to hypothetical protein flj21901

LOC422076

Tbrg4

Fastkd3

Fastkdl

Unigene ID

GGA.34905 

GGA.16457

GGA.22379

GGA.30387 

GGA.31062 

GGA.11617 

GGA.22679

Unigene ID

GGA. 100 

GGA.5148

GGA.197 

GGA.8546
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Functional group 6 Caspase Apoptosis Regulators

Enrichment score 28.45
GO term p-value

Biological process Programmed cell death 6.9E-16
Proteolysis 8.7E-12
Cellular protein metabolic process 2.1 E-6

Molecular function Caspase activity 1.3E-27
Cysteine-type endopeptidase activity 5.1E-21

Affymetrix ID Gene name Gene symbol Unigene ID

Gga.2960.1.S1_at caspase 6, apoptosis-related cysteine peptidase Casp6 GGA.2960

Gga.4346.1.S1_at
Gga.4346.1.S2_at

caspase 3, apoptosis-related cysteine peptidase Casp3 GGA.4346

GgaAffx.5264.1 ,S1 _at initiator caspase Casp18 GGA.32077

GgaAffx.7181.1.S1_at similar to cell death adaptor molecule RCJMB04JI6C14 GGA.22811

Gga.504.1.S1_at 
Gga. 14486.1.S1_at

caspase 2, apoptosis-related cysteine peptidase 
(neural precursor cell expressed, developmentally 
down-regulated 2)

Casp2 GGA.504

Gga.2451.1.S1_at caspase 8, apoptosis-related cysteine peptidase Casp8 GGA.2451

Gga.4116.1.S1_at caspase 9, apoptosis-related cysteine protease Casp9 GGA.4116

GgaAffx.5246.1 .S1_at similar to caspIO protein CaspIO GGA.39974

GgaAffx.5618.1 .S1 _at caspase-7, apoptosis-related cysteine peptidase Casp7 GGA.39052

Gga. 10204.1.S1_s_at 
Gga. 1747.2.S1 _a_at

caspase 1, apoptosis-related cysteine peptidase 
(interleukin 1, beta, convertase)

Caspl GGA. 1747

Functional group 7 Kinase Family

Enrichment score 20.63
GO term p-value

Biological process Phosphate metabolic process 4.0E-7
Post-translational protein modification 1.3E-6
Protein amino acid phosphorylation 5.7E-8

Molecular function Protein serine/threonine kinase activity 1 .OE-5
Transferase activity, transferring phosphorus 1.9E-7 

groups
Ribonucleotide binding 6.8E-6
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Affymetrix ID Gene name Gene symbol

Gga.14403.1 .S1_at 
GgaAffx. 12794.1 .S1 _at 
Gga.14403.1 ,S1_s_at

Gga. 15820.1 ,S1 _s_at 
GgaAffx. 12533.1.S1_at

Gga.9012.1.S1_at 
GgaAffx. 11653.1.S1_s_at

GgaAffx.4315.1 ,S1_at

Gga.685.1.S1_at
Gga.685.2.S1_at
Gga.685.3.A1_at
Gga.685.1.S2_at

Gga.3580.1.S1_at 
Gga.3580.2.S1_a_at 
GgaAffx.2310.1 ,S1 _at

GgaAffx. 10124.2.S1_at 
GgaAffx. 12451.1. S1 _s_at 
GgaAffx. 10124.2.S1 _s_at

dual-specificity tyrosine-(Y)-phosphorylation regulated Dyrk2
kinase 2

serine/threonine kinase 4 RCJMB04_17I1

serine/threonine kinase 17b (apoptosis-inducing) RCJMB04_3F1

similar to apoptosis-associated tyrosine kinase LOC422076

v-raf-1 murine leukemia viral oncogene homolog 1 Raf1

insulin receptor precursor Insr

receptor-interacting serine-threonine kinase 2 RCJMB04_15N4

Functional group 8 Transcription Regulators

Enrichment score 29.58

Biological process

Cellular component

GO term p-value

Positive regulation of transcription DNA- 2.4E-9
dependant
Regulation of nucleobase, nucleoside, 1 .OE-8

nucleotide and nucleic acid metabolic

process
RNA biosynthetic process 2.8E-9
Biopolymer metabolic process 2.2E-5

Intracellular membrane bound organelle 7.2E-4
Nucleus 8.7E-4
Cytoplasm 8.1 E-3

Affymetrix ID Gene name Gene symbol

Gga.961.1.S1_at t-box 5 Tbx5
Gga.961,2.S1_a_at
Gga.961.2.S1_at

Gga.3982.1 ,S1_at inhibin, beta a (activin a, activin ab alpha polypeptide) Inhba
Gga.3982.1 .S2_at

Gga.706.1 ,S1_at tumor protein p53 Tp53

Gga.4285.1.S1_at ccaat/enhancer binding protein (c/ebp), beta Cebpb

Unigene ID

GGA. 14403

GGA. 15820

GGA.9012

GGA.30387 

GGA.685

GGA.3580 

GGA.22379

Unigene ID

GGA.961

GGA.3982

GGA.706

GGA.706
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Gga.4396.1 .S1_at v-rel reticuloendotheliosis viral oncogene homolog (avian) Rel GGA.4396

GgaAffx. 11073.1.S1_at neurotrophin 3 Ntf3 GGA.41617

Gga.3213.1.S1_at e2f transcription factor 1 E2f1 GGA.3213

Gga.7539.1 .S1_at transcription factor foxl2 Foxl2 GGA.7539

Gga.48.1.S1_at d4, zinc and double phd fingers family 2 Dpf2 GGA.48

Gga.555.1.S1_at paired box gene 7 Pax7 GGA.555

Functional group 9 Neurotrophin Family

Enrichment score 17.1
GO term p-value

Biological process Axon guidance 

Axonogenesis 

Neurite morphogenesis 

Neuron development 
Cell part morphogenesis 

Cell migration
Regulation of neuron apoptosis

2.8E-8
6.7E-8
7.6E-8
1.3E-7
3.6E-7
5.1E-7
3.6E-6

Molecular function Growth factor activity 

Receptor binding
3.6E-4
3.3E-3

Cellular component Cytoplasmic membrane-bound vesicle 2.9E-2

Affymetrix ID Gene name Gene symbol Unigene ID

GgaAffx. 11073.1.S1_at neurotrophin 3 Ntf3 GGA.41617

GgaAffx.22982.1 ,S1_at transforming growth factor, beta 2 Tgfb2 GGA. 12932

Gga.696.1.A1_at
Gga.696.1.S1_at

brain-derived neurotrophic factor Bdnf GGA.696

GgaAffx.7932.1 ,S1_at nerve growth factor receptor (tnfr superfamily, Ngfr 
member 16)

GGA.39799
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Table V.6 Unclustered genes involved in regulation of apoptosis. Gene name, symbol and 
Unigene database reference ID are listed.

Affymetrix ID

Affx-Gga-gapdh-3_a_at 
Affx-Gga-gapdh-3_x_at 
Affx-Gga-gapdh-5_a_at 
Affx-Gga-gapdh-M_a_at 
Gga. 1374.4. S1_a_at 
G aga374 4.S1_x_at

Gga 1095 1 S1_at

Gga. 12309.1. S l_a t

G ga.155 l.2 .S l_a_a t

Gga. 1661. l.S1_at 
G ga.1661 2.S1_s_at 
Gga 1661 3.S1_s_ at 
GgaAffx.20215.1 S1_at

Gga 17022.1.S1_at

Gga.17166.1.S1_at

Gga.17305.1.S l_s_at 
Gga.2939.1 S l_at

Gga.18742.l.S l_ a t 
Gga. 18742 1 S1_x_at 
GgaAffx.22341.1. S 1 _at 
GgaAffx.4807.1. S 1 _s_at

Gga. 189.1 S1_at 
Gga.189.1.S2_at

G ga.1902 1.S1_at

Gga.2719.1 S2_at 
Gga.2719 2 S1_a_at

Gga 345.1.S1_at

Gga.3864.1,S1_at 
Gga.3864.1.S2_at

Gga.4219.l.S l_ a t

Gga.4394.1.S l_at

Gga.4510.l.S1_a_at

Gga.5455.2.S1_s_at 
Gga Affx. 12635.1.S 1 _s_at

Gga.5675.3.S1_A_at

G ga.673.1.S l_at

Gga.723.1.S1_A_at

Gga 7468.1. S1_at

Gga.9342.1.S1_at 
G gaAffx.11935.1.S1_s_at

Gga.9385 1.S1_A_at

Gga 955.1. A1_at 
G ga.955.1.S l_at

G gaAffx.11281.1. S1_at

G gaAffx.11604.1.S1_s_at

GgaAffx 11996.1.S1_s_at 
G gaaffx.26111.2.S1_s_at

GgaAffx. 12955.1 S I _s_at

GgaAffx. 13220.1. S 1 „s_at 
Gga.11032.1.A1_at

GgaAffx. 25742.1. S 1 _at

G gaAffx.3404.1 ,S1 _s_at 
GGAAFFX. 12861.1.S1_s_at

GgaAffx.5200 1.S1_v 
GgaAffx.5200.2.S1_at 
GgaAffx.5200.2.S1_s_at

Gene name

glyceraldehyde-3-phosphate dehydrogenase

Gene symbol

Gapdh

signal transducer and activator of transcription 5b Stat5b

apoptosis-inducing factor (aif)-like mitochondrion-associated inducer of death Aifm2

baculoviral iap repeat-containing 5 (survivin) Birc5

engulfment and cell motility 1 RCJMB04_7b13

ww domain containing oxidoreductase RCJMB04_28b1

tnf-related apoptosis inducing ligand-like Trail-like

shingomyelin synthase 1 Sgmsl

apoptosis inducing factor mitochondrion-associated 3 Aifm3

protein kinase, dna-activated, catalytic polypeptide Prkdc

hypothetical protein

presenlin 2 (alzheimer disease 4) Psen2

sonic hedgehog homolog (drosophila) Shh

presenlin 1 (alzheimer disease 3) Psenl

heat shock 70kda protein 5 (glucose-regulated protein, 78kda) Hspa5

b-cell cll/lymphoma 2 Bcl2

albumin Alb

cytokine induced apoptosis ih ibitor 1 Ciapinl

death associated protein 3 Dap3

insulin Ins

cd28 antigen (tp44) Cd28

perp, tp53 apoptosis effector Parp

Apoptosis, caspase activation inhibitor Aven

cd27-binding (siva) protein Sival

apoptosis asscociated protein Loc395325

similar to death receptor 3 Loc425564

ras homolog gene family, member T2 RCJMB04_2o8

cell division cycle and apoptosis regulator 1 Ccarl

programmed cell death-2-like RCJMB04_27n18

apoptosis-inducing factor mitochondrion-associated Aifml

bifunctional apoptosis regulator

similar to apoptosis antagonizing transcription factor

casp8 and fadd-like apoptosis regulator

Unigene ID

GGA. 1374

GGA. 1095 

GGA. 12309 

GGA. 1551 

GGA.20205

GGA.7638 

GGA.17166 

GGA.2939

GGA. 18742

GGA. 189

GGA.42092 

GGA.2719

GGA. 345 

GGA.3864

GGA.4219 

GGA.4394 

GGA. 4510 

GGA.5455

GGA.5675 

GGA.673 

GGA.723 

GGA.7468 

GGA.9342

GGA.9385 

GGA. 955

GGA.3003 

GGA.34587 

GGA. 17450

GGA. 5383 

GGA.4923

GGA.39205 

GGA.7407

GGA.21431
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GgaAffx. 5947.1. S 1 _s_at 
GgaAffx.12756.1.S1_at

GgaAffx.6512.1. S 1 _at

GgaAffx. 7315.1 S i _at

GgaAftx.9801.1 SI _at

Gga.11011.l.S l_ a t

Gga 13392.1.S1_at

Gga. 15359.1.S1_ at 
Gga. 15359 1 S1_s_ at

GGA.17104 1.S1_ at

Gga.2345.1 S1_ at 
Gga.2345.2 S l_a_  at 
GgaAffx.21274 l .S1_s_at

Gga.2856 1 S1_a_ at

Gga.4367.1.S1_ at

Gga.2875.1 S l_a t 
Gga 2875.2.S l_a_at

GgaAffx. 1941 1 S 1 _at

GgaAffx.11614.1.S l_s_at

Gga 1247.1.S l_at 
GgaAffx. 12136.1 ,S1 _s_at

Gga 1721.1 S l_a t

Gga.4944.1 S2_at 
Gga.4944.2.S1_a_at 
Gga.4944 2.A1_at

GgaAffx 11482.1 S l_s_at 
GgaAffx.20273 1 S1 _s_at

Gga.555.1.S1_at

Gga.2396.1.S l_a t

GgaAffx.23500.1 S l_a t 
GgaAffx.23500.1. S1 _s_at

GgaAffx. 22169.2. S 1 _at 
Gga Affx.22169.1. S 1 _s_at 
Gga.3605.1.S1_s_at 
Gga. 17273.1.S l_at

Gga.48.1.Sl_at

Gga.16137.l.S l_ a t

Gga.11320.1.S1_s_at

Gga.4960 1 S l_a t

Gga.16413.1.A1_a_at 
Gga.16413.3.S1_at 
Gga.16413.1.A1_at

bcl2-associated athanogene 3 Bag3

similar to prostate apoptosis response protein 4 Pawr

bcl2-like14 (apoptosis faciliator) Bcl2l14

thap domain containing, apoptosis associated protein 1 Thapl

cell death-inducing dffa-like effector Cidea

similar to riken cdna 1110007c09 Loc415987

apoptotic peptidase activating factor 1 Apafl

bcl2-like 15 Bcl2l15

Tp53 regulated inhibitor of apoptosis 1 Triapl

apoptosis-inducing, taf9-like domain 1 Apitdl

myeloid cell leukaemia sequence 1 (bcl2-related) Mcl1

activin a receptor, type Acvrl

fas ligand (tnf superfamily, member 6) Faslg

ras homolog gene family, member t1 Rhotl

b6.1 LOC396098

bcl2-associated athanogene 5 RCJMB04_2E5

bcl2-like 1 Bcl2l1

phosphatidylserine receptor RCJMB04_1M8

paired box gene 7 Pax7

b-cell translocation gene 1, anti-proliferative Btg1

Inhibin. alpha Inha

similar to optic atrophy 1 isoform 7 RCJMB04_1M16

d4, zinc and double phd fingers family 2 Dpf2

bcl2-associated athanogene Bag1

tyrosine protein kinase P56LCK

defender against cell death 1 Dad1

fibroblast growth factor receptor 3 (achondroplasia) thanatophoric (dwarfism) Fgfr3

GGA.21928

GGA.24903 

GGA.41240 

GGA.27477 

GGA,36618 

GGA.5708 

GGA.34905

GGA. 17104

GGA.2345

GGA.2856

GGA.34519

GGA.2875

GGA.29896 

GGA. 1088 

GGA. 1247

GGA. 1721 

GGA.4944

GGA.21114

GGA.555

GGA.2396

GGA.6881

GGA.48 

GGA. 16137 

GGA. 11320 

GGA.4960 

GGA. 16413
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Table V .7 Differentially expressed genes identified for each developmental time point when 
compared to ED6 baseline and involved in regulation of biological processes (continued 
overleaf)

ED6 versus ED10

Affymetrix ID Gene name Gene symbol Unigene ID Fold
change

Differentiation
Gga.4723.1.S1_at leukocyte cell derived chemotaxin 1 Lectl GGA.4723 -3.1

Gga.2833.1.S1_at salt-inducible kinase 1 Sikl GGA.2833 2

Proliferation

Gga.3219.1.S1_at c-fos induced growth factor 
(vascular endothelial growth factor
d)

Figf GGA.3219 -2.3

GgaAffx. 11558.1 ,S1 _s_at nudE nuclear distribution gene E 
homolog 1 (A. nidulans)

Nde1 GGA.22352 -1.5

GgaAffx. 1.1.S1_s_at Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B- 
cells Inhibitor, Alpha

Nfkbia GGA.41891 2.4

Gga.895.1.S1_at S100 calcium binding protein A6 S100a6 GGA.22951 1.4

ED6 versus ED12

Affymetrix ID Gene name Gene symbol Unigene ID Fold
change

Differentiation
Gga.4285.1.S1_at ccaat/enhancer binding protein (c/ebp), 

beta
Cebpb GGA.706 2.2

GgaAffx.11738.1 .Sl_s_at early growth response 1 Egr1 GGA.4922 3.2

Gga.3754.2.S1_at 
Gga.3754.1.S1_a_at

hairy and enhancer of split 1, 
(drosophila)

Hes1 GGA.3754 1.6

Gga.2833.1.S1_at salt-inducible kinase 1 Sikl GGA.2833 3.3

Proliferation
Gga.3219.1.S1_at c-fos induced growth factor (vascular 

endothelial growth factor d)
Figf GGA.3219 -2.4

Gga.3754.2.S1_at 
Gga.3754.1 .S1_a_at

hairy and enhancer of split 1, 
(drosophila)

Hes1 GGA.3754 1.6

GgaAffx. 11558.1 ,S1 _s_at nudE nuclear distribution gene E 
homolog 1 (A. nidulans)

Nde1 GGA.22352 -1.6

Gga.709.2.S1_a_at nuclear factor i/b Nfib GGA.709 2

GgaAffx.1.1.S1_s_at Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-cells 
Inhibitor, Alpha

Nfkbia GGA.41891 3.3

GgaAffx.21450.2.S1_s_at transforming growth factor, beta 3 Tgfb3 GGA. 1686 1.6

Gga.895.1.S1_at S100 calcium binding protein A6 S100a6 GGA.22951 1.8

Cell death
Gga.17104.1.S1_at BCL2-like 15 Bcl2l 15 GGA.17104 1.7

Gga.4285.1 .S1_at ccaat/enhancer binding protein (c/ebp), 
beta

Cebpb GGA.706 2.2
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ED6 versus ED14

Affymetrix ID Gene name Gene symbol Unigene ID Fold
change

D ifferentiation
Gga.4285.1.S1_at ccaat/enhancer binding protein (c/ebp), 

beta
Cebpb GGA.706 1.9

Gga.16413.3.S1_at 
Gga.16413.1 A1_a_at

fibroblast growth factor receptor 3 
(achondroplasia, thanatophoric 
dwarfism)

Fgfr3 GGA.16413 1.7

Gga.4723.1.Sl_at leukocyte cell derived chemotaxin 1 Lectl GGA.4723 -2.9

Gga.6399.1.S1_at mal, T-cell differentiation protein-like Mall GGA.6399 2.5

Gga.509.1.S1_at neurotrophic tyrosine kinase, receptor, 
type 3

Ntrk3 GGA.509 1.6

Gga.487.1.S1_at Sema Domain, Immunoglobulin 
Domain (Ig), Short Basic Domain, 
Secreted, (semaphorin) 3A

Sema3a GGA.487 -3.1

Gga.3972.1.S1_at sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3d

Sema3d GGA.3972 -2.5

Gga.2833.1.S1_at salt-inducible kinase 1 Sikl GGA.2833 3.3

Gga.909.1 .S1_at Slit Homolog 2 (Drosophila) Slit2 GGA.909 -1.7

Gga.4213.1.S1_at twisted gastrulation homolog 1 
(drosophila)

Twsgl GGA.4213

Proliferation
Gga.16413.3.S1_at 
Gga. 16413.1. A1 _a_at

Fibroblast Growth Factor Receptor 3 Fgfr3 GGA.16413 1.7

Gga.3219.1.S1_at c-fos induced growth factor (vascular 
endothelial growth factor d)

Figf GGA.3219 -2.9

Gga.709.2. S1 _a_at nuclear factor i/b Nfib GGA.709 1.9

GgaAffx. 1.1.S1_s_at Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-cells 
Inhibitor, Alpha

Nfkbia GGA.41891 3.7

Gga.1479.1.S1_at
Gga.1479.2.S1_a_at

Pleiotrophin Ptn GGA.39450 -3.6

Gga.895.1 .S1_at S100 calcium binding protein A6 S100a6 GGA.22951 1.9

Cell death
Gga.17104.1.S1_at BCL2-like 15 Bcl2l 15 GGA.17104 2.1

Gga.4285.1 .S1_at ccaat/enhancer binding protein (c/ebp), 
beta

Cebpb GGA.706 1.9

Gga. 16413.3.S1_at 
Gga.16413.1.A1_a_at

Fibroblast Growth Factor Receptor 3 Fgfr3 GGA.16413 1.7

Gga.17166.1 .S1_at TNF-related apoptosis inducing ligand­
like

Trail-like GGA. 17166 1.7
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Affymetrix ID

Differentiation
Gga.4285.1 .S1_at

Gga. 16413.3.S1_at 
Gga.16413.1.A1_a_at

Gga.4723.1.S1_at

Gga.6399.1.S1_at

Gga.17397.1.S1_at

Gga. 135.2.S1 _a_at

Gga.4032.1.S1_at

Gga.509.1.S1_at

Gga.487.1.S1_at

Gga.1846.1.S1_at
Gga.1846.1.S2_at

Gga.3972.1.S1_at

Gga.136.1.S1_at

Gga.4345.1.S1_at

Gga.2833.1.S1_at

Gga.909.1.S1_at

Proliferation
GgaAffx.6863.1 .S1 _at

Gga.16413.3.S1_at 
Gga.16413.1 .A1_a_at
Gga.3219.1.S1_at 

GgaAffx.11558.1.S1_s_ 

GgaAffx. l.1.S1_s_at

Gga.1479.1.S1_at 
Gga. 1479.2.S1 _a_at

GgaAffx.21450.2.S1_s_

Gga.895.1.S1_at

ED6 versus ED16

Gene name Gene symbol Unigene ID Fold
changê

ccaat/enhancer binding protein (c/ebp), 
beta

fibroblast growth factor receptor 3 
(achondroplasia, thanatophoric 
dwarfism)

leukocyte cell derived chemotaxin 1

mal, T-cell differentiation protein-like

myeloid differentiation primary 
response gene (88)

neuregulin 1

neuropilin 1

neurotrophic tyrosine kinase, receptor, 
type 3

Sema Domain, Immunoglobulin 
Domain (Ig), Short Basic Domain, 
Secreted, (semaphorin) 3A

sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3c

sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3d

sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3e

Secreted Frizzled-related Protein 2 

salt-inducible kinase 1

Slit Homolog 2 (Drosophila)

epithelial mitogen homolog (mouse) 

Fibroblast Growth Factor Receptor 3

c-fos induced growth factor (vascular 
endothelial growth factor d)

at nudE nuclear distribution gene E 
homolog 1 (A. nidulans)

Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-cells 
Inhibitor, Alpha

Pleiotrophin

at transforming growth factor, beta 3 

S100 calcium binding protein A6

Cebpb GGA.706 1.7

Fgfr3 GGA.16413 1.9

Lectl GGA.4723 -4.3

Mall GGA.6399 4.2

Myd88 GGA. 17397 1.6

Nrg1 GGA. 135 1.6

Nrp1 GGA.4032 -1.9

Ntrkd GGA.509 2.2

Sema3a GGA.487 -3.1

Sema3c GGA.1846 2.1

Sema3d GGA.3972 -2.7

Sema3e GGA.136 2.1

Sfrp2 GGA.4345 -3.2

Sikl GGA.2833 3.4

Slit2 GGA.909 -3.3

Epgn GGA.22922 2.8

Fgfr3 GGA.16413 1.9

Figf GGA.3219 -3.5

Nde1 GGA.22352 2.8

Nfkbia GGA.41891 3.8

Ptn GGA.39450 -4

Tgfb3 GGA.1686 1.7

S100a6 GGA.22951 2.2
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Cell death
Gga.17104.1.S1_at BCL2-like 15 BCI2I15 GGA. 17104 3

Gga.4384.1.S1_at baculoviral iap repeat-containing 2 Birc2 GGA.4384 2.8

Gga.4285.1.S1_at ccaat/enhancer binding protein (c/ebp), 
beta

Cebpb GGA.706 1.7

Gga.16413.3.S1_at 
Gga.16413.1.A1_a_at

Fibroblast Growth Factor Receptor 3 Fgfr3 GGA.16413 1.9

Gga.16560.1.S1_at 
Gga. 16560.2.S1 _a_at 
Gga.16560.2.S1_s_at

myeloid cell leukemia sequence 1 
(bcl2-related)

Mcl1 GGA. 16560 1.8

Gga.7468.1.S1_at 

Gga.17166.1.S1_at

PERP, TP53 Apoptosis Effector

TNF-related apoptosis inducing ligand­
like

Perp

Trail-like

GGA.7468 

GGA.17166

1.9

1.9

ED6 versus ED18

Affymetrix ID Gene name Gene symbol Unigene ID Fold
change

Differentiation
Gga.16413.3.S1_at 
Gga. 16413.1 .A1 _a_at

fibroblast growth factor receptor 3 
(achondroplasia, thanatophoric 
dwarfism)

Fgfr3 GGA.16413 2

Gga.4723.1.S1_at leukocyte cell derived chemotaxin 1 Lectl GGA.4723 -4.4

Gga.6399.1.S1_at mal, T-cell differentiation protein-like Mall GGA.6399 4.9

Gga.5002.1.S1_at midkine (neurite growth-promoting 
factor 2)

Mdk GGA.5002 -1.9

Gga.17397.1.S1_at

Gga.135.2.S1_a_at

myeloid differentiation primary 
response gene (88) 
Neuregulin 1

Myd88

Nrg1

GGA. 17397 

GGA. 135

2.1

1.6

Gga.4032.1.S1_at neuropilin 1 Nrp1 GGA.4032 -2.4

Gga.509.1.S1_at neurotrophic tyrosine kinase, receptor, 
type 3

Ntrk3 GGA.509 2.4

GgaAffx.12403.1.S1_s_at pdz and lim domain 7 (enigma) Pdlim7 GGA.7667 2.8

Gga.487.1.S1_at Sema Domain, Immunoglobulin 
Domain (Ig), Short Basic Domain, 
Secreted, (semaphorin) 3A

Sema3a GGA.487 -3.1

Gga.1846.1.S1_at
Gga.1846.1.S2_at

sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3c

Sema3c GGA.1846 -2.1

Gga.3972.1.Sl_at sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3d

Sema3d GGA.3972 -2.9

Gga.136.1.S1_at sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3e

Sema3e GGA.136 2.1

Gga.2833.1.S1_at salt-inducible kinase 1 Sikl GGA.2833 3.2

Gga.4345.1 .S1_at 

Gga.2494.1.S1_at

Secreted Frizzled-related Protein 2 

Xanthine Dehydrogenase

Sfrp2

Xdh

GGA.4345 

GGA.2494

-4.4

1.7
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Proliferation
GgaAffx.6863.1.Sl_at epithelial mitogen homolog (mouse) Epgn GGA.22922 3.3

Gga.16413.3.Sl_at 
Gga.16413.1.A1 _a_at 
Gga.3219.1.S1_at

Fibroblast Growth Factor Receptor 3

c-fos induced growth factor (vascular 
endothelial growth factor d)

Fgfr3

Figf

GGA.16413

GGA.3219

2

-3.4

Gga.4390.2.S1_a_at ferritin, heavy polypeptide 1 Fth1 GGA.4390 1.6

Gga.5002.1.Sl_at midkine (neurite growth-promoting 
factor 2)

Mdk GGA.5002 -1.9

GgaAffx. 1.1.S1_s_at Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-cells 
Inhibitor, Alpha

Nfkbia GGA.41891 3.7

Gga.1479.1.S1_at
Gga.1479.2.S1_a_at

Pleiotrophin Ptn GGA.39450 -4.1

Gga.895.1.S1_at S100 calcium binding protein A6 S100a6 GGA.22951 2.2

GgaAffx.21450.2.S1_s_at transforming growth factor, beta 3 Tgfb3 GGA. 1686 1.6

Cell death
Gga.17104.1.S1_at BCL2-like 15 BCI2I15 GGA.17104 3

Gga. 1234.1 .S1 _s_at bh3 interacting domain death agonist Bid GGA.1234 -1.6

Gga.4384.1.S1_at baculoviral iap repeat-containing 2 Birc2 GGA.4384 2.9

Gga. 16413.3. S1 _at 
Gga.16413.1.A1_a_at 
Gga.16560.1.S1_at 
Gga. 16560.2.S1_a_at 
Gga. 16560.2.S1 _s_at 
GgaAffx.6512.1.S1_at

Fibroblast Growth Factor Receptor 3

myeloid cell leukemia sequence 1 
(bcl2-related)

PRKC, apoptosis, WT1, regulator

Fgfr3

Mcl1

Pawr

GGA.16413 

GGA. 16560

GGA.24903

2

1.7

-1.6

Gga.7468.1.S1_at PERP, TP53 Apoptosis Effector Perp GGA.7468 2.2

Gga.17166.1.S1_at TNF-related apoptosis inducing ligand­
like

Trail-like GGA. 17166 1.7

ED6 versus ED21

Affymetrix ID Gene name Gene symbol Unigene ID Fold
changi

Differentiation
Gga. 16413.3.S1_at 
Gga. 16413.1 .A1 _a_at

fibroblast growth factor receptor 3 
(achondroplasia, thanatophoric 
dwarfism)

Fgfr3 GGA.16413 1.8

Gga.4723.1.S1_at leukocyte cell derived chemotaxin 1 Lectl GGA.4723 -4.7

Gga.6399.1.S1_at mal, T-cell differentiation protein-like Mall GGA.6399 5.3

Gga.5002.1.S1_at 

Gga. 17397.1.S1_at 

Gga.4032.1.S1_at

midkine (neurite growth-promoting 
factor 2)
myeloid differentiation primary 
response gene (88) 
neuropilin 1

Mdk

Myd88

Nrp1

GGA.5002 

GGA. 17397 

GGA.4032

-2.7

3

3.1

Gga.681.1.S1_at
Gga.681.2.S1_a_at

neurotrophic tyrosine kinase, receptor, 
type 2

Ntrk2 GGA.681 1.9

Gga.509.1.S1_at 

GgaAffx. 12403.1 .S1 _s_at

neurotrophic tyrosine kinase, receptor, 
type 3
pdz and lim domain 7 (enigma)

Ntrk3

Pdlim7

GGA.509 

GGA.7667

1.6

-2

Gga.487.1.S1_at Sema Domain, Immunoglobulin 
Domain (Ig), Short Basic Domain,

Sema3a GGA.487 -2.1
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Secreted, ( emaphoring) 3A

Gga.1846.1.S1 at 
Gga.1846.1.S2_at

sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3c

Sema3c GGA. 1846 -2.3

Gga.3972.1.S1_at sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3d

Sema3d GGA.3972 -2.8

Gga.136.1.S1_at sema domain, immunoglobulin domain 
(ig), short basic domain, secreted, 
(semaphorin) 3e

Sema3e GGA. 136 2

Gga.2833.1.S1_at salt-inducible kinase 1 Sikl GGA.2833 3.4

Gga.4830.1.Sl_at 
Gga.4830.1 .S2_at 
Gga.4345.1.S1_at

Secreted Frizzled-related Protein 1 

Secreted Frizzled-related Protein 2

Sfrpl

Sfrp2

GGA.4830

GGA.4345

-1.9

-6.5
Gga.909.1.Sl_at Slit Homolog 2 (Drosophila) Slit2 GGA.909 -4.1
Gga.2494.1.S1_at Xanthine Dehydrogenase Xdh GGA.2494 2.5
Proliferation
GgaAffx.6863.1 .S1 _at epithelial mitogen homolog (mouse) Epgn GGA.22922 3.8

Gga.16413.3.S1_at
Gga.16413.1.A1_a_at
Gga.3219.1.S1̂ at

Fibroblast Growth Factor Receptor 3

c-fos induced growth factor (vascular 
endothelial growth factor d)

Fgfr3

Figf

GGA.16413

GGA.3219

1.8

-3.9

Gga.5002.1.Sl_at 

GgaAffx. 1.1 .S1 _s_at

midkine (neurite growth-promoting 
factor 2)
Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-cells 
Inhibitor, Alpha

Mdk

Nfkbia

GGA.5002 

GGA.41891

-2.7

2.8

Gga.71.1.S1_at platelet-derived growth factor beta 
polypeptide (simian sarcoma viral (v- 
sis) oncogene homolog)

Pdgfb GGA.71 -1.6

Gga.1479.1.S1_at 
Gga. 1479.2.S1_a_at 
Gga.895.1.S1_at

Pleiotrophin

S100 calcium binding protein A6

Ptn

S100a6

GGA.39450 

GGA.22951

-3.9

2.3

Cell death
Gga.17104.1.Sl_at BCL2-like 15 BCI2I15 GGA.17104 2.8

Gga. 1234.1 .S1 _s_at bh3 interacting domain death agonist Bid GGA. 1234 -2.3

Gga.4384.1.S1_at baculoviral iap repeat-containing 2 Birc2 GGA.4384 2

Gga.1551.2.S1_a_at 

Gga. 10204.1.S1_s_at

baculoviral iap repeat-containing 5 
(survivin)
caspase 1, apoptosis-related cysteine

Birc5

Caspl

GGA.1551 

GGA. 10204

-1.9

1.8

GgaAffx.5618.1 .S1_at caspase 7, apoptosis-related 
cysteine peptidase

Casp7 GGA.39052 2.3

Gga. 16413.3. S1_at 
Gga. 16413.1. A1 _a_at 
GgaAffx.23449.1 .S1_at

Gga.4846.1.S2_at 
Gga.4846.1 .S1_at 
Gga.16560.1.S1_at 
Gga.16560.2.S1_a_at 
Gga. 16560.2.S1 _s_at

Fibroblast Growth Factor Receptor 3

Interferon Induced With Helicase C 
Domain
anti-apoptotic NR 13

myeloid cell leukemia sequence 1 
(bcl2-related)

Fgfr3

Ifihl

LOC395193

Mcl1

GGA.16413 

GGA. 16457 

GGA.43428 

GGA. 16560

1.8

2.4

1.6

1.7

GgaAffx.6512.1 .S1 _at PRKC, apoptosis, WT1, regulator Pawr GGA.24903 -1.6

Gga.7468.1.S1_at PERP, TP53 Apoptosis Effector Perp GGA.7468 2.1
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Gga.104.1.Sl_at X-linked inhibitor of apoptosis Xiap GGA.104 1.8

ED10 versus ED6
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.1171.1.S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA.1171 1.8

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 4.7

GgaAffx. 1.1.S1_s_at nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha

Nfkbia GGA.41891 2.4

Gga.1899.1.S1_a_at nestin Nes GGA. 1899 -3.1

Gga.157.1.S1_at runt-related transcription factor 2 Runx2 GGA. 157 2.1

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA. 199 -3.7

Table V.8 Stem cell-related genes identified within differentially expressed genes in 
to ED6 and posthatch basline (continued overleaf)

ED10 versus ED21
Affymetrix ID Gene name Gene symbol Unigene ID

comparison

Fold
change

Gga.1171.1.S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA.1171 1.9

Gga.34.1.S1_at calcium channel, voltage-dependent, 
gamma subunit 4

Cacng4 GGA.34 -2.1

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 3

Gga. 16560.2.S1 _s_at myeloid cell eukaemia sequence 1 
(BCL2-related)

Men GGA.34519 1.6

Gga.4846.1.S1_at
Gga.4846.1.S2_at

anti-apoptotic NR13 LOC395193 GGA.43428 1.5

Gga.3776.1.S1_at hippocalcin-like 1 HpcaM GGA.3776 3.6

Gga.13301.1.S1_at glycerophosphodiester phosphodiesterase 
domain containing 5

Gdpd5 GGA. 13301 -2.1

Gga.4982.1.S1_at Aldolase A LOC395492 GGA.4982 1.4

Gga.7004.1.S1_at similar to stem cell antigen 2 LOC420301 GGA.7004 2.2

Gga.170.1.Sl_at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -3.7

Gga.4058.1 .S2_s_at 
Gga.4058.1.S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -2.7

Gga.9293.1 .S1_at 
Gga.3994.3.S1_x_at

fibronectin 1 Fn1 GGA.3994 -3.3

Gga.4046.1.S1_at Meis homeobox 2 Meis2 GGA.4046 -2.4

Gga.4457.1 .S1_s_at 
GgaAffx.11648.1.S1_at

B-cell CLL/lymphoma 6 (zinc finger protein 
51)

Bcl6 GGA.42204 3.2

Gga.764.1.S1_at activin A receptor, type I IB Acvr2b GGA.764 -1.6

Gga.3950.1.S1_at bone morphogenetic protein 2 Bmp2 GGA.3950 -2.3

Gga.2283.1.S2_at delta-like 1 (Drosophila) DIM GGA.2283 -2.6

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein 
(C/EBP), Beta

Cebpb GGA.4285 -2.3
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Gga.15614.1.Sl_a_at PTK2 protein tyrosine kinase 2 Ptk2 GGA.42870 -1.5

Gga.4971.1.S1_at potassium voltage-gated channel, shaker- 
related subfamily, beta member 1

Kcnabl GGA.4971 -2

ED12 versus ED6
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.9293.1.S1_at
Gga.3994.3.Sl_x_at

fibronectin 1 Fn1 GGA.3994 -2.2

Gga.6070.1.Sl_at prostate stem cell antigen Psca GGA.6070 5.9

Gga.1171.1.S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA.1171 2.7

GgaAffx. 1.1.S1_s_at nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha

Nfkbia GGA.41891 2.5

Gga.1899.1.S1_a_at nestin Nes GGA.1899 -4

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA. 199 -3.6

Gga.209.2.S1_at
Gga.209.1.S1_a_at

wingless-type MMTV integration site 
family, member 3

Wnt3 GGA.209 1.2

GgaAffx.21450.2.S 1 _s_at transforming growth factor, beta 3 Tgfb3 GGA.42150 1.6

Gga.4457.1.S1_s_at 
GgaAffx.11648.1.S1_at

B-cell CLL/lymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 1.7

Gga.758.1.S1_at

Gga.488.1.S1_at

LIM homeobox transcription factor 1, 
beta
achaete-scute complex homolog 1 
(Drosophila)

Lmxlb

Ascii

GGA.758 

GGA.488

-2.4

-3.9

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein 
(C/EBP), Beta

Cebpb GGA.4285 2.2

ED12 versus ED21
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.606.1.S1_at -kit Hardy-Zuckerman 4 feline sarcoma 

viral oncogene homolog
Kit GGA.606 2.9

Gga.34.1.S1_at calcium channel, voltage-dependent, 
gamma subunit 4

Cacng4 GGA.34 -1.7

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 1.8

Gga.3776.1.S1_at hippocalcin-like 1 HpcaM GGA.3776 2.9

Gga.13301.1.S1_at glycerophosphodiester 
phosphodiesterase domain containing 5

Gdpd5 GGA. 13301 -2.3

Gga.4982.1.S1_at Aldolase A LOC395492 GGA.4982 1.3

Gga.170.1.S1_at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -3.2

Gga.4058.1 .S2_s_at 
Gga.4058.1.S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -2.3

Gga.4846.1.S1_at 
Gga.4846.1.S2_at 
Gga.4046.1 .S1_at

anti-apoptotic NR13 

Meis homeobox 2

LOC395193

Meis2

GGA.43428

GGA.4046

1.4

-1.9
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Gga.4457.1.S1_s_at 
GgaAffx.11648.1.S1_at

B-cell CLL/lymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 2.2

Gga.764.1.Sl_at activin A receptor, type IIB Acvr2b GGA.764 -1.6

Gga.2283.1.S2_at delta-like 1 (Drosophila) DIM GGA.2283 -2.4

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein 
(C/EBP), Beta

Cebpb GGA.4285 -2.9

Gga.7004.1.S1_at similar to stem cell antigen 2 LOC420301 GGA.7004 2.4

ED14 versus ED6
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.488.1.S1_at achaete-scute complex homolog 1 

(Drosophila)
AscM GGA.488 -4

Gga.170.1.S1 at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -3.2

Gga.209.2.S1_at
Gga.209.1.S1_a_at

wingless-type MMTV integration site 
family, member 3

Wnt3 GGA.209 1.3

Gga.9293.1.S1_at 
Gga.3994.3.S1 _x_at

fibronectin 1 Fn1 GGA.3994 -3.5

Gga.4457.1.S1 s at 
GgaAffx. 11648.1.S1_at

B-cell CLMymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 2.8

Gga.4285.1.S1_at

GgaAffx.21450.2.S1_s_a1

CCAAT/enhancer Binding Protein 
(C/EBP), Beta
transforming growth factor, beta 3

Cebpb

Tgfb3

GGA.4285

GGA.42150

1.9

1.6

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA. 199 -3.8

Gga.758.1.Sl_at LIM homeobox transcription factor 1, 
beta

Lmxlb GGA.758 -2.8

Gga.1171.1.S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA. 1171 3

GgaAffx. 1.1.S1_s_at nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha

Nfkbia GGA.41891 3.7

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 6.9

Gga.1899.1.S1_a_at nestin Nes GGA. 1899 -3.9

Gga.4046.1. S1_at Meis homeobox 2 Meis2 GGA.4046 -2.1

ED14 versus ED21
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.606.1 .S1_at -kit Hardy-Zuckerman 4 feline sarcoma 

viral oncogene homolog
Kit GGA.606 3.4

Gga.3776.1.S1_at hippocalcin-like 1 Hpcall GGA.3776 2.1

Gga.13301.1.S1_at glycerophosphodiester phosphodiesterase 
domain containing 5

Gdpd5 GGA. 13301 -2

Gga.170.1.S1_at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -1.7

Gga.4058.1 .S2_s_at 
Gga.4058.1.S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -2.1

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein Cebpb GGA.4285 -2.6
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Gga.7004.1.Sl_at

(C/EBP), Beta

similar to stem cell antigen 2 LOC420301 GGA.7004 1.8

ED16 versus ED6
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.488.1.S1_at achaete-scute complex homolog 1 

(Drosophila)
Ascii GGA.488 -4.1

Gga.170.1.S1_at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -5.1

Gga.7004.1.S1_at similar to stem cell antigen 2 LOC420301 GGA.7004 2.7

Gga.4058.1 .S2_s_at 
Gga.4058.1.Sl_at 
GgaAffx.20325.1 .S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -2.2

Gga.9293.1.S1_at 
Gga.3994.3.S1 _x_at

fibronectin 1 Fn1 GGA.3994 -4.5

Gga.4457.1 ,S1 _s_at 
GgaAffx.11648.1.Sl_at

B-cell CLL/lymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 3.6

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein 
(C/EBP), Beta

Cebpb GGA.4285 1.7

GgaAffx.21450.2.S1 _s_at transforming growth factor, beta 3 Tgfb3 GGA.42150 1.7

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA.199 -3.6

Gga.758.1.S1_at LIM homeobox transcription factor 1, 
beta

Lmxlb GGA.758 -2.8

Gga.1171.1 .S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA. 1171 3.2

GgaAffx. 1.1.S1_s_at nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha

Nfkbia GGA.41891 3.8

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 7.2

Gga.4046.1.S1_at Meis homeobox 2 Meis2 GGA.4046 -2.3

Gga.3776.1.S1_at hippocalcin-like 1 HpcaM GGA.3776 -2.1

Gga.16560.2.S1_s_at 
Gga. 16560.2.S1 _a_at

myeloid cell eukaemia sequence 1 
(BCL2-related)

Mcl1 GGA.34519 1.6

Gga.34.1.S1_at calcium channel, voltage-dependent, 
gamma subunit

Cacng4 GGA.34 -1.8

Gga.2283.1.S2_at delta-like 1 (Drosophila) DII1 GGA.2283 -2.1

Gga.1899.1.S1_a_at nestin Nes GGA. 1899 -4.1

ED16 versus ED21
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.4058.1.S2 s at 
Gga.4058.1.S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -1.2

Gga.4285.1.S1_at CCAAT/enhancer Binding Protein 
(C/EBP), Beta

Cebpb GGA.4285 -2.4

Gga.606.1.S1_at -kit Hardy-Zuckerman 4 feline sarcoma 
viral oncogene homolog

Kit GGA.606 3.3
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ED 18 versus ED6
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.488.1 .S1_at achaete-scute complex homolog 1 

(Drosophila)
AscM GGA.488 -3.9

Gga.170.1.S1 at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -5.3

Gga.7004.1.S1_at similar to stem cell antigen 2 LOC420301 GGA.7004 3.4

Gga.4058.1.S2_s_at 
Gga.4058.1.S1_at 
GgaAffx.20325.1 ,S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -2.8

Gga.9293.1.S1_at 
Gga.3994.3.S1 _x_at

fibronectin 1 Fn1 GGA.3994 -4.1

Gga.4457.1.S1_s_at 
G gaAffx. 11648.1. S1 _at

B-cell CLL/lymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 3.8

GgaAffx.21450.2.S1_s_at transforming growth factor, beta 3 Tgfb3 GGA.42150 1.6

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA. 199 -3.6

Gga.758.1.S1_at 

Gga.1171.1.S1_at

LIM homeobox transcription factor 1, 
beta
lymphocyte antigen 6 complex, locus E

Lmxlb

Ly6e

GGA.758 

GGA.1171

-2.8

3.5

GgaAffx. 1.1.S1_s_at nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha

Nfkbia GGA.41891 3.7

Gga.6070.1.S1_at prostate stem cell antigen Psca GGA.6070 7.4

Gga.4046.1.S1_at Meis homeobox 2 Meis2 GGA.4046 -2.5

Gga.3776.1.S1_at hippocalcin-like 1 HpcaM GGA.3776 -2.8

Gga.16560.2.S1_s_at 
Gga. 16560.2.S1 _a_at

myeloid cell eukaemia sequence 1 
(BCL2-related)

Men GGA.34519 1.7

Gga.34.1.S1_at calcium channel, voltage-dependent, 
gamma subunit

Cacng4 GGA.34 -2.1

Gga.2283.1.S2_at delta-like 1 (Drosophila) DIM GGA.2283 -2.2

Gga.2305.1.S1_at chemokine (C-X-C motif) receptor 4 Cxcr4 GGA.2305 -2.8

Gga.4367.1.S1 at 
Gga.4846.1.S1_at 
Gga.4846.1.S2_at 
Gga.1899.1.S1_a_at

anti-apoptotic NR13 

nestin

LOC395193

Nes

GGA.43428 

GGA. 1899

1.5

-5

ED6 versus ED21
Affymetrix ID Gene name Gene symbol Unigene ID Fold

change
Gga.606.1 .S1_at -kit Hardy-Zuckerman 4 feline sarcoma 

viral oncogene homolog
Kit GGA.606 2.9

Gga.1171.1.S1_at lymphocyte antigen 6 complex, locus E Ly6e GGA 1171 3.7

Gga.34.1.S1_at calcium channel, voltage-dependent, 
gamma subunit

Cacng4 GGA.34 -1.9

GgaAffx. 1.1.S1_s_at 

Gga.6070.1.S1_at

nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha 
prostate stem cell antigen

Nfkbia

Psca

GGA.41891

GGA.6070

2.8

7.7

Gga. 16560.2.S1 _s_at myeloid cell leukemia sequence 1 (BCL2- McM GGA.34519 1.7
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Gga.16560.2.S1 _a_at related)

Gga.4367.1 ,S1_at 
Gga.4846.1.S1 at 
Gga.4846.1.S2_at

anti-apoptotic NR 13 LOC395193 GGA.43428 1.6

Gga.488.1.S1_at achaete-scute complex homolog 1 
(Drosophila)

Asch GGA.488 -4

Gga.3776.1 .S1_at hippocalcin-like 1 Hpcall GGA.3776 3.1

Gga.13301.1.S1_at glycerophosphodiester 
phosphodiesterase domain containing 5

Gdpd5 GGA. 13301 -1.9

Gga.7004.1.S1_at similar to stem cell antigen 2 LOC420301 GGA.7004 2.7

Gga.170.1.S1_at 
Gga.170.1.S2_at

wingless-type MMTV integration site 
family, member 2B

Wnt2b GGA. 170 -4.9

Gga.4058.1 .S2_s_at 
Gga.4058.1 .S1_at

Myristoylated alanine-rich C kinase 
substrate (MARCKS)

LOC396473 GGA.4058 -3.4

Gga.9293.1.S1_at 
Gga.3994.3.S1_x_at

fibronectin 1 Fn1 GGA.3994 -4.2

Gga.2305.1.S1_at chemokine (C-X-C motif) receptor 4 Cxcr4 GGA.2305 -2.5

Gga.758.1 .S1_at LIM homeobox transcription factor 1, beta Lmxlb GGA.758 -3

Gga. 1899.1.S1_a_at nestin Nes GGA. 1899 -3.8

Gga.4046.1.S1_at Meis homeobox 2 Meis2 GGA.4046 -3.2

Gga.4457.1.S1 _s_at 
GgaAffx.11648.1 .S1_at

B-cell CLL/lymphoma 6 (zinc finger 
protein 51)

Bcl6 GGA.42204 3.9

Gga.764.1.S1_at activin A receptor, type I IB Acvr2b GGA.764 -1.8

Gga.3950.1.S1_at bone morphogenetic protein 2 Bmp2 GGA.3950 -1.8

Gga.2283.1.S2_at delta-like 1 (Drosophila) DIM GGA.2283 -2.5

Gga.199.1.S1_at atonal homolog 7 (Drosophila) Atoh7 GGA. 199 -3.5
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Table V.9 Genes identified as ‘stem cell-related’ by gene ontology (continued overleaf)

Affymetrix ID Gene name Gene symbol Unigene ID GO biological process

GgaAffx.22982.1.S1_at transforming growth Tgf(52
factor, beta 2

GGA. 10343 cell morphogenesis
skeletal system development
blood vessel development
eye development
response to hypoxia
hair follicle development
protein amino acid phosphorylation
induction of apoptosis
SMAD protein nuclear translocation
regulation of epithelial cell
proliferation
epithelial cell migration
positive regulation of
phosphoinositide 3-kinase cascade
extracellular matrix organization
collagen fibril organization
regulation of cell growth
hair follicle morphogenesis
positive regulation of stress-activated
MAPK cascade
wound healing
regulation of apoptosis
somatic stem cell division
neuron fate commitment

GO molecular function

beta-amyloid binding 
receptor signaling 
protein serine/threonine 
kinase activity 
receptor binding 
type II transforming 
growth factor beta 
receptor binding 
transforming growth 
factor beta receptor 
binding
protein binding 
growth factor activity 
protein
homodimerization
activity

GgaAffx. 1.1 .S1 _s_at

Gga.5164.1.S1_at

Gga.2719.2.S1_a_at
Gga.2719.1.S2_at

nuclear factor of kappa Nfkbia
light polypeptide gene 
enhancer in B-cells 
inhibitor, alpha
BCL2-related protein A1 Bcl2a1

presenilin 2 (Alzheimer Psen2
disease 4)

GGA.41891 regulation of fibroblast proliferation

GGA.5164 regulation of apoptosis protein binding

GGA.2719 Notch signaling pathway peptidase activity
intracellular signaling cascade hydrolase activity

GO cellular component

extracellular region
axon
cell soma

cytoplasm

Golgi membrane
endoplasmic reticulum
endoplasmic reticulum
membrane
Golgi apparatus
membrane
integral to membrane
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Gga.16560.1.S1_at myeloid cell leukemia Mcl1
Gga.16560.2.S1_s_at sequence 1 (BCL2-
Gga.16560.2.S1_a_at related)
Gga.4367.1.S1_at

Gga.1247.1 .S1_at B6.1 LOC396098

Gga.4846.1 ,S1_at anti-apoptotic NR13 LOC395193
Gga.4846.1 ,S2_at

Gga.3864.1.S2_at presenilin 1 (Alzheimer Psenl
Gga.3864.1 ,S1_at disease 3)

Gga.606.1.S1_at -kit Hardy-Zuckerman 4 Kit
feline sarcoma viral 
oncogene homolog

Gga.1171.1.S1_at lymphocyte antigen 6 Ly6e 
complex, locus E

GGA.34519 

GGA. 1247

GGA.43428 

GGA.3864

GGA.606

GGA 1171

regulation of apoptosis

DNA fragmentation involved in
apoptosis
apoptosis
induction of apoptosis 
activation of caspase activity 
homophilic cell adhesion 
apoptotic mitochondrial changes

apoptosis
regulation of apoptosis

activation of MAPKK 
blood vessel development 
cell fate specification 
somitogenesis 
neuron migration
protein amino acid phosphorylation
hemopoietic progenitor cell
differentiation
Notch signaling pathway
negative regulation of protein kinase
activity
regulation of epidermal growth factor 
receptor
protein amino acid phosphorylation 
transmembrane receptor protein 
tyrosine kinase signaling pathway

protein binding 
protein
heterodimerization
activity

death receptor activity 
protein dimerization 
activity

sugar binding

nucleotide binding 
protein kinase activity 
protein tyrosine kinase 
activity
transmembrane receptor 
protein tyrosine kinase 
activity
receptor activity 
ATP binding 
kinase activity 
transferase activity

integral to plasma 
membrane

plasma membrane 
membrane 
integral to membrane 
integral to membrane

membrane 
integral to membrane

plasma membrane 
membrane 
anchored to 
membrane
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Gga.488.1. S1_at 

Gga.199.1.S1_at

Gga.34.1.S1_at

Gga.4971.1.S1_at

Gga.13301.1.S1_at

Gga.6070.1.S1_at

Gga.3776.1.S1_at

Gga.7004.1.S1_at

Gga.4285.1.S1_at

achaete-scute complex Ascii 
homolog 1 (Drosophila)

atonal homolog 7 Atoh7
(Drosophila)

calcium channel, C a c n g 4

voltage-dependent,
gamma subunit
potassium voltage-gated K c n a b l  
channel, shaker-related 
subfamily, beta member 
1

glycerophosphodiester 
phosphodiesterase 
domain containing 5

prostate stem cell 
antigen
hippocalcin-like 1

similar to stem cell 
antigen 2

CCAAT/enhancer 
Binding Protein (C/EBP), 
Beta

Gdpd5

Psca

HpcaH

LOC420301

Cebpb

GGA.488 

GGA.199

GGA.34 

GGA.4971

GGA. 13301

GGA.6070

GGA.3776

GGA.7004

GGA.4285

regulation of transcription DNA binding nucleus
transcription regulator 
activity

transcription DNA binding
regulation of transcription, DNA- transcription regulator
dependent activity
multicellular organismal development
nervous system development
circadian rhythm
entrainment of circadian clock
cell differentiation
regulation of transcription

calcium ion transport 
transmission of nerve impulse

transport 
ion transport 
potassium ion transport 
oxidation reduction

glycerol metabolic process 
lipid metabolic process

structural molecule activity 
voltage-gated calcium 
channel activity 
ion channel activity 
voltage-gated ion channel 
activity
voltage-gated potassium 
channel activity 
oxidoreductase activity 
phosphoric diester 
hydrolase activity 
glycerophosphodiester 
phosphodiesterase activity

calcium ion binding

embryonic placenta development 
transcription
regulation of transcription, DNA-
dependent
anti-apoptosis
induction of apoptosis
neuron differentiation
regulation of interleukin-6
biosynthetic process
fat cell differentiation

DNA binding
transcription factor activity 
RNA polymerase II 
transcription factor activity, 
enhancer binding 
protein binding 
transcription activator 
activity
protein homodimerization 
activity

nucleus

tight junction 
membrane 
integral to membrane 
cytoplasm
integral to membrane

nucleus
cytoplasm

305



Gga.4058.1.S2_s_at 
Gga.4058.1 ,S1_at

Gga.1899.1.S1_a_at 

Gga.4982.1.S1_at

Gga.4046.1. S1_at

Myristoylated alanine- LOC396473
rich C kinase substrate
(MARCKS)

nestin Nes

Aldolase A LOC395492

Meis homeobox 2 Meis2

GGA.4058 

GGA. 1899 

GGA.4982

GGA.4046

Gga.2283.1.S2_at delta-like 1 (Drosophila) Dill GGA.2283

positive regulation of transcription sequence-specific DNA
positive regulation of transcription binding
from RNA polymerase II promoter protein heterodimerization

activity
protein dimerization activity

actin binding 
calmodulin binding

structural molecule activity

glycolysis 
metabolic process

regulation of transcription, DNA- 
dependent
regulation of transcription

catalytic activity 
fructose-bisphosphate 
aldolase activity 
lyase activity

transcription factor activity 
sequence-specific DNA 
binding

somitogenesis 
somite specification 
cell communication 
Notch signaling pathway 
multicellular organismal development 
determination of left/right symmetry 
compartment specification 
negative regulation of cell 
differentiation
negative regulation of auditory 
receptor cell differentiation 
inner ear development

Notch binding 
calcium ion binding 
protein binding

cytoplasm
cytoskeleton
membrane

intermediate filament

nucleus

plasma membrane 
membrane 
integral to membrane 
cytoplasmic vesicle
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Gga.3950.1.S1_at

Gga.170.1.S1_at 
Gga.170.1.S2_at

Gga.4457.1.S1_s_at 
GgaAffx.11648.1.S1_at

bone morphogenetic Bmp2 
protein 2

wingless-type MMTV Wnt2b 
integration site family, 
member 2B

B-cell CLL/lymphoma 6 Bcl6 
(zinc finger protein 51)

GGA.3950

GGA. 170

GGA.42204

osteoblast differentiation 
epithelial to mesenchymal transition 
inflammatory response 
multicellular organismal development 
negative regulation of cell 
proliferation
embryonic development
organ morphogenesis
cell differentiation
BMP signaling pathway
negative regulation of gene-specific
transcription
growth
cell fate commitment 
positive regulation of cell 
differentiation
positive regulation of osteoblast 
differentiation
negative regulation of cell cycle 
positive regulation of transcription

Wnt receptor signaling pathway, 
calcium modulating pathway 
multicellular organismal development 
Wnt receptor signaling pathway

protein import into nucleus, 
translocation
negative regulation of transcription 
from RNA polymerase II promoter 
cell morphogenesis 
negative regulation of cell-matrix 
adhesion
germinal center formation
negative regulation of T-helper 2 type
immune response
regulation of transcription, DNA-
dependent
response to DNA damage stimulus 
Rho protein signal transduction 
protein localization 
actin cytoskeleton organization 
negative regulation of cell growth 
regulation of Rho GTPase activity 
negative regulation of mast cell

cytokine activity 
protein binding 
growth factor activity 
specific transcriptional 
repressor activity

signal transducer activity

nucleic acid binding 
DNA binding 
chromatin binding 
protein binding 
zinc ion binding 
transcription repressor 
activity
chromatin DNA binding 
sequence-specific DNA 
binding
metal ion binding

extracellular region 
extracellular space

extracellular region 
proteinaceous 
extracellular matrix

intracellular 
nucleus 
replication fork
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Gga.15614.1.S1_a_at PTK2 protein tyrosine PTK2 
kinase 2

Gga.764.1 .S1_at activin A receptor, type Acvr2b
IIB

Gga.9293.1.S1_at fibronectin 1 Fn1
Gga.3994.3.S1_x_at

GGA.42870

GGA.764

GGA.3994

cytokine production 
negative regulation of Rho protein 
signal transduction 
regulation of cell proliferation 
regulation of apoptosis 
regulation of differentiation

protein amino acid phosphorylation nucleotide binding cytoplasm
signal complex assembly SH2 domain binding cytoskeleton

protein tyrosine kinase plasma membrane
activity focal adhesion
non-membrane spanning membrane
protein tyrosine kinase 
activity
signal transducer activity 
protein binding 
ATP binding 
kinase activity 
transferase activity

cell junction

protein amino acid phosphorylation nucleotide binding cytoplasm
signal transduction magnesium ion binding cell surface
transmembrane receptor protein protein kinase activity membrane
serine/threonine kinase signaling protein serine/threonine integral to membrane
pathway kinase activity
anterior/posterior pattern formation transmembrane receptor
positive regulation of bone protein serine/threonine
mineralization kinase activity
activin receptor signaling pathway receptor signaling protein
positive regulation of activin receptor serine/threonine kinase
signaling pathway activity
regulation of transcription receptor activity
positive regulation of osteoblast transforming growth factor
differentiation beta receptor activity 

ATP binding 
kinase activity 
transferase activity 
activin receptor activity 
growth factor binding 
manganese ion binding 
metal ion binding

acute-phase response protein binding extracellular region
cell-substrate junction assembly heparin binding proteinaceous
cell adhesion peptidase activator activity extracellular matrix
cell-matrix adhesion basement membrane
regulation of cell shape apical plasma
wound healing membrane
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Gga.2305.1.S1_at

Gga.758.1 .S1_at 

Gga.209.1.S1_a_at

chemokine (C-X-C motif) Cxcr4 
receptor 4

LIM homeobox Lmxlb
transcription factor 1,
beta
wingless-type MMTV Wnt3
integration site family, 
member 3

GGA.2305

GGA.758 

GGA.209

Gga.157.1.S1_at runt-related transcription Runx2 GGA.157
factor 2

patterning of blood vessels
ameboidal cell migration
neuron migration
signal transduction
G-protein coupled receptor protein
signaling pathway
germ cell development
brain development
motor axon guidance
germ cell migration
regulation of cell migration
T cell proliferation

neuron migration 
transcription
regulation of transcription, 
in utero embryonic development 
somitogenesis 
heart looping
Wnt receptor signaling pathway, 
calcium modulating pathway 
multicellular organismal development 
determination of left/right 
symmetry 

axonogenesis
anterior/posterior pattern formation
Wnt receptor signaling pathway
hippocampus development
Wnt receptor signaling pathway in
forebrain neuroblast division
hemopoiesis
mammary gland
development
inner ear morphogenesis
regulation of cell differentiation
somatic stem cell division
paraxial mesodermal cell fate
commitment

regulation of transcription, DNA- 
dependent
regulation of transcription

signal transducer activity 
receptor activity 
G-protein coupled receptor 
activity
C-C chemokine receptor 
activity
C-X-C chemokine receptor 
activity

DNA binding
transcription factor activity

signal transducer activity 
protein binding

DNA binding
transcription factor activity 
ATP binding

extracellular matrix 
integral to membrane 
growth cone

nucleus

extracellular region 
proteinaceous 
extracellular matrix 
extracellular space

nucleus
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Appendix VI

Chapter 6, section 6.6 RT- qPCR data analysis

Table VI.1 Normalised relative expression values and standard errors of seven genes of 
interests (results from three sets of RT-qPCR reactions)

Normalised relative expression ± SE 
ED6 ED10 ED12 ED14 ED16 ED18 ED21

Aqp3 0.0005
±8.326E-05

0.0343
±0.0104

0.3583
±0.0260

0.4744
±0.0802

0.8268
±0.1167

1.1312
±0.1796

0.9258
±0.1394

Psca 0.0020
±0.0003

0.1268
±0.0199

0.3631
±0.0315

0.3255
±0.0352

0.5787
±0.0608

0.8526
±0.1287

1.6276 
±0.2086

Atoh7 10.4127
±1.9995

0.2033
±0.0391

0.0848
±0.0139

0.0477
±0.0092

0.0218
±0.0021

0.0291
±0.0060

0.0170
±0.0047

H2afy2 7.7609
±1.4518

5.9730
±0.9571

5.2191
±0.4654

1.7158
±0.2151

0.2337
±0.0417

0.1055
±0.0145

0.0240
±0.0041

Sfrp2 6.4664
±0.9691

4.7068
±0.6921

4.8101
±0.4922

2.5186
±0.2701

0.1293
±0.0128

0.0985
±0.0124

0.0178
±0.0024

Sh3bgr 10.4127
±1.9392

0.5750
±0.1306

0.4703
±0.0853

0.0778
±0.0127

0.0775
±0.0075

0.0683
±0.0088

0.1453
±0.0270

Kcnj2 7.5944 
±1.4503

0.5260
±0.0960

0.2249
±0.0403

0.0852
±0.0176

0.0773
±0.0127

0.3811
±0.0683

1.5428 
±0.1638

Table VI.2 Shapiro-Wilk results for test of normality of Aqp3 gene expression. The mean 
difference is significant at the 0.05 level.

Aqp3

Shapiro-Wilk

Statistic df Sig.
var .911 21 .058

Table VI.3 One-way ANOVA results obtained from analysis of the Aqp3 gene expression. The 
mean difference is significant at the 0.05 level.

ANOVA

Sum of 
Squares df Mean Square F Sig.

Between Groups 3.494 6 .582 25.371 .000

Within Groups .321 14 .023

Total 3.815 20
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Table VI.4 Levene's test of homogeneity of variances

T e s t  o f  H o m o g e n e i t y  o f  V a r i a n c e s

Levene
Statistic df 1 df2 Sig.

5.897 6 14 .003

Table VI.5 Post-hoc Dunnett T3 test results obtained from analysis of Aqp3 gene expression

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: var 
Dunnett T3

(I) group (J) group
Mean Difference 

(l-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound
ed6 ed10 -.0338372 .0108157 .386 -.140170 .072496

ed12 -.3577988 .0440785 .073 -.791776 .076179
ed14 -.4739555 .1065633 .219 -1.523212 .575301
ed16 -.8263488 .0911983 .059 -1.724311 .071614
ed18 -1.1307246(*) .0658293 .017 -1.778885 -.482565
ed21 -.9252911 .1657942 .014 -2.557769 .707187

ed10 ed6 .0338372 .0108157 .386 -.072496 .140170
ed12 -.3239616 .0453844 .075 -.716753 .068830
ed14 -.4401183 .1071101 .246 -1.469345 .589108
ed16 -.7925115 .0918366 .061 -1.667366 .082342
ed18 -1.09688730 .0667108 .015 -1.714385 -.479390
ed21 -.8914538 .1661461 .155 -2.510788 .727880

ed12 ed6 .3577988 .0440785 .073 -.076179 .791776
ed10 .3239616 .0453844 .075 -.068830 .716753
ed14 -.1161567 .1153192 .980 -.958587 .726274
ed16 -.4685499 .1012911 .135 -1.159993 .222893
ed18 -.77292570 .0792229 .010 -1.242619 -.303232
ed21 -.5674923 .1715531 .330 -2.023647 .888662

ed14 ed6 .4739555 .1065633 .219 -.575301 1.523212

ed10 .4401183 .1071101 .246 -.589108 1.469345

ed12 .1161567 .1153192 .980 -.726274 .958587

ed16 -.3523932 .1402595 .446 -1.127365 .422579

ed18 -.6567690 .1252561 .079 -1.423698 .110160

ed21 -.4513356 .1970870 .540 -1.638627 .735956

ed16 ed6 .8263488 .0911983 .059 -.071614 1.724311
ed10 .7925115 .0918366 .061 -.082342 1.667366

ed12 .4685499 .1012911 .135 -.222893 1.159993

ed14 .3523932 .1402595 .446 -.422579 1.127365

ed18 -.3043758 .1124743 .392 -.953622 .344870

ed21 -.0989423 .1892212 1.000 -1.317503 1.119618

ed18 ed6 1.13072460 .0658293 .017 .482565 1.778885

ed10 1.09688730 .0667108 .015 .479390 1.714385

ed12 .77292570 .0792229 .010 .303232 1.242619
ed14 .6567690 .1252561 .079 -.110160 1.423698

ed16 .3043758 .1124743 .392 -.344870 .953622
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ed21 .2054335 .1783846 .955 -1.119825 1.530692
ed6 .9252911 .1657942 .014 -.707187 2.557769
ed10 .8914538 .1661461 .155 -.727880 2.510788
ed12 .5674923 .1715531 .330 -.888662 2.023647
ed14 .4513356 .1970870 .540 -.735956 1.638627
ed16 .0989423 .1892212 1.000 -1.119618 1.317503
ed18 -.2054335 .1783846 .955 -1.530692 1.119825

* The mean difference is significant at the .05 level.

Table VI.6 Shapiro-Wilk results for test of normality of Atoh7 gene expression. The mean 
difference is significant at the 0.05 level.

Atoh7

Shapiro-Wilk
Statistic df Sig.

transformed! .893 21 .062

Table VI.7 One-way ANOVA results obtained from analysis of the Atoh7 gene expression. The 
mean difference is significant at the 0.05 level.

A N O V A

transformed

Sum of 
Squares df Mean Square F Siq.

Between Groups 86.707 6 14.451 45.660 .000
Within Groups 4.431 14 .316
Total 91.138 20

Table VI.8 Levene's test of homogeneity of variances

transformed

Levene
Statistic df 1 df2 Sig.

2.701 6 14 .059

Table VI.9 Post-hoc Tukey test results obtained from analysis of Atoh7 gene expression

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: transformed 
Tukey HSD __________ ________

(I) group (J) group

Mean
Difference

(l-J)

95% Confidence Interval

Std. Error Sig. Lower Bound Upper Bound

ed6 ed10 3 .827560 .45935 .000 2.2591 5.3960
ed12 4 .484830 .45935 .000 2.9164 6.0533

ed14 5.636720 .45935 .000 4.0682 7.2052

ed16 6.029950 .45935 .000 4.4615 7.5984
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ed18 5.866080 .45935 .000 4.2976 7.4346
ed21 6.154240 .45935 .000 4.5858 7.7227

ed10 ed6 -3.827560 .45935 .000 -5.3960 -2.2591
ed12 .65727 .45935 .778 -.9112 2.2257
ed14 1.809160 .45935 .019 .2407 3.3776
ed16 2 .202390 .45935 .004 .6339 3.7709
ed18 2 .038520 .45935 .008 .4700 3.6070
ed21 2 .326680 .45935 .003 .7582 3.8952

ed12 ed6 -4 .484830 .45935 .000 -6.0533 -2.9164
ed10 -.65727 .45935 .778 -2.2257 .9112
ed14 1.15189 .45935 .228 -.4166 2.7204
ed16 1.54512 .45935 .055 -.0234 3.1136
ed18 1.38125 .45935 .102 -.1872 2.9497
ed21 1.669410 .45935 .034 .1009 3.2379

ed14 ed6 -5 .636720 .45935 .000 -7.2052 -4.0682
ed10 -1 .809160 .45935 .019 -3.3776 -.2407
ed12 -1.15189 .45935 .228 -2.7204 .4166
ed16 .39323 .45935 .974 -1.1752 1.9617
ed18 .22936 .45935 .998 -1.3391 1.7978
ed21 .51752 .45935 .909 -1.0510 2.0860

ed16 ed6 -6 .029950 .45935 .000 -7.5984 -4.4615
ed10 -2 .202390 .45935 .004 -3.7709 -.6339
ed12 -1.54512 .45935 .055 -3.1136 .0234
ed14 -.39323 .45935 .974 -1.9617 1.1752
ed18 -.16387 .45935 1.000 -1.7323 1.4046
ed21 .12429 .45935 1.000 -1.4442 1.6928

ed18 ed6 -5 .866080 .45935 .000 -7.4346 -4.2976
ed10 -2 .038520 .45935 .008 -3.6070 -.4700
ed12 -1.38125 .45935 .102 -2.9497 .1872
ed14 -.22936 .45935 .998 -1.7978 1.3391
ed16 .16387 .45935 1.000 -1.4046 1.7323
ed21 .28816 .45935 .995 -1.2803 1.8566

ed21 ed6 -6 .154240 .45935 .000 -7.7227 -4.5858
ed10 -2 .326680 .45935 .003 -3.8952 -.7582
ed12 -1 .669410 .45935 .034 -3.2379 -.1009
ed14 -.51752 .45935 .909 -2.0860 1.0510
ed16 -.12429 .45935 1.000 -1.6928 1.4442
ed18 -.28816 .45935 .995 -1.8566 1.2803

*  The mean difference is significant at the .05 level.

Table VI.10 Shapiro-Wilk results for test of normality of Kcnj2 gene expression. The mean 
difference is significant at the 0.05 level.

Kcnj2

Shapiro-Wilk

Statistic df Sig.
transformed .918 21 .079
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Table VI.11 One-way ANOVA results obtained from analysis of the Kcnj2gene expression. The 
mean difference is significant at the 0.05 level.

A N O V A

transformed

Sum of 
Squares df Mean Square F Sig.

Between Groups 48.902 6 8.150 62.478 .000
Within Groups 1.826 14 .130
Total 50.728 20

Table VI.12 Levene's test of homogeneity of variances

transformed

Levene
Statistic df 1 df2 Sig.

4.446 6 14 .010

Table VI.13 Post-hoc Dunnett test results obtained from analysis of Kcnj2 gene expression

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: transformed
Dunnett T3 _________________________ __________

(I) group (J) group

Mean
Difference

(l-J)

95% Confidence Interval

Std. Error Sig. Lower Bound Upper Bound
ed6 ed10 2.67231 (*) .05448 .001 2.2064 3.1382

ed12 3.59298(*) .28411 .030 .8110 6.3749
ed14 4.52846(*) .19443 .009 2.6365 6.4204
ed16 4.62286(*) .19185 .008 2.7566 6.4891
ed18 3.14047 .37160 .067 -.5066 6.7876
ed21 1.60257(*) .09449 .015 .7168 2.4883

ed10 ed6 -2.672310 .05448 .001 -3.1382 -2.2064

ed12 .92067 .28864 .363 -1.7083 3.5496

ed14 1.85614(*) .20100 .041 .1602 3.5521
ed16 1.950550 .19850 .035 .2816 3.6195

ed18 .46816 .37508 .924 -3.0559 3.9922

ed21 -1 .069740 .10736 .013 -1.7534 -.3861

ed12 ed6 -3.592980 .28411 .030 -6.3749 -.8110

ed10 -.92067 .28864 .363 -3.5496 1.7083

ed14 .93548 .34373 .391 -1.0868 2.9578

ed16 1.02988 .34227 .317 -.9940 3.0537

ed18 -.45251 .46737 .990 -3.1034 2.1984

ed21 -1.99041 .29879 .075 -4.3700 .3892

ed14 ed6 -4 .528460 .19443 .009 -6.4204 -2.6365

ed10 -1 .856140 .20100 .041 -3.5521 -.1602

ed12 -.93548 .34373 .391 -2.9578 1.0868

ed16 .09440 .27246 1.000 -1.3905 1.5793

ed18 -1.38798 .41895 .279 -4.1496 1.3737

ed21 -2 .925890 .21531 .008 -4.3973 -1.4544

ed16 ed6 -4.622860 .19185 .008 -6.4891 -2.7566
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ed10 -1.95055(*) .19850 .035 -3.6195 -.2816
ed12 -1.02988 .34227 .317 -3.0537 .9940
ed14 -.09440 .27246 1.000 -1.5793 1.3905
ed18 -1.48239 .41776 .242 -4.2529 1.2881
ed21 -3.02029(‘ ) .21299 .006 -4.4671 -1.5735

ed18 ed6 -3.14047 .37160 .067 -6.7876 .5066
ed10 -.46816 .37508 .924 -3.9922 3.0559
ed12 .45251 .46737 .990 -2.1984 3.1034
ed14 1.38798 .41895 .279 -1.3737 4.1496
ed16 1.48239 .41776 .242 -1.2881 4.2529
ed21 -1.53790 .38294 .236 -4.8322 1.7564

ed21 ed6 -1 .602570 .09449 .015 -2.4883 -.7168
ed10 1.06974(0 .10736 .013 .3861 1.7534
ed12 1.99041 .29879 .075 -.3892 4.3700
ed14 2.92589(0 .21531 .008 1.4544 4.3973
ed16 3.02029(0 .21299 .006 1.5735 4.4671
ed18 1.53790 .38294 .236 -1.7564 4.8322

* The mean difference is significant at the .05 level.

Table VI.14 Shapiro-Wilk results for test of normality of Sh3bgr gene expression. The mean 
difference is significant at the 0.05 level.

Sh3bgr

Shapiro-Wilk

Statistic df Sig.
transformed .909 21 .054

Table VI.15 One-way ANOVA results obtained from analysis of the Sh3bgr gene expression. 
The mean difference is significant at the 0.05 level.

A N O V A

transformed

Sum of 
Squares df Mean Square F Sig.

Between Groups 12.921 6 2.154 7.598 .001

Within Groups 3.968 14 .283
Total 16.889 20

Table VI.16 Levene's test of homogeneity of variances

transformed

Levene
Statistic df 1 df2 Siq.

1.289 6 14 .324
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Table VI.17 Post-hoc Tukey test results obtained from analysis of Sh3bgr gene expression

M u l t i p l e  C o m p a r i s o n s

Dependent Variable: transformed
Tukey HSD

(1) group (J) group

Mean
Difference

(l-J)

95% Confidence Interval

Std. Error Sig. Lower Bound Upper Bound
ed6 ed10 1.44922 .43468 .058 -.0350 2.9335

ed12 1.598880 .43468 .031 .1146 3.0831
ed14 2.134260 .43468 .003 .6500 3.6185
ed16 2 .321420 .43468 .002 .8372 3.8057
ed18 2.409800 .43468 .001 .9255 3.8941
ed21 2.222880 .43468 .002 .7386 3.7071

ed10 ed6 -1.44922 .43468 .058 -2.9335 .0350
ed12 .14965 .43468 1.000 -1.3346 1.6339
ed14 .68503 .43468 .698 -.7992 2.1693
ed16 .87220 .43468 .452 -.6121 2.3565
ed18 .96058 .43468 .349 -.5237 2.4448
ed21 .77365 .43468 .580 -.7106 2.2579

ed12 ed6 -1.598880 .43468 .031 -3.0831 -.1146
ed10 -.14965 .43468 1.000 -1.6339 1.3346
ed14 .53538 .43468 .870 -.9489 2.0196
ed16 .72255 .43468 .649 -.7617 2.2068
ed18 .81092 .43468 .530 -.6733 2.2952
ed21 .62400 .43468 .775 -.8603 2.1083

ed14 ed6 -2.134260 .43468 .003 -3.6185 -.6500
ed10 -.68503 .43468 .698 -2.1693 .7992
ed12 -.53538 .43468 .870 -2.0196 .9489
ed16 .18717 .43468 .999 -1.2971 1.6714
ed18 .27554 .43468 .994 -1.2087 1.7598
ed21 .08862 .43468 1.000 -1.3956 1.5729

ed16 ed6 -2.321420 .43468 .002 -3.8057 -.8372
ed10 -.87220 .43468 .452 -2.3565 .6121
ed12 -.72255 .43468 .649 -2.2068 .7617
ed14 -.18717 .43468 .999 -1.6714 1.2971
ed18 .08838 .43468 1.000 -1.3959 1.5726
ed21 -.09854 .43468 1.000 -1.5828 1.3857

ed18 ed6 -2.409800 .43468 .001 -3.8941 -.9255

ed10 -.96058 .43468 .349 -2.4448 .5237

ed12 -.81092 .43468 .530 -2.2952 .6733
ed14 -.27554 .43468 .994 -1.7598 1.2087

ed16 -.08838 .43468 1.000 -1.5726 1.3959

ed21 -.18692 .43468 .999 -1.6712 1.2973

ed21 ed6 -2.222880 .43468 .002 -3.7071 -.7386

ed10 -.77365 .43468 .580 -2.2579 .7106

ed12 -.62400 .43468 .775 -2.1083 .8603

ed14 -.08862 .43468 1.000 -1.5729 1.3956

ed16 .09854 .43468 1.000 -1.3857 1.5828
ed18 .18692 .43468 .999 -1.2973 1.6712

* The mean difference is significant at the .05 level.
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Table VI.18 Shapiro-Wilk results for test of normality of Psca gene expression. The mean
difference is significant at the 0.05 level.

Psca

Shapiro-Wilk
Statistic df Sig.

var .865 21 .008

Table VI.19 Kruskal-Wallis results obtained from analysis of the Psca gene expression. The 
mean difference is significant at the 0.05 level.

Ranks

I qroup N Mean Rank
var ed6 3 2.00

ed10 3 5.00
ed12 3 10.00
ed14 3 10.00
ed16 3 13.67
ed18 3 16.33
ed21 3 20.00
Total 21

Test Statistics(a,b)

var
Chi-Square
df
Asymp. Sig.

18.355
6

.005
a Kruskal Wallis Test 
b Grouping Variable: group

Table VI.20 Shapiro-Wilk results for test of normality of Sfrp2 gene expression. The mean 
difference is significant at the 0.05 level.

Sfrp2

Shapiro-Wilk
Statistic df Sig.

transformed .470 21 .000
a Lilliefors Significance Correction

Table VI.21 Kruskal-Wallis results obtained from analysis of the Sfrp2 gene expression. The 
mean difference is significant at the 0.05 level.

Ranks

group N Mean Rank
var ed6 3 18.67

ed10 3 16.00
ed12 3 16.33
ed14 3 11.00
ed16 3 7.00
ed18 3 6.00
ed21 3 2.00
Total 21

Test Statistics(a,b)

var
Chi-Square
df
Asymp. Sig.

18.251
6

.006
a Kruskal Wallis Test 
b Grouping Variable: group
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Table VI.22 Shapiro-Wilk results for test of normality of Sfrp2 gene expression. The mean
difference is significant at the 0.05 level.

H2afy2

Statistic
Shapiro-Wilk

df Sig.
var .814 21 .001

a Lilliefors Significance Correction

Table VI.23 Kruskal-Wallis results obtained from analysis of the Sfrp2 gene expression. The 
mean difference is significant at the 0.05 level.

Ranks

group N Mean Rank
var ed6 3 18.33

ed10 3 16.67
ed12 3 16.00
ed14 3 11.00
ed16 3 7.00
ed18 3 6.00
ed21 3 2.00
Total 21

Test Statistics(a,b)

var
Chi-Square
df
Asymp. Sig.

18.147
6

.006
a Kruskal Wallis Test 
b Grouping Variable: group

Post-hoc pairs comparison after Kruskal-Wallis (groups equal in size (N=3))

N- the number of cases in each sample group
Each mean rank them multiplied by the N for that group (N=3) gives rank total for each group

Paired comparison of interest between two groups calculated as follows:

d = rank total of one group -  rank total of the other,
K = (d-0.8)/(N*sqrt(N))

If K  is equal to of grater than the table value, then the difference is significant at the level 
indicated by p  (table adapted from R. Lanhgley Practical Statistic Simply Explained Pan Books 
1979, p. 220).

Table VI.24 List of K values for different levels of significance

Total number of 
groups in the 
analysis

When comparing any groups with 
each other in pairs

When comparing several groups 
with a control

p = 0.05 p = 0.01 p = 0.05 p = 0.01
3 2.89 3.60 2.72 3.45
4 4.22 5.12 3.86 4.80
5 5.60 6.69 5.00 6.16
6 7.01 8.30 6.17 7.53
7 8.46 9.92 7.37 8.94
8 9.46 11.58 8.55 10.33
9 11.43 13.25 9.77 11.77
10 12.97 14.95 11.01 13.19
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Calculated K values for each pair comparison are shown in Tables below.

Table VI.25 List of K values calculated for Psca. Asterisks indicate statistical significance

Psca
6 10 12 14 16 18 21

6 - 1.57 4.4 4.4 7.7 9.2* 10.2*
10 - 2.73 2.73 4.85 6.39 8.51*
12 - 0.15 1.96 3.5 5.62
14 - 1.96 3.5 5.6
16 - 1.3 3.5
18 - 1.9
21 -

Table VI.26 List of K values calculated for Sfrp2. Asterisks indicate statistical significance

Sfrp2
6 10 12 14 16 18 21

6 - 1.38 1.19 4.2 6.59 7.18 9.48*
10 - 0.03 2.7 5.04 5.62 7.93
12 - 2.92 5.23 5.8 8.12
14 - 2.15 2.73 5.04
16 - 0.4 2.7
18 - 2.15
21 -

Table VI.27 List of K values calculated for H2afy2. Asterisks indicate statistical significance

H2afy2
6 10 12 14 16 18 PN

6 - 0.8 1.19 4.08 6.3 6.9 9.2*
10 - 0.25 3.14 5.45 6.03 8.54*
12 - 2.73 5.04 5.6 7.9
14 - 2.1 2.7 5.01
16 - 0.4 2.7
18 - 2.1
21 -
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