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SUMM ARY

A key step in metastasis is the interaction and penetration of the vascular 
endothelium by cancer cells. Tight Junctions (TJ) are located between the cancer 
epithelial cells themselves functioning in an adhesive manner, and between the 
endothelial cells. They represent a critical barrier which the cancer cells must overcome 
in order to penetrate and initiate metastasis. The Claudin family are TJ proteins 
expressed in both endothelial and epithelial cells. They participate in the formation of 
tissue barriers between different tissue compartments by regulating the efflux of 
molecules through TJ complexes.

This thesis examined the level of expression and distribution of Claudin-5 in 
human breast cancer tissues and analysed them against clinical parameters. The effect of 
knockdown and forced expression of Claudin-5 in the MDA-MB-231 aggressive breast 
cancer cell line and in the HECV human endothelial cell line was also examined. Results 
revealed that Claudin-5 is aberrantly expressed in human breast cancer and has a link to 
the clinical outcome of the patient. Patients who died from breast cancer had higher 
levels of Claudin-5 compared with patients who remained disease-free. Furthermore, 
patients whose tumours expressed high levels of Claudin-5 had shorter survival than 
those with low levels.

Investigating in vitro the effect of altering levels of expression of Claudin-5 in 
M DA-M B-231and HECV cells revealed that the role of Claudin-5 was not primarily in 
keeping the cell barrier tight suggesting little function in the TJ of these cells, in fact a 
link was identified between Claudin-5 and cell motility. Furthermore, a possible link 
between Claudin-5 and N-W ASP, and Claudin-5 and ROCK was demonstrated when 
interactions between these proteins were seen in both cell lines. Moreover, cell motility 
was assessed following treatment with N-W ASP inhibitor, Arp2/3 inhibitor and ROCK 
inhibitor. Results show that the knockdown of Claudin-5 in HECV cells masked their 
response to N-W ASP inhibitor, Arp2/3 inhibitor and ROCK inhibitor. A parallel 
response was observed in the knockdown of Claudin-5 in MDA-MB-231 after treatment 
with N-W ASP inhibitor and Arp2/3 inhibitor; however treatment with ROCK inhibitor 
did not reveal any differences in motility in this particular cell line.

This study portrays a very new and interesting role for Claudin-5 in cell motility 
involving the N-W ASP and ROCK signalling cascade indicating a possible role for 
Claudin-5 in the metastasis and progression of human breast cancer.
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Chapter 1 

Introduction
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1.1 Breast cancer

1.1.1 Breast cancer incidence and risk factors

Breast cancer is by far the most frequent cancer in women; more than a 

million women are diagnosed with breast cancer every year. More than half the cases 

are in industrialized countries, with about 426,900 new cases o f  breast cancer 

occurring each year in Europe (in 2006 there were 45,822 new cases diagnosed in the 

UK: 45,508 woman and 314 men) and an estimated 182,460 in the USA (Figure

1.1 A) (Office for National Statistics, 2006).

It is widely recognised that the high incidence of breast cancer in the more 

affluent world areas, with the highest age-standardised incidence in North America, 

is due to the presence of screening programs that detect early invasive cancers, some 

of which would otherwise have been diagnosed later or, in the worst case, not at all. 

Although there is a high incidence of breast cancer, the relatively good prognosis 

means that it is the most prevalent cancer in the world today; there are an estimated

4.4 million people alive who have had breast cancer diagnosed within the past 5 

years (compared with just 1.4 million survivors from lung cancer). Between 1989 

and 2007 in the UK, the breast cancer mortality rate fell by 41% in women aged 40- 

49 years; by 41% in women aged 50-64; by 38% in women aged 65-69; by 35% in 

women aged 15-39; and by 20% in women over 70 (Figure 1.1B) (Office for 

National Statistics, 2006).

There has been however, a general increase in incidence rates of about 0.5% 

annually worldwide. At this pace of growth, there would be around 1.4 million new
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cases in 2010. The incidence of breast cancer shows considerable geographic cancer 

variation. In China, there are annual increases in incidence of 3% to 4%, and in other 

parts of Asia increases are also very similar, whilst in the UK the number of cases 

has increased by 14% over the last ten years (Parkin et al., 2005).

Genetic factors, including ‘high risk’ breast cancer susceptibility genes 

BRCA1 and BRCA2, genes encoding growth factors and receptors, intracellular 

signalling molecules, cell cycle regulators, apoptosis regulators and adhesion 

molecules may account for up to 10% of breast cancer incidence in developed 

countries, but their occurrence in the population is too low to explain the differences 

in risk worldwide. Therefore, the vast majority must be a consequence o f  different 

environmental exposures. This is evident from studies of migrants from Japan to 

Hawaii showing that the incidence of breast cancer in migrants assumes the rate in 

the host country within the first generation, indicating the magnitude of the influence 

of the environmental surroundings (Kolonel et al., 2004).

A large number of risk factors have been suggested as playing a role in the 

development of breast cancer. These include age, reproductive factors (first 

pregnancy, breastfeeding), lifestyle (physical activity, diet, alcohol intake and 

smoking), oral contraceptives and hormone replacement therapy (McPherson et al., 

2000).
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Figure 1.1: (A) Number o f  new cases diagnosed and age specific incidence in the UK 

(Source: Office for National Statistics, 2006). (B) A decrease in breast cancer 

mortality in all age groups between the late 1980s and 2007 (Source: Office for 

National Statistics, 2006).
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Breast cancers are derived from epithelial cells that are found in the terminal 

duct lobular unit. Cancer cells that remain within the basement membrane and are 

confined to the ductal epithelium and acini are classified as in situ  or non-invasive. 

An invasive breast cancer is one in which there is spread of cancer cells outside the 

basement membrane of the ducts and lobules into the surroundings adjacent normal 

tissue.

Although a broad range of pathological subtypes of invasive breast cancer 

have been identified the most commonly used classification of invasive breast 

cancers divides them into ductal and lobular types. Invasive ductal carcinoma 

represents the largest group, being almost 80% of the invasive cancers. Invasive 

lobular cancers make up a majority of the remaining 20% (Weigelt et al., 2005).

When an invasive breast cancer is diagnosed, the tumour is staged to assess 

the cancer and provide information to the clinician and the patient. The Tumour 

Node Metastases (TNM) system is a worldwide staging system depending on clinical 

measurements and clinical assessment of lymph node status. The criteria for the 

cancer staging were defined by the Union for International Cancer Control (UICC) 

more than 50 years ago (Berndt and Titze, 1969). The parameters used for the TNM  

include size of tumour (T) followed by a number from 0 to 4; spread to the axilary 

lymph node (N) followed by a number from 0 to 3; and its spread to distant sites (M) 

followed by a 0 or 1. Once the T, N, and M categories have been determined, this 

information is combined in a process called stage grouping (Table 1.1). With modern 

advances in breast cancer diagnosis, UICC have reviewed the system to introduce 

changes that will improve TNM  classification (Gospodarowicz et al., 2004).

5



Stage T (tum our size) N (node status) M (m etastasis)

0 Pre- cancerous

I T - l N-0 M-0

T-l N -l

II T-2 N-0 or N -l M-0

T-3 N-0

T-Any N -l

II I T-3 N-0 or N -l M-0

T-4 N-0

IV T-Any size N-Any status M -l

Table 1.1: TNM  staging system for breast cancer. Where T, N and M means: 

T=tumour size: T - l=  0-2cm, T-2=2-5cm, T-3= >5cm; T-4= ulcerated or attached. N= 

node status: N-0= clear or negative nodes, N - l=  cancerous or positive nodes. 

M=metastasis: M-0= no metastasis, M -l=  metastasis.
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1.1.2 Breast cancer m etastasis

Metastasis is the presence of disease at distant sites due to the spread of 

cancer cells which results in overwhelming mortality in patients with cancer. It is a 

complex, multi-staged process determined by a large number of different factors and 

involving a number of sequential steps and events which must be completed for the 

cancer cell to successfully metastasise and form a secondary tumour in a distant 

organ, the so called metastatic cascade.

The most widely accepted model for metastasis is the “seed and soil” 

hypothesis postulated by Stephen Paget in 1889. He suggested that malignant tumour 

cells are shed from the primary tumour and disseminated in the entire body though 

they will only metastasise when the seed (disseminated tumour cells) and soil 

(secondary organ) are compatible. Ever since, the knowledge in this area has 

expanded significantly. However, the mechanisms underlying the whole process are 

still unclear and currently the available therapies are mainly palliative.

The metastatic cascade is thought to consist of the following steps: invasion, 

intravasation and extravasation (Figure 1.2). Invasion occurs when tumour cells gain 

the ability to dissociate from the primary tumour and penetrate the surrounding 

tissues through degradation of the basement membrane and the extracellular matrix, 

leading to intravasation as the detached cells enter the circulatory or lymphatic 

system. Once the tumour cell arrives at a possible point of extravasation, it interacts 

and attaches at the new site to penetrate the endothelium and the basement membrane 

to produce a secondary tumour, this is called extravasation.
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In order to activate the metastastatic cascade, cancer cells must acquire a 

motile phenotype. Cell motility is orchestrated by a variety of complicated signal 

pathways, most of which are just starting to be unravelled. Understanding cell 

motility not only requires knowledge of the signal pathways regulating actin 

polymerisation, but also details concerning their dynamics.

Cell motility and migration occur in response to chemokines or growth factor 

signals. In response to these stimuli, changes in the cytoskeleton, in the cell-cell 

adhesion structures, in the cell-substrate adhesion and in the extracellular matrix 

(ECM) take place resulting in a motile cell capable of gaining access to the systemic 

circulation and ultimately metastasis. Cell migration is initiated by the development 

of cellular extensions such as filopodia and lamellipodia that define the front of the 

migrating cells driven by actin polymerisation and filament elongation (Ridley et al., 

1992). The activation of Rho, R ac l and Cdc42, all members of the small GTPases 

familiy, has been reported to result in the formation of actin stress fibres, membrane 

ruffles, lamellipodia and filopodia respectively in in vitro studies (Hall, 1998). It has 

been shown that Cdc42 interacts with Wiskott-Aldrich syndrome protein (W ASP) 

and N-W ASP (a homologue of W ASP) resulting in an active conformation of the 

Arp2/3 complex (Actin related protein) responsible for inducing the assembly of 

branching networks of actin filaments to push the cell membrane forward (Cory and 

Ridley, 2002).

Rho GTPases and their most common effector, ROCK, are important 

regulators of cellular processes including cell motility. Furthermore, Rho-RO CK 

interactions have been demonstrated to be involved in tumour invasion and



metastasis by increasing cell motility in breast cancer cells through the regulation of 

actin cytoskeletal reorganisation and the formation of focal adhesions (Nishimura et 

a l 2003) (Figure 1.3).

Extensive interactions between tumour cells and surrounding tissues during 

their dissemination complicate the analysis of signalling events during this cascade. 

Due to its complex nature, the understanding of the cellular and molecular factors is 

limited. The most important questions arising are focused to define the genetic and 

epigenetic changes conferring such behaviours on these cells (Yang et al., 2006).
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Figure 1.3: Schematic representation o f  early stages o f  cell migration. The figure 

highlights the sequence o f  individual steps including disruption o f  the Tight and 

Adherens Junction as well as the activation o f  motility-related signalling pathways 

involved in the reorganization o f  the actin cytoskeleton such as ROCK and N-WASP.
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The most common sites of distant metastasis from breast cancer are bone, 

liver and lung (Carty et al., 1995).

Approximately 70% of patients with breast cancer have bone metastases. 

They are associated with poor prognosis and the available treatment options are very 

limited. Bone metastases usually present with severe pain and these symptoms are 

usually seen in the femur and pelvic region. There are complex and multiple steps in 

the process of bone metastasis which are influenced by various cytokines, growth 

factors and cellular signals. There are two types of breast cancer bone metastasis: 

Osteolytic lesions are the most common form and cause destruction of the bone; 

Osteoblastic lesion that are less common and cause new bone formation. Most 

patients have components of both bone resorption and bone formation (Akhtari et al., 

2008).

The liver is the second most common site to be colonised during breast 

cancer metastasis. About 40-50% of women with metastatic breast cancer have 

metastasis to the liver during the course of the disease. Hepatic disease related to 

breast cancer can be consequential to the metastatic spread of the tumour to the liver, 

or as a result of regular treatment with chemotherapeutic agents or endocrine therapy. 

Both cases are associated with a poor prognosis among patients (Diamond et al., 

2009).

Pulmonary metastases are also common features in patients with breast 

cancer. As cancer cells arrive at the pulmonary capillaries, they became physically 

trapped and restricted by the narrowing blood vessels in the lung. Several studies 

have shown that the adhesion and extravasation of cancer cells in the lung is
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mediated by specific surface adhesion molecules on the cancer cells and the 

endothelium like the chemokine receptors CXCR4 and CCR7 (Lu and Kang, 2007).

The diverse nature of breast cancer metastasis makes not only finding a cure 

for the disease complicated, but also assessing risk factors for metastasis. Improving 

the understanding of the molecular mechanisms of the metastatic cascade will also 

provide quality in management of the disease.

Since Tight Junctions (TJs) are located between the cancer epithelial cells, 

themselves functioning in an adhesive manner, and between the endothelial cells, as 

a barrier through which molecules and inflammatory cells can travel, they represent a 

critical barrier which the cancer cells must overcome in order to penetrate and initiate 

metastasis. If any microorganism or cancer cell can gain access to the systemic 

circulation, there exists a wealth of nutrients and an ideal environment for many to 

proliferate. Therefore, TJ integrity is a key step in the metastatic cascade (Martin et 

al., 2004b).

1.2 Tight Junction m olecular structure

As the proverb states: “Good fences make good neighbours” , this humble and 

intelligent statement is not just applicable to the property market; it is indeed a reality 

seen in nature, in all species, in evolution and in development.

A single cell in the ocean can exchange nutrients and waste products 

constantly. However, when a single cell is part of a multicellular organism this
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changes; moving from an easy movement of substances to a complicated and 

extremely organized exchange system with the external environment.

A defining characteristic of multicellular organisms is the capability of 

forming TJ that seal the intercellular space between neighbouring cells and transform 

the layer of individual cells into an effective permeability barrier. Barriers not only 

separate fluids, but they also perform thermodynamic work by reabsorbing solutes 

from compartment A to B, or secreting others from B to A, thus establishing 

gradients across themselves.

TJs are highly regulated areas of adhesion between epithelial and endothelial 

cells. They are the most apical component of the lateral plasma membrane and they 

are connected to the actin cytoskeleton. They create a regulated paracellular barrier 

to the movement of ions, solutes and immune cells between the cells and signalling 

pathways that communicate cell position, limit growth and apoptosis.

The morphology of TJ has been intensively analysed using transmission 

electron microscopy, where the TJ appear as a sequence of very close points as 

fusions of the plasma membrane of both cells, and by freeze fracture electron 

microscopy where these contacts are shown as rows of intra-membrane strands and 

complementary grooves that encircle cells (Staehelin, 1973).

Physiological studies of the past decades have demonstrated that the TJ 

barrier is not absolute, and permeability to small and macro-molecules varies 

amongst different tissues. Moreover, barrier assembly and permeability 

characteristics are influenced by different cellular signalling mechanisms.
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TJs have been proposed to have two equally exclusive functions: 1. A fence 

function by forming an apical/basolateral intra-membrane diffusion barrier which 

prevents the mixing of membrane proteins; and 2. A gate function by controlling the 

breadth and selectivity of diffusion along the paracellular pathway (Cereijido et al., 

2008). These functions will be explained more fully in section 1.3.

The number of TJ strands is an important factor in determining the barrier 

properties of the TJ. There is not a linear relationship between the complexity of the 

TJ strand network and their measured electrical resistance (trans 

epithelial/endothelial resistance, or TER), in other words, the number of TJ strands 

does not correlate with the tightness of the barrier, in fact the relationship is an 

exponential one (Claude, 1978). Such results led to the prediction that TJ must 

contain aqueous pores lined by proteins. Subsequently, it was reported that the 

strands do indeed contain aqueous pores and that the pores oscillate between open 

and closed states (Tsukita et al., 2001). Therefore, it has been accepted that the 

tightness of the TJ is remarkably dynamic and finely regulated in individual cells.

Although the details of how intracellular signals may influence these proteins 

are not understood, many signalling messengers, including prostaglandins, cAMP, 

and protein kinase C, have been seen to regulate the actin cytoskeleton in epithelial 

cells (Anderson and Van Itallie, 1995).

Several types of proteins have been identified as components of TJ (Table 

1.2), depending on their distribution within the junction (Figure 1.4):
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1. Transm em brane proteins such as the M ARVEL/TA M P proteins 

(Occludin, Tricellulin and M ARVEL D3), the Claudin superfamily and 

Junctional Adhesion Molecules (JAMs). These proteins span the cell 

membrane and are anchored into position by links to the cytoplasmic/plaque 

proteins.

2. Cytoplasm ic plaque such as the Zonula Occludens family, ZO-1,- 

2,-3, AF6, MUPP-1, MAGI-1,-2,-3, Cingulin, Angiomotin family and 

Symplekin. These proteins link TJ to the actin-cytoskeleton and the adherens 

junction to the regulatory proteins.

3. A ssociated/regulatory proteins such as the Rho subfamily 

proteins, Rab-13, Rab-3B, heterotrimeric G proteins like Gai-2 and GaO etc.
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Figure 1.4: Molecular structure o f  TJ.
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T ransm em brane Cytoplasm ic plaque Associated/regulatory

protein proteins

Occludin Zonula Occludens (ZO- Rho-GTPases, Rab-13,

Tricellulin
1) Rab-3B, Gai-2, GaO,

M ARVEL D3
ZO-2

c-src, c-yes, ZO NA B, 

19B1, Ponsin, Par-3,

Claudin 1-24
ZO-3

Par-6, Afadin, a-

Junctional Adhesion
AF6 catenin, Pals, PATJ,

Molecules (JAM 1-4) MUPP-1
JEAP, Pilt, PTEN, 

ZAK, Scrib, ITCH,

MAGI-1,-2,-3 W NK4, Vinculin

Cingulin

Angiomotin family

Symplekin

Table 1.2: Proteins involved in TJ structure, function and regulation.
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1.2.1 Transm em brane proteins

TJs contain two principal types of transmembrane components: tetraspan and 

single-span transmembrane proteins. The tetraspan proteins are the TA M P family 

(Occludin, Tricellulin and MARV3D) and the Claudin family (1-24), all of  which 

share the same membrane topology, with their N- and C-termini domains within the 

cytoplasm and two extracellular loops implicated in establishing contact with 

homotypic molecules located in the TJ region of the neighbouring cell. The single­

span transmembrane proteins are the Junctional Adhesion Molecules (JAM1-4 and 

JAM-like) that belong to the immunoglobulin superfamily and mediate homotypic 

cell-cell adhesion.

All these proteins share a common feature, the presence of a PD Z domain. 

This feature is key for the establishment of protein-protein interaction in the Tight 

Junction. PDZ domains contain 80-90 amino acid residues and are named after the 

proteins in which they were initially identified: PSD-95, Dig, and ZO-1 (Daniels et 

al., 1998). These mediate intermolecular homotypic interactions between PDZ 

domains, like the ones established between ZO -land  ZO-2 and also ZO-1 and ZO-3, 

as well as heterotypic interactions by association to specific motifs found at the 

carboxyl terminal ends of several proteins including Claudins, JAM s and ZO-2 and 

ZO-3.

1.2.1.1 O ccludin

Occludin, the first-discovered and probably most abundant tetraspan TJ 

protein is an approximately 60 kDa tetraspan membrane protein (Furuse et al., 1993),

19



depending on phosphorylation status. There are two different isoforms that result 

from alternative mRNA splicing, but there is no clear difference in their tissue 

distribution and functions (Muresan et al., 2000). Its localisation in the Tight 

Junction is regulated by phosphorylation in both epithelial and endothelial cells, 

whereas the non-phosphorylated Occludin is localised to both the basolateral 

membrane and in cytoplasmic vesicles.

Although both domains interact with components of the cytosolic plaque, 

they have been shown to have different functionality. The N- terminal domain 

regulates neutrophil transmigration (Oshima et al., 2003), whereas the C-terminal 

domain interacts with various intracellular proteins of the TJ including ZO-1,-2 and -

3. This interaction is essential for the localisation of Occludin at the TJ (Furuse et al., 

1994).

Mice genetically altered to express reduced levels of Occludin have 

previously been generated in a study by Saitou et al. These mice showed the 

presence of normal TJ in the intestinal epithelium (Saitou et al., 2000). This data 

suggested that Occludin may play a role in the regulation of TJ rather than in the 

assembly of the structure itself and may also suggest that Occludin is not the only 

key protein in the making of TJ.

In addition, over-expression in several cancer cells results in increased 

sensitivity to apoptotic factors via modulation of the expression of genes involved in 

apoptotic pathways like mitogen activated protein kinase (MAPK), and thus 

contributes to reduce tumour progression and metastasis. These findings support the 

idea of a regulatory role for Occludin rather than a simple structural one,
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demonstrating that Occludin acts as a signal transmitter in the TJ (Osanai et al., 

2006).

1.2.1.2 Tricellulin

Tricellulin is a tretraspan transmembrane protein localised in tricellular TJs, 

the meeting points of three cells, but it is also seen in bicellular TJ. It is down- 

regulated by the zinc-finger transcription factor Snail. The suppression of Tricellulin 

expression by RNA interference impairs the barrier function of the TJ, suggesting 

that Tricellulin might have a pivotal function for junction assembly and barrier 

function (Ikenouchi et al., 2005).

Four isoforms of human Tricellulin have been described by Riazuddin et al., 

In addition, the same study revealed that Tricellulin-a (TRIC-a) mutations lead to 

non-syndromic deafness (Riazuddin et al., 2006).

1.2.1.3 C laudins

The Claudin superfamily consists of at least 24 tretraspan protein members all 

believed to be expressed in a tissue-specific manner. Claudins are capable of forming 

TJ strands and thus are thought to be the backbone of the TJ (Furuse and Tsukita, 

2006). This will be discussed in full in section 1.5.3.

1.2.1.4 Junctional Adhesion M olecules (JAMs)

Junctional Adhesion Molecules (JAMs) are single-span transmembrane 

proteins that are associated with TJ. They belong to the immunoglobulin (Ig) 

superfamily and consist of two extracellular Ig-like domains, a single transmembrane
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domain and a C-terminal cytoplasmic domain. Four JAMs, JA M -l(JA M -A ), -2 

(VEJAM/JAM-B), -3 (JAM-C) and -4 ,  have been described (Bazzoni, 2003). V- 

set/VSISI/GPA34 is also a member of the family (Scanlan et al., 2006). JAM s 

regulate adhesion between leukocytes and endothelial cells, as well as the 

paracellular transmigration of leukocytes across the endothelium (Weber et al., 2007).

1.2.2 Cytoplasm ic plaque proteins

A very important feature of TJs is that they include a cytoplasmic plaque, 

which forms a link between the junctional membrane and the cytoskeleton. The 

cytoplasmic plaque also recruits a variety of signalling components that includes 

kinases and phosphatases as well as proteins that are involved in signalling in and 

from the nucleus. The cytoplasmic plaque contain two principal types of proteins: 

M AG UK proteins that contain a PDZ domain like ZO proteins, M AGI and MUPP-1, 

and those non-PDZ proteins like Cingulin, Angiomotin family proteins, small 

GTPases and Symplekin (Guillemot et al., 2008). Of all these proteins mentioned 

above, the ZO proteins are the most studied in the TJ cytoplasmic plaque.

1.2.2.1 ZO proteins

ZO-1, ZO-2 and ZO-3 are members of the M AG UK (membrane associated 

guanylate kinase homologs) family. The M AG UK family is characterised by their 

PDZ domain, in particular ZO proteins have three, an SH3 domain and a guanylate 

kinase homologous domain. They are at the core of a network of protein interactions. 

The first PDZ domain of ZO-1, ZO-2 and ZO-3 binds directly to the C-terminal 

domain of Claudins. In fact, a study by Umeda et al., demonstrated that the
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interaction between the first PDZ domains of ZO-1 and ZO-2 and Claudins plays a 

crucial role in the assembly of the TJs (Umeda et al., 2006).

1.2.3 A ssociated/regulatory proteins

A large number of associated proteins like small GTP-binding proteins of the 

Rho subfamily have been involved in the control of Actin organization. Protein 

tyrosine kinases like c-src and c-yes, are also represented in this group of proteins 

acting as regulators of junction assembly and actin dynamics. Other small GTP- 

binding proteins like, Rab-13 and Rab-3B, have been seen to be involved in vesicle 

targeting rather than in cytoskeletal activity (Mitic and Anderson, 1998). Cingulin is 

not directly required for TJ formation and cell polarity but it has been proposed to 

regulate RhoA signalling, through its interaction with the RhoA activator GEF-H1 

(Citi et al., 2009).

Other members of the TJ associated proteins are: ZONAB, 19B1, Ponsin,

Rab 3B, PKC, Par-3, Par-6, Afadin, a-Catenin, Pals, PATJ, JEAP, Pilt, PTEN, ZAK, 

Scrib, ITCH, WNK4 and Vinculin (Martin and Jiang, 2009).

1.3 Tight Junctions functions

Until the early nineties, TJs were mainly seen as paracellular seals. The 

subsequent vast amount of studies that have been done on TJ has changed our view 

in such a way that TJ are now considered as being active participants in the 

regulation of cell proliferation, gene transcription and cellular differentiation. In
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other words, TJs are not static structures that simply seal two neighbouring cells; 

they are implicated in a variety of events that occur in the cell.

This section will summarize the most important roles that TJs have been 

associated with so far.

1.3.1 T ight Junction as gate and fence

One of the major functions of TJs is the construction of a diffusion barrier by 

tight control of the paracellular pathways, so called the gate function, and to create a 

physical barrier preventing the movement within the cytoplasm of lipids and proteins, 

the fence function (Figurel.5). The paracellular diffusion gate represents a semi- 

permeable barrier that limits diffusion depending on the charge and the size of the 

solute. The ion and size selectivity differs among tissues and it is regulated by 

different physiological and pathological stimuli.

Occludin and the Claudins are the main TJ proteins responsible for the 

paracellular permeability. Several studies have pointed at Claudins as being the 

major determinant of the permeability properties. For example, mutant mice lacking 

Claudin-1 die after birth due to water loss through the skin (Furuse and Tsukita,

2006). On the contrary, the fence function requires the cooperation and coordination 

between integral membrane proteins, TJ scaffolding proteins and signalling 

molecules (Umeda et al., 2006).

In epithelial and endothelial cells, “polarity” refers to an asymmetric 

allocation of macromolecules such as, proteins, lipids and carbohydrates, within the 

cell conferring a subdivision in the plasma membrane creating two well
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differentiated areas: the apical and the basolateral domains. TJs between 

neighbouring cells allow the separation of apical and basolateral membranes, a 

necessary state for normal cell functions (Tsukita et al., 2001).
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T ight Junction
Apical m em brane

B aso latera l m em brane

P a ra ce llu la r  T ran sce llu lar

Figure 1.5: TJs serve to separate the apical and basolateral domains, thus 

acting as a gate and fence.
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1.3.2 Tight Junction as a regulator o f adhesion and migration

The epithelium constitutes one of the primary physical barriers that protects 

the organism against infectious agents in the environment. In response to injury, the 

broken epithelial barrier needs to reseal quickly as the altered structure can be a gate 

for pathogens and viruses. These agents cause fluid and electrolyte secretion, or 

activate the inflammatory response (Guttman and Finlay, 2009). W ounding is usually 

followed by healing, but for this to be accomplished; epithelial cells need to migrate 

into the wound space. During this process cells must detach from the basement 

membrane due to disruption of the actin cytoskeleton, and extend their body through 

polarized protrusion extensions in the direction of the movement which results in TJ 

disruption. As explained above, TJs play a fundamental role in cell polarisation. The 

apical-basolateral polarity is disrupted in this process and protein complexes are 

redistributed in the cell. The Par3-Par6-aPKC, PAJT-PLAS-CRB, and Scrib-Dlg-Lgl 

complex are crucial for the polarity of the cell and for directional movement. Those 

complexes relocate within the cell after wounding, leaving proteins associated with 

TJ structure towards the migration borders (Shin et al., 2007). A  recent study in 

Madin-Darby canine kidney (MDCK) epithelial cell, showed that Occludin 

accumulates on the migration edge membrane suggesting that it might intercede in 

the recruitment of Par3-aPKC/PATJ during healing (Du et al., 2010).

1.3.3 Tight Junctions as regulators o f cell-surface polarity, proliferation and 

differentiation

Cell proliferation and polarisation are tightly regulated processes which are 

essential for the development of differentiated tissues. As mentioned in section 1.3.1,
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TJs are necessary for cell polarisation, however several studies have also linked these 

structures to cell proliferation and differentiation, all of which are fundamental steps 

in cancer progression.

The recruitment of leukocytes is an important part of wound healing and the 

angiogenesis processes. It is a complicated mechanism involving leukocyte 

activation, selectin-mediated rolling, integrin-mediated adhesion and diapedeis. 

Leukocytes need to leave the vasculature passing through the barrier that endothelial 

cells form. To achieve this transmigration, interactions between leukocytes and the 

endothelial cells needs to occur. Several studies have implicated JAM -1,-2 and - 3  in 

leukocyte trafficking during inflammation and angiogenesis. In particular, JAM-1 

was seen to participate in the process by undergoing homophilic binding interactions, 

as well as heterophilic interactions to the |32-integrin LFA. JAM -2 has been 

suggested to interact with p 1 -integrin VLA-4 in T-cells. JAM-3 has been shown as a 

receptor for Mac-1, a member o f  the (32-integrin family, contributing to leukocyte 

Transendothelial transmigration (Keiper et al., 2005). Taking into account all this 

evidence, it is clear that JAMs, as members of the TJ structure, participate in 

leukocyte migration.

Recent evidence has pointed to TJs as being regulators of cell proliferation, 

gene expression, differentiation and morphogenesis. One interesting study by 

Katsuno et al., showed the critical role that ZO-1 may play in tissue organisation and 

remodelling. ZO-1 knockdown mice died at the embryonic stage of 10.5 days, with 

embryonic and extraembryonic imperfections, such as impaired angiogenesis in the 

yolk sac or disorganized notochord areas (Katsuno et al., 2008). To complement
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these results, ZO-2 has been seen to form a complex with c-myc and HDAC1 which 

appears to be able to down-regulate the transcription of cyclin D l ,  a pivotal regulator 

of cell cycle (Huerta et al., 2007).

High cell density increases expression of Cingulin in M DCK cells and this 

has been linked to lower levels of active Rho A, a member of the Rho GTPase family 

and vice versa, with reduced expression of Cingulin in low density cell growth 

causing higher levels of active Rho A. Unexpectedly, levels of GEF-H1 (a guanine 

nucleotide exchange factor for Rho A) remains constant, suggesting that Cingulin 

might interact with GEF-HI and together inactivate Rho A (Aijaz et al., 2005).

Such results provide a molecular mechanism whereby the development of 

Tight Junctions in epithelial cells participate in the down-regulation of Rho A by 

GEF-HI in a Cingulin-dependent way.

Several studies have also linked TJs to the suppression of proliferation. Raf-1, 

a downstream effector of the ras oncogene which is associated with the control of 

proliferation and differentiation, appears to down-regulate the expression of 

Occludin in epithelial cells. But when Occludin is forcibly expressed lacking its first 

extracellular loop, the normal polarized state of the cell is recovered. However, when 

the second extracellular loop is knocked down, the proliferation of tumour growth 

progresses. This suggests that the second extracellular loop may play an important 

role in recovering the normal phenotype of the cell while its absence allows tumour 

growth in vivo (Wang et al., 2005).
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In the case of ZO-1, different studies point to this protein as fundamental in epithelial 

morphogenesis and differentiation due to its interaction with ZONAB (ZO-1 

associated nucleic-acid-binding protein), a Y-box transcription factor that promotes 

proliferation and differentiation (Matter and Baida, 2007).

1.4 T ight Junction and cancer

The link between altered TJs and epithelial tumour development has been 

confirmed by earlier studies placing TJs in the spotlight of cancer research. These 

studies showed dysregulation in TJ structures of several epithelial cancers including 

breast cancer.

Most cancers originate from epithelial tissues and are characterised by 

irregular growth and aberrant tissue morphology. It is absolutely necessary for 

tumour cells to have distinct adhesion behaviour; being significantly weaker in 

cancer cells. Thus, the communication between cells is highly affected and disorders 

in the signal transduction pathways that connect cell to cell arise. This change in cell 

surroundings encompasses a wide spectrum of changes, revealed in early and late 

stages o f  tumour growth, when the lost of polarity and uneven growth, as well as 

invasion and metastasis are a reality in cancerous epithelia. As tumour epithelial cells 

were examined in different types of cancer, early evidence was found of  disorganized 

structure of TJs (Swift et al., 1983) or even a lack of them in hepatocellular 

carcinoma, and reductions in the number of TJs strands when seen by freeze fracture 

in breast carcinoma (Robenek et al., 1981). Decreased transepithelial resistance
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(TER) and consequently increased TJ permeability has also been reported in TJs of 

colon tumours (Soler et al., 1999). In normal kidney epithelial cells, structural 

adjustments in TJs were observed during mitosis. However cell division itself does 

not increase epithelial TJ permeability, therefore inducing leakiness in the epithelial 

barrier. These results indicate that altered permeability may be due to disease states 

like cancer (Soler et al., 1993).

Taken together all this evidence from different cancer types appears to clearly 

indicate that a decrease in the epithelial barrier function and loss of TJ function are 

correlated. An extensive number of studies have shown that different protein 

members of TJs are directly or indirectly related to cancer progression, some of those 

have also been shown to correlate with staging and metastatic potential in various 

cancers (Table 1.3).

In bladder cancer the expression of Claudin-1, -4 and -7 was analysed by 

Boireau et al., Claudin-4 expression appears to be modified in 26/39 tumours 

compared with the exceptional modifications found in Claudin-1 and -7. Over­

expression of Claudin-4 was found in different carcinomas followed by remarkable 

down-regulation in invasive/high grade tumours. Delocalisation of Claudin-1 and -4 

was seen in most human bladder tumours as well as in the bladder cell line HY-1376 

(Boireau et al., 2007).

In colorectal cancer, Resnick et al., studied the expression pattern of Claudin- 

1, -4, Occludin and ZO-1 and their possible role in prognosis of disease was 

evaluated in a cohort of 129 TNM  stage II tumours using tissue microarray 

technology. They found that in that order 75%, 58%, 56% and 44% of the tumours
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examined displayed normal to elevated expression levels of Claudin-1, -4, Occludin 

and ZO-1 respectively. Low expression levels of Claudin-1 and ZO-1 were related to 

high tumour grade. Taking all these results together, it was confirmed that loss of 

Claudin-1 might be a strong candidate for disease recurrence and poor patient 

survival in stage II colorectal cancer (Resnick et al., 2005). An earlier study by 

Tokunaga et al. examined the expression of Occludin in a cohort of 40 rectal 

carcinoid tumours using an anti-Occludin monoclonal antibody. The results showed 

that Occludin was not found in most of the rosette-like or trabecular structures in 

carcinoid tumours, however 20% presented a small number of rosette-like tubular 

structures presented Occludin as a dot or short line. These studies indicate that 

Occludin could be a useful marker of polarized glandular structures, a helpful tool to 

distinguish true glands from rosettes in human rectal carcinoid tumours (Tokunaga et 

al., 2004). The levels of expression of Claudin-1 and -2 were examined in 

adenocarcinoma tissues as well as normal mucosa by Kinugasa et al. 

Immunohistochemistry and quantitative reverse transcription-polymerase chain 

reactions (RT-PCR) were used in the study. Results showed up-regulation in both 

Claudins at m RNA level as well as at protein level clearly linking these results to 

tumour invasion (Kinugasa et al., 2007). The expression of Claudin-3, -4 and -7 was 

identified upregulated in gastric carcinoma when gene expression was analyzed by 

microarrays in three oesophageal adenocarcinomas, one case of Barrett's oesophagus, 

and three normal oesophagi. Claudin -3 showed a marked increase in m RNA 

expression compared with normal oesophagus while Claudins- 4 and -7 were 

moderately up-regulated. Claudin-4 and -7 protein expressions were highly up- 

regulated in Barrett's oesophagus but minimally in squamous and gastric mucosa.
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Claudin-3, -4 and -7 expressions showed high-grade in dysplasia, adenocarcinoma, 

and metastases specimens using Immunohistochemical staining. All these findings 

suggested that alterations in Claudin proteins are an early event in tumorigenesis of 

oesophageal adenocarcinoma (Montgomery et a l., 2006). Usami et al. analyzed the 

expression of Claudin-7 in squamous cell carcinoma of the oesophagus showing that 

Claudin-7 levels at the metastatic lymph nodes are significantly reduced compared to 

expression levels at the invasive front of the primary tumours. This suggests that the 

reduction may be linked to tumour progression and subsequent metastatic events 

(Usami et al., 2006).

An early study from Kimura et al., investigated Occludin in combination with 

ZO-1 in normal epithelia and cancers in the human digestive tract by 

immunostaining. In normal epithelium ZO-1 and Occludin were expressed together 

as a single line at the apical cell border. However, in the oesophagus only ZO-1 was 

expressed. When looking at cancer tissues, both proteins followed the same pattern 

of expression in normal epithelium as in differentiated adenocarcinoma cells. 

Conversely, in poorly differentiated adenocarcinomas both expressions were reduced 

indicating a correlation between tumour differentiation and expression o f  Occludin 

and ZO-1 (Kimura et al., 1997).

Disruptions in the TJ structure have also been seen in lung cancer. An early 

study of 68 lung carcinomas and surrounding normal tissue found strong staining of 

Occludin in the apico-luminal borders of the branchial epithelia and bronchial glands 

as dots or short lines. When looking at cancer tissue, staining of Occludin was found 

in all cells that faced lumen in all adenocarcinomas including bronchioalveolar
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carcinomas and followed the same staining pattern as that of the normal epithelia.

This suggests that Occludin could be an ideal indicator to differentiate those glands 

that form tubulo-papillary structures in human lung carcinoma tissues (Tobioka et al., 

2004b). Using semi-quantitative reverse transcription-PCR on 27 pairs of lung 

squamous cell carcinomas and normal lung tissue, Liu et al., confirmed differential 

expression of Claudin-1 in 82.1% (23/28) of lung tumour tissue (Liu et al., 2007). 

Paschoud et al., investigated different patterns of expression of a large panel of TJ 

proteins in lung squamous cell carcinomas and adenocarcinomas using quantitative 

RT-PCR. Significant changes in transcript levels were found when looking at 

squamous cell carcinomas in JAM-1, Occludin, Claudin-1, -3, -4, -7, Cingulin, ZO-2 

and -3. Only Claudin-1 was shown to be down-regulated while the other proteins 

were up-regulated. In adenocarcinomas, transcript levels were compared to bronchial 

cells and a significant down-regulation in the levels of Claudin-1, -3, -4, -7, ZO-2 

and -3 was observed (Paschoud et al., 2007).

In prostate cancer, down-regulation of Occludin was seen in polygonal cells 

of Gleason grades 4 and 5, however, Occludin expression still occurred in cells 

facing the lumen in all grades of cancer. These results suggest that Occludin in 

prostate cancer is associated with loss of cell polarity and occurs at the same time as 

the formation of the complex glandular architecture of Gleason grade 4 pattern or 

complete loss in Gleason grade 5 pattern (Busch et al., 2002). A study from Sheehan 

et al., shows the pattern of expression of several Claudins in prostatic 

adenocarcinomas from 141 tissues samples. Decreased expression of Claudin-1 

correlated with high tumour grade and biochemical disease recurrence, Claudin-7 

appears to be decreased and also correlated with high tumour grade. However,



Claudin-3 correlated with advanced tumour stage and recurrence, while Claudin-4 

correlated with advanced stage (Sheehan et al., 2007).

Normal endometrium glands, endometrial hyperplasia and endometroid 

carcinoma grade 1 samples were analyzed by Tobioka et.al. All samples were seen to 

express Occludin. However, in endometrioid carcinomas grades 2 and 3, Occludin is 

not present in solid areas. Occludin expression was decreased in parallel with the 

increase in carcinoma grade, and the decrease in expression correlated with 

myometrial invasion and lymph node metastasis (Tobioka et al., 2004a). Claudin-4 

was over-expressed in epithelial ovarian cancer, although this expression did not 

correlate with survival or other clinical endpoints. However, Claudin-4 over­

expression was correlated with changes in barrier function after treatment with 

Clostridium perfringes  enterotoxin in a dose-Claudin-4 dependent non-cytotoxic 

manner (Litkouhi et al., 2007). When Claudin-4 protein and transcript level were 

analyzed in 110 patients with different histological types of epithelial ovarian 

carcinomas Tassi et al., found them to be significantly up-regulated in both primary 

and metastatic tumours compared to normal human ovarian surface epithelium cell 

lines. At protein level, Claudin-7 appears to be significantly higher in tumours of 

primary and metastatic origin when compared to normal ovaries, despite grade of 

differentiation, histologic type and pathological state. Complementary results show 

Claudin-7 to be over-expressed in all main histological types of epithelial ovarian 

carcinomas, in single neoplastic cells dispersed in the peritoneal cavity and pleural 

effusions. The data presented in this study suggested that Claudin-7 may be a useful 

novel marker in the disease (Tassi et al., 2008).
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The blood-testis barrier is composed of TJ, Adherens Junctions and Gap 

Junctions. Of all these structures, TJ is the main structural component in the Sertoli 

cell barrier. A study by Fink et al., found an association between ZO-1 and -2 with 

the blood-testis barrier region in men with normal spermatogenesis. ZO-1 and -2 

immunostaining were observed in normal tubules and at different stages of human 

testicular carcinoma in situ. When looking at carcinoma in situ tubules, the staining 

appears to be cytosolic, scattered and weaker. This data was complemented with 

Western blot and RT-PCR confirming that the disruption of Sertoli cell barriers in 

carcinoma in situ is linked to aberrant distribution of ZO-1 and ZO-2 (Fink et al., 

2006).

In human pancreatic endocrine tumours and ductal carcinomas, the protein 

and m RNA expression of different members of the Claudin family was analysed by 

Borka et al. Claudin-1, -2, -3, -4 and -7 revealed strong staining while Claudin-2 

stained diffusely in normal acini and ducts. Langerhans islands presented only for 

Claudin-3 and -7 expression. The majority of endocrine tumours were negative for 

Claudin- 1, -2 and -4. Claudin-2 was present in half of the ductal adenocarcinomas 

whereas Claudin-3 was totally negative. Claudin-3 and -7 were detected in all 

endocrine tumours. When looking at the level of expression, differences were seen 

between endocrine tumours and ductal adenocarcinomas, worth mentioning is the 

high expression of Claudin-3 in endocrine tumours and Claudin-7 in ductal 

carcinomas making those proteins suitable targets for adjuvant therapy (Borka et al.,

2007). When ZO-1 expression level was investigated in pancreatic cancer, Kleeff et 

al., found that it was higher in pancreatic ductal carcinomas when compared to 

normal pancreas. Under the confocal microscope, ZO-1 was present in the apical and



apicolateral areas of ductular cells in the normal pancreas and in chronic pancreatitis. 

However, pancreatic ductal carcinomas displayed ZO-1 regardless of expression in 

cancer cell forming duct-like structures. In lymph nodes, metastatic pancreatic cancer 

cells displayed a random pattern of distribution of ZO-1. It appears to be presented 

from apical to apicolateral areas including diffuse staining in the membrane. All 

these findings suggested that in pancreatic ductal carcinomas over-expression of ZO- 

1 might help pancreatic cancer cells to metastasise (Kleeff et al., 2001).

1.4.1 T ight Junctions and breast cancer

An increasing number of studies have described the dysregulation of  the TJ 

proteins and how these changes also affect breast cancer progression.

When looking at transmembrane proteins in the TJ, results have revealed that 

Occludin expression is down-regulated in several cancers including breast. When 

Occludin was over-expressed in the murine breast carcinoma cells AC2M 2, results 

showed that Occludin promotes detachment-induced apoptosis (anoikis) via 

regulation of a set of apoptosis-associated genes (Osanai et al., 2006). Further 

experiments from the authors have also shown that Occludin is associated with 

premature senenscence in AC2M 2 cells through the up regulation of negative cell 

cycle regulators such as p l6IN K 4A , p21IW afl/C ip l  and p27Kip. However, p53 was 

not affected. Taking all these findings together, loss of Occludin appears to be 

partially involved in the senescence-promoting program during mammary 

tumourigenesis (Osanai et al., 2007b). JAM -A has been implicated in the 

development of breast cancer. Niak et al., showed that levels of JAM -A were down- 

regulated in metastatic breast tumours. In vitro studies with breast cancer cell lines
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MCF-7, MDA-MB-231 and MDA-MB-468 revealed that over-expression of this 

protein results in a decrease in migration as well as invasion, whereas its knockdown 

promotes invasiveness (Naik et a l., 2008). However, McSherry et al., recently 

studied the role of JAM -A in MCF-7 and MDA-MB-213, revealing a link between 

high levels of JAM -A and poor prognosis in patients with breast cancer. An in vivo 

study has been reported, revealing that knockdown of JAM -A in MCF-7 cells 

significantly decreases migration (McSherry et al., 2009).

A number of studies have also implicated the Claudin family in breast cancer. 

Claudin-1 protein level has been reported to be reduced in breast tumours as well as 

in breast cancer cell lines such as MDA-MB-231 and MDA-MB-435. In these cell 

lines no genetic alterations were seen in the promoters or coding sequences with no 

explanation for the loss of expression of Claudin-1, therefore rejecting any tumour- 

suppressor effect for this protein (Kramer et al., 2000). In similar breast cancer cell 

lines, Hoevel et al., found no signal of expression of Claudin-1 nor Occludin, 

however, when Claudin-1 retrovirus was transduced into these cells, expression of 

Claudin-1 was found at the usual location at cell-cell contact sites, suggesting that 

other proteins might be responsible for targeting Claudin-1 in the TJ. In addition the 

paracellular permeability was altered in the transduced cells. The authors suggested 

that Claudin-1 over expression might be sufficient to exert TJ paracellular barrier 

function in metastatic breast cancer cells in the absence of other transmembrane 

proteins such as Occludin. These results agree with the study by Kramer et al., 

suggesting that even though there is no evidence of any genetic changes, there must 

be some epigenetic or regulatory factors involved in the down-regulation o f  Claudin- 

1 (Hoevel et al., 2002). Furthermore, Claudin-1 has been seen to be a useful



prognostic marker in breast cancer patients. Morohashi et al., have revealed a 

correlation between recurrent breast tumours and low levels of Claudin-1 expression 

compared to primary tumours. Decreased expression of Claudin-1 was also 

associated with the lymph node metastasis-positive group and short-disease free 

patient group (Morohashi et al., 2007).

Examination of Claudin-16 in breast cancer cells, in vitro and in vivo  studies, 

have shown that when Claudin-16 is over expressed in the human breast cancer cell 

line MDA-MB-231, cells were significantly less motile and displayed reduced 

aggressiveness, with an increase in TJ function as the colonies became tighter. To 

complement this study, patient data revealed low expression of Claudin-16, mainly in 

patients who displayed high mortality (Martin et al., 2008a). Studies of Claudin-7 

have revealed the loss of expression in preneoplastic and invasive ductal carcinoma 

and this loss was mostly seen in high-grade lesions. The same situation was seen in 

lobular carcinoma where Claudin-7 was also absent. The authors suggested a link 

between the lack of Claudin-7 expression and cancer progression due to the 

increased cellular discohesion that is frequently seen in high-grade lesions, proposing 

that Claudin-7 might help tumour progression and increases metastatic potential. 

Moreover, when the breast cancer cell lines MCF-7 and T47D, which express high 

levels of Claudin-7, were treated with HGF, there was a resultant loss of Claudin-7 

after 24 hours of treatment as well as dissociation of these cell lines in culture, 

linking the loss of Claudin-7 and cell cohesion in breast cancer (Kominsky et al., 

2003). In concordance with the above mentioned study, Sauer et al., showed an 

inverse correlation between Claudin-7 level of expression and tumour grading. Grade 

2 and -3 invasive carcinoma revealed reduced expression of protein. This data



correlates with metastatic disease, including loco-regional recurrences and with 

heterogeneous staining pattern. However, these results do not correlate with tumour 

size or subtype (Sauer et al., 2005). Osani et al., demonstrated that the knock down 

of Claudin-6 in MCF-7 cells increases cell migration and invasion (Osanai et al., 

2007a). In agreement with Osani’s results, a recent study by Wu et al., revealed that 

over expression of Claudin-6 in the MCF-7 cell line resulted in a decrease in cell 

growth rate as well as migration and invasion. However, the transepithelial resistance 

was increased in the transfected cells, suggesting a possible role in breast cancer 

progression acting as a cancer suppressor (Wu et al., 2010).

Soini et al. analysed the pattern of expression of Claudin-2, -3, -4 and -5 

protein levels in breast carcinoma. The study revealed that Claudin-2 and -4 were 

highly expressed in non-neoplastic breast tissue whereas Claudin-3 and -5 appear to 

show high expression in ductal and acinar cells. Levels of expression in breast 

carcinoma were for Claudin-2 in 52%, Claudin-3 in 93%, Claudin-4 in 92% and 

Claudin-5 in 47% of the samples respectively. It is important to mention that there 

was no correlation between level of expression of these Claudin members and 

tumour grade or oestrogen receptor status. Levels of expression between different 

Claudins were seen to be associated, strong Claudin-2 expression was linked to 

Claudin-5 and -3. In the same way, strong Claudin-3 expression was associated to 

Claudin-5 and -4 (Soini, 2004). A similar study analysing levels of m RN A  compared 

to protein levels for Claudin-1, -3 and -4 in malignant breast tumours and benign 

lesions was carried out by Tokes et al., revealing that whereas Claudin-3 and -4 

mRNA and protein levels did not show any difference in expression between 

invasive tumour and the surrounding normal tissue, Claudin-1 m RNA appeared to be



highly down-regulated when compared with the control group. However, Claudin-3 

and -4 proteins were detected in all primary breast carcinomas in one study by 

Kominsky et al., in addition, when compared to normal epithelium, these two 

Claudin members were over-expressed in 62% and 26% of samples respectively 

(Kominsky et al., 2004). Additionally, Claudin-1 was located in the membrane of 

ductal cells and in some of the ductal carcinoma in situ, whereas in invasive tumours 

Claudin-1 was not presented or its distribution was diffuse in the tumour cells. This 

data provided further evidence of how Claudin-1 is involved in invasion and 

metastasis of breast cancer. High levels of Claudin-4 distribution was seen in normal 

epithelial cells and was almost lost in mucinous, papillary, tubular breast carcinoma 

as well as in areas of apocrine metaplasia (Tokes et a l ,  2005).

Studies focusing in cytoplasmic plaque proteins of the TJ have revealed how 

ZO-1 staining was found to be decreased or even lost in 69% of breast cancer using 

immunohistochemistry, whereas normal breast tissue showed intensive staining in 

the area where TJs were localized. When infiltrating ductal carcinoma was analysed 

Hoover et al., found a fall in staining of 42% when tissue was well differentiated, in 

83% of moderately differentiated and 93% when tumours were hardly differentiated. 

In addition to these results, it was reported that staining for ZO-1 correlated with 

tumour differentiation, and particularly with the glandular differentiated tumours 

implying that down-regulated level of ZO-1 might be a link to cancer progression 

(Hoover et al., 1998). Martin et al., investigated levels of expression of ZO-1, -2, -3 

and MUPP-1 in patients with primary breast cancer. Immunohistochemical staining 

for ZO-1, -2 and -3 revealed low intensity in tumour samples when compared with 

paired background sections and a delocalisation of ZO-1 in the TJ. Looking at

41



mRNA levels, the level of expression of all these proteins was reduced in tumour 

tissues; however the differences were not statistically significantly. This study also 

reported a decrease of ZO-1 and MUPP-1 expression in patients with poor prognosis 

and with increasing tumour grade (Martin et al., 2004b). A study from Polette et al., 

suggested a link between ZO-1 and cell invasion in breast cancer cells by modulating 

membrane-type 1 matrix metalloproteinase (MT1-MMP) which appears to be over­

expressed in many types of cancer including breast. In invasive breast cancer cell 

lines, MDA-MB-435, BT549, and Hs578T, ZO-1 was localized in the cytoplasm 

whereas Occludin was absent. Quite the opposite happened in non-invasive cell lines, 

MCF-7 and BT20, which exhibited membrane staining for ZO-1 as well as for 

Occludin and did not express MT1-MMP. This data also suggested a possible role 

for ZO-1 in the regulation of M T1-MM P through the (3-catenin/TCF/LEF pathway 

which regulates the transcription of different genes implicated in tumour invasion 

(Polette et al., 2005). ZO-2 has also been seen to be down-regulated in breast 

adenocarcinoma (Chlenski et al., 2000). Glaunsinger et al., reported the importance 

of ZO-2 in the tumour-inducing capacity of the adenovirus type 9 (Ad9) E4 protein. 

Expression of mutant ZO-2 protein with no E4 binding site inhibits Ad9 E4- induced 

transformation (Glaunsinger et al., 2001).

Similar studies, looking at associated/regulatory proteins have reported that 

the level of expression of Ponsin and Vinculin correlates with poor prognosis in 

patients with breast cancer (Martin and Jiang, 2009). The Par complex (Par3-Par6- 

aPKC) has been related to breast cancer progression. In particular the level of 

expression of Par6B appeared to be up-regulated in breast cancer tissues. Over 

expressing Par6 in the breast epithelial cell line MCF-10A resulted in higher



proliferation rates which depended on interactions between Par6, aPCK and Cdc42. 

Down-regulation of aPCK or Cdc42 inhibits the capacity of Par6 to enhance 

proliferation, demonstrating that Par6 promotes cell proliferation in breast cancer 

cells (Nolan et al., 2008). Opposite to Par6, Par3 has been reported to be down- 

regulated in squamous cell carcinomas showing a correlation with positive lymph 

node metastasis and poor differentiation (Zen et al., 2009). Immunohistochemistal 

staining for Scrib, member of the Scribble complex, appeared to be reduced and 

mislocalised in human breast cancer tissues (Navarro et al., 2005). A  study by Zhan 

et al., suggested a role for Scrib in breast cancer development, where knockdown of 

Scrib in the MCF-10 cell line altered cell polarity and caused inhibition of the 

capacity of the oncogene c-myc to induce apoptosis in breast epithelial cells (Zhan et 

al., 2008).

To evaluate how different agents could induce changes in TJ functions,

Martin et al., studied the effect of selenium (Se), gamma linolenic acid (GLA) and 

iodate (I) in two different breast cancer cell lines, MDA-MB-231 and MCF-7. Even 

though the cell lines have different responses to the agents the study revealed how I, 

Se and Gla, independently or in combination, can induce changes in the TJ 

enhancing the transepithelial resistance. In addition to this, these three agents were 

also able to reverse the effect of the hormone 17-p estradiol on this cell line, which 

also causes modifications in the paracellular permeability of the endothelial cell line 

HUVEC decreasing the transepithelial resistance of the TJ (Ye et al., 2003). A 

remodelling of the structure of TJs after treatment has also been reported, where the 

proteins Occludin.and ZO-1 showed increased intensity when immunofluorescence 

staining was analysed as well as relocation in the cell membrane (Martin et al., 2007).
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Hepatocyte growth factor (HGF) is a cytokine that has been involved in cell 

motility, mitogenesis and morphogenesis in a broad range of cells including cancer 

cells. Treatment of cancer cells with HGF was seen to induce invasiveness as well as 

angiogenesis in vitro and in vivo (Jiang et al., 2005). In the host laboratory, HGF has 

also been reported to disrupt the TJ in endothelial cells (Jiang et al., 1999b),an effect 

that can be reversed by highly unsaturated lipids (Jiang et al., 1998). When breast 

cancer cell lines MDA-MB-231 and MCF-7 were treated over time with HGF, 

different TJ proteins such us Occludin, JAM-1 and -2, and Claudin-1 and -5 appeared 

to be regulated both at mRNA and protein levels as well as did their localisations 

inside the TJ (Martin et al., 2004a).

All these results certainly indicate the potential involvement of different TJ 

proteins in the cascade of events related to breast cancer progression. Further studies 

will provide greater understanding of the role of these proteins in breast cancer and 

will clarify their contributions to tumour development.

44



Cancer type Claudin type
Changed

expression
Reference

Breast

Claudin-16

Claudin-7

Claudin-1

Claudin-3, -4

Down-regulated

Down-regulated

Down-regulated

Up-regulated

(Martin et al., 2008a) 

(Kominsky et al., 2003) 

(Kramer et al., 

2000),(Hoevel et al., 2002; 

Morohashi et al., 2007), 

(Tokes et al., 2005) 

(Kominsky et al., 2004)

Colon Claudin-3,-4,-7 

Claudin-1,-2 

Claudin-1 

Claudin-7 

Claudin-1,-4

Up-regulated

Up-regulated

Down-regulated

Down-regulated

Up-regulated

(Montgomery et al., 2006) 

(Kinugasa et al., 2007) 

(Resnick et al., 2005) 

(Usami et al., 2006) 

(Resnick et al., 2005)

Ovarian

Claudin-1,-2,-4

Claudin-7

Claudin-5

Down-regulated

Up-regulated

Up-regulated

(Litkouhi et al., 2007) 

(Tassi et al., 2008) 

(Turunen et al., 2009)

Pancreatic
Claudin-4 

Claudin-3,-7

Down-regulated

Up-regulated

(Borka et al., 2007) 

(Borka et al., 2007)

Prostate
Claudin-1,-7 

Claudin-5

Down-regulated

Up-regulated

(Sheehan et al., 2007) 

(Seo et al., 2010)

Bladder Claudin-4 Up-regulated (Boireau et al., 2007)

Lung Claudin-1

Claudin-3,-4,-7

Claudin-5

Claudin-5

Down-regulated

Up-regulated

Up-regulated

Down-regulated

(Paschoud et al., 2007) 

(Paschoud et al., 2007) 

(Paschoud et al., 2007) 

(Paschoud et al., 2007)

Hepatocellular Claudin-5 Down-regulated (Sakaguchi et al., 2008)

Table 1.3: Changes in expression levels of different Claudin members in human 
cancers.
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1.5 Claudins, a multi-gene family

1.5.1 Structure of Claudins

To date the Claudin family is composed of 24 members in mammals having 

molecular weights ranging from 22 to 27 kDa (Table 1.4). There have been 54 

Claudins identified in the fish Takifugu and 15 in D anio rerio. Invertebrates also 

express Claudins despite their lack of TJs, e.g. Drosophila m elanogaster  appears to 

have 6 Claudins. Claudins were originally thought to be simple sealing proteins at TJ. 

In fact, the name of Claudin derives from the latin word “claudere” which means to 

close.

Claudins were first identified by Furuse et al., using the same isolated 

fraction from chicken liver from which Occludin was first identify by Tsukita’s 

group in 1989 (Tsukita, 1989). They showed for the first time that a group of proteins 

existed with similar sequence to each other and with four transmembrane domains 

where the N- and C- terminal domains are orientated towards the cytoplasm, but with 

no similarity to Occludin. Claudin members have since been divided into two groups. 

The so called “Classic Claudins”, which include members with high sequence 

homology like Claudin-1 to -10, -14,-15, -17 and -19. And the “Non-classic”

Claudins which include Claudin-11, -13, -16, -18, and -20 to -24 (Krause et al.,

2008).

The cytoplasmatic C-terminal domain in Claudin varies between members in 

length and sequence, ranging from 21 to 63 residues. While the N-terminal domain is 

relatively short, 7 amino acid sequence, the intracellular loop is composed of 12
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amino acids. The first extracellular loop is a 52 amino acid sequence which is highly 

conserved in different members with two conserved cysteines that influences 

parcellular charge selectivity [Gly-Leu-Trp-x-x-Cys-(8-10 aa)-Cys]. Some studies 

suggest that this loop determines the charge selectivity of the paracellular transport 

(Figure 1.6). The second extracellular loop is shorter, ranging from 16 to 33 amino 

acid residues. It is worth mentioning that this loop might fold in a helix-turn-helix 

motif which seems to be a participant in the Claudin-Claudin interactions (Piontek et 

al., 2008). It has been observed that this loop functions as a receptor for the 

Clostridium perfringens  enterotoxin or CPE (section 1.5.2).

The cytoplasmic tails have the most varied sequences in the topology of the 

Claudins, their lengths range from 21 to 63 amino acid residues, suggesting the 

involvement of this structure in isoform-dependent paracellular selectivity. All 

members have a PDZ domain in their COOH- terminal tail (as already stated in 

section 1.2.1) that allows them to interact with other proteins in the TJ such as ZO-1, 

-2, and -3, MUPP, and PATJ. The interaction with cytoplasmic plaque proteins as 

ZO-1 links Claudins to the actin cytoskeleton (Van Itallie and Anderson, 2006). To 

date, there is no information about the function of the NH2 domain.
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Claudin name Alternative name
Gene

location

CLDN1 Senescence-associated epithelial membrane protein 1 (SEM P1)
3q28-
q29

CLDN2 - Xq22

CLDN3 Clostridium Perfringens Enterotoxin Receptor 2; CPETR2 7q 11

CLDN4 Clostridium Perfringens Enterotoxin Receptor 1; CPETR1 7 q ll

CLDN5 Transmembrane Protein Deleted In Velocardiofacial Syndrome; TM VCF 2 2 q ll

CLDN6 - 16pl3

CLDN7 - 17pl3

CLDN8 - 21q22

CLDN9 - 16pl3

CLDN10 - 13q3

CLDN11 Oligodendrocyte Transmembrane Protein; OTM 3q26

CLDN12 - 7q21

CLDN13 - 21q2

CLDN14 deafness, autosomal recessive 29, included; DFNB29, INCLUDED 21q22

CLDN15 - 3q28

CLDN16 Paracellin-1 21q2

CLDN17 - 3q34

CLDN18 -
3q21-
q23

CLDN19 - lp34

CLDN20 - 6q25

CLDN21 - 11 q2

CLDN22 - 4q35

CLDN23 - 8p23

CLDN24 - 4q35

Table 1.4: The Claudin gene family. Information on gene location.
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Figure 1.6: Model o f Claudin protein structure.
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1.5.2 Claudin interactions

Most epithelia and endothelia express a m ixture of different Claudin 

m em bers and more than two different Claudin members are co-expressed in a single 

cell (M orita et al., 1999a). Consequently, these observations have raised the question 

of whether different Claudin proteins are co-polym erised to form TJ strands as 

heteropolym ers, and whether Claudins interact between each other in a hom ophilic 

manner, between two m olecules of the same Claudin member, or heterophilic 

manner between two different Claudin members. However, little is known about the 

m olecular mechanism s taking place during assem bly and strand formation.

To assess all these questions, an early study by Furuse et al., showed that 

when using co-expression of m ultiple Claudin isoforms in mouse L fibroblasts, they 

concentrated at cell-cell contact areas form ing a well-developed netw ork o f TJ 

strands. However, when these cells were co-cultured they found by 

im m unoprecipitation that different Claudin m em bers can interact within and between 

TJ strands, but these interactions were restricted to specific com bination o f isoforms 

(Furuse et al., 1999).

These heterotypic interactions are assumed to occur in the plasm a membrane 

of the same cell (c/s-interaction) or between plasma m em branes o f opposing cells 

(rrarc.v-interaction), in a sim ilar way these interactions were defined in cadherins 

(Ahrens et al., 2002).

Hom ophilic rrans-interactions, also named homotypic interactions 

(Daugherty et al., 2007), have been seen for Claudin-1,-2,-3 (Furuse et al., 1999),
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Claudin-5 (Morita et al., 1999c), Claudin-6,-9, -14 (Nunes et al., 2006), C laudin-11 

(M orita et al., 1999b), and Claudin-19 (M iyamoto et al., 2005). All these Claudin 

isoforms were able to form TJs when transfected into TJ free cells. H om ophilic cis- 

interaction, or hom omeric interaction (Daugherty et al., 2007), has been described 

for Claudin-5 and -5 using fluorescence resonance energy transfer (FRET) and 

electron m icroscopy (Piontek et al., 2008).

Heterophilic trans- interactions, also termed as heterophilic interactions 

(Daugherty et al., 2007), have been observed for Claudin-1 and -3, C laudin-2 and -3 

(Furuse et al., 1999) and for Claudin-3 and -5 (Daugherty et al., 2007). The 

heterophilic interactions for at least these isoforms require com patible structural 

features in both extracellular loops. It has not been possible to dem onstrate a 

heterophilic trans-interaction for Claudin-1 and -2 (Furuse et al., 1999), Claudin-1 

and -4 , Claudin-3 and -4, and Claudin-4 and -5 (Daugherty et al., 2007). These 

results dem onstrated that only specific Claudins are able to interact with each other. 

Heterophilic cis- interactions, or heteromeric interactions (Daugherty et al., 2007), 

were found for Claudin-2 and -3, Claudin-3 and -4 and assumed for Claudin-1 and -2, 

respectively (Furuse et al., 1999).

1.5.3 Physiological functions o f Claudins

Paracellular transport through pores in the TJ differs in several important 

features from transcellular transport across the membrane. Firstly, it happens through 

the intercellular space of neighbouring cells. Secondly, this transport is passive and 

dependent on an electrochemical gradient. As discussed before (section 1.3), TJs 

play a central role in the intercellular space in epithelia and endothelia, and therefore
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the key factor of paracellular transport. These pores, now known to be form ed by 

Claudins are the major determinants of paracellular transport processes (Tsukita and 

Furuse, 2000).

The role of different Claudin members has been studied by three different 

approaches: by over-expression or down-regulation of Claudins in different cell lines, 

by knockdown of Claudin genes in mice and by the study of the phenotype o f human 

diseases arising due to Claudin mutation (see section 1.5.5) (Angelow et a l., 2008). 

Taking together all the data from these studies, it is more than evident that the 

combination and mixing ratios of different Claudin isoforms determ ine the 

selectivity of paracellular transport across epithelia and endothelia.

To study the effect of different Claudins on conductance, m onolayers of 

M adin-Darby canine kidney (M DCK) epithelial cells expressing a single type of 

Claudin have been used. There are two types of M DCK cell based on transepithelial 

electrical resistance, type I or “tight” cells, and type II or “ leaky” cells.

A clear outline of results has been revealed, showing that the expression of 

C laudin-1,-4,-8,-14 and -15 significantly increases resistance when expressed in low- 

resistance M DCK type II cells. W hereas, the expression of Claudin-2 in high 

resistance M DCK type I cells decreases resistance (Van Itallie and A nderson, 2004).

A C laudin-19 study in the same cell line has reported an increase in resistance and 

decrease in permeability to m onovalent and divalent cations, but anions and urea 

were unaffected (Angelow et al., 2007). Over-expression of Claudin-7 in the renal 

epithelial cell line of porcine proximal tubule LLC-PK1 has revealed an increase in 

resistance and a dram atic reduction of dilution potentials compared to wild type cells
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(Alexandre et al., 2005). Claudin-4, over-expression in the ovarian cancer cell line 

OVCA433, containing a mutation sim ulating its phosphorylated state, decreases the 

TJ strength (D 'Souza et al., 2005). Claudin-5 transfected in the human colonic cell 

Caco-2, low transepithelial resistance cell line, showed a significant increase in 

barrier function (Amasheh et al., 2005).

The knockout of specific Claudin genes in mice also indicates that Claudins 

are the major participants of the selective size, charge, and conductance properties of 

the paracellular pathway. A very significant example has been seen in the Claudin-1 

knockout mice, which die within 1 day o f birth from dehydration (Furuse et al.,

2002). C laudin-11 null mice exhibit neurological and reproductive problem s, 

showing the importance of this isoform in forming the paracellular physical barrier 

of the TJ required for sperm atogenesis and normal central nervous system  (Gow et 

al., 1999). Claudin-14 knockout in mice showed a rapid degeneration o f cochlear 

outer hair cells leading to deafness, suggesting the role of Claudin-14 as a cation- 

restrictive barrier in the maintenance o f the ionic composition in this type of cells 

(Ben-Y osef et al., 2003).

Colegio et al., have shown, by swapping the first, second and both 

extracellular domains between Claudin -2 and -4 in M DCK type II cells, that charged 

amino acid residues on the first extracellular domain of Claudins m ediates the 

paracellular perm eability for ions (Colegio et al., 2003). However, a recent study 

using chimeras of Claudin-2 and -4 in M DCK type II cells suggested that the 

extracellular dom ains are sufficient to increase the permeability, but the participation 

of the carboxy-terminal PDZ binding m otif is also necessary indicating that an
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interaction with other TJ cytoplasm ic plaque proteins like as ZO-1, ZO-2, ZO-3 or 

MUPP-1 are also needed in order to form pores (Van Itallie et al., 2009).

Examples of cation pore-form ing Claudins are Claudin-2 (Amasheh et al., 

2009) as well as C laudin-16 that forms a M g2+-selective channel in the thick 

ascending limb of Henle (Schneeberger, 2003).The confirmation for anion pore- 

form ing Claudins is less clear, nevertheless Claudin-10 has been identified as an 

anion-selective paracellular pore (Van Itallie et al., 2006). Using polyethylene glycol 

oligom ers (PEGs), small uncharged solutes, with increasing radii, Van Itallie et al., 

measured the size of the pore formed by Claudin-2. This study has revealed that this 

pore has a high capacity for compounds charged and uncharged below 4A and a 

lower capacity for larger solutes (Van Itallie et al., 2009). To date there are no other 

studies on the sizes of pores formed by other Claudin isoforms.

The particular role played by a number of Claudin family m em bers are yet to 

be identified. Examples are Claudin-6, -9, -12, -13,-17, -18, and 20-24. Claudin-6, -9 

and -13 studies have closely linked these isoforms to the m aturation of the epidermis 

or the barrier function in different cell types such as embryonic stem cells (ES) 

(Krause et al., 2008). Studies for C laudin-12 showed that it is expressed in 

endothelia and epithelia of the m ouse intestine (Fujita et al., 2006) as well as in the 

inner ear and brain endothelial cells. C laudin-18 has also been identified in the inner 

ear (Kitajiri et al., 2004). For other Claudin family member such as C laudin-17, -20, 

-22 and -23, only the m RNA expression levels have been identified in the duodenum  

of rats (Charoenphandhu et al., 2007). The existence of Claudin-23 and -24 has only 

been established from the analysis of the human genome (Gerhard et al., 2004).
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1.5.4 Regulation o f Claudins

The paracellular barrier m odulated by Claudin members could be affected by 

a wide range of physiologic factors including cell signalling pathways, hormones, 

cytokines, and disruption of the cell-cell contacts. This field is still em erging and 

little is known about the mechanism that regulates the Claudin family. However, 

post-translational modifications, including phosphorylation, lipid m odification and 

removal of Claudins by endocytosis, appear to be potential m echanism  for the 

regulation of Claudins.

A number of studies have revealed that Claudin function can be highly 

regulated by phosphorylation. It is widely accepted that most Claudin m em bers have 

potential serine and/or threonine phosphorylation sites in their cytoplasm atic COOH- 

terminal domain. Results after phosphorylation contribute in some cases to increase 

the barrier function of the TJ and in other cases to reduce it. For exam ple, Protein 

Kinase-A (PKA) phosphorylation of Claudin-5, probably at the amino acid site 

around Thr207, results in an increase of the barrier function in porcine blood-brain 

barrier endothelial cells treated with cyclic AM P (cAM P) (Ishizaki et al., 2003). 

However, PKA-dependent phosphorylation of Claudin-3, at the amino acid site 

T h rl9 2  in the cytoplasmatic COOH-term inal domain, in the ovarian cancer cell line 

OVCA433 resulted in a decrease of the TJ strength (D 'Souza et al., 2005). Yamauchi 

et al., found in M DCK type II cells that the threonine-serine kinase W NK4, binds 

and phosphorylates endogenous C laudin-1,-2,-3 and -4 and that the human disease- 

causing mutant o f W NK4 is associated with increased paracellular chloride 

perm eability without increasing sodium perm eability (Yamauchi et al., 2004). A
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different study showed sim ilar results and revealed that Claudin-7 is also a substrate 

to W NK4 on Ser206 in its cytoplasmatic COOH-term inal domain (Tatum et al., 

2007). Different studies have reported how other kinases are also linked to Claudin 

m em bers such as M APK (mitogen-activated protein kinase) phosphorylating 

Claudin-1 (Fujibe et al., 2004), Claudin-4,-7,-8 and -9 (Carrozzino et al., 2009). Rho 

kinase phosphorylating Claudin-4 (Tanaka et al., 2005) and EphA2 phosphorylating 

Claudin-5 (Yamamoto et al., 2008).

Endocystosis is a critical step in the rem odelling o f the TJ structure. To 

assure the correct sealing of the intercellular space of epithelial and endothelial cells 

this process has to be thoroughly regulated. Live observation and electron 

m icroscopy have revealed, in confluent Eph cells, that the endocytosis of Claudins 

was aided when wounding the cellular sheet and that other TJproteins such as 

Occludin and ZO-1 appeared to be detached from Claudins before this process 

occurred (Ikenouchi et al., 2003).

Other potential post-translational modification is palm itoylation. Van Itallie 

et al., shown that mutation of palm itoylation sites in M DCK type II cells alter the 

localization of Claudin-14, however, the stability and assembly of the TJ strands 

were not affected, indicating that alterations in transepithelial resistance in m utants 

might be due to the translocation of Claudin-14 (Van Itallie et a l ,  2005).

When looking at the level of gene expression, the zinc finger-containing 

transcription factor Snail, which plays a pivotal role in epithelial-to-m esenchym al 

transition (EM T), emerged as a regulator of the Claudin gene expression binding 

directly to Claudin promoters. Claudin genes, as well as E-Cadherin and Occludin,
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contain E-box motifs that trigger Snail and thus repress transcription (Ikenouchi et al.,

2003). A study in M DCK type II cells by Ohkubo et al. reported a possible second 

mechanism for Snail, finding that Snail down-regulates protein levels of Claudin-1 

however, mRNA was unaffected, suggesting that Snail may regulate Claudin 

translation (Ohkubo and Ozawa, 2004).

Further experiments using M DCK type II cells expressing Snail showed an 

increase in the paracellular permeability for chloride and sodium. They also reported 

a slight decrease in Claudin-2 expression but a significant decrease in Claudin-4 and 

-7 (Carrozzino et al., 2005). These results suggest that the increase in Snail 

expression has different effects in different Claudin members, resulting in selective 

changes in the cell barrier function.

Other transcription factors have also been reported. An early study by Niimi 

et al., showed that one isoform lacking the C-term inal cytoplasm atic domain of 

C laudin-18 is regulated by the T/EBP/NKX2.1 hom eodom ain transcription factor 

which is expressed in the lung, thyroid and stomach (Niimi et al., 2001). The 

transcription factor GATA-4 is also connected to one Claudin member, Claudin-2. 

GATA-4 binds to the promoter of Claudin-2 when the transcription factors CDX or 

H N F -la  are present suggesting that GATA-4 is totally necessary for the expression 

of Claudin-2 (Escaffit et al., 2005).

Hepatocyte growth factor (HGF) and epidermal growth factor (EGF), have 

been seen to regulate Claudin fam ily members. Both are cytokines that are involved 

in cell motility, m itogenesis and m orphogenesis in a broad range of cells including
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cancer cells where HGF can induce invasiveness as well as angiogenesis in vitro and 

in vivo (Jiang et al., 2005)

Two different studies revealed that both cytokines have sim ilar effects when 

treating M DCK type II cells with HGF and EGF. Both increased the transepithelial 

resistance linked to a reduction in the expression of Claudin-2 and activation o f the 

extracellular signal-kinase (ERK) 1/2. ERK 1/2 inhibitor, U0126, induces Claudin-2 

expression in M DCK type I cells which showed no levels of Claudin-2, in contrast to 

M DCK type II, which seems to have high levels of this Claudin isoform  (Lipschutz 

et al., 2005). In addition to this EGF, aside from increasing the transepithelial 

resistance in M DCK type II, induces cellular rem odelling and enhances the 

expression levels of Claudin-1, -3 and -4 (Singh and Harris, 2004). All these results 

indicate the importance of ERK 1/2 in determ ining the paracellular perm eability in 

M DCK cells. Peter et al., studied the effect of EGF in the non-small cell cancer lung 

(NSCLC) cell line, their results showed that after treatment with EGF, levels of 

Claudin-2 expression is increased however, transepithelial resistance is reduced 

(Peter et al., 2009).

HGF decreases transepithelial resistance and increases paracellular 

perm eability in human endothelial cells HUVEC after treatment. The level of 

expression of Claudin-1 seems to be reduced overtime whereas no changes were 

observed in the levels of Claudin-5 (M artin et al., 2002). W hen breast cancer cells, 

M DA-M B-231 and M CF-7, were treated with HGF, the transepithelial resistance 

was once more reduced. Claudin-1 transcripts levels were reduced in M DA-M B-231 

cells through time, whereas changes in M CF-7 cells were less significant. W hen
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looking at Claudin-5, significant changes in expression were seen in both cell lines 

(Martin et al., 2004a).

Overall, it is clear that HGF and EG F modulate changes in expression of 

different Claudin family members and therefore altering the physiological function 

of TJs in different cell types including breast cancer cells.

1.5.5 Diseases involving Claudins

The effect of the disease progression on epithelial and endothelial barriers is 

alm ost always to make them leakier. In normal differentiated cells, a high degree of 

cellular organization is typically observed, but tumour cells exhibit abnorm al 

structure and behaviour. This reflects a change in the TJ itself, such that it either 

disappears entirely or its permeability increases significantly. Usually in disease 

situations, the TJ barriers do not become “tighter” .

It is increasingly apparent that changes in TJ functions are found in cancer 

developm ent, as thoroughly reviewed in section 1.4. But in addition to cancer disease, 

there are a growing number of diseases reported to involve changes in the TJ 

functions. These include autoimm une diseases, infections and allergies (Table 1.5). 

This section will focus on Claudins and their aberrant expressions in diseases other 

than cancer.

A number of Claudins have been implicated in m utations leading to human 

diseases. Much of the information provided by these studies is currently helping to 

elucidate the role of Claudins and their importance in the developm ent of severe 

diseases. For instance, mutation in Claudin-16 that introduces a prem ature stop
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codon resulting in cleavage of the C-terminal cytosolic tail leads to recessive renal 

hypom agnesemia causing failure of the kidney (M uller et al., 2006). Claudin-19 

presented a similar deficiency in regulating magnesium reabsorption as well as retina 

developm ent (Konrad et al., 2006). M utations provoking a prem ature stop codon in 

Claudin-1 caused severe chronic disease characterized by inflamm ation and fibrosis 

of the bile ducts named Neonatal Ichthyosis and Sclerosing Cholangitis Syndrome 

(NISCH), leading to liver failure (Hadj-Rabia et al., 2004). M oreover, these patients 

also suffer from dry ichthyotic skin and thicker stratum corneum, a sim ilar phenotype 

to Claudin-1 knockout mice in which anim als died after dehydration due to “ leaky” 

TJs (Zimmerli et al., 2008). Claudin-11 (Gow et al., 2004) and -14 (W ilcox et al., 

2001) m utations were associated with congenital deafness in mice and hum ans 

respectively, suggesting the role of these proteins in the cation-restrictive barrier that 

m aintains the normal ionic concentration in the ear. Velo-Cardio-Facial/ DiGeorge 

syndrom e (VCF), which is characterized by a broad range of phenotypes including 

conotruncal heart as well as facial dysmorphology, has been associated with 

m utations in chromosome 2 2 q l l ,  which maps to Claudin-5. It has been demonstrated 

that 80% of the patients displaying these syndrom es have a deletion in the region 

coding for Claudin-5 (Sirotkin et al., 1997).
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Diseases provoked by m utations Claudin type Reference

Hypom agnesem ia with hypercalciuria 
and nephrocalcinosis Claudin-16 (M uller et al., 2006)

Hypomagnesis and visual impairment Claudin-19 (Konrad et al., 2006)

Congenital deafness Claudin-11,-14
(Gow et al., 2004; W ilcox et al., 
2001)

Neonatal Ichthyosis and Sclerosing 
Cholangitis Syndrome (NISCH) Claudin-1 (Hadj-Rabia et al., 2004; 

Zimmerli et al., 2008)

V elo-Cardio-Facial/ DiGeorge 
syndrom e (VCF) Claudin-5

(M orita et al., 1999a; Sirotkin et 
al., 1997)

Im m unity-related Disease Claudin type Reference

C rohn’s disease and ulcerative colitis C laudin-2,-5,-8 (Zeissig et al., 2007)

M ultiple Sclerosis C laudin-11 (Gow et al., 1999)

D erm atophagoides pteronyssinus Claudin-1 (Wan e ta l.,  1999)

H elicobacter pylori Claudin-4,-5 (Fedwick et al., 2005)

Clostridium perfringens Claudin-3,-4 (Fujita et al., 2000)

Rotavirus, HIV Claudin-1,-7 (Dickman et al., 2000; Zheng et 
al., 2005)

Table 1.5: Claudin proteins involved in genetic and imm une-related diseases.
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Claudin expression has also been seen to be altered in response to 

inflammation and to pathogens resulting in changes to paracellular perm eability. 

These changes in the TJ structure offer a perfect route for antigen penetration. Virus 

and pathogens have evolved numerous strategies to enter the cell cycle, however, 

before they can start to replicate and cause infection they firstly have to reach the 

apical surface of polarized epithelial cells. Recent studies have shown that 

Clostridium perfringens food poisoning, which is released into the intestinal lumen, 

binds directly to the second extracellular loop domain of Claudin-3 and -4 resulting 

in a inhibition of TJ reorganization as well as prom oting endocytosis (Fujita et al., 

2000). Infection causing by H elicobacter pylori in the stomach alters the gastric 

epithelial barrier by activating myosin light chain kinase reducing levels of 

expression of Claudin-4 and -5, therefore increasing the perm eability in the cell 

(Fedwick et al., 2005). Rotavirus infections were also responsible for altering 

paracellular permeability by decreasing transepithelial resistance and changing the 

localization of Claudin-1 in Caco-2 cell line (Dickman et al., 2000). Claudin-7 has 

been involved with Human inmm unodeficiency virus (HIV). CD4 is a prim ary 

receptor used by HIV to penetrate the epithelium. Zheng .et al., have revealed that 

Claudin-7 enhances the viral susceptibility of CD4(-), suggesting that HIV can 

penetrate across the epithelial barrier through a direct interaction with TJ proteins 

(Zheng et al., 2005)

Allergens like D erm atophagoides pteronyssinus can cause disruption in the 

TJ structure by increasing paracellular perm eability allowing the pathogen to cross 

the epithelial barrier and by cleaving the extracellular domains of Claudin-1 (Wan et 

al., 1999). Multiple sclerosis, an inflamm atory demyelinizing disorder o f the central



nervous system (CNS), has been linked to C laudin-11. C laudin-11 is presented in the 

CNS as well as in the testis and plays a pivotal role in the paracellular barrier of both 

as implied through the neurological and reproductive failures seen in C laudin-11 

knockdown mice (Gow et al., 1999). Another example of Claudin m isregulation has 

been seen in Crohn’s disease and ulcerative colitis, which provokes not only gastric 

problem s but inflammatory too. The TJ structure is altered as Claudin-5 and -8 were 

down-regulated as well as the pores formed by Claudin-2 which in this case was 

highly up-regulated (Zeissig et al., 2007).

1.5.6 C laudins as emerging targets for cancer

Due to the high specificity of expression patterns of Claudins in cancer, the 

possibility of Claudins being utilised as useful molecular markers has been raised. 

Regardless of their exact functions in cancer cells, Claudin protein expression may 

have a significant clinical relevance. Research in the past has been focused on the 

expression of members of the Claudin family in a number of cancer types as 

described in section 1.4. Studies have revealed how some of the Claudins were up- 

regulated in cancer progression while others were down-regulated. This data opens 

up the possibility of the potential value of Claudins as targets for therapeutic 

intervention. A number of key points have arisen from various studies into targeting 

Claudins for cancer therapy.

1. Claudins are cell surface proteins that contain two extracellular dom ains

which are accessible as target sites for therapy.
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2. Claudin members have been found to be over-expressed in a num ber of 

different cancers showing different expression patterns between normal and 

tumour cells.

3. Claudins could be more accessible in tumour cells due to an increase in TJ 

permeability compared with normal cells (Soler et al., 1999) even if Claudins 

are not over-expressed in that tumour type.

As previously stated, Claudins, are transmem brane proteins with two 

relatively large extracellular loops, and present them selves as prom ising targets for 

antibody therapy. This therapy is based on antibodies against Claudins that will 

specifically recognize one of these loops and therefore induce leaky TJ or even 

destroy them (Tsukita et al., 2008); or antibodies that will simply, after specific 

binding to the C-terminal domain of the Claudins, provide evidence for the antibody- 

based therapy approach (Kominsky, 2006).

Cell tumour lysis can be achieved by attachm ent of toxins to the cell surface, 

or by stim ulating a response from the immune system. The second extracellular loop 

of some Claudins have appeared to be a receptor for the Clostridium perfringens  

enterotoxin (CPE), usually associated with Clostridium perfringens type A, which is 

known for causing cytolisis in mammalian cells due to its effects on m em brane 

perm eability. This binding allows the formation of a large m ultiprotein m em brane- 

pore complex, which alters the osmotic equilibrium in the cell causing lysis.

Although several Claudins have shown binding affinity to CPE like Claudin-4, -6, -7, 

-3, -14, -8 (Fujita et al., 2000) only Claudin-3 and -4 have been seen to form this 

complex. Taking these results in consideration, and based on the evidences from 

different studies that revealed over expression of these two Claudins m em bers in
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breast, pancreatic, colon, lung as well as ovarian cancers (see table 1.3), Claudin-3 

and -4 might be perfect candidates for CPE-based therapy. More recently Kom insky 

et al., performed similar experiments treating several breast cancer cell lines 

expressing Claudin-3 and -4, such as M CF-7, SKBr3 and T47D, as well as cell lines 

lacking both proteins, such as HS578T and M DA-M B-435, with CPE. Results 

revealed that breast cancer cell lines lacking these particular Claudin proteins were 

totally resistant to the cytotoxic effects caused by the enterotoxin but not the 

Claudin-expressing cells, resulting in complete cytolysis. To com plem ent the in vitro 

study, they investigated the cytolytic effects of CPE on the T47D breast cancer cell 

line in vivo, resulting in a significant reduction in tumour volume as well as cell 

necrosis (Kom insky et al., 2004). Recent studies have used Pseudom onas  

aeruginosa  exotoxin as a method of cancer-targeting therapy. The exotoxin binds to 

the cell surface, enters the cytosol by endocytosis, releasing PSIF which inhibits 

protein synthesis. Saeki et al., have reported that the artificial complex C-CPE- PSIF 

interacts with Claudin-4 through C-CPE binding domain and shows in vivo anti­

tumour activity against the 4T1 breast cancer cell line, causing a significant reduction 

in tumour growth (Saeki et al., 2009). Similar results were obtained when studying 

metastasis in the lung using the Claudin-4 expressing cell line B16, where the 

treatm ent with the complex C-CPE- PSIF revealed reduction in tumour growth and 

metastasis without any side effects in the mice (Saeki et al., 2010). A  related study 

by Kakutani et al., reported the fusion between C-CPE and the diphtheria  toxin A 

(DTA) which also inhibits proteins synthesis in gastrointestinal L cells expressing 

different Claudin proteins. Results revealed specificity from the DTA-C-CPE 

complex to Claudin-4 expressing cells (Kakutani et al., 2010).
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Therefore, exhaustive administration of the enterotoxin CPE to cancer cells 

might be a potential approach for cancer therapy. The key question to be addressed in 

the near future is how to avoid cellular toxicity in the surrounding normal cells 

caused by the administration of CPE, or whether there are other toxin displaying 

affinity to different Claudin proteins in the cell.

Claudins are indeed unusual proteins in the TJs structure as they are 

presented in a variety of tissues with different properties. Their m ixture and different 

ratios between the 24 members confers specific barrier properties to each cell. These 

special features make the modulation of Claudins a prom ising method to deliver and 

enhance absorption of drugs to a target tissue through the paracellular pathway as 60% 

of these targets are located at the cell surface (Kondoh and Yagi, 2007).

Overall these findings indicate that further study and preclinical testing are 

required to assess the usefulness of Claudins as emerging targets for cancer.

1.6 Claudin-5

Claudin-5 was firstly described by M orita and colleagues in 1999 (M orita et al., 

1999a). It was initially identified as a deleted protein in patients who suffer from the 

velo-cardio-facial syndrome hereditary disease and was termed TM V CF 

(transm embrane protein deleted in velo-cardio-facial syndrome) and the gene was 

mapped to chromosome 2 2 q l l  (Sirotkin et al., 1997). A different group described, in 

the same year as M orita, the expression of Claudin-5 in brain capillary endothelial 

cells and originally termed this protein MBEC1 (mouse brain endothelial cell 1)

(Chen et al., 1998). In both studies the concentration of TM VCF/ MBEC1 were not
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examined. Claudin-5, TM VCF and MBEC1 have been identified as the same protein 

(Morita et al., 1999c). M orita et al., subsequently developed a specific antibody 

against Claudin-5 revealing a high level of expression in the brain, lung and 

endothelial cells of the blood vessels concluding that Claudin-5 was an endothelial- 

specific component of the TJ strand (Morita et al., 1999c). However, several studies 

have reported Claudin-5 to be expressed in certain epithelial TJs, such as, the 

stomach, rat liver and pancreas (Rahner et al., 2001) as well as in cell lines like HT- 

29/B6, an epithelial cell derived from human colon (Amasheh et al., 2005). 

Surprisingly, when looking at the level o f expression of Claudin-5 in the human 

colonic cell Caco-2, Claudin-5 was not present although it is present in the human 

intestine. Sim ilar results were seen in M DCK-C7 (presenting “tight” TJ) and 

MDCK-C1 (presenting “ leaky” TJ). To com plem ent the study, they m easured the 

transepithelial resistance in Caco-2 and M DCK-C7 following transfection with 

FLAG-Claudin-5 cDNA. The results revealed an obvious increase in resistance of 

Caco-2 transfected cells, but no differences were seen in M DCK-C7. These results 

suggested a role for Claudin-5 as a “ sealing” protein in the TJs of epithelial cells as 

the over-expression caused changes in the paracellular barrier of this particular cell 

line (Caco-2) making it tighten, whereas in cells that exhibit high transepithelial 

resistance (M DCK-C7) no changes to the barrier properties were observed (Amasheh 

et al., 2005). Studies focusing on blood-brain barrier (BBB) also have proposed a 

“sealing” role for Claudin-5 (W olburg et al., 2003) (Nitta et al., 2003). BBB protects 

the brain from the blood surroundings within the central nervous system (CNS), and 

most importantly m aintains hom eostasis of the brain environment, which is crucial 

for neural activity and function. Extrem ely close TJs between endothelial cells of
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brain capillaries prevent the passage of hydrophilic molecules from blood to brain 

and vice versa. Mice genetically altered to lack Claudin-5 were generated in a study 

by Nitta et al. These mice have shown a normal developm ent and m orphology of 

blood vessels in the brain, however, in terms of the barrier function, these endothelial 

cells showed an unexpected feature: a size-selective loosening of the BBB, in other 

words, only small molecules (<800Da) were allowed to pass across the TJ but no 

larger molecules were affected. M oreover, Claudin-5 deficient mice die within 10 

hours of birth (Nitta et al., 2003). Therefore, it appears that loss o f Claudin-5 from 

the TJ com plexes in the brain can comprom ise barrier function m aking it “ leakier” 

while keeping their structural integrity, dem onstrating that Claudin-5 specifically 

tightens the BBB for molecules <800Da. The majority of the drugs in clinical use are 

included in this range, subsequently Claudin-5 might be interesting in term s o f drug 

delivery to brain tumours or neurodegenerative disease.

Not much is known regarding the transcriptional regulation of Claudin-5. In 

porcine blood-brain barrier endothelial cells, cyclic AM P (cAM P) increases Claudin- 

5 gene expression in a protein kinase A (PKA) independent and dependant way.

PKA activation by cAM P enhances the signal of Claudin-5 along cell borders and in 

the cytoplasm  as well as increasing the TER in dependent and independent pathways. 

It was also reported that the amino acid site Thr2(,7in the cytoplasm atic COOH- 

terminal domain is the phosphorylation site for PKA (Ishizaki et al., 2003). A 

parallel study in the rat lung endothelial cell line (RLE) which displays failed TJs, 

revealed that when mutations in the Thr207 of Claudin-5 were introduced, the barrier 

function was altered while in the forced expression of Claudin-5 the TJ structure was 

partially formed allowing only the passage of the small molecules. These results



highlight how the phosphorylation of Thr207 site by PKA provokes changes in the 

Transendothelial resistance of the cells as well as loosening o f the Claudin-5 barrier 

against small molecules (Soma et al., 2004). Studies examining the effect of Ethanol 

(EtOH) in the BBB have revealed that the perm eability of the BBB is altered via 

structural alterations of the TJ (Jonsson and Palmblad, 2001). W hen bovine brain 

m icrovascular endothelial cells (BBM EC) were treated with EtOH, a decrease in the 

transepithelial resistance was observed. Claudin-5 staining was decreased and 

phosphorylation of myosin light chain (M LC) as well as Claudin-5 and occludin 

were confirmed. This suggests that EtOH activates myosin light chain kinase 

(M LCK) leading to Claudin-5 phosphorylation. These results reported a different 

phosphorylation pathway from the one suggested by Ishizaki et al., (Haorah et al., 

2005). A more recent study in brain endothelial cells bEnd3 has shown another 

possible Claudin-5 kinase. Yamamoto et al., using a recombinant o f Claudin-5 and 

Occludin, have reported that Rho kinase (RhoK) directly phosphorylates site Thr207 

on Claudin- 5. As a result, reduced Transepithelial resistance was observed 

(Yamam oto et al., 2008). As m entioned in section 1.5.2, HG F regulates the level of 

expression of Claudin-5 in breast cancer cells M DA-M B-231 and M CF-7 (M artin et 

al., 2004a).

It has been reported that endothelial vascular protein VE-cadherin expression 

and aggregation at the TJ appears to be a requirem ent for the transcriptional up- 

regulation of Claudin-5. Taddei et al., have proposed a pathway in the absence of 

VE-cadherin through which the inactivation of the complex formed by the forkhead 

box transcription factor FoxO l and p-catenin results in down-regulation of Claudin-5 

gene. However, when VE-cadherin is expressed in the cell FoxO l becomes



phosporylated whereas p-catenin is sequestered at the plasma membrane. 

Nevertheless, it is important to notice that the lack of VE-cadherin and therefore of 

Claudin-5 expression did not alter the structure of the TJ although the paracellular 

permeability was significantly decreased (Taddei et al., 2008). The description of the 

murine Claudin-5 promoter region has already been reported. The m urine Claudin-5 

gene is mapped on chromosome 16 and the complete nucleotide sequence o f the 

promoter was found to be 1131bp. The promoter constructs were transfected into the 

murine brain cEND and m icrovascular M yEND endothelial cells. The study 

examined the influence o f the inflammatory cytokine TN Fa and the synthetic 

glucocorticoid dexamethasone on Claudin-5 prom oter activity and in Claudin-5 

mRNA levels. Treatment with TN Fa resulted in a decrease in the prom oter activity 

as well as strong down-regulation of Claudin-5 m RNA levels in both cells. 

Conversely, treatment with dexamethasone revealed an increase in the prom oter 

activity and therefore in Claudin-5 m RNA levels. This effect was more noticeable in 

cEND cells, suggesting a tissue-specific regulation of Claudin-5 via glucocorticoids 

(Burek and Forster, 2009). A recent study on HUVEC, human umbilical vein 

endothelial cells, revealed that the human Claudin-5 gene is regulated by the sex 

determ ining region Y-box SOX18, a specific-regulatory factor in endothelial cells. 

Over-expression of SOX18 induced an increase in Claudin-5 expression at m RNA 

and protein level in confluent culture cells of HUVEC whereas the effect on single 

isolated cells was not evident. Silencing SOX18 resulted in a significant decrease of 

Claudin-5 mRNA and protein levels whereas in other proteins of the TJ such as 

Occludin levels remain unaltered. These results indicate that SOX18 is specifically 

involved in the regulation of Claudin-5 and is dependent on cell density (Fontijn et
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al., 2008). A recent study in vitro and in vivo has described Claudin-5 as a novel 

oestrogen target in vascular endothelium. Treatment of murine brain and heart 

endothelial cells, cEND and M yEND respectively, with 17p-Estradiol (E2) has 

revealed an increase in transepithelial resistance and up-regulation of Claudin-5 

levels. Similar results were obtained in vivo after E2 treatment. However, in ER(3 

knockout mice significantly lower levels of Claudin-5 were detected. Thus, this data 

suggested Claudin-5 as a new oestrogen target in vascular endothelium  (Burek et al., 

2010).

Martin et al., studied the effect of selenium (Se), gamm a linolenic acid (GLA) 

and iodate (I) in HECV, human umbilical vein endothelial cells. Se, GLA and I in 

combination or individually can induce changes in the TJ enhancing the 

transepithelial resistance via regulation of Claudin-5 as well as Occludin and ZO-1. 

Claudin-5 showed an increase in staining intensity after treatment. This effect was 

more evident when I was present, in particular when combined with Se after 0.5h of 

treatment. These three agents were able to reverse the effect of the horm one 17-J3 

estradiol on this cell line (Martin et al., 2006).

Claudin-5 has been linked to the follicular developm ent in the m arm oset 

ovary. The study in vivo on this primate has revealed that vascular endothelial 

growth factor (VEGF) inhibition might induce changes in expression o f Claudin-5 

thus comprom ising the follicular developm ent as a result of alterations in the TJ 

structure (Rodewald et al., 2007). Subsequently an in vitro study using a co-culture 

of human umbilical vein endothelial cells (HUVEC) and luteinized granulosa cells 

(LGC) has examined the paracrine effect of human chorionic gonadotrophin (hCG),
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and its relation with ovarian hyper stimulation syndrome (OHSS), a disease 

characterized by increased capillary permeability. Results, after treatm ent with hCG, 

have revealed down-regulation of Claudin-5 protein expression, an increase in 

endothelial permeability as well as an increase in VEGF concentration. However, 

when cells were treated with VEGF inhibitor, down-regulation of Claudin-5 and 

changes in permeability were not seen. These results suggested that hCG does not 

directly regulate Claudin-5. Instead hCG might be involved in the regulation of 

VEGF which appears to be responsible for the reduction in Claudin-5 expression and 

subsequent changes in cell permeability (Rodewald et al., 2009).

Studies of fluorescent tagged Claudin-5 in the HEK-239 cells (human 

embryonal kidney cell line 239) and the M DCK cell line have shown that Claudin-5 

is able to form homodimers in the plasma m embrane of the same cell, m oreover it 

was demonstrated that the second extracellular loop is responsible for the self­

association (Blasig et al., 2006). A subsequent study, using fluorescence resonance 

energy transfer (FRET) and electron m icroscopy, demonstrated that hom ophilic cis- 

interaction occurs for Claudin-5 and -5 (Piontek et al., 2008).

1.6.1 Role o f Claudin-5 in breast cancer progression

Currently, within the literature there are a limited num ber o f studies 

exam ining Claudin-5 in human cancer, with very few focusing on breast cancer.

Increased Claudin-5 expression has been associated with aggressive 

behaviour in serous ovarian carcinomas. Turune et al., studied 85 serous ovarian 

cancer tissue samples. Imm unostaining results revealed strong Claudin-5 staining in
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advanced stage and high grade carcinomas. W hen looking at Claudin-5 expression, 

only 25-30% of patients who were Claudin-5 positive were still alive at 5 years 

follow-up compared to 60% of patients who were Claudin-5 negative (Turunen et al., 

2009). Examination of Claudin-5, as well as Claudin-1,-3 and -4, in 118 cases of 

gastric carcinoma revealed that the lowest expression of all these Claudin members 

was in Claudin-5. Nevertheless, strong Claudin-5 expression was associated with 

levels of E-cadherin, high levels of cell proliferation and apoptosis. The results also 

revealed that expression of these Claudin members was lower in diffuse-type gastric 

carcinoma (Soini et al., 2006). A similar study in human lung squam ous cell 

carcinoma and adenocarcinom a has reported high levels of Claudin-5 in cylindric 

cells, pneumocytes and adenocarcinamas, and low or even undetectable levels of 

expression in basal cells and squamous cell carcinoma. These results indicate the 

possible role of Claudin-5 as a diagnostic tool to distinguish between 

adenocarcinom as and squamous cell carcinom as in lung cancer patients (Paschoud et 

al., 2007). Examination of Claudin-5 in 48 prostate cancer patients has reported that 

35% of patients showed low expression of Claudin-5 in comparison with 65% that 

displayed a high level of expression. From those who were classified in the low- 

expression group, 88% had a Gleason score of 7 or even higher and 12% had a 

Gleason score of 6 points or lower, whereas those classified in the high-expression 

group 52% had a Gleason score of 7 or higher and 48% had a Gleason score of 6 

points or lower. Therefore it can be concluded that Claudin-5 is associated with a 

Gleason score of 7 points or higher in prostate cancer patients (Seo et al., 2010). In 

hepatocellular carcinoma, Claudin-5 has been reported to be down-regulated. Low 

levels of Claudin-5 and vasculobiliary invasion have been correlated with patients
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displaying poor prognosis. Taking these results together, a possible role for Claudin- 

5 as a prognostic factor in hepatocellular carcinoma has been suggested (Sakaguchi 

et al., 2008).

1.7 Aim s of this study

The Claudin family are TJ proteins expressed in endothelial and epithelial cells. 

As already stated, they participate in the formation of tissue barriers between 

different tissue compartm ents by regulating the efflux of m olecules through TJ 

complexes. At least 24 different Claudin members are known today, all of which are 

thought to vary in expression depending on location and cell type.

The role of Claudin proteins in carcinogenesis and progression to metastasis 

is an active area of investigation as a result of the frequent finding of altered Claudin 

expression in cancer. To date, the majority of studies on cancer have focused on 

Claudin-1, -3, -4, -7 , -10 and -16, but very little is known about Claudin-5.

Therefore the aims of this thesis were to investigate the role of Claudin-5 in breast 

cancer by:

1. Determining the level of expression and distribution of Claudin-5 in 

human breast cancer and normal background tissues, using 

imm unohistochem ical staining and RT Q-PCR and analysing the levels of 

transcripts against clinical param eters such as grade of tumour, metastasis 

and clinical outcome of patients in order to investigate a possible link
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between expression levels of Claudin-5 and aggressiveness in cells and 

patient outcome.

2. Investigating the in vitro effects of knockdown and forced expression of 

Claudin-5, in the M DA-M B-231 breast cancer cell line and in HECV 

human endothelial cells, on the growth, invasion, migration, adhesion, 

motility, tubule formation, transepithelial/transendothelial electrical 

resistance (TER) and electrical cell-substrate impedance sensing (ECIS).

3. Investigating in vivo the effects of over expression of Claudin-5 in growth 

of the human breast cancer cell line M DA-M B-231 and HECV cells.

4. Assessing the role of Claudin-5 on control of epithelial and endothelial 

motility involving the N-W ASP and ROCK signalling cascade. This is a 

new avenue of research in determ ining the functions o f Claudin-5 which 

in past studies is named as a “sealing” protein o f TJ structure.
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Chapter 2 

General Materials and Methods
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2.1 Standard solutions

2.1.1 Solutions for cell culture

All standard chemicals and reagents used in my work, unless otherwise 

specified, were obtained from Sigma (Dorset, UK).

0.05M ED TA

One gram of KC1 (Fisons Scientific Equipment, Loughborough, U K ), 5.72g 

of Na2H P0 4 , lg  of K H 2 PO 4 , 40g of NaCl and 1.4g EDTA (Duchefa Biochemie, 

Haarlem, The Netherlands) was dissolved in distilled water to make a final volume 

of 5L. We adjust the solution to pH 7.4 before it was autoclaved and stored for use.

Trypsin (25mg/ml)

Five hundred milligrams of trypsin was dissolved in 20ml 0.05M  EDTA. The 

solution was mixed and filtered through a 0.2 pm minisart filter (Sartorious, Epson, 

UK), aliquoted in 250 pi samples and stored at -20°C until required. For use in 

routine cell culture one aliquot was diluted in a further 10ml of ED TA  solution and 

used for cell detachment.

Penicillin (120mg/ml)

Six hundred milligrams crystapen injection benzylpenicillin sodium 

(Britannia Pharmaceuticals Limited, Surrey, UK) was dissolved into 5ml sterile 

injection waster (B.Braun, Germany).
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Streptomycin Sulphate (250mg/ml)

Five grams of streptomycin sulphate was dissolved in 20ml sterile injection 

water, filtered thrugh a 0.2 pm minisart filter and stored at -20°C until required.

Balanced Saline Solution (BSS)

Seventy nine and a half grams of NaCl, 2.2g of KC1, 2.1g o f K H 2 P O 4 and 1.1 

g of Na2H P0 4  was dissolved in distilled water to make a final volum e of 10L. We 

adjusted the solution to pH 7.2 before used.

2.1.2 Solutions for m icrobiological m ethods

Luria Bertani (LB) agar

Ten grams of tryptone (Duchefa Biochemie, Haarlem, The Netherlands), 5g 

of yeast extract (Duchefa Biochemie, Haarlem, The Netherlands), lOg of NaCl and 

15g of agar was dissolved in distilled water up to a final volume of 1L, the pH 

adjusted to 7.0 and the solution was autoclaved. When required the solution was 

heated to liquid and cooled slightly before adding selective antibiotics (if required). 

The solution was then poured into 10cm2 petri dish plates (Bibby Sterilin Ltd., Staffs, 

UK), allowed to cool and harden, inverted and stored at 4°C.

LB broth

Ten grams of tryptone, 5g of yeast extract and 10 g NaCl was dissolved in 

distilled water up to a final volume of 1L and the pH adjusted to 7.0. It was 

autoclaved and allowed to cool before adding selective antibiotic (if required) and 

storing at room temperature.
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2.1.3 Solutions for use in RNA and DNA m olecular biology

DEPC treated water

Two hundred and fifty m icrolitres diethyl pyroncarbonate (DEPC) was added 

to 4750jul o f distilled water. The solution was then autoclaved before use.

5X  Tris, Boric acid, EDTA buffer (TBE)

A 5x stock solution comprising 545 g of Tris-Cl (M elford Laboratories Ltd., 

Suffolk, UK), 275g of Boric acid (M elford Laboratories Ltd., Suffolk, UK) and 

46.5g of disodium EDTA (Duxhefa Biochemie, Haarlem, The Netherlands) were 

dissolved in distilled water and made up to a final volume of 10L. The solution was 

stored at room temperature and diluted to IX  concentrate prior to use in agarose gel 

electrophoresis.

Ethidum bromide

Ethidum bromide powder (lOOmg) was dissolved in 10ml of distilled water. 

The container was wrapped in alum inium  foil to protect the solution from the light 

and stored safely before use.

2.1.4 Solutions for protein work

Lysis Buffer

Two millimolar C aC L , 0.5% of Triton X-100, lm g/m l leupeptin, lm g/m l 

aprotinin and 10 mM sodium orthovanadate was dissolved in distilled water and 

stored at 4°C until it was required.
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10% Ammonium Persulfate (APS)

One gram of ammonium persulfate was dissolved in 10ml of distilled water, 

and separated into 2.5ml aliquots and stored at 4°C until it was required.

10X Running buffer

A 10X stock solution (0.25M  Tris, 1.92M glycine, 1%SDS, pH 8.3) was 

made by dissolving 303 g of Tris, 1.44Kg of glycine and lOOg of SDS in 10L 

distilled water.

Transfer buffer

A  5 litre stock solution comprising 72g glycine, 15.15 g Tris and 1L 

Methanol (Fisher Scientific, Leicestershire, UK) were dissolved in distilled water up 

to the a final volume of 5L.

I OX TBS

A lOx TBS stock solution comprising 121g Tris and 400.3g NaCl were 

dissolved in distilled water, made up to a final volume of 5L and adjusted to pH 7.4.

Ponceau S staining

As supplied (Sigma, Dorset, UK).

Am ido black stain

Two and a half grams of amido black (Edward Gurr Ltd., London, UK) was 

dissolved in 50ml of Acetic acid (Fisher Scientific, Leicestershire, UK). 325 ml of 

distilled water was added and the solution was mixed.
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Am ido black destain

A hundred millilitres of Acetic acid and 250ml of ethanol were added to 

650ml of distilled water.

2.1.5 Solutions for cell and tissue staining

DAB chromogen

The DAB (Diaminobenzidine) chromagen was prepared fresh by m ixing the 

following reagents in order: 2 drops of wash buffer, 4 drops of DAB (Vector 

Laboratories Inc., Burlingame, USA) and 2 drops of H2O2 up to 5ml o f distilled 

water. The container was wrapped in aluminium foil to protect the solution from the 

light.

ABC  complex

The ABC complex was prepared using a kit (Vector Laboratories Inc., 

Burlingame, USA) by mixing the following reagents in order: 4 drops of reagent A 

were added to 20ml of wash buffer, followed by the addition of 4 drops of reagent B 

and mixed well. This was made up at least 30 m inutes before being used.

2.2 Anim als, cell lines and cell culture

All cell culture work was carried out in class II m icroflow cabinets. Pipettes, 

culture medium, and all other cell culture equipm ent was either purchased sterile or 

autoclaved prior to use. All cells were cultured in an incubator at 37°C in 5% carbon 

dioxide.
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2.2.1 Cell lines, breast tissue and animals

The human breast cancer cells line MDA-MB-231 and the human endothelial 

cell line, HECV (ICLC Genova, Italy) were used in this study. The cells were 

routinely maintained in Dulbecco's Modified Eagle's medium supplem ented with 10 % 

foetal calf serum (FCS), penicillin, and streptomycin (Sigm a-Aldrich TD). Full 

details of four cell lines are provided in Table 2.1.

Claudin-5 expression was screened in a panel of other cell lines. Cell lines in 

this panel consisted of: M DA-M B-157, M DA-M B-463, BT-549, M CF-7, M DA-M B- 

436, ZR-751, M DA-M B-435S, BT-474, M DA-M B-231, BT-474KC, D U -145, PNT- 

19, PNT-2C2, PANC-1, M iaPaCa, Cor- L677, MCR5, RT-112, A-431, Ha- 

Cat ,HRT-18,HT-115, HECV and HUVEC.

All cell lines were obtained from ATCC, Rockville, M aryland, USA or 

ECACC, Salisbury, UK. The PNT1A and PNT2C2 cell lines were generous gifts 

from Professor Norman M aitland (University of York, England, UK).

A total of 133 breast samples were obtained from breast cancer patient (27 

background normal breast tissue and 106 breast cancer tissue), with the consent of 

the patients and ethical committee. These tissues were collected im m ediately after 

mastectomies, and snap-frozen in liquid nitrogen. The pathologist (ADJ) verified 

normal background and cancer specim ens, and it was confirmed that the background 

samples were free from tumour deposit.

82



The 4-6 week old CD -I athymic nude mice used in the in vivo  tumour 

developm ent model were obtained from Charles Rivers Laboratories (Kent, England, 

UK) and maintained in filtertop cages under ethical conditions.

Cell line Organism Morpholo. Ethnicity Gender Age Source and Feature

MDA-
MB-231

Homo
sapiens epithelial Caucasian female

51 years 
adult

Organ: mammary gland; 
breast

Disease:
adenocarcinoma

Derived from 
metastatic site: pleural 
effusion

HECV Homo
endothelial

Organ: umbilical vein

Tissue: vascular 
endothelium

sapiens Caucasian female newborn

Disease: normal

Table 2.1: Cell lines used in this study.
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2.2.2 Preparation o f growth medium

Cells were routinely cultured in D ulbecco’s M odified Eagle’s M edium 

(DMEM / Ham ’s F-12 with L-Glutamine (PAA Laboratories, Somerset, UK), 

supplemented with streptomycin (Streptomycin Sulphate salt, Sigma-Aldrich Co), 

penicillin (Benzylpenicillim, Britannia, Pharmaceutical, Ltd.) and 10% heat 

inactivated foetal calf serum (Invitrogen, Paisley, UK).

Transfected cell lines, containing the pEF6/ V5-His TOPO TA plasmid 

v e c to r , were cultured for 10 days in selection medium containing 5pg/ml o f  

Blasticidin S. and later were selection was completed were routinely cultured in a 

maintenance medium containing 0.5pg/ml o f  Blasticidin S.

2.2.3 M aintenance o f cells

HECV and MDA-MB-231 cell lines were cultured in an incubator (Sanyo 

M DA15AC ) and maintained in supplemented DM EM /Ham ’s F12 m edium  prepared 

as described above. Cells were grown to confluence in either 25 cm 3 or 75 cm 3 tissue 

cultured flasks loosely capped (Greiner Bio-One Ltd., Gloucestershire, UK) at 37°C 

in 5% carbon dioxide and 95% humidification. The flasks were left to reach 

confluency before commencement of experimental work.

All cell culture work was carried out following aseptic techniques inside a 

class II laminar flow cabinet and autoclaved instruments to keep conditions sterile.

2.2.4 Trypsinization of cells

Cell lines were grown until they reached approximately 80-90% confluence. 

Confluence was assessed by visually evaluating the coverage of cells over the
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surface of the tissue culture flask using a light microscope. The culture medium was 

removed and the cells briefly rinsed at room temperature with 1-2 ml of trypsin 

Ethylenediam inetetraacetic acid (Sigma-Aldrich, Gillingham, Dorset, UK), which 

contains trypsin 0.01% (v/w) and EDTA 0.05% (v/w) in BSS buffer, for several 

minutes. The detached cell suspension was transferred to a 20 ml universal container 

(Greiner Bio-One Ltd., Gloucestershire, UK) and centrifuge at 1600 rpm for 8 

m inutes to pellet the cells. The supernatant was aspirated and the pellet was 

resuspended in 5 ml of cell culture medium.

The cells were then re-cultured into new tissue culture flasks, counted for 

immediate experimental work or stored by freezing in liquid nitrogen.

2.2.5 Cell counting

Cells were counted in a haemocytom eter counting chamber using an inverted 

microscope (Reichert, Austria) at 10 xlO m agnification for further in vivo  and in 

vitro cellular functional assays. The dimensions of each 16 square area containing the 

cells to be counted, is 1mm x lm m x 0.2 mm which allowed the number o f cells per 

millilitre to be determined using the following equation:

Cell number/ml= (number of cells counted in 16 small squares -*■ 2) x (1 x 104)

2.2.6 Cell storage in liquid nitrogen

The cell lines were stored in liquid nitrogen after detachment from a large 75 

cm 3 and pelleted in a centrifuge as described in section 2.2.4. The freezing medium 

was prepared by supplem enting standard culture medium (as described above) with 

10% Dimethylsulphoxide (DM SO) (Sigma-Aldrich, Gillingham, Dorset, UK).
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Following resuspension, which was dependent on the number of samples to be frozen, 

lm l of cells were transferred into 1.8 ml cryospreservation tubes (Nunc, Fisher 

Scientific, Leicestershire, UK). Tubes were wrapped loosely in 3 layers of tissue 

paper and stored overnight at -80°C in a deep freezer before storage in liquid 

nitrogen tanks for long term storage.

2.2.7 Recovery o f cells from liquid nitrogen

Frozen cells were removed from liquid nitrogen and placed in a warm water 

bath at 37°C for 1-2 minutes to facilitate rapid thawing. After completely thawing the 

cell suspension was transferred to a universal container containing 10 ml of pre­

warmed medium and allowed to revive for 10 min before being centrifuged at 1600 

rpm for 8 minutes. The supernatant was aspirated, the pellet resuspended in 5ml of 

pre-warmed medium and placed into a fresh 25cm 3 tissue culture flask and incubated 

at 37°C, 95% humidification and 5% CO2. Following incubation, the flask was 

examined under a light microscope to ensure a sufficient number of healthy adherent 

cells.

2.3 G eneration o f mutant H ECV and M DA-M B-231

2.3.1 Production of forced expression sequences

We designed primers using the Brecon Designer programme (Palo Alto, 

California, USA) which were synthesised by Invitrogen (Invitrogen, Inc., Paisley,

UK) according to the mRNA sequence of Claudin-5, which is capable o f amplifying 

the whole coding sequence (Table 2.2). Briefly, Claudin-5 was found to be highly
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expressed in placenta tissue, subsequently cDNA from this tissue was used to 

generate the full length sequence of Claudin-5. These primers, together with placenta 

cDNA, were used in a PCR reaction following these parameters:

• Step 1: Initial denaturing period: 94 °C for 5 minutes.

• Step 2: Denaturing step: 94 °C for 15 seconds.

• Step 3: Annealing step: 55°C for 15 seconds, repeated over 36 cycles.

•  Step 4: Extension step: 72°C for 30 seconds.

• Step 5: Final extension period: 72 °C for 7 minutes.

High fidelity long and accurate PCR was performed using DuraScript ™ RT- 

PCR kit (Sigma-Aldrich, Gillingham, Dorset, UK). The resultant gene products 

were excised from the gel and extracted using GelElute™  Gel extraction kit (Sigma- 

Aldrich, Dorset, UK). To confirm presence and correct size before being inserted 

into the plasmid vector the extracted band was electrophoretically run on a 2% 

agarose gel following the TOPO TA cloning procedure, as described in section 2.3.3.

2.3.2 K nockdown of gene transcripts using ribozyme transgene sequences

Hammerhead ribozymes are small self-cleaving RNAs, first discovered in 

viroids and satellite RNAs of plant viruses (Forster and Symons, 1987) that catalyze 

a specific phospodiester bond isomerization reaction in the course of rolling-circle 

replication. They have a catalytically active m otif consisting of three base-paired 

helical stems (I, II, III) flanking a central core of 15 mostly invariant nucleotides 

(Haseloff and Gerlach, 1989). The conserved central bases are essential for the 

hammerhead ribozym e’s catalytic activity.
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The expression of Claudin-5 was targeted at mRNA level using Hammerhead 

ribozyme trangenes that specifically cleaved a GUC site (Table 2.3). The secondary 

mRNA structure of Claudin-5 was first generated by using Zuker’s RNA mFold 

software (Zuker, 2003) (Figure 2.1). A suitable GUC ribozyme target site was then 

selected from within the secondary structure of Claudin-5. This allowed the 

Hammerhead catalytic region of the ribozyme to interact and accurately cleave the 

specific GUC sequence within the target mRNA transcript (Figure 2.2).

Ribozymes were synthesised using a Touchdown PCR procedure following these 

parameters:

• Step 1: Initial denaturing period: 95 °C for 5 minutes.

• Step 2: Denaturing step: 94 °C for 15 seconds.

• Step 3: Various annealing step: 60°C for 30 seconds, 58°C for 30 seconds,

56°C for 30 seconds, 54°C for 30 seconds, 52°C for 30 seconds, 50°C for 30 

seconds and 48°C for 30 seconds.

• Step 4: Extension step: 72°C for 30 seconds.

• Step 5: Final extension period: 72 °C for 7 minutes.

The transgenes were electrophoretically run on a 2% agarose gel and cloned in a 

suitable vector which was followed by transformation and transfection.



Expression

product

Primer

name
Expression primer sequence (5’-3’)

Predicted 

size (bp)

Claudin-5
CL5expRl GACGTAGTTCTTCTTGTCGT 547

CL5ExpF2 ATGGGGTCCGCAGCGTTGGAGATCCT

p-aclin
BACTF ACTGAACCTGACCGTACA 580

BACTR GGACCTGACTGACTACCTCA

Orieniation

checking
T7F

T AAT ACG ACTC ACT AT AGG

Table 2.2: Primers for amplifying Claudin-5 coding sequence.

Ribozyme

target

Primer name Ribozyme sequence (5’ -  3’)

Claudin-5

CL5RiblF ACT AGT CCG C AGCGTT GG AG ATTT CGT CCT C ACGG ACT

CL5RiblR
CTGCAGACAGCACCAGGCCCAGCTGATGAGTCCGTGAG

GA

CL5Rib2F
CT GC AGC AGGT GGTCTGCGCCGTCACCTG ATG AGTCCG 

TGAGGA

CL5Rib2R ACTAGTGACCGCCTTCCTGGACCACAACATTTCGTCCTC

ACGGACT

Orientation

checking
T7F T AAT ACG ACT C ACT AT AGG

Table 2.3: Primers used for ribozyme synthesis.
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dG =  -306.11

Figure 2.1: The secondary structure o f  human Claudin-5 mRNA.
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Target mRNA

Helix III Helix I
v

5' • • • C U A C A G A G U G U C A U C U U A U U U
, I I I I I I I I I I I I I l i  I I J I

3 • • • 6  A U G U C U  C A  C A  U A G A A U A A A

c u GA 
A

Hammerhead ribozyme G A G U
C — G 
A— U 
G— C 
G— C 

A G
G U

Helix II

3'

5'

Figure 2.2: Secondary structure of the Ham merhead ribozyme with bound substrate 

(arrow).
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2.3.3 TOPO cloning reaction

The pEF6/V5-His TOPO TA Expression system provides a highly efficient, 5 

minute, one-step cloning strategy ("TOPO Cloning") for the direct insertion of Taq 

polymerase-am plified PCR products into a plasmid vector for high-level expression 

in mammalian cells. No ligase, post-PCR procedures, or PCR prim ers containing 

specific sequences are required. Once cloned, analyzed, and transfected into a 

m am malian host cell line, the PCR product can be constitutively expressed.

The plasmid vector pEF6/ V5-His TOPO TA plasmid vector (Invitrogen, Inc., 

Paisley, UK) was used in the current study in accordance with the protocol provided 

(Figure 2.3).

The TOPO cloning reaction was set up in a pre-labelled PCR tubes for each 

ribozyme or expression sequence used:

• PCR product (ribozyme or expression sequence): 4pl

• Salt solution: lpl

• TOPO vector: lp l

The reaction was mixed gently and then left for 5 minutes at room temperature. 

Following ligation, the cloning reaction was transformed immediately into 

Escherichia coli for successful efficiency in the transformation.
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Determine strategy for PCR

Produce PCR product

*" TOPO* Cloning Reaction:
Mix together PCR product and pEF6 V5-His-TOPO*

Incubate 5 minutes 
at room temperature

C T  Transform into TOP 10 E. colt cells""

Select and e colonies

Prepare puri 
transfection into

tied plasmid for 
mammalian cells

Transfect mammalian cell line and 
assay for expression o f PCR product

Figure 2.3: Flow chart of pEF6/ V5-His TOPO TA plasmid vector cloning procedure.
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f iE 3T̂

pEF6/V5-His
TOPO®
5840 bp

Figure 2.4: Schematic o f  pEF6/ V5-His TOPO TA plasmid vector plasmid (Figure 

duplicate from pEF6/V5-His TOPO TA Expression kit protocol)
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2.3.4 Transform ation o f competent Escherichia coli

Five microlitres of the cloning reaction was transformed into the chemically 

competent Escherichia coli (OneShottm TOPIO E.Coli, Invitrogen Inc., Paisley, UK) 

and very gently mixed by stirring the m ixture using the pipette tip, avoiding any 

damage to the bacteria. This suspension was then placed on ice for 30 min, before 

being heat-shocked at 42°C for 30 seconds and immediately placed back on ice for 2 

min. Following this, 250pl o f pre-warmed SOC was added. The cells were incubated 

at 37°C for lhour and shaken horizontally in a universal container at 200 rpm on an 

orbital shaker (Bibby Stuart Scientific, UK). The resultant transformation mix was 

then spread onto two selective agar plates (containing 100 pg/ml ampicillim ) at two 

different volumes, lOOpl and 200pl, and allowed to grow overnight at 37°C in an 

incubator. The pEF6/ V5-His TOPO TA plasm id vector encodes two antibiotic 

resistance genes that allow cells containing the plasmid to grow under ampicillin and 

Blasticidin S (as shown in figure 2.4).

2.3.5 Selection and orientation analysis o f positive colonies

Any colonies which grew on the selective plates should contain the pEF6/ 

V5-His TOPO TA plasmid vector, otherwise cells without the plasm id vector will 

not survive in the presence of the antibiotics. Analysis of the colonies is required to 

determine which of the colonies grown on the plate contains the ribozym e or 

expression sequence and have been inserted into the plasmid in the correct 

orientation to allow successful amplification of the sequences.
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Screening involves PCR of 10 colonies randomly selected, using the forward 

primer specific to the plasmid (T7F), and the reverse primers to the ribozym e or 

expression sequence. Individual colonies were examined in order to test DNA 

presented by using a sterile pipette tip and touching the selective colony. Thus, it was 

placed into the PCR reaction mixture ready for specific amplification of the desired 

sequence. This will ensure that amplified products, at the expected size, are in the 

plasmid and inserted in the correct orientation. For each colony, two PCR reactions 

were carried out as follows (full prim er sequences are given in table 2.3):

• Ribozyme orientation reaction 1:

1 Oju.1 -  2X REDTaq ReadyM ix PCR Reaction mix

9jul -  PCR water

0.5pl -  T7F plasmid specific forward primer

0.5pl -  Ribozyme specific primer (C L 5R iblR )

• Ribozyme orientation reaction 2 :

IOjiI -  2X REDTaq ReadyM ix PCR Reaction mix

9pl -  PCR water

0.5pl -  T7F plasmid specific forward primer

O.Sjul -  Ribozyme specific prim er (CL5Rib2R)

Each reaction was subjected to the following conditions:

• Step 1: Initial denaturing period: 95 °C for 5 minutes.

• Step 2: Denaturing step: 94 °C for 30 seconds.
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• Step 3: Annealing step: 55°C for 30 seconds.

• Step 4: Extension step: 72°C for 30 seconds.

• Step 5: Final extension period: 72 °C for 7 minutes.

Steps 2, 3 and 4 were repeated over 40 cycles.

The mixture was run on a 2% agarose gel. Thus, colonies showing the full 

sequence of Claudin-5 and the correct orientation of the insert were taken off the 

plate and used to inoculate 10 ml of ampicilin selective LB broth in universal 

containers and were horizontally shaken at 225 rpm overnight

2.3.6 Plasm id extraction, purification and quantification

Plasmid extraction was carried out using Sigma GenElute Plasmid M iniPrep 

Kit (Sigm a-Aldrich, Dorset, UK), according to the provided protocol. Five millilitres 

of the LB broth previously inoculated with the correct colony and cultured overnight 

was centrifuged at 3000 rpm for 10 m inutes to obtain a pellet of bacteria. The 

supernatant was discarded and the bacterial pellet resuspended in 200 pi o f 

resuspension solution (containing RNAase A) and mixed through pipetting. To lyse 

the cells, 10 ml of cell lysis buffer was added and the solution was mixed gently 

inverting the container. Following 5 m inutes incubation at room tem perature, 350pl 

of the neutralisation solution was added and then centrifuged at 12.000 x g in a micro 

centrifuge. The cell lysate was filtered in a Mini Spin Column placed inside the 

collection tube allowing the plasmid to bind to the column and spun at 12000 x g for 

30 seconds. The flow-through was discarded. Seven hundred and fifty m icrolitres of 

wash solution containing ethanol is added to the column before spinning at 12000 x g
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for 30 seconds and the flow-through discarded. The column was again spun at 12000 

x g for 30 seconds to remove any rem aining flow- through before transferring the 

Mini Spin Column to a clean collection tube. Plasmid DNA was eluted through the 

addition o f lOOpI o f elution solution and the column was spun at 12000 x g for 1 

minute. The plasmid DNA was then run on a 0.8% gel to check both plasmid purity 

and size.

2.3.7 Transfection o f mammalian cells using electroporation

Following plasmid purification and quantification, 2 pi o f  the extracted 

plasmid was used to transform the HECV and M DA-M B-231 cell lines.

Confluent HECV and M DA-M B-231 wild type cell lines were detached from 

the tissue culture flasks using trypsine/EDTA, pelleted and resuspended as 

previously described. One millilitre of cells were added to an electroporation cuvette 

(Eurgenetech, Soutampton, UK) together with the purified plasmid. The cuvette was 

loaded into the electroporator (Easyject, Flowgene, Surrey, UK), and a pulse of 

electricity (450 V) supplied. This will produce small perforations in the cell wall 

integrity allowing passage of the plasm id DNA across the membranes to be 

integrated in the cells. The mixture was imm ediately transferred into 10 ml o f pre­

warmed medium and place in an incubator under the usual incubation conditions.

2.3.8 Establishm ent o f transform ed H um an Endothelial cell line HECV and the 

breast cancer cell line M DA-M B-231

The pEF6/ V5-His TOPO TA plasmid vector used in this study, encodes two 

antibiotic resistance genes: ampicillin and Blasticidin S.
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The ampicillin resistance gene allows initial selection of prokaryotic bacterial 

cells containing the plasmid. Blasticidin S antibiotic inhibits protein synthesis in both 

prokaryotes and eukaryotes and is used to specifically select for mammalian cells 

containing the pEF6/ V5-His TOPO TA plasmid vector .The combination o f both 

antibiotic resistance genes provides an accurate selection throughout the cloning 

process.

Following overnight incubation in supplemented DM EM  medium, cells were 

move to an initial 10 days of intense selection through a selection medium containing 

5pg/ml o f Blasticidin S to kill all the cells that did not incorporate the plasmids and 

only rem aining cells should all contain the plasmid. After this, cells were maintained 

in m aintenance medium containing 0.5pg/m l o f  Blasticidin S (all m edia were 

described in section 2.2).

All cells were routinely tested to appraise the efficacy and stability o f both 

the expression and the ribozyme transgene sequences using RT-PCR. Once the 

plasmid incorporation was assessed into the mammalian cell lines, the transfected 

cells were used in a series of in vitro studies to evaluate the forced expression and 

knockdown of the Claudin-5 gene.

2.4 M ethods for detecting m RNA

2.4.1 Total RNA isolation

RNA is susceptible to degradation by RNAases, therefore special care has to 

be taken to minimise this during its isolation.

99



Cells were grown until reaching a confluent state (85-90% confluent), after 

the aspiration of culture medium 1ml of ABgene Total RNA Isolation Reagent 

(TRIR) kit (ABgene, Surrey, UK) was added to the cell monolayer. The resultant cell 

lysate was transferred through a pipette into a 1.8ml eppendorf tube (A laboratories, 

Hampshire, UK). The homogenate was stored for 5 minutes at 4 °C to allow complete 

dissociation of nucleoprotein complexes before adding 0.2ml of chloroform and 

energetically shaking the samples for 15 seconds, samples were centrifuged in a 

refrigerated centrifuge (Boeco, W olf laboratories, York, UK) at 12000g (4 °C) for 15 

minutes. The homogenate forms two phases: the organic (DNA and proteins) and 

aqueous phase (RNA). DNA and proteins are in the organic phase while RNA is in 

the aqueous. Carefully, the aqueous phase was removed and transferred to a pre­

labelled eppendorf tube containing an equal volume of isopropanol, the samples 

were then stored at 4°C  for 10 minutes before centrifuging at 12000g (4°C) for 10 

minutes. RNA precipitation then forms a white pellet at the bottom of the eppendorf. 

The supernatant was discarded and the RNA pellet was washed twice with 1ml of 75% 

ethanol prepared using DEPC water (DEPC water is a histidine specific alkylating 

agent that inhibits the action of RNases which depend on histidines active sites for 

their activity. It is used to reduce the effects of any RNases that might be present) by 

vortexing and subsequent centrifugation at 7500g (4 °C) for 5 minutes. At the end of 

the procedure, as much ethanol as possible was removed before briefly drying the 

pellet in a Hybridiser drying oven (W olf laboratories, York, UK) at 50 °C for 5-10 

minutes (it is important not to let the RNA pellet dry completely as it will decrease 

its solubility). Finally, the RNA pellet was dissolved in 50-1 OOjul o f DEPC water 

before quantification.
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2.4.2 RNA quantification

The concentration and purity of RNA was assessed by m easuring with a 

U V I101 Biotech Photometer (WPA, Cambridge, UK), that has been set to detect 

ssRNA (pg/ pi) in a 1:10 dilution in DEPC water at A260nm wavelength. All 

samples were measured in a Starna glass cuvette (Optiglass limited, Essex, UK).

The RNA samples were either stored at -80 °C for further use or used 

immediately for reverse transcription (RT).

2.4.3 Reverse transcription-polymerase chain reaction (RT-PCR) o f RNA

Following RNA isolation and quantification, RT-PCR was used to convert 

RNA into complementary DNA (cDNA) using DuraScript ™ RT-PCR kit (Sigma- 

Aldrich, Dorset, UK). According to the m anufacturer's instructions, which are 

sketched below, a 20pl reaction m ixture was added to an eppendorf:

• 0.5pg - total RNA template (volum e depends on the concentration)

• PCR water (volume= 8pl- volum e of the RNA template)

• 1 pi - deoxynucleotide mix (500M m o f  each dNTP)

• 1 pi - anchored oligo (dT) 23

The tube was then mixed gently and centrifuged before placing the mix in a T-Cy 

Thermocycler (Creacon Technologies Ltd., The Netherlands) and heating at 25 °C for 

5 minutes. This initial step helps to denature the secondary structure of the RNA 

allowing more effective reverse transcription. Tubes were then placed on ice before 

centrifuging and adding the following components to the samples:
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• 6pl - PCR water

• 2pl - 10X buffer for DuraScript ™  RT

• I jliI -  RNase inhibitor

• lp l -  DuraScript reverse transcriptase

The resultant total volume in each eppendorf was 20pl. The samples were mixed, 

centrifuged and placed back in the thermal cycler to be heated at 42 °C for 30 

minutes. The cDNA samples were diluted to 1:4 with PCR water and the success of 

the sample was confirmed using a conventional PCR probing for P-actin. The 

sam ples were stored at -20 °C until required.

2.4.4 Polym erase chain reaction (PCR)

PCR was carried out using REDTaq ReadyM ix PCR Reaction mix (Sigma- 

Aldrich, Dorset, UK). A 20 pi reaction was prepared for each sample as follows:

• lOpI - REDTaq ReadyM ix PCR Reaction mix

• lp l -  specific forward prim er

• lp l -  specific reverse prim er

• 5 p l -P C R  water

• 3 pi -cD N A

Primers were designed using the Brecon Designer program me (Palo Alto, 

California, USA) and were synthesised by Invitrogen (Paisley, UK). All primers 

were diluted to a concentration of lOpM before being use for the PCR. The PCR 

reaction was set up in a 200pl PCR tube (ABgene, Surrey, UK), m ixed and placed in 

a T-Cy therm ocycler (com pany info) under the following conditions:
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• Step 1: Initial denaturing period: 94 °C for 5 minutes.

• Step 2: Denaturing step: 94 °C for 30 seconds.

• Step 3: Annealing step: 55°C for 30 seconds.

• Step 4: Extension step: 72°C for 30 seconds.

• Step 5: Final extension period: 72 °C for 7 minutes.

Steps 2, 3 and 4 were repeated over 36 cycles.

PCR products were visualized on a 2% agarose gel through staining with 

ethidium  bromide after electrophoresis. In all cases a negative control where PCR 

water replaced cDNA was included in the reaction.

2.4.5 A garose gel DNA electrophoresis

The amplified DNA was separated according to size using 2% agarose gel 

electrophoresis.

Agarose gels were made by adding the required amount of agarose (Melford 

Chem icals, Suffolk, UK) to TBE solution. The m ixture was then heated to a fully 

dissolve the agarose, poured into the electrophoresis cassette and a plastic comb was 

then inserted into the gel creating loading wells. Once the gel w as set at room 

tem perature for about 30-40 m inutes, TBE running buffer was carefully poured into 

the electrophoresis tank. The PCR products were loaded into the wells, 8pl of a 1Kb 

ladder (Invitrogen, Paisley, UK) or lOp.1 of the sample. The samples were then 

electrophoretically separated using a power pack (Gibco BRL, Life Technologies 

Inc.) at a constant 95V for 30-50 m inutes to allow sufficient separation o f the 

samples.
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2.4.6 DNA staining and detection

The PCR products were stained using ethidum  bromide stain (lOmg/ml) 

diluted in TBE buffer used in the run for 10 m inutes on a rocking platform  to ensure 

an even staining of the agarose gel. The gel was visualised under ultra violet light 

using a UV illuminator (UVitech, Cam bridge, UK). If necessary, the gel can be 

returned to the stain for extra staining or to a container of distilled water to reduce 

the background staining.

2.4.7 Q uantitative RT-PCR (Q-RT-PCR)

Q-RT-PCR is capable of detecting m inuscule quantities o f cDNA within a 

sample. The Am plifluor system was used to detect and quantify transcript copy 

number o f Claudin-5 in tumour and background samples. The cD N A  was generated 

as described above. Sixteen microlitre reactions were prepared for each sample as 

follows:

• Forward Z prim er - 0.5 ( lpm o l/p l)

• Reverse primer - 0.5 (lO pm ol/pl)

• Q-PCR M aster Mix - 8 pi

• Probe Am piflour -  0.5 (1 Opmol/pl)

• PCR water -  2.5 pi

• cDNA - 4 pi

One of the prim ers used will have a Z-sequence 

(CA CCG AG TCG TACACTTTGC) at 1:10 of the other prim er and probe. The 

Am plifluor probe contains a region specific to the Z-sequence together with a hairpin
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structure labelled with a fluorescent tag (FA M -490). The fluorescent tag whilst being 

in the hairpin does not produce any signal, however, the specificity o f  the 3 ’ region 

of the Am plifluor probe to the Z-sequence causes the incorporation of the uniprimer 

(Table 2.4). As a result, following incorporations will cause the disruption of the 

hairpin structure and detectable signalling o f the fluorescent tag within this structure.

The intensity of fluorescence within each sample compared to a range of 

standards of known transcript copy num ber allows the calculation of transcript copy 

num ber within each sample (Figure 2.5). D etection o f GAPDH copy number within 

these sam ples was later used to allow further standardisation and normalisation of the 

samples.

Sample cDNA was amplified and quantified over a large num ber of shorter 

cycles using an iCycler10 thermal cycler and detection software (BioRad laboratories, 

Ham m elhem pstead, UK) (Figure 2.6) under the following conditions:

• Step 1: Initial denaturing period: 94 °C for 5 minutes.

•  Step 2: Denaturing step: 94 °C for 10 seconds.

•  Step 3: Annealing step: 55°C for 15 seconds.

• Step 4: Extension step: 72°C for 20 seconds.

Steps 2, 3 and 4 were repeated over 60 cycles.

The camera used in this system  is set to detect signal during the annealing 

stage. Specific Q-PCR prim ers were verified using a positive control known to 

express Claudin-5 and a negative control, where PCR water replaced cDNA, was 

included to exclude any contam ination in the reaction.
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Gene of 

interest
Primer name Primer sequence (5’-  3’)

Claudin-5

(Q-PCR)

CL5Zr2 A CTGAA CCTGA CCGTA C ACCG AGTCGT ACACTTTGC

CL5F2 TTCCTGGACCACAACATC

(3-act in 

(Q-PCR)

BACTINZR A CTGAA CCTGA CCGTA CGCTCGGTG AGG ATCTTCA

BACTINF1 GGACCTGACTGACTACCTCA

GAPDH

(Q-PCR)

GAPDHZR A CTGAA CCTGA CCGTA CAG AG ATGATGACCCTTTTG

GAPDHF1 CTGAGT ACGTCGTGGAGTC

Table 2.4: Primers used for Q-PCR.
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Figure 2.6: BioRad iCycler iQ5 Real Time PCR System.
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2.5 M ethods for detecting protein 

2.5.1 SDS-polyacrylam ide gel electrophoresis (SDS-PAGE) and W estern 

blotting

2.5.1.1 Cell lysis and protein extraction

Upon reaching adequate confluency (90%), the cell m onolayer was removed 

from the base of the cell culture flask using a disposable cell scraper. The detached 

cells and the medium were transferred to a universal container using a sterile transfer 

pipette and centrifuged for 5 minutes at 2000 rpm to pellet the cells at the bottom of 

the container. The supernatant was decanted and the pellet resuspended in 200- 

250pl o f  lysis buffer (see section 2.2.4), transferred to a 1.8ml eppendorf tube (A 

laboratories, Hampshire, UK) and placed on a Labinco rotating wheel for 1 hour 

(W olf Laboratories, York , UK) in order to extract protein from the cell lysate. The 

lysis solution was then centrifuged at 13000 rpm for 15 minutes in a microcentrifuge 

to remove cellular debris and collect the protein. The supernatant was transferred to a 

clean eppendorf tube to wait quantification prior to use in W estern blotting.

2.5.1.2 Protein quantification o f cell lysates

Determination of protein concentration of cell lysates was based on a protocol 

provided by the supplier Bio- Rad DC, from whom the protein assay kit was 

purchased (Bio-Rad laboratories, Ham m elhem pstead, UK). Firstly, a serial dilution 

of bovine serum albumin (BSA) standard samples with known concentration of 

lOmg/ml (Sigma, Dorset, UK) were prepared in the same cell lysis buffer to give a 

working concentration range between lOmg/ml to 0.005mg/ml. Five m icrolitre of
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either the sample or standard was pipetted into a 96 well plate before adding 25pl o f 

‘working reagent A ’ followed by 200pl o f  reagent B. ‘Working reagent A ’ was 

prepared by mixing each millilitre o f  reagent A with 20pl o f  reagent S. (final volume 

depends on the number of samples to quantify) (If the samples do not contain 

detergent this step can be skipped and reagent A is used as supplied). The mixture 

was left for 45 minutes allowing the colorim etric reaction to set. Absorbance of both 

samples and standards was read at 620nm using an ELx800 plate reading 

spectrophotom eter (Bio-Tek, W olf laboratories, York, UK). A standard protein curve 

was constructed for the bovine serum albumin standards and used to establish sample 

concentration. All protein concentrations were adjusted to the desired working 

concentrations of between 1 -  2mg/ml by diluting in cell lysis buffer followed by 

further dilutions in a l:l(v /v ) with 2X Lamelli sample buffer concentrate (Sigma- 

Aldrich, Dorset, UK). Samples were then boiled at 100°C for 5 m inutes allowing 

denaturation of the samples before being stored at -20°C until required.

2.5.1.3 Preparation for im m unoprecipitates

Cell lysate of the protein of interest was probed with Claudin-5 antibody 

(1:100 dilution) and placed on a Labinco rotating wheel for 2 hour (W olf 

Laboratories, York, UK) allowing Claudin-5 antibody to bind to their targets. One 

hundred microlitres of conjugated A/G protein agarose beads (Santa-Cruz 

Biotechnologies Inc., CA, USA) were added to each sample to make the antibody- 

protein complex insoluble, followed by overnight incubation on the rotation wheel. 

The supernatant was discarded and the pellet was washed in 200pl o f  lysis buffer and 

resuspended in 200jnl o f2 X  Lamelli sample buffer concentrate (Sigm a-A ldrich,
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Dorset, UK), then denatured for 5 m inutes by boiling at 100 °C. Samples were then 

stored at -20 °C prior to use.

2.5.1.4 Loading samples

SDS-PAGE was undertaken using an Om niPAGE VS10 vertical 

electrophoresis system (OminPAGE, W olf Laboratories, York, UK). Acrylamide 

gels were made up at a concentration appropriate to the molecule being analysed. 

They were prepared in a universal container and added between the two clean, dry 

glass plates and assembled on a casting stand. The amount of each ingredient 

required to make up to 15ml, sufficient for both the 8% gel (proteins in the range of 

50KDa to 50()KDa) and the 15% gel (proteins in the range o f 3KDa to lOOKDa) 

resolving gels is indicated below:

Component 8% Gel 15% Gel

Distilled water 6.9ml 3.4ml

30% acrylamide mix 4.0ml 7.5ml

1.5M Tris (pH 8.8) 3.8ml 3.8ml

10% SDS 0.15ml 0.15ml

10% ammonia persuphate 0.15ml 0.15ml

TEMED 0.009ml 0.006ml

Using a disposable plastic pipette, we applied the resolving gel between the 

glass plates and immediately covered the top with distilled water to ensure that the 

gel sets with a smooth surface. After approximately 30 minutes, we discarded the
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distilled water and the stacking gel was added to the top of the resolving gel. A 

plastic comb was placed gently at the top of the stacking gel and the gel allowed to 

set. The components and quantities required to prepare 5ml of the stacking gel 

solution (enough for two gels) are shown below:

Component

Distilled water 3.4ml

30% acrylam ide mix 0.83ml

1.0M Tris (pH 8.8) 0.63ml

10% SDS 0.05ml

10% ammonia persuphate 0.05ml

TEM ED 0.005ml

Once the stacking gel had set after approximately 30 minutes, the comb was 

carefully removed without tearing the edges o f the wells. The loading cassette was 

placed into an electrophoresis tank filled up with IX  running buffer until the wells 

were completely covered.

Samples were loaded into the wells using a 50pl syringe (Ham ilton) with a 

flat-tipped needle at equal volumes approxim ately 15f^l. Control wells with lOpl o f 

molecular weight marker SDSH2 (Sigma-Aldrich, Dorset, UK), were always used.
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2.5.1.5 Running gel

The proteins were then separated according to m olecular weight using 

electrophoresis at 125V, 40mA and 500W . Different lengths of time were used 

depending on the protein size and gel percentage.

2.5.1.6 Preparation of membrane and W estern blotting

Following SDS-PAGE the protein samples were transferred onto a Hybond 

nitrocellulose membrane (Amersham Bioscience UK Ltd, Bucks, UK). Gels were 

taken out from the electrophoretic tank and separated from the glass plates after 

removing the stacking gel with a plastic edge. The nitrocellulose m embrane and four 

sheets of filter paper were cut (7.5cm x 7.5cm) and immersed in IX  transfer buffer to 

ensure correct binding o f the protein to the membrane for 20 minutes. The ‘sandwich’ 

of paper-nitrocellulose-gel-paper was set up for protein transfer from the gel to the 

membrane and placed in a SD10 SemiDry M axi System blotting unit (W olf 

Laboratories, York, UK). The surface o f this sandwich was carefully smoothed out to 

remove the air bubbles which may interfere during the protein transfer.

Electroblotting was performed at a constant current of 15V, 500mA, 8W  for 40-45 

minutes.

Once completed, membranes were removed and immersed in Poceau S. Stain 

(Sigma-Aldrich, Dorset, UK) for approxim ately one minute at room tem perature 

followed by a wash in distilled water until protein bands were visible on the 

membrane. This allows us to verify that the proteins have been transferred to the 

membranes as well as indicate where the molecular marker is placed without
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interfering with successive im m unoprobing steps. M embranes were then stored at 

4°C in 10% milk blocking solution (10% skim m ed milk, 0.1% polyoxyethylene (20) 

sorbitan monolaurate (Tween 20) in TBS) until required.

2.5.1.7 Specific protein detection using antibody probing

M embranes were transferred into a clean 50ml falcon tube (Nunc, Fisher 

Scientific, Leicestershire, UK) and incubated in fresh 10% milk blocking solution for 

30 minutes with agitation in a roller mixer (Stuart, W olf Laboratories, York, UK). 

The blocking solution was then discarded and 5ml of specific primary antibody 

(1:500) made up in 3% milk solution (3% skimmed milk, 0.1% polyoxyethylene (20) 

sorbitan monolaurate (Tween 20) in TBS) was added to the falcon tube followed by 

1 hour of incubation of the membranes with agitation (see Table 2.5). After the 1 

hour of incubation, the primary antibody solution was removed and the membranes 

were washed 3 times for 10 minutes, each wash with 3% milk solution, to ensure 

complete removal of the primary antibody. The m em branes were then incubated in 

5ml of HRP conjugated secondary antibody (1:1000) solution made up in 3% milk 

solution with agitation for 1 hour (Table 2.5). The solution was discarded and 

m em branes were washed 3 times in TTBS (TBS containing 0.1% tween 20), 

followed by a final 10 minute wash in TBS to remove any residual detergent.

2.5.1.8 Chem ilum inescent detection o f protein

The Supersignal W est Pico Chem iluminescencent Substrate (Thermo 

Scientific, IL., USA) was used to detect the horseradish peroxidase (HRP) in the 

membranes. The two substrates were mixed in a 1:1 ratio with a final volum e of
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0.125m l/cm 2. Once the TBS was decanted, the membrane was placed in a clean 

falcon tube and covered for 5 minutes with the chemiluminescence working solution 

with agitation. Excess reagent was then removed and the membrane was placed on 

the tray that the UVITech imager (UVITech, Inc., Cambridge, UK) provides. The 

chemiluminiscence signal was captured and visualized in the computer connected to 

the imager. The membranes were exposed to several exposure times and images 

captured. The protein bands were then quantified by using UVIband software 

(UVITEC, Inc., Cambridge, UK).

M embranes were stained in Am ido Black stain for 1 minute followed by 

immersion in destain until bands were clearly seen and a wash in distilled water. This 

provides a permanent record of the membrane for further comparison with the 

images captured with the imager.

2.5.2 Imm unohistochem ical staining for frozen sections (IHC) o f breast sample 

tissues

Frozen sections of breast tumour and background tissue were cut at a 

thickness o f 6 pm using a cryostat (Leica). The sections were mounted on super frost 

m icroscope slides (Fisher Scientific, Leicestershire, UK) air-dried and then fixed in a 

mixture of 50% acetone and 50% methanol. The sections were then placed in 

Optimax wash buffer (Menerium, Oxford, UK) for 5-10 min to rehydrate. Sections 

were incubated for 20 min in Horse serum albumin (Vector Labs., Peterborough, UK) 

blocking solution and probed with Claudin-5 antibody (1:100 dilution) for one hour, 

and without primary antibody as a negative control to verify the binding specificity. 

Primary antibodies were purchased from Santa-Cruz Biotechnologies Inc. (Santa-
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Cruz, CA, USA). Following extensive washings, sections were incubated for 30min 

in the universal secondary biotinylated antibody (ABC Standard k i t , Vector 

Laboratories, Peterborough, UK). Following extensive washings, the sections were 

incuabated in the dark for 5 min with the Diamino-benzine chromogen (Vector 

Laboratories, Peterborough, UK). Sections were then washed and counter stained in 

G ill’s haematoxylin and dehydrated in ascending grades o f methanol before clearing 

in xylene and mounting under a cover slip.

2.5.3 Im m unofluorescent staining (IFC)

A 16-well chamber slide (Nunc, Fisher Scientific, Leicestershire, UK) was 

treated with 100 pi free serum medium for 1 hour. Medium was discarded and 20000 

cells in 200 pi aliquots were seeded into each well and left in the incubator overnight 

to form a confluent monolayer. The medium was then aspirated and the cells fixed in 

absolute ethanol for 20 minutes at -20°C. Cells were rehydrated in BSS for 10 

minutes and permeabilised in 0.1% Triton X-100 for 5 minutes followed by 3 washes 

in TBS. Blocking was performed using 10% Horse serum (Vector Labs., 

Peterborough, UK) in TBS for 40 m inutes followed by a wash in TBS. The slides 

were probed with primary antibody for 1 hour 1:100 dilution made up in 3% Horse 

serum in TBS. Cells were washed 4 times in 3% Horse serum followed by 4 washes 

in TBS. Secondary antibody was prepared using 1:1000 dilution and cells were 

incubated for 1 hour in the dark according to the primary antibody used which was 

labelled with FITC or TRITC . Cells were washed in 3% Horse serum followed by 8 

washes in TBS, mounted in FluorSave (M erck KGaA, Darmstadt, Germany) and 

stored in foil at -4°C until viewed using an Olympus BX51 Fluorescence microscope.
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Antibody name Host species
Antibody

concentration
Suplier & catalogue 

num ber

Polyclonal Anti­
rabbit (whole 

molecule) IgG 
Peroxidase conjugate

goat 1:1000
Sigma

A-9169

Polyclonal Anti­
mouse (whole 
molecule) IgG 

Peroxidase conjugate

Rabbit 1:1000
Sigma

A-9044

Polyclonal Anti-goat 
(whole molecule) 
IgG Peroxidase 

conjugate

Rabbit 1:1000 Sigma

A-5420

M onoclonal Anti- 
Claudin-5

mouse 1:500
Abnova

H00007122-A01

Polyclonal Anti- 
Claudin-5

rabbit 1:100

Santa-Cruz 
Biotechnologies Inc.

SC-28670

M onoclonal Anti- 
Actin

mouse 1:500

Santa-Cruz 
Biotechnologies Inc.

SC-8432

Polyclonal Anti-N- 
W ASP

goat 1:500

Santa-Cruz 
Biotechnologies Inc.

SC-10122

M onoclonal Anti- 
ROCK 1

mouse 1:500

Santa-Cruz 
Biotechnologies Inc.

SC-17794

Polyclonal Anti­
rabbit IgG FICT

sheep 1:1000
Sigma

F-7512

Table 2.5: Antibodies used during course of study.
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2.6. Tum our cell function assays 

2.6.1 In vitro tumour cell growth assay

The growth capacity of the cells used in this study was determined using an 

in vitro tumour growth assay. Cells were detached and counted (as described before 

in section 2.2.4 and 2.2.5). A number of 3,000 cells were seeded into a 96 well plate 

(Nunc, Fisher Scientific, Leicestershire, UK) in 200pl o f normal medium. Four plates 

were seeded to obtain density readings after 4 hours (day 0), 1 day, 3 days and 4 days. 

W ithin each experiment four duplicates were set up. After appropriate incubation 

periods, cells were fixed in 4% formaldehyde in BSS for 5-10 minutes before 

staining for 10 minutes with 0.5% (w/v) crystal violet in distilled water. Following 

washings the crystal violet was then extracted from the cells using 10% acetic acid. 

Absorbance was determined at a wavelength o f 540nm  on a plate reading 

spectrophotom eter (ELx800, Bio-Tek, W olf laboratories, York, UK).

Using the following equation, cell growth was presented as percentage 

increase by comparing the absorbances of each incubation period:

Percentage increase = [(Day 3 or 5) -  (Day 1)] /  Day 1 X 100

2.6.2 In vitro tumour cell M atrigel invasion assay

The invasive capacity of the cells used in this study was assessed using an in 

vitro tumour cell Matrigel invasion assay. This assay measures the capacity of cells 

to penetrate and invade through a basem ent membrane artificially form ed by using 

Matrigel (M atrigel1 M, BD Bioscience,Oxford, UK) and migrate through 8pm pore 

size, which is sufficiently large enough to allow cells to pass through.
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Cell culture inserts (BD Falcom™  Cell Culture Inserts, BD Bioscience, 

Oxford, UK) were placed into a 24-well plate using forceps and coated in Matrigel. 

The working solution of Matrigel was prepared at a concentration of 0.5m g/m l in 

PCR water, adding 100pl to each insert and allowing to dry overnight. Once dried 

the inserts were rehydrated in lOOpl sterile water for 1 hour. The water was then 

aspirated and cells were seeded in the inserts over the top of the artificial basement 

m embrane at a density of 30,000 cells in 200pl per well. The plates were then 

incubates for 3 days at 37 °C with 5% CO2.

After the incubation period, the M atrigel layer together with the non-invasive 

ceils was cleaned from the inside of the insert with tissue paper. The cells which had 

migrated through the pores and invaded into the M atrigel were fixed in 4% 

form aldehyde (v/v) in BSS for 10 minutes before being stained in 0.5% crystal violet 

(w/v) in distilled water (Parish et al., 1992). The cells were then visualized under the 

microscope under X40 magnification, 5 random fields counted and duplicate inserts 

were set up for each test sample.

2.6.3 In vitro cell-matrix adhesion assay

The capacity of tumours cells to adhere to a basement m em brane created 

artificially by using Matrigel (M atrigel™ , BD Bioscience,Oxford, UK) was 

examined using an in vitro tumour cell M atrigel adhesion assay.

One hundred microlitres o f free serum medium that contained 5pg o f  

Matrigel was added in each well of a 96- well plate and dried at 55°C for 2 hours in 

an oven. The membrane was then rehydrated in lOOpl o f serum free medium for 30
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minutes before the cells were seeded in the wells. Approximately 45,000 cells were 

seeded onto the Matrigel basement m embrane in 200pl o f normal medium and 

incubated at 37°C with 5% CO2 for 40 minutes. After the incubation period, the 

medium was aspirated and the m embrane washed 5 times with 150pl o f  BSS to 

remove the non-attached cells, then fixed in 4% formaldehyde (v/v) in BSS for 10 

m inutes before being stained in 0.5% crystal violet (w/v) in distilled water (Jiang et 

al., 1995a). The number of adherent cells were counted from 5 random fields per 

well and 5 duplicate wells per sample, under a microscope at X40 magnification.

2.6.4 In vitro tumour cell motility assay using Cytodex-2 beads

A number of 1X106 cells from each cell line were incubated in universal 

containers with 20 ml of normal growth medium containing 1ml of Cytodex-2 beads 

(GE Healthcare, Cardiff, UK) for 2 hours. The medium was aspirated and the beads 

were washed twice in growth medium to remove non-adherent or dead cells. After 

the second wash the beads were resuspended in 5 ml of normal growth medium. 

Three hundred microlitres of this solution was then transferred into each well of a 

24-well plate, 5 duplicate wells per sample, and incubated overnight. Following 

incubation, any cells that had migrated from the Cytodex-2 beads and adhered to the 

base of the wells were washed gently in BSS, fixed in 4% form aldehyde (v/v) in BSS 

for 10 minutes before being stained in 0.5% crystal violet (w/v) in distilled water 

(Jiang et al., 1995b). Five random fields were counted per well.
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2.6.5 In vitro tumour cell migration (wound healing) assay

The migration of the cells across a wounded surface of a confluent m onolayer 

was examined to assess the migratory properties of HECV and M DA-231-M B cell 

lines. Cells at a density of 40,000 cells per well were seeded in a 24 well plate and, 

upon reaching confluence, the medium was changed and the m onolayer was scraped 

with a fine gauge needle to create a wound. A few drops o f mineral oil were added to 

avoid evaporation of the medium. The plate was placed on a heated plate (Leica 

GmbH, Bristol, UK) to keep a constant tem perature of 37°C. Cells were 

photographed after wounding and every 15 m inutes during 1 hour with a CCD 

camera attached to a Leica DM IRB m icroscope (Leica GmbH, Bristol, UK) at X 20 

magnification (Jiang et al., 1999a).

Cell migration was analysed using Image J software (free software) by 

m easuring the distance between the two wounded fronts at 4 points per incubation; 

the arbitrary values obtained were converted into pm by multiplying each value by

1.6 as previously calibrated using a calibrated grid. The distance between the 

m igrating fronts at each point time was determined by subtracting the distance 

between the two fronts at any of the specific times selected from that at the initial 0 

minute starting point.

2.6.6 In vitro tubule formation

M atrigel endothelial cell tube formation assays were set up to assess any 

impact on angiogenic effect following treatm ent with different cell m otility-related 

inhibitors (see Table 2.6). One hundred microlitres o f free serum medium that
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contained 250pg o f Matrigel was seeded in each well o f a 96- well plate and left to 

gel in an incubator for 30 minutes. Once the M atrigel was set, it was rehydrated in 

lOOpI o f serum free medium for 30 minutes before the cells were seeded in the wells. 

40,000 HECV cells were seeded onto the M atrigel basement m embrane in lOOpl o f 

normal medium and incubated at 37 °C with 5% C 02fo r 1 hour. After the incubation 

period, the medium was carefully aspirated and a second layer o f  Matrigel (250pg) 

was added on top following treatment of these cells. The membrane was then 

incubated at 37°C with 5% CO2 for 30 m inutes followed by addition o f  lOOpl of 

normal medium (Sanders et al., 2010). Cells were incubated overnight allowing 

tubules to form.

The number of tubules was counted under low magnification and images 

were captured from 5 random fields. Total tubule perim eter/field of these images was 

later quantified using ImageJ software

Inhibitor name Inhibitor concentration
Suplier & catalogue 

num ber

N-W ASP-Inhibitor
Wiskostatin

50pM
Calbiochem  (Gibbstown, 

USA) 
681660-1M G

Rock Inhibitor Y-27632 50nM
Santa Cruz 

B iotechnologies Inc. 
sc-3536

Arp 2/3 Inhibitor 
CK-0944636

10 mM
Chemvid Inc. (San Diego, 

USA) 
8012-5102

Table 2.6: Cell motility inhibitors used during course of study.
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2.6.7 In vivo co-culture tumour growth and development model

Athymic nude mice (nu/nu) (Charles Rivers) were maintained in filter top 

units according to Home Office regulation. The mice were weighed and the size of 

the growing tumour measured using vernier callipers under sterile conditions every 

week. Those mice that developed tumours exceeding 1cm3 or suffered 25% weight 

loss during the experiment were terminated under Schedule 1 according to the UK 

Home Office and the UK Coordinating Com m ittee on Cancer Research (UKCCCR) 

instructions. At the end of the experimental work, animals were weighed, terminated 

under Schedule 1 and tumours were removed if of sufficient size. Tum our volume 

was determined, at each point, using the following formula:

Tum our volume = 0.523 x w idth2 x length

Each experimental group consisted of 5 mice and each mouse was injected 

with a mix of 2 x l0 6 cancer cells in 100 pi in a 0.5 mg/ml M atrigel suspension in both 

flanks.

2.7 Functional assessment o f Tight Junction

2.7.1 M easurem ent o f transepithelial and transendothelial resistance in HECV  

and M DA-M B-231 cell lines (TER)

Cells were seeded into 0.4 pm transparent pore size inserts ( Greiner bio-one, 

Stonehouse, UK) at a density of 50,000 cells in 200pl o f ordinary medium within 

24 well plates, grown to confluence, the medium removed and replace with fresh
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Dulbecco’s Modified Eagle’s medium containing 15Mm Hepes, L-Glutamine 

( Lonza Laboratories, Verviers, Belgium). Medium alone was added to the base o f 

the wells (control) or with 50ng/ml HGF (a kind gift from K. Matsumoto, Osaka 

University, Japan). The concentration o f  HGF (50 ng/ml) used for these experiments 

was selected based upon previous laboratory experience (Martin et al., 2008b). 

Resistance across the layer o f  HECV and MDA-MB-231 cells was measured using 

an EVON volt-ohmmeter (EVON, World Precision Instruments, Aston, Herts, UK), 

equipped with static electrodes (WPI, FL, USA) (Martin et al., 2004a). One electrode 

was placed in the upper and one in the lower chamber o f  the well and resistance 

measured at intervals from 0 to 240 minutes (Figure 2.7). At the end o f  each 

experiment the medium was removed, cells were stained with crystal violet and 

examined under the microscope to ensure that the cell layers had remained attached 

throughout the course o f the experiment.

Electrodes
Upper Chamber

0.4 pm pore insert 

Well in 24 well plate —

Confluent layer of cells 

Lower Chamber

Figure 2.7: Measurement o f  TER using an EVON volt-ohmmeter.
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2.7.2 ECIS (electric cell-substrate im pedance sensing) for m onitoring cell 

attachm ent and cell motility analysis in HECV and M DA-M B-231 cell lines

The 1600R model of the ECIS instrument (Applied Biophysics Inc, NJ, USA) 

was used for motility assay (wounding assay), wounding/cell modelling analysis in 

the study model. Cell modelling was carried out using the ECIS RbA m odelling 

software, supplied by the manufacturer (Figure 2.8).

The 8W 10 arrays (8 well format with 10 probes in each well) were used in 

the present study. The array surface was treated with 200pl o f lOmM L-Cysteine 

solution for 20 minutes, which binds to the gold surface via its thiol group forming a 

m onom olecular layer, followed by two washes in Dulbecco’s M odified Eagle’s 

medium with 15Mm Hepes, L-Glutamine (Lonza Laboratories, Verviers, Belgium). 

An electrode check was run to check the impedance value of the cell-free wells 

containing just fresh medium and to assess the integrity of the arrays. The arrays 

were seeded at a density of 40,000 cells in 400 pi o f  D ulbecco’s M odified Eagle’s 

medium with 15Mm Hepes, L-Glutamine to achieve confluent m onolayers following 

treatment with motility-related inhibitors (see Table 2.6). After 24 hours in culture, 

the confluence and viability of the cell monolayer was confirmed by a light 

microscope, thus another electrode check was run to check the impedance value of 

the array to ensure correct position of the contacts (Keese et al., 2004). The 

m onolayer of HECV and M DA-M B-231 cells was electrically wounded with a 5V 

AC at 4,000Hz for 30 seconds (Figure 2.9). Impedance and resistance of the cell 

layer were immediately recorded every millisecond for a period of up to 5 hours.
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Attachment and Migration were modelled using the ECIS RbA cell modelling 

software.

Figure 2.8: ECIS instrument (panel 1). The 8W10 array (panel 2). Micrographs taken 

from ECIS before (panel 3) and immediately after wounding (panel 4).
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Figure 2.9: ECIS illustrations. The current flows between a 250 pm diameter 

electrode and in the spaces under and between the cells, as the cell membranes are 

essentially insulators.
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2.8 Designed images

All images used in the introduction of this thesis were produced by Servier 

Medical Art.

2.9 Statistical analysis

Results data was analyzed using SigmaPlot software (version 11.0). The 

statistical comparisons between the test and the control cell lines, using as control 

wild type cells and cells containing a closed pEF6/ V5-His TOPO TA plasmid vector 

when possible, were made using a Students two sample t-test and by Two-way 

Anova test when the data was found to be normalized and have equal variances. In 

all cases 95% confidence intervals were used. All the graphs were created using 

M icrosoft excel software.

Patient data was analyzed using both SigmaPlot and SPSS, etc.
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Chapter 3

Expression of Claudin-5 in normal and 

cancer human breast tissues
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3.1 Introduction

Tight Junctions (TJs) have been widely reported as being not only merely 

intercellular seals; they are also key structures in paracellular transport, gene 

transcription, cell signalling and cellular proliferation and differentiation. Therefore, 

in recent years they have become the focus of intense research. A substantial body of 

evidence for altered TJ structure in cancer developm ent has been reported in the last 

several years.

Claudin proteins are seen as unusual proteins in the TJ structure as they are 

presented in a variety of tissues with different properties. The composition and 

distribution between the 24 members confers specific barrier properties to each cell. 

The impact that the loss of any of the Claudin proteins, or the up-regulation in 

several carcinom as, exerts on epithelial cells is only now beginning to be unmasked. 

Therefore, the study of the pattern of expression of Claudins in normal and human 

cancer tissues might be a useful tool for ascertaining clinical prognosis for the 

disease. To date, a number of studies have reported on the role of the Claudin-5 in 

cancer progression, however, there have been none in breast cancer.

This study aimed to determine, for the first time, the levels of expression and 

distribution of Claudin-5 in a cohort of 133 patients with breast cancer (106) and in 

normal background tissue (27), in order to investigate a possible link between levels 

of expression of Claudin-5 and patient outcome.
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3.2 Material and method

3.2.1 Collection of breast tissues

A total of 133 breast samples were obtained from breast cancer patients (27 

background normal breast tissue and 106 breast cancer tissue), with the consent of 

the patients and approved by the ethical committee. The pathologist (ADJ) verified 

normal background and cancer specimens, and it was confirmed that the background 

samples were free from tumour deposit.

3.2.2 RNA extraction and Q-PCR in tum our and normal breast tissue

RNA was isolated from both tumour and normal breast samples and used as 

templates for RT-PCR to convert RNA into complementary cDNA (see section 2.4.3 

for method). The levels of Claudin-5 transcripts from cDNA were determined by Q- 

PCR using specific primers. Refer to section 2.4.7 for further details.

3.2.3 Imm unohistochem istry staining o f Claudin-5

Immunohistochemistry staining of Claudin-5 was carried out using a specific 

antibody for the protein, followed by secondary antibody, ABC complex and DAB. 

For detailed IHC procedure refer to section 2.5.2.

3.2.4 Statistical analysis

Comparison between different patients groups were made using two sample t- 

test where appropriate. In order to assess the long term survival rates of patients with 

high and low levels of Claudin-5, the overall survival data was used to plot Kaplan- 

Meier survival curves (SPSS version 14).
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3.3 Results

3.3.1 Aberrant expression of Claudin-5 in human breast cancer

Levels of expression of Claudin-5 were examined at mRNA level using Q- 

PCR and normalised by GAPDH. Results revealed no significant difference between 

tumour and normal/background samples (p=0.38). However, in tissue sections, 

Claudin-5 was expressed at relatively high levels in tumour tissues, while in 

normal/background tissues levels were lower (Figure 3.1).

3.3.2 Immunohistochemical staining o f Claudin-5

In this study immunohistochemical staining was used to assess the location, 

distribution and the degree of staining of Claudin-5 in tumour and 

normal/background samples. In normal mammary tissues, Claudin-5 appeared as 

strong staining in the endothelial cells, lining vessels, whereas epithelial cells stained 

weakly for Claudin-5. The staining for Claudin-5 within the tumour sections was 

however, significantly decreased in both endothelial and epithelial cells (Figure 3.2).

Moreover, the staining distribution within cells from normal/background sections 

was concordant with TJ location. No such distribution was observed in cells from 

tumour sections. Here, the staining was weak, diffuse and not located at the TJs.
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Figure 3.1: Comparison o f levels o f  Claudin-5 in tumour samples compared with 

normal/background tissue (expressed as transcript copy number per 50 ng o f RNA).
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Claudin-5

NPI 1 2293±15492

NPI 2 535±2977

NPI 3 324918±1258394

TNM 1 122580±689911

TNM 2 7.48±22.72

TNM 3 30.1±53

TNM 4 4.56±9.03

Alive & well 26983±226456

Died from breast cancer 332132±1256707

Table 3.1: Analysis of mRNA samples showing levels of Claudin-5 and tumour 

prognosis by NPI, nodal involvement (TNM ) and patient outcome.
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Figure 3.2: A comparison o f expression o f  Claudin-5 protein levels in 

normal/background (left panel) tissue and tumour breast tissues (right panel) is 

shown in consecutively increasing magnification. Regions o f  Claudin-5 expression 

located at the TJ area in endothelial cells are indicated by black arrows. Red arrows 

indicate Claudin-5 expression in epithelial cells.
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3.3.3 Claudin-5 and the predicted prognosis and TNM staging

The levels of the Claudin-5 transcripts were analysed using the Nottingham 

Prognostic Index (NPI), which indicates the predicted prognosis of the patients. NPI 

was calculated using the following equation [NPI= (0.2 X size) + grade + nodal 

status], where NPI< 3.4 is regarded as a good prognosis (NPI 1), NPI 3.4-5.4 as 

moderate (NPI 2) and NPI >5.4 as poor prognosis (NPI 3). Claudin-5 levels were 

sequentially increased with increasing NPI. There were higher levels of Claudin-5 

expression seen in patients with poorer prognosis (Table 3.1) (Figure 3.3), although 

this did not reach significance (p=0.34).

The levels of Claudin-5 were also analysed against tumour-node-metastasis 

(TNM ) (Table 3.1) (Figure 3.4). There were higher levels of Claudin-5 expression 

seen in TNM1 status when compared to TNM2 (p=0.19), TNM3 (p=0.19) and 

TNM 4 (p=0.19), but significance was not reached.

3.3.4 Claudin-5 expression in different tumour grade

When comparing the levels of Claudin-5 against tumour grade (Table 3.1) 

(Figure 3.5), higher levels of expression were seen in grade 2 when compared with 

grade 1 tumours although this was not statistically different (p=0.85). However, 

grade 3 showed lower levels when compared to grade 1 although this did not reach 

significance (p=0.34).
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transcript copy number per 50 ng o f  RNA).
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Figure 3.4: Levels o f expression o f Claudin-5 in relation to TNM status o f  tumours 

(expressed as transcript copy number per 50 ng o f  RNA).
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Figure 3.5: Levels o f  Claudin-5 in relation to tumour grade (expressed as transcript 

copy number per 50 ng o f RNA).
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3.3.5 Claudin-5 expression correlated with clinical outcome and long-term  

survival

To determine whether Claudin-5 transcript levels were associated with long­

term survival, patients were classified according to expression levels of CL-5, guided 

by the Nottingham Prognostic Index (NPI) into two groups; those with high levels 

and those with low levels of Claudin-5. The cut off point was set at the level at which 

patients were classified as moderate prognoses or NPI 2. Patients who died of breast 

cancer had higher levels of Claudin-5 transcript when compared with patients who 

remained disease free although this did not reach significance (p=0.36) (Figure 3.6).

W hen long-term survival was analysed using Kaplan-M eier survival curves 

(Figure 3.7), patients with high levels of Claudin-5 transcript had a significantly 

shorter survival than patients with low levels of Claudin-5 (p=0.004); mean survival 

129.780 moths (118.120-141.441 months, 95% Cl) versus 66 months (41.520-90.480 

months, 95% Cl).
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3.4 Discussion

This study has reported for the first time that Claudin-5 is aberrantly 

expressed in human breast cancer and has a link to the clinical outcome of the patient. 

From this data we have shown that Claudin-5 expression is decreased in breast 

tumour tissue compared to normal/background tissue, however this result did not 

correlate with IHC staining, where levels of Claudin-5 protein appear to be higher in 

normal/background tissues when compared to tumour sections. This discrepancy 

may be due to the non-discriminatory nature o f Q-PCR, as we cannot determine 

which cells express Claudin-5. Moreover, IHC is a semi-quantitative method. In 

early studies Claudin-5 was described as a protein highly expressed in endothelial 

cells of the blood vessels (Morita et al., 1999c) this might also help us to explain the 

disparity founded between the IHC and Q-PCR results. As explained in Chapter 1, 

tumour angiogenesis is the proliferation of a network of blood for the supply of 

nutrients as well as oxygen and for rem oving waste products, therefore Claudin-5 

theoretically should be highly expressed being a recognised member of the TJ 

structure in endothelial cells constituting these blood vessels. This, in itself, might 

reveal an angiogenic potential in assessing the aggressiveness of breast cancer.

For the clinical point of view, one of the most interesting observations from 

this study is the relationship between high levels of Claudin-5 and clinical outcome. 

Patients who died from breast cancer had higher levels of Claudin-5 compared with 

patients who remained disease-free. Furthermore, patients whose tumours expressed 

high levels of Claudin-5 had significantly shorter survival than those with low levels 

of expression of Claudin-5.
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The Nottingham Prognostic Index (NPI), has been used as a prognostic 

indicator with its reliability being validated in several studies (Suen and Chow, 2006). 

Claudin-5 showed a high expression at NPI 3 when compared to NPI 1 and NPI 2 

correlating these results with the poor prognosis seen when looking at clinical 

outcome for these patients as described above. Conversely, when Claudin-5 

expression was compared with tumour grade and TNM status of tumours no trend 

was observed. Claudin-5 showed no obvious correlation as Claudin-5 was decreased 

in grade 3 when compared to grade 1 and grade 2. The same trend was observed 

when comparing levels with TNM classification, where Claudin-5 expressed high 

levels at TNM 1, although none of these results reached significance.

In recent years, an increasing number of studies have revealed the differential 

expression of Claudins in human cancers (Oliveira and M orgado-Diaz, 2007). 

Although high levels of Claudin-5 have been reported in ovarian (Turunen et al., 

2009), prostate (Seo et al.) and lung cancers (Paschoud et al., 2007) and low levels in 

hepatocellular carcinoma (Sakaguchi et al., 2008), this is the first study to our 

knowledge to report levels of Claudin-5 in patients with breast cancer.

Collectively, these findings suggest that Claudin-5 is a potential prognostic 

factor in patients with breast cancer, as high levels of expression are clearly 

associated with indicators of poor prognosis as well as with high incidence of breast 

cancer-related death and shorter survival of patients. These results strongly indicate a 

prognostic value of Claudin-5 in breast cancer.
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Chapter 4

Cloning and verification of Claudin-5 

over-expression and knockdown
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4.1 Introduction

The role of Claudins in carcinogenesis and progression to metastasis is an 

active area of research due largely to the discovery that Claudin expression is 

frequently altered in cancer. Although their functional role in cancer progression 

remains unclear, the differential expression of these proteins between tumour and 

normal cells, in addition to their membrane localisation, makes them prime 

candidates for cancer therapy (Kominsky, 2006; Tsukita et al., 2008). The Claudin 

protein family was discovered in 1989 by Furuse et al., (Tsukita, 1989). Since the 

initial discovery of the first claudin, at least 24 human Claudins have been identified. 

They are generally expressed in both epithelial and endothelial cells and thus are 

found throughout the body.

It has been shown that expression of Claudin-5 selectively decreased the 

permeability of the blood-brain barrier ions (Nitta et al., 2003). A  very limited 

number of studies have examined patterns of expression of Claudin-5 in human 

cancer, however, as already discussed in Chapter 1, levels of Claudin-5 expression 

appear to be altered in ovarian, lung, prostate and hepatocellular carcinomas.

Previous work in our research group initiated an investigation into the 

expression of Tight Junction (TJ) molecules in breast cancer. The original pilot study 

identified a number of target m olecules that would allow for further investigation as 

having potential as breast cancer markers, prognostic indicators or possible 

therapeutic targets. One of these proteins of interest was Claudin-5.
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The aim of this study is primarily to establish the role of Claudin-5 in 

endothelial cells during the defence of cancer invasion as well as its role in breast 

cancer cells.

4.2 Materia] and methods 

4.2.1 M aterials

Polyclonal rabbit anti-Claudin-5 antibody (SC-28670) was obtained from 

Santa-Cruz Biotechnologies Inc. (Santa-Cruz, CA, USA) and polyclonal mouse anti- 

Claudin-5 antibody (H00007122-A01) was obtained from Abnova (Abnova GmbH, 

Heidelberg, Germany). Secondary antibody for Immunofluorescence staining was 

labelled anti-rabbit IgG-FITC from Sigma (Sigma-Aldrich, Dorset, UK). Secondary 

antibody for Western blotting was labelled anti-mouse peroxidase conjugated (A- 

9044) from Sigma (Sigma-Aldrich, Dorset, UK). All primers used were 

manufactured and provided by Invitrogen (Invitrogen, Inc., Paisley, UK), all their 

sequences are located in table 2.2.

4.2.2 Cell lines

HECV and MDA-MB-231 cell lines were chosen to investigate the effects of 

forced expressed and knockdown of Claudin-5. They were cultured in DM EM -F12 

medium as described in section 2.2.
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4.2.3 Generation of Claudin-5 knockdown and forced expression M DA-M B-231  

and HECV cells

Amplification of the Claudin-5 coding sequence was carried out using 

primers capable of amplifying the full length sequence of Claudin-5 (table 2.2) 

together with placental cDNA (previously shown to highly express Claudin-5) used 

as template.

Hammerhead ribozymes targeting Claudin-5, based on the secondary 

structure of Claudin-5 were used. For detailed procedures refer to section 2.3.

4.2.4 TOPO cloning of Claudin-5 coding sequence/transgenes into a pEF6/H is 

TOPO plasmid vector

Claudin-5 coding sequence or transgene was cloned into pEF6/ V5-His 

TOPO TA plasmid vector, followed by transformation of constructed plasmid into 

Escherichia coli. The correct colonies were then amplified, and the plasm id extracted. 

For detailed procedures refer to section 2.3.

4.2.5 HECV and M DA-M B-231 cell transfection and generation o f stable 

transfectants

Following plasmid verification, the plasmids were transfected into HECV and 

MDA-MB-231 cells and were placed in selection medium containing 5pg/ml 

Blasticidin S, following selection for up to 10 days. For detailed procedures refer to 

section 2.3.
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4.2.6 Synthesis o f com plem entary DNA and RT-PCR

RNA was isolated from the cells and RT-PCR was used to convert RNA into 

com plem entary cDNA as described in section 2.4. Conventional PCR was run to 

confirm  the products which were visualized on a 2% agarose gels.

4.2.7 Protein extraction, SDS-PAG E and W estern blotting analysis

Protein was extracted and quantified, followed SDS-PAGE as described in 

section 2.5. Proteins were transferred onto nitrocellulose membranes and probed with 

specific prim ary anti-Claudin-5 (full antibody data is given in table 2.5).

4.2.8 Im m unofluorescent staining

Imm unofluorescent staining of Claudin-5 in HECV and M DA-M B-231 cells 

was carried out using a specific antibody for the protein, followed by secondary- 

FITC antibody. For detailed IFC procedure refer to section 2.5.3.

4.3 Results

4.3.1 Screening of cell lines and tissues for Claudin-5 expression

The expression of Claudin-5 was examined in eleven breast cancer cell lines, 

including M DA-M B-157, M D A -M B-463, BT-549, M CF-7, M DA-M B-436, ZR-751, 

M DA-M B-435S, BT-474, M DA-M B-231 and BT-474KC. Relatively low levels of 

Claudin-5 were seen in most o f these cells or Claudin-5 was absent. However, BT- 

549, M DA-M B-436 and M DA-M B-231 showed moderately high levels of Claudin-5 

mRNA levels compared to the other breast cancer cell lines (Figure 4.1).
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The expression of Claudin-5 was also screened in three prostate cell lines, 

D U -145, PNT-19 and PNT-2C2, revealing that Claudin-5 was expressed at relatively 

low levels in PNT-2C2 cells and com pletely absent in DU-145 and PNT-19. 

Pancreatic cell lines PANC-1, M iaPaCa and Cor- L677, the fibroblast cell line 

MCR5 (used as a control as fibroblasts do not have TJ), the bladder cancer cell line 

R T -112, the human epithelial carcinom a cell line A-431, the human keratinocyte cell 

line HaCaT and the two colorectal cell lines HRT-18 and HT-115 showed negative 

levels of Claudin-5 after screening.

In the endothelial cell lines HECV  and HU V EC m RNA levels of Claudin-5 

were seen as expected, as Claudin-5 has previously been reported to be highly 

expressed in the blood vessels in an early study (M orita et al., 1999c). However, 

relatively low levels were seen in the H U V EC cell line when compared to HECV 

cells.

In all cell line samples, (3-actin expression was also examined to confirm 

cDNA quality and to demonstrate norm alised levels of cDNA within the separate cell 

lines.

This data demonstrated expression o f Claudin-5 in several breast cancer cell 

lines, in the prostate cancer cell line PN T-2C2 and in endothelial cell lines HECV 

and HUVEC, providing us with inform ation enabling us to choose a cell line with 

high levels of expression of Claudin-5. The M DA-M B-231 and HECV cell lines 

were among others selected to investigate the role of Claudin-5 in human endothelial 

and breast cancer cells and therefore they were established as in vitro cell models for 

this study.
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Expression of Claudin-5 was also investigated in three different human 

tissues such as placenta, breast and colorectal tissue in order to choose cDNA 

tem plates for the amplification of Claudin-5 expression sequence for further analyses 

(Figure 4.2 A).

151



rP >P & ^  <P <p' -p  'p  # r yp < ?^ ^  0 ° V

1028 bp

506 bp m r n m m m m  m

Claudin 5

p-Actin

Claudin 5

P-Actin

Figure 4.1: Screening of different cell lines for Claudin-5 mRNA levels using PCR . 

The arrows indicate the two cell lines chosen to be used in this study, the human 

breast cancer cell line MDA-MB-231 and the human endothelial cell line HECV.
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4.3.2 Am plifying Claudin-5 expression sequence

In order to investigate the effects o f over-expression of Claudin-5 in HECV 

and in the breast cancer MDA-M B-231 cell line, a m am malian expression construct 

was generated. The full length of Claudin-5 was am plified using specially designed 

primers. Using placenta tissue cDNA as a tem plate and an optimal annealing 

tem perature of 55°C PCR was carried out and the products were run on an agarose 

gel. The product of the correct size (547 bp) corresponding to the Claudin-5 coding 

sequence was excised from the gel and extracted using the GelElute™  Gel extraction 

kit (Sigm a-A ldrich, Dorset, UK). In order to verify that the band was successfully 

extracted and truly contained the Claudin-5 sequence, it was subsequently run on a 2% 

agarose gel (Figure 4.2 B).

4.3.3 C loning o f expression sequence into plasm id vector

Once the Claudin-5 coding sequence was verified and prepared, it was cloned 

into a pEF6/ V5-His TOPO TA plasmid vector. Thus, the constructed plasmid was 

transform into Escherichia coli and the colonies were analysed to verify not only that 

they contained the Claudin-5 plasm id, but that the plasm ids had incorporated the 

fragm ent in the correct orientation.

To achieve this, each o f the selected colonies was tested in two separate PCR 

reactions: one using C L 5expR l/ CL5expF2 to determine if the entire sequence of 

Claudin-5 had been inserted resulting in a 547bp product (sequences of prim ers table 

2.2) and another independent PCR to the one above m entioned using T7F/

CL5expR l to determine w hether the insert was ligated in the correct orientation
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(Figure 4.3 A). As T7F is located about 90bp upstream  of the Claudin-5 insert, 

considering the insert is ligated in the correct orientation, the resulting product after 

using T7F coupled with C L 5expR lprim er should be approxim ately 637bp in length. 

Therefore, the colony displaying full sequence and correct orientation can be taken 

for am plifications as it contains the full C laudin-5 sequence in the correct orientation. 

The positive colonies were carefully picked and grown up in a large volume of LB 

medium and underwent plasmid extraction (Figure 4.3 B).

Plasm id extraction was carried out and, so as to determine plasm id integrity, 

the purified plasmid was run on an agarose gel as well as used as a template in a PCR 

using specific primers for Claudin-5 to ensure correct orientation (Figure 4.4). A 

posteriori, the plasmid was sent off to G eneservice Ltd. (Source Bioscience, 

Cam bridge, UK) for sequencing in order to ultim ately verify that the insert within the 

plasmid contained the correct Claudin-5 sequence. The results showed a positive 

match between the sequence cloned into plasm id vector, and the human Claudin-5 

precursor sequence (Figure 4.5).

154



A

Claudin-5

P lacen ta  B reast C o lo rectal

P -A ctin

1028bp

•Claudin-5

Figure 4.2: (A) PCR products visualised on an agarose gel from different human 

tissues of Claudin-5 coding sequence. The placenta tissue was selected as a template. 

The correct size of the product is 547bp as indicated with the arrow. (B) Agarose gel 

showing PCR product using the Claudin-5 coding sequence from previous gel above 

and used as a template with Claudin-5 specific primers R lvsF2.
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Figure 4.3: (A) Agarose gel showing PCR for Escherichai coli colony analysis to 

verify that they contained the Claudin-5 plasmid and in the correct orientation. (B) 

Agarose gel showing purified Claudin-5 plasmid.

156



1028bp—

506bp*

r<y

j y

t  t  t  t  t  t  t  t  t  t  ! t  t  t  ♦ t

nS  ̂ <$* < 5 c ^ < o v < o ^ ^  <ov ^  <A <0̂
^  V4*  < £  <5̂  < £ \4 *  < 5 > r ^  <5* v 4*o° <*> o°%> o°V A >  o0 ^  o° <Q> o°%%

• 4^ • 4^ • 4^ • 4̂ * ♦ 4̂ * • 4*"* • 4^
j f  «& ^  <s& J ?  J FJ P >

• 4«

Figure 4.4: Agarose gel showing PCR product using the extracted plasmid as a 

template with a full set of specific primers for Claudin-5.
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NM 001130861.11 Homo sapiens claudin 5 (CLDN5), transcript variant 1,
mRNA

GENE ID: 7122 CLDN5 | claudin 5 [Homo sapiens] (Over 10 PubM ed links) 

Score = 1164 bits (630), Expect = 0.0 

Identities = 639/643 (99%), Gaps = 1/643 (0% )

Strand=Plus/Plus

Oucry 7! GAGA I (X T G G G C C rG G T G G I G T G C C rG G T G G G (T G G G G G G G T (T G A T C ei'G G C G T G C G G G  130 

Sbjcl 1101 GAGA IX XTGGGCCTGGTG CTG TGCCTG G TG G G CTG G G G G G G TCTG A TCCTG G CG TG O G G G  1160 

U ucrv 131 ( '  rG CCCATGTGG CA GGTG A CCG CC'TrCCTG G A CC'A CA A CA TCG TG A CG G CG G A G A CCA CC 190 

Sbjcl 1161 M  XKX X 'A TG TG G C A G G TG A rC G C C TK  XTGC.AGCACAACA'IX G TG AGGGCGG AGArG AC C 1220 

Oucry 191 TG G A A G G G G CTG TG G A TG TCGTGOG TGGTGCAG AGCACCG GGCAC'ATGCAGTG CAA AGTG 250 

Sbjcl 1221 TGG AAGGG GCTGTG G A TG TCG TG CG TG G TG CA G A G CA CCG G G CA CA TG CA G TG CA A A G TG  1280 

Oucry 251 TA C G A C TC G G TG CTG G CTCTG A G O A CCG A G G TG CA G G CG G CG CG G G O G O rCA CCG TG A G C 310 

Sbjct 1281 T A C G A (T C G G T G (T G G O rC T G A G C A C C G A G G T G C A G G C G G C G C G G G C G C rC A C C G T G A G O  1340

Sbjcl 1341 GGG GTGOl GCI G G C G 'IT C G T rG C G C rc n  CGTGACGCTGGCGG GCX'.CGCA GTGCACCACC 1400 

O ucry 371 I G CG TG G CCCCG GGCCCGG OCAAGGO GOGTG TGGCOCTGACGGG AGGOG TGCTCTACCTG 430 

Sbjcl 1401 TGC OTGGCCCC'GGGCCCGGCCAAGGCGCGTGTGGC ('(T C A C G G G A G G C G T G C T C T A C C T G  1460 

Oucry 431 C TC TG C G G G C TG CTG iG CG CrCG TG O CA CTO TG C'TG O iTrCG CCA A CA TrG TCG TCCG CG A G  490 

Sbjcl 1461 IT rrG C 'G G G C rG C T G G C 'G C rC G  rGCX'AC'rC'rGCTrGG rrC G G C A A G A  lT G  rCG TGGGCGAG 1520 

O ucry 491 T r n  A C G A CCCG TO rG TG O CCG TG TCG CA G A A G TA O G A G CTG G G CG CA G CG CTG TA CA TC 550 

Sh|Cl 1521 I ' m  ACGACCGGTCTG I GCCC'G'rG CGGGAGAAG I A f'G A G C 'TG G G G G G A G CG CrG  l ACA 1'G 1580 

Oucry 551 G G C TG G G G G G CCA CCG CG CTG CTCA TG G TA G G CG G CTG O CTCTrG TG CTG CG G CG CCTG G  610

O ucry 61 I GiTCTGiCACCGGCGGTCCOGAOCTCAGOITC'CCCGTGAAGTAOl C AGCGCCG CG GCG GCCC 670 

Sbjcl 1641 O i l  T G C A C C G G C C G T C C C G A C C rC A G C nC C C C G T G A A G T A C rC A G C G C C G C G G C G G C C C  1700 

O ucry 671 AG G G G CA CCG G G G A G rA CG A CA A G A A G A A CI ACG TCA-AGGGC 712

Sbjcl 1701 AOG GCCACCGG CG A CTA CG A CA A G A A G A A CTA CG TCTG A G G G C 1743

Figure 4.5: Figure confirm ing that extracted plasm id shows a positive match for 

Claudin-5 when sequence com pared to the BLAST database.
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4.3.4 Generation o f Claudin-5 ribozym e transgenes

In order to silence the expression o f Claudin-5 in HECV and in the breast 

cancer MDA-M B-231 cell line, ribozym e transgenes of Claudin-5 were generated 

and cloned into a pEF6/ V5-His TO PO TA  plasm id vector and subsequently 

transfected into mammalian cells. This w ould allow  for com parison between the 

effects o f knocking down, and forced expression o f Claudin-5 in the above 

m entioned cell lines.

Based on the secondary structure o f Claudin-5, which was generated using 

Zuker’s RNA mFold program, an appropriate targeting site for the ribozyme was first 

designed. Ribozymes were generated using touchdow n PCR and followed by cloning 

into a pEF6/ V5-His TOPO TA plasm id vector (Figure 4.6 A). In order to verify the 

correct orientation of the ribozyme transgene, specific prim ers to the ribozyme 

transgene were paired with T7F respectively. Each colony was tested with two 

independent PCRs, once to confirm  the presence o f the transgene using specific 

prim ers for Claudin-5 ribozyme C L 5R ib lR / C L 5R ib lF  and CL5Rib2R/ CL5Rib2F 

resulting in a lOObp products, and another to confirm  orientation. For this purpose, 

T7F prim er was coupled with C L 5R ib lR  and CL5Rib2R respectively. If the 

transgene is correctly orientated, a PCR product should be seen at approxim ately 

200bp as the ribozyme sequence is around lOObp and T7F prom oter starts at 

approxim ately 90bp before insert (Figure 4.6 B).

Positive colonies were selected for further amplification and subsequent 

plasmid extraction. The plasm ids were then verified using DNA electrophoresis in 

order to verify successful plasm id extraction (Figure 4.7 A). In addition to this,
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conventional PCR was carried out using specific prim ers for Claudin-5 ribozyme 

C L 5R ib lR /C L 5R ib lF  and CL5Rib2R/ CL5Rib2F in order to demonstrate the 

presence of the ribozyme (Figure 4.7 B).
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Figure 4.6: (A) Ribozym es synthesis using touchdown PCR. (B) A garose gel 

showing PCR for Escherichai coli colony analysis to verify insertion and correct 

orientation of the transgene.
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7 1 2 6 b p

Figure 4.7: (A) Plasmids were extracted and verified with DNA electrophoresis. (B) 

Agarose gel showing PCR products using specific prim ers for Claudin-5 ribozyme. 

and the extracted plasm ids as a tem plate in order to demonstrate the presence of the 

ribozyme.
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4.3.5 Transfection of HECV and M DA-M B-231 cells and verification o f the 

stable transfectants

Following plasmid extraction, the mammalian cell lines HECV and MDA- 

MB-231 were transfected. Both cell lines were electroporated and thus transfected 

with the Claudin-5 over-expression plasmid construct. They were named HECVcl5exp 

and M DAcl5exp, as well as empty plasmid control, HECV pef6 and M DApef6 

respectively. The cells were transfected followed by selection in Blasticidin S for 10 

days; RNA and protein were extracted from these cells as well as from wild type cell 

lines, named HECVwtand M DAwt. Successful forced expression was confirmed using 

RT-PCR (Figure 4.8) and immunofluorescent staining. Both of these methods 

demonstrated considerably higher levels o f Claudin-5 expression in both HECVGI5exp 

and M DAcl5exp when compared to both H ECV wtand M DAwtand HECVpef6and 

M DApet6 respectively. A housekeeping gene such as (3-actin was used in the PCR as 

internal control by showing standardized levels o f cDNA within the samples.

In order to silence the expression o f Claudin-5, ribozyme transgenes were 

used in both cell lines. Similarly to Claudin-5 over-expression, HECV and MDA- 

MB-231 were transfected with two different Claudin-5 targeting ribozymes, together 

with an empty plasmid control. Using RT-PCR, expression of Claudin-5 mRNA was 

absent in the case of ribozyme 2 (HECV CL5nb2 and M DACL5nb2) compared to the 

controls (HECVwt/M DAwt and H ECVpef 6/M D A pef6). Ribozyme 1 was unsuccessful in 

knockdown of Claudin-5 expression (Figure 4.8). A similar reduction in Claudin-5 

protein level was seen in HECV CL̂ rib2 (Figure 4.10) and M DACL5rib2 (Figure 4.11) 

when carrying out double Immunofluorescence staining of HECV and M DA-M B-
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231 cells using anti-Claudin-5 (FITC) and Phalloidin (TRITC) in order to visualise 

possible changes in the distribution of the actin filaments. Differences in cell 

morphology was observed in HECV CL5nb2 and M D A CL5rib2 cells compared to the 

controls, where cell shape changed from flat, w ell-attached cells with a well defined 

cytoskeleton seen in HECVwt/M D A wt cells to round cells displaying a perinuclear 

staining of actin following Claudin-5 knockdown. In both HECV cl5exp and M DAcl5exp, 

imm unofluorescence staining revealed a reduction in actin filaments as well as 

elongated and starred cell morphology in M D A cl5exp.

A sim ilar reduction of Claudin-5 protein level was demonstrated in both 

HECV GL5nb2 and M DACL5nb2 cells, whereas an enhanced level of protein was seen in 

HECVcl5expand M DAcl5exp compared to the H E C V wt and M D A wt controls, when 

carrying out Western blotting analysis (Figure 4.9).
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1028bp

Claudin-5

P-Actin

Figure 4.8: Agarose gel verifying over-expression and knockdown of Claudin-5 in 

mammalian transfected cells using specific prim ers for Claudin-5. RT-PCR 

demonstrates successful over-expression and silencing of Claudin-5 in ribozyme 2 

for HECV and MDA-MB-231 cell lines compared to the controls.

Claudin-5

Actin

Claudin-5

Actin

Figure 4.9: Western blotting analysis demonstrating enhanced level of Claudin-5 

protein in HECVcl5exp and M DAcl5exp compared to the HECVwt and M DAwt controls. 

Decreased levels of Claudin-5 protein were observed in HECVCL5rib2 and M DACL5nb2 

when compared to the controls.

165



A Claudin-5 B Phalloidin C merged

HECV wt

HECV

CL5rib2
HECV

Figure 4.10: Double Immunofluorescence staining. (A) Confirming over-expression 

and knockdown in HECV cells o f  Claudin-5 levels using anti-Claudin-5 (FITC) Left 

hand column. HECVcl5exp demonstrated significantly stronger staining when 

compared to the control HECV"* (indicated by arrows) whereas, HECVGL5nb2 cells 

showed considerably less staining for Claudin-5 compared to the control HECV"* 

(indicated by arrows). (B) Arrows demonstrate actin filament staining pattern as 

detected by Phalloidin (TRITC). (C) Co-localization o f  Claudin-5 and actin filaments.
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Claudin-5 B Phalloidin C merged

wt
MDA

CL5exp
MDA

CL5rib2
MDA

Figure 4.11: Double Immunofluorescence staining. (A) Verification o f  Claudin-5 

over-expression and knockdown in M D A -M B -231 cell using anti-Claudin-5 (FITC) 

Left hand column. Claudin-5 expression was considerably stronger in the MDAcl5exp 

compared to the control MDA''* (indicated by arrows) whereas; Claudin-5 staining in 

M DACL5nb2 cells was much less compared to the control MDA"* (indicated by 

arrows). (B) Arrows demonstrate actin filament staining pattern as detected by 

Phalloidin (TRITC). (C) Co-localization o f  Claudin-5 and actin filaments.
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4.4 Discussion

The initial screening undertaken in this chapter revealed levels of expression 

of Claudin-5 in three of the eleven breast cancer cell lines examined, in endothelial 

cells and in the prostate cell line PN T-2C2. As the aim of this current study was to 

investigate the role of Claudin-5 in endothelial and breast cancer cells by altering its 

expression, the prostate cell line was discarded. Claudin-5 has been reported to be 

expressed in epithelial cell lines of the stom ach, liver, pancreas (Rahner et al., 2001), 

colon (Am asheh et al., 2005) as well as in the brain and lung (M orita et al.,

1999c).To our knowledge, no previous study has investigated the biological role of 

Claudin-5 in any of the two cell lines selected. How ever, an early study from Morita 

et al., revealed high levels of expression o f Claudin-5 in endothelial cells of the 

blood vessels (M orita et al., 1999c) and M artin et al., reported the regulation of 

Claudin-5 in M DA-M D-231 when cells were treated with H G F (M artin et al., 2004a).

The screening process provided data for the determ ination o f which cells to 

use for this study. In order to investigate the role o f Claudin-5 in endothelial cells 

and in breast cancer cells, we altered C laudin-5 expression in HECV and M DA-M B- 

231 cells as they were seen to express high levels of Claudin-5. W e constructed a 

m am malian expression vector containing the entire Claudin-5 coding region. 

Claudin-5 over-expression was verified at both the m RNA and protein level using 

PCR and im m unofluorescent staining. In addition, we used hamm erhead ribozymes 

to silence the expression of Claudin-5 after transcription in both cell lines. Claudin-5 

was successfully dow n-regulated by the use of ribozym e transgenes in vitro as 

proved at both the m RN A  and protein level. This would aid to confirm  that the effect
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of over-expressing Claudin-5 in HECV and M DA-M B-231 is due to its alteration 

and not to other external factors that could have had an effect on the natural 

behaviour of the cells.

These genetic manipulations will allow us to create established in vitro 

models providing us with information about the unknown biological role of Claudin- 

5 in endothelial and breast cancer cell lines.The impact of Claudin-5 manipulation on 

the function of cells were subsequently investigated using these cell models and are 

presented in the following chapters.
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Chapter 5

Effect of Claudin-5 expression on the 

aggressive nature of the MDA-MB-231 

human breast cancer cell line
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5.1 Introduction

The link between alterations in Tight Junctions (TJs) and epithelial tumour 

developm ent has been confirmed in early studies (Swift et al., 1983). The epithelium 

constitutes one of the primary physical barriers that protect the organism against 

infectious agents in the environment. M ost cancers, including breast cancer, originate 

from epithelial tissues. Cancer cells are characterised by abnormal and uncontrolled 

growth as well as presenting disorders in cell comm unication. Additional underlying 

changes include changes in cell-cell and cell-substrate adhesion, a fundam ental step 

allowing cancer cells to spread and ultim ately m etastasise. Consequently, the polarity 

of the cells and the paracellular transport is altered. Claudins are proteins in the TJ 

structure and the mixture and interaction of these proteins together with differences 

in expression patterns of the 24 members that comprise the family, place them in the 

front line of cancer research. The primary role of Claudins is in the regulation of 

paracellular selectivity through pores form ed by the proteins them selves (Tsukita and 

Furuse, 2000). However, new roles for Claudins as proteins involved in regulating 

cell phenotype and growth control are starting to emerge (Findley and Koval, 2009). 

This new data opens the door to a new concept of what role Claudins might have, 

changing the perception that they are more than simple sealing proteins.

The present study used a well characterized breast cancer cell line, MDA- 

M B-231, and following forced expression and knockdown of Claudin-5, cellular 

biological functions were investigated in response to Hepatocyte Growth Factor 

(HGF) in order to establish the functional role of Claudin-5 and a possible link with 

motility-related proteins in this particular breast cancer cell line.
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5.2 Materials and methods

5.2.1 Cell line

The breast cancer cell line M DA-M B-231 was used in this study to 

investigate the effect of Claudin-5; the sublines created were M DAcl5exp (forced 

expression) and M DACL5nb2 (knockdown). Experim ents also included M DAwt and 

M DApef6 as controls. Cells were continuously maintained in DM EM -F12 media as 

described in section 2 .2 .

5.2.2 In vitro tumour cell growth assay

The cells were seeded into four 96 well plates and incubated for a broad 

range of hours as described in section 2.6.1. Absorbance was m easured in order to 

determine cell number.

5.2.3 In vitro tumour cell M atrigel adhesion assay

The cells were seeded into a 96 well plate containing a layer of Matrigel as 

described in section 2.6.3. The number of cells that had adhered to the artificial 

basem ent membrane was counted.

5.2.4 In vitro co-culture M atrigel tum our cell invasion assay

The cells were seeded into inserts previously coated with M atrigel as 

described in section 2.6.2. The num ber of cells which had migrated through the layer 

of endothelial cells was counted.

172



5.2.5 In vitro tumour cell motility assay using Cytodex-2 beads and the effect of 

H G F

The cells were incubated with Cytodex-2 beads as described in section 2.6.4. 

The number of cells that were carried by the beads and moved from the beads to the 

base of the well was counted. The same protocol was followed when cells were 

treated with HGF.

5.2.6 In vitro tumour cell migration (wound healing) assay

The migration of the cells across a wounded surface of a confluent monolayer 

form ed by the same cell line was examined as described in section 2.6.5.

5.2.7 Transepithelial resistance and the effect o f HGF

The cells were seeded into transparent inserts and the resistance across the 

layer was measured as described in section 2.7.1. The same protocol was followed 

when cells were treated with HGF.

5.2.8 ECIS

The cells were seeded into electrical arrays allowing the cells to adhere to the 

gold electrodes within the array as described in section 2.7.2 causing a change in 

resistance followed by electrical wounding of the formed monolayer. The same 

protocol was followed when cells were treated with HGF and motility-related 

inhibitors.
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5.2.9 Analysis o f protein levels o f N-W ASP and RO CK  1 using western blotting. 

Claudin-5 co-immunoprecipitation with N-W ASP and ROCK 1

W estern Blotting was used to demonstrate levels of expression of N-W ASP 

and ROCK 1 as described in section 2.5. Claudin-5 co-im munoprecipitation was 

carried out using cell lysate of M DAwt and M DAcl5exp and probed with antibodies 

against N-W ASP and ROCK1 as described in section 2.5.1.6. N-W ASP and ROCK1 

co-immunoprecipitation was carried out as described above and probed with 

antibodies against Claudin-5.

5.2.10 In vivo tumour growth and developm ent

The impact of Claudin-5 on tumour growth was assessed in an in vivo  system 

as described in section 2 .6 .8 ., where a broad num ber of factors may influence the 

effects of over-expression of Claudin-5 in this particular developm ent model.

5.3 Results

5.3.1 Effect o f altering Claudin-5 expression on M DA-M B-231 breast cancer cell 

growth

The MDA-MB-231 sublines M DAcl5exp and M DACL5rib2 alongside M DAw1 

and M DApef6 were examined following 1, 3 and 4 day incubation periods using an in 

vitro cell growth assay. No significant difference in the in vitro growth rate of the 

M DAwt and M DApef6 cells compared to M DAcl5exp or M DACL5rib2 were found 

following the three different incubation periods (Figure 5.1). However, the growth
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rate of M DAcl5exp at day 1, 3 and 4 was found to be increased when compared to the 

controls M DAwt and M DApef6; day 1 M D A wt (24.95% ± 10.58), M DApef6 

(27.49% ± 12.76) and M DAcl5exp (35.30% ±12.7), ( p=0.20 and p=0.35 respectively); 

day 3 M DAwt (370.45%±44.54), M D A pef6 (378.10% ± 110.41) and M DAcl5exp 

(411.61 % ±64.10), ( p=0.27 and p=0.57 respectively); day 4 M DAwt 

(664.02% ±94.57), M DApef6 (645.21%± 144.60) and M DAcl5exp (685.04% ±123.85), 

(p=0.87 and p=0.65 respectively). The opposite effect was observed in the incubation 

period day 3 and day 4 of M DACL5nb2 where the cell growth was decreased when 

compared to the controls; day 3 M D A wt (370.45% ±44.54), M DApef6 

(378 .10% ±110.41) and M DACL5rib2 (340.40% ±83.52), (p=0.49 and p=0.55 

respectively); day 4 M DAwt(664.02% ±94.57), M D A pef6 (645 .21%± 144.60) and 

M DA CL5rib2 (594.99%±121.60), (p -0 .34  and p=0.56 respectively).

5.3.2 Effect o f Claudin-5 on M DA -M B-231 breast cancer cell adhesion

The ability of M DAcl5exp and M D A CL5nb2 cells to adhere to m atrix was 

assessed in an in vitro Matrigel adhesion assay (Figure 5.2). There was a significant 

difference between the adherence of M D A CL5nb2 and M DAwt and M DA pef6 with 

M DACI 5rib2 cells being less adherent to m atrix (M D A wt 87.59±8.94, M DA pef6 

80.03±1 1.66  and M DACL5rib2 38.36±5.35, (p<0.001 for both controls). In the case o f 

M DAc|Sexp, the opposite effect was seen, however differences did not reach statistical 

significance when compared to the controls (M D A wt(87.59±8.94), M DA pef6 

(80 .03±11.66) and M DAcl5exp (96.56±21.85), (p=0.079 and p=0.062 respectively).
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5.3.3 Effect o f Claudin-5 on M DA -M B-231 breast cancer cell invasiveness

The invasive potential of the transfected cells M DAcl5exp and M DACL5nb2 was 

examined using an in vitro M atrigel invasion assay (Figure 5.3). Both cell lines were 

found to have no significant differences when com pared to the controls M DAwtand 

M DApet6. However, a non significant m arginal reduction in the invasive capacity of 

M DACL5nh2 was seen (M DAwt (17± 1.58), M D A pef6(16.4±2.30) and M D A CL5rib2 (15.8 

±1.48, (p=0.25 and p=0.63 respectively).

5.3.4 Effect o f Claudin-5 on M DA-M B-231 breast cancer cell m otility and the 

effect o f H GF

Transfected and control cells, either untreated or treated with HGF, were 

evaluated for their motility using a Cytodex-2 bead m otility assay to explore the 

possibility of Claudin-5 involvement in motility. M D A cl5exp cells did not show 

significant differences when compared to the controls (M D A wt (4.28±1.24), M DApef6 

(3.8±1.25) and M DAcl5exp (3.83±1.37), (p=0.238 and p=0.930 respectively). In 

contrast, M DACL5nb2 cells dem onstrated a significant reduction in cell motility 

compared to the controls (M D Awt (4.28±1.24), M DApef6(3.8±1.25) and M DACL5rib2 

(3.08±0.84), (p<0.001 and p=0.027 respectively). (Figure 5.4 A)

The cells were additionally evaluated after treatm ent with HGF. This 

motogen increased cell m otility in M D A cl5exp and control cells, M D A wt and M DApef6, 

when compared to untreated cells (M D A wt+ H G F(6.44± l .78), M DApef6+HGF 

(5.27±0.98) and M DAcl5exp+H G F (6±1.08), p<0.001 for both controls). In the case of 

M DACL5nb2, although a slight increase in the num ber of m otile cells was observed,
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the data was not found to be significant (M D A CL5nb2+HGF (3.65±1.84), p=0.18) 

(Figure 5.4 B).

5.3.5 Effect o f Claudin-5 on M DA -M B-231 breast cancer cell m igration

The effect of Claudin-5 over-expression and knockdown on cell m igration 

was assessed using a migration (wound healing) assay. M DAcl5exp showed an 

increased cellular migration compared to the controls 60 minutes after wounding 

(M D A wt (10.84±8.5), M DApef6(18.08± 16.62) and M DAcl5exp (39.64±24.81). A 

decreased cell migration was seen in M D A CL5nb2 after 60 m inutes when compared to 

controls (M D A wt(10.84±8.5), M DApef6 (18.08±16.62) and M D A cl5rib2 (2.66±2.82). 

Although the differences in motility are not statistically significant when comparing 

to the controls, the trend appears to be evident (Figure 5.5).

5.3.6 Effect o f Claudin-5 on M DA -M B-231 breast cancer cell Transepithelial 

resistance (TER) and their response to H G F

Transepithelial resistance was m easured to assess the effect of over­

expressing or knocking-down Claudin-5 on TJ functionality in M DA-M B-231 breast 

cancer cells. M DAGI5exp showed increased TER over a period of 4 hours in 

comparison with the control M D A wt (change in TER after 30 m inutes M DAwt (- 

2 1 1±1) vs. M DACi5exp (-204±2); 60 m inutes M D A wt(-233.66±0.57) vs. M D A c,5exp (- 

215.66±2.3); 2 hours M DAwt (-244.66±2.88) vs. M DAcl5exp (-244.66.33±0.57); 4 

hours M DAwt (-279.66±1.52) vs. M D A cl5exp (-267±1.73), p<0.01). Changes in TER 

were more evident in M D A CL5nb2 when compare to the control (change in TER after 

30 minutes M DAwt (-211±1) vs. M D A CL5rib2 (-141±16.77); 60 m inutes M DAwt (-
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244.66±2.88) vs. M DACL5rib2 (-156.6±1.52); 2 hours M DAwt(-279.66±1.52) vs. 

MDAcLSrib2 (_168 66db2); 4 hours M DAwt (-279.66±1.52) vs. M DACL5rib2 (- 

184.66±5.85), p<0.001) (Figure 5.6).

Treatment of cells with HG F (50ng/m l) resulted in a significant reduction of 

the transepithelial resistance in transfected and in control cells when compare to 

untreated cells over a period of 4 hours (change in TER after 30 m inutes 

M DAW|+ H G F(-270±1.5), M DAcl5exp+H G F (-243±1.6), M DACL5rib2+HGF (-169±3.2); 

60 minutes M DAwt+H G F(-286±l .1), M D A cl5exp+H G F (-263.67±1.7), 

M DACL5rib2+HGF (-182.33±2.64); 2 hours M D A wt+H G F(-299±2.08), 

M DAci5exP+HGF ( .2 7 9 * 2 .3 ), M D A CL̂ rib2+H G F (-202±2.08); 4 hours M DAwt+HGF (- 

340±1.1), M DAcl5exp+HGF (-299.67±1.15), M D A CL5rib2+HGF (-238.67±1), p<0.05) 

(Figure 5.7).
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Figure 5.1: Effect o f Claudin-5 on in vitro  cell growth o f  MDA-MB-231 cells using 

an in vitro cell growth assay. The cell growth o f  M DAclSexp and M DACL5nb2 did not 

show any significant difference when compared to MDA"* and M DA1**6 (mean ±SD, 

n=3).
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MDA WT MDA pEF6 MDA CL5exp MDA CL5rib2

Figure 5.2: Effect o f  Claudin-5 on in vitro cell adhesion o f  MDA-MB-231 cells using 

the in vitro Matrigel adhesion assay. The data presented is representative is the mean 

o f  at least 3 independent repeats and the error bars represent the standard error o f the 

mean. The adhesive capacity o f  M DACL5r,b2 was significantly decreased in 

comparison with the controls M D A ^ and M DA1*5*6 (** represents p<0.001 compared 

to both controls).
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MDA WT MDA pEF6 MDA CL5exp MDA CL5rib2

Figure 5.3: Effect o f  Claudin-5 on cell invasiveness o f  MDA-MB-231 cells using the 

in vitro Matrigel invasion assay. The data presented is representative is the mean o f 

at least 3 independent repeats and the error bars represent the standard error o f  the 

mean. The invasive capacity o f  M DAcl5exp and M DACL5nb2 did not show any 

significant difference when compared to MDA''* and MDA**®3.
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Figure 5.4: (A) Effect o f  Claudin-5 on in vitro cell m otility o f  MDA-MB-231 cells. 

The motility o f  MDACL5nb2 was significantly reduced in comparison to the controls 

(p<0.001 and p=0.027 respectively). (B) Effect on m otility after treatm ent with HGF. 

Transfected and control cells showed an increase in motility, however only the 

controls and MDAcl5exp results were significant (p<0.001). The data presented is 

representative is the mean o f  at least 3 independent repeats and the error bars 

represent the standard error o f  the mean.
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Figure 5.5: Effect o f Claudin-5 on in vitro cell migration o f  MDA-MB-231 cells. 

M DAcl5exp cells showed an increase in migration when compared to the controls 60 

minutes after wounding. The m igration o f  M DACL5nb2 was reduced in comparison to 

the controls at 60 minutes. However, no significant differences were found (mean 

±SD, n=3).
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Figure 5.6: (A) Effect o f  Claudin-5 on transepithelial resistance o f  MDA-MB-231 

cells. Significant changes were seen in M DAc,5exp and M DACL5nb2 over a period o f  4 

hours when compared to the control (p<0.01 and p<0.001 respectively). (B) A 

polynomial model was used to visualize the trend o f  the presented data. R2 indicates 

that the regression line clearly fits the data (mean ±SD, n=3).
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Figure 5.7: Effect o f  Claudin-5 on transepithelial resistance o f  MDA-MB-231 cells 

after treatment with HGF. Significant changes were seen on transfected and control 

cells over a period o f 4 hours when compared to the untreated cells (p<0.05) (mean 

±SD, n=3).
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5.3.7 Effect of Claudin-5 on M DA-M B-231 cell attachm ent to, and migration 

across an electrode

Electric Cell Impedance Sensing (ECIS) was used to monitor differences in 

attachment and migration following w ounding between transfected and control cells. 

This was done by culturing cells on small gold electrodes, applying AC current and 

m onitoring resistance changes caused by the adhesion or migration of cells onto the 

electrode. The cells were analysed for their adhesive capacity and migration after 

wounding to a gold electrode in real-time m easurem ents using a Two-W ay ANOVA 

test. This test was used as it enables the com parison of two groups, transfected cells 

vs. control, on two variables, time vs. treatm ent with inhibitors or HGF.

M DAcl5exp showed a significantly enhanced adhesive capacity compared to 

the control M DAwt (p=0.041). In the case o f M D A CL5nb2, the opposite effect was seen, 

as these cells displayed reduced adhesive capacity (p=0.002) (Figure 5.8 A).

W hile recovering after wounding (5V AC for 30 seconds), the transfected 

cells showed different patterns of m igration when compared to the control. The 

M DAcl5exp cells were significantly m ore m otile (p<0.001), whereas the opposite trend 

was seen in M DACL5nb2, where a significant reduction in migration was seen when 

compared to M DAWT p<0.001) (Figure 5.8 B).
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Figure 5.8: (A) Effect o f  Claudin-5 on the adhesion o f  MDA-MB-231 cells using 

ECIS. Significant differences were seen in transfected cells when compared to the 

control. MDAc,5exp showed a significantly enhanced adhesive capacity (p=0.041), 

however in MDACL5nb2 cells adhesion was significantly decreased (p=0.002). (B) 

Significant differences were seen after wounding, M DAcl5exp displayed increased 

migration, whereas the opposite effect was seen in M DACL5nb2 (p<0.001, n=3).
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5.3.8 Effect o f Claudin-5 on M DA-M B-231 cell m igration over an electrode and 

the effect o f pro- and anti-m otility agents

The Electric Cell Impedance Sensing (ECIS) m ethod was used to investigate 

the impact of HGF, the N-W ASP inhibitor (W iskostatin), the Arp2/3 inhibitor (CK- 

0944636) and the ROCK inhibitor (Y-27632) on the m otility of the transfected 

M DA-M B-231 cells. The cells were analysed for m igration rate across a gold 

electrode following wounding, in real-tim e m easurem ents using a Two-W ay 

ANOVA test.

Following electrical wounding (5V AC for 30 seconds) and treatm ent with 

HGF and motility inhibitors, diverse responses in cell m igration were observed. The 

transfected and control cells treated with H G F (50ng/m l), showed different rates of 

migration compared to the untreated cells. The m igration of the control, 

MDAwt+HGF, and transfected cells, M D A c,5exp+HG F and M D A CL5r,b2+HGF, was 

significantly enhanced after 5 hours o f treatm ent (p<0.001, p<0.001 and p=0.003 

respectively) (Figure 5.9).

W hen cells were treated with the N -W A SP inhibitor (50pM ), the migration 

rate of M DAwt+N-W ASP, M DAcl5exp+ N -W ASP and M D A CL5rib2+ N-W ASP was 

markedly reduced after 5 hours o f treatm ent when com pared to untreated cells 

(p<0.001, p=0.006 and p=0.018 respectively) (Figure 5.10).

Treatment of cells with the Arp2/3 inhibitor (lOnM ) adversely affected the 

motility of the M DAwt+Arp2/3 and the transfected cells, M D A cl5exp+ Arp2/3, when 

compared to untreated cells after w ounding (p<0.001 respectively). Surprisingly,
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MDACL3nb2+ Arp2/3 did not show a significant reduction in migration after treatment 

(p=0.06) (Figure 5.11).

The ROCK inhibitor (50nM ) was capable o f altering the m otility of 

M DAw,+ROCK when compared to the untreated cells (pcO.OOl). However, no 

significant differences were found in the transfected cells, M D A cl5exp+ ROCK 

M DAcl5exp+ ROCK, when compared to the untreated cells (p=0.403 and p=0.072 

respectively) (Figure 5.12).

All the results are summarized in Table 5.1.

5.3.9 Effect o f Claudin-5 on protein levels o f  N-W A SP and ROCK 1 and their 

interaction

M DAwt, M DAcl5exp and M DA CL5nb2 W estern blotting dem onstrated very low 

levels of the N-W ASP at protein level. Protein levels of RO CK  1 revealed similar 

high levels in the transfected and control cells (Figure 5.13 A).

Imm unoprecipitation of Claudin-5 followed by im m unoblotting with N- 

W ASP and ROCK 1 showed a protein-protein interaction betw een Claudin-5 and 

these motility-related proteins in M D A wt and M D A cl5exp (Figure 5.13 B). In keeping 

with this, immunoprecipitation with either N -W ASP (Figure 5.13 C) or ROCK1 

(Figure 5.13 D) followed by im m unoblotting with Claudin-5 produced consistent 

results.
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5.3.10 Effect o f Claudin-5 on M DA-M B-231 breast cancer cell tum our growth in

vivo

The growth and capability of developing tum ours of M DAG15exp in an in vivo 

model was examined and compared to the control M D A pef6 cells after subcutaneous 

injection into the athymic nude m ouse model. Over the period o f 33 days, no 

significant difference was observed betw een the two groups, the control (injected 

with M DApef6) and those injected with M D A cl5exp (p=0.291) (Figure 5.14).
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Figure 5.9: Effect o f Claudin-5 on MDA-MB-231 cell migration following treatment 

with HGF using ECIS. Migration was significantly increased in MDA^+HGF, 

MDAcl5exp+HGF and MDACL5nb2+HGF when compared to untreated cells (p<0.001, 

p<0.001 and p=0.003 respectively, n=3).
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Figure 5.10: Effect ofClaudin-5 on MDA-MB-231 cell migration following 

treatment with N-WASP inhibitor using ECIS. M igration was significantly decreased 

in MDA^-H N-WASP inhibitor, MDAcl5exp+  N-W ASP inhibitor and M DACL5rib2+ N- 

WASP inhibitor when compared to untreated cells (p<0.001, p=0.006 and p=0.018 

respectively, n=3).
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Figure 5.11: Effect o f  Claudin-5 on MDA-MB-231 cell m igration following 

treatment with Arp2/3 inhibitor using ECIS. M igration was significantly decreased in 

MDAwt+Arp2/3 inhibitor and M DAc,5exp+Arp2/3 inhibitor (p<0.001 respectively). 

MDACL5nb2+Arp2/3 inhibitor did not show significant differences when compared to 

untreated cells (p=0.06, n=3).

193



I -

11»

1 04

Time (hrs)

+ROCK

CL5rib2
MDA

T im e (h rs )

Figure 5.12: Effect o f  Claudin-5 on M DA-M B-231 cell m igration following 

treatment with ROCK inhibitor using ECIS. M igration was significantly decreased in 

M D A ^  ROCK inhibitor (p<0.001). M DAc,5exp+ ROCK inhibitor and M DACL5rib2+ 

ROCK inhibitor did not show significant differences when com pared to untreated 

cells (p=0.403 and p=0.072 respectively, n=3).
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Migration
rate

HGF N-W ASP
inhibitor

Arp2/3
inhibitor ROCK inhibitor

vs. untreated vs. untreated vs. untreated vs. untreated

M D A '"
Increased

PO.OOl

Reduced

PO.OOl

Reduced

PO.OOl

Reduced

PO.OOl

MDACL5“ P
Increased

PO.OOl

Reduced

P=0.006

Reduced

PO.OOl

No effect 

P=0.403

MDACL5rib2
Increased

P=0.003

Reduced

P=0.018

N o effect 

P=0.06

No effect 

P=0.072

Table 5.1: Data summarising ECIS results o f  transfected and control MDA-MB-231 

cells after treatments.
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Figure 5.13: (A) Expression of N-W ASP and RO CK 1 in transfected and control 

cells. (B) Co-immunoprecipitation of Claudin-5 with N-W ASP and RO CK  1. (C) 

Co-immunoprecipitation of N-W ASP with Claudin-5. (D) Co-im m unoprecipitation 

of ROCK 1 with Claudin-5.
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Figure 5.14: Effect o f  Claudin-5 on in vivo  tum our developm ent. There w ere no 

significant differences between M D A cl5expand M D A ^  using Tw o-W ay A N O V A  

test (p=0.29), indicating that C laudin-5 has no direct effect on tum our developm ent.
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5.4 Discussion

The disruption o f the T ight Junction  (T J) s tructure is a com m on feature of 

m any hum an cancer cells. D ow nregulation o f d iffe ren t TJ pro teins has been linked 

w ith stag ing  and m etastatic po tential in various cancers includ ing  breast (H oover et 

al., 1998). In addition, in vivo  and in vitro  data has revealed  that over-expression  of 

TJ pro teins in cancer cells, such as C laud in -4 , leads to a decrease in invasiveness and 

m etastases in anim al m odels (M ichl e t al., 2003). S im ilar conclusions w ere found 

w hen cells breast cancer cells overexp ressing  C laud in -16 , show ed a decrease in 

invasiveness and m otility (M artin et al., 2008a). T hese stud ies have provided  

p rom ising  evidence that TJ proteins m ight serve as usefu l m olecu lar targets in the 

p rognosis o f cancer. In this study, w e used ce lls transfected  w ith C laudin-5  

expression  sequence and ribozym e transgenes to assess the im pact o f reducing  the 

expression  o f our protein of interest as w ell as enhancing  it in order to evaluate 

changes in the aggressive nature o f M D A -M B -231  cells. T he o ther purpose o f the 

study w as to establish a possible link  betw een C laudin-5  and m otility  o f  the cells. 

T his w as done as the initial results suggested  that C laudin-5  m ight p lay  a role in cell 

m otility , not ju s t functioning as a sim ple sea ling  pro tein  in the TJ structure.

In itially , we questioned the role o f C laudin-5  w hen transepithelia l electric 

resistance (TER ) was m easured. T ran sep ith e lia l e lec tric  resistance (TER ) is the 

easiest and m ost sensitive m easure  o f  barrier strength . M D A CL5nb2 show ed the 

h ighest resistance, w hereas the resistance  o f M D A cl5exp and the control w ere low er 

and follow ed the sam e trend, a lthough M D A cl5exp w as sign ifican tly  h igher than 

control cells. These pre lim inary  resu lts revealed that C laudin-5  w as not p lay ing  a real
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role in keeping the cell barrier tight. In fact, the com pensation of the lack of Claudin- 

5 could be balanced with one of the other 23 m em bers of the Claudin family which 

m ight alter the barrier strength, therefore explaining why the knockdown cells 

displayed higher transepithelial resistance. The sam e explanation could be applied to 

forced-expression and the very sim ilar trends that it shared with the control cells.

The involvement of Claudin-5 in cell growth was tested, although there 

appeared not to be an involvement of Claudin-5 in cell growth. Cell adhesion to 

extracellular matrix is fundamental in the organization of the epithelium  as a 

continuous layer but also in the regulation of m any cellular processes such as 

m otility (Chlenski et al., 1999). M D A CL5nb2 dem onstrated a decrease in adhesion 

whereas M D A cl5exp appeared to increase adhesion when compared to the control cells, 

although these results did not reach significance. Integrins are described as being the 

“eyes’'’ o f  cancer cells in identifying their surrounding extracellular matrix (ECM ), 

and they participate in the m aintenance o f positional stability in normal epithelia; in 

breast cancer however, different studies have linked integrins with metastasis 

(Felding-H aberm ann et al., 2001). The question therefore arises as to whether the 

absence o f Claudin-5 in a cell alters levels o f integrins and other adhesion-related 

proteins, thus changing the adhesion o f the cancer cell when compared to the control. 

The results obtained when the ability to adhere to a gold electrode trough ECIS 

technology was measured in real tim e agreed with the in vitro function assay. Once 

again, Claudin-5 knockdown appears to have the lowest adherence (as in the 

M atrigel experiments) to .the gold electrode. The invasiveness of the cells through the 

ECM  did not show any relevant differences between cells over-expressing or
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knocking-down levels of Claudin-5. This result agrees with the data obtained in the 

in vivo experiments, where the M DAcl5exp cells were analysed for their ability to 

grow and develop in nude mice. Over a period of one month, no differences were 

found between the two groups of anim als, the control (injected with M DApef6) and 

those injected with M DAcl5exp.

Taking these results together, we began to speculate whether Claudin-5 might 

be involved in cell motility. We perform ed a further set of experim ents to assess the 

level of involvement of Claudin-5 in breast cancer motility. As breast cancer cells 

acquire a motile phenotype, this is translated into changes in highly dynamic 

structures like actin filaments and cytoplasm ic m icrotubular complex (Insall and 

Jones, 2006). W e decided to investigate the effects on m otility of over-expression or 

knockdown of Claudin-5. To achieve this, an in vitro m otility assay and a traditional 

wound healing assay was carried out, both revealing that M D A CL5nb2 showed a 

reduction in motility. Moreover, ECIS was used in order to m easure in real time how 

fast cells migrate after wounding. Sim ilar results were obtained; M D A CL5nb2 was 

indeed slower when compared to the control. However, M D A cl5exp cells were the 

fastest in each of the assays m entioned above and their capability to adhere to the 

electrode was increased, agreeing with the prelim inary results obtained when the in 

vitro  adhesion assay was performed.

Until now, we have shown that knockdown of Claudin-5 expression in a 

breast cancer cell line resulted in a less adhesive and less motile cell phenotype when 

compared to controls. The opposite was seen when Claudin-5 expression was forced, 

resulting in a more adhesive and more motile phenotype but with no differences in
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invasiveness in vivo and in vitro. W e m ight tentatively conclude from this that 

Claudin-5 might be a motility regulator, or at least have a role in the motility of these 

human breast cancer cells.

The M etastasis and Angiogenesis Research Group has carried out a 

significant body of work on the role and effect of HG F in epithelial cancer cells.

HGF is a powerful motogen able to prom ote proliferation, invasion, and migration of 

epithelial cells by binding to its tyrosine kinase receptor c-m et (Jiang et a l ,  2005) as 

well as m odulating expression and function o f TJ m olecules in human breast cancer 

cell lines and decreasing trans-epithelial resistance (M artin et al., 2004a). Cells 

displaying enhanced or suppressed expression o f Claudin-5 respond in keeping with 

the well established effect after treatm ent with HGF, showing reduced epithelial 

resistance and increased motility. ECIS experim ents corroborated these results.

To address the possibility that Claudin-5 m ight play a role in regulating cell 

m otility, different m otility-regulators were studied in order to search for any possible 

links between Claudin-5 and a range of m otility-related proteins. Cell motility was 

analysed using ECIS after being treated with different m otility inhibitors. In 

particular the N-W ASP inhibitor (W iskostatin), the Arp2/3 inhibitor (CK-0944636) 

and the ROCK inhibitor (Y-27632) responded in an unexpected way in our 

transfected cells. Neuronal W iskott - A ldrich syndrom e protein, N-W ASP, is 

ubiquitously expressed in m am m alian tissues and it is responsible for connecting 

several signalling pathways to the initiation o f actin assem bly via the Arp2/3 

complex. N-W ASP has been reported to exist in a self-folded auto-inhibited 

conformation. W hen activated, conform ational changes occur facilitating the
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interaction with the Arp2/3 complex and subsequent nucleation. In other words, the 

Arp2/3 complex acts as a pattern for the elongation of the actin microfilaments 

(Dovas and Cox, 2010). The Rho-associated serine-threonine protein kinase, ROCK, 

is ubiquitously expressed in m am malian tissues and it is directly linked, after 

activation, with numerous processes related to actin-m yosin, such as actin 

cytoskeletal reorganisation and the form ation of focal adhesions. It also has an 

im portant role in cell migration by prom oting the contraction of the cell body and is 

required for tail retraction in cancer cells (Lane et al., 2008). The transfected and 

control cells were treated with the N -W A SP inhibitor, responsible for stabilising the 

auto-inhibited conformation of the N -W A SP protein (Guerriero and W eisz, 2007), 

and their rate of speed was measured using ECIS after wounding. Results showed an 

inhibition in their motility, however, this inhibition was m arginally reduced in 

knockdown cells. The Arp2/3 inhibitor, responsible for blocking the active 

conform ation of the complex (Nolen et al., 2009), was able to inhibit cell motility in 

the control cells and in cells over-expressing Claudin-5. However, to our surprise, 

Arp2/3 was no longer able to inhibit m otility in the knockdown cells. The effect of 

the RO CK inhibitor (Y-27632) was also studied in our cells. The inhibitor specificity 

is, however, questioned as in vitro studies revealed that it not only exerts an 

inhibitory effect on ROCK proteins but on other kinases also (Grise et al., 2009). 

Nevertheless, the control cells responded to its inhibition showing a lower rate of 

m igration; conversely both transfected cells did not respond to its inhibitory effects. 

Thus far we have shown that the absence o f Claudin-5 clearly caused an alteration in 

cell motility as the Arp2/3 and RO CK  inhibitors were no longer inhibiting cell 

motility in M DACL5nb2. Additionally, in the case of M DACL5nb2 cells treated with N-
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W ASP inhibitor, we observed some inhibition, but at a considerably reduced manner 

compared to N-W ASP inhibitor in control and M D A G15exp cells.

The next question to be addressed follow ing the ECIS results, was to 

investigate any possible protein-protein interaction between Claudin-5 and N-W ASP 

or Claudin-5 and ROCK 1 as well as whether any direct effect was occurring at the 

protein level of these molecules in the control and transfected cells. Co- 

imm unoprecipitation with Claudin-5, followed by im m unoblotting with either N- 

W ASP or ROCK 1 demonstrated an interaction betw een Claduin-5 and N-W ASP as 

well as with ROCK 1. To confirm these interactions, a co-im m unoprecipitation with 

either N-W ASP or ROCK 1 followed by im m unoblotting with Claudin-5 was carried 

out confirm ing the interactions between these protein pairs. Previously, studies have 

already linked TJ with N-W ASP and the A rp2/3 complex. The intestinal epithelial 

cells, T84, when treated with N -W ASP inhibitor showed an inhibition in the 

form ation o f TJ (Ivanov et al., 2005). A  m ore recent study using Sertoli cells linked 

the inhibition of N-W ASP, and therefore the inhibition of Arp2/3, in the nucleation 

process with barrier disruption in the blood-testis barrier causing a failure of 

sperm atic transit (Lie et al., 2010). N -W A SP protein in M DA-M B-231 cells has been 

reported to be expressed at a very low level (M artin et al., 2008b). The results 

obtained in the current study agree. The levels of RO CK 1 did not show any real 

differences among transfected and control cells, this possibly could be due to the 

high level of this protein found in M DA-M B-231 wild type cells as already reported 

(Lane et al., 2008).
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This study suggests that Claudin-5 m ight be involved in cancer cell motility; 

in particular, it appears to be involved in the signal pathway of N-W ASP and ROCK. 

However, understanding cell m otility requires detailed knowledge not only of the 

signalling networks, but also about their dynam ics. Unfortunately, some of the 

signalling pathways are only just starting to be analysed and we clearly still have a 

great deal to learn about cell m otility, particular in cancer cells. This possible new 

role of Claudin-5 in breast cancer cell m otility opens the door to future studies in 

which Claudin-5 and therefore TJ m ight switch from  static structures to very 

dynam ic ones, and offers an exciting glim pse into how m odulation of transmembrane 

TJ proteins could be targeted in cancer m etastasis.
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Chapter 6

Effect of Claudin-5 expression on HECV 

human endothelial cells

205



6.1 Introduction

Epithelial and endothelial cell m onolayers form barriers that seal the 

intercellular space between neighbouring cells and transform  the layer of individual 

cells into an effective permeability barrier. T ight Junctions (TJs) are highly regulated 

areas o f adhesion between epithelial and endothelial cells. A  key step in metastasis is 

the interaction and penetration of the vascular endothelium  by dissociated cancer 

cells. Tum our cells have to invade the surrounding tissues, reach the endothelial 

barrier and penetrate the barrier to escape and enter the bloodstream. Therefore, TJ, 

as the first barrier that cancer cells m ust overcom e in order to m etastasise, have 

emerged as an essential structure in the prevention of cancer metastasis.

C laudins are members of the netw ork of proteins that constitute the TJ 

structure. The primary role of Claudins is in the regulation of paracellular selectively 

to small ions through the pores that they them selves are capable o f form ing (Tsukita 

and Furuse, 2000). However, recent results have challenged the idea that Claudins 

function only as sealing proteins. C laudins have now been shown to be involved in 

cellular growth and in epithelial-m esenchym al transition (EM T) (Ohkubo and Ozawa, 

2004). These results suggest that C laudins play m ultiple roles beyond acting as a 

“doorm an” in the paracellular barrier opening a new avenue o f  research.

The present study used the H ECV endothelial cell line and, following forced 

expression and knockdown of C laudin-5, examined the cellular biological functions 

in response to Hepatocyte Growth Factor (HGF) in order to clarify the role of
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Claudin-5 and to investigate a possible link with m otility-related proteins in 

endothelial cells.

6.2 M aterials and methods 

6.2.1 Cell line

The HECV endothelial cell line was used in this study to investigate the 

effect of Claudin-5 in transfected cell lines H E C V cl5exp and H ECV GL5nb2, including 

H ECV wt and HECVpef6. Cells were continuously m aintained in DM EM -F12 media as 

described in section 2 .2 .

6.2.2 In vitro cell growth assay

The cells were seeded into four 96 well plates and incubated for a broad 

range of hours as described in section 2.6.1. A bsorbance was m easured in order to 

determ ine cell number.

6.2.3 In vitro cell M atrigel adhesion assay

The cells were seeded into a 96 well plate containing a layer o f M atrigel as 

described in section 2.6.3. The num ber o f cells adhered to the artificial basem ent 

m em brane was counted.

6.2.4 In vitro tubule form ation assay and the effect o f pro- and anti-m otility  

agents

The cells were seeded into a 96 well plate containing a layer o f Matrigel.

After incubation another layer of M atrigel was added on top as described in section
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2.6.7. The tubule perimeter was m easured. The sam e protocol was followed when 

cells were treated with HGF and m otility-related inhibitors.

6.2.5 In vitro cell motility assay using C ytodex-2 beads and the effect o f HGF

The cells were incubated with Cytodex-2 beads as described in section 2.6.4. 

The number of cells that were carried by the beads and moved from  the beads to the 

base of the well was counted. The sam e protocol was followed w hen cells were 

treated with HGF.

6.2.6 In vitro cell m igration (wound healing) assay

The m igration of HECV cells across a wounded surface o f a confluent 

m onolayer form ed by the same cell line was exam ined as described in section 2.6.5.

6.2.7 Transendothelial resistance and the effect o f H GF

The cells were seeded into transparent inserts and the resistance across the 

layer was m easured as described in section 2.7.1. The sam e protocol was followed 

when cells were treated with HGF.

6.2.8 ECIS

The cells were seeded into electrical arrays allow ing the cells to adhere to the 

gold electrodes within the array as described in section 2.7.2 causing a change in 

resistance followed by electrical w ounding of the formed monolayer. The same 

protocol was followed when cells w ere treated with HGF and m otility-related 

inhibitors.
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6.2.9 Analysis o f protein levels o f N -W A SP and R O C K  1 using W estern blotting. 

Claudin-5 co-im m unoprecipitation for N -W A SP and R O CK  1

W estern Blotting was used to see levels o f expression of N-W ASP and 

ROCK 1 as described in section 2.5. Claudin-5 co-im m unoprecipitation was carried 

out using cell lysates of HECV wt and H E C V cl5exp and probed with antibodies against 

N-W ASP and ROCK 1 as described in section 2.5.1.6. N-W ASP and ROCK 1 co- 

imm unoprecipitation was carried out as described above and probed with antibodies 

against Claudin-5.

6.2.9 In  vivo tum our growth and developm ent

The impact of Claudin-5 on tum our growth was assessed in an in vivo system 

as described in section 2 .6 .8 ., where a broad num ber o f factors may influence the 

effects of over-expression of Claudin-5 in this particular developm ent model. In this 

model, breast cancer cells were co-injected with endothelial cells that had a different 

Claudin-5 expression profile, in order to assess the contribution of claudin-5 in 

endothelial cell to the growth of breast tum ours.

6.3 Results

6.3.1 Effect o f altering C laudin-5 expression on H ECV cell growth

The effect of suppressing and over-expressing Claudin-5 expression on the 

growth o f the H ECV endothelial cell line was examined following 1,3 and 4 day 

incubation periods using an in vitro  cell growth assay (Figure 6.1). No significant
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differences in cell growth rate between H EC V wt, H ECV pef6 and HECVcl5expor 

HECVCL5nb2 were seen in any of the incubation periods. However, the growth rate of 

HECVCISexp was reduced in each of the m easurem ents when compared to H ECVwt 

and H ECV pef6; day 1 HECVwt(52% ±38.15), H ECV pef6 (57.01% ±8.96) and 

HECVcl5exp (26.65%±21.30), ( p=0.29 and p=0.069 respectively); day 3 HECVwt 

(497.19% ±68.86), HECV pef6 (487 .41% ±31.35) and H ECV cl5exp (459.90% ±84.77),

( p=0.52 and p=0.06 respectively); day 4 H E C V wt (705.85% ±96.32), 

HECV pefA(735.95% ±57.84) and H ECV cl5exp (702.72% ± 142.90), ( p=0.97 and p=0.69 

respectively). The opposite effect was observed in the incubation period day 3 and 

day 4 o f HECV CL5nb2 where the cell growth w as increased when com pared to the 

controls; day 3 HECVwt (497.19% ±68.86), H EC V pef6 (487 .41% ±31.35) and 

HECV CL5rib2 (567.52% ±36.55), (p=0.12 and p=0.44 respectively); day 4 HECVwt 

(705.85% ±96.32), HECVpef6 (735.95% ±57.84) and HECV CL5rib2 (736.62.72% ±36.92), 

(p=0.68 and p=0.98 respectively).

6.3.2 Effect o f Claudin-5 on H E C V  cell adhesion

The adhesive capacity of H E C V cl5exp and H ECV GL5nb2 cells to adhere to 

matrix was analysed in an in vitro M atrigel adhesion assay (Figure 6.2). There was a 

significant difference between the adherence o f H EC V cl5exp and H ECV wt and 

H ECV pefA with H ECV cl5exp cells being less adherent to m atrix (HECVwt (87.68±7.09), 

H ECV pef6(80.2± 15.99) and H EC V cl5exp (19.66±3.33), (p<0.001 for both controls). In 

the case o f H ECV GL5nb2, no significant differences were found when compared to the 

controls (HECVwt (87.68±7.09), H ECV pef6 (80.2±15.99) and HECV CL5rib2 

(88.94± 13.50), (p=0.743 and p=0.087 respectively).
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6.3.3 Effect of Claudin-5 on HECV cell tubule formation

The angiogenic potential of the untreated cells H ECV wt, HECV pef6 

HECVcl5exp and HECVGL5nb2 alongside cells treated with the pro-m otility and 

angiogenic factor HGF and m otility inhibitors (against N-W ASP, RO CK and Arp 

2/3) and a combination of both agents was assessed using an in vitro  M atrigel tubule 

formation assay. Untreated HECV cells form ed tubule structures (Figure 6.3); 

however significant differences were found in the transfected cells when compared 

with controls. HECV CI5exp dem onstrated a significant decrease in tubules when 

compared to H ECV wt and HECV pef6 (H EC V wt (4050.03±220.67), H ECV pef6 

(4102.978±585.82) and HECVcl5exp (654±686.13), (p<0.001 for both controls). The 

opposite effect was observed in H E C V CL5nb2 where a significant increase in tubules 

was seen when compared to H ECV wt and H E C V pef6 (H ECV wt (4050.03±220.67), 

H ECV pef6 (4102.978±585.82) and H E C V CL5rib2 (5749.93±873.24), p<0.001 for both 

controls).

Treatm ent with HGF (50ng/m l) positively affected the capability of these cell 

lines to form tubules (Figure 6.4). Follow ing quantification of tubule perim eter, a 

significant increase in tubules was observed in com parison to untreated control. 

Control cells displayed a significant increase in tubules when compared to untreated 

cells, H EC V wt+HGF (H EC V wt (3 9 1 1.60±457,09) and HECV wt+HGF 

(6252.46±373.39), HECV pef6+H G F (H EC V pef6 (4224.74±375.06) and 

HECV pef6+HGF (5616.23±990.80) (p<0.001 for both controls). H ECV cl5exp 

dem onstrated a significant increase in tubules when compared to H ECV cl5exp+HGF 

(H ECV cl5exp (344±751.07) and H EC V cl5exp+HGF (664.26±240.58), (p<0.005). A
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sim ilar response to HG F was observed in H E C V CL5nb2, where significant differences 

were found when compared to H E C V CL5rib2+H G F (H EC V CL5rib2 (5690.70±383.33) 

and H E C V CL5rib2+HGF (7556±244.09), (p<0.001).

Follow ing treatm ent with m otility inhibitors, diverse responses were observed 

in these cells. W hen cells were treated w ith the N -W A SP inhibitor (50pM ) (Figure

6.5), control cells displayed a significant decrease in tubules when compared to 

untreated cells, H EC V w,+N-W ASP (H EC V wt (3911 .60±457.09) and HECVwt+N- 

W ASP (3034.54±197.42), H ECV pef6+N -W A SP (H EC V pef6 (4224.74±375.06) and 

H ECV p"f6+N -W A SP (3 140.45±69.58) (p<0.001 for both controls). H EC V cl5exp had 

significantly decreased levels of tubule form ation com pared with untreated cells 

(H ECV cl5exp (344.93±383.33) and H E C V cl5exp+N -W A SP (155.03±69.58), p=0.045). 

However, although H ECV GL5nb2 dem onstrated a reduced num ber o f tubules 

com pared to untreated cells, the data w as not statistically significantly different 

(H ECV CL5rib (5690.70±383.32) and H EC V CLJ5rib+N -W A SP (5347.18±307.06), 

p=0.052). Treatm ent o f these cells w ith A rp2/3 inhibitor (lOnM ) adversely affected 

the capability to form tubule structures in the control cells, H ECV wt+ Arp2/3 

(H EC V wt (391 1.60±457.09) and H E C V wt+ A rp2/3 (3108.92±212.12), H ECV pef6+ 

Arp2/3 (H EC V pef6 (4224.74±375.06) and H EC V pef6+ Arp2/3 (3222.42±193.95) 

(p<0.001 for both controls), and transfected cells H ECV cl5exp and H ECV CL5nb (Figure

6 .6 ). H ow ever, from the transfected cells only H EC V GI5exp displayed significant 

differences when com pared to untreated cells (H EC V cl5exp (344.93± 251.07) and 

H EC V cl5exp+Arp2/3 (9 5 .1 12± 51.4 l), p<0.001). Conversely, HECVCL5nb did not 

show significant d ifferences when com pared to treated cells (H ECV CL5r,b 

(5690.70±383.32) and H E C V CL5rib+A rp2/3 (5396.65±288.53), p=0.084). ROCK
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inhibitor (50nM ) was also capable o f altering the ability of these cells to form tubules 

(Figure 6.7). Sim ilar to the effect o f the above m entioned inhibitors, control cells and 

H ECV cl5exp had significantly decreased tubule form ation when compared with 

untreated cells, HECVwt+ ROCK (H EC V wt (3911.60±457.09) and HECVwt+ ROCK 

(2754.10±394.93), HECVpef6+ RO CK  (H EC V pef6 (4224.74±375.06) and HECVpef6+ 

ROCK (3134.94.42± 142.27) (p<0.001 for both controls), H ECV cl5exp 

(344 .93±251.07) and HECVcl5exp+RO CK  (126.62±82.93), p<0.05). In the case o f 

H ECV CL5rib2 however, although there was a slight reduction in the number of tubules 

form ed, the data was not found to be significant (H EC V CL5nb (5690.70±383.32) and 

H ECV CL5rib+ROCK (5412.67±289.08), p=0.133).

H aving established the im pact of the m otility inhibitors and HG F on these 

cell lines, we exam ined the com bination o f these agents with HGF. Cells treated with 

a com bination o f HGF/N-W ASP inhibitor showed differences in the num ber of 

tubules form ed. The control cells treated with HG F/N -W A SP inhibitor revealed a 

decrease in the num ber of tubules form ed w hen com pared with untreated and HGF 

treated cells (H EC V wt(3911.60±457.09), H EC V wt+HGF (6252.46±323.35) and 

H ECV wt+HG F/N -W A SP (3909.50±329.10), (H EC V wt vs. HECV wt+HGF/N-W ASP 

p=0.68, and H ECV wt+HGF vs. H E C V w,+H G F/N -W A SP p<0.001); 

(H EC V pefb(4224.74±375.06), H EC V pef6+HGF (5612.23±410.80) and 

H EC V pef6+HG F/N -W A SP (3839.36±247.41), (H EC V pef6 vs. HECV pef6+HGF/N- 

W ASP p=0.02, and H ECV pef6+H G F vs. H EC V pef6+HGF/N-W ASP p<0.001). 

H ECV cl5exp cells treated with H G F/N -W A SP inhibitor also revealed a decrease in the 

num ber of tubules form ed com pared with untreated and HG F treated cells 

(H ECV cl5exp (344 .93±251.07), H ECV cl5exp+HGF (664.26±240.58) and
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H E C V cl5exp+HGF/N-W ASP (247.10±93.03), (H EC V cl5exp vs. HECV cl5exp+HGF/N- 

W ASP p=0.28, and HECVcl5exp+HG F vs. H E C V cl5exp+HGF/N-W ASP p<0.001). 

H EC V c L5nb cells treated with H G F/N -W A SP inhibitor showed a small reduction in 

the num ber of tubules formed compared with H G F treated cells, however no 

significant differences were seen. Significant differences were found when 

com paring untreated HECVcl^ rib with H E C V CL5rib +HG F/N -W A SP (HECVCL5rib 

(5690.703±383.32), HECVclJrib +HGF (7556.08±244.09) and H EC V CL5rib +HGF/N- 

W ASP (7282 .16±312.05), (HECVCL5rib vs. H E C V CL5rib +HGF/N-W ASP p<0.001, 

and H E C V CL5rib +HGF vs. HECVCLJ5nb +H G F/N -W A SP p=0.054). Control cells, 

H ECV wt and H ECV pef6, show sim ilar behaviour w hen treated with HGF+N-W ASP. 

In both cell lines a significant decrease in the num ber of tubules formed was seen 

(p<0.001) (Figure 6 .8 ).

Treatm ent of HECV with a com bination o f HGF/Arp2/3 inhibitor again 

revealed differences in the num ber o f tubules form ed in the transfected and control 

cells. The control cells treated with H G F/A rp2/3 inhibitor revealed a decrease in the 

num ber o f tubules formed when com pared untreated and H G F treated cells(H ECVwt 

(3911.60±457.09), HECVwt+HG F (6252,46±323.35) and H ECV wt+HGF/Arp2/3 

(3387.59±174.18), (HECVwt vs. H E C V wt+H G F/ Arp2/3 p=0.005, and 

H E C V wt+H G F vs. H ECVwt+H G F/ A rp2/3 p<0.001); (HECV pef6 (4224.74±375.06), 

H EC V pef6+HGF (5612.23±410.80) and H ECV pef6+HGF/ Arp2/3 (3589.01±278.02), 

(H EC V pef6 vs. H ECV pef6+HG F/ A rp2/3 p<0.001, and HECV pef6+HGF vs. 

H EC V pef6+HGF/ Arp2/3 p<0.001).
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H ECV cl5exp cells treated with H G F/A rp2/3 inhibitor displayed a decrease in 

the num ber of tubules formed compared with untreated and HG F treated cells 

(H EC V cl5exp (344.93±251.07), HECVcl5exp+H G F (664.26±240.58) and 

H EC V cl5exp+HGF/Arp2/3 (164.03±33.49), (H EC V cl5exp vs. H ECV cl5exp+HGF/Arp2/3 

p=0.04, and H ECV c,5exp+HGF vs. H E C V c,5exp+HG F/A rp2/3 p<0.001). HECVCL5rib 

cells treated with HGF/Arp2/3 inhibitor showed a small reduction in the number of 

tubules form ed compared with H G F treated cells, however, no significant differences 

were seen. Nevertheless, significant differences were found when com paring 

untreated H EC V CLSrib with H ECV CL5rib +H G F/A rp2/3 (H EC V CL5rib 

(5690.703±383.32), HECVCL5rib +HGF (7556.08±244.09) and H ECV clJ5rib 

+HG F/A rp2/3 (7344.40±307.32), (H EC V CL5rib vs. H EC V CL5rib +HGF/Arp2/3 

inhibitor p<0.001, and H ECV CL5rib +H G F vs. H E C V clJ5rib +HGF/Arp2/3 p=0.12). 

Control cells (H EC V wt and H ECV pef6) exhibited sim ilar behaviour when treated with 

HG F+Arp2/3. In both cell lines, a significant decrease in the num ber of tubules 

formed was seen (p<0.001) (Figure 6.9).

The impact of com bining H G F/R O C K  inhibitor was examined in the 

transfected as well as control cells. The control cells treated with HGF/ROCK 

inhibitor revealed a decrease in the num ber o f tubules form ed when compared 

untreated and H G F treated cells (H EC V wt (3 9 1 1.60±457.09), H EC V wt+HGF 

(6252.46±323.35) and H ECV wt+H G F/R O C K  (3505.72±256.78), (H ECV wt vs. 

H ECV wt+HG F/ RO CK p=0.03, and H E C V wt+HG F vs. H ECV wt+HGF/ ROCK 

p<0.001); (H EC V pef6 (4224.74±375.06), H ECV pef6+HGF (5612.23±410.80) and 

H ECV pef6+HG F/ ROCK (3287.79±73.06), (H EC V pef6 vs. H ECV pef6+HGF/ ROCK 

p<0.001, and H ECV pef6+H G F vs. H E C V pef6+HG F/ ROCK p<0.001). HECV cl5exp
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cells treated with HGF/ROCK inhibitor data displayed a decrease in the number of 

tubules formed compared with untreated and H G F treated cells (HECVcl5exp 

(344 .93±251.07), HECVcl5exp+HGF (664.26±240.58) and HECVcl5exp+HGF/ROCK 

(218.24±60.21), (HECVcl5exp vs. H ECV cl5exp+H G F/ROCK p=0.16, and 

H ECV cl5exp+HGF vs. HECVcl5exp+HG F/RO CK  p<0.001). HECV CL5rib cells treated 

with H G F/RO C K  inhibitor showed a small increase in the number of tubules formed 

com pared with HGF treated cells, however, no significant differences were seen. 

Nevertheless, significant differences were found when comparing untreated 

HECVCL5rib with HECVCL5rib +HG F/ROCK (H EC V CL5rib (5690.703±383.32), 

H ECV c:L5rib +HGF (7556.08±244.09) and H ECV CL5rib +HGF/ROCK 

(7621.91 ±266.025), (HECVCL5rib vs. H ECV CL5rib +HG F/ROCK p<0.001, and 

H ECV CL5rib +HGF vs. HECVCL5rib +H G F/R O C K  p=0.59). Control cells, HECV wt and 

H EC V pef6, revealed similar behaviour when treated with HG F+RO CK inhibitor. In 

both cell lines a significant decrease in the num ber of tubules formed was seen 

(p<0.001) (Figure 6.10).

A ll the results are sum m arized in Table 6.1.
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Figure 6.1: Effect o f  Claudin-5 on in vitro  cell growth o f  HECV cells using the in 

vitro  cell growth assay. The cell growth o f  HECV0565* and HECV^ 5"52 did not show 

any significant difference when compared to HECV"* and HECV1*®5 (mean ±SD, 

n=3).
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HECV WT HECV pEF6 HECV CL5exp HECV CL5rib2

Figure 6.2: Effect o f  Claudin-5 on in vitro  cell adhesion o f  HECV cells using the in 

vitro M atrigel adhesion assay. The data presented is representative is the mean o f  at 

least 3 independent repeats and the error bars represent the standard error o f  the 

mean. The adhesive capacity o f  H ECV cl5exp was significantly decreased in 

comparison with the controls HECV"* and HECV 1*16 (** represents p<0.001 for both 

controls).
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Figure 6.3: (A) Effect o f  Claudin-5 on in vitro tubule formation o f  HECV cells using 

the in vitro Matrigel tubule formation assay. The data presented is representative is 

the mean o f  at least 3 independent repeats and the error bars represent the standard 

error o f  the mean. The ability to form tubules o f  HECV0 5 ®*13 was significantly 

decreased in comparison with the controls HECV3* and HECV13®16 (** represents 

p<0.001 for both controls). In contrast, the capacity o f  HECV01'5"52 to form tubules 

was significantly increased when com pared to the controls HECV'* and HECV13®55 

(**p<0.001 for both controls). (B) Representative pictures o f  tubule formation in 

HECV cells.

HECVC L 5nb2
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Figure 6.4: Effect o f  HGF treatment on in vitro tubule formation o f  HECV 

transfected and control cells using the in vitro M atrigel tubule formation assay. The 

data presented is representative is the mean o f  at least 3 independent repeats and the 

error bars represent the standard error o f  the mean. The ability o f  HECV015®5*1’ and 

HECV0 ^ " 152 to form tubules after treatm ent with HGF was significantly increased in 

comparison with the untreated cells (*represents p<0.05 and ** p<0.001).
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CL5exp CL5rib2

Figure 6.5: Effect o f  N-W ASP inhibitor on in vitro tubule formation o f  HECV 

transfected and control cells using the in vitro M atrigel tubule formation assay. The 

data presented is representative is the mean o f  at least 3 independent repeats and the 

error bars represent the standard error o f  the mean. The ability o f  HECV015**1’ and 

HECVOL5nb2to form tubules after treatm ent with N -W A SP inhibitor was reduced in 

com parison with the untreated cells, however, only HECVcl5exp shows significant 

differences (*represents p<0.05).
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Figure 6 .6 : Effect o f  Arp2/3 inhibitor on in vitro  tubule formation o f  HECV 

transfected and control cells using the in vitro  M atrigel tubule formation assay. The 

data presented is representative is the mean o f  at least 3 independent repeats and the 

error bars represent the standard error o f  the mean. The ability o f  HECV°15exp and 

HECVCL5nb2 to form tubules after treatm ent with Arp2/3 inhibitor was reduced in 

comparison with the untreated cells, however, only H ECV °l5exp shows significant 

differences (*represents pO .O O l).
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Figure 6.7: Effect o f ROCK inhibitor on in vitro  tubule formation o f  HECV 

transfected and control cells using the in vitro M atrigel tubule formation assay. The 

data presented is representative is the mean o f  at least 3 independent repeats and the 

error bars represent the standard error o f  the mean. The capability o f  HECVc,5exp and 

HEC to form tubules after treatm ent with ROCK inhibitor was reduced in

comparison with the untreated cells, however, only H ECV°l5exp shows significant 

differences (*represents p<0.05).
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Figure 6 .8 : Effect o f  a combination o f  HG F/N-W A SP inhibitor on in vitro tubule 

form ation o f  HECV transfected and control cells using the in vitro Matrigel tubule 

form ation assay. The data presented is representative is the mean o f  at least 3 

independent repeats and the error bars represent the standard error o f  the mean. 

F ffiC V ^ ^ + H G F /N -W A S P  data revealed a significant decrease in the number o f  

tubules form ed compared to HGF treated cells, however no significant differences 

were found compared to untreated cells (HECVcl5exp vs. HECVcl5exp+HGF/N-W ASP 

p=0.28, and HECVcl5exp+HG F vs. HECVcl5exp+HGF/N-W ASP p<0.001). No 

significant differences w ere found betw een FIECVCL5nb2+HGF and 

FlECVCL5nb2+H G F/N -W A SP p=0.054. Untreated UECVCL5nb2 showed significantly 

less tubules com pared to HECVCL5rib2+HG F/N -W A SP p<0.001.
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Figure 6.9: Effect o f  a combination o f  HGF/Arp2/3 inhibitor on in vitro tubule 

form ation o f  HECV transfected and control cells using the in vitro Matrigel tubule 

formation assay. The data presented is representative is the mean o f  at least 3 

independent repeats and the error bars represent the standard error o f  the mean. 

HECVcl5exp+HGF/Arp2/3 data revealed a significant decrease in the number o f  

tubules formed compared with untreated and HGF treated cells (HECVcl5exp vs. 

HECVc,5exp+HGF/Arp2/3 p=0.04, and H E C V ^ p + H G F  vs.

HECVc,5exp+HGF/Arp2/3 p<0.001). No significant differences where found between 

HECVCL5rib2+HGF and HECVCL5rib2+HGF/Arp2/3 p=0.12 Untreated HECVCL5nb2 

formed significantly less tubules com pared to HECV€L5nb2+HGF/Arp2/3 p<0.001.
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Figure 6.10: Effect o f  a combination o f  HGF/ROCK inhibitor on in vitro tubule 

form ation o f  HECV transfected and control cells using the in vitro Matrigel tubule 

form ation assay. The data presented is representative is the mean o f  at least 3 

independent repeats and the error bars represent the standard error o f  the mean. 

HECVcl5exp+HGF/ROCK data revealed a significant decrease in the number o f 

tubules form ed compared with HGF treated cells, however no significant differences 

were observed in untreated cells (HECVcl5exp vs. HECVcl5exp+HGF/ROCK p=0.16, 

and HECVC5̂exp+HGF vs. H E C V ^ ^ + R O C K  p<0.001). No significant differences 

were found between HECVCL5rib2+HGF and HECVCL5rib2+HGF/ROCK p=0.59. 

Untreated HECV€L5nb2 form ed significantly less tubules compared to

H E C V CL5rib2+ H G F / R O C K  p < 0  o o i .
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Table 6.1: Data summarising the results o f tubule formation assay o f transfected and control HECV cells after treatments.

Mean tubule 
perimeter field 

(pm)

HGF N-WASP
inhibitor

Arp2/3
inhibitor

HGFN-
WASP

inhibitor
HGF/Arp2/3

inhibitor
HGFROC K 

tub ftiitor
HGF/N
WASP

inhibitor
HGF/Arp2/3

inhibitor
HGF/ROCK

m h tbit o i

\s.
untreated

vs. vs. 
untreated untreated

VS,
untreated

vs. | vs.' „ . vs. 
unnreatfd i untreated j untreated

vs.
HGF

vs.
HGF

vs.
HGF

HECV1"1

Increase

P<0.001

Decrease

P<0.001

Decrease

P<0.001

Decrease

P<0.001

Decrease

P=0.68

Decrease

PC0.001

Decrease

P=0.03

Decrease

P<0.001

Decrease

P<0.001

Decrease

P<0.001

HECYP*

Increase

P<0.001

Decrease

P<0.001

Decrease

P<0.001

Decrease

P<0.001

Decrease

P=0.02

Decrease

P<0.001

Decrease
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6.3.4 Effect o f Claudin-5 on H ECV cell m otility and the effect o f HGF

A Cytodex-2 bead motility assay was used to examine a possible role of 

Claudin-5 in cell motility. Transfected and control cells, either untreated or treated 

with HGF, were evaluated. HECV cl5exp cells did not show significant differences 

when com pare to the controls (HECVwt (7.44±2.63), H ECV pef6 (6.5±3.34) and 

H EC V cl5exp (6.82±2.77), (p=0.43 and p=0.74 respectively). In contrast, HECV CIJ5rib2 

cells dem onstrated significantly increased cell m otility compared to the controls 

(H EC V W| (7.44±2.63), HECVpef6 (6.5±3.34) and HECV CLJ5rib2 (18.7±3.49), p<0.001 

for both controls) (Figure 6.11 A).

The cells were additionally evaluated after treatm ent with HGF. This pro­

m otility agent increases cell m otility in H E C V GI5exp and control cells, HECV wt and 

H ECV pef6, when compared to untreated cells (H EC V wt+H G F(18.26±5.62), 

H ECV pef6+H G F (22.31±6.60) and H ECV cl5exp+HG F (18.18±4.75), p<0.001). 

H ow ever, in the case of HECVCL5nb2, although a slight increase in the num ber of 

m otile cells was observed, the data was not found to be significant 

(H EC V CL5rib2+HGF (19.44±4.93), p=0.64) (Figure 6.11 B).

6.3.5 Effect o f Claudin-5 on H EC V  cell m igration

The effect of Claudin-5 on cellular m igration was examined using an in vitro 

cellular migration assay. H E C V GL5nb2 showed a significantly increased cellular 

m igration when compared to the controls 60 minutes after wounding (H ECV wt 

(1 3 .5 1± 14.80), HECVpef6 (22 .57±1.34) and HECVCL5rib2 (56.75±21.38), p<0.05 for 

both controls). A decreased cell m igration was seen in HECV G15exp after 60 minutes
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when com pared to controls (HECVwt(13.51±14.80), H ECV pef6 (22.57±1.34) and 

H E C V cl5exp (7.02±1.42), p=0.49 and p<0.05respectively). A lthough the effect is only 

statistically significant when com paring to H E C V pef6, the trend remains marked 

(Figure 6.12).

6.3.6 Effect o f  Claudin-5 on H EC V  T ransendothelial resistance and their 

response to H G F

Transendothelial resistance (TER) w as used to assess the effect of over­

expressing or knocking-down of Claudin-5 on Tight Junction functionality in HECV 

cells. H E C V cl5exp showed increased TER  over a period o f 4 hours in comparison 

with the control H ECV wt (change in TER after 30 m inutes H ECVwt(-98.66±1.3) vs. 

H E C V cl5exp (-65.66±1.6); 60 m inutes H E C V wt(-142 .66 i0 .77) vs. HECV cl5exp (- 

128.33±4.3); 2 hours HECVwt (-167 .66 i2 .18 ) vs. H ECV cl5exp (-156. 33±2.8); 4 hours 

H EC V wt (-194 .33 i2 .42 ) vs. H ECV cl5exp (-175 i2 .15 ), p<0.01). Changes in TER were 

more evident in H ECV CL5nb2 when com pare to the control (change in TER after 30 

m inutes H E C V wt(-9 8 .6 6 il.3 )  vs. H EC V clJ5rib2 (-69 .66 i6 .77); 60 m inutes HECVwt(- 

142 .66i0 .77) vs. HECVCLJ5rib2 (-118 i3 .2 ) ;  2 hours HECVwt(-167.66i2 .18) vs. 

H ECV CL5rib2 ( -1 2 4 .3 3 il.8 1 ); 4 hours H ECV wt (-194 .33i2 .42) vs. H ECV CL5rib2 (- 

89 .33 i2 .1 ), p<0.001) (Figure 6.13).

Treatm ent of cells w ith H G F (50ng/m l) resulted in a significant reduction of 

TER in transfected and control cells when com pared to untreated cells over a period 

of 4 hours (change in TER  after 30 m inutes H ECV wt+ H G F (-1 2 5 il.2 ), 

H ECV cl5exp+H G F (-109 .66 i2 .3 ), H EC V CL5rib2+HGF ( -9 5 il.6 ) ;  60 m inutes 

H ECV wt+ H G F (-160 .66 i4 .24 ), H ECV cl5exp+HG F (-1 9 0 il.6 4 ), H ECV CL25rib2+HGF (-
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160±1.89); 2 hours HECVwt+H G F(-199.66±1.7), H ECV cl5exp+HGF (-210±4.3), 

H ECV CL5rib2+HGF (-189±5.6); 4 hours H ECV wt+H G F(-245.66±1.3), 

H ECV cl5exp+HGF (-240±2.4), HECVclJ5rib2+H G F (-180.66±2. 8), p<0.001) (Figure 

6.14).
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HECV + HGF

HECV WT HECV pEF6 HECV CL5exp HECV CL5rib2

Figure 6.11: (A) Effect o f  Claudin-5 on in vitro  cell m otility o f  HECV cells. The 

m otility o f  HECV €L5nb2 was significantly increased in comparison to the controls 

(p<0.001for both controls). (B) Effect on motility after treatm ent with HGF. 

Transfected and control cells showed an increase in motility, however, only the 

controls and FLECV0156̂  results were significant (p<0.001). The data presented is 

representative is the mean o f  at least 3 independent repeats and the error bars 

represent the standard error o f  the mean.
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Figure 6.12: Effect o f  Claudin-5 on in vitro  cell m igration o f  HECV cells. 

H E C V ^ ^ ^ c e lls  showed an increase in m igration when compared to the controls 60 

m inutes after wounding (p<0.05). The m igration o f  HECVcl5exp was reduced in 

com parison to the controls at 60 m inutes. However, only significant differences were 

found when compared to HECVpefis (p<0.05) (mean ±SD, n=3).
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Figure 6.13: (A) Effect o f  Claudin-5 on transendothelial resistance on HECV cells. 

Significant changes were seen on HECV0156*** and HECV01 5̂"52 over a period o f  4 

hours when compared to the control (p<0.01 and p<0.001 respectivley). (B) A 

polynomial model was used to visualise the trend o f  the presented data. R 2 indicates 

that the regression line clearly fits the data (mean ±SD, n=3).
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Figure 6.14: Effect o f  Claudin-5 on transendothelial resistance on HECV cells after 

treatm ent w ith HGF. Significant changes were seen in transfected and control cells 

over a period o f  4 hours when compared to the untreated cells (p<0.001) (mean ±SD, 

n=3).

234



6.3.7 Effect of Claudin-5 on H ECV cell attachm ent to and m igration across an 

electrode

Electric Cell Impedance Sensing (ECIS) was used to analyse differences in 

attachm ent and spreading following w ounding in real-tim e between transfected and 

control cells. The process requires a m onolayer o f cells being grown on small gold 

electrodes, applying AC current and m onitoring resistance changes caused by the 

adhesion or migration after wounding of cells onto the electrode. The greater the 

resistance to the AC current, the more cells are attached on the electrode. The cells 

were analysed for their adhesive capacity and m igration to a gold electrode in real­

time m easurem ents using a Two-W ay A N O V A  test. This test was used as it permits 

the com parison of two groups, transfected cells vs. control, on two variables, time vs. 

treatment.

The HECVcl5exp and H ECV CL5nb2 cells dem onstrated a significantly 

decreased adhesive capacity compared to the control H ECV wt (p=0.003 and p=0.002 

respectively) (Figure 6.15 A).

In recovering from electrical w ounding (5V AC for 30 seconds), the 

transfected cells showed differences in their rates of m igration. The H E C V GL5nb2 cells 

were significantly more motile com pared to the control as the resistance in the 

electrode increased as the cells begin to spread over the electrode (p=0.047). 

However, the HECVGI5exp cells showed a m arkedly reduced migration (p<0.001) 

(Figure 6.15 B).
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Figure 6 .15: (A) Effect o f  Claudin-5 on the cell adhesion o f  HECV cells using ECIS. 

Significant differences were seen in transfected cells when compared to the control. 

HECV056^  and HECVCL5nb2showed a significantly reduced adhesive capacity 

(p=0.003 and p=0.002 respectively). (B) Significant differences were revealed after 

wounding. HECVCL5nb2 showed significant increased migration (p=0.04) whereas 

H e c v 015̂  showed a decreased migration rate (p<0.001).The data presented is 

representative o f  at least 3 independent repeats.
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6.3.8 Effect o f Claudin-5 on H EC V  cell m igration over an electrode and the 

effect o f pro- and anti-motility agents

ECIS was also used to study the effect o f HGF, N -W A SP inhibitor 

(W iskostatin), Arp2/3 inhibitor (CK-0944636) and RO CK  inhibitor (Y-27632) on 

cell m igration of the transfected HECV cells. The cells were analysed after wounding 

for their m igration speed, across the electrode, in real time. Tw o-W ay A N O V A  test 

was the statistical test chosen for the study.

Follow ing electrical wounding and treatm ent with HG F and m otility 

inhibitors differences in cell capability to m igrate were seen. The transfected and 

control cells treated with HGF (50ng/m l), revealed an increase in m otility when 

com pared to the untreated cells (pcO.OOl, p=0.012 and p<0.001 respectively) (Figure 

6.16).

W hen cells were treated with N -W A SP inhibitor (50pM ), the m igration speed 

of H EC V W1+N-W ASP and H ECV cl5exp+N -W A SP was m arkedly reduced after 5 

hours o f treatm ent when compared to untreated cells (p=0.023 and p=0.001 

respectively). In contrast, H EC V CL5nb2+N -W A SP showed no significant differences 

when com pared to the untreated cells (p=0.173) (Figure 6.17).

Arp2/3 inhibitor (lOnM ) adversely inhibited the m igration o f H EC V wt + 

Arp2/3 and H ECV cl5exp+ Arp2/3, w hen com pared to untreated cells after wounding 

(p<0.001for both cell lines). Surprisingly, the migration of H ECV GL5nb2+ Arp2/3 was 

no longer inhibited, in contrast, it w as enhanced when compared to untreated cells 

(p=0.015) (Figure 6.18).
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Treatm ent of cells with RO CK  inhibitor reduced their m igration of HECV wt + 

RO CK  and H ECV cl5exp+ ROCK, when com pared to untreated cells after wounding 

(p=0.013 and pcO.OOl). However, in H EC V CL5nb2+ RO CK  the m igration of the cells 

was reduced although significant differences w ere not seen when compared to the 

untreated cells (p=0.087) (Figure 6.19).

All the results are summarized in Table 6.2.

6.3.9 Effect o f Claudin-5 on protein level o f  N -W A SP and ROCK1 and their 

interaction

H E C V wt, HECVG15exp and H ECV clJ5rib2 W estern blotting showed very low 

levels o f N-W A SP at protein levels. Protein levels of R O C K  1 revealed sim ilar high 

levels in the transfected and control cells (Figure 6.20 A).

Im m unoprecipitation of Claudin-5 follow ed by im m unoblotting with N- 

W A SP and RO CK  showed a protein-protein interaction between Claudin-5 and these 

m otility-related proteins in HECV wt and H E C V cl5exp (Figure 6.20 B). To further 

confirm  this, imm unoprecipitation results w ith either N -W ASP (Figure 6.20 C) or 

RO CK  1 (Figure 6.20 D) followed by im m unoblotting with Claudin-5 confirmed the 

interaction of the proteins.

6.3.10 Effect o f  Claudin-5 on H E C V  cell tum our growth in vivo

To assess the im pact o f altering Claudin-5 expression in HECV cells on 

tum our developm ent in vivo, H E C V cl5exp cells co-injected alongside with M DApef6, 

were com pared to H E C V pef6 co-injected with M DApef6. Tum our developm ent over 33 

days was m onitored. H E C V cl5exp did not seem to alter tumour developm ent in this
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model and no significant differences were seen betw een control M D A pef6 and 

H ECV pef6 tumours and M DApef6and H EC V cl5exp tum our (p = 0.25) (Figure 6.21).
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Figure 6.16: Effect o f  Claudin-5 on H ECV cell migration follow ing treatm ent with 

HGF using ECIS. M igration was significantly increased in H E C V ^+ H G F, 

H ECV °l5exp+HGF and H ECV€L5nb2+HGF when compared to untreated cells 

(p<0.001, p=0.012 and p<0.001 respectively). The data presented is representative o f  

at least 3 independent repeats.
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Figure 6.17: Effect o f  C laudin-5 on H ECV cell m igration following treatment with 

N -W A SP inhibitor using ECIS. M igration was significantly decreased in HECVwt+ 

N -W A SP inhibitor and H ECV05®*1’*  N -W A SP inhibitor when compared to untreated 

cells (p=0.023 and p=0.001). H ECV€L5nb2+  N-W ASP inhibitor did not show any 

difference in cell m igration (p=0.173). The data presented is representative o f  at least 

3 independent repeats.
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HECV CL5exp + ARP2/3

Figure 6.18: Effect o f  Claudin-5 on HECV cell migration following treatment with 

Arp2/3 inhibitor using ECIS. M igration was significantly decreased in 

HECVwt+Arp2/3 inhibitor and H ECVcl5exp+Arp2/3 inhibitor (p<0.001 vs. respective 

untreated controls). HECVCL5nb2+Arp2/3 inhibitor showed an increase in migration 

when com pared to untreated cells (p=0.015).The data presented is representative o f  

at least 3 independent repeats.
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Figure 6.19: Effect o f  Claudin-5 on H ECV cell m igration when cells were treated 

with RO CK inhibitor using ECIS. M igration was significantly decreased in 

HECVwt+ RO CK inhibitor and HECVcl5exp+ ROCK inhibitor (p=0.013 and p<0.001 

vs. respective untreated controls). HECVCL5nb2+ ROCK inhibitor showed a decrease 

in m igration when com pared to untreated cells (p=0.087). The data presented is 

representative o f  at least 3 independent repeats.
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M igration
rate

HGF
N -W A SP
inhibitor

Arp2/3
inhibitor

ROCK
inhibitor

vs. untreated vs. untreated vs. untreated vs. untreated

H E C V ^
Increased

PO.OOl

Reduced

P=0.023

Reduced

P<0.001

Reduced

P=0.013

HECVCL5exp
Increased

P=0.012

Reduced

P=0.001

Reduced

P<0.001

Reduced

P<0.001

HECVCL5rib2
Increased

P<0.001

N o effect 

P=0.173

Increased

P=0.015

N o effect 

P=0.087

Table 6.2: D ata sum m arizing ECIS results o f  transfected and control HECV cells 

after treatm ents.
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Figure 6.20: (A ) Expression o f N -W A S P  and R O C K  1 in transfected  and control 

cells. (B ) C o-im m unoprecip ita tion  o f C laud in -5  w ith N -W A S P  and R O C K  1. (C) 

C o-im m unoprecip ita tion  o f N -W A S P  w ith  C laudin-5 . (D ) C o-im m unoprecip itation  

o f R O C K  1 w ith C laudin-5.
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Figure 6.21: Effect o f  Claudin-5 on in vivo  tum our developm ent. No significant 

differences w ere found between H ECV cl5exp & M D A 1)616 and the control HECV*5616 

& M D A 1)616 using Tw o-W ay A N O V A  test (p=0.25).
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6.4 Discussion

In this work we have investigated the effects o f knockdown and forced 

expression of Claudin-5 in HECV cells, a hum an endothelial cell line, and 

established a possible link between Claudin-5 and m otility of the cells. Early studies 

reported high levels of Claudin-5 in the TJ o f endothelial cells of the blood vessels 

(Morita et al., 1999c). TJ in endothelial cells function as a barrier through which 

molecules and inflam m atory cells can pass. In the m etastatic process, it is 

fundamental for cancer cells to interact with endothelial cells followed by penetration 

of the vascular endothelium  and entry into the blood stream.

The results obtained from m easuring Transendothelial electric resistance 

(TER), the easiest and m ost sensitive m ethod to assess the resistance formed by the 

cellular sheets, revealed that H ECV CL5nb2 cells showed the highest resistance, 

whereas the resistance of H ECV cl5exp and the control were lower, although 

HECVcl5exp cells displayed a significantly higher resistance than the control cells. 

These prelim inary results were an indication of a possible new role of Claudin-5 as it 

appears not to be involved in keeping the cell barrier tight. One possible explanation 

might be that the absence of Claudin-5 could be balanced by one of the other 23 

m em bers of the Claudin fam ily which m ight alter the overall barrier strength. A 

sim ilar explanation could be applied for the forced expression cells and their similar 

trend shared with the control cells. Thus, interactions and feedback loops between 

Claudin family m em bers, dependent on expression within a tissue, might be key in 

regulating TJ stability.
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The involvem ent of Claudin-5 in cell growth was assessed; however, results 

showed that Claudin-5 had no role in the grow th o f endothelial cells. Cell adhesion 

to the extracellular matrix is fundam ental for living tissue since there are many 

activities in m am m alian cells in vivo, such as m itosis, m orphogenesis, cell 

orientation and cell m otility which depend on it (M itchison and Cramer, 1996). 

Adhesion is o f critical im portance for endothelial cells in the context of angiogenesis 

and wound healing. H E C V cl5exp cells dem onstrated a decrease in cell adhesion 

whereas no significant differences w ere observed betw een H EC V GL5nb2 and control 

cells. As explained in section 5.4, integrins, am ong other adhesive m olecules, have 

been proved to be essential in cell adhesion o f epithelial and endothelial cells as they 

give the cell critical signals about the nature o f its surroundings (Short et al., 1998). 

The question therefore arises as to w hether the over-expression o f Claudin-5 might 

alter levels o f integrins and other adhesion-related proteins, thus, changing the 

normal adhesive feature of the endothelial cell. To com plem ent these results, the 

ability o f the cells to adhere to a gold electrode through ECIS technology was 

measured in real time. The results agreed w ith the in vitro  cell M atrigel adhesion 

assay used. Once again, forced expression o f Claudin-5 resulted in cells displaying 

the lowest adherence, as in the M atrigel experim ents.

Considering the results from  TER experim ents, which revealed that the 

absence o f Claudin-5 increases the barrier strength therefore excluding Claudin-5 

from a sealing protein role, we studied a possible link between Claudin-5 and cell 

motility. To achieve this, a set o f experim ents were carried out in order to assess the 

grade o f involvem ent o f C laudin-5 in cell m otility. The in vitro  cell m otility assay 

alongside a traditional w ound healing assay w as performed. The results revealed a
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significant increase in m otility in the knockdow n cells when com pared to the control 

cells. In agreem ent with this, ECIS was used in order to m easure motility in real time 

after the m onolayer of cells was w ounded. The sam e results were obtained, i.e. 

HECVCL5rib2 cells appeared to be faster than the control cells. In the case of 

HECVcl5exp however, the effect o f forced expression o f Claudin-5 seem s to be 

opposite and reduced the m igration capacity o f the cells after wounding, as shown in 

both the wound healing assay and ECIS, revealing a significant reduction when 

compared to the control.

Until now, we have shown that knocking down the expression of Claudin-5 in 

endothelial cells resulted in a m ore m otile cell phenotype, although no differences in 

adhesion were seen when com pared to the control. The opposite was observed when 

Claudin-5 expression was forced, resulting in less adhesive and less m otile cells. 

Taking all these results together, we can conclude that Claudin-5 m ight be involved 

in m otility or indeed, be a m otility regulator itself.

It has been dem onstrated that endothelial cells rapidly form  capillary-like or 

tubule structures in vitro when seeded w ithin a sandw ich of reconstituted 

extracellular m atrix (ECM ) such as M atrigel. The form ation o f tubules is a process 

that involves several steps including cell adhesion, cell m igration, alignm ent and 

protease secretion am ong others (A rnaoutova et al., 2009). Because the form ation of 

these tubules is quantifiable, we used this assay to assess a possible im pact on 

angiogenic effect when the levels o f expression o f Claudin-5 are altered in the cells. 

This provides another technique to assess a possible effect of Claudin-5 in the motile 

nature o f endothelial cells. The results show ed that the capacity o f H E C V CL5nb2 cells

249



to form tubules was significantly increased w hen com pared to the controls, agreeing 

with results obtained when m otility was assessed, whereas for H E C V cl5exp was 

significantly decreased.

As explained in section 5.4., H G F is routinely used in our laboratories, 

mostly as a positive control, it is a very pow erful angiogenic and m otility factor as 

well as a factor that regulates Tight Tunctions (Jiang et al., 2005). Cells displaying 

enhanced and reduced expression levels of Claudin-5 respond positively to the 

effects o f HGF. The transfected and control cells showed a reduction in endothelial 

resistance, an increase in cell m otility and an increase in the num ber o f tubules 

formed. ECIS experiments corroborated these results.

Based on the results obtained in Chapter 5, where M D A -M B-231 cells were 

treated with a number of m otility-regulators in order to search for any possible links 

between Claudin-5 and a range of m otility-related proteins, we treated the cells 

transfected with Claudin-5 expression sequence and ribozym e transgenes w ith N- 

W ASP inhibitor, Arp2/3 inhibitor and RO CK  inhibitor (see details in section 5.6) to 

assess the impact on the cell m otility using ECIS and the in vitro  tubule form ation 

assay. The ECIS results revealed that forced expression and control cells respond as 

expected to all the inhibitors, show ing a decrease in the m otility. H ow ever, the 

knockdown cells did not follow the sam e inhibition trend. In fact, the three inhibitors 

were no longer able to inhibit the m otility o f the cells where C laudin-5 w as absent, 

suggesting a possible link between Claudin-5 and the signal pathw ay of N -W A SP 

and ROCK. Other studies have already shown the effect o f N -W A SP inhibitor in 

endothelial cells, where the addition of the inhibitor led to alm ost com plete
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disappearance of podosomes, which are actin structures responsible am ongst others 

for cell motility (Osiak et a l ,  2005). A nother study has reported that the addition of 

ROCK inhibitor in endothelial cells prevented transendothelial m igration o f lung 

carcinom a cells and changes in the TJ structure in the blood brain-barrier preventing 

m etastasis (Li et a l ,  2006).

Surprisingly, when Arp2/3 inhibitor was added to the knockdow n cells, an 

increase in m otility was observed. An explanation for this unexpected observation 

could be the complex regulation of F-actin form ation and degradation. Actin 

polymerisation is regulated by a signal transduction pathw ay that show s m any 

intrinsic positive as well as negative feedback loops. Exam ples are the positive 

feedback between PI3K and Rac (Dawes and Edelstein-K eshet, 2007; W einer et a l ,  

2007) and the negative feedback between Rho and Cdc42 (Dawes and Edelstein- 

Keshet, 2007). All these molecules are well characterised m em bers of the 

RhoGTPase family and are key regulators o f cytoskeletal dynam ics in cells, 

including those of endothelial origin. A  theoretical study has also addressed the 

activity of Arp2/3 and showed that it operates with an auto-catalytic like m echanism . 

The activation of Arp2/3 will am plify the level o f PI (4,5) P2, a phospholipid 

component enriched at the plasm a m em brane where it is a substrate for a num ber of 

important signalling proteins, at the leading edge o f the cell which again will 

increase the activity of Arp2/3 (Dawes and Edelstein-K eshet, 2007).

W hen tubule formation was tested follow ing treatm ent w ith the inhibitors, 

both forced expression and control cells were seen to have a significant reduction in 

tubule structures formed compared to the untreated cells. H ow ever, although
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knockdown cells resulted in a decrease in tubule structures form ed; differences were 

no longer significant. These results are linked to the m otile nature o f endothelial cells, 

and reveal a possible new role for Claudin-5 related to the N -W ASP and RO CK  

signal pathways. Additional experim ents were carried out to study the effect o f a 

combination of HG F and each individual inhibitor. The addition of a com bination of 

HGF/N-W ASP inhibitor, HGF/Arp2/3 inhibitor and H G F/RO C K  inhibitor 

significantly negated the effect o f H G F in the forced-expression and control cells, 

however, in the knockdown cells the differences between H G F treatm ent alone and a 

mixture of HGF and the inhibitors were not significant. These results agree with our 

suggestion of a new role for Claudin-5, linked to the N -W A SP and R O C K  signalling 

pathways, as the absence of Claudin-5 resulted in cells that did not respond to the 

inhibitors, and the HGF effect is no longer negated by the inhibitors w hen combined.

At this point of the study, the next two questions to be addressed were, could 

there be possible protein-protein interaction betw een Claudin-5 and N -W A SP or 

Claudin-5 and ROCK, and were there any direct effects that m ight occur at the 

protein level o f these m olecules w hen the level o f expression o f Claudin-5 is altered. 

Co-immunoprecipitation with Claudin-5 follow ed by im m unoblotting with either N- 

W ASP or ROCK 1 demonstrated an interaction betw een Claduin-5 and N -W ASP as 

well as with ROCK 1. To confirm  these interactions, a co-im m unoprecipitation with 

either N-W ASP or ROCK 1 followed by im m unoblotting w ith Claudin-5 w as carried 

out confirming the interactions betw een these protein pairs. The protein level o f N- 

W ASP appeared to be very low in the transfected and control cells. In agreem ent 

with these results, very low transcript levels of N -W A SP in som e cells was 

previously reported. It has been suggested that very high or very low levels o f N-
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W ASP can have the same effect (M artin et al., 2008b). N -W A SP and R O C K  1 

protein expression did not show any real differences am ong transfected and control 

cells in non co-precipitated samples. Together this suggests that Claudin-5 m ight 

interact with N-W ASP and ROCK 1 in some m anner but does not appear to have any 

direct effect on their expression in HECV  cells.

In vivo experiments did not reveal any significant differences in tum our 

developm ent when HECV cells with forced expression o f Claudin-5 w ere co-injected 

alongside control MDA-MB-231 breast cancer cells. U nfortunately, at the tim e of 

the in vivo study the Claudin-5 knockdown cells were unavailable and could not be 

included, however it would be interesting to see w hat effect suppressing Claudin-5 in 

endothelial cells could have on tumour developm ent in this in vivo  model.

Cell motility is orchestrated by a variety o f com plicated signal pathw ays, 

with most of them just starting to be unravelled. How ever, understanding cell 

motility not only requires knowledge o f the signal pathw ays regulating actin 

polymerization, but also how the com ponents involved in cell m otility w ork  together 

as a dynamic and integrated system. In this study w e have investigated the role o f 

Claudin-5 in endothelial cells. Our results have revealed that Claudin-5 is not ju st a 

sealing protein in charge of the passage of sm all ions; in fact, C laudin-5 appears to 

be involved in cell motility. This proposed new  role for Claudin-5 should instigate an 

interesting avenue for further research into cell m otility.
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Chapter 7 

General discussion

254



7.1 Breast cancer and metastasis

Breast cancer is the most com m on cancer diagnosed in wom en, with 

over one million of new cases reported each year worldw ide. It is w idely recognised 

that the high incidence of breast cancer in the m ore affluent world areas is due to the 

presence of screening programs that help to detect early stages o f invasive cancers. 

Every year about half a million new cased o f breast cancer are reported in Europe, 

with 45.000 new cases in the UK.

Breast cancer is characterized by having unusually long latency. It is capable 

of spreading to a variety of secondary sites that include vital organs such as bone, 

liver and lungs. The chances of survival from  m etastatic breast cancer are less than 

5%. Therefore, the major focus o f research in breast cancer is the prevention and 

treatment of metastasis. A key factor that determ ines the m etastatic nature o f cancer 

cells is their motility. A defining characteristic o f cancer cells is the acquirem ent o f a 

motile phenotype due to changes in their cytoskeletal architecture. A  great deal of 

evidences exists suggesting that Tight Junctions represent a critical barrier which the 

motile cancer cells must overcome in order to penetrate and initiate the m etastatic 

cascade. Nevertheless, different studies have show n dysregulation in TJ structure of 

several cancers including breast. Until the early nineties, TJ were m ainly seen as 

structure with an exclusive task o f sealing the gap betw een two cells, how ever, recent 

studies have shown how TJ are involved in the regulation o f cell proliferation, gene 

transcription and cellular differentiation. A m ong other com ponents o f the TJ 

structure, Claudin family appear to regulate the paracellular barrier o f the cells to 

small ions. However, the role of Claudin proteins in carcinogenesis and progression
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to metastasis needs to be unmasked. Therefore, it is not surprising that the role o f 

Claudins has become an active area o f research as a result o f altered levels of 

expression observed in different cancers including breast.

7.2 Aim s o f this thesis

The first aim of this thesis was to exam ine the role o f Claudin-5 in hum an 

breast cancer by examining the level of expression and distribution in breast tum our 

and normal breast tissues and analysing the levels o f transcripts against clinical 

parameters in order to investigate a possible connection betw een C laudin-5 and the 

clinical outcome of patients.

This thesis was also aimed to exam ine the effect o f knockdow n and forced 

expression of Claudin-5 in the M DA-M B-231 aggressive breast cancer cell line and 

in the HECV human endothelial cell line as well as to assess the effect o f C laudin-5 

forced expression on in vivo developm ent o f m am m ary tum ours. W e also aim ed to 

examine whether the invasive nature o f the breast cancer cells, their adherence to 

matrix, the integrity of the paracellular barrier, their possible role in cell grow th and 

their motility might be comprom ised in the absence o f C laudin-5 as w ell as w hen 

Claudin-5 is overexpressed in the cancer cell. Sim ilarly, w e studied the effect o f 

altering Claudin-5 expression in hum an endothelial cells and the effect caused on 

their adherence, in the paracellular barrier, in growth, in m otility and in their 

capability to form tubules of the endothelial cells. F inally, the effect on cell m otility
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after inhibition of N-W ASP, RO CK  and A rp2/3 com plex  w as assessed in both cell 

lines.

7.3 M ain conclusions from results / sign ificance o f  this thesis 

7.3.1 C laudin-5 and human breast cancer

This thesis has shown for first tim e that C laudin-5  is aberrantly expressed in 

hum an breast cancer and has a link to the clinical outcom e o f the patient. Patients 

w ho died from breast cancer had higher levels o f C laudin-5 com pared with patients 

w ho rem ained disease-free. Furtherm ore, patients w hose tum ours expressed high 

levels o f Claudin-5 had significantly shorter survival than those with low levels of 

expression o f Claudin-5. Thus, it can be seen from  this w ork carried out on human 

breast tissue sam ples that Claudin-5 m ay be a useful prognostic tool in the 

assessm ent o f patient outcome in breast cancer.

7.3.2 C laudin-5 in M DA-M B-231 breast cancer cells

The results of the TER experim ents carried out on M DA-M B-231 breast 

cancer cells revealed interesting differences betw een control, over expression and 

knock down cells. This showed that the role o f C laudin-5 was not prim arily in 

keeping the cell barrier tight. In fact, the lack o f C laudin-5 might be com pensated by 

one o f the other 23 m em bers o f the C laudin fam ily.

The results obtained from  the in vitro  tum our cell (M atrigel) adhesion assays 

agreed with the results.from  the ECIS attachm ent experim ents; where knockdown
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cells w ere significantly less adhesive than the control cells. How ever, in real time 

m easurem ents using ECIS, the forced expression o f Claudin-5 gave the cells a 

significantly  enhanced adhesive capacity agreeing with the trend (although not 

reaching significance) seen in the in vitro  adhesion assays. Further to this, alteration 

o f C laudin-5 levels o f expression did not affect the invasive nature of the M DA-M B- 

231 breast cancer cells. Our results also showed that alteration o f Claudin-5 levels 

appeared to have no effect on the growth o f M DA -M B-231 cells in vitro  or on 

tum our grow th in vivo.

7.3.3 C laudin-5 in H EC V  hum an endothelial cells

The m easurem ent o f TER  in H E C V  hum an endothelial cells produced similar 

results to those dem onstrated in M D A -M B -231 breast cancer cells; w ith differences 

shown betw een control, over-expression and knockdow n cells. These observations 

speculate that the absence o f Claudin-5 m ight be balanced by another m em ber o f the 

C laudin fam ily; as previous studies have reported differential expression of Claudin 

fam ily m em bers in different tissues.

The result o f this thesis show s that alteration o f Claudin-5 levels in HECV  

cells w as not capable o f prom oting cell grow th in vitro.

M anipulation o f H E C V  cells by forced expression of Claudin-5 caused these 

cells to significantly  decrease their adhesive properties both in in vitro  adhesion 

assay experim ents and using EC IS technology. Interestingly, real time m easurem ents 

using ECIS revealed significant reduction in adherence in the knockdow n cells when 

com pared to the controls w hich w as not seen in the in vitro adhesion assays.
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The natural ability o f endothelial cells to rapidly form  capillary-like 

structures was altered when Claudin-5 w as over-expressed, showing a significant 

decrease in the num ber o f tubules form ed. H ow ever, the effect was reversed in the 

absence o f Claudin-5 displaying a significantly larger num ber o f tubules formed 

w hen com pared to the controls. These results clearly indicate that Claudin-5 plays an 

im portant role in angiogenesis.

A dditionally , the in vivo experim ents w ere carried out in order to identify 

w hether forced expression o f Claudin-5 in H ECV  cells, w hen co-injected with 

M D A -M B -231 breast cancer cells resulted in any changes in tum our developm ent. 

No significant differences were found in this experim ent. Unfortunately, there were 

som e problem s in grow ing the knockdow n cells and hence we were unable to assess 

the effect o f C laudin-5 knockdown on in vivo  tum our cell developm ent.

7.3.4 C laudin-5 and its role in cell m otility

One hallm ark o f breast cancer cells is their ability to acquire a m otile 

phenotype. The results o f a panel o f m otility assays in M DA-M B-231 revealed that 

knockdow n o f Claudin-5 resulted in a significant decrease in cell m otility as shown 

by EC IS and cytodex-2 bead m otility  assays. The same trend was seen in the 

w ounding  assay but did not reach a level o f significance. The opposite effect was 

seen in cells over-expressing C laudin-5, how ever, only ECIS results reached 

significance.

Three different cell m otility signalling pathw ays were investigated in relation 

to altered levels o f C laudin-5, nam ely H G F, N -W ASP and ROCK. Results disclosed
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that both transfected cells, as well as controls responded in the same way to the 

addition o f HGF. That is, all cells showed reduced TER and increased m otility in 

response to H G F, indicating that C laudin-5 is not linked to the HG F motility 

signalling  pathw ay.

Control cells treated with either N -W A SP inhibitor (W iskostatin), ROCK 

inhibitor (Y 27632) or A rp2/3 inhibitor (C K -0944636) displayed a decrease in cell 

m otility  as show n by ECIS. The transfected cells responded in different ways. 

T reatm ent w ith N -W A SP inhibitor caused a highly significant decrease in cell 

m otility  in forced expression cells and a less significant effect in the knockdown cells. 

The A rp2/3  inhibitor showed a sim ilar effect to the N -W A SP inhibitor on m otility 

with a h ighly significant decrease in m otility in forced expression cells but no 

significant change in m otility in knockdow n cells. These findings are of interest 

because the A rp2/3 com plex acts dow nstream  of N -W A SP and this study shows that 

w hen C laudin-5  is decreased in the cells the A rp2/3 inhibitor was no longer able to 

inhibit m otility , agreeing with the trend seen w hen cells were treated with the N- 

W A SP inhibitor, as the knockdown cells show ed a reduced response to the inhibitor. 

R O C K  inhib itor did not change the m otility o f either type of transfected cells 

ind icating  a possible connection betw een the level o f expression o f Claudin-5 in the 

cells and the R O C K  signalling pathw ay.

This study is the first to reveal a link betw een Claudin-5 and cell m otility in 

breast cancer cells. This possible link  w as also dem onstrated when interactions 

betw een C laudin-5 and N -W A SP, and Claudin-5 and RO CK  were investigated in
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breast cancer cells by co-im m unoprecipitation o f Claudin-5 as well as N -W ASP and 

RO CK .

The sam e panel o f experim ents was used to analyse the effect of altering 

levels o f expression o f Claudin-5 on m otility o f H ECV  hum an endothelial cells. The 

opposite  results were observed in these cells com pared with the breast cancer cells. A  

significant increase in cell m otility w as seen in all assays including ECIS when 

C laudin-5  w as knocked down. These results agree with the findings o f the tubule 

form ation assays as the form ation o f tubules is a process that involves cell migration.

A s w ith M D A -M B-231 breast cancer cells, the addition o f the powerful 

m otogen H G F  to the H ECV  cells increased cell m otility, tubule form ation and 

decreased T E R  across all cell types. These results also indicate that the HG F 

pathw ay is not connected to C laudin-5.

The H E C V  cells w ere exam ined after treatm ent with the same inhibitors used 

for the M D A -M B -231 breast cancer cells. W hen cells were treated with N -W ASP 

inhib itor a decrease in cell m otility w as observed in control and forced expression 

cells, how ever, no effect was seen in the cells displaying a reduction in Claudin-5 

levels. T hese results are in agreem ent w ith those from the tubule form ation assays 

w here addition o f N -W A SP inhibitor decreased the ability of both transfected cells to 

form  tubules although only reaching significance in the forced expression cells.

These results clearly indicate a link betw een the N-W A SP pathw ay and Claudin-5 as 

w hen C laudin-5 levels are reduced the inhibitor’s effect was m arginal.
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W hen cells were treated with the A rp2/3 inhibitor sim ilar results were 

obtained as w hen the N -W A SP inhibitor w as used. This is not surprising as Arp2/3 

com plex is seen dow nstream  of N-W ASP.

A lthough R O C K  is involved in a different cell m otility pathway, the cells 

responded to the R O C K  inhibitor in a parallel way to N -W A SP and Arp2/3 complex 

inhibitors; again show ing that the knockdow n of Claudin-5 in these cells masked 

their response to these inhibitors.

Furtherm ore, with the use o f the com bination of H G F with each of the 

inhibitors during  tubule form ation assays, we saw a negation in the effect o f HG F in 

both control and forced-expression cells. H ow ever, the reduction o f Claudin-5 levels 

in H E C V  cells restored the effects o f H G F as the inhibitors were less effective on 

these cells.

This study is the first to reveal a link betw een Claudin-5 and cell m otility in 

endothelial cells (Figure 7.1). This possible link was further dem onstrated when 

in teractions betw een Claudin-5 and N -W A SP, and Claudin-5 and R O C K  1 were 

investigated  in H E C V  hum an endothelial cells by co-im m unoprecipitation of 

C laudin-5 as w ell as N -W A SP and R O C K  1.

This study has revealed the different effects o f altering Claudin-5 expression 

in two different cell types, the hum an breast cancer cell line M DA -M B-231 and the 

hum an endothelial cell line H ECV . This study portrays a very new and interesting 

role for C laudin-5 in cell m otility. It is clear from the data presented in m y thesis that 

expression o f C laudin-5 in d ifferent cell types have different im pact on cells
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functions: nam ely Claudin-5 forced expression increases the aggressiveness o f breast 

cancer, but reduces the angiogenic effect on endothelial cells. These two 

observations have contrasting im pact on cancer progression. It is clear that the 

clinical data o f the present study totally support the conclusion from the cellular data 

on breast cancer cells. A lthough the angiogenic im pacts observed with endothelial 

cells contrad ict those seen with breast cancer and breast cancer cells, the following 

possib ilities exist and should be explored in future: 1.Claudin-5 expression in the 

body. C laudin-5  has been indicated to be m ainly expressed in endothelial cells in the 

central nervous system . It is therefore plausible that the relatively low levels in 

endothelial cells in m am m ary gland m ay only have a m inor effect on breast cancer; 2 . 

The level o f expression in endothelial cells in breast cancer. In the present study, we 

have not been able to specifically com pare the levels o f Claudin-5 in endothelial cells 

from norm al m am m ary tissues and breast cancer tissues, an im portant topic to 

fo llow ing  in future studies. It is possible that Claudin-5 in these two types o f tissues 

(norm al vs tum our) do not vary. Together, I believe that the angiogenic effect 

observed w ith C laudin-5 m ay be an im portant biological observation and its link to 

d isease progression  in cancer, particularly  in breast cancer, is an exciting topic for 

future research.

A lthough Claudin-5 is expressed naturally in both cell lines the effect of 

altering its expression is different. These results are not contradictory as cancer cells 

are not norm al and do not behave in the sam e w ay as normal, healthy cells 

explain ing w hy the sam e m olecule has different effects when its levels are altered. 

H ow ever, in both parallel studies this thesis proves a link between Claudin-5 and
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m otility. M any questions still need to be answ ered but this study has shed light on a 

possib le role for C laudin-5 in the m etastasis and progression of hum an breast cancer.
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Figure 7.1: Cell motility pathways. The complexity o f cell motility is illustrated. The question marks indicate the missing gap 
between Caludin-5 and N-WASP, and Claudin-5 and ROCK signalling pathway (Figure modified from Ingenuity Systems, Inc.).
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7.4 Future work

The results from the work presented in this thesis dem onstrate an exciting 

glim pse into how Claudin-5 functions in both hum an breast cancer and endothelial 

cells. C ontrary  to popular thought, we have shown that Claudin-5 has little function 

in the TJ o f these cells, but appears to be directly involved in the regulation of their 

m otility. This is o f extrem e interest, as there has been an enorm ous push in recent 

years to find w ays o f inhibiting m etastasis in hum an breast cancer as motility is a key 

aspect o f cancer cells during the m etastatic cascade, this w ork has great relevance in 

this field.

The intriguing results we have shown, also raise a num ber of questions that 

would be vital for future w ork on both breast cancer and TJ function as a whole, 

particularly  in endothelial cells. O bviously, tim e did not allow for further 

investigation o f som e of the questions raised, but which require further investigation:

1. The interaction betw een the A R P2/3 and Claudin-5 should be proved 

beyond doubt. This w ould be carried out using co-im m unoprecipitation. M oreover, it 

would be in teresting to see if the overall levels of the ARP2/3 com plex are altered in 

cells that have had Claudin-5 over-expressed or knocked-dow n. In addition, any 

changes in location o f the com plex could be assessed using im m unofluorescence.

2. The initial results from  our in vivo  study investigated the effect of Claudin- 

5 over-expression. Subsequently, we also created the knockdown subline. If time and 

funds had allow ed, we w ould have liked to have carried out an in vivo tumour model 

study using this, especially  in light o f our w ork showing the increased tubule
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form ation obtained from the Claudin-5 knockdow n cells. This shows that Claudin-5 

has the potential to be a target in anti-angiogenesis therapy, and would provide an 

avenue o f research that w ould constitute another thesis in itself.

3. From  our w ork, we have shown that Claudin-5 is involved in the signalling 

pathw ay related to the N -W A SP fam ily for m otility and cytoskeletal rearrangements. 

W e did not have sufficient time to investigate this fully; the pathw ay is com plex, 

w ith m any m em bers. Future w ork should look at which other m em bers Claudin-5 

could have possib le interactions with, how it prevents the effect o f the N-W ASP, 

A rp2/3 and R O C K  inhibitors. M oreover, this is also true for the m otility pathw ay 

regulated in part by the GEFs, and in our study, the effect that Claudin-5 has on 

R O C K  function. There appears to be som e link betw een both these m otility 

regulators, as show n in Figure 7.1. The question m arks indicate our gap in current 

know ledge, and certainly beg for further research.

4. Both N -W A SP and R O C K  are activated by GTPase. W e w ould have liked 

to investigate how this m ight be turned o ff by Claudin-5; is the physical interaction 

betw een the m olecules enough to prevent activation? Or does Claudin-5 have some 

other effect on these proteins? The phosphorylation status o f R O C K  and N -W A SP in 

cells w ith /w ithout Claudin-5 could be assessed.

5. W e know  from  our research show n here, that Claudin-5 did not interrupt 

the signalling  pathw ay for m otility  as initiated using HGF. It w ould be interesting to 

see if there is a sim ilar response if  we used other growth factors, e.g. VEGF, FGF, 

IGF, EG F, PD G F and other angiogenic factors.
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6 . A lthough not shown in this thesis, we also discovered that Claudin-5 

directly  precipitates w ith |3-catenin. A lthough we did not have time in the current 

study to investigate this more thoroughly, it suggests that Claudin-5 might also be 

involved in the construction o f adherens junctions, in addition to being present in TJ 

(as expected). It m ight be that there is a dynam ic interaction betw een the Adherens 

and T ight junctions, as m ore evidence has shed light on the proteins that although 

once thought to be specific to a particular junction type, have now been shown to be 

found in both (M artin TA , personal com m unication).

The w ork presented in this thesis has revealed a hitherto unknown role for 

C laudin-5 in both breast cancer and endothelial cells and has opened an avenue for 

future w ork  that could be o f great interest to the field.
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